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Chapter 1

Introduction

Authentication, in which an entity acknowledges another, is one of the most fundamental applica-
tions of cryptography. Nowadays, authentication is increasingly often performed with contactless
devices. Contactless authentication has become omnipresent in our world. Be it on the workplace,
where access cards are replacing traditional keys to open the doors, or in our personal life, when
we use contactless payment, most of us are regularly confronted to the contacless technologies.
The large scale deployment of contactless authentication brings a strong incentive to scrutinize
its security, as attacks against contacless communication protocols could impact all aspects of our
lives, from professional (with access cards) to personal (with contactless payment). The goal of
this thesis is to study the security of contactless communications, and in particular, contactless
authentication.

1.1 Introduction

At the core of the security of contactless communications protocols lies the question of secure
authentication. Authentication is the set if techniques that permits an entity, referred to as the
verifier, to validate the legitimacy of another entity, called the prover. Authentication is generally
performed for the prover to obtain access to a given service from the verifier, for instance, access
to a building. Authentication protocols define the messages to be exchanged, and the acceptance
rules. If we take a very simple scenario, in which a guard asks visitors a passwords before opening
the door for then, the protocol is the following: the guard asks for the passwords, and the visitor
responds. If the password given by the visitor is correct, then the guard opens the door. Otherwise,
the guard chases the visitor. In this case, the prover is authenticated using something he knows.
This is one of the three authentication mechanisms that are usually employed. Authentication is
generally achieved by verifying something:

• The prover owns, for instance an access card;

• the prover knows, for instance, a secret handshake;

• the prover is, for instance, through his fingerprints.

Nowadays, in a contactless context, authentication is performed using a device the prover
owns. For instance, in the Passive Keyless Entry and Start (PKES) technology, the traditional car
key is replaced by a smart key. Smart keys are contactless devices: when a user holding one is
close to the car, the car authenticates him as legitimate, and the door open. The technology that
is used by contactless authentication protocols is called RFID, for Radio Frequency IDentification.
An RFID exchange involves a tag, who plays the role of the prover, and a reader, who acts as the
verifier. The most widely used kind of RFID tags is passive tags, which have no battery and re-
ceive power from the verifier during the exchange. Their wide usage is due to their very limited
cost (a few cents), compared to active tags, which have their own power source. Passive tags are
typically less powerful, and it is believed that further improvements in technology will not aim at
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making them more powerful, but cheaper [Juels, 2006]. Hence, authentication protocols designed
for RFID need to face the challenge of being secure, while working with low computational power.
The design of lightweight authentication protocols, suitable for low power RFID tags, is difficult:
most proposals have serious security flaws [Avoine et al., 2015]. At the other end of the spectrum,
modern smartphones are generally equipped with an NFC chip. NFC is a subset of RFID, which op-
erates on short distances, and in which the entities involved are not restricted to being either a tag
or a reader, but can be both. Therefore, computational power is no longer necessarily a limitation
for contactless authentication protocols. It should however still be taken into account, depending
on the application. Another challenge for the security of contactless protocols is that the commu-
nications between the prover and the reader are sent in the air, so that any passive adversary with
an antenna can read the messages exchanged. In contrast, eavesdropping wired communications
requires more intrusive techniques, so that there is more surface of attacks on contactless devices.
Hence, security is challenging to achieve for contactless authentication protocols.

The security of authentication protocols is defined with regards to an adversary, who tries to
defeat the protocol. Defeating the protocol can have various meanings. The first one is of course
obtaining unauthorised access to a service. The basic goal of an authentication protocol is to pre-
vent this kind of attacks. However, other threats must be taken into account. For instance, legit-
imate provers could try to cheat on the protocol, by helping an unauthorised accomplice to gain
access to a service. For instance, consider a public transportation system, which is accessed to
with a contactless card. The card authenticates the user. A user should not be able to permit other
people, who did not pay for a card, to authenticate on their behalf and use the public transporta-
tion. Finally, authentication protocols are sometimes required to protect the privacy of users. By
privacy, we mean that, given the messages exchanged in two executions of the protocol, it should
be difficult to determine whether the two executions were performed by the same user or not. We
believe that privacy is highly relevant for contactless authentication. By relating two different ex-
ecutions of a protocol to the same user, an adversary can possibly infer a lot about the private life
of the user. For instance, if the transaction history of a contactless payment system is leaked, and
if the adversary is capable of linking which execution corresponds to a given device, then he prac-
tically obtains a location history of an individual. Indeed, if a honest user performed a contactless
payment in a shop, then one can deduce he was in that shop. Location history can give a lot of in-
formation about a person, and even when no identifier is attached to the logs, it can be sufficient
for an attacker to obtain the home or work address, and even identity and social links, of an indi-
vidual [Krumm, 2009]. Such information can be used for criminal purpose, such as robbery (while
the user is at work), or blackmailing, for instance if the adversary identifies suspicious behaviour
from the user. The more data the adversary has, the more he can infer about users. In particular,
the adversary can be a big company, with access to the logs for several services. Therefore, we be-
lieve that contactless authentication protocols should protect the privacy of their users, both with
respect to external adversary who obtain some logs, and with respect to the verifiers themselves.

Authentication protocols, such as the Needham-Schroeder [Needham and Schroeder, 1978]
protocols, use cryptographic building blocks, for encrypting or authenticating messages. Hence,
there are two aspects to the security of an authentication protocol. The first one is the protocol in
itself: if it has logical flaws, then it can be defeated. For instance, the Needham-Shroeder proto-
cols are vulnerable to attacks: in [Denning and Sacco, 1981], the authors show how an adversary
can defeat one of the protocols by replaying messages observed in a previous execution. The sec-
ond aspect to the security of authentication protocols is the security of the cryptographic building
blocks that compose it. For instance, if the protocol uses encryption, but the encryption scheme
is not secure, then the protocol might be insecure. The search for vulnerabilities in cryptographic
primitives is called cryptanalysis. In this thesis, we study both the security of the authentication
protocols themselves, and of the cryptanalysis of the primitives that compose them. In the first
part of this manuscript, we consider the case of distance bounding protocols, which were intro-
duced to counter relay attacks, in which an adversary passively relays the messages exchanged
between the prover and the verifier to illegally authenticate. In the second part, we propose to use
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Constraint Programming (CP), a declarative programming paradigm, to evaluate the security of a
cryptographic primitive called block ciphers.

1.2 Part 1: Distance Bounding Protocols

In this section, we introduce the first part of the thesis.

1.2.1 Relay Attacks, or the Chess Grand Master Problem

In 1976, Conway wrote the tale of "the little girl who played [...] against two Chess Bandmasters [...].

How was it that she managed to win one of the games? Anne-Louise played Black against Spassky.

White against Fisher. Spassky moved first, and Anne-Louise just copied his move as the first move of

her game against Fisher, then copied Fisher’s reply as her own reply to Spassky’s first move, and so

on" [Conway, 1976]. This little story, known as the Chess Grand Master Problem, paved the way for
a very rich area of research on relay attacks. It sets a very interesting problem: by simply relaying
the moves from one player to the other without them being aware of the trick (for instance by
having them sit in two different rooms, or playing the games via postal mail), someone can win or
obtain a draw even without knowing the rules of chess.

However, relay attacks are not only a problem for chess players. An authentication protocol
can be seen as a two-player game between a prover and a verifier. If an adversary relays the
messages from one to the other, then he can win the game against the verifier and authenticate
successfully. Eleven years after the first mention of the Chess Grand Master Problem, Desmedt ap-
plied relay attacks, under the name of Mafia Fraud, against a security protocol [Desmedt et al., 1987].
In his example, the Mafia Fraud is performed against a payment protocol ran on a credit card. The
victim wants to pay for his meal in a mafia owned restaurant. The employees of the restaurant,
who are malicious, can hijack this payment, and relay it to buy expensive jewellery. To do so, the
employees build a fake card reader and a fake card, that are able to communicate with each other
from a distance, for instance via a radio link. One of the employees presents the fake reader to
the victim for his payment, while a second one presents the fake card at the jewellery store. Both
employees then just let the fake card and reader forward to each other the messages they receive.
By this manipulation, the victim believes that his card is performing the payment protocol with
the restaurant through the reader, when the card is actually communicating with the reader at the
jewellery store due to the relaying. As for the Chess Grand Master Problem, the employees do not
need to know anything about the secrets involved in the payment protocol in use, as long as they
are able to relay the messages.

At the time when it was introduced, this attack was somehow mitigated by the fact that the
card had to be inserted into a reader. Performing a relay attack required the victim to be willing to
actively take part in the payment, which could limit the large scale applicability.

On the other hand, in contactless payment solutions, no action from the card owner is re-
quired. It suffices that the card is close enough to a reader to start the protocol, as it automati-
cally responds when it is solicited. Moreover, relaying messages does not require any suspicious
equipment anymore, as smartphones can be used both as fake readers and as contactless payment
means. Relay attacks can indeed be performed with off-the-shelf smartphones, on actual payment
protocols, as shown by Vila and Rodriguez in [Vila and Rodríguez, 2015]. For instance, an attacker
can approach his smartphone close enough to the pocket where the victim stores his card, instead
of having to ask the victim to insert his card in a terminal. On the other side, an accomplice of the
attacker would just present his own smartphone as a means of payment to the reader of the jew-
ellery store, with both phones communicating through a network. Relay attacks were also used
to steal cars, by relaying messages between a smart key and a car [Francillon et al., 2011]. Since
then, significant research effort was put in solving relay attacks, in particular through distance
bounding, for instance [Dürholz et al., 2011, Boureanu et al., 2015, Debant et al., 2018].
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1.2.2 Solving the Chess Grand Master Problem: Distance Bounding Protocols

In their 1991 paper [Beth and Desmedt, 1991], Beth and Desmedt proposed to use time measure-
ments for solving the Chess Grand Master Problem. The idea is to predefine a time interval t

between each move. If one of the player does not play his move exactly t units of time after the
previous move was played, then the other player detects there is a fraud. The first protocol relying
on time measurements was introduced by Brands and Chaum in 1993 [Brands and Chaum, 1994].
The aim of this protocol is to estimate the distance between the prover and the verifier: in the event
of a relay attack, it is likely that the victim is far away from the verifier. For instance, for a contact-
less payment, the prover should be no further than a few centimetres from the reader. To bound
the distance, the round trip time of the messages exchanged during the protocol is measured by
the verifier. Typically, the verifier starts a clock, sends a cryptographic challenge, and stops the
clock when it receives the response. The measured time ∆t corresponds to twice the time it takes
for a message to go from the prover to the verifier (or vice versa), plus the time taken by the prover
to reply. To transform this time into a distance, it suffices to observe that no information can travel

faster than the speed of light c. Hence, then d = ∆t ·c
2 is an upper bound on the distance between

the prover and the verifier. If the prover was any further than d , then it would mean that the mes-
sages travelled faster than light, which is assumed impossible. Consequently, if d is short enough,
according to a predefined, application dependant bound dmax, then the verifier gains the insur-
ance that the prover is close enough. In other words, there is a time bound tmax, corresponding
to a distance bound dmax, such that, if ∆t > tmax, then the verifier rejects the prover. Time based
distance bounding is currently the most studied solution to relay attacks.

However, it is noteworthy that other approaches were proposed, even though they are out of
the scope of this thesis. In his seminal paper [Desmedt, 1988], Desmedt proposed that the prover
computes his exact location on earth, signs it, and sends it to the verifier. The inconvenient to
this approach is that it requires to trust the prover not to cheat. In addition, it requires a safe
localisation system, which is not trivial to realise. In particular, using the GPS technology does
not seem to be a robust solution [Gorjón and van Iterson, 2015]. Another option is to measure the
strength of the signal received by the verifier [Krumm and Horvitz, 2004]: since it decreases as the
distance increases, it gives indications on the distance of the prover. However, an attacker can
amplify the signal to make the prover appear closer to the verifier, and defeat this system. Sim-
ilarly, several solutions [Urien and Piramuthu, 2014] based on sensing the local environment (for
instance the air temperature) were proposed, with the idea that if the prover was actually close
to the verifier, then it would sense similar values. This approach however fails if the adversary is
able to manipulate the value that is being sensed, which can be relatively easy. To prevent relay
attacks, one can also isolate the prover inside a Faraday cage [Bengio et al., 1991] during the proto-
col, to make sure that it cannot communicate with external entities. While efficient, this solution
is not very user friendly, and limits the usability of the system. Finally, radio frequency fingerprint-
ing [Rasmussen and Capkun, 2007] can be used. It identifies the devices based on variations in the
signal features due to imperfections in the manufacturing process. However, such fingerprinting
can be counterfeited [Danev et al., 2010], which renders this approach impractical.

Hence, distance bounding protocols seem to be the most promising option to defeat relay
attacks. More than 40 distance bounding protocols exist in the literature [Brelurut et al., 2016,
Gildas et al., 2017], and most of them are vulnerable to at least one form of attacks. There ex-
ists 4 main types of attacks against distance bounding protocols, some performed by outsiders,
and some by legitimate users. These attacks are called Mafia Fraud (MF), Distance Fraud (DF),
Distance Hijacking (DH) and Terrorist Fraud (TF). A mafia fraud is performed by an external ad-
versary, who tries to authenticate in the presence of a far away honest prover. In a distance fraud,
the attacker is a legitimate, far away prover, who tries to authenticate from a distance. In a distance
hijacking, the legitimate, far away prover additionally uses honest provers, located close to the ver-
ifier, to authenticate from a distance. Finally, in a terrorist fraud, he is helped by an accomplice,
located close to the verifier.
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1.2.3 Challenges and Contributions

Designing secure protocols is challenging, as shown by the small portion of distance bounding
protocols in the literature that are resistant to all attacks. In a survey [Brelurut et al., 2016], we
showed that among the 42 studied protocols, only 10 were not known to be vulnerable to at least
one of the classical threats against distance bounding protocols. Formal security models, such
as DFKO [Dürholz et al., 2011], provide a framework, in which the security of a protocol can be
proven. This proof ensures that the protocol is secure with regards to the threats as defined in the
model. However, it is notoriously difficult to formalise, terrorist fraud [Fischlin and Onete, 2013a].
Several formal models for terrorist fraud exist, e.g., [Dürholz et al., 2011, Boureanu et al., 2015,
Fischlin and Onete, 2013a], and most are designed specifically to prove the security of one par-
ticular protocol. Provable terrorist fraud resistance generally involves the introduction of intricate
mechanisms, or even backdoors [Fischlin and Onete, 2013a], that only serve for the proof to work.

In the first part of this thesis, we study the problem of provably TF-resistant distance bounding,
with or without privacy. We present two of our protocols, SPADE and TREAD [Bultel et al., 2016,
Avoine et al., 2017], which use novel techniques to attain provable terrorist fraud resistance, and
various degrees of privacy. We then present a generic terrorist fraud, which contradicts the security
proofs of most existing distance bounding protocols (to the best of our knowledge, it concerns all
protocols but [Igier and Vaudenay, 2016]). This terrorist fraud exhibits attack possibilities that are
not considered in the security models. We propose a new terrorist fraud definition, called One-
Step Terrorist Fraud (OSTF) that accounts for this attack.

1.3 Part 2: Using Constraint Programming for Cryptanalysis

Authentication protocols, including distance bounding protocols, use cryptographic primitives
as building blocks. One of the most versatile cryptographic primitives, which can be used to build
other ones, is block ciphers. Block ciphers are symmetric encryption schemes, which encrypt mes-
sage blocks of fixed size into ciphertexts of fixed size. Block ciphers can be used to build other use-
ful cryptographic primitives, such as hash functions, pseudorandom functions and message au-
thentication codes, which are defined in Chapter 2. We chose to study the security of the primitives
used in contactless authentication protocols through the security of block ciphers. For a block ci-
pher, being secure means that it is difficult for an adversary to recover the secret key used to en-
crypt messages. The cryptanalysis of block ciphers is a very active research field. Cryptanalysing a
block cipher typically involves bounding its security against generic, known attacks. For instance,
one of the most famous type of attacks is differential cryptanalysis [Biham and Shamir, 1991]. In a
differential attack, the adversary exploits biases in the distribution of the XOR difference of cipher-
texts obtained by ciphering messages with a given XOR difference under the same key. An example
of bias could be the following: if two messages differing only in the last bit are encrypted with the
same key (under a given block cipher), then there is a high probability that the two resulting ci-
phertexts will differ in their last bit too. Most of the time, the biases are not that obvious, so the
cryptographers must study the propagation of plaintext differences through the cipher to deter-
mine which difference propagation path, or differential characteristic, is the most likely to occur.
By doing so, they estimate the probability of the best differential, i.e., an input difference mapped
to an output difference. Modern block ciphers typically operate on 64- or 128-bit plaintexts, so
that trying all possible input/output difference pairs is intractable. Hence, the search for optimal
differential characteristics is difficult. However, a clever branch and bound approach can tackle
it [Matsui, 1994]. It is however more difficult when we also consider differences in the key, as in
related key differential cryptanalysis. In a related-key differential attacks, the attacker can obtain
the encryption of messages of his choice with the secret key, but also with related keys, which have
a relation of his choice with the secret key. This kind of attacks is particularly relevant when a block
cipher is used to build other primitives. For instance, Microsoft’s Xbox uses a hash function built
from a block cipher, TEA [Wheeler and Needham, 1995]. An attack on the hash function, due to a
vulnerability of TEA in the related-key setting, permitted a hack of the system [ZDNet, 2002].
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1.3.1 Challenges and Contributions

Performing related key differential cryptanalysis requires studying how differences in the mes-
sage and in the key propagate through the ciphering process, in order to find the optimal related
key differential characteristics. The size of the search space is very large: for AES, the encryption
standard, the messages are 128 bits, and the key is 128 bits or more, so that exhaustive search
is intractable. Dedicated search algorithms, which avoid exhaustive search by using strategies to
reduce the search space, exist, e.g., [Biryukov and Nikolic, 2010, Fouque et al., 2013]. However,
designing such algorithms is time consuming, and results in large and difficult to maintain code.
On the other hand, declarative paradigms, in which the developer simply states the problem, and
the search is left to a dedicated solver, are sometimes used for cryptanalysis [Mouha et al., 2012,
Sun et al., 2014, Derbez and Fouque, 2016]. The most used paradigm is Mixed Integer Linear Pro-
gramming (MILP).

