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“Whether or not the Majorana will ever fulfill this promise [quantum information] is a
minor detail; its main role is that of a legend, to give hope and move things forward”

Tudor D. Stanescu, Introduction to Topological Quantum Matter and Quantum
Computation

“De tout temps, les hommes ont exploité les propriétés des matériaux que la nature
mettait à leur disposition”

Henri Alloul, Physique des électrons dans les solides



Abstract

In this thesis, we have studied carbon nanotube-based nanocircuits integrated in a micro-
wave cavity architecture. Our device is compatible with the simultaneous measurement
of both the current through the nanocircuit and the frequency shift of the cavity. These
two signals give complementary information about the device. In the two experiments
presented in this thesis, the carbon nanotube was positioned above a magnetic material
containing several magnetization domains. The resulting magnetic stray field’s axis
oscillates along the carbon nanotube length. For the confined electrons, this is equivalent
to both a synthetic spin-orbit interaction and a Zeeman effect.

This synthetic effect is evidenced in two ways. In a first experiment, we have measured
the evolution of the nanotube’s energy levels when the magnetic material is progressively
magnetized by an external magnetic field, thus destroying the oscillations of the stray
field. In this experiment, the carbon nanotube had a very transparent contact to a
superconducting metal, in addition to the synthetic spin-orbit interaction and Zeeman
effect. These ingredients are a pre-requisite to observe Majorana quasiparticles in a
one-dimensional nanoconductor. Those quasiparticles are under intense study for their
potential use in quantum computing.

In the second experiment, we have realized a double quantum dot in which each dot
similarly lays above an oscillating magnetic field. The internal transitions of this DQD
are measured with the microwave cavity signal. We evidenced a strong dispersion of the
energy of the double quantum dots’ internal transitions with a small external magnetic
field. This dispersion can be explained by a Zeeman effect in which the Landé factor, g,
has been strongly renormalized by the synthetic spin-orbit interaction.
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cavity, Spin-orbit coupling.



Résumé

Dans cette thèse, nous avons étudié des nanocircuits à base de nanotubes de carbone
intégrées dans une cavité micro-onde. Notre dispositif permet de réaliser simultanément
des mesures de transport et des mesures micro-ondes, qui donnent des informations
complémentaires sur le nanocircuit. Dans les deux expériences réalisées durant cette
thèse, un nanotube de carbone est placé au dessus d’un matériau magnétique qui présente
plusieurs domaines d’aimantation. L’axe du champ magnétique de fuite résultant oscille
le long du nanotube. Pour les électrons confinés, il est équivalent à un couplage spin-
orbite synthétique et à un effet Zeeman.

Cet effet synthétique est mis en évidence de deux manières. Dans une première expérience,
nous avons mesuré l’évolution des niveaux d’énergie de la boîte quantique quand le
matériau magnétique est progressivement aimanté par un champ extérieur, ce qui détruit
le champ oscillant. Dans cette expérience, le nanotube a un très bon contact avec un
métal supraconducteur en supplément des effets spin-orbite et Zeeman synthétique, qui
sont les pré-requis pour obtenir des quasiparticules de Majorana dans un nanoconducteur
1D. De telles quasiparticules sont activement recherchées pour leur utilisation pour le
calcul quantique.

Dans un second temps, nous avons réalisé une double boîte quantique, dans laquelle
chaque boîte est constituée d’un segment de nanotube, situé au dessus du même champ
magnétique oscillant que dans la première expérience. Les transitions internes de ce
système sont mesurées à l’aide de la cavité micro-onde. Nous avons mis en évidence une
très forte dispersion de l’énergie de la transition interne avec un faible champ magnétique
extérieur, qui peut être expliqué par un effet Zeeman pour lequel le facteur de Landé,
g, a été fortement renormalisé par l’interaction spin-orbite synthétique.

Mots clés

Electrodynamique quantique, Etats topologiques, Nanotubes de carbone, Cavité microondes,
Couplage spin-orbite.
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Notations

αso Spin-orbit coupling strength (for a parabolic dispersion relation)
Bosc Magnetic field that is non-uniform in space (stray field of a magne-

tic texture)
Bext External magnetic field
δij Kronecker delta
∆ Superconducting pairing
δ Quantum dot level spacing
δso Spin-orbit energy (for the relation dispersion of a CNT)
e Electron charge
Ec Quantum dot charging energy
εd Detuning energy between two dots of a DQD
εL,R Chemical potential of the left/right dot of a DQD
Eso Spin-orbit energy (for a parabolic dispersion relation)
Ez Zeeman energy
ηx,y,z Pauli matrice x, y or z acting on the K-K’ space for a CNT Hamil-

tonian
fcav Resonant frequency of the CPW
fd Drive frequency of the CPW
ΓS,D Tunneling rate to the source/drain electrode
Γ1,φ Decoherence rate through charge relaxation (1) or dephasing (φ)
h Planck constant
h.c. hermitian conjugate
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m electron mass
µ chemical potential
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ψ Electron wavefunction
sx,y,z Pauli matrice x, y or z acting on the spin space
σx,y,z Pauli matrice x, y or z acting on the sublattice space for a CNT

Hamiltonian in spinor representation
t Interdot coupling in a DQD
τx,y,z Pauli matrice x, y or z acting on the electron-hole space
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Vrms Root-mean square value of the cavity vacuum voltage fluctuations
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Introduction

Since the beginning of the XXth century, many technological advances have enlarged
the scope of solid state physics, that reversely fostered many new applications. This
thesis project grouped elements of four domains of quantum physics: nanotechnologies,
superconductivity, quantum light and magnetism.

The discovery of the discrete spectral lines of atoms and molecules (in the XIXth century)
was a stepping stone for the development of the quantum physics framework. One
particularly illuminating example is the prediction and experimental realization of a laser
in the 1960s’. A myriad of applications followed: LEDs, lasers for medical treatments,
industrial processes (laser cutting), information processing with CDs... The emission of
light at a controlled frequency (combined with the development of high-quality cavities
to confine light) also became a fundamental tool to probe solid states with a high energy
resolution, and to enquire about the interaction between light and matter.

Starting with the semiconductor-based transistor in the 1940s’, technical advances in the
domain of electronics enabled the emergence of experimental quantum nanoelectronics.
Among these advances, we can give as examples the developement of lithography [1]
and metallic thin film deposition techniques to fabricate smaller and smaller circuits,
the development of imaging techniques down to the resolution of an atom1, and the
development of molecular beam epitaxy in the 60s’ for obtaining pure semi-conducting
materials. It is now possible to realize “artificial atoms” in electronic circuits. Indeed,
the atoms discrete spectral lines arise from the spatial confinement of the electrons in
the electrostatic potential of the nucleus. Artificial atoms can be realized by engineering
a controlled spatial confinement of a conductor’s electrons using electrostatic potentials.
The basic rules of quantum mechanics can be studied in details in these tunable quantum
systems.

On another front, the development of thermodynamics in the 1850s’ enabled the successful
cool-down of hydrogen and then helium, until they reached their liquid state2 in the

1The first commercial SEM was developed in the 60s’, the AFM was invented in the 80s’.
2at 4K, ie −269◦C for helium.

1
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early 1900s’. This led to the discovery of superconductivity: at low enough temperature,
an electrical current flows without resistance in certain metals. This phenomenon has
been the object of intense theoretical work, resulting in the BCS theory of supercond-
uctivity. The BCS theory established the link between a small attractive interaction
between electrons (that can be mediated by the solid’s crystalline structure) and the
emergence of a macroscopic electronic state where electrons are paired up, and carry
current without resistance3. The idea of a macroscopic state, where all the electron pairs
share a common phase (similarly to photons in a laser) is surprising when considering the
number of particles involved, and the fact that this is a quantum phenomenon. Super-
conductivity has been disconnected from applications for a long time, yet nowadays
liquid helium and superconductivity have found several technical applications, such as
MRI and metrology. Superconductivity enables the generation of very high magne-
tic fields (by setting an electrical current in a superconducting material), enriching
again fundamental and applied experiments. The perspective of superconductivity at
a higher temperature is also a wide field of research, and could make superconducting
(dissipationless) circuits economically sustainable.

Our last example will be magnetism which has quite a different history than supercond-
uctivity. Indeed, crucial applications of magnetic materials had already been identified
before a microscopic understanding of magnetism’s rules was achieved, as for example
the electromagnet4. Quantum theory, and more specifically the notion of spin, was
necessary to understand the emergence of ferromagnetic materials that have a permanent
magnetization. A ferromagnet can be modeled as a lattice of spins, interacting with
one another; each spin carries a certain magnetization, and if they align the material
becomes a magnet. Since the 1960s’, important work has been done to understand more
precisely how to miniaturize a magnetic texture, i.e. a local change in the magneti-
zation of a material. The control over magnetic materials is paramount to the industry
of information storage.

Ideal ballistic conductors

As we mentioned before, artificial atoms can be made by spatially confining an electric
conductor’s electrons. Such a study falls in the domain of mesoscale physics, which
studies the intermediate scale, between the atomic and the macroscopic world. In order
to observe the effects of confinement, it is necessary to reach a regime where the wave-
like nature of conduction electrons becomes relevant: it is necessary to cool down the
electrons (to typically T < 1 K), and to confine them over length scales of the order of

3These excitations following a bosonic statistics they do not collide with one another.
4An electromagnet consist in a ferromagnetic core that can be magnetized by a small electric current

applied in surrounding wires. The magnet can the be used to move other ferromagnetic pieces.
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1 µm. It is also necessary to use an electric conductor with a crystalline structure of high
quality. If not, the defects act as diffusers that randomize the electrons’ trajectories.
A very good conductor candidate is the single wall carbon nanotube (CNT), which
consists in a tube made out of a rolled-up sheet of graphene. A CNT already provides
the electronic confinement in two dimensions.

CNTs can easily be grown using a chemical process with little to no defects. Several
recent experimental works have demonstrated precise positioning of a selected CNT over
an electrical circuit, to study the artificial atom formed between the source and drain
electrodes used to flow a current. One can also increase the complexity of the system
and build two artificial atoms in the same CNT, thus forming an artificial molecule.
An advantage of a synthetic system is that the typical energy scales can be controlled
and changed, as opposed to nature-defined systems. For example, two different regimes
concerning the coupling of the artificial atom to the source and drain electrodes can
be studied. On the one hand it is interesting to study strongly confined electrons: the
resulting system is very isolated and can keep its coherence for a long time. On the other
hand, when increasing the coupling between the confined electrons and an electronic
reservoir, the reservoir can imprint certain of its properties on the confined electrons.
For example, a superconducting reservoir can induce a superconducting pairing in the
artificial atom.

Ilani's group (Rehovot)

2013

Zhong's group (Rehovot)

2010

Kouwenhoven's group (Del�)

2012

Hu�el's group (Regensburg)

2018

Schonenberger's group (Basel)

2015

Figure 1: Review of several CNT transfer techniques. CNT are grown of a specific
substrate, and can then be characterized, using for example Rayleigh spectroscopy. A
circuit chip is first prepared, and the CNT is then transferred onto it. Such a transfer
technique was also developed in our group and was used during this thesis. Source: [2]
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Superconductivity

Superconductivity is a state of matter where electrons in a conductor pair-up at low
enough temperature. All the electrons around the Fermi energy EF pair-up and form a
condensate at EF , which opens a gap in the single-particle excitation spectrum of the
superconductor, of width ∆ in energy. When there is an interface between a super-
conductor and a normal conductor, an incoming electron at an energy E < ∆ cannot
be transmitted in the superconductor due to the energy gap. If the interface is clean
enough, the electron cannot be reflected neither, due to momentum conservation. How-
ever, there can be another type of reflection, called Andreev reflection, where the electron
is transmitted to the electron-pair condensate, and a hole is reflected. Through this
process, the coherence of the superconductor’s electron pairs can persist a certain time
in the normal conductor.

The standard singlet superconducting pairing involves two electrons with opposite spin.
As a consequence, superconductivity can be destroyed by high enough a magnetic field,
which changes differently the energy of electrons with opposite spins. In a similar way,
if a superconductor is contacted to a ferromagnetic material, the proximity-induced
pairing in the ferromagnet is different than in the superconductor. In this thesis, we
have studied yet another spin-effect on superconductivity, namely how a spin texture
affects the superconductivity induced in a carbon nanotube.

Light-matter interaction

The principle of spectroscopy is to study the properties of matter through its effect on
light. In this thesis we have used photons at the microwave frequency (typically fc =
6 GHz) to study our artificial atom-like systems. The photonic signal gives information
about the electronic processes at frequencies close to fc, with a much finer resolution that
what is achievable with transport measurement, giving us access to a different energy
range. We can distinguish two regimes for the light-matter interaction, depending of
whether or not there can be a coherent exchange of energy between light and matter.
In order to reach the coherent regime, photons are trapped in cavities to increase their
lifetime.

Besides, the photons can probe properties of the system that are not directly visible in
transport measurements. For example, in a double quantum dot5 geometry, they give
access to the energies of the inter-dot transitions. It can also give information about
the nature of the electronic excitation, for example whether it is spin polarized or not,

5An artificial atom is also called a quantum dot; a double quantum dot is the equivalent of an
“artificial molecule”.
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through specific selection rules. During this thesis, we have studied the influence of a
spin texture on the wavefunction of an artificial atom using the cavity photons as a
high-resolution probe of small energy changes.

This thesis is organised as follows. Chapter one describes how superconductivity and
spin-orbit interaction interact to change the nature of the superconducting pairing, and
how an additional magnetic field can then favor the emergence of exotic quasiparticles,
called Majorana quasiparticles. It also gives an overview of the experimental efforts
provided so far to try and generate these quasiparticles. For now the detection methods
have focused on the presence of an electronic state at zero energy, without exploiting
the more exciting properties of these quasiparticles, such as their self-adjointness.

Chapter two describes a new path to obtain these exotic quasiparticles, which gives more
flexibility in the platforms in which they can emerge. Indeed, it shows how a spin-orbit
interaction can be autonomously generated in any nanoconductor by using a proximal
magnetic field that oscillates along the nanoconductor. We study the emergence of
Majorana quasiparticles with this scheme, focusing on the importance of how the super-
conductivity is additionally induced.

Chapter three gives technical details about key aspects of the project: the design of
the microwave cavity, the fabrication techniques for the CNT circuit embedded in the
cavity, and the study of the magnetic materials used to create the spin texture.

The next two chapters present original results obtained during this thesis. The interest
of these results is summarized below.
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Synthetic spin-orbit interaction for Majorana devices

Figure 2: (a) Schematic representation of the evolution of a CNT energy bands when
subject to a magnetic field rotating in space with N and N’ domains, with the allowed
interference conditions. The spin orientation is represented by the curves’ colors. (b)
Conductance map as a function of Vsd−Bext for a CNT placed over a magnetic texture
and contacted with superconducting contacts, one of which acts as a probe. Subgap
states are measured, which oscillate as a function of a magnetic field. These oscillations
occur with a relatively small period of B̃ext = 600 mT and are due to the change in
the confinement-induced interference condition when the magnetic domains are slowly

aligned by the external magnetic field.

Chapter four presents the experimental results relative to the interaction of supercond-
uctivity with our spin-textured conductor, measured through the current flowing through
the device. Below the superconducting gap, the current is carried by electronic levels
dressed by the superconducting proximity effect, called Andreev Bound States (ABS).
The effect of the spin-texture is visible through the variation of the ABS’ energy when
an external magnetic field is applied, until the texture disappears for Bext & 0.8 T. The
number of energy oscillations enables us to give an estimate of the spin-orbit energy in
our system of about Eso = 1.1 meV, much larger than in most semiconducting platforms.
This high spin-orbit energy opens the way to the observation of exotic excitations, called
Majorana quasiparticles.
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Sensing spin textures with cavity photons

Chapter five presents another observation of the effect of the spin-texture on the electrons
in the absence of superconductivity, this time measured through the cavity in a double
quantum dot (DQD) geometry. It shows that the cavity can be a very sensitive detector
of small variations of the electronic spectrum in a quasi-isolated conductor. The micro-
wave response is strongly modified when the cavity and DQD are resonant, at ~ωcav =
~ωDQD. We have measured strong dispersion of this resonance with an external magne-
tic field (over a range where the domains are not affected), which points toward large,
orbital-dependent Landé factors in the CNT. These large Landé factors could be explained
by the synthetic spin-orbit interaction in both dots.

Figure 3: Schematic representation of a DQD based magnetically textured qubit (a)
and a spin-qubit (b) as studied for the first time in Ref [3]. In device (b), each dot
can be described as being spin-polarized by the field of the closest electrode. On the

contrary, in device (a), each dot is subject to non-collinear fields.
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10 Chapter 1. Hybrid topological quantum devices

The perspectives of topological superconductivity, and specifically the promises of
Majorana fermions for topological quantum information have recently led to multiple
experimental works, in a diverse range of systems.

The term Majorana fermions originally comes from the field of high-energy physics,
and describes a particle that would be its own antiparticle [4]. It was much later that
an analogy was drawn to solid-states physics, where Majorana modes are predicted to
appear around vortices in topological superconductors [5], or at the boundaries of a
finite 1D system in the famous toy-model by Kitaev [6].

While these proposals are based on materials with exotic properties, it was subsequently
realized that they could be engineered by combining more mundane physical ingredients
[7–12], either a topological insulator or even a semiconductor in which the spin-rotation
symmetry is broken [11, 12], proximitized by “trivial” (s-wave) superconductivity. Since
then, numerous physical realizations of mesoscopic systems combining these ingredients
have been reported, either with semiconducting nanowires [13–17], 2DEG [18, 19], atomic
chains [20, 21] or islands [22]. These experimental realizations drew a lot of attention
since it was proposed that Majorana fermions could be paramount for new quantum
information schemes [23–25].

In this chapter we will briefly describe the origin of the search for Majorana fermions
in solid-state physics (section 1.1), before discussing in more details the method that
is followed in this thesis for trying to mimic topological superconductivity (section 1.2)
and the experimental signatures obtained so far (section 1.3).

1.1 The quest for Majorana excitations

1.1.1 High-energy physics origin

Majorana fermions were first imagined by Ettore Majorana as hypothetical particles
that would be real solutions of the Dirac equation [4]. Although the discussion was held
in the field of high energy physics, trying to envision what fundamental particles could
exist, an analogy was later drawn between the equations of Majorana fermions and the
equations ruling a superconductor [6, 26–29]. To understand this analogy, we summarize
here a few key points of the theory behind the Majorana fermions. They are described
in more details in the reviews [30, 31].

The Dirac equation describes a fermion field, and reads (~ = c = 1)

(γµpµ −m)Ψ = 0
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with the following notations:

• Ψ(x) is the four-component vector describing the wavefunction of a spin-1/2 particle
and its antiparticle (we will drop the x coordinate in the following).

• pµ = (i∂t, −~p)

• γ0 =

 0 ŝ0

ŝ0 0

 and γµ =

 0 ŝµ

−ŝµ 0

 for µ ∈ [x, y, z]

• (ŝx, ŝy, ŝz) are the Pauli matrices and ŝ0 is the identity matrix (of dimension 2).

In fact, the definition of γµ is not unique and the one given above is called the Weyl
representation, found by Dirac. The only constraint is that one should recover the Klein-
Gordon equation (the wave equation describing a relativistic particle) when squaring the
Dirac equation. E. Majorana proposed an alternative definition of these gamma matrices
in which they are purely imaginary (Majorana representation), and the resulting Dirac
equation in this representation is real, leading to a real solution Ψ. The reality of Ψ
implies that it describes a particle that is equal to its antiparticle. We can already note
that a particle that is its own antiparticle is necessarily charge neutral, and thus does
not couple to the electromagnetic field (see for example equation (1.1)); we will come
back to this point later on.

To go from reality to self-adjointness, one has to calculate the charge conjugation matrix
(defined such that its effect on a charged particle is to reverse the sign of the charge).
To do so, one can compare the Dirac equations for both a charged particle Ψ and its
antiparticle (with opposite charge) Ψc in an electromagnetic pseudo-potential Aµ. The
Dirac equation becomes (i∂µ → i∂µ + eAµ) [31]:

[γµ (i∂µ + eAµ)−m] Ψ = 0 (1.1)

[γµ (i∂µ − eAµ)−m] Ψc = 0 (1.2)

We can check that Ψc can be written :

Ψc = CΨ∗ (1.3)

where the charged conjugation matrix is C = iγy in the Weyl representation1, and C = 1

in the Majorana representation. In the Majorana representation, we then conclude that
Ψ and Ψ∗ describe a particle-antiparticle pair.

1It satisfies −Cγ0γµ∗ = γµCγ0 which enables to connect equation (1.1)∗ and equation (1.2).
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To study into more details the interest of the Majorana representation, one can rewrite
Ψ = (ψR, ψL)T , where ψR,L are two-component spinors that are the right-handed and
left-handed projections of Ψ. E. Majorana noticed that for a real solution, the particle
is indistinguishable from its antiparticle (Ψc = Ψ) and the equations on ψL and ψR

decouple:

(i∂t − ~p ·~s)ψR − imRŝyψ
∗
R = 0

(i∂t + ~p ·~s)ψL − imLŝyψ
∗
L = 0

(1.4)

From a given set of solutions ψL, ψR of the Dirac equation, one can form two new
four-component spinors that represent two pairs of Majorana :

ΨL = (−iŝyψ∗L, ψL)T

ΨR = (ψR, iŝyψ∗R)T
(1.5)

This condensed summary of the relation between Dirac and Majorana fermions enables
us to understand the consequence of the reality constraint: a Majorana fermion is neutral
and self-adjoint. If we additionally look for a stationary solution of the equations, it needs
to have a zero energy (the particle and antiparticle having opposed energies). Finally,
we can note that a pair of Majorana fermions of equal masses such that ψL = iŝyψ

∗
R

forms a Dirac fermion (from equations (1.4) and (1.5)). These properties will help us
understand the analogy between Majorana fermions and superconductors physics.

1.1.2 Link to condensed matter physics

In condensed matter, we do not deal with fundamental particles but with electrons
in a solid, and more specifically with quasiparticles that are electron-like excitations,
effectively acting as independent electrons (quasielectrons) or holes. These excitations
take various forms with properties (mass, charge, spin, velocity, statistics...) that can
be very different from the ones of a bare electron.

To find a system in which a quasiparticle could mimic a Majorana fermion, we can look
at the properties derived in the previous section. Notably, we noted that two well-chosen
Majorana fermions are indistinguishable from a Dirac fermion (an electron for example,
see equations (1.4) and (1.5)). We can rewrite this relation in term of the creation (ĉ+

i )
and annihilation (ĉi) operators of a electron in the following way:

γ̂i,1 = ĉi + ĉ+
i , γ̂i,2 = i(ĉ+

i − ĉi) (1.6)
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where the γ̂i,n are self-adjoint operators, or reversely:

ĉi = 1
2(γ̂i,1 + iγ̂i,2), ĉ+

i = 1
2(γ̂i,1 − iγ̂i,2) (1.7)

The canonical anti-commutation relations for the fermionic operators lead to:

{γ̂i,α, γ̂j,β} = 2δijδαβ and γ̂+
i,α = γ̂i,α for α, β ∈ [1, 2] (1.8)

The γ̂i,α operators represent Majorana fermions. For such operators to describe “natural”
excitations of the electrons, we need a system were electrons and holes are superposed.
Such a superposition can indeed have a zero charge, as expected for a Majorana fermion.
Thus, superconductors, that naturally pair electrons, are good candidates. Indeed, the
charge is not well defined in the mean field description of a superconductor: only its
parity is a good quantum number. Particles coming in or out of the superconducting
condensate allowing for variations of the global charge by a multiple of 2e, which bodes
well for allowing for Majorana pair annihilation, and for the possibility to superpose an
electron and a hole.

If we look more closely at the equations describing a superconductor, we can re-express
the hamiltonian of the superconductor in term of Majorana operators [29]. The Hamil-
tonian of a s-type superconductor, under a mean-field approximation, can be written
as:

HBCS =
∫
dx[
∑
s, s′

Hs,s′

0 (x)ĉ+
s (x)ĉs′(x) + (∆(x)ĉ†↑(x)ĉ†↓(x) + h.c.)] =

∑
n

Enγ̂
†
nγ̂n (1.9)

where x is the space coordinate, H0(x) the Hamiltonian without the pairing term (ie it
is a generic Hamiltonian with quadratic terms only), ∆(x) ∝ 〈ĉ↓(x)ĉ↑(x)〉 the supercon-
ducting pairing potential and ĉs(x), ĉ+

s (x) (resp. ĉks, ĉ
+
ks) the field operators for spin

s =↑, ↓ in real (resp. momentum) space. To diagonalize this Hamiltonian we need to
find the eigenvalues En and the operators γ̂n (which are not, in general, self-adjoint).

The Bogoliubov de Gennes approach consists in looking for excitations of the following
form :

γ̂+
n =

∫
dx[un↑ (x)ĉ+

↑ (x) + un↓ (x)ĉ+
↓ (x) + vn↑ (x)ĉ↑(x) + vn↓ (x)ĉ↓(x)], (1.10)

or in momentum space

γ̂+
k = uk↑ĉ

+
k↑ + uk↓ĉ

+
k↓ + vk↑ĉk↑ + vk↓ĉk↓. (1.11)
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The time-independent Schödinger equation for the mode n then writes (dropping the x
index)[32]:

heff


un↑

un↓

vn↓

−vn↑

 ≡
H0 ∆

∆∗ −ŝyH∗0 ŝy

 ·

un↑

un↓

−vn↓
vn↑

 = En


un↑

un↓

−vn↓
vn↑

 (1.12)

Looking at the Nambu spinor that is used, we can note that:

Ψ(x) ≡ (ĉ↑(x), ĉ↓(x), ĉ+
↓ (x), −ĉ+

↑ (x))T = (ψ(x), iŝyψ†(x))T (1.13)

This is the operator version of equation (1.5) and indeed, this spinor satisfies the
Majorana condition: Ψc(x) = CΨ†(x) = Ψ(x)2 (in this basis the charge conjugation
operator reads C = −iτ̂y, where the τ̂i are Pauli matrices acting on the electron-hole
subspace and ŝi on the spin subspace).

Finally, with a well chosen unitary transformation we can rewrite heff as purely imaginary
(h∗eff = −heff ), and the field operator as self-conjugate, directly mirroring Majorana’s
work on the Dirac equation [29].

This discussion shows how Majorana fermions can naturally appear in the description
of a superconductor. However, the relation (1.13) concerns the quantum field Ψ(x),
and does not necessarily lead to anything interesting in the eigenmodes of the system.
We can thus go further and look for an eigenstate for which the operator γ̂n fulfills the
self-adjointness condition: γ̂n = γ̂+

n . Such a mode can only happen at E = 0 as noted in
section 1.1.1. These modes are called Majorana Zero Modes (MZM) or Majorana Bound
States (MBS) in the literature, to distinguish them from the term Majorana fermions.

We can however notice that in an s-wave superconductor with spin rotation symmetry,
the spin degeneracy allows us to work in a reduced Nambu space. The excitations of
the system can be simply written γ̂SC = uĉ+

↑ + vĉ↓, which is always different from
γ̂+
SC = u∗ĉ↑ + v∗ĉ+

↓ . As a consequence, this symmetry needs to be broken for MZM
to appear. Another way to overcome this issue is to consider an effectively spinless
system which would still contain superconducting pairing. In this case we could have
an excitation of the form γ̂spinless = uĉ+ + vĉ, that is self-adjoint provided u = v∗. In
such a spinless superconductor, the Cooper pair wavefunction needs to be antisymmetric
in space (the orbital part of the wavefunction) so that the wavefunction changes sign

2This is quickly visible by rewriting C =
(

0 −iσy
iσy 0

)
where σy ≡

(
0 −i
i 0

)
combined with

equation (1.13)
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under the exchange of its two electron, in accordance with the Pauli principle3. Hence
an antisymmetric pairing, such as a p-wave pairing is needed.

Indeed, the first superconducting systems to be theoretically shown to host MZM were
p-wave topological superconductors either in 1 or 2D: see references [6, 28], among others.

1.1.3 A quick word and some vocabulary about topology

Before looking at an example of topological superconductor into more details, let us
summarize a few important notions of topology.

First of all, a topological property is a global property of a system, meaning that it should
be independent of small details, and it should not be affected by small (continuous)
changes. The first example usually given is the topology of space. Given a closed
surface in space, one can easily count how many holes it contains: a spoon contains
zero, a ring one, Emmental cheese a lot. One can stretch or twist these objects without
changing this value 4. The number of hole is a topological property of a surface.

One can often define a number (called the topological invariant) that identifies the
different possible topological states of the system, or phases (in the previous example,
the number of holes). There is no systematic way to know how to calculate a topological
quantity, but in the case of space topology, the Gauss-Bonnet number (which is the
integration of the curvature of the shape over its surface) does give exactly the number
of holes in the volume.

In physics, this notion of topology enables the definition of general properties of a
material, that are not affected by small deformations of its Hamiltonian. Indeed, it was
shown that beyond the classical phases separated by phase transitions (characterized
by the vanishing or the discontinuity of an order parameter), condensed matter ground
states can also be classified in terms of topological phases, separated by a topological
phase transition (characterized by a change in the topology of the ground state). A
topological phase transition comes with a gap closing in the electronic density of states
(like any quantum phase transition), that allows for a change in the ground state of
the system5. Considerations of symmetries allows one to identify universality classes,
and to figure out how many topologically distinct phases may exist. For the classical
MZM recipes that we will consider, we usually have particle-hole symmetry (if Ψ is an

3In s-wave superconductor, the asymmetry comes from the spin part of the wavefunction.
4but not cut them; this would not be a “continuous” deformation.
5One can picture for example the case of a topological insulator where there are two electronic bands

with different topologies around the Fermi energy, and when one invert the valence and the conduction
band the semiconductor change phase. At the transition the two bands are degenerate in energy. In
finite size systems, the gap does not rigorously close due to the quantization of the energy levels.
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eigenvector of H, Ψc is also, with a charge conjugation operation such that C2 = 1)
but no spin-rotation symmetry, and the system has two distinct possible phases. This
identification in terms of symmetries6 is important because it enables us to specify what
are “small perturbations” of the Hamiltonian, that do not change the phase: by that
we mean perturbations that do not break the problem symmetries, and keep the energy
gap open.

As a consequence, two gapped ground states states are topologically equivalent if one can
continuously change the parameters of one to the other without breaking the symmetries
of the problem and without closing the excitation gap. A state is called trivial state
if it is equivalent to the vacuum state. At the boundary between two topologically
distinct phases, there exist zero-energy localized modes, illustrating the inversion of
the ground state with an excited state before and after the transition (these states are
degenerate at the transition). These localized modes live, for example, around vortices
in a superconductor, or at the edge of a quantum hall state.

1.1.4 An example of Majorana Zero Modes

Let us now look at a model of a spinless p-wave 1D topological superconductor (a 1D
topological wire) to understand better the peculiarities of the MZM [34] (we take ~ = 1,
and ∆ real without loss of generality). For a discussion on the tight-binding version of
this model, the Kitaev chain, one can look at the pedagogical review of Jason Alicea
[35] or the lecture notes of J. Dalibar, where the topological numbers are addressed in
more details.

For p-wave pairing, the orbital part of the pairing term needs to be antisymmetric under
space reversal as noted in section 1.1.2. We will consider the following hamiltonian:

H =
∫
dx[ĉ+(x)( p

2

2m − µ)ĉ(x) + ∆(ĉ+(x)∂xĉ+(x) + h.c.)], (1.14)

or in momentum space

H =
∑
k

ξk ĉ
+
k ĉk + i∆kĉ−k ĉk − i∆kĉ+

k ĉ
+
−k with ξk = k2

2m − µ. (1.15)

In the spinless Nambu representation Ψk ≡ (ĉk, ĉ+
−k)T , the Hamiltonian rewrites:

H = 1
2
∑
k

Ψ+
kHkΨk with Hk = ξkτ̂z + ∆kτ̂y = ~bk ·~τ , (1.16)

6For more considerations on symmetries, one can read Introduction to Topological Quantum Matter
and Quantum Computation, T. D. Stanescu or Ref [33].
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where we have used the notation~bk ≡ (0, ∆k, ξk)T where τ are the Pauli matrices acting
in the electron-hole space. This Hamiltonian is analogous to the one of a spin ~τ in a
magnetic field ~bk.

We can calculate the dispersion relation by following this analogy, or by squaring this
hamiltonian (since particle-hole symmetry ensures a spectrum symmetric in energy, we
lose no solution):

Ek = ±|~bk| = ±
√
ξ2
k + (∆k)2. (1.17)

This dispersion relation is always gapped, meaning that the lowest energy is strictly
positive, except for µ = 0. Sweeping µ from negative to positive values, the energy gap
closes and then reopens. This can indicate a topological phase transition, in the sense
that the ground state topology can change7.

To identify which phase is the trivial one, we have to find which phase can be “deformed”
into the vacuum phase, meaning that they are topologically equivalent. In fact, taking
the limit µ → −∞ pushes the bottom of the electronic band to |E0| → ∞. As a
consequence, the µ < 0 band is the trivial phase. This is also visible in the topological
invariant associated with this Hamiltonian, which is the winding number of ~bk around
the origin, when k explores all possible values (from −∞ to +∞). The winding of ~bk in
both phases is illustrated in figure 1.1. Panels (a,b) represents ~bk in the y-z plane (since
for this particular Hamiltonian bk,x = 0), whereas panels (c,d) represent its orientation
~bk/‖bk‖, for k ∈ [−∞,∞]. In both case, the phase is determined by whether of not the
trajectory encloses the origin (for panels (a,b)), or winds around the x-axis (panels (c,d)).
Although we have not justified why this quantity represents a topological invariant, the
first illustration (panels (a,b)) is particularly instructive. Indeed, the origin corresponds
to the existence of a k0 such that~bk0 = ~0. At this wavevector, the eigenvalues of equation
(1.16) are both zero (which is also directly visible in the dispersion relation (1.17)), and
there exists a zero-energy mode. Thus there is a phase transition when going from a
~bk-trajectory that does not encircle the origin (b) to one that does (a). The associated
winding number will not be affected by small perturbations of the Hamiltonian: it is a
topological property of the system.

Now that we have identified the two phases, we can study the boundary between a trivial
and a topological phase, for example by considering an infinite 1D wire with a spatially
varying chemical potential µ = −αx where α� m2∆3. The Hamiltonian becomes:

H = −αxτ̂z + ∆pτ̂y (1.18)
7Such as, for example, when two bands with different topologies invert in energy in a topological

insulator phase transition.



18 Chapter 1. Hybrid topological quantum devices

Figure 1.1: Illustration of the topological number in the spinless 1D p-wave
superconductor. With two representation, either in the 2D plane or on the Bloch
sphere. Evolution of ~b when k goes from −∞ to +∞ for two situations. For µ < 0
(trivial case, (b) and (d)), the vector does not wind around the origin, whereas for
µ > 0 it winds once, as visible in (a) and (c). The direction of rotation depends on the

sign of ∆.

As before, we can square it to find the energies of the bound states:

H2 = (αx)2 + (∆p)2 −∆ατ̂x with [x, p] = i and τ̂z τ̂y = −iτ̂x (1.19)

In the eigenbasis of τ̂x (labelled by ±) this represents two harmonic oscillators (one for
each of τ̂x’s eigenvalues), each being associated with a number operator n̂. They are
shifted by 2∆α with respect to one another, thus the spectrum is:

(E±n )2 = 2∆α(n+ 1
2)∓∆α (1.20)

This system admits a zero-energy solution, E−0 = 0. We can foresee that its wave-

function will be of the form φ(x) = u0(x)

1
1

 ∝
1

1

 e−(x/x0)2 since it needs to be

localized around the domain wall (the system being infinite) and it needs to have an equal
electron/hole weight to be at zero energy. The corresponding quasiparticle operator is :

γ̂ =
∫
dxu0(x)[ĉ(x) + ĉ+(x)] (1.21)
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One can check that this operator is, indeed, self-adjoint. Thus we have found a stationary
quasiparticle obeying the Majorana property γ̂ = γ̂+. In the literature, these quasiparticles
are called Majorana Zero Mode (MZM) or Majorana Bound State (MBS) to distinguish
them from Majorana fermions.

The self-adjoint property has an embarrassing consequence at first sight, which is γ̂2 = 1,
and as such we cannot define a number operator. However we have already shown
that from two Majorana operators we can define a fermionic operator, through the
transformation (1.7). We just need to find a second Majorana to complement γ̂. Actually
it is just located at the end of the topological section of the wire, that is bound to
exist: the infinite system is not really physical8. Provided the wire is long enough
(L � x0, or the new typical length-scale for the Majorana wave-functions), there will
be one localized zero-energy state at both ends of the topological phase, γ̂1 and γ̂2. The
fermionic operator ĉ = 1

2(γ̂1 + iγ̂2) can have an occupancy 0 or 1: the ground state of
the system is doubly degenerate, with either ĉ†ĉ = 0 or 1. The parity operator can be
formally written

P = 2ĉ†ĉ− 1 = iγ̂1γ̂2 (1.22)

Note that in a system with 2N MZM, the ground state has a degeneracy of 2N correspon-
ding to each pair of 2 MZM being either empty or occupied.

1.1.5 Specific properties of the MZM: the non-abelian statistics

A particularity of localized MZM in 1D or 2D systems is their non-abelian exchange
statistics. Indeed, while in 3D particles can only follow the bosonic or fermionic statistics
(when exchanging two undistinguishable particles, the global wavefunction stays identical
or picks up a minus sign), in 2D a richer behavior can exist9. For example, the
wavefunction can pick up a phase (anyonic statistic). When the ground state is degenerate,
particle exchange can lead to a change in the state of the system, represented by a
unitary operation on the wavefunction (non-abelian statistics). The state of a system
after several particle exchanges then depends on the order of the exchanges, since the
corresponding unitary operations do not necessarily commute.

8Note that this is not an issue in the trivial phase since it is equivalent to a vacuum phase.
9In 3D, any trajectory that exchange two particles can be deformed into a simple rotation of one

around the other; in 2D the trajectories are much more constrained, and thus not all equivalent; for
example a particle can rotate several times around another one.
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Braiding MZM

As noted just above, a system with 2N MZM has a degenerate ground state, and thus can
display non-abelian statistics [36]. The effect of braiding two Majorana quasiparticles
was first studied for vortices. One can show that moving one vortex around another
affects the Majorana operators γ̂1, γ̂2 the following way [37]:

• For clockwise rotation, γ̂1 → γ̂2; γ̂2 → −γ̂1

• For counter-clockwise rotation, γ̂1 → −γ̂2; γ̂2 → γ̂1

This transformation is represented by the unitary evolution Ubraid cw = 1+γ̂1γ̂2√
2

10 (for
clockwise rotation) and Ubraid ccw = U †braid cw (counter-clockwise rotation).

Interest to quantum information

The topological properties of MZMs have generated a lot of interest notably in the field
of topological quantum information. It was shown that topological states could enable
fault-tolerant computing [23]; the idea of fault-tolerant computing being that an error
in of the computation will propagate without increasing the total number of errors in
the calculation11.

Additionally, topological states, ie states whose presence depends on the phase of the
system will not be destroyed by small perturbations of their environment (as long as
they do not break the symmetries of the problem). Indeed if the system is gapped in
energy, one cannot change the energy of the zero-mode excitation without closing the
gap. By symmetry, if a single zero-energy excitation (in an infinite system) acquires an
energy ε, then another mode needs to appear at energy −ε. The energy of the Majorana
mode is thus stable (this stability being related to the size of the energy gap).

Finally, since MZM have a real creation operator they are ideally not sensitive to
dephasing (and being at zero energy they ideally do not have a T1 decay)12. To go into
more details one has to specify how to form a qubit with such states: the first proposals
involved braiding MZM in real space, either vortices in 2D [39], or MZM in nanocon-
ductors networks [40], which is experimentally challenging. Subsequent proposals tried
to identify schemes to build qubits and define gate operations without having to finely
control the spatial shape of the wave-function [24, 41–46].

10With the convention for ĉ given in section 1.1.4.
11Note that however MZM are not sufficient to build a universal set of gates for quantum computation.
12Although temperature fluctuations affect the topological gap and may induce errors [38].
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Now that we have briefly reviewed the interest of MZM and the conditions under which
they can emerge in condensed matter systems, let us consider more concrete physical
realizations.

1.2 Majorana “recipe”

Once the physical effects enabling the formation of Majorana fermions in a solid-state
setup were identified (as introduced in section 1.1.2), several theoretical papers offered
methods to experimentalists that grouped commonly used ingredients in condensed
matter experiments [7–12]. We here introduce one of these methods [11, 12], and discuss
the importance of the different ingredients.

1.2.1 Elementary “recipe” and topological transition

In concrete terms, one needs a spinless superconductor to obtain Majorana fermions.
Actually, it is sufficient to have one non-degenerate electronic band, with supercon-
ducting pairing. Applying a very large magnetic field lifts the spin degeneracy, but
the common s-type superconducting pairing does not survive at high magnetic fields.
Another way to lift the spin degeneracy is to submit the electron spin to a spin-orbit
interaction, non collinear with the Zeeman polarization of a small magnetic field. The
combination of these effects on a semiconductors’ electronic bands creates a region in
energy were there is only one electronic band left, as we see in figure 1.2. This region is
called the helicoidal gap; in this gap, right moving and left moving electrons only have
one possible spin orientation (that are non collinear) and thus the spin and momentum
are locked. s-wave superconductivity can still induce pairing between these two species
of electrons since their spins are non-orthogonal.

Thus for now, a promising method to obtain MZM consists in combining the following
ingredients [11, 12]:

• a 1D semiconductor

• spin-orbit coupling α

• homogeneous external magnetic field ~B, perpendicular to the spin-orbit axis

• proximity-induced superconductivity, with an effectively induced pairing ∆ind
13.

13We can choose ∆ind real without loss of generality.
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Figure 1.2: Evolution of the electronic bands of a 1D semiconductor (a)
when adding first a spin-orbit energy (b) and a magnetic field (c). Superconductivity
is added in figure 1.3. The color-code represent the spin eigenvalue, except when the

bands are degenerate in spin with no favored orientation (black).

We develop here the basic properties of this proposal, for the situation where α, B and
∆ind are homogeneous along the semiconductor. The Hamiltonian is:

H =
∫
dx

 ∑
s=↑, ↓

ĉ†s(x)
(
p̂2

2m − µ+ gµBB

2 ŝx + α

~
p̂ŝy

)
ĉs(x) +

(
∆indĉ

†
↓(x)ĉ†↑(x) + h.c.

)
(1.23)

where we took x as the axis of the semiconductor and of ~B, p the momentum and y the
axis of the spin-orbit interaction. The Pauli matrices si act on the spin.

One can look at the successive effects of each term on the electronic bands to get an
insight of how they interact. Starting from a parabolic dispersion relation, degenerate
in spin (figure 1.2(a)), the spin-orbit effect splits the bands and shifts them in energy
(figure 1.2(b)). Indeed, we obtain from equation (1.23) the eigenenergies:

E±(k) = ~2k2

2m − µ± αk = ~2

2m(k ± kso)2 − µ− Eso
2 (1.24)

with kso ≡
mα

~2 and Eso ≡
~2k2

so

m
= mα2

~2 (1.25)

The spin eigenvalue associated with each band is represented in orange (+ band) and
light blue (− band).

