Sébastien

Gildas

Siwei

Manik Hardik

Bien

Remercie Kasper Rasmussen

María Nayya-Plasencia

Yves Deville

Cédric Lau

En premier lieu, je tiens à remercier Pascal, pour son encadrement tout au long de cette thèse. Il a dépassé de loin ce qu'on est en droit d'attendre d'un directeur de thèse. Il a toujours été disponible et extrêmement réactif, peu importe l'heure, pour travailler, relire ou conseiller. Après ces trois années, je n'ai toujours pas compris comment il arrivait encore à trouver le temps de dormir. J'ai beaucoup appris auprès de lui, tant sur le plan professionel que personnel. Merci Pascal.

Bien que Pascal soit

Chapter 1 Introduction

Authentication, in which an entity acknowledges another, is one of the most fundamental applications of cryptography. Nowadays, authentication is increasingly often performed with contactless devices. Contactless authentication has become omnipresent in our world. Be it on the workplace, where access cards are replacing traditional keys to open the doors, or in our personal life, when we use contactless payment, most of us are regularly confronted to the contacless technologies. The large scale deployment of contactless authentication brings a strong incentive to scrutinize its security, as attacks against contacless communication protocols could impact all aspects of our lives, from professional (with access cards) to personal (with contactless payment). The goal of this thesis is to study the security of contactless communications, and in particular, contactless authentication.

Introduction

At the core of the security of contactless communications protocols lies the question of secure authentication. Authentication is the set if techniques that permits an entity, referred to as the verifier, to validate the legitimacy of another entity, called the prover. Authentication is generally performed for the prover to obtain access to a given service from the verifier, for instance, access to a building. Authentication protocols define the messages to be exchanged, and the acceptance rules. If we take a very simple scenario, in which a guard asks visitors a passwords before opening the door for then, the protocol is the following: the guard asks for the passwords, and the visitor responds. If the password given by the visitor is correct, then the guard opens the door. Otherwise, the guard chases the visitor. In this case, the prover is authenticated using something he knows. This is one of the three authentication mechanisms that are usually employed. Authentication is generally achieved by verifying something:

• The prover owns, for instance an access card;

• the prover knows, for instance, a secret handshake;

• the prover is, for instance, through his fingerprints.

Nowadays, in a contactless context, authentication is performed using a device the prover owns. For instance, in the Passive Keyless Entry and Start (PKES) technology, the traditional car key is replaced by a smart key. Smart keys are contactless devices: when a user holding one is close to the car, the car authenticates him as legitimate, and the door open. The technology that is used by contactless authentication protocols is called RFID, for Radio Frequency IDentification. An RFID exchange involves a tag, who plays the role of the prover, and a reader, who acts as the verifier. The most widely used kind of RFID tags is passive tags, which have no battery and receive power from the verifier during the exchange. Their wide usage is due to their very limited cost (a few cents), compared to active tags, which have their own power source. Passive tags are typically less powerful, and it is believed that further improvements in technology will not aim at CHAPTER 1. INTRODUCTION making them more powerful, but cheaper [Juels, 2006]. Hence, authentication protocols designed for RFID need to face the challenge of being secure, while working with low computational power. The design of lightweight authentication protocols, suitable for low power RFID tags, is difficult: most proposals have serious security flaws [START_REF] Avoine | Pitfalls in ultralightweight authentication protocol designs. 4 Avoine and Tchamkerten[END_REF]. At the other end of the spectrum, modern smartphones are generally equipped with an NFC chip. NFC is a subset of RFID, which operates on short distances, and in which the entities involved are not restricted to being either a tag or a reader, but can be both. Therefore, computational power is no longer necessarily a limitation for contactless authentication protocols. It should however still be taken into account, depending on the application. Another challenge for the security of contactless protocols is that the communications between the prover and the reader are sent in the air, so that any passive adversary with an antenna can read the messages exchanged. In contrast, eavesdropping wired communications requires more intrusive techniques, so that there is more surface of attacks on contactless devices. Hence, security is challenging to achieve for contactless authentication protocols.

The security of authentication protocols is defined with regards to an adversary, who tries to defeat the protocol. Defeating the protocol can have various meanings. The first one is of course obtaining unauthorised access to a service. The basic goal of an authentication protocol is to prevent this kind of attacks. However, other threats must be taken into account. For instance, legitimate provers could try to cheat on the protocol, by helping an unauthorised accomplice to gain access to a service. For instance, consider a public transportation system, which is accessed to with a contactless card. The card authenticates the user. A user should not be able to permit other people, who did not pay for a card, to authenticate on their behalf and use the public transportation. Finally, authentication protocols are sometimes required to protect the privacy of users. By privacy, we mean that, given the messages exchanged in two executions of the protocol, it should be difficult to determine whether the two executions were performed by the same user or not. We believe that privacy is highly relevant for contactless authentication. By relating two different executions of a protocol to the same user, an adversary can possibly infer a lot about the private life of the user. For instance, if the transaction history of a contactless payment system is leaked, and if the adversary is capable of linking which execution corresponds to a given device, then he practically obtains a location history of an individual. Indeed, if a honest user performed a contactless payment in a shop, then one can deduce he was in that shop. Location history can give a lot of information about a person, and even when no identifier is attached to the logs, it can be sufficient for an attacker to obtain the home or work address, and even identity and social links, of an individual [Krumm, 2009]. Such information can be used for criminal purpose, such as robbery (while the user is at work), or blackmailing, for instance if the adversary identifies suspicious behaviour from the user. The more data the adversary has, the more he can infer about users. In particular, the adversary can be a big company, with access to the logs for several services. Therefore, we believe that contactless authentication protocols should protect the privacy of their users, both with respect to external adversary who obtain some logs, and with respect to the verifiers themselves.

Authentication protocols, such as the Needham-Schroeder [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF] protocols, use cryptographic building blocks, for encrypting or authenticating messages. Hence, there are two aspects to the security of an authentication protocol. The first one is the protocol in itself: if it has logical flaws, then it can be defeated. For instance, the Needham-Shroeder protocols are vulnerable to attacks: in [START_REF] Denning | Timestamps in key distribution protocols[END_REF], the authors show how an adversary can defeat one of the protocols by replaying messages observed in a previous execution. The second aspect to the security of authentication protocols is the security of the cryptographic building blocks that compose it. For instance, if the protocol uses encryption, but the encryption scheme is not secure, then the protocol might be insecure. The search for vulnerabilities in cryptographic primitives is called cryptanalysis. In this thesis, we study both the security of the authentication protocols themselves, and of the cryptanalysis of the primitives that compose them. In the first part of this manuscript, we consider the case of distance bounding protocols, which were introduced to counter relay attacks, in which an adversary passively relays the messages exchanged between the prover and the verifier to illegally authenticate. In the second part, we propose to use CHAPTER 1. INTRODUCTION Constraint Programming (CP), a declarative programming paradigm, to evaluate the security of a cryptographic primitive called block ciphers.

Part 1: Distance Bounding Protocols

In this section, we introduce the first part of the thesis.

Relay Attacks, or the Chess Grand Master Problem

In 1976, Conway wrote the tale of "the little girl who played [...] against two Chess Bandmasters [...].

How was it that she managed to win one of the games? Anne-Louise played Black against Spassky. White against Fisher. Spassky moved first, and Anne-Louise just copied his move as the first move of her game against Fisher, then copied Fisher's reply as her own reply to Spassky's first move, and so on" [Conway, 1976]. This little story, known as the Chess Grand Master Problem, paved the way for a very rich area of research on relay attacks. It sets a very interesting problem: by simply relaying the moves from one player to the other without them being aware of the trick (for instance by having them sit in two different rooms, or playing the games via postal mail), someone can win or obtain a draw even without knowing the rules of chess.

However, relay attacks are not only a problem for chess players. An authentication protocol can be seen as a two-player game between a prover and a verifier. If an adversary relays the messages from one to the other, then he can win the game against the verifier and authenticate successfully. Eleven years after the first mention of the Chess Grand Master Problem, Desmedt applied relay attacks, under the name of Mafia Fraud, against a security protocol [START_REF] Desmedt | Special uses and abuses of the fiat-shamir passport protocol[END_REF]. In his example, the Mafia Fraud is performed against a payment protocol ran on a credit card. The victim wants to pay for his meal in a mafia owned restaurant. The employees of the restaurant, who are malicious, can hijack this payment, and relay it to buy expensive jewellery. To do so, the employees build a fake card reader and a fake card, that are able to communicate with each other from a distance, for instance via a radio link. One of the employees presents the fake reader to the victim for his payment, while a second one presents the fake card at the jewellery store. Both employees then just let the fake card and reader forward to each other the messages they receive. By this manipulation, the victim believes that his card is performing the payment protocol with the restaurant through the reader, when the card is actually communicating with the reader at the jewellery store due to the relaying. As for the Chess Grand Master Problem, the employees do not need to know anything about the secrets involved in the payment protocol in use, as long as they are able to relay the messages.

At the time when it was introduced, this attack was somehow mitigated by the fact that the card had to be inserted into a reader. Performing a relay attack required the victim to be willing to actively take part in the payment, which could limit the large scale applicability.

On the other hand, in contactless payment solutions, no action from the card owner is required. It suffices that the card is close enough to a reader to start the protocol, as it automatically responds when it is solicited. Moreover, relaying messages does not require any suspicious equipment anymore, as smartphones can be used both as fake readers and as contactless payment means. Relay attacks can indeed be performed with off-the-shelf smartphones, on actual payment protocols, as shown by Vila and Rodriguez in [Vila and Rodríguez, 2015]. For instance, an attacker can approach his smartphone close enough to the pocket where the victim stores his card, instead of having to ask the victim to insert his card in a terminal. On the other side, an accomplice of the attacker would just present his own smartphone as a means of payment to the reader of the jewellery store, with both phones communicating through a network. Relay attacks were also used to steal cars, by relaying messages between a smart key and a car [START_REF] Francillon | Relay attacks on passive keyless entry and start systems in modern cars[END_REF]. Since then, significant research effort was put in solving relay attacks, in particular through distance bounding, for instance [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], Boureanu et al., 2015, Debant et al., 2018].

CHAPTER 1. INTRODUCTION

Solving the Chess Grand Master Problem: Distance Bounding Protocols

In their 1991 paper [START_REF] Beth | Identification tokens -or: Solving the chess grandmaster problem[END_REF], Beth and Desmedt proposed to use time measurements for solving the Chess Grand Master Problem. The idea is to predefine a time interval t between each move. If one of the player does not play his move exactly t units of time after the previous move was played, then the other player detects there is a fraud. The first protocol relying on time measurements was introduced by Brands and Chaum in 1993 [START_REF] Brands | Distance-bounding protocols[END_REF]. The aim of this protocol is to estimate the distance between the prover and the verifier: in the event of a relay attack, it is likely that the victim is far away from the verifier. For instance, for a contactless payment, the prover should be no further than a few centimetres from the reader. To bound the distance, the round trip time of the messages exchanged during the protocol is measured by the verifier. Typically, the verifier starts a clock, sends a cryptographic challenge, and stops the clock when it receives the response. The measured time ∆ t corresponds to twice the time it takes for a message to go from the prover to the verifier (or vice versa), plus the time taken by the prover to reply. To transform this time into a distance, it suffices to observe that no information can travel faster than the speed of light c. Hence, then d = ∆ t •c

2 is an upper bound on the distance between the prover and the verifier. If the prover was any further than d , then it would mean that the messages travelled faster than light, which is assumed impossible. Consequently, if d is short enough, according to a predefined, application dependant bound d max , then the verifier gains the insurance that the prover is close enough. In other words, there is a time bound t max , corresponding to a distance bound d max , such that, if ∆ t > t max , then the verifier rejects the prover. Time based distance bounding is currently the most studied solution to relay attacks. However, it is noteworthy that other approaches were proposed, even though they are out of the scope of this thesis. In his seminal paper [Desmedt, 1988], Desmedt proposed that the prover computes his exact location on earth, signs it, and sends it to the verifier. The inconvenient to this approach is that it requires to trust the prover not to cheat. In addition, it requires a safe localisation system, which is not trivial to realise. In particular, using the GPS technology does not seem to be a robust solution [START_REF] Gorjón | Protecting against relay attacks forging increased distance reports[END_REF]. Another option is to measure the strength of the signal received by the verifier [START_REF] Krumm | Locadio: inferring motion and location from wi-fi signal strengths[END_REF]: since it decreases as the distance increases, it gives indications on the distance of the prover. However, an attacker can amplify the signal to make the prover appear closer to the verifier, and defeat this system. Similarly, several solutions [START_REF] Urien | Elliptic curve-based rfid/nfc authentication with temperature sensor input for relay attacks[END_REF] based on sensing the local environment (for instance the air temperature) were proposed, with the idea that if the prover was actually close to the verifier, then it would sense similar values. This approach however fails if the adversary is able to manipulate the value that is being sensed, which can be relatively easy. To prevent relay attacks, one can also isolate the prover inside a Faraday cage [START_REF] Bengio | Secure implementation of identification systems[END_REF] during the protocol, to make sure that it cannot communicate with external entities. While efficient, this solution is not very user friendly, and limits the usability of the system. Finally, radio frequency fingerprinting [START_REF] Rasmussen | Implications of radio fingerprinting on the security of sensor networks[END_REF]] can be used. It identifies the devices based on variations in the signal features due to imperfections in the manufacturing process. However, such fingerprinting can be counterfeited [START_REF] Danev | Attacks on physical-layer identification[END_REF], which renders this approach impractical.

Hence, distance bounding protocols seem to be the most promising option to defeat relay attacks. More than 40 distance bounding protocols exist in the literature [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF], Gildas et al., 2017], and most of them are vulnerable to at least one form of attacks. There exists 4 main types of attacks against distance bounding protocols, some performed by outsiders, and some by legitimate users. These attacks are called Mafia Fraud (MF), Distance Fraud (DF), Distance Hijacking (DH) and Terrorist Fraud (TF). A mafia fraud is performed by an external adversary, who tries to authenticate in the presence of a far away honest prover. In a distance fraud, the attacker is a legitimate, far away prover, who tries to authenticate from a distance. In a distance hijacking, the legitimate, far away prover additionally uses honest provers, located close to the verifier, to authenticate from a distance. Finally, in a terrorist fraud, he is helped by an accomplice, located close to the verifier.

CHAPTER 1. INTRODUCTION

Challenges and Contributions

Designing secure protocols is challenging, as shown by the small portion of distance bounding protocols in the literature that are resistant to all attacks. In a survey [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF], we showed that among the 42 studied protocols, only 10 were not known to be vulnerable to at least one of the classical threats against distance bounding protocols. Formal security models, such as DFKO [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], provide a framework, in which the security of a protocol can be proven. This proof ensures that the protocol is secure with regards to the threats as defined in the model. However, it is notoriously difficult to formalise, terrorist fraud [Fischlin and Onete, 2013a]. Several formal models for terrorist fraud exist, e.g., [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], Boureanu et al., 2015, Fischlin and Onete, 2013a], and most are designed specifically to prove the security of one particular protocol. Provable terrorist fraud resistance generally involves the introduction of intricate mechanisms, or even backdoors [Fischlin and Onete, 2013a], that only serve for the proof to work.

In the first part of this thesis, we study the problem of provably TF-resistant distance bounding, with or without privacy. We present two of our protocols, SPADE and TREAD [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF], Avoine et al., 2017], which use novel techniques to attain provable terrorist fraud resistance, and various degrees of privacy. We then present a generic terrorist fraud, which contradicts the security proofs of most existing distance bounding protocols (to the best of our knowledge, it concerns all protocols but [START_REF] Igier | Distance bounding based on puf[END_REF]). This terrorist fraud exhibits attack possibilities that are not considered in the security models. We propose a new terrorist fraud definition, called One-Step Terrorist Fraud (OSTF) that accounts for this attack.

Part 2: Using Constraint Programming for Cryptanalysis

Authentication protocols, including distance bounding protocols, use cryptographic primitives as building blocks. One of the most versatile cryptographic primitives, which can be used to build other ones, is block ciphers. Block ciphers are symmetric encryption schemes, which encrypt message blocks of fixed size into ciphertexts of fixed size. Block ciphers can be used to build other useful cryptographic primitives, such as hash functions, pseudorandom functions and message authentication codes, which are defined in Chapter 2. We chose to study the security of the primitives used in contactless authentication protocols through the security of block ciphers. For a block cipher, being secure means that it is difficult for an adversary to recover the secret key used to encrypt messages. The cryptanalysis of block ciphers is a very active research field. Cryptanalysing a block cipher typically involves bounding its security against generic, known attacks. For instance, one of the most famous type of attacks is differential cryptanalysis [START_REF] Biham | Differential cryptoanalysis of feal and n-hash[END_REF]. In a differential attack, the adversary exploits biases in the distribution of the XOR difference of ciphertexts obtained by ciphering messages with a given XOR difference under the same key. An example of bias could be the following: if two messages differing only in the last bit are encrypted with the same key (under a given block cipher), then there is a high probability that the two resulting ciphertexts will differ in their last bit too. Most of the time, the biases are not that obvious, so the cryptographers must study the propagation of plaintext differences through the cipher to determine which difference propagation path, or differential characteristic, is the most likely to occur. By doing so, they estimate the probability of the best differential, i.e., an input difference mapped to an output difference. Modern block ciphers typically operate on 64-or 128-bit plaintexts, so that trying all possible input/output difference pairs is intractable. Hence, the search for optimal differential characteristics is difficult. However, a clever branch and bound approach can tackle it [Matsui, 1994]. It is however more difficult when we also consider differences in the key, as in related key differential cryptanalysis. In a related-key differential attacks, the attacker can obtain the encryption of messages of his choice with the secret key, but also with related keys, which have a relation of his choice with the secret key. This kind of attacks is particularly relevant when a block cipher is used to build other primitives. For instance, Microsoft's Xbox uses a hash function built from a block cipher, TEA [START_REF] Wheeler | Tea, a tiny encryption algorithm[END_REF]. An attack on the hash function, due to a vulnerability of TEA in the related-key setting, permitted a hack of the system [ZDNet, 2002].

CHAPTER 1. INTRODUCTION

Challenges and Contributions

Performing related key differential cryptanalysis requires studying how differences in the message and in the key propagate through the ciphering process, in order to find the optimal related key differential characteristics. The size of the search space is very large: for AES, the encryption standard, the messages are 128 bits, and the key is 128 bits or more, so that exhaustive search is intractable. Dedicated search algorithms, which avoid exhaustive search by using strategies to reduce the search space, exist, e.g., [Biryukov andNikolic, 2010, Fouque et al., 2013]. However, designing such algorithms is time consuming, and results in large and difficult to maintain code. On the other hand, declarative paradigms, in which the developer simply states the problem, and the search is left to a dedicated solver, are sometimes used for cryptanalysis [START_REF] Mouha | Differential and linear cryptanalysis using mixed-integer linear programming[END_REF], Sun et al., 2014, Derbez and Fouque, 2016]. The most used paradigm is Mixed Integer Linear Programming (MILP).

In the second part of this thesis, we use Constraint Programming (CP) to perform related key differential cryptanalysis on two block ciphers: the standard AES [START_REF] Daemen | The Design of Rijndael[END_REF] and the lightweight block cipher Midori [START_REF] Banik | Midori: A block cipher for low energy[END_REF]. Constraint programming is a declarative framework which was previously not used for cryptanalysis. It is more generic than MILP: in MILP, the problems need to be expressed as set of linear equations, while in CP, there is no such limitation. The resolution methods are also different.

Outline

In Chapter 2, we introduce the notations we use through the thesis, as well as the cryptographic primitives that we use and their security properties, and some useful mathematical notions. In Chapter 3, we give an introduction to distance bounding protocols, and define the associated attacks. We present the DFKO [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF] framework, in which we perform our security proofs, and the proof methodology. In Chapter 4, we present two of our distance bounding protocols: SPADE [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF] and TREAD [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF]. The research problem that these protocols aim to solve is provable terrorist fraud resistance, and how to combine it with privacy. SPADE is fully anonymous, and uses a previously known mechanism to grand provable terrorist fraud resistance. TREAD has 3 instances, two of which are concerned with privacy and anonymity, and implements a novel technique for provable terrorist fraud resistance. We give the security proofs of both protocols. In Chapter 5, we present an impossibility result for terrorist fraud resistance, in the form of a generic terrorist fraud. This attacks works for every protocols in which the prover can be cloned. Provers can typically always be cloned, unless hardware measures make them physically uncloneable, for instance by using a temper-proof device which prevents the user from accessing the secret key, or by using physically uncloneable function. We then define a new terrorist fraud resistance notion, which takes this impossibility result into account. Chapter 6 introduces the search for optimal related key differential characteristics using constraint programming. We present the problem that we solve, the methodology that we use, as well as the tools and the experimental setup. Chapter 7 presents our CP models and results for the related key cryptanalysis of the AES. We build up from a naive modelling, with which the search is intractable, to an efficient model, using a different decomposition, that performs significantly better (less than 24 hours versus several weeks) than the state of the art methods. Moreover, we find related key differential characteristic which are better (in terms of probability) than the ones that were previously published. Finally, in Chapter 8, we present our CP models for the related key cryptanalysis of Midori [START_REF] Banik | Midori: A block cipher for low energy[END_REF], a lightweight block cipher [START_REF] Gérault | Related-key cryptanalysis of midori[END_REF] that comes in two versions: Midori64 and Midori128. Using CP, we find the optimal related key differential characteristics for both versions within a few minutes. With these related-key differential characteristics, we present key recovery attacks with practical complexity: 2 36 operations for Midori64, and 2 44 for Midori128.

CHAPTER 1. INTRODUCTION

Publications

In this section, we present the list of the articles we published during this thesis.

Presented in This Manuscript

The articles that we present in this manuscript are the following:

A Prover-Anonymous and Terrorist-Fraud Resistant Distance-Bounding Protocol [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF] A Terrorist-fraud Resistant and Extractor-free Anonymous Distance-bounding Protocol [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF] Fine-Grained and Application-Ready Distance-Bounding Security [START_REF] Boureanu | Fine-grained and application-ready distance-bounding security[END_REF] Constraint Programming Models for Chosen Key Differential Cryptanalysis [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF] Revisiting AES related-key differential attacks with constraint programming [START_REF] Gérault | Revisiting aes related-key differential attacks with constraint programming[END_REF] Combining Solvers to Solve a Cryptanalytic Problem [Gerault et al., 2017a] Using Constraint Programming to solve a Cryptanalytic Problem [START_REF] Gerault | Using constraint programming to solve a cryptanalytic problem[END_REF] Related-Key Cryptanalysis of Midori [START_REF] Gérault | Related-key cryptanalysis of midori[END_REF] 1.5.2 Other Publications Some of our publications are left out of this thesis. We briefly present them. Their titles and abstracts are given below.

Survey of Distance Bounding Protocols and Threats [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF]: NFC and RFID are technologies that are more and more present in our life. These technologies allow a tag to communicate without contact with a reader. In wireless communication an intruder can always listen and forward a signal, so he can mount a so-called worm hole attack. In the last decades, several Distance Bounding (DB) protocols have been introduced to avoid such attacks. In this context, there exist several threat models: Terrorist Fraud, Mafia Fraud, Distance Fraud etc. We first show the links between the existing threat models. Then we list more than forty DB protocols and give the bounds of the best known attacks for different threat models. In some cases, we explain how we are able to improve existing attacks. Then, we present some advice to the designers of the DB protocols and to the intruders to mount some attacks.

Breaking and fixing the HB+DB protocol [START_REF] Boureanu | Breaking and fixing the HB+DB protocol[END_REF]: The HB protocol and its HB+ successor are lightweight authentication schemes based on the Learning Parity with Noise (LPN) problem. They both suffer from the so-called GRS-attack whereby a man-in-themiddle (MiM) adversary can recover the secret key. At WiSec 2015, Pagnin et al. proposed the HB+DB protocol: HB+ with an additional distance-bounding dimension added to detect and counteract such MiM attacks. They showed experimentally that HB+DB was resistant to GRS adversaries, and also advanced HB+DB as a distance-bounding protocol, discussing its resistance to worst-case distance-bounding attackers. In this paper, we exhibit flaws both in the authentication and distance-bounding layers of HB+DB; these vulnerabilities encompass practical attacks as well as provable security shortcomings. First, we show that HB+DB may be impractical as a secure distance-bounding protocol, as its distance fraud and mafia-fraud security-levels scale poorly compared to other distance-bounding protocols. Secondly, we describe an effective MiM attack against HB+DB: our attack refines the GRS-strategy and still leads to key-recovery by the attacker, yet this is not deterred by HB+DB's distance bounding. Thirdly, we refute the claim that HB+DB's security against passive attackers relies on the hardness of the LPN problem. We also discuss how (erroneously) requiring such hardness, in fact, lowers HB+DB's efficiency and its resistance to authentication and distance-bounding attacks. Drawing on HB+DB's design flaws, we also propose a CHAPTER 1. INTRODUCTION new distance-bounding protocol -BLOG. It retains parts of HB+DB, yet BLOG is provably secure, even -in particular -against MiM attacks. Moreover, BLOG enjoys better practical security (asymptotic in the security parameter).

Verifiable Private Polynomial Evaluation [START_REF] Bultel | Verifiable private polynomial evaluation[END_REF]: Delegating the computation of a polynomial to a server in a verifiable way is challenging. An even more challenging problem is ensuring that this polynomial remains hidden to clients who are able to query such a server. In this paper, we formally define the notion of Private Polynomial Evaluation (PPE).

Our main contribution is to design a rigorous security model along with relations between the different security properties. We define polynomial protection (PP), proof unforgeability (UNF), and indistinguishability against chosen function attack (IND-CFA), which formalises the resistance of a PPE against attackers trying to guess which polynomial is used among two polynomials of their choice. As a second contribution, we give a cryptanalysis of two PPE schemes of the literature. Finally, we design a PPE scheme called PIPE and we prove that it is PP-, UNF-and IND-CFA-secure under the decisional Diffie-Hellman assumption in the random oracle model.

Analysis of AES, SKINNY, and Others with Constraint Programming [START_REF] Sun | Analysis of aes, skinny, and others with constraint programming[END_REF]: Search for different types of distinguishers are common tasks in symmetric key cryptanalysis. In this work, we employ the constraint programming (CP) technique to tackle such problems. First, we show that a simple application of the CP approach proposed by Gerault et al. leads to the solution of the open problem of determining the exact lower bound of the number of active S-boxes for 6-round AES-128 in the related-key model. Subsequently, we show that the same approach can be applied in searching for integral distinguishers, impossible differentials, zero-correlation linear approximations, in both the single-key and related-(twea)key model. We implement the method using the open source constraint solver Choco and apply it to the block ciphers PRESENT, SKINNY, and HIGHT (ARX construction). As a result, we find 16 related-tweakey impossible differentials for 12-round SKINNY-64-128 and construct an 18-round attack on SKINNY-64-128 (one target version for the crypto competition https://sites.google.com/site/skinnycipher announced at ASK 2016). Moreover, we show that in some cases, when equipped with proper strategies (ordering heuristic, restart and dynamic branching strategy), the CP approach can be very efficient. Therefore, we suggest that the constraint programming technique should become a convenient tool at hand of the symmetric-key cryptanalysts.

Introduction

In Part I of this manuscript, we are concerned with provable security. In provable security, the adversary is assumed to be polynomially bounded, i.e., he can only perform a number of operations that is a polynomial in a security parameter λ. Hence, a scheme is said to be secure if the success probability of an adversary diminishes exponentially as the security parameter increases. In other words, a scheme is secure if the success probability of any adversary is a negligible function of the security parameter. Intuitively, a negligible function is a function that goes exponentially smaller as the security parameter increases. Stated differently, the function is negligible if it is smaller than the inverse of any polynomial in λ. More formally:

Definition 1. Negligible function A function f : N → R + is negligible if for all positive integer c, there exists an integer N c , such that for all x > N c , f (x) < x c .

CHAPTER 2. CRYPTOGRAPHIC TOOLS

We use the notation neg l (λ) to denote the set of negligible functions of λ.

For instance, a distance bounding protocol uses cryptographic keys and nonces (random numbers). Their sizes, as well as the number of rounds, are chosen to be polynomial in the security parameter. Similarly, for the primitives we define in this section, the size of the keys is dependant on the security parameter.

In order to prove that the success probability of an adversary is negligible, we sometimes need to use abstractions, such as the Random Oracle Model (ROM). The ROM is an abstraction in which there exists a random oracle H(•), which maintains a list HL: this oracle is used to produce random values from its input. When querried with a given input i , it does the following:

• If i is querried for the first time, return a random value o and add the couple (i , o) to a list HL • If i was querried before, i.e., ∃(i ′ , o) ∈ HL,i = i ′ , then it returns the corresponding o.

In other words, it behaves like a hash function that returns truely random values. A hash function in the random oracle model is simply a hash function implemented with a random oracle.

After this brief introduction to provable security, we define the notations, cryptographic primitives and mathematical notions that we use. Note that a more complete definition of most of these primitives can be found in [Goldreich, 2006].

Notations

We define the notations that we use through the thesis.

⊕ is the bitwise xor operation.

a||b denotes the concatenation of two bitstrings a and b. i ∈[0;n] (a i) denotes the concatenation of the values a i , for i from 0 to n.

x $ ← E denotes the uniform random choice of a value from the set E. HW(a) denotes the hamming weight of a bitstring a, i.e., the number of ones in a. HD(a, b) denotes the hamming distance between two bitstrings a and b, i.e., HW(a ⊕ b). #X denotes the cardinality of the set X.

Pr [E] denotes the probability for the event E to occur.

Encryption

Encryption schemes use a cryptographic key to transform a message m into a ciphertext c, such that only the recipient, knowing the appropriate decryption key, can recover m from c. Encryption schemes can be symmetric or public key. If the scheme is symmetric, the encryption and decryption key are the same. If the scheme is public key, the messages are encrypted with a public key, and decrypted with a secret key..

Symmetric Key Encryption Scheme

A symmetric key encryption scheme is an encryption scheme in which the same key is used for encryption and decryption.

Definition 2 (Symmetric Key Encryption). A symmetric key encryption scheme SKE is a triplet of algorithms (SKE.gen, SKE.enc,SKE.dec) such that : CHAPTER 2. CRYPTOGRAPHIC TOOLS SKE.gen(1 λ): returns a secret key x. SKE.enc x (m): returns a ciphertext c from the message m and the key x. SKE.dec x (c): returns the plaintext m such that E.enc x (m) = c.

Public Key Encryption Scheme

In a public key encryption scheme, the key used to encrypt the messages is public: everyone can use it to encrypt a message. On the other hand, the decryption key is secret.

Definition 3 (Public Key Encryption). A public key encryption scheme PKE is defined by: PKE.gen(1 λ) returns a public and private key pair (pk, x).

PKE.enc pk (m) returns the ciphertext c from the message m and the public key pk.

PKE.dec x (c) returns the plaintext m such that E.enc pk (m) = c.

IND-CCA2 security

The IND-CCA2 notion was formalized for public key encryption schemes in [Bellare et al., 1998], and was later extended to symmetric schemes in [START_REF] Bellare | Authenticated encryption: Relations among notions and analysis of the generic composition paradigm[END_REF]. The authors of [Bellare and Namprempre, 2000] consider a notion they call IND-CCA, but mention in the paper that it corresponds to the notion of IND-CCA2 used for public key encryption. CHAPTER 2. CRYPTOGRAPHIC TOOLS

Message Authentication

We consider three kinds of message authentication schemes: MAC, digital signature and dynamic group signature. In a MAC, a tag authenticating a message is generated and verified with the same secret key. In digital signature schemes, the signing key is private and known only to the signer, whereas the verification key is public. In group signature schemes, each member of the group knows a private signature key, and a public verification key permits to verifiy that the signature was generated by a member of the group. We sometimes abuse language and consider MAC schemes as (symmetric) signature schemes.

The security properties we use are the unforgeability, and the anonymity for group signatures.

Message Authentication Codes

A MAC is an authentication scheme in which the keys used to authenticate and verify identical and secret. MAC.tag x (m): returns a tag σ from the message m and the key x.

MAC.ver x (s, m): returns a verification bit v from the tag σ and the key x.

Digital Signature

Digital signatures use a secret signature key, and a public verification key.

Definition 7 (Digital Signature). A digital signature scheme SIG is a composed of the three following algorithms: (SIG.gen, SIG.sig,SIG.ver), such that :

SIG.gen(1 λ): returns a signature/verification key pair (x, vk), where x is secret and vk is public.

SIG.sig x (m): returns a signature σ from the message m and the signing key x.

SIG.ver vk (s, m): returns a verification bit v from the signature s and the verification key vk.

Group Signature

In a group signature scheme, the signers are treated as a group. Each member of the group has a personal signing key that he uses to sign a message anonymously on behalf of the group. An entity, called group manager, has the power to open, i.e., deanonymise, a signature. A more complete definition is given in [Bellare et al., 2003].

Definition 8 (Group Signature). A group signature scheme G-SIG, using a user list U i , is defined by: G.gen(1 λ) returns a group/master key pair (gpk, msk) and sets the user list UL. The verification key is gpk.

G.sig x i (m) returns a group signature σ on the message m, such that G.ope msk (σ, m, UL,gpk) = U i G.ver gpk (σ, m) outputs 1 if and only if σ is valid for the message m and the key x i of a non-revoked user, and 0 otherwise.

G.ope msk (σ, m, UL,gpk) outputs the identity of the user U i who produced σ.

CHAPTER 2. CRYPTOGRAPHIC TOOLS

A group signature can be dynamic. In this case, new members can be added to the group, and members can be revoked. More specifically, an entity, called a group manager, adds new members. Additionally, a revocation algorithm is needed. A revoked user list RL is added, as well as the following algorithms: G.join msk (i , gpk,UL) is a protocol between a user U i (using gpk) and a group manager GM (using gpk and msk). U i interacts with GM to get his signing key x i , while GM outputs a value reg i and adds U i to UL.

G.rev msk (i , RL,UL,gpk) computes revocation logs rev i for user U i , using reg i , gpk and msk and moves U i from UL to RL.

The verification algorithm is modified to include the revoked user list:

G.ver gpk (σ, m, RL) outputs 1 if and only if σ is valid for the message m and the key x i of a nonrevoked user, and 0 otherwise.

In this thesis, we only use dynamic group signature schemes. When we mention a group signature scheme, we implicitely assume that it is dynamic.

Unforgeability

The unforgeability property of a message authentication scheme states that an adversary cannot generate a valid signature or MAC without knowing the corresponding key. For digital signatures and MAC schemes, this notion is known as Existential UnForgeability under Chosen Message Attack (EUF-CMA). For group signatures, a stronger notion (full-traceability) exists: it states that no user or coallition therof can produce a signature that opens to the identity of a honest user. This distinction needs to be introduced, since in the context of a group signature, a user might try to forge a signature on bealf of another one, for instance to build an alibi. This dishonest user knows more information than a classical adversary, since he knows a singing key. The EUF-CMA notion was first defined for digital signatures in [START_REF] Goldwasser | Strong signature schemes[END_REF], and then for MAC schemes in [START_REF] Bellare | The security of cipher block chaining[END_REF]. Full traceability for group signatures was defined in [START_REF] Bellare | Foundations of group signatures: The case of dynamic groups[END_REF].

The unforgeability experiment is defined as follows:

Definition 9 (EUF-CMA (MAC)). Let A be an adversary, and MAC be a MAC scheme. In the Exp Forge A ,MAC (λ) experiment, the challenger creates (x) using MAC.gen(1 λ), initializes an empty list Σ, and gives A access to a signing oracle: MAC.Tag(•,•) returns a MAC σ, using MAC.tagxm and adds the pair (m, σ) to Σ.

Then, A outputs a message m * and a signature σ * . A wins (and the challenger outputs 1) if the two following conditions are satified:

(m * , σ *) ∈ Σ and MAC.ver x (s, m) = 1
The advantage of an adversary A in the unforgeability experiment, Adv Forge MAC (λ), is defined as

Adv Forge A ,MAC (λ) = Pr[Exp Forge A ,MAC (λ) = 1]
and the advantage on the experiment as

Adv Forge MAC (λ) = max A ∈Poly(λ) {Adv Forge A ,MAC (λ)}. A MAC scheme MAC is unforgeable if Adv Forge MAC (λ) is negligible.
For digital signature schemes, the security game is essentially the same, except that A has access to the verification key verk, since it is public.

CHAPTER 2. CRYPTOGRAPHIC TOOLS

Definition 10 (EUF-CMA (digital signature)). Let A be an adversary, and SIG be a digital signature scheme. In the Exp Forge A ,SIG (λ) experiment, the challenger creates (x, pk) using SIG.gen(1 λ), sends pk to A , initializes an empty list Σ which contains all oracle produced signatures, and gives A access to a signing oracle: SIG.Sign(•,•) returns a signature σ, using SIG.sig x (m) and adds the pair (m, σ) to Σ.

Then, A outputs a message m * and a signature σ * . A wins (and the challenger outputs 1) if the two following conditions are satified: (m * , σ *) ∈ Σ and SIG.ver x (s, m) = 1

The advantage of an adversary A in the unforgeability experiment, Adv Forge SIG (λ), is defined as

Adv Forge A ,SIG (λ) = Pr[Exp Forge A ,SIG (λ) = 1]
and the advantage on the experiment as

Adv Forge SIG (λ) = max A ∈Poly(λ) {Adv Forge A ,SIG (λ)}.
A digital signature scheme SIG is unforgeable if Adv Forge SIG (λ) is negligible. For dynamic group signature schemes, the experiment is a bit more complex, since it includes attacks from group members. It is defined as full traceability.

Definition 11 (Full Traceability (Dynamic Group Signatures)). Let G-SIG = (G.gen, G.sig,G.ver) be a group signature scheme. In the full traceability experiment for an adversary A Exp Trace A ,G-SIG (λ), the challenger creates (UL, RL,msk,gpk) using G.gen(1 λ), gives gpk to A , and sets the lists CU and Σ, for corrupted users and oracle-issued signatures. During a first phase, phase A has access to the following oracles: G.join msk (i , gpk,UL) creates U i using G.join msk (ID, gpk,UL).

G.join C

msk (i , gpk,UL,RL) creates a corrupted user U i by using G.join msk (ID, gpk,UL), adding U i to CU and returning its secret key x i to A .

G.join(i) simulates the corruption of a user U i by returning its secret key x i to A and adding it to CU.

G.rev msk (i , RL,UL,gpk) revokes U i using G.rev msk (ID, RL,UL,gpk).

G.sig x i (m) returns a signature σ on behalf of U i , using G.sig x i (m) and adds the pair (m, σ) to Σ.

G.ope msk (σ, m, UL,gpk) opens a signature σ and returns U i to A , using G.ope msk (σ, m, UL,gpk).

Then, during a guessing phase, A outputs a message m * and a signature σ * . A wins (and the challenger outputs 1) if and only if:

(m * , σ *) ∈ Σ and G.ver gpk (σ * , m * , RL) = 1, G.ope msk (σ * , m * , UL,gpk) ∈ CU \ RL.
The advantage of an adversary A in the full traceability experiment, Adv Trace G-SIG (λ), is defined as

Adv Trace A ,G (λ) = Pr[Exp Trace A ,G (λ) = 1]
and the advantage on the experiment as

Adv Trace G (λ) = max A ∈Poly(λ) {Adv Trace A ,G (λ)}. A group signature G-SIG is traceable if Adv Trace G-SIG (λ) is negligible. CHAPTER 2. CRYPTOGRAPHIC TOOLS

Anonymity

Anonymity is a property of group signature schemes: if a group signature scheme is anonymous, then no one, except for the opening authority, can find out which user produced a signature within a group. The anonymity experiment for dynamic group signature schemes is defined as follows.

Definition 12. Let G-SIG = (G.gen, G.sig,G.ver) be a dynamic group signature scheme. In the anonymity experiment for an adversary A Exp Anon A ,G-SIG (λ), the challenger first uses G.gen(1 λ) to create the lists and keys (UL, RL,msk,gpk), gives gpk to A , and sets the lists CU and Σ. During a first phase, A has access the following oracles: G.join msk (i , gpk,UL) creates U i using G.join msk (ID, gpk,UL).

G.join C

msk (i , gpk,UL,RL) creates a corrupted user U i by using G.join msk (ID, gpk,UL), adding U i to CU and returning its secret key x i to A .

G.join(i) Simulates the corruption of a user U i by returning its secret key x i to A and adding it to CU.

G.rev msk (i , RL,UL,gpk) revokes U i using G.rev msk (ID, RL,UL,gpk).

G.sig x i (m) returns a signature σ on behalf of U i , using G.sig x i (m) and adds the pair (m, σ) to Σ.

G.ope msk (σ, m, UL,gpk) opens a signature σ and returns U i to A , using G.ope msk (σ, m, UL,gpk).

A selects two identities (ID 0 , ID 1). A 's advantage in this experiment is defined as

If
Adv Anon A ,G (λ) = Pr[Exp Anon A ,G (λ) = 1] - 1 2
and the advantage on the experiment as

Adv Anon G (λ) = max A ∈Poly(λ) {Adv Anon A ,G (λ)}. A group signature G-SIG is anonymous if Adv Anon G-SIG (λ) is negligible.

Others

In this section, we present pseudorandom functions, hash functions, zero-knowledge proofs of knowledge, commitment schemes, and the union bound.

Pseudo Random Functions

A pseudo random function (PRF) is a keyed function the output of which cannot be efficiently distinguished from that of a random function on the same domain. This primitive was defined, and an example (GGM) was given, in [START_REF] Goldreich | How to construct random functions[END_REF].

Definition 13 (Pseudo Random Function). A family of functions PRF s : {0, 1} k → {0, 1} l , indexed by a key s ∈ {0, 1} n , is pseudorandom if it satisfies the following two conditions:

CHAPTER 2. CRYPTOGRAPHIC TOOLS

• There is an efficient algorithm (polynomial in the security parameter) for computing PRF s (x), given s and x;

• For any A given oracle access to the function, the probability of distinguishing PRF s (•) from a random function 1 f : {0, 1} k → {0, 1} l is negligible.

Cryptographic Hash Function

Definition 14 (Hash Function). A hash function family H is a function H : K × M → Y, where K is a key space, M is a message space and Y is a digest space.

A cryptographic hash function H K is required to be collision resistant: for an adversary knowing the key K, it should be difficult to find two messages that have the same image. The latest standard hash function is SHA-3 [START_REF] Bertoni | EUROCRYPT 2013[END_REF].

Definition 15. Collision Resistance A hash function family H is collision resistant if the probability

Pr [K $ ← K; (M, M ′) ← A (K) : M = M ′ ∧ H K (M) = H K (M ′) is negligible.

Zero-knowledge Proof of Knowledge

Zero-knowledge proofs of knowledge were introduced in [START_REF] Goldwasser | The knowledge complexity of interactive proof systems[END_REF]. A zero-knowledge proof of knowledge scheme ZKP is a protocol that allows a prover to convince a verifier that he knows a secrete value x, such that a relation r , involving x, is true. This is denoted ZKP[x : r]. The properties of a ZKP are the following.

Correctness:

If the prover knows the solution x, then he is able to convince the verifier.

Soundness: If r is wrong, then the prover is not able to convince the verifier.

Validity: If the prover does not know the secret x, then he is not able to convince the verifier.

Zero-knowledge:

No information about the secret x leaks during the protocol.

Commitment

A commitment scheme permits a prover to commit to a value v, without revealing v. Later, he can open this commitment, i.e., reveal v, and prove that v is the value that was used to generate the commitment. A simple commitment is a hash v: it does not allow to recover v, but can be easily verified once v is revealed. Commitment schemes were first formalised in [START_REF] Brassard | Minimum disclosure proofs of knowledge[END_REF]. COM.open(c,r): returns the value v such that COM.commit(v,r) = c.

Definition 16 (Commitment Scheme

Union Bound

The union bound is a useful upper bound for the probability of an event occuring at least once [Kallenberg, 2002]. It states that, for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. More formally, for a set of events

{E i |i ∈ [1; k]}, we have Pr [k i =0 E i] ≤ k i =0 Pr [E i].
1 By random function, we mean a function chosen at random among all functions on the same interval. In a relay attack, an intruder defeats an authentication protocol by relaying the messages between the verifier and a far away prover. Distance bounding protocols are a classical countermeasures to relay attacks. In this chapter, we present the threats associated to distance bounding, and some protocols of the literature. We then present the formalism associated with distance bounding protocols, as well as the DFKO [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF] security model, which we use to prove the security of our protocols, which are presented in Chapter 4.

Introduction

Distance bounding protocols were introduced to counter relay attacks, in which an adversary relays the messages between a prover and a verifier. Since the introduction of the first protocol [START_REF] Brands | Distance-bounding protocols[END_REF], many designs for distance bounding appeared in the literature. In a survey [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF], we showed that among the 42 studied protocols, only 10 had CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING no known vulnerabilities against any distance bounding attack yet. Formal models for distance bounding were introduced [Avoine et al., 2009, Dürholz et al., 2011, Boureanu et al., 2015] to increase the confidence in the protocols. The models define precisely which frauds concern distance bounding, and provide a framework for performing security proofs. In this chapter, we introduce the security notions used in distance bounding. We first describe the general structure of distance bounding protocols, before giving a high level overview of their security properties and exemplifying with classical protocols from the literature. Finally, we present the DFKO [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF] formal model, and the proof methodology that we use to prove the security of our protocols in the next chapter.

General Structure of Distance Bounding Protocols

Distance bounding protocols are subject to very tight timing constraints: in one nanosecond, a radio wave travels 30 centimetres. As contacless applications, such as payments, are generally designed to work at some centimetres, distance bounding protocols typically need to be able to reliably perform challenge response rounds within nanoseconds. This places strong constraints on the hardware that is used, and is believed to be feasible only with single bit messages. For this reason, most distance bounding protocols are decomposed into slow (also called lazy) phases, during which messages of arbitrary length can be exchanged, and time-critical ones, during which the messages are single bits and the time is measured. The classical structure of a Distance Bounding protocol includes a slow initialisation phase, followed by a time-critical distance bounding phase, and a final slow authentication phase, even though some protocols do not have this final slow phase. The time measurement is performed during the distance bounding phase, in which the verifier sends a challenge, to which the prover immediately replies with a response.

In addition, to make the measurement reliable, the computation of the response by the prover should take a predictable, constant, and short time. If it is not predictable, then the estimated distance is meaningless, since the verifier cannot assess which part of the time was spent computing, and which was actually the time of flight of the response. If the computation time is not constant, the same kind of problems appears. Finally, if it is not almost instantaneous, frauds can be performed, for instance by overclocking the devices. If the computation time is very close to the propagation time to begin with, this makes little difference, but if it is much longer than the propagation time, then gaining even a few nanoseconds permits to cheat on the distance. To satisfy these constraints, the usual approach is to have the prover compute both response vectors in advance, so that it only needs to perform a table lookup to respond the challenges. In addition, distance bounding protocols, except for some notable exceptions, such as [START_REF] Meadows | Distance bounding protocols: Authentication logic analysis and collusion attacks. In Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks[END_REF], traditionally use one bit challenges and one bit responses.

In order to keep the challenges and responses one bit long, it is not feasible to add error correcting codes to them, which makes the distance bounding protocols vulnerable to channel noise. Hence, protocols sometimes include an error tolerance: they allow n er r errors in the responses to avoid rejecting legitimate provers due to transmission errors.

The general structure of a distance bounding protocol is shown on Figure 3.1. The prover and the verifier agree on two response vectors a 0 and a 1 during an initialisation phase, and then run a distance bounding phase. The distance bounding phase is composed of n rounds. At each of these rounds, the verifier picks a random bit c i , starts a clock and sends c i to the prover. The prover immediately responds with r i = a c i , and the verifier stops his clock after receiving r i . After the n rounds, the prover computes a tag τ to authenticate the transcript, i.e., the concatenation of the messages exchanged during the protocol, with the shared key x. The verifier accepts if all the time measures were correct, the responses correspond to the response vectors chosen during the initialisation phase, and the tag is correct.

To agree on the response vectors a 0 and a 1 , many modern distance bounding protocols use a PseudoRandom Function (PRF). Typically, both the prover and the verifier generate a random nonce, and these two nonces are used in a PRF keyed with their shared secret to generate the re-

Initialisation

Agree on two bitstrings(a 0 ,a 1)∈{0,1} n 2 sponse vectors. The interest of this method is its lightweight aspect, compared to the commitment schemes and digital signatures used in prior protocols. The first use of a PRF for unilateral distance bounding protocols (in which the prover does not need to authenticate the verifier) is the protocol of Hancke and Kuhn [START_REF] Hancke | An rfid distance bounding protocol[END_REF], depicted on Figure 3.2. In this protocol, during the initialisation phase, the prover generates a nonce NP, and the verifier a nonce NV. They then exchange the nonces, and both compute (a 0 ||a 1) = PRF x (NP||NV), where x is a shared secret key.