In the second part of this thesis, we use Constraint Programming (CP) to perform related key
differential cryptanalysis on two block ciphers: the standard AES [Daemen and Rijmen, 2002] and
the lightweight block cipher Midori [Banik et al., 2015]. Constraint programming is a declarative
framework which was previously not used for cryptanalysis. It is more generic than MILP: in MILP,
the problems need to be expressed as set of linear equations, while in CP, there is no such limita-
tion. The resolution methods are also different.

1.4 Outline

In Chapter 2, we introduce the notations we use through the thesis, as well as the cryptographic
primitives that we use and their security properties, and some useful mathematical notions. In
Chapter 3, we give an introduction to distance bounding protocols, and define the associated at-
tacks. We present the DFKO [Dürholz et al., 2011] framework, in which we perform our security
proofs, and the proof methodology. In Chapter 4, we present two of our distance bounding proto-
cols: SPADE [Bultel et al., 2016] and TREAD [Avoine et al., 2017]. The research problem that these
protocols aim to solve is provable terrorist fraud resistance, and how to combine it with privacy.
SPADE is fully anonymous, and uses a previously known mechanism to grand provable terrorist
fraud resistance. TREAD has 3 instances, two of which are concerned with privacy and anonymity,
and implements a novel technique for provable terrorist fraud resistance. We give the security
proofs of both protocols. In Chapter 5, we present an impossibility result for terrorist fraud re-
sistance, in the form of a generic terrorist fraud. This attacks works for every protocols in which
the prover can be cloned. Provers can typically always be cloned, unless hardware measures make
them physically uncloneable, for instance by using a temper-proof device which prevents the user
from accessing the secret key, or by using physically uncloneable function. We then define a new
terrorist fraud resistance notion, which takes this impossibility result into account. Chapter 6 in-
troduces the search for optimal related key differential characteristics using constraint program-
ming. We present the problem that we solve, the methodology that we use, as well as the tools and
the experimental setup. Chapter 7 presents our CP models and results for the related key crypt-
analysis of the AES. We build up from a naive modelling, with which the search is intractable, to an
efficient model, using a different decomposition, that performs significantly better (less than 24
hours versus several weeks) than the state of the art methods. Moreover, we find related key differ-
ential characteristic which are better (in terms of probability) than the ones that were previously
published. Finally, in Chapter 8, we present our CP models for the related key cryptanalysis of
Midori [Banik et al., 2015], a lightweight block cipher [Gérault and Lafourcade, 2016] that comes
in two versions: Midori64 and Midori128. Using CP, we find the optimal related key differential
characteristics for both versions within a few minutes. With these related-key differential charac-
teristics, we present key recovery attacks with practical complexity: 236 operations for Midori64,
and 244 for Midori128.
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1.5 Publications

In this section, we present the list of the articles we published during this thesis.

1.5.1 Presented in This Manuscript

The articles that we present in this manuscript are the following:

A Prover-Anonymous and Terrorist-Fraud Resistant Distance-Bounding Protocol [Bultel et al., 2016]

A Terrorist-fraud Resistant and Extractor-free Anonymous Distance-bounding Protocol [Avoine et al., 2017]

Fine-Grained and Application-Ready Distance-Bounding Security [Boureanu et al., 2018]

Constraint Programming Models for Chosen Key Differential Cryptanalysis [Gerault et al., 2016]

Revisiting AES related-key differential attacks with constraint programming [Gérault et al., 2018]

Combining Solvers to Solve a Cryptanalytic Problem [Gerault et al., 2017a]

Using Constraint Programming to solve a Cryptanalytic Problem [Gerault et al., 2017b]

Related-Key Cryptanalysis of Midori [Gérault and Lafourcade, 2016]

1.5.2 Other Publications

Some of our publications are left out of this thesis. We briefly present them. Their titles and ab-
stracts are given below.

Survey of Distance Bounding Protocols and Threats [Brelurut et al., 2016]: NFC and RFID are
technologies that are more and more present in our life. These technologies allow a tag to
communicate without contact with a reader. In wireless communication an intruder can
always listen and forward a signal, so he can mount a so-called worm hole attack. In the
last decades, several Distance Bounding (DB) protocols have been introduced to avoid such
attacks. In this context, there exist several threat models: Terrorist Fraud, Mafia Fraud, Dis-
tance Fraud etc. We first show the links between the existing threat models. Then we list
more than forty DB protocols and give the bounds of the best known attacks for different
threat models. In some cases, we explain how we are able to improve existing attacks. Then,
we present some advice to the designers of the DB protocols and to the intruders to mount
some attacks.

Breaking and fixing the HB+DB protocol [Boureanu et al., 2017]: The HB protocol and its HB+
successor are lightweight authentication schemes based on the Learning Parity with Noise
(LPN) problem. They both suffer from the so-called GRS-attack whereby a man-in-the-
middle (MiM) adversary can recover the secret key. At WiSec 2015, Pagnin et al. proposed
the HB+DB protocol: HB+ with an additional distance-bounding dimension added to de-
tect and counteract such MiM attacks. They showed experimentally that HB+DB was resis-
tant to GRS adversaries, and also advanced HB+DB as a distance-bounding protocol, dis-
cussing its resistance to worst-case distance-bounding attackers. In this paper, we exhibit
flaws both in the authentication and distance-bounding layers of HB+DB; these vulnerabil-
ities encompass practical attacks as well as provable security shortcomings. First, we show
that HB+DB may be impractical as a secure distance-bounding protocol, as its distance
fraud and mafia-fraud security-levels scale poorly compared to other distance-bounding
protocols. Secondly, we describe an effective MiM attack against HB+DB: our attack refines
the GRS-strategy and still leads to key-recovery by the attacker, yet this is not deterred by
HB+DB’s distance bounding. Thirdly, we refute the claim that HB+DB’s security against pas-
sive attackers relies on the hardness of the LPN problem. We also discuss how (erroneously)
requiring such hardness, in fact, lowers HB+DB’s efficiency and its resistance to authentica-
tion and distance-bounding attacks. Drawing on HB+DB’s design flaws, we also propose a
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new distance-bounding protocol – BLOG. It retains parts of HB+DB, yet BLOG is provably
secure, even – in particular – against MiM attacks. Moreover, BLOG enjoys better practical
security (asymptotic in the security parameter).

Verifiable Private Polynomial Evaluation [Bultel et al., 2017]: Delegating the computation of a
polynomial to a server in a verifiable way is challenging. An even more challenging problem
is ensuring that this polynomial remains hidden to clients who are able to query such a
server. In this paper, we formally define the notion of Private Polynomial Evaluation (PPE).
Our main contribution is to design a rigorous security model along with relations between
the different security properties. We define polynomial protection (PP), proof unforgeability
(UNF), and indistinguishability against chosen function attack (IND-CFA), which formalises
the resistance of a PPE against attackers trying to guess which polynomial is used among
two polynomials of their choice. As a second contribution, we give a cryptanalysis of two
PPE schemes of the literature. Finally, we design a PPE scheme called PIPE and we prove
that it is PP-, UNF- and IND-CFA-secure under the decisional Diffie-Hellman assumption in
the random oracle model.

Analysis of AES, SKINNY, and Others with Constraint Programming [Sun et al., 2017]: Search for
different types of distinguishers are common tasks in symmetric key cryptanalysis. In this
work, we employ the constraint programming (CP) technique to tackle such problems. First,
we show that a simple application of the CP approach proposed by Gerault et al. leads to the
solution of the open problem of determining the exact lower bound of the number of ac-
tive S-boxes for 6-round AES-128 in the related-key model. Subsequently, we show that the
same approach can be applied in searching for integral distinguishers, impossible differen-
tials, zero-correlation linear approximations, in both the single-key and related-(twea)key
model. We implement the method using the open source constraint solver Choco and ap-
ply it to the block ciphers PRESENT, SKINNY, and HIGHT (ARX construction). As a result,
we find 16 related-tweakey impossible differentials for 12-round SKINNY-64-128 and con-
struct an 18-round attack on SKINNY-64-128 (one target version for the crypto competition
https://sites.google.com/site/skinnycipher announced at ASK 2016). Moreover, we show
that in some cases, when equipped with proper strategies (ordering heuristic, restart and
dynamic branching strategy), the CP approach can be very efficient. Therefore, we suggest
that the constraint programming technique should become a convenient tool at hand of the
symmetric-key cryptanalysts.
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Chapter 2

Cryptographic Tools

In this section, we present the mathematical and cryptographi notions that we use in our
algorithms and proofs.

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Symmetric Key Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Public Key Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 IND-CCA2 security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Message Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Group Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Unforgeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Pseudo Random Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Cryptographic Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Zero-knowledge Proof of Knowledge . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4 Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.5 Union Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Introduction

In Part I of this manuscript, we are concerned with provable security. In provable security, the ad-
versary is assumed to be polynomially bounded, i.e., he can only perform a number of operations
that is a polynomial in a security parameter λ. Hence, a scheme is said to be secure if the success
probability of an adversary diminishes exponentially as the security parameter increases. In other
words, a scheme is secure if the success probability of any adversary is a negligible function of the
security parameter. Intuitively, a negligible function is a function that goes exponentially smaller
as the security parameter increases. Stated differently, the function is negligible if it is smaller than
the inverse of any polynomial in λ. More formally:

Definition 1. Negligible function A function f : N→R+ is negligible if for all positive integer c, there

exists an integer Nc , such that for all x > Nc , f (x) < xc .
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We use the notation neg l (λ) to denote the set of negligible functions of λ.
For instance, a distance bounding protocol uses cryptographic keys and nonces (random num-

bers). Their sizes, as well as the number of rounds, are chosen to be polynomial in the security
parameter. Similarly, for the primitives we define in this section, the size of the keys is dependant
on the security parameter.

In order to prove that the success probability of an adversary is negligible, we sometimes need
to use abstractions, such as the Random Oracle Model (ROM). The ROM is an abstraction in which
there exists a random oracle H(·), which maintains a list HL: this oracle is used to produce random
values from its input. When querried with a given input i , it does the following:

• If i is querried for the first time, return a random value o and add the couple (i ,o) to a list HL

• If i was querried before, i.e., ∃(i ′,o) ∈HL, i = i ′, then it returns the corresponding o.

In other words, it behaves like a hash function that returns truely random values. A hash function
in the random oracle model is simply a hash function implemented with a random oracle.

After this brief introduction to provable security, we define the notations, cryptographic primi-
tives and mathematical notions that we use. Note that a more complete definition of most of these
primitives can be found in [Goldreich, 2006].

2.2 Notations

We define the notations that we use through the thesis.

⊕ is the bitwise xor operation.

a||b denotes the concatenation of two bitstrings a and b.
∣

∣

∣

∣

∣

∣

i∈[0;n]
(ai ) denotes the concatenation of the values ai , for i from 0 to n.

x
$← E denotes the uniform random choice of a value from the set E.

HW(a) denotes the hamming weight of a bitstring a, i.e., the number of ones in a.

HD(a,b) denotes the hamming distance between two bitstrings a and b, i.e., HW(a ⊕b).

#X denotes the cardinality of the set X.

Pr [E] denotes the probability for the event E to occur.

2.3 Encryption

Encryption schemes use a cryptographic key to transform a message m into a ciphertext c, such
that only the recipient, knowing the appropriate decryption key, can recover m from c. Encryption
schemes can be symmetric or public key. If the scheme is symmetric, the encryption and decryp-
tion key are the same. If the scheme is public key, the messages are encrypted with a public key,
and decrypted with a secret key..

2.3.1 Symmetric Key Encryption Scheme

A symmetric key encryption scheme is an encryption scheme in which the same key is used for
encryption and decryption.

Definition 2 (Symmetric Key Encryption). A symmetric key encryption scheme SKE is a triplet of

algorithms (SKE.gen,SKE.enc,SKE.dec) such that :

12
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SKE.gen(1λ): returns a secret key x.

SKE.encx (m): returns a ciphertext c from the message m and the key x.

SKE.decx (c): returns the plaintext m such that E.encx (m) = c.

2.3.2 Public Key Encryption Scheme

In a public key encryption scheme, the key used to encrypt the messages is public: everyone can
use it to encrypt a message. On the other hand, the decryption key is secret.

Definition 3 (Public Key Encryption). A public key encryption scheme PKE is defined by:

PKE.gen(1λ) returns a public and private key pair (pk, x).

PKE.encpk (m) returns the ciphertext c from the message m and the public key pk.

PKE.decx (c) returns the plaintext m such that E.encpk (m) = c.

2.3.3 IND-CCA2 security

The IND-CCA2 notion was formalized for public key encryption schemes in [Bellare et al., 1998],
and was later extended to symmetric schemes in [Bellare and Namprempre, 2000]. The authors
of [Bellare and Namprempre, 2000] consider a notion they call IND-CCA, but mention in the paper
that it corresponds to the notion of IND-CCA2 used for public key encryption.

Definition 4 (IND-CCA2 - Symmetric key). Let SKE = (SKE.gen,SKE.enc,SKE.dec) be a symmetric

key encryption scheme. SKE is said to be indistinguishable against adaptive chosen ciphertext
attack (IND-CCA2) when for any adversary A = (A0,A1), the advantage

AdvIND-CCA2
A ,SKE (1λ) =

∣

∣

∣

∣

∣

Pr

[

k← SKE.gen(1λ),b
$← {0,1}

b′ ←A
SKE.enck(LRb ),SKE.deck

0 (λ)
: b = b′

]

−
1

2

∣

∣

∣

∣

∣

is negligible, where the oracles SKE.enck(LRb),SKE.deck are defined as:

SKE.enck(LRb(m0,m1)): returns SKE.enck(mb) on the message pair (m0,m1), for a random but

fixed bit b.

SKE.deck(c): returns ⊥ if c has been generated by SKE.enck(LRb), and SKE.deck(c) otherwise.

Definition 5 (IND-CCA2 - Public key). Let PKE = (PKE.gen,PKE.enc,PKE.dec) be a public key

encryption scheme. PKE is said to be indistinguishable against adaptive chosen ciphertext attack
when for any adversary A = (A0,A1), the advantage

AdvIND-CCA2
A ,PKE (1λ) =

∣

∣

∣

∣

∣

Pr

[

(pk, x) ←PKE.gen(1λ),b
$← {0,1}

b′ ←A
PKE.encpk(LRb),PKE.decx(pk,λ)

: b = b′
]

−
1

2

∣

∣

∣

∣

∣

is negligible, where the oracles PKE.encpk(LRb),PKE.decx are defined as:

PKE.encpk(LRb(m0,m1): returns PKE.encpk (mb) on the message pair (m0,m1), for a random but

fixed bit b.

PKE.decx(c): returns ⊥ if c has been generated by PKE.encpk(LRb) returns ⊥, and PKE.decx (c)
otherwise.
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2.4 Message Authentication

We consider three kinds of message authentication schemes: MAC, digital signature and dynamic
group signature. In a MAC, a tag authenticating a message is generated and verified with the same
secret key. In digital signature schemes, the signing key is private and known only to the signer,
whereas the verification key is public. In group signature schemes, each member of the group
knows a private signature key, and a public verification key permits to verifiy that the signature was
generated by a member of the group. We sometimes abuse language and consider MAC schemes
as (symmetric) signature schemes.

The security properties we use are the unforgeability, and the anonymity for group signatures.

2.4.1 Message Authentication Codes

A MAC is an authentication scheme in which the keys used to authenticate and verify identical
and secret.

Definition 6 (Message Authentication Code). A message authentication code MAC is a triplet of

algorithms (MAC.gen,MAC.tag,MAC.ver) such that :

MAC.gen(1λ): returns a secret key x.

MAC.tagx (m): returns a tag σ from the message m and the key x.

MAC.verx (s,m): returns a verification bit v from the tag σ and the key x.

2.4.2 Digital Signature

Digital signatures use a secret signature key, and a public verification key.

Definition 7 (Digital Signature). A digital signature scheme SIG is a composed of the three following

algorithms: (SIG.gen,SIG.sig,SIG.ver), such that :

SIG.gen(1λ): returns a signature/verification key pair (x,vk), where x is secret and vk is public.

SIG.sigx (m): returns a signature σ from the message m and the signing key x.

SIG.vervk(s,m): returns a verification bit v from the signature s and the verification key vk.

2.4.3 Group Signature

In a group signature scheme, the signers are treated as a group. Each member of the group has a
personal signing key that he uses to sign a message anonymously on behalf of the group. An entity,
called group manager, has the power to open, i.e., deanonymise, a signature. A more complete
definition is given in [Bellare et al., 2003].

Definition 8 (Group Signature). A group signature scheme G-SIG, using a user list Ui , is defined by:

G.gen(1λ) returns a group/master key pair (gpk,msk) and sets the user list UL. The verification key

is gpk.

G.sigxi
(m) returns a group signature σ on the message m, such that G.opemsk(σ,m,UL,gpk) = Ui

G.vergpk(σ,m) outputs 1 if and only if σ is valid for the message m and the key xi of a non-revoked

user, and 0 otherwise.