Adding the magnetic field, (figure 1.2(c)), we obtain the following bands:

E±(k) = ~2k2

2m − µ±
√

(αk)2 + E2
z (1.26)

With 2Ez ≡ gµBB. The crossing at k = 0 opens with a gap 2Ez, creating the desired
“spinless” region: in the gap, there is a single electronic band, thus the spin and
momentum of the electrons are locked. This region is called the helical gap. Additionally
now the spin eigenvalue depends on the wave-vector k; at large k the spin-orbit energy
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dominates and the bands are polarized along the spin-orbit coupling axis (x), whereas
at k = 0 they are polarized along the magnetic field axis (z).

Adding superconductivity (figure 1.3), we need to add the hole band to the previous
picture. The crossings between the electron and hole bands (at zero energy) are lifted
by the superconducting pairing. To calculate the bands, the easiest way is to write the
Bogoliubov de Gennes hamiltonian as introduced in paragraph 1.1.2, and to diagonalize
it. Here we have chosen the Nambu basis Ψ =

(
ĉ†k↑, ĉ†k↓, −ĉ−k↓, ĉ−k↑

)T
.

HBdG =

 H0 ∆ind

∆ind −ŝyH∗0 ŝy

 (1.27)

with H0 = (~
2k2

2m − µ)ŝ0 + αkŝy + Ez ŝx

HBdG =


~2k2

2m − µ Ez − iαk ∆ind 0
Ez + iαk ~2k2

2m − µ 0 ∆ind

∆ind 0 −~2k2

2m + µ Ez + iαk

0 ∆ind Ez − iαk −~2k2

2m + µ



Again since the spectrum is symmetric we can square the Hamiltonian without losing
eigenvalues and we get the following bands :

E2
± = E2

z + ∆2
ind + (kα)2 + (k2 − µ)2 ± 2

√
(Ez∆ind)2 + E2

z (k2 − µ)2 + (kα)2(k2 − µ)2

(1.28)
Looking at the spectrum, we can see that the system is always gapped except at
Ez =

√
∆2
ind + µ2. Actually when increasing Ez from zero, the spectrum gap closes

and reopens, marking a change in the ground state of the system: see figure 1.3. In the
new phase, a pair of MZM exist at both ends of the system.

The criterion for entering the topological phase is thus :

Ez >
√

∆2 + µ2 (1.29)

And the energy gap at k = 0 between the MZM and the first energy band is ∆Ek=0 =
Ez −

√
∆2 + µ2.

To find the wave-function associated with the MZM, we can proceed exactly in the same
way as in the paragraph 1.1.4, as was done in the first proposal [11]. In this proposal, in
the infinite limit, either a linear variation of a parameter - magnetic field (Ez(x) ∝ bx)
or superconducting pairing (∆(x) ∝ δx) - was studied, or a step like variation (for the
chemical potential µ), and self adjoint excitations at zero energy were evidenced. For a
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Figure 1.3: Evolution of the energy spectrum in magnetic field, when
increasing the magnetic field (from left to right). At the phase transition (central
panel), the energy gap at E = 0 closes. There can also be low-energy excitations
at higher momentum; the size of the high momentum gap depends on the spin-orbit

energy, in contrast to the topological gap.

linear variation of Ez, the ground state wave-function writes φ(x) ∝ e−bx
2/2α, giving a

localization length of
√

2α
(∂xEz) . For a step-like variation of µ, the wave-function extends

in the superconductor (with chemical potential µl) over a length α/~
∆−
√
E2
z−µ2

l

.

The control of the phase through a variation of µ seems experimentally accessible; we see
that in this case α, ∆, µl and B influences the localization length; a high magnetic field
localizes better the wave-function. This plays an important role in a finite size system,
where there are two boundaries between the trivial and the topological phase, and thus
one MZM at each boundary. If they are close to one another and their wave-function
overlap, they will hybridize, and the energy degeneracy between P = 0 and P = 1 (P
being the parity) is lifted by an energy splitting proportional to this overlap [47].

1.2.2 Importance of the different energy scales

Let us try and understand in more details the importance of all of the energy terms. We
can first look at the strength of the effective p-wave pairing in a 1D conductor with all
the ingredients introduced above. The eigenvalues and eigenvectors of the Hamiltonian
(1.27) are [31]:

|e−〉 = 1√
2

(−γk, 1, 0, 0)T with Ee,− = k2 − µ− EΣ (1.30)

|e+〉 = 1√
2

(γk, 1, 0, 0)T with Ee,+ = k2 − µ+ EΣ (1.31)

|h+〉 = 1√
2

(0, 0, γk, 1)T with Eh,+ = −(k2 − µ) + EΣ (1.32)

|h−〉 = 1√
2

(0, 0, −γk, 1)T with Eh,− = −(k2 − µ)− EΣ (1.33)
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where we take ~ = m = 1 and note EΣ =
√
E2
z + (kα)2, γk = iαk+Ez

EΣ
.

The two lowest energy bands are Ee,− and Eh,−. The coupling induced by the term
∆τ̂x between these two bands is [12]:

∆p,eff = 〈h−|∆τ̂x |e−〉 = ∆
2 (1− γ2

k) (1.34)

We can thus distinguish two situations:

• At large magnetic field Ez � kα, the pairing reduces to ∆p,eff ≈ −i∆αk
Ez

(we recover
the result of [34]),

• At large spin-orbit coupling Ez � kα, the pairing reduces to ∆p,eff ≈ ∆, and there
is another energy gap Egap,k>0 at k ≈ ±kso.

We can actually rewrite the hamiltonian in the helical basis [31]:

H =
∫

dk

(2π)
∆p

+
2
{
ψ†+(k)ψ†+(−k) + h.c.

}
+

∆p
−

2
{
ψ†−(k)ψ†−(−k) +H.c.

}
+ ∆s

{
ψ†+(k)ψ†−(−k) + ψ−(−k)ψ+(k)

} (1.35)

where ψ+ are the wavevectors associated with the two lowest energy bands, and with
effective gaps:

∆s(k) = Ez∆
EΣ

∆p
∓(k) = ±iαk∆

2EΣ
.

(1.36)

We see that the spin orbit strength, although not apparent in the phase criterion 1.29,
affects the strength of the effective p-wave pairing. The stronger the spin-orbit is, the
higher the magnetic field can be without destroying the p-wave pairing.

Another important energy scale is the high momentum gap, visible for example in figure
1.3 (at strong spin orbit coupling, it is at kgap ≈ ±kso). It needs to be large to separate
well the zero energy mode from other low-energy excitations. This gap appears thanks
to superconductivity, but is affected by Ez. At µ = 0 it is given by [48]:

Egap,k>0 = 2∆Eso√
Eso

(
2Eso +

√
E2
z + 4E2

so

) (1.37)

Finally, we can look at the robustness of both gaps (at zero energy and the high
momentum one) when the magnetic field and the spin-orbit axes are not perfectly
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orthogonal. For example if there is a small component of the field along the axis y
(of the spin-orbit), By,parasitic, it will enter in the band energies through

E′Σ =
√
E2
z + (kα+ gµBBy,parasitic/2)2 (1.38)

which will overall tilt the spectrum. As a consequence, the high-momentum gap reduces
at k < 0 (for Bx,parasitic > 0) and can even close.

To summarize, the key points are the following:

• Ez needs to be strong enough to reach the topological criterion, and open an energy
gap at k = 0,

• A good control of the chemical potential to reach the low µ regime is necessary,

• Eso and Ez both need to be of the same order of magnitude in case we cannot
control the field orientation too well,

• ∆ and Eso are important to open an energy gap between the MZM and other
excitations (high momentum gap),

• The length of the system L should be as large as possible, staying in the ballistic
regime (L < Lmean free path).

We can conclude that one should have all the energies of about the same order of
magnitude to be able to see the competition between all the effects in presence.

1.3 Physical implementations and experimental signatures

As mentioned in the introduction, several experimental realizations have been proposed
to combine the ingredients of the Majorana recipe: nanowires [13, 49, 50], 2DEG [18, 19],
atomic chains [20] or islands [22, 51].

So far, experimental signatures obtained in Majorana devices have been mainly transport
signatures, ie measurements of the conductance of the device, either local (with STM
measurements) or global (by looking at transport through the device). A few experimental
setups have also realized devices with a control in magnetic flux (affecting the supercon-
ducting phase difference through a Josephson junction) rather than in voltage bias.

Let us summarize more in details the current state of the art.
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Figure 1.4: Global conductance experimental results from [15] (a), and [52] (b),
showing the ZBP measurement for both a device with epitaxially deposited Al over an
InAs nanowire and evaporated superconducting contacts on an InSb nanowire. Panel
(a) shows a conductance curve as a function of bias in a region with no subgap state,
an SEM image of the device made out of an InAs nanowire with epitaxial Al, contacted
with one superconducting and one normal contact, as well as two conductance maps as
a function of bias and either gate voltage or magnetic field, showing the evolution of
subgap states energies. The data interpretation takes into account the presence of a dot
in the uncovered region of the nanowire. Panel (b) shows the experimental device, which
consists in an InSb nanowire contacted with a normal and superconducting contact, as
well as its conductance as a function of voltage bias and magnetic field (either as a

colormap of as a waterfall, each curve being offset by 0.01 e
2

h , from 0 to 2.5 T.

1.3.1 Global conductance measurement

One characteristic of a MZM is that it is pinned at zero energy, independently of the
applied magnetic field or chemical potential (once the topological criterion is reached).
This is the most easily measured property, although a MZM is only one of the many
effects that can give rise to a zero bias peak (ZBP) in a global conductance measure-
ment14.

Another specificity visible in a global conductance measurement is the quantized value
for the conductance of the ZBP, when measuring conductance through a normal -
topological superconductor interface. Indeed at the interface, the superconducting

14By global, we mean conductance through the whole nanoconductor, as opposed to local measure-
ments with STM techniques
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gap prohibits transmission of an incoming electron; it can either undergo a normal
reflection or an Andreev reflection where it is retro-reflected into a hole (effectively
transferring a charge 2e in the superconductor). The corresponding scattering matrix
has a transmission T = 0 and reflection matrix (in electron-hole space)

R =

ree reh

rhe rhh

 , (1.39)

with R(E) = τ̂xR(−E)∗τ̂x due to particle-hole symmetry, (1.40)

and R+R = 1 since there is no transmission.

In the special case of an incoming electron with energy E = 0, the combination of
all these properties leads to either a perfect normal reflection (and no conductance
measured; this is the trivial phase) or perfect Andreev reflection |reh| = 1. Hence,
in principle, the measured conductance is quantized at G = 2e2

h (for the case of one
effectively spinless channel, as expected in the topological phase). Tunneling through
a symmetric two barrier system (N-TS-N) is equivalent to the above case of an N-TS
interface. However, several effects can reduce the height of the peak, as will be discussed
later on.

First measurements with InSb or InAs nanowires

The first papers to interpret a ZBP as a signature of a MZM studied InAs [14] or InSb
nanowires [13, 53, 54] with superconducting contacts.

In Ref [13], the device under study was an InSb nanowire of diameter 110 ± 10nm
contacted to an extended NbTi superconducting contact (about 2 µm) on one side, with
a gap of about ∆ = 250 µeV, and to a normal contact on the other. This nanowire
was selected for its high g-factor (estimated at 50 here, typical values are in the range
35-50), and an expected spin orbit energy of typically Eso = 50 µeV, corresponding to
lso = 200 nm (with a very small effective mass m∗).

A zero bias peak is observed at a conductance Gdiff ∼ 0.052e2
h above a background

conductance of Gdiff ∼ 0.12e2
h . It is pinned at zero energy over a range of magnetic

field of about 200 mT, and a range of gate voltage corresponding to a few level spacings
as given by the observed Coulomb blockage peaks. The peak width at half maximum
is about 20 µeV. The authors also studied the influence of the field angle: the ZBP
disappears at certain magnetic field angles, which is interpreted as the situation where
the magnetic field is applied along the spin-orbit direction. The peak disappears at a
temperature T = 200 mK.
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In such a geometry, the authors propose that the coupling between the superconductor
and the nanowire is homogeneous, and thus there is a topological phase (at high magnetic
field) over the whole section of the nanowire that is covered by the superconducting
contact. Two MZM are localized at both ends, one of which overlaps with the normal
contact used for the conductance measurement.

After these first results, many questions were raised, notably about the interface between
the superconductor and the nanowire, and the effect of disorder (which will be discussed
in section 1.3.2). Subsequent experiments tried to reduce the quasiparticle weight below
the superconducting gap and to build a more complete picture of the condition in (µ, B)
for the emergence of the ZBP [55, 56]. In reference [52], the authors also observed a well
developed ZBP over a larger range of magnetic field than the previous experiments (over
1T), as reproduced in figure 1.4 (b). From the conductance measurement at large bias,
they infer a mean free path of 10 µm, larger than the device size (1 µm), as required
for the interpretation in term of MZM. They also managed to obtain a much better
superconducting gap, with almost no conductance below the gap before the appearance
of the peak.

Nanowire with epitaxially grown Al superconductor

A new geometry of devices was also studied after the first experimental signatures were
reported, consisting in InAs nanowires with an epitaxially grown shell of aluminum [15,
57, 58]. The nanowire can then be contacted to normal (or superconducting) electrodes
to measure conductance.

In such devices, “hard” superconducting gap were obtained as one can see in figure 1.4
(a) and 1.5. A better control of the transport regime was also achieved. A side effect
of this new fabrication technique is the presence, in the measured device, of a dot on
the side of the nanowire that is not covered in Al. Possible influences of this dot will
be discussed in the paragraph 1.3.2. Finally in Ref [58], the authors measured a ZBP
of higher conductance than previous devices, up to the theoretically predicted value of
G = 2e2/h15, over a range of 2 mT (before the closing of the gap at 1 T). Signature
of gate jumps however blur this measurement. A trivial ABS is also measured when
tuning a gate voltage, and when at zero energy it also appears stable over a range of
0.2 T before splitting.
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Figure 1.5: Experimental results from [49] on a superconducting island. (a):
SEM image and schematics of the device. (b) Conductance map as a function of bias Vsd
and gate Vg for three values of the external magnetic field, B = 0 mT, 80 mT, 220 mT
(from top to bottom). The Coulomb diamond evolve from a 2e to a 1e periodicity when
increasing the magnetic field. (c) Oscillations of the even-odd spacing (in gate) of the

Coulomb peaks as a function of B.

Another device geometry: superconducting island

In the experiments described above, the Al shell is contacted to an electrode used for
the conductance measurement. Another possibility is to leave the shell floating. Then
in the island formed by the Al-covered nanowire the total charge Q is a good quantum
number. One can thus observe even-odd population effects in the island: assuming the
semiconductor is fully proximitized, an unpaired electron has an energy cost of ∆ind.
This was observed decades ago in superconducting islands [59]: the energy of a state
with N electrons on a superconducting island of charging energy Ec, as a function of
gate potential Vg (with gate capacitance C) is:

EN, odd(Vg) = Ec(
CVg
e
−N)2 + E0 if N odd (1.41)

EN, even(Vg) = Ec(
CVg
e
−N)2 if N even (1.42)

where E0 is the lowest energy for a quasiparticle. An external magnetic field can change
the energy E0, without affecting EN, even (apart from the effect of B on the super-
conductivity). In Ref [49], such an effect is observed: at B = 0, the measurement
of Coulomb diamonds shows a 2e periodicity below the superconducting gap, but the
energy spacing between EN,even and EN,odd reduces up to a point where a 1e periodicity
is reached, indicating the existence of a E0 = 0 quasiparticle state in the island (around
B = 200 mT).

15Although several effects can supress this quantization, as will be discussed later on.
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Close to this point, the authors measured E0 (through the energy spacing between
Coulomb peaks), and interpret its dependence on B and the island length L as a measure
of the localization of MZM. This system was studied more in details in Ref [60, 61].

New devices and techniques

Other materials ? In the last few years various geometries have also been developed
as Majorana devices: gated 2D heterostructures with InSb [62] or InAs with epitaxially
grown Al [19], as well as SiGe nanowires [63].

Among theoretical proposals, the more exhaustive description of the superconductor-
semiconductor system has also led to new proposals, for example in the geometry of the
Al shell [64].

Additional characterization of the spectrum RF measurement were performed
on epitaxially grown InAs-Al devices, in a regime where no MZM are expected, to study
more in details the devices [65, 66]. These experiments’ modeling is discussed in more
details in reference [67].

1.3.2 Critiques of the measurements and further modeling

After the first experimental measurements, several discrepancies between the theory and
experiments were put forward, as well as other possible interpretation of a ZBP [68].

The main criticisms were the following:

• The height of the conductance peak was much lower than the 2e2/h expected for
an N-Topological Superconductor interface (except for one device),

• The appearance of the Majorana zero energy peak was over a small magnetic field
range,

• No splitting of the peak was observed, even in short devices where it was expected,

• There were no oscillations of the ZBP at high magnetic fields16,

• There was no signature of the gap closing and reopening at the potential topological
phase transition,

16Whereas it is expected due to the change in the coherence length of the MZM with the magnetic
field [47].
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• There was a high quasiparticle weight in the superconducting gap (problem of
the “soft gap”): for instance in Ref [13], the ZBP emerges from a background
conductance of 0.1 e2~ .

Although subsequent experiments worked on these issues, notably on trying to improve
the superconductor-nanowire interface, some of these criticisms still hold, and additional
signatures of the specificities of MZM are still looked for.

Differences between the first theoretical model and the actual experimental setup there
can explain why the measurements do not accurately reproduce the theoretical predictions.
A lot of theoretical work was done to try and refine the understanding of the experimental
results. For example, a varying spin-orbit coupling [69], one stronger than expected [70]
or Coulomb interactions [71] can explain the absence of oscillations of the MZM at
high magnetic field (after the topological phase transition). A large tunnel coupling
to the normal probe used to measure the conductance can reduced the height of the
conductance peak, lower than the expected quantized value [72]. The large width of
the measured conductance peak can be explained in a multisubband scenario [73]. The
presence of multiple subbands can also blur the signal of the gap closing [74]. Finally,
a smooth variation of the physical parameters, such as the confinement potential, can
lead to the formation of trivial ZBP [75, 76].

We now review in some details the theoretical work that has been done to describe more
accurately the actual physical implementations of a Majorana device.

Various approximations of the model compared to the real system

Actual physical realizations are usually more complex than the sum of the “recipe”
ingredients, and a more complex theory is required to fully interpret the current measu-
rements. In this section we will discuss four questions: the effect of inducing supercond-
uctivity, of multiple subbands, of Coulomb interactions, and of the neighboring dot in
epitaxial devices.

First of all, in the above equation superconductivity was added as an effective induced
pairing in the 1D nanoconductor, but in realistic systems it is induced by connecting the
nanoconductor to a superconductor of superconducting gap ∆s: at E < ∆s, electrons
of the nanoconductor impinging on the interface are retro-reflected as holes through
Andreev reflections, which induce correlations between electrons in the nanoconductor.
However the strength of the induced superconducting pairing, and the impact of the
interface of the characteristics of the nanoconductor must be considered.
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Second, no nanoconductor is purely one-dimensional. Its cross section determines the
subband spacing, which can go from the eV for carbon nanotubes (whose diameter can be
smaller than 1 nm) to tens of meV for nanowires of diameter 100 nm. Hence, depending
on the chosen nanoconductor, it may be hard to reach the one-subband occupancy.

Third, the electrostatic environment of the system affects the localization of the electronic
wave-function. It can be either the screening effect of the different metals involved in
the experimental realizations, or more simply disorder in an imperfect device.

Finally, Coulomb repulsion is present in low-dimensional systems, and can affect the
emergence of MZM. Besides, when implementing the Majorana “recipe” the nanocon-
ductor is usually coupled to one or several contacts, either superconducting (to induce
superconductivity) or normal to probe the density of states of the system. If the coupling
is too strong, a weak tunneling picture does not hold anymore. Many-body effects such
as a Kondo peaks can be observed.

Inducing superconductivity: how to relate ∆ind to ∆s, and undesired effects

The different descriptions of the coupling between a 1D nanoconductor and a bulk
superconductor is described in details in reference [35]. At first order, one can calculate
proximity-induced pairing by considering the superconductor to be unperturbed by the
interface to the nanoconductor. One then obtains an induced gap ∆ind ∝ Γ2 where Γ is
the single-electron tunneling between the two materials (in the limit ∆� Γ).

A more complete approach consists in solving the hamiltonian problem for both systems
before integrating out the parent superconductor’s degrees of freedom. This way, the
electronic wavefunctions’ extension in both system is described.

A lot of efforts have been put recently to try and improve the modeling of the nanowire-
superconductor systems studied experimentally. References [77–80] performed both
analytical calculations and numerical simulations17, highlighting parasitic effects that
could hinder the transition to a superconducting topological phase: renormalisation of
the spin-orbit interaction when the coupling to the superconductor is strong, effect of a
gate potential on the spin-orbit interaction...

On the experiments side, in reference [81] the authors showed that the confining potential
can strongly affect the coupling strength between the superconductor and the nanocon-
ductor, complicating even more the control on the emergence of MZM.

17Notably numerically solving in a self-consistent way both the Shrödinger and Poisson equations to
describe the wavefunction localization across the 1D section for a nanowire covered by a thin supercon-
ductor.
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The multisubbands case

Most realistic systems do not realize perfectly one-dimensional conductors; nanowires
or nanotube have a certain width, and the quantization of the wave-function along this
width defines conduction bands18. It is not always possible to tune the system in a single
subband occupation regime (notably if the chemical potential is renormalized [82]). One
can then wonder how the system behaves when there are N subbands occupied.

Naively, one can say that the N subbands implement N repetitions of the ideal 1D
system: if N is even, the N Majoranas at each end hybridize and form N/2 trivial
fermions; if N is odd, there is one unpaired MZM at each end.

Actually the validity of this picture depends on the energy gap between the bands. If it
is not greater than ∆, there can be proximity-induced hybridation between subbands,
as described in references [83–85] and reviewed in Ref [86]. In this regime, the induced
superconducting gap can be greatly modified by the presence of the subbands.

Finally, the presence of multiple bands can also strongly modify the MZM signature,
such as the width of the conductance peak [73].

In this regard, carbon nanotubes are very confined materials, where transport occur
through four channels only (due to both the spin and valley degree of freedom). Experi-
mentally, they can be grown and transferred on electrical circuits. Several groups have
reported a very good tunability of the circuit parameters as well as the detection of a
semiconducting gap19.

Effect of disorder

Disorder in the system can be studied from two point of views: does it affect the
emergence of MZM ? Can it explain the presence of trivial ZBP ?

Let us first discuss how the Majorana physics is affected. This was studied for example
in Ref [88], where a 1D nanoconductor presents multiple topological and trivial regions,
due for example to spatial variations in the chemical potential or in the induced super-
conducting pairing. In this situations several MZM can appear and overlap. However
if not too many MZM are present, and there is an odd number of topological regions,
the system can still exhibit a quantized ZBP in conductance. Of course, the localization
length, and the possibility to do more complex operations are affected.

18We will assume that the width of the system is still smaller than the electronic coherence length
19For semiconducting CNTs, or metallic ones with a mini-gap possibly due to strain, curvature... [87].
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Another question is whether other disorder-induced effect can explain the presence of a
ZBP. Several works studied the effect of disorder in such devices. Disorder can give rise
to constructive interferences at zero-bias appearing as ZBP in the conductance [89, 90]20,
or induce pair-breaking that enables the presence of localized, low energy states near
the wire end [68].

Effect of Coulomb interaction

The effect of interaction was studied in more details in references [91, 92]. They conclude
that interactions tend to reduce the topological gap (which is rather intuitive, since
they tend to suppress pairing). However, they also enhance the magnetization in the
nanoconductor, increasing the size of the topological phase in parameter space21.

In the regime of strong interactions, where the Kondo effect arises, it was also proposed
that new signatures of MZM emerge [93–95].

A competing effect to generate a ZBP: the Kondo effect. When the coupling
between a nanoconductor and its reservoir(s) is large22, a many-body state can form
between a localized electron in the conductor and the electrons of opposite spin in the
fermi sea of the reservoir: this is a Kondo effect [96, 97]. It can be observed as a
conductance peak at zero energy (at the energy degeneracy between the electron and
the fermi energy in the reservoir). The effect requires an isolated spin and so only appear
for certain occupancies of the nanoconductor.

The interplay between the Kondo effect and superconductivity was first observed in a
CNT [98, 99]; depending on the values of Γ and Ec with respect to the superconducting
gap ∆, the ground state of the nanowire (at the charge degeneracy point, ie at detuning
εδ = 0) can be either a doublet (an unpaired electron, favored by the Kondo effect and a
strong charging energy) or a singlet state (favored by superconductivity). The transition
from one ground state to another, for example as a function of an external magnetic
field translates as a ZBP in the transport measurement, that can extend over a certain
range of gate voltage, as studied in Ref [100] (whose results are reproduced in figure 4.1
(e)).

The Kondo effect is sensitive to an external magnetic field since it requires an energy
degeneracy between the two spin orientations to form the many-body state. As a

20This is called an anti-localization effect, and is due to the presence of spin-orbit interaction.
21The picture offered is that electrons can avoid the energy cost of the Coulomb repulsion by aligning

their spins
22More precisely when Γ ∼ Ec � kBT , where Γ is the coupling to the leads and Ec is the charging

energy
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function of magnetic field, the transport ZBP will split in energy when gµBBext > kBTK

where TK is the Kondo temperature; still at low enough magnetic field the peak can
appear fixed at zero energy.

This effect was measured in an InAs/InP nanowire by Lee et al. [101], showing how a
ZBP could appear in a regime where MZM are not expected. They proposed that the
uncertainty between Kondo and Majorana physics could be lifted by suppressing the
quasiparticle weight below the superconducting gap. In a subsequent experiment, they
again show the appearance of a ZBP linked to a zero-energy crossing of energy levels of
the S-QD-S device [100]23.

In a later paper with InSb nanowires contacted with Nb, the transport ZBP was measured
over several Coulomb blockade peaks [102], showing no even/odd distinction, excluding
the Kondo effect as the source of the ZBP (for which the peak would be present in the
odd diamonds only).

A similar study as the one presented in reference [99] was conducted in InSb nanowires
[103] . The different types of ground states are be distinguished notably by the evolution
under magnetic field; the singlet ground state splits due to lifted degeneracy.

Effect of the neighboring dot, in devices with epitaxially grown supercon-
ductor

In references [15] and [104], the authors show that a dot forms in the uncovered section
of the nanowire, by detecting dot levels that they can tune in and out of resonance. The
authors try to use this dot as a local “perturbation”, and look for its hybridization with
a potential MZM. Other works similarly studied the dot-nanowire setup, showing that
the dot can be used to measure the local spin polarization of the zero-bias state [105]24,
or the non-locality of the MZM in a more complex setup [106].

However, it was also shown that a trivial ABS localized in such a dot could mimic the
observed peaks interpreted as MZM, even if the conductance appears to be 2e2

h [107, 108].
The authors still put forward some ways to use the dot as a probe of the ZBP, or point
out that the trivial ABS in the dot would be less robust to changes in all the system
parameters (couplings, chemical potentials, magnetic field).

23This crossing can in theory evolve into a MZM for a longer nanconductor
24Thanks to Pauli spin blockade
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1.3.3 Other experimental setups

In addition to the conductance measurement described above, other physical systems or
other geometries were also studied. Josephson junction can be made out of topological
superconductors, or alternatively using a helical weak link, and the supercurrent can have
specific features as a function of the phase difference across the junction. Atomic systems,
1D chains or islands can be fabricated and their density of state locally measured using
STM techniques, enabling a spatial resolution of the electronic wavefunction.

Josephson effect and phase-biased devices.

Specific signatures of MZM can be obtained in a phase-biased Josephson Junction (JJ)
[6, 109]. If we consider a junction made out of two topological superconductors separated
by a weak link, the current-phase relation (CPR) is distinctively different from that of a
JJ made out of trivial superconductors [6]. This is due to the presence of MZM at both
ends of the weak link (there are four in total, one at each end of the two topological
superconductor, as shown in figure 1.6 (b)).

In a tight-binding picture (the centermost sites being ĉL,N for the left superconductor
and ĉR, 1 for the right one, as represented in figure 1.6 (a)), the phase difference between
the two superconductors φ can be integrated into the tunneling element, t = |t|eiφ/2.
The tunnel coupling between the two superconductors is written:

HJ =
(
tĉ+
L,N ĉR, 1 + h.c.

)
In the basis of γ̂L,i, γ̂R,i for i ∈ [1, 2] (corresponding to the systems’ 4 lowest-energy
modes), it reduces to25:

HJ = it

2 cos
(
φ

2

)
γ̂1,Lγ̂2,R = t cos

(
φ

2

)(
n− 1

2

)
(1.43)

where γ̂1,L and γ̂2,R are the two internal MZM and n is the number operator for the
corresponding fermionic degree of freedom.

As a consequence, the energy of the junction is given by

E(φ) = ±
√
T∆ cos(φ/2) (1.44)

25One can rapidly observe this by considering the Kitaev toy model; in the topological phase, the usual
transformation (1.7) of the fermionic operator of the last/first site of the chain ĉ1/N = 1

2 (γ̂1/N,1−iγ̂1/N,2)
can be understood as the combination of one isolated Majorana associated with a zero-energy mode (γ̂N,2
or γ̂1,1) and half a fermion associated with a non-zero energy mode.
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where T = |t|2 is the normal state transmission of the junction, which gives

I(φ) = −2e
~

∂E

∂φ
= ±Ic sin

(
φ

2

)
(1.45)

whereas the “usual” current-phase relation is I = Ic sin(φ). Hence for a topological
superconductor, the periodicity in φ is 4π, versus 2π for a trivial superconductor. This
is called the fractional Josephson effect. Intuitively, it can be understood by the change
in the charge transferred across the weak link, from 2e in a trivial superconductor-
based JJ to 1e in presence of MZM. Indeed, the phase dependence appears through the
tunneling element t, and the periodicity depends on which order of t appears in the
spectrum.

In addition to the 4π periodic signature in the CPR, the scaling of the critical current
with the normal transmission T of the junction changes from T to

√
T as the super-

conductors become topological (still due to the change of the charge transferred across
the junction) [110]. Finally, under RF-irradiation or an AC current excitation, the JJ
device displays Shapiro steps. The energy spacing at which they appear (that depends
on the RF excitation frequency) is expected to double in the topological case.

In realistic systems, two effects can strongly affect the detection of the fractional Josephson
effect: quasiparticle poisoning (the possibility for the charge of the weak link to be
subject to a charge jump) and finite size effects that hybridize the two remaining MZM
at the end of the junction to the central ones. As a consequence, the 2π periodicity is
recovered, but with a sawtooth-like CPR (see figure 1.6 (c)).

Experimental results In 2012, there was a first claim to have observed missing
Shapiro steps in the AC Josephson effect in an 1D JJ made out of a gated InSb 2DEG
covered with Nb (except at the weak link) [18]. However this first measurement could
not discriminate MZM and trivial Andreev states with energy close to zero [76].

A subsequent experiment studied the photon emission of a voltage-biased Josephson
junction made out of an InAs nanowire with an Al shell, the Al shell being removed
locally to form the weak link. The photons were detected through photo-assisted current
in a nearby detector made out of a trivial JJ [111]. The dependence of the emission peak
as a function of the nanowire bias enables to distinguish between an effective charge e
(for topological superconductors) or 2e for trivial superconductors (through the relation
eeffVNW = hfemission = 2∆det − eVdet where ∆det and Vdet are the superconducting
gap and the voltage bias on the detector). The authors show measurement of a few
devices, which they claim to tune in the topological regime by applying a magnetic field
Bc = 175− 190 mT depending on the device, giving effective g-factors of the order of
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Figure 1.6: Schematics and characteristics of the TS-N-TS junction. The
system consists in two topological superconductors separated by an insulating weak
link. (a) Tight-binding description. (b) Schematics, showing the presence of 2 MZM at
each end of the topological superconductors, as well as the low-energy spectrum of the
Josephson junction containing Majorana modes as a function of superconducting phase
difference φ (the red and blue curves denote different fermionic parities). Hybridization
between the external and internal MZM due to finite size effects results in residual
splittings (at φ = π and 3π). (c) The equilibrium supercurrent in realistic Majorana
junctions is always 2π periodic, but with a sawtooth shape (red) as opposed to a sinusoid

(blue) for trivial JJ. Adapted from [31].

11-35. The effect subsists over a magnetic field range of 300 mT. Finally, the onset of
the effect is sensitive on the gate voltages.

Another system to potentially host MZM is a Bi nanowire. Bi nanowires can transport
current through bulk states, surface states and edge states. However, it was shown that
when superconductivity is induced in an S-NW-S geometry, the transport is dominated
by two ballistic edge states at opposite edges of the nanowire [112]. These nanowires
are expected to have a spin-orbit coupling much stronger than the other platforms, and
thus to potentially host topological edge states [16].

A recent study coupled such a nanowire (contacted with W) to a microwave resonator
[50]. Here the geometry of the device is slightly different since the authors do not
aim at realizing a topological superconductor - weak link - topological superconductor
junction, but rather a Josephson junction with a weak link that can have a helical gap,
to characterize the nanowire. A signature of this helical gap is that the states are spin-
momentum locked, preventing backscattering. Thus even at a finite transmission, ABS
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formed in the weak link will cross in energy at a phase difference φ = π, whereas in a
normal SNS junction they would anticross.

The authors studied the dependence of the resonator resonant frequency and quality
factor as a function of the flux bias across the JJ. They observe peaks in the quality
factor of the resonator around a phase difference π, indicating a channel of dissipation.
At this phase difference, either there are anti-crossing energy levels or protected crossing
(in the helical gap). If the levels are anticrossing with an energy difference larger than
that of the cavity (about 4 GHz = 16 µeV), the dissipation should disappear at low
temperature, T → 0, in stark contract with the observed behavior.

During the writing of this thesis, a new geometry was studied in the context of Majorana
physics, labelled planar Josephson Junctions, consisting in a SQUID geometry, where
the weak link in one of the JJs is made out a 2DEG with spin-orbit interaction [113–115].

Local conductance measurement

Another way to obtain a 1D conductor is to build a chain of atoms on an atomically flat
surface, which is probed by scanning tunneling microscope (STM). STM gives a measure
of the density of states, resolved is space and energy. The paramount advantage of this
measurement technique is that it can directly measure the localization length of potential
MZM, and distinguish them from excitations that are delocalized over the whole chain.
Using a spin-polarized tip can give indications about the spin polarization of the state
[116], while using a superconducting tip can measure the relative electron and hole
weight of superconductivity-induced state. MZM are expected to have an equal electron
and hole weight.

To group all the necessary ingredients, it was suggested to use a superconducting
substrate with a strong spin-orbit coupling, and to use magnetic atoms to build the
chain.

The magnetic moment of an individual magnetic atom over a superconducting substrate
lead to the formation of bound states below the superconductor gap energy, called Yu-
Shiba-Rusinov (YSR) states, and were studied for example in Mn impurities over a Pb
substrate [117, 118]. When forming a chain of such magnetic atoms, these states overlap
to form two electronic bands with spin-degeneracy being lifted. In such a chain, the
magnetic moment of the atoms are expected to order magnetically26. If the magnetic
atoms are not perfectly polarized, the s-wave superconductor induces p-wave like pairing

26Several possibilities have been discussed for this ordering, notably ferromagnetic ordering or spin
helix.
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terms, and the system implements a Kitaev chain27. As a consequence, the chain can
host Majorana fermion at its ends [119–121]. Its topological phase depends on the
superconducting gap, the magnetic moment of the impurities, the magnetic order and
the strength of the interatomic coupling.

The first experiments studied a Fe chain over a Pd substrate displayed a ZBP at the end
of the chain probed with a normal tip [20, 21], as well as a superconducting [122] and
spin-polarized one [123], to get an additional signature of MZM. On the other hand, Ref
[124] studied a similar setup with Co atoms instead of Mn. No ZBP is detected, which
is interpreted as the possibility that the Co chain is equivalent to two Kitaev chain.

Other experiments taking advantage of the local measurement enabled by STM tech-
niques in a 2D system studied Co islands over a Pb substrate [22, 125], or Bi crystals in
contact to a Fe cluster over a Nb substrate [51].

The main limitation of these systems is the control over their fabrication and their
integration in more complex devices. In the following, we will focus on the circuit
experiments, probed by transport measurement.

1.3.4 Going beyond the current limitations

We have shown the current experimental results in the search for Majorana Zero Modes,
with a particular focus on global conductance measurements in 1D nanowires. Some
experimental signatures are consistent with the presence of such a MZM, but not all of
them, whereas alternative scenarii for the emergence of a conductance zero-bias peak
remain plausible. As a consequence, there is a need for a better understanding and
control of the current devices under study. This can be achieved by a more realistic
modeling of the devices, or by studying alternative devices, where important parameters
such as the spin-orbit coupling strength do not depend on gating or tunnel coupling to
the superconductor. In parallel, measurements beyond the conductance measurement
are needed to characterize more fully the observed ZBP.

Need for new detection schemes. There is a continuous transition from ABS to
MZM (both in field and in system length, since they control the modes overlap). As
a consequence, numerous works have tried to explore this transition from “partially
separated ABS” to MZM [76, 126–129] to better understand the experimental observations.
The conductance measurement alone does not give an exact information on the separation

27Even when the magnetic atoms are fully polarized, there can be parallel spin pairing in the chain in
the limit of a dense atom chain. In this limit, the YSR bands cross the fermi energy and the electronic
wavefunction can partly delocalize into the superconductor thanks to spin-orbit coupling.
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of the zero-energy states: depending on the probing method, it may be hard to establish
how well a MZM is localized without looking at specific properties such as the non-
abelian exchange statistics. This information is paramount for evaluating the potential
of MZM as qubits.

More critically, in the measurements presented above not all of the expected signatures
of MZM were detected, such as the closure and reopening of the excitation gap at the
transition. Since numerous physical phenomena can give rise to ZBP in a system without
Majorana quasiparticles, new detection methods are needed to unambiguously identify
MZM.

Among the other experimental setups readily available, one could spotlight the possibility
to mimic an actual Kitaev chain by building an array of quantum dots coupled to super-
conductors, as studied by several theory papers [130–132]. A first step in this direction
is to control double or more dots with superconducting proximity effect [17].

The first advanced experiments to have been theoretically proposed involved fusion [24]
or braiding of MZM, in real space using electrostatic potentials or through a series of
measurements [44, 133, 134].

Several alternative methods were put forward in the literature, such as detecting the spin
polarization of the MZM [105, 135], detecting the effect of the helical gap on Josephson
effect [136], measuring noise characteristics [137–139], controlling the MZM hybridization
with a quantum dot [46], coupling the MZM to photons in cavity [140–143].

Need for a richer fabrication toolbox. The constraint of a strong spin-orbit
interaction have limited so far experimentalists to the use of a very limited number
of semi-conductors, for which the naive picture of a single parabolic electronic band
does not hold anymore. Numerous effects must be better understood and taken into
account, such as the renormalization of the energy scales due to the coupling to the
superconductor, the change of g factor and spin-orbit coupling strength with gating,
the number of channels participating in transport, disorder in the interface between the
nanoconductor and metallic leads or islands. In light of these complexities, experiments
based on other material could give new insight into the search for MZM.

Both the study of new platforms and the observation of additional specific properties
of MZM in advanced experiments would take forward the understanding of the hybrid
systems used to engineer them.
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We have seen in the previous chapter how one can engineer topological supercond-
uctivity by combining spin-orbit coupling, spin polarization and s-type superconducti-
vity. We will start by discussing quickly the origin of spin-orbit coupling in section 2.1.
The combination of spin-orbit coupling and polarization opens a gap in the electronic
band structure where only one flavor of electron remains, called the helical gap. In
this region the proximity effect reproduces a p-wave superconducting pairing. The
experimental efforts so far have been focused on semiconductors with a relatively strong
intrinsic spin-orbit interaction1.

Another road to obtain a helical gap in a nanoconductor is to synthesize the spin-orbit
interaction, lifting the constraint on the choice of semiconducting material. In this
chapter, we will first discuss the possibility to synthesize a spin-orbit interaction using
a rotating magnetic field, in section 2.2.

We will then discuss how superconductivity-induced states emerge in the nanoconductor,
and how they evolve when we add the necessary ingredients for topological supercond-
uctivity in a regime slightly different than the simple one studied in 1.2. Indeed we
cannot experimentally obtain a homogeneous coupling of a superconductor to our carbon
nanotube over a long region, and we rather induce superconductivity “on the side”. We
thus theoretically investigate the effect of a superconducting contact on the side of the
nano-conductor with a tight-binding formalism in section 2.3.

Finally, we discuss in section 2.4 the possibility to detect specific properties of MZM
beyond the zero-bias conductance peak, by looking at the coupling of a circuit supporting
MZM with photons trapped in a cavity.

2.1 Spin-orbit interaction

In the previous chapter, we have considered a 1D realisation of a topological super-
conductor, by combining a nanoconductor with spin-orbit interaction, induced super-
conductivity and a magnetic field. In the model studied in section 1.2, we have used
a Rashba-type spin orbit effect [144] in the effective low-energy hamiltonian of a semi-
conductor. However, depending on the material under study, there can be a variety of
couplings between the spin and orbital degree of freedom. We here briefly discuss the
origin of spin-orbit coupling, and its possible measurement.

1Although they are among the materials with the strongest instrinsic spin-orbit interactions, it
remains small compared to other energy scales such as the superconducting gap for example.
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2.1.1 Origin of the spin-orbit coupling

Spin-orbit effect refers to a relativistic effect that changes the energy of a moving electron
in a spatially varying electrostatic potential according to: Hso = ~

4m2c2 (~∇V (~r) × ~p) ·~s
where V (~r) is an electrostatic potential, andm, ~r, ~p, ~s are the mass, position, momentum
and spin of the electron (this term is derived from the Dirac equation, in a non-relativistic
approximation called the Pauli equation).

In atomic physics, V (~r) is the electrostatic potential of the atomic core, and the energy
levels of the electrons bound to the atoms are deeply modified by this effect; this is
called the Pauli spin-orbit interaction. On the other hand, in semiconductor physics,
the electrostatic confinement is integrated in the formation of the bands. Hso then
results in an energy term that lifts the spin degeneracy without an external magnetic
field (at B = 0)2 in the low-energy effective model for the “free electrons” of a given
semiconductor [145]. This term is called the spin-orbit coupling. Since it is still related
to the atomic potential, it is more important in materials made out of heavy atoms.

For a crystalline lattice that is symmetric in space and time, electronic and hole states
are spin degenerate (space reversal transforms ~k in −~k whereas time additionally flips
the spins, giving E+(k) = E−(k)). This degeneracy can be lifted by a magnetic field
that breaks time reversal symmetry, or alternatively at B = 0 by breaking the space
inversion symmetry. The band structure then acquires a texture in spin that can depend
on the wave-vector k3.

The space inversion symmetry is broken when the lattice structure of the crystal forming
the considered semiconductor is asymmetric, for example for the zinc blende structure;
this is called bulk inversion asymmetry (BIA) or Dresselhaus term in the specific resulting
hamiltonians. In semiconducting heterostructure or confined structures such as quantum
wells, an asymmetry of the confinement potential can also lift the spin degeneracy; it
is called structure inversion asymmetry (SIA), or Rashba term (in the hamiltonian). In
the same idea, external electric field can also give rise to spin-orbit coupling. InSb and
InAs, which were discussed in subsection 1.3, have such both a BIA and a SIA emerging
from a confining potential without rotational symmetry. The corresponding Dresselhaus
term is often neglected, being lower than the Rashba term.