← ------------------------→ Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} c i ←---------------- Start clock r i = a c i i r i ----------------→ Stop clock Store ∆t i Verification CR = i ∈[0;n-1] (c i ||r i) CR = i ∈[0;n-1] (c i ||r i) If T = PRF x (NP||NV||CR) T ← PRF x (NP||NV||CR) T ----------------→ and ∀i ∈ [0; n -1], r i = a c i i and ∆t i ≤ t max Out V ←---------------- then Out V = 1 else Out V = 0
No message is exchanged during the verification phase.

Prover P Verifier V Shared key: x

Shared key:

x While this structure is used in most protocols, there are some exceptions that exploit different strategies for secure distance bounding. For instance, instead of just having two response vectors, some protocols (such as [START_REF] Avoine | An efficient distance bounding RFID authentication protocol: Balancing false-acceptance rate and memory requirement[END_REF]) use a response tree, where the prover picks one branch or the other depending on the challenge. Similarly, graph based response functions were proposed, for instance in [START_REF] Trujillo-Rasua | Distancebounding facing both mafia and distance frauds: Technical report[END_REF]. Some protocols, such as [START_REF] Kleber | Terrorist fraud resistance of distance bounding protocols employing physical unclonable functions[END_REF], rely on a Physically Uncloneable Function (PUF)1 instead of other cryptographic primitives, such as PRFs or signatures. Finally, while the challenges are usually sent at fixed interval, it is possible to randomise the time at which they are sent to improve the security, as in [START_REF] Kilina | [END_REF].

Initialisation NP $ ← {0, 1} l NV ←----------------NV $ ← {0, 1} l (a 0 ||a 1) = PRF x (NP||NV) NP ----------------→ (a 0 ||a 1) = PRF x (NP||NV) Distance Bounding for i = 1 to n c i $ ← {0, 1} c i ←----------------Start clock r i = a c i i r i ----------------→ Stop clock Store ∆t i Verification If ∀i ∈ [0; n -1], r i = a c i i and ∆t i ≤ t max Out V ←----------------then Out V = 1 else Out V = 0
These different designs were proposed in an attempt to build more secure protocols. Indeed, while classical relay attacks are easy to thwart with simple protocols, more advanced attacks exist, which we present in the next section.

Threats Against Distance Bounding Protocols

Distance bounding protocols aim at solving the problem of relay attacks. On the other hand, they are additionally subject to attacks that do not affect authentication protocols. Indeed, any attack that makes the prover appear closer than it actually is defeats the purpose of a distance bounding protocol, which is to compute a correct upper bound on this distance. In this section, we survey the existing threats against distance bounding protocols, as well as the classical defence mechanisms against them.

The first of these attacks is Mafia Fraud:

Mafia Fraud (MF) [Desmedt, 1988]: In a Mafia Fraud, an adversary A passes the protocol in the presence of a honest prover P, who is far away from the verifier V. The adversary is typically composed of two entities: one (the leech) that is close to the prover and acts as a verifier, and another one (the ghost) that is close to the verifier and that acts like a prover. The fraud succeeds if the verifier accepts the authentication of the prover. While the adversary can physically not relay both the challenges and the responses during the timed bit exchanges without being detected, he can safely relay the messages exchanged during the untimed part of the protocol. Additionally, it is generally considered that there is a small delay before the verifier begins the distance bounding phase, during which the adversary can send random challenges to the prover. Similarly, there is a delay after the end of the distance bounding phase. Hence, there are two main strategies to perform a mafia fraud: either send a random challenge in advance (pre-ask) and relay the (possibly modified) response, or relay the (possibly modified) challenge, and send a random response (postask). If the prover is within the distance bound, it might be possible for the adversary to modify the challenges and responses on the fly without being detected. For this reason, a generalisation of mafia frauds, labelled Man-in-the-Middle attack, was proposed in [START_REF] Boureanu | Practical and provably secure distance-bounding[END_REF]. In this attack, the adversary can play a learning phase beforehand, during which the prover is located close to the verifier, in order to try to learn something, such as a secret key. Hence, in this attack, the adversary has all the capabilities of a classical man-in-the-middle adversary. A common defence against mafia fraud and man-in-the-middle attacks is for the prover to authenticate the transcript after the distance bounding phase, so that modifications in the challenges are detected.

Attacks on the distance. The other kinds of attacks are performed by dishonest provers, who cheat on their distance with the verifier. Making the verifier believe a prover is close when it is actually far permits, for instance, to build a fake alibi. For example, in some companies, the employees have to use their contactless badge as they arrive and leave, to prove that they spent the day at work. By performing a distance fraud, a lazy employee could make believe that he spent the day at work, when he actually used his badge from home. This type of attacks comes in three CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING flavours: distance frauds, where the cheating prover receives no help, distance hijacking, where he exploits a honest prover located close to the verifier, and terrorist fraud, where he is helped by an accomplice who is close to the verifier.

Distance Fraud (DF)

In a Distance Fraud [START_REF] Brands | Distance-bounding protocols[END_REF], a lonely malicious prover located far away (at a distance more than t max from the verifier) passes the protocol, thus defeating the distance measurement. There are several possible motivations for committing such a fraud, other than simply breaking the protocol. For instance, if distance bounding on electronic bracelets is used for home arrest, an inmate who would perform a distance fraud would be able to pretend that he is within the restricted area, while actually being far away. Note that this attack can possibly require to amplify the signal, so that the prover and the verifier can communicate even though they are far away.

If a far away prover sends his response after receiving the challenge, its propagation time will be too long to meet the bound t max . Hence, a common attack strategy is to try making both response vectors equal, so that the response is independent of the challenge. When this is the case, a malicious prover can send his response bit in advance (before receiving the challenge), so that it arrives to the verifier on time.

To prevent distance frauds, one would ideally want to have r 0 = r 1 for as many rounds as possible. If k is the number of rounds for which r 0 = r 1 , then the prover needs to guess k challenges, so he succeeds with probability 1 2 k . In some cases, the malicious prover can gain some advantage in cheating on his distance if honest provers are present near the verifier: this attack is known as Distance Hijacking.

Distance Hijacking (DH)

Distance Hijacking [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF] is quite similar to DF: a malicious, far away prover passes the protocol. The difference is that in a DH, there are honest provers running the protocol near the verifier. This gives the malicious prover more surface of attack, so that some protocols are resistant to distance fraud, while being vulnerable to distance hijacking. A Distance Hijacking attack is generally performed by letting a close-by honest prover run the protocol, and then sending the final authenticated message on his behalf before he does. This is feasible when the rest of the protocol is independent of the secret key: if the verifier has no other means of verifying the identity of the prover than the final message, then it is possible to cheat. Preventing Distance Hijacking can be done by involving the secret key of the prover early in the protocol, for instance by computing the response vectors as a the output of a PRF keyed with the secret key of the prover. This way, if the final authenticated message is hijacked, the verifier will notice that the key used to authenticate it was not the one used to compute the responses.

Terrorist Fraud (TF)

A malicious prover trying to cheat on his distance might also receive the help from an accomplice located near the verifier: this kind of attacks is known as Terrorist Fraud [Desmedt, 1988]. Terrorist Fraud is an attack in which a malicious prover, located far away from the verifier, is helped by an accomplice to pass the protocol. The accomplice can be located near the verifier. Of course, a trivial attack in this scenario would be that the prover simply gives all his secret keys to his accomplice, so that the accomplice can pass the protocol on his own. Since there is not much to be done against a prover willing to give away his secret material to an accomplice, a terrorist fraud is only considered successful if the accomplice does not gain any significant advantage in authenticating by himself after the session in which he was helped by the malicious prover. To perform a terrorist fraud, a prover can ask his accomplice to relay the messages of the slow phases, and give him both response vectors, so that the accomplice can reply on time during the distance bounding phase. If it is possible for a prover to extract the secret key of his prover device, then it is unfeasible to CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING prevent him from giving it away. Here, secret key is used in the broad sense: it can refer to any material that would help the accomplice to impersonate the prover. Hence, we can only defend against provers that are not willing to give their secret key to an accomplice. Consequently, a strategy to prevent a terrorist fraud is to make sure that giving both r 0 and r 1 to the accomplice leaks the secret key. An example of this strategy is illustrated by Figure 3.3.

Prover P

Verifier V Shared key: x

Shared key:

x

Initialisation NP $ ← {0, 1} l NP ----------------→ NV $ ← {0, 1} l NV ←---------------- a = PRF x (NP, NV) Distance Bounding for i = 0 to n -1 c i $ ← {0, 1} r i = a i if c i = 0 a i ⊕ x i if c i = 1 c i ←----------------Start clock r i ----------------→ Stop clock Figure 3.3:
The classical countermeasure against terrorist fraud: if the prover gives both possible responses, i.e., a i and a i ⊕ x i to his accomplice for a given c i , he leaks one bit of his long-term authentication secret x.

Here, n is the numer of rounds, and l is the size of the nonces.

Some protocols are designed for the adversary to recover the secret key if the prover helps him once, for instance [START_REF] Reid | Detecting relay attacks with timing-based protocols[END_REF], but for other protocols, such as SKI [START_REF] Boureanu | Towards secure distance bounding[END_REF], the accomplice needs to be helped several times by the same prover to recover the key. The strategy of forcing the prover to leak his secret key to his accomplice is the one employed in the security models [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], Boureanu et al., 2015] which formally define the threats against distance bounding protocols. In Chapter 5, we show that there exists an attack which permits the prover to help his accomplice without leaking his secret key for most protocols. However, this attack is out of the scope of the security models. Hence, before Chapter 5, when we write that a protocol is terrorist fraud resistant, we mean that it is terrorist fraud resistant according to the adversarial capabilities described in the models, and do not account for attack defined in Chapter 5.

If the protocol does not feature resistance to transmission error, the strategy described on Figure 3.3 is sufficient. However, if communication noise resistance is taken into account in the design of the protocol, then this strategy fails, as we develop in the next section.

Terrorist frauds in noise resistant protocols

To make the protocols tolerant to transmission errors, the common approach is to make the verifier accept the authentication of the prover if no more than n er r rounds contain errors during the distance bounding phase. The threshold value n er r should be polynomial in n, and a typical value is 5% of n. If we make the assumption that an adversary can reduce the error rate of the channel, for instance by being very close to the verifier, then this adversary can have up to n er r errors in his responses and still be accepted. This is not really an issue for a classical adversary, since he still has to guess n -n er r response bits, and this becomes exponentially more difficult as the number of rounds n increases. On the other hand, it can allow for terrorist frauds against protocols in which combining the two response vectors reveals the secret key, such as Reid et al.'s protocol [START_REF] Reid | Detecting relay attacks with timing-based protocols[END_REF], as pointed out in [Hancke, 2012]. The malicious prover can give two response vectors to his accomplice, but deliberately introduce errors in n er r rounds. With this strategy, the accomplice can successfully pass the protocol due to the bit error tolerance, but recovering the key of the prover is difficult. Indeed, by XORing the two vectors, the accomplice can CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING only recover a bitstring with Hamming Distance n er r to the secret key of the prover. Since he does not know the positions of the incorrect bits, he has to try flipping each possible n er r -uple of bits, which requires n n er r operations, and is unfeasible for a sufficiently large number of rounds n. To counter such attacks, the accomplice can be given a way to pass the protocol on his own even with a noisy version of the secret key. For instance, a form of special mode can be used, in which one can use a noisy version of the secret key to authenticate [Fischlin and Onete, 2013a]. Other solutions let the accomplice obtain the whole key from a noisy version of it, for instance through a leakage scheme as in [START_REF] Boureanu | Practical and provably secure distance-bounding[END_REF], or using a scheme called an extractor, as in [START_REF] Boureanu | Optimal proximity proofs[END_REF]. This attack works because real world implementations differ from the perfect environment considered while designing the protocols, due to the necessity of handling communication errors in real life. Similarly, while it is tempting to abstract the PRF used in the protocol as a random oracle, this simplification opens the door for attacks when real PRFs are used, as shown in the next subsection.

PRF programming attacks

In 2012, [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols[END_REF] exhibit new attacks on PRF based distance bounding protocols. The key idea to these attacks is that the underlying assumption for the security of such protocols is that the prover cannot control the output of the PRF. If he could for instance force r 0 = r 1 for all rounds, then he could mount a distance fraud by sending his responses in advance, as they would become independent of the challenge. However, the security that is expected from a PRF is that, to an adversary who does not know its key, it is indistinguishable from a truly random function. On the other hand, in distance bounding protocols, the prover does know the key, so the security of the PRF alone may not be sufficient. Indeed, for instance, a good block cipher is expected to behave as a secure PRF, but its use as a PRF could lead to problems in a distance bounding protocol where the only input would be a prover generated nonce NP. Indeed, in this case, the prover could simply obtain the nonce corresponding to an all-zero bitstring output by computing the decryption of an all-0 bitstring with his secret key. A less trivial example is the following PRF f , used to compute PRF x (NP||NV) (where x is a secret key, NP the prover's nonce, and NV the verifier's nonce). It returns g x (NP||NV) (where g is a regular PRF) when NP = x, and r 0 ||r 0 (for a random r 0) when NP is equal to x. This is a secure PRF, since an adversary who does not know the key has a negligible probability of finding a NP such that NP = x, which would trigger the non random behaviour, but a malicious prover could exploit it by choosing NP = x to mount a distance fraud.

Similarly, [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols[END_REF] presented Mafia Frauds that work when the PRF used contained a trapdoor, and are efficient when part of the output of the PRF are XORed with parts of the key. They show that there exist intricate PRF constructions which allow a Mafia Fraud adversary to extract the secret key of the prover. In practice, it means that a malicious manufacturer could implement backdoors in the PRF used by the distance bounding devices, in order to be able to extract the key of any prover later.

For this reason, the designers of Distance Bounding protocols should be extremely careful on how the PRF is used. Preventing distance frauds based on such PRFs can be done by XORing a random mask picked by the verifier to the response vectors, so that they cannot anymore be completely controlled by the prover. The Mafia Fraud attacks can be prevented by using two separate keys, one for the PRF and one for TF resistance, as in [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist-fraud resistance[END_REF], or by using PRFs that are safe to use when XORed with parts of the key, for instance circular-secure PRFs (as defined in [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols[END_REF]).

The successive apparition of all these new attack model forced the design of many new protocols. In the next section, we present some classical ones.

CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING

Classical Protocols

In this section, we present a selection of Distance Bounding protocols from the literature. Note that this list of protocols is far from being exhaustive, since more than 40 distance bounding protocols appear in the literature [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF], Gildas et al., 2017].

Brands and Chaum: Protocol 1

In their seminal paper, "Distance Bounding Protocols" [START_REF] Brands | Distance-bounding protocols[END_REF], Brands and Chaum build the first distance bounding protocols. They build up to a secure protocol through several examples. The first one simply handles Mafia Frauds, and is shown on Figure 3.4. This protocol, similarly to most of those that followed, is composed of three parts, and only one, the Distance Bounding phase, is timed. During the first period, called the initialisation phase, the prover draws a random bitstring β of length n, where n is a number of rounds, chosen according to a security parameter. Then, during the distance bounding phase, a two-message exchange is repeated n times: the verifier draws a random challenge bit c i , and the prover immediately responds with r i = β i (the i t h bit of β). The verifier stores the time elapsed between sending c i (time t 0) and receiving r i (time t 1) as ∆t i = t 1 -t 0 . After that, during the verification phase, the prover generates a digital signature on the concatenation of all challenges and responses, and sends it to the verifier. If the signature is correct, and it holds that ∀i ∈ [1..n], ∆t i ≤ t max , then the protocol succeeds, and the verifier outputs an accepting bit Out V = 1. This protocol is resistant to Mafia Fraud: if an adversary relays the communications between the verifier and a far away prover, the time measurements will show it. Hence, the adversary can either send a random challenge to the prover in advance, or forward the correct challenge to the prover and try to guess the response. In both cases, at each round, his probability to guess properly is 1 2 . If the signature scheme used in the protocol is unforgeable, then the adversary only has a negligible probability of forging a valid final signature if he did even just one mistake among the n rounds.

Brands and Chaum however note a flaw in this protocol: the response bits during the Distance Bounding phase do not depend of the challenges at all. Due to this, a far away malicious prover can send his responses in advance, so that ∆ t ≤ t max despite the distance.

Prover P

Verifier V Secret Key: sk P Public Key:

pk P Initialisation β $ ← {0, 1} n Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} c i ←----------------Start clock r i = β i r i ----------------→ Stop clock Store ∆t i Verification σ = Sign sk P i ∈[0;n-1] (c i ||r i) σ ----------------→ If Verify pk P σ, i ∈[0;n-1] (c i ||r i) and ∀i ∈ [0; n -1], ∆t i ≤ t max Out V ←----------------then Out V = 1 else Out V = 0 Figure 3.4:
The first Distance Bounding protocol proposed by Brands and Chaum in [START_REF] Brands | Distance-bounding protocols[END_REF]. It is resistant to mafia fraud, but vulnerable to distance fraud.

CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING

Brands and Chaum: Protocol 2

In the first protocol, a malicious prover could defeat the distance bound by sending responses in advance. To counter this attack, called a Distance Fraud, Brands and Chaum propose a second protocol, depicted on Figure 3.5. This protocol is only designed to resist Distance Fraud, hence, the bitstring β is public and accessible by anyone. Then, during the Distance Bounding phase, the prover replies with r i = β i ⊕ c i upon receiving a challenge. The verifier then checks that all the responses are correct, as well as the time measurements. In this protocol, the prover cannot send the response in advance reliably: he only has a probability of 1 2 of guessing the correct challenge, which is needed to send the correct response. On the other hand, this protocol is not resistant to Mafia Fraud: since the response string is public, and no computations involve a secret value, an adversary can authenticate successfully.

Prover P Verifier V Public bitstring β Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} c i ←----------------Start clock r i = c i ⊕ β i r i ----------------→ Stop clock Store ∆t i Verification If ∀i ∈ [0; n -1], r i = β i ⊕ c i and ∆t i ≤ t max Out V ←----------------then Out V = 1 else Out V = 0 Figure 3.5:
The second Distance Bounding protocol proposed by Brands and Chaum in [START_REF] Brands | Distance-bounding protocols[END_REF]. It is resistant to distance fraud, but vulnerable to mafia fraud.

Brands and Chaum: Protocol 3

Finally, Brands and Chaum combined the idea of these two protocols to build one that is resistant to both Distance and Mafia fraud. It is depicted on Figure 3.6. Note that further in this thesis, when we mention Brands and Chaum's protocol, it is this one that is concerned. During the initialisation phase, the prover generates a random bitstring β, and sends a cryptographic commitments on its value. Then, during the Distance Bounding phase, the prover replies to the challenges c i with r i = β i ⊕c i . Finally, during the verification phase, the prover opens the commitment, so that the verifier can check that the β i values were the ones the prover had committed to, as well as a signature on the concatenation of challenges and responses. This protocol is secure against both Distance Fraud and Mafia Fraud. It is however vulnerable to a terrorist fraud: a prover can sent the response vector β to his accomplice without leaking any secret information. Brands and Chaum left this as an open problem for future work.

Reid et al.

In [START_REF] Reid | Detecting relay attacks with timing-based protocols[END_REF], Reid et al. propose a Terrorist Fraud resistant protocol. This protocol is based on the same idea as the one proposed by [START_REF] Bussard | Distance-bounding proof of knowledge to avoid real-time attacks[END_REF], except that the protocol of Bussard and Bagga uses computationally expensive public key primitives, while the protocol of Reid et al. only relies on symmetric primitives. Both protocol aim at making it impossible for a malicious prover to permit an accomplice to pass the protocol without revealing its secret key. Remember that for terrorist fraud resistance, we assume that provers want to protect

Initialisation β $ ← {0, 1} n , r com $ ← {0, 1} l C = COM.commit(β,r com) C ----------------→ Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} c i ←----------------Start clock r i = c i ⊕ β i r i ----------------→ Stop clock Store ∆t i Verification σ = Sign sk P i ∈[0;n-1] (c i ||r i) σ,r com ----------------→ If Verify pk P σ, i ∈[0;n-1] (c i ||r i) and ∀i ∈ [0; n -1], r i = COM.open(C,r com) i ⊕ c i and ∆t i ≤ t max Out V ←----------------then Out V = 1 else Out V = 0 Figure 3.6:
The third Distance Bounding protocol proposed by Brands and Chaum in [START_REF] Brands | Distance-bounding protocols[END_REF], in which COM is a commitment scheme. It is resistant to both Mafia

Fraud and Distance Fraud.

themselves against later impersonation. In the protocol of Reid et al., depicted on Figure 3.7, the prover and verifier each pick a nonce, respectively NP and NV, and exchange them. They use these nonces to build a response vector a = MAC.tag x (NP||NV), where MAC is a MAC scheme.

In the original paper, the requirement if for the output of MAC to be pseudorandom, so that it is actually used as a PRF. Both the prover and the verifier then compute e = x ⊕a. During the distance bounding phase, the prover responds with a i if the challenge is 0, and e i if the challenge is 1. In this protocol, if a malicious prover wants to help an accomplice to pass the protocol by giving him the two response strings, then the accomplice can recover x = a ⊕ e, so trivial terrorist frauds are avoided. al. [START_REF] Bay | The bussard-bagga and other distance-bounding protocols under attacks[END_REF] still However, this protocol, and others relying on the same idea, are vulnerable to terrorist frauds when noise resistance is added to the protocol, as developed in Section 3.3.4. The next protocol we present is resistant to terrorist frauds in the presence of noise.

Fischlin and Onete

In 2013, Fischlin propose a Distance Bounding protocol designed to have provable Terrorist Fraud resistance, even in a noisy communication environment, and to additionally resist PRF programming attacks [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist-fraud resistance[END_REF]. This protocol is shown on Figure 3.8. It uses two keys, x and y: x is used to compute the PRF, and y is the one that is XORed with the output of the PRF, in order to prevent Mafia Frauds based on PRF programming.

It starts with the verifier sending a nonce NV, and the prover sending a nonce NV, along with a value b. A honest prover always sends b = 0, and a value I such that PRF x (NP||NV) = I||a 0 . In this case, both then compute a 1 = a 0 ⊕ y, and start the Distance Bounding phase. The prover responds to the challenges with r i = a c i i at each round. Finally, the prover authenticates the transcript during the verification phase. To be Terrorist Fraud resistant even in the presence of noise, it includes a special mode which allows someone (typically the accomplice A of a dishonest prover after a Terrorist Fraud) knowing a bitstring with a low Hamming Distance to a secret key y to pass. This mode is activated when A sends b = 1. He can then run a kind of degraded version of the protocol, CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING Prover P Verifier V Shared key: x

Shared key:

x

Initialisation NP $ ← {0, 1} l NV ←----------------NV $ ← {0, 1} l a = MAC.tag x (NP||NV) NP ----------------→ a = MAC.tag x (NP||NV) Distance Bounding for i = 1 to n c i $ ← {0, 1} r i = a i if c i = 0 a i ⊕ x i if c i = 1 c i ←----------------Start clock r i ----------------→ Stop clock Store ∆t i Verification If ∀i ∈ [0; n -1], r i = a i ⊕ (c i • x i)
and

∆t i ≤ t max Out V ←----------------then Out V = 1 else Out V = 0 Figure 3.7:
The Distance Bounding protocol proposed by [START_REF] Reid | Detecting relay attacks with timing-based protocols[END_REF], where MAC is a MAC scheme used as a PRF.

in which the responses are equal to the challenges during the Distance Bounding phase. If he responds correctly, A is accepted with probability mi n(1, 2 HD(y,I)+TMAX+EMAX), where TMAX+EMAX is the maximum number of errors tolerated in the protocol. Some of these protocols come with proofs, which give a certain level of confidence in their security. In order to carry these proofs, a formal model is needed. This model precisely defines the attacker capabilities, as well as the threats that the protocol aims at resisting. In the next section, we present one of these formal models, which we used to prove the security of our protocols.

Formalism for Distance Bounding

In this section, we formally define the notion of distance bounding protocols, as well as the associated threat models. While several formal security models for distance bounding were proposed [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], Boureanu et al., 2015, Avoine et al., 2009], we only present the one by Dürholz, Fischlin, Kasper and Onete [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], which we used for our proofs.

Formal Definition of DB Protocols

Formally, DB protocols are interactive protocols running between two participants. The objective of the prover P is to prove to the verifier V that he is legitimate and located at a distance at most d max . The participants interact during rounds, defined as sequences of messages. For some of these rounds, the verifier uses a clock to measure the time elapsed between the emission of a challenge c i and the reception of the corresponding response r i . These back-and-forth rounds are referred to as time-critical rounds while otherwise they are referred to as slow phases or lazy phases. In most protocols, the DB phase of a protocol is composed of either n independent time-critical rounds or only one combined time-critical round. Having measured the elapsed time at the end of each time-critical round, the verifier then compares this value to a threshold t max associated with the maximal allowed distance d max . If at least one of these tests fails, the prover will not be considered in the vicinity of the verifier.

Without loss of generality, the DFKO model considers a single verifier. This verifier is assumed The Distance Bounding protocol propoposed by Fisclin and Onete in [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist-fraud resistance[END_REF]. It has 2 modes: If b = 0, it behaves as a regular Distance Bounding protocol, but if b = 1, it switches to a special mode in which it accepts the authentication probability p HW(I,y) (a probability that gets higher as the hamming distance between I and y decreases) if the responses are equal to the challenges.

CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING Prover P Verifier V Shared keys: x, y Shared keys: x, y Initialisation b = 1, NP $ ← {0, 1} l NV ←---------------- NV $ ← {0, 1} l (I ′ ||a 0) = PRF x (NP||NV) b,I ′ ,NP ----------------→ (I||a 0) = PRF x (NP||NV) a 1 = a 0 ⊕ y a 1 = a 0 ⊕ y Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} r i = a 0 i if c i = 0 a 1 i if c i = 1 c i ←---------------- Start clock r i ----------------→ Stop clock Store ∆t i Verification CR = i ∈[0;n-1] (c i ||r i) CR = i ∈[0;n-1] (c i ||r i) T = PRF x (NP||NV||I ′ ||b||CR) T ----------------→ Acceptance conditions b = 0 b = 1 ∧I ′ = I r i = c i ∧T correct ∧∆t i ≤ t max ∧r i = a c i i ∧∆t i ≤ t max
to behave honestly during the authentication of a prover. However, he may try to lift the anonymity of a prover if this is possible. On the other hand, provers can potentially behave maliciously and attempt to fool the verifier, either by themselves or by using (voluntary or unwilling) accomplices.

Most distance bounding protocols are revocable: it is possible to deny access to a given user if he needs to be banned from the system. For non anonymous protocols, revocation is trivial: the verifier knows with which prover it is interacting, so he can consult a revoked user list to check whether he should accept or not. On the other hand, for anonymous protocols, revocation is more tricky. Hence, we include a revocation mechanism in the features of a distance bounding protocol, even though it only needs to be explicitly defined for anonymous protocols. Note that for some protocols, such as PDB [START_REF] Ahmadi | Privacy-preserving distance-bounding proof-of-knowledge[END_REF]], the revocation is not defined.

When a protocol uses nonces, their length is denoted k.

The features distance bounding protocol, using a user list UL, and a revoked user list RL, can be defined as follows: DB.open(id P) is the algorithm that returns the identifier of the prover who was accepted in the session id P .

Formal models: The DFKO Framework

In this section, we describe the DFKO model for defining the classical threats against these protocols.

High Level Overview. The DFKO model defines the security properties of distance bounding protocols as security games [Shoup, 2004]. In a security game, an adversary plays according to some rules, and a winning condition, which define a successful attack. In the DFKO formalism, the interactions between the participants are modelled as sessions. For each security property, the capabilities of the adversary in these sessions are defined. While the adversary is generally allowed to do anything, even relaying messages between far away participants, some of these actions are said to taint the session in which they are performed. A tainted session intuitively denotes a session in which the adversary did something that is forbidden, either by the laws of physics or by the attack scenario. In order to win, the adversary must be able to run a session that is not tainted, and satisfies the winning conditions.

Adversary Model. In this DFKO model, an adversary is a probabilistic polynomial time algorithm, who can interact with provers and verifiers in three kinds of sessions:

• Prover-verifier sessions, in which he observes an honest execution of the protocol between a prover and a verifier.

• Prover-adversary sessions, in which he interacts with a honest prover as a verifier.

• Adversary-verifier sessions, in which he interacts with a legitimate verifier as a prover.

Each session is associated with a unique identifier sid.

The adversaries are quantified in terms of their computational power t , the number of proververifier sessions q obs they may observe, the number q v of adversary-verifier sessions and the number q p of prover-adversary sessions that they initiate as well as their winning advantage for the corresponding security games.

Each game has its own definition for a tainted message exchange. A tainted exchange indicates that an attack scenario is ruled out by definition, due for instance to the verifier's ability to detect pure relays through his accurate clock. In other words, the adversary can perform any action, but some of these actions may taint the session. An adversary cannot win a game in a tainted session. A session is tainted if any of its time critical phases is tainted.

Following the terminology introduced by Vaudenay [Vaudenay, 2007] and later re-used to define prover-anonymity [Hermans et al., 2013a], if an adversary is assumed to know the final result of an authentication session (i.e., accept or reject), he is said to be wide, while otherwise he is narrow. Orthogonally, if the adversary may never corrupt provers, he is considered to be weak while CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING if a corruption query is only followed by other such queries, the adversary is forward. Finally, if there is no restriction on the corruption queries, the adversary is said to be strong. In our proofs, we consider the strongest adversary model possible, namely wide-strong adversaries.

Communications and time.

Communications involving honest entities are always part of a session. To capture the notion of relays, the DFKO framework uses an abstract clock keeping track of the sequence of the adversary's actions. It is given as a function marker : N × N → N, such that marker(•,•) is strictly increasing. In the following definitions, Π sid [i , . . . , j] denotes a sequence of messages (m i , . . . , m j) exchanged during the session sid of the protocol.

A timed exchange is called a time-critical phase, it starts when the clock starts, and stops when the clock stops. A time-critical phase might contain several challenge response exchanges, each of which is called a round. In most protocols of the literature, each phase is composed of only one round, i .e., there is only one challenge and one response between the moment the clock starts and when it stops. Hence, except when imposed by the protocol, we sometimes use the word time-critical round instead of phase. The untimed message exchanges of the protocol are called lazy (or slow) phases.

Game structure

The threat models are represented as security games involving an adversary A and a challenger simulating the environment for him. All these game-based proofs start with the challenger building the simulation environment using DB.gen(1 λ). For clarity, this step is omitted in their descriptions. The adversary interacts with the simulated environment through oracles that he is allowed to run concurrently. These include a prover oracle (for prover-adversary sessions), a verifier oracle (for adversary-verifier sessions) as well as a session oracle to simulate an honest exchange between a prover ID and the verifier. The challenger can simulate the following oracles, to which A can access a polynomial number of times, for a prover identifier ID of his choice: DB.Verifier(•) runs the protocol DB.verifier(K V , UL,RL).

DB.Prover(•) runs the protocol DB.prover(ID,K ID).

DB.Session(•) returns the transcript of a new honest run of the protocol.

DB.Join h (•) simulates the join of a honest prover ID by running DB.join(ID,UL). We now give the definitions for the security games corresponding to the different attack scenarios.

Mafia Fraud (MF)

During a mafia fraud, an active MiM adversary, interacting with a single prover and a single verifier during several sessions, tries to authenticate.

The adversary is not able to purely relay information between the verifier and the prover during the time-critical phases. On the other hand, the model allows him to relay a modified message, which allows for something equivalent to the learning phase of [START_REF] Boureanu | Practical and provably secure distance-bounding[END_REF]. Accordingly, the tainted time-critical phases are defined as follows.

CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING Definition 18 (Tainted session (MF)). A time-critical phase Π sid [k, k + 1] = (m k , m k+1), for k ≥ 1, of an adversary-verifier session sid, with the message m k being received by the adversary as the k t h challenge from the verifier, is tainted by the time-critical phase

Π sid * [k, k + 1] = (m * k , m * k+1) of a
prover-adversary session sid * if the 3 following conditions are satisfied:

(m k , m k+1) = (m * k , m * k+1), marker(sid,k) < marker(sid * , k), marker(sid,k + 1) > marker(sid * , k + 1).
Once this definition is given, the game-based definition of MF resistance notion can be stated as follows.

Definition 19 (MF Resistance). For a DB authentication scheme DB, a (t , q v , q p , q obs)-MF adversary A wins against DB if the verifier accepts A in one of the q v adversary-verifier sessions sid, which does not have any critical phase tainted by a prover-adversary session sid * . The advantage of an adversary A Adv MF A ,DB (λ) in this experiment is the probability that A wins the MF game. We define the advantage on the MF experiment as

Adv MF DB (λ) = max A ∈Poly(λ) {Adv MF A ,DB (λ)}. A protocol is MF-resistant if Adv MF DB (λ) is negligible.

Distance Fraud and Distance Hijacking (DF and DH)

Distance Hijacking [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF] was not defined in the original DFKO framework. However, the framework was extended to include this threat in [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF], as a generalisation of the distance fraud property. In DF attacks, the adversary is a malicious prover who aims to authenticate from a distance greater than d max . In DH attacks, the adversary attempts to do the same, but he uses the unintentional help of legitimate provers located close to the verifier. The remote adversary may initiate the DB protocol and let the nearby prover complete the DB phase.

To capture DH in the DFKO framework, we consider an adversary (here a malicious prover) able to use the help of an honest prover in the verifier's proximity and having two choices.

• In the DB phase, he commits to a response in advance, before the challenge of that specific round, and sends that commitment. These commitments are not cryptographic commitments, with the properties of binding and hiding, but rather they indicate the prover's choice with regards to a response, which he must transmit to the verifier.

• In any phase, he commits to a special message Prompt, triggering the response by a close-by honest prover.

The prompting oracle also works in lazy phases. If the adversary either (1) fails to commit or prompt for one specific phase, or (2) sends a different value than committed after receiving the challenge, he taints the phase and the session. More formally, when the adversary opens a verifier-adversary session sid, he also opens two associated dummy sessions sid Commit for committed responses and sid Prompt for the responses prompted from the prover. Technically, such an adversary is more powerful than in a typical DH attack [START_REF] Boureanu | Optimal proximity proofs[END_REF], since the adversary can intercept time-critical responses that are sent by the honest prover, and replace them with his own committed responses. More precisely, the formal definition of tainted phases is as follows.

Definition 20 (Tainted Time-Critical Phase (DH)). A time-critical phase denoted

Π sid [k, k + 2 • l - 1] = (m k , m k+2•l -1
) of an adversary-verifier session sid, with the message m k being received by the adversary as the k t h challenge from the verifier, is tainted if one of the following conditions holds. This definition rules out some potential actions of attackers. Once this is done, the game-based definition of DH resistance notion can be stated as follows.

Definition 21 (DH Resistance). For a DB authentication scheme DB with DB threshold t max , a (t , q p , q v , q obs)-DH adversary A (with id A) wins against DB if the verifier accepts id A in one of q v adversary-verifier sessions, which does not have any critical phase tainted.

The advantage of an adversary A Adv DH

A ,DB (λ) in this experiment is the probability that A wins the DH game. We define the advantage on the DH experiment as

Adv DH DB (λ) = max A ∈Poly(λ) {Adv DH A ,DB (λ)}. A protocol is DH-resistant if Adv DH DB (λ) is negligible.
In this thesis, we present distance bounding protocols that are anonymous. In these protocols, the verifier does not know which prover is authenticated, so that it could seem pointless to perform a distance hijacking. However, in anonymous protocols, an entity called opening authority is allowed to deanonymize a session. Hence, a malicious prover could still mount an alibi, by performing a distance hijacking, and then asking the opening authority to verify that he did authenticate. For this reason, we still consider distance hijacking relevant for anonymous protocols, with regards to the opening authority.

Terrorist-Fraud (TF)

Terrorist fraud resistance is a notion that is difficult to capture. Many different definitions for it exist in the literature. The DFKO model defines the notions of GameTF [Fischlin and Onete, 2013a] and strSimTF [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF]. There also exists another definition, SimTF, which is similar to strSimTF, except that in SimTF, the prover and his accomplice are forbidden to communicate with each other during the time critical phases, while in strSimTF, this limitation is lifted.

In both strSimTF and GameTF, a far away, dishonest prover P * helps an accomplice A to pass the protocol. Both attacks are defined as a two phase security game, which are identical for the first phase, but different for the second. In the first phase, the prover helps the adversary (his accomplice), so that the adversary obtains some information, referred to as view. This adversary is accepted by V with probability p A . In the second phase, the information view is used in an authentication attempt. For GameTF, an adversary B(view) uses it, in the presence of P * , who is still far away but behaves honestly. He wins if he passes the protocol with a probability greater than the probability of the best MF adversary. For strSimTF, a simulator, using only view but without access to the prover, tries to authenticate, and wins if he passes with a probability greater than p A .

We first define the tainted session notion for both strSimTF and GameTF. For SimTF, the tainted phase definition is different, and we also give it for completeness, even though we do not use it in our proofs.

Definition 22 (Tainted session -GameTF and strSimTF).

A time-critical phase Π sid [k, k +2•l -1] = (m k , m k+2•l -1
), for k, l ≥ 1, of an adversary-verifier session sid, with the message m k being received by the adversary as the k t h challenge from the verifier, is tainted if there exists a prover-adversary sessionsid * , and messages (m * k , m * k+2•l -1) such that for all i ∈ {0, l -1} we have

marker(sid,k + 2 • i) < marker(sid * , k + 2 • i), and
marker(sid,k + 2 • i + 1) > marker(sid * , k + 2 • i + 1).

CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING

In other words, the adversary cannot relay both the challenge and its response.

In the SimTF definition, the malicious prover is not allowed to communicate with his accomplice at all during the time-critical phases. Thus, any communication between them during any time-critical phase taints the session, which is formalised by the following definition:

Definition 23 (Tainted Session -SimTF). An adversary-verifier session sid, containing the time-

critical phases Π sid [k, k + 2 • l -1] = (m k , m k+2•l -1
), for k, l ≥ 1, with the k-th message being received by the adversary, is tainted if there is a session sid ′ between the adversary and P such that, for any i , marker(sid,k) < marker(sid ′ , i) < marker(sid,k + 2 • l -1).

Let view be the internal state of A after colluding with P.

For GameTF, we are interested in whether this help was helpful to A , i.e., whether the help allows A to win the MF game with a better probability than an unhelped adversary.

Definition 24 (Helpful adversary). A TF adversary A against a distance-bounding authentication protocol DB is said to be helpful to an adversary B playing the MF game if, given view, B wins the MF game with a probability at least Adv MF DB (λ).

The GameTF definition follows:

Definition 25 (gametf-security). For a DB protocol DB, a (t , q v , q p , q obs)-terrorist-fraud adversary pair (A , P), a DB protocol DB is GameTF-secure if, for A authenticating with probability p A with the help of P * , at least one of the two following conditions holds:

• p A is negligible with respect to n,

• there exists a MF adversary B running O(q obs) prover-verifier sessions and O(q v) adversaryverifier sessions to which A is helpful.

In strSimTF, we are interested in the success probability of a simulator Sim, given view, and without any interaction with any legitimate prover. Let p Sim denote this success probability. The TF attack by the pair (P, A) is successful, if the help of P * during the attack does make any difference in the success probability of ∼ (i.e., if p A > p Sim).

The definition of the TF-resistance notion strSimTF follows:

Definition 26 (TF Resistance strSimTF). For a DB authentication scheme DB, a (t , q v , q p , q obs)terrorist-fraud adversary pair (A , P) and a simulator Sim running in time t Sim , the malicious prover P and his accomplice A win against DB if A authenticates in at least one of q v adversary-verifier sessions without tainting it with probability p A , and if Sim authenticates in one of q v sessions with the view of A with probability p Sim , then p A ≤ p Sim .

TF resistance is a binary property. Indeed, the accomplice (i.e., the simulator) is either able to impersonate independently the prover with at least the same probability in later sessions having the initial information received from the prover (i.e., TF-resistant) or not.

Slow-phase impersonation

The notion of slow phase impersonation was defined when the hardware used for distance bounding only allowed for a limited number of time-critical rounds. If the number of rounds is low, then an attacker can more easily guess the responses. This security property aims at expressing resistance to this kind of attacks: the slow phases of the protocol should be sufficient for a safe authentication. Hence, a protocol is said to be slow-phase impersonation resistant if it is unfeasible for an adversary able to relay the messages during the protocol to authenticate without purely relaying the messages of the slow phases.

Let the IF experiment Exp IF

A ,DB (λ) for an adversary A on a protocol DB be defined as follows. Let DB be a distance bounding protocol, and A be an adversary. A has access to the DB-oracles Join h (•), Join c (•), Revoke(•), Corrupt(•), Prover(•), Verifier(•), Session(i), H(•) and Taint(•). A wins if and only if ∃ trans ∈ TL v such that trans is the concatenation of all the messages exchanged during a DB session, and both the following conditions are satisfied.

• Out V = 1,

• ∄t ∈ TL v such that t = trans and the lazy phases of t and trans are equal.

The advantage of an adversary A Adv IF

A ,DB (λ) in this experiment is the probability that A wins the IF game. We define the advantage on the DH experiment as

Adv IF DB (λ) = max A ∈Poly(λ) {Adv IF A ,DB (λ)}. DB is IF-resistant if Adv IF DB (λ) is negligible.
We have chosen to discard the slow-phase impersonation-security threat in our analysis. Initially, this notion has been introduced for resource-limited provers and states that the authentication of a prover should be difficult even if only a reduced number of time-critical rounds is supported. This notion is relatively ambiguous: it states that the protocol should remain secure even if the adversary is capable of guessing all the time-critical responses. However, the number of rounds depends on the security parameter, just like the size of the keys and nonces. Therefore, if the adversary is capable of guessing all the responses, with probability 2 -n , then he should also be capable of guessing the key, and the protocol is not secure. Therefore, we believe that the need for slow-phase authentication is no longer a constraint for the design of DB protocols, and we do not take this property into account in our analysis.

MiM-Privacy

MiM-privacy (which we sometimes refer to as privacy) is a property that deals with the ability of an adversary to distinguish which prover is running the protocol, and was added to DFKO in [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF]. It is formalised as follows:

Definition 28 (MiM-Privacy Protection). Let DB be a DB scheme. The MiM-privacy experiment Exp MiM-Priv A ,DB (λ) for an adversary A on DB is defined as follows. A interacts with a challenger who runs the algorithm DB.gen(1 λ) and sends all the public parameters to A . During the experiment, A can access the usual oracles, but also DB.Corrupt(•),DB.Join c (•), DB.Join h (•), DB.Revoke(•). After interacting with these oracles, A sends the pair of provers (ID 0 , ID 1) to the challenger. If ID 0 or ID 1 is in CU, the challenger aborts the experiment. Otherwise, he picks b $ ← {0, 1}. Then, A loses access to Revoke(•) and Corrupt(•) on ı 0 and ı 1 (the oracles return ⊥ if A uses these inputs).

A is then given access to the following oracle: DB.Prover(•) b simulates a session by the prover P ID b using K ID b .

Finally, A returns b ′ . If b = b ′ , the challenger returns 1 (i.e., the guess of A is correct), while otherwise he returns 0.

We define A 's advantage on this experiment as

Adv MiM-Priv A ,DB (λ) = Pr[Exp MiM-Priv A ,DB (λ) = 1] - 1 2 ,
and the advantage on the privacy experiment as

Adv MiM-Priv DB (λ) = max A ∈Poly(λ) {Adv MiM-Priv A ,DB (λ)}.
DB is MiM-privacy preserving if Adv Priv DB (λ) is negligible. The next property is anonymity. It deals with the ability of the verifier to identify which prover is running the protocol. For this property, the adversary is even stronger, so the privacy game is included in it. Stated differently, an anonymous protocol is also private.

Prover Anonymity

Prover anonymity is a property that is stronger than privacy. A protocol is prover anonymous if even the verifier is not capable of distinguishing which prover is running the protocol.

Its definition is exactly the same as the one for the privacy game, except that A is additionally given the keys of the verifier K V as input.

Definition 29 (Prover Anonymity). Let DB be a DB scheme. The anonymity experiment Exp Anon A ,DB (λ) for an adversary A on DB is defined as follows. A interacts with a challenger who runs the algorithm DB.gen(1 λ) and sends all the public parameters to A . During the experiment, A can access the usual oracles, but also DB.Corrupt(•),DB.Join c (•), DB.Join h (•), DB.Revoke(•), and receives the set of verifier keys K V .

After interacting with these oracles, A sends the pair of provers (ID 0 , ID 1) to the challenger. If ID 0 or ID 1 is in CU, the challenger aborts the experiment. Otherwise, he picks b $ ← {0, 1}. Then, A loses access to Revoke(•) and Corrupt(•) on ID 0 and ID 1 (the oracles return ⊥ if A uses these inputs).

A is then given access to the following oracle: DB.Prover(•) b simulates a session by the prover P ID b using K ID b .

Finally, A returns b ′ . If b = b ′ , the challenger returns 1 (i.e., the guess of A is correct), while otherwise he returns 0.

We define A 's advantage on this experiment as

Adv Anon A ,DB (λ) = Pr[Exp Anon A ,DB (λ) = 1] - 1 2
and the advantage on the PA experiment as

Adv Anon DB (λ) = max A ∈Poly(λ) {Adv Anon A ,DB (λ)}.
DB is prover anonymous if Adv Anon DB (λ) is negligible.

Introduction to Proofs

These security games define the capabilities and aims of an adversary against a given security property. Given an adversary against a property of a protocol, the game is ran by a challenger, in such a way that A cannot distinguish between the environment provided by the challenger, and an actual execution of the protocol. These games can be used to build security proofs: from a security game, and a protocol, the aim is to prove that an adversary has a negligible success probability in winning this game. A success probability is negligible if it is defined by a negligible function of the security parameter. The size of the nonces and keys used in the protocol, as well as the number of rounds n, depends on the security parameter.

Since the adversaries we consider are bounded to perform a polynomial number of operations, if their success probability is negligible, then the protocol is secure. In our proofs, we generally prove that the success probability is negligible in n, instead of λ. However, since n is chosen according to λ, this is equivalent to showing that the success probability is negligible in λ.

Some proofs are too complex to carry them on the complete protocol directly. In order to make them simpler and easier to follow, we use the game-hopping technique formalised by Shoup in [Shoup, 2004]. In this formalism, the initial security game, denoted G0, is transformed to a simplified game G1. Let Pr [Gi] denote the success probability of the adversary in the game Gi : in order for the transformation to be possible, we need to prove that | Pr[G1] -Pr[G0]| ∈ neg l (λ), i.e., that the transformation does not alter the success probability of A in a significant way. Then, this game G1 can in turn be transformed into a simpler game, under the same conditions, and so on, until we reach a final game, in which the proof is easier to perform. The transition between games, or game hops, can for instance be used to replace pseudorandom values by actually random values, in order to finish the proof.

Conclusion

Relay attacks can be used by two colluding adversaries to defeat a security protocol, by making the prover and the verifier believe that they are communicating directly with each other, even though they are actually communicating with attackers. This can be prevented by measuring the time of flight of the messages, in an attempt to bound the distance of the prover, using Distance Bounding protocols. These protocols are typically composed of untimed initialisation phase, during which the prover and the verifier agree on two response vectors, followed by a timed distance bounding phase, during which the verifier sends one bit challenges and expects a response from the corresponding response vector. Some protocols have a final, untimed phase, in which additional messages are exchanged, typically commitment openings or signatures on the transcript. While most distance bounding protocols are resistant to relay attacks, generalised under the name of Mafia Fraud, they might be vulnerable to frauds from dishonest, distant provers trying to cheat on their distance: Distance Fraud, Distance Hijacking and Terrorist Fraud. In the first one, the prover acts on his own. In the second one, he exploits honest provers that are located near the verifier. In the last one, he uses the help of an accomplice, located near the verifier, but with the limitation that he does not want the accomplice to be able to impersonate him later (otherwise, the prover could perform a trivial attack, by simply giving the accomplice his credentials). These security properties, along with privacy and prover anonymity, were formalised in formal models, including the DFKO framework. Distance Bounding is a very rich research topic, as more than 40 protocols were published in the past three decades. The current challenges are provable security, in particular against Terrorist Fraud, and the preservation of privacy for the users of the protocols. In the next chapter, we present solutions for attaining various levels of privacy, while preserving provable security.