G.opemsk(σ,m,UL,gpk) outputs the identity of the user Ui who produced σ.
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A group signature can be dynamic. In this case, new members can be added to the group,
and members can be revoked. More specifically, an entity, called a group manager, adds new
members. Additionally, a revocation algorithm is needed. A revoked user list RL is added, as well
as the following algorithms:

G.joinmsk(i ,gpk,UL) is a protocol between a user Ui (using gpk) and a group manager GM (using
gpk and msk). Ui interacts with GM to get his signing key xi , while GM outputs a value regi

and adds Ui to UL.

G.revmsk(i ,RL,UL,gpk) computes revocation logs revi for user Ui , using regi ,gpk and msk and
moves Ui from UL to RL.

The verification algorithm is modified to include the revoked user list:

G.vergpk(σ,m,RL) outputs 1 if and only if σ is valid for the message m and the key xi of a non-
revoked user, and 0 otherwise.

In this thesis, we only use dynamic group signature schemes. When we mention a group sig-
nature scheme, we implicitely assume that it is dynamic.

2.4.4 Unforgeability

The unforgeability property of a message authentication scheme states that an adversary cannot
generate a valid signature or MAC without knowing the corresponding key. For digital signatures
and MAC schemes, this notion is known as Existential UnForgeability under Chosen Message At-
tack (EUF-CMA). For group signatures, a stronger notion (full-traceability) exists: it states that no
user or coallition therof can produce a signature that opens to the identity of a honest user. This
distinction needs to be introduced, since in the context of a group signature, a user might try to
forge a signature on bealf of another one, for instance to build an alibi. This dishonest user knows
more information than a classical adversary, since he knows a singing key. The EUF-CMA no-
tion was first defined for digital signatures in [Goldwasser et al., 1983], and then for MAC schemes
in [Bellare et al., 1994]. Full traceability for group signatures was defined in [Bellare et al., 2005].

The unforgeability experiment is defined as follows:

Definition 9 (EUF-CMA (MAC)). Let A be an adversary, and MAC be a MAC scheme. In the

Exp
Forge

A ,MAC
(λ) experiment, the challenger creates (x) using MAC.gen(1λ), initializes an empty list

Σ, and gives A access to a signing oracle:

MAC.Tag(·, ·) returns a MAC σ, using MAC.tagxm and adds the pair (m,σ) to Σ.

Then, A outputs a message m∗ and a signature σ∗. A wins (and the challenger outputs 1) if the

two following conditions are satified: (m∗,σ∗) 6∈Σ and MAC.verx (s,m) = 1
The advantage of an adversary A in the unforgeability experiment, Adv

Forge

MAC
(λ), is defined as

Adv
Forge

A ,MAC
(λ) = Pr[Exp

Forge

A ,MAC
(λ) = 1]

and the advantage on the experiment as

Adv
Forge

MAC
(λ) = max

A ∈Poly(λ)
{Adv

Forge

A ,MAC
(λ)}.

A MAC scheme MAC is unforgeable if Adv
Forge

MAC
(λ) is negligible.

For digital signature schemes, the security game is essentially the same, except that A has
access to the verification key verk, since it is public.
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Definition 10 (EUF-CMA (digital signature)). Let A be an adversary, and SIG be a digital signature

scheme. In the Exp
Forge

A ,SIG
(λ) experiment, the challenger creates (x, pk) using SIG.gen(1λ), sends pk

to A , initializes an empty list Σ which contains all oracle produced signatures, and gives A access

to a signing oracle:

SIG.Sign(·, ·) returns a signature σ, using SIG.sigx (m) and adds the pair (m,σ) to Σ.

Then, A outputs a message m∗ and a signature σ∗. A wins (and the challenger outputs 1) if the

two following conditions are satified: (m∗,σ∗) 6∈Σ and SIG.verx (s,m) = 1
The advantage of an adversary A in the unforgeability experiment, Adv

Forge

SIG
(λ), is defined as

Adv
Forge

A ,SIG
(λ) = Pr[Exp

Forge

A ,SIG
(λ) = 1]

and the advantage on the experiment as

Adv
Forge

SIG
(λ) = max

A ∈Poly(λ)
{Adv

Forge

A ,SIG
(λ)}.

A digital signature scheme SIG is unforgeable if Adv
Forge

SIG
(λ) is negligible.

For dynamic group signature schemes, the experiment is a bit more complex, since it includes
attacks from group members. It is defined as full traceability.

Definition 11 (Full Traceability (Dynamic Group Signatures)). Let G-SIG = (G.gen,G.sig,G.ver) be

a group signature scheme. In the full traceability experiment for an adversary A ExpTrace
A ,G-SIG(λ), the

challenger creates (UL,RL,msk,gpk) using G.gen(1λ), gives gpk to A , and sets the lists CU and Σ,

for corrupted users and oracle-issued signatures. During a first phase, phase A has access to the

following oracles:

G.joinmsk(i ,gpk,UL) creates Ui using G.joinmsk(ID,gpk,UL).

G.joinC
msk(i ,gpk,UL,RL) creates a corrupted user Ui by using G.joinmsk(ID,gpk,UL), adding Ui to

CU and returning its secret key xi to A .

G.join(i ) simulates the corruption of a user Ui by returning its secret key xi to A and adding it to

CU.

G.revmsk(i ,RL,UL,gpk) revokes Ui using G.revmsk(ID,RL,UL,gpk).

G.sigxi
(m) returns a signature σ on behalf of Ui , using G.sigxi

(m) and adds the pair (m,σ) to Σ.

G.opemsk(σ,m,UL,gpk) opens a signature σ and returns Ui to A , using G.opemsk(σ,m,UL,gpk).

Then, during a guessing phase, A outputs a message m∗ and a signature σ∗. A wins (and the

challenger outputs 1) if and only if:

(m∗,σ∗) 6∈Σ and G.vergpk(σ∗,m∗,RL) = 1,

G.opemsk(σ∗,m∗,UL,gpk) 6∈CU\ RL.

The advantage of an adversary A in the full traceability experiment, AdvTraceG-SIG(λ), is defined as

AdvTrace
A ,G (λ) = Pr[ExpTrace

A ,G (λ) = 1]

and the advantage on the experiment as

AdvTraceG (λ) = max
A ∈Poly(λ)

{AdvTrace
A ,G (λ)}.

A group signature G-SIG is traceable if AdvTraceG-SIG(λ) is negligible.
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Anonymity

Anonymity is a property of group signature schemes: if a group signature scheme is anonymous,
then no one, except for the opening authority, can find out which user produced a signature within
a group. The anonymity experiment for dynamic group signature schemes is defined as follows.

Definition 12. Let G-SIG = (G.gen,G.sig,G.ver) be a dynamic group signature scheme. In the anonymity

experiment for an adversary A ExpAnon
A ,G-SIG(λ), the challenger first uses G.gen(1λ) to create the lists

and keys (UL,RL,msk,gpk), gives gpk to A , and sets the lists CU and Σ. During a first phase, A has

access the following oracles:

G.joinmsk(i ,gpk,UL) creates Ui using G.joinmsk(ID,gpk,UL).

G.joinC
msk(i ,gpk,UL,RL) creates a corrupted user Ui by using G.joinmsk(ID,gpk,UL), adding Ui to

CU and returning its secret key xi to A .

G.join(i ) Simulates the corruption of a user Ui by returning its secret key xi to A and adding it to

CU.

G.revmsk(i ,RL,UL,gpk) revokes Ui using G.revmsk(ID,RL,UL,gpk).

G.sigxi
(m) returns a signature σ on behalf of Ui , using G.sigxi

(m) and adds the pair (m,σ) to Σ.

G.opemsk(σ,m,UL,gpk) opens a signature σ and returns Ui to A , using G.opemsk(σ,m,UL,gpk).

A selects two identities (ID0, ID1). If ID0 and ID1 ∈CU, the challenger stops. Otherwise, he picks

b
$← {0,1}.

Then, during the guessing phase, A cannot use G.cor and G.rev on ID0 or ID1 anymore, but

gains access to a new oracle:

G.sigb simply returns G.sigsskIDb
(m). The signature produced by this oracle cannot be the G.ope

oracle.

A outputs b′ and the challenger returns the boolean value (b = b′).

A ’s advantage in this experiment is defined as

AdvAnon
A ,G (λ) =

∣

∣

∣

∣

Pr[ExpAnon
A ,G (λ) = 1]−

1

2

∣

∣

∣

∣

and the advantage on the experiment as

AdvAnonG (λ) = max
A ∈Poly(λ)

{AdvAnon
A ,G (λ)}.

A group signature G-SIG is anonymous if AdvAnonG-SIG(λ) is negligible.

2.5 Others

In this section, we present pseudorandom functions, hash functions, zero-knowledge proofs of
knowledge, commitment schemes, and the union bound.

2.5.1 Pseudo Random Functions

A pseudo random function (PRF) is a keyed function the output of which cannot be efficiently
distinguished from that of a random function on the same domain. This primitive was defined,
and an example (GGM) was given, in [Goldreich et al., 1986].

Definition 13 (Pseudo Random Function). A family of functions PRFs : {0,1}k → {0,1}l , indexed by

a key s ∈ {0,1}n , is pseudorandom if it satisfies the following two conditions:
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• There is an efficient algorithm (polynomial in the security parameter) for computing PRFs(x),

given s and x;

• For any A given oracle access to the function, the probability of distinguishing PRFs(·) from a

random function1 f : {0,1}k → {0,1}l is negligible.

2.5.2 Cryptographic Hash Function

Definition 14 (Hash Function). A hash function family H is a function H : K×M→Y, where K is a

key space, M is a message space and Y is a digest space.

A cryptographic hash function HK is required to be collision resistant: for an adversary know-
ing the key K, it should be difficult to find two messages that have the same image. The latest
standard hash function is SHA-3 [Bertoni et al., 2013].

Definition 15. Collision Resistance A hash function family H is collision resistant if the probability

Pr [K
$←K; (M,M′) ←A (K) : M 6= M′∧HK(M) = HK(M′) is negligible.

2.5.3 Zero-knowledge Proof of Knowledge

Zero-knowledge proofs of knowledge were introduced in [Goldwasser et al., 1989]. A zero-knowledge

proof of knowledge scheme ZKP is a protocol that allows a prover to convince a verifier that he
knows a secrete value x, such that a relation r , involving x, is true. This is denoted ZKP[x : r ]. The
properties of a ZKP are the following.

Correctness: If the prover knows the solution x, then he is able to convince the verifier.

Soundness: If r is wrong, then the prover is not able to convince the verifier.

Validity: If the prover does not know the secret x, then he is not able to convince the verifier.

Zero-knowledge: No information about the secret x leaks during the protocol.

2.5.4 Commitment

A commitment scheme permits a prover to commit to a value v , without revealing v . Later, he can
open this commitment, i.e., reveal v , and prove that v is the value that was used to generate the
commitment. A simple commitment is a hash v : it does not allow to recover v , but can be easily
verified once v is revealed. Commitment schemes were first formalised in [Brassard et al., 1988].

Definition 16 (Commitment Scheme). A Commitment scheme COM is composed of a pair of algo-

rithms (COM.commit,COM.open) such that:

COM.commit(v,r ): returns a commitment c to the value v, using the random value r .

COM.open(c,r ): returns the value v such that COM.commit(v,r ) = c.

2.5.5 Union Bound

The union bound is a useful upper bound for the probability of an event occuring at least once [Kallenberg, 2002].
It states that, for any finite or countable set of events, the probability that at least one of the events
happens is no greater than the sum of the probabilities of the individual events. More formally, for
a set of events {Ei |i ∈ [1;k]}, we have

Pr [
k
⋃

i =0
Ei ] ≤

k
∑

i =0
Pr [Ei ].

1By random function, we mean a function chosen at random among all functions on the same interval.
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In a relay attack, an intruder defeats an authentication protocol by relaying the messages between
the verifier and a far away prover. Distance bounding protocols are a classical countermeasures
to relay attacks. In this chapter, we present the threats associated to distance bounding, and some
protocols of the literature. We then present the formalism associated with distance bounding pro-
tocols, as well as the DFKO [Dürholz et al., 2011] security model, which we use to prove the security
of our protocols, which are presented in Chapter 4.

3.1 Introduction

Distance bounding protocols were introduced to counter relay attacks, in which an adversary
relays the messages between a prover and a verifier. Since the introduction of the first proto-
col [Brands and Chaum, 1994], many designs for distance bounding appeared in the literature.
In a survey [Brelurut et al., 2016], we showed that among the 42 studied protocols, only 10 had
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no known vulnerabilities against any distance bounding attack yet. Formal models for distance
bounding were introduced [Avoine et al., 2009, Dürholz et al., 2011, Boureanu et al., 2015] to in-
crease the confidence in the protocols. The models define precisely which frauds concern distance
bounding, and provide a framework for performing security proofs. In this chapter, we introduce
the security notions used in distance bounding. We first describe the general structure of distance
bounding protocols, before giving a high level overview of their security properties and exemplify-
ing with classical protocols from the literature. Finally, we present the DFKO [Dürholz et al., 2011]
formal model, and the proof methodology that we use to prove the security of our protocols in the
next chapter.

3.2 General Structure of Distance Bounding Protocols

Distance bounding protocols are subject to very tight timing constraints: in one nanosecond, a
radio wave travels 30 centimetres. As contacless applications, such as payments, are generally de-
signed to work at some centimetres, distance bounding protocols typically need to be able to re-
liably perform challenge response rounds within nanoseconds. This places strong constraints on
the hardware that is used, and is believed to be feasible only with single bit messages. For this rea-
son, most distance bounding protocols are decomposed into slow (also called lazy) phases, during
which messages of arbitrary length can be exchanged, and time-critical ones, during which the
messages are single bits and the time is measured. The classical structure of a Distance Bounding
protocol includes a slow initialisation phase, followed by a time-critical distance bounding phase,
and a final slow authentication phase, even though some protocols do not have this final slow
phase. The time measurement is performed during the distance bounding phase, in which the
verifier sends a challenge, to which the prover immediately replies with a response.

In addition, to make the measurement reliable, the computation of the response by the prover
should take a predictable, constant, and short time. If it is not predictable, then the estimated
distance is meaningless, since the verifier cannot assess which part of the time was spent com-
puting, and which was actually the time of flight of the response. If the computation time is not
constant, the same kind of problems appears. Finally, if it is not almost instantaneous, frauds can
be performed, for instance by overclocking the devices. If the computation time is very close to
the propagation time to begin with, this makes little difference, but if it is much longer than the
propagation time, then gaining even a few nanoseconds permits to cheat on the distance. To sat-
isfy these constraints, the usual approach is to have the prover compute both response vectors in
advance, so that it only needs to perform a table lookup to respond the challenges. In addition,
distance bounding protocols, except for some notable exceptions, such as [Meadows et al., 2007],
traditionally use one bit challenges and one bit responses.

In order to keep the challenges and responses one bit long, it is not feasible to add error cor-
recting codes to them, which makes the distance bounding protocols vulnerable to channel noise.
Hence, protocols sometimes include an error tolerance: they allow ner r errors in the responses to
avoid rejecting legitimate provers due to transmission errors.

The general structure of a distance bounding protocol is shown on Figure 3.1. The prover and
the verifier agree on two response vectors a0 and a1 during an initialisation phase, and then run
a distance bounding phase. The distance bounding phase is composed of n rounds. At each of
these rounds, the verifier picks a random bit ci , starts a clock and sends ci to the prover. The
prover immediately responds with ri = aci , and the verifier stops his clock after receiving ri . After
the n rounds, the prover computes a tag τ to authenticate the transcript, i.e., the concatenation of
the messages exchanged during the protocol, with the shared key x. The verifier accepts if all the
time measures were correct, the responses correspond to the response vectors chosen during the
initialisation phase, and the tag is correct.

To agree on the response vectors a0 and a1, many modern distance bounding protocols use
a PseudoRandom Function (PRF). Typically, both the prover and the verifier generate a random
nonce, and these two nonces are used in a PRF keyed with their shared secret to generate the re-
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Prover P Verifier V
Shared key: x Shared key: x

Initialisation

Agree on two bitstrings(a0,a1)∈{0,1}n2

←−−−−−−−−−−−−−−−−−−−−−−−−→

Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ci←−−−−−−−−−−−−−−−− Start clock

ri = a
ci

i

ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

CR =
∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri ) CR =

∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

If T = PRFx (NP||NV||CR)

T ← PRFx (NP||NV||CR)
T−−−−−−−−−−−−−−−−→ and ∀i ∈ [0;n −1],ri = a

ci

i

and ∆ti ≤ tmax
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 3.1: The general structure of a Distance Bounding protocol, where PRF is a pseudorandom function.

sponse vectors. The interest of this method is its lightweight aspect, compared to the commitment
schemes and digital signatures used in prior protocols. The first use of a PRF for unilateral distance
bounding protocols (in which the prover does not need to authenticate the verifier) is the proto-
col of Hancke and Kuhn [Hancke and Kuhn, 2005], depicted on Figure 3.2. In this protocol, during
the initialisation phase, the prover generates a nonce NP, and the verifier a nonce NV. They then
exchange the nonces, and both compute (a0||a1) = PRFx (NP||NV), where x is a shared secret key.
No message is exchanged during the verification phase.

Prover P Verifier V
Shared key: x Shared key: x

Initialisation

NP
$← {0,1}l NV←−−−−−−−−−−−−−−−− NV

$← {0,1}l

(a0||a1) = PRFx (NP||NV)
NP−−−−−−−−−−−−−−−−→ (a0||a1) = PRFx (NP||NV)

Distance Bounding

for i = 1 to n

ci
$← {0,1}

ci←−−−−−−−−−−−−−−−− Start clock

ri = a
ci

i

ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

If ∀i ∈ [0;n −1],ri = a
ci

i

and ∆ti ≤ tmax
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 3.2: The Distance Bounding protocol proposed by Hancke and Kuhn in [Hancke and Kuhn, 2005]

23



CHAPTER 3. INTRODUCTION TO DISTANCE BOUNDING

While this structure is used in most protocols, there are some exceptions that exploit differ-
ent strategies for secure distance bounding. For instance, instead of just having two response
vectors, some protocols (such as [Avoine and Tchamkerten, 2009]) use a response tree, where the
prover picks one branch or the other depending on the challenge. Similarly, graph based re-
sponse functions were proposed, for instance in [Trujillo-Rasua et al., 2014]. Some protocols, such
as [Kleber et al., 2015], rely on a Physically Uncloneable Function (PUF)1 instead of other crypto-
graphic primitives, such as PRFs or signatures. Finally, while the challenges are usually sent at
fixed interval, it is possible to randomise the time at which they are sent to improve the security,
as in [Kilina̧nd Vaudenay, 2015].