These terms are derived in most semiconductors by integrating the spin-orbit interaction
at the level of the band structure. In lower dimension systems such as carbon nanotubes,
one can already take into account the different orbitals at the level of the base atom (that
have different orbital momenta ~L) when calculating the band structure. The coupling

2And without breaking the time-reversal symmetry.
3As is the case for example for the Rashba wire studied in Chapter 1.
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between the electronic spin and this angular momentum gives rise to the energy term
Hso,atomic = ∆so,atomic

~L · ~S (this is the Pauli spin-orbit interaction mentioned before).
It can in turn lead to a new spin-orbit coupling, depending on how the atomic orbitals
couple to form the bulk conductor: In CNTs for example, the rolling of the graphene
sheet enables the coupling of different orbitals in neighboring atoms, yielding a stronger
spin-orbit interaction than in graphene.

External factors can also induce a spin-orbit interaction in the material: curvature or
strain in the material (studied experimentally in a CNT in [146]), external electric fields
[147], or non-collinear magnetic fields [148] as we will discuss later on. The orbital effect
of a large external magnetic field can also modify the spin-orbit coupling [149].

Finally, in a hybrid system such as a nanoconductor in contact with another material,
the bare values of the spin-orbit coupling is renormalized by the leakage of the electronic
wave-function in the other material [78–80]. In return, one can induce spin-orbit coupling
by “proximity effect” in a material with no intrinsic spin-orbit interaction (SOI).

To conclude, the spin-orbit interaction present in the low-energy hamiltonians of semi-
conductors has various sources, but can be usually traced back to an asymmetry in an
electric field felt by the electrons.

2.1.2 Spin-orbit coupling in CNTs

In the rest of the thesis, we present experimental results on carbon nanotubes (CNTs)
based circuits. Spin-orbit coupling strength in the specific case of a CNT was discussed
in several papers (see the review [150]). References [151] and [152] (among others)
present tight-binding calculations to study the effect of the atomic spin-orbit effect4.
In reference [147], the effect of an external electric field perpendicular to the CNT is
also included, giving rise to a spin polarization perpendicular to the applied field (as
expected for an electric-field induced spin-orbit coupling).

The conclusion is that spin-orbit coupling depends on the diameter of the carbon
nanotube, its chirality and on the electronic density. There is (at least) two effective
terms that shift the energy bands of the spin, with a shift dependent on the valley
degree of freedom [150]. The spin-orbit coupling partially lifts the four-fold degeneracy
at zero-magnetic field5.

By looking at the dispersion of excited states in the single electron regime [153, 154]
or successive energy levels [155], previous experiments estimated spin-orbit couplings of

4In carbon nanotube, the rolling of the graphene flake couples different p orbitals of carbon, giving
rise to an atomic spin orbit coupling that is absent in graphene.

5The Kramers pair K,s and -K,-s stay degenerate
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the order of a few hundreds of µeV (mainly for the first electronic levels; the effect is
expected to be reduced at large filling factor). Reference [155] has reported values as
high as the meV, higher than expected by the various modelings. These experimental
results are summarized in table II of reference [150].

2.1.3 Measurement of the spin-orbit coupling

Beyond theoretical predictions, it is convenient to experimentally measure the spin-
orbit coupling. In this regard, bulk values for semiconducting materials have been the
subject of extensive study. Chapter 6 of Ref [145] provide several references. However
in nanowires or patterned 2DEG made out of semiconductors, the spin-orbit interaction
strength vary from the bulk value (at least due to the change in the confinement
potential), and has to be measured for each specific geometry.

Among the possible detections that were used in 2D or 3D semiconductors, optical
measurements are still available in reduced dimensions (such as Raman spectroscopy
[156]). Weak antilocalization and Shubnikov-de-Hass oscillations, however, are mecha-
nisms that depend on the spin-orbit interaction but can only be observed in 2D systems6.
Another way to measure spin-orbit coupling in 1D systems is by transport spectroscopy
of a confined ballistic segment of conductor, in the Coulomb blockade regime. It was
used in a carbon nanotube-based quantum dot as shown in the previous paragraph.

Among recent experiments, spectroscopic measurement of an InAs wire inside a micro-
wave spectrometer was also used to extract a value for Eso of Eso = 24 µeV [65] or for
a coupling strength of αso = 32− 38 meV× nm [66].

More indirectly, Bommer et al. [157] studied the evolution of a superconducting gap
with a InSb nanowire-based device under a magnetic field. They observe a very different
behavior depending on the orientation of the field, which can be traced back to the axis
of the spin-orbit coupling and its strength. They point out that the spin-orbit axis
depends on the gating of the device and its geometry, with extracted value in the range
αso = 15− 35 meV× nm.

One could also hope to detect the helical gap in the band structure of the nanoconductor
[158]. This is what is claimed to be done in Ref [159], however the spin-orbit energy
extracted is much higher than expected for the material (6.5 meV for an InSb nanowire),
which is not understood.

6Or disordered wires with a finite section for weak antilocalization, which is not the regime sought-
after.
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2.2 Magnetic texture with a semiconductor

As mentioned above, spin-orbit coupling emerges due the atomic electric field, converted
in a magnetic field in the moving frame of the electron. One can show that a spin-orbit
coupling is equivalent to an oscillating magnetic field [160]7. Given that, there are several
ways to synthesize such an interaction: one can apply a spatially dependent electric or
magnetic field, or rely on an RKKY interaction.

In general, the electric field required to induce spin-orbit interaction needs to be both
strong and inhomogeneous over a short length, making it experimentally challenging to
realize: Ref [161] gives for example a value of 50 V/300 nm to enhance the spin-orbit
interaction of a graphene sheet by a factor 7. In the same idea, atomic-scale “impurities”
can be used to create fast varying electrical fields; this was done experimentally with gold
atoms below graphene [162]. Finally, in certain situations an electric field can have a
stronger effect than expected with this simple picture, as was shown theoretically in Ref
[163] for SiGe nanowires, and measured through magneto-conductance in Ref [164, 165].
However it would be challenging experimentally to tune simultaneously the chemical
potential and the spin-orbit interaction strength with gate voltages.

A magnetic field oscillating in space is another possibility to induce spin-orbit interaction.
It can either be generated by localized magnetic moments that order through the
Ruderman-Kittel-Kasuya-Yosida (RKKY) mecanism, thanks to their coupling to conduc-
tion electrons. This was studied both in atomic chains [119, 121, 166] and in 13C carbon
nanotubes [167, 168]. Or it can be the stray field of a nearby magnetic material (either a
ferromagnet with domains, an array of magnets or an array of magnetic tunnel junctions)
[148, 169–173].

In the experiments conducted during this thesis, the last option was chosen and our
nanoconductor was placed in proximity to a ferromagnetic material presenting magne-
tization domains. An interesting aspect of this choice is that one can in theory control
the domains and thus the effective spin-orbit interaction, either by applying a magnetic
field or by flowing a current through the ferromagnet [174].

2.2.1 Effect of a magnetic field oscillating in space

In this section, we will present how a magnetic field oscillating in space implements
a synthetic spin-orbit interaction in a 1D nanoconductor, first considering a parabolic
dispersion relation for the electrons and then with the low-energy hamiltonian of a CNT.

7In addition to a constant magnetic field, so that time-reversal symmetry is not broken. This is more
evident when considering the transformation presented in section 2.2.1.
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Calculation

Figure 2.1: Schematics of a magnetic texture’s stray field Oscillating magnetic
field considered in the calculation. For a succession of domains (or nanomagnet, drawn
in blue), the field lines follow the black curve. At a given altitude x (close to the
surface), one can in first approximation consider that the amplitude of the oscillating
field Bosc is constant along z, with an oscillation of its direction. The period of this
oscillation is λ, corresponding to two domains/magnets with opposite magnetization.

Let us consider a 1D semiconductor along the z direction, subject to a space-dependent
magnetic field ~B(z). For simplicity, we take a parabolic dispersion relation, following
Ref [170].

Defining cos(Φ) ≡ ~B · ~z
B and ŝxy ≡ ( ~B×~z) · ~̂s

‖ ~B×~z‖ ,

H =
(
p̂2
z

2m − µ
)
τ̂z + 1

2gµB
~B(z) · ~̂s+ ∆τ̂x (2.1)

can be transformed to H̃ ≡ UHU † with

U ≡ eiΦŝxy/2 = cos(Φ/2) + iŝxy sin(Φ/2), (2.2)

with the following effect:

~B(z) ·~s→ ‖B‖ŝz (2.3)
p̂2
z

2mτ̂z →
p̂2
z

2mτ̂z −
~2

2mU †∂2
zUτ̂z −

i~
m
U †∂zUp̂z τ̂z (2.4)

For a helical field as shown in Figure 2.1, we have more precisely

~B = (−Bosc sin(Φ), 0, Bosc cos(Φ))T with Φ = 2πz
λ

(2.5)
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hence ŝxy = −ŝy, ∂zU = −iπ
λ Uŝy, and

H̃ =
[
p̂2
z

2m − µ+ ~2

2m

(
π

λ

)2
]
τ̂z +Boscŝz + h

2mλp̂z ŝy τ̂z (2.6)

=
(
p̂2
z

2m − µ+ Eso
2

)
τ̂z +Boscŝz + α

~
p̂z ŝy τ̂z (2.7)

We thus see that the oscillating magnetic field is equivalent to both a constant Zeeman
effect of amplitude Bosc and a synthetic spin-orbit interaction with perpendicular quanti-
zation axes. The spin-orbit coupling strength is

α = πh2

mλ
, (2.8)

the corresponding spin-orbit energy being Eso = mα2

~2 = h2

4mλ2
8. The synthetic spin-orbit

interaction also shifts the chemical potential to µ̃ = µ−Eso/2, which in turns shifts the
position of the helical gap in energy.

Both spin-orbit terms (those containing the term α) can actually be combined into a
simple spin-dependent shift of the wave-vector k by kso = αm

~2 , so that the hamiltonian
(2.7) factorizes into:

H̃ =
[

1
2m

(
p̂z + αm

~
ŝy

)2
− µ

]
τ̂z +Boscŝz (2.9)

The specific case of carbon nanotubes

We now consider the effect of a rotating magnetic field for the band structure of a
carbon nanotube. A strength of carbon nanotubes is their relative simplicity (in terms
of geometry), allowing calculations of their band structure. In addition, CNTs are
a almost perfectly one-dimensional nanoconductors; their strong lateral confinement
enables measurements where four conduction channels only participate in transport.

Several theory papers have already studied the specific case of carbon nanotubes for
the emergence of topological properties, relying on a strong electric-field- or curvature-
induced spin-orbit interaction [175, 176], or a strong intrinsic one, combined with a very
large magnetic field, in ref [177]. For such systems, the valley degeneracy must be lifted
to reach a regime with MZM.

The specific influence of a spatially varying magnetic field was studied in Ref [171]. In
addition to generating a strong spin-orbit coupling, the rotating magnetic field breaks

8Note that for λ ≤ kF , this description falls short. This situation is described for example in Ref
[160].
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the K-K’ degeneracy through its orbital effect. The authors show specific phase diagrams
(depending on the chirality of the CNT and the spatial dependence of the field) where
MZM can be obtained in the system by solving numerically the hamiltonian.

In the case of the helical field that we consider, its effect is equivalent to the following
terms in the hamiltonian (written in spinor notation, with σ, s, τ, η the Pauli matrices
operating in A/B sublattice, spin, electron-hole and K/K’ valley space):

• A Zeeman effect on the spin: gµBBoscŝz

• An orbital Zeeman effect ∝ η̂zσ̂xτ̂z

• An effective spin-orbit:
δsoσ̂y ŝxτ̂z with δso = hvF

2λ (2.10)

We can compare the effective spin-orbit term with the kinetic energy term in the
CNT hamiltonian, ~vFkσ̂y τ̂z, and see that in this case again the spin-orbit part of
the transformation is equivalent to a shift of the k wavevector, by kso = δso

~vF .

Comparison of both calculations

We can wonder to which extend one can compare the energy scales for the spin-orbit
interaction in the two situations of a linear or a parabolic dispersion relation. We have
seen that in both cases the helical magnetic field is equivalent to a Zeeman effect and a
spin-dependent shift of the wave-vector:

• kso = δso
~vF for the linear case,

• kso = αm
~ =

√
mEso
~ for the parabolic one.

It is certain that Eso and δso are not equivalent. However, we can look at how they
relate around the helical gap.

To compare the effect of the spin-orbit coupling in both calculations one can look at the
resulting dispersion relation. In the model with parabolic dispersion relation, the bands
are given by equation (1.26) with the replacement µ→ µ̃ = µ− Eso

2 :

E±(k) = ~2k2

2m − µ+ Eso
2 ±

√
(αk)2 + E2

z (2.11)

For simplicity, in the linear dispersion relation case (CNT), we place ourselves in the
situation ∆KK′ = 0 so that the two valleys are degenerate, and we neglect both the
Zeeman and the orbital effect of the field since we want to compare the spin-orbit terms.
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The nanotube Hamiltonian then reads [171]

HCNT = (~vFkσ̂y + Egσ̂x − µ+ δsoσ̂y ŝy) τ̂z, (2.12)

which gives the dispersion relation:

Eσ,s(κ) = σ
√

(~vFκ− sδso)2 + E2
g − µ (2.13)

Note that here κ denotes the component parallel to the nanotube of the vector ~δk ≡
~k ± ~K with ± ~K the wavevector at the K/K’ points of the nanotube (the perpendicular
component is quantized due to the boundary condition imposed by the rolling of the
tube). The Fermi velocity is noted vF .

First let us consider a semi-conducting carbon nanotube. Close to the bottom of the
band, ~vFκ− sδso � Eg:

E+,s(κ) ∼ Eg + 1
2Eg

((~vFκ)2 + δ2
so − 2s~vFκδso)− µ (2.14)

This dispersion relation is equivalent to the parabolic one (equation (2.11)), with the
matching

α↔ ~δso
m∗vF

, Eso ↔
δ2
so

Eg
with m∗ ≡ Eg

v2
F

(2.15)

Applying this matching to equation (2.8), that relates α to the field period λ (for free
electrons) is in agreement with equation (2.10) that relates δso to λ (for the CNT).

Then we consider a metallic carbon nanotube, with the dispersion relation

Eσ,s(κ) = σ~vFκ− µ+ sδso (2.16)

We note kso the Fermi wave-vector at the bottom of the band (for the nanotube, it is
the Fermi wave-vector where the band cross E = 0), and we compare the dispersion
relation close to the bottom of the band:

• For the parabolic dispersion, kso = ±mα
~2 = ±π

λ

and Es(kso + q) ∼ Eso
2 − µ̃+ sEso + αq(1 + s) = Eso − µ+ sEso + αq(1 + s)

• For the linear dispersion, kso = σ δso
~vF = σ πλ

and E+,s(kso + q) = δso − µ+ sδso + ~vF q (upper band)

We see that the spin-orbit energies defined in both situations, Eso = mα2

~2 and δso = hvF
2λ

are equivalent in the two dispersion relations at the bottom of the band. To push the
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comparison, one has to express the Fermi velocity in the parabolic case vF = 1
~
dE
dk |k∼kso =

~
m(k + skso). Around the bottom of the band, we can roughly say that it will be of
the order of vF ∼ ~kso

m . Then again, both transformations of the rotating field are in
agreement, with this time the equivalence

Eso ↔ δso (2.17)

Finding the gap

We have studied above the transformation of an helicoidal magnetic field for both a
linear and a parabolic dispersion relation. It is equivalent to a spin-dependent shift in
the electron wave-vector, and a Zeeman effect.

Compared to the effective hamiltonian studied in section 1.2, the band structure evolves
differently with the spin-orbit strength (evidenced by the shift in the chemical potential
coming from the transformation: µ→ µ−Eso, in the parabolic case). As a consequence,
the opening of the helical gap does not occur around E = 0, but is shifted in energy.
One can note that the situation is different in the case of the RKKY: since the magnetic
order emerges due to an interaction with the electrons, it is directly tuned at a period
1/kF and the gap opens around the Fermi energy [168].

The amplitude of the synthetic spin-orbit interaction does not, in itself, depend on the
amplitude of the oscillating magnetic field, which can appear surprising. However, in
the limit of Bosc → 0, the helical gap in the dispersion relation goes to zero. There
remains the spin-depend shift in the wavevector k, but it has no physical consequence.
Indeed, in this case (Bosc = 0), we can simply reverse the unitary transformation given
by equation (2.2), and we get back a simple degenerate parabolic band, without any shift
nor oscillating field. In the end this synthetic effect is effective as long as temperature
does not close the helical gap.

The condition for the opening of a gap in a graphene nanoribbon (similar to that of a
CNT), in the limit Ez, ∆KK′ < δso is given by (Ref. [148]):

kBT < Ez for a semiconducting nanoribbon (2.18)

kBT <
∆KK′Ez
δso

for a metallic one. (2.19)

This second line is due to the fact that in the metallic case, the K/K ′ degeneracy needs
to be lifted for a helical gap to appear, as noted above.
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Effect of disorder, or other spatial dependences for the magnetic fields

In the previous sections, we described the effect of an ideal oscillating magnetic field, with
a periodic spatial modulation described by equation (2.5), for two different dispersion
relation. However in the experiments, the shape of the magnetic field may deviate from
this ideal case.

The effect of deviations can be studied in two ways. In some theory paper, a weak
disorder was considered: in Ref [148] it is shown that for rotating magnetic field or
linearly oscillating field (in one direction only), disorder has little effect since from Fourier
decomposition, each period opens a gap at slightly detuned chemical potential. One just
needs a sufficient weight of the Fourier component at a given frequency.

Ref [178] studied the effect of disorder in a different setup, the one of the atomic chain.
The magnetization of each atom is random with a given correlation strength between
neighboring atoms. It is shown that changing the correlations between atoms does not
suppress the topological regime but rather alters the phase diagram (as long as they are
not completely aligned).

On the other hand, one can also study numerically the effect of a realistic experimental
magnetic field, as was done in references [170, 173, 174]. In the latter paper, the authors
studied several magnet configurations over a gated defined Si nanowire in a 2DEG (with
low g-factor g = 2), and tried to optimize the induced topological gap over the possible
configurations. They compared the optimal configurations with an ideal helical field,
yielding similar amplitudes for the topological gap. They finally studied the effect of
disorder in physical implementations for the most promising geometries.

2.2.2 Oscillating magnetic field in a finite system, with the scattering
formalism

One could also wonder how the equivalence found in the previous section holds in a
finite size system. A convenient formalism to re-express the problem is the scattering
formalism, which enables us to discretize the space into segments of constant magnetic
orientation, forming an angle θ(z) to the vertical axis. The amplitude of the magnetic
field is constant along the system.

Let us calculate the transfer matrix of the interface between two such segments, as
pictured in Figure 2.2(a). It relates the wave-functions in the left and right region, ψL
and ψR, written in the spin up/down basis. The wave-functions can be written as:



Chapter 2. Synthetic spin-orbit interaction in a cQED architecture 55

Figure 2.2: Support for the scattering calculation (a) Schematics of the “unit
cell” used to describe the magnetic texture in scattering formalism. (b) Finite size
effects can then be taken into account by adding two interfaces around a segment of
texture of size L, for example here a hard wall on the left, a superconductor of gap ∆ on
the right. With a superconducting interface, electron are subject to Andreev reflections

(AR) at the interface.

ψL(z) = 1√
k↑

cos[θ(z)]
sin[θ(z)]

(Aeik↑z +Be−ik↑z
)

+ (2.20)

1√
k↓

− sin[θ(z)]
cos[θ(z)]

(Ceik↓z +De−ik↓z
)

(2.21)

ψR(z) = 1√
k↑

cos[θ(z′)]
sin[θ(z′)]

(A′eik↑z +B′e−ik↑z
)

+ (2.22)

1√
k↓

− sin[θ(z′)]
cos[θ(z′)]

(C ′eik↓z +D′e−ik↓z
)

(2.23)

where z′ = z + dz and ks=↑, ↓ are the wave-vectors associated with spin up and down,
independent of the orientation of the magnetization.

Defining the following matrices:

R(θ) =


cos(θ/2)/

√
k↑ − sin(θ/2)/

√
k↓ cos(θ/2)/

√
k↑ − sin(θ/2)/

√
k↓

sin(θ/2)/
√
k↑ cos(θ/2)/

√
k↓ sin(θ/2)/

√
k↑ cos(θ/2)/

√
k↓

cos(θ/2)
√
k↑ sin(θ/2)

√
k↓ − cos(θ/2)

√
k↑ sin(θ/2)

√
k↓

sin(θ/2)
√
k↑ cos(θ/2)

√
k↓ − sin(θ/2)

√
k↑ − cos(θ/2)

√
k↓

 (2.24)

and S(dz) =


eik↑dz 0 0 0

0 eik↓dz 0 0
0 0 e−ik↑dz 0
0 0 0 e−ik↓dz

 ,
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the continuity of the wave-function and its derivative yields the transfer matrix τ for
the segment, with

τ(z, dz) = S

(
dz

2

)
R−1[θ(z + dz)]R[θ(z)]S

(
dz

2

)
. (2.25)

This transfer matrix contains the propagation through the two short segments represented
in figure 2.2 (a) and the rotations corresponding to the change in the field axis. One
can now establish the differential equation followed by τ [179]:

dτ

dz
=
(
iκ+ dθ

dz

A
4

)
τ(z) (2.26)

with the notations

A = 1√
k↑k↓


0 k↑ + k↓ 0 k↑ − k↓

−(k↑ + k↓) 0 k↑ − k↓ 0
0 k↑ − k↓ 0 k↑ + k↓

k↑ − k↓ 0 −(k↑ + k↓) 0

 (2.27)

κ =


k↑ 0 0 0
0 k↓ 0 0
0 0 −k↑ 0
0 0 0 −k↓

 (2.28)

For a constant variation of the magnetization angle, dθ
dz ≡ kα, over a section of nano-

conductor of length L, this equation yields

τ(L) = exp
(
iκL+ kα

A
4 L
)

(2.29)

Now that we have calculated this transfer matrix, we can terminate the conductor subject
to an oscillating field by two potential barrier, or by superconducting contacts and
calculate the transmission of such a confined structure (the details are given in appendix
B). This is what we will study below, but first we will compare the scattering calculation
and the unitary transformation of section 2.2.1.

Link to the unitary transformation

To recover the calculation for an infinite system, one can diagonalize this transfer matrix
and obtain the “equivalent” dispersion relation of the system (equivalent to moving to
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the rotating frame in the unitary transformation). As in the previous section, we consider
a parabolic dispersion relation:

ks=±1 =
√

2m
~2 (E + µ+ s

1
2gµB‖Bosc‖) (2.30)

The four eigenvalues of κ+ kα
A
4i are

k±s=±1 = ±

√√√√√2m
~2

Eso
2 + E + µ+ s

√
2(E + µ)Eso +

∥∥∥∥1
2gµBBosc

∥∥∥∥2
 (2.31)

with Eso = ~2k2
α

4m .

We recognize the wave-vectors associated with a system with both spin-orbit coupling
and constant Zeeman (compared to the notations of section 1.2, here kα = 2kso), where
the dispersion relation is:

E±(k) = ~2k2

2m − µ+ Eso
2 ±

√(1
2gµBBosc

)2
+ ~2k2

m
Eso (2.32)

An energy gap of size gµBBosc opens at k = 0 for µ− Eso
2 = 0.

2.2.3 Different regimes with the scattering formalism

We have shown how a magnetic field rotating in space, and more specifically a helicoidal
field along a nanoconductor is equivalent to both a Zeeman effect and a synthetic spin-
orbit interaction for the electronic bands. We now move on to a concrete discussion of
which transport measurement could reveal such a synthetic spin-orbit effect.

Transmission as a function of the chemical potential

A first idea could be to directly measure the helical gap in the band structure of our
nano-conductor. The associated measurement is illustrated in figure 2.3.

In this figure, we plot the transmission of a segment of nanoconductor with a helicoidal
magnetic field ~Bosc, confined by two barriers (of equal transmission t for simplicity) as
sketched in panel (a). The parameters are the length of the conductor L, the chemical
potential µ, the amplitude Bosc of the oscillating field and the total rotation θ of the
field over L (see appendix B for the exact formula, and the definition of the reduced
units k, L and bosc). The infinite nanoconductor would have a dispersion relation of
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Figure 2.3: Detection of the helical gap in the transmission as a function of
µ. (a) Schematics of the system studied, with represented the conductor of length L,
chemical potential µ, subject to an helicoidal field ~Bosc of total rotation θ(L), confined
by two barriers of transmission t. (b) Equivalent band structure, at µ = −1 (in red) and
µ = 10 (in blue, as shown by the arrow in panel (c)). The black line indicates the level
E = 0. Insert: discretization of the band structure in a confined structure of length L.
The first level of the upper band is identified by a star, and related to a transmission
peak in (c). (c) Transmission of the segment subjected to a helicoidal field, as a function
of the energy E and chemical potential µ. Looking at the transmission at energy E = 0,
we can see the bottom of the bands at µ = 0, and a reduction of conductance around
µ = 5, corresponding to the position of the helical gap. The reduced parameters for

this plot are L = 25, bosc = 1.2, θ = 4.2, t = 0.3.

Eband given by equation (2.32), represented in panel (b), whereas in a finite size system
the wavevector k is quantized (as represented in the insert by the dashed blue lines).

We can see in panel (c) the transmission signal, that reveals the resonant levels emerging
in the confined structure. The helical gap in the band structure is noticeable by the
reduction of the transmission around µ = 5. In the experiments, such a reduction will
be measurable if the level spacing in the system is smaller than the width in energy
of the gap. The effect is thus more easily visible in long ballistic devices, but their
length is limited by the electronic mean-free path in the CNT9. At large transmissions,
the peak are broadened by the coupling to the leads thus enabling the detection of a
small reduction in conductance around the helical gap, even if the level spacing is slightly
larger that gµBBosc. In our case it would be complicated to reach this parameter regime,
given the low g-factor for carbon nanotubes10.

9Which is estimated at about 1− 2 µm in our devices.
10For g = 2, Bosc = 1 T corresponds to a gap of 60 µV, whereas typically the level spacing in our

devices is δ ∼ 1 meV).
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Transmission as a function of the spin-orbit energy

Figure 2.4: Band structure for a conductor with a helicoidal field for two
values of the field period. (a) Energy bands as given by equation (2.31). The
color indicates the spin eigenvalue for each band. At high energy, the two bands have
opposite spins and a right-moving electron can only be reflected onto the same band
(giving rise to an interference condition containing the wave-vector difference ∆K). On
the contrary, at the bottom of the bands additional trajectories are allowed, as shown
by the additional arrows. (b) Similar band structure for a smaller magnetic field period
(here noted as a higher number of domains N ′ in a finite-size structure). The bands
are shifted by k, which leaves the interference condition identical at high energy (where

the shifts compensate) but not at low energy.

Another way to detect the effect of the helicoidal field is to change its structure (such
as the domain period, orientation), for example by applying an external magnetic field,
and to look at the changes in the transmission signal.

Applying a magnetic field on a magnetic texture can have various effects depending on
the magnetic anisotropies and the orientation of the field. It can change the domains
size, the magnetization axis of the domains and of the domain walls. The change in
the axis in turn can change the strength of the stray field above the structure. This
will be discussed in more details in chapter 3, in the specific case of the texture chosen
for the experiments presented in chapters 4 and 5. At the very least, the structure has
a saturation field where it is completely magnetized parallel to the applied field, thus
destroying the synthetic spin-orbit effect.

For now, we can quantitatively study the evolution of the spectrum as only one parameter
changes, the period of the oscillating field (ie the size of the magnetic domains). As
we have seen in the calculation, the spin-orbit effectively shifts the wave-vector of the
electron at a given energy; a change in the synthetic spin-orbit will thus modify the
interference condition in a finite size system. This effect is represented in figure 2.4,
where the band structure for an infinite system is plotted for two periods of the helicoidal
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Figure 2.5: Transmission of the device depicted in figure 2.3, as a function of
the energy and the total magnetic field rotation θ(L) , at low chemical potential
(a), and high chemical potential (b). The energy of the electronic levels oscillate with
θ(L) in both cases, but these oscillations are strongly damped in the second case. (c)
Corresponding band structure, where the black level indicates the chemical potential
at which the transmission is plotted, and the red (blue) bands correspond to the initial
(final) value for θ(L). The reduced parameters for these plots are L = 3.3, bosc = 0.5,

t = 0.05, µ = 10.6 (a) and µ = 112.8 (b).

magnetic field. The change in the spin-orbit strength also changes the spin eigenvalue
associated with each band, which will determine whether the bands are orthogonal or
not (at a given energy), and whether they can interfere as represented by the colored
arrows.

The corresponding effect on the transmission of the segment is represented in figure 2.5:
we look at the evolution of the transmission as a function of energy and θ(L) (the total
rotation of the magnetic field), for two values of the chemical potential. Close to the
bottom of the band (panel (a)), the energy levels oscillate as a function of θ(L), whereas
these oscillations are damped when we increase the chemical potential (panel (b))11.

We see that large variations of the spin-orbit energy at the bottom of the band result in
oscillations of the energy levels with a period corresponding to the matching condition
2k = 2π

L (given that for a confined structure, the constructive interferences yield ∆K =
2πn
L , n ∈ N) In this expression, k indicates the shift of the band structure as noted in

figure 2.4, and is equal to k = kN
′

so − kNso when the texture evolves from N domains to
N ′. The visibility of these oscillations is greater at low chemical potential, and at high
magnetic field Bosc12. The period of the oscillations is controlled by the variation of the
spin-orbit energy compared to the level spacing in the nanoconductor. We will show an

11Note that in (b) only one level can be seen due to the higher level spacing at large chemical potential
for a parabolic dfispersion relation.

12Interestingly, for this detection method low tunnel couplings are favorable, contrary to the detection
as a function of the chemical potential. The chosen method can thus be adapted to the experimental
parameter regime.
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estimate in section 4.2.3, as well as simulations showing that a full oscillation is visible
provided we can change the number of magnetic domains along the nanoconductor by
about 2.

The parameters used in figure 2.5 do not represent a very realistic implementation of
a CNT device with a magnetic texture ; the Zeeman energy is too high. Indeed, we
can roughly measure the level spacing δ in reduced units in panel (a) and notice that
bosc ∼ δ/10. In realistic devices, δ ∼ 1 mV. Given µB ∼ 60 µeV/T, it corresponds to
Bosc = 1.7 T for g = 213.

An interesting effect that can change the visibility of these oscillations, notably at lower
values of Bosc, is a polarized region in the nano-conductor, that can appear due to the
remanent field of the magnetic texture, or due to the fast alignment of the domain walls
with the external magnetic field (depending on the characteristics of the texture). To
highlight this effect, we consider a slightly more complicated structure, as shown in figure
2.6, and compare the evolutions of the energy levels in θ(L) with or without polarization
in the external regions. In presence of this effect, the oscillations display anti-crossings
which makes it easier to detect them in transport measurements, even at magnetic fields
as low as about 400 mT. This is the order of magnetic field expected in our devices, as
will be described in more details in section 4.2.3.

Figure 2.6: Simulations of the effect of a helicoidal field with polarized
sections (a) Schematics of the second structure studied, made out of a central region
subject to an oscillating field surrounded by two polarized regions of chemical potential
µL,R and length LL,R subject to a field ~Bpol. (b, c) Transmission of the device as
a function of the energy and the total magnetic field rotation θ(L), at low chemical
potential, for bpol = 0 (b) and bpol = bosc (c). The reduced parameters for these plots

are L = 1.6, bosc = 0.15, t = 0.05, µ = 4, µL,R = 2 and LL,R = 0.5L.

To conclude, in this section we have compared two possible measurements to evidence
the effect of the synthetic spin-orbit interaction. The effect could be visible in the
transmission as a function of the chemical potential µ, but for very long ballistic devices

13Although the Landé factor for CNT can be larger due to the orbital effect of the magnetic field.
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which is challenging (in our CNT circuits, we usually estimate a mean-free path of a
few micrometers). On the other hand, looking at the evolution of the transmission as
a function of the domain size (which can be modified by an external magnetic field
for example) gives a visible signature of the effect, even for magnetic fields as low as
400 mT (as we will show in chapter 4). This detection method requires a good control
over the chemical potential µ to tune the conductor to the band bottom, which is usually
attainable with carbon nanotubes [180–185].

Adding superconductivity to complete the recipe

To finish implementing the “recipe” for the emergence of MZM, we also need to add
superconductivity to the system. It can be either added as superconducting contacts on
one or both sides of the two-terminal normal segment.

The SNS junction: In presence of two superconducting contacts to the normal
segment, the equations for superconductivity-induced bound states (called Andreev
Bound States in all generality) are given by [186]:

det

1− exp
(
−2i acos

(
E

∆

))e−iδ/2 0
0 eiδ/2

S(E)

eiδ/2 0
0 e−iδ/2

S∗(−E)

 = 0,

(2.33)
where S(E) is the scattering matrix of electrons in the normal segment (the scattering
matrix for the holes is given by Sh(E) ≡ (Se(−E))∗) and δ is the phase difference
between the two superconductors of identical gap ∆.

The SN junction terminated by a hard wall: On the other hand, if the normal
segment is connected to only one superconducting contact and a hard wall on the other
side (as is the case, for example, with a tunnel barrier), the bound states energies are
now given by the Andreev Billiard equation [187]:

det
[
1− exp

(
−2i acos

(
E

∆

))
S′(E)S′∗(−E)

]
= 0. (2.34)

where S′(E) is the scattering matrix of the closed normal region, relating the incoming
and outgoing modes at the superconducting interface. It can be formally expressed by

combining the normal region scattering S(E) ≡

S11 S12

S21 S22

 and the hard wall reflection

(incoming waves are reflected with a phase factor of π):

S′(E) = S11 − S12(1 + S22)−1S21. (2.35)
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We recognize the formula for a Fabry-Pérot interferometer, illustrating the possible
electronic trajectories in the closed normal region. The full ABSs equation re-expresses
a constructive interference condition, where the elementary trajectory consists in two
round trips inside the normal region (once as an electron, once as a hole, as visible by the
presence of the S12S21 factor in S′(E)). In contrast, in the S-N-S junction, the bound
states equation is equivalent to constructive interferences over one round trip only.

We will not study here the influence of superconductivity on the visibility of the synthetic
spin-orbit effect in more details. In chapter 4, we will present numerical calculations of
the evolution of bound states in an SN-hard wall system, and show that the variation
of the synthetic spin-orbit coupling is measurable using realistic parameters for a CNT
circuit.

2.3 New geometries for the generation of MZM

In most theoretical models, an effective superconducting gap is considered homogeneous
along the 1D conductor. In the scattering formalism developed above, on the contrary,
superconductivity is added as an interface between a superconductor and the helical
region. However, in the actual physical devices, the situation is slightly different since
superconductivity can be induced in an inhomogeneous manner along the device. Here,
we study in more details a device where superconductivity is added on a segment of
the nanoconductor, and we investigate how superconductivity induced-bound states
(Andreev Bound States, of ABS) can evolve into MZM in such a system, notably when
the band structure of the superconductor correspond to a trivial topological phase. For
this study, we use a tight-binding description of the nanoconductor, enabling us to gain
access to the spatial dependence of its density of states.

We will also study the situation where not only the superconducting pairing is non-
homogeneous, but also the spin-orbit coupling or the Zeeman effect. Our motivation
to do so is to describe more accurately two experimental situations: experiments where
the superconducting contact renormalizes the Landé factor and spin-orbit strength in
the nanoconductor below the contact, and experiments where the spin-orbit is induced
by an oscillating field that does not extend to the superconducting region. We will see
that when no region of the nanoconductor regroups all the Majorana “ingredients”, the
localization of the zero-energy mode is improved in an SNS geometry compared to the
NS junction.
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2.3.1 Tight-binding formalism

We use the same model as the one introduced in Ref [143]. We consider the following
discrete hamiltonian for a chain coupled to a superconductor:

H =
∑

n∈[1,N ]
d̂†n(−µ(n)ŝ0 +Bosc,z(n)ŝz +Bosc,x(n)ŝx)d̂n

− t(n)(d̂nd̂†n+1 + d̂†nd̂n−1) + (tk(n)d̂†nĉk + h.c.) (2.36)

− id̂†nΛ(n)ŝy(d̂n+1 − d̂n−1) +Hs

where si=0...3 are the Pauli matrices acting on the spin, d̂+
n =

(
d̂†n↑, d̂†n

)T
(resp. ĉ†k =(

ĉ†k↑, ĉ†k

)T
) the creation operator of an electron at site n (resp. in the superconductor,

with momentum k), and Hs is the hamiltonian of the superconductor (of gap ∆ and
Dynes parameter Γn). The magnetic field at site n along the axis i is written Bosc,i(n),
the hopping parameters are t(n) (between sites) and tk(n) (to the superconductor) and
the chemical potential at site n is µ(n). The intrinsic spin-orbit coupling term at site n
is Λ(n). In general, all terms can be site dependent.

Figure 2.7: Description of the tight-binding parameters Schematics of the chain
of N sites described using tight-binding formalism. There are two regions in the chain,
a normal region (N) with parameters µN , t, ΛN and a “superconducting region” (S)

where the sites are coupled to a superconductor, with parameters µS , t, ΛS .

In the following, we will either use a uniform parametrization, or define two regions as
represented in figure 2.7, labeled N (N1 sites) and S (N−N1 sites) with possibly different
parameters:

∆(n) = ∆Θ(n−N1) (2.37)

Λ(n) = ΛNΘ(N1 − n) + ΛSΘ(n−N1) (2.38)

We calculate from this hamiltonian the retarded Green’s function in the Nambu spin
space at each site, which allows us to obtain electronic density of states at energy ω,
Ns(ω) through
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G̃R
d̂s,d̂s′

(t) = −iθ(t)〈{d̂s(t), d̂s′(t)}〉 (2.39)

Ns(ω) = − 1
π

Im
[
GRds,ds(ω)

]
(2.40)

with G̃R the Fourier transform of GR and θ the Heavyside function.

In the study that follows, the parameters are given in reduced units, which are defined
in Appendix B.

2.3.2 MZM in an homogeneous NS chain: Influence of the normal
segment

Figure 2.8: Effect of a normal region on the emergence of two MZM Density
of states dos(ω)∆ at the last site of the chain as a function of energy ω and external
magnetic field bext (a), and density of states as a function of energy and site (b) when
varying the length of the normal region. Panel (b) is taken at bext = 5 as shown by
the red line in (a). The length of the normal region is NN = 1, 5 and 20 sites (from
left to right), in addition to 20 sites proximitized by a superconductor, as indicated by
the grey and purple lines. Two MZM appear at the end of the chain, as highlighted
by the orange circles. The left one extends over the normal region. The magnetic field
and spin-orbit coupling (Λ = 5) are homogeneous along the chain. The parameters are

µN = 6, µs = 6, t = 2.5, ∆ = 1, ΓN = 0.001, ΓS = 5.5, Γn = 0.1.
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We first use this formalism to consider the effect of an inhomogeneous superconducting
proximity effect in the chain. We consider an “NS chain”, made out of two regions, a
normal region (N) and a region proximitized by superconductivity (S). The parameters
are homogenous in each region, as shown in figure 2.7. We study the transition from a
chain with superconductivity induced everywhere and a chain with two regions in figure
2.8. In a first time, we consider that the spin-orbit energy and the external magnetic
field are the same in both the N and S regions.

As the size of the normal segment is increased, the ZBP at the interface to the normal
region spreads over all the normal sites. we go from a situation where we have two
localized Majorana modes at the end of the chain to a situation where one Majorana
is delocalized along the helical normal wire, and the second one stays localized in the
superconductor as previously described in Ref [188]. Note that the state localized in the
normal segment is still separated from the other excitations, not by a superconducting
gap but by the confinement-induced gap (as visible for example in figure 2.8).

Figure 2.9: Different superconducting pairing intensities in the
homogeneous Majorana chain Triplet pairing intensity ∆T

d (a) and singlet pairing
intensity ∆S

d (b) as a function of energy ω and magnetic field bext, at site N = 1, for
a chain with a homogeneous superconducting proximity effect (as well as homogeneous
spin-orbit interaction). The parameters are the ones of figure 2.8 (with one normal

site).

The presence of MZM here is indicated by the presence of a localized zero-energy state
when the magnetic field and chemical potential are tuned to enter the topological regime.
However, one can also look at more specific properties of the MZM wavefunction. In a
Hamiltonian formalism, given the eigenfunctions in the Nambu basis γ = (ψ1, ψ2, ψ3, ψ4),
several measures of the excitation properties were proposed. One can plot the charge
ρ = |ψ1|2 + |ψ2|2−|ψ3|2−|ψ4|2 and quasiparticle density Q = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2.
Comparing both quantities, a MZM can be identified as carrying no charge (see for
example [188]). Another parameter, labeled Majorana polarization was proposed in ref
[189] to similarly discriminate between ABS and MZM.
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Here we consider an open system, and thus we do not have access to the explicit
eigenfunctions. However, we can directly look at the induced superconducting pairings
on the chain. There are three possible triplet spin pairing (for which the spin exchange is
antisymmetric): |↑, ↑〉 , |↓, ↓〉 , 1√

2(|↑, ↓〉+ |↓, ↑〉), and one singlet spin pairing (for which
the spin exchange is anti-symmetric): 1√

2(|↑, ↓〉 − |↓, ↑〉).

We can investigate the nature of the electron-electron pairing by looking at the local
Green function coupling different spins. The symmetric and antisymmetric contributions
can be distinguished and we can compare ∆S

i , indicating a s-type pairing at site i and
∆T
i indicating an antisymmetric pairing.

∆S
i = 1√

2

∣∣∣Im [
GR(d†i↑, d

†
i↓)
]
− Im

[
GR(d†i↓, d

†
i↑)
]∣∣∣ , (2.41)

(∆T
i )2 = 1

2

∣∣∣Im [
GR(d†i↑, d

†
i↓)
]

+ Im
[
GR(d†i↓, d

†
i↑)
]∣∣∣2 +

∣∣∣Im [
GR(d†i↑, d

†
i↑)
]∣∣∣2

+
∣∣∣Im [

GR(d†i↓, d
†
i↓)
]∣∣∣2 . (2.42)

These quantities can be identified as spectral pairing functions (i.e. with an energy
resolution) by coming back to the BCS theory definition of the superconducting pairing
parameter ∆i, here taken at site i:

∆i ∝
〈
d̂†i↓d̂

†
i↑

〉
(2.43)

here,
〈
d̂†i↓d̂

†
i↑

〉
= 1
π

∫
dεfFD(ε) Im

[
GR

(
d†i↑, d

†
i↓

)]
(2.44)

where fFD is the Fermi-Dirac distribution. For the triplet component, we have summed
on all possible triplet pairings. We can see in figure 2.9 that in the textbook case of a
chain with homogeneous parameters, the zero-energy state has no singlet pairing and a
maximal triplet pairing, as opposed to the precursors ABS or the high energy ABS.