Chapter 4

Provably Secure Distance Bounding Protocols The number of distance bounding protocols vulnerable to attacks brought a strong incentive to build provably secure distance bounding protocols [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], Boureanu et al., 2015]. Additionally, growing concerns about privacy preservation motivate the need for protocols that are anonymous, in the sense that even the verifier cannot trace which prover ran the protocol, as long as this prover belongs to a list of legitimate users. In this chapter, we present our two provably secure distance bounding constructions: SPADE [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF] and TREAD [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF]. They both rely on the idea of leaking an authenticated session key, instead of a long term secret, for terrorist fraud resistance. This terrorist fraud resistance corresponds the DFKO security model [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], even though it can be defeated when specific hardware is used, as developed in Chapter 5.

We prove the security of both SPADE and TREAD in the DFKO [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF] formalism.

Introduction

The Snowden revelations about mass surveillance brought more incentive for the research community to focus on privacy preservation. In particular, it is important that the users of security systems can have the insurance that they will not be trackable, either by eavesdroppers, the company providing them with a service, ad companies, or government agencies. On the other hand, companies must protect their interests, so they could be reluctant to propose anonymous authentication if no revocation mechanism exists to ban misbehaving users.

Introducing anonymity with revocation in distance bounding protocols is challenging. Indeed, for terrorist fraud resistance, the responses need to be intertwined with the secret key of the prover. It seems difficult to make the verifier able to verify the responses if he is not capable of identifying which secret key is intertwined with the responses. If he is capable of doing it, however, he is able to identify the prover, which contradicts the need for anonymity.

While challenging, an anonymous and secure distance bounding protocol is appealing. It could for instance be used for membership cards in a public transportation service. In such a system, a user would pay every month to access the city transportation services, and present his card to a contactless reader to be allowed in subway stations. This system should of course be protected against relay attacks, since non paying users should not be able to use the subway. Additionally, a far away card holder should never be allowed to use his card, since it would permit him to let illegitimate users in. Terrorist Fraud resistance also makes sense in this context: we could imagine a rogue user who would offer people to use his own access for money (at a lower rate than the usual price). Such a rogue user, if he is rationale, would not want the other users to be able to access his card on their own, but only when they pay him, so he would like to retain his credentials. Additionally, many things can be inferred from the location history of an individual [Krumm, 2009], such as his home or work address, or even social links between individuals. Hence, the public transportation history of a person can be very sensitive information and should be protected, so the company running the subway should not be able to determine the whereabouts of a given user. On the other hand, if the company suspects that a user gave away his credentials, or that they were stolen, it should be able to ask an administrator to deanonymize a given protocol session, in order to be able to ban these credentials. Finally, the verifiers should be capable of determining whether an authentication attempt is performed by a revocated user or a legitimate one.

In this chapter, we solve the problem of designing protocols suitable for such use cases.

Contributions

We describe two constructions, both provably resistant to Mafia Fraud, Distance Hijacking and Terrorist Fraud (as per the security models). The first one, SPADE(for Secure Prover Anonymous Distance-bounding Exchange), is a distance bounding protocol that is prover anonymous: no verifier can identify which prover is running the protocol. It is also revocable, in the sense that a misbehaving user can be banned: the verifier can check whether the user running the protocol is legitimate or revocated, and deny this user access if he is revocated. Our second construction is TREAD (for Terrorist-fraud Resistant and Extractor-free Anonymous Distance-bounding), a generic construction that can be instantiated with an encryption scheme and a signature scheme (in the broad sense: a MAC can be used, for instance). Depending on the choice of encryption and signature, which can both be either public key or private key, the resulting distance bounding protocol can reach different levels of privacy. We describe three instances of TREAD: a lightweight one based on symmetric primitives (TREAD s ym), with no privacy goals, one that is MiM-private (an eavesdropper cannot determine which prover ran the protocol from the transcript, but the verifier can) and uses public key primitives (TREAD pr i v), and finally one that is prover anonymous and revocable, and uses more demanding cryptographic primitives (group signatures): TREAD ano . Both of these construction share a new design principle: instead of ensuring that a terrorist fraud adversary has to leak his long term secret, they make him leak a prover-chosen temporary value, as well as a signature on it. In the event of a terrorist fraud attempt, the accomplice can play the protocol with the same value. Hence, if he learnt enough information about it, he can pass the protocol.

The two constructions however differ on the method used to grant provable terrorist fraud re-CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS sistance. While SPADE uses a traditional method based on a key extraction mechanism, TREAD is the first provably terrorist fraud resistant protocol that does not need secret extraction or a backdoor. In fact, SPADE can be seen as a first step towards TREAD, which is more generic and elegant.

Related Work

Provable Terrorist Fraud Resistance Proving that the help received by an accomplice from a dishonest prover during a terrorist fraud is sufficient for this accomplice to authenticate on his own late is a not trivial. To do so, the usual strategy is to add specific mechanisms to the protocol. Using these mechanisms, an accomplice who received enough help to pass the protocol once with a non negligible probability can exploit the potentially incomplete information he obtained to pass the protocol whenever he wants after the initial help.

There are two strategies for such mechanisms: the first one is to use a special mode, or backdoor, as it is done in the protocol of Fischlin and Onete [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist-fraud resistance[END_REF]. This protocol includes a special mode allowing the adversary to authenticate if he knows a string containing enough bits in common with the secret key of the prover.

The second strategy is to permit the accomplice to extract the whole secret key from the partial information he obtained during the session in which he was helped, if this help was sufficient for him to authenticate with a non negligible probability the first time. Extracting the secret key makes the accomplice able of impersonating his companion prover at will. Hence, these mechanisms deter rational provers from helping illegitimate users authenticate.

In their SKI protocols [START_REF] Boureanu | Towards secure distance bounding[END_REF], Boureanu, Mitrokotsa and Vaudenay employed a leakage scheme allowing an adversary to retrieve the long-term secret key after authenticating with the help of a prover several times. The same technique is also used in the DB opt protocols [START_REF] Boureanu | Optimal proximity proofs[END_REF].

Similarly, Vaudenay [START_REF] Vaudenay | Sound proof of proximity of knowledge[END_REF] used extractor schemes to recover a string close to the long-term secret key from the view of all nearby participants after a TF attempt.

The first of our constructions, SPADE, uses a form a backdoor similar to the one used by Fischlin and Onete [START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist-fraud resistance[END_REF]]. The second one, TREAD, does not rely on such additional artificial mechanisms at all, which makes it simpler and somewhat more natural.

While a lot of effort has gone into designing secure DB protocols, the research community has only recently investigated privacy issues linked to distance bounding. Considering the amount of information that can be inferred from the location history of an individual [Krumm, 2009], protecting privacy becomes a critical issue for the wide acceptance of such technology.

Privacy To address this concern, two aspects have to be considered: (1) the protection of the privacy of the provers with respect to eavesdroppers and (2) the protection of the anonymity of the provers with respect to verifiers.

In the first distance bounding protocol offering privacy against external eavesdropper, Swiss Knife [START_REF] Kim | The swiss-knife rfid distance bounding protocol[END_REF], the prover does not send his identifier, but the output of a PRF keyed with a key he shares with the verifier, computed on the nonces. By checking one by one which key matches the result, the verifier is capable of identifying the prover, while no eavesdropper can. Another private protocol, HPO, was introduced in [START_REF] Hermans | Efficient, secure, private distance bounding without key updates[END_REF], in which the verifier does not have to go through all the keys it knows. The next year, Gambs, Onete and Robert extended this protocol to deal with honest-but-curious and malicious verifiers trying to track the users by linking their sessions. They proposed an extension of the HPO protocol, called GOR [START_REF] Gambs | Prover anonymous and deniable distance-bounding authentication[END_REF], in which the provers are managed as a group. A prover running the protocol simply proves that he belongs to the group. These two protocols do however not resist to terrorist fraud.

In 2015, Vaudenay [Vaudenay, 2015a] proposed a generic construction to add privacy against external eavesdropper to distance bounding protocols. His solution is to perform an authenticated key exchange before a one-time secure distance bounding protocol, and use the obtained key during the protocol. He does however not treat terrorist fraud in this work.

CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

In 2016, Kilinç and Vaudenay extended Proprox to obtain a privacy preserving and terrorist fraud resistant protocol, eProprox [START_REF] Kılınç | Efficient public-key distance bounding protocol[END_REF].

Finally, Ahmadi and Safavi-Naini [START_REF] Ahmadi | Privacy-preserving distance-bounding proof-of-knowledge[END_REF] proposed the first anonymous distance bounding protocol to resist terrorist fraud. Their protocol is an updated version of the the DBPK-log protocol [START_REF] Bussard | Distance-bounding proof of knowledge to avoid real-time attacks[END_REF], which fixes a flaw exhibited by [START_REF] Bay | The bussard-bagga and other distance-bounding protocols under attacks[END_REF]. They added an anonymity mechanism to it: the prover uses a zero-knowledge proof to prove he knows the secret key used during the protocol, as well as a blind signature on it issued by a trusted authority. This protocol does however not permit to revoke the users whose key was stolen. In addition, it seems to be vulnerable to terrorist frauds in the presence of noise, as described in Section 3.3.4. In [Ahmadi et al., 2018], the same authors proposed two new protocols, DBi 2an P and DBi 2an P , which additionally resist to an hardware-based attack they present in the same paper. It is presented as directional TF in Chapter 5.

In opposition, our protocols grant both anonymity and provable terrorist fraud resistance. A comparison of our protocols to other protocols of the literature is given in Table 4.1.

Protocol TF MF DH Private Anonymous Revocable

Not formally proven Swiss Knife [START_REF] Kim | The swiss-knife rfid distance bounding protocol[END_REF]]

✓ ✓ 1 ✓ ✓ ✗ ✓
Proven-Not TF-resistant HPO [START_REF] Hermans | Efficient, secure, private distance bounding without key updates[END_REF]] [START_REF] Kılınç | Efficient public-key distance bounding protocol[END_REF]

✗ ✓ ✓ ✓ ✗ ✓ GOR[Gambs et al., 2014] ✗ ✓ ✓ ✓ ✓ ✓ privDB[Vaudenay, 2015a] ✗ ✓ ✓ ✓ ✗ ✓ Proven-TF-resistant 2 PDB[Ahmadi and Safavi-Naini, 2014] ✓ 3 ✓ ✓ ✓ ✓ ✗ SPADE[Bultel et al., 2016] ✓ ✓ ✓ ✓ ✓ ✓ eProprox
] ✓ ✓ ✓ ✓ ✗ ✓
TREAD s ym [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF]]

✓ ✓ ✓ ✗ ✗ ✓
TREAD pr i v [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF]]

✓ ✓ ✓ ✓ ✗ ✓
TREAD ano [START_REF] Avoine | A terrorist-fraud resistant and extractor-free anonymous distancebounding protocol[END_REF]]

✓ ✓ ✓ ✓ ✓ ✓ DBi 2an P [Ahmadi et al., 2018] ✓ ✓ ✓ ✓ ✓ ✓ DBi 2an GM [Ahmadi et al., 2018] ✓ ✓ ✓ ✓ ✓ ✓

Common Features and Differences of the Two Designs

Both constructions are resistant to MF, DH and TF, and both have an anonymous version.

In contrast to most protocols in the literature, SPADE and TREAD are not ran with a long-term secret shared between a prover and the verifier, but with temporary, session specific values that are chosen by the prover. The use of long-term shared secrets as part of the distance bounding protocol constitute a serious burden to overcome to provide anonymity for the prover, as these secrets can be easily used to link different sessions of a user. On the other hand, using temporary secrets gives more freedom in the design of the protocol. Both protocols are built in such a way that an adversary can replay session specific values if he gets access to it through a TF. This approach constitutes an important shift in the way to handle terrorist fraud resistance. Previous protocols relied on a long term secret being leaked to the accomplice during a terrorist fraud. Our protocols show, on the other hand, that terrorist fraud resistance can be achieved by forcing the prover to leak a session specific value, and making it possible for the accomplice to exploit this value in a new session.

More specifically, in SPADE, the prover picks a session key NP, and sends it encrypted and signed with a dynamic group signature scheme. Group signature schemes allow a user to produce a signature anonymously on behalf of a group of users, so that the verifier cannot distinguish which member of the group signed. This session key is then used to generate the response vector a. In the original article [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF], a is generated with a PRF keyed with NP. However, this exposes the protocol to PRF programming attacks, so we replace the PRF by a specific construction in the random oracle model (as defined in Section 3.5.4): more details are given in the description of the protocol. During a terrorist fraud attempt, the accomplice needs to have access to both a i and a i ⊕ NP i to be able to respond in time. If he learns NP, then he can replay the initial encrypted, signed message in order to run a new session using NP as the session key.

In TREAD, the prover directly picks two response vectors a and b and send them, encrypted and signed (with a dynamic group signature scheme for the anonymous version) to the verifier. This provides a simple way to avoid the use of a PRF, and to protect against the associated attacks.

In SPADE, the mechanism used to achieve provable terrorist fraud resistance is quite classic, except for being based on a session key. It uses a technique that permits the accomplice to extract the whole key NP from his view after a successful authentication, namely, a backdoor provided by the verifier. On the other hand, in TREAD, we eliminated the need to extract anything, and focused on a rewinding technique for the proof instead.

SPADE

Protocol Description

In Figure 4.1, we present SPADE. Its structure is rather similar to the generic structure presented on Figure 3.1. In order to gain anonymity, the provers are authenticated as members of a group, instead of using their actual identity. In essence, the prover first picks a random session key NP, and signs it using a dynamic group signature scheme. The resulting signature can be verified with the public key corresponding to the group, but it cannot be deanonymized, except by a trusted party called opening authority. Then, the prover sends a message e encrypted with the public key of the verifier, containing both NP and its signature. The verifier responds with a random nonce NV and a random n-bit value m (where n is the number of rounds of the distance bounding phase), and both compute a = H(NP||NV) (instead of PRF NP (NV), as proposed in the original paper [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF]). Then, the distance bounding phase begins: in n similar rounds, the verifier sends a one-bit challenge c i , and the prover responds with a one-bit response r i , which is either a i if c i = 0, or a i ⊕ NP i if c i = 1. Then, during the verification phase, the prover computes τ = H(NP||NV||m||C||R) (instead of PRF NP (NV||m||C||R)), where C and R respectively denote the concatenation of all the challenges and the responses, and sends it to the verifier. In the end, the verifier accepts the authentication of the prover if the signature in the initial message was valid and not issued by a revocated user, all the responses were sent in time and properly formed, and τ corresponds to the actual transcript of the protocol.

In order to achieve provable Terrorist Fraud resistance, SPADE includes a form of backdoor. This backdoor is a special function of the verifier, which can be queried by anyone. Before running the protocol, honest provers send a bit b = 0, but if the verifier receives b = 1, the backdoor is activated, and the user can send a message e, along with NP ′ . If NP ′ is sufficiently close to the NP encrypted in the message e, then the verifier returns NP. A terrorist fraud accomplice, to have a chance to successfully authenticate when he is helped, should be able to rebuild a bitstring NP ′ which is very close to NP, and the backdoor helps him recover the missing bits. By close, we mean that there exists a threshold value t such that t is a fraction of n, and the Hamming distance between NP and NP ′ is at most t . The probability for an adversary to obtain NP by querying the backdoor with random bitstrings is denoted p back (n, t). More details about the backdoor settings are given in Section 4.5.3.

While most distance bounding protocols focus on lightweight primitives, we made the choice of using group signatures, which are known to be computationally demanding. This might make the protocol difficult to use on devices with limited computation capacity, such as smartcards.

However, this protocol could be used on more powerful devices, such as smartphones. Additionally, since the group signature is computed on input coming exclusively from the prover, it can be computed in advance. The prover can pick NP and compute the group signature beforehand. Alternatively, if the proving device is not capable of computing a group signature, it can be pre-loaded with some NP, σ p couples computed on a more powerful device, such as a personal computer.

Prover P

Verifier V

Signature key: ssk P Public keys: pk V , gpk Secret key:

sk V Initialisation NP $ ← {0, 1} n , σ p = G.sig sskP (NP) NV $ ← {0, 1} l , m $ ← {0, 1} n e = PKE.enc pkV (NP||σ p) e ----------------→ (NP||σ p) = PKE.dec skV (e) m,NV ←----------------if G.ver gpk (σ p , NP, RL) = 0 then abort a = H(NP,NV) Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} r i = a i if c i = 0 a i ⊕ NP i ⊕ m i if c i = 1 ci ←----------------Start clock ri ----------------→ Stop clock Check timers ∆t i Verification CR = i ∈[0;n-1] (c i ||r i) CR = i ∈[0;n-1] (c i ||r i) T = H(NP||NV||m||CR) T ----------------→ If T = H(NP||NV||m||CR) and #{i : r i and ∆t i correct} = n OutV ←----------------then Out V = 1 else Out V = 0 Figure 4
.1: SPADE [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF], an anonymous TF resistant protocol built from a public key encryption scheme E , a hash function H and a group signature G.

Definition 30 (SPADE). SPADE is a distance bounding protocol, parameterised by a public key encryption scheme E, a dynamic group signature scheme G, and a hash function H which outputs n -bi t strings. It is defined as follows:

DB.gen(λ) sets the verifier keys (pk V , x V) = PKE.gen(λ) and the signature key pair (gpk, msk) = G.gen(λ). It also returns the master key MK = (msk, gpk, pk V , x V) and a verification key VK = (x V , gpk), and sets the user list UL and the revoked-user list RL.

DB.join(i , UL) runs the algorithm G.join msk (i , gpk,UL) to get ssk i and constructs psk i = (pk V , ssk i) for the prover i . This algorithm also returns a value reg i and adds P i to UL.

DB.prover(K ID

) is the algorithm of the prover, illustrated on Figure 4.1. The prover first picks a n bit value NP at random, and computes σ p = G.sig ssk P (NP) and e = PKE.enc pk V (NP, σ p). The prover then sends it and receives m and NV, which it uses to compute a = H(NP,NV). Then, at each time critical round, it responds to the challenge c i with r i = (a

i ∧c i)∨((a i ⊕NP i ⊕m i)∧c i).
Finally, during a final slow phase, the prover sends T = H(NP,NV,m,C,R), where C and R are respectively the concatenation of the challenges and responses.

DB.verifier(K V , UL,RL) is the algorithm of the verifier, illustrated on Figure

∆t i ≤ t max , (2) r i = (a i ∧c i)∨((a i ⊕NP i ⊕m i)∧c i) for all i ≤ n, and (3) T = H(NP,NV,m,C,R).
If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

DB.revoke(ID,RL,UL) runs G.rev msk (ID, RL,UL,gpk).

DB.open(trans) computes (NP, σ p) = PKE.dec x V (e), in which e is the first message of the transcript. Afterwards, it outputs the prover P ID = G.ope msk (σ p , NP, UL,gpk). SPADE is a secure anonymous distance bounding protocol. Below, we give the security proofs for each property, in the DFKO model. In each of these proofs, in the game G0, the prover and verifier behave as defined in Definition 30.

Prover P Verifier V pk V , ssk p x v , gpk Initial message b ----------------→ if b = 0, run the protocol normally else e,NP ′ ----------------→ (NP, σ p) = PKE.dec x v (e) if G.ver gpk (σ p , NP, RL) = 1 and HD(NP, NP ′) ≤ t r et ←---------------- then r et = NP else r et = 0

Properties

In this section, we present and prove the security properties of SPADE. Remember that to avoid PRF programming issues that could result from XORing the key of the PRF with its output, we model the PRF PRF NP (•) as H(NP||•), and do our proofs in the random oracle model.

Distance Hijacking

The distance hijacking resistance of SPADE comes from the message m chosen by the verifier, which ensures that the two responses are different for half the rounds on average, so that A cannot efficiently send a response in advance. Additionally, due to the encryption of NP, A cannot know which value was chosen by a honest prover to exploit him.

Theorem 1. If p back (n, t) is negligible, G is a traceable group signature and E is a IND-CCA2-secure encryption scheme, then SPADE is DH-resistant.
Proof. We first rule out the possibility for A to obtain the value NP used by a honest prover, by preventing the repetition of nonces, and replacing the encryption of NP by the encryption of a dummy value. After that, we can carry the proof in the resulting simplified game, which can be seen as a classical shared-secret DB protocol: the secret NP is shared offline between the prover and the verifier, and the adversary A does not have any more access to a ciphertext containing this secret.

In the original game G0, the prover and verifier oracles follow the rules of the protocol.

CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

Prover(i) The prover first picks a n bit value NP at random, and computes σ p = G.sig ssk P (NP) and e = PKE.enc pk V (NP, σ p). The prover then sends it and receives m and NV, which it uses to compute a = H(NP,NV). Then, at each time critical round, it responds to the challenge c i and (3) T = H(NP,NV,m,C,R). If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

with r i = (a i ∧ c i) ∨ ((a i ⊕ NP i ⊕ m i) ∧ c i).
∆t i ≤ t max , (2) r i = (a i ∧ c i) ∨ ((a i ⊕ NP i ⊕ m i) ∧ c i) for all i ≤ n,
Game G1. The oracle Prover(•) uses different NP values for each of the q p calls. A loses an advantage of at most

q 2 p
2 n . This follows from the binomial expansion of the probability that a given value has been selected zero or once and the union bound. Thus,

|Pr [G1] -Pr [G0]| ≤ q 2 p 2 n .
Game G2. The oracle Verifier(•) uses different NV values for each of the q v calls. As for the previous transition, we have |Pr

[G2] -Pr [G1]| ≤ q 2 v 2 n . Game G3. H(NP,NV,m,C,R) = H(NP,NV,m,C ′ , R) if C ′ = C.
The probability for a collision on the hashes of different messages is, in the random oracle model, bounded by

q 2 H(•)
2 n (where q H(•) is the polynomial number of evaluations of the hash function). Hence,

|Pr [G3] -Pr [G2]| ≤ q 2 H(•) 2 n .
Game G4. This step is simply a preparatory transition for the next game. Instead of only NP, two value NP 0 and NP 1 are drawn at the beginning of the protocol. The message e is computed using NP 0 , and the protocol is also run with NP 0 : NP 1 is never used. However, the backdoor also works for NP 1 : if it is queried with (e, NP ′ 1), where NP ′ 1 is a bitstring close to NP 1 (according to the backdoor's threshold), then the backdoor returns NP 1 . G4 behaves exactly as G3, except in the case of the failure event that A sends a string close to NP 1 to the backdoor, which occurs with the negligible (by hypothesis) probability p back (n, t). Hence,

|Pr [G4] -Pr [G3]| ≤ p back (n, t).
Game G5. The oracle Prover(•) encrypts NP 0 in his initial message e, and NP 1 used in the rest of the protocol by both parties.

The oracles are modified as follows:

•

Prover(i) sets NP 0 , NP 1 $ ← {0, 1} 2•n , σ p 0 = G.sig psk (NP 0), σ p 1 = G.sig psk (NP 1)
, and computes the message e as PKE.enc pk V (NP 0 , σ p 0). It adds (e, NP 1 , σ p 1) to a list WL. It then sends e, but uses NP 1 to compute a, the responses r i and τ.

• Verifier(•) acts as in G4, except for the NP computation: Let us assume that there exists an efficient adversary A for the game G5. Thus, an efficient distinguisher B can be defined for the IND-CCA2 experiment using A .

-If (e, NP 1 , •) ∈ WL, it uses NP 1 . -If (e, •, •) ∈ WL, it computes (NP * , σ * p) = PKE.dec x v (e)
Initialisation B sets up the environment (except the PKE setting). He creates two user lists UL and RL, and a dynamic group signature scheme setup with G.gen(1 λ), obtaining a couple (gpk, msk). He adds to UL n p provers using DB.join msk (i , UL).

Simulation B simulates a SPADE environment for A with the DB-oracles of G4, with the following modifications to the prover and verifier oracles. When the oracle Prover(•) is called, it sets e = LREnc pk v b (NP 0 ||σ p 0 , NP 1 ||σ p 1), adds (e, NP 1 , σ p 1) to WL and uses NP 1 during the protocol. The oracle Verifier(•) acts as in G4 if it receives e such that (e, NP 1 , σ p 1) ∈ WL. Otherwise, it decrypts e with the provided decryption oracle. Finally, B returns the result of the authentication Out V to the challenger, which is 1 if the verifier accepts, and 0 otherwise. Additionally, the backdoor needs to be simulated: if it is queried with strings close enough (according to the backdoor threshold) to either NP 0 or NP 1 , it returns the corresponding bitstring (NP 0 or NP 1), as in G4.

If b = 1, e = PKE.enc pk V (NP 1 , σ p 1), (e, NP 1 , σ p 1) ∈ WL and both parties use NP 1 internally. This games corresponds to the game G4. Otherwise, e = PKE.enc pk V (NP 0 , σ p 0) while the NP 1 is used during the protocol. This simulates the game G5. The simulation works because the other parts of the protocol do not leak anything about NP 1 : a leaks nothing about the input to H(•) in the random oracle model, the same goes for τ, and the change made in game G3 ensures that A cannot learn anything about NP 1 from tampering with the challenges.

Let B 0 denote the event that the distinguisher outputs 0, and B 1 the event that it outputs 1. Thus, Pr [B 1 |b = 1] = Pr [G4] and Pr [B 0 |b = 0] = 1-Pr [G5], since B returns the result of the authentication to the distinguisher. The winning probability of B is then Pr

[B 1 ∧ b = 1] + Pr [B 0 ∧ b = 0], which is equal to Pr [G4] • 1 2 + (1 -Pr [G5]) • 1 2 = 1 2 + Pr [G4]-Pr [G5] 2 . Now assume that |Pr [G4] -Pr [G5]|
is non negligible. Then B has a non-negligible advantage on the extended IND-CCA2 game. However, the advantage of B cannot be more than q p times the advantage on the original

IND-CCA2 experiment. Thus, |Pr [G5] -Pr [G4]| ≤ q p • Adv IND-CCA2 PKE (λ)
, which is negligible by hypothesis.

The final game. We now prove that the success probability of A in G5 is negligible.

First note that the adversary trying to perform a distance hijacking cannot learn anything useful from the initial message e sent by a honest, close-by prover, since it encrypts a nonce unrelated to the one that is used during the rest of the protocol.

Additionally, since A wants to be authenticated, he needs to send the initial message: due to the traceability of G, a signature by a honest prover P cannot be opened to the identity of A .

However, this initial message cannot (except with negligible probability) contain the value NP 1 used by P during the protocol. Then, during the time-critical phases, A can either use Prompt or Commit, i.e., he can either trigger the response of P or commit to his own response. Let r P i denote the response corresponding to Prompt.

• If A uses Prompt, then his response is valid with probability 1 2 . This corresponds to the probability to have r i = r P i , knowing that NP P 1 = NP A , where NP P 1 is the value used by P, and NP A is the value used by A .

• If he uses Commit, then either a i = a i ⊕ NP i ⊕ m i , and he can commit to a correct response with probability 1, or it is not the case, and then he must guess the challenge to commit to the correct response. Since m is uniformly distributed and unknown to A at the time when he picks NP, we have Pr

[a i = a i ⊕ NP i ⊕ m i] = 1 2 .
Hence, the probability to commit to the valid response is Pr

[a i = a i ⊕ NP i ⊕ m i] • 1 + Pr [a i = a i ⊕ NP i ⊕ m i] • 1 2 = 3 4 .
From this, it follows that the best strategy for A is to respond by himself, as in a classical DF, using Commit. For n challenges, this strategy succeeds with a negligible probability: 3 4 n .

Mafia Fraud Resistance

SPADE is MF resistant. This resistance derives from the fact that NP is sent encrypted, so that it is not accessible to the adversary, and that a final authentication of the transcript, using NP, is performed. Moreover, A cannot forge a valid signature on his own. For these reasons, the adversary needs to either break the security of the encryption, signature or randomness of the hash function, or to guess the challenges or the responses for each of the n rounds.

SPADE is MF-resistant.
Proof. The steps of this proof are similar to the corresponding ones in the DH proof, except that in addition, we eliminate the possibility that A forges a valid signature.

In the following, WL denotes a list which stores the tuples (e, NP, σ p) generated by Prover(•). It allows the prover and the verifier oracles to exchange their shared secrets. In the original game G0, the prover and verifier oracles follow the rules of the protocol, except for the use of WL.

Prover(i) The prover first picks a n bit value NP at random, and computes σ p = G.sig ssk P (NP) and e = PKE.enc pk V (NP, σ p). The prover then adds (e, NP, σ p) to WL, sends e and receives m and NV, which it uses to compute a = H(NP,NV). Then, at each time critical round, it responds to the challenge c i with

r i = (a i ∧c i)∨((a i ⊕NP i ⊕m i)∧c i).
∆t i ≤ t max , (2) r i = (a i ∧ c i) ∨ ((a i ⊕ NP i ⊕ m i) ∧ c i) for all i ≤ n, and (3)
T = H(NP,NV,m,C,R). If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

Game G1. The oracle Prover(•) uses different NP values for each of the q p calls. A loses an advantage of at most q 2 p 2 n . This follows from the binomial expansion of the probability that a given value has been selected zero or once and the union bound. Thus,

|Pr [G1] -Pr [G0]| ≤ q 2 p 2 n .
Game G2. The oracle Verifier(•) uses different NV values for each of the q v calls. Thus, as for the previous transition, we have |Pr

[G2] -Pr [G1]| ≤ q 2 v 2 n . Game G3. H(NP,NV,m,C,R) = H(NP,NV,m,C ′ , R) if C ′ = C.
The probability for a collision on the hashes of different messages is, in the random oracle model, bounded by

q 2 H(•)
2 n (where q H(•) is the polynomial number of evaluations of the hash function). Hence,

|Pr [G3] -Pr [G2]| ≤ q 2 H(•) 2 n .
Game G4. The oracle Verifier(•) aborts if G.ver gpk (σ p , NP, RL) = 1, no tuple of WL contains σ p and G.ope msk (σ p , NP, UL,gpk) ∈ CU. This happens if A produces a fresh signature σ p on a value NP. Since G-SIG is a traceable dynamic group signature scheme,

|Pr [G4] -Pr [G3]| ≤ Adv Tr ace G-SIG (λ).
Game G5. This step is simply a preparatory transition for the next game. Instead of only NP, two value NP 0 and NP 1 are drawn at the beginning of the protocol. The message e is computed using NP 0 , and the protocol is also run with NP 0 : NP 1 is never used. However, the backdoor also works for NP 1 : if it is queried with (e, NP ′ 1), where NP ′ 1 is a bitstring close to NP 1 (according to the backdoor's threshold), then the backdoor returns NP 1 . G5 behaves exactly as G4, except in the case of the failure event that A sends a string close to NP 1 to the backdoor, which occurs with the negligible (by hypothesis) probability p back (n, t). Hence,

|Pr [G5] -Pr [G4]| ≤ p back (n, t).
Game G6. The oracle Prover(•) encrypts NP 0 in his initial message e, and NP 1 used in the rest of the protocol by both parties.

The oracles are modified as follows:

• Prover(i) sets NP 0 , NP 1 $ ← {0, 1} 2•n , σ p 0 = G.sig psk (NP 0), σ p 1 = G.sig psk (NP 1), and computes the message e as PKE.enc pk V (NP 0 , σ p 0). It adds (e, NP 1 , σ p 1) to a list WL. It then sends e, but uses NP 1 to compute a, the responses r i and τ. Let us assume that there exists an efficient adversary A for the game G6. Thus, an efficient distinguisher B can be defined for the IND-CCA2 experiment using A .

Initialisation B sets up the environment (except the PKE setting). He creates two user lists UL and RL, and a dynamic group signature scheme setup with G.gen(1 λ), obtaining a couple (gpk, msk). He adds to UL n p provers using DB.join msk (i , UL).

Simulation B simulates a SPADE environment for A with the DB-oracles of G5, with the following modifications to the prover and verifier oracles. When the oracle Prover(•) is called, it sets e = LREnc pk v b (NP 0 ||σ p 0 , NP 1 ||σ p 1), adds (e, NP 1 , σ p 1) to WL and uses NP 1 during the protocol. The oracle Verifier(•) acts as in G5 if it receives e such that (e, NP 1 , σ p 1) ∈ WL. Otherwise, it decrypts e with the provided decryption oracle. Finally, B returns the result of the authentication Out V to the challenger, which is 1 if the verifier accepts, and 0 otherwise. Additionally, the backdoor needs to be simulated: if it is queried with strings close enough (according to the backdoor threshold) to either NP 0 or NP 1 , it returns the corresponding bitstring (NP 0 or NP 1), as in G5.

If b = 1, e = PKE.enc pk V (NP 1 , σ p 1), (e, NP 1 , σ p 1) ∈ WL and both parties use NP 1 internally. This games corresponds to the game G5. Otherwise, e = PKE.enc pk V (NP 0 , σ p 0) while the NP 1 is used during the protocol. This simulates the game G6. The simulation works because the other parts of the protocol do not leak anything about NP 1 : a leaks nothing about the input to H(•) in the random oracle model, the same goes for τ, and the change made in game G3 ensures that A cannot learn anything about NP 1 from tampering with the challenges.

Let B 0 denote the event that the distinguisher outputs 0, and B 1 the event that it outputs 1. Thus, Pr [B 1 |b = 1] = Pr [G5] and Pr [B 0 |b = 0] = 1-Pr [G6], since B returns the result of the authentication to the distinguisher. The winning probability of B is then Pr

[B 1 ∧ b = 1] + Pr [B 0 ∧ b = 0], which is equal to Pr [G5]• 1 2 +(1-Pr [G6])• 1 2 = 1 2 + Pr [G5]-Pr [G6] 2
. Now assume that Pr [G5]-Pr [G6] is non negligible. Then B has a non-negligible advantage on the extended IND-CCA2 game. However, the advantage of B cannot be more than q p times the advantage on the original IND-CCA2 experiment. Thus,

|Pr [G6] -Pr [G5]| ≤ q p • Adv IND-CCA2 PKE (λ)
, which is negligible by hypothesis.

The final game. The final step is to prove that the probability to win G6 is negligible. First note that if p back (n, t) is negligible, the adversary has a negligible probability to extract either NP 0 or NP 1 by using the backdoor. Since A cannot purely relay messages without tainting the session, for each round j :

• If A sends c ′ j to Prover(•) before receiving c j from Verifier(•), he would be wrong with probability 1 2 .

• If A sends c ′ j to Prover(•) after receiving c j from Verifier(•), he must send r ′ j before receiving r j since pure relay is not allowed. He would be wrong with probability 1 2 . In the first case, a wrongly guessed challenge invalidates the final message τ. Hence, A must recompute this message to succeed. He cannot do so without guessing NP, or obtaining it from the backdoor, and his success probability is no more than max(p back (n, t), 1 2 n) (which both are negligible). In the second case, the authentication fails if A sends a single wrong response, so his success probability is no more than 1 2 n .

From this sequence of games, it follows that the success probability of A in the MF game is negligible.

Terrorist Fraud Resistance

SPADE is terrorist fraud resistant. For A to have a non negligible probability of authenticating with the help of the prover, he needs to be able to respond to both challenges for a large number of rounds. Since knowing both responses for one round allows to recover one bit of NP, intuitively, A should recover most of NP. He can obtain the missing bits through the backdoor, and then, send the initial message e in a new session and use NP to authenticate. Theorem 3. If the challenges are drawn randomly from a uniform distribution, and the backdoor threshold t is set to α • n, where α is a constant, then SPADE is GameTF-resistant.

Remark, if there is an adversary A that knows all the bits of NP, then there exists an adversary B to which A is helpful, and who wins with probability 1 (i.e., in this case, SPADE is GameTF-

resistant).
Similarly, SPADE is trivially GameTF-resistant (in the sense that even an empty help from the prover is enough) if insecure schemes are used. If an adversary can break the encryption scheme, he can find NP encrypted in e and he can use it to authenticate himself. In addition, if an adversary can forge a signature, he can choose the nonce NP himself, sign it and use it to authenticate.

Thus, a malicious prover cannot perform any efficient TF attacks while preserving his secret key.

Proof. Let us assume there is a polynomial-time (t , q v , q p , q obs)-adversary A that can win the TF game with a non-negligible probability with the help of his malicious prover. Then, we can construct an adversary B that can always perform a mafia fraud later using A 's view, contradicting the mF resistance of SPADE. A fortiori, A can also do so.

After a winning session by A helped by the prover, either of the two following things can be extracted from its internal state:

• Two n-bit strings r 0 and r 1 representing respectively the responses to the 0-challenges and the 1-challenges.

• An algorithm A to generate these strings.

If A is stateless (i.e., the response to a challenge does not depend on the previous ones), these two are equivalent. For simplicity, the former case is used. Hence, A has the strings (r 0 , r 1), representing his internal view A (sid). Depending on the strategy chosen by the prover, there are several possibilities: Strategy 1 :

r 0 i = a i and r 1 i = a i ⊕ (N Pi ⊕ m i) Strategy 2 : r 0 i = a i and r 1 i = ⊥ or r 0 i = ⊥ and r 1 i = a i ⊕ (N Pi ⊕ m i) Strategy 3 : r 0 i = ⊥ and r 1 i = ⊥ Strategy 4 : r 0 i = a i and r 1 i = ⊥ or r 0 i = ⊥ and r 1 i = a i ⊕ (N Pi ⊕ m i) Strategy 5 : r 0 i = a i and r 1 i = a i ⊕ (N Pi ⊕ m i) or r 0 i = a i and r 1 i = a i ⊕ (N Pi ⊕ m i) Strategy 6 : r 0 i = a i and r 1 i = a i ⊕ (N Pi ⊕ m i)
Strategies 4 to 6 correspond to the case where the prover deliberately introduces noise in the responses he gives to A .

In the random oracle model, and under the assumptions that (1) the same values of NP or NV are never chosen twice by a cautious prover and an honest verifier, the values a i can be seen as random. Thus, strategies 2 to 6 cannot leak any information on NP.

Les us now analyse the probability for the event w i , that A to correctly respond at round i for each of these strategies. In what follows, c g ood , c bad , and c none respectively denote the event that the verifier sends a challenge to which A knows a correct response, an incorrect one, or no response.

CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

Strategy 1: A know both responses, so he passes the round with probability 1. Strategy 2: A succeeds if the challenge of the verifier corresponds to the response he knows, or if he guesses the response to the second challenge. The corresponding probability is computed as Pr

[c g ood] • Pr [w i |c g ood] + Pr [c none] • Pr [w i |c none]. This is equal to 1 2 • 1 + 1 2 • 1 2 = 3 4 .
Strategy 3: A succeeds if he guesses the response bit, so his success probability is 1 2 .

Strategy 4: A succeeds only if c none and he guesses r i correctly. The corresponding success probability,

Pr [c none] • Pr [w i |c bad] is 1 2 • 1 2 = 3 4 .
Strategy 5: A succeeds if c g ood occurs, so Pr[w i] = 1 2 .

Strategy 6: A cannot succeed: Pr [w] = 0.

If the prover uses strategy 1 for all rounds, then A recovers NP, and the fraud fails. Hence, he needs to use strategies 2, 3, 4, 5 or 6 for a given number r of rounds. Strategy 6 can only be used if the protocol is set up to tolerate communication errors: in this case, the authentication will be accepted even if a number n er r of responses are false. However, our analysis focuses on the noiseless scenario, even though it could be generalised to include noise, so we leave strategy 6 out.

Assume that a malicious prover P * provides to his accomplice A two strings (r 0 , r 1) such that A does not know the two correct responses for r rounds. The success probability of A is at most 3 4 for each of these rounds, so that his final success probability is at most

1 n-r • 3 4 r
Let us suppose that the authentication of A succeeded with a non-negligible probability p A .

Consider the adversary-verifier session sid * for which A has fooled V. This has happened with probability at least p A q v . In such a case, A has successfully guessed the missing answers, which have been requested. Since this happened, (34) r should be greater than the non-negligible 1) . Thus, r should be in O(log n).

p A q v . Hence, ∃c, ∀n c , ∃n > n c , 3 4 r > n -c q v > n -c ′ . since q v ∈ n O(
If an adversary B gets the internal view A (sid *) and has eavesdropped to all the communications involving P, A , and V, he would get e and N ′ P such that HD(N P , N ′ P) ∈ O(log n), where HD denotes the Hamming Distance. Thus, B (as well as A himself) would be able to retrieve N P directly through the backdoor of V and eventually authenticate on behalf of P with probability one.

Anonymity

SPADE is private and prover anonymous. These properties are due to the dynamic group signature scheme: the only place in which a long term value linked to the prover is used in the protocol is to compute this signature. Hence, if the verifier or an eavesdropper can link two sessions of the prover, they break the security of the group signature.

The presence of the backdoor

The objective of the backdoor in the verifier is to discourage any prover from helping help potential accomplices. Remark that this mechanism is stateless for the verifier, as he simply has to decrypt the initial message of the protocol to retrieve the information needed to impersonate a prover. The probabilities for key recovery or TF attacks depends on the proximity threshold t , which is a public parameter of the protocol. There is clearly a trade-off between these two probabilities, as one increases and the other one decreases in function of t . In this section, we analyse the success probability of attacks depending on t . More precisely, we bound the probability for an adversary to recover NP through the backdoor, depending on whether this adversary was helped by the prover or not. While we consider a noiseless environment in our security analysis, noise tolerance could easily be included by allowing n er r errors during the time-critical phases, where n er r = β • n for some constant β. In this case, to avoid the terrorist frauds described in 3.3.4, t should be greater than n er r .

The backdoor implemented in the verifier can be queried with pairs e, NP ′ , such that (NP, σ p) = PKE.dec x V (e). If NP ′ is close to NP, then the verifier returns NP; otherwise, it returns ⊥.

Mafia fraud adversary

A mafia fraud adversary A can obtain the session key NP associated to a message e by using the backdoor if he guesses a bitstring that is t -close to NP. Since the number of potential queries is 2 n and the number of strings at Hamming distance at most t of NP is simply t k=0 (n k), the probability that the i t h random query is successful (let Q i denote such an event) is

P i = Pr[Q i |n, t] = 1 2 n -i • t k=0 n k .
The probability to have a successful query among n back (which is polynomial in n) is upper bounded by

n back i =1
p i , due to the union bound, so we have:

Theorem 5. The probability p back (n, t) for an adversary performing n back queries, to recover the value NP related to an initial message e solely by querying the backdoor is upper bounded by

n back • 1 2 -n -i • t k=0 n k

Terrorist fraud adversary

As described in Section 4.5.2, if the protocol does not include noise tolerance, then, for each round, the malicious prover can either use strategy 1 (giving both responses), strategy 2 (giving only one response), strategy 3 (giving no response at all), strategy 4 (giving only one response which is incorrect) and strategy 5 (giving both one correct and one incorrect response). Note that the dishonest prover is not bound to using only one of these strategies: he can use a different strategy for different rounds. Let S k denote the fact that a round corresponds to strategy k, and n Sk denote the number of rounds corresponding to strategy k. Since the goal of P * is to prevent A from impersonating him, we reasonably assume that he gives as little information to A as possible. In particular, he does not tell him the values n Sk . We are interested in the case where the authentication of A was accepted, which implies that all his responses were correct, in the noiseless scenario. Hence, A knows at least one correct response for each round, and he knows that the response he sent is correct. For the second response, either (1) he does not know it, or (2) he knows a response, whether it is correct or incorrect. If the prover uses strategy 1 for more than n -t rounds rounds, then A can recover NP directly through the backdoor, so that P * needs to use the other strategies for x > t rounds. Let z = x -t be the number of bits for which strategy 1 is not used, which corresponds to the number of bits left to guess for A . In case (1), A needs to guess the z missing bits, which succeeds with probability p1 = 2 -z . In case (2), A needs to find which responses are wrong to flip them and obtain a string that is t -bit close from NP. To do so, he can try to first flip one bit, then 2, and all the way to x. Using this strategy, he needs to try

x i =1 n x
cases in the worst case, and succeeds with probability p2 = 1

x i =1 (n x)
. Sine p1 > p2, we can say that A has, in the worst case, probability p2 of recovering NP through the backdoor, at each try, where p2 depends on x.

Theorem 6. Let z = n -n 1 -t , where n 1 is the number of rounds for which strategy 1 is used, and t is the backdoor's threshold. Let n back be the number of queries made to the backdoor. The probability for a terrorist fraud accomplice A to obtain NP through the backdoor is lower bounded by

1 x i =1 (n x)
, and upper bounded by n back • 2 -x .

PRF Programming Attacks

The security proofs are done in the random oracle model, using a hash function on the key concatenated with the input to model a PRF. If a real PRF was used instead, the protocol could be vulnerable to a mafia fraud by key recovery: there exists a function f , such that f is a PRF, and A can extract NP after interacting with a prover if f is used in SPADE. Consider the following function f : it uses a PRF g for most inputs, but returns non random outputs for some input values.

For inputs of length n:

f NP (NV) = g NP (NV)
For inputs of length 4 • n:

f NP (NV, m, C, R) =NP if R = (g NP (NV) ⊕ NP ⊕ m) g NP (NV, m, C, R) otherwise
If g is a PRF, then f is a PRF: an adversary trying to distinguish f from a random function does not have access to its key NP, and can thus not query the values that trigger the non-random behaviour except with negligible probability: he cannot obtain a couple (X, R) such that R = X ⊕NP without guessing NP.

However, in SPADE, the output of the PRF is XORed with its key, which allows A to obtain values that he would not be able to obtain in the PRF security game.

For this reason, we chose to use a construction based on a hash function instead of the PRF. However, other options would have been possible, such as using the circular-keying security notion for PRFs defined in [START_REF] Boureanu | Practical and provably secure distance-bounding[END_REF].

TREAD

In this section, we present our protocol TREAD.

Protocol Description

TREAD (Figure 4.3) is a generic construction, parameterised by an encryption scheme and a signature scheme. Depending on which ones are chosen, the properties of the resulting distance bounding protocol differ. In TREAD, as in SPADE, the value that is leaked to a Terrorist Fraud accomplice is not a long term secret, but a temporary, prover defined one, which can be replayed in a further session. TREAD relies on specific design choices. The first one is to eliminate the need for a PRF. It is now well known that PRF programming attacks are possible, and that in many cases, the prover can strongly influence the result of the PRF. Hence, to err on the safe side, we directly let the prover pick the two response vectors a and b, which are used during the distance bounding phase. To prevent distance frauds, in which the prover would pick a = b, a random bitstring m must be XORed with b, so that on average half the bits of the resulting response vector b ⊕ m are truly random and independent of a. Another strong design choice is to remove the final signature in the verification phase. The resulting protocols are thus simpler. If a prover helps an accomplice during a terrorist fraud attempt, then this accomplice learns large parts of the response vectors a and b, and can use this knowledge to pass the protocol again on his own.

In TREAD, the prover (resp. verifier) each hold two keys: an encryption (resp. decryption) key, and a signature (resp. verification) key. In a symmetric setting, where the encryption scheme is symmetric and the signature is a MAC, the encryption and decryption keys are identical, and the signature and verification keys are identical too. Public key instances are possible as well.

In TREAD, provers have two identities: a public one, which is sent in clear, and a private identity, which is sent encrypted for the verifier. This allows for finer grained management: for instance, the prover's public identity could be a group identity, while the private one would be his own. Only one of these identities needs to be non null. The protocol works as follows. First, the prover picks two random n-bit values a and b, and generates a signature on them using the signature key. Then, he encrypts these values, the signature, and his private identity with the encryption key, and sends the resulting message, along with his public identity, to the verifier. The verifier responds with a random bitstring m, and the distance bounding phase begins. For n rounds, the verifier sends a random bit c i , and the prover responds with either a i if c i = 0, or b i ⊕m i otherwise. After this phase, the verifier accepts the authentication of the prover if the signature in the initial massage corresponds to the identities of the prover and is valid, and the responses were correct and sent in time.