These different designs were proposed in an attempt to build more secure protocols. Indeed,
while classical relay attacks are easy to thwart with simple protocols, more advanced attacks exist,
which we present in the next section.

3.3 Threats Against Distance Bounding Protocols

Distance bounding protocols aim at solving the problem of relay attacks. On the other hand, they
are additionally subject to attacks that do not affect authentication protocols. Indeed, any attack
that makes the prover appear closer than it actually is defeats the purpose of a distance bounding
protocol, which is to compute a correct upper bound on this distance. In this section, we survey
the existing threats against distance bounding protocols, as well as the classical defence mecha-
nisms against them.

The first of these attacks is Mafia Fraud:

Mafia Fraud (MF) [Desmedt, 1988]: In a Mafia Fraud, an adversary A passes the protocol in the
presence of a honest prover P, who is far away from the verifier V. The adversary is typically com-
posed of two entities: one (the leech) that is close to the prover and acts as a verifier, and another
one (the ghost) that is close to the verifier and that acts like a prover. The fraud succeeds if the
verifier accepts the authentication of the prover. While the adversary can physically not relay both
the challenges and the responses during the timed bit exchanges without being detected, he can
safely relay the messages exchanged during the untimed part of the protocol. Additionally, it is
generally considered that there is a small delay before the verifier begins the distance bounding
phase, during which the adversary can send random challenges to the prover. Similarly, there is a
delay after the end of the distance bounding phase. Hence, there are two main strategies to per-
form a mafia fraud: either send a random challenge in advance (pre-ask) and relay the (possibly
modified) response, or relay the (possibly modified) challenge, and send a random response (post-
ask). If the prover is within the distance bound, it might be possible for the adversary to modify
the challenges and responses on the fly without being detected. For this reason, a generalisation of
mafia frauds, labelled Man-in-the-Middle attack, was proposed in [Boureanu et al., 2015]. In this
attack, the adversary can play a learning phase beforehand, during which the prover is located
close to the verifier, in order to try to learn something, such as a secret key. Hence, in this at-
tack, the adversary has all the capabilities of a classical man-in-the-middle adversary. A common
defence against mafia fraud and man-in-the-middle attacks is for the prover to authenticate the
transcript after the distance bounding phase, so that modifications in the challenges are detected.

Attacks on the distance. The other kinds of attacks are performed by dishonest provers, who
cheat on their distance with the verifier. Making the verifier believe a prover is close when it is
actually far permits, for instance, to build a fake alibi. For example, in some companies, the em-
ployees have to use their contactless badge as they arrive and leave, to prove that they spent the
day at work. By performing a distance fraud, a lazy employee could make believe that he spent
the day at work, when he actually used his badge from home. This type of attacks comes in three

1A PUF is a function maps challenge bitstrings to response bitstrings, and cannot be cloned
[Maes and Verbauwhede, 2010].
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flavours: distance frauds, where the cheating prover receives no help, distance hijacking, where he
exploits a honest prover located close to the verifier, and terrorist fraud, where he is helped by an
accomplice who is close to the verifier.

3.3.1 Distance Fraud (DF)

In a Distance Fraud [Brands and Chaum, 1994], a lonely malicious prover located far away (at a
distance more than tmax from the verifier) passes the protocol, thus defeating the distance mea-
surement. There are several possible motivations for committing such a fraud, other than simply
breaking the protocol. For instance, if distance bounding on electronic bracelets is used for home
arrest, an inmate who would perform a distance fraud would be able to pretend that he is within
the restricted area, while actually being far away. Note that this attack can possibly require to am-
plify the signal, so that the prover and the verifier can communicate even though they are far away.
If a far away prover sends his response after receiving the challenge, its propagation time will be
too long to meet the bound tmax. Hence, a common attack strategy is to try making both response
vectors equal, so that the response is independent of the challenge. When this is the case, a mali-
cious prover can send his response bit in advance (before receiving the challenge), so that it arrives
to the verifier on time.

To prevent distance frauds, one would ideally want to have r 0 6= r 1 for as many rounds as pos-
sible. If k is the number of rounds for which r 0 6= r 1, then the prover needs to guess k challenges,
so he succeeds with probability 1

2k .
In some cases, the malicious prover can gain some advantage in cheating on his distance if

honest provers are present near the verifier: this attack is known as Distance Hijacking.

3.3.2 Distance Hijacking (DH)

Distance Hijacking [Cremers et al., 2012] is quite similar to DF: a malicious, far away prover passes
the protocol. The difference is that in a DH, there are honest provers running the protocol near the
verifier. This gives the malicious prover more surface of attack, so that some protocols are resistant
to distance fraud, while being vulnerable to distance hijacking. A Distance Hijacking attack is
generally performed by letting a close-by honest prover run the protocol, and then sending the
final authenticated message on his behalf before he does. This is feasible when the rest of the
protocol is independent of the secret key: if the verifier has no other means of verifying the identity
of the prover than the final message, then it is possible to cheat. Preventing Distance Hijacking can
be done by involving the secret key of the prover early in the protocol, for instance by computing
the response vectors as a the output of a PRF keyed with the secret key of the prover. This way, if the
final authenticated message is hijacked, the verifier will notice that the key used to authenticate it
was not the one used to compute the responses.

3.3.3 Terrorist Fraud (TF)

A malicious prover trying to cheat on his distance might also receive the help from an accomplice
located near the verifier: this kind of attacks is known as Terrorist Fraud [Desmedt, 1988]. Terrorist
Fraud is an attack in which a malicious prover, located far away from the verifier, is helped by an
accomplice to pass the protocol. The accomplice can be located near the verifier. Of course, a
trivial attack in this scenario would be that the prover simply gives all his secret keys to his accom-
plice, so that the accomplice can pass the protocol on his own. Since there is not much to be done
against a prover willing to give away his secret material to an accomplice, a terrorist fraud is only
considered successful if the accomplice does not gain any significant advantage in authenticating
by himself after the session in which he was helped by the malicious prover. To perform a terrorist
fraud, a prover can ask his accomplice to relay the messages of the slow phases, and give him both
response vectors, so that the accomplice can reply on time during the distance bounding phase.
If it is possible for a prover to extract the secret key of his prover device, then it is unfeasible to
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prevent him from giving it away. Here, secret key is used in the broad sense: it can refer to any
material that would help the accomplice to impersonate the prover. Hence, we can only defend
against provers that are not willing to give their secret key to an accomplice. Consequently, a strat-
egy to prevent a terrorist fraud is to make sure that giving both r 0 and r 1 to the accomplice leaks
the secret key. An example of this strategy is illustrated by Figure 3.3.

Prover P Verifier V
Shared key: x Shared key: x

Initialisation

NP
$← {0,1}l NP−−−−−−−−−−−−−−−−→ NV

$← {0,1}l

NV←−−−−−−−−−−−−−−−−
a = PRFx (NP,NV)

Distance Bounding

for i = 0 to n −1

ci
$← {0,1}

ri =

{

ai if ci = 0
ai ⊕xi if ci = 1

ci←−−−−−−−−−−−−−−−− Start clock
ri−−−−−−−−−−−−−−−−→ Stop clock

Figure 3.3: The classical countermeasure against terrorist fraud: if the prover gives both possible responses,
i.e., ai and ai ⊕xi to his accomplice for a given ci , he leaks one bit of his long-term authentication secret x.
Here, n is the numer of rounds, and l is the size of the nonces.

Some protocols are designed for the adversary to recover the secret key if the prover helps him
once, for instance [Reid et al., 2007], but for other protocols, such as SKI[Boureanu et al., 2013], the
accomplice needs to be helped several times by the same prover to recover the key. The strategy of
forcing the prover to leak his secret key to his accomplice is the one employed in the security mod-
els [Dürholz et al., 2011, Boureanu et al., 2015] which formally define the threats against distance
bounding protocols. In Chapter 5, we show that there exists an attack which permits the prover
to help his accomplice without leaking his secret key for most protocols. However, this attack is
out of the scope of the security models. Hence, before Chapter 5, when we write that a protocol
is terrorist fraud resistant, we mean that it is terrorist fraud resistant according to the adversarial
capabilities described in the models, and do not account for attack defined in Chapter 5.

If the protocol does not feature resistance to transmission error, the strategy described on Fig-
ure 3.3 is sufficient. However, if communication noise resistance is taken into account in the de-
sign of the protocol, then this strategy fails, as we develop in the next section.

3.3.4 Terrorist frauds in noise resistant protocols

To make the protocols tolerant to transmission errors, the common approach is to make the veri-
fier accept the authentication of the prover if no more than ner r rounds contain errors during the
distance bounding phase. The threshold value ner r should be polynomial in n, and a typical value
is 5% of n. If we make the assumption that an adversary can reduce the error rate of the chan-
nel, for instance by being very close to the verifier, then this adversary can have up to ner r errors
in his responses and still be accepted. This is not really an issue for a classical adversary, since
he still has to guess n −ner r response bits, and this becomes exponentially more difficult as the
number of rounds n increases. On the other hand, it can allow for terrorist frauds against pro-
tocols in which combining the two response vectors reveals the secret key, such as Reid et al.’s
protocol [Reid et al., 2007], as pointed out in [Hancke, 2012]. The malicious prover can give two
response vectors to his accomplice, but deliberately introduce errors in ner r rounds. With this
strategy, the accomplice can successfully pass the protocol due to the bit error tolerance, but re-
covering the key of the prover is difficult. Indeed, by XORing the two vectors, the accomplice can
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only recover a bitstring with Hamming Distance ner r to the secret key of the prover. Since he does
not know the positions of the incorrect bits, he has to try flipping each possible ner r -uple of bits,
which requires

( n
ner r

)

operations, and is unfeasible for a sufficiently large number of rounds n.

To counter such attacks, the accomplice can be given a way to pass the protocol on his own
even with a noisy version of the secret key. For instance, a form of special mode can be used, in
which one can use a noisy version of the secret key to authenticate [Fischlin and Onete, 2013a].
Other solutions let the accomplice obtain the whole key from a noisy version of it, for instance
through a leakage scheme as in [Boureanu et al., 2015], or using a scheme called an extractor, as
in [Boureanu and Vaudenay, 2014].

This attack works because real world implementations differ from the perfect environment
considered while designing the protocols, due to the necessity of handling communication errors
in real life. Similarly, while it is tempting to abstract the PRF used in the protocol as a random
oracle, this simplification opens the door for attacks when real PRFs are used, as shown in the next
subsection.

3.3.5 PRF programming attacks

In 2012, Boureanu et al. [Boureanu et al., 2012] exhibit new attacks on PRF based distance bound-
ing protocols. The key idea to these attacks is that the underlying assumption for the security of
such protocols is that the prover cannot control the output of the PRF. If he could for instance force
r 0 = r 1 for all rounds, then he could mount a distance fraud by sending his responses in advance,
as they would become independent of the challenge. However, the security that is expected from
a PRF is that, to an adversary who does not know its key, it is indistinguishable from a truly ran-
dom function. On the other hand, in distance bounding protocols, the prover does know the key,
so the security of the PRF alone may not be sufficient. Indeed, for instance, a good block cipher
is expected to behave as a secure PRF, but its use as a PRF could lead to problems in a distance
bounding protocol where the only input would be a prover generated nonce NP. Indeed, in this
case, the prover could simply obtain the nonce corresponding to an all-zero bitstring output by
computing the decryption of an all-0 bitstring with his secret key. A less trivial example is the fol-
lowing PRF f , used to compute PRFx (NP||NV) (where x is a secret key, NP the prover’s nonce, and
NV the verifier’s nonce). It returns gx (NP||NV) (where g is a regular PRF) when NP 6= x, and r 0||r 0

(for a random r 0) when NP is equal to x. This is a secure PRF, since an adversary who does not
know the key has a negligible probability of finding a NP such that NP = x, which would trigger
the non random behaviour, but a malicious prover could exploit it by choosing NP = x to mount a
distance fraud.

Similarly, Boureanu et al. [Boureanu et al., 2012] presented Mafia Frauds that work when the
PRF used contained a trapdoor, and are efficient when part of the output of the PRF are XORed
with parts of the key. They show that there exist intricate PRF constructions which allow a Mafia
Fraud adversary to extract the secret key of the prover. In practice, it means that a malicious man-
ufacturer could implement backdoors in the PRF used by the distance bounding devices, in order
to be able to extract the key of any prover later.

For this reason, the designers of Distance Bounding protocols should be extremely careful on
how the PRF is used. Preventing distance frauds based on such PRFs can be done by XORing a
random mask picked by the verifier to the response vectors, so that they cannot anymore be com-
pletely controlled by the prover. The Mafia Fraud attacks can be prevented by using two separate
keys, one for the PRF and one for TF resistance, as in [Fischlin and Onete, 2013b], or by using PRFs
that are safe to use when XORed with parts of the key, for instance circular-secure PRFs (as defined
in [Boureanu et al., 2012]).

The successive apparition of all these new attack model forced the design of many new proto-
cols. In the next section, we present some classical ones.
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3.4 Classical Protocols

In this section, we present a selection of Distance Bounding protocols from the literature. Note
that this list of protocols is far from being exhaustive, since more than 40 distance bounding pro-
tocols appear in the literature [Brelurut et al., 2016, Gildas et al., 2017].

3.4.1 Brands and Chaum: Protocol 1

In their seminal paper, "Distance Bounding Protocols" [Brands and Chaum, 1994], Brands and
Chaum build the first distance bounding protocols. They build up to a secure protocol through
several examples. The first one simply handles Mafia Frauds, and is shown on Figure 3.4. This
protocol, similarly to most of those that followed, is composed of three parts, and only one, the
Distance Bounding phase, is timed. During the first period, called the initialisation phase, the
prover draws a random bitstring β of length n, where n is a number of rounds, chosen according
to a security parameter. Then, during the distance bounding phase, a two-message exchange is
repeated n times: the verifier draws a random challenge bit ci , and the prover immediately re-
sponds with ri = βi (the i th bit of β). The verifier stores the time elapsed between sending ci (time
t0) and receiving ri (time t1) as ∆ti = t1 − t0. After that, during the verification phase, the prover
generates a digital signature on the concatenation of all challenges and responses, and sends it to
the verifier. If the signature is correct, and it holds that ∀i ∈ [1..n],∆ti ≤ tmax, then the protocol
succeeds, and the verifier outputs an accepting bit OutV = 1. This protocol is resistant to Mafia
Fraud: if an adversary relays the communications between the verifier and a far away prover, the
time measurements will show it. Hence, the adversary can either send a random challenge to the
prover in advance, or forward the correct challenge to the prover and try to guess the response. In
both cases, at each round, his probability to guess properly is 1

2 . If the signature scheme used in
the protocol is unforgeable, then the adversary only has a negligible probability of forging a valid
final signature if he did even just one mistake among the n rounds.

Brands and Chaum however note a flaw in this protocol: the response bits during the Distance
Bounding phase do not depend of the challenges at all. Due to this, a far away malicious prover
can send his responses in advance, so that ∆t ≤ tmax despite the distance.

Prover P Verifier V
Secret Key: skP Public Key: pkP

Initialisation

β
$← {0,1}n

Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ci←−−−−−−−−−−−−−−−− Start clock

ri = βi
ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

σ = SignskP

(∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

)

σ−−−−−−−−−−−−−−−−→

If VerifypkP

(

σ,
∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

)

and ∀i ∈ [0;n −1],∆ti ≤ tmax
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 3.4: The first Distance Bounding protocol proposed by Brands and Chaum
in [Brands and Chaum, 1994]. It is resistant to mafia fraud, but vulnerable to distance fraud.
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3.4.2 Brands and Chaum: Protocol 2

In the first protocol, a malicious prover could defeat the distance bound by sending responses in
advance. To counter this attack, called a Distance Fraud, Brands and Chaum propose a second
protocol, depicted on Figure 3.5. This protocol is only designed to resist Distance Fraud, hence,
the bitstring β is public and accessible by anyone. Then, during the Distance Bounding phase,
the prover replies with ri = βi ⊕ ci upon receiving a challenge. The verifier then checks that all the
responses are correct, as well as the time measurements. In this protocol, the prover cannot send
the response in advance reliably: he only has a probability of 1

2 of guessing the correct challenge,
which is needed to send the correct response. On the other hand, this protocol is not resistant to
Mafia Fraud: since the response string is public, and no computations involve a secret value, an
adversary can authenticate successfully.

Prover P Verifier V
Public bitstring β

Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ci←−−−−−−−−−−−−−−−− Start clock

ri = ci ⊕βi
ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

If ∀i ∈ [0;n −1],ri = βi ⊕ ci

and ∆ti ≤ tmax
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 3.5: The second Distance Bounding protocol proposed by Brands and Chaum in
[Brands and Chaum, 1994]. It is resistant to distance fraud, but vulnerable to mafia fraud.