2.3.3 MZM in an NS chain - influence of the spin-orbit and Zeeman
energies in the superconductor

In the previous section, we have considered the spin-orbit coupling and the external
magnetic field to be homogeneous along the chain. The appearance of MZM in an
SNS geometry with homogeneous spin-orbit and magnetic field was studied in several
works [126, 188, 190–192]. However, to our knowledge, the chain parameters (with
the exception of the chemical potential) are usually considered constant. We will
instead study an inhomogenous scenario, in the regime where the spin-orbit coupling
and the Zeeman energy in the superconducting region are smaller than in the normal
region. A first motivation to do so is to describe more accurately an experimental
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Figure 2.10: Evolution of the MZM in a NS junction with a varying ΛS (a)
Density of states of the first site of the chain as a function of energy ω and external
magnetic field bext, and (b) density of states as a function of energy and site when
varying the spin orbit interaction strength in the superconducting section. Panel (b) is
taken at bext = 3.5 as shown by the red line in (a). The parameters are N = 50, µN =
6, µS = 5, t = 2.5, ∆ = 1, ΓN = 0.001, ΓS = 5.5, Γn = 0.1, ΛN = 5 in the normal
region, and a spin-orbit coupling ΛS = 5, 2.5, 0.5 in the superconducting region (from
left to right). The superconducting region extends over 20 sites, as shown by the purple
and grey lines. The level spacing is modified by the change in the spin-orbit energy
(notably through the chemical potential shift), as visible in the number of levels below

the gap in (b).

setup where the spin-orbit is synthetically induced by a magnetic texture, which cannot
necessarily extend onto the superconductor. A second motivation is linked to recent
theory papers showing that in proximitized nanowires the coupling to the supercon-
ductor can renormalize the spin-orbit energy in the conductor [82]. Finally, the presence
of the superconductor can screen the effect of an external magnetic field (below the
superconductor).

We start by studying the same NS junction as in the previous section. Figure 2.10
illustrates the effect of a decrease in spin-orbit coupling, and figure 2.11 the effect of
the screening of the field in the superconducting region. The results of the NS chain
with homogeneous parameters still hold when decreasing the spin-orbit coupling in the
S region. However when screening the external magnetic field, the density of states is
different: the zero-energy mode does not extend into the superconductor. It appears
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Figure 2.11: SN chain subject to an external magnetic field, screened by
the superconductor. In this scenario, the magnetic field is fully screened inside the
proximitized region of the nanoconductor. The normal and superconducting regions
are indicated by the grey and purple lines. (a) Density of states as a function of
energy and magnetic field. (b) Density of states as a function of energy and site, at
bext = 1.5 as indicated by the red line. The parameters are the one of figure 2.10 with
ΛS = 0., µS = 3. In panel (b), we can see that the previously separated MZM now

seem to overlap at the N/S interface, as highlighted by the orange circles.

that the weight that was previously at the end of the chain (figure 2.10) is shifted to
the NS interface. This indicates that the end of the topological region in the chain has
moved, as expected when we screen the field in the superconducting region. In such a
setup, it may be harder to isolate two MZM. One way to try and localize these states
better is to consider an SNS chain.

2.3.4 MZM in an SNS chain

In the homogeneous NS chain described above, the Majorana that is located in the
normal region is delocalized over the chain. As a consequence, we can expect that in
an SNS chain, there will be four Majorana modes, two of which will hybridize (in the
central normal region) and two will remain localized in the S regions. This way, we can
obtain two well separated MZM.

This idea is illustrated in figure 2.12. First, on the left column (chain 1), the density of
states as a function of external magnetic field (top line) and site (bottom line) is plotted
for a chain with a spin-orbit coupling (although reduced) in the superconducting region
and without any screening of the field. We see that we obtain two Majorana modes at the
end of the chain. Here we use the same parameters as the ones of figure 2.10. The two
remaining columns (chains 2 and 3) describe chains where there is no spin-orbit coupling
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Figure 2.12: Localized modes in an SNS chain. Density of states as a function of
energy and magnetic field at site i0 (a) and density of states as a function of energy and
site at field b0ext (b) for three different SNS chains. In presence of two superconductors,
the phase difference φL − φR affects the density of states. Here we take φL − φR = 0.
These plots show how the partially localized modes obtained in the previous geometry
hybridize and lead to new zero-energy modes (highlighted by the orange circles). In
presence of a spin-orbit coupling in the superconducting region (chain 1), a zero energy
mode exists, separated into two localized peaks at both end of the system as we would
obtain in a fully proximitized system. When there is no spin-orbit coupling in the
superconducting region, these two peaks are not fully separated (chains 2 and 3). The
specific parameters are the following. Chain 1 corresponds to a chain with a reduced
spin-orbit coupling in the superconducting region (with the same parameters as in figure
2.10), with the left superconducting region duplicated to the right: N = 70 with 20
proximitized sites on each end, ΛS = 0.5, ΛN = 5, µS = 5, µN = 6, b0ext = 2.5, i0 = 0).
Chains 2 and 3 describe chains with no spin-orbit coupling nor magnetic field inside
the superconductor, for two sets of parameters, corresponding to two different chain
length. The parameters are N = 20 with 5 proximitized sites, µN = 6, µS = 3,ΛN =
10, b0ext = 2.5, i0 = 5 (chain 2) and N = 50 with 5 proximitized sites, µN = 4, µS =
3,ΛN = 4, b0ext = 1.2, i0 = 5 (chain 3). The remaining parameters are the same as for
figure 2.8. The field values used for panel (b) and site index used for panel (a) are show

with a red line.
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in the proximitized region, and in addition the magnetic field is screened. We see that
we still obtain zero energy modes, however they are not fully localized, as we could
foresee from the NS study. Indeed, already in the NS chain we observed that the spatial
distribution of the zero-energy mode then does not extend into the superconductor,
but stays partially spread in the normal region, and partially pinned at the interface.
Increasing the length of the chain seem to localize them more. Surprisingly, in spite of
the overlap between these states, their energy is fixed at zero over a certain range of
magnetic field (a).

To conclude, in this section we have studied the emergence of zero-energy modes for
inhomogenous systems. We first considered an inhomogeneity in the proximity effect.
The zero-energy state is partially localized in the superconductor, partially spread over
the normal region. When the spin-orbit coupling and Zeeman effect in the normal region
are suppressed, these two states are not well separated anymore. In an SNS geometry,
it is possible to separate them more efficiently.

2.4 Spectroscopy of Majorana pairs with cQED methods

Up until now, the majority of experiments made with nanoconductors potentially hosting
MZM were transport measurement. However, the measurement of the density of states
alone does not reveal the specific properties of a MZM, and notably its self-adjointness.
One way to try and observe this property is to use a microwave cavity, capacitively
coupled to the circuit.

Indeed, it has been shown experimentally that the microwave signal of a cavity coupled
to a mesoscopic system can reveal properties that are not accessible through current
measurement, as well as provide new means to manipulate quantum states [193]. In
the case of Majorana Zero Modes, the use of microwave signal to probe the topological
phase was studied in references [140–143]. It was also proposed that microwave photons
can be used to braid MZM or to build a qubit gate [194–196].

We briefly discuss how to couple our system to a cavity, and the possible information
one can extract from the measurement of the cavity signal.
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2.4.1 Light-matter coupling

General coupling

A general description of the light-matter coupling in mesoscopic circuits can be found
in Ref [193]. Here we will quickly introduce a few notions developed in this paper to
discuss the coupling to MZM.

To couple a quantum circuit to a microwave cavity, one can use a capacitive coupling,
by bringing the electric AC potential of the cavity close to the circuit. The circuit is
then subject to a spatially varying electrostatic potential V⊥(~r).

The coupling between the cavity and the circuit (described as an ensemble of orbitals,
of creation operator ĉn)14) is expressed as

ĥint =
∑

n orbitals
gnĉ
†
nĉn(â+ â†) (2.45)

The prefactors gn are geometric factors, that depend on the spatial dependence of the
cavity mode and of the energy orbital n:

gn = −e
∫

dr3 |ϕn(~r)|2 V⊥(~r) (2.46)

The effect on the cavity signal depends on the charge susceptibility of the nano-conductor.
The transmission bt/bin of the cavity can be written [193]:

bt
bin

= 2
√

ΛLΛR
ωRF − ω0 + iΛ0 − Ξ(ωRF) (2.47)

with
Ξ (ωRF) =

∑
n,n′

gngn′χn,n′ (ωRF) (2.48)

and
χn,n′

(
t− t′

)
= −iθ(t)

〈[
ĉ†n(t)ĉn(t), ĉ†n′

(
t′
)
ĉn′
(
t′
)]〉

ĥint=0
(2.49)

With the following parameters: the L/R port contributions to the cavity linewidth ΛR,L,
the measurement pulsation ωRF, the resonance pulsation ω0 (and linewidth Λ0) of the
cavity. The global charge susceptibility of the nano-circuit Ξ (ωRF), regroups all the
terms χn,n′ (t− t′) that describe how the occupation of level n responds at first order to
a classical modulation of the energy of level n′, in stationary conditions (the subscript
ĥint = 0 indicates the situation with no coupling between the circuit and the cavity).

14These orbitals correspond to electronic states in both the CNT and its electrodes
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Two distinct cases

Depending on the geometry of the circuit, we can identify two distinct situations.

In the first case, V⊥(~r) varies along the CNT circuit; then gn depends on the circuit
orbital n and the cavity can reveal informations on the internal degree of freedom of the
system. The easiest geometry to have different couplings for different orbitals is to use
a double quantum dot circuit where the cavity is mainly coupled to one dot. In this
scenario, the interaction Hamiltonian (2.45) effectively modulates the chemical potential
of one dot with an amplitude proportional to gn and the number of photons. In this
case, the charge susceptibility is strongest at ωDQD, the transition energy of the DQD
[193]:

Ξ (ωRF) ∝ 1
ωRF − ωDQD + iΓ∗2

(2.50)

where Γ∗2 is the decoherence rate of the DQD transition.

In the second case, V⊥(~r) does not vary in the CNT (in which case gn will be equal
for all the CNT orbitals), but is different in the CNT circuit and in its leads. In this
situation, the cavity can be used to reveal the dynamics of the tunneling into the leads
[197, 198]15. In the simple situation of a QD coupled to a normal lead, the susceptibility
is proportional to the admittance of the QD, and the cavity signal will change around
ε = 0. This is schematically represented on figure 2.13.

Figure 2.13: Lead-dot coupling: Physical picture of the coupling between a lead
and a QD. The cavity can induce the formation of electron-hole pair in the dot density
of states if the difference in fermi function between ω and ω − ωcav is non-zero. The

signal is strongest for the dot detuning εd = 0. Source: [193].

2.4.2 Implications of the self-adjointness

In the previous paragraph, we have discussed the interest of coupling a mesoscopic circuit
to a cavity in the general case. We will now consider the specific case of a system hosting

15Provided the g in the leads are small; we take it equal to zero for simplicity
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MZM. For simplicity, we use the ideal model of a nano-conductor with homogeneous
spin-orbit coupling, Zeeman and s-type superconducting pairing along its length. In
this system, there exists a pair of MZM with an energy splitting ε that vanishes at large
enough magnetic field.

The hamiltonian when the two MZM γ̂i,1 γ̂i,2 weakly hybridized is written, in the Majorana
operator basis (1.7),

Hmerge = i

2εγ̂i,1γ̂i,2 = ε

(
ĉ†i ĉi −

1
2

)
(2.51)

On the other hand, the general form for the coupling between the MZM pair and cavity
photons can also be rewritten in the Majorana operator basis in the following way
(dropping the i index) [143]:

Hcoupling = igγ̂1γ̂2
(
â+ â†

)
(2.52)

where g is real due to γ̂†1,2 = γ̂1,2 and γ̂1,2γ̂
†
1,2 = 1

2 [141]. As mentioned before, it is a
geometric factor that depends on the spatial form of the cavity mode and of the MZM
wavefunction. For non-overlapping MZM, we expect g → 0 as a Majorana fermion does
not couple to the electro-magnetic field (since it carries no charge).

Comparing both Hamiltonians, we see that they commute, which means that the coupling
does not induce transitions between the Majorana doublet but can only change its energy,
and there will be no effect on the cavity resonant frequency16. This is equivalent to a
longitudinal coupling in term of Bloch sphere representation. In fact, one can show that
this is simply linked to a selection rule preventing the cavity from exciting two modes
with different fermionic parities.

We can note that for a different reason, non-degenerate ABS with opposite spins are
not coupled to the cavity photons due to a selection rule stating that the photon
cannot reverse the spin. Thus cavity photons can discriminate between degenerate and
non degenerate ABS, but not between well separated MZM and non-degenerate ABS.
Measuring at the same time the transport and cavity signal can provide complementary
information.

Two concrete proposals

We develop in more details two proposals to observe MZM with cavity measurements.

In order to get a cavity signal, one can tune the chemical potential along the nano-
conductor to engineer more than two MZM (for example, by creating a central trivial

16In the stationnary regime; if one can modulate g the resonant frequency may shift



Chapter 2. Synthetic spin-orbit interaction in a cQED architecture 75

region in the nanoconductor with a piano of gates). With four MZM, there can exist
a transverse coupling between the cavity and the nano-conductor, due to a term that
couples two MZM associated with two different fermionic degree of freedom. This can
lead to a readable effect either as a small cavity shift, or as a non-linear effect at high
number of photons, that depends on the chemical potential of the topological phase
(more precisely, on how far the system is into the topological phase) [141].

Another way to measure MZM properties with a cavity is to take into account additional
states, either higher energy states in the conductor or states in the leads. Although
the cavity photons do not couple to transitions between a Majorana doublet, they can
couple to transitions between one of the MZM and one of these state [143]. One can
then measure the cavity dispersive shift, identify the transitions that couple to the cavity
and deduce the forbidden transitions, as shown in figure 2.14 (line 1 and 2 are visible in
the cavity signal, but not P). It seems that the short length regime, where a Majorana
doublet is present over a larger range of magnetic field is more favorable to identify such
a signal.

Figure 2.14: Proposal for detecting the self-adjoint property of MZM
through cavity photons (a) Charge susceptibility of the system as a function of an
external magnetic field (Ez) and cavity resonant frequency (ω0). The cavity signal is
subject to a frequency and linewidth shift that is proportional to the real and imaginary
part of the charge susceptibility. (b) Scheme of the features appearing in (a) Charge
susceptibility as a function of Ez for different cavity frequencies, as shown in (a). (d)
Processes contributing to the features of panel (b), and forbidden processes P and Q. P
is the transition inside the Majorana doublet. Q couples to non-degenerate ABS with

opposite spins. Source: [143]
.
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In this chapter, we give some details on the various techniques that are used to
fabricate the mesoscopic devices presented in this thesis. Special emphasis is put on
the fabrication and characterization of the magnetic texture used in the experiments
presented in chapter 4 and 5 (section 3.3). We will also discuss the new CNT transfer
technique (the “stapling”) used at the end of this thesis, and the possibility to obtain
superconducting contacts to the CNT in sections 3.2 and 3.4. The influence of the new
device geometry needed for the stapling technique on the microwave cavity resonance
is studied in section 3.1. Finally, the general processes for the circuit fabrication and
measurement are described in sections 3.5 and 3.6.

3.1 cQED methods

An important specificity of our experimental technique is that we combine a mesoscopic
circuit with a microwave cavity, to study the electronic system through both its transport
characteristics and the change in the microwave signal when the circuit is coupled to the
cavity. Such dual measurements can reveal complementary properties of the electronic
state, as introduced in section 2.4.1.

Figure 3.1: Image of a microwave cavity in the sample holder: (b) Picture of a
device combining a coplanar waveguide (CPW) and DC lines for the stapling technique,
inside the sample holder (the PCB of the sample holder is visible in gold). The sample
holder DC lines and radiofrequency (RF) lines ends are visible. Wire bonding is needed
to connect the sample to the cryostat. (a) Zoom-in on the DC pad directly connected
to the cavity central conductor (labeled galvanic DC pad). (c) Zoom in on the ground
plane opening in the CPW, where the mesoscopic circuit is visible. It is surrounded by
trenches needed for the transfer of a CNT with the stapling technique. (d) Zoom-in on

the coupling capacitances of the CPW to the RF ports.
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3.1.1 Cavity geometry

The microwave cavity is a λ/2 2D coplanar waveguide (CPW) fabricated by etching Nb
deposited onto a Si/SiO2(500 nm) high resistivity substrate. The CPW consists in a strip
of Nb (typically 100− 150 nm thick), that we will call the central conductor of the cavity,
interrupted by two capacitances that couples the cavity to two input/output lines, and
surrounded by two “infinite” ground planes (figure 3.1(d)). The electromagnetic field
propagates in a quasi-transverse electromagnetic (TEM) mode. On the same sample,
DC pads and lines are prepared for the CNT circuit, as visible in figure 3.1 (b) and (c).
In the rest of this discussion, we will call “CNT circuit” the metallic lines that are used
for the transport measurement, labelled sample DC lines in the picture. The smallest
part of these lines (in the 100 µm × 100 µm ground plane opening), which are done
separately during the fabrication process, will be called the “microscopic CNT circuit”.

The cavity geometry can be chosen using a simple model of the distributed impedance
of the strip, which is a function of its width and height, of the width of the surrounding
insulating gaps and of the permittivity of the dielectric [199]. This impedance matches
the one of our RF equipments at Z = 50 Ω. The resonant frequency then depends on
the length of the strip [199]. A figure of merit of the CPW is the resonance quality
factor, defined as Q = fc

∆f with fc the resonant frequency and ∆f the FWHM of the
amplitude of the signal1. The quality factor depends on both the internal losses (linked
to the Nb kinetic inductance, the quality of the Nb film and the SiO2 substrate, as well
as the cleanliness of the process), and to the capacitive coupling to the RF ports [200].

In order to couple a CNT circuit to the microwave cavity, a metallic line is connected
to the central conductor of the CPW at a antinode of the electric field (of the resonant
mode). This way, the CPW mode extends to the circuit region close-by (as shown in
figure 3.1(c)). The DC electrostatic potential of this metallic line can be left floating, or
alternatively controlled by a DC pad that is directly connected to the central conductor
of the CPW, at a node in the electric field (figure 3.1(a)). The CPW mode is partially
protected by the presence of a long thin metallic line, yielding a large inductance between
the pad and the cavity central strip. This DC contact to the cavity gives more flexibility
in the design of the electron-photon coupling: it can be used either as an electrode of
the mesocopic circuit (galvanic coupling), or as a floating gate (capacitive coupling).

However, connecting metallic lines onto the central conductor of the cavity can greatly
modify the resonant mode, and reduce its quality factor, for both capacitive and galvanic
coupling. To highlight these effects, we have first measured the influence of a capacitive

1∆f is related to the lifetime of the photon in the cavity; Q is thus an indication of the number of
times the photons can bounce back and forth in the cavity before being dissipated or exiting in the RF
ports.
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coupling between the mesoscopic circuit and the cavity on the resonance quality factor.
We have then simulated the effect of a galvanic connection on the central conductor of
the CPW.

3.1.1.1 Influence of a capacitance to a DC line

Figure 3.2: Impact of a capacitive coupling to DC lines on the cavity: (a, b, c)
Picture of the three test devices, with a capacitance connected to the central conductor
of the cavity. (a, b) correspond to two capacitances made out of gold, of respectively
(d, e, f): Transmission amplitude (in linear scale, arbitrary units) as a function of
the probe frequency (green line), with a fit using a Fano transmission (blue). The fit
equations can be found in M.C. Dartiailh PhD thesis [201]. The measurement method

is described in section 3.1.3.

To study the influence of a capacitive coupling on the quality factor, we have fabricated
several samples with a capacitance between a DC line and the CPW central conductor.
The chosen capacitance value is similar to the capacitance C of the input/output ports
of the cavity: C is made out of two metallic lines of length 50 µm and height 150 nm
facing each other, separated by a gap of 3.5 µm. The label C/2 refers to two lines of
half this length, as can be seen in figure 3.2 (a,b,c). One of this line is connected to the
central conductor of the cavity, the second to a DC line in the cryostat. The capacitance
C is either made out of a dissipative (normal) metal, gold, or a superconducting2 metal,
niobium.

The resulting transmissions are shown in figure 3.2 (d,e,f). The quality factors have
to be compared to the ones of a similar resonator with no capacitance to a DC line,

2at the measurement temperature, 300 mK.
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Q ∼ 40 000. We see that for both (e) and (f), the quality factor is reduced to about
Q = 18000− 19000, but is still high enough for our experiments3. However, for a large,
dissipative capacitance (c), the quality factor is strongly reduced, at Q = 2000. Finally,
we can note that for the gold capacitances, the resonance has a Fano shape, indicative
of a coupling to a parasitic 3D mode, which can contribute to the depreciation of the
quality factor.

This measurement is particularly relevant in light of the development of the stapling
technique, the new CNT transfer technique that was developed in the group during
this thesis. It will be described in more details in section 3.2. For the stapling, one
needs to fabricate sufficiently long electrodes (at first, we were typically using electrodes
of length 70 µm). In ref [185], in the presence of such a large capacitance (made out
of superconducting aluminum) between the cavity and the surrounding DC gates, the
quality factor was 4200. It will become all the more important to understand and take
into account this effect when designing more and more complex circuits. Indeed, they
can require adding more elements in the ground plane opening of the cavity, which risks
increasingly perturbing its resonance.

3.1.2 Influence of a galvanic DC contact on the cavity

We now focus on the effect of a galvanic connection of a DC line onto the central
conductor of the resonator, as shown in figure 3.1(a). This DC line is positioned at a
node in the electric field. The dissipative cryostat circuit is separated from the cavity
central conductor by an inductance (a long, thin Nb line). Cavities with such DC bias
typically have lower quality factor, in the order of 1000, up to 10 000 [202].

A first test was made without the microscopic CNT circuit. The inductive line is adapted
to a 70 Ω impedance, while the cavity is adapted to 50 Ω. The transmission4 as a function
of the probe frequency is represented figure 3.3, corresponding to a quality factor of 5100.

To gain more insight into the impact of the DC circuit, and how to best design the
cavity, it can be accurately simulated using Ansys HFSS (High Frequency Structure
Simulator), a 3D electromagnetic simulation software relying on finite element modeling
of the structure, and numerical solving of the Maxwell equations.

In order to simulate the full CPW geometry, we first have to model the connection of the
sample DC lines to the instruments, through the sample holder and the cryostat lines.
In the cryostat, the DC lines are connected to low-pass filters as described in figure 3.4

3A rule of thumb can be that we want a cavity linewidth much smaller that the coupling to the leads
4the line amplification and attenuation is not compensated in this value
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Figure 3.3: Resonance of a CPW with a galvanic DC pad: Transmission of a
CPW with an inductive line, as a function of the input tone frequency on two different
range of frequency (the lines amplification/attenuation offset is not removed). The
resonant frequency is fc = 6.52 GHz, and the quality factor Q = 5100. The cavity

geometry for this measurement is shown in figure 3.1.

(a), but we do not know exactly the values of the inductance and resistance of the lines
from the sample to the filter at the expected resonant frequency (around 6.5 GHz) .

In HFSS, we can model these lines by connecting the DC bonding pad to the ground
through a lumped RLC circuit (noted as a Z impedance). A figure of merit to check
that the modeling is realistic is to look at the quality factor of the resonant mode, and
compare it with experimental results. We tested different modeling on a simple design of
a cavity with no inductance, which has been measured several times with quality factors
of the order of 50 000. We found that only taking into account an inductance of the
order of 1 nH (expected for the bond wire) yielded unrealistic quality factors compared
to our measurement, of more than 105. Describing the circuit as an effective resistance of
R = 50 Ω gave a quality factor of 42 000, much closer to our empirical expectations. For
the CPW with the inductance and no DC circuit, the simulations with R = 50 Ω gave
an expected quality factor of 4100, also very close to the actual measurement presented
in figure 3.3.

As a consequence, this convention was taken for the subsequent simulations: the DC
lines are all connected to a R = 50 Ω resistance to the ground. This is represented in
the simulation drawing of figure 3.4 (b) by the dark blue blocks connected to the DC
pads.

Several geometries were tested to study the influence of the cavity DC pad, both with
and without the microscopic CNT circuit (the simulation parameters are detailed in
Appendix C). The optimal geometry is shown in figure 3.5. The cavity drawing is
shown in panel (a), and the magnitude of the electric field of the CPW resonance mode
is plotted in different regions of the resonator in panels (b), (c) and (d). For this
resonance, the quality factor is Q = 5000, at frequency fc = 6.4GHz. A second parasitic
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Figure 3.4: Modeling of the fridge lines in HFSS: (a) Picture of the sample holder
and schematics of the circuit on the DC lines in the cryostat (the ones that connect to
the sample holder). (b) Corresponding cavity drawing for HFSS simulations. On each

DC line, the fridge circuit is represented by a Z impedance to the ground.

mode exists at fpara = 7 GHz (with the electric field magnitude distribution shown in
panels (e) and (f), concentrated in the DC lines and galvanic DC pad). Given its quality
factor (Q = 24), it is supposed to be well separated from our CPW mode. However
HFSS cannot calculate Q very accurately; the order of magnitude is so that this mode
could couple to the CPW mode and degrade its quality. Simulating the same geometry
with a larger capacitive coupling between the cavity and the DC lines reduced the quality
factor to Q = 3300 (see panel (g)), as experimentally measured in a different geometry
in section 3.1.1.1.

Geometry fc (GHz) simulated Q Measured Q
No galvanic DC pad, no DC circuit 6.8 42 000 ∼ 50 000
Large 50 Ω DC pad, no DC circuit 7.0 2 700
Large 70 Ω DC pad, no DC circuit 6.7 4 100 5 000 (fig 3.3)

Small 70 Ω DC pad (of fig 3.5, no DC circuit) 6.4 6 100
Small 70 Ω DC pad (of fig 3.5 (with DC circuit) 6.4 5 000

Table 3.1: Quality factor Q and resonant frequency fc for some of the cavity
geometries tested.

The result of some of the simulations is summarized in table 3.1. In addition, we have
observed that the cavity resonance has a higher quality factor when the inductance has
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Figure 3.5: Simulations of the influence of a galvanic DC pad on the cavity
mode: (a) Large-scale drawing of the best cavity geometry tested. The ground plane
are represented in light green, the SiO2 in light green, the DC lines in green and the
cavity central conductor and input/output ports in orange. (b) Electric field magnitude
for the CPW mode (fc = 6.4GHz, Q = 5000), on several regions : the center of the
cavity, the input capacitance and the CNT circuit. (e, f) Parasitic mode at fpara =
7 GHz, oscillating in the DC lines. (g) CPW mode for the same geometry, with a larger

coupling capacitance between the DC circuit and the cavity.

the following characteristics: the center pad is small5, and the inductive line between the
cavity central line and the DC pad is not adapted to a 50 Ω impedance (the impedance
tested on these parts is 70 Ω, similar to the value for the CPW measured in figure
3.3). These results are slightly dependent on the specific dimensions of the microscopic
CNT circuit, notably the width of the electrode connected to the cavity (we observed a
variation of Q of 15%), and as stated before on the modeling of the fridge circuit. Finally,
in these simulations all the metals were considered as ideal metals (perfect conductors),
which is true for the superconducting Nb sheet but not for some metals of the CNT
circuit.

In the end, these simulations are very helpful to identify trends in the impact of the
geometry on the CPW resonance quality factor, but only the actual transmission measu-
rement can really give the quality factor of a given design. The strong dependence of the
simulation result on the cryostat line modeling is an indicator that the cavity resonant

5we compared two pad: the “large pad” of width 200 µm, and the “small pad” of width 100 µm
(bonding pad and snail)
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mode is not protected enough from these dissipative lines. More work could be done
to improve its isolation, for example adding lumped-elements filters or stub on the DC
lines.

Evaluation the circuit-cavity coupling A small side note can be made here about
another potential interest of these simulations: they enable us to see how the mesoscopic
circuit can couple to the cavity. Here we did not plot the good metrics to study this
effect. Indeed, the coupling to the cavity was discussed in section 2.4.1. It was shown
that the coupling strength to one circuit element depends on the electrostatic potential
of the CPW mode at this element, in equation (2.46). The visibility of transitions
between two circuit elements depends on the change in coupling strength between these
two elements, thus on the variation of the electrostatic potential along the mesoscopic
circuit6.

In order to know how the CNT circuit will couple to the cavity photons, we can extract
from the measurements the evolution of the electrostatic potential V along the CNT
circuit. If the CNT axis is x, one should plot

V (x, y) =
∫

CNT circuit
Exdx (3.1)

3.1.3 Cavity transmission measurement

Our microwave cavity resonant frequency is typically around fc = 6.5 GHz. Since we
cannot acquire and measure a signal at this frequency fast enough, we modulate an input
microwave signal (called the local oscillator, LO) by multiplying it with a fIF = 20 MHz
signal (generated by an AWG, and called the intermediate frequency, IF) using a single
side band mixer (SSB) before sending it to the cavity input. After passing through the
cavity, the signal is down-converted by multiplying it with the LO signal, resulting in
a signal at fIF . We use an I/Q mixer that returns both quadratures of the signal. An
analog-to-digital converter (ADC) collects several traces of this signal (typically 10000)
with a sampling rate of 1 Gs/sec7, and averages them. We can then extract the I and Q
quadrature by multiplying the averaged trace by 2 cos(ωIF t) and 2 sin(ωIF t) 8. Knowing
I and Q, we calculate the phase and amplitude of the output signal using:

A =

√
I2 +Q2

2 ϕ = − arctan
(
Q

I

)
6In the two simple cases described in section 2.4.1, we had a DQD with g 6= 0 for one dot only, and

a SQD coupled to a lead with g 6= 0 in the dot, g = 0 in the lead.
7The sampling rate is expressed in giga sample per second, meaning that we collect one data point

each nanosecond.
8the factor 2 compensates for the 1

2 average value of a cos2 or sin2 function.
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The precise measurement setup used in this thesis is presented in figure 3.6.

3.2 Carbon nanotubes

We use a carbon nanotube (CNT) as a nanoconductor for building quasi-one dimensional
circuits. Carbon nanotubes have the advantage of being rather simple material, that
can be fully modeled without the need for effective band approximations [203, 204].

CNTs can be grown by chemical vapor deposition (CVD). To obtain CNTs, we deposit
a catalyst containing iron nanoparticles on the growth chip (either the quartz pillars for
the stamping or the comb for the stapling, as will be explained later on), in low density
in order to avoid the formation of bundles of CNTs9. The chip is positioned in a furnace,
and heated up to 900◦C under a mixed flow of H2 and CH4. The specific steps of the
CNT growth are given in section 3.2.2. We here describe how to embed these CNTs into
a microwave cavity. We then discuss the possibility to characterize the CNTs with other
tools than the transport measurements.

3.2.1 CNT transfer techniques

Figure 3.7: The two transfer techniques used during this thesis: (a) the
stamping technique consists in randomly depositing CNTs grown over quartz pillars in
a selected area of the CPW chip. (b) the stapling technique enables a transfer of a
specific CNT, selected on a comb of cantilevers. The transfer can be done at the very
last step of the fabrication. In the image, the comb chip is held above the CPW chip.

Adapted from [236] and [2].

The fabrication of a CNT circuit inside a microwave cavity is a constrained problem. On
the one hand, the growth results in a variety of CNTs, not a single type (even though
the growth conditions can be tuned to affect the diameter and number of walls of the
CNTs obtained, as well as the probability of forming bundles). On the other hand, one
has to pay attention to the evolution of the quality of the microwave cavity during the
fabrication of the CNT circuit: the CNT growth at 900◦C cannot be done on the same
chip as the one used for the microwave cavity without destroying the CPW resonance

9A bundle occur when a CNT is rolled up with one or several other CNTs
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(because of dislocations and impurities, that affect the high frequency properties of the
superconductor).

To circumvent these issues, we use a growth chip different than our cavity chip. We
then image the grown CNTs and select a “good” one. The rest of the circuit can then be
drawn around the selected CNT, or the chosen CNT can be transferred onto an already
prepared circuit. The two approaches where used during this thesis: first the existing
stamping technique was used for the device of chapter 4, then a new stapling technique
was developed, tested and used for the device presented in chapter 5 (as well as two of
the control devices of chapter 4).

Figure 3.8: Photograph of the stapler: (a) large scale of the stapling machine.
We can see the optical microscope, the Ar milling gun, the electrical wires for the
monitoring of the stapling. The comb is retracted in the buffer chamber during the Ar
milling. (b) Zoom-in on the vacuum chamber, where the sample holder is visible as well
as the micromanipulators used for displacing the comb when stapling. The stapling is
done under vacuum, then the sample holder is sealed with the cover held in the moving

arm.

Figure 3.7 presents the difference between those two fabrication techniques. The first
local transfer technique, called stamping technique, was developed by J. J. Viennot
[205]. Two chips are prepared, a microwave cavity with a ground plane opening and a
quartz chip with etched pillars. CNTs are grown over the pillars before the two chips
are aligned one above the other with a mask aligner and brought into contact. CNTs are
transferred randomly in the ground plane opening of the cavity, imaged using an SEM,
and then contact electrodes are lithographically defined. Details of the fabrications can
be found in M. M. Desjardins’s PhD thesis [206]. The drawback of this technique is that
this last lithography step can introduce defects in the CNT, due in particular to resist
residues10. As a consequence, this technique had a low yield, and the resulting devices
were not always very tunable.

In order to improve these aspects, the second transfer technique, called stapling tech-
nique was developed, largely due to the work of T. Cubaynes [2]. Inspiring ourselves
from several recent works [183, 207–209], we designed a new transfer machine, shown
in figure 3.8; its usage is described in more details in 3.5.2.2. This technique enables

10In addition, theelectron-beam exposure directly on the CNT may also introduce defects in the lattice.
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an accurate positioning of one given CNT, which can be deposited onto its electrical
circuit, and does not undergo any post-transfer processing. If the height of the contact
electrodes is sufficient, the CNT can be suspended which enables a much better control
on its electrostatic environment.

The main steps of this transfer technique are as follows. On the one hand, a cavity chip
is processed to contain the microwave cavity and the metallic electrode needed for the
CNT circuit. Trenches of depth of about 10 µm are etched around these electrodes. The
cavity chip is then positioned in a sample holder in the transfer chamber, and electrically
connected to a monitoring rack. On the other hand, CNTs are grown over a comb of
cantilevers, and imaged after growth. The comb is positioned in a mobile section of the
transfer chamber, and the segment containing the most promising CNT is aligned over
the cavity chip using attocube micro-manipulators with optical microscope monitoring,
under vacuum (at pressure in the 10−7 mbar range). The comb is then lowered below the
level of the contact electrodes into the trenches, until an electrical contact is detected
between the circuit electrodes. The CNT ends are cut using outer electrodes made
for this purpose. The comb is retracted, and the sample holder is sealed, still under
vacuum, using a moving arm. The sample holder can finally be transferred to a cryostat
and cooled down.

A new sample holder was designed to withstand vacuum, thus reducing the risk of a
chemical reaction of the CNT (when the stapler-cryostat transfer is done under atmo-
spheric condition, the CNT often worsen during transfer; when done with a nitrogen
flow, a change was less frequent; transferring under vacuum is the ideal situation), as
shown in figure 3.8 (b). This sample holder is made of several pieces that are glued
together using epoxy glue, which is also used to fill-in the vacancies around the SMA
and DC electric cables. Although the SMA connectors in themselves are not vacuum
tight, tightened SMA cables are (we use here the Astrolab 16301 minibend cables).
Finally, a rubber gasket enables to seal the cover onto the sample holder. Such a sample
holder can be pumped down to 6× 10−5 mbar in 10 minutes, and after 10 minutes in
static vacuum the pressure has only increased to 2× 10−2 mbar. However the thermal
cycles tend to degrade the epoxy resist; future developments of this sample holder would
benefit from being made out of a smaller number of separated pieces.

Overall, the stapling technique has greatly improved the success yield of the fabrication
process. Resonators can now be measured beforehand, and besides a given circuit can
be used multiple times, with different CNTs. These advantages open the way to more
complex devices, as well as the use of better characterized CNTs as we will now discuss.
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3.2.2 Carbon nanotube fabrication and characterization

The CNTs obtained with a given growth recipe can be characterized by TEM measure-
ments, giving us access to the distribution of diameters and the ratio between SWNT
and MWNT.

Figure 3.9: Raman spectroscopy of the sample MU9TRd. Two traces are
represented, corresponding to measurements with two lasers, a red (red curve) and

green (green curve) one.

On the other hand, a specific CNT can also be characterized by various techniques.
Thanks to the development of the stapling, it is becoming possible to exhaustively
characterize a CNT before transferring it to a mesoscopic circuit. Among the tools
available, there are the AFM which gives an estimate of the CNT diameter, Raman
spectroscopy, for establishing the presence of defects [210], and which can give information
on the tube structure and character (metallic or semi-conducting) [211, 212], and Rayleigh
spectroscopy which can directly reveal the chirality of a single wall carbon nanotube
[213, 214]. Rayleigh spectroscopy however is more restrictive since one needs the CNT
to be suspended, but it is fully compatible with the growth on combs of the new stapling
technique.

For now, we have tried to develop Raman spectroscopy of our CNT, combined with AFM
measurement of the diameter. Raman spectroscopy can enable us to distinguish between
a single wall, a multi-wall or a bundle of CNTs, and also, for a single tube, between a
semi-conducting or a metallic one. Indeed, the Raman spectrum of a SWCNT will show
two peaks around 1600 cm−1, called the G+ and G− peak, associated with the vibration
of the C-C bound. The G− peak position and width depends on diameter and character
of the tube (although for metallic CNT, the G− peak can be very broad): the spacing
between the two peaks can be used to extract to the diameter of the CNT. For a bundle
or a multi-wall CNT, there will be as many G− peaks as NT, and the G− peak energy
can be renormalized by the interaction with the other NT, making the interpretation of
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a spectrum more complicated. A D peak at around 1350 cm−1 can be seen when there
are defects in the CNT [210]. Finally, if the energy of the laser is close to the energy
of the electronic transitions of the CNT, we can observe an additional peak between
50 cm−1 and 400 cm−1, also directly linked to the diameter of the tube.

In figure 3.9 the Raman spectrum of the CNT in sample MU9TRd is shown (the magnetic
sample that will be presented in chapter 4), for two lasers (red and green). It was
measured by Aurélie Pierret of the LPENS. We interpret this spectrum as follows. We
observe the signal associated with two CNTs, a metallic one, which gives a broad signal
around the G peak and a RBM signal at 137 cm−1, corresponding to a diameter of
1.8 nm (seen with the red laser), and a semi-conducting CNT, which gives two peaks at
high shift (1583 cm−1 and 1592 cm−1) and a RBM signal at 165 cm−1 corresponding to
a diameter of 1.5 nm (seen with the green laser). The peak at 300 cm−1 corresponds to
the Si substrate. No D peak is detected, indicating a good quality of the CNT.

For now these new characterization techniques have only been used as post-processing
of our electrical circuit. This could already help us to detect trends in the CNTs growth
and transfer. In a foreseeable future, Raman spectroscopy, or even more so Rayleigh
spectroscopy will enable us to select a CNT knowing its exact structure, prior to its
stapling.

3.3 Magnetic texture

During this thesis, we have fabricated mesoscopic circuits to study the effect of an
oscillating magnetic field on confined electrons in a CNT, as theoretically studied in
chapter 2. The oscillating field is generated by a ferromagnetic gate containing several
magnetization domains, placed below the CNT. The magnitude of the stray field at
the position of the CNT needs to be large enough to induce a Zeeman splitting of the
electronic bands. Additionally, the smaller the domains the stronger the synthetic spin-
orbit coupling, as shown in section 2.2.1. We present here as a magnetic texture a Co/Pt
multilayer, and its characterization. We compare different magnetic characterization
tools, MFM, SQUID and Hall bar, their advantages and limitations.

3.3.1 Formation of a magnetic texture

Bulk ferromagnetic materials have a exchange interaction that tends to align neighboring
spins; thus they can present a uniform magnetization11 below the Curie temperature

11At external magnetic field Bext = 0, this is only true locally.
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(that depends on the strength of this interaction). This temperature is about 1400◦C for
Co, much larger than the temperatures at which we work (300 K for some characteriza-
tions, 4 K or below for the measurements). Depending on the material crystalline
structure, the spin orientation can have a favored direction, called the anisotropy axis.
In finite structures, the magnetic ground state also depends on the demagnetizing field,
i.e. the magnetic field generated by the magnetic moments ordering inside the material
(which generates an energy term called the demagnetizing energy Ed). The shape of the
surfaces will affect the shape of the demagnetizing field. For example, in planar magnetic
thin films, the shape anisotropy Kd makes it less energetic for the magnetization axis
to be in-plane. In more complex structures, several domains can form depending on the
energetic cost of the domain wall compared to the demagnetizing energy.

For the synthetic spin-orbit effect, we want to use a structure with several magne-
tic domains, thus we need to understand how to favor complex equilibrium magnetic
structures over a homogeneous magnetization in thin films. Several physical effects can
induce an out-of-plane anisotropy K, that competes with the shape anisotropy; if the
two are of the same order of magnitude, domains can form. The figure of merit to
determine the magnetic ground state when the two anisotropies compete is the quality
factor Q = K/Kd[215]. The effective anisotropy, Keff = K − Kd, roughly represents
the cost of having domain walls. Several scenarii can be distinguished:

• If Q = 0, the magnetization is uniform, in plane,

• If Q� 1, the magnetization is mostly in plane, but there can be a critical thickness
from which a fraction of the magnetization is out-of-plane and oscillates (this is
called “weak stripes”),

• If Q ∼ 1, there can be periodic domains,

• If Q� 1, the magnetization is uniform, out-of-plane.

Several effects can provide an out-of-plane anisotropy. First, strain can provide enough
out-of-plane anisotropy to induce spontaneous oscillations of the magnetization in certain
ferromagnetic material. This is the case for Ni [216]: in Ni nanostructures, the out-of-
plane component of the magnetization oscillates along the smallest dimension. However
only a fraction of the total magnetization oscillates, which will give a low value for
the oscillating magnetic field (scenario Q � 1). Second, epitaxial growth of alloys on
specific seeding layers, yielding controlled crystalline structures can give rise to domains
formation in several magnetic materials (scenario Q ∼ 1): for example, CoPt, or FePt
have been studied extensively in the spintronics community [217–221]12. Third, an

12Here the crystalline anisotropy is out-of-plane
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interface between a ferromagnetic material and a metal with strong spin-orbit interaction
provides an interfacial anisotropy term, that will be strongest when the ferromagnetic
layer is thin (scenario Q ∼ 1)13. It can can be enhanced by fabricating multilayered
structures alternating a magnetic material and a heavy metal [222, 223]: for example,
Co and Pt. This is the path that was chosen for our experiments. It is relatively easy
to adapt to our fabrication technique (since it does not require an epitaxial deposition),
and the anisotropies can be adjusted by changing the parameters of the multilayered
structure.

3.3.2 Choice of the magnetic texture

Figure 3.10: Influence of several parameters on the domains (a) Calculation of
the evolution of the domains period p with number of repetition N , plotted for different
quality factors Q ∝ KdtCo/Ks. Source: [224]. (b) Measurement of the saturation
magnetization Ms of a Co/Pt multilayered structure as a function of the Co thickness
dCo. Source: [217]. (c) Spin polarized SEM of a Au/Co thin film. The perpendicular
and parallel magnetization is shown for several Co thickness, given in monolayers (ML,

with 1 ML ∼ 0.23 nm. Source: [225].

We now describe how a specific magnetic texture was chosen. The parameters that are
important to us when choosing the magnetic texture are, first of all, the presence of
domains and their size. The thickness of each layer, and the total number of layers
in the multilayered structure will influence these parameters: a large number of layer
repetition reduces the domain size, as shown in figure 3.10 (a). The Co thickness tCo
affects the interface anisotropy (K = Ks/tCo, where Ks is a surface energy density), thus
also changes the domain period. The domain formation as a function of Co thickness is
shown for example in a simple Au/Co structure in figure 3.10 (c).