Definition 31 (TREAD). The construction TREAD is composed of five algorithms and parameterised by an encryption scheme E, a message authentication scheme S, as well as a definition for idprv(•) and idpub(•). DB.gen(1 λ) is the algorithm run by an honest party, setting up the encryption scheme E and the signature scheme S for a security parameter λ. DB.prover(K ID) is the algorithm executed by the prover described in Figure 4.3, in which K ID = (enck, sigk). The prover starts by drawing a random value a||b from the uniform distribution on {0, 1}

e||idpub(P) ----------------→ (a||b||idprv(P)||σ p) = E.dec deck (e) if S.ver verk (σ p , a||b||idprv(P)) = 0 then abort m ←----------------m $ ← {0, 1} n Distance Bounding for i ∈ [0; n -1] c i $ ← {0, 1} r i = a i if c i = 0 b i ⊕ m i if c i = 1 c i ←----------------Start clock r i ----------------→ Stop clock store ∆t i Verification If #{i : r i and ∆t i correct} = n then Out V ←----------------Out V := 1; else Out V := 0
= (a i ∧c i)∨((b i ⊕ m i) ∧ c i).
DB.verifier(K V , UL,RL) is the algorithm executed by the verifier interacting with a prover, in which

K V = (deck,
r i = (a i ∧ c i) ∨ ((b i ⊕ m i) ∧ c i),

Protocols

Our instantiations go from a computationally efficient symmetric key protocol to a prover anonymous one.

Efficient symmetric-key scheme TREAD s ym

Computational efficiency is critical for the design of DB protocols as they are usually used in efficient construction, TREAD can be instantiated with an IND-CCA2 symmetric-key encryption scheme SKE and an EUF-CMA message-authentication code scheme MAC. In this case, the public identity idpub(P) is the identity of the prover and the private identity idprv(P) is set to null, i.e., the idprv(P) field is left empty. Since SKE and MAC are symmetric, we have enck = deck and sigk = verk. Thus, the prover and the verifier have the same symmetric key k = (enck, sigk). In this construction, the verifiers have access to a private list UL containing all the secret keys of legitimate provers. An authority adds the prover in the private list UL or in the revocation public list RL.

Prover privacy and public-key encryption TREAD pr i v . In applications such as contactless payment schemes, shared secret keys are not recommended, since a corruption of the secrets of the verifier puts the user at risk. Thus, with the emergence of NFC-enabled smartphones, public-key DB protocols are crucial.

TREAD can be instantiated with an IND-CCA2 public-key encryption PKE and an EUF-CMA digital signature scheme S-SIG. In this case, the public identity idpub(P) is set to nul l , and the private identity idprv(P) is the identity of P (or his verification key). The keys enck and deck are respectively the public and the private keys of the verifier, and sigk and verk are the (private) signature key and the (public) verification key of the prover. With such a protocol, two sessions by the same user are not linkable for an external eavesdropper as the only information sent about the prover's identity is encrypted with the public-key of the verifier. However, verifiers have the power to link sessions. In this construction, the verifiers have access to a public list UL containing the public keys of legitimate provers. An authority adds the provers to the public list UL or the revocation public list RL.

Prover anonymity and group signature TREAD ano . TREAD can also be used to provide full prover anonymity even with respect to a malicious verifier. As profiling users has become a common threat, it is crucial to develop anonymity-preserving DB protocols. Both prover anonymity and revocability can be achieved by instantiating TREAD with an IND-CCA2 public-key encryption scheme PKE and a traceable and revocable dynamic group signature scheme G-SIG. In this case, the public identity idpub(P) is set to nul l , and the private identity idprv(P) is set to the identity of the group ID G . Independent groups may coexist but prover anonymity with respect to the verifier is only guaranteed up to a prover's group. The keys enck and deck are respectively the public and private keys of the verifier, sigk is the prover's signing key and verk is the public group verification key. dynamic group signature schemes allow a user to anonymously sign on behalf of a group he belongs to. Hence, the verifier can check if the prover belongs to the claimed group, but cannot identify him precisely nor link his sessions. In this scenario, the join and revoke algorithms take their full meaning.

Let (gpk, msk) be the group/master key pair of the group signature scheme G-SIG. Then, DB.join(ID,gpk,UL) returns a prover signing key sigk ID for P ID . This algorithm also outputs a value reg ID and adds P ID to UL.

DB.revoke(ID,gpk,RL,UL) computes the revocation logs rev ID for P ID , using reg ID and msk, and moves P ID from UL to RL.

Properties

We now prove the security property of TREAD, as well as the privacy of TREAD pr i v and TREAD ano .

In these proofs, in the game G0, the prover and verifier behave as defined in Definition 31.

Distance Hijacking

TREAD is distance hijacking resistant: the mask m picked by the verifier ensures that the responses to the challenges 0 and 1 are different for half the rounds on average, so that A cannot efficiently send a response in advance. Additionally, since the initial messages e are encrypted, A cannot extract the values a||b picked by a honest prover, and exploit him to cheat.

i = (a i ∧ c i) ∨ ((b i ⊕ m i) ∧ c i).
DB.verifier(K V , UL,RL) The verifier waits for an initial message e and deciphers it as (a||b||idprv(P)||σ p) = E.dec deck (e). If σ p is invalid (i.e., S.ver verk (σ p , a||b||idprv(P)) = 0), the verifier aborts. Otherwise, he picks a random bit string m from the uniform distribution on {0, 1} n and sends it. Afterwards, during the n time-critical phases, he generates a random bit c i from a uniform distribution, starts his clock, sends c i , gets back r i , stops his clock and stores the corresponding time ∆t i . Finally, he verifies that (1) ∆t i ≤ t max and (2)

r i = (a i ∧ c i) ∨ ((b i ⊕ m i) ∧ c i)
, for all i ≤ n. If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

G1: In this game, no value a||b is outputted more than once by the prover oracle.

In the i t h session, the probability to have a collision with any of the previous i -1 a||b values is bounded by i 2 2•n . If A runs q p prover sessions, the probability of a collision for a given session is bounded by q p 2 2•n . From the union bound, the probability that a collision occurs at least once is bounded by

q p i =0 q p 2 2•n , which is in turn bounded by q 2 p 2 2n . Thus, | Pr[G1]-Pr[G0]| ≤ q 2 p 2 2n
, which is negligible.

G2: This game aborts if σ p was not generated by the prover oracle, and S.ver verk (σ p , a||b) = 0.

In this game, we rule out the possibility that A produces a valid signature on behalf of a honest prover, which is trivially forbidden by the EUF-CMA resistance of S (or its traceability if it is a group signature). The reduction simply consists in starting EUF-CMA experiments (one for each prover) with a challenger and using queries to the corresponding signing oracle to generate the signatures of a prover. Then, if A sends a valid signature on behalf of one of the provers, we can return it to the challenger and win the EUF-CMA experiment. Hence, we

have |Pr [G2]-Pr [G1]| ≤ q p •Adv
For g e

S

(1 λ) (where For g e is either the EUF-CMA or traceability experiment, depending on S), which is negligible by hypothesis.

CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

G3: In this game, e is replaced by the encryption of a random string (of equal length).

This transition is based on indistinguishability, aiming at removing any leakage of a||b from e by making a||b only appear during the DB phase. We prove that the probability ǫ = |Pr [G3]-Pr [G2]| is negligible by building a distinguisher B such that the advantage of B against the IND-CCA2 experiment is polynomial in ǫ. Hence, if ǫ is non-negligible, we reach a contradiction. By assumption, the advantage of any adversary against the IND-CCA2 experiment on E is negligible.

To build B, we replace E.enc enck (a||b||idprv(P)||σ p) by a string given by the IND-CCA2 challenger. Using the adversary A , the distinguisher B can be built as follows.

[G3] -Pr [G2]| ≤ Adv IND-CCA2 E (λ).
The final game We now prove that the success probability of A in G3 is negligible. During the time-critical phases, A can either Prompt or Commit.

• If he uses Prompt, then his response is valid with probability 1 2 . This corresponds to the probability to have a i = a * i (respectively b i = b * i): e (from the honest prover) is the encryption of a random string and leaks no information about a||b, so that the probability for A to chose the same values is uniform.

• If he uses Commit, then either a * i = b * i ⊕ m i , and he can commit to a correct response with probability 1, or a * i = b * i ⊕m i , and then he must guess the challenge to commit to the correct response. Since m is uniformly distributed and unknown to A at the time when he picks

a||b, we have Pr [a * i = b * i ⊕ m i] = 1 2 .
Hence, the probability to commit to the valid response is Pr

[a * i = b * i ⊕ m i] • 1 + Pr [a * i = b * i ⊕ m i] • 1 2 = 3 4 .
From this, it follows that the best strategy for A is to respond by himself, as in a classical DF, using

Mafia Fraud

The mafia fraud resistance of TREAD comes from the fact that no adversary can efficiently obtain the values a||b corresponding to an initial message e and use it to impersonate a prover, nor can he generate an authenticated message e, which would be accepted, by himself.

Theorem 8. If E is an IND-CCA2-secure encryption scheme, and S is an EUF-CMA signature or MAC scheme, or a traceable group signature scheme, then TREAD is MF-resistant.

The prover and verifier oracles are simulated as defined in the protocol definition , except that after generating e, the prover adds an entry to a witness list WL containing (e, a||b).

In Game G0, the prover and verifier follow the specification of the protocol, except that the prover adds entries to WL: DB.prover(K ID) The prover starts by drawing a random value a||b from the uniform distribution on {0, 1}

i = (a i ∧ c i) ∨ ((b i ⊕ m i) ∧ c i).
DB.verifier(K V , UL,RL) The verifier waits for an initial message e and deciphers it as (a||b||idprv(P)||σ p) = E.dec deck (e). If σ p is invalid (i.e., S.ver verk (σ p , a||b||idprv(P)) = 0), the verifier aborts. Otherwise, he picks a random bit string m from the uniform distribution on {0, 1} n and sends it. Afterwards, during the n time-critical phases, he generates a random bit c i from a uniform distribution, starts his clock, sends c i , gets back r i , stops his clock and stores the corresponding time ∆t i . Finally, he verifies that (1) ∆t i ≤ t max and (2)

r i = (a i ∧ c i) ∨ ((b i ⊕ m i) ∧ c i)
, for all i ≤ n. If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

Proof. We start from the initial mafia fraud game G0, and build the following sequence of games.

We first rule out the possibility for A to extract a||b from e, by forbidding a||b collisions, and making e independent from a||b.

G1: In this game, no value a||b is outputted more than once by the prover oracle.

In the i t h session, the probability to have a collision with any of the previous i -1 a||b values is bounded by i 2 2•n . If A runs q p prover sessions, the probability of a collision for a given session is bounded by q p 2 2•n . From the union bound, the probability that a collision occurs at least once is bounded by

q p i =0 q p 2 2•n , which is in turn bounded by q 2 p 2 2n . Thus, | Pr[G1]-Pr[G0]| ≤ q 2 p 2 2n , which is negligible.
G2: This game aborts if σ p was not generated by the prover oracle, and S.ver verk (σ p , a||b) = 0.

In this game, we rule out the possibility that A produces a valid signature on behalf of a honest prover, which is trivially forbidden by the EUF-CMA resistance of S (or its traceability if it is a group signature). The reduction simply consists in starting EUF-CMA experiments (one for each prover) with a challenger and using queries to the corresponding signing oracle to generate the signatures of a prover. Then, if A sends a valid signature on behalf of one of the provers, we can return it to the challenger and win the EUF-CMA experiment. Hence, we

have |Pr [G2]-Pr [G1]| ≤ q p •Adv
For g e

S

(1 λ) (where For g e is either the EUF-CMA or traceability experiment, depending on S), which is negligible by hypothesis.

G3: In this game, e is replaced by the encryption of a random string (of equal length).

This transition is based on indistinguishability, aiming at removing any leakage of a||b from e by making a||b only appear during the DB phase. We prove that the probability ǫ = |Pr [G3]-Pr [G2]| is negligible by building a distinguisher B such that the advantage of B against the IND-CCA2 experiment is polynomial in ǫ. Hence, if ǫ is non-negligible, we reach a contradiction. By assumption, the advantage of any adversary against the IND-CCA2 experiment on E is negligible.

To build B, we replace E.enc enck (a||b||idprv(P)||σ p) by a string given by the IND-CCA2 challenger. Using the adversary A , the distinguisher B can be built as follows.

The final game

We are left to prove that Pr [G3] is negligible. First remark that in G3, A has absolutely no way to predict the value r i for any round i (as neither a i nor b i appears before round i). Hence, A can either try to guess c i or r i . His success probability in the second case is 1 2 . In the first case, he succeeds if he guesses the challenge properly (as he can obtain the response from the prover), but also if he wrongly guesses the challenge but guesses correctly the other response. The corresponding probability is 1 2 • 1 + 1 2 • 1 2 = 3 4 for each round. As there are n such rounds, Pr [G3] ≤ 3 4

n . Note that A can learn a small number of bits of both a and b during a learning phase in which the prover is close: by flipping a challenge, A receives r c i instead of r c i and can forward it

to V. If Out V = 1 (resp. 0), then A deduces that a i = b i ⊕ m i (resp. a i = b i ⊕ m i)
, and thus learns one bit of both a i and b i . This generalises to the case in which A flips k challenges: if for the k corresponding rounds, a i = b i ⊕ m i , then Out V = 1, and otherwise, Out V = 0. Thus, A learns k bits of both strings in the first case, and nothing useful otherwise (except that at least one of the k rounds has a i = b i ⊕ m i . Hence, his probability of obtaining k bits is 1 2 k , which is negligible if k is a fraction of n. Moreover, a||b is never used more than once by the prover, so this strategy can only be used once, and does not grant any significant advantage to A .

Terrorist Fraud

Theorem 9. If the challenges c i are drawn uniformly at random by the verifier, TREAD is strSimTFresistant.

The theorem says that there exists a simulator Sim, which, from the view of a TF accomplice A who successfully authenticated once, can authenticate too with a probability at least as high. In the following proof, we build this simulator. Note that this proof holds within the models, in which the messages are broadcasted. The simulator Sim starts by sending his initial message e ′ , such that e ′ = e, and receives m ′ . During the time-critical phases, the response vectors are the same in sid and sid ′ , except for m = m ′ . However, Sim can easily translate a response from sid to a response in sid ′ : r ′0 = r 0 , and

r ′1 = r 1 ⊕ m i ⊕ m ′ i .
Let us now consider the situations of A and Sim right before they receive the challenge at round i . A has some information in his view, denoted view i , which permits him to respond to a random challenge with a response r i with probability p i . On the other hand, Sim knows the complete view, including view i . Hence, Sim has more information than A to produce his response

r ′ i , so that p ′ i ≥ p i . The final success probability of A is P = n i =1 p i . Since ∀i ∈ {1, n}, p ′ i ≥ p i
, it follows that P ′ ≥ P, which concludes the proof.

Privacy

The only place where values linked to the identity of P appear is inside the message e. Hence, A cannot break the privacy of TREAD pr i v if he cannot distinguish the identity contained in e.

Therefore, we use the IND-CCA2 security of E to prove that TREAD pr i v is MiM-private.

Theorem 10. If E is an IND-CCA2-secure encryption scheme, then TREAD pr i v is MiM-private.

Proof. Assume that there is a polynomial-time adversary A such that Adv Priv When A sends his guess b ′ , B simply forwards it to the challenger. The experiment is perfectly simulated for A , so that B wins when A wins. Hence, we have,

Adv Priv A ,TREAD Pub (λ) = Adv IND-CCA2 B,PKE (

Anonymity

The anonymity of TREAD ano directly depends of the anonymity of the dynamic group signature scheme, since the signature issued by P is the only value related to a long term secret that identifies him.

CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

Theorem 11. If S is an anonymous dynamic group signature scheme, then TREAD ano is prover anonymous.

Proof. Assume that there is a polynomial-time adversary A such that Adv Anon A ,TREAD ANO (λ) is nonnegligible. We show how to build an adversary B such that Adv Anon B,G-SIG (λ) is also non negligible.

Initially, the challenger sends a key gpk and a revoked list RL to B. Then, B generates a public/private key pair pk V , x v for the verifier using PKE.gen(1 λ), sends (pk V , gpk,RL) to A , and creates the empty list CU of corrupted users. Having access to the G-SIG-oracles from his challenger, B can simulate the DB-oracles for A as follows:

DB.Join h (•): On input i , creates P i with G.Join h (•), and adds P i to UL. Finally, A sends b ′ to B, who simply forwards it to the challenger. The experiment is perfectly simulated for A , so that B wins when A wins.

DB.Join

Thus, Adv Anon

B,G-SIG (λ) = Adv Anon A ,TREAD Ano (λ), contradicting the assumption on G-SIG.

Recent attacks against SPADE and TREAD

Recently, two articles [START_REF] Mauw | Distancebounding protocols: Verification without time and location[END_REF], Debant et al., 2018] independently proposed formal methods to verify the security of distance bounding protocols. Formal methods use a mathematical model of the target protocol and its expected security properties, and provide them to an automatic prover, which verifies whether the security properties are satisfied. Both articles use well known provers: the first one uses the Tamarin [START_REF] Meier | The tamarin prover for the symbolic analysis of security protocols[END_REF], while the second one uses Cryptoverif [Blanchet, 2007].

Both of these articles exhibited vulnerabilities against SPADE and TREAD. Specifically, both found distance hijacking and mafia frauds in our protocol. These attacks do not contradict our security proofs: they require multiple verifiers, some of which are dishonest, while the DFKO model considers a single, honest verifier. More specifically, the adversaries have public/private key pairs, just like the verifiers, and the provers do not check whether the public key corresponds to a legitimate verifier, thus making the adversary effectively capable of impersonating a verifier. However, when the adversary can control verifiers, then the basic idea behind both our protocols falls: our protocols are secure if the temporary secrets held within the initial encrypted message e cannot be read by an adversary. If the adversary is capable of decrypting it as a verifier, then he can extract the temporary secrets it contains and their signature, and therefore defeat the protocol.

These attacks work as follows:

CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

Mafia Fraud

In both SPADE and TREAD, an initial message e contains the encryption of signed the session keys, NP for SPADE, and (a, b) for TREAD. There exists a mafia fraud against SPADE, and the two versions of TREAD for which e is encrypted with a public key: TREAD pr i v and TREAD ano . To perform a mafia fraud, A starts a session with a prover, obtains e, and extracts the session keys and the corresponding signature from it. With these values, he can start a session with the verifier, and authenticate as P. On the other hand, TREAD s ym is secure, because A does not know the encryption key x used by P to communicate with V. Hence, A can request a message e ciphered with a key shared between P and A , and extract the session key and its signature from it, but he cannot encrypt them with x to make the verifier accept.

Distance Hijacking

SPADE and all versions of TREAD are vulnerable to a distance hijacking attacks if A can corrupt verifiers. The attack scenario is the following: the distant A starts a session as a verifier with a prover P located close to the verifier, and receives e, from which it extracts the session keys as for the mafia fraud. He then starts a session with V, in which he sends the same session keys, but signed with his own signature keys. He then lets P run the rest of the protocol. The responses of P are correct, since P uses the same session keys as A , so that A is effectively accepted even though he is far away.

Discussion

These attacks underline an interesting problem, which is the one of multiple and possibly malicious verifiers, which was overlooked by the existing formal security models. We propose hints on how to handle these attacks.

In the article presenting SPADE [START_REF] Bultel | A prover-anonymous and terrorist-fraud resistant distance-bounding protocol[END_REF], we briefly mentioned this scenario, and stated that adding the identity of the verifier inside the initial signed message would prevent mafia frauds. Indeed, in this case, A becomes unable to use the signature produced by P with another verifier V: V would notice that the signed message contains the identity of A instead of his own. An inconvenient of this method is that it lowers the terrorist fraud resistance: a terrorist fraud accomplice is only capable of impersonating P with one verifier, instead of all of them.

While including the identity of V in the signed message does prevent the mafia frauds, it does nothing against the distance hijacking attacks. These attacks might be solved by changing the responses r i to r * i = r i ⊕H(e i), the hash of the initial encrypted message e. Intuitively, the idea is that if A changes the signature contained in e, then he needs to reencrypt it to produce a message e ′ , which should be different from e, except with negligible probability. The hash would make sure that the resulting string has the correct length n, and that the responses expected from P differ from the responses expected from A on half the rounds on average. Hence, the responses from P would not match with the responses expected by the verifier, which would reject the authentication.

Conclusion

In this chapter, we presented two construction, SPADE and TREAD, which both grant terrorist fraud resistance by forcing the prover to leak a session key to his accomplice, which is a shift from traditional protocols which require the leaked key to be a long term one. SPADE only comes in one anonymous version, while TREAD has three versions, each providing a different trade-off in terms of efficiency and privacy: TREAD s ym is efficient but grants no privacy, TREAD pr i v is private against eavesdropper but not anonymous, and TREAD ano is fully anonymous with regards to tracking attempts by the verifier. SPADE can be seen as a preliminary version of TREAD: it uses a similar idea for ensuring both anonymity and terrorist fraud resistance, but TREAD is more simple and generic. Additionally, TREAD does not require a backdoor in order to achieve provable terrorist fraud resistance. Both constructions are provably resistant to all threats against distance bounding protocols in the DFKO model. On the other hand, there exist attacks outside of the security model, as shown in [START_REF] Mauw | Distancebounding protocols: Verification without time and location[END_REF], Debant et al., 2018], which consider multiple and malicious verifiers. While these particular attacks can be mitigated by modifying the protocols, we show in the next section that this is not always the case. Indeed, some specific hardware can allow for attacks that are outside of the security models. In particular, we show that the terrorist fraud resistance notion as we try to achieve it can never be reached. Achieving terrorist fraud resistance in the security models is difficult, but possible, as shown in the previous chapter. On the other hand, a paper [Ahmadi and Safavi-Naini, 2018] presented terrorist fraud attacks that circumvent the security model by using specific hardware, namely directional antennas. We proposed a more generic terrorist fraud [START_REF] Boureanu | Fine-grained and application-ready distance-bounding security[END_REF], the Tamper-Proof Device Attack, which uses tamper-proof devices. In this chapter, we review these results, and present an impossibility result. A protocol is considered terrorist fraud resistant if, when the help of a malicious prover P * permits his accomplice A to authenticate, then this help also gives A significant to authenticate later. We prove that this definition cannot be satisfied. On the other hand, we define a new notion, One-Step Terrorist Fraud (OSTF), in which a protocol is considered TF resistant if no help from P * can permit A to authenticate.

Introduction

Terrorist fraud resistance is a long standing issue in the distance bounding community. There is a long history of protocols that claimed terrorist fraud resistance, but were broken in one way or another, e.g., [START_REF] Bay | The bussard-bagga and other distance-bounding protocols under attacks[END_REF]. Similarly, there are a wide range of definitions of what a terrorist fraud is, some more exotic than others. This research problem led to designing protocols that were intentionally weaker, for instance due to the presence of a backdoor as in SPADE (Chapter 4) or [Fischlin and Onete, 2013a]. However, in the past few years, the community successfully exhibited designs that were proven to be terrorist fraud resistant, such as [Fischlin and Onete, 2013a[START_REF] Vaudenay | Sound proof of proximity of knowledge[END_REF], Boureanu et al., 2015]. While this solved a difficult research problem, the relief did not last very long. Ahmadhi et al . [Ahmadi and Safavi-Naini, 2018] exhibited an attack which, by using directional antennas, can defeat the terrorist fraud resistance of SPADE and TREAD. This attack is very interesting, because it bypasses the security proofs of our protocols: the security models that are used in distance bounding assume that the messages are broadcasted, but these attacks, through the use of directional antennas, allow to send a message so that it is received by one party only. It therefore allows a malicious prover to send the initial message of SPADE and TREAD directly to the verifier, so that A cannot see it, nor replay it in a further session. Since the terrorist fraud resistance of SPADE and TREAD depend on A knowing this initial message, if directional antennas can be used, these protocols are not terrorist fraud resistant. However, this result does not apply to non anonymous protocols. Independently, at the same time, in [START_REF] Boureanu | Fine-grained and application-ready distance-bounding security[END_REF], we proposed a different kind of hardware based attacks. Our main result is that, if the provers can be cloned (i.e., they are not tamper-proof and do not use physically uncloneable functions), then terrorist fraud resistance as it is usually defined cannot be achieved. We prove that claim by exhibiting a simple, generic terrorist fraud: the prover builds a tamper-proof device that is capable of authenticating, and programs it to erase all its memory after one successful authentication. He then gives this device to his accomplice. This very simple attack defeats the claim for terrorist fraud resistance of all protocols in the literature in the white-box model, except for one [START_REF] Igier | Distance bounding based on puf[END_REF], which achieves a different type of terrorist fraud resistance. We define this type of terrorist fraud resistance as OSTF-resistance, and show that this definition is sufficient.

In this chapter, we first present the attacks by Ahmadi et al ., and we then present our generic terrorist fraud, and the new notion of OSTF.

Directional Terrorist Frauds

Attacks

In [Ahmadi and Safavi-Naini, 2018], Ahmadi et al . introduced the notion of Directional TF (DTF). In a directional TF, the prover uses a directional antenna pointed at the verifier to send some of the messages, as represented on Figure. 5.2.1. Let us call such messages directional messages. If the accomplice A is located near the verifier, but out of the range of the directional antenna, then he cannot see these messages. In SPADE and TREAD, if A cannot read the initial message of the protocol, then he cannot impersonate the prover in a latter session, even if he knows both response vectors. The DTF against SPADE is the following:

• P * generates e = PKE.enc pk V (NP, σ p) as defined in the protocol, and sends it to V with the directional antenna • P * sends NP to A

• A receives NV and m from the verifier, and computes a = PRF NP (NV)

• A responds to the challenges, using a, NP, and m

• A sends the final message T = PRF NP (NV, m, C, R)
• A is accepted, but he cannot authenticate again later, since he does not know the message e linked to NP, nor can he produce a valid signature on NP on his own. We now describe the attack against TREAD:

• P * generates e = E.enc enck (a||b||idprv(P)||σ p) as defined in the protocol, and sends e, idpub(P) it to V with the directional antenna Additionally, the authors of [Ahmadi and Safavi-Naini, 2018], exhibit a similar attack on their protocol PDB [START_REF] Ahmadi | Privacy-preserving distance-bounding proof-of-knowledge[END_REF].

We now discuss the relevance of these attacks.

V P A Figure 5.1: The position of the prover, adversary and verifier in a directional terrorist fraud. The green ray represents the propagation of the message sent by the directional antenna: the adversary cannot see it, but the verifier can.

Discussion

Directional terrorist frauds are an interesting form of attacks. They apply to SPADE and TREAD, which both came with security proofs, which raises questions about the relevance of the proofs. These attacks circumvent formal DB models, which consider that all messages are broadcasted, and that the adversary can always access them, as a Dolev-Yao adversary [START_REF] Dolev | On the security of public key protocols[END_REF]. However, this assumption does not hold if specific hardware (directional antennas) is used. This is a strong hint that hardware based attack can sometimes get around the models, which should be adapted accordingly.

The DTF attack model however has a limitation. It requires the adversary to be located outside of the range of the antenna, otherwise he would be able to see the directed messages and the attack would fail. Hence, P * must either have a way of verifying the location of A , for instance by staying in view range during the attack or using a video camera to observe A , or A must behave exactly according to the instructions of P * . The first scenario might not be feasible: even if A is located at the position expected by the prover, he can place receiving devices on the path between P * and V beforehand, or even hide one behind V. Actually, A may even use an accomplice, who would be located between P * and V, and record the initial message, for instance with a smartphone in his pocket. There are so many ways to hide a receiver that we cannot safely assume that P * will notice it if A cheats. This limits the scope of application of this attack in the scenario where P * does not trust A . We are therefore left with the second option: the prover needs to trust his accomplice not to trick him by eavesdropping the directional messages. This leads to an interesting new research direction. It seems that the implicit assumption that is usually made is that A will follow some predefined algorithm decided by P * during the attack. In other words, it is generally considered that P * and A are colluding, as one single entity, but the case in which A has an adversarial behaviour is left on the side. For instance, in the session in which A is helped, he could forward incorrect nonces to the prover in order to gain some information. While this does not seem to grant a big advantage in usual protocols, for at least 3 protocols (SPADE, TREAD, PDB), an accomplice can gain some advantage by deviating from the instructions given by P * . It would be interesting to distinguish trusted TF, in which A faithfully follows an algorithm given by P * , from untrusted TF, in which the accomplice tries to cheat.

However, the results we present in the next section indicate that, for at least one attack that we present, either the accomplice cannot be helped, or there exists a help from which he cannot authenticate again later, regardless of whether he follows the instructions of P * or not.

Impossibility Results for Terrorist Fraud Resistance

In this section, we demonstrate that terrorist fraud resistance cannot be achieved the way it is usually seeked. We prove that, if A authenticates thanks to a non-void help of P * , there always exists a strategy that prevents A to authenticate again later. We present a generic terrorist fraud, which works for all protocols for which the prover can be cloned by its holder. Intuitively, the prover can be cloned if the user has access to its secret material, and the protocol does not use physically uncloneable functions (PUFs). Informally, a PUF is a function that maps challenges to responses, but cannot be cloned. Our attack uses a clone of the prover in a tamper-proof device that erases its memory after being used. We discuss its applicability, distinguishing white-box provers (with full control of the algorithm), black-box provers (for which the secret material is hidden), and the special case of provers which can physically not be cloned. White-box provers can apply this attack in a straightforward way, black-box provers cannot, and in some protocols using PUFs, a modified version of this attack can sometimes be applied. We also prove black-box provers and protocols using PUFs, a different kind of terrorist fraud resistance can be achieved, and define the corresponding notion OSTF.

The tamper-proof Device Attack

Preliminaries

We assume that the provers can either be white-box (WB) or black-box (BB). Provers are operated by a person, referred to as their holder. The holder of a white-box prover knows its secret material, and can implement any algorithm of his choice on the device. Instead, black-box provers are completely tamper-proof, and only execute their predefined algorithm, without the holder being able to modify it or to extract the secret material. Stated differently, the holder of a black-box prover can only interacts with it by sending it messages that correspond to those expected during the execution of the distance bounding protocol. In this sense, the holder of a black-box device can only interact with his device the same way an adversary would.

White-box provers are typically employed in the distance-bounding literature, such as in the formal models [START_REF] Dürholz | A formal approach to distance-bounding rfid protocols[END_REF], Boureanu et al., 2015], and articles presenting new protocols or terrorist frauds on existing protocols [START_REF] Boureanu | On the pseudorandom function assumption in (secure) distance-bounding protocols[END_REF][START_REF] Boureanu | [END_REF]. On the other hand, in industry, for instance in the banking protocol EMV [MasterCard, 2017], the provers are assumed to be tamper-proof devices, and therefore, black-box.

Since it is a commonplace in the industry to have the security rely on tamper-proof hardware, we believe that it is a safe assumption that tamper-proof devices, from which the secret material cannot be extracted with reasonable effort, can be built.

Another assumption that we make is that no verification is performed besides the distance bounding protocol in itself. Specifically, the identity of the holder of the device is not checked, and the device performing the protocol can be counterfeited. This assumption is clearly made in the distance bounding literature: for instance, in the case of a mafia fraud, the device presented in front of the verifier is not the legitimate prover, and the person holding it is not is legitimate owner. If additional identity checks were performed, mafia fraud would simply not exist.

A Generic Terrorist Fraud for White-Box Provers

In typical proofs for terrorist fraud resistance of distance bounding protocols, the holder of the proving device knows the secret material and algorithm ran by the device. Additionally, only two protocols [START_REF] Igier | [END_REF]Vaudenay, 2016, Kleber et al., 2015] include a mechanism (PUF) that prevents a prover from being copied by its holder. Therefore, in all distance bounding protocols of the literature, except for the 2 that use PUFs, the prover can clone his device. The case of black box provers, which cannot be cloned due to the prover not knowing their secret material, will be treated later.

When the device can be cloned, a malicious prover P * can build a tamper-proof device that runs exactly as the proving device k times, after which it self-destructs. In the usual definitions for TF, k is one, but some definitions require A to be helped several times, which is why we mention the possibility of having k executions.

Our attack is as follows: P * builds a disposable, k-times clone of his prover in a tamper-proof device. He then gives this to his accomplice A . The accomplice presents the tamper-proof clone to the verifier and successfully authenticates. The device is tamper-proof, so that A learns nothing more than from observing an honest execution of the protocol. Finally, the device erases its memory after k successful authentications, so A cannot use it to perform latter authentications that are not agreed to by the prover. This self-destruction equates in fact to a program wiping all data (secret and otherwise) and software on the device. This is a generic terrorist fraud. The prover permits A to authenticate, without giving him any sensitive information.

Discussion

Offline help Usually, terrorist-frauds are performed online: the prover helps his accomplice during one specific session, at a given time. In contrast, our generic attack permits the accomplice get the disposable device offline, and to use it at a time of his choice. However, this limitation can be overcome by including a secure, remote activation and deactivation mechanism on the disposable clone, in order to make it unusable except at a time chosen by the prover. By doing so, the prover could delegate his authentication rights while keeping full control on his credentials and the actions of his accomplice. Actually, this would even remove the need for a self destruction mechanism, and the prover could perform a form of permanent terrorist fraud.

Provable Terrorist Fraud Resistance Even though our attack corresponds to the idea of a terrorist fraud, it is still possible to prove the terrorist fraud resistance of some protocols in the security models. For instance, consider the SimTF definition of terrorist-fraud. The SimTF definition compares the probability p A for A to authenticate with the help of P * , and the probability p S for a simulator to authenticate afterwards, using the view of A . If p A -p S is negligible, then the protocol is SimTF-resistant. Now consider a protocol which is trivially broken: the verifier sends a challenge C, and the prover responds with C ⊕ x, where x is his secret key. By eavesdropping one session, an adversary learns x and can impersonate the prover. This protocol is SimTF-resistant: p A = 1, regardless of the help of P * , and p S = 1 as well, since x is in the view of A . Note that such a protocol would also be considered TF resistant according to the Collusion Fraud definition of [START_REF] Boureanu | Practical and provably secure distance-bounding[END_REF], in which p A and p S are respectively replaced by γ and γ ′ . However, in this case, terrorist fraud resistance is irrelevant, as A can authenticate even if the help from P * is void. We elaborate on this in the next section.

Another Definition for Terrorist Fraud Resistance

As mentioned in the previous section, some protocols are considered terrorist fraud resistant because they are not mafia fraud resistant. We believe that this should not be the case, as the help of P * is irrelevant if A can authenticate on his own. Hence, mafia fraud vulnerable protocols should not be considered terrorist fraud resistant.

Our generic attack applies to all the protocols in which the prover can be cloned. On the other hand, some protocols resist it. For instance, consider a protocol with only one time critical round, in which the response to a challenge C is PUF(C), and C is n bit long, with n depending on the security parameter. Since we consider polynomially bounded adversaries, and the number of possible challenge response pairs is exponential in the security parameter, the prover can simply not give his accomplice enough data to be able to respond with a good probability. Moreover, if the accomplice forwarded C to the far away prover, then he would not receive the response early enough to respond within the time-bound. Hence, in such a protocol, the prover has no physical way of giving his accomplice any non-negligible advantage to succeed.

It is a different form of resistance than the one that is usually achieved. Terrorist fraud resistance is usually modelled as a two-step game, one step in which A is helped, and one step in CHAPTER 5. HARDWARE BASED TERRORIST FRAUDS which A is on his own. Here, it becomes a one-step game: the protocol is resistant if the help of P * brings no significant advantage to A . We therefore propose a new definition for terrorist fraud resistance, which simply states that a protocol is terrorist fraud resistant if the success probability of A with the help of P * , denoted p A , is negligibly close to the success probability of the best MF adversary, which is itself negligible. We call this definition One Step Terrorist Fraud (OSTF).

OSTF Resistance

In some cases, the prover can simply not provide any helpful information for an accomplice to authenticate: regardless of the help provided by P * , the success probability of the accomplice is negligible.

We define this form of resistance as OSTF resistance. A protocol is OSTF-resistant if whatever help is given by a malicious prover to an accomplice does not allow the accomplice to perform significantly better than if the prover was honest. In this attack model, the prover is not forbidden to give his secret key as in a regular terrorist-fraud. More formally, OSTF resistance is as follows.

(λ)| ≤ neg l (λ).
We now prove that definition is sufficient, by proving that, if there exists (P * , A) such that p A is non negligible, then the protocol is vulnerable to a form of tamper-proof device attack, even if the device is not fully cloneable. We first prove that a tamper proof device that authenticates with the same probability as A can always be built, and then that there exists such a device that leaks no more information than a honest prover. We then conclude that, if P * can give A a non negligible probability of authenticating, then there exists a tamper-proof device attack.

Theorem 12. Let DB be a MF resistant distance bounding protocol, and p A denote the success probability of an adversary A helped by a prover P * . If there exists a couple of terrorist fraud adversaries (P * , A) such that p A is non negligible, then DB is vulnerable to a tamper-proof device attack.

Proof. If there exists a pair (P * , A) such that A authenticates with a non negligible probability p A , then P * can implement the algorithm ran by A on a tamper-proof device T A , which authenticates with the same probability p A , and instruct A to present T A to the verifier. We are now left to prove that A does not learn enough information to authenticate again later from the execution of T A . This would be the case if, for instance, P * sent some secret material to A in clear. To prevent this kind of leaks, T A can be built in such a way that all communications with P * are sent over a secure channel, and that only the messages that are part of the protocol ran with V are sent in clear. The delay introduced by the encryption for the secure channel does not invalidate T A : time-critical exchanges can not be relayed in time, be it encrypted or not, due to the time measurement, and messages independent from the current challenge can be computed and encrypted in advance. With this technique, A only sees encrypted messages, and the transcript of a correct execution of the protocol. By hypothesis, DB is MF-resistant, so that eavesdropping honest sessions does not grant A any advantage. Therefore, if there exists a pair (P * , A) such that A authenticates with a non negligible probability, then the protocol is vulnerable to a tamper-proof device attack.

We now proceed to proving that protocols with black-box provers are all OSTF-resistant, and that some PUF-based protocols can be too.

CHAPTER 5. HARDWARE BASED TERRORIST FRAUDS

Black-box Provers and PUFs

In this section, we study the known cases in which the provers are not cloneable. The first one is black-box provers, as this model is commonly used in the industry, and the second one is PUFbased protocols. To the best of our knowledge, no other strategies preventing the cloning of provers was proposed in any protocol of the literature.

Black-box Provers

Theorem 13. Let DB be a MF-resistant distance bounding protocol. If the provers are black-box, then DB is OSTF-resistant.

Proof. Consider a distance bounding protocol DB, in which the provers are black-box. If the prover is black-box, then it cannot be cloned: the holder does not know the secret material of the device. By definition, the holder of a black-box prover has exactly the same capabilities as an adversary: They can only interact with the device through the API of the protocol. From this, it follows that whatever help the holder gives to the adversary can be obtained by the adversary on his own, by interacting with the device in the same way the holder would.

Consequently, it holds that p A = Adv MF DB (λ), and DB is OSTF-resistant.

PUF-based protocols

We now study the case of protocols which use PUFs, in which the devices are, by definition of a PUF, not cloneable. A PUF if a function that maps n i n bit challenges to n out bit responses, and such that it is not emulable (i.e., their output cannot be predicted without querying them), and a response to a challenge C gives negligible information on the response to another challenge C ′ . It is embedded in a hardware device. The typical use case for a PUF is to query it to obtain its responses to a list of challenges at the time of initialisation, and then using these challenges for authentication later. PUFs also have a public key equivalent, which does not require knowing a list of challenge/response pairs for authentication: SIMPL (Simulation Possible but Laborious): their output for a given challenge can be computed without the hardware device, but significantly slower than with it. By definition, the PUF embedded in a prover device cannot be cloned, and if a SIMPL is used, it cannot be cloned accurately either, as the computation time will be longer.

Whilst protocols without PUFs are the great majority on the DB protocols in existence, there are two PUF-based protocols in the literature: [START_REF] Igier | [END_REF]Vaudenay, 2016, Kleber et al., 2015]. In these protocols, the response to the challenges is computed as the output of a PUF on some challenge, which is the concatenation of a long pre challenge and the challenges from the previous and current rounds.

The protocol of Kleber [START_REF] Kleber | Terrorist fraud resistance of distance bounding protocols employing physical unclonable functions[END_REF] is vulnerable to a terrorist fraud, which was exhibited in [START_REF] Igier | Distance bounding based on puf[END_REF], and the one of Vaudenay [START_REF] Igier | Distance bounding based on puf[END_REF] claims to be TF resistant, under some assumptions on the communication complexity. However, the TF resistance achieved by the latter is stronger than usual: it is not that if P * helps A , then A can authenticate alone. It is that P * can simply not help A by providing him with the necessary responses in time, i.e., there is no strategy for P * to help A authenticate. This corresponds to OSTFresistance.

Conclusion

Usually, protocols claiming to attain terrorist fraud resistance do it by attempting to force the malicious prover to give his (long term or temporary) credentials to his accomplice. While this works in the usual formal models, it becomes completely irrelevant if the prover is allowed to use specific hardware countermeasure for his attack. By using directional antennas, for instance, a malicious prover can bypass the terrorist fraud resistance mechanism of some anonymous protocols (SPADE and TREAD). By building tamper-proof copies of his proving device, and making them usable only CHAPTER 5. HARDWARE BASED TERRORIST FRAUDS a given number of times, a malicious prover can defeat the terrorist fraud resistance of all protocols which permit the cloning of provers. If the provers are black-box, i .e. their holder does not have access to their secret material, then the prover cannot give his accomplice any more than if the accomplice had queried the device himself. Finally, for PUF-based protocols, either the prover is unable to help his accomplice, or a terrorist fraud attack exists. Hence, we define OSTF, a notion that imposes no restriction on what the prover is allowed to leak, and does not depend on the accomplice learning something. A protocol is OSTF-resistant if, regardless of the help provided by a malicious prover, A cannot authenticate successfully.

Part II

Using Constraint Programming for Cryptanalysis

Chapter 6

Using Constraint Programming for Cryptanalysis Contents The security of contactless communication protocols depends, of course, of the protocols themselves, but it is also dependent of the cryptographic primitives that are used to build them. Studying the security of these primitives is a difficult and tedious task, so that the community studies solutions to automate it [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad and others[END_REF], Mouha et al., 2012, Sun et al., 2014, Derbez and Fouque, 2016]. We applied Constraint Programming (CP) to automatic cryptanalysis. Constraint programming is a paradigm in which the user states the problem to be solved in a declarative manner, and leaves the resolution to a solver. As a benchmark to evaluate the efficiency of constraint programming, we chose a specific cryptographic problem: the search for optimal related key differential characteristics on block ciphers. In this chapter, we present the general methods that we used for modelling, while in the following chapters, we present concrete case studies and results.

Introduction

Contactless communication protocols, including distance bounding protocols, rely heavily on the security of the cryptographic building blocks that compose them. For instance, the security proofs for SPADE and TREAD (Chapter 4) only hold if secure encryption schemes are used. Contactless applications are usually run on devices with low computational power and energy, so that there is an incentive in minimising the number of operations they have to perform. Symmetric schemes are typically faster than asymmetric ones [START_REF] Tripathi | Comparative study of symmetric and asymmetric cryptography techniques[END_REF], so they are preferred for contactless applications. For instance, most distance bounding protocols [START_REF] Brelurut | Survey of distance bounding protocols and threats[END_REF] use symmetric schemes.

In contactless protocols, the most widely used cryptographic primitives are encryption schemes, PRFs, hash functions, and MACs (as defined in Chapter 2). Encryption is typically performed using a block cipher. A block cipher is a symmetric encryption scheme which encrypts messages (or blocks) of fixed length. Once a secret key is fixed, the block cipher defines a permutation on the message space. It is said to be secure, or to behave as a good pseudorandom permutation (PRP), if it is difficult to distinguish this permutation from a random one without being given the secret key. The other primitives used in contactless protocols can be built from a block cipher:

Hash Functions There exist several techniques to build a hash function from a block cipher, such as the Merkle-Damgård construction [Merkle, 1979]. In this construction, successive calls to a block cipher are done, in which the plaintexts are blocks of the message to be hashed, and the keys used in the encryptions are a function of the previous encryptions.

PRF A secure block cipher can directly be used as a PRF (see Theorem 1 of [Lucks, 2000]), but more advanced constructions can be used for more security, such as the PRF Sum 2 (K, K ′ , M) =

E.enc K (M)⊕E.dec K ′ (M)
, where E is a block cipher, and K and K ′ are random keys [Lucks, 2000].

MAC To build a MAC from a block cipher, one can either use a specialised construction such as PMAC [START_REF] Black | A block-cipher mode of operation for parallelizable message authentication[END_REF], or build a hash function from the block cipher, and then use HMAC, defined as HMAC K

(M) = H((K ⊕ opad)||H(K ⊕ i pad ||M))
, where H(•) is a hash function, and opad and i pad are constants [START_REF] Bellare | Message authentication using hash functions: The hmac construction[END_REF].

Embedded devices are typically restricted by their memory. For this reason, one could imagine implementing a block cipher on such a device, and deriving the other primitives from it. However, in this case, several keys are sometimes used: for instance, the PRF Sum 2 uses two different keys, and the Merkle-Damgård construction uses several keys which are partly dependent from each other. This multiple-key use case is not covered by the classical pseudo random security notion, which only considers one fixed key. This motivates the analysis of the security of block ciphers in the related key model, in which the attacker has access to encryptions under several keys that have a relation of his choice. In the related key model, the most studied kind of attacks is related key differential cryptanalysis. Related-key differential cryptanalysis is the adaptation of differential cryptanalysis [START_REF] Biham | Differential cryptoanalysis of feal and n-hash[END_REF] to the case where multiple keys are used. Differential cryptanalysis evaluates whether it is possible to distinguish the cipher from a PRP (or to recover the secret key used to encrypt messages) within a reasonable number of trials, by considering plaintext pairs (X, X ′) and studying the propagation of the input difference δX = X ⊕ X ′ between X and X ′ while going through the ciphering process. In other words, differential cryptanalysis exploits the fact that the probability of observing output differences given input differences is not uniformly distributed. Today, differential cryptanalysis is public knowledge, and block ciphers such as the AES have proven security bounds against differential attacks. Hence, Biham proposed to consider related-key differential attacks [Biham, 1993], in which the attacker can inject differences not only between the plaintexts X and X ′ but also between the keys K and K ′ (even though the secret key K stays unknown from the attacker). To mount related-key differential attacks, the cryptanalysts must find optimal related-key differentials, i.e., input and output differences that maximise the probability of observing the output difference given the input difference. The propagation of differences through the cipher is non deterministic, so that several difference propagation paths, also called related key differential characteristics, can result in the same input and output difference. Computing the probability of a differential, due to the high number of paths that can lead to it, is difficult. However, the probability of the best differential characteristic gives a lower bound on the probability of the best related key differential attack.

Finding optimal related key differential characteristics is a highly combinatorial problem, which is usually solved using custom algorithms [Fouque et al., 2013, Biryukov and[START_REF] Biryukov | [END_REF]. Implementing such algorithms is a tedious and time consuming task, which can be error prone. On the other hand, the optimisation research community has automatic tools designed specifically to CHAPTER 6. USING CONSTRAINT PROGRAMMING FOR CRYPTANALYSIS tackle combinatorial problems, and be easy to use. These tools include, among others, Mixed Integer Linear Programming (MILP), SAT solvers, or Constraint Programming (CP). In these declarative frameworks, the solving algorithm is decoupled from the problem to solve: the user describes the problem in a given formalism, and provides the resulting model to a solver, which performs the resolution. This approach has several advantages over the design of custom search tools: it is significantly easier to just describe the problem than to implement a search tool from scratch, and the solvers can be much more efficient than custom tools, since they are the result of years of improvements. Moreover, there is a strong incentive for the developers of solvers to improve them even more and make them faster, in particular with the solvers competitions that take place every year. The resolution algorithms used in these solvers are therefore highly optimised.