3.4.3 Brands and Chaum: Protocol 3

Finally, Brands and Chaum combined the idea of these two protocols to build one that is resistant
to both Distance and Mafia fraud. It is depicted on Figure 3.6. Note that further in this thesis, when
we mention Brands and Chaum’s protocol, it is this one that is concerned. During the initialisation
phase, the prover generates a random bitstring β, and sends a cryptographic commitments on its
value. Then, during the Distance Bounding phase, the prover replies to the challenges ci with ri =
βi ⊕ci . Finally, during the verification phase, the prover opens the commitment, so that the verifier
can check that the βi values were the ones the prover had committed to, as well as a signature
on the concatenation of challenges and responses. This protocol is secure against both Distance
Fraud and Mafia Fraud. It is however vulnerable to a terrorist fraud: a prover can sent the response
vector β to his accomplice without leaking any secret information. Brands and Chaum left this as
an open problem for future work.

3.4.4 Reid et al.

In [Reid et al., 2007], Reid et al. propose a Terrorist Fraud resistant protocol. This protocol is based
on the same idea as the one proposed by Bussard and Bagga [Bussard and Bagga, 2005], except that
the protocol of Bussard and Bagga uses computationally expensive public key primitives, while
the protocol of Reid et al. only relies on symmetric primitives. Both protocol aim at making it
impossible for a malicious prover to permit an accomplice to pass the protocol without revealing
its secret key. Remember that for terrorist fraud resistance, we assume that provers want to protect
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Prover P Verifier V
Secret Key: skP Public Key: pkP

Initialisation

β
$← {0,1}n ,rcom

$← {0,1}l

C = COM.commit(β,rcom)
C−−−−−−−−−−−−−−−−→

Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ci←−−−−−−−−−−−−−−−− Start clock

ri = ci ⊕βi
ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

σ = SignskP

(∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

)

σ,rcom−−−−−−−−−−−−−−−−→

If VerifypkP

(

σ,
∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

)

and ∀i ∈ [0;n −1],ri = COM.open(C,rcom)i ⊕ ci

and ∆ti ≤ tmax
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 3.6: The third Distance Bounding protocol proposed by Brands and Chaum in
[Brands and Chaum, 1994], in which COM is a commitment scheme. It is resistant to both Mafia
Fraud and Distance Fraud.

themselves against later impersonation. In the protocol of Reid et al., depicted on Figure 3.7, the
prover and verifier each pick a nonce, respectively NP and NV, and exchange them. They use
these nonces to build a response vector a = MAC.tagx (NP||NV), where MAC is a MAC scheme.
In the original paper, the requirement if for the output of MAC to be pseudorandom, so that it is
actually used as a PRF. Both the prover and the verifier then compute e = x⊕a. During the distance
bounding phase, the prover responds with ai if the challenge is 0, and ei if the challenge is 1. In
this protocol, if a malicious prover wants to help an accomplice to pass the protocol by giving him
the two response strings, then the accomplice can recover x = a ⊕ e, so trivial terrorist frauds are
avoided. al. [Bay et al., 2013] still

However, this protocol, and others relying on the same idea, are vulnerable to terrorist frauds
when noise resistance is added to the protocol, as developed in Section 3.3.4. The next protocol
we present is resistant to terrorist frauds in the presence of noise.

3.4.5 Fischlin and Onete

In 2013, Fischlin propose a Distance Bounding protocol designed to have provable Terrorist Fraud
resistance, even in a noisy communication environment, and to additionally resist PRF program-
ming attacks [Fischlin and Onete, 2013b]. This protocol is shown on Figure 3.8. It uses two keys, x

and y : x is used to compute the PRF, and y is the one that is XORed with the output of the PRF, in
order to prevent Mafia Frauds based on PRF programming.

It starts with the verifier sending a nonce NV, and the prover sending a nonce NV, along with a
value b. A honest prover always sends b = 0, and a value I such that PRFx (NP||NV) = I||a0. In this
case, both then compute a1 = a0⊕ y , and start the Distance Bounding phase. The prover responds
to the challenges with ri = a

ci

i
at each round. Finally, the prover authenticates the transcript dur-

ing the verification phase. To be Terrorist Fraud resistant even in the presence of noise, it includes
a special mode which allows someone (typically the accomplice A of a dishonest prover after a
Terrorist Fraud) knowing a bitstring with a low Hamming Distance to a secret key y to pass. This
mode is activated when A sends b = 1. He can then run a kind of degraded version of the protocol,
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Prover P Verifier V
Shared key: x Shared key: x

Initialisation

NP
$← {0,1}l NV←−−−−−−−−−−−−−−−− NV

$← {0,1}l

a = MAC.tagx (NP||NV)
NP−−−−−−−−−−−−−−−−→ a = MAC.tagx (NP||NV)

Distance Bounding

for i = 1 to n

ci
$← {0,1}

ri =

{

ai if ci = 0
ai ⊕xi if ci = 1

ci←−−−−−−−−−−−−−−−− Start clock
ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

If ∀i ∈ [0;n −1],ri = ai ⊕ (ci ·xi )
and ∆ti ≤ tmax

OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 3.7: The Distance Bounding protocol proposed by Reid et al. in [Reid et al., 2007], where MAC is a
MAC scheme used as a PRF.

in which the responses are equal to the challenges during the Distance Bounding phase. If he re-
sponds correctly, A is accepted with probability mi n(1,2HD(y,I)+TMAX+EMAX), where TMAX+EMAX
is the maximum number of errors tolerated in the protocol.

Some of these protocols come with proofs, which give a certain level of confidence in their
security. In order to carry these proofs, a formal model is needed. This model precisely defines the
attacker capabilities, as well as the threats that the protocol aims at resisting. In the next section,
we present one of these formal models, which we used to prove the security of our protocols.

3.5 Formalism for Distance Bounding

In this section, we formally define the notion of distance bounding protocols, as well as the as-
sociated threat models. While several formal security models for distance bounding were pro-
posed [Dürholz et al., 2011, Boureanu et al., 2015, Avoine et al., 2009], we only present the one by
Dürholz, Fischlin, Kasper and Onete [Dürholz et al., 2011], which we used for our proofs.

3.5.1 Formal Definition of DB Protocols

Formally, DB protocols are interactive protocols running between two participants. The objective
of the prover P is to prove to the verifier V that he is legitimate and located at a distance at most
dmax. The participants interact during rounds, defined as sequences of messages. For some of
these rounds, the verifier uses a clock to measure the time elapsed between the emission of a
challenge ci and the reception of the corresponding response ri . These back-and-forth rounds are
referred to as time-critical rounds while otherwise they are referred to as slow phases or lazy phases.
In most protocols, the DB phase of a protocol is composed of either n independent time-critical
rounds or only one combined time-critical round. Having measured the elapsed time at the end
of each time-critical round, the verifier then compares this value to a threshold tmax associated
with the maximal allowed distance dmax. If at least one of these tests fails, the prover will not be
considered in the vicinity of the verifier.

Without loss of generality, the DFKO model considers a single verifier. This verifier is assumed
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Prover P Verifier V
Shared keys: x, y Shared keys: x, y

Initialisation

b = 1,NP
$← {0,1}l NV←−−−−−−−−−−−−−−−− NV

$← {0,1}l

(I′||a0) = PRFx (NP||NV)
b,I′,NP−−−−−−−−−−−−−−−−→ (I||a0) = PRFx (NP||NV)

a1 = a0 ⊕ y a1 = a0 ⊕ y

Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ri =

{

a0
i

if ci = 0
a1

i
if ci = 1

ci←−−−−−−−−−−−−−−−− Start clock
ri−−−−−−−−−−−−−−−−→ Stop clock

Store ∆ti

Verification

CR =
∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri ) CR =

∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

T = PRFx (NP||NV||I′||b||CR)
T−−−−−−−−−−−−−−−−→

Acceptance conditions
b = 0 b = 1

∧I′ = I ri = ci

∧T correct ∧∆ti ≤ tmax

∧ri = a
ci

i

∧∆ti ≤ tmax

Figure 3.8: The Distance Bounding protocol propoposed by Fisclin and Onete
in [Fischlin and Onete, 2013b]. It has 2 modes: If b = 0, it behaves as a regular Distance Bounding
protocol, but if b = 1, it switches to a special mode in which it accepts the authentication probability
pHW(I,y) (a probability that gets higher as the hamming distance between I and y decreases) if the responses
are equal to the challenges.

to behave honestly during the authentication of a prover. However, he may try to lift the anonymity

of a prover if this is possible. On the other hand, provers can potentially behave maliciously and
attempt to fool the verifier, either by themselves or by using (voluntary or unwilling) accomplices.

Most distance bounding protocols are revocable: it is possible to deny access to a given user if
he needs to be banned from the system. For non anonymous protocols, revocation is trivial: the
verifier knows with which prover it is interacting, so he can consult a revoked user list to check
whether he should accept or not. On the other hand, for anonymous protocols, revocation is more
tricky. Hence, we include a revocation mechanism in the features of a distance bounding protocol,
even though it only needs to be explicitly defined for anonymous protocols. Note that for some
protocols, such as PDB [Ahmadi and Safavi-Naini, 2014], the revocation is not defined.

When a protocol uses nonces, their length is denoted k.

The features distance bounding protocol, using a user list UL, and a revoked user list RL, can
be defined as follows:

Definition 17 (DB protocol). A distance-bounding protocol DB is defined by the following algo-

rithms:

DB.gen(1λ) is the algorithm run by an honest party, setting up the cryptographic primitives for a

security parameter λ. It also sets the number of the time-critical rounds n, and the nonce

length l , which are polynomial in the security parameter λ.

DB.prover(KID) is the algorithm run by a honest prover, with identity ID and secret key(s) KID.
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DB.verifier(KV ,UL,RL) is the algorithm run by the verifier, with the secret key(s) KV , with a user list

UL and a revoked user list RL. At the end of its execution, it outputs a bit OutV, which is 0 if

the authentication is accepted, and 1 otherwise.

DB.join(ID,UL) is the algorithm used to register a new prover with identifier ID in the list UL. It

generates the keys for this new prover and initialises it with the corresponding values KP.

DB.revoke(ID,UL,RL) is the algorithm to revoke a prover with identifier ID in UL and transfer him

to the revoked users list RL.

Additionally, revocable protocols with anonymity need a functionality that allows a trusted au-

thority (for instance, the entity who runs DB.gen(1λ)) to deanonymize a transcript:

DB.open(idP) is the algorithm that returns the identifier of the prover who was accepted in the ses-

sion idP.

3.5.2 Formal models: The DFKO Framework

In this section, we describe the DFKO model for defining the classical threats against these proto-
cols.

High Level Overview. The DFKO model defines the security properties of distance bounding
protocols as security games [Shoup, 2004]. In a security game, an adversary plays according to
some rules, and a winning condition, which define a successful attack. In the DFKO formalism,
the interactions between the participants are modelled as sessions. For each security property, the
capabilities of the adversary in these sessions are defined. While the adversary is generally allowed
to do anything, even relaying messages between far away participants, some of these actions are
said to taint the session in which they are performed. A tainted session intuitively denotes a ses-
sion in which the adversary did something that is forbidden, either by the laws of physics or by the
attack scenario. In order to win, the adversary must be able to run a session that is not tainted,
and satisfies the winning conditions.

Adversary Model. In this DFKO model, an adversary is a probabilistic polynomial time algo-
rithm, who can interact with provers and verifiers in three kinds of sessions:

• Prover-verifier sessions, in which he observes an honest execution of the protocol between
a prover and a verifier.

• Prover-adversary sessions, in which he interacts with a honest prover as a verifier.

• Adversary-verifier sessions, in which he interacts with a legitimate verifier as a prover.

Each session is associated with a unique identifier sid.
The adversaries are quantified in terms of their computational power t , the number of prover-

verifier sessions qobs they may observe, the number qv of adversary-verifier sessions and the num-
ber qp of prover-adversary sessions that they initiate as well as their winning advantage for the
corresponding security games.

Each game has its own definition for a tainted message exchange. A tainted exchange indicates
that an attack scenario is ruled out by definition, due for instance to the verifier’s ability to detect
pure relays through his accurate clock. In other words, the adversary can perform any action, but
some of these actions may taint the session. An adversary cannot win a game in a tainted session.
A session is tainted if any of its time critical phases is tainted.

Following the terminology introduced by Vaudenay [Vaudenay, 2007] and later re-used to de-
fine prover-anonymity [Hermans et al., 2013a], if an adversary is assumed to know the final result
of an authentication session (i.e., accept or reject), he is said to be wide, while otherwise he is nar-

row. Orthogonally, if the adversary may never corrupt provers, he is considered to be weak while
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if a corruption query is only followed by other such queries, the adversary is forward. Finally, if
there is no restriction on the corruption queries, the adversary is said to be strong. In our proofs,
we consider the strongest adversary model possible, namely wide-strong adversaries.

Communications and time. Communications involving honest entities are always part of a ses-
sion. To capture the notion of relays, the DFKO framework uses an abstract clock keeping track
of the sequence of the adversary’s actions. It is given as a function marker : N×N→ N, such that
marker(·, ·) is strictly increasing. In the following definitions, Πsid[i , . . . , j ] denotes a sequence of
messages (mi , . . . ,m j ) exchanged during the session sid of the protocol.

A timed exchange is called a time-critical phase, it starts when the clock starts, and stops when
the clock stops. A time-critical phase might contain several challenge response exchanges, each
of which is called a round. In most protocols of the literature, each phase is composed of only one
round, i .e., there is only one challenge and one response between the moment the clock starts
and when it stops. Hence, except when imposed by the protocol, we sometimes use the word
time-critical round instead of phase. The untimed message exchanges of the protocol are called
lazy (or slow) phases.

Game structure The threat models are represented as security games involving an adversary A

and a challenger simulating the environment for him. All these game-based proofs start with the
challenger building the simulation environment using DB.gen(1λ). For clarity, this step is omitted
in their descriptions. The adversary interacts with the simulated environment through oracles that
he is allowed to run concurrently. These include a prover oracle (for prover-adversary sessions),
a verifier oracle (for adversary-verifier sessions) as well as a session oracle to simulate an honest
exchange between a prover ID and the verifier. The challenger can simulate the following oracles,
to which A can access a polynomial number of times, for a prover identifier ID of his choice:

DB.Verifier(·) runs the protocol DB.verifier(KV ,UL,RL).

DB.Prover(·) runs the protocol DB.prover(ID,KID).

DB.Session(·) returns the transcript of a new honest run of the protocol.

DB.Joinh(·) simulates the join of a honest prover ID by running DB.join(ID,UL).

DB.Joinc (·) simulates the join of a corrupted prover ID by running DB.join(ID,UL) and returning

the secret keys.

DB.Corrupt(·) simulates the corruption of a prover Ui by returning his secret keys.

DB.Revoke(·) on input ID, it runs DB.revoke(ID,RL,UL) to revoke the prover PID.

Note that the adversary always has access to DB.Prover(·),DB.Verifier(·) and DB.Session(·),
used to emulate the 3 kinds of sessions, but can only access DB.Joinh(·),DB.Joinc (·),DB.Corrupt(·)
and DB.Revoke(·) oracles for the privacy and anonymity game.

We now give the definitions for the security games corresponding to the different attack sce-
narios.

Mafia Fraud (MF)

During a mafia fraud, an active MiM adversary, interacting with a single prover and a single verifier
during several sessions, tries to authenticate.

The adversary is not able to purely relay information between the verifier and the prover dur-
ing the time-critical phases. On the other hand, the model allows him to relay a modified message,
which allows for something equivalent to the learning phase of [Boureanu et al., 2015]. Accord-
ingly, the tainted time-critical phases are defined as follows.
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Definition 18 (Tainted session (MF)). A time-critical phase Πsid[k,k +1] = (mk ,mk+1), for k ≥ 1,

of an adversary-verifier session sid, with the message mk being received by the adversary as the k th

challenge from the verifier, is tainted by the time-critical phase Πsid∗ [k,k + 1] = (m∗
k

,m∗
k+1) of a

prover-adversary session sid∗ if the 3 following conditions are satisfied:

(mk ,mk+1) = (m∗
k ,m∗

k+1),

marker(sid,k) <marker(sid∗,k),

marker(sid,k +1) >marker(sid∗,k +1).

Once this definition is given, the game-based definition of MF resistance notion can be stated
as follows.

Definition 19 (MF Resistance). For a DB authentication schemeDB, a (t , qv, qp, qobs)-MF adversary

A wins against DB if the verifier accepts A in one of the qv adversary-verifier sessions sid, which

does not have any critical phase tainted by a prover-adversary session sid∗. The advantage of an

adversary A AdvMF
A ,DB(λ) in this experiment is the probability that A wins the MF game. We define

the advantage on the MF experiment as

AdvMF
DB(λ) = max

A ∈Poly(λ)
{AdvMF

A ,DB(λ)}.

A protocol is MF-resistant if AdvMF
DB(λ) is negligible.

Distance Fraud and Distance Hijacking (DF and DH)

Distance Hijacking [Cremers et al., 2012] was not defined in the original DFKO framework. How-
ever, the framework was extended to include this threat in [Avoine et al., 2017], as a generalisation
of the distance fraud property. In DF attacks, the adversary is a malicious prover who aims to
authenticate from a distance greater than dmax. In DH attacks, the adversary attempts to do the
same, but he uses the unintentional help of legitimate provers located close to the verifier. The
remote adversary may initiate the DB protocol and let the nearby prover complete the DB phase.

To capture DH in the DFKO framework, we consider an adversary (here a malicious prover)
able to use the help of an honest prover in the verifier’s proximity and having two choices.

• In the DB phase, he commits to a response in advance, before the challenge of that specific
round, and sends that commitment. These commitments are not cryptographic commit-
ments, with the properties of binding and hiding, but rather they indicate the prover’s choice
with regards to a response, which he must transmit to the verifier.

• In any phase, he commits to a special message Prompt, triggering the response by a close-by
honest prover.