We also require a strong in-plane14 saturation field, that gives us some flexibility in
the parameter space in the experiments. This depends on Ks/tCo: the stronger the

13K = Ks
tF M

where Ks is the interfacial term and tFM is the ferromagnetic metal thickness
14Other experimental constraints, notably the presence of superconductivity forces us to apply the

external magnetic field in-plane, as will be seen in chapter 4.
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magnetization is out-of-plane (ie the stronger the interfacial anisotropy is), the harder
it will be to rotate it. Thin layers of Co are thus favorable. Here we can mention that
having domains require a small effective anisotropy Keff which is usually synonymous
of a small saturation field. Indeed, in the simple picture of one domain with an easy
axis, the saturation field Bsat corresponds to the energy to pay to compensate for not
aligning along the easy axis: Keff = µ0MsBsat where µ0 is the Bohr magneton and Ms

the saturation magnetization. In a multilayered structure with many repetitions, this
saturation field can be higher, as the dipolar energy is not minimized through the shape
anisotropy but through the flux closure via the formation of domains.

Finally, it is also important to know what is the amplitude of the magnetic field above the
texture. Co (or Fe) are materials with strong magnetization, and are good candidates
to obtain a large amplitude of magnetic field. Thin Co layers can have their magnetic
moment enhanced by the interaction with the Pt layer [217], as shown in figure 3.10 (b).

It was first decided to fabricate a

Ta(40 Å)/Pt(48 Å)/[Co(15 Å)/Pt(10 Å)]×10/Pt(38 Å)/Alox

multilayered structure in the Laboratoire de Physique des Solides (Orsay). In future
samples, we could fabricate multilayered structures with three metals, such as Pt/Co/Au,
and rely on DMI interaction to reduce the domain wall cost [226–228] (thus increasing
the saturation field), to optimize these parameters.

3.3.3 Characterization of the magnetic texture

We have characterized this magnetic structure, and notably the important parameters
listed above: the size of the magnetic domains, the amplitude of the field oscillations,
the in-plane saturation field. We have also tried to understand how the magnetic texture
evolves with an external magnetic field, to evaluate which control we can have over the
strength of the synthetic spin-orbit interaction.

Unfortunately, these informations are not necessarily easy to measure. We will present
here various characterization tools that we have used to try and estimate these parameters.

Magnetic force microscope (MFM) measurement

The principle of the MFM is the same as the atomic force microscope, except that the
tip is covered with a magnetic material. It will thus be sensitive to a magnetic field
~B. More precisely, the tip has a total magnetic moment ~M that is subject to a force
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Figure 3.11: MFM characterization of the magnetic texture: MFM
phase signal of three different samples, using tips with a high saturation
field and out-of-plane magnetization. Plain chip (a) and nano-structured
lines (b, c) of Co/Pt with the first deposition technique, corresponding to
Ta(40 Å)/Pt(48 Å)/[Co(15 Å)/Pt(10 Å)]×10/Pt(38 Å)/Alox. In image (c), we see the
tip degrading during the scan, greatly reducing the visibility of the domains. (d) Nano-
structured gates of Co/Pt with the same recipe, using a second deposition technique.

F = ~∇( ~M · ~B), in addition to the Van der Waals forces. The change in the MFM phase
signal δφ is related to the change in the force applied on the tip when it moves. In linear
oscillating mode, the tip oscillates in z, the out-of-plane axis, thus δφ ∝ ∂2Bi

∂z2 , where i
is the magnetization axis of the tip15.

As a consequence, the MFM does not give a measurement of the magnetic field. It can
only be used as a measurement of the dimension of the magnetic domains. Figure 3.11
displays several MFM images obtained for the chosen Co/Pt multilayered structure. For
these structures, two depositions techniques were used, corresponding to two different
e-beam evaporators. The first one contains two e-beam guns (when the second contains
only one), enabling a faster deposition of the layers. For both evaporators the deposition
pressure is around 1× 10−6 mbar. We can already observe that the quality of the image
depends greatly on the quality of the deposition and of the MFM tip. We measure
domains of typical width p = 100− 200 nm.

To study the persistence of the domains in an external magnetic field, it is possible
to do MFM measurements while applying a field. We did such measurements with
Karim Bouzehouane, at UMR CNRS-Thales, as shown in figure 3.12. The probe is
mostly sensitive to a dipolar signal that appears at 100 mT, coming from the tilting
of the domains’ magnetization with the external field (as we can see in the simulations
presented later on in figure 3.13; it is visible there as magnetic charges at the edges of
the structures, generating a magnetic field). Figure 3.12 (b) shows the raw MFM image
at 800 mT, dominated by the dipolar signal. We can subtract it to observe the signal
associated with the presence of domains, under an increasing magnetic field (c). We
see that the domains persist at least up to 800 mT, with a decreasing size. Taking cuts

15To avoid being sensitive to the sample topography, δφ is measured at a fixed elevation over the
surface, typically 20− 30 nm
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Figure 3.12: MFM characterization at several external magnetic fields: (a)
MFM and SEM image of the same region of sample MU9TRd, showing the location of
the CNT. (b,c) MFM measurement of the same region under a magnetic field, with a
field MFM. We do not have as good a resolution of the domains with the field MFM.
The tip is at about 20− 30 nm above the structure. (b) Raw MFM image at 800 mT.
The out-of-plane component of the dipolar signal dominates over the domain signal.
(c) MFM images where the dipolar contribution is removed (“flattened” images), at
increasing magnetic field. (d) Cuts of the MFM signal along the position of the CNT
as measured in the topographic images (the position of the cut is indicated on the above
images). The scale for the phase signal is 0.6◦ for the field 20, 100 and 200 mT, 0.3◦

for fields 500, 600 and 800 mT, and 3◦ for image (b).

along the approximate position of the CNT shows very slow variations of the oscillating
field with an applied external field (d). As said before, these MFM images cannot give
us any quantitative information about the oscillating stray field above the structure, but
is shows at least that the domains can persist up to high magnetic fields. It also seems
to indicate that the domain size tend to decrease until all the magnetization has been
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transferred to the in-plane direction.

We enhance here that the strong signal of the dipolar contribution does not necessarily
mean that the corresponding field is strong. Indeed, the MFM can artificially enhance a
feature compared to another [229]. To evidence this, we can consider a simple case
where the magnetic field above the texture is written Bz(x, z) = B0 sin(kx)e−kz +
B0 sin(k′x)e−k′z (the tip is oriented along z)16. Then the MFM is sensitive to

d2Bz
dz2 = B0k

2 sin(kx)e−kz +B0k
′2 sin

(
k′x
)
e−k

′z.

Depending on the elevation z at which the measurement is done and the values of k and
k′, both frequencies of the magnetic field will not give the same phase contrast in the
MFM signal17.

SQUID (superconducting quantum interference device) measurement and
magnetic simulations

To supplement our estimate of the saturation field of the structure, we performed SQUID
measurements for both a plain chip of Co/Pt multilayers and a nano-structured chip: see
figure 3.13. SQUID measurements enable the study of the evolution of the magnetization
when an external magnetic field is applied. From these measurements we can extract
both the saturation field and the magnetization at saturation, which in turn can be
used to simulate numerically the magnetic texture. A drawback of this measurement
technique is that the measured sample needs to have a sufficiently large magnetization:
we can only measure plain Co/Pt multilayers, or chips full of nanostructured Co/Pt gates
(similar to the ones of the real mesoscopic circuit) which may behave slightly differently
than a given transport device of interest. Indeed, differences in the fabrication process
will lead to differences in the disorder, which greatly affect the saturation field as will
be shown by the numerical simulations.

Whatever the orientation of the applied magnetic field or the magnetic history, no
remanence is found. It indicates that the sample spontaneously demagnetizes, as expected
for a material with domains. When applying a magnetic field, the magnetization first
increases sharply before slowly saturating. The saturation field seems to be slightly
larger for the nano-structured chip, although the measurement of this value is not very
precise; we estimate it between 1.5 T and 2 T.

16For a simple mode where the field only depends on x and z with an oscillatory behavior in x, Maxwell
equations yield a decay length in z equal to the oscillation period in x

17Note that depending on the tip size and measurement elevation, the signal can also be sensitive to
the first derivative dBz

dz
, which does not impact the argument.
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Figure 3.13: Characterization of the magnetic texture using SQUID measu-
rements and magnetic simulations: (a) SQUID measurement at 4K of a 5mm
x 5mm chip covered with the CoPt multilayer (as sketched above). The magneti-
zation saturates at about 1.5T. Inset: Zoom on the SQUID measurement showing the
opening of a hysteresis at about +/-50mT, of width 20 mT. (b) Same measurement,
for a chip covered with an array of the nanoscale Co/Pt stripes (such as the ones used
in the transport experiment, see the layout above). The magnetization saturates at
higher magnetic field. Inset: Zoom on the SQUID measurement showing the opening
of a hysteresis at about ±100 mT, of width 20 mT. (c) Magnetization texture for
zero effective anisotropy and 15% roughness. The white and black pixels correspond
respectively to up and down magnetization, the colored pixels represent the in-plane
magnetization, colored according to a color wheel to represent their different orientation
(red correspond to the applied field direction, see the arrow). The bottom image,
numbered 1, corresponds to a virgin demagnetized state; the following are successive
images from 0.25 T to 1 T (numbered 2 to 4). Images are 768 nm x 2304 nm, similar to
the experimental Co/Pt gate dimensions. (d) Calculated hysteresis loops for in-plane
magnetic field, for two anisotropy hypotheses and two magnitude of roughness. (e)
Cuts of the magnetic field along the dashed line in c, obtained from the same magnetic
simulation. The Bx (resp. Bz) field is represented in blue (resp. red), at a height

x = 10 nm.

To further understand the magnetization processes in the sample, our collaborator
Stanislas Rohart performed micro-magnetic simulations, using the MuMax3 code [230].
As the magnetic parameters are not exactly known, the purpose was not to reproduce
exactly the sample under study, but to understand qualitatively the processes, and in
particular explain the field strength needed to saturate magnetization as observed in the
SQUID measurement. The saturation magnetization used (Ms = 1.2× 106 A/m) has
been extracted from the SQUID measurements and the exchange (Ks = 10 pJ/m2) is the
one of bulk cobalt. As the magnetic anisotropy could not be measured, he explored two
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hypotheses: zero effective magnetic anisotropy, meaning an exact compensation between
shape and interface induced anisotropies, and a small negative effective anisotropy
favoring in-plane magnetization orientation for homogeneous magnetized states, with an
effective anisotropyKeff = Ks

t −
1
2µ0M

2
s = −250× 106 J/m3, where t is the Co thickness.

These hypotheses are in agreement with literature for the interface anisotropy at the
Co/Pt interface [231]. For both cases, whatever the magnetic history is, the ground state
corresponds to a demagnetized state with periodic stripes [232] (with a period of about
100 nm). Upon applying a magnetic field, the stripes first reorient progressively with a
propagation vector orthogonal to the magnetic field to minimize the Zeeman energy in
the domain walls (the domain walls being Bloch-type, their magnetization lies in the wall
plane). For larger fields, the magnetization in the domains progressively rotates toward
the applied magnetic field direction and saturates at about 1 T. Note that textures are
still observed up to the saturation. The saturation field value is to be compared to the
anisotropy field µ0HK = 2Keff/Ms, which is close to zero. In usual magnetic system
with a low demagnetizing strength (low magnetization systems or low thickness), this
would cause a saturation at field values close to HK . Here, the large magnetization and
the ten repetitions, both favoring stripe phases, make the saturation much more difficult
and therefore result in a saturation field which scales with the magnetization value. The
simulation closest to the experimental results is the one with zero effective anisotropy.

Comparing the calculated and the experimental loops we note that the saturation is
slower in the sample than in the calculation for a disorder of 5%. Indeed, due to the
fabrication process the quality of the substrate could not be optimized, which results in
a significant roughness before the deposition. While typical roughness in good magnetic
samples is about 2-5%, here larger values could be expected. He also calculated the
magnetic loop with increasing roughness up to 15% thickness variation. While the loops
are not much changed at small field, we note that due to the disorder, saturation occurs
at much larger magnetic fields and the images show that magnetic textures may survive
up to 2 T. Since the disorder plays such an important role in the saturation field, one
should be careful when comparing measurements done on a test sample designed for the
SQUID and the mesoscopic circuit sample.

The MFM measurements and the micromagnetic simulations seem to agree on the
evolution of the magnetic domains with an external magnetic field, although the domains
are smaller in the simulations than in the MFM images. The tilting of the domains’
magnetization along the external field, starting at about 100 mT is seen in the MFM
by the apparition of the dipolar signal (see figure 3.12), as well as in the simulations
(presence of magnetic charges at the edges of the domains). The domains size then
seems to slightly shrink in the MFM images, with a change in the MFM signal coherent
with the reduction of the stray field observed in the simulations. These measurements
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were used to support a simple modeling of the evolution of the spin-orbit interaction
with an external magnetic field.

Hall bar measurement

Figure 3.14: Hall bar characterization of the magnetic texture: Hall bar
measurements of the Co/Pt multilayers, with a bar of dimensions 10 µm× 40 µm. (a)
Image of the Hall bar with the measurement setup, and orientation of the magnetic
fields. (b,c) Evolution of the Hall resistance and longitudinal resistance as a function of
an external magnetic field applied in-plane (perpendicular to the current) and out-of-
plane. A comparison between SQUID measurements (of a full plate of Co/Pt multilayer)

and longitudinal resistance is shown.

We finally performed Hall bar measurements with the Co/Pt magnetic textures, with
a sample visible in figure 3.14 (a). The magnetic field orientation is measured with
a Hall probe attached to the sample holder. The longitudinal and Hall resistance are
represented as a function of an applied external magnetic field along two different field
directions. The Hall bar measurements are compared to SQUID measurements of a plain
Co/Pt chip to show the good agreement between both methods. The fabrication and
measurement details can be found in Appendix C. In both these samples, the quantitative
behavior of the magnetic texture is measured to be different than for the transport device
of chapter 4. For example, the in-plane saturation field visible in figure 3.14 is lower
than in measurements presented in figure 3.13, which is supported by the MFM measu-
rements of figure 3.12 (it is also lower than the out-of-plane saturation field). This seems
to indicate that in this sample, the magnetization axis for the domains was close to the
horizontal axis (similarly to weak stripes in Ni). We understand these differences as
a consequence of differences in the fabrication process: in the transport device, the
Co/Pt multilayer is fabricated over a very rough substrate (due to the presence of
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trenches). There could also be variations in the deposition process, or in the trilayer
resist development.

In figure 3.14 (b) we show the Hall and longitudinal resistances as a function of an out-
of-plane magnetic field B1. The Hall resistance signal is typical of anomalous Hall effect
(AHE). AHE occurs in magnetic materials with spin-orbit interaction, and translates
as RHall ∝ M where M is the out-of-plane magnetization. This measurement can thus
inform us on the out-of-plane saturation field of the structure, of about 1 T in this
sample. The longitudinal resistance as a function of B1 displays a strong, hysteretic
modulation (of about 30% of the total Hall resistance). This effect is linked to the
presence of domains: if the two longitudinal probes are positioned over domains of
opposite magnetization, the voltage drop will contain the Hall signal (this effect is
described in more details in Appendix C)18. The disappearance of this signal coincides
with the closing of the hysteresis loop in the SQUID measurement. Both measurements
thus give a value for the disappearance of the domains under an out-of-plane field. Panel
(c) gives us information about the in-plane saturation, with a magnetic field perpendi-
cular to the structure. The longitudinal resistance contains a term Rlong ∝ −M2 where
M is again the out-of-plane magnetization. This term corresponds to an anisotropic
magnetoresistance (AMR); the resistance is reduced when the magnetization is perpen-
dicular to the current flow. In a similar fashion, the longitudinal resistance as a function
of a magnetic field applied parallel to the current displays an increase of the a resistance
of 100 mΩ over the same magnetic field range (not shown). The Hall resistance is more
complicated to interpret. The Hall resistance probably contains a small replica of the
out-of-plane signal (corresponding to an angle of α ∼ 1◦), and possibly a replica of
the longitudinal resistance although this would correspond to a misalignment in the
contacts of 4 µm (which does not appear to be the case). In this measurement again,
the longitudinal resistance and the SQUID measurements are in agreement, and enables
us to measure the in-plane saturation field.

We have thus shown that Hall bar measurements can also indirectly give us information
on the saturation of the magnetic domains. The interest of this measurement is that it
can be done with the same setup as the one used to measure the mesoscopic circuit, and
does not necessitate additional equipment such as a SQUID or a field MFM.

Summary of the magnetic characterization

The combination of these magnetic measurements enabled us to better understand our
Co/Pt multilayered structure. We can summarize its main characteristics:

18This signal could alternatively be linked to the domain wall magnetoresistance [233], which also
depends on the presence of domains.
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• The domain formation and axis is strongly dependent on substrate roughness
and/or fabrication cleanliness

• At Bext = 0, the texture present domains of typical size of 100− 150 nm,

• The domain magnetization is out-of-plane, and results in a stray field of about
400 mT above the structure,

• The in-plane saturation field depends greatly on disorder, but is about Bsat =
1− 2 T (and Bsat > 800 mT according to MFM measurements on the transport
device of chapter 4),

• Under an external magnetic field, a dipolar field appears at around 100 mT due
to the alignment of the domains with the field. The domain size tends to reduce
until complete saturation.

In the end, all these measurements gave us access to complementary information, and
enabled us to gain some understanding on the formation of domains in our structure as
well as their evolution in an external magnetic field. As a consequence, we were able to
propose a simple model for the evolution of the spin-orbit coupling strength with the
magnetic field in chapter 4, to take it into account in the interpretation of our transport
measurements.

3.4 Superconducting contacts

In experiments exploring the physics of Majorana quasiparticles, one needs to be able
to form a good contact between a CNT and a superconductor: a large tunnel rate
is necessary to allow for second order processes in the tunneling, such as Andreev
reflections. Another way to formulate this need is to say that the induced gap in a
proximized nano-conductor is proportional to the coupling rate [234] (at Γ� ∆).

With the stamping technique, it was possible to obtain good contacts with aluminum
(Al(100 nm)/Pd(4 nm)). This is shown for example in ref [235], where an induced super-
conducting gap of the order of the one of bulk aluminum is measured (∆ind = 150 µV vs
typically ∆bulk = 340 µV19), indicating a large tunnel rate between the superconducting
electrode and the CNT. During this thesis, we were also able to obtained Nb supercon-
ducting contacts (made out of Nb(40 nm)/Pd(4 nm)), as will be shown in chapter 4, in
a Fabry-Pérot regime (corresponding to tunnel rates of the order of the level spacing δE
of the confined CNT, Γs ∼ δE ∼ 1 meV).

19For thin films of Al this value is reduced
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Figure 3.15: Measurement of a circuit with superconducting contacts: (a)
SEM image of the CNT chosen for stapling when observing the comb. (b) False-colors
SEM image of the electrical circuit after stapling. Two active regions (labeled circuit 1
and 2) can form a single quantum dot circuit, with contacts of width 190 nm and 440
nm. Additional electrodes (red) are used to cut the outer CNT segment, improving
the CNT-electrode interface. An Al/Alox gate (light brown) can tune the chemical
potential in the QD. (c) Differential conductance Gdiff as a function of gate voltage
Vg at finite biais voltage Vsd = 240 µV, showing 4-fold periodicity. (d, e) Vg − Vsd
map of the differential conductance Gdiff , at B = 0 T (d) and B = 0.88 T (e). The
pattern is slightly changed due to charge noise, but similar diamonds are identified by
the markers �, H, F and �. The measurement of ∆(B) on the Coulomb diamond
labeled H is shown, the horizontal black line indicating zero-bias. The dashed line in

(e) indicates the peak on which the tunnel coupling Γ1 and Γ2 are estimated.

An open question was whether the stapling technique allowed for good superconducting
contacts as well. We designed simple test circuits to investigate this possibility, and
the possible influence of the contact width. During these tests, we have stapled a CNT
over the electric circuit shown in figure 3.15 (a); we cut both exterior segments of the
transferred CNT with the electrodes labeled cut, as described in section 3.2.1, without
any additional annealing process. At room temperature, we did not observe any trend
in the contact resistance value as a function of the electrode width (four width were
tested: 190, 300, 440, 520 nm). We obtained room-temperature resistances of the order
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of 250 kΩ−1 MΩ (measured at low bias voltage, Vbias ∼ 10mV which will be the relevant
energy scale for low-temperature measurement). However, for too small contacts, flowing
a current through the CNT can be more difficult, and can prevent us from cutting the
exterior CNT segment. This was observed in another sample as the one presented here,
with contact width of about 200 nm.

At low temperature, we managed to obtain a good superconducting contact for the
circuit 2 of figure 3.15 with electrodes of width 190 nm, made out of Ti(15 nm)/Nb(45
nm)/Pd(10 nm). Post-measurement AFM and Raman characterization are indicative
of a metallic 1.1 nm SWNT. The transport characteristics of this circuit are shown in
figure 3.15, and was obtained with the typical DC transport measurement techniques
described in 3.6.2, with Vac = 50 µV (after the voltage divider) and fac = 77.77 Hz. A
magnetic field can be applied in the sample plane.

The transport measurement is characteristic of a S-dot-N device (see Appendix A), for
example in the Coulomb diamond labeled H of figure 3.15 (d) and (e). We can note
that for the diamond labeled �, we measure not only the conductance peaks expected
for a S-QD-N device but also those of a S-QD-S devices (blue dashed line in (d)); this is
illustrative of a superconducting contacts with a residual density of states at the Fermi
energy. Indeed, if this residual density of states is too high in one contact, the Vg − Vsd
map will resemble one of a S-QD-N system. During this thesis, we have observed a
varying quality for our superconducting contacts over several devices. The contacts
often present a residual density of states at the Fermi level. This is the case for the
samples presented in chapter 4. In the most extreme case, the two superconducting
contacts effectively behave as normal contacts, as was seen in Ref [198], as well as in
other platforms [? ].

From the stability diagrams of figure 3.15 (d) and (e), we can extract the superconducting
gap at two values of magnetic field: ∆(B = 0) and ∆(B = 0.88 T), corresponding to a
critical field of

Bc = B
1√

1− (∆(B)/∆(0))2 ∼ 1.2 T. (3.2)

We extract the gap values and Bc for two different diamonds:

Coulomb diamond ∆(0) in meV ∆(0.88 T) in meV Bc

H 0.8±0.1 0.55 ±0.1 1.2
� 0.7±0.1 0.5±0.1 1.3
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We can also estimate the tunnel rates to the two electrodes using the simple sequential
transport picture, yielding Γ1/2π = 7 GHz and Γ2/2π = 80 GHz20.

Another metallic thin film, Ti/Nb/Al/Au, was tested with no good contact at low
temperature. This was possibly due to resist residues after the trench etching process,
or to a bad interface between the metallic layers.

As a conclusion, this test shows that it is possible to obtain good superconducting
contacts with the stapling technique, with high superconducting gap and large coupling
rates, even though the quality of the superconducting contact (and notably its residual
density of state at the Fermi energy) can depend on the fabrication process. We can now
envision more complicated devices, to study superconductivity in mesoscopic physics and
its interplay with, for example, a magnetic texture.

3.5 Device nanofabrication

We now present the specific steps for the nano-fabrication of the circuits presented in
this thesis. We will first introduce some generic concepts and recipes, before describing
the fabrication steps for both the stamping and the stapling techniques, putting the
emphasis on the transfer of the CNT in the new stapling process.

3.5.1 Generic processes

A few generic processes are used several times during the nano-fabrication. They are
summarized once and for all here.

Lithography process The principle of a lithography is represented in figure 3.16: it
enables the fabrication of an electrical circuit according to a specific drawing. In very
general terms, a resist is first deposited on a chip, and spread using a spin-coater down
to a uniform thickness of typically less than 1 µm (depending on the resist). The resist
can be degraded at specific locations, as given by the circuit drawing using an electron
beam, a laser beam or a uniform light source combined with an opaque mask21. The
degraded resist is soluble (and thus can be removed) in an appropriate solution called
the developer. Metal can then be evaporated over the chip, before the remaining resist is

20The gate lever arm is 0.014 V/meV. Since there is a superconducting gap, we cannot take the
conductance at zero bias. We still use the formula for the resonant tunnelling regime (Γ > kBT ),
G = e2

h
Γ1Γ2

( Γ1+Γ2
2 )2

at finite bias, along the dashed line in figure 3.15 (e) to get an order of magnitude of
the tunnel coupling rates.

21The resist consist in long polymer chains that break down under these beams
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Figure 3.16: Lithography process

removed using an adequate solution. Instead of depositing metal, one can alternatively
do an etching process (for example a reactive ion etching, RIE), thus obtaining trenches
or removing metal at desired positions on the chip.

RIE processes Several reactive ion etching (RIE) processes are used during fabrication.
The specific parameters are described below: the gas flow d, the working pressure P , the
RF excitation power PRF. For all the process, the reproducibility in the etching rates is
improved if the gas lines are purged before the process, and the chamber is flushed with
the process gas for 2 minutes before turning on the RF excitation.

• Stripping recipe: d = 100 sccm of O2, P = 100mTorr, PRF = 30 W,

• Nb etching recipe: d = 25 sccm of SF6, P = 7mTorr, PRF = 70 W,

• SiO2 etching recipe: d = 50 sccm of CHF3, P = 20mTorr, PRF = 70 W,

• Si etching recipe: d = 25 sccm of SF6 and 4 sccm of O2, P = 80mTorr, PRF =
100 W.

CNT growth As stated before, the CNTs are grown using CVD in a home made
furnace.

As a catalyst, we use the following solution: 39 mg of Fe(NO3)3−9H2O, 7.9 mg of MoO2

and 39 mg of Al2O3 nanoparticles, diluted in 20 mL of isopropyl alcohol (IPA).

Before using the catalyst, we sonicate it for one hour to break down potential particles
cluster and we let it rest for 45 minutes. The top of the solution is then taken off using
a pipette. One or two drops are deposited on the chip, which can be rinsed in IPA to
make the deposition more homogeneous. The IPA is dried-off using nitrogen.
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Once the catalyst is deposited onto the growth chip, they are positioned in the center of
the furnace. The specific CNT growth recipe can be found in J.J. Viennot PhD thesis
[236].

3.5.2 Specific fabrication steps

Both fabrication techniques start with a 10 mm x 10 mm chip of undoped, high resistivity
(10 kΩcm), Si(500 µm)/SiO2(500 nm).

Nano-fabrication ensues, to obtain the desired mesoscopic circuit in a microwave cavity,
with either the stamping process of the stapling process.

At the end of the process, the chip is cut in two halves to fit in the sample holder shown
in figure 3.8 and 3.1. It is glued using PMMA (dried for 1h), and wire bonded so that
it can be connected onto the cryostat. At the beginning of this thesis, the cryostat were
wired using sheathed electric cable of diameter 0.4 mm. We are now in the process of
switching to nano-D connectors, which are more rigid thus less prone to triboelectric
effects.

Below, we summarize all the fabrication steps for both transfer techniques used during
this thesis.

3.5.2.1 Device made with the stamping technique

The final device that one gets when using the stamping is represented in figure 3.17.

Cavity preparation Prepare the microwave cavity, with a ground plane opening to
position a mesoscopic circuit:

• Clean the Si chip with acetone (rinsed with IPA)

• Prepare Ti/Au alignment crosses by e-beam lithography

• Evaporate 150 nm of Nb

• Do the cavity lithography, using e-beam lithography

• Etch away the Nb to define the cavity, and clean the chip with acetone

• Do any pre-stamping lithographies and metal depositions of the mesoscopic circuit
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Figure 3.17: Example of a device made with the stamping technique: (a)
Device picture where the CPW is visible. (b) Zoom-in on the ground plane opening,
where the stamp marks are visible. (c, d) False-colored SEM image, zooming-in on the
mesoscopic circuit. An array of magnetic bottom gates (blue) is fabricated before CNT
stamping. After stamping, superconducting contacts (green), as well as DC (purple)
and AC (orange) gates are fabricated around the selected CNT, visible in (d). The AC
and DC line are capacitively coupled to a floating magnetic gate (blue). The AC gate

is connected onto the central conductor of the cavity, as visible in (b).

The gold crosses are made with e-beam lithography, and allow for coarse and fine
re-alignement on the chip, which is necessary for the fabrication of the mesoscopic
circuit. The Nb deposition is done in a Plassys electron-beam evaporator, equipped
with a cryogenic pump. During deposition the evaporator walls are cooled-down with
liquid nitrogen, which enables us to deposit Nb at a rate of 10 Å/s at a pressure below
5× 10−10 mbar. The cavity is defined using e-beam lithography, followed by the dry
etching process described in 3.5.1. The resist residues are cleaned using acetone, rinsed
with IPA. For the sample MU9TRd described in chapter 4, buried magnetic gates
were fabricated before stamping, in a two step process (fabricating trenches by e-beam
lithography and RIE etching, and fabricating a thinner Co/Pt multilayer gates by e-
beam lithography using a tri-layered resist stack and metal evaporation at LPS Orsay),
as described in the PhD thesis of M.M. Desjardins [206].

Quartz pillars To prepare the quartz pillars :
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• Fabricate several quartz pillars (typically 4 per ground plane opening of the cavity),
of about 4 µm high and 10 µm× 5 µm of surface starting from a 10 mm x 10 mm
quartz chips. This pillars are formed using a dry etching process with a Ni mask.

• Grow CNTs over these pillars as described in section 3.5.1.

• Stamp the pillars over the ground plane opening of the cavity chip.

This process is described in more details in the PhD thesis of J.J. Viennot [236], and
L.E. Bruhat for the quartz process using Ni [237].

Finishing the CNT circuit around one stamped CNT

• Localize the transferred CNTs with an SEM (at low acceleration voltage to protect
the CNT) and choose one,

• Draw the schematics of the needed electrodes,

• For each metal, do a lithography followed by a metal deposition and a lift-off, with
the fine lithography parameters below.

Fine lithography parameters: The resist used is PMMA A6, with a thickness of
about 500 nm. It is spin-coated during 30 s at 4000 rpm, and baked during 15 min at
165◦C. It is exposed with e-beam lithography at 20 kV at a current of about 30 pA and
a typical dose of 450 µC/cm2. The development is made using a solution of MIBK/IPA
(3/1) during 2 minutes, rinsing in IPA. The metal is deposited in our Plassys e-beam
evaporator with typical pressures of the order of 1× 10−9 mbar. The lift is done using
acetone, rinsed with IPA. When no CNT is present, the chip can be cleaned in an oxygen
plasma for 1 minute with the stripping RIE recipe.

During this thesis, we started using Nb superconducting contacts. Since this is a very
refractive metal, the resist heats up a lot during the deposition. To prevent that, the
evaporator sample holder is cooled down to 0◦C, using liquid nitrogen. The lift is done
in acetone heated up to 50◦C. The Nb layer is covered by a Pd buffer, to prevent
oxidation and to ensure a good contact with the CNT. It is best to wait 30 minutes in
the evaporator chamber between the two metal deposition. In one occurrence where this
was not done, we observed a peeling of the Pd top layer.
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Figure 3.18: Example of a device made with the stapling technique: (a)
Picture of the CPW cavity. The trenches needed for stapling are highlighted in blue.
(b) False-colored SEM image zooming-in on the trenches surrounding the mesoscopic
circuit. The central conductor of the cavity is visible on the left, as well as the DC lines
leading to the bonding pads on the right. (c) Zoom-in on a circuit where a CNT was
transferred. The circuit consists in two metallic electrodes (external lines) and an array
of Al/Alox gates in the center. One of the gate is connected to the central conductor of
the cavity to capacitively couple the circuit to cavity photons. Here the cut electrodes

are not shown. Source: [2].

3.5.2.2 Devices made with the stapling technique

General remarks on the stapling devices geometry A typical device made with
the stapling technique is shown in figure 3.18. Due to the finite precision in positioning
the comb over the cavity chip, the mesoscopic circuit need to be at least 20 µm long,
and for safety can be made even longer. Another new fabrication constraint is that
the electrodes surface now need to be very flat. For the Nb deposition, we started
using a MMA(110nm)/PMMA(300nm) bilayer to avoid resist remains at the edge of the
electrodes.

During the stapling, the presence of a CNT is monitored using the electrical circuit
shown in figure 3.19 (d). In this circuit, we see that in addition to the QD circuit,
there are two external electrodes. These electrodes are necessary to cut the CNT outer
sections by flowing a large current (typically > 10 µA) between the cut electrode and
the circuit electrode on each side of the QD circuit. During this process, the contact
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between the circuit electrode and the CNT is improved, without having to flow a current
in the central region of the CNT22.

It is possible to obtain a suspended CNT with the stapling technique, provided that the
height of the metallic electrodes is sufficient. We observed that the CNT tends to be
suspended when the distance between two electrodes is no more than ten times bigger
than the electrode height. However for the experiment presented in the next chapters,
we want the CNT to be as close as possible to the bottom gate made out of the Co/Pt
texture, thus we do not fabricate thick electrodes.

Comb preparation The combs used are commercial cantilevers bought at Micromotive
Mikrotechnik (see figure 3.19 (a)). They are 3 mm × 4 mm Si/SiO2/Si chips on which
5 µm thick cantilevers are etched over a length of 500 µm.

CNTs are grown on it as described in section 3.5.1, with the comb arms oriented perpen-
dicular to the gas flow. After growth, some CNTs are suspended between two successive
cantilevers of the comb, as visible in 3.19 (c).

Circuit and cavity fabrication

• Prepare the alignment crosses and the cavity as for the stamping technique,

• Finish the mesoscopic circuit by e-beam lithography with one lithography step per
desired metal,

• Fabricate trenches for the stapling.

During this thesis, we started using laser lithography for the cavity lithography. This
process is much faster than the e-beam lithography, and its lower resolution (about
1 µm) is still sufficient for the CPW, with dimensions no smaller than 2 µm. Compared
to a mask aligner (that has the same resolution), it is more flexible since the design can
be changed without having to fabricate a new mask. The resist used is Microposit S1805,
spin coated straight out of the fridge with the same process as PMMA, and baked for
1 minute at 115◦C. The dose used is typically 170 mJ/cm2. It is developed in a Merck
MIF 760 solution for 40 seconds, and rinsed with distilled water.

Compared to the stamping technique, all of the mesoscopic circuit electrodes as well as
the transfer trenches can be fabricated before transferring the CNT. The parameters
used are the same as for the stamping, except that the PMMA baking was done at

22Flowing a large current can degrade the CNT, notably by heating up and facilitating chemical
reactions
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175◦C for 5 min, and developed during 1 minute in MIBK/IPA (rinsed with IPA,
followed by 10 s of stripping). The lithography for the Nb contact was done using
a MAA(110 nm)/PMMA(300 nm) resist bilayer to ensure a smooth electrode surface,
developed during 30 s only.

The trenches are fabricated with laser lithography with a 1 µm thick resist (AZ) followed
by a dry etching, in two steps: about 30 minutes of the SiO2 process (the etching can be
followed by laser interferometry), and between 5 and 10 minutes of Si etching, to obtain
at least 10 µm deep trenches. Too long a Si process risks etching through all the resist,
and degrading the chip. The chip has to be carefully cleaned after such a long etching,
in a bath of hot acetone with ultrasounds, rinsed in IPA, and cleaned using an oxygen
plasma for 5 minutes (with the RIE stripping process).

Stapling Before stapling, both the circuit and CNT chips must be positioned in the
stapler. The comb is glued onto the attocube micromanipulator using PMMA. The
cavity chip is similarly glued onto the vacuum-compatible sample holder and wire-
bonded. It it connected to the chamber electrical rack. The holder cover is held in
the moving arm.

The chamber is pumped with a turbo pump below P = 1× 10−6 mbar.

The circuit electrodes are cleaned using Ar ion milling, during 30 seconds, at a voltage
Vacc = 5 kV. Then, the comb is positioned above the cavity chip using micrometric
and nanometric manipulators. The presence of an electrical contact between the circuit
electrodes (when a CNT is present) is monitored using the circuit shown in figure 3.19
(d).

The comb is lowered first using the attocube continuous displacement mode, and at the
end of the approach using the step displacement mode with parameters f = 30 Hz and
Vstep = 30 V. As soon as an electrical contact is detected, typically with a resistance of
1 GΩ (ranging from 50 MΩ to 50 GΩ), we stop lowering the comb and we cut the outer
segments of the CNT using the circuit shown in figure 3.19 (e). This process improves
the resistance contact of the CNT to the central electrodes. We can then measure the
room temperature resistance (typically of the order of 200 kΩ, up to tens of MΩ at
Vapp = 10 mV) and the gate dependence of the central region. If the obtained resistance
seems too high for the desired application, one can try and flow a relatively high current
in the central region of the CNT. However, this can also irremediably degrade the CNT.
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In this case, one can definitely remove the CNT using the ion miller (retracting the comb
to protect it) and repeat the stapling process23.

Figure 3.19: Details on the stapling technique: (a) Picture of the comb used to
grow suspended CNTs. On the left, a schematic side view of the Si/SiO2/Si structure
shows the relevant comb dimensions. (b,c) Zoom in on a cantilever after growth, with
different contrast so that either the nanotubes on the cantilever are visible (b) or the
CNT suspended between the cantilever (c). (d) Electrical setup used during the lowering
of the comb, to detect the presence of a CNT. We typically apply a voltage Vapp = 0.5 V.
(e) Electrical setup used to cut the outer CNT segments. We increase Vapp by steps of

2 mV, measuring the increase in Vmeas until the CNT breaks and it falls to zero.

3.6 Low temperature measurements

Most of the measurements presented in this thesis were obtained in a dry dilution
refrigerator with a base temperature of 20 mK. Some of the test measurements were
done in a 3He cryostat with a base temperature of 250 mK. These temperatures are
necessary to observe coherent effect in the mesoscopic circuit, and to avoid thermal
occupation of the microwave cavity.

23Note that the ion milling does not remove the CNT per se: with SEM imaging they are still present
at the same position. It simply transform it into amorphous carbon, as one can see with Raman
spectroscopy.
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Figure 3.20: Schematics of the cryostat wiring. The HEMT amplifier provides
an amplification of 62 dB.

3.6.1 Fridge wiring

The fridge wiring is shown in figure 3.20. Details about the wiring and the calibration
of the line attenuation are given in the PhD thesis of L.E. Bruhat [237].

3.6.2 DC measurement techniques

The transport measurements presented in this thesis are either current or differential
conductance measurement. Differential conductance can directly reveals the hole and
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Figure 3.21: Schematics of the DC measurement setup-up

electron density of states of a quantum dot. In addition, the lock-in technique is very
efficient to filter out the noise in the measurement. However, for very low signals
(currents of the order of 10 pA), the signal cannot be measured with our lock-in anymore,
and the density of states can be inferred from the current measurement.

A typical setup for the DC (and lock-in) measurements presented in this thesis is shown
in figure 3.21. A DC and AC voltages (typical frequency of fac = 77.777 Hz) are
combined on a voltage divider (factor 1000) and applied to the CNT. The output current
is amplified using a home-made transimpedance amplifier. A multimeter measures the
current and the lock-in measures the output voltage V ac

out at fac which is related to Gdiff

through

Gdiff = dI

dV
= 10−7V ac

out

10−3Vac
= 10−4V

ac
out

Vac

The parameters fac and Vac are chosen so that the lock-in measurement does not affect
the current measurement (meaning high enough frequency24 and low enough voltage),
with still a strong enough signal (ie high enough voltage) and not too many capacitive
effects due to the low-pass RC filters (ie low enough frequency).

24Which is also favorable to reduce the 1/f noise.
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We have described in chapter 1 how Majorana Zero Modes (MZM) can emerge
in a one-dimensional condensed matter circuit that combines spin-orbit interaction and
induced superconductivity, subject to an external magnetic field. We then discussed in
chapter 2 how the effect of a magnetic field oscillating in space along a nanoconductor
is equivalent to both a synthetic spin-orbit interaction and a constant magnetic field for
the electron bands. In Chapter 3, we presented the magnetic characterization of a Co/Pt
multilayered structure that presents small domains of magnetization and generates an
oscillating stray field with a period of about 100 nm. We now describe more in details
a device integrating this magnetic structure to a CNT-based mesoscopic circuit, and
its transport study. Current is measured through one superconducting contact and one
tunnel probe, and is carried by ABS below the superconducting gap. We present the
evolutions of these ABS when an external magnetic field is applied, whose main effect
is to modify the structure of the magnetic domains. The first section briefly describes
the transport regimes in such a device, and reproduces experimental results presented
in Ref [179]. The second section presents additional details on the experiment.

4.1 Synthetic spin-orbit interaction

We start by describing the different transport signatures of ABS in CNT-based meso-
scopic circuits. We then propose a non-interacting picture to understand the impact
of a spatially varying magnetic field, that is of interest in the large tunnel coupling
limit, using the same tight-binding formalism as introduced in chapter 2. Finally, we
present transport measurement in a CNT-based device with superconducting contacts,
in proximity to a magnetic texture.

4.1.1 Transport regimes for QD with superconducting contacts

At the interface between a BCS superconductor and a normal metal, ordinary Andreev
reflections can occur where an incoming electron of momentum (spin) ~k, (s) is reflected
into a hole of momentum (spin) −~k, (−s). When two superconductors are separated by
a short ballistic conductor (L < ξ ≡ ~vF

∆ where vF is the fermi velocity of the conductor
and ∆ the superconductors’ gap), bound states can form thanks to Andreev reflections
occurring on each interface. They are called Andreev Bound States (ABS).

Several experiments have been conducted combining a quantum dot with one or two
superconducting contacts to study the emergence of superconducting correlations in an
ideal 1D system [238]. It has notably enabled a better understanding of the phenomenon
of Andreev reflections in a ballistic nanoconductor with few conduction channel. Carbon
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nanotubes are particularly well suited for such a study due to their well-understood band
structures and strong 1D confinement, yielding a conductor with effectively only four
conduction channels.

Figure 4.1: Overview of experimental studies of a quantum dot with super-
conducting contacts, for different couplings to the superconducting lead Γs
(a) Vg−Vsd conductance map for a S/QD/N device with weak Γs where no ABS are
formed. The Coulomb diamond is simply shifted (and its contrast modulated around the
BCS peak) due to the BCS-like density of states of the superconducting tunnel probe.
Parameters: Ec ∼ 1.8 meV,∆ = 0.17 meV (from measurements) and Γs = 0.003∆
(from simulations) Source: [197]. (b) Vg−Vsd conductance map for a S/QD/S device
with an intermediate coupling, Γs. A first superconducting contact is weakly
coupled and acts as a tunnel probe. The second one gives rise to ABS in the nanocon-
ductor, visible between eVsd = ∆ and 2∆. Parameters: ∆ ∼ 125 µeV,Γs ∼ 1 − 2∆.
Source: [98]. (c) Vg − Vsd conductance map for a S/QD/S device with one large
Γs. Replica of the transport at eVsd = 2∆ is visible at eVsd = ∆, characteristic
of a residual density of states in one of the superconducting contact. Parameters:
Γs1 = 0.2 meV,Γs2 = 4 µeV, ∆ = 135 µeV and Ec = 2− 5 meV. Source: [239]. (d)
Evolution of ABS around the degeneracy point for different values of the tunnel coupling
to the superconductor Γs in a N/QD/S device. At low Γs, the ground state changes
from a singlet |S〉 to a doublet |D〉 state. Left panel: Vg − Vsd conductance map for
various Γs. Center panel: NRG simulations of the DOS of the QD proximitized by its
superconducting contact. Right panel: extracted phase diagram for the singlet/doublet
ground state as a function of Γs and ε0, the detuning of the dot level. Source: [240].
(e) Effect of a magnetic field on ABS similar to the ones shown in (e), either in the
singlet or doublet ground state. The doublet state energy degenerescence is lifted
linearly. Source: [100]. (f) DOS of the proximitized QD (deconvoluted from the DOS
of the superconducting probe) for a large Γs. Source: [98]. (g) Vg − Vsd conductance
map of a S/QD/N device with large Γs. Parameters: Ec = 5 meV, Γs = 0.4Ec,

∆ = 0.5 meV. Source: [241].