MILP and SAT models are used more and more widely for cryptanalysis, as they save cryptanalysts the trouble of implementing a search algorithm from scratch. While the running time is not a crucial feature for cryptanalysts, it still needs to be reasonable: during the design of a cipher, this analysis may have to be repeated several times, so that a short running time is an interesting feature. The first application of a declarative framework for the cryptanalysis of block ciphers was trying to recover the secret key used in a DES encryption with a SAT solver, in 1999 [Massacci, 1999]. Since then, SAT was mostly applied to the cryptanalysis of hash functions [START_REF] Mironov | Applications of sat solvers to cryptanalysis of hash functions[END_REF], while MILP was used for ciphers. A notable example is the differential and linear cryptanalysis of the stream cipher Enocoro-128v2 by Mouha et al ., using the MILP paradigm [START_REF] Mouha | Differential and linear cryptanalysis using mixed-integer linear programming[END_REF]. Other authors performed cryptanalysis on block ciphers using MILP, such as [START_REF] Wu | Security evaluation against differential cryptanalysis for block cipher structures[END_REF], who used it to perform differential cryptanalysis against several block ciphers (CAST256, SMS4, Clefia, Misty, Skipjack, Mars, Fourcell), or [START_REF] Sun | Automatic security evaluation and (related-key) differential characteristic search: Application to simon, present, lblock, des(l) and other bit-oriented block ciphers[END_REF], in which MILP is used to find related key differential characteristics on SIMON, PRESENT, LBLOCK and DESL. One well known difficulty when evaluating block ciphers with MILP is that MILP is designed to solve linear equations, while block ciphers include non linear part. In particular, a component used to introduced non linearity, the substitution boxes (SBoxes), is difficult to model in MILP, since describing it in a linear way requires a huge number of equations. When the SBoxes operate on 4 bits, it is still reasonably easy to model them with MILP, but larger SBoxes have been known to be more difficult. A new representation introduced in [START_REF] Abdelkhalek | Milp modeling for (large) s-boxes to optimize probability of differential characteristics[END_REF] made the modelling of 8 bit SBoxes possible. More recently, MILP was used to search for impossible differentials, i.e., differentials which occur with probability 0, in [START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects[END_REF].

While MILP and SAT are quite popular in the cryptography community, CP received very little attention. The small representation of CP for cryptanalysis in the literature is surprising: MILP is limited to solving constraints described as linear inequalities, and SAT is limited to Boolean formulas, while the CP formalism generalises the two former methods and imposes no restrictions on the constraints that can be expressed, which makes it easier to use. In addition, there exists methods to convert a CP problem to a MILP or SAT problem automatically. In particular, MILP (such as Gurobi [START_REF] Gurobi Optimization | Gurobi optimizer reference manual[END_REF]) and SAT (for instance Picat_Sat) solvers can interpret CP models written in the MiniZinc [START_REF] Nethercote | Minizinc: Towards a standard CP modelling language[END_REF] constraint programming language. However, to the best of our knowledge, apart from our work, CP was only used for two cryptography-related tasks. It was used to automate the generation of SBoxes with optimal properties [START_REF] Ramamoorthy | The design of cryptographic s-boxes using csps[END_REF]. In this work, a CP model with constraint enforcing several design criterion is proposed, and this model generates all the optimal SBoxes within a few seconds. CP was also used to perform side-channel cryptanalysis on AES in two works. The first one [Bonneau, 2006] considers the information obtained by cache look-ups that occur during AES operations, and builds a CP models relating trace data to key bits, in order to recover the key. The second one [START_REF] Liu | A tolerant algebraic side-channel attack on aes using cp[END_REF] uses CP to perform Tolerant Algebraic Side-Channel Analysis [START_REF] Oren | Algebraic side-channel analysis in the presence of errors[END_REF] against AES.

We explored the capability of CP to tackle cryptanalysis problems, and in particular, the problem of finding optimal related-key differential characteristics for block ciphers.

In this chapter, we explain how to model the search and enumeration of optimal related-key differential characteristics with constraint programming, and define the notations that we use in the following chapters. We first recall the definition of block ciphers in Section 6.2.1, and then we introduce some notions about related key differential cryptanalysis in Section 6.2. Then, after recalling what constraint programming (Section 6.3) is, we give the general technique we used for modelling the problem of finding optimal related key differential characteristics in Section 6.4.

Related Key Differential Cryptanalysis

In this section, we first recall the definition of block ciphers and their security, and then present related key differential cryptanalysis.

Block Cipher Security

Two famous examples of block ciphers are DES (Data Encryption Standard), which was the encryption standard between 1977 and 2000, and AES [START_REF] Daemen | The Design of Rijndael[END_REF] which is the actual standard since 2001.

Block ciphers are symmetric encryption schemes that encrypt blocks of fixed length. More formally, a block cipher is a function E : X × K → X, where X = {0, 1} n is a message space, and K = {0, 1} l is a key space. Given a binary block X ∈ X (called plaintext) of length n and a binary key K ∈ K of length l , outputs a binary ciphertext E.enc K (X) ∈ X of length n such that X = E.dec K (E.enc K (X)).

Most of today's block ciphers have an iterated structure: They apply a round function f r times so that E.enc K (X) = X r with X 0 = X and X

i +1 = f (X i , K i +1) for all i ∈ [0; r -1].
The ciphers we studied in this thesis follow the Substitution Permutation Network (SPN) structure. The round function of the block ciphers following this structure is composed of a linear permutation layer, as well as a non-linear substitution layer. This non linear layer is implemented as SBoxes. A SBox is a substitution table, which maps bitstrings of length m to bitstrings of length w. The cipher that we studied use bijective SBoxes, so that m = w, and they are word oriented: they group bits as words, which are either nibbles (m = 4) or bytes (m = 8).

In the single-key scenario, a block cipher is said to be secure if it behaves as a good pseudorandom permutation (PRP). In other words, it is secure if it is difficult to distinguish it from a random permutation. Let Per m(D) denote the set of all permutations over a domain D. The two following definitions are inspired from [START_REF] Bellare | A theoretical treatment of related-key attacks: Rka-prps, rka-prfs, and applications[END_REF]. In these definitions, concrete (as opposed to asymptotic) security notions are used, as in a block ciphers, the key size l is fixed. Hence, security is considered with respect to adversaries having practical resources, in terms of running time and oracle queries.

Definition 33 (PRP Experiment for a Block Cipher). Let E be a block cipher, and Adv PRP E (l) denote the advantage of an adversary against the PRP experiment. A block cipher is PRP secure if Adv PRP E (l) is small, for any adversary limited to a practical number of queries. This advantage is defined as

Pr K $ ← K : A E.enc K (•) = 1 -Pr g $ ← Per m(M) : A g (•) = 1 .
The PRP experiment can also be defined in the related key model [START_REF] Bellare | A theoretical treatment of related-key attacks: Rka-prps, rka-prfs, and applications[END_REF]]. The model defined in [START_REF] Bellare | A theoretical treatment of related-key attacks: Rka-prps, rka-prfs, and applications[END_REF] allows the adversary to select among several relations between the keys, but since our work focuses on XOR differences, we adopt a simpler, though less generic, definition. Let E.enc RK,(δK,K) (X) be an oracle that encrypts a message X with the key K ⊕ δK. Let Per m(K, M) denote the set of block ciphers with key space K and message space M.

Definition 34 (PRP-RKA Experiment for a Block Cipher). Let E be a block cipher, and Adv PRP-RKA E (l) denote the advantage of an adversary against the PRP-RKA experiment. A block cipher is PRP-RKA secure if Adv PRP-RKA E (l) is small, for any adversary limited to a practical number of queries. This advantage is defined as Pr K

$ ← K : A E.enc RK,(•,K) (•) = 1 -Pr K $ ← K, g $ ← Per m(K, M) : A g (K,•) = 1 .

Related Key Differential Cryptanalysis

In a related key differential attack, the cryptanalyst has access to E.enc RK,(δK,K) (X), as defined in Definition 34. He can query the encryption of any message X of his choice, under both the secret key K and K ′ = K ⊕ δK, for a δK of his choice. His goal is to distinguish E from a random keyed permutation. Note that recovering the key permits A to trivially distinguish, by comparing E.enc K (X) with the output of the oracle for the encryption of X, i .e, E.enc RK,(0,K) (X). When trying to recover the key, the cryptanalysis is considered successful if he can do it more efficiently than by exhaustive search. Exhaustive search is the strategy of requesting the encryption of a message X with the key K, and then computing E.enc k (X) : k ∈ K for each of the 2 l candidate keys in K, and checking which ciphertext matches. In general, it is not possible to mount successful cryptanalysis on the full version of a block cipher, and cryptanalysts attack round reduced versions.

The first step to perform a related key differential cryptanalysis is to obtain related key differential characteristics. A related key differential characteristics c describes the propagation of an initial difference in the plaintext (δX) and in the key (δK) through the cipher, as well as the probability p(c) that a given output difference δX r is observed after r rounds of the encryption process. The cryptanalyst can expect to observe δX r once encrypting 1 p(c) messages with the correct input difference. The number of encryptions is generally raised to T • 1 p(c) (where T is a constant), in order to maximise the probability of observing the correct output difference. Hence, the number of operations required to distinguish E from a random permutation depends on the probability p(c).

We denote δA the differential matrix obtained by applying the XOR operator on two matrices and, for every row j and column k, δA[j][k] is called a differential word (or, depending on the context, differential byte or differential nibble). Differential words are denoted with a lower case letter, e.g., δa, to avoid confusion with differential matrices. The set of all differential words, which represent the inputs, outputs and intermediary differences through the cipher, is denoted diffWords l . Among these differential words, some of them pass through Sboxes, and we denote Sboxes this set.

The first observation is that, in a differential context, XOR operation with constants C do not need to be considered, since they are cancelled:

a ⊕ C ⊕ a ′ ⊕ C = a ⊕ a ′ = δa
The propagation of a difference δA through a linear operation L is deterministic: for all differential matrix δA = A ⊕ A ′ , it holds that L(A) ⊕ L(A ′) = L(A ⊕ A ′), by definition. On the other hand, the propagation of a difference through a SBox S is not deterministic. Given two bitstrings a and a ′ , S(a) ⊕ S(a ′) is not necessarily equal to S(a ⊕ a ′).

Therefore, given an input differential words δa = a ⊕ a ′ , we cannot deterministically compute the output difference after passing through Sboxes: we can only compute probabilities. More precisely, for every couple of differential words (δa i n , δa out) ∈ [0; n] 2 , we can compute the probability that the input difference δa i n becomes the output difference δa out , which is the proportion of couples (a, a ′) such that δa i n = a ⊕ a ′ and δa out = S(a) ⊕ S(a ′). More precisely, this probability is denoted p S (δa out |δa i n) and is defined by

p S (δa out |δa i n) = #{(a, a ′)∈[0; n] 2 | (a⊕a ′ = δa i n) ∧ (S(a)⊕S(a ′) = δa out)} 2 m (6.1)
To compute the probability of a given valuation of all differential words, we first have to check that all linear operators are satisfied by the valuation. If this is not the case, then the probability is equal to 0. Otherwise, the probability of a differential characteristic c, denoted p(c), is equal to the product of the transition probabilities of all differential words that pass through SBoxes, i.e., :

p(c) = δa∈Sboxes p S (δa out |δa i n) (6.2)
In the ciphers we studied, the SBoxes are bijective. This implies that whenever δa = 0 (i .e, a = a ′), S(a)⊕S(a ′) = a ⊕ a ′ = 0. Stated differently, p S (0|0) = 1, and p S (0|δa i n) = 0 if δa i n = 0. The SBoxes which have a null input difference are inactive, and the SBoxes with non zero input difference are said to be active. Only the active SBoxes lower the probability of the differential characteristic, since inactive SBoxes are passed with probability 1. Hence, optimal differential characteristics typically have a low number of active SBoxes. We refer the reader to [START_REF] Biham | Differential cryptoanalysis of feal and n-hash[END_REF] for more details on differential characteristics.

Constraint Programming

In this Section, we briefly recall basic principles of CP and we refer the reader to [START_REF] Rossi | Handbook of Constraint Programming[END_REF] for more details. CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is defined by a triple (X, D, C) such that X is a finite set of variables, D is a function that maps every variable x i ∈ X to its domain D(x i) (that is, the finite set of values that may be assigned to x i), and C is a set of constraints (that is, relations between some variables which restrict the set of values that may be assigned simultaneously to these variables).

Constraints may be defined in extension, by listing all allowed (or forbidden) tuples of the relation, or in intention, by using mathematical operators. Let us consider for example a CSP with X = {x 1 , x 2 , x 3 } such that D(x 1) = D(x 2) = D(x 3) = {0, 1}, and let us consider a constraint that ensures that the sum of the variables in X is different from 1. This constraint may be defined by a table constraint that enumerates all allowed tuples: (x 1 , x 2 , x 3) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Conversely, it may be defined by enumerating all forbidden tuples: (x 1 , x 2 , x 3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Finally, it may be defined by using arithmetic operators:

x 1 + x 2 + x 3 = 1.
Solving a CSP involves assigning values to variables such that all constraints are satisfied. More formally, an assignment A is a function which maps each variable x i ∈ X to a value A (x i) ∈ D(x i). An assignment A satisfies (resp. violates) a constraint c ∈ C if the tuple defined by the values assigned to the variables of c in A belongs (resp. does not belong) to the relation defined by c. An assignment is consistent (resp. inconsistent) if it satisfies all the constraints (resp. violates some constraints) of the CSP. A solution of a CSP is a consistent assignment.

An objective function may be added to a CSP, thus defining a Constrained Optimisation Problem (COP). This objective function is defined on some variables of X and the goal is to find the solution that optimises (minimises or maximises) the objective function. This solution is said to be optimal.

CP languages provide high-level features to define CSPs and COPs in a declarative way.

Then, these problems are solved by generic constraint solvers which are usually based on a systematic exploration of the search space: Starting from an empty assignment, they incrementally extend a partial consistent assignment by choosing a non-assigned variable and a consistent value for it until either the current assignment is complete (a solution has been found) or the current assignment cannot be extended without violating constraints (the search must backtrack to a previous choice point and try another extension). To reduce the search space, this exhaustive exploration of the search space is combined with constraint propagation techniques: Each time a variable is assigned to a value, constraints are propagated to filter the domains of the variables that are not yet assigned, i.e,, to remove values that are not consistent with respect to the current assignment. When constraint propagation removes all values from a domain, the search must backtrack.

Let us consider for example the constraint that ensures that the sum of three variables is different from 1. Whenever two of these variables are assigned and their sum is equal to 1 (resp. 0), the propagation of this constraint removes the value 0 (resp. 1) from the domain of the third variable.

A key point to speed up the solving process of CSPs is to define the order in which variables are assigned, and the order in which values are assigned to these variables, when building the search tree. CP languages allow the user to specify this through variable and value ordering heuristics.

Modelling the Search for Optimal Related Key Differential Characteristics on Word Oriented Block Ciphers With CP

In this section, we present the strategies that we used to perform the search for optimal related-key differential characteristics.

Search algorithm

Finding and enumerating the optimal related key differential characteristics for a block cipher is a highly combinatorial task. It requires finding the difference propagation path, such that the plaintext difference is δX, the key difference is δK, and the difference after r rounds is δX r . The search space is very large: typical values for the block size n and the key size l are 64, 128 or even more bits. To make the search easier, it can be decomposed into two steps [Biryukov andNikolic, 2010, Fouque et al., 2013].

In a first step, each differential word δa ∈ diffWords is abstracted with a Boolean variable (or differential bit) ∆a such that ∆a = 0 ⇔ δa = 0 and ∆a = 1

⇔ δa ∈ [1, 2 n -1].
We denote the fact that ∆a is a Boolean abstraction of δa with the symbol ≺, i.e., ∆a ≺ δa. In other words, each

Boolean variable assigned to 1 gives the position of a difference. The goal is to find all abstracted differential characteristics that optimise some objective function:

• an abstracted differential characteristic is an assignment of the Boolean variables associated with the differential words of diffWords that satisfies the Boolean abstraction of the cipher operations;

• the objective function aims at minimising the number of differences passing through SBoxes (i.e., minimising δa∈Sboxes ∆a).

In a second step, for each abstracted differential characteristic, we search for actual values of the diffWords variables that satisfy the difference propagation rules and that maximise the probability p(c) defined in Eq. (6.2). When a Boolean variable ∆a is equal to 0 in the abstracted differential, there is only one possible value for δa, which is 0. However, when ∆a = 1, there are 2 l -1 possible values for δa. Note that some abstracted differential characteristics are not valid and cannot be transformed into word solutions because abstracted differential characteristics only satisfy Boolean abstractions of the actual cipher operations. These abstracted differential characteristics are said to be word-inconsistent. It may also happen that the maximal probability p(c) is such that it is possible to have a greater probability with a larger number v of differences that pass through SBoxes. In this case, we need to search for new abstracted differentials, with a larger number of differences.

More precisely, the complete procedure to find optimal differential characteristics is described in Algorithm 1. It first calls function Step1-opt to compute the minimal number v * of differences passing through S-boxes in an abstracted differential characteristic (line 2), and it initialises v to this minimal number of differences. Then, it calls the function Step1-enum to compute the set T of all abstracted differential characteristics such that the number of differences passing through S-boxes is equal to v (line 6). For each abstracted differential t ∈ T, it calls function Step2 (line 8): if t is not word-consistent, Step2 returns nul l ; otherwise, it returns the optimal differential characteristics c associated with t . If this optimal differential characteristics has a greater probability than c * , then it updates c * (line 9). Lines 6 to 10 are repeated with increasing values of v until a differential characteristics has been found, and it is not possible to obtain a better differential characteristics with a higher value of v.

Modelling the Cipher Operations

In this section, we describe the modelling tricks that we used for the operations of the cipher. The detail of the modelling are cipher dependant, and are presented in the following chapter. However, some general guidelines can be defined. Indeed, many block ciphers use XOR operations,

First Step

The advantage of decomposing the problem in two steps is that it greatly reduces the search space. It additionally permits to report the study of the SBox operation to Step 2, for which the number of potential solutions is greatly filtered by Step 1. Indeed, as mentioned earlier, for bijective SBoxes, S(a) ⊕ S(b) = 0 if a = b, and that S(a) ⊕ S(b) = 0 otherwise, so that the output difference after a SBox is 0 if the input difference is 0, and nonzero otherwise. Hence, for the abstraction of the SBox operation in the Boolean domain is simply SB(∆a i n , ∆a out) ≡ ∆a i n = ∆a out .

For this reason, the SBox operation is simply modelled as the identity operation in the first step.

On the other hand, some branching is introduced by the abstraction of the XOR operation: When the words are abstracted to bits, we lose the information of whether two words are equal. Consider the following operation: δx = δa ⊕ δb. When abstracting it to the Boolean domain, we lose information about whether δa and δb are equal, and we obtain the following three cases:

• If ∆a = ∆b = 0, then ∆x = 0, because 0 ⊕ 0 is zero.

• If ∆a = ∆b, then ∆x = 1, because 0 ⊕ x, with x = 0, is always nonzero.

• If ∆a = ∆b = 1, then ∆x can be either 0 (if δa = δb) or 1 otherwise. This is expressed by the following constraint: XOR(∆a, ∆b,∆x) ≡ ∆a + ∆b + ∆c = 1.

where + is the integer addition. Similarly, when k variables are XORed together, i.e, δx = i ∈[1,k] δa i , we have that if all the differential bits representing the differential words δa i are zero, then ∆x is 0. If only one of these bits is nonzero, then ∆x is 1. If there is more than one nonzero bit, then the result is undetermined.

XOR({∆a

i |i ∈ [1, k]}, ∆x) ≡ k i =1 (∆a i) + ∆x = 1.
Finally, the ciphers we studied include a linear transformation called MixColumns (MC), which operates on each column of the differential matrices independently. These columns contain 4 rows for all the ciphers we studied. Let A denote a column, and MC(A) its image by the MC operation. The MC operation is chosen for its diffusion properties: For each column A, it ensures that the number of bytes that are different from zero in A and MC(A) is either 0 or greater or equal to its branch number b, i.e., MC cannot be modelled precisely at the Boolean level, as knowing where differences hold in δA is not enough to determine where they hold in δMC(A). Indeed, the values of the words in the column are necessary to determine the positions of the zeros after MC. However, the MDS, or quasi MDS property, is modelled by constraining the number of differences in δA and δMC(A) to be equal to 0 or greater than B.

However, the MDS or quasi MDS property of MC also holds for the XOR difference between two columns of differential bytes:

(3 j =0 ((δA[j] ⊕ δB[j]) = 0) + ((δMC(A)[j] ⊕ δMC(B)[j]) = 0)) ∈ {0, b, b + 1, . . . , 8}.
Considering the branch number for the XOR of two columns of differential words permits to greatly reduce the number of byte inconsistent solutions. Indeed, we can infer equalities or differences between δA and δB from other parts of the cipher, for instance the XOR operations. More details about these inferences are given in Section 7.3.2.

Second Step

The second step is a straightforward implementation of the difference propagation rules for the cipher at word level. It includes constraints to define the Sbox operation, as well as the XOR operation, and the permutations. MixColumns is modelled by combining XOR operations. For AES and Rijndael, it also requires to implement multiplication in a finite field: the constraints corresponding to this multiplication are described in the corresponding chapter.

For XOR, SBox, and multiplication, we use table constraints, which extensively list the allowed tuples. A table constraint is defined with regards to a set of allowed n-tuples tuples, and a tuple of variable t = (v 1 , . . . , v n). The constraint t abl e(t , tuples) enforces the relation t ∈ tuples. For SBox, we use a ternary table constraint which lists all triples (X, Y, P) such that there exists two words w 1 and w 2 whose difference before and after passing through SBoxes is equal to X and Y, respectively, and such that p S is the probability of this transformation: For all δw ∈ Sboxes, we add the constraint

(δw i n , δw out , p) ∈ {(X, Y, p) | ∃(w 1 , w 2) ∈ [0, 2 l -1] × [0, 2 l -1], X = w 1 ⊕ w 2 ,
Y = S(w 1) ⊕ S(w 2), p = log 2 (-p S(δw out |δw out) }.

Using the base 2 logarithm allows us to replace the product of probabilities by a sum of integers, which is easier to model. Similarly, for the XOR operations (δa ⊕ δb = δc), we use a ternary table constraint which extensively lists all triples (A, B, C), such that A ⊕ B = C. The corresponding tuples are called tupleXOR:

TX = {(A, B, C) : (A, B, C) ∈ [0; 2 m -1] 3 , A ⊕ B = C},
where m is the word size used in the cipher (typically 4 or 8 bits).

Objective function

The same model is used to solve two problems, i.e., Step1-opt and Step1-enum. The difference between these problems is in their goals. For Step1-opt, the goal is to find the minimum number of differences passing through SBoxes, i.e., the number of ∆B variables that are associated with differential words in Sboxes l and that are assigned to 1. Thus, we define an integer variable ob j St ep1 which is constrained to be equal to the number of differences passing through SBoxes:

ob j St ep1 = δB∈Sboxes ∆B.
The domain of this variable is D(ob

j St ep1) = [1, l 6]
. Indeed, the smallest possible value is 1 because we need to have at least one active SBox to have a differential characteristics (we forbid the obvious solution such that δX and δK only contain words set to 0, meaning that there is no difference in the initial plaintext and key). The largest possible value is l 6 because the highest probability p S (δ out |δ i n) to pass through the AES SBox is 2 -6 = 4 256 when δ i n = 0 [START_REF] Daemen | The Design of Rijndael[END_REF], and because we want a differential characteristics which is more efficient than the key exhaustive search (i.e., the probability of which is greater than 2 -l). The objective function is to minimise

ob j St ep1
For Step1-enum, the goal is to enumerate all abstracted differentials when ob j St ep1 is assigned to a given value v, and we simply ask the solver to enumerate the solutions that satisfy the constraint.

Ordering heuristics

As the goal is to minimise the number of active SBoxes (for Step1-opt) or enumerate all abstracted differentials with a small number of active SBoxes (for Step1-enum), we define ordering heuristics as follows: first assign variables associated with bytes that pass through SBoxes (those in Sboxes), and first try to assign them to 0.

Tools and Experimental Setup

There exists a wide range of CP solvers, as well as SAT and MILP solvers. In preliminary experiments [START_REF] Minier | Solving a Symmetric Key Cryptographic Problem with Constraint Programming[END_REF], both steps were performed with Choco [START_REF] Prud'homme | Choco Documentation[END_REF], a CP solver based on the java programming language. The problem that was studied was the search for related key differential characteristics on AES-128, and is presented in the next chapter. However, the resolution of Step 1 scaled poorly with Choco, even though the times for Step 2 were good. To remedy this, we investigated the use of different solvers, by implementing our model in the MiniZinc language [START_REF] Nethercote | Minizinc: Towards a standard CP modelling language[END_REF]. MiniZinc is a dedicated language, which is interpreted (after compilation) by many CP solvers, as well as some SAT and MILP solvers: the whole list of compatible solvers can be found on minizinc.org. We ran experiments with Gecode [Gecode Team, 2006], Choco [START_REF] Prud'homme | Choco Documentation[END_REF], Chuffed [START_REF] Chu | Chuffed solver description[END_REF], and Pi-cat_SAT [START_REF] Zhou | Constraint Solving and Planning with Picat[END_REF]. The solver Chuffed [START_REF] Chu | Chuffed solver description[END_REF] performed very well on the small instances of our problems [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF], but for larger instances, it was not sufficient. In particular, while our problem was solved efficiently for AES-128, the instances related to AES-192 were problematic. We switched to Picat_SAT after submitting our models to a competition of solvers called the MiniZinc challenge, in 2016, and noticing that it obtained particularly good results. In fact, Picat_SAT was consistently better than Chuffed, or at least as good, for solving our models. Hence, we use it to perform Step 1 in all the experiments described in the rest of this thesis. Note that Picat_SAT actually uses a SAT solver to solve CSPs: It first translates the CSP instance into a Boolean satisfiability formula, and then uses the SAT solver Lingeling [Biere, 2014] to solve it.

On the other hand, Step 2 is solved fast enough by Choco for all our instances. Moreover, it can be parallelized: each Step 1 solution can be solved in Step 2 independently. Hence, Step 2 was never a bottleneck, and we did not investigate its resolution with other solvers.

All our experiments were performed on a server with a 24-core Intel(R) Xeon(R) E5-2687Wv4 @ 3.00GHz CPU, and 768 Gb of RAM. We used version 2.1.7 of the MiniZinc suite, and Picat version 1.9#6.

When we report our results, all times are given in seconds unless otherwise specified.

Conclusion

In this chapter, we presented the problem of finding optimal related key differential characteristics on block ciphers, i.e., relations between input and output differences which hold with maximal probability, and defined the associated notations. Additionally, we presented the general modelling techniques that we used, including a two-step resolution, and the use of table constraints to model the SBoxes at word level. The following chapters instantiate our techniques to two block ciphers: AES and Midori.

Chapter 7

Related Key Differential Cryptanalysis of AES with CP The AES is the most widely used block cipher since its standardisation in 2001. In this chapter, we present the methods and results of our related key cryptanalysis on it using constraint programming. Using the methods described in the previous chapter, we solve the problem within some hours even for the hardest instances, whereas the state of the art method require several weeks. Additionally, we disprove some results that were claimed optimal in the literature.

Introduction

In 1997, a call for proposals was launched in order to replace the DES (Data Encryption Standard), which had been in use since the 1970's, and had become insecure. One of the candidates, Rijndael [START_REF] Daemen | The Design of Rijndael[END_REF], was modified and adopted as the AES (for Advanced Encryption Standard) in 2001. While the original in algorithm, Rijndael, several block sizes n ∈ {128, 160, 192, 224, 256} could be chosen, independently of the key size l ∈ {128, 160, 192, 224, 256}, the AES only supports one block size (128 bits) and three key sizes: 128, 192 and 256 bits.

After almost two decades of active cryptanalysis, the community failed to find any significant threat to the security of the AES in the single-key setting. The best published single-key attacks on full-round AES [START_REF] Tao | Improving the biclique cryptanalysis of aes[END_REF] are biclique attacks. Biclique attacks on block ciphers [START_REF] Bogdanov | Biclique cryptanalysis of the full aes[END_REF] permit to extend the number of rounds attacked by meet-in-the middle attacks, in which the cipher is considered as two independent subciphers. The biclique attacks CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP on AES only give a very small advantage over exhaustive search: their complexity, for , are respectively 2 126 , 2 189.9 and 2 254.3 . The difficulty to find attacks in the single-key model motivated the community to investigate the related-key setting, which seems more promising. There exist related-key attacks on the full-round versions of AES-192 and AES-256, and on 9 rounds (out of 10) of AES-128 [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad and others[END_REF].

To this day, only two papers (apart from ours) perform an automatic search for related key differential characteristics on the AES. The first one, by [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad and others[END_REF], uses a branch and bound approach, which is a variant of Matsui's algorithm [Matsui, 1995], in order to solve the first step of the search, i.e., to enumerate the optimal abstracted differential characteristics. Matsui's algorithm was initially designed to find single-key differential characteristics iteratively, starting from one-round characteristics and building up to r -rounds, using the results from the i previous iterations to bound the probability of the best characteristic for round i + 1. With this approach, they solve Step1-opt (from Algorithm 1) in several days for AES-128, and several weeks for AES-192. Their give no time for AES-256. The second work [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF], by Fouque et al ., represents the possible differential paths as a graph, and uses a graph traversal algorithm in order to obtain the optimal path. However, for AES-128, the size of the graph is around 60 GB, so that the authors did not apply their method to AES-192 and AES-256. Building the graph takes around 30 minutes on a 12-core machine, and the optimal path for AES-128 is found within one hour after the graph is built.

We model this problem with constraint programming for the three versions of AES. We build up from a straightforward, naive model, which is very inefficient and finds a lot of word-inconsistent solutions, to a final model that includes some advanced reasoning on the properties of the operations of the AES, and which greatly reduces the number of word-inconsistent solutions, while being much faster. With this last model, coupled with a different decomposition strategy, we enumerate the optimal abstracted related key differential characteristics within less than one hour for AES-128, less than 4 hours for AES-192, and less than 2 minutes for AES-256, on a single core of an Intel(R) Xeon(R) E5-2687Wv4 @ 3.00GHz CPU. Interestingly, both [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad and others[END_REF] and [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF] find that the optimal 4-round related key differential characteristic for AES-128 has 13 active SBoxes, whereas we prove that the optimal one actually had only 12 active SBoxes. Similarly, our CP model finds an inconsistency in the related key differential characteristic claimed to be optimal for AES-192 in [START_REF] Biryukov | Related-key cryptanalysis of the full AES-192 and AES-256[END_REF], and obtains a better related key differential for 14 rounds of AES-256 than the one claimed to be optimal in [START_REF] Biryukov | Related-key cryptanalysis of the full AES-192 and AES-256[END_REF].

In this chapter, we first describe the AES in Section 7.2, and then our CP models for Step 1 in Section 7.3. We then present the model for Step 2 in section 7.4, and our decomposition technique in Section 7.5. The length of keys is l ∈ {128, 192, 256} bits, and we note AES-l the AES with keys of length l . The initial key K contains KC columns. Each column is 4 bytes, or 32 bits, so that KC = l 32 : there are 4 columns for and 8 for AES-256. The only difference when changing the length l of the key is in the KeySchedule operation. In what follows, we illustrate AES and describe our cryptanalysis models.

The AES

Like most of today's block ciphers, AES is an iterative process which is composed of r rounds. The number of rounds r depends on the key length: r = 10 (resp. 12 and 14) when l = 128 (resp. 192 and 256). An AES round has an SPN (Substitution-Permutation Network) structure and is described in Figure 7.1 for l = 128. Before the first round, AddRoundKey (ARK) is applied on the CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP Operations applied at each round i ∈ [0, r -1] for AES-128:

Key K = K 0 (4×4 bytes) KS KS Subkey K i +1 ARK X i Plaintext X (4×4 bytes) ARK SB SX i SR MC Y i Z i Xr SB Ciphertext = AES K (X)
Figure 7.1: AES ciphering process for 128 bit keys. Each 4 × 4 array represents a group of 16 bytes. Before the first round, X 0 is obtained by applying ARK on the initial text X and the initial key K = K 0 . Then, for each round i ∈ [0, r -1], SB is applied on X i to obtain SX i , SR is applied on SX i to obtain Y i , MC is applied on Y i to obtain Z i , KS is applied on K i to obtain K i +1 , and ARK is applied on K i +1 and Z i to obtain X i +1 . Finally, the ciphertext is obtained by applying SB on X r .

M =      m 0 m 4 m 8 m 12 m 1 m 5 m 9 m 13 m 2 m 6 m 10 m 14 m 3 m 7 m 11 m 15      Figure 7.2:
The representation of a block in the AES, where M is a matrix, and m is a string of words.

original plaintext X and the initial key K 0 = K to obtain X 0 = ARK(X, K 0). Then, for each round i ∈ [0, r -1]: SubBytes (SB) is applied on X i to obtain SX i = S(X i); ShiftRows (SR) is applied on SX i to obtain Y i = SR(SX i); MixColumns (MC) is applied on Y i to obtain Z i = MC(Y i); KeySchedule (KS) is applied on K i to obtain K i +1 = KS(K i); and AddRoundKey (ARK) is applied on Z i and K i +1 to obtain X i +1 = ARK(Z i , K i +1). Finally, after r rounds, the ciphertext is obtained by applying SubBytes on X r .

Let us now describe each of these AES operations.

SubBytes (SB) SB, also called SBox, is a non-linear permutation which is applied on each byte of X i separately, according to a look-up table S

: [0, 255] → [0, 255], i.e., ∀i ∈ [0, r -1], ∀ j , k ∈ [0, 3], SX i [j][k] = S(X i [j][k]).

ShiftRows (SR)

SR rotates on the left by one (resp. two and three) byte position the second (resp. third and fourth) row of SX i , i.e., :

∀i ∈ [0, r -1], ∀ j , k ∈ [0; 3], Y i [j][k] = SX i [j][(k + j)%4],
where % is the modulo operator that returns the rest of the euclidean division.

MixColumns (MC)

MC multiplies each column of the input matrix Y i by a 4 × 4 fixed matrix M:

∀i ∈ [0, r -1], ∀ j , k ∈ [0; 3], Z i [j][k] = 3 x=0 M[j][x] • Y i [x][k],
where • is a finite field multiplication operator. The matrix M is chosen for its good properties of diffusion (see [START_REF] Daemen | The Design of Rijndael[END_REF]). In particular, it has the Maximum Distance Separable (MDS) property: For each column, it ensures that the number of bytes that are different from zero at this column in Y i and Z i is either equal to zero or greater than four, 5,6,7, 8}.

i.e., ∀i ∈ [0, r -1], ∀k ∈ [0; 3], (3 j =0 (Y i [j][k] = 0) + (Z i [j][k] = 0)) ∈ {0,

CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

The matrix M, and its inverse M -1 (used for decryption), are presented in Figure 7.3.

M =      2 3 1 1 1 2 3 1 1 1 2 3 3 1 1 2      , M -1 =      14

AddRoundKey (ARK)

Before the first round, ARK performs a xor between the initial plain text X and the initial key K 0 to obtain X 0 :

∀ j , k ∈ [0; 3], X 0 [j][k] = X[j][k] ⊕ K 0 [j][k].
Then, at each round i , ARK performs a xor between Z i and subkey K

i +1 to obtain X i +1 , i.e., ∀i ∈ [0, r -1], ∀ j , k ∈ [0; 3], X i +1 [j][k] = Z i [j][k] ⊕ K i +1 [j][k].
Key Schedule (KS) KS computes the subkey K i of each round i ∈ [0, r] from the initial key K. It is represented as a 4 × r × 4 matrix EK (for Extended Key). Each column of the matrix corresponds to one column of the key. To compute the round key K i , we simply take the corresponding columns of EK: K 0 is composed of the first 4 columns of EK, K 1 is the 4 next columns, and so on:

∀i ∈ [0, r], ∀ j , k ∈ [0; 3], K i [j][k] = EK[j][i • 4 + k].
The KC = l 32 (where l is the key length) first columns of EK are the columns of the initial key. The rest of EK is computed by combining values from the previous round subkeys. The exact formula is different for AES-256 than for the other versions. We first describe the algorithm for AES-128 and AES-192, which is the same for both. The computation of the byte column EK[j][k], for j , k ∈ [0; 3] 2 , is simply the XOR of two values from previous columns (EK [j][k -KC] and EK[j][k -1]) if k is not a multiple of KC. Otherwise, an intermediary column SK[j][k -1] is built by rotating up each byte of column EK[j][k -1] by one position, applying a SB operation to the resulting column, and XORing a round constant C i to its first row. Then, EK

[j][k -1] is obtained by XORing SK[j][k] and EK[j][k -KC].
Hence, we have,

∀ j ∈ [0; 3], ∀k ∈ [0; KC -1] : EK[j][k] = K[j][k], ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 0 : SK[j][k -1] = S(EK[(j + 1)%4][k -1]), ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 0 : EK[j][k] = SK[j][k -1] ⊕ EK[j][k -KC], ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 0 : EK[j][k] = EK[j][k -1] ⊕ EK[j][k -KC].
For AES-256, an additional SBox operation is applied, without rotations, when k%KC is equal to 4 (where KC is 8):

∀ j ∈ [0; 3], ∀k ∈ [0; KC -1] : EK[j][k] = K[j][k], ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 0 : SK[j][k -1] = S(EK[(j + 1)%4][k -1]), ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 4 : SK[j][k -1] = S(EK[j][k -1]), ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%4 = 0 : EK[j][k] = SK[j][k -1] ⊕ EK[j][k -KC], ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%4 = 0 : EK[j][k] = EK[j][k -1] ⊕ EK[j][k -KC].

Our CP Models

We describe three models for solving the first step of the search for optimal related key differential characteristics for the AES, and the model for Step 2. The first model, S1 Basi c , is a very straightforward implementation of the AES rules. It finds many word-inconsistent solutions. The second one, S1 Di f f , exploits equalities that can be infer ed from the key schedule in order to make prune inconsistent solutions, and make the search practical for AES-128. The last one, S1 XOR , exploits additional information by considering the possible combinations of variables from the key. Finally, we present a decomposition, which shifts the frontier between steps one and two, and permits to solve the problem efficiently for all versions of the AES.

S1 Basi c

The functions Step1-opt and Step1-enum used in Algorithm 1 for computing optimal differential characteristics share the same CP model. The only difference is in the goal of the solving process: in Step1-opt the goal is to search for a solution that optimises a given variable called obj St ep1 , whereas in Step1-enum the goal is to enumerate all abstracted differentials when the variable obj St ep1 is assigned to a given value.

We describe a first CP model for Step1-opt and Step1-enum, called S1 Basi c , which was introduced in [START_REF] Minier | Solving a Symmetric Key Cryptographic Problem with Constraint Programming[END_REF] and is derived in a straightforward way from the definition of the AES operations. It associates one Boolean variable ∆B with the differential word δB ∈ diffWords l : ∆B is assigned to 0 if δB = 0, and to 1 otherwise.

Variables

As defined in Section 6.2, the variables representing a related-key differential characteristic are the ones included in the DiffWords set. The variables that go through a SBox, among these, form the Sboxes set.

For readability, we include both variables representing the round subkeys K i , and to represent the extended key EK. Even though they represent the same thing (the K i matrices are simply the EK matrix split into 4-column blocks), having both makes the modelling easier. The key schedule algorithm is simpler to define using EK, while the ARK operations are more readable with the K i notation.

For AES-128 and AES-192, diffWords contains the following differential words, representing:

• The plaintext: δX

• The round keys:

δK i [j][k], ∀i ∈ [0; r], j , k ∈ [0, 3] 2 • The extended key: δEK[j][k], ∀ j ∈ [0; 3], k ∈ [0, (r + 1) • 4 -1]
• The state after ARK:

δX i [j][k], ∀i ∈ [0; r], j , k ∈ [0, 3] 2
• The state after SB:

δSX i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2
• The state after SR:

δY i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2
• The state after MC:

δZ i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 • The SK columns: δSK[j][k], ∀k ∈ [0; 4 • (r + 1) -1], k%KC = KC -1
The Sboxes set contains:

• δX i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 • δSK[j][k], ∀k ∈ [0; 4 • r -1], k%KC = KC -1
For AES-256, only the δSK variables change: The diffWords set becomes

• The plaintext: δX[j][k], ∀ j , k ∈ [0, 3] 2
• The round keys:

δK i [j][k], ∀i ∈ [0; r], j , k ∈ [0, 3] 2
• The extended key: δEK

[j][k], ∀ j ∈ [0; 3], k ∈ [0, (r + 1) • 4 -1]
• The state after ARK:

δX i [j][k], ∀i ∈ [0; r], j , k ∈ [0, 3] 2
• The state after SB:

δSX i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2
• The state after SR:

δY i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2
• The state after MC:

δZ i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 • The SK columns: δSK[j][k], ∀k ∈ [0; 4 • (r + 1) -1], k%4 = 3
and the Sboxes set becomes:

• δX i [j][k], ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 • δSK[j][k], ∀k ∈ [0; 4 • r -1], k%4 = 3
Note that the SBoxes of δK r are not taken into account. For AES-128 and AES-256, δK r can still be computed fully, since the last SBoxes needed to compute the whole δK r are at round r -1. On the other hand, for AES-192, it might occur that a SBox needs to be crossed at round r : if r %3 = 1, then column 1 of δK r goes through a SBox. In this case, our model produces a truncated differential characteristic, where the words of the δK r that depend on the output of a SBox crossed at round r are undetermined. Similarly, the words of δX r that are the result of a XOR with an undetermined word of δK r are undetermined.

Not all differential words are abstracted in Step 1. Indeed, during Step 2, the initial differential plaintext δX, the last round differential subkey δK r (as well as the corresponding columns of EK), and the final differential ciphertext δX r can be deterministically computed given the values of all other differential words:

• δX is obtained by XORing δX 0 and δK 0 .

• δK r is obtained by applying the key schedule algorithm. The non deterministic aspect of the SB operation can be lifted: For the bytes δB that pass through S-boxes during this last round, we deterministically choose for δSB the value that maximises p S (δSB|δB).

• δX r is obtained by XORing δZ r -1 and δK r .

Hence, S1 Basi c associates a Boolean variable ∆B with every differential byte, except for δX, δX r and

δK r : δB ∈ diffWords l \ {δX[j][k], δK r [j][k], δX r [j][k], δEK[j][n • 4 + k] : j , k ∈ [0, 3]}. Each Boolean
variable ∆B is assigned to 0 if δB = 0, and to 1 otherwise.

We also define an integer variable ob j St ep1 which corresponds to the number of active S-boxes. The domain of this variable is D(ob j St ep1) = [1, l 6]. Indeed, the smallest possible value is 1 because we need to have at least one active S-box to have a differential characteristics (we forbid the obvious solution such that δX and δK only contain bytes set to 0, meaning that there is no difference in the initial plaintext and key). The largest possible value is l 6 because the highest probability p S (δ out |δ i n) to pass through the AES S-box is 2 -6 = 4 256 when δ i n = 0 [START_REF] Daemen | The Design of Rijndael[END_REF], and because we want a differential characteristics which is more efficient than the key exhaustive search (i.e., we want a differential characteristics whose probability is greater than 2 -l).

The corresponding list of variables is the following. We use the ≺ symbol, as defined in Section 6.4.1, to denote the fact that a differential bit ∆a is a Boolean abstraction of the differential word δa.

∆K: ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 , ∆K i [j][k] ≺ δK i [j][k] ∆EK: ∀ j ∈ [0; 3], k ∈ [0, r • 4 -1], ∆EK[j][k] ≺ δEK[j][k] ∆X: ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 , ∆X i [j][k] ≺ δX i [j][k] ∆SB: ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 , ∆SB i [j][k] ≺ δSB i [j][k] ∆Y: ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 , ∆Y i [j][k] ≺ δX i [j][k] ∆Z: ∀i ∈ [0; r -1], j , k ∈ [0, 3] 2 , ∆Z i [j][k] ≺ δZ i [j][k] ∆SK: ∀ j ∈ [0; 3], k ∈ [0, r • 4 -1], ∆SK[j][k] ≺ δSK[j][k] ob j St ep1 : ob j St ep1 = i ∈SBoxes l (i)
The constraints that model AES operations are described below.

Constraints

SubBytes As the SBox is bijective, there is an output difference if and only if there is an input difference (i.e., (B⊕B ′ = 0) ⇔ (S(B)⊕S(B ′) = 0)). As a consequence, the SubBytes operator has no effect on the presence/absence of differences during Step 1, as explained in Section 6.4.2. This is ensured by the following constraint:

∀i ∈ [0, r -1], ∀(j , k) ∈ [0; 3] 2 : ∆SB i [j][k] = ∆X i [j][k]. (C SB)
XOR constraint As explained in Section 6.4.2, the XOR operation cannot be modelled precisely, since the information about whether two differential words are equal is abstracted. Hence, the XOR constraint is defined as

XOR(∆B 1 , ∆B 2 , ∆B 3) ⇔ ∆B 1 + ∆B 2 + ∆B 3 = 1 (XOR)
AddRoundKey ARK is modelled by XOR constraints:

∀i ∈ [1, r -1], ∀(j , k) ∈ [0, 3] 2 : XOR(∆Y i -1 [j][k], ∆K i [j][k], ∆X i [j][k]). (C ARK)
ShiftRows SR is modelled by equality constraints that link shifted bytes:

∀i ∈ [0, r -1], ∀ j , k ∈ [0, 3] : ∆Y i [j][k] = ∆SX i [j][(j + k)%4] (C SR)
MixColumns MC cannot be modelled precisely at the Boolean level, as knowing where differences hold in Y i is not enough to determine where they hold in Z i . Indeed, the values of the bytes in the column are necessary to determine the positions of the zeros after MC. However, the MDS property is modelled by constraining the number of differences in a same column of Y i and Z i to be equal to 0 or greater than 4:

∀i ∈ [0, r -2], ∀k ∈ [0, 3] : 3 j =0 ∆Y i [j][k] + ∆Z i [j][k] ∈ {0, 5, 6, 7, 8}. (C MDS1)
As MC is not applied during the last round, we have

∀ j , k ∈ [0, 3] : ∆Z r -1 [j][k] = ∆Y r -1 [j][k]. (C MDS2)
This set of constraints {C MDS1 , C MDS2 } is denoted C MDS .

CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

KeySchedule KS is modelled by XOR constraints (combined with a rotation of the bytes of SK).

The first step is to relate the ∆K and ∆EK variables:

∀ j ∈ [0; 3], ∀k ∈ [0; KC -1] : δEK[j][k] = ∆K[j][k]. (C ∆EK)
We then need to define the ∆SK variables, with a special case when for AES-256 (KC = 8). As for the constraint C SB , the S operation does not change the value of the differential bit.

∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 0 : ∆SK[j][k -1] = ∆EK[(j + 1)%4][k -1], ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], k%KC = 0 : ∆SK[j][k -1] = ∆EK[(j + 1)%4][k -1], ∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], KC = 8, k%KC = 4 : ∆SK[j][k -1] = ∆EK[j][k -1].      (C ∆SK)
We can now describe the key schedule constraints, which are different depending on the value of KC:

∀ j ∈ [0; 3], ∀k ∈ [KC; 4 • (r + 1) -1], KC < 8, k%KC = 0 : XOR(∆EK[j][k], ∆SK[j][k -1], ∆EK[j][k -KC]), ∀k ∈ [KC; 4 • (r + 1) -1], KC = 8, k%4 = 0 : XOR(∆EK[j][k], ∆SK[j][k -1], ∆EK[j][k -KC]), ∀k ∈ [KC; 4 • (r + 1) -1], KC < 8k%KC = 0 : XOR(∆EK[j][k], ∆EK[j][k -1], ∆EK[j][k -KC]), ∀k ∈ [KC; 4 • (r + 1) -1], KC = 8k%4 = 0 : XOR(∆EK[j][k], ∆EK[j][k -1], ∆EK[j][k -KC]).              (C si mpl eKS)
Performance of S1 Basi c . S1 Basi c is complete in the sense that for any solution at the byte level (on δ variables), there exists a solution of S1 Basi c at the Boolean level (on ∆ variables). However, the experiments reported in [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF] have shown us that there is a huge number of solutions of S1 Basi c which are byte inconsistent and do not correspond to solutions at the byte level. For example, for AES-128, when the number of rounds is r = 3, the optimal solution of Step1opt has ob j St ep1 = 3 active SBoxes, and Step1-enum enumerates more than five hundred abstracted differentials with this number of active SBoxes. However, none of these abstracted differentials is byte-consistent. Actually, the optimal byte-consistent abstracted differentials has 5 active SBoxes.

In this case, most of the solving time is spent at generating useless abstracted differentials which are discarded in Step 2. Hence, we had to introduce more subtle reasoning in the model to limit the number of solutions.

S1 Di f f

The problem with S1 Basi c is that it does not filter enough word-inconsistent solutions, so that it does not permit to solve the problem for difficult instances. To solve this problem, we developed S1 Di f f . In S1 Di f f , additional constraints and variables are introduced. They are used to infer equality relations between differential bytes, and these relations are used to propagate the MDS property of MixColumns at the byte level. They remove most binary solutions that cannot be transformed into byte solutions, thus speeding up the solution process.