The prompting oracle also works in lazy phases. If the adversary either (1) fails to commit
or prompt for one specific phase, or (2) sends a different value than committed after receiving
the challenge, he taints the phase and the session. More formally, when the adversary opens a
verifier-adversary session sid, he also opens two associated dummy sessions sidCommit for com-
mitted responses and sidPrompt for the responses prompted from the prover. Technically, such
an adversary is more powerful than in a typical DH attack [Boureanu and Vaudenay, 2014], since
the adversary can intercept time-critical responses that are sent by the honest prover, and replace
them with his own committed responses. More precisely, the formal definition of tainted phases
is as follows.

Definition 20 (Tainted Time-Critical Phase (DH)). A time-critical phase denoted Πsid[k,k +2 · l −
1] = (mk ,mk+2·l−1) of an adversary-verifier session sid, with the message mk being received by the

adversary as the k th challenge from the verifier, is tainted if one of the following conditions holds.
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The maximal j with ΠsidCommit
[ j ] = (sid,k + 1,m∗

k+2·l−1) for m∗
k+1 6= Prompt and marker(sid,k) >

marker(sidCommit, j ) satisfies m∗
k+1 6= mk+1 (or no such j exists).

The maximal j with ΠsidCommit
[ j ] = (sid,k +1,m∗

k+1) for m∗
k+1 = Prompt satisfies mk+1 6= m

Prompt

k+1 ,

in which m
Prompt

k+1 denotes the message mk+1 in sidPrompt.

This definition rules out some potential actions of attackers. Once this is done, the game-based
definition of DH resistance notion can be stated as follows.

Definition 21 (DH Resistance). For a DB authentication scheme DB with DB threshold tmax, a

(t , qp, qv, qobs)-DH adversary A (with idA ) wins against DB if the verifier accepts idA in one of qv

adversary-verifier sessions, which does not have any critical phase tainted.

The advantage of an adversary A AdvDH
A ,DB(λ) in this experiment is the probability that A wins

the DH game. We define the advantage on the DH experiment as

AdvDH
DB(λ) = max

A ∈Poly(λ)
{AdvDH

A ,DB(λ)}.

A protocol is DH-resistant if AdvDH
DB(λ) is negligible.

In this thesis, we present distance bounding protocols that are anonymous. In these proto-
cols, the verifier does not know which prover is authenticated, so that it could seem pointless to
perform a distance hijacking. However, in anonymous protocols, an entity called opening author-
ity is allowed to deanonymize a session. Hence, a malicious prover could still mount an alibi, by
performing a distance hijacking, and then asking the opening authority to verify that he did au-
thenticate. For this reason, we still consider distance hijacking relevant for anonymous protocols,
with regards to the opening authority.

Terrorist-Fraud (TF)

Terrorist fraud resistance is a notion that is difficult to capture. Many different definitions for it
exist in the literature. The DFKO model defines the notions of GameTF [Fischlin and Onete, 2013a]
and strSimTF [Dürholz et al., 2011]. There also exists another definition, SimTF, which is similar
to strSimTF, except that in SimTF, the prover and his accomplice are forbidden to communicate
with each other during the time critical phases, while in strSimTF, this limitation is lifted.

In both strSimTF and GameTF, a far away, dishonest prover P∗ helps an accomplice A to pass
the protocol. Both attacks are defined as a two phase security game, which are identical for the
first phase, but different for the second. In the first phase, the prover helps the adversary (his
accomplice), so that the adversary obtains some information, referred to as view. This adversary
is accepted by V with probability pA . In the second phase, the information view is used in an
authentication attempt. For GameTF, an adversary B(view) uses it, in the presence of P∗, who is
still far away but behaves honestly. He wins if he passes the protocol with a probability greater than
the probability of the best MF adversary. For strSimTF, a simulator, using only view but without
access to the prover, tries to authenticate, and wins if he passes with a probability greater than pA .

We first define the tainted session notion for both strSimTF and GameTF. For SimTF, the
tainted phase definition is different, and we also give it for completeness, even though we do not
use it in our proofs.

Definition 22 (Tainted session - GameTF and strSimTF). A time-critical phase Πsid[k,k+2·l−1] =
(mk ,mk+2·l−1), for k, l ≥ 1, of an adversary-verifier session sid, with the message mk being received

by the adversary as the k th challenge from the verifier, is tainted if there exists a prover-adversary

sessionsid∗, and messages (m∗
k

,m∗
k+2·l−1) such that for all i ∈ {0, l −1} we have

marker(sid,k +2 · i ) <marker(sid∗,k +2 · i ),

and marker(sid,k +2 · i +1) >marker(sid∗,k +2 · i +1).
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In other words, the adversary cannot relay both the challenge and its response.
In the SimTF definition, the malicious prover is not allowed to communicate with his accom-

plice at all during the time-critical phases. Thus, any communication between them during any
time-critical phase taints the session, which is formalised by the following definition:

Definition 23 (Tainted Session - SimTF). An adversary-verifier session sid, containing the time-

critical phases Πsid[k,k +2 · l −1] = (mk ,mk+2·l−1), for k, l ≥ 1, with the k-th message being received

by the adversary, is tainted if there is a session sid′ between the adversary and P such that, for any i ,

marker(sid,k) <marker(sid′, i ) <marker(sid,k +2 · l −1).

Let view be the internal state of A after colluding with P.
For GameTF, we are interested in whether this help was helpful to A , i.e., whether the help

allows A to win the MF game with a better probability than an unhelped adversary.

Definition 24 (Helpful adversary). A TF adversary A against a distance-bounding authentication

protocol DB is said to be helpful to an adversary B playing the MF game if, given view, B wins the

MF game with a probability at least AdvMF
DB(λ).

The GameTF definition follows:

Definition 25 (gametf-security). For a DB protocol DB, a (t , qv, qp, qobs)-terrorist-fraud adversary

pair (A , P), a DB protocol DB is GameTF-secure if, for A authenticating with probability pA with

the help of P∗, at least one of the two following conditions holds:

• pA is negligible with respect to n,

• there exists a MF adversary B running O(qobs) prover-verifier sessions and O(qv) adversary-

verifier sessions to which A is helpful.

In strSimTF, we are interested in the success probability of a simulator Sim, given view, and
without any interaction with any legitimate prover. Let pSim denote this success probability. The
TF attack by the pair (P,A ) is successful, if the help of P∗ during the attack does make any difference
in the success probability of ∼ (i.e., if pA > pSim).

The definition of the TF-resistance notion strSimTF follows:

Definition 26 (TF Resistance strSimTF). For a DB authentication scheme DB, a (t , qv, qp, qobs)-

terrorist-fraud adversary pair (A , P) and a simulator Sim running in time tSim, the malicious prover

P and his accomplice A win against DB if A authenticates in at least one of qv adversary-verifier

sessions without tainting it with probability pA , and if Sim authenticates in one of qv sessions with

the view of A with probability pSim, then pA ≤ pSim.

TF resistance is a binary property. Indeed, the accomplice (i.e., the simulator) is either able to
impersonate independently the prover with at least the same probability in later sessions having
the initial information received from the prover (i.e., TF-resistant) or not.

Slow-phase impersonation

The notion of slow phase impersonation was defined when the hardware used for distance bound-
ing only allowed for a limited number of time-critical rounds. If the number of rounds is low, then
an attacker can more easily guess the responses. This security property aims at expressing resis-
tance to this kind of attacks: the slow phases of the protocol should be sufficient for a safe authen-
tication. Hence, a protocol is said to be slow-phase impersonation resistant if it is unfeasible for an
adversary able to relay the messages during the protocol to authenticate without purely relaying
the messages of the slow phases.

Let the IF experiment ExpIF
A ,DB

(λ) for an adversary A on a protocol DB be defined as follows.
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Definition 27 (Impersonation Fraud Resistance).

Let DB be a distance bounding protocol, and A be an adversary. A has access to the DB-oracles

Joinh(·), Joinc (·), Revoke(·), Corrupt(·), Prover(·), Verifier(·), Session(i ), H(·) and Taint(·). A wins if

and only if ∃ trans ∈ TLv such that trans is the concatenation of all the messages exchanged during

a DB session, and both the following conditions are satisfied.

• OutV = 1,

• ∄t ∈TLv such that t 6= trans and the lazy phases of t and trans are equal.

The advantage of an adversary A AdvIF
A ,DB(λ) in this experiment is the probability that A wins

the IF game. We define the advantage on the DH experiment as

AdvIF
DB(λ) = max

A ∈Poly(λ)
{AdvIF

A ,DB(λ)}.

DB is IF-resistant if AdvIFDB(λ) is negligible.

We have chosen to discard the slow-phase impersonation-security threat in our analysis. Ini-
tially, this notion has been introduced for resource-limited provers and states that the authen-
tication of a prover should be difficult even if only a reduced number of time-critical rounds is
supported. This notion is relatively ambiguous: it states that the protocol should remain secure
even if the adversary is capable of guessing all the time-critical responses. However, the number
of rounds depends on the security parameter, just like the size of the keys and nonces. Therefore,
if the adversary is capable of guessing all the responses, with probability 2−n , then he should also
be capable of guessing the key, and the protocol is not secure. Therefore, we believe that the need
for slow-phase authentication is no longer a constraint for the design of DB protocols, and we do
not take this property into account in our analysis.

MiM-Privacy

MiM-privacy (which we sometimes refer to as privacy) is a property that deals with the ability
of an adversary to distinguish which prover is running the protocol, and was added to DFKO
in [Gambs et al., 2014]. It is formalised as follows:

Definition 28 (MiM-Privacy Protection). Let DB be a DB scheme. The MiM-privacy experiment

ExpMiM-Priv
A ,DB (λ) for an adversary A on DB is defined as follows. A interacts with a challenger who

runs the algorithm DB.gen(1λ) and sends all the public parameters to A . During the experiment,

A can access the usual oracles, but also DB.Corrupt(·),DB.Joinc (·),DB.Joinh(·),DB.Revoke(·). After

interacting with these oracles, A sends the pair of provers (ID0, ID1) to the challenger. If ID0 or ID1

is in CU, the challenger aborts the experiment. Otherwise, he picks b
$← {0,1}. Then, A loses access

to Revoke(·) and Corrupt(·) on ı0 and ı1 (the oracles return ⊥ if A uses these inputs).

A is then given access to the following oracle:

DB.Prover(·)b simulates a session by the prover PIDb
using KIDb

.

Finally, A returns b′. If b = b′, the challenger returns 1 ( i.e., the guess of A is correct), while other-

wise he returns 0.

We define A ’s advantage on this experiment as

AdvMiM-Priv
A ,DB (λ) =

∣

∣

∣

∣

Pr[ExpMiM-Priv
A ,DB (λ) = 1]−

1

2

∣

∣

∣

∣

,

and the advantage on the privacy experiment as

AdvMiM-Priv
DB (λ) = max

A ∈Poly(λ)
{AdvMiM-Priv

A ,DB (λ)}.

DB is MiM-privacy preserving if AdvPrivDB (λ) is negligible.

The next property is anonymity. It deals with the ability of the verifier to identify which prover
is running the protocol. For this property, the adversary is even stronger, so the privacy game is
included in it. Stated differently, an anonymous protocol is also private.
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3.5.3 Prover Anonymity

Prover anonymity is a property that is stronger than privacy. A protocol is prover anonymous if
even the verifier is not capable of distinguishing which prover is running the protocol.

Its definition is exactly the same as the one for the privacy game, except that A is additionally
given the keys of the verifier KV as input.

Definition 29 (Prover Anonymity). LetDB be a DB scheme. The anonymity experiment ExpAnon
A ,DB(λ)

for an adversary A on DB is defined as follows. A interacts with a challenger who runs the algo-

rithm DB.gen(1λ) and sends all the public parameters to A . During the experiment, A can access

the usual oracles, but alsoDB.Corrupt(·),DB.Joinc (·),DB.Joinh(·),DB.Revoke(·), and receives the set

of verifier keys KV .

After interacting with these oracles, A sends the pair of provers (ID0, ID1) to the challenger. If

ID0 or ID1 is in CU, the challenger aborts the experiment. Otherwise, he picks b
$← {0,1}. Then, A

loses access to Revoke(·) and Corrupt(·) on ID0 and ID1 (the oracles return ⊥ if A uses these inputs).

A is then given access to the following oracle:

DB.Prover(·)b simulates a session by the prover PIDb
using KIDb

.

Finally, A returns b′. If b = b′, the challenger returns 1 ( i.e., the guess of A is correct), while other-

wise he returns 0.

We define A ’s advantage on this experiment as

AdvAnon
A ,DB(λ) =

∣

∣

∣

∣

Pr[ExpAnon
A ,DB(λ) = 1]−

1

2

∣

∣

∣

∣

and the advantage on the PA experiment as

AdvAnonDB (λ) = max
A ∈Poly(λ)

{AdvAnon
A ,DB(λ)}.

DB is prover anonymous if AdvAnonDB (λ) is negligible.

3.5.4 Introduction to Proofs

These security games define the capabilities and aims of an adversary against a given security
property. Given an adversary against a property of a protocol, the game is ran by a challenger, in
such a way that A cannot distinguish between the environment provided by the challenger, and an
actual execution of the protocol. These games can be used to build security proofs: from a security
game, and a protocol, the aim is to prove that an adversary has a negligible success probability in
winning this game. A success probability is negligible if it is defined by a negligible function of the
security parameter. The size of the nonces and keys used in the protocol, as well as the number of
rounds n, depends on the security parameter.

Since the adversaries we consider are bounded to perform a polynomial number of opera-
tions, if their success probability is negligible, then the protocol is secure. In our proofs, we gen-
erally prove that the success probability is negligible in n, instead of λ. However, since n is chosen
according to λ, this is equivalent to showing that the success probability is negligible in λ.

Some proofs are too complex to carry them on the complete protocol directly. In order to
make them simpler and easier to follow, we use the game-hopping technique formalised by Shoup
in [Shoup, 2004]. In this formalism, the initial security game, denoted G0, is transformed to a sim-
plified game G1. Let Pr [Gi ] denote the success probability of the adversary in the game Gi : in
order for the transformation to be possible, we need to prove that |Pr[G1]−Pr[G0]| ∈ neg l (λ), i.e.,
that the transformation does not alter the success probability of A in a significant way. Then, this
game G1 can in turn be transformed into a simpler game, under the same conditions, and so on,
until we reach a final game, in which the proof is easier to perform. The transition between games,
or game hops, can for instance be used to replace pseudorandom values by actually random val-
ues, in order to finish the proof.
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3.6 Conclusion

Relay attacks can be used by two colluding adversaries to defeat a security protocol, by making the
prover and the verifier believe that they are communicating directly with each other, even though
they are actually communicating with attackers. This can be prevented by measuring the time of
flight of the messages, in an attempt to bound the distance of the prover, using Distance Bounding
protocols. These protocols are typically composed of untimed initialisation phase, during which
the prover and the verifier agree on two response vectors, followed by a timed distance bound-
ing phase, during which the verifier sends one bit challenges and expects a response from the
corresponding response vector. Some protocols have a final, untimed phase, in which additional
messages are exchanged, typically commitment openings or signatures on the transcript. While
most distance bounding protocols are resistant to relay attacks, generalised under the name of
Mafia Fraud, they might be vulnerable to frauds from dishonest, distant provers trying to cheat
on their distance: Distance Fraud, Distance Hijacking and Terrorist Fraud. In the first one, the
prover acts on his own. In the second one, he exploits honest provers that are located near the
verifier. In the last one, he uses the help of an accomplice, located near the verifier, but with the
limitation that he does not want the accomplice to be able to impersonate him later (otherwise,
the prover could perform a trivial attack, by simply giving the accomplice his credentials). These
security properties, along with privacy and prover anonymity, were formalised in formal models,
including the DFKO framework. Distance Bounding is a very rich research topic, as more than 40
protocols were published in the past three decades. The current challenges are provable security,
in particular against Terrorist Fraud, and the preservation of privacy for the users of the protocols.
In the next chapter, we present solutions for attaining various levels of privacy, while preserving
provable security.
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The number of distance bounding protocols vulnerable to attacks brought a strong incentive
to build provably secure distance bounding protocols [Dürholz et al., 2011, Boureanu et al., 2015].
Additionally, growing concerns about privacy preservation motivate the need for protocols that are
anonymous, in the sense that even the verifier cannot trace which prover ran the protocol, as long
as this prover belongs to a list of legitimate users. In this chapter, we present our two provably se-
cure distance bounding constructions: SPADE [Bultel et al., 2016] and TREAD [Avoine et al., 2017].
They both rely on the idea of leaking an authenticated session key, instead of a long term se-
cret, for terrorist fraud resistance. This terrorist fraud resistance corresponds the DFKO security
model [Dürholz et al., 2011], even though it can be defeated when specific hardware is used, as
developed in Chapter 5.

We prove the security of both SPADE and TREAD in the DFKO [Dürholz et al., 2011] formalism.

4.1 Introduction

The Snowden revelations about mass surveillance brought more incentive for the research com-
munity to focus on privacy preservation. In particular, it is important that the users of security
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systems can have the insurance that they will not be trackable, either by eavesdroppers, the com-
pany providing them with a service, ad companies, or government agencies. On the other hand,
companies must protect their interests, so they could be reluctant to propose anonymous authen-
tication if no revocation mechanism exists to ban misbehaving users.

Introducing anonymity with revocation in distance bounding protocols is challenging. Indeed,
for terrorist fraud resistance, the responses need to be intertwined with the secret key of the prover.
It seems difficult to make the verifier able to verify the responses if he is not capable of identifying
which secret key is intertwined with the responses. If he is capable of doing it, however, he is able
to identify the prover, which contradicts the need for anonymity.