When two superconducting contacts have a large tunnel coupling to a conductor (Γ ∼ ∆)
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with a low Coulomb repulsion (Ec < ∆), multiple Andreev reflections (MAR)1 can be
observed when applying a bias between the two superconductors: see for example ref
[242, 243], both with CNTs. A supercurrent can be measured across the device at
eVsd = 02 [244].

Alternatively, the nanoconductor can have a strong asymmetry in its tunnel couplings to
two superconductors. In this case, the contact to the “good” superconductor dresses the
bound states in the nanoconductor, whereas the weakly coupled contact only acts as a
tunnel probe with a semiconductor-like density of states [98, 245] as visible in figure 4.1
(b,c) (Andreev reflection processes at this interface can be neglected). The experimental
observations are similar to the ones of a S/QD/N system in terms of Andreev processes.
We will call a device in such a parameter regime a S/QD/S’ device.

In addition, several experiments have studied S/QD/N devices. In such devices, the
effect of the superconducting interface (of tunnel coupling rate Γs) can be again under-
stood as an induced proximity effect. Depending on the value of ∆ and Ec, various
effects compete with this proximity effect. When Coulomb interactions are strong, the
energetic cost of the formation of a pair of electrons (Ec at the degeneracy point) can be
larger than the cost of a doublet ground state (∆ind ∝ Γ being the cost of an unpaired
electron at the charge degeneracy point when Γ ≤ ∆), suppressing any proximity effect.
The transport signature is only affected by the semiconductor-like DOS of the super-
conducting probe : there is an additional ±∆/e bias gap in the conductance signal, and
negative differential conductance (NDC) as visible in figure 4.1 (a). On the opposite,
when Coulomb interactions are weak, the ground state can present superconducting
pairing (figure 4.1 (f) and (g)). In the intermediate regime, the evolution of the conduc-
tance peaks as a function of the nanoconductor chemical potential can be successfully
modeled by NRG calculations: see figure 4.1 (d), (e). They illustrate the competition
between Coulomb interactions and superconductivity in the CNT, favoring either a
doublet of a singlet ground state [100, 240].

We can summarize the different transport regimes as follows:

• Very strong Coulomb interactions, Γs � Ec: no effect of the superconducting
pairing (figure 4.1 (a)). Coulomb diamonds are observed, shifted by the BCS-
like DOS of the superconducting probe(s); transport can be described using the
semiconductor representation for the superconductor(s) [197],

• Strong Coulomb interactions Γs ∼ Ec: competition between superconductivity
and the Kondo effect (figure 4.1 (d) and (e)), the ground state is either doublet

1MAR give rise to conductance peaks at eVsd = 2∆
n
, corresponding to a n-th order tunneling terms

2A supercurrent can also be seen in intermediate regimes, see the review [238] for example.
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or singlet depending on the dot level. As a consequence, the conductance can
vary strongly around the charge degeneracy points as shown in figure 4.1 (d), for
various ratio of Γs/Ec, enabling the outline of the phase diagram [100, 240],

• Weak Coulomb interactions Γ > Ec: the ground state hosts superconducting
correlations (figure 4.1 (f)); several ABSs can be visible below the gap, while
above the gap the transport is typical of the Fabry-Pérot regime, as expected for
Γ > Ec [98]. Supercurrent can flow across the device with two superconducting
contacts if Γs1 + Γs2 > ∆3.

We can note that in the majority of experiments with superconducting contacts, a finite
conductance below the gap is measured, indicating a residual density of states in one or
both the superconducting contacts [103, 239, 246–249], as visible for example in figure
4.1 (c), where the peaks at eVsd = ±2∆ are replicated at eVsd = ±∆.

Few experimental results show the evolution of ABS with a magnetic field, notably
because aluminum contacts are often used, and they have a very low critical field (it
is of 10 mT for bulk Al, up to about B = 100 mT for thin films). When applying
a magnetic field, the energy levels of the nanoconductor become spin-split, modifying
the transport measurement. Ref [100, 248] show the evolution of the conductance as a
function of a magnetic field in the regime of competition between superconductivity and
Kondo effect, either with a singlet (right) or a doublet (left panel) ground state. Under
a magnetic field, the doublet state’s energy splits and linearly evolves with the magnetic
field while the singlet state energy stays constant, resulting in the transport maps of
figure 4.1 (e).

4.1.2 Theoretical descriptions

In most of the transport regimes described in the previous section, strong Coulomb
interactions are present. However taking them into account in a theoretical modeling
is challenging; one needs for example to resort to NRG calculations. Alternatively, it
was shown in several papers that a non-interacting QD picture (using Green functions’
formalism) can accurately describe many experimental observations [98, 197]. In the
first paper, a phenomenological energy difference between the two spin orientations was
added to the dot description. It mimics the effect of charging energy on the energy of the
singlet state. In the second one, Andreev reflections being negligible (due to the low Γs),
the two spin states are treated on an equal footing and the obtained results correspond
to a sequential tunneling transport. Another non-interacting formalism, useful to take
into account spatial variations of physical parameters is the scattering formalism.

3The Cooper pair coherence needs to last longer than the tunneling time.
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Side note on the Keldysh Green functions’ formalism, and the link between
the density of states and the conductance

When using a superconducting probe, the link between the density of states and the
differential conductance signal is not direct. In the strong Coulomb interactions regime,
transport does not involve the BCS condensate, and the transport signature can be
understood using a semiconductor representation for the S contact(s). However, when
Andreev reflections are allowed, the density of states of the quantum dot is modified by
this proximity effect. The bound states that form are addressed in transport by the BCS
condensate, yielding transport below the superconducting gap, while the transport above
the gap is also greatly modified. This is illustrated in figure 4.2, which represents the
DOS and conductance of a S/QD/N system as calculated using the Keldysh formalism
introduced in Ref [197]. The Keldysh formalism allows us to obtain non-equilibrium
quantities such as the conductance of a 0D non-interacting voltage-biased quantum
dot. Following Ref [98], we added to the orbital energy ε a phenomenological Zeeman
splitting εs=±1 = 1

2sBeff (where s is the spin index) to lift the degeneracy between both
spin orientations and mimic the charging energy.

We consider three parameters regime: on the one hand, panels (a,d) describe the very
strong Coulomb interactions regime (it corresponds to the parameters of [197]). We
recover a transport gap of eVsd = ±∆, and negative differential conductance along
the transport line associated with the S contact, as well as a replica of the transport
signatures below the gap due to a residual density of states at the Fermi energy in
the superconducting probe (introduced as a Dynes parameter in the superconducting
contact DOS, η = 0.15∆). On the other hand, panels (b,e) and (c,f) describe a regime
with a stronger tunnel coupling ΓS , for two values of the splitting Beff . The density
of states of the quantum dot is strongly modified by the superconducting contact :
a superconducting gap is visible, as well as subgap states made out of a mixture of
electrons and holes. The two values of Beff used in panels (b,e) (respectively (c,f))
effectively implement two ratio of ΓS/Ec, corresponding to the presence (respectively
absence) of a loop in the density of states. They yield similar results as the more rigorous
NRG calculations presented in figure 4.1 (d).

Adequacy of the scattering formalism

In this thesis we wanted to study the effect of a spatially varying field along the nano-
conductor, preventing us from using this 0D quantum dot picture. For simplicity, we
started by looking at the effect of the field with either a scattering or a tight-binding
formalism, neither of which takes into account Coulomb interactions. The finite-size
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Figure 4.2: Link between the density of states and the differential conduc-
tance for different parameters regime for a S/QD/N system. In the following
plots, we plot as the density of states (DOS) the sum of the density of states of
electrons and holes with both spin orientations. (a,d) DOS and conductance for
ΓS = 0.003∆, ΓN = 0.03∆, Beff = 2∆, η = 0.15∆, illustrating the regime of very
strong Coulomb interactions. Transport can be modeled using the semiconductor
representation for the S contact. A small conductance peak can be seen at the
position of the Coulomb diamond for a N/QD/N system due to the residual density
of states at the Fermi energy in the S contact. (b,c,e,f) DOS and conductance for
ΓS = 1.7∆, ΓN = 0.7∆, η = 0.1∆, and two values of Beff : Beff = 2.7∆ (b,e) and
Beff = 0∆ (c,f) corresponding to the two regimes of competition between Coulomb
interactions and superconductivity. The Γ parameters used in panels (b-f) correspond
to the experimental values of Ref [239] (although in this reference, the second contact
is also superconductor). The simulations are done with an electronic temperature of

T = 60 mK and a symmetric voltage drop along S/QD/N circuit.

effects will give rise to discrete orbitals, but they are spin-degenerate, thus there is no
competing effect to superconductivity. Still, this modeling should describe the transport
regime Γ > Ec. To get an intuitive picture of what happens when Ec increases, one could
compare the energy of the different states in the obtained spectrum by adding by hand
the charging energy, as was done in the study presented in figure 4.1 (b).

4.1.3 Non-interacting picture for proximity effect with a magnetic field

We now present the numerical study of the formation of ABS in the non-interacting limit,
using the tight binding formalism introduced in section 2.3.1. The goal of this study is
to help us understand how the presence of a cycloidal field will affect the spectrum of
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our nanoconductor, and how we can reveal this effect. In the experiments, several knobs
can affect the ABS: first, the chemical potential of the nanoconductor, as used in figure
4.1 (a-d,f,g). In the large coupling limit, Γs, the ABS are less sensitive to this parameter
(as visible in figure 4.2 (f)). Then, the phase difference between two superconducting
contacts also matters, and can be controlled in a SQUID geometry. Finally, an external
magnetic field also changes the ABS energy by Zeeman effect. The external magnetic
field can have an additional effect, which is to modify the domains of the magnetic
texture, as discussed in section 3.3.3.

In figure 4.3, we compare three different scenarii for the evolution of ABS in a uniform
external magnetic field Bext.

Figure 4.3: Oscillations of Andreev Bound States in various scenario The
colorscale map displays the density of states (DOS) of the first site as a function of the
energy eV/∆ in an N/S device. Panel (a) (resp. (b)) displays the evolution of Andreev
Bound states as a function of a homogeneous magnetic field Bext without (resp. with)
a spin-orbit interaction in the chain (scenario labeled a and b). Panel (c) displays the
evolution of ABS with respect to the number of oscillations of a cycloidal field in the
normal N part. The density of states in (c) shows non-crossing oscillations of the ABS
energy as a function of the number of oscillations of an oscillating field Bosc (scenario

c).

A nanoconductor subject to a rotating magnetic field, coupled to a superconductor is
described by the following discrete hamiltonian:

H =
∑

n∈[1,N1]
d̂†n (−µŝ0 +Bosc,z(n)ŝz +Bosc,x(n)ŝx +Bosc,y(n)ŝy) d̂n−

t(d̂†nd̂n+1 + d̂†nd̂n−1)ŝ0 +
∑

n∈[N2,Ntot|k
tknd̂

†
nĉkŝ0 + h.c.+Hs (4.1)

where d̂†n ≡
{
d̂†n↑, d̂

†
n↓

}
and d̂†ns is the creation operator of an electron with spin s at site

n, ĉ†k ≡
{
ĉ†k↑, ĉ

†
k↓

}
, with ĉ†ks the creation operator of an electron in the superconductor

with momentum k, spin s, and Hs the superconductor’s hamiltonian. The chain with
sites label by n is along the z-axis. A superconductor is coupled to the chain only
between sites N2 and Ntot. For the sake of simplicity, we take tkn = ts. A normal
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part between sites 1 and N1 is subject to a magnetic field B(osc,x,y,z)(n), as represented
schematically in figure 4.4. We then calculate the density of states (DOS) on each site.

Figure 4.4: Schematics of the chain ofN sites described using tight-binding formalism.
A superconductor (normal lead) is coupled to sites N2 to Ntot (N1). An oscillating field

spans sites 1 to N1.

figure 4.3 displays three different scenarii :

Scenario a The oscillating field is set to zero, Bosc(n) = 0 and we look at the evolution
of the density of states at the first site, as a function of a homogeneous field Bext applied
along the whole chain. In the short junction limit (level spacing δ larger than the
superconducting gap ∆), there is one ABS that is pinned at the superconducting gap at
B = 0. When varying the magnetic field, the Andreev bound states display crossings at
zero energy, with a period set by the energy level spacing δ. In figure 4.3 (a), we show
a simulation for

Ntot = 60, N1 = 30, N2 = 30, t = 100,∆ = 1, ts = 100,ΓN = 0, γn = 0.1, µ = 0

Scenario b We look at the evolution of the ABS with respect to an external magnetic
field but with a finite spin-orbit energy in the chain, modeled in the discrete Hamilto-
nian by an additional term :

∑
n∈[1,Ntot] Λd̂†nŝyd̂n+1 + h.c.. At Bext = 0, the ABS are

now separated from the superconducting gap. The ABS display anti-crossing at small
magnetic field on a period which is bigger than the energy level spacing δ. At large
magnetic field, the effect of the spin-orbit coupling becomes negligible and we recover
crossing oscillations. In figure 4.3 (b), we show a simulation for

Ntot = 60, N1 = 40, N2 = 20, t = 100,Λ = 20,∆ = 1, ts = 1,ΓN = 0,

γn = 0.1, µ = −0.99 ∗ 2t.

Scenario c We finally consider the scenario where the external magnetic field shifts the
number of oscillations of a cycloidal field in the normal part: Bosc,x(n) = Bosc cos(2πnα)
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and Bosc,z(n) = Bosc sin(2πnα). We take into account the stray field out of the magne-
tic texture by implementing a homogeneous field in the superconducting part with
amplitude 0.5 Bosc. The ABS show oscillations with a period defined by the change
in the number of field oscillations. In figure 4.3 (c), we show a simulation for

Ntot = 60, N1 = 40, N2 = 20, t = 100,∆ = 1, ts = 1,ΓN = 0, γn = 0.1, µ = −0.85 ∗ 2t,

Bosc = 1.

For these three cases, we see that depending on the effect of the external magnetic
fields, ABS oscillate with or without crossing but with very different periods, which
will enable us to discriminate between these possible effects. In the third scenario, the
number of oscillations is directly linked to the variation in the number of magnetic
domains, enabling us a measurement of the spin-orbit energy from equation (2.10). This
comparison will help us understand the experiment presented in the following section.

4.1.4 Synthetic spin-orbit interaction: S/QD/S’ device with a magne-
tic texture

We will now discuss one of the main experimental result obtained during this thesis.
This section is adapted from the article [179]. The labeling Subgap States (SGS) has
been replaced by Andreev Like States which we felt to be more specific. It presents
the experimental study of the combined effect of a spatially varying magnetic field and
superconductivity on a nanoconductor. Indeed, as discussed in chapter 1, the interplay
of superconductivity with a non-trivial spin texture holds promises for the engineering
of non-abelian Majorana quasi-particles. A wide class of systems expected to exhibit
exotic correlations are based on nanoscale conductors with strong spin-orbit interaction,
subject to a strong external magnetic field. The strength of the spin-orbit coupling
is a crucial parameter for the topological protection of Majorana modes as it forbids
other trivial excitations at low energy [11, 12]. The spin-orbit interaction is in principle
intrinsic to a material. As a consequence, experimental efforts have been recently focused
on semiconducting nano-conductors or spin-active atomic chains contacted to a super-
conductor [15, 49, 58, 250, 251]. Alternatively, we show how both a spin-orbit and a
Zeeman effect can be autonomously induced by using a magnetic texture coupled to any
low dimensional conductor, here a carbon nanotube. Transport spectroscopy through
superconducting contacts reveals oscillations of Andreev like states4 under a change of
the magnetic texture. These oscillations are well accounted for by a scattering theory

4We use the terminology Andreev like states to bring forward the fact that we deal with spinful
Andreev bound states
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Figure 4.5: Hybrid superconductor-nanotube-magnetic texture setup (a)
Schematic picture of the multilayer magnetic texture with up and down domains (white
and black arrows) inducing the rotating magnetic field in space (Bosc, red line) leading
to the synthetic spin-orbit interaction. (b) Zoom on the device showing the single wall
carbon nanotube (in red). The bottom gate is made from a multilayer of Co/Pt. The
source and drain superconducting electrodes are made out of Pd/Nb. (c) Conductance
of the device as a function of source-drain bias displaying a well-defined gap with two
symmetric ALSs at energy E, shown again in the inset. The “hardness” of the gap
is measured by the ratio of the conductance values marked by the star and the circle.
(d) Density of states of the probe contact and of the NT, with the Andreev-like states
arising from the coupling between the nanotube and the left superconductor, as fitted by
Usadel equations (see section 4.2.4.1). The right superconductor has a residual density
of states at zero bias allowing for a direct spectroscopy of the ALSs. (e) Magnetic
Force Microscope (MFM) micrograph of the device showing the magnetic texture of
the bottom gate. The cut of the magnetic signal indicating field modulations (yellow
and grey) along the nanotube on a scale of about 200 nm is shown at the bottom.

and are absent in a control device with no magnetic texture. A large synthetic spin-
orbit energy of about 1.1 meV, larger than the intrinsic spin orbit energy in many other
platforms, is directly derived from the number of oscillations. Furthermore, a robust
zero energy state, the hallmark of devices hosting localized Majorana modes, emerges
at zero magnetic field. Our findings synthetize all the features for the emergence of
Majorana modes at zero magnetic field in a controlled, local and autonomous fashion. It
could be used for advanced experiments, including microwave spectroscopy and braiding
operations, which are at the heart of new schemes of topological quantum computation.

Here, we present experimental results on a transport device composed of a single wall
carbon nanotube (our 1D conductor) connected to two superconducting electrodes and
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coupled to a proximal magnetically textured gate. Within the superconducting gap, we
observe Andreev-like States (ALSs) whose energy oscillates as a function of the external
magnetic field. This is direct evidence that we have induced a large synthetic spin
orbit interaction in the nanotube and observed its interplay with spinful Andreev bound
states. We finally observe a zero bias conductance peak stable in magnetic field, and
discuss its compatibility with the emergence of Majorana modes in our setup.

Our device is shown in figure 4.5 (b) and (e). A single wall nanotube is stamped onto
a magnetic Co/Pt bottom gate bottom gate which is capacitively coupled to two gate
electrodes, Gate 1 and Gate 2. The Co/Pt is expected to have a small pitch and an
out of plane anisotropy, giving rise to several domains over the length of the nanotube,
with a strong stray field of about 0.4 T as supported by the magnetic characterization
and simulations shown in section 3.3.3. The Magnetic Force Microscope (MFM) picture
shown in figure 4.5 (e) evidences magnetic domains in the bottom gate, which have a
typical size of about 100− 150 nm. An external magnetic field Bext changes the magnetic
structure and can therefore reveal the existence of the synthetic spin orbit interaction.

Superconducting correlations are induced by connecting the nanotube to two Nb/Pd
superconducting electrodes. We address the discrete spectrum induced by the supercon-
ductor by transport spectroscopy. The typical measurement of the differential conduc-
tance G as a function of source-drain bias Vsd is shown in figure 4.5 (c). The conductance
displays a well-defined energy gap of about 550 µeV containing two peaks, symmetric
with respect to zero bias. These two peaks signal ALSs arising from superconducting
correlations. As sketched in figure 4.5 (d), our measurements are equivalent at low energy
to conventional tunnel experiments as a consequence of the finite density of states at the
Fermi energy in one of the two superconducting contacts (contact 2). Such a residual
density of states in the superconducting leads is systematically observed in our devices
and has also been reported by other groups (see for example Ref. [248]). The global
shape of the conductance curve is well accounted for by the quasi-classical description of
superconductivity in the electrodes, based on Usadel equations and reveals that contact
1 displays a well-defined superconducting hard gap. The large subgap slope is shown
to arise mainly from a residual pair-breaking in one of the superconductor (contact 2 in
figure 4.5 (d); see section 4.2.4.1 for details on the Usadel formalism). The ratio between
the high bias conductance and the zero bias conductance which measures the “hardness”
of the gap is of about 45 which compares favorably with the recently reported figures in
semiconducting nanowires [49].

One of the main findings of our experiments is displayed in figure 4.6 (b). In this color-
scale map of G as a function of Vsd and the external magnetic field Bext, we observe
the evolution of the ALSs under an external magnetic field. Strikingly, they display
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Figure 4.6: | Oscillations of the subgap states and synthetic spin-orbit
interaction (a) Left panel: Band structure arising from the synthetic spin orbit
interaction with N domains. The allowed interferences in the finite length system are
represented with arrows. Right panel: Schematics of how the band structure can be
tuned by changing the spin orbit energy (with N ′ domains, the bands are shifted by
k). b. Low bias conductance G map in the Vsd−Bext plane showing the oscillations of
the ALSs (indicated by purple arrows) as a function of the magnetic field. The black

lines are the fit to the theory, as described in more details in section 4.2.2.

oscillations with a period of about 0.6 T (±10% from one magnetic sweep to another).
We can resolve up to three oscillations around the mean energy of 220 µeV, together
with the expected slow reduction of the superconducting gap as shown in 4.7 (a)5. Such
a behavior is unusual for ALSs and has not been observed in any other system. It
stems from the progressive alignment of the magnetic domains with the global magnetic

5Note that here this reduction is not seen on a coherence peak but on the gap edge due to the small
bias window. Its evolution can be fitted by the usual formula, ∆(B) = ∆(0)

√
1− (B/Bc)2, as will be

shown below
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Figure 4.7: Control experiment and phenomenology of Andreev-like states
under a magnetic field (a) Conductance resonances energies with respect to Vsd −
Bext, extracted from figure 4.6 (b) (grey points). Theory fits are represented in purple
and red respectively (see 4.2.2). (b) Same plot as in (a), for the control experiment
presented in section 4.1.5. A quasiparticle resonance (QP, blue) appears within the
gap, with a linear blue fit. (c) Table of the evolution of transport signatures as a
function of an external magnetic field in different scenario. (d) Corresponding DOS,

from tight-binding simulations as presented in section 4.1.3.

field. This can be understood more precisely from the energy dispersion of electrons
subject to a rotating magnetic field, E(K) with K the wave vector, shown in figure
4.6 (a). The interference conditions defining the energies of the ALSs are set by the
wavevectors difference ∆K between right-moving and left-moving-electrons with non-
orthogonal spins eigenstates. A variation of the magnetic domains induces a shift k in
the wavevectors K. Near the helical gap, where the spin states are not orthogonal, it
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adds a term 2kL to the interference condition :

EALS ≈ ±EALS,0 (1 + a cos [2∆K (Bext)L]) (4.2)

with ∆K (Bext) = ∆K (Bext = 0) + 2k (Bext), EALS,0 the ALS energy at Bext = 0 and a
the relative amplitude of the oscillations. The ALSs magnetic field dependence is well
accounted for by this formula, under the assumption that the spin orbit strength decays
linearly as the field increases, up to a saturation field of about 1 T. Such an evolution
of the synthetic spin orbit energy is supported by magnetic measurements as well as
micromagnetic simulations (see sections 3.3.3 and 4.2.3).

The number of oscillations N sets the range of modulation of k(Bext) and therefore
allows us to give a lower bound for the induced spin orbit energy at zero magnetic
field: Eso > δN/2 (see section 4.2.2). From the number of oscillations in figure 4.6 for
Bext > 0 (N ∼ 1.5) and the extracted level spacing (δ ∼ 1.5 meV see figure 4.18) we
deduce Eso > 1.1 meV. This is of the order of the simple estimate for a linear spectrum
[170, 171] Eso = hvF

2λ = δLλ with L
λ ∼ 2 (5 domains), inferred from the MFM picture in

figure 4.5 (e). Strikingly, this spin orbit energy is larger than the ones found in InSb
or InAs nanowires (respectively 0.25− 1 meV and 0.015− 0.135 meV [252]). Moreover,
we can reproduce the ALSs oscillations with simulations based on the scattering theory,
with δ and ∆ ∼ 0.6 meV extracted from the data, an amplitude of the stray field Bosc
of 400 mT extracted from the magnetic simulations and a chemical potential close to
the helical regime (see section 4.2.2). These oscillations are robust to disorder in the
magnetic texture, as studied numerically in figure 4.15. They can also be qualitatively
reproduced from the spatial field evolution inferred from the MFM data of figure 4.5
(see figure 4.15). These simulations will be discussed in more details in section 4.2.6.

Figure 4.7 (c) summarizes possible behaviors for the ALSs under a magnetic field,
illustrating the presented transport measurement of a magnetic device, as well as measu-
rement of a control device with no magnetic texture (that will by discussed in more
details in section 4.1.5). They are illustrated in figure 4.7 (d) with tight-binding simu-
lations of the density of states in a 1D conductor connected to a superconductor.
These simulations were already presented in more details in section 4.1.3. The left
and central panels describe the evolution of ALSs in a conductor with no (left) and
intrinsic (center) spin-orbit interaction as a function of an external magnetic field. The
right panel describes the evolution of ALSs subject to a cycloidal magnetic field under
a variation of its period. In the magnetic device, the period of the oscillations with the
external field is only compatible with a modulation of the induced spin-orbit interaction,
through the progressive alignment of the magnetic domains. Indeed, the magnetic field
period corresponding to the other scenarii is too large. The oscillations thus point
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unambiguously to the non-trivial character of the observed ALSs. On the contrary, in
the control device, we see a simple closing of the superconducting gap and a ZBP of
a trivial origin (a residual density of states in both S contacts), whose energy linearly
evolves in magnetic field.

The large measured value of spin-orbit interaction is an important prerequisite for
driving a hybrid device into the topological regime, where zero energy Majorana modes
can emerge. In all the devices experimentally investigated so far, this has only been
pursued by applying a large external magnetic field, with severe constraints on network
designs, Majorana mode lifetimes, and coupling to superconducting quantum circuits.
In contrast, our magnetic texture is equivalent to both a finite and large spin orbit
interaction and an external magnetic field: our device could host Majorana modes
without any external magnetic field, thus lifting these constraints.

Figure 4.8: Zero bias peak (a) Conductance G map in the Vsd − Vg plane showing
the appearance of a zero bias peak when the distant gate of the wire is tuned. (b)
Linecuts at gate voltage Vg = 0,−1,−2,−3V. (c) Conductance G map at Vg = −3 V
in the Vsd −Bext plane showing the evolution of the zero energy peak as a function of
the in-plane magnetic field. The overall background arising from the superconducting
gap has been subtracted for clarity (see figure 4.19). The black lines correspond to the
same fit as figure 4.6 (b). (d) Low magnetic field conductance G map in the Vsd−Bext
plane for Vg = −3 V displaying the large magnetoresistance of the zero bias peak.
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In our setup, superconductivity is induced from the side into the helical region, through
superconducting proximity effect. Although this is a slight difference compared to other
experiments, it can in principle lead to Majorana modes [188, 252, 253] (see also section
4.2.7 for a more developed discussion about this possibility). In figure 4.8, at zero
external field, a zero bias conductance peak emerges, simply upon tuning Gate 2 at
Vg > 0.5− 0.6 V. We note that this gate does not affect the ALSs nor the supercon-
ducting gap but only the appearance of the ZBP along with a slight increase of the
conductance background. The ZBP has a width of about 150 µeV as shown in figure
4.8(b), and a height of about 0.05 e2h , comparable to the recent findings in semiconducting
nanowires (see e.g. ref [15]). In addition, in our case the finite slope of the probe contact
density of states affects the conductance height which cannot be mapped directly on the
spectral weight of the states in the nanotube. In figure 4.8(d), we measure a large
magnetoresistance of 20% for this zero bias peak, accompanied by a hysteretic behavior
which is a signature of the effect of the magnetic texture. This strong dependence
at small magnetic field could come from local reconfiguration of the magnetic domains,
consistent with the expected spatial localization of the state corresponding to a Majorana
peak, contrary to the finite energy ALSs which are not affected by a small magnetic field
(see figure 4.21 and 4.16). Finally, figure 4.8(c) displays a conductance map where the
zero bias peak is robustly pinned at zero energy at large external magnetic field. These
features are compatible with the zero bias peak indicating the presence of a Majorana
zero modes.

As a conclusion, we have demonstrated a device with a synthetic spin orbit interaction
induced by a proximal ferromagnetic multilayer producing an inhomogeneous local magne-
tic field. This spin orbit interaction deeply modifies the superconducting correlations
induced by superconducting contacts and allows us to observe a zero bias peak suggestive
of a Majorana mode without any external magnetic field. By relaxing the constraint of
an external magnetic field, our setup is suitable for advanced experiments that would
unambiguously [68, 70, 254] characterize Majorana modes with the tools of cQED circuits
[141, 143, 255, 256]. The use of a magnetic texture also enables the obtention of Majorana
modes in any conductor, such as CNTs but also graphene, Si/SiGe 2DEG... The built-in
2D pattern of our magnetic textures could also be interesting for braiding schemes [257]
which will require networks of Majorana modes with local and autonomous generation
of topological superconductivity.

4.1.5 S/QD/S’ devices with no magnetic texture

We now show experimental results on several control S/QD/S devices with no magnetic
texture, in order to understand further the specificity of our observations beyond the
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comparison to the existing studies of ABS shown in section 4.1.1. The first control device
was realized with the same fabrication technique as the magnetic texture device (the
stamping technique) while the two other control devices were done with the stapling
technique.

Figure 4.9: Three control devices with superconducting contacts (a) False-
color SEM image and Vg−Vsd conductance map for an Al/QD/Al device with a bottom
Ni/Alox gate (device A), made with the stamping technique, at 0 and 80 mT (where
the Al gap closes). The superconducting contacts are represented in green, the gate Vg
in brown. (b) False-color SEM image and Vg − Vsd conductance map for a Nb/QD/Nb
device with a bottom Nbox a made with the stapling technique (device B), at 0 and
1.7 T (corresponding to the closing of the Nb gap). The dashed line indicates a reference
gate voltage, to illustrate the shift in the Coulomb peaks due to Zeeman effect. (c)
False-color SEM image and Vg − Vsd conductance map for a Nb/QD/Nb device with
a bottom Alox gate a made with the stapling technique (device C), at 0 and 0.88 T,
as shown already in section 3.4. The markers indicate the correspondence between the

Coulomb diamond in the two maps.
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Figure 4.10: Magnetic field dependence of the control devices (a,b) Zoom-in
onto the Vg − Vsd conductance map for the control device A (after a gate jump). (c)
B−Vsd conductance map at the position of the dashed line in (b), showing the closing
of the superconducting gap at B = 80 mT. (d,e) Similar plots for the control device B.
We observe the QP peak splitting and the closing of the superconducting gap reported

in figure 4.7.

Figure 4.9 shows the Vg − Vsd conductance map for three different devices at two values
of magnetic field, while figure 4.10 shows the evolution of conductance as a function of
an external magnetic field B for devices A and B.

We observe two parameter regimes. First, in figure 4.9 (a), device A displays a conduc-
tance similar to the one of figure 4.1 (b), illustrative of transport through ABS below
the superconducting gap, between eVsd = ∆ and 2∆. In figure 4.10 (a-c) we show that
in this device, away from the charge degeneracy point, the subgap states are fixed at
eVsd = ∆. Looking at their evolution in magnetic field, we only observe the closing of
the superconducting gap. Indeed, in this device we have a zero or weak constant spin-
orbit interaction. From the scenarii a and b of section 4.1.3, ABS should display crossing
oscillations with a period B̃ext of the order of δ/gµB (as discussed in section 4.1.3) where
µB is the Bohr magneton. This corresponds to B̃ext = 5 T for our parameters, which
explains why they stay pinned to the superconducting gap until it closes. We observe two
square-root-like decrease of the gap with Bext for both a peak at Vsd = ∆ and Vsd = 2∆,
expected for a S/QD/S device with a S contact with a residual density of states at the
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Fermi energy (figure 4.10 (c)). At higher bias, we observe Coulomb diamond, indicating
an an important charging energy in the system.

Secondly, in the devices presented in figure 4.9 (b) and (c), we observe clear Coulomb
diamonds similar to the conductance map of figure 4.1 (a). Although both contact
electrodes are made of superconductors, the conductance maps can be interpreted as
transport signatures through a S/QD/S’ system, as defined in section 4.1.1. This shows
that frequently one of the S contact has a large depairing parameter which yields a
smoothly varying density of states (mimicking a N contact with a reduced density of
states around the Fermi energy), as already discussed for device C in section 3.4. There is
also a residual density of states in the “good” superconducting contact S, which gives rise
to a weak quasiparticle peak below the superconducting gap. Figure 4.10 (d,e) shows the
evolution in magnetic field of device B. We observe the closing of the superconducting
gap, but also the linear splitting of the quasi-particle resonance. The quasiparticle
resonance simply splits in Bext with a slope gµB (giving a Landé factor g ∼ 3.5), and
the superconducting gap closes over Bc = 500 mT. We can use a constant interaction
model to obtain the stability diagram equations for a S/QD/N system, that was used for
the fits in figure 4.7 (b) (the dashed blue QP lines and the dashed red gap lines). The
quasiparticle peaks positions is given by eVsd = ε(Bext)

α and eVsd = − ε(Bext)
1−α , where α is

the contact asymmetry and ε(B) =
(
ε0 − 1

2gµBB
)
is the chemical potential of the dot

(for a spin down electron, in agreement with the diamond shifting to the left with magne-
tic field as seen in figure 4.9 (b)). The superconducting gap peaks positions are given by
eVsd = ∆(Bext)−ε(Bext)

1−α2
(at positive bias) and eVsd = −∆(Bext)+ε(Bext)

1−α (at negative bias),
with ∆(B) = ∆

√
1− (B/Bc)2. We took two different contact asymmetries for positive

(α) and negative (α2) bias, in agreement with the slopes of the Coulomb diamonds6.

The fit parameters are:

∆ = 0.68 meV , Bc = 0.6T, ε0 = −0.02meV, g = 3.8, α = 0.31, α2 = 0.47.

4.2 Further experimental details

4.2.1 Methods

We briefly give the fabrication details and measurement techniques used in the experi-
ments presented above. The precise recipe parameters can be found in section 3.5.2.1.
A 150 nm thick Nb film is first evaporated on a high resistivity Si substrate at rate of

6One can note that since the diamonds shift in energy, at fixed detuning the lowest energy peak
changes equation and should be piecewise-defined. However in our case the critical field is reached
before this is needed.
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1nm/s and a pressure of 10−9 mbar. A microwave cavity is made subsequently using
photolithography combined with reactive ion etching. An array of bottom gates is then
made with two e-beam lithography steps in a 100 µm × 100 µm square opening of the
ground plane near the cavity central conductor. First, we etch 750 nm×36 µm trenches
of 60 nm depth with reactive ion etching (Si RIE recipe). Second, we deposit inside the
trenches the Co/Pt multilayer

Ta(40 Å)/Pt(50 Å)[Co(15 Å)/Pt(10 Å)]×10/Pt(40 Å)/Al(40 Å),

100 nm narrower. This magnetic stack has been chosen to promote spontaneously
magnetic textures, consisting of magnetic stripes with up and down magnetization with
a narrow period. The Co/Pt interfaces induce a perpendicular anisotropy energy that
partially compensates for the shape anisotropy which would induce an in-plane magne-
tization. The Co thickness as well as the number of repetitions have been chosen to
increase the dipolar energy, the driving force of the stripes formation, and to maximize
the stray field above the sample to about ±400 mT. All the layers in the sample are
strongly coupled through their magnetic stray field and belong to a single and continuous
magnetic texture. Carbon nanotubes are grown with Chemical Vapor Deposition tech-
nique (CVD) at about 900◦C using a methane process on a separate quartz substrate,
and subsequently stamped above the bottom gates. The quartz substrate was previously
processed so that a few pillars of height 4 µm and surface 10 µm×5 µm are aligned with
the cavity openings and come in contact when stamping (see the stamping marks in figure
4.5 (a)). The nanotubes are then localized and those which correctly lie on a bottom
gate are contacted with Pd(4 nm)/Nb(40 nm). The Nb layer is evaporated at a rate of
1 nm/s and pressure of 10−9 mbar while the substrate is cooled down at 0◦C. During
this last e-beam lithography and evaporation step, gate electrodes are also patterned
in order to couple capacitively the bottom gate to a DC gate voltage Vg1 (named Gate
1 in the following) and to the AC potential of the central conductor of the cavity. An
additional gate, Gate 2 is capacitively coupled to the central conductor of the cavity,
and a voltage Vg can be applied.

The DC measurements are carried out using standard lock-in detection techniques with
a modulation frequency of 137 Hz and an amplitude of 10 µV. The base temperature of
the experiment is 18 mK. An external magnetic field can be applied along the direction
of the tube.

Three control devices were fabricated (and are presented in figure 4.9); device A was
fabricated with the stamping technique as well, with a Ni/Alox bottom gate and Pd/Al
superconducting contacts. Device B and C were fabricated with a slightly different
fabrication technique (the stapling technique, see section 3.5.2.2), and the Co/Pt gate
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was replaced by an Ti(5 nm)/Al(100 nm) bottom gate, and the superconducting contacts
are done with Nb/Pd.

Device B conductance peaks are reproduced in figure 4.7. The chemical potential is tuned
through an additional (Nb/NbOx) gate that forms a fork around the bottom gate, noted
Vg in the characterization. In a similar fashion, the carbon nanotube was connected
to two Nb(150 nm)/Pd(4 nm) superconducting electrodes. The DC measurement are
carried at a modulation frequency of 77.77 Hz and an amplitude of 15 µV since the
signal is smaller.

4.2.2 Fit parameters for the oscillations in the scattering formalism

We introduced in section 2.2.2 a scattering description of a nanoconductor subject to an
oscillating magnetic field. We discussed in section 4.1.1 that although such a description
neglects charging effect, it is useful to study the Fabry-Pérot transport regime Γ ∼ Ec,
the transport regime in which the magnetic texture device falls as illustrated by the gate
dependence shown in figure 4.18 (a) and (b).

In order to refine the model and take into account the two end sections with homogeneous
stray field as measured from the MFM, we allow two sections before and after the
oscillating field region to be partially polarized by a magnetic field. The full transfer
matrix of the 1D system depicted in figure 4.11 now reads, with the notations of (2.27):

Ttot = R0 (0, µL, E)−1R0 (Bpol, µL, E) exp {iKLLL}R0 (Bpol, µL, E)−1

R0(Bosc, µ, E)exp{i(K + kαA)L}R0(Bosc, µ, E)−1R0 (−Bpol, µR, E) exp {iKRLR}

R0 (−Bpol, µR, E)−1R0 (0, µR, E) (4.3)

with

R0 (B,µ,E) =



1√
k↑

0 1√
k↑

0

0 1√
k↓

0 1√
k↓√

k↑ 0
√
k↑ 0

0
√
k↓ 0

√
k↓


, ks =

√
2m
~2 (E + µ+ s

1
2gµBB) (4.4)

In this modeling, we have assumed that we have two sections around the cycloidal
region in which the electrons propagate under a homogeneous magnetic field, of length
LL and LR, chemical potential µL and µR and subject to a polarization field Bpol (as had
been done in figure 2.6). In accordance with the magnetic simulations which shows two
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opposite magnetic charges at the end of the cycloidal section (due to the contribution
of the in-plane component of the domains magnetization), we take these fields to be
of the same magnitude but opposite. The transfer matrix Ttot allows us to determine
the scattering matrix S(E) of the 1D section in the absence of superconductivity and
terminated by a wall (see figure 4.11 (a)). In the presence of a superconducting reservoir,
the Andreev Like states energies EALS may then be found using the following identity,
stemming from the secular equation of the system [187]:

det
(
1− exp

(
−2i acos

(
E

∆

))
S(E)S∗(−E)

)
= 0 (4.5)

Figure 4.11: Analysis of the Andreev Like states oscillations (a) Schematic
of the scattering representation of the device. The magnetic texture is modeled by
a field helix over a length L1, and is surrounded by two short segments of length L2
with a uniform magnetic field. It is connected to a superconductor on one side. (b)
Energy levels of the system as given by equation (2), as a function of energy and
number of field oscillations, which is directly linked to the spin-orbit energy Eso. With
parameters coherent with our experiments, we are able to reproduce several oscillations
of the ALSs emergent in this device. (c) Convolution of the density of states of a device
with 2 pairs of ALSs (with energies corresponding to 0.3∆ and 0.7∆, a spacing that
can be obtained with a slightly higher Bosc) and a degraded superconducting density
of states (as schematized in figure 4.5). One pair of ALSs is hidden in the slope of the

conductance as a function of applied bias.

Figure 4.11 (b) shows the energy of the Andreev Like states, as obtained from the secular
equation as a function of the total magnetization angle θ(L) (for simplicity, the zeros of
the determinant are plotted). The number of field oscillations is θ(L)

2π = kαL
2π ; it is related

to the number of domains Ndom through Ndom = 2 θ(L)
2π (two domains per oscillation).
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We are able to reproduce the oscillations of the Andreev Like states observed in the
magnetic texture device with reasonable physical parameters using the model described
above and depicted in figure 4.11. The parameters used are the following (assuming a
Landé factor of g = 3.5, a similar value as the one of the control device (b) described in
section 4.1.5):

Bosc = 0.47T, Bpol = 1.5Bosc, ∆ = 600µeV
δ = ~2

2mL2 = 0.6meV, LL = LR = L, µ = 0.4∆, µL = µR = 0.5∆

We see that we recover the simple rule of thumb stating that the number of oscillations
of the ALSs corresponds to the variation in the number of oscillations of the magnetic
field, in agreement with the tight-binding simulations that were presented in section
4.1.3.

We note that there are twice as many ABS (four subgap peaks) as what we experimen-
tally observed (two subgap peaks). One possibility is that the second pair of ABS is
hidden in the conductance slope of the superconducting gap, as illustrated in figure 4.11
(c). Another one is that it is separated in energy from the first pair of ABS by a small
charging energy that is neglected in this modeling.

The oscillations in figure 4.11 (b) are well fitted by a simple sinusoidal function. As
a consequence, we fit our oscillation data with the following heuristic formula, derived
from the fact that they stem from interference effect and considering that the number
of domains decreases linearly with the applied magnetic field up to a saturation value
Bsat:

eVsd = ±EALS,0(1 + a cos[2∆k(B)L]) = ±E0

(
1 + a cos

(2πB
B̃ext

+ φ0

))
(4.6)

for B < Bsat

where B̃ext is the oscillation period. The fitting parameters are

Bsat = 0.9T, B̃ext = 0.56T, a = 0.018meV, E0 = 0.195meV, φ0 = 0.04

We also include in the fit the closing of the superconducting gap at a critical field Bc

(as measured not on the coherence peak, but on their side at energy eVsd = ∆edge due
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to the finite measurement window):

eVsd = ∆edge

√
1−

(
B

Bc

)2
(4.7)

with ∆edge = 0.45 meV and Bc = 1.9 T.

Large doping limit (Zeeman induced oscillations) In the large doping regime
which allows us to linearize the dispersion relation: kes ∼ kF + E

~vF − s
gµBBosc

2~vF for the
electrons and khs ∼ kF − E

~vF + sgµBBosc2~vF , where k0 is the Fermi wave vector. In this
limiting case, equation (4.5) becomes, for each spin s:

1 = γ2e2i(kes−khs )L (4.8)

Specifically, this equation yields the following implicit equation:

EALS = ±∆ cos
[
2π
(
EALS
δ

+ s
1
2
gµBBosc

δ

)]
(4.9)

In the limit of large level spacing δ � ∆, the above equation simply becomes:

EALS = ±∆ cos
(
π
gµBBosc

δ

)
(4.10)

In case the Andreev like states are only subject to an external magnetic field Bext (pure
Zeeman effect), their evolution is obtained by making the substitution Bext = Bosc. The
ALSs oscillate as a function of the external magnetic field and cross at zero energy when
gµBBext = δ/2 + nδ, n ∈ Z. In our case, one oscillation would require a field of 5T, an
order of magnitude larger than the observed period of 600 mT.