A first weakness of S1 Basi c comes from the fact that the XOR constraint between Boolean variables is a poor abstraction of the xor relation at the byte level, because whenever two XORed bytes are different from zero, we cannot know whether the result is equal to zero or not. A second weakness of S1 Basi c comes from the fact that MC is only poorly approximated at the Boolean level, as we only propagate a Boolean abstraction of the MDS property. S1 Di f f aims at overcoming these issues.

Propagation of MDS at Byte Level

For each round i ∈ [0, r -2] and each column j ∈ [0, 3], the MDS property of MixColumns ensures, for two columns Y and Z such that Z = MC(Y): 5, 6, 7, 8}. At differential byte level, this property still holds: 5, 6, 7, 8}. In the first model, this property is ensured by the constraint C MDS : 5, 6, 7, 8}. However, the MDS property also holds for any xor difference between two different columns in two different rounds of the differential byte model: 5, 6, 7, 8}. To ensure this property, which removes most inconsistent solutions, we need to be able to verify whether two differential bytes are equal or not. To this end, we introduce additional Boolean variables: given two differential bytes δB 1 and δB 2 , the Boolean variable diff δB 1 ,δB 2 is equal to 1 if δB 1 = δB 2 , and to 0 otherwise. We do not define a diff variable for every couple of differential bytes in diffWords l , but restrict our attention to couples of bytes for which it is useful to know whether they are equal or not.

3 j =0 (Y i [j][k] = 0) + (Z i [j][k] = 0)) ∈ {0,
3 j =0 (δY i [j][k] = 0) + (δZ i [j][k] = 0)) ∈ {0,
∀i ∈ [0, r -1], ∀k ∈ [0, 3] : 3 j =0 ∆Y i [j][k] + ∆Z i [j][k] ∈ {0,
∀i 1, i 2 ∈ [0, r -2] 2 , ∀k1, k2 ∈ [0; 3] 2 : (3 j =0 ((δY i 1 [j][k1] ⊕ δY i 2 [j][k2]) = 0) + ((δZ i 1 [j][k1] ⊕ δZ i 2 [j][k2] = 0)) ∈ {0,
More precisely, we consider three separate sets of differential bytes and we only compare differential bytes that belong to a same set.

• The first set, called DK, contains bytes coming from the δK matrices.

• The second and third sets, called DY and DZ, contain bytes coming from δY and δZ matrices, respectively.

For each of these three sets, we consider a separate subset for each row j ∈ [0, 3]:

• For DK, we know that every initial xor equation due to the key schedule either involves three bytes on a same row j , or it involves two bytes on a same row j and a byte that has just passed through an S-box on the next row ((j + 1)%4). As we cannot know if the input and output differences of S-boxes are equal or not, we can limit diff variables to couples of differential bytes that occur on a same row of δK matrices.

• For DY and DZ, the MDS property implies relations between columns of DY and DZ and, in Section 6.4.2, we use a generalisation of this property that xors bytes of a same row for different columns. As these xors are only performed on bytes that occur in a same row, we can limit diff variables to couples of differential bytes that occur on a same row of δY matrices (for DY) and δZ matrices (for DZ).

For each row j ∈ [0, 3], we define the three following sets:

DK j = {δK i [j][k] : i ∈ [1, r], k ∈ [0, 3]}, DY j = {δY i [j][k] : i ∈ [0, r -2], k ∈ [0, 3]}, DZ j = {δZ i [j][k] : i ∈ [0, r -2], k ∈ [0, 3]}.
Given these sets, we define the diff variables as follows: For each set D ∈ {DK j , DY j , DZ j : j ∈ [0, 3]}, and for each pair of differential bytes {δB 1 , δB 2 } ∈ D, we define a Boolean variable diff δB 1 ,δB 2 , which CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP Also, if V i nst (δB) is empty (resp. contains one element), we infer that ∆B is equal to 0 (resp. a nonzero variable. This is enforced by the following constraint:

∀ j ∈ [0; 3], ∀{δB} ∈ DK j V i nst (δB) + ∆B = 1. (C VSETSCARD)
From a practical point of view, the V i nst variables are not modelled with set variables, but with vectors of Boolean variables. The dimension of these vectors is equal to the number of possible elements in these sets, i .e one for each byte of the initial key, plus number of key bytes that go through an SBox. Each Boolean variable V[p] is equal to 1 if the p t h element belongs to V i nst (i.e., if the variable associated with the p t h element is equal to 1), and to 0 otherwise.

The set of variables used S1 Di f f are the same as the variables of S1 Basi c , plus the diff variables, and the variables representing the V i nst sets.

Performance of S1 Di f f

Compared to S1 Basi c , S1 Di f f filters a lot of byte inconsistent solutions, which makes it capable of solving all the instances for AES-128 and AES-256 within 24 hours. These results are summed up in Table 7.1, and commented and compared to S1 XOR in Section 7.3.4. In essence, S1 Di f f is capable of solving all instances but one in less than 13 hours each (at most 43359 seconds), but it fails at solving Step1-enum for 10 rounds of AES-192 after two weeks.

We therefore introduce another model, which reasons differently about the equalities introduced by the key schedule, and which is presented in the following section.

S1 XOR

In S1 Di f f , we exploit the fact that the bytes of the round subkeys are computed as a combination of other bytes from the previous round subkeys. With S1 XOR , we push this reasoning further: instead of just considering the XORs that appear in the key schedule, we combine them in order to build additional XORs, results in an improved propagation of the constraints, and in a faster resolution.

Generation of Additional Xors

Every subkey differential byte δK i [j][k] either comes from the initial differential key δK, or is obtained by XORing two differential bytes according to the key schedule rules. Hence, the whole key schedule implies a set of 16 * (r -1) (resp. 16 * (r -1) -8 and 16 * (r -2)) xor equations for , where each of these equations involves three differential bytes. We propose to combine these initial equations to infer additional equations.

Let us consider, for example, the three equations that define δK

1 [0][3], δK 2 [0][2] and δK 2 [0][3]
, respectively, for AES-128:

δK 0 [0][3] ⊕ δK 1 [0][2] ⊕ δK 1 [0][3] = 0 (7.1) δK 1 [0][2] ⊕ δK 2 [0][1] ⊕ δK 2 [0][2] = 0 (7.2) δK 1 [0][3] ⊕ δK 2 [0][2] ⊕ δK 2 [0][3] = 0 (7.3)
These equations share bytes: δK 1 [0] [2] for Eq. (7.1) and (7.2), δK 1 [0][3] for Eq. (7.1) and (7.3), and δK 2 [0] [2] for Eq. (7.2) and (7.3). We can combine Eq. (7.1), (7.2), and (7.3) by XORing them, and exploit the fact that B ⊕ B = 0 for any byte B, to generate the following equation:

δK 0 [0][3] ⊕ δK 2 [0][1] ⊕ δK 2 [0][3] = 0 (7.4)
This new equation is redundant at the byte level, as (7.1) ∧ (7.2) ∧ (7.3) ⇒ (7.4). However, at the Boolean level, the propagation of the XOR constraint corresponding to Eq. (7.4) detects inconsistencies which are not detected when only considering the XOR constraints corresponding to CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP Eq. (7.1), (7.2), and (7.3). Let us consider, for example, the case where

∆K 0 [0][3] = 1, ∆K 2 [0][1] = ∆K 2 [0]
[3] = 0, and all other Boolean variables still have 0 and 1 in their domains. In this case, the propagation of XOR constraints associated with Eq. (7.1), (7.2), and (7.3) does not detect an inconsistency as only one variable is assigned for each constraint, and for the two other variables, we can always choose values such that the sum is different from 1. However, at the byte level, δK 0 [0][3] cannot be assigned to a value different from 0 when δK 2 [0][1] = δK 2 [0][3] = 0. Indeed, in this case, Eq. (7.2) and (7.3) imply:

δK 1 [0][2] ⊕ δK 2 [0][2] = δK 1 [0][3] ⊕ δK 2 [0][2] = 0 ⇒ δK 1 [0][2] = δK 2 [0][2] = δK 1 [0][3] ⇒ δK 0 [0][3] ⊕ δK 1 [0][2] ⊕ δK 1 [0][3] = δK 0 [0][3]
As a consequence, if δK 0 [0][3] = 0, we cannot satisfy Eq. (7.1). This inconsistency is detected when propagating the XOR constraint associated with Eq. (7.4), as it ensures that ∆K 0

[0][3]+∆K 2 [0][1]+ ∆K 2 [0][3] = 1.
Hence, we propose to combine xor equations of the key schedule to generate new equations. More precisely, given two equations δB 1 ⊕. . .⊕δB n = 0 and δB ′ 1 ⊕. . .⊕δB ′ m = 0 such that {B 1 , . . . , B n }∩ {B ′ 1 , . . . , B ′ m } = , we generate the equation:

B∈{B 1 ,...,B n }∪{B ′ 1 ,...,B ′ m }\{B 1 ,...,B n }∩{B ′ 1 ,...,B ′ m } δB = 0.
This new equation is recursively combined with existing ones to generate other equations until no more equation can be generated. For example, from Eq. (7.1), (7.2), and (7.3), we generate the following equations: From (7.1) and (7.

2): δK 0 [0][3] ⊕ δK 1 [0][3] ⊕ δK 2 [0][1] ⊕ δK 2 [0][2] = 0 (7.5)
From (7.1) and (7.3):

δK 0 [0][3] ⊕ δK 1 [0][2] ⊕ δK 2 [0][2] ⊕ δK 2 [0][3] = 0 (7.6)
From (7.2) and (7.3):

δK 1 [0][2] ⊕ δK 1 [0][3] ⊕ δK 2 [0][1] ⊕ δK 2 [0][3] = 0 (7.7)
Then, from Eq. (7.1) and (7.7) (or, equivalently, from Eq. (7.2) and (7.6) or from Eq. (7.3) and (7.5)), we generate Eq. (7.4). As no additional equation can be generated from Eq. (7.1), (7.2), (7.3), (7.5), (7.6), (7.7), and (7.4), the process stops.

The number of additional equations that may be generated grows rapidly with respect to the number r of rounds. For example, for AES-128, when r = 3 (resp. r = 4), the total number of new equations that may be generated is 988 (resp. 16332). When further increasing r to 5, the number of new equations becomes so large that we cannot generate them within a time limit of one hour.

To avoid this combinatorial explosion, we only generate equations that involve at most four differential bytes.

Indeed, our constraints on the diff variables operate on at most three pairs of Boolean variables. Preliminary experiments have shown us that these strengthened XOR constraints both reduce the number of choice points and speed-up the solution process, and that further adding XOR constraints for equations that involve more than four variables (to forbid that their sum is equal to one) does not significantly reduce the number of choice points and often increases time.

For with r = 10 (resp. r = 12 and r = 14) rounds, the number of initial equations coming from the key schedule is 144 (resp. 168 and 192). From these initial equations, we generate 122 (resp. 168 and 144) new equations that involve three differential bytes, and 1104 (resp. 1696 and 1256) new equations that involve four differential bytes.

The time needed to generate all these equations is very small (compared to the time needed to solve Step 1): The algorithm that generates equations has been implemented in Picat, and the time spent by Picat to search for all equations of length smaller than or equal to four is always smaller than 0.1 seconds.

We note xorEq l the set of all equations (both initial and generated equations) coming from the key schedule when the key length is l .

CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

Note that xorEq l actually contains all possible equations with at most four differential bytes implied by the key schedule algorithm. In other words, our procedure for generating new equations is complete, even if it does not allow the generation of intermediate equations of length greater than 4. We have proven this by exhaustively generating all possible equations with at most four differential key bytes and, for each equation that does not belong to xorEq l , we have proven that it is not consistent with the initial set of equations of the key schedule. The whole proof, for all possible equations, is done in less than an hour for the three possible key lengths.

Constraints associated with xor equations of xorEq l

As in S1 Di f f , we use diff variables.

From S1 Di f f , we keep the constraints ensuring an equivalence relation between the diff variables, defined in Section 7.3.2, as well as the constraints relating the diff variables to the Boolean variables representing differential bytes, defined in Section 7.3.2. However, we now also include diff variables for the differential bits of ∆SK. This results in a different DK2 set, defined, for each row j , as

DK2 j = {δK i [j][k] : i ∈ [1, r], k ∈ [0, 3]} ∪ {δSK[j][k] : k ∈ [0; r * 4 -1]}
This extended set is used to redefine the C SYM , C TRANS and C DIFF constraints as follows: Symmetry is ensured by:

∀D ∈ {DK2 j , DY j , DZ j : j ∈ [0, 3]}, ∀{δB 1 , δB 2 } ∈ Ddiff δB 1 ,δB 2 = diff δB 2 ,δB 1 . (C s ym2)
Transitivity is ensured by:

∀D ∈ {DK2 j , DY j , DZ j : j ∈ [0, 3]}, ∀{δB 1 , δB 2 , δB 3 } ∈ D, diff δB 1 ,δB 2 + diff δB 2 ,δB 3 + diff δB 1 ,δB 3 = 1. (C t r ans2)
and C DIFF is redefined as

∀D ∈ {DK2 j , DY j , DZ j : j ∈ [0, 3]}, ∀{δB 1 , δB 2 } ∈ D, diff δB 1 ,δB 2 + ∆B 1 + ∆B 2 = 1. (C DIFF2)
In S1 Di f f , we only considered a XOR constraint of arity 3: XOR(∆A, ∆B,∆C). In S1 XOR , we also define a constraint for XOR relations of size 3, but we also build XOR relations of size 4.

The constraint related to XORs of size 3, is:

∀(δB 1 ⊕ δB 2 ⊕ δB 3 = 0) ∈ xorEq l , (diff δB 1 ,δB 2 = ∆B 3) ∧ (diff δB 1 ,δB 3 = ∆B 2) ∧ (diff δB 2 ,δB 3 = ∆B 1). (C XOR3)
For each equation δB 1 ⊕ δB 2 ⊕ δB 3 = 0 in xorEq l , it ensures that whenever two differential bytes of {δB 1 , δB 2 , δB 3 } have different values, then the third one is different from 0 and therefore its associated Boolean variable is equal to 1. Note that this constraint combined with C DIFF ensures that

∆B 1 + ∆B 2 + ∆B 3 = 1. Indeed, if ∆B 1 = 1 and ∆B 2 = ∆B 3 = 0, then Constraint (C ′ 9) implies that
diff ∆B 2 ,∆B 3 = 0, which is inconsistent with the fact that diff δB 2 ,δB 3 must be equal to ∆B 1 .

For XOR relations of size 4, we define another constraint. Let us consider an equation δA ⊕ δB ⊕ δC ⊕ δD = 0 that involves four differential bytes, and let ∆A, ∆B, ∆C, and ∆D be the Boolean variables associated with δA, δB, δC, and δD, respectively. We know that whenever two differential bytes of {δA, δB, δC, δD} are equal then the two other ones must also be equal. This is modelled by the following constraint:

∀(δB 1 ⊕ δB 2 ⊕ δB 3 ⊕ δB 4 = 0) ∈ xorEq l , (diff δB 1 ,δB 2 = diff δB 3 ,δB 4) ∧ (diff δB 1 ,δB 3 = diff δB 2 ,δB 4) ∧ (diff δB 1 ,δB 4 = diff δB 2 ,δB 3). (C XOR4)
The combination of C DIFF and C XOR4 ensures that ∆A + ∆B + ∆C + ∆D = 1. Indeed, if ∆A = 1 and ∆B = ∆C = ∆D = 0, then we have that diff ∆B,∆C = 0 and diff ∆A,∆C = 1, which is inconsistent with the fact that diff δB,δC must be equal to diff ∆A,∆C .

The set of variables used S1 XOR are the same as the variables of S1 Basi c , plus the diff variables.

Comparison of S1 XOR with S1 Di f f

The main difference between S1 XOR and S1 Di f f is that in S1 Di f f we do not infer new xor equations from the initial equations of the key schedule, as explained in Section 7.3.3. Instead of this equation generation step, S1 Di f f uses the key schedule rules to pre-compute, for each differential byte δK i

[j][k], a set V(δK i [j][k]) of differential bytes such that δK i [j][k] is equal to the result of XORing all bytes in V(i , j , k).
Then, for each differential byte

δK i [j][k], a variable V i nst (δK i [j][k]
) is constrained to be equal to the subset of bytes of V(i , j , k) that are different from 0. These V i nst variables are used to infer that two differential bytes are equal when their corresponding V i nst variables are equal, and that

∆K i [j][k] is equal to 0 (resp. 1) when V i nst (δK i [j][k]
) is empty (resp. contains only one variable).

Additionally, the set DK is extended to include the δSK variables in S1 XOR .

In this section, we experimentally compare S1 XOR with S1 Di f f .

Experimental results

All our experiments are performed according to the setting described in Section 6.4.2. While the machine used for the experiments has 24 cores, we ran these experiments on one core at a time, to avoid perturbations due to other processes and make time measurements more accurate and reproducible.

We compare S1 XOR and S1 Di f f on the two problems described in Section 6.4.1, i.e., Step1-opt, that aims at finding the minimal value of ob j Step1 , and Step1-enum, that aims at enumerating all abstracted differentials when the value of ob j St ep1 is fixed to a given value v.

We consider 23 instances denoted AES-l -r where l ∈ {128, 192, 256} is the key length and r is the number of rounds: r ∈ [3, 5] (resp. [3, 10] and [3,14]) when l = 128 (resp. 192 and 256). We do not consider values of r larger than 5 (resp. 10) when l = 128 (resp. 192) because for these values the maximal probability becomes smaller than 2 -l . S1 XOR and S1 Di f f are implemented with MiniZinc [START_REF] Nethercote | Minizinc: Towards a standard CP modelling language[END_REF], a high-level modelling language. Many CP solvers accept MiniZinc models, and we have made experiments with Gecode [Gecode Team, 2006], Choco [START_REF] Prud'homme | Choco Documentation[END_REF], Chuffed [START_REF] Chu | Chuffed solver description[END_REF], and Picat-SAT [START_REF] Zhou | Constraint Solving and Planning with Picat[END_REF]. Note that Picat-SAT actually uses a SAT solver to solve CSPs: It first translates the CSP instance into a Boolean satisfiability formula, and then uses the SAT solver Lingeling [Biere, 2014] to solve it.

We report experimental results obtained with Picat-SAT, which is the solver that has the best results.

Results for

Step1-opt For each instance, Table 7.1 reports the optimal value v * of Ob j St ep1 computed by Step1-opt. This optimal value may be different for S1 XOR and S1 Di f f as they consider different abstractions of the KS xor operations. In practice, for all instances but one, both models find the same optimal value, and for this optimal value there exists at least one byte-consistent abstracted differential (see Section 7.4) so that the repeat loop (lines 6-10) of Algorithm 1 is executed only once. However, for AES-192-10, the minimal value of ob j St ep1 is equal to 27 with S1 Di f f whereas it is equal to 29 with S1 XOR . As a consequence, if we use S1 Di f f to solve Step1-opt, the repeat loop of Algorithm 1 is executed three times: v is successively assigned to 27, 28, and 29, and for each of these values, we need to solve Step1-enum and Step2. When v = 27 (resp. 28), Step1enum with S1 Di f f finds 92 (resp. 1436) abstracted differentials. All these abstracted differentials are byte-inconsistent and Step2 returns nul l for each of them.

When v = 29, some abstracted differentials are byte-consistent and the repeat loop is stopped. For this instance, S1 XOR is able to infer that there is no byte-consistent abstracted differential with 27 or 28 active S-boxes, and it returns 29, which is the smallest possible value for which there are byte-consistent abstracted differentials.

When comparing CPU times needed to solve Step1-opt with S1 Di f f and S1 XOR , we note that S1 XOR is faster on all instances. S1 XOR is at most 4.9 times times as fast as S1 Di f f . The hardest instance, AES-192-10, is solved in less than one hour with S1 XOR .

CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

Step1-opt

Step1-enum For each instance, we display the results with S1 Di f f and S1 XOR for Step1-opt (optimal value v * 1 (resp. v * 2) of ob j St ep1 , and time t 1 (resp. t 2 in seconds) and Step1-enum (number #T 1 (resp #T 2) of truncated differentials when ob j St ep1 is assigned to the value v * 1 found with S1 XOR , and time t 3 (resp. t 4) in seconds). We report '-' when the time exceeds two weeks. We also give the speedup t1 t 2 for Step1-opt, and t 3 t 4 for Step1-enum. The machine used for these experiments is the one mentioned in Section 6.4.2.

S1 Di f f S1 XOR S1 Di f f S1 XOR v * 1 t 1 v * 2 t 2 t 1 t 2 #T 1 t 3 #T 2 t 4

Results for

Step1-enum In Table 7.1, we report results for solving Step1-enum when v is fixed to the optimal value v * found when solving Step1-opt with S1 XOR . S1 XOR is always faster than S1 Di f f , and it is able to solve all instances but three in less than 607 seconds. The three most challenging instances are , which are solved by S1 XOR in less than 7 hours (22869 seconds), 4 hours (13524 seconds) and 60 hours (216120 seconds), respectively. S1 Di f f is able to solve AES-128-5 and AES-192-9 in less than 9 and 12 hours (32340 and 43339 seconds), respectively. However, AES-192-10 cannot be solved by S1 Di f f within two weeks. Actually, for this instance, S1 XOR strongly reduces the number of solutions: There are 602 abstracted differentials with S1 XOR instead of 27548 with S1 Di f f 1 . For Step1-enum, S1 XOR is at most 3, 2 times as fast as S1 Di f f .

Note that reducing the number of abstracted differentials is very important to reduce the total solving time as for each abstracted differential of Step 1, we need to search for an optimal byte solution (or prove that it is not byte-consistent, as for the abstracted differentials found with S1 Di f f but not with S1 XOR). In Section 7.5, we propose another decomposition to solve Step1 even faster.

CP model for Step 2

Given an abstracted differential computed by Step1-enum, Step 2 aims at searching for the byte values with the highest differential probability (or proving that the abstracted differential is not byte-consistent). In this section, we describe the CP model introduced in [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF] for AES-128, extended to AES-192 and AES-256 in a straightforward way.

Variables

For each differential byte δB ∈ diffWords l , we define an integer variable the domain of which depends on the value of ∆B in the abstracted differential: If ∆B = 0, then D(δB) = {0}; otherwise,

D(δB) = [1, 255].
As mentioned in Section 6.4.2, we declare an integer variable P δB for each differential byte δB ∈ Sboxes l : This variable corresponds to the base 2 logarithm of the probability Pr(δB → δSB) of obtaining the S-box output difference δSB when the S-box input difference is δB. The domain of P δB depends on the value of ∆B in the abstracted differential: If ∆B = 0, then Pr(0 → 0) = 1 and therefore D(P δB) = {0}; otherwise, Pr(δB → δSB) ∈ { 2 256 , 4 256 } and D(P δB) = {-7, -6}. These values are derived from the properties of the SBox of the AES. The constraint associated with the SubBytes operation forbids couples (δB, δSB) such that Pr(δB → δSB) = 0.

Constraints

The constraints basically follow the AES operations to relate variables, as described in Section 7.3.1 for Step 1, but consider the definition of the operations at the byte level, instead of the Boolean level.

The main difference is that the SubBytes operation, which has no effect at the Boolean level, must be modelled at the byte level. This is done thanks to a ternary table constraint which extensively lists all triples (X, Y, P) such that there exists two bytes B 1 and B 2 whose difference before and after passing through S-Boxes is equal to X and Y, respectively, and such that P is the probability of this transformation: For all δB ∈ Sboxes l , we add the constraint:

(δB, δSB, P δB) ∈ {(X, Y, P)|∃(B 1 , B 2) ∈ [0, 255] × [0, 255], X = B 1 ⊕ B 2 , Y = S(B 1) ⊕ S(B 2), P = log 2 (Pr(X → Y))}. (C SBS2)
We also use a table constraint for the XOR of two bytes, as defined in Section 6.4.2, with tuples tupleXOR:

XORBy t e(δa, δb, δc) ≡ (δa, δb, δc) ∈ tupleXOR.

(XORBy t e)

In what follows, we assume that C XORBy t e can take an arbitrary number of arguments (the last one being the result), event though in the implementation, when a XOR of multiple variables is needed, we XOR them two by two and use temporary variables to store the intermediary results.

The MixColumn operation also needs to be modelled at byte level. MixColumn is the multiplication of each column of the state by a fixed matrix M, given in section 7.2, in Rijndael's Galois field, in which addition is replaced by XOR (see [START_REF] Daemen | The Design of Rijndael[END_REF] for more details). For instance, let us consider a column C = (δa, δb, δc, δd) t . Then

MC(C) =      (2 • δa) ⊕ (3 • δb) ⊕ δc ⊕ δd δa ⊕ (2 • δb) ⊕ (3 • δc) ⊕ δd δa ⊕ δb ⊕ (2 • δc) ⊕ (3 • δd) (3 • δa) ⊕ δb ⊕ δc ⊕ (2 • δd)     
where • is multiplication in the a finite field called Rijndael's Galois field. We did not implement the multiplication rules, but used multiplication tables instead. AES uses multiplications by 2 and 3 for encryption, and by 9, 11, 13 and 14 for decryption. For MC, we use a table tupleMUL 2⊕3 , such that For each instance, we display: the number #T of truncated differentials, the number #B of byte-consistent truncated differentials, the maximal probability p among all byte-consistent truncated differentials, the total time t for solving Step 2 for all truncated differentials, and the average time t #T for solving Step 2 for one truncated differential. Times are in seconds.

tupleMUL 2⊕3 = {(a, b, c) ∈ [0; 255] 3 , c = (2 • a) ⊕ (3 • c). CHAPTER 7.

Objective function

The goal is to find a byte-consistent solution with maximal differential probability. As we consider logarithms, this amount to searching for a solution that maximises the sum of all P δB variables. Hence, we introduce an integer variable ob j St ep2 which is constrained to be equal to the sum of all P δB variables:

ob j St ep2 = δB∈Sboxes l P δB
and we define the objective function as the maximisation of ob j St ep2 . The domain of ob j St ep2 is derived from the number of differences that pass trough S-boxes in the abstracted differentials, i.e., D(ob

j St ep2) = [-7 • v, -6 • v] where v = δB∈Sboxes l ∆B.
We sum up the constraints used in Step2:

C SBS2 , C XORBy t e , C MCS2 , C INVMCS2 , C SRS2 , C ARKS2 , C KSS2 .

Experimental evaluation

Step 2 is implemented in Choco [START_REF] Prud'homme | Choco Documentation[END_REF], and we have used the domOverWDeg variable ordering heuristic, and the lastConflict search strategy that are predefined in Choco. The domOverWDeg implements the domain over weighted degree blackbox search strategy [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF], which orders variables according to a metric which considers the ratio between the size of their domain, and the number of constraints they are involved in. The lastConflict heuristic [START_REF] Lecoutre | Reasoning from last conflict(s) in constraint programming[END_REF] consists in finding the variable at the origin of an incorrect solution, in order to change the assignment of the variable which is at the root of the conflict first.

In Table 7.2, we display the CPU time needed to search for optimal differential characteristics, given the set of abstracted differentials computed by Step1-enum. For all instances but three , the time needed to find the optimal solution given one abstracted differential is smaller than 100 seconds, and the number of abstracted differentials is smaller than 20, so that the optimal solution for all abstracted differentials is found in less than 500 seconds. However, for , the average solving time per abstracted differential is 210 (resp. 147 and 92) seconds, and there are 1236 (resp. 240 and 602) abstracted differentials so that the total solving time for all abstracted differentials exceeds 65 hours (235036 seconds) (resp. 9 hours (35254 seconds) and 15 hours (55310 seconds)). Note that for these three instances most abstracted differentials are not byte consistent: Among the 1236 (resp. 240 and 602) abstracted differentials enumerated by Step1-enum, only 97 (resp. 13 and 202) are byte-consistent.

A different two-step decomposition

Given an abstracted differential, Step 2 is rather quickly solved, as shown in Table 7.2. However, in some cases the number of abstracted differentials is quite large, and it becomes rather timeconsuming to solve Step 2 for all abstracted differentials.

To reduce the number of abstracted differentials, we propose to shift the frontier between Steps 1 and 2. More precisely, we modify the goal of Step1-enum: Instead of enumerating all Boolean solutions, we restrict our attention to the variables associated with bytes that pass through S-boxes, i.e., we enumerate all assignments of Boolean variables associated with the differential bytes in Sboxes l . For AES-128, this amounts to enumerating all assignments of ∆X i [j][k] and ∆K i [j][3] that belong to Boolean solutions (in other words, we do not enumerate the values of

∆K i [j][k] with k ∈ [0, 2],

and we do not enumerate the values of ∆Y

i [j][k] and ∆Z i [j][k]).
Step 2 is adapted to integrate the fact that abstracted differentials do not assign values to some variables. More precisely, the domains of the variables that are not assigned in an abstracted differential is [0,255].

This simple reduction of the scope of abstracted differentials strongly reduces the number of different assignments (as many assignments only differ on values assigned to ∆Y i , ∆Z i , or

∆K i [j][k] with k ∈ [0, 2]
), without increasing the size of the search space to explore in Step 2. Indeed, the values of δY i , δZ i , and 2] are deterministically inferred from the values of the variables associated with inputs and outputs of S-boxes (i.e., δX i , δSX i , δK i [j][3], and δSK i [j][3] for AES-128). Table 7.3 gives the results obtained with this decomposition, for shifted Step 1 and shifted Step 2. For shifted Step 1, we compare S1 Di f f and S1 XOR for the enumeration problem. Again, S1 XOR is faster than S1 Di f f , and it is able to solve all instances but two in less than 7 minutes. The two hardest instances are AES-128-5, which is solved in 24 minutes (1409 seconds), and AES-192-10, which is solved in less than 4 hours (13558 seconds). This last instance cannot be solved with S1 Di f f within three days: We have stopped the solution process after three days and report in Table 7.3 the number of abstracted differentials enumerated within these three days.

δK i [j][k] with k ∈ [0,
Both S1 Di f f and S1 XOR find the same number of abstracted differentials (#T) for all instances but one. For instance AES-192-10 there are 7 abstracted differentials with S1 XOR , and more than 40 with S1 Di f f . As expected there are less abstracted differentials with the shifted decomposition than with the original one for many instances. In some cases the reduction is drastic: from 1236 (resp. 240 and 602) to 103 (resp. 3 and 7) for . As a consequence, the time needed to enumerate all abstracted differentials is also smaller with the shifted decomposition. In some cases, the speed-up is important. For example, with S1 XOR ,

Step1-enum is solved in more than 6 (resp. 3, and 60) hours, or 22869 (resp. 13524 and 216120 seconds) with the initial decomposition for AES-128-5 (resp. , whereas it is solved in less than 24 (7, and 226) For each instance, we display: the results for the shifted

Step 1 with S1 Di f f and S1 XOR (#T = number of truncated differentials; t 1 = time spent by Picat-SAT), the results for the shifted Step 2 (#B = number of Byte-consistent truncated differentials; t 2 = time spent by Choco for all truncated differentials; t 2 #T = average time per truncated differential), and total time for solving the whole problem by Algorithm 1 with S1 XOR and the new decomposition (seq = time when using a single core = time for solving Step1-opt + t 1 + t 2 ; par = time when using #T cores in parallel for solving Step 2 = time for solving Step1-opt + t 1 + t 2 #T). Times are in seconds, and we report '-' when time exceeds 3 days.

For all instances but one (AES-128-5), every abstracted differential computed by Step1-enum is byte consistent. However, for AES-128-5, only 27 abstracted differentials, among the 103 computed by Step1-enum, are byte consistent.

The time needed to find the optimal differential characteristics given one abstracted differential (t 2 #T) is rather comparable to the one displayed in Table 7.2, for the initial decomposition: it is larger for 9 instances, equal for 3 instances, and smaller for 10 instances. As there are less abstracted differentials with the shifted decomposition than with the initial one, the total time for Step 2 (t 2) is often smaller and, for the most challenging instances it is much smaller: it is larger than 65 hours (resp. 9 hours, and 15 hours) with the initial decomposition for AES-128-5 (resp. , whereas it is smaller than 15 hours (9 minutes, and 4 hours) with the shifted decomposition.

The last column of Table 7.3 gives the time needed to solve the whole problem as described in Algorithm 1, i.e., solve Step1-opt with S1 XOR , then solve Step1-enum with S1 XOR and the shifted Step 1, and finally solve Step 2 for each abstracted differential computed by Step1-enum (for all instances, the loop lines 6 to 10 is executed only once as the exit condition is satisfied when v = v *). This total time is smaller than one hour for all instances but two, and 11 instances are solved in less than one minute. The two hardest instances are AES-128-5, which is solved in less than 15 CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP hours, and AES-192-10, which is solved in less than 5 hours. However, these two instances are rather different: For AES-128-5, there are 103 abstracted differentials and most of the solving time is spent in Step 2, to compute the optimal probability given these abstracted differentials; For AES-192-10 there are 7 abstracted differentials and most of the solving time is spent to enumerate them whereas Step 2 is solved in less than 5 minutes. Note that Step 2 may be run in parallel for each abstracted differential. In this case, the solving time of AES-128-5 may be decreased to less than one hour if we solve Step 2 in parallel for the 103 abstracted differentials. This is a clear improvement over dedicated approaches such as [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF], which cannot be extended to keys of size l > 128 bits, due to its memory complexity, and the approach of [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad and others[END_REF], which needs several weeks to solve Step 1 for AES-192.

As already pointed out in [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF], for AES-128-4, find a byte-consistent solution with ob j St ep1 = 12 and a probability equal to 2 -75 . This solution is better than the solution claimed to be optimal in [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad and others[END_REF] and [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF]: In these papers, the authors claim that the best byte-consistent solution has ob j St ep1 = 13, and a probability equal to 2 -81 . Our solution is given in Figure 7.4.

Finally, we find better solutions for AES-256. In particular, we have computed the actual optimal differential characteristics for AES-256-14, and its probability is 2 -146 , instead of 2 -154 for the one given in [START_REF] Biryukov | Related-key cryptanalysis of the full AES-192 and AES-256[END_REF]. Our solution is given in Figure 7.5.

Round

δX δK i Pr(States) Pr(Key) init.

0a 00 0a 02 0a bc 06 06 0a 0c 06 06 0a bc 06 06 i = 0 00 00 00 00 00 bc 00 00 00 00 00 00 00 bc 00 00 0a 00 0a 02 0a 00 06 06 0a 0c 06 06 0a 00 06 06 2 -6•2 2 -6•3 1 00 00 00 00 00 0c 00 00 00 0c 00 00 00 00 00 00 0a 0c 06 06 00 0c 00 00 0a 00 06 06 00 00 00 00 2 -6•2 -2 00 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 0a 0c 06 06 0a 0c 06 06 00 00 00 00 00 00 00 00 2 -6 -3 00 00 00 00 00 0c 00 00 00 0c 00 00 00 0c 00 00 0a 0c 06 06 00 0c 00 00 00 0c 00 00 00 0c 00 00 2 -7 9a 00 00 00 00 00 00 00 9a 00 00 00 00 00 00 00 b5 9a 9a b5 00 00 00 00 b5 9a 9a b5 00 00 00 00 2 -6•2 -2 69 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 c4 d b d b 76 69 00 00 00 ad d b d b 76 00 00 00 00 2 -6•2 -3 9a 00 00 00 9a 00 00 00 00 00 00 00 00 00 00 00 b5 9a 9a b5 b5 9a 9a b5 00 00 00 00 00 00 00 00 2 -6•2 -4 69 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c4 d b d b 76 ad d b d b 76 00 00 00 00 00 00 00 00 2 -6 -5 9a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 b5 9a 9a b5 00 00 00 00 00 00 00 00 00 00 00 00 2 -6 -6 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 c4 d b d b 76 69 00 00 00 69 00 00 00 69 00 00 00 2 -6•4 2 -6 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2 f 9a 9a b5 2 f 9a 9a b5 2 f 9a 9a b5 2 f 9a 9a b5 - 2 -7•2 × 2 -6•2 8
69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 2 -6•2 -9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 00 00 00 00 2 f 9a 9a b5 00 00 00 00 --10 69 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 2 -6•2 -11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 2 f 9a 9a b5 00 00 00 00 00 00 00 00 --12 69 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -6 -13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 00 00 00 00 00 00 00 00 00 00 00 00 --14 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 --Table 7.5: Our 14-round related-key differential characteristic for AES-256, which occurs with probability 2 -146 .

Conclusion

In this chapter, we present 3 CP models for the search of optimal related-key differential characteristics on the AES. The first one, S1 Basi c , is a straightforward implementation of the propagation rules for the differences in the AES. It finds too many inconsistent solutions to be usable. The second one, S1 Di f f , introduces reasoning about equalities that can be inferred from the key schedule, as well as a constraint that propagates the MDS property of the MC operation between two columns of differential bytes. This model can solve all instances but one in less than 13 hours. However, the remaining instance cannot be solved after 2 weeks of computation. We therefore introduce S1 XOR , which introduces more advanced reasoning about the equalities in the key schedule, by considering all possible XORs that can be built between words of the key. Using this model, the instance which could not be solved with SA Di f f , AES-192-10, is solved in approximately 60 hours (216120 seconds). Moreover, the number of inconsistent solutions for this instance is greatly reduced, as the total number of solutions goes from 27548 for S1 Di f f to 602 for S1 XOR . We then introduce a shift in the frontier between Step 1 and Step 2: instead of enumerating the assignments of all the Boolean variables in Step 1, we only enumerates the assignments for the Boolean variables which abstract words that go through SBoxes, i.e., the SBoxes l set. We adapt Step 2 accordingly. This shift greatly reduces the number of solutions found in Step 1. The most significantly changes are for AES-128-5, AES-192-9 and AES-192-10: from S1 XOR to the shifted S1 XOR they from 1113, 240 and 602 to 103, 3 and 7 solutions respectively. This reduction in the number of solutions permits to reduce the time needed for Step 2, from 235086 to 52313 seconds for AES-128-5, from 35254 to 109 seconds for AES-192-9, and from 55310 to 281 seconds for AES-192-10.

It would be interesting to extend this approach to Rijndael, which allows more key and block sizes than the AES. Some instances, such as the one with 256-bit keys and 256-bit blocks, are an interesting evaluation of the scale up properties of CP, due to the larger search space. Midori is a lightweight block cipher with 2 versions, Midori64 and Midori128, which was introduced in [START_REF] Banik | Midori: A block cipher for low energy[END_REF]. It was designed for devices with low computational resources.Many distance bounding protocols are designed to be computationally efficient in order to run on such devices, so that Midori is susceptible to be used for contactless applications.

While several attack models are discussed by the authors of Midori, the authors made no claims concerning the security of Midori against related-key differential attacks. Its structure is very close to that of the AES, so that we can apply our CP methods to search for optimal relatedkey differential characteristics on Midori. This permits us to find full-round related-key differential characteristics for both versions of Midori, and to present related-key differential attacks for Midori64 (resp. Midori128) which require 2 36 (resp 2 44) operations.

Introduction

The increasing usage of embedded devices led to a lot of research on how to adapt existing cryptographic primitives for the low power and energy constraints associated with the internet of things. Lightweight block ciphers follow this principle, and aim at providing energy efficient ways to encrypt data. The authors of Midori [START_REF] Banik | Midori: A block cipher for low energy[END_REF]

Midori64

Impossible differential 10 2 62,4 2 80,81 [START_REF] Chen | Impossible differential cryptanalysis of midori[END_REF] Impossible differential 10 2 61,97 2 87,71 [START_REF] Shahmirzadi | Impossible differential cryptanalysis of reduced-round midori64 block cipher[END_REF] Impossible differential 11 2 61,87 2 90,63 [START_REF] Shahmirzadi | Impossible differential cryptanalysis of reduced-round midori64 block cipher[END_REF] Impossible differential 12 2 61,87 2 90.51 [START_REF] Shahmirzadi | Impossible differential cryptanalysis of reduced-round midori64 block cipher[END_REF] Meet-in-the-middle 12 2 55.5 2 125,5 [START_REF] Lin | Meet-in-the-middle attacks on reduced-round midori-64[END_REF] Invariant subspace1 full(16) In this chapter, we present CP models for the search of optimal related-key differential characteristics on Midori64 and Midori128. Using our models, we give the optimal full-round related key differential characteristics for both versions. For Midori64, the probability of the best full-round related-key differential characteristic is 2 -16 , and for Midori128, it is 2 -40 . Using these differential characteristics, we present key recovery attacks for both versions of Midori, which require 2 36 operations for Midori64, and 2 44 operations for Midori128.

The existing attacks against Midori are summed up in Table 8.1.

In [START_REF] Chen | Impossible differential cryptanalysis of midori[END_REF], the authors propose an impossible differential attack on 10 rounds of Midori64. Impossible differential attacks use differentials with probability 0 to attack the cipher. In [START_REF] Shahmirzadi | Impossible differential cryptanalysis of reduced-round midori64 block cipher[END_REF], impossible differential attacks are proposed against 10, 11 and 12 rounds of Midori64. However, the attacks on 11 and 12 rounds are performed on versions of Midori which do not include the final XOR with the whitening key. In [START_REF] Lin | Meet-in-the-middle attacks on reduced-round midori-64[END_REF], Li Lin and Wenling Wu describe a meet-in-the-middle attack on 12-round Midori64. In [START_REF] Guo | Invariant subspace attack against midori64 and the resistance criteria for s-box designs[END_REF], the authors exhibit a class of 2 32 weak keys, which can be distinguished with a single query. Assuming a key from this class is used, it can be recovered recovered with as little as 2 16 operations, and a data complexity of 2 1 . Finally, a related-key cryptanalysis of Midori64 is performed in [START_REF] Dong | Cryptanalysis of reduced-round midori64 block cipher[END_REF]. It covers 14 rounds and has a complexity of 2 116 , as opposed to 2 36 for ours. This difference is due to their differential characteristics being far from optimal.

For Midori128, the only attack apart from ours, to the best of our knowledge, is an impossible differential cryptanalysis on 11 rounds [START_REF] Tolba | Improved multiple impossible differential cryptanalysis of midori128[END_REF]. We propose a key recovery attack on the whole cipher, requiring 2 43.7 encryptions.

In Section 8.2, we give a brief description of Midori. We then present our CP model for Step 1 in Section 8.3, and for Step 2 in Section 8.4. Finally, we detail our results in Section 8.5, before concluding in the last section.

Midori

Both versions of Midori, Midori64 and Midori128, use 128-bit keys. In both versions, the blocks are treated as 4 × 4 matrices of words of m bits, with m = 4 for Midori64 and m = 8 for Midori128. The encryption process consists in applying a round function that updates an internal state S, represented as shown on Figure 8.1 (where the s i are 4-bit words for Midori64 and 8-bit words (bytes) for Midori128), for a given number of rounds R. For Midori64, R is equal to 16, whereas for Midori128 R is 20 2 . Midori is composed of r rounds. It uses 128-bit keys, and ciphers blocks of either 64 bits (Mi-dori64) or 128 bits (Midori128). The number of rounds r depends on the block length: r = 16 (resp. 20) for Midori64 (resp. Midori128). Midori has an SPN structure and is described in Figure 8.2. Before the first round, KeyAdd (KA) is applied on the original plaintext X and the whitening key WK to obtain X 0 = KA(X, WK). Then, for each round i ∈ [0, r -2]: SubCell (SB) is applied on X i to obtain SX i = S(X i); ShuffleCells (SC) is applied on SX i to obtain Y i = SC(SX i); MixColumns (MC) is applied on Y i to obtain Z i = MC(Y i); KeySchedule (KS) is applied on K i to obtain K i = KS(IK, i) (where IK is the initial key); and KeyAdd (KA) is applied on Z i and K i to obtain X i +1 = ARK(Z i , K i). Finally, after r -1 rounds, the ciphertext is obtained by applying SubCell on X r -1 to obtain SB r , and then a final KeyAdd with WK to obtain X r = KA(SB r , WK).

SC MC KA KA SB KA Operations applied at each round i ∈ [0, r -2] for Midori: X Ki WK Yi Zi Xi SXi WK Xr Xr-1 SXr-1
The round function is composed of the following consecutive operations:

SubCell (SB)

A non-linear permutation, also called SBox, is applied on each word of X i separately, according to a look-up table S : [0, 15] → [0, 15] for Midori64, i.e.,

∀i ∈ [0, r -1], ∀ j , k ∈ [0, 3], SX i [j][k] = S(X i [j][k]).
The SBox of Midori64 is given in Figure 8.

ShuffleCell (SC)

Operates a permutation of the cells of the state. On input (s 0 , . . . , s 15), it applies the following permutation: P = (s 0 , s 10 , s 5 , s 15 , s 14 , s 4 , s 11 , s 1 , s 9 , s 3 , s 12 , s 6 , s 7 , s 13 , s 2 , s 8)

of SX i to obtain Y i .

MixColumns (MC)

Multiplies the state by the symmetric matrix given in Figure 8.4, thus applying a linear transformation on each column independently. It has the quasi-MDS property: 4, 5, 6, 7, 8}. KeyAdd (KA) Before the first round, KA performs a xor between the initial plain text X and the whitening key WK to obtain X 0 :

∀i ∈ [0, r -2], ∀k ∈ [0; 3], (3 j =0 (Y i [j][k] = 0) + (Z i [j][k] = 0)) ∈ {0,
and 3 j =0 (Y i [j][k]) = 0 ≡ 3 j =0 (Z i [j][k]) = 0.      0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0     
∀ j , k ∈ [0; 3], X 0 [j][k] = X[j][k] ⊕ WK[j][k].
Then, at each round i , KA performs a xor between Z i and subkey K i to obtain X i +1 , i.e.,

∀i ∈ [0, r -1], ∀ j , k ∈ [0; 3], X i +1 [j][k] = Z i [j][k] ⊕ K i +1 [j][k].
Finally, a last KA is applied to obtain the ciphertext:

∀ j , k ∈ [0; 3], X r [j][k] = SB r -1 [j][k] ⊕ WK[j][k].

Key Schedule (KS)

The round key derivation is very straightforard: the key K i for each round i is obtained by XORing the initial key IK with a predefined 4 × 4 constant matrix α i . For Mi-dori64, the 128-bit key is considered as two 4 × 4 matrices of 4-bit nibbles IK 0 and IK 1 , and WK is computed as IK 0 ⊕IK 1 . The round key K i is computed as IK i mod 2 ⊕α i . For Midori128, IK is a single 4 × 4 bytes matrix, and WK = K. The round key K i is then computed as IK ⊕ α i .

CP Model for Step 1

In this section, we describe our CP models for the search of related-key differential characteristics on Midori. It is performed in two steps, as described in Chapter 6.

The model we use is similar to the S1 Di f f model (Section 7.3.2), in the sense that it includes difference variables, and a constraint on the quasi MDS property between the XOR of two differential columns. However, the key schedule contains no XOR operations, so that the S1 XOR model would be irrelevant for Midori. Instead of using XORs to determine the equalities in the round CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP keys, we simply use the key schedule rules: For Midori64, the differential matrices representing the round keys of the even rounds are equal, and so are the ones of the off rounds. For Midori128, the differential matrices representing the round keys are equal at all rounds. In other words, we have that δK

i 1 [j][k] = δK i 2 [j][k] if i 1%2 = i 2%2 for Midori 64, and δK i 1 [j][k] = δK i 2 [j][k] for Mi- dori128.
We first describe the variables used in our model, and then the associated constraints.

Variables

We first define the diffWords and SBoxes sets for Midori. For both versions of Midori, diffWords contains the following differential words, representing:

• The plaintext: δX[j][k], ∀ j ∈ [0; 3], k ∈ [0, 3] • The initial key: δIK[j][k], j ∈ [0; 3], k ∈ [0, 3]
• The whitening key: δWK

[j][k], j ∈ [0; 3], k ∈ [0, 3]
• The round keys:

δK i [j][k], ∀i ∈ [0; r -2], j ∈ [0; 3], k ∈ [0, BC -1]
• The state after KA:

δX i [j][k], ∀i ∈ [0; r -1], j ∈ [0; 3], k ∈ [0, 3]
• The state after SB:

δSX i [j][k], ∀i ∈ [0; r -2], j ∈ [0; 3], k ∈ [0, 3]
• The state after SC:

δY i [j][k], ∀i ∈ [0; r -2], j ∈ [0; 3], k ∈ [0, 3]
• The state after MC:

δZ i [j][k], ∀i ∈ [0; r -2], j ∈ [0; 3], k ∈ [0, 3]
and the Sboxes set contains:

• δX i [j][k], ∀i ∈ [0; r -1], j ∈ [0, 3], k ∈ [0, BC -1]
As for AES, not all differential words are abstracted in Step 1. Indeed, during Step 2, the initial differential plaintext δX, as well as the whitening key WK, can be deterministically computed given the values of all other differential words. Hence, our model for Midori associates a Boolean variable ∆B with every differential byte δB ∈ diffBytes l \ {δX[j][k], δWK[j][k]}. Each Boolean variable ∆B is assigned to 0 if δB = 0, and to 1 otherwise.