While challenging, an anonymous and secure distance bounding protocol is appealing. It
could for instance be used for membership cards in a public transportation service. In such a sys-
tem, a user would pay every month to access the city transportation services, and present his card
to a contactless reader to be allowed in subway stations. This system should of course be protected
against relay attacks, since non paying users should not be able to use the subway. Additionally, a
far away card holder should never be allowed to use his card, since it would permit him to let ille-
gitimate users in. Terrorist Fraud resistance also makes sense in this context: we could imagine a
rogue user who would offer people to use his own access for money (at a lower rate than the usual
price). Such a rogue user, if he is rationale, would not want the other users to be able to access his
card on their own, but only when they pay him, so he would like to retain his credentials. Addition-
ally, many things can be inferred from the location history of an individual [Krumm, 2009], such
as his home or work address, or even social links between individuals. Hence, the public trans-
portation history of a person can be very sensitive information and should be protected, so the
company running the subway should not be able to determine the whereabouts of a given user.
On the other hand, if the company suspects that a user gave away his credentials, or that they were
stolen, it should be able to ask an administrator to deanonymize a given protocol session, in order
to be able to ban these credentials. Finally, the verifiers should be capable of determining whether
an authentication attempt is performed by a revocated user or a legitimate one.

In this chapter, we solve the problem of designing protocols suitable for such use cases.

4.2 Contributions

We describe two constructions, both provably resistant to Mafia Fraud, Distance Hijacking and
Terrorist Fraud (as per the security models). The first one, SPADE(for Secure Prover Anonymous
Distance-bounding Exchange), is a distance bounding protocol that is prover anonymous: no ver-
ifier can identify which prover is running the protocol. It is also revocable, in the sense that a mis-
behaving user can be banned: the verifier can check whether the user running the protocol is legit-
imate or revocated, and deny this user access if he is revocated. Our second construction is TREAD
(for Terrorist-fraud Resistant and Extractor-free Anonymous Distance-bounding), a generic con-
struction that can be instantiated with an encryption scheme and a signature scheme (in the broad
sense: a MAC can be used, for instance). Depending on the choice of encryption and signature,
which can both be either public key or private key, the resulting distance bounding protocol can
reach different levels of privacy. We describe three instances of TREAD: a lightweight one based on
symmetric primitives (TREADs ym), with no privacy goals, one that is MiM-private (an eavesdrop-
per cannot determine which prover ran the protocol from the transcript, but the verifier can) and
uses public key primitives (TREADpr i v ), and finally one that is prover anonymous and revocable,
and uses more demanding cryptographic primitives (group signatures): TREADano .

Both of these construction share a new design principle: instead of ensuring that a terrorist
fraud adversary has to leak his long term secret, they make him leak a prover-chosen temporary
value, as well as a signature on it. In the event of a terrorist fraud attempt, the accomplice can play
the protocol with the same value. Hence, if he learnt enough information about it, he can pass the
protocol.

The two constructions however differ on the method used to grant provable terrorist fraud re-
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sistance. While SPADE uses a traditional method based on a key extraction mechanism, TREAD is
the first provably terrorist fraud resistant protocol that does not need secret extraction or a back-
door. In fact, SPADE can be seen as a first step towards TREAD, which is more generic and elegant.

4.3 Related Work

Provable Terrorist Fraud Resistance Proving that the help received by an accomplice from a
dishonest prover during a terrorist fraud is sufficient for this accomplice to authenticate on his
own late is a not trivial. To do so, the usual strategy is to add specific mechanisms to the protocol.
Using these mechanisms, an accomplice who received enough help to pass the protocol once with
a non negligible probability can exploit the potentially incomplete information he obtained to
pass the protocol whenever he wants after the initial help.

There are two strategies for such mechanisms: the first one is to use a special mode, or back-
door, as it is done in the protocol of Fischlin and Onete [Fischlin and Onete, 2013b]. This protocol
includes a special mode allowing the adversary to authenticate if he knows a string containing
enough bits in common with the secret key of the prover.

The second strategy is to permit the accomplice to extract the whole secret key from the partial
information he obtained during the session in which he was helped, if this help was sufficient for
him to authenticate with a non negligible probability the first time. Extracting the secret key makes
the accomplice able of impersonating his companion prover at will. Hence, these mechanisms
deter rational provers from helping illegitimate users authenticate.

In their SKI protocols [Boureanu et al., 2013], Boureanu, Mitrokotsa and Vaudenay employed
a leakage scheme allowing an adversary to retrieve the long-term secret key after authenticating
with the help of a prover several times. The same technique is also used in the DBopt proto-
cols [Boureanu and Vaudenay, 2014].

Similarly, Vaudenay [Vaudenay, 2015b] used extractor schemes to recover a string close to the
long-term secret key from the view of all nearby participants after a TF attempt.

The first of our constructions, SPADE, uses a form a backdoor similar to the one used by Fis-
chlin and Onete [Fischlin and Onete, 2013b]. The second one, TREAD, does not rely on such addi-
tional artificial mechanisms at all, which makes it simpler and somewhat more natural.

While a lot of effort has gone into designing secure DB protocols, the research community has
only recently investigated privacy issues linked to distance bounding. Considering the amount of
information that can be inferred from the location history of an individual [Krumm, 2009], pro-
tecting privacy becomes a critical issue for the wide acceptance of such technology.

Privacy To address this concern, two aspects have to be considered: (1) the protection of the
privacy of the provers with respect to eavesdroppers and (2) the protection of the anonymity of
the provers with respect to verifiers.

In the first distance bounding protocol offering privacy against external eavesdropper, Swiss
Knife [Kim et al., 2009], the prover does not send his identifier, but the output of a PRF keyed with
a key he shares with the verifier, computed on the nonces. By checking one by one which key
matches the result, the verifier is capable of identifying the prover, while no eavesdropper can. An-
other private protocol, HPO, was introduced in [Hermans et al., 2013b], in which the verifier does
not have to go through all the keys it knows. The next year, Gambs, Onete and Robert extended this
protocol to deal with honest-but-curious and malicious verifiers trying to track the users by linking
their sessions. They proposed an extension of the HPO protocol, called GOR [Gambs et al., 2014],
in which the provers are managed as a group. A prover running the protocol simply proves that he
belongs to the group. These two protocols do however not resist to terrorist fraud.

In 2015, Vaudenay [Vaudenay, 2015a] proposed a generic construction to add privacy against
external eavesdropper to distance bounding protocols. His solution is to perform an authenti-
cated key exchange before a one-time secure distance bounding protocol, and use the obtained
key during the protocol. He does however not treat terrorist fraud in this work.
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In 2016, Kilinç and Vaudenay extended Proprox to obtain a privacy preserving and terrorist
fraud resistant protocol, eProprox [Kılınç and Vaudenay, 2016].

Finally, Ahmadi and Safavi-Naini [Ahmadi and Safavi-Naini, 2014] proposed the first anony-
mous distance bounding protocol to resist terrorist fraud. Their protocol is an updated version
of the the DBPK-log protocol [Bussard and Bagga, 2005], which fixes a flaw exhibited by Bay et al .
in [Bay et al., 2013]. They added an anonymity mechanism to it: the prover uses a zero-knowledge

proof to prove he knows the secret key used during the protocol, as well as a blind signature on
it issued by a trusted authority. This protocol does however not permit to revoke the users whose
key was stolen. In addition, it seems to be vulnerable to terrorist frauds in the presence of noise, as
described in Section 3.3.4. In [Ahmadi et al., 2018], the same authors proposed two new protocols,
DBi 2anP and DBi 2anP, which additionally resist to an hardware-based attack they present in the
same paper. It is presented as directional TF in Chapter 5.

In opposition, our protocols grant both anonymity and provable terrorist fraud resistance. A
comparison of our protocols to other protocols of the literature is given in Table 4.1.

Protocol TF MF DH Private Anonymous Revocable

Not formally proven

Swiss Knife[Kim et al., 2009] ✓ ✓1 ✓ ✓ ✗ ✓

Proven- Not TF-resistant

HPO[Hermans et al., 2013b] ✗ ✓ ✓ ✓ ✗ ✓

GOR[Gambs et al., 2014] ✗ ✓ ✓ ✓ ✓ ✓

privDB[Vaudenay, 2015a] ✗ ✓ ✓ ✓ ✗ ✓

Proven- TF-resistant2

PDB[Ahmadi and Safavi-Naini, 2014] ✓3 ✓ ✓ ✓ ✓ ✗

SPADE[Bultel et al., 2016] ✓ ✓ ✓ ✓ ✓ ✓

eProprox[Kılınç and Vaudenay, 2016] ✓ ✓ ✓ ✓ ✗ ✓

TREADs ym [Avoine et al., 2017] ✓ ✓ ✓ ✗ ✗ ✓

TREADpr i v [Avoine et al., 2017] ✓ ✓ ✓ ✓ ✗ ✓

TREADano [Avoine et al., 2017] ✓ ✓ ✓ ✓ ✓ ✓

DBi 2anP[Ahmadi et al., 2018] ✓ ✓ ✓ ✓ ✓ ✓

DBi 2anGM[Ahmadi et al., 2018] ✓ ✓ ✓ ✓ ✓ ✓

Table 4.1: Comparison of privacy preserving protocols. It indicates which of them are resistant to terror-
ist fraud (TF), Mafia Fraud (MF) and Distance Hijacking (DH, including DF). A ✓ indicates the protocol is
secure for a given property, and a ✗ indicates that this property was not considered in the design of the pro-
tocol. Private and Anonymous respectively denote privacy with respect to an eavesdropper and anonymity
with respect to a malicious verifier. Revocable denotes if a user can be revoked.

4.4 Common Features and Differences of the Two Designs

Both constructions are resistant to MF, DH and TF, and both have an anonymous version.
In contrast to most protocols in the literature, SPADE and TREAD are not ran with a long-term

secret shared between a prover and the verifier, but with temporary, session specific values that
are chosen by the prover. The use of long-term shared secrets as part of the distance bounding
protocol constitute a serious burden to overcome to provide anonymity for the prover, as these
secrets can be easily used to link different sessions of a user. On the other hand, using temporary
secrets gives more freedom in the design of the protocol. Both protocols are built in such a way that
an adversary can replay session specific values if he gets access to it through a TF. This approach
constitutes an important shift in the way to handle terrorist fraud resistance. Previous protocols

1Even though there exists a PRF programming attack, see [Boureanu et al., 2012] for more details
2In the models: hardware-based attacks presented in Chapter 5 not considered.
3Only in a noiseless environment
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relied on a long term secret being leaked to the accomplice during a terrorist fraud. Our protocols
show, on the other hand, that terrorist fraud resistance can be achieved by forcing the prover to
leak a session specific value, and making it possible for the accomplice to exploit this value in a
new session.

More specifically, in SPADE, the prover picks a session key NP, and sends it encrypted and
signed with a dynamic group signature scheme. Group signature schemes allow a user to pro-
duce a signature anonymously on behalf of a group of users, so that the verifier cannot distinguish
which member of the group signed. This session key is then used to generate the response vector
a. In the original article [Bultel et al., 2016], a is generated with a PRF keyed with NP. However,
this exposes the protocol to PRF programming attacks, so we replace the PRF by a specific con-
struction in the random oracle model (as defined in Section 3.5.4): more details are given in the
description of the protocol. During a terrorist fraud attempt, the accomplice needs to have access
to both ai and ai ⊕NPi to be able to respond in time. If he learns NP, then he can replay the initial
encrypted, signed message in order to run a new session using NP as the session key.

In TREAD, the prover directly picks two response vectors a and b and send them, encrypted
and signed (with a dynamic group signature scheme for the anonymous version) to the verifier.
This provides a simple way to avoid the use of a PRF, and to protect against the associated attacks.

In SPADE, the mechanism used to achieve provable terrorist fraud resistance is quite classic,
except for being based on a session key. It uses a technique that permits the accomplice to extract
the whole key NP from his view after a successful authentication, namely, a backdoor provided by
the verifier. On the other hand, in TREAD, we eliminated the need to extract anything, and focused
on a rewinding technique for the proof instead.

4.5 SPADE

4.5.1 Protocol Description

In Figure 4.1, we present SPADE. Its structure is rather similar to the generic structure presented
on Figure 3.1. In order to gain anonymity, the provers are authenticated as members of a group,
instead of using their actual identity. In essence, the prover first picks a random session key NP,
and signs it using a dynamic group signature scheme. The resulting signature can be verified with
the public key corresponding to the group, but it cannot be deanonymized, except by a trusted
party called opening authority. Then, the prover sends a message e encrypted with the public
key of the verifier, containing both NP and its signature. The verifier responds with a random
nonce NV and a random n-bit value m (where n is the number of rounds of the distance bound-
ing phase), and both compute a = H(NP||NV) (instead of PRFNP(NV), as proposed in the original
paper [Bultel et al., 2016]). Then, the distance bounding phase begins: in n similar rounds, the
verifier sends a one-bit challenge ci , and the prover responds with a one-bit response ri , which is
either ai if ci = 0, or ai ⊕NPi if ci = 1. Then, during the verification phase, the prover computes
τ = H(NP||NV||m||C||R) (instead of PRFNP(NV||m||C||R)), where C and R respectively denote the
concatenation of all the challenges and the responses, and sends it to the verifier. In the end, the
verifier accepts the authentication of the prover if the signature in the initial message was valid
and not issued by a revocated user, all the responses were sent in time and properly formed, and τ

corresponds to the actual transcript of the protocol.
In order to achieve provable Terrorist Fraud resistance, SPADE includes a form of backdoor.

This backdoor is a special function of the verifier, which can be queried by anyone. Before run-
ning the protocol, honest provers send a bit b = 0, but if the verifier receives b = 1, the backdoor
is activated, and the user can send a message e, along with NP′. If NP′ is sufficiently close to the
NP encrypted in the message e, then the verifier returns NP. A terrorist fraud accomplice, to have
a chance to successfully authenticate when he is helped, should be able to rebuild a bitstring NP′

which is very close to NP, and the backdoor helps him recover the missing bits. By close, we mean
that there exists a threshold value t such that t is a fraction of n, and the Hamming distance be-
tween NP and NP′ is at most t . The probability for an adversary to obtain NP by querying the
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backdoor with random bitstrings is denoted pback (n, t ). More details about the backdoor settings
are given in Section 4.5.3.

While most distance bounding protocols focus on lightweight primitives, we made the choice
of using group signatures, which are known to be computationally demanding. This might make
the protocol difficult to use on devices with limited computation capacity, such as smartcards.

However, this protocol could be used on more powerful devices, such as smartphones. Ad-
ditionally, since the group signature is computed on input coming exclusively from the prover, it
can be computed in advance. The prover can pick NP and compute the group signature before-
hand. Alternatively, if the proving device is not capable of computing a group signature, it can be
pre-loaded with some NP,σp couples computed on a more powerful device, such as a personal
computer.

Prover P Verifier V
Signature key: sskP Public keys: pkV ,gpk Secret key: skV

Initialisation

NP
$← {0,1}n ,σp = G.sigsskP

(NP) NV
$← {0,1}l ,m

$← {0,1}n

e = PKE.encpkV
(NP||σp )

e−−−−−−−−−−−−−−−−→ (NP||σp ) = PKE.decskV
(e)

m,NV←−−−−−−−−−−−−−−−− if G.vergpk(σp ,NP,RL) = 0 then abort

a = H(NP,NV)
Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ri =

{

ai if ci = 0
ai ⊕NPi ⊕mi if ci = 1

ci←−−−−−−−−−−−−−−−− Start clock
ri−−−−−−−−−−−−−−−−→ Stop clock

Check timers ∆ti

Verification

CR =
∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri ) CR =

∣

∣

∣

∣

∣

∣

i∈[0;n−1]
(ci ||ri )

T = H(NP||NV||m||CR)
T−−−−−−−−−−−−−−−−→ If T = H(NP||NV||m||CR)

and #{i : ri and ∆ti correct} = n
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 4.1: SPADE [Bultel et al., 2016], an anonymous TF resistant protocol built from a public key encryp-
tion scheme E , a hash function H and a group signature G.

Definition 30 (SPADE). SPADE is a distance bounding protocol, parameterised by a public key

encryption scheme E, a dynamic group signature scheme G, and a hash function H which outputs

n −bi t strings. It is defined as follows:

DB.gen(λ) sets the verifier keys (pkV , xV) = PKE.gen(λ) and the signature key pair (gpk,msk) =
G.gen(λ). It also returns the master key MK = (msk,gpk, pkV , xV) and a verification key VK =
(xV ,gpk), and sets the user list UL and the revoked-user list RL.

DB.join(i ,UL) runs the algorithm G.joinmsk(i ,gpk,UL) to get sski and constructs pski = (pkV ,sski )
for the prover i . This algorithm also returns a value regi and adds Pi to UL.

DB.prover(KID) is the algorithm of the prover, illustrated on Figure 4.1. The prover first picks a n

bit value NP at random, and computes σp = G.sigsskP
(NP) and e = PKE.encpkV

(NP,σp ). The

prover then sends it and receives m and NV, which it uses to compute a = H(NP,NV). Then, at

each time critical round, it responds to the challenge ci with ri = (ai∧ci )∨((ai⊕NPi⊕mi )∧ci ).

Finally, during a final slow phase, the prover sends T = H(NP,NV,m,C,R), where C and R are

respectively the concatenation of the challenges and responses.

DB.verifier(KV ,UL,RL) is the algorithm of the verifier, illustrated on Figure 4.1. After receiving an

initial message e, it computes (NP,σp ) = PKE.decxV (e), and sends two random n bit values NV
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and m. It computes a = H(NP,NV). Afterwards, during the n time-critical phases, he generates

a random bit ci from a uniform distribution, starts his clock, sends ci , gets back ri , stops his

clock and stores the corresponding time ∆ti . It then receives T . Finally, it verifies that (1)

∆ti ≤ tmax, (2) ri = (ai ∧ci )∨((ai ⊕NPi ⊕mi )∧ci ) for all i ≤ n, and (3) T = H(NP,NV,m,C,R).