4.2.3 Estimate of the synthetic spin-orbit energy from ALSs oscillations

We here describe in more details the estimate for the spin-orbit energy from the con-
ductance oscillations of figure 4.6 (c). According to the picture of figure 4.6 (a) and
(b), we understand these oscillations as a change in the interference condition when the
number of domains Ndom(B) changes. The variation EBmaxso − EB=0

so of the synthetic
spin-orbit energy induced by Ndom(B = 0)→ Ndom(Bmax) is related to N , the number
of the ALSs oscillations by the simple formula: EBmaxso − EB=0

so = δN/2, where δ is the
level spacing in the nanotube.

This formula is derived by considering the interference condition setting the energies
of the ALSs. We model our system by a 1D conductor of dispersion relation E(K)
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Figure 4.12: Schematic representation of the interference processes
responsible for the formation of ALSs below the superconducting gap, for a nano-
conductor confined by an infinite potential barrier and a superconducting contact. The
electrons follow Andreev reflections at the superconducting interface on the left (AR),
and normal reflections at the potential barrier on the right (NR). In the conductor,
the wavevectors for the right and left-moving electrons are defined by the relation
dispersion represented on the right. These considerations do not take into account the

spin eigenvalue, which can add selection rules for the interferences.

and length L, connected at one end to an opaque barrier and at the other end to an
s-wave superconductor. The ALSs can be derived as electronic interferences between
left-moving electrons, right-moving holes, (both having a wavevector K−) and right-
moving electrons, left-moving holes (with wavevector K+), as represented in figure 4.12.
This figure shows how the presence of the superconducting interface doubles the length
of the trajectories to consider to build the electronic interferences, which leads to the
factor 2 in equation (4.2). The interference condition is hence defined by the equation
2K+(E)− 2K−(E) = 2πn/L. In the main text, we define ∆K = K+ −K−.

In absence of any polarization, K− = −K+. If the central conductor has a non-trivial
dispersion with the spin, as shown in figure 4.6(a), interferences happen only between
non-orthogonal spins eigenstates. Moving the domains with the magnetic field implies
that the dispersion E(K) is modified. The motion of the domains shifts the wave-vectors
from ∆KB=0 to ∆KBmax . For large K, away from the helical gap, the two electronic
bands are orthogonal and the only possible interference is such that ∆KBmax−∆KB=0 =
0 (orange and blue arrows in figure 4.6(a)). Near the helical gap, the spin eigenstates
are not orthogonal anymore between the two bands and |∆KBmax − ∆KB=0| = 2k,
where k is the wave-vector shift induced by the changes in the domains. If N oscillations
of the ALSs energies are detected, it means that ∆KBmax − ∆KB=0 = πN/L, ie that
k = πN/2L. For a linear dispersion such as (2.16): Es = ±~vFk + sEso, a monotonic
variation of the number of domains implies that EBmaxso −EB=0

so = ~vFk = hvFN
4L = δN/27.

This sets a lower bound for the synthetic orbit energy, Eso ≥ δN/2.

Comparing with the formula given by the unitary transformation Eso = hvF
2λ = δL

λ , N
oscillations of the ALSs correspond to a change in the number of domains Ndom = L/λ

of Ndom = N/2. This is in qualitative agreement with the numerical results both with
7After one oscillation, a resonant level goes back to the same energy, indicating that the change in

spin-orbit energy has been compensated by a change in the k wavevector.
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the scattering and the tight-binding formalism, where we observe three oscillations of
the ALSs when the number of domains change by three.

The linear spectrum is easier to deal with due to its constant level spacing. However,
we can also do a similar calculation for a parabolic dispersion relation and obtain this
relation at the bottom of the band. For the parabolic dispersion relation, the bands
are roughly given by E = ~2

2m(k + skso)2 − µ (at low Bosc). Similarly to the linear
dispersion case, we consider one of the interference condition that changes with the
number of domains, as represented in figure 4.6(a) (green-yellow arrow). For simplicity,
we consider the situation where Eso(Bmax) = 0, and we note K0 = n0π

L the wavevector
of the ALS resonant level n0 measured at Bmax. Between B = 0 and Bmax, there are N
oscillations corresponding to a change in energy of N levels with level spacing δj :

∆E =
n0+N∑
j=n0

δj ≡ Nδ̄ (4.11)

On the other hand, this corresponds to a change in the wavevector entering in the
interference condition of K0 − kso → K0 with kso the spin-orbit momentum at B = 0.
We can relate it to the spin-orbit energy through Eso = ~2k2

so
m . By comparing these

quantities, we obtain

∆Eso = Nδ̄

2

(
1− n0

n0 +N/2

)
(4.12)

At the bottom of the band (corresponding to n0 ∼ 0 given that we measure δ ∼ meV)
we obtain the same result as for the linear dispersion.

Discussion about the magnetic evolution in B In the fit of the ALSs energy
oscillations presented in figure 4.6 and described in section 4.2.2, we assumed a linear
decrease of the magnetic domain size up to saturation (with no change in the magnetic
axis). This is a pretty simplified image. Indeed, we only know that the number of
domains goes to zero when the external magnetic field completely saturated the Co/Pt
magnetization, but it could first increase at low Bext. This could be in better agreement
with the magnetic simulations, where the domain size rather tends to reduce at first.
However, the important point is that even in this case we can still extract a lower bound
for the maximum of the spin orbit energy from the number of oscillations.

4.2.4 Mapping between the density of states and the conductance

This section describes the modeling of the superconducting contacts introduced in figure
4.5. The conductance fit is described in more details, and is shown to be in good
agreement with the experiment. We also comment on the effect of what we call a S’
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probe (i.e. a probe with a superconducting density of states with strong depairing), and
notably the fact that the differential conductance contrast is different from that of the
density of states.

4.2.4.1 Usadel equations used to characterize the asymmetry between the
superconducting contacts

We present in this section the theory which allows us to account well for the shape
of the full conductance curves based on the quasiclassical theory of superconducti-
vity in the diffusive regime (Usadel equations). We use a superconducting bilayer of
Nb(40nm)/Pd(4nm) to make a superconducting contact on the nanotube. The density
of states in these bilayers are in general non BCS because of the interface resistance
between the superconducting slab and the normal slab and inverse proximity effect. In
addition, in our case, the dipolar helicoidal-like field can induce a pair-breaking which
can be taken into account via an Abrikosov-Gorkov general term. The Usadel equations
yields the evolution of the density of states as a function of z (the depth from the
superconducting interface). It reads:

~D
2 ∂2

zϑ(z)− (−iE + γ) sinϑ(z)− 2ΓAG sinϑ(z) cosϑ(z) + ∆(z) cosϑ(z) = 0 (4.13)

where E is the energy, D is the diffusion constant, ΓAG is the Abrikosov-Gorkov pair-
breaking parameter, γ is the Dynes parameter and ∆(z) is the gap function. The
pairing angle ϑ(z) is related to the normal and anomalous Green’s functions, G and F
respectively, via the relation: G(z) = cosϑ(z) and F (z) = sinϑ(z). The density of states
is given by

N(z, E) = Re(cosϑ(z)) (4.14)

An important energy scale controlling the physics of proximity effect in the bilayer is
the Thouless energy ETh = ~D

d2 , where d is the thickness of the normal (Pd) slab. In our
case, this energy is much larger than the superconducting gap ∆ of the homogeneous
superconductor, and the interface is not too opaque. Neglecting the self-consistency of
the superconducting gap, one may approximate the pairing angle in the Pd slab by an
homogeneous solution which obeys the following implicit equation:

tanϑ0 = ∆
−iE + γ + 2ΓAG cosϑ0

(4.15)

The above equation may be solved numerically and the gap appearing in it has the
meaning of an effective gap in the normal slab. The density of states in each Nb/Pd
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bilayer contacting our nanotube is therefore

N(∆, γ,ΓAG, E) = Re(cosϑ0) (4.16)

In order to compute the current I flowing through our device and the corresponding
differential conductance G, one may use the above density of states. As explained in
section 4.1.4, one of the two contact is a tunnel probe and the nanotube is only in good
contact with the other. One can therefore approximate the measured density of states as
that of the well connected Nb/Pd bilayer which induces the superconducting correlation
in the CNT and a sum of two lorentzians describing the Andreev Like states in the CNT:

NNT (E) ≈ N (∆, γ,ΓAG, E) + β
∑

i=+/−

η

(E − i× EALS)2 + (η/2)2
(4.17)

This equation is an approximation since it neglects the transfer of spectral weight from
the density of states of the slab to the Andreev states and is only valid as long as 4β

η � 1.
The tunnel current can be expressed using the usual tunnel spectroscopy formula:

I = GN
e

∫ +∞

−∞
dENNT (E)N (∆, γ2,ΓAG,2, E + eVsd) {f(E)− f (E + eVsd)} (4.18)

where f(E) is the Fermi function. The above formula is the one used to fit the cut in
figure 4.8 (a). We allow the Abrikosov-Gorkov ΓAG and the Dynes parameter γ to be
different for the good contact (no indice) and the tunnel probe (indice 2).

From equation (4.18), we can derive the equation on the conductance:

G = GN

∫ +∞

−∞
dENNT (E)N(∆, γ2,ΓAG,2, E + eVsd)(−

∂f

∂E
(E + eVsd))+

GN

∫ +∞

−∞
dE

∂N

∂E
(∆, γ2,ΓAG,2, E + eVsd)NNT (E)(f(E)− f(E + eVsd)) (4.19)

The fit presented in figure 4.18 (d) was obtained with

EALS = 210 µeV, η = 79 µeV, ∆ = 716 µeV, ΓAG,1 = 51 µeV, ΓAG,2 = 318 µeV,

γ1 = 16 µeV, γ2 = 82 µeV, 4β
η

= 0.74 , T = 150 mK and GN = 0.61e
2

h
.

We note that the spectral weight of the Andreev Like states is not completely negligible
(as is also visible in figure 4.5), which may account for small mismatches between the
fit and the experimental curves.
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This fit leads to the two density of states NNT (contact 1) and N (contact 2), plotted in
figure 4.5(d). It also shows that we can safely remove a background conductance from
the bare curves shown in figure 4.19 to plot those of figure 4.8, so that the ZBP is more
visible.

4.2.4.2 Effect of a S’ type probe

From the fit, contact 2 has a large residual density of states at the Fermi energy (which
we call later on a S’ contact). Since its density of states N(E) is non constant in energy,
the second term in the conductance equation (4.19) is non-zero.

As a consequence, the height of the ALSs conductance peaks is not directly linked to
their spectral weight (as it would for a normal tunnel probe). This effect explains why the
oscillations of the ALSs energies leads to the variation of the ALSs conductance height
seen in figure 4.6. Importantly, this also shows that the very low value of conductance
associated to the two ALSs does not imply low spectral weights in NNT (EALS). This
is best seen on figure 4.5(d) where the peak height of the two ALS peaks amounts to
about 0.74 of the normal state density in the nanotube. Similarly, the zero bias peak
has a spectral weight much larger than its height in conductance. From the comparison
with the height of the ALSs which are roughly twice as large, we can estimate that the
actual peak height of the zero bias peak is about 0.35 of the normal state density of
states in the nanotube.

4.2.5 Control experiments

Figure 4.13: Microwave power dependence of Andreev-like states and zero
bias peak Evolution of the Andreev Like peaks as a function of the microwave power

applied at the input of the cavity.

In this section, we present two control experiments. In the first, we apply a large
microwave power to the input port of the microwave cavity in order to test whether the
zero bias peak may arise from a weak Josephson effect. In the adiabatic limit where
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Figure 4.14: Temperature dependence of Andreev Like states and zero bias
peak (a) Evolution of the Andreev Like peaks as a function of the temperature from
20 mK to 1.7 K for Vg = −0.6 V. We interpret the higher peak for T = 700 mK as a
small gate switch because the gate setting is close to the transition at which the zero bias
peak emerges. Such a switch is absent in panel (b) which is for a gate setting further
into the gate region where the zero bias peak appears. (b) Evolution of the Andreev
Like peaks as a function of the temperature from 50 mK to 800 mK for Vg = 2.5 V.

the frequency of the applied tone to the cavity frf = 5.6 GHz is much smaller than the
relevant relaxation rates of the states in the device, the differential conductance G is
modulated by the cavity photons as:

G(t) = G (Vsd + VAC cos (2πfrf t)) (4.20)

The conductance can be fit by three lorentzians centered around each of the peak energies
as shown in the section devoted to the finite bias conductance. The phenomenology of
the above equation is simply a splitting of each conductance peaks if VAC bias larger
than their width. As shown in figure 4.13, the two finite energy Andreev Like states as
well as the central peak split at the same power and in the same way. This shows that
they all correspond to electronic states characterized by a lorentzian like spectral density.
In particular, these measurements are not consistent with the zero bias peak being a
well-developed Josephson supercurrent branch which would display Shapiro steps. The
case of a weak Josephson branch which does not display Shapiro steps would be very
quickly washed out by temperature (at the temperature scale given by the Josephson
energy, ie a supercurrent of 1 nA corresponds to 140 mK ) and is not consistent with
the temperature dependence of the zero bias peak which is described below.

Finally, we present in figure 4.14 the temperature dependence of our measurements
which is fully consistent with a gradual filling of the gap which starts to be effective
only at about 1K. In particular, as one can see in panel (a) of figure 4.14, we observe
that the zero bias peak and the Andreev Like states disappear at the same temperature
(about 1K). Therefore, we can exclude a thermal occupation origin for the zero bias peak
that would be indicated by a continuous increase of the zero bias peak as a function of
temperature.
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4.2.6 Andreev Like States with a spin helix, impact of disorder

We now investigate the effect of disorder in the oscillating magnetic field, using the
tight-binding model introduced in section 4.1.3. We take two models for the disorder in
the magnetic field. Figure 4.15 illustrates the result of this study.

First, we consider a field that evolves in space in the same fashion as the MFM cut
of figure 4.5, reproduced in figure 4.15 (a). This MFM phase signal contains various
frequencies, as shown by the discrete Fourier transform given in figure 4.21 (b). We
construct a cycloidal magnetic field from the Fourier coefficients af associated with the
spatial frequency f of the MFM signal in the following way:

Bosc,z(i) = Bosc
∑
f

af sin(2πfi), Bosc,x(i) =
∑
f

af cos(2πfi). (4.21)

We model the domains evolution under an external magnetic field by a simple shift of
the frequency of each coefficient of the Fourier transform. The effect of Bext is:

af (Bext) = af+δf(Bext) (4.22)

With δf (Bext) ∝ Bext. We then plot in figure 4.15 (c) the density of states at the
first site of the chain, as a function of energy and Bext using this model. We observe
oscillations of a pair of ALSs, as measured experimentally. The discrete Hamiltonian
parameters for this simulation are:

Ntot = 60, N1 = 40, N2 = 20, t = 100,∆ = 1, ts = 1,ΓN = 0.2, γn = 0.15, µ = −0.82 ∗ 2t,

and the amplitude of the oscillating field Bosc is normalized at each Bext such that the
maximal amplitude is 1 (in units of the superconducting gap ∆).

Second, If we consider a situation where there is only one oscillation frequency, we obtain
the density of states of figure 4.15 (e), which is very similar to that of figure 4.15 (c),
namely oscillations of a pair of ALSs. We conclude that disorder in the magnetic field
does not strongly affect the oscillations of the ALSs predicted for a periodic magnetic
field, and observed in the experiment.

As a third alternative approach, we use the magnetic simulations of section 3.3.3 from
which we can directly extract the magnetic field in all three directions above the Co/Pt
structure, and its evolution as a function of the external magnetic field. This is shown
in figure 4.15 (d,f). We use as the parameters for the discrete Hamiltonian:

Ntot = 60, N1 = 40, N2 = 20, t = 100,∆ = 1, ts = 1,ΓN = 0, γn = 0.15, µ = −0.85 ∗ 2t.
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The amplitude of the oscillating field is taken as:

Bosc( units of ∆) = 2Bmagnetic simulations(T) (4.23)

in order to have a qualitative agreement with the measured oscillations, for this set of
parameters. The micro-magnetic simulations give the spatial evolution of the field vector
Bosc for seven values of Bext: 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.2T. We interpolate linearly the
evolution of each component of the field in between these values. We plot the density
of states at the first site as a function of energy and Bext, and observe oscillations of
the ALSs energies, under this more realistic evolution of the magnetic texture. The
simulations reproduce qualitatively the evolution of Bosc in the three direction of space,
when a magnetic field is applied to the magnetic texture, and at different cut positions
we can obtain different realizations for Bosc. The simulated fields used for this study
may not perfectly fit our sample’s stray field; notably it seems to contain more domains
than what the MFM signal indicates.

To conclude, this shows that the analysis of the oscillations of the ALSs is robust
considering more realistic models of our system, build either from a realistic stray field
profile extracted from the MFM data, or from micro-magnetic simulations.

4.2.7 Discussion on the zero bias peak

The emergence of a ZBP in the experiment is compatible with the emergence of a MZM
in our experiment, although the signatures are not sufficient to discriminate against
other unfathomed scenarii. Besides, we could not give a precise modeling of certain
characteristics of the peak, such as the magnetoresistance measured in presence of the
peak (figure 4.21), and the effect of Gate 2 (Vg). Finally, in the simplified picture of the
unitary transformation of the oscillating magnetic field, the field period is also present in
a chemical shift. As a consequence, changing the domain size could change the parameter
regime from a topological region (a priori very small due to the small g-factor in our
system) to a trivial region, which would be inconsistent with the persistence of the ZBP
observed experimentally.

The ZBP measured in the experiment has a small conductance height. However, we
use a superconductor with a finite density of states at low bias to probe the zero bias
peak, which apparently lowers the spectral weight of the zero bias peak with respect to
the finite energy subgap states. Besides, while the Delft group has reported a quantized
conductance, the Copenhagen group has reported also clear zero bias peaks but which a
very small amplitude (typically 0.02−0.08 e2h [15]). We think that similar reasons as the
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Figure 4.15: Effect of disorder in the oscillating magnetic field (a) Cut of the
MFM image along the CNT as represented in figure 4.5 (in blue), and reconstructed
signal containing the N = 40 top-most frequencies of the discrete Fourier transform
of the raw data (orange). (b) Modulus of the Fourier coefficients of the MFM signal
of (a). A given discrete frequency can be thought of as the number of up and down
domains in the magnetic texture. To mimic the effect of the external magnetic field,
we shift the coefficients’ frequency as shown in equation (4.22). For example, the
coefficient corresponding to 5 oscillations at the beginning will, at δf = 2, correspond
to 7 oscillations. (c) Density of states of a one-dimensional wire as a function of the
energy showing Andreev Like States. The oscillating field is given by the orange curve
of panel (a) and evolves under a shift of it Fourier coefficients. The x axis corresponds to
shifting frequencies. (d) The oscillating magnetic field is now taken from the magnetic
simulations, in all three directions of space. (e) Similar plot, with only one coefficient
in the discrete Fourier transform. (f) Oscillating magnetic field in all three directions
of space, extracted from the magnetic simulations, along the dashed line in 4.21. It is

given for different external magnetic fields, at a height x = 0 nm.
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ones invoked in this reference could also be used to explain the small amplitude of our
ZBP. Finally, since the geometry for this experiment is different than the one proposed
in the original proposals [11], we do not expect a quantized conductance for the ZBP
[72, 188].

Beyond this discussion, it also came to our attention that the question whether Majorana
could or not emerge in such a setup was still under debate, as discussed in section 2.3.
In this section, we described the scenario for apparition of a MZM with an intrinsic
spin-orbit interaction. We now turn to the situation where Majorana zero modes can
potentially emerge in our setup. We model both a finite superconducting contact (“on
the side”, as opposed to a superconducting contact extended over the whole conductor)
and the magnetic field helix. In figure 4.16, we study the variations of the density of
states (DOS), the singlet pairing and the triplet pairing as a function of the number of
magnetic domains (which are tuned by the external magnetic field in the experiment).
The parameters of the model are:

Ntot = 20, N1 = 16, N2 = 15, t = 12,∆ = 1, ts = 12,ΓN = 0.1, γn = 0.05,

µ = −0.33 ∗ 2t, Bosc = 8.

Note that here we take larger magnetic fields than in previous modeling, since we want
to discuss whether this geometry can host MZM rather than quantitatively describe the
experimental results.

The density of states shown in figure 4.16 (a) displays oscillations of Andreev Like states
at non zero energy but more importantly a zero bias peak emerging when the number
of domains increases. In order to characterize the Andreev Like states, it is instructive
to plot the singlet and triplet pairing amplitudes (in panel (b) and (c)) for the same
parameters. Interestingly, before the emergence of the zero bias peak, one sees both
singlet and triplet pairing amplitudes as expected for superconductivity in the presence
of homogeneous spin polarization. However, the emerging zero bias peak is solely made
out of triplet correlations, as required for a Majorana zero mode. The singlet and triplet
pairing amplitude are defined by equation (2.41) and (2.42).

We now show another important feature of this zero mode: its spatial localization and
sensitivity to the local configuration of the magnetic field, as illustrated in panels (e),
(f) and (g). These colormaps show the density of states as a function of the position
in the chain and energy, for a system with the same parameters as panel (a) and with
7 magnetic field oscillations (14 domains). As expected, we see that the zero bias
peak corresponds to two localized states located at the interface between the magnetic
texture and the superconductor and the magnetic texture and the left hard wall. On
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Figure 4.16: Emergence of Majorana excitations in our experimental setup
(a) Density of states at the first site of the chain (site 0), computed using a discretized
tight-binding Hamiltonian, showing the emergence of a zero-bias peak for a large
number of up and down domains. (b)-(c). shows the singlet and triplet pairing
amplitude for the same parameters. Singlet and triplet pairing amplitude are defined
in equation (2.41) and (2.42). The numerical simulation is realized by considering a
normal part with a cycloidal field, as illustrated in (d) for the component along the
axis of the chain (z-axis). The field is not perfectly sinusoidal because of the high ratio
between the number of oscillations (7) and the number of sites (16) for the cycloid. A
superconductor is connected to the chain from sites 15 to 20. Two local reconfigurations
of the field are shown in red and blue. (d), (h) and (i) display the spatial dependence
of the density of states for the three different configurations of the field (black, red and
blue). The dotted line shows the separation between the normal part and the super-
conducting part. (e) and (f) show the singlet and triplet pairing amplitudes for the

DOS (d). The zero bias peaks have a larger triplet pairing amplitude.
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the contrary, the non-zero energy Andreev Like States are fully delocalized on the entire
wire length. Importantly, a change in the magnetic texture has barely any effect on
the later irrespectively of the position of this change (figure 4.16 (e) and (f)). This is
completely different from the case of the Majorana zero mode which is insensitive to a
local reconfiguration in the middle of the magnetic texture (figure 4.16 (g)) whereas it
splits for a reconfiguration close to the superconducting/wire interface, where its wave
function is non-zero (figure 4.16 (f)). All these features reproduce qualitatively our
experimental findings and show that localized Majorana zero modes can emerge when
superconductivity is induced from the side of the wire, in a different manner than the
initial propositions for engineering Majorana bound states in one dimensional conductor.
In summary, our numerical study confirm the robustness of the oscillations of the ALSs
at non-zero energy to disorder, and substantiate the Majorana zero mode interpretation
of the observed zero bias peak.

4.2.8 Additional data on the magnetic device

Large scale device layout and microwave environment The large scale device
layout and microwave environment is shown in figure 4.17. The whole device is embedded
into a microwave cavity which has a fundamental resonance frequency of about 7.5 GHz.
For the magnetic device presented, this particular mode was not coupled to the device
but other modes of the electromagnetic environment were coupled. We use here these
modes to couple our device with a distant gate Gate 2 (with gate voltage Vg) which is
the one used in figure 4.8. The device is also coupled via the bottom gate to Gate 1 with
gate voltage Vg1. Although the specific resonant mode of the cavity was not coupled
to our device, the coplanar waveguide resonator could be used to convey a microwave
signal in the GHz range to study its dynamical response (see below).

The two gates have different effects on the device. Gate 1 has a larger capacitance to
the bottom gate than Gate 2, thus sets mainly the potential of the bottom gate. The
effect of Vg1 is to tune the energy level in the NT, as shown by figure 4.17. Vg does
not affect neither the ALSs, nor the gap and only controls the appearance of the ZBP
in the conductance signal, which goes along with a small increase of the conductance
background. This points towards a more specific effect of Gate 2 that could locally
change the wavefunction in the CNT, finely tuning the overlap of the ZPB wavefunction
to the contact electrodes.

Gate maps of Andreev Like states We present the gate map of the Andreev Like
states when Gate 2 is kept at 0V and Gate 1 (which is directly coupled to the bottom
gate as shown in 4.17) is swept from 0.2V to 1V in 4.18. The Andreev Like states
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Figure 4.17: Microwave environment of the device The whole device is
embedded in a microwave cavity with a resonance frequency of about 7.5 GHz.

remain visible essentially in all the map. A parity crossing is observed at Vg1 ∼ 0.7 V.
Importantly, the high bias conductance, close to e2

h displays only weak features. In
particular, no Coulomb blockade diamond is observed which signals that our experiment
is in the Fabry-Pérot regime. From the smooth checkerboard pattern, one can extract
an estimate of the level spacing δ ∼ 1.5 meV.

Figure 4.18: Gate map of the Andreev Like states. (a,b) Conductance as a
function of bias Vsd and Gate 1 Vg1 showing the evolution of the Andreev Like states
as a function of Vg1 for two values of Gate 2 Vg = 0 V (panel a) and Vg = −3 V (panel
b) such that the Zero Bias Peak is present. In panel a, the shape of the Fabry-Pérot
modulations of the conductance is highlighted by the dotted black lines, and N and
N +1 indicates the equilibrium charge on the dot. The level spacing δ for our quantum
dot can be roughly estimated, as shown by the black arrow. In panel b, the edge of the
superconducting gap and the position of the different peaks studied are outlined. The
values of Gate 1 for the different figures of the article are shown by the blue lines. (c)
Corresponding superconducting gap in log scale, at Vg = 0 V (bottom) and Vg = −3 V
(top). (d) Comparison between the conductance measurement as a function of bias

(blue line) and the corresponding fit using the Usadel equations (red dashes).



Chapter 4. Synthetic spin-orbit interaction for Majorana devices 155

Conductance maps with background and gap closure at high magnetic field
We present here two additional conductance maps as a function of magnetic field for the
magnetic device.

In figure 4.19, we present the raw data corresponding to figure 4.8. In this map, one
can see that there is a strong depression of the conductance as a consequence of the
superconducting gap. After fitting the above curves with the theory presented above,
one can extract the contribution arising only from the Andreev Like states which allows
one to observe more clearly the magnetic field dependence of these states. Nevertheless,
as one can see in figure 4.19, all the features presented in figure 4.5 are visible in the
raw data.

Finally, it is interesting to study the magnetic field map of the conductance up to large
fields where the superconducting gap of the electrodes starts to weaken substantially.
In figure 4.20, we present such a map where the magnetic field is swept from 0T to 2T
and back to 0T. As expected, we observe a gradual “square root like” decrease of the
gap edge.

Figure 4.19: Conductance map with background, similar to the map of
figure 4.5 Raw data of the conductance as a function of bias Vsd and the external
magnetic field Bext at Vg = −3 V. As shown in the map and the cuts corresponding
to those of figure 4.8, the Andreev Like resonances as well as the zero bias peak are
clearly visible also in the raw data. The background originates from the peculiar shape

of the density of states in the proximized Pd/Nb bilayer.

Magneto-resistance and hysteresis at different gate voltages Vg Figure 4.21
displays a panel of the conductance maps Vsd−Bext for different gate voltages between 0
and −3 V. We observe that the ALS are insensitive to small magnetic fields, whereas the
zero bias peak and the background shows a magneto-resistance provided the zero bias
peak is present. These two different behaviors are also observed in the Gate 2 dependence
that leaves the ALS unchanged. However we cannot match this magnetoresistance with
a shift in gate voltage. We also present the emergence of the hysteresis of the zero bias
peak with the gate voltage which is directly linked to the emergence of the peak.
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Figure 4.20: Gap closure at high magnetic field Conductance map in the Vsd −
Bext plane from 0T to 2T and back showing the gradual decrease of the superconducting

gap. The map is taken at Vg = 3 V.

Figure 4.21: Evolution of the magnetoresistance with gate voltage Conduc-
tance map Bext−Vsd at small magnetic field for different gate voltages. The presence of
the vertical stripe corresponding to the magnetoresistance is correlated to the emergence
of the zero bias peak. f. Difference in conductance between upward and downward field

sweeps at zero bias showing the gate voltage dependence of the hysteresis.
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The next geometry that we would like to study is a double quantum dot where
each dot is subject to a synthetic spin-orbit interaction, with a central superconducting
contact (and two normal leads). This geometry would realize two copies of the previous
device, and would give us new tools to study the interplay of a spin texture with
superconductivity. For example, in very open devices, it could be possible to localize
differently the potential MZM when tuning each of the dots’ chemical potential. In closed
devices, the microwave signal could give additional information of the DQD spectrum.

A first step was to investigate the coupling of such a DQD to a microwave cavity, and
the microwave signature of the magnetic textures. This study can be realized without
the central superconducting contact, instead replaced by a gate electrode. We will
present here experimental results obtained during this thesis on such a device. We
will first briefly introduce the physics of a DQD with no magnetic texture, with special
focus on the information accessible though microwave measurements of a coupled cavity.
We then present the study of the DQD where each dot is formed in proximity to a
magnetic texture, coupled to a microwave cavity. We have measured the energy of
the DQD internal transitions through the change in the microwave signal, and used
this spectroscopic tool to characterize the magnetization of the dot electrons. We have
observed strong distortions of the microwave signal compared to what is expected for a
normal DQD, which is due to the large renormalization of the Landé g-factor in each
dot by the magnetic texture.

5.1 DQD stability diagram and microwave measurement

Figure 5.1 (a) shows the stability diagram of a DQD, meaning the current flowing
through the whole device as a function of two gates, tuning primarily one dot each
[258]. Depending on the parameters regimes, and especially the interdot coupling and
the tunnel couplings to the leads, different signals are measured. Current at zero bias
is only measured at the triple points (where both dots are aligned with the leads’ fermi
level) in very closed DQD, whereas co-tunelling lines are visible (where only one dot is
aligned with the leads’ fermi level) when the tunnel couplings are large.

Coupling a microwave resonator to a DQD enables us to study its internal degrees
of freedom [193], and to measure transitions that are not accessible though transport
measurements. Indeed, if the cavity field mainly affects the chemical potential on one
of the dot, the cavity signal will be strongly modified at the resonant condition ωcav =
ωDQD where ωDQD is the transition energy between the DQD ground state and excited
state(s). Formally, if a cavity is coupled to a mesoscopic circuit with energy levels
indexed by i, j, the normalized transmission T of the cavity can be written as a function
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Figure 5.1: Stability diagram for a DQD (a) Experimental stability diagram:
current through the DQD as a function of the two gate voltages Vg1 and Vg2. The
charge number on the left and right dots are written over each region. Co-tunneling
lines are visible on the bottom left (2nd order tunneling event). (b) Zoom in on the
so-called “triple point area” where the interdot tunneling modifies the tunneling lines.
The strength of the anti-crossing depends on t the inter-dot hopping and Um, the
mutual charging energy. (c) Schematics of the DQD levels close to zero detuning εδ.
The former dot levels (in green) hybridize to form bonding (B) and anti-bonding (AB)

orbitals. Source: [237].

of the drive (resonant) frequency fd (fcav), the cavity linewidth κ, the level populations
ni, their coupling to the cavity (which is a geometric factor) gij , the decoherence rate
Γij = Γ1

2 + Γφ and the drive-transition detuning ∆ij/2π = fi − fj − fd:

T = κ/2
2π(fcav − fd)− iκ/2−

∑
i,j,fi>fj χij(ni − nj)

(5.1)

χij =
g2
ij

−iΓij + ∆ij
(5.2)

From this expression, we indeed notice that the cavity signal is strongly modified at the
resonant condition fcav = fi−fj , when the cavity is resonant with an internal transition
of the mesoscopic circuit.
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Finally, the typical resolution of the microwave signal is of the order of its resonant
frequency: 6 GHz ∼ 25 µeV. The microwave signal is thus sensitive to smaller changes
than the transport measurement, whose resolution is limited by the tunnel couplings to
the leads.

5.1.1 A simple DQD: the charge qubit

The first typical system on which one can study the microwave response is a trivial
spinless DQD, also known as the charge qubit. In such a system, the two spin eigenvalues
are degenerate in both dots, and independent from one another.

We can calculate the transition energies of this DQD by explicitly writing the Hamil-
tonian of the closed DQD (neglecting the coupling to the leads), considering only one
orbital in each dot (of electron number operator n̂L and n̂R):

H = εLn̂L + εRn̂R + (tĉ+
L ĉR + h.c.) (5.3)

In the simple case of a total occupancy of one (in the N ≡ NL +NR = 1 subspace), the
energy levels of the system correspond to an electron localized on the right (left) dot, or
bonding (anti-bonding) superposition of these two orbitals when they hybridize, at low
detuning.

The energy levels are the eigenvalues of:

H =

εL t

t εR

 , ie E± = εΣ
2 ±

1
2

√
ε2δ + 4t2 (5.4)

with the following notations: εΣ = εL + εR and εδ = εL − εR. Figure 5.1 (c) represents
these eigenenergies (labeled B and AB, for bonding and anti-bonding), made out of the
two isolated dot’s resonant levels (represented in green) detuned by εd.

In order for the resonant condition ωcav = ωDQD to occur at a certain value of detuning,
one needs 2t . ωcav

1. An example of the typical microwave measurement of such a
charge qubit is shown in figure 5.2. We can already notice that the energy scale is very
different from the one for the transport measurement.

For more complex DQD systems, the microwave signal can have a more complex shape:
for example, there can be a dependence on εΣ, as was seen when the central tunnel gate of
the DQD was replaced by a superconducting contact [235]. The spin-degeneracy can be

1Note that in case of a large coupling, there will still be a measureable dispersive signal even at
2t > ωcav.
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Figure 5.2: Microwave measurement of a CNT based charge qubit. Left
column represents the pulsation of a charge qubit internal transition ωDQD and the
cavity pulsation ωcavity as a function of the detuning εδ. The resulting phase shift
and amplitude signals are plotted below. The right column presents the microwave
response of the cavity which reveals the internal transitions of the charge qubit. The

DQD stability diagram is highlighted with dashed lines. Source: [2].

lifted, for example through exchange-interaction, by using non-collinear ferromagnetic
contacts [3, 185] or micromagnets [259], or finally by relying on the interplay of a magne-
tic field with spin-orbit coupling [260, 261]. In this case, the two levels that couple to the
cavity can have different spin eigenvalues; the transition energy can then vary with an
external magnetic field Bext and with the detuning as we will show in the next section.
Finally, for total occupancy Ntot > 1, the ground state becomes a singlet state over the
two DQD, whereas the excited states are triplet states. The microwave signal can be
affected by spin blockade effect in this parity region [262].

5.1.2 Magnetic field dependence of known DQD

In the following we will show a magnetic field dependence for the spin-textured DQD
that reveals the effect of the magnetic texture. First, we show what can be expected
for the microwave signal when the magnetic field varies in several DQD geometries. In
figure 5.3 (a), we show the magnetic field dependence of a charge qubit. As already
mentioned, in such a DQD system the two spin sectors are independent. The microwave
cavity is only sensitive to transitions between states of equal spin, thus the transition
energy does not change with a magnetic field Bext. On the other hand, in presence of an
inhomogeneous magnetic field, the circuit internal transitions can vary with the external
magnetic field. This was seen for example in figure 5.3 (b) through an inhomogeneous
Zeeman effect2 or in figure 5.3 (c) through the effect of the field on the magnetization

2The detuning changes the localization of the two probed states, from a left/right hybridization at
zero detuning to a more localized state at strong detuning.
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Figure 5.3: Phase shift as a function of detuning and external magnetic field
for known DQD (a) Phase shift of the microwave signal as a function of an external
magnetic field and detuning. The two charge qubit transitions studied correspond to
an odd (left) or even (right) total occupancy in the two dots. The corresponding energy
levels are represented on the left. For even occupancy, they correspond to singlet or
triplet states. Source: [262]. (b) Study of a spin qubit where the charge and spin degree
of freedom are mixed by the combination of a inhomogeneous magnetic field (a Co
micromagnet stray field), non collinear with the external one. The colormap represents
the amplitude of the coupled microwave cavity as a function of external magnetic field
and probe frequency. An distorsion of the cavity signal is visible when a spin transition
is at resonance, indicating a strong coupling between the cavity and the spin qubit. The
bottom panel shows the spin transition frequency as a function of the external magnetic
field. Source: [263]. (c) Effect of an external magnetic field on a spin qubit made with
two non collinear ferromagnetic leads. The colormap represents the evolution of the
phase shift as a function of an external magnetic field and detuning. Here the magnetic
field modifies the magnet axis. This effect can be modeled to numerically reproduce

the data. Source: [3].

axis of two non-collinear magnets. In this last example, additional transitions are visible
due to the valley degree of freedom of the CNT. In both situations, the dependence of
the transition energies on both the detuning and an external magnetic field indicates a
spin transition.

5.2 Sensing a spin texture induced by the magnetic texture

A challenge in DQD physics is to address the spin degree of freedom of the electron with
microwave photons, for example as a tool to read or couple distant spin qubits3. The
magnetic coupling strength of a single spin to a CPW is typically gspin = 10 Hz for our
devices [264]. A road to enhance this small native coupling is to hybridize the position
and spin degree of freedom of the electron, either by relying on an intrinsic spin-orbit
interaction or on inhomogeneous magnetic fields. Our magnetic texture also provides
all the necessary ingredients for coupling spin transitions to the microwave cavity. As

3The electron spin degree of freedom being less coupled to the environment than its charge, thus
having better coherence properties
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mentioned above, the cavity measurement can also probe small changes compared to
transport measurement, and is a powerful tool to measure the perturbative effect of
the magnetic texture over our DQD spectrum. We now present preliminary results
on a DQD with a magnetic texture below each dot, probed through both current and
microwave measurements.

5.2.1 Experimental results

Figure 5.4: Schematics of the device and stability diagram (a) Schematics of
the DQD with a magnetic texture below each dot. Cavity photons ν are coupled to
the position of the electron. (b) SEM picture of the device. The DQD is made out of a
CNT (highlighted in white) coupled to two normal Pd leads (grey) over which a voltage
difference Vsd is applied, one Co/Pt gate under each dot (blue) and a central Al/Alox
electrode (orange). The cavity is galvanically coupled to the central gate. An external
magnetic field can be applied along the CNT axis. The device is characterized through
both current (I) and microwave signal. (c) MFM phase signal on the same Co/Pt
multilayer as the one above. Two cuts are extracted, above the magnetic texture (blue)
and above the Si substrate (orange). (d) Stability diagram of the DQD device: current
I as a function of two gates, Vgt and Vg2 at bias eVsd = 200 µeV. The electron filling
number on each dot (up to a constant) is labeled in white. The black rectangle indicates
the gate range for figure 5.5. (e) Corresponding microwave phase signal Φ. The dashed

black line delimits the set of transitions studied in figure 5.6.

The device under study is a DQD made out of a CNT, stapled over a mesoscopic
circuit using the stapling technique described in chapter 3. The CNT is positioned over
two magnetically textured gates, and a central Al/Alox gate that is also galvanically
connected to a microwave cavity of resonant frequency fcav = 6.42 GHz. It is connected
to two Pd electrodes, through which a current can be measured. Schematics and SEM
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picture of the device are shown in figure 5.4 (a,b). From figure 5.4(c), the MFM measu-
rement of the same Co/Pt multilayered structure displays oscillations of the MFM phase
signal, with a period of about 400 nm. Current through the device is typical of a DQD
with a large interdot coupling t, as visible in panel (d). The electron filling numbers in
the left and right dots are labeled in each blockade region, up to a constant offset for
each dot.

Figure 5.5: Evolution of the cavity signal in magnetic field (a) Phase and
(b) amplitude of the cavity transmission in a small region of the stability diagram
shown in figure 5.4 (d). The blue arrow indicates the orbital detuning axis for the
following panels, the white dashed lines the limits of the stability diagram and the
black line the zero-detuning line for the DQD charge transitions. As opposed to the
other dots presented before, in section 5.1, the cavity signal is not centered between
the DQD triple points. (c) Phase variation ∆φ and (d) microwave amplitude relative
variation ∆A/A for this signal (upper right transition), as a function of detuning εd
and external magnetic field Bext. The transition energy evolves non-monotonically with
these parameters, as well as the DQD tunnel coupling (as indicated by the change in

contrast).

In the cavity signal, we observe strong distortions of the transmission, as visible in figure
5.4 (e) and 5.5 (a,b). Although the cavity is contacted to the central gate, it is mostly
coupled to one dot, thus our measurement is sensitive to internal transitions in the DQD
(indeed, in the stability diagram we see that the effect of this central gate is primarily
to tune one dot). Strikingly, this signal is shifted from the zero-detuning line, which
is highlighted by the black lines in figure 5.5 (a,b). The zero detuning line at constant
filling factor N ≡ NL + NR is defined by εd = εL − εR = 0 where εL(R) is the chemical
potential of the left (right) QD. Over a larger gate range, as shown in figure 5.4 (e), we
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also notice that the the position of the resonances seems to be determined by a more
complex condition than εd = 0 (or a constant offset), and is primarily controlled by Vgt.

Figure 5.5 (c,d) shows the evolution of the phase and amplitude signals as a function
of an external magnetic field and detuning for the upper right transition of 5.5 (a). We
see a non-trivial dispersion of these signal: the transition energy shifts with Bext, with a
slope that changes sign. Similarly the Bext − εd evolution of the cavity signal for all the
transitions enclosed in the black rectangle in figure 5.4 (e) are shown in figure 5.6. The
mapping between the stability diagram and the indexes n1, n2 can be found in figure 5.13;
these indexes do not represent the filling of the left and right dots, but are associated
with a change in the field-dependence of the associated transitions. We observe four
behaviors for the field dependence: either a monotonic decrease of the transition energy
(n2 = 1), a monotonic increase (n2 = 4) or a change in the direction of change (from
increasing to decreasing, n2 = 2 or the opposite, n2 = 3). This behavior is similar for
all values of n1, although there are quantitative changes in the slopes and contrast of
the phase signal. At these values of magnetic field, we do not expect the magnetization
of the texture to be much affected. This is substantiated by MFM measurements of a
magnetic texture made during the same deposition, on the same substrate, presented in
section 5.2.3.