We also define an integer variable ob j St ep1 which corresponds to the number of active SBoxes. The highest transition probability through the SBoxes of both versions of Midori is 2 -2 , so up to 64 SBoxes can be active before the probability goes below 2 -128 (the key size being 128 bits for both versions). The domain of the ob j St ep1 is set to D(ob j St ep1) = [1, 64] accordingly.

The corresponding list of variables is the following. We use the ≺ symbol, as defined in Section 6.4.1, to denote the fact that a differential bit ∆a is a Boolean abstraction of the differential word δa.

∆IK: For Midori 64, the key is interpreted as two 4 × 4 matrices IK 0 and IK 1 , so we have

∀i ∈ [0; 1], ∀ j ∈ [0; 3], k ∈ [0; 3], ∆IK i [j][k] ≺ δIK i [j][k],
and for Midori128, where the key is interpreted as a single 4 × 4 matrix,

∀ j ∈ [0; 3], k ∈ [0; 3], ∆IK[j][k] ≺ δIK[j][k]. ∆K i : ∀i ∈ [0; r -2], j ∈ [0; 3], k ∈ [0; 3], ∆K i [j][k] ≺ δK i [j][k] ∆X: ∀i ∈ [0; r -1], j ∈ [0; 3], k ∈ [0; 3], ∆X i [j][k] ≺ δX i [j][k] ∆SB: ∀i ∈ [0; r -2], j ∈ [0; 3], k ∈ [0; 3], ∆SB i [j][k] ≺ δSB i [j][
∀(i 1 , i 2) ∈ [0; r -1] 2 , ∀(j , k) ∈ [0; 3] 2 , i 1 %2 = i 2 %2 : diff δK i 1 [j][k],δK i 2 [j][k] = 0. (C M DIFFK)
For Midori128, by definition, the differential matrices abstracting the round subkeys are equal:

∀(i 1, i 2) ∈ [0; r -1] 2 , ∀(j , k) ∈ [0; 3] 2 : diff δK i 1 [j][k],δK i 2 [j][k] = 0. (C M DIFFK)
Symmetry To be consistent, our difference variables need to have symmetry:

∀D ∈ {DK j , DY j , DZ j : j ∈ [0, 3]}, ∀{δB 1 , δB 2 } ∈ Ddiff δB 1 ,δB 2 = diff δB 2 ,δB 1 . (C M SYM)
Transitivity To be consistent, our difference variables need to have transitivity:

∀D ∈ {DK j , DY j , DZ j : j ∈ [0, 3]}, ∀{δB 1 , δB 2 , δB 3 } ∈ D, diff δB 1 ,δB 2 + diff δB 2 ,δB 3 + diff δB 1 ,δB 3 = 1. (C M TRANS)
Relating diff variables and ∆ variables If ∆A = ∆B, then diff δA,δB = 1, and that if ∆A = ∆B = 0, then diff δA,δB = 0 . This is enforced by the following constraint:

∀D ∈ {DK j , DY j , DZ j : j ∈ [0, 3]}, ∀{δB 1 , δB 2 } ∈ D, diff δB 1 ,δB 2 + ∆B 1 + ∆B 2 = 1. (C M DIFF∆)
Constraints relating KA and the diff variables ARK defines X i +1 [j][k] as the result of a xor be-

tween K i [j][k] and Z i [j][k], we post the constraint: ∀i 1 , i 2 ∈ [0, r -2], ∀ j , k1, k2 ∈ [0, 3] 3 , diff δK i 1 [j][k 1],δK i 2 [j][k 2] + diff δZ i 1 [j][k 1],δZ i 2 [j][k 2] + ∆X i 1 [j][k 1] + ∆X i 2 [j][k 2] = 1. (C M DIFFKA)
Quasi MDS property As in the S1 d i f f model for AES, we exploit the quasi MDS property for the XOR of two differential columns by 5, 6, 7, 8}. (C M DIFFMDS)

∀i 1, i 2 ∈ [0, r -2] 2 , ∀k1, k2 ∈ [0; 3] 2 : (3 j =0 (diff δY i 1 [j][k1],δY i 2 [j][k2]) = 0) + (diff δY i 1 [j][k1],δY i 2 [j][k2] = 0)) ∈ {0,

Step 2

Given an abstracted differential computed by Step1-enum, Step 2 aims at searching for the word values with the highest differential probability (or proving that the abstracted differential is not word-consistent). In this section, we describe the CP model for Step 2 on Midori.

Variables

For each differential word δB ∈ diffWords l , we define an integer variable the domain of which As we look for a word-consistent solution with maximal probability, we declare an integer variable P δB for each differential word δB ∈ Sboxes: This variable corresponds to the base 2 logarithm of the probability Pr(δB → δSB) of obtaining the Sbox output difference δSB when the SBox input difference is δB. This probability is obtained by applying equation 6.1. The domain of P δB depends on the value of ∆B in the abstracted differential: If ∆B = 0, then Pr(0 → 0) = 1 and therefore D(P δB) = {0}; otherwise, Pr(δB → δSB) ∈ {2 -3 , 2 -2 } and D(P δB) = {-3, -2} for Midori64, and Pr(δB → δSB) ∈ {2 -6 , 2 -5 , 2 -4 , 2 -3 , 2 -2 } and D(P δB) = {-6, -5, -4, -3, -2} for Midori128. The constraint associated with the SubCell operation forbids couples (δB, δSB) such that Pr(δB → δSB) = 0. CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP

Constraints

The constraints basically follow the Midori operations to relate variables, as described in Section 8.3 for Step 1, but consider the definition of the operations at the word level, instead of the Boolean level.

The main difference is that the SubCell operation, which has no effect at the Boolean level, must be modelled at the word level. This is done thanks to a ternary table constraint which extensively lists all triples (X, Y, P) such that there exists two words B 1 and B 2 whose difference before and after passing through S-Boxes is equal to X and Y, respectively, and such that P is the probability of this transformation: For all δB ∈ Sboxes, we add the constraint (δB, δSB,

P δB) ∈ {(X, Y, P)|∃(B 1 , B 2) ∈ [0, 15] × [0, 15], X = B 1 ⊕ B 2 , Y = S(B 1) ⊕ S(B 2), P = log 2 (Pr(X → Y))}. (C M SBS2)
for Midori64, and

(δB, δSB, P δB) ∈ {(X, Y, P)|∃(B 1 , B 2) ∈ [0, 255] × [0, 255], X = B 1 ⊕ B 2 , Y = S(B 1) ⊕ S(B 2), P = log 2 (Pr(X → Y))}. (C M SBS2)
for Midori128.

We also use a table constraint for the XOR of two words, as defined in Section 6.4.2, with tuples tupleXOR.

We define:

XORWor d (δa, δb, δc) ≡ (δa, δb, δc) ∈ tupleXOR.

(C M XORWor d s)
In what follows, we assume that XORWor d s can take an arbitrary number of arguments (the last one being the result), event though in the implementation, when a XOR of multiple variables is needed, we XOR them two by two and use temporary variables to store the intermediary results.

The MixColumn operation also needs to be modelled at word level. MixColumn is the multiplication of each column of the state by a fixed matrix M, given in section 8.2. In Rijndael's Galois field, addition is replaced by XOR. For instance, let us consider a column C = (δa, δb, δc, δd) t . Then

MC(C) =      δb ⊕ δc ⊕ δd δaδδc ⊕ δd δa ⊕ δb ⊕ δd δa ⊕ δb ⊕ δc     
We implemented both MC and its inverse. Indeed, it permits the solver to obtain the k t h column of δY i directly from the k t h column of δZ i , instead of having to enumerate all possible values and applying MC in the forward direction to verify whether the affectation is correct.

The MC operation is modelled as follows, using temporary variables t z : The results are given in Table 8.2 for Midori64, and in Table 8.4 for Midori128. For all instances of Midori64, the resolution, Step1-opt is performed in at most 12 seconds, Step1-enum in less than 4 minutes, and Step 2 always takes less than 1 second per solution. The instance with the longest total time, including Step1-opt, Step1-enum and Step2, is Midori64-14, and it is solved in less than 5 minutes. For each instance, we find solutions with R 2 SBoxes, and there is always an assignment to the differential nibbles that reaches the optimal probability 2 -2•v * (where v * is the number of active SBoxes). Hence, we obtain 32 full-round related key differential characteristics for Midori64 with 8 active SBoxes, and probability 2 -16 . One of these characteristics is given in Table 8.3.

∀i ∈ [0; r -2], ∀k ∈ [0; 3] : XORWor d (δY i [1][k], δY i [2][k], δY i [3][k], δZ i [0][k]), CHAPTER
For Midori128, Step1-opt is performed in at most 64 seconds, Step1-enum in at most 424 seconds, and Step 2 always takes less than 3 seconds per solution. The instance with the longest total time, including Step1-opt, Step1-enum and Step2, is Midori128-20, and it is solved in less than 10 minutes. For each instance, we find solutions with R SBoxes, and there is always an assignment to the differential bytes that reaches the optimal probability 2 -2•v * . Hence, we obtain 18 full-round related key differential characteristics for Midori128 with 20 active SBoxes, and probability 2 -40 . One of these characteristics is given in Table 8.5.

123

CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP δK 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0 δX Value Pr init 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0 δX 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 1 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -2•1 δX 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δX 1 6 0 0 0 1 0 0 0 0 2 0 2 2 0 0 0 0 CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP δK 00 02 00 00 01 01 01 00 00 00 00 00 00 00 00 00 δX Value Pr init 00 00 00 00 01 01 01 00 00 00 00 00 00 00 00 00 δX 0 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 2 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 3 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 4 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 5 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 6 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 7 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 8 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 9 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 0 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 1 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 2 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 3 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 4 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 5 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 6 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 7 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 8 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 1 9 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 -2•1 δX 2 0 00 03 00 00 01 01 01 00 00 00 00 00 00 00 00 00

Related Key Differential Attacks against Midori

In this section, we show how to use the related-key differential characteristics found with our models to perform a key recovery attack against both versions of Midori. We first present the method for mounting a related-key differential attack, and then apply it to Midori64 and Midori128.

Related-Key Differential Attacks

We remind that in a related key differential attack, we can use an oracle E.enc RK,(δIK,IK) (X) that encrypts a message X with the key IK ⊕ δIK. In order to mount a related-key differential attack, we use the related-key differential characteristic to derive the most likely input difference to the last SB operations, i.e., δX r -1 . We then obtain T • p(c) -1 pairs of ciphertexts C = E.enc RK,(0,K) (X) and C ′ = E.enc RK,(δIK,IK) (X ⊕ δX), where p(c) is the probability of the differential characteristic. The computation of T is detailed in each of our attacks. We compute δC = C⊕C ′ , and then δSB r -1 = δC⊕ δWK, where δWK is known from the value of δIK in the differential characteristics. We then make the assumption that δX r -1 takes the value corresponding to the differential characteristic. If this actually occurs, the pair (C, C ′) is called a good pair. When we have a good pair, we know the input differences to the SBoxes (δX r -1), and the output difference (δSB r -1). In a bijective SBox, there only a given number t of values which satisfy the relation a ⊕ a ′ = δi n, S(a) ⊕ S(a ′) = δout . Hence, we can derive t candidate values for each word of SB r -1 for which δSB r -1

[j][k] = 0. However, when δSB r -1 [j][k] = 0, we cannot derive a candidate, since δSB r -1 [j][k] = 0 only indicates that SB r -1 [j][k] is equal to SB ′ r -1 [j][k]. Let CSB i [j][k] be the set of candidates for SB i [j][k].
We can derive a set of candidates for WK [j][k] by combining the known value of C[j][k] (given by the oracle), and CSB r -1

[j][k]: CWK[j][k] = {x : x = C[j , k] ⊕ z, z ∈ CSB r -1 [j][k]}.
After repeating these operations for each of the T • p(c) -1 ciphertexts, we keep the candidate for WK [j][k] that occurred the most often.

Midori64

Our key recovery attack against Midori64 works in two steps. We first use a set of 16 related-key differential characteristics to recover WK, one word at a time, in 16 • 2 20 = 2 24 operations. Then, we use another set of 4 related key differential characteristics to obtain K 14 = IK 0 , in 2 36 operations. By combining WK and K 14 , we obtain IK 1 = IK 0 ⊕ WK and deduce IK (composed of IK 0 and IK 1), for a total complexity of 2 24 + 2 36 ≈ 2 36 .

Recovery of WK

Among the 32 16-round related-key differential characteristics obtained with our solvers, 16 have exactly one active word in δX 15 . These characteristics are given in Appendix C.1.1.For each of these characteristics, the active word is at a different position. Let this position be denoted δX 15 [j][k]. With each of these characteristics, we recover one word of WK, WK[j][k], by directly applying the method presented in Section 8.6.1. Note that we do not derive key candidates for all ciphertext pairs, as we only keep the ones for which δSB 15 matches what is expected from the differential characteristic, except for position δSB 15 [j][k], where any value is accepted. In Midori128, IK = WK, so that after recovering WK, we directly obtain IK.

Complexity Analysis

We now determine how many ciphertext pairs we need to recover each word of WK, by computing the value T mentioned in Section 8.6.1. To determine T, we follow the approach given in [Selçuk, 2008]. It uses the signal to noise ratio S/N introduced by Biham in [START_REF] Biham | Differential Cryptanalysis of the Data Encryption Standard[END_REF]. The signal to noise ration is defined as S/N =

2 k •p α•β ,
where k is the number of key bits that we want to recover, p is the probability of the related-key differential characteristic, α is the number of key candidates suggested for each good pair, and β is the ratio of the pairs that are not discarded. In our attack, k is 4, since we want to recover a 4-bit nibble. We take p = 2 -14 : the probability of the whole differential characteristic, including the final SB operation, is 2 -16 , but the probability to have the correct difference in δX 15 is 2 -14 . The α parameter is obtained through the properties of the SBox: either two of 4 values can correspond to a given input/output difference, i.e., for a given input difference δi n and output difference δout ,

#{a : S(a) ⊕ S(a ⊕ δi n) = δout } ∈ {2, 4}.
We want to upper bound the number of ciphertext pairs that we need, so that we take α = 4, which minimises the signal-to-noise. For β we have 2 -14 +2 -60 , where 2 -14 is the probability given by the solvers and 2 -60 corresponds to the false positives, i.e., pairs having the same difference pattern in δSB 15 , with 4 bits of undetermined difference at position δSB 15 [j][k]. Using these values, we obtain S/N =

2 k •p α•β = 2 4 •2 -14 4•(2 -14 +2 -60) = 2 -10 2 -12 +2 -58 ≈ 4.
We denote by p S the probability to obtain the true key. We use the equation (19) of [Selçuk, 2008], where Φ denote the density probability function of the standard normal distribution, and Φ -1 its inverse:

p S = Φ T•S/N-Φ -1 (1-2 -k) S/N+1
(19). Then we can obtain p S for given values of T, S/N and α. We want to compute which T gives us a high enough probability to recover a key word. Moreover, since we repeat the analysis 16 times (one for each word of WK), we need to have p 16 S sufficiently large as well. By numerical approximation we obtain T = 20 ≈ 2 4.32 , which gives p S > 0.99, and p 16 S > 0.99. Hence, using T•p -1 plaintext pairs, we recover a key word with a probability greater than 0.99. The corresponding data complexity is then upper bounded by 16•2•20•2 14 ≈ 2 24 chosen plaintexts, as well as 16 related keys, one for each related-key differential characteristic used.

Recovery of K 0

For this step, we use a different set of differential characteristics, which have one active SBox in δSB 14 , denoted δSB 14 [j][k]. More specifically, we use 4 characteristics, and for each of them, the active SBox is moved to a different column after SC. Each of these characteristics is used to recover one different column of K 14 = K 0 ⊕ α 14 . These characteristics are given in Appendix C.1.2. We first cipher pairs X, X⊕δX with the keys IK, IK⊕δIK through the oracle. Using WK, previously computed, we partially decrypt C and C ′ . We obtain SB 15 = C ⊕ WK and SB ′ 15 = C ′ ⊕ WK ⊕ δWK, and X 15 and X ′ 15 by inverting the SB operation. From there we compute δX 15 = X 15 ⊕ X ′ 15 , and δZ 14 = δX 15 ⊕ δK 0 , where δK 0 is given by the differential characteristic. We then invert MC and SC to obtain δSB 14 . Knowing δX 14 (assuming the characteristic held), and δSB 14 , we can compute candidates for the active differential word δSB 14 [j][k]. Since we want to recover a whole column k of K 14 , we want the candidates for the column k of δY, after the SC operation. Hence, we exhaustively try the possible combinations of the 3 other nibbles that are in the same column after SC for each candidate. This results in a number of operations of 2 4 •2 4 •2 4 •x, where x is the number of candidates for SB 14 [j][k].

x is upper bounded by 4, so we have at most 2 4 •2 4 •2 4 •4 = 2 14 combinations to try. Each of these 2 14 combinations gives a candidate column of Z 14 . By XORing these candidates to the corresponding column of X 15 , which we obtained from the partial decryption, we obtain candidates for 4-nibble columns of K 14 . Note that we do not derive key candidates for all ciphertext pairs, as we only keep the ones for which δSB 14 matches what is expected from the differential characteristic, except for position δSB 14 [j][k], where any value is accepted. Once K 14 is recovered, we obtain IK 0 = K 14 ⊕α 14 .

CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP

Complexity Analysis This time we try to recover 16 bits (4 nibbles) of the key, so k = 16. The probability of having the correct δX 14 is p = 2 -14 , as given by the differential characteristic. The value of α is the number of candidate columns we obtain, which is 2 14 , as detailed in the previous section. Finally, β = 2 -14 +2 -60 , since we are interested in values of δSB 14 with one arbitrary nibble difference, and zero differences in the other nibbles. Using these values, we obtain S/N =

2 k •p α•β = 2 16 •2 -14 2 14 •(2 -14 +2 -60) = 2 -12
2 -14 +2 -58 ≈ 4. Then by numerical approximation we find T = 28 ≈ 2 5 , which gives p S > 0.99, and p 4 S > 0.99. Hence, the total number of operations is upper bounded by 4•2•2 5 •2 14 •2 14 = 2 36 and the number of encryptions is upper bounded by 2 • 4 • 2 5 • 2 14 = 2 22 , and we need a total of 4 related keys.

Midori128

The solver finds 18 full-round differential characteristics, each of which have a different active word in δX 15 . The probability to obtain the correct difference in δX 15 is 2 -38 for each characteristic. The corresponding related-key differentials are given in Appendix C.2. Hence, we directly apply the attack presented in Section 8.6.1, to recover one word of WK = IK, at position j , k, with each of the differential characteristics. We only keep the ciphertext pairs for which δSB 19 [j][k] is all zeros, except in position j , k.

Complexity evaluation:

We need to use 16 related-key differential characteristics, so we want p 16 S ≥ 0.99. To compute S/N, we use k = 8 as we recover a 8-bit word of the key for each related-key differential characteristic, and p = 2 -38 . For α, we once again pick the value that minimises the signal to noise ratio, to obtain an upper bound on the number of operations, so we have α = 64. Finally, β = 2 -38 +2 -120 . With these values, we have S/N = 4, and need T = 25 ≈ 2 5 to have p 16 S > 0.99. Thus, the data complexity of the attack is upper bounded by 2 • 2 5 • 2 38 = 2 44 encryptions, under 16 related keys, and the time complexity is 2 44 as well.

Conclusion

In this chapter, we present our CP models to perform the search for optimal related-key differential characteristics on Midori. These models are similar to S1 Di f f (Section 7.3.2), as they include diff variables and the C M DIFFMDS constraint, that propagates the quasi-MDS property of MC between two columns of differential words. The longest instance to solve, Midori-128-20, is solved in less than 17 minutes (239 seconds for Step1-opt, 674 for Step1-enum, and 55 for Step 2). For Midori64 (resp. 128), we find full-round related-key differential characteristics with probability 2 -16 (resp. 2 -40). Using these differential characteristics, we mount key recovery attacks. We show how to recover the key in 2 36 operations, and 2 24 plaintexts encrypted with 20 related keys for Midori64, and 2 44 operations and 2 44 plaintexts encrypted with 16 related keys for Midori128.

The search for optimal related-key differential characteristics is significantly faster for Midori than for the AES. The instance that takes the most time to solve for Midori is solved within 17 minutes. The most difficult instance for AES is solved in almost 4 hours, using more advanced techniques (in particular, the different decomposition described in Section 7.5). In addition, the hardest instance of AES is on 10 rounds, whereas the hardest instance for Midori is 20 rounds. The fact that the search is faster for Midori than for AES, despite a larger number of rounds, can partly be explained by the simplicity of the MixColumns operation: all coefficients of the MixColumns matrix of Midori are zeroes or ones, so that we can model this operation more accurately during

Step 1, with the constraint C M MCXOR . Another factor is the linearity of the key schedule. In the AES, every key schedule round contains SBoxes and XOR operations, which introducs branching. The key schedule of Midori in Step 1 only requires to determine three 4 × 4 matrices (∆IK 0 , ∆IK 1 and ∆WK) for Midori64, and one (∆IK) for Midori128. In addition, the simple key schedule of Midori makes it more vulnerable to related-key attacks: while the hardest instance for AES has 29 active SBoxes, the hardest one for Midori only has 20.

Chapter 9

Conclusions

This thesis contains two two parts: in the first one, we treat the security of contactless communications with regards to relay attacks, while the second one deals with related key cryptanalysis with constraint programming.

In the first chapter, we present the problem of secure contactless authentication. We identify two security aspects: the security of the protocol itself, and the security of the primitives composing it, which correspond to the two parts of this thesis. In the first part, we introduce relay attacks, which permit an adversary to defeat protocols by simply relaying messages between the participants, and a countermeasure: distance bounding protocols, which deter relay attacks by measuring the time of flight of the messages. In the second part, we present the symmetric cryptographic primitives that are used for contactless protocols, and note that they can all be instantiated using a block cipher. We then present the problem of related-key cryptanalysis of block ciphers, in which an adversary has access to an oracle that ciphers messages under several different keys, which are related in a way chosen by the adversary. This form of cryptanalysis is particularly relevant when block ciphers are used to build other primitives, since this use case sometimes requires using several keys which are not necessarily independent one another.

In the second chapter, we define the notations the cryptographic primitives that we use in the rest of the thesis, as well as some mathematical tools.

The third chapter is an introduction to provable security for distance bounding. We present the general structure of distance bounding protocols, as well as some classical protocols. We then present the existing threats against distance bounding protocols: mafia fraud, distance fraud, distance hijacking and terrorist fraud. Mafia fraud is an attack in which an adversary authenticates in the presence of a far away prover, while the three other attacks concern a malicious, far away prover, authenticating from a distance. In a distance fraud, he is on his own, in a distance hijacking, he uses honest provers who are in the proximity of the verifier, and in a terrorist fraud, he is helped by an accomplice, and tries to make the accomplice succeed in the protocol, while preventing him from learning enough information to authenticate on his own later. We then present these threats in a more formal way, with the DFKO model, in which our proofs are done. Finally, we present the methodology we use for our proofs.

Chapter 4 introduces two protocols we designed: SPADE and TREAD. Both are provably secure in the DFKO model, and use the same original technique to combine terrorist fraud resistance and anonymity. Instead of forcing the prover to leak a long term secret in order to help his accomplice, these protocols have the prover leak a temporary secret. This temporary secret is meant to be used in one session only, but an adversary can start a session using the same secret. If the terrorist fraud adversary learns this secret, then he can use it again at will. In both protocols, this temporary secret chosen by the prover, and sent encrypted and authenticated to the verifier. The way it is encrypted and authenticated depends on the protocol: for SPADE, the encryption is public key and the authentication is performed with a group signature scheme, which allows a prover to sign anonymously on behalf of a group. In TREAD, we present three instances: TREAD s ym uses a symmetric encryption scheme, and a MAC for authentication. It provides no privacy. TREAD pr i v uses a public key encryption scheme and a digital signature: it is MiM-private. Finally, TREAD ano uses public key encryption and a group signature, and provides anonymity against malicious verifiers. We give the security proofs of these protocols in the DFKO model. The idea of using a temporary secret during the protocol can be related to the notion of one-time secure distance bounding protocols presented in [Vaudenay, 2015a], and provides interesting options for provable security. Combining it with group signatures permits to attain anonymity, revocability and terrorist fraud resistance at the same time. Group signatures are a computationally expensive primitive, which contrasts with the use of lightweight primitives in most distance bounding protocols. However, this restriction to lightweight primitives is mostly due to the traditional use of contactless on RFID devices, which typically have low power. On the other hand, we believe that in the future, distance bounding will be applied more broadly, for instance on smartphones [START_REF] Gambs | The not-so-distant future: Distance-bounding protocols on smartphones[END_REF], so that the limitation on computational power will not be as relevant.

In Chapter 5, we discuss attacks that were published against SPADE and TREAD, and which use specific hardware, namely directional antennas [Ahmadi and Safavi-Naini, 2018]. Directional antennas permit to circumvent the security model, by sending messages to one specific party instead of broadcasting these messages. Hence, in a terrorist fraud, the malicious prover can send messages to the verifier without his accomplice seeing them, which enables terrorist frauds against some anonymous protocols, in which the adversary needs to see the initial messages to be able to authenticate again later. However, the attacks of [Ahmadi and Safavi-Naini, 2018] have limited applicability, since it is difficult to make sure that the accomplice will not cheat, by placing receivers in the range of the directional antennas. We then proceed with describing our own terrorist fraud, which also uses specific hardware (temper-proof devices), and applies to all protocols of the literature in which the provers can be cloned, which concerns all protocols but 2. With this attack, we show a loophole in the models, since protocols that have been proved terrorist fraud resistant are actually vulnerable. We propose a definition for terrorist fraud, called One Step Terrorist Fraud. In this definition, the prover is allowed to give any information to his accomplice, even secret keys, and wins if the accomplice is able to authenticate with this help.

In the second part of the thesis, we focus on the cryptographic primitives themselves, including the lightweight block cipher Midori. In Chapter 6, we present the cryptographic problem that we study, which is related-key differential cryptanalysis of block ciphers. To perform related key differential cryptanalysis, we need to study the propagation of differences in the plaintext and in the key though the cipher, and find which input/output difference pairs are the most likely. These propagation patterns are called related-key differential characteristics. We propose to tackle this problem with constraint programming, a declarative programming paradigm, in which the problem to solve is expressed in terms of variables and constraints. From this modelling, dedicated solvers perform the resolution, so that the programmer is freed from the task of designing a solving algorithm. We present the methodology we use: the problem is decomposed into two steps. In the first step, we track the positions of the differences though the cipher, and minimise the number of nonzero differences that go through SBoxes, as they lower the overall probability of the differential characteristic. In the second step, we search for actual word values that satisfy the propagation rules of the cipher, and correspond to the results of Step 1. We also present the general methodology for solving Step 2, which mostly uses table constraints. Table constraints permit to express allowed tuples, and allow to represent the SBoxes differential distribution table. The choice of using CP over MILP or other methods is motivated by the expressivity of CP: while MILP problems must be expressed in terms of linear equations, and SAT problems as Boolean formulas, none of these limitation applies to CP. Hence, the modelling is more natural and straightforward. Moreover, by writing our models in the MiniZinc CP language, we can use different solvers, in particular the SAT solver Pica_SAT.

In the seventh chapter, we apply our techniques to the search of optimal related-key differential characteristics on the encryption standard AES. We propose 3 models for Step 1, as well as a decomposition that is different from the two step decomposition used at first. The first model, S1 Basi c , is a straightforward implementation of the problem, and does not filter out enough incor-rect solutions to be usable. The second model, S1 Di f f , introduces reasoning about the differences between differential words that can be inferred in Step 1. It scales up to AES-192 and AES-256, but fails at solving one of the instances (AES-192-10) within the allocated time. Finally, S1 XOR infers even more differences by combining equations from the key schedule, and solves AES-192-10 in approximately 60 hours. By shifting the frontier between steps 1 and 2, in a different decomposition of the problem, we are capable of solving AES-192-10 in less than 4 hours. Using our models, we additionally disprove incorrect results that were previously published, in papers using custom search algorithms. The results we obtain on CP indicate that it is a promising approach for cryptanalysis. On the particular example of related-key differential cryptanalysis on the AES, it performed much faster than dedicated approaches (less than four hours, instead of several weeks). We also notice that the modelling choices are determinant for the resolution speed. This limits the ability of non experts to use CP for cryptanalysis.

In Chapter 8, we extend our study to Midori, which has a structure close to the AES. We use a model derived from the S1 Di f f model we used for the AES, and solve the most difficult instances in less than 10 minutes. We find full-round related key differential characteristics with probability 2 -16 for Midori64, and 2 -40 for Midori128. Using these differential characteristics, we mount key recovery attacks, with complexity 2 36 for Midori64, and 2 44 for Midori128. Interestingly, the search for Midori is significantly faster than the search for AES. This can be explained by several factors. First, the size of the search space is smaller for Midori: Midori64 has 64-bit blocks and 128-bit keys, and Midori128 has 128-bit blocks and 128-bit keys. In contrast, AES has 128-bit blocks, and up to 256-bit keys. Moreover, the key schedule of the AES is more complex, and includes a non linear part. Additionally, the MixColumns operation is less efficient for diffusion in Midori, since it is quasi-MDS, while the MixColumns operation of AES is MDS. For these reasons, Midori is weaker than AES in the related-key setting, and the search is faster.

The security of contactless communication is a vast research topic. In this thesis, we studied two aspects: provably secure distance bounding protocols, and the related-key cryptanalysis of block ciphers. For distance bounding protocols, there are several future research avenues. It is interesting that, almost 10 years after the first formal framework [Avoine et al., 2009] was introduced, and after several different formal models appeared, new attacks, such as the ones presented in [Ahmadi andSafavi-Naini, 2018, Boureanu et al., 2018], are still frequently discovered. Hopefully, the advances in automatic verification [START_REF] Debant | Proving physical proximity using symbolic models[END_REF], Mauw et al., 2018] for distance bounding will permit to come up with definitive models, as it already uncovered some attacks, such as distance hijacking [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF]. There is still clearly some progress to be done about the formalisation of attacks, in particular terrorist fraud. It would be interesting to confront the existing security models, to establish clearly which attacks are covered by one and not the others, and which are covered by none of them. There also needs to be a reflection about which threats are relevant and which are not, as industries do not seem to be interested in the most exotic threats, such as terrorist fraud or distance hijacking.

As for the application of CP to cryptanalysis, there are even more new research opportunities. Related-key differential cryptanalysis is just one of the many forms of cryptanalysis that could be automated. We explored some other forms of cryptanalysis in [START_REF] Sun | Analysis of aes, skinny, and others with constraint programming[END_REF]. In particular, impossible differential cryptanalysis would be a good application for CP. MILP methods for finding impossible differentials exist, but they only tell that a differential is impossible. On the other hand, CP has a mechanism called explanations, which could help finding exactly where the incompatibility is in an impossible differential, therefore permitting the cryptographer to verify them by hand more easily. Finally, it would be interesting to design a declarative framework, in which the cryptanalysts describe a cipher, and an automatic tool builds an efficient CP model from the description, integrating modelling tricks such as the ones we present.

Related-Key Differential Characteristics For Midori

In Chapter 8, we presented related-key key recovery attacks against Midori64 and Midori128. In this appendix, we give the corresponding related key differential characteristics.

C.1 Midori64

C.1.1 Recovery of WK

The 16 related-key differential characteristics used for the recovery of WK are the following ones. δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x02 0x02 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x03 0x02 0x02 APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x01 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x03 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 X APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 0x01 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 0x03 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x01 0x01 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x01 0x00 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00

XII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 δK 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x02 0x02 0x02 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x02 0x02 0x02 0x00 XIV APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x03 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x01 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x02 0x02 0x00 0x02 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x02 0x02 0x00 0x02 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 XV APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x01 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x03 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 δX Value Pr init 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 -2•1 δX 16 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03

XVI

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00

C.1.2 Recovery of K 0

The 4 related-key differential characteristics used for the recovery of K 0 are the following ones. δK 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 2 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 4 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 6 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 8 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 10 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 12 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 14 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 16 0x00 0x02 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 δX 0 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 2 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 4 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 6 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 8 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 10 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 12 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 14 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 16 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 2 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 4 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 6 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 8 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 10 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 12 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 14 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 16 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00

C.2 Midori128

The 16 related-key differential characteristics used for the recovery of WK are the following ones. XIX APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x09 0x00 0x09 0x09 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x09 0x09 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x09 0x00 0x09 0x09 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x02 0x02 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x02 0x02 0x00 0x02 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

XXI

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x20 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x21 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

XXII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x01 0x01 0x01 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x21 0x00 0x00 0x00 0x01 0x01 0x01 0x00

XXIII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x20 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x21 0x00 0x00 0x00 XXIV APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00 XXV APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x09 0x09 0x09 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x09 0x09 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x00 0x09 0x09 0x09

XXVI

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x06 0x00

XXVII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x00 0x06 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00

XXVIII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 δX 0 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 XXIX APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x09 0x09 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 δX Value Pr init 0x09 0x09 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 -2•1 δX 20 0x09 0x09 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x08 XXX APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x02 0x02 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x03 0x02 0x02

XXXI

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x06 0x00 0x00 0x00 0x00 0x00

XXXII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x21 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x20 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

XXXIII

APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x01 0x01 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 δX 0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x01 0x00 0x00 0x00 0x00 XXXIV APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR MIDORI δK 0x00 0x02 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX Value Pr init 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 δX 0 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 1 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 2 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 3 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 4 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 5 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 6 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 7 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 8 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 9 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 10 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 11 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 12 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 13 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 14 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 15 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 16 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 17 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 18 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 19 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 -2•1 δX 20 0x00 0x03 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Definition 4 (

 4 . Let SKE = (SKE.gen, SKE.enc,SKE.dec) be a symmetric key encryption scheme. SKE is said to be indistinguishable against adaptive chosen ciphertext attack (IND-CCA2) when for any adversary A = (A 0 , A 1), the advantageAdv IND-CCA2 A ,SKE (1 λ) = Pr k ← SKE.gen(1 λ), b $ ← {0, 1} b ′ ← A SKE.enc k (LR b),SKE.dec k where the oracles SKE.enc k (LR b), SKE.dec k are defined as: SKE.enc k (LR b (m 0 , m 1)): returns SKE.enc k (m b) on the message pair (m 0 , m 1), for a random but fixed bit b. SKE.dec k (c): returns ⊥ if c has been generated by SKE.enc k (LR b), and SKE.dec k (c) otherwise. Definition 5 (IND-CCA2 -Public key). Let PKE = (PKE.gen, PKE.enc,PKE.dec) be a public key encryption scheme. PKE is said to be indistinguishable against adaptive chosen ciphertext attack when for any adversary A = (A 0 , A 1), x) ← PKE.gen(1 λ), b $ ← {0, 1} b ′ ← A PKE.enc p k(LR b) , PKE.dec x (pk, λ) : b = b ′ -1 2 is negligible, where the oracles PKE.enc p k(LR b), PKE.dec x are defined as: PKE.enc p k(LR b (m 0 , m 1): returns PKE.enc pk (m b) on the message pair (m 0 , m 1), for a random but fixed bit b. PKE.dec x (c): returns ⊥ if c has been generated by PKE.enc p k(LR b) returns ⊥, and PKE.dec x (c) otherwise.

$←

 ID 0 and ID 1 ∈ CU, the challenger stops. Otherwise, he picks b {0, 1}. Then, during the guessing phase, A cannot use G.cor and G.rev on ID 0 or ID 1 anymore, but gains access to a new oracle: G.sig b simply returns G.sig ssk ID b (m). The signature produced by this oracle cannot be the G.ope oracle. A outputs b ′ and the challenger returns the boolean value (b = b ′).

). A Commitment scheme COM is composed of a pair of algorithms (COM.commit, COM.open) such that:COM.commit(v,r): returns a commitment c to the value v, using the random value r .

 . 21 3.2 General Structure of Distance Bounding Protocols 22 3.3 Threats Against Distance Bounding Protocols . 24 3.3.1 Distance Fraud (DF) . 25 3.3.2 Distance Hijacking (DH) . 25 3.3.3 Terrorist Fraud (TF) . 25 3.3.4 Terrorist frauds in noise resistant protocols 26 3.3.5 PRF programming attacks . 27 3.4 Classical Protocols . 28 3.4.1 Brands and Chaum: Protocol 1 . 28 3.4.2 Brands and Chaum: Protocol 2 . 29 3.4.3 Brands and Chaum: Protocol 3 . 29 3.4.4 Reid et al. 29 3.4.5 Fischlin and Onete . 30 3.5 Formalism for Distance Bounding . 31 3.5.1 Formal Definition of DB Protocols . 31 3.5.2 Formal models: The DFKO Framework . 33 3.5.3 Prover Anonymity . 39 3.5.4 Introduction to Proofs . 39 3.6 Conclusion . 40

Figure 3 . 1 :

 31 Figure 3.1: The general structure of a Distance Bounding protocol, where PRF is a pseudorandom function.

Figure 3 . 2 :

 32 Figure 3.2: The Distance Bounding protocol proposed by Hancke and Kuhn in[START_REF] Hancke | An rfid distance bounding protocol[END_REF]

Figure

 Figure 3.8:The Distance Bounding protocol propoposed by Fisclin and Onete in[START_REF] Fischlin | Terrorism in distance bounding: Modeling terrorist-fraud resistance[END_REF]. It has 2 modes: If b = 0, it behaves as a regular Distance Bounding protocol, but if b = 1, it switches to a special mode in which it accepts the authentication probability p HW(I,y) (a probability that gets higher as the hamming distance between I and y decreases) if the responses are equal to the challenges.

 DB.Join c (•) simulates the join of a corrupted prover ID by running DB.join(ID,UL) and returning the secret keys. DB.Corrupt(•) simulates the corruption of a prover U i by returning his secret keys. DB.Revoke(•) on input ID, it runs DB.revoke(ID,RL,UL) to revoke the prover P ID . Note that the adversary always has access to DB.Prover(•),DB.Verifier(•) and DB.Session(•), used to emulate the 3 kinds of sessions, but can only access DB.Join h (•), DB.Join c (•), DB.Corrupt(•) and DB.Revoke(•) oracles for the privacy and anonymity game.

CHAPTER 3 .

 3 INTRODUCTION TO DISTANCE BOUNDING The maximal j with Π sid Commit [j] = (sid, k + 1, m * k+2•l -1) for m * k+1 = Prompt and marker(sid,k) > marker(sid Commit , j) satisfies m * k+1 = m k+1 (or no such j exists). The maximal j with Π sid Commit [j] = (sid, k + 1, m * k+1) for m * k+1 = Prompt satisfies m k+1 = m Prompt m k+1 in sid Prompt .

Contents 4 .

 4 1 Introduction . 41 4.2 Contributions . 42 4.3 Related Work . 43 4.4 Common Features and Differences of the Two Designs 44 4.5 SPADE . 45 4.5.1 Protocol Description . 45 4.5.2 Properties . 47 4.5.3 The presence of the backdoor . 54 4.5.4 PRF Programming Attacks . Description . 56 4.6.2 Protocols . 58 4.6.3 Properties . 59 4.6.4 Recent attacks against SPADE and TREAD . 64 4.7 Conclusion . 65

Figure 4 . 2 :

 42 Figure 4.2: The backdoor mechanism. If the initial message is b = 0, the protocol is run normally. Otherwise, the verifier simply waits to receive a value e that he parses as (NP, σ p) and a string NP ′ . If NP and NP ′ are close enough, he returns NP.

 Finally, during a final slow phase, the prover sends T = H(NP,NV,m,C,R), where C and R are respectively the concatenation of the challenges and responses. Verifier(•) After receiving an initial message e, it computes (NP, σ p) = PKE.dec x V (e), and sends two random n bit values NV and m. It computes a = H(NP,NV). Afterwards, during the n timecritical phases, he generates a random bit c i from a uniform distribution, starts his clock, sends c i , gets back r i , stops his clock and stores the corresponding time ∆t i . It then receives T . Finally, it verifies that (1)

 and uses NP * . Thus, A loses the possibility of recovering the value of NP from the ciphertext e. However, this advantage is negligible since the PKE encryption scheme is IND-CCA2 secure.

 Finally, during a final slow phase, the prover sends T = H(NP,NV,m,C,R), where C and R are respectively the concatenation of the challenges and responses. Verifier(•) After receiving an initial message e, it computes (NP, σ p) = PKE.dec x V (e), and sends two random n bit values NV and m. It computes a = H(NP,NV). Afterwards, during the n timecritical phases, he generates a random bit c i from a uniform distribution, starts his clock, sends c i , gets back r i , stops his clock and stores the corresponding time ∆t i . It then receives T . Finally, it verifies that (1)

CHAPTER 4 .

 4 PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS• Verifier(•) acts as in G4, except for the NP computation:-If (e, NP 1 , •) ∈ WL, it uses NP 1 .-If (e, •, •) ∈ WL, it computes (NP * , σ * p) = PKE.dec x v (e) and uses NP * .Thus, A loses the possibility of recovering the value of NP from the ciphertext e. However, this advantage is negligible since the PKE encryption scheme is IND-CCA2 secure.

Theorem 4 .

 4 If G-SIG is an anonymous dynamic group signature scheme, then SPADE is prover anonymous.Proof. Assume that there is a polynomial-time adversary A having a non-negligible advantageAdv PA A ,SPADE (λ)on a challenger in Exp PA A ,SPADE (λ). A can be used to build an adversary B against the anonymity experiment on the signature scheme Exp Anon B,G-SIG (λ), such that Adv Anon B,G-SIG (λ) ≥ Adv PA A ,SPADE (λ), contradicting the assumption that G-SIG is anonymous. Initially, the challenger in Exp Anon B,G-SIG (λ) sends the key gpk and the revoked list RL to B, which uses it to generate the experiment Exp PA A ,SPADE (λ) for A . Then, B creates the empty list CU. Having access to G-SIG-oracles from his challenger, B can simulate the DB-oracles for A as follows: CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS DB.Join h (•): A creates P ID . B relays it to G.Join h (•) and adds P i to UL. DB.Join c (•): A creates P ID . B relays it to G.Join c (•), obtains the signing key ssk ID ,and adds P ID to UL and CU. A gets ssk ID . DB.Revoke(•): A revokes P ID . B relays it to G.Revoke(•), which updates RL and sends it to B. He relays it to A . DB.Corrupt(•): A corrupts P ID . B relays it to G.Corrupt(•) and gets ssk ID . B adds P ID to CU and returns ssk ID to A .DB.Prover(•): B simulates P ID as follows: B picks NP $ ← {0, 1} n , sends (ID, NP) to G.Sign(ID,NP) and gets back σ p from A . B then computes e = PKE.enc pk V (NP, σ p), sends e to A , receives (m, NV), and runs the rest of the protocol normally. Then, A picks two identities ID 0 and ID 1 and sends them to B. If ID 0 , ID 1 ∈ CU, B sends (ID 0 , ID 1) to the challenger. In this phase, B simulates DB.Prover(•) as follows. During the initialisation phase, B picks NP $ ← {0, 1} n sends it to G.Sign b (•, •) and receives σ p . He then computes e = PKE.enc pk V (NP, σ p) and sends e to A , and runs the rest of the protocol normally. Finally, during the guessing phase, A returns b ′ and B forwards b ′ to the challenger of the anonymity experiment on the group signature. The experiment is perfectly simulated for A , and consequently, B and A have the same probability of winning their experiment, and Adv Anon B,G-SIG (λ) = Adv PA A ,SPADE (λ), contradicting the assumption on G-SIG.

Figure 4 .

 4 Figure 4.3: TREAD [Avoine et al., 2017], a generic and provably secure DB construction built from an IND-CCA2-secure encryption scheme E and an EUF-CMA-secure signature scheme (or a traceable group signature) S.

2 ,

 2 Prover simulation: B generates two messages: m 0 = (δ||idprv(P)||S.sig sigk (δ||idprv(P))) and m 1 = (a||b|| S.sig sigk (a||b||idprv(P))), in which a||b and δ are random binary strings of length 2 • n. Then, he sends them to the challenger to obtain c b , the encryption of m b (depending on a random bit b picked by the challenger before the experiment). He also adds (c b , a||b) to the list WL. Afterwards, he sends c b as the initial message and uses a||b during the challenge-response phase. Verifier simulation: When the verifier oracle gets the initial message e, he reads the tuple (e, a||b) in WL and uses the corresponding a||b to verify the responses. If no such tuple exists, then he is allowed to use the decryption oracle on e (as it is not a challenge c b). As G2 enforces that only invalid or prover generated signatures are contained in e, then either A loses for sending an invalid signature, or e is a new encryption for values contained in one of the challenges. In the latter case, B readily obtains the bit b by verifying whether the decryption of e corresponds to a m 0 or a m 1 . Return value: B returns Out V . If b = 1, B simulates G2 (e is the encryption of a||b). In this case, B wins if Out V = 1. By definition, Pr [Out V = 1] in G2 = Pr [G2]. Otherwise, if b = 0, then B simulates G3 (e is the encryption of δ). In this case, B returns 0 if A loses (i.e., with probability 1 -Pr [G3]). The winning probability of B is then Pr [G2]+1-Pr [G3] 2 = 1+(Pr [G2]-Pr [G3]) resulting in an advantage of ǫ = |Pr [G2] -Pr [G3]|. It follows that any significant probability difference between the two games can be transformed into an IND-CCA2 advantage and |Pr

2 = 2 ,

 22 Prover simulation: B generates two messages: m 0 = (δ||idprv(P)||S.sig sigk (δ||idprv(P))) and m 1 = (a||b|| S.sig sigk (a||b||idprv(P))), in which a||b and δ are random binary strings of length 2 • n. Then, he sends them to the challenger to obtain c b , the encryption of m b (depending on a random bit b picked by the challenger before the experiment). He also adds (c b , a||b) to the list WL. Afterwards, he sends c b as the initial message and uses a||b during the challenge-response phase.Verifier simulation: When the verifier oracle gets the initial message e, he reads the tuple (e, a||b) in WL and uses the corresponding a||b to verify the responses. If no such tuple exists, then he is allowed to use the decryption oracle on e (as it is not a challenge c b). As G2 enforces that only invalid or prover generated signatures are contained in e, then either A loses for sending an invalid signature, or e is a new encryption for values contained in one of the challenges. In the latter case, B readily obtains the bit b by verifying whether the decryption of e corresponds to a m 0 or a m 1 .Return value:B returns Out V . If b = 1, B simulates G2 (e is the encryption of a||b). In this case, B wins if Out V = 1. By definition, Pr [Out V = 1] in G2 = Pr [G2]. Otherwise, if b = 0, then B simulates G3 (eis the encryption of δ). In this case, B returns 0 if A loses (i.e., with probability 1 -Pr [G3]). The winning probability of B is then Pr [G2]+1-Pr [G3] 1+(Pr [G2]-Pr [G3]) resulting in an advantage of ǫ = |Pr [G2] -Pr [G3]|. It follows that any significant probability difference between the two games can be transformed into an IND-CCA2 advantage and |Pr [G3] -Pr [G2]| ≤ Adv IND-CCA2 E (λ).

CHAPTER 4 .

 4 PROVABLY SECURE DISTANCE BOUNDING PROTOCOLSProof. Let sid denote the session in which A was authenticated, and sid ′ denote the session played by the simulator. The messages in sid ′ are denoted with an apostrophe, for instance the message NP ′

A

 ,TREAD Pub (λ) is nonnegligible. We show how to construct an adversary B such that Adv IND-CCA2 B,PKE (λ) is also nonnegligible. Initially, the IND-CCA2 challenger sends a key pk V to B. Then, B runs a modified version of DB.gen(1 λ), in which the key generation for the verifier is omitted, and sends the public parameters to A , including pk V . B possesses all the material to simulate the experiment, except for the private key of the verifier. Additionally, during the first phase of the IND-CCA2 experiment, B is allowed to use the decryption oracle PKE.dec x freely. Hence, he can perfectly simulate the environment for A , until A picks two identities (ID 0 , ID 1). Then, B uses the PKE.enc p k(LR b) oracle to simulate these two provers. B first initialises a list WL, and simulates the prover and verifier oracles as follows: DB.Prover(•): Picks a||b $ ← {0, 1} 2•n and computes the signatures σ 0 p = S.sig sigk ID 0 (a||b||idprv(P ID 0)) and σ 1 p = S.sig sigk ID 1 (a||b||idprv(P ID 1)). He sends the messages m 0 = (a||b||idprv(P ID 0)||σ 0 p) and m 1 = (a||b||idprv(P ID 1)||σ 1 p) to PKE.enc p k(LR b) in order to obtain e, and adds (a, b, e) to WL. Finally, it sends e and receives m. The time critical phases are ran as usual, using a||b and m. DB.Verifier(•): Receives e from A . If there is no entry (a, b, e) in WL (i .e. if e was not generated by the PKE.enc p k(LR b) oracle), then B is allowed to use the decryption oracle and to run the protocol normally with the deciphered value. Otherwise, it runs the protocol using the value a, b from the tuple (a, b, e) read in WL.

 λ), contradicting the IND-CCA2 security assumption on PKE.

 DB.Verifier(•): the verifier can be simulated as per the protocol describes it: B knows the secret key of the verifier, and the verification key gpk.After interacting with these oracles, A sends (ID 0 , ID 1) to B.If ID 0 or ID 1 ∈ CU, Baborts the experiment. Otherwise, B sends (ID 0 , ID 1) to the challenger. Then, B modifies his simulation for the Corrupt(•) and Revoke(•) oracles by returning ⊥ when they are called on input ID 0 or ID 1 . Afterwards, B simulates the challenge oracle DB.Prover b for P ID b as follows: B picks a||b $ ← {0, 1} 2•n , sends (a||b) to his oracle G.Sign b (•, •) to get the signature σ p = G.sig ssk i (a||b), and sends e = PKE.enc pk V (a||b||σ p). It then runs the rest of the protocol normally.

 Terrorist Frauds . 68 5.2.1 Attacks . 68 5.2.2 Discussion . 69 5.3 Impossibility Results for Terrorist Fraud Resistance 70 5.3.1 The tamper-proof Device Attack . 70 5.3.2 Another Definition for Terrorist Fraud Resistance 71 5.3.3 Black-box Provers and PUFs .

 • P * sends (a, b) to A • A receives m from the verifier • A responds to the challenges, using a, b and m • A is accepted, but he cannot authenticate again later, since he does not know the message e linked to (a, b), nor can he produce a valid signature on (a, b) on his own.

CHAPTER 6 . 6 T 7 for

 667 USING CONSTRAINT PROGRAMMING FOR CRYPTANALYSIS Algorithm 1: Computation of optimal differential characteristics Input: The size l of the key and the number r of rounds Output: An optimal differential characteristics c * ← Step1-enum(l , r, v) each abstracted differential t ∈ T do 8 c ← Step2(l , r, t) 9 if c = nul l and (c * = nul l or p(c) > p(c *)) then c * ← c; 10 v ← v + 1 11 until c * = nul l and p(c *) ≥ mi n p ; 12 return c * so we describe how we modelled them. SPN ciphers also use SBoxes, and we describe how to model them with CP. Finally, AES and other block ciphers inspired by it use an operation called MixColumn. While this operation cannot be accurately represented in Step 1, we present tricks that exploits the properties of MixColumns to filter out inconsistent solutions during Step 1.

 j] = 0) + (MC(A)[j] = 0)) ∈ {0, b, b + 1, . . . , 8}. If b = 4, the MC operation has the quasi MDS property, and if b = 5, then the MC operation has the MDS property, where MDS stands for Maximum Distance Separable.

Contents 7 .

 7 1 Introduction . 89 7.2 The AES . 90 7.3 Our CP Models . 93 7.3.1 S1 Basi c . 93 7.3.2 S1 Di f f . 96 7.3.3 S1 XOR . 100 7.3.4 Comparison of S1 XOR with S1 Di f f . 105 7.4.2 Constraints .

 AES ciphers blocks of length n = 128 bits, where each block is seen as a 4 × 4 matrix of 8-bit words, or bytes. Given a 4 × 4 matrix of bytes M, we note M[j][k] the byte at row j ∈ [0, 3], and column k ∈ [0, 3]. The plaintext and key are transformed from strings of words to matrices by ordering them in columns, as shown on Figure 7.2.

Figure 7 . 3 :

 73 Figure 7.3: The M matrix used for the MixColumn operation in AES encryption (left), and its inverse M -1 , used for decryption (right).

 The constraints used in S1 Di f f are C SB , XOR, XORKS, C SR , C MDS , C ARK , C ∆EK , C ∆SK , C KS , C DIFFMDS , C SYM , C TRANS , C DIFF , C DIFFARK , C VSETS , C VSETSEQ , and C VSETSCARD .

 The constraints used in S1 XOR are C SB , C XOR , C XOR3 , C XOR4 , C SR , C MDS , C ARK , C ∆EK , C ∆SK , C DIFFMDS , C SYM , C TRANS , C DIFF , and C DIFFARK .

 ad d b d b 76 ad d b d b 76 ad d b d b 76 ad d b d b 76 i = 0 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 c4 d b d b 76 ad d b d b 76 c4 d b d b 76 ad d b d b 76 2 -6•2 -1

 . 113 8.2 Midori . 115 8.3 CP Model for Step 1 . 116 8.3.1 Variables . 117 8.3.2 Constraints . 120 8.4.2 Constraints . -Key Differential Attacks . 126 8.6.2 Midori64 . 126 8.6.3 Midori128 . 128 8.7 Conclusion . 128

CHAPTER 8 .

 8 RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP

Figure 8

 8 Figure 8.1: Representation of the state in Midori.

Figure 8 . 2 :

 82 Figure 8.2: Midori ciphering process. Each 4 × 4 array represents a group of 16 nibbles for Midori64, and bytes for Midori128.

 Figure 8.3: The SBox of Midori64.

Figure 8 . 4 :

 84 Figure 8.4: The MixColumn matrix of Midori.

 depends on the value of ∆B in the abstracted differential: If ∆B = 0, then D(δB) = {0}; otherwise, D(δB) = [1, 15] for Midori64, or D(δB) = [1, 255] for Midori128.

Figure 8 . 5 :

 85 Figure 8.5: An example of a related-key differential characteristic provided by the solver.

 V , UL,RL) is the algorithm run by the verifier, with the secret key(s) K V , with a user list UL and a revoked user list RL. At the end of its execution, it outputs a bit Out V , which is 0 if the authentication is accepted, and 1 otherwise.DB.join(ID,UL) is the algorithm used to register a new prover with identifier ID in the list UL. It generates the keys for this new prover and initialises it with the corresponding values K P .

	CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING
	DB.verifier(K DB.revoke(ID,UL,RL) is the algorithm to revoke a prover with identifier ID in UL and transfer him
	to the revoked users list RL.
	Additionally, revocable protocols with anonymity need a functionality that allows a trusted au-
	thority (for instance, the entity who runs DB.gen(1 λ)) to deanonymize a transcript:
	Definition 17 (DB protocol). A distance-bounding protocol DB is defined by the following algo-
	rithms:
	DB.gen(1 λ) is the algorithm run by an honest party, setting up the cryptographic primitives for a
	security parameter λ. It also sets the number of the time-critical rounds n, and the nonce
	length l , which are polynomial in the security parameter λ.

DB.prover(K ID) is the algorithm run by a honest prover, with identity ID and secret key(s) K ID .

Table 4 .

 4

1: Comparison of privacy preserving protocols. It indicates which of them are resistant to terrorist fraud (TF), Mafia Fraud (MF) and Distance Hijacking (DH, including DF). A ✓ indicates the protocol is secure for a given property, and a ✗ indicates that this property was not considered in the design of the protocol. Private and Anonymous respectively denote privacy with respect to an eavesdropper and anonymity with respect to a malicious verifier. Revocable denotes if a user can be revoked.

 2•n σ p = S.sig sigk (a||b||idprv(P)) e = E.enc enck (a||b||idprv(P)||σ p)

 for all i ≤ n. If these conditions hold, he sends an accepting bit Out V = 1, while otherwise he sends Out V = 0.

DB.join(ID,UL) is the algorithm to register a new prover with identifier ID in the list UL. It returns the keys (enck, deck) for E and (sigk, verk) for S. Depending on the primitives E and S, deck and verk may be public or private, and can sometimes be equal respectively to enck and sigk. DB.revoke(ID,UL,RL) is the algorithm to revoke a legitimate prover with identifier ID in UL and transfer him to the revoked user list RL.

Theorem 7 .

 7 If E is a IND-CCA2-secure encryption scheme, and S is an EUF-CMA signature or MAC scheme, or a traceable group signature scheme, then TREAD is DH-resistant.Proof. First note that if A uses the oracle prompt for the initial message, i.e., he lets an honest prover send it and then his authentication automatically fails, as idpub(P) and/or idprv(P) do not correspond to the identity of A .Hence, consider the case in which A initiated the protocol with a message e

* (associated with a * , b *). Let e (and a||b) denote the values picked by the nearby honest prover P. For each challenge c i , either A uses Prompt to let P respond or he uses Commit to respond himself before receiving c i . In Game G0, the prover and verifier follow the specification of the protocol: DB.prover(K ID) The prover starts by drawing a random value a||b from the uniform distribution on {0, 1}

 2•n . Then, he computes a signature σ p on it with S.sig sigk (a||b||idprv(P)). Afterwards, he generates e = E.enc enck (a||b||idprv(P)||σ

p) and sends e||idpub(P). He also adds (e, a||b) to WL. Finally, during the n time-critical phases, he receives a challenge bit c i and responds with r

 c (•): On input i , creates a corrupted P i with G.Join c (•), adds P i to UL and CU, and returns ssk i . DB.Revoke(•): On input i , revokes P i with G.Revoke(•), which updates RL and returns it. DB.Corrupt(•): On input i , corrupts P i with G.Corrupt(•) and gets ssk i . B adds P i to CU, and returns ssk i .

DB.Prover(•): B simulates P i as follows: B picks a||b $ ← {0, 1}

 Definition 32. One Step Terrorist Fraud. Let DB be a MF resistant distance bounding protocol, let λ be a security parameter, and let Adv MF DB (λ) denote the success probability of the best MF adversary against the protocol DB. A One Step Terrorist Fraud adversary is a pair of any PPT algorithms P

* and A , such that P * is located far-away from the designated verifier, and A is at an arbitrary position.

Let p A denote the probability of an accomplice A to pass the protocol with the help of a malicious prover P * , where (P * , A) is a One Step Terrorist Fraud adversary.

The distance bounding protocol DB is One Step Terrorist Fraud resistant if, DB is MF resistant, and, for all PPT algorithms P * and A , |p A -Adv MF DB

82 6.4 Modelling the Search for Optimal Related Key Differential Characteristics on Word Oriented Block Ciphers With

6.1 Introduction . 77 6.2 Related Key Differential Cryptanalysis . 80 6.2.1 Block Cipher Security . 80 6.2.2 Related Key Differential Cryptanalysis . 81 6.3 Constraint Programming . CP . 83 6.4.1 Search algorithm . 83 6.4.2 Modelling the Cipher Operations . 83 6.5 Conclusion . 87

Table 7 .

 7 1: Comparison of S1 Di f f and S1 XOR for solving Step 1.

Table 7 .

 7 RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

	AES-128-3	#T 4	#B 2	p 2 -31	t 10	t #T 2.5
	AES-128-4	8	8	2 -75	40	5
	AES-128-5	1113	97 2 -105 235086 211.2
	AES-192-3	15	15	2 -6	15	1
	AES-192-4	4	4	2 -24	13	3.3
	AES-192-5	2	2	2 -30	11	5.5
	AES-192-6	6	6	2 -60	35	5.8
	AES-192-7	4	4	2 -78	46	11.5
	AES-192-8	8	8 2 -108	119	14.9
	AES-192-9	240	80 2 -146	35254 146.9
	AES-192-10	602 202 2 -176	55310	91.9
	AES-256-3	33	33	2 -6	26	0.8
	AES-256-4	14	14	2 -18	25	1.8
	AES-256-5	4	4	2 -18	12	3
	AES-256-6	3	3	2 -30	11	3.7
	AES-256-7	1	1	2 -30	9	8.8
	AES-256-8	3	1	2 -60	19	6.3
	AES-256-9	16	16	2 -92	457	28.6
	AES-256-10	4	4	2 -98	160	40
	AES-256-11	4	4 2 -122	178	44.5
	AES-256-12	4	4 2 -122	237	59.3
	AES-256-13	4	4 2 -146	244	61
	AES-256-14	4	4 2 -146	302	75.5

2: Results of Choco for solving Step 2.

Table 7 .

 7 minutes (resp. 1409, 386 and 13558 seconds) with the shifted decomposition.

			Shifted Step 1			Shifted Step 2	Total time
	AES-128-3	S1 Di f f #T 2	t 1 3	S1 XOR #T 2	t 1 2	#B 2	t 2 7	t 2 #T 3.5	seq 12	par 9
	AES-128-4	1	16	1		8	1	13 12.6	35	35
	AES-128-5	103 2651 103 1409	27 52313 507.9 53755 1950
	AES-192-3	14	14	14		8	14	19	1.4	29	11
	AES-192-4	2		7	2		4	2	7	3.5	16	13
	AES-192-5	1		9	1		4	1	4	3.8	16	16
	AES-192-6	2	27	2		11	2	14	7.0	43	36
	AES-192-7	1	41	1		17	1	7	7.4	61	61
	AES-192-8	1 221	1		57	1	8	8.2	138	138
	AES-192-9	3 1720	3	386	3	109 36.3	1015	939
	AES-192-10 ≥40 AES-256-3 33	-34	7 13558 33 23	7 33	281 40.1 17124 16883 36 1.1 62 27
	AES-256-4	10	25	10		14	10	24	2.4	45	23
	AES-256-5	4	20	4		10	4	15	3.8	33	22
	AES-256-6	3	27	3		12	3	16	5.3	45	34
	AES-256-7	1	21	1		8	1	7	7.4	62	62
	AES-256-8	2	55	2		18	2	14	7.0	81	74
	AES-256-9	4 203	4		63	4	69 17.3	238	186
	AES-256-10	1	99	1		41	1	45 45.3	198	198
	AES-256-11	1 320	1		77	1	28 27.8	391	391
	AES-256-12	1 258	1		89	1	35 35.2	264	264
	AES-256-13	1 694	1	140	1	46 46.0	1008 1008
	AES-256-14	1 1087	1		97	1	35 34.8	814	814

3: Results with the shifted decomposition.

Table 7 .

 7 4: Our 4-round related-key differential characteristic for AES-128, which occurs with probability 2 -75 .

	•3	2 -6

 consider the problem of minimising the

	CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI
				WITH CP
	Type	Rounds Data	Time	Reference

 Table 8.1: Summary of the attacks against Midori energy cost for a lightweight block cipher. They propose a lightweight symmetric block cipher scheme called Midori, composed of two versions Midori64 and Midori128, which respectively cipher 64-and 128-bit message blocks, with 128-bit keys.

			2	2 16	[Guo et al., 2016]
	Related-key differential	14	2 59	2 116	[Dong and Shen, 2016]
	Related-key differential full(16)	2 24	2 36	Section 8.6.2
		Midori128		
	Impossible differential	11	2 121	2 122,75	[Tolba et al., 2017]
	Related-key differential full(20)	2 44	2 44	Section 8.6.3

 DK and the d i f f variables For Midori64, two differential words of the keyδK i 1 [j][k] and δK i 2 [j][k],for two different rounds i 1 and i 2 , are equal by definition of the key schedule if i 1%2 = i 2%2:

	CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI
	WITH CP
	Constraint relating
	k]

Table 8 .

 8 2: Our results for Midori 64. For each instance, we give the optimal number of SBoxes v * and the time t opt needed to solve the Step1-opt. We then give the results of the enumeration problem: the number of solutions #T and the corresponding search time t enum . Finally, we present the results of Step 2: the number of byte consistent solutions #B, the average solving time t 2 #T , the total time t S2 , and the probability of the best abstracted related key differential characteristic ob j St ep2 . All times are given in seconds.

Table 8 .

 8 3: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 . The nibbles are given in hexadecimal notation. Table8.4: Our results for Midori128. For each instance, we give the optimal number of SBoxes v * and the time needed to solve the Step1-opt t opt . We then give the results of the enumeration problem: the number of solutions #T and the corresponding search time t enum . Finally, we present the results of Step 2: the number of byte consistent solutions #B, the average solving time t 2 #T ,the total time t S2 , and the probability of the best abstracted related key differential characteristic ob j St ep2 . All times are given in seconds.

	Step1-opt Step1-enum	Step 2
	v * t opt 3 <1 4 1 5 3 6 9 7 9 8 10 9 15 Midori128-10 10 28 Midori128-3 Midori128-4 Midori128-5 Midori128-6 Midori128-7 Midori128-8 Midori128-9 Midori128-11 11 21 Midori128-12 12 38 Midori128-13 13 75 Midori128-14 14 76 Midori128-15 15 82 Midori128-16 16 193 Midori128-17 17 177 Midori128-18 18 367 Midori128-19 19 194 Midori128-20 20 239	#T t enum 42 21 18 15 18 21 18 40 18 46 18 54 18 87 18 108 18 127 18 149 18 174 18 260 18 146 18 400 18 413 18 517 18 557 18 674	#B t 2 #T 30 < 1 16 t St ep2 ob j St ep2 2 -6 2 -8 18 < 1 15 2 -10 18 < 1 17 2 -12 18 < 2 23 2 -14 18 < 2 21 2 -16 18 < 2 28 2 -18 18 < 2 24 2 -20 18 < 3 41 2 -22 18 < 3 37 2 -24 18 < 2 35 2 -26 18 < 2 34 2 -28 18 < 3 49 2 -30 18 < 3 47 2 -32 18 < 3 47 2 -34 18 < 3 47 2 -36 18 < 4 69 2 -38 18 < 4 57 18 < 4 55 2 -40

Table 8 .

 8 5: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 . The bytes are given in hexadecimal notation.

	CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI
	WITH CP

Table A .

 A 4: Lookup table for multiplication by 11 in Rijndael's Galois field. The i t h element of the table contains the value i • 11, where • denotes multiplication in Rijndael's Galois field. Table A.6: Lookup table for multiplication by 14 in Rijndael's Galois field. The i t h element of the table contains the value i • 14, where • denotes multiplication in Rijndael's Galois field.

	3c bb 3f 3b 38 b8 ba 3a 7c fb 7f 7b 78 f8	fa 7a
	74 f3	77 70 f0	f2 72 64 e3 67 63 60 e0 e2 62
	34 b3 37 30 b0 b2 32 14 93 17 13 10 90 92 12
	04 83 07 00 80 82 02 4c cb 4f 4b 48 c8 ca 4a
	0c 8b 0f 0b 08 88 8a 0a 5c db 5f 5b 58 d8 da 5a 2c ab 2f 2b 28 a8 aa 2a 6c eb 6f 6b 68 e8 ea 6a 24 a3 27 20 a0 a2 22 1c 9b 1f 1b 18 98 9a 1a Appendix C
	45 c7 46 c4 c5 c6 c1 55 d7 56 51 d4 d5 d6 d1
	3d bf 3e bc bd be b9 7d ff	7e 79 fc	fd fe f9
	75 f7	76 f4 f5	f6 f1 65 e7 66 61 e4 e5 e6 e1
	35 b7 36 b4 b5 b6 b1 15 97 16 11 94 95 96 91
	05 87 06 84 85 86 81 4d cf	4e 49 cc cd ce c9
	0d 8f	0e 8c 8d 8e 89 5d df 5e 59 dc dd de d9
	2d af	2e ac ad ae a9 6d ef	6e 69 ec ed ee e9
	25 a7 26 a4 a5 a6 a1 1d 9f	1e 19 9c 9d 9e 99
			Table B.3: The S 2 SBox of Midori128
	22 2b 20 a2 ab 26 2f 4b 0b 49 09 cb 8b 4f 0f
	b2 bb 34 3d 32 3b 36 3f db 9b 5d 1d 5b 1b 5f 1f
	02 43 00 82 c3 06 47 42 03 40 01 c2 83 46 07
	92 d3 14 12 53 16 57 d2 93 54 15 52 13 56 17
	2a 23 28 aa a3 2e 27 6b 0a 69 08 eb 8a 6f 0e
	ba b3 3c 3a 33 3e 37 fb 9a 7d 1c 7b 1a 7f 1e
	62 63 60 e2 e3 66 67 6a 4a 68 48 ea ca 6e 4e
	f2 f3	74 72 73 76 77 fa	da 7c 5c 7a 5a 7e 5e
	b4 bd 24 2d b6 bf a6 af dd 9d 4d 0d df 9f cf 8f
	b0 b9 30 a0 a9 a4 ad d9 99 59 19 c9 89 cd 8d
	94 d5 04 96 d7 86 c7 d4 95 44 05 d6 97 c6 87
	90 d1 10 80 c1 84 c5 d0 91 50 11 c0 81 c4 85
	bc b5 2c be b7 ae a7 fd 9c 6d 0c ff	9e ef 8e
	b8 b1 38 a8 a1 ac a5 f9	98 79 18 e9 88 ed 8c
	f4 f5	64 f6 f7 e6 e7 fc	dc 6c 4c fe de ee ce
	f0 f1	70 e0 e1 e4 e5 f8	d8 78 58 e8 c8 ec cc
			Table B.4: The S 3 SBox of Midori128
		VIII	

Table C .

 C

1: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 2: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 3: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 4: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 5: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

	APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR
	MIDORI
	XI

Table C .

 C 6: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 7: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 8: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 9: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

	APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR
	MIDORI
	XIII

Table C .

 C 10: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 11: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 12: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 13: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 14: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 15: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 16: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 17: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

	APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR
	MIDORI
	XVII

Table C .

 C 18: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 19: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

	APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR	
	MIDORI		
	δK	0x010x010x010x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX	Value	Pr
	init 0x010x010x010x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 0 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 1 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 2 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 3 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 4 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 5 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 6 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 7 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 8 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 9 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 10 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 11 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 12 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 13 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 14 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2 -2•1
	δX 15 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00	
	δX 16 0x010x010x010x000x000x000x000x000x000x000x000x000x000x000x000x02	
		XVIII	

Table C .

 C 20: A 16-round related-key differential characteristic for Midori64. It has probability 2 -16 .

Table C .

 C 21: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

	APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR
	MIDORI
	δK
	XX

Table C .

 C 22: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 23: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 24: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 25: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 26: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 27: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 28: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 29: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 30: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 31: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 32: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 33: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 34: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 35: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

Table C .

 C 36: A 20-round related-key differential characteristic for Midori128. It has probability 2 -40 .

XXXV

A PUF is a function maps challenge bitstrings to response bitstrings, and cannot be cloned[Maes and Verbauwhede,

2010].

Even though there exists a PRF programming attack, see[Boureanu et al.,

2012] for more details2 In the models: hardware-based attacks presented in Chapter 5 not considered.3 Only in a noiseless environment

for each round), which is negligible.

The number of solutions with S1 Di f f has been found by decomposing Step1-enum into two sub-steps that have been solved by Chuffed and Picat, respectively, in order to take advantage of the complementarity of the two solvers: Picat has been used to compute the number of differences per round whereas Chuffed has been used to enumerate abstracted differentials given the number of differences per round (see[Gerault et al.,

2017a] for more details).

Note that this attack only works if a key from the weak class is used

The full specification is presented in[START_REF] Banik | Midori: A block cipher for low energy[END_REF].

Remerciements

0x00 0x02 0x04 0x06 0x08 0x0a 0x0c 0x0e 0x10 0x12 0x14 0x16 0x18 0x1a 0x1c 0x1e 0x20 0x22 0x24 0x26 0x28 0x2a 0x2c 0x2e 0x30 0x32 0x34 0x36 0x38 0x3a 0x3c 0x3e 0x40 0x42 0x44 0x46 0x48 0x4a 0x4c 0x4e 0x50 0x52 0x54 0x56 0x58 0x5a 0x5c 0x5e 0x60 0x62 0x64 0x66 0x68 0x6a 0x6c 0x6e 0x70 0x72 0x74 0x76 0x78 0x7a 0x7c 0x7e 0x80 0x82 0x84 0x86 0x88 0x8a 0x8c 0x8e 0x90 0x92 0x94 0x96 0x98 0x9a 0x9c 0x9e 0xa0 0xa2 0xa4 0xa6 0xa8 0xaa 0xac 0xae 0xb0 0xb2 0xb4 0xb6 0xb8 0xba 0xbc 0xbe 0xc0 0xc2 0xc4 0xc6 0xc8 0xca 0xcc 0xce 0xd0 0xd2 0xd4 0xd6 0xd8 0xda 0xdc 0xde 0xe0 0xe2 0xe4 0xe6 0xe8 0xea 0xec 0xee 0xf0 0xf2 0xf4 0xf6 0xf8 0xfa 0xfc 0xfe 0x1b 0x19 0x1f 0x1d 0x13 0x11 0x17 0x15 0x0b 0x09 0x0f 0x0d 0x03 0x01 0x07 0x05 0x3b 0x39 0x3f 0x3d 0x33 0x31 0x37 0x35 0x2b 0x29 0x2f 0x2d 0x23 0x21 0x27 0x25 0x5b 0x59 0x5f 0x5d 0x53 0x51 0x57 0x55 0x4b 0x49 0x4f 0x4d 0x43 0x41 0x47 0x45 0x7b 0x79 0x7f 0x7d 0x73 0x71 0x77 0x75 0x6b 0x69 0x6f 0x6d 0x63 0x61 0x67 0x65 0x9b 0x99 0x9f 0x9d 0x93 0x91 0x97 0x95 0x8b 0x89 0x8f 0x8d 0x83 0x81 0x87 0x85 0xbb 0xb9 0xbf 0xbd 0xb3 0xb1 0xb7 0xb5 0xab 0xa9 0xaf 0xad 0xa3 0xa1 0xa7 0xa5 0xdb 0xd9 0xdf 0xdd 0xd3 0xd1 0xd7 0xd5 0xcb 0xc9 0xcf 0xcd 0xc3 0xc1 0xc7 0xc5 0xfb 0xf9 0xff 0xfd 0xf3 0xf1 0xf7 0xf5 0xeb 0xe9 0xef 0xed 0xe3 0xe1 0xe7 0xe5

Table A.1: Lookup table for multiplication by 2 in Rijndael's Galois field. The i t h element of the table contains the value i • 2, where • denotes multiplication in Rijndael's Galois field. III APPENDIX A. RIJNDAEL'S FINITE FIELD MULTIPLICATION TABLES 0x00 0x03 0x06 0x05 0x0c 0x0f 0x0a 0x09 0x18 0x1b 0x1e 0x1d 0x14 0x17 0x12 0x11 0x30 0x33 0x36 0x35 0x3c 0x3f 0x3a 0x39 0x28 0x2b 0x2e 0x2d 0x24 0x27 0x22 0x21 0x60 0x63 0x66 0x65 0x6c 0x6f 0x6a 0x69 0x78 0x7b 0x7e 0x7d 0x74 0x77 0x72 0x71 0x50 0x53 0x56 0x55 0x5c 0x5f 0x5a 0x59 0x48 0x4b 0x4e 0x4d 0x44 0x47 0x42 0x41 0xc0 0xc3 0xc6 0xc5 0xcc 0xcf 0xca 0xc9 0xd8 0xdb 0xde 0xdd 0xd4 0xd7 0xd2 0xd1 0xf0 0xf3 0xf6 0xf5 0xfc 0xff 0xfa 0xf9 0xe8 0xeb 0xee 0xed 0xe4 0xe7 0xe2 0xe1 0xa0 0xa3 0xa6 0xa5 0xac 0xaf 0xaa 0xa9 0xb8 0xbb 0xbe 0xbd 0xb4 0xb7 0xb2 0xb1 0x90 0x93 0x96 0x95 0x9c 0x9f 0x9a 0x99 0x88 0x8b 0x8e 0x8d 0x84 0x87 0x82 0x81 0x9b 0x98 0x9d 0x9e 0x97 0x94 0x91 0x92

Table A.2: Lookup table for multiplication by 3 in Rijndael's Galois field. The i t h element of the table contains the value i • 3, where • denotes multiplication in Rijndael's Galois field. 0x00 0x09 0x12 0x1b 0x24 0x2d 0x36 0x3f 0x48 0x41 0x5a 0x53 0x6c 0x65 0x7e 0x77 0x90 0x99 0x82 0x8b 0xb4 0xbd 0xa6 0xaf 0xd8 0xd1 0xca 0xc3 0xfc 0xf5 0xee 0xe7 0x3b 0x32 0x29 0x20 0x1f 0x16 0x0d 0x04 0x73 0x7a 0x61 0x68 0x57 0x5e 0x45 0x4c 0xab 0xa2 0xb9 0xb0 0x8f 0x86 0x9d 0x94 0xe3 0xea 0xf1 0xf8 0xc7 0xce 0xd5 0xdc 0x76 0x7f 0x64 0x6d 0x52 0x5b 0x40 0x49 0x3e 0x37 0x2c 0x25 0x1a 0x13 0x08 0x01 0xe6 0xef 0xf4 0xfd 0xc2 0xcb 0xd0 0xd9 0xae 0xa7 0xbc 0xb5 0x8a 0x83 0x98 0x91 0x4d 0x44 0x5f 0x56 0x69 0x60 0x7b 0x72 0x05 0x0c 0x17 0x1e 0x21 0x28 0x33 0x3a 0xdd 0xd4 0xcf 0xc6 0xf9 0xf0 0xeb 0xe2 0x95 0x9c 0x87 0x8e 0xb1 0xb8 0xa3 0xaa 0xec 0xe5 0xfe 0xf7 0xc8 0xc1 0xda 0xd3 0xa4 0xad 0xb6 0xbf 0x80 0x89 0x92 0x9b 0x7c 0x75 0x6e 0x67 0x58 0x51 0x4a 0x43 0x34 0x3d 0x26 0x2f 0x10 0x19 0x02 0x0b 0xd7 0xde 0xc5 0xcc 0xf3 0xfa 0xe1 0xe8 0x9f 0x96 0x8d 0x84 0xbb 0xb2 0xa9 0xa0 0x47 0x4e 0x55 0x5c 0x63 0x6a 0x71 0x78 0x0f 0x06 0x1d 0x14 0x2b 0x22 0x39 0x30 0x9a 0x93 0x88 0x81 0xbe 0xb7 0xac 0xa5 0xd2 0xdb 0xc0 0xc9 0xf6 0xff 0xe4 0xed 0x0a 0x03 0x18 0x11 0x2e 0x27 0x3c 0x35 0x42 0x4b 0x50 0x59 0x66 0x6f 0x74 0x7d 0xa1 0xa8 0xb3 0xba 0x85 0x8c 0x97 0x9e 0xe9 0xe0 0xfb 0xf2 0xcd 0xc4 0xdf 0xd6 0x31 0x38 0x23 0x2a 0x15 0x1c 0x07 0x0e 0x79 0x70 0x6b 0x62 0x5d 0x54 0x4f 0x46 Table A.3: Lookup table for multiplication by 9 in Rijndael's Galois field. The i t h element of the table contains the value i • 9, where • denotes multiplication in Rijndael's Galois field. 0x00 0x0b 0x16 0x1d 0x2c 0x27 0x3a 0x31 0x58 0x53 0x4e 0x45 0x74 0x7f 0x62 0x69 0xb0 0xbb 0xa6 0xad 0x9c 0x97 0x8a 0x81 0xe8 0xe3 0xfe 0xf5 0xc4 0xcf 0xd2 0xd9 0x7b 0x70 0x6d 0x66 0x57 0x5c 0x41 0x4a 0x23 0x28 0x35 0x3e 0x0f 0x04 0x19 0x12 0xcb 0xc0 0xdd 0xd6 0xe7 0xec 0xf1 0xfa 0x93 0x98 0x85 0x8e 0xbf 0xb4 0xa9 0xa2 0xf6 0xfd 0xe0 0xeb 0xda 0xd1 0xcc 0xc7 0xae 0xa5 0xb8 0xb3 0x82 0x89 0x94 0x9f 0x46 0x4d 0x50 0x5b 0x6a 0x61 0x7c 0x77 0x1e 0x15 0x08 0x03 0x32 0x39 0x24 0x2f 0x8d 0x86 0x9b 0x90 0xa1 0xaa 0xb7 0xbc 0xd5 0xde 0xc3 0xc8 0xf9 0xf2 0xef 0xe4 0x3d 0x36 0x2b 0x20 0x11 0x1a 0x07 0x0c 0x65 0x6e 0x73 0x78 0x49 0x42 0x5f 0x54 0xf7 0xfc 0xe1 0xea 0xdb 0xd0 0xcd 0xc6 0xaf 0xa4 0xb9 0xb2 0x83 0x88 0x95 0x9e 0x47 0x4c 0x51 0x5a 0x6b 0x60 0x7d 0x76 0x1f 0x14 0x09 0x02 0x33 0x38 0x25 0x2e 0x8c 0x87 0x9a 0x91 0xa0 0xab 0xb6 0xbd 0xd4 0xdf 0xc2 0xc9 0xf8 0xf3 0xee 0xe5 0x3c 0x37 0x2a 0x21 0x10 0x1b 0x06 0x0d 0x64 0x6f 0x72 0x79 0x48 0x43 0x5e 0x55 0x01 0x0a 0x17 0x1c 0x2d 0x26 0x3b 0x30 0x59 0x52 0x4f 0x44 0x75 0x7e 0x63 0x68 0xb1 0xba 0xa7 0xac 0x9d 0x96 0x8b 0x80 0xe9 0xe2 0xff 0xf4 0xc5 0xce 0xd3 0xd8 0x7a 0x71 0x6c 0x67 0x56 0x5d 0x40 0x4b 0x22 0x29 0x34 0x3f 0x0e 0x05 0x18 0x13 0xca 0xc1 0xdc 0xd7 0xe6 0xed 0xf0 0xfb 0x92 0x99 0x84 0x8f 0xbe 0xb5 0xa8 0xa3 APPENDIX A. RIJNDAEL'S FINITE FIELD MULTIPLICATION TABLES 0x00 0x0d 0x1a 0x17 0x34 0x39 0x2e 0x23 0x68 0x65 0x72 0x7f 0x5c 0x51 0x46 0x4b 0xd0 0xdd 0xca 0xc7 0xe4 0xe9 0xfe 0xf3 0xb8 0xb5 0xa2 0xaf 0x8c 0x81 0x96 0x9b 0xbb 0xb6 0xa1 0xac 0x8f 0x82 0x95 0x98 0xd3 0xde 0xc9 0xc4 0xe7 0xea 0xfd 0xf0 0x6b 0x66 0x71 0x7c 0x5f 0x52 0x45 0x48 0x03 0x0e 0x19 0x14 0x37 0x3a 0x2d 0x20 0x6d 0x60 0x77 0x7a 0x59 0x54 0x43 0x4e 0x05 0x08 0x1f 0x12 0x31 0x3c 0x2b 0x26 0xbd 0xb0 0xa7 0xaa 0x89 0x84 0x93 0x9e 0xd5 0xd8 0xcf 0xc2 0xe1 0xec 0xfb 0xf6 0xd6 0xdb 0xcc 0xc1 0xe2 0xef 0xf8 0xf5 0xbe 0xb3 0xa4 0xa9 0x8a 0x87 0x90 0x9d 0x06 0x0b 0x1c 0x11 0x32 0x3f 0x28 0x25 0x6e 0x63 0x74 0x79 0x5a 0x57 0x40 0x4d 0xda 0xd7 0xc0 0xcd 0xee 0xe3 0xf4 0xf9 0xb2 0xbf 0xa8 0xa5 0x86 0x8b 0x9c 0x91 0x0a 0x07 0x10 0x1d 0x3e 0x33 0x24 0x29 0x62 0x6f 0x78 0x75 0x56 0x5b 0x4c 0x41 0x61 0x6c 0x7b 0x76 0x55 0x58 0x4f 0x42 0x09 0x04 0x13 0x1e 0x3d 0x30 0x27 0x2a 0xb1 0xbc 0xab 0xa6 0x85 0x88 0x9f 0x92 0xd9 0xd4 0xc3 0xce 0xed 0xe0 0xf7 0xfa 0xb7 0xba 0xad 0xa0 0x83 0x8e 0x99 0x94 0xdf 0xd2 0xc5 0xc8 0xeb 0xe6 0xf1 0xfc 0x67 0x6a 0x7d 0x70 0x53 0x5e 0x49 0x44 0x0f 0x02 0x15 0x18 0x3b 0x36 0x21 0x2c 0x0c 0x01 0x16 0x1b 0x38 0x35 0x22 0x2f 0x64 0x69 0x7e 0x73 0x50 0x5d 0x4a 0x47 0xdc 0xd1 0xc6 0xcb 0xe8 0xe5 0xf2 0xff 0xb4 0xb9 0xae 0xa3 0x80 0x8d 0x9a 0x97 Table A.5: Lookup table for multiplication by 13 in Rijndael's Galois field. The i t h element of the table contains the value i • 13, where • denotes multiplication in Rijndael's Galois field. 0x00 0x0e 0x1c 0x12 0x38 0x36 0x24 0x2a 0x70 0x7e 0x6c 0x62 0x48 0x46 0x54 0x5a 0xe0 0xee 0xfc 0xf2 0xd8 0xd6 0xc4 0xca 0x90 0x9e 0x8c 0x82 0xa8 0xa6 0xb4 0xba 0xdb 0xd5 0xc7 0xc9 0xe3 0xed 0xff 0xf1 0xab 0xa5 0xb7 0xb9 0x93 0x9d 0x8f 0x81 0x3b 0x35 0x27 0x29 0x03 0x0d 0x1f 0x11 0x4b 0x45 0x57 0x59 0x73 0x7d 0x6f 0x61 0xad 0xa3 0xb1 0xbf 0x95 0x9b 0x89 0x87 0xdd 0xd3 0xc1 0xcf 0xe5 0xeb 0xf9 0xf7 0x4d 0x43 0x51 0x5f 0x75 0x7b 0x69 0x67 0x3d 0x33 0x21 0x2f 0x05 0x0b 0x19 0x17 0x76 0x78 0x6a 0x64 0x4e 0x40 0x52 0x5c 0x06 0x08 0x1a 0x14 0x3e 0x30 0x22 0x2c 0x96 0x98 0x8a 0x84 0xae 0xa0 0xb2 0xbc 0xe6 0xe8 0xfa 0xf4 0xde 0xd0 0xc2 0xcc 0x41 0x4f 0x5d 0x53 0x79 0x77 0x65 0x6b 0x31 0x3f 0x2d 0x23 0x09 0x07 0x15 0x1b 0xa1 0xaf 0xbd 0xb3 0x99 0x97 0x85 0x8b 0xd1 0xdf 0xcd 0xc3 0xe9 0xe7 0xf5 0xfb 0x9a 0x94 0x86 0x88 0xa2 0xac 0xbe 0xb0 0xea 0xe4 0xf6 0xf8 0xd2 0xdc 0xce 0xc0 0x7a 0x74 0x66 0x68 0x42 0x4c 0x5e 0x50 0x0a 0x04 0x16 0x18 0x32 0x3c 0x2e 0x20 0xec 0xe2 0xf0 0xfe 0xd4 0xda 0xc8 0xc6 0x9c 0x92 0x80 0x8e 0xa4 0xaa 0xb8 0xb6 0x0c 0x02 0x10 0x1e 0x34 0x3a 0x28 0x26 0x7c 0x72 0x60 0x6e 0x44 0x4a 0x58 0x56 0x37 0x39 0x2b 0x25 0x0f 0x01 0x13 0x1d 0x47 0x49 0x5b 0x55 0x7f 0x71 0x63 0x6d 0xd7 0xd9 0xcb 0xc5 0xef 0xe1 0xf3 0xfd 0xa7 0xa9 0xbb 0xb5 0x9f 0x91 0x83 0x8d

LIST OF TABLES CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP is equal to 1 if δB1 and δB2 are equal, and to 0 otherwise. Using these differential byte difference variables, the MDS property between different columns is ensured by the following constraint: 5, 6, 7, 8}. (C DIFFMDS)

We now describe how these difference variables are defined.

Constraints Defining the Difference Variables

When defining the constraint xor (∆A, ∆B,∆C) (where ∆A, ∆B and ∆C are binary variables associated with differential bytes δA, δB and δC, respectively), if ∆A = ∆B = 1, then we cannot know whether ∆C is equal to 0 or 1. However, whenever ∆C = 0 (resp. ∆C = 1), we know for sure that the corresponding byte δC is equal to 0 8 (resp. different from 0 8), meaning that the two bytes δA and δB are equal (resp. different), i.e., that diff δA,δB = 0 (resp. diff δA,δB = 1). The same reasoning may be done for ∆A and ∆B because (δA ⊕ δB = δC) ⇔ (δB ⊕ δC = δA) ⇔ (δA ⊕ δC = δB).

Since our difference variables concern differential bytes that belong to the same matrices (either δK, δY or δZ), and the key schedule is the single place where variables from the same matrix are XORed together, we introduce a different XOR constraint for the key schedule. The resulting constraint, XORKS, is defined as follows: XORKS(∆A, ∆B,∆C) ⇔ ((∆A + ∆B + ∆C = 1)

The key schedule constraint is modified accordingly. When no SBox is involved, we replace XOR with XORKS. Otherwise, since we do not consider diff variables for the output of SBoxes, we use the regular XOR constraint. We however add an additional constraint: when computing XOR (δa, δb, δc), where δb is the SBox output, δa is different from δc if δb is nonzero. Hence, the constraint C si mpl eKS is replaced by a different constraint C KS , defined as follows:

Constraints to ensure that difference variables define an equivalence relation.

To be consistent, our difference variables need to have both symmetry and transitivity.

Symmetry is ensured by:

Transitivity is ensured by:

Constraints that relate difference variables with binary differential variables. If ∆A = ∆B, then diff δA,δB = 1, and that if ∆A = ∆B = 0, then diff δA,δB = 0 . This is enforced by the following constraint:

Additional equalities derived from KS

We now describe the constraints that are derived from the key schedule. We give examples of these constraints for AES-128 for the sake of simplicity.

The KeySchedule mainly performs xor operations. For instance, in AES-12, at each round i , the first column K i [0] is obtained by performing a xor between bytes of K i -1 [0] and K i -1 [3]; for the last three columns j ∈ {1, 2, 3}, K i [j] is obtained by performing a xor between K i -1 [j] and K i [j -1]. Besides these xor operations, all bytes of K i -1 [3] pass through the SBox before XORing them with K i -1 [0] to obtain K i [0]. Therefore, each byte of K i , for each round i ∈ [1, r] may be expressed as a combination of xor operations between bytes of the initial key K 0 , and bytes obtained by applying the S operation on column 3 of rounds j < i . For example (recall that A ⊕ A = 0 8 and 0 8 ⊕ A = A):

When reasoning at the differential byte levels, we have

where

). As S is a non linear operation, we cannot assume that [2] is a new differential byte. However, there is a finite number of such new differential bytes.

We propose to exploit the fact that each differential byte of K i is the result of a xor between a finite set of bytes. We first use the KS rules defined in Section 7.2 to build, for each i ∈ [1, r -1], and

) of all differential bytes (coming either from δK 0 or from the set of new differential bytes δSK), such that:

Note that these sets are computed before the search and do not depend on the initial values of plaintexts and keys.

For each of these sets, we introduce a set variable which contains the corresponding binary differential variables which are equal to 1:

Whenever two differential key bytes δK

More precisely, we define the constraint:

For its inverse, we use 4 tables such that

where • is the multiplication in Rijndael's finite field, and i ∈ {9, 11, 13, 14}. The multiplication tables we use are given in Appendix A. We implement both MC and its inverse. Indeed, it permits the solver to obtain the k t h column of δY i directly from the k t h column of δZ i , instead of having to enumerate all possible values and applying MC in the forward direction to verify whether the affectation is correct.

The constraint for MC is defined as follows, using temporary variables t z :

And for the last round, where MC is skipped:

The C MCS2 constraint is the set {C MCS2-1 , C MCS2-2 }.

The inverse of the MC operation is defined similarly: We first define a temporary variable Mul z [j][k] holding the product of each word of the input column by 9, 11, 13 and 14:

We then use these variables to define the inverse operation of MC:

The constraint for SR is described in the same way as for Step 1:

The constraint for ARK uses XORBy t es:

Finally, KS is defined in a very straightforward way:

The DK, DY, DZ sets, used to define the difference variables, are defined as follows, for all j ∈ [0; 3]:

Given these sets, we define the diff variables as follows: For each set D ∈ {DK j , DY j , DZ j : j ∈ [0, 3]}, and for each pair of differential bytes {δB 1 , δB 2 } ∈ D, we define a Boolean variable diff δB 1 ,δB 2 , which is equal to 1 if δB1 and δB2 are equal, and to 0 otherwise.

Constraints

In the model for Step 1, we have one constraint for each operation, and an additional constraint for the quasi MDS property. These constraints are defined as follows.

SubCell As explained in Section 6.4.2, the SBoxes do not introduce differences during Step 1, so the constraint is defined as

XOR constraint As explained in Section 6.4.2, the XOR operation cannot be modelled precisely, since the information about whether two differential words are equal is abstracted. Hence, the XOR constraint abstracting

We also use a XOR constraint for the XOR of 3 variables into a fourth one δB 4 :

KeyAdd KA is modelled by XOR constraints:

CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI WITH CP ShuffleCells SC is modelled by equality constraints that link shifted words:

∀i ∈ [0; r -2] :

,

,

MixColumns MC cannot be modelled precisely at the Boolean level, as knowing where differences hold in Y i is not enough to determine where they hold in Z i . Indeed, the values of the words in the column are necessary to determine the positions of the zeros after MC. However, the quasi MDS property is modelled by constraining the number of differences in a same column of Y i and Z i to be equal to 0 or greater than 3:

Then, we model the fact that MC(0, 0, 0, 0) = (0, 0, 0, 0) as follows:

∀i ∈ [0, r -2], ∀k ∈ [0, 3] :

Finally, we can model the XORs implied in the computation of MC, since all the coefficients are 1. We implement the product of the vector ∆SB with the matrix given in Midori to get ∆Z. It is modelled as follows:

KeySchedule KS depends on the version of Midori that we consider. For Midori64, we have

and for Midori128,

The inverse of the MC operation is modelled similarly.

The constraint for SC is described in the same way as for Step 1:

∀i ∈ [0; r -2] :

The key addition KA uses XORWor d s:

Finally, KS is defined in a very straightforward way: for Midori64, it is

and for Midori128,

Objective function The goal is to find a byte-consistent solution with maximal differential probability. As we consider logarithms, this amount to searching for a solution that maximises the sum of all P δB variables. Hence, we introduce an integer variable ob j St ep2 which is constrained to be equal to the sum of all P δB variables:

and we define the objective function as the maximisation of ob j St ep2 .

Results

In this section, we list the results obtained with our models. All our experiments are performed according to the setting described in Section 6.4.2, on a single core of an Intel(R) Xeon(R) E5-2687Wv4 @ 3.00GHz CPU. We consider 30 instances denoted Midori64-r (resp Midori128-r), for a number of rounds r : r ∈ [3; 16] (resp. [3; 20]) for Midori64 (resp. Midori128). S1 XOR and S1 Di f f are implemented with MiniZinc [START_REF] Nethercote | Minizinc: Towards a standard CP modelling language[END_REF].

We report the experimental results obtained with Picat_SAT.

Appendix A

Rijndael's Finite Field Multiplication Tables

Appendix B

The SBoxes of Midori128 aa 9f ba 8e 8a 9e 9a 91 b1 d1 f1 14 34 54 74 d9 f9 99 b9 5c 7c 1c 3c 81 a1 93 b3 04 24 16 36 8b ab 9b bb 0e 2e 1e 3e cf ea df fa ce ca de da cd e8 c5 e0 cc c8 c4 c0 87 a2 d7 f2 86 82 d6 d2 8d a8 c7 e2 8c 88 c6 c2 cb eb db fb 4e 6e 5e 7e c9 e9 c1 e1 4c 6c 44 64 83 a3 d3 f3 06 26 56 76 89 a9 c3 e3 0c 2c 46 66