Figure 5.6: Phase signal dispersion in the Bext − εd space, for several
transitions Phase signal as a function of Bext − εd for a few transitions shown
in the stability diagram of figure 5.4 (e) (the correspondence between the stability
diagram and the indices (n1, n2) is shown in figure 5.13). The axes for these plots are

Bext = ±200 mT (horizontal) and εd = ±300 µeV.
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A simple figure of merit to evidence a non-trivial effect of the magnetic texture is
to extract from these dispersions the slope of the transition energy with Bext

4. The
energy conversion for the gate voltages is presented in appendix D. The ensemble of
values is represented in figure 5.7, sorted as a function of n2 (ie the different dispersion
behaviors; for non-monotonic dispersions both the slopes of the inner and outer branches
are represented). We measure several dispersions whose slopes correspond to Landé g
factors of up to 60, much larger than expected for a CNT (even taking into account the
orbital effect of the field). Although these slopes are not a direct measure of the Landé
factor in the dots, we will show in section 5.2.2 that in a simple model, they are related
to the difference in Landé factor between the right and left dots. Thus our measurements
seem to indicate very large and orbital-dependent g factors in the DQD. We propose
that this effect is linked to the presence of the magnetic texture: in heavy materials,
the spin-orbit interaction can lead to a strong renormalization of the g factor. In our
situation, the synthetic spin-orbit interaction could similarly renormalizes the effect of
an external magnetic field on each of the dots’ energy levels.

Figure 5.7: Extracted slopes for the magnetic field dispersion Extracted slopes
for the change in the microwave phase shown in figure 5.6, represented as a violin plot.
Each line represents a data point asssociated with a given (n1, n2). These data points
are enclosed in a colored envelope representative of a probability density (estimated
from the dataset). For columns n2 = 2, 3, two slopes are measured per transition (i.e.
per value of n1), labeled “inner” (for the slope between B = 0T and the value of B at

which the direction of change reverses) and “outer” (at large magnetic fields).

5.2.2 Theoretical description

We have measured a rich range of behavior for the internal transitions in our magnetically
textured DQD. Notably, the resonant condition ωDQD = ωcav can be very far from the

4For a pure spin transition, this slope is of 2g, where g is the Landé factor. In addition a magnetic
field parallel to the CNT can also contribute to the dispersion through an orbital effect.
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zero-detuning line, and changes in a non-monotonic way with the external magnetic
field.

We first consider a simple model, to try and shed light on the minimal effects that can
capture this behavior. We then try and describe the effect of the magnetic texture.

5.2.2.1 A DQD with inhomogeneous g and inhomogeneous stray field

We start by considering the following model, which is schematically represented in figure
5.8. We study a DQD where the left (respectively right) dot is subject to a homogeneous
field BL, (resp. BR) (which we will call “local field”), and has a Landé g-factor gL, (gR).
An external magnetic field Bext can be applied. For simplicity, we consider Bext to be
orthogonal to BL,R, so that the resulting spectrum is symmetric in Bext → −Bext (as
our measurements are even in Bext). To We also take BL and BR to be parallel, and
we will discuss the effect of an angle between these local fields later on. Given the large
measured level spacing between two electronic levels (about 2 meV, as visible in figure
5.14), we can consider only one orbital in each dot.

Figure 5.8: Schematics of the DQD model considered Each dot (grey region)
contains one orbital, of chemical potential εL,R, had a Landé g-factor gL,R and is subject
to a local field BL,R for the left and right dot respectively. Both dots are subject to an

external magnetic field Bext, orthogonal to BL ‖ BR.

The energy levels for each dot i = L, R are:

Ei,s=±1(εi, Bi, gi, Bext) = εi + sgiµB
2

√
B2
i +B2

ext. (5.5)

We then add the tunnel coupling between the two dots. Since BL and BR are parallel,
the coupling term stays diagonal in the basis of these new energy levels:

H =


E1,s=1 0 t 0

0 E1,s=−1 0 t

t 0 E2,s=1 0
0 t 0 E2,s=−1

 (5.6)

Under this condition, only the charge transitions will be coupled to the microwave cavity.
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Figure 5.9: Illustration of the resonant condition ωDQD = ωcav for the
considered DQD.

Figure 5.10: Resonant condition for a DQD subject to an inhomogenous
Zeeman effect, either through inhomogeneous stray fields or inhomogeneous g-factors.
(a) Resonant condition as a function of detuning εd and magnetic field Bext for different
Landé factors in both dots, gL = 3, gR = 2 (dark blue) or the opposite (light blue),
with EL,Rz = 10 µeV. (b) Resonant condition as a function of detuning εd and magnetic
field Bext for different stray fields in both dots, BL = 340 mT (ELz = 20 µeV), BR =
85 mT (ERz = 5 µeV) (dark blue) or the opposite (light blue), with g = 2. (c) Resonant
condition as a function of detuning εd and magnetic field Bext for the combination
of both these effects: gL = 2, ELz = 5 µeV, gR = 3, ERz = 20 µeV (light blue) or the
reverse (dark blue). The rest of the parameters are fcav = 25 µeV (about 6 GHz)
and t = 12.4 µeV. The combination of both an inhomogeneous stray field and an

inhomogeneous g-factor reproduces qualitatively the measured dispersions.

We look at the transition energy ~ω02 between the bonding / anti-bonding levels with
spin s = −1. This transition is expected to be the one most visible in the cavity signal
because it starts from the DQD ground state which is in principle highly populated, and
it does not flip the spin5. It will have a square-root function-like shape that will allow

5Under our working hypothesis, the two spin sectors are independent. However, a misalignment
between BL and BR would enable the coupling of transitions between two states with different spin
orientation.
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for two solutions for the condition ω02 = ωcav (as is the case in the measurements).

The Hamiltonian (5.6) yields:

ω02(εd, Bext) =
√

(ELz − ERz + εd)2 + 4t2 (5.7)

with εd = εL − εR

Eiz ≡
giµB

2

√
B2
ext +B2

i

Figure 5.9 illustrates the idea that the microwave cavity provides a cut of the DQD
transition energies at ωcav. It represents both the transition energy ω02 and the plane
ωcav; the microwave signal will be most strongly affected at the resonant condition, given
by the intersection of the two surfaces. Figure 5.10 represents the resonant condition
under three scenarii. These scenario are motivated by the following observations.

First, we can already notice that an imbalance between the right and left Zeeman energies
Eiz lifts the symmetry εd → −εd, and can move the cavity shift away from the zero-
detuning line. It can either come from an asymmetry in the fields Bi or in the g-factors.
In addition, this transition energy will change with an external magnetic field if such an
asymmetry is present. The sign of the imbalance determines the direction of change of
the condition fDQD(Bext, εd) = fcav in the (Bext− εd) plane. The effect of an imbalance
in Bi becomes negligible when Bext � BL, BR whereas the effect of an imbalance in g
stays visible at large Bext. Indeed, these two behaviors are visible in figure 5.10 (a) and
(b). Panel (a) represents the evolution of the resonant condition for different values of
g in the left and right dot, either gL > gR (dark blue) or gL < gR (light blue). Panel
(b) represents the evolution of the resonant condition for different values of B in the
left and right dot, either BL > BR (dark blue) or BL < BR (light blue). The change
in the DQD transition energy does not saturate at large Bext in (a) whereas it does in
(b). In addition, the sign of the imbalance determines the sign of the slope 1

µB
∂ω02
∂Bext

in
both cases. This simple model can even reproduce non-monotonous evolutions of the
resonant condition, as was observed experimentally, when these two effects combine as
represented in figure 5.10 (c).

To be more quantitative, we can study in more details the resonant condition ω02 = ωcav.
If ωcav ≥ 2t, there are two detuning values ε0,± that satisfy this condition:

ω02(ε0, Bext) = ωcav ⇔ ε0,± = ERz − ELz ±
√
ω2
cav − 4t2 (5.8)
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These two values are centered around ε0,c(Bext) ≡ ERz − ELz . We can thus look at the
change of this value with Bext:

∂ε0,c
∂Bext

= µBBext
2

 gR√
B2
ext +B2

R

− gL√
B2
ext +B2

L

 (5.9)

From these equations, we can now understand better the dispersions presented in figure
5.10:

• There is a change in the direction of change of ε0,c when ∂ε0,c
∂Bext

= 0, i.e. at Bext = 0
and, if it exists, at

Bext =
√

(gRBR)2 − (gLBL)2

g2
L − g2

R

, (5.10)

• The large magnetic field slope is:

lim
Bext�BL,BR

(
∂ε0,c
∂Bext

)
= µB

2 (gR − gL), (5.11)

• The low magnetic field slope is:

lim
Bext�BL,BR

(
∂ε0,c
∂Bext

)
= µBBext

2

(
gR
BR
− gL
BL

)
, (5.12)

• The offset from zero detuning at Bext = 0 is

ε0,c(0) = µB
2 (gLBL − gRBR) (5.13)

Note that a misalignment between the local fields BL, BR would not change these results,
but instead it would enable a coupling between the cavity and spin-full transitions (this
is the working principle of the DQD based spin qubits). In addition, adding a component
along the Bext axis to the local fields would remove the symmetry Bext → −Bext.

We can now compare this model with our experimental setup. In the experiment, the
imbalance in local magnetic fields BL,R could come from a difference in the two magnets
(inhomogeneities in the deposition, or a difference in the magnet axis resulting in a
different decay with elevation)6. On the other hand, the imbalance in Landé factor
could come from a change in the CNT nature (which is unlikely given its clean spectrum),
or again a difference in the orientation of the effective fields BL,R resulting in different
orbital effects on the left/right dots. However, as noted above, we would need local fields
perpendicular to the tube axis to reproduce our Bext-symmetric data, so orbital effects

6However we do not expect a large imbalance since the two magnetic textures are fabricated
simultaneously.
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would be small. With only these ingredients, in order to reproduce our experimental
data, we need much larger g factors than g ∼ 2 in each dot. Indeed, we have measured
slopes of up to 60 (see figure 5.7), which has to be compared to 1

2(gR− gL) according to
equation (5.11) !

In the end, this simple model enables us to discriminate between the effect of two non-
collinear fields and our experimental results. Our results cannot simply be explained by
the presence of a local magnetic field below each dot7. In addition, we can point out that
lifting the constraint of a low-electronic g-factor, this model can accurately reproduce
our measurements with g factors of the order of 100. The magnetic texture, with its
oscillating magnetic field, could be responsible for such a large renormalization of the
bare electronic g-factor.

5.2.2.2 Modeling of the effect of the magnetic texture

We now try and describe how the magnetic texture could induce a large renormalization
of the g-factor. We first consider its effect on one dot, modeled as a confined electron in
a segment of size L in 1D (oriented along z), with a parabolic dispersion relation.

The magnetic texture stray field and the external magnetic field can be written as follows,
with kλ ≡ 2π

λ where λ is the spatial period of the texture:

~Bosc = Bosc


sin(kλz)

0
cos(kλz)

 , ~Bext =


0
0

Bext

 (5.14)

In the absence of a magnetic texture, the dot orbitals are given by

ψn,s =
√

2
L

sin(kn,sz), with kn ≡
nπ

L
(5.15)

of eigenenergies E(0)
n,s ≡ En + s1

2gµBBext (En ≡ ~vFkn).

We describe the effect of ~Bosc by considering it as a small perturbation. The eigenenergies,
up to second order can be written:

E(2)
n,s = E(0)

n,s + 〈ψn,s|
1
2gµB

~Bosc · ~̂s|ψn,s〉+
∑

n′ 6=n,s′

∣∣∣ 〈ψn,s∣∣12gµB ~Bosc · ~̂s∣∣ψn′,s′〉∣∣∣2
En − En′ + 1

2gµBBext(s− s′)
(5.16)

7This stays valid taking into account the valley degree of freedom of the CNT, using the effective
Hamiltonian of Ref [201].
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We can calculate the coupling induced by the oscillating magnetic field:

〈
ψn,s

∣∣1
2gµB

~Bosc · ~̂s
∣∣ψn′,s′〉 =1

2gµB
(
Beff,z(n, s, n′, s′)

〈
s
∣∣ŝz∣∣s′〉+ (5.17)

Beff,x(n, s, n′, s′)
〈
s
∣∣ŝx∣∣s′〉) (5.18)

with:

Beff,z(n, s, n′, s′) ≡
Bosc

2 ( sin [(kλ − kn + kn′)L]
(kλ − kn + kn′)L

+ sin [(kλ + kn − kn′)L]
(kλ + kn − kn′)L

) (5.19)

Beff,x(n, s, n′, s′) ≡ Bosc
2

1− cos [(kλ − kn + kn′)L]
(kλ − kn + kn′)L

+

Bosc
2

1− cos [(kλ + kn − kn′)L]
(kλ + kn − kn′)L

(5.20)

Note that we have neglected the terms ±kλ + kn + kn′ , that are small assuming we are
not at the bottom of the band.

For a given n, we suppose there is one n′ such that either (kλ + kn − kn′)L ∈ [π/2, π] or
(kλ − kn + kn′)L ∈ [π/2, π], and we define αn ≡ (kλ + kn − kn′)L or (kλ − kn + kn′)L
accordingly.

In that case, the renormalisation of the energy writes:

E(2)
n,s =E(0)

n,s + 〈ψn,s|
1
2gµB

~Bosc · ~̂s|ψn,s〉+(1
2gµBBosc

)2
[(sinαn

αn

)2 1
En − Ek

+
(1− cosα

α

)2 1
En − Ek + sgµBBext

]
(5.21)

This calculation illustrates how an oscillating magnetic field can renormalize the external
magnetic field dependence of confined electrons, and thus the Landé g-factor of our
quantum dots. However, more work is still needed to provide a complete theoretical
description of our experimental observations.

5.2.3 Supplementary information

We now present additional measurements of the DQD presented in section 5.2.1, as well
as the estimate of the coupling strength to the microwave cavity.
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Figure 5.11: Fit of the cavity signal on one transition (a) Phase variation as
a function of B and εd for the considered transition. (b-e) Fit values as a function of
B for the following parameters: ε0 (panel (b)), γ (panel (c)) g (panel (d)) and t (panel
(e)). The transition considered is centered around Vgt = −0.719 V, Vg2 = −0.153 V.

5.2.3.1 Estimate of the coupling strength

We can extract from the cavity signal an estimate of the coupling strength of the cavity to
the DQD. For simplicity, we extract effective parameters, assuming the same detuning-
dependence for our DQD transitions as for the charge qubit (see equation (5.4)). We
show in figure 5.11 the fit of the cavity transmission (given by equation (5.1)):

fDQD(εd) =
√

(εd − ε0)2 + 4t2 (5.22)

The remaining fit parameters are:

κ = 5.5 MHz, fcav(B) = 6.42− 6.427 GHz, fd = fcav

With this sample, we obtain a coupling strength of up to g = 2π × 80 MHz. The
decoherence for this transition is of the order of Γ ∼ 2 GHz, and may be quite high
due to the relatively large coupling to the DQD leads (see figure 5.4(d)), in addition
to charge noise. For these measurements, the cavity was driven with a low-power tone,
with an estimated photon number of about n ∼ 2.

The extracted coupling strength can be favorably compared to recent experimental
results on strong charge-photon coupling: g

2π = 7 MHz [202], g
2π = 5 MHz [235], or

g
2π = 119 MHz with a high-impedance resonator [265]. In addition, it corresponds to
a cooperativity C ≡ g2

κΓ well above 1, enabling a coherent exchange between the two
systems. However, here the relaxation rate is too strong to reach the strong coupling
regimes. Overall, most experiments on coupling a charge qubit to a typical microwave
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cavity obtained coupling constants in the range of g
2π = 10− 50 MHz [3, 185, 266]. One

factor that could contribute to the large measured coupling strength is the size of the
mesoscopic circuit (of about 1.5 µm, yielding a large capacitive lever arm to the gate),
which is made possible by the use of a very clean CNT.

Note that here the fit seems to indicate that there is a magnetic field dependence of the
interdot coupling t. This is possibly an artefact of the simple picture we have adopted for
the dispersion relation of the DQD (taken as the one of the charge qubit). Alternatively,
for a DQD subject to two non-collinear fields BL,R the cavity signal will change with
Bext : An angle of θ between the two fields will change the value of the hopping rate
without spin flip: t → t cos(θ) at Bext = 0. At strong magnetic field Bext � BL,R, we
recover a rate t.

5.2.3.2 Additional measurements

In chapter 4, we have presented the effect of a change in the magnetic texture on a single
quantum dot bound states, over a magnetic scale of 1.2 T. In this chapter, on the other
hand, we have studied the evolution of a DQD internal transitions over a much smaller
range of magnetic field, at most ±200 mT (at higher magnetic field, the cavity resonance
is too degraded by the Zeeman effect of the field on the Nb superconducting sheet). Thus
we expect that the magnetic texture is not very affected by the magnetic field over this
field range. This approximation is substantiated by field MFM measurements, shown
in figure 5.12. Those MFM measurements were performed on an identical DQD circuit
fabricated with the same technique as the sample measured in the previous section. Its
topographic image is shown in panel (a). The remaining images represent the MFM
phase over one magnetic texture, under increasing magnetic fields, from Bext = 0 to
Bext = 400 mT. Each image is approximately taken at the same position. A dipolar
contribution to the phase signal is removed in these MFM images (as was done in section
3.3.3). However, the phase range is the same for all plots, and give an idea of which
fraction of the zero-magnetic field signal is transferred to the dipolar signal. We notice
that the realization for the magnetic domains is slightly different for each value of the
magnetic field, but the signal is overall of the same strength, with a similar characteristic
length over the range 0− 100 mT, and its strength is slightly reduced over the range
100− 150 mT. At higher magnetic fields, the signal is strongly reduced, as can be seen
from the measurement at 400 mT.

In the following we present additional transport measurements of the DQD circuit.
Figure 5.13 shows the mapping between the indices (n1, n2) and the stability diagram,
as well as B− εd dispersions of the phase contrast for additional transitions. Figure 5.14
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Figure 5.12: Field MFM characterization of the Co/Pt texture. (a) AFM
image of the device. We measure the MFM phase signal on one of the side magnetic
gates of the DQD circuit, subject to external in-plane magnetic field (in the same
axis as in the transport experiment) of 0, 50, 100, 150, 200, 300 and 400 mT. The phase
contrast is the same on each plot. The decrease in signal comes from the transfer of
part of the magnetization to the in-plane axis, and becomes particularly noticeable at

B > 200 mT. Courtesy of W. Legrand.

reproduces Coulomb diamonds when gates Vgt and Vg2 are swept over a few orbitals.
Figure 5.15 shows current as a function of external magnetic field and two gate axes
defined in order to primarily tune one or the other dot, labeled µ1 and µ2.

Figure 5.13: Phase signal dispersion in B − εd for additional transitions
(a) Phase signal as a function of B − εd for the transitions shown in the stability
diagram of figure 5.5. The axes for these plots are Bext = ±200 mT (horizontal) and
εd = ±300 µeV. The colorbar spans the range ∆φ = ±25◦. (b) Superposition of the
current and phase signals of the stability diagram shown in figure 5.4 (d,e). To be
precise, we plot 2 I−Imin

max(I−Imin) +3 Φ−Φmin

max(Φ−Φmin) . The labels (n1, n2) indicate the position
of the transitions shown in panel (a).
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Figure 5.14: Coulomb diamond for each dot. (a) Vsd−Vgt current map. We can
extract the lever arm for gate Vgt and the level spacing for dot 1, primarily tuned by

gate Vgt. (b) Same plot as (a) with gate voltage Vg2, tuning primarily dot 2.

Figure 5.15: Magnetic field evolution at large Bext. (a) Vgt − Vg2 current map.
It enables to define new axes, µ1 (blue) and µ2 (red) corresponding to the chemical
potential on each dot. (b) Bext − µ1 map and (c) Bext − µ2 map of the current over

about 10 dot orbitals, over a magnetic field range of ±2 T.



Conclusion and perspectives

Summary and conclusion

In this thesis, we have addressed the effect of a spin texture on confined electrons in
CNT based nanocircuits through both current measurements in the circuit and the
microwave transmission of a cavity, in two separate experiments. The experimental setup
allows for both measurements simultaneously, but the cavity was not functioning in the
first experiment. In these experiments, the CNT is placed above a Co/Pt multilayer
presenting magnetization domains. The stray magnetic field rotates in space and is
equivalent to both a synthetic spin-orbit interaction and a Zeeman splitting.

In the first experiment, we have shown that adding a very transparent superconducting
contact to the CNT dresses the confined electronic states. We have measured the
presence of two states below the superconducting gap. Their energies oscillate when
an external magnetic field slowly aligns the magnetic domains in the texture, with a
relatively small period. These oscillations stem from the change in the electronic bands
when the synthetic spin-orbit decreases. This enabled us to extract an estimate for the
spin-orbit energy induced in the CNT by the magnetic texture. Such a device regroups
all the ingredients enabling the emergence of Majorana quasiparticles in the CNT. We
have studied numerically how these Majorana quasiparticles can emerge in the specific
geometry where superconductivity is added in one section on the nanoconductor, and
a synthetic spin-orbit interaction in the remaining section. The presence of Majorana
quasiparticles is suggested by a zero-bias conductance peak appearing in specific regions
of the (µ, Bext) phase diagram. However, more information is necessary to prove
unambiguously the presence of MZM, because other effects can lead to the appearance
of trivial ZBP. On the contrary, cavity photons can reveal their self-adjointness, and are
a promising tools for manipulating them.

In the second experiment, we have rather studied two spin-textured quantum dots,
positioned above a Co/Pt gate each. We have measured the cavity photons signal,
which is strongly modified when the energy of the internal transitions between the two
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dots matches the photons energy. The DQD transition energies change when a small
external magnetic field is applied due to Zeeman effect, with large g-factors. Such
high g-factors are most likely due to their renormalization by the synthetic spin-orbit
interaction. This effect is strongly dependent on the dots’ orbital filling as expected for a
spin-orbit interaction. We have also observed a strong evolution of the effective interdot
hopping t with the magnetic field, which can also be due to the effect of the synthetic
spin-orbit interaction. Indeed, the use of a magnetic texture with a semiconducting
CNT has been proposed as an alternative way to build a spin qubit.

Perspectives

Both experiments presented in this thesis have improved our understanding of the effect
of a magnetic texture on confined electrons in a CNT circuit, both at low external
magnetic field (where the magnetic domains are not affected) and at large magnetic
fields, which align the domains.

The magnetic texture provides directly the two non-collinear magnetization axes needed
to build a spin-qubit. This could be investigated in a SQD geometry, coupled to the
cavity.

Our work on the texture characterization shows that the texture characteristics could
be improved by changing its composition. Among the changes, in future experiments
we could reduce the Co height, and use an asymmetric structure (Pt/Co/Au/Co for
example) to make the domains more robust to an external in-plane field. We could also
replace the Co by an Co/Fe alloy, and increase the number of repetitions to increase the
amplitude of the oscillating magnetic field.

Increasing the amplitude of the magnetic field would be very beneficial in the search for
Majorana quasiparticles. From the numerical simulations of our particular geometry,
we now understand better the shape of the zero-modes’ wavefunction. New circuit
geometries, such as the DQD geometry of the second experiments, would potentially
accomplish a greater separation of two MZMs.

Finally, the study of light-matter coupling in our specific geometry could be pushed
further to show how cavity photons can reveal the self-adjoint property of MZMs.



Appendix A

Constant interaction model for a
S/QD/N device

A.1 General equations

As mentioned in section 4.1.5, we use a constant interaction model in the strong Coulomb
blockade regime (Γ� Ec) to interpret the conductance maps of the control devices B and
C, presented in figures 4.7 and 4.9. We start by recalling how the constant interaction
models yields the Coulomb diamond lines for a N/QD/N device before describing a
S/QD/N device.

A.1.1 N/QD/N device

We here give the general equations that are used to understand the stability diagram of
a N/QD/N device.

The model is based on two assumptions. First, the electronic interactions both inside
the dot and between the dot and the circuit are constant, and can be parametrized by
the relative capacitances between the circuit elements (dot, leads, gates). Then, the dot
spectrum consist in a series of single-particle energy levels εi, that are not modified by
interactions [267].

One can calculate the energy of the N and N − 1 occupancy of the dot, and thus the
electrochemical potential µ(N) = E(N)− E(N − 1). The energy of a dot connected to
two leads and coupled to a gate, occupied by N electrons is

E(N) =
N∑
i=1

εi + e2

2CΣ

(
N − CgVg + CLVL + CRVR

e

)2
(A.1)
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where CΣ = CL + CR + Cg is the sum of the capacitances to the dot (left, right leads
with voltages VL, VR and gate with voltage Vg). The second term in the right-hand side
correspond to the electrostatic interaction.

The center of the Coulomb diamond associated with the occupation number N on the
dot corresponds to the situation where both the leads energies (eVL,R) are smaller than
the energy cost of adding an electron to the dot (thus the charge is fixed to N):

µ(N) < eVL,R < µ(N + 1) (A.2)

Combining with equation (A.1), and taking VL = Vsd, VR = 0, this yields the four lines
of the Coulomb diamond, which can be rewritten:

eVsd = −Cg
CL

(eVg − eVg,N ) and − Cg
CL

(eVg − eVg,N+1) (A.3)

eVsd = Cg
CΣ − CL

(eVg − eVg,N ) and eVsd = Cg
CΣ − CL

(eVg − eVg,N+1) (A.4)

where Vg,N is a constant corresponding to the zero-bias degeneracy between the N − 1
and N occupancies. This enables the drawing of the stability diagram represented in
figure A.1.

Figure A.1: N/QD/N stability diagram Source: [237].

With this picture, we see that the gate voltage tunes the electrochemical potential of
the dot with a lever arm αg:

µ(N) = εN + e2

CΣ
(N − 1

2)− eαgVg with αg = Cg
CΣ

(A.5)
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One can convert the gate axis to an energy axis by replacing Vg → εd = eαgVg. The
diamond equations then become:

eVsd = − 1
α

(εd − εN ) and eVsd = − 1
α

(εd − εN+1) (A.6)

eVsd = 1
1− α(εd − εN ) and eVsd = 1

1− α(εd − εN+1) (A.7)

with α = CL
CΣ

the contact asymmetry, and εN is the zero-bias degeneracy point between
the N − 1 and N occupancies, on this new axis.

A.1.2 S/QD/N device

Figure A.2: S/QD/N stability diagram (a) Schematic representation of the
stability diagram between the N−1 and N occupancy. A positive current flows through
the circuit above the lines 1 and 4; a negative current does below the lines 2 and 3.
Line 5 indicates the position of a small current step due to a residual DOS at the
Fermi energy in the S contact. (b) Conditions for the existence of a positive or negative
current, as a function of bias eVsd, detuning εd and superconducting gap ∆. Compared
to the previous notations we have taken εN = 0. The bias potential drops along the
circuit with an asymmetry α. These enable us to write the equation for the lines 2-3

(I < 0) and 1-4 (I > 0).

In a similar fashion, we can use a constant interaction model to obtain the stability
diagram equations for a S/QD/N system. Since the density of states of the S contact is
similar to the one of a semiconductor, the energy cost for an electron tunneling from the
left contact is just increased by ∆ [268]. We also add the magnetic field dependence of
the dot energy levels εN (B) =

(
εN,0 + s1

2gµBB
)
where s is the spin of this N-th level.

In the following, we drop the N indice.

The two conditions for having a positive current are:

ε > −(1− α)eVsd + ∆ (A.8)

ε < αeVsd (A.9)
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We write similar equations for I < 0 and we obtain the equations of the lines 1 to 4 in
figure A.2:

eVsd = ∆(B)− ε(B)
1− α at positive bias (A.10)

eVsd = −∆(B) + ε(B)
1− α at negative bias, (A.11)

where ∆(B) = ∆
√

1−
(
B
Bc

)2
.

One can note that since the diamonds shift in energy, the lower gap evolution should be
piecewise-defined. However in our experiments the critical field is reached before this is
needed.

A.1.3 Comment on the experimental data presented in chapter 4

We now present the specific parameters used to to fit the data presented in figure 4.9
(b) and 4.10 (d) and (e). The fit of the conductance peak energy as a function of an
external magnetic field is shown in figure 4.7.

We used different contact asymmetries between positive and negative bias to fit the
data, as one can see in the Vg − Vsd conductance map that the slope does change. The
positive bias asymmetry is noted α2, the negative bias asymmetry α. The N-th level
considered is the one associated with a spin down electron, as can be deduced from the
shift of the Coulomb diamonds in field visible in figure 4.9 (b).

In addition to S/QD/N peaks described in the previous section, a residual density of
state in the superconducting contact also gives rise to transport peaks similar to the
ones of a N/QD/N devices (called quasiparticle peaks).

The quasiparticle peaks positions is thus given by eVsd = ε(B)
α2

and eVsd = − ε(B)
1−α .

The fit values are the following:

s = −1, ∆ = 0.68 meV, Bc = 0.6T, ε0 = −0.02meV, g = 3.8, α = 0.31, α2 = 0.47

.



Appendix B

Supplementary material on
chapter 2

B.1 Scattering formalism with an oscillating magnetic field

In chapter 2, we demonstrated (in equation (2.29)) that the transfer matrix τ(L) for a
1D conductor of length L with an oscillating magnetic field can be written:

τ(L) = exp
(
iκL+ kα

A

4 L
)

(B.1)

where kα = ∂θ
∂z is the speed of variation of the magnetization angle, and A and K are 4x4

matrices defined in 2.2.2, dependent on the wave-vectors k↑ and k↓ associated with spin
up and down. This transfer matrix can be converted to the scattering matrix SM (L):

SM (L) =

τ12 · τ−1
22 τ11 − τ12 · τ−1

22 · τ21

τ−1
22 −τ−1

22 · τ21

 (B.2)

using a bloc notation for τ =

τ11 τ12

τ21 τ22

.
To calculate the transmission of a segment of conductor subject to an oscillating magnetic
field, we considered a confined structure as drawn in figure 2.3 (that we will call an N-
M-N circuit). For simplicity, we have surrounded the central segment with two potential
barriers of same height. The scattering matrix of each potential barrier is then written
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as:

Sbarrier =


−
√

1− T 0 −i
√
T 0

0 −
√

1− T 0 −i
√
T

−i
√
T 0 −

√
1− T 0

0 −i
√
T 0 −

√
1− T

 (B.3)

with T ∈ [0, 1] the barrier transmission (in energy).

The transmission of the structure is given by (noting r = −
√

1− T ):

TNMN = Tr[tNMN · t†NMN ] (B.4)

with

tNMN = −T (1− r(SM11 + rSM12 · (1− rSM22 )−1 ·SM21 )−1 · (1− rSM22 )−1 ·SM21 (B.5)

In chapter 2, certain values are given in reduced units (noted k, bosc, L there; to avoid
confusion we note them kred, bosc, Lred here) such that:

• kσ,red =
√
E + µ+ σbosc

• kredLred = kL

which corresponds to k = ~k√
2m , Lred =

√
2mL
~ and bosc = 1

2gµBBosc with m the electrons
effective mass.

In figure 2.6, we studied a structure surrounded by two polarized regions. The previous
transfer matrix has to be sandwiched by the transfer matrices associated with such a
region, Tpol,L and Tpol,R, which can be written as:

Tpol,L = R−1(0, 0, µL)R(Bpol, θ0
L, µL) ·Tprop(LL) ·R−1(Bpol, θ0

L, µL)R(Bosc, 0, µ)

Tpol,R = R−1(Bosc, θ(L), µ)R(Bpol, θ0
R, µR) ·Tprop(LR) ·R−1(Bpol, θ0

R, µR)R(0, 0, µR)

Tprop(L) ≡


eik↑L 0 0 0

0 eik↓L 0 0
0 0 e−ik↑L 0
0 0 0 e−ik↓L


where the rotation matrices R(B, θ, µ) are the same as the one defined in equation (2.24)
where k↑,↓ depends on B and µ through equation (2.30). The polarization segments
p = L,R have a length Lp, with chemical potential µp (equal to the chemical potential
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of the reservoirs) and polarization axis θ0
p. As before, the transfer matrix contains both

a propagation and the change of coordinate system. For simplicity, in the calculation
we always take θ0

L = 0 and θ0
R = π (the opposite axes roughly reproduce a stray dipolar

field).

B.2 Tight-binding formalism

H1D =
∫
dz
[
Ψ†↑(z)Ψ

†
↓(z)

]
H1D

 Ψ↑(z)
Ψ↓(z)



H1D(z) = − ~2

2m
∂2

∂z2 + Ezsz − µ− eV⊥(z)
(
a+ a†

)
− iαsy

∂

∂z

with the same convention for the spin-orbit strength α as the one adopted in chapter 2.

We discretize the conductor of length L in N sites, separated by a length l with Ψ̂(nl) =
d̂n/
√
l, V n
⊥ = V⊥(nl):

H1D =
∑

n∈[1,N ]
d̂†n (−µ+ bextsz) d̂n − t

(
d̂†nd̂n+1 + d̂†nd̂n−1

)
− id̂†nΛsy

(
d̂n+1 − d̂n−1

)

with:
t = ~2

2m
1
l3
, Λ = 1

2l2α, bext = Ez

µ = µ− 2t+ eV n
⊥

(
a+ a†

)
We can try and relate the level spacing in the continuous hamiltonian with this discretized
version. In the simple case of a chain with no spin-orbit interaction and Ez = 0, the
tight-binding formalism results in a dispersion relation of

EEz ,Λ=0(k) = −µ̄− 2t cos(kl) (B.6)

Around the bottom of the band, we can develop the cosine to obtain a relation dispersion
similar to the one of free electrons.

In presence of spin-orbit and Zeeman energy, the bands are non degenerate. The
dispersion relation is given by the eigenvalues of H1D, rewritten using the identity
d†n = 1√

N

∑
k e
−i~k ~rnc†k :

H1D =
∑
k,s

−2t cos(ka)− µ̄+ Ez −2Λ sin(ka)
2Λ sin(ka) −2t cos(ka)− µ̄− Ez

 d†k,sdk,s. (B.7)
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We get the following dispersion relation:

Es(k) = −µ̄− 2t cos(ka) + s
√
E2
z + (2Λ sin(ka))2 (B.8)

Again, we can develop this expression at the bottom of the band. We can then deduce
the level spacing in a confined chain through the condition kL = 2πn, n ∈ Z.



Appendix C

Additional information on the
experimental methods

C.1 Hall bar fabrication and measurements

C.1.1 Remarks on the fabrication of the different samples for the
magnetic characterization

As was mentioned in chapter 3, the magnetic texture in the transport device is deposited
over a rough substrate due to the presence of trenches. This roughness affects the
domains formation and their magnetic evolution, as shown by the magnetic simulations.

In order to try and reproduce this roughness, we performed a full-flake etching of the Si
chips used for the various characterization samples, with the same etching parameters
(with the exception of the SQUID measurements presented in figure 3.14).

C.1.2 Hall bar measurements

Hall bar fabrication

The Hall bar presented in section 3.3.3 were fabricated as follows. The Si/Si02 is etched
for 3min40s (with the Si02 RIE recipe) to try and reproduce the transport devices’
roughness. The metallic structures are defined in two steps. The measurement pads and
lines are lithographically defined in Ti(5nm)/Au(45nm), before evaporating the Co/Pt
multilayer.
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Figure C.1: Effect of domains on the longitudinal resistance Magnetic texture
with different configurations. When a current J is applied, the magnetizationM results
in the accumulation of charge on both sides of the sample (as marked by the plus
and minus signs), which can be measured as a transverse voltage drop. In presence
of domains, this charge accumulation is modified. In the two scenario (c) and (d),
this voltage drop would be measured simultaneously with the longitudinal resistance

through the two pink electrodes. Courtesy of A. Thiaville.

The Hall bar measurement is performed at T = 4 K, using two synchronized lock-in
at f = 77.7 Hz. A voltage of V = 5 V is applied on a 10 kΩ resistance in series with
the texture. A zero-field Hall resistance of about 53 mΩ is measured, which would
correspond to a misalignment of the electrodes of about 50 nm (given the longitudinal
resistance). It is subtracted in the Hall bar resistance plots of figure 3.14.

Details on the domain contribution to the Hall signal

Figure C.1 shows how the hall signal can be read in the longitudinal resistance if the
sample contains domains larger than the measurements electrodes, in a sample with a
few domains.

C.2 Detailed HFSS simulations parameters

We summarize here the important parameters for the HFSS simulations presented in
section 3.1.2. In our simulations, the chip is simulated as a 10 mm× 5 mm× 500 µm Si
volume topped by 0.5 µm of SiO2 and then vacuum. All the thin films are represented as
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2D metallic planes made out of a perfect conductor. The wire bonds are 3D volumes, also
represented as perfect conductors (in the experiments they are made out of aluminum,
superconducting at the measurements’ temperature). A CNT circuit is positioned in
both ground openings of the cavity, in an antinode of the cavity mode.

To simulate accurately the different volumes, we can specify the maximal meshing length
on the different circuit elements. This is defines as :

• 5 µm on the central conductor of the cavity,

• 20 µm on the SiO2 in the ground plane opening, around the CNT circuit,

• 100 µm elsewhere.

To refine the results, we could increase the meshing of the cavity central conductor at
the positions of the input/outuput capacitances, where the field amplitude is strong.

All the DC and RF ports are connected to the ground through a dissipative 50 Ω
resistance.

The HFSS parameters are:

• Solution type: Eigenmode,

• Modes of frequency f > 5 GHz,

• Maximum 10% variation on each adaptative pass and 8 passes maximum,

• Do lambda refinement with maximum 20% variation, with minimum 2 converged
passes

• Order of basis functions: mixed order.

C.3 Details on the second pad studied

In table 3.1, a large DC pad is mentioned but not shown. It is visible in figure C.2.

C.4 Cavity resonance without the galvanic pad

We also performed simulations on the influence of the CNT circuit on the cavity resonance
in the absence of the a galvanic pad connected on the central conductor of the cavity.
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Figure C.2: Additional details on the HFSS simulations (a) Details of the
“large DC pad” geometry. (b) Details of the shorter CNT circuits geometry: the cavity

line overlaps with the DC lines over 30 µm.

It tends to show that a shorter circuit degrades less the quality factor of the cavity, and
that the width of the element also influence a lot the resonance, as summarized in table
C.1. These simulations consider all metals as non-dissipative. The dissipative nature of
the metals used in the CNT circuit could strongly affect the resonance, seeing how the
field is concentrated in this region. Surprisingly, we find that the presence of one instead
of two circuits in the cavity (in either one or both the mode antinode) does not always
improve the quality factor. We did not investigate this effect in more details.

Geometry fc (GHz) simulated Q Measured Q
No DC circuit 6.8 42 000 ∼ 50 000

Two DC circuits of 70 µm long 6.5 4900
One DC circuit of 70 µm long 6.5 5400
Two DC circuits of 30 µm long 6.5 15500
One DC circuit of 30 µm long 6.5 11300

Table C.1: Quality factor Q and resonant frequency fc for some of the additional
cavity geometries tested. The geometry for the 30 µm long circuits is shown in figure

C.2.



Appendix D

Supplementary material on
chapter 5

D.1 Unit conversion for the detuning axis

The detuning is defined as
εδ = µ1 − µ2 (D.1)

where µi is the electrochemical potential of dot i. The two gate voltages act on each µi
with different lever arms, defined as:

µ1 = α11Vg1 + α12Vg2 (D.2)

µ2 = α21Vg1 + α22Vg2 (D.3)

The αii can be measured from the stability diagram at finite bias (the co-tunelling lines
only depend on the alignment of one dot with the leads). They can also be measured
from Coulomb diamond measurements1.

The slope of co-tunneling lines associated with a dot yields the ratio between the two
lever arms associated with this dot.

1In theory both lever arms can be deduced from the Coulomb diamonds, if we can distinguish the
two dots by their different slopes.
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D.2 Frequency dependence

We show in figure D.1 the evolution of the cavity resonance when a DQD transition is
tuned to resonance with the cavity frequency. The cavity signal is strongly distorted by
the DQD transition (around εd = 100), indicating a high coupling strength.

Figure D.1: Effect of the DQD on the cavity signal (a) Phase variation ∆φ, (b)
amplitude A and (c) amplitude relative variation ∆A/A as a function of drive tone fd

and detuning εd.

D.3 Stability diagram represented in figure 5.5

Figure D.2: Effect of the DQD on the cavity signal Current as a function of Vgt
and Vg2 in the same gate region as in figure 5.5. The co-tunnelling current lines enable

us to draw the stability diagram, and identify the zero-detuning lines.
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ABSTRACT 
 
In this thesis, we have studied carbon nanotube-based nanocircuits integrated in a microwave 
cavity architecture. Our device is compatible with the simultaneous measurement of both the 
current through the nanocircuit and the frequency shift of the cavity. These two signals give 
complementary information about the device. In the two experiments presented in this thesis, the 
carbon nanotube was positioned above a magnetic material containing several magnetization 
domains. The resulting magnetic stray field’s axis oscillates along the carbon nanotube length. 
For the confined electrons, this is equivalent to both a synthetic spin-orbit interaction and a 
Zeeman effect. This synthetic effect is evidenced in two ways. In a first experiment, we have 
measured the evolution of the nanotube’s energy levels when the magnetic material is 
progressively magnetized by an external magnetic field, thus destroying the oscillations of the 
stray field. In this experiment, the carbon nanotube had a very transparent contact to a 
superconducting metal, in addition to the synthetic spin-orbit interaction and Zeeman effect. 
These ingredients are a pre-requisite to observe Majorana quasiparticles in a one-dimensional 
nanoconductor. Those quasiparticles are under intense study for their potential use in quantum 
computing.  
In the second experiment, we have realized a double quantum dot in which each dot similarly lays 
above an oscillating magnetic field. The internal transitions of this DQD are measured with the 
microwave cavity signal. We evidenced a strong dispersion of the energy of the double quantum 
dots’ internal transitions with a small external magnetic field. This dispersion can be explained by 
a Zeeman effect in which the Landé factor, g, has been strongly renormalized by the synthetic 
spin-orbit interaction. 
 

MOTS CLÉS 
 
Electrodynamique quantique, Etats topologiques, Nanotubes de carbone, Cavité 
microondes, Couplage spin-orbite. 

RÉSUMÉ 
 
Dans cette thèse, nous avons étudié des nanocircuits à base de nanotubes de carbone intégrées 
dans une cavité micro-onde. Notre dispositif permet de réaliser simultanément des mesures de 
transport et des mesures micro-ondes, qui donnent des informations complémentaires sur le 
nanocircuit. Dans les deux expériences réalisées durant cette thèse, un nanotube de carbone est 
placé au-dessus d’un matériau magnétique qui présente plusieurs domaines d’aimantation. L’axe 
du champ magnétique de fuite résultant oscille le long du nanotube. Pour les électrons confinés, il 
est équivalent à un couplage spin-orbite synthétique et à un effet Zeeman.  
Cet effet synthétique est mis en évidence de deux manières. Dans une première expérience, 
nous avons mesuré l’évolution des niveaux d’énergie de la boîte quantique quand le matériau 
magnétique est progressivement aimanté par un champ extérieur, ce qui détruit le champ 
oscillant. Dans cette expérience, le nanotube a un très bon contact avec un métal 
supraconducteur en supplément des effets spin-orbite et Zeeman synthétique, qui sont les pré-
requis pour obtenir des quasiparticules de Majorana dans un nanoconducteur 1D. De telles 
quasiparticules sont activement recherchées pour leur utilisation pour le calcul quantique.  
Dans un second temps, nous avons réalisé une double boîte quantique, dans laquelle chaque 
boîte est constituée d’un segment de nanotube, situé au-dessus du même champ magnétique 
oscillant que dans la première expérience. Les transitions internes de ce système sont mesurées 
à l’aide de la cavité micro-onde. Nous avons mis en évidence une très forte dispersion de 
l’énergie de la transition interne avec un faible champ magnétique extérieur, qui peut être 
expliqué par un effet Zeeman pour lequel le facteur de Landé, g, a été fortement renormalisé par 
l’interaction spin-orbite synthétique. 
 

KEYWORDS 
 
Quantum electrodynamics, Topological states of matter, Carbon nanotubes,  
Microwave cavity, Spin-orbit coupling. 
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