If these conditions hold, he sends an accepting bit OutV = 1, while otherwise he sends OutV = 0.

DB.revoke(ID,RL,UL) runs G.revmsk(ID,RL,UL,gpk).

DB.open(trans) computes (NP,σp ) = PKE.decxV (e), in which e is the first message of the transcript.

Afterwards, it outputs the prover PID = G.opemsk(σp ,NP,UL,gpk).

Prover P Verifier V
pkV ,sskp xv ,gpk

Initial message
b−−−−−−−−−−−−−−−−→

if b = 0, run the protocol normally
else
e,NP′

−−−−−−−−−−−−−−−−→ (NP,σp ) = PKE.decxv
(e)

if G.vergpk(σp ,NP,RL) = 1 and HD(NP,NP′) ≤ t
r et←−−−−−−−−−−−−−−−− then r et = NP else r et = 0

Figure 4.2: The backdoor mechanism. If the initial message is b = 0, the protocol is run normally. Otherwise,
the verifier simply waits to receive a value e that he parses as (NP,σp ) and a string NP′. If NP and NP′ are
close enough, he returns NP.

SPADE is a secure anonymous distance bounding protocol. Below, we give the security proofs
for each property, in the DFKO model. In each of these proofs, in the game G0, the prover and
verifier behave as defined in Definition 30.

4.5.2 Properties

In this section, we present and prove the security properties of SPADE. Remember that to avoid
PRF programming issues that could result from XORing the key of the PRF with its output, we
model the PRF PRFNP(·) as H(NP||·), and do our proofs in the random oracle model.

Distance Hijacking

The distance hijacking resistance of SPADE comes from the message m chosen by the verifier,
which ensures that the two responses are different for half the rounds on average, so that A cannot
efficiently send a response in advance. Additionally, due to the encryption of NP, A cannot know
which value was chosen by a honest prover to exploit him.

Theorem 1. If pback (n, t ) is negligible, G is a traceable group signature and E is a IND-CCA2-secure

encryption scheme, then SPADE is DH-resistant.

Proof. We first rule out the possibility for A to obtain the value NP used by a honest prover, by
preventing the repetition of nonces, and replacing the encryption of NP by the encryption of a
dummy value. After that, we can carry the proof in the resulting simplified game, which can be
seen as a classical shared-secret DB protocol: the secret NP is shared offline between the prover
and the verifier, and the adversary A does not have any more access to a ciphertext containing
this secret.

In the original game G0, the prover and verifier oracles follow the rules of the protocol.
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Prover(i ) The prover first picks a n bit value NP at random, and computes σp = G.sigsskP
(NP) and

e = PKE.encpkV
(NP,σp ). The prover then sends it and receives m and NV, which it uses to

compute a = H(NP,NV). Then, at each time critical round, it responds to the challenge ci

with ri = (ai ∧ ci )∨ ((ai ⊕NPi ⊕mi )∧ ci ). Finally, during a final slow phase, the prover sends
T = H(NP,NV,m,C,R), where C and R are respectively the concatenation of the challenges
and responses.

Verifier(·) After receiving an initial message e, it computes (NP,σp ) = PKE.decxV (e), and sends two
random n bit values NV and m. It computes a = H(NP,NV). Afterwards, during the n time-
critical phases, he generates a random bit ci from a uniform distribution, starts his clock,
sends ci , gets back ri , stops his clock and stores the corresponding time ∆ti . It then receives
T . Finally, it verifies that (1) ∆ti ≤ tmax, (2) ri = (ai ∧ ci )∨ ((ai ⊕NPi ⊕mi )∧ ci ) for all i ≤ n,
and (3) T = H(NP,NV,m,C,R). If these conditions hold, he sends an accepting bit OutV = 1,
while otherwise he sends OutV = 0.

Game G1. The oracle Prover(·) uses different NP values for each of the qp calls. A loses an advan-

tage of at most
q2

p

2n . This follows from the binomial expansion of the probability that a given value

has been selected zero or once and the union bound. Thus, |Pr [G1]−Pr [G0]| ≤ q2
p

2n .

Game G2. The oracle Verifier(·) uses different NV values for each of the qv calls. As for the previous

transition, we have |Pr [G2]−Pr [G1]| ≤ q2
v

2n .

Game G3. H(NP,NV,m,C,R) 6= H(NP,NV,m,C′,R) if C′ 6= C. The probability for a collision on the

hashes of different messages is, in the random oracle model, bounded by
q2

H(·)
2n (where qH(·) is the

polynomial number of evaluations of the hash function). Hence, |Pr [G3]−Pr [G2]| ≤
q2

H(·)
2n .

Game G4. This step is simply a preparatory transition for the next game. Instead of only NP,
two value NP0 and NP1 are drawn at the beginning of the protocol. The message e is computed
using NP0, and the protocol is also run with NP0: NP1 is never used. However, the backdoor also
works for NP1: if it is queried with (e,NP′

1), where NP′
1 is a bitstring close to NP1 (according to

the backdoor’s threshold), then the backdoor returns NP1. G4 behaves exactly as G3, except in the
case of the failure event that A sends a string close to NP1 to the backdoor, which occurs with the
negligible (by hypothesis) probability pback (n, t ). Hence, |Pr [G4]−Pr [G3]| ≤ pback (n, t ).

Game G5. The oracle Prover(·) encrypts NP0 in his initial message e, and NP1 used in the rest of
the protocol by both parties.

The oracles are modified as follows:

• Prover(i ) sets NP0,NP1
$← {0,1}2·n , σp 0 = G.sigpsk(NP0), σp 1 = G.sigpsk(NP1), and computes

the message e as PKE.encpkV
(NP0,σp 0). It adds (e,NP1,σp 1) to a list WL. It then sends e, but

uses NP1 to compute a, the responses ri and τ.

• Verifier(·) acts as in G4, except for the NP computation:

– If (e,NP1, ·) ∈WL, it uses NP1.

– If (e, ·, ·) 6∈WL, it computes (NP∗,σ∗
p ) = PKE.decxv

(e) and uses NP∗.

Thus, A loses the possibility of recovering the value of NP from the ciphertext e. However, this
advantage is negligible since the PKE encryption scheme is IND-CCA2 secure.

Let us assume that there exists an efficient adversary A for the game G5. Thus, an efficient
distinguisher B can be defined for the IND-CCA2 experiment using A .

Initialisation B sets up the environment (except the PKE setting). He creates two user lists UL

and RL, and a dynamic group signature scheme setup with G.gen(1λ), obtaining a couple
(gpk,msk). He adds to UL np provers using DB.joinmsk(i ,UL).
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Simulation B simulates a SPADE environment for A with the DB-oracles of G4, with the fol-
lowing modifications to the prover and verifier oracles. When the oracle Prover(·) is called,

it sets e = LREnc
pkv

b
(NP0||σp0,NP1||σp1), adds (e,NP1,σp 1) to WL and uses NP1 during the

protocol. The oracle Verifier(·) acts as in G4 if it receives e such that (e,NP1,σp 1) ∈WL. Oth-
erwise, it decrypts e with the provided decryption oracle. Finally, B returns the result of the
authentication OutV to the challenger, which is 1 if the verifier accepts, and 0 otherwise.
Additionally, the backdoor needs to be simulated: if it is queried with strings close enough
(according to the backdoor threshold) to either NP0 or NP1, it returns the corresponding
bitstring (NP0 or NP1), as in G4.

If b = 1, e = PKE.encpkV
(NP1,σp 1), (e,NP1,σp 1) ∈WL and both parties use NP1 internally. This

games corresponds to the game G4. Otherwise, e = PKE.encpkV
(NP0,σp 0) while the NP1 is used

during the protocol. This simulates the game G5. The simulation works because the other parts of
the protocol do not leak anything about NP1: a leaks nothing about the input to H(·) in the random
oracle model, the same goes for τ, and the change made in game G3 ensures that A cannot learn
anything about NP1 from tampering with the challenges.

Let B0 denote the event that the distinguisher outputs 0, and B1 the event that it outputs 1.
Thus, Pr [B1|b = 1] = Pr [G4] and Pr [B0|b = 0] = 1−Pr [G5], since B returns the result of the authen-
tication to the distinguisher. The winning probability of B is then Pr [B1 ∧b = 1]+Pr [B0 ∧b = 0],
which is equal to Pr [G4] · 1

2 + (1−Pr [G5]) · 1
2 = 1

2 +
Pr [G4]−Pr [G5]

2 . Now assume that |Pr [G4]−Pr [G5]|
is non negligible. Then B has a non-negligible advantage on the extended IND-CCA2 game. How-
ever, the advantage of B cannot be more than qp times the advantage on the original IND-CCA2

experiment. Thus, |Pr [G5]−Pr [G4]| ≤ qp ·AdvIND−CCA2
PKE (λ), which is negligible by hypothesis.

The final game. We now prove that the success probability of A in G5 is negligible.
First note that the adversary trying to perform a distance hijacking cannot learn anything use-

ful from the initial message e sent by a honest, close-by prover, since it encrypts a nonce unrelated
to the one that is used during the rest of the protocol.

Additionally, since A wants to be authenticated, he needs to send the initial message: due
to the traceability of G, a signature by a honest prover P cannot be opened to the identity of A .
However, this initial message cannot (except with negligible probability) contain the value NP1

used by P during the protocol. Then, during the time-critical phases, A can either use Prompt or
Commit, i.e., he can either trigger the response of P or commit to his own response. Let r P

i
denote

the response corresponding to Prompt.

• If A uses Prompt, then his response is valid with probability 1
2 . This corresponds to the

probability to have ri = r P
i

, knowing that NPP
1 6= NPA , where NPP

1 is the value used by P, and
NPA is the value used by A .

• If he uses Commit, then either ai = ai ⊕NPi ⊕mi , and he can commit to a correct response
with probability 1, or it is not the case, and then he must guess the challenge to commit to
the correct response. Since m is uniformly distributed and unknown to A at the time when
he picks NP, we have Pr [ai = ai ⊕NPi ⊕mi ] = 1

2 . Hence, the probability to commit to the
valid response is Pr [ai = ai ⊕NPi ⊕mi ] ·1+Pr [ai 6= ai ⊕NPi ⊕mi ] · 1

2 = 3
4 .

From this, it follows that the best strategy for A is to respond by himself, as in a classical DF,
using Commit. For n challenges, this strategy succeeds with a negligible probability: 3

4
n

.

Mafia Fraud Resistance

SPADE is MF resistant. This resistance derives from the fact that NP is sent encrypted, so that
it is not accessible to the adversary, and that a final authentication of the transcript, using NP,
is performed. Moreover, A cannot forge a valid signature on his own. For these reasons, the
adversary needs to either break the security of the encryption, signature or randomness of the
hash function, or to guess the challenges or the responses for each of the n rounds.
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Theorem 2. If pback (n, t ) is negligible, E is a IND-CCA2-secure encryption scheme, H is a hash

function in the random oracle model, and G is a traceable dynamic group signature scheme, then

SPADE is MF-resistant.

Proof. The steps of this proof are similar to the corresponding ones in the DH proof, except that
in addition, we eliminate the possibility that A forges a valid signature.

In the following, WL denotes a list which stores the tuples (e,NP,σp ) generated by Prover(·). It
allows the prover and the verifier oracles to exchange their shared secrets. In the original game G0,
the prover and verifier oracles follow the rules of the protocol, except for the use of WL.

Prover(i ) The prover first picks a n bit value NP at random, and computes σp = G.sigsskP
(NP) and

e = PKE.encpkV
(NP,σp ). The prover then adds (e,NP,σp ) to WL, sends e and receives m and

NV, which it uses to compute a = H(NP,NV). Then, at each time critical round, it responds
to the challenge ci with ri = (ai ∧ci )∨((ai ⊕NPi ⊕mi )∧ci ). Finally, during a final slow phase,
the prover sends T = H(NP,NV,m,C,R), where C and R are respectively the concatenation of
the challenges and responses.

Verifier(·) After receiving an initial message e, it computes (NP,σp ) = PKE.decxV (e), and sends two
random n bit values NV and m. It computes a = H(NP,NV). Afterwards, during the n time-
critical phases, he generates a random bit ci from a uniform distribution, starts his clock,
sends ci , gets back ri , stops his clock and stores the corresponding time ∆ti . It then receives
T . Finally, it verifies that (1) ∆ti ≤ tmax, (2) ri = (ai ∧ ci )∨ ((ai ⊕NPi ⊕mi )∧ ci ) for all i ≤ n,
and (3) T = H(NP,NV,m,C,R). If these conditions hold, he sends an accepting bit OutV = 1,
while otherwise he sends OutV = 0.

Game G1. The oracle Prover(·) uses different NP values for each of the qp calls. A loses an advan-

tage of at most
q2

p

2n . This follows from the binomial expansion of the probability that a given value

has been selected zero or once and the union bound. Thus, |Pr [G1]−Pr [G0]| ≤ q2
p

2n .

Game G2. The oracle Verifier(·) uses different NV values for each of the qv calls. Thus, as for the

previous transition, we have |Pr [G2]−Pr [G1]| ≤ q2
v

2n .

Game G3. H(NP,NV,m,C,R) 6= H(NP,NV,m,C′,R) if C′ 6= C. The probability for a collision on the

hashes of different messages is, in the random oracle model, bounded by
q2

H(·)
2n (where qH(·) is the

polynomial number of evaluations of the hash function). Hence, |Pr [G3]−Pr [G2]| ≤
q2

H(·)
2n .

Game G4. The oracle Verifier(·) aborts if G.vergpk(σp ,NP,RL) = 1, no tuple of WL contains σp and
G.opemsk(σp ,NP,UL,gpk) 6∈ CU. This happens if A produces a fresh signature σp on a value NP.
Since G-SIG is a traceable dynamic group signature scheme, |Pr [G4]−Pr [G3]| ≤AdvTr ace

G-SIG(λ).

Game G5. This step is simply a preparatory transition for the next game. Instead of only NP,
two value NP0 and NP1 are drawn at the beginning of the protocol. The message e is computed
using NP0, and the protocol is also run with NP0: NP1 is never used. However, the backdoor also
works for NP1: if it is queried with (e,NP′

1), where NP′
1 is a bitstring close to NP1 (according to

the backdoor’s threshold), then the backdoor returns NP1. G5 behaves exactly as G4, except in the
case of the failure event that A sends a string close to NP1 to the backdoor, which occurs with the
negligible (by hypothesis) probability pback (n, t ). Hence, |Pr [G5]−Pr [G4]| ≤ pback (n, t ).

Game G6. The oracle Prover(·) encrypts NP0 in his initial message e, and NP1 used in the rest of
the protocol by both parties.

The oracles are modified as follows:

• Prover(i ) sets NP0,NP1
$← {0,1}2·n , σp 0 = G.sigpsk(NP0), σp 1 = G.sigpsk(NP1), and computes

the message e as PKE.encpkV
(NP0,σp 0). It adds (e,NP1,σp 1) to a list WL. It then sends e, but

uses NP1 to compute a, the responses ri and τ.
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• Verifier(·) acts as in G4, except for the NP computation:

– If (e,NP1, ·) ∈WL, it uses NP1.

– If (e, ·, ·) 6∈WL, it computes (NP∗,σ∗
p ) = PKE.decxv

(e) and uses NP∗.

Thus, A loses the possibility of recovering the value of NP from the ciphertext e. However, this
advantage is negligible since the PKE encryption scheme is IND-CCA2 secure.

Let us assume that there exists an efficient adversary A for the game G6. Thus, an efficient
distinguisher B can be defined for the IND-CCA2 experiment using A .

Initialisation B sets up the environment (except the PKE setting). He creates two user lists UL

and RL, and a dynamic group signature scheme setup with G.gen(1λ), obtaining a couple
(gpk,msk). He adds to UL np provers using DB.joinmsk(i ,UL).

Simulation B simulates a SPADE environment for A with the DB-oracles of G5, with the fol-
lowing modifications to the prover and verifier oracles. When the oracle Prover(·) is called,

it sets e = LREnc
pkv

b
(NP0||σp0,NP1||σp1), adds (e,NP1,σp 1) to WL and uses NP1 during the

protocol. The oracle Verifier(·) acts as in G5 if it receives e such that (e,NP1,σp 1) ∈WL. Oth-
erwise, it decrypts e with the provided decryption oracle. Finally, B returns the result of the
authentication OutV to the challenger, which is 1 if the verifier accepts, and 0 otherwise.
Additionally, the backdoor needs to be simulated: if it is queried with strings close enough
(according to the backdoor threshold) to either NP0 or NP1, it returns the corresponding
bitstring (NP0 or NP1), as in G5.

If b = 1, e = PKE.encpkV
(NP1,σp 1), (e,NP1,σp 1) ∈WL and both parties use NP1 internally. This

games corresponds to the game G5. Otherwise, e = PKE.encpkV
(NP0,σp 0) while the NP1 is used

during the protocol. This simulates the game G6. The simulation works because the other parts of
the protocol do not leak anything about NP1: a leaks nothing about the input to H(·) in the random
oracle model, the same goes for τ, and the change made in game G3 ensures that A cannot learn
anything about NP1 from tampering with the challenges.

Let B0 denote the event that the distinguisher outputs 0, and B1 the event that it outputs 1.
Thus, Pr [B1|b = 1] = Pr [G5] and Pr [B0|b = 0] = 1−Pr [G6], since B returns the result of the authen-
tication to the distinguisher. The winning probability of B is then Pr [B1 ∧b = 1]+Pr [B0 ∧b = 0],
which is equal to Pr [G5] · 1

2 +(1−Pr [G6]) · 1
2 = 1

2 +
Pr [G5]−Pr [G6]

2 . Now assume that Pr [G5]−Pr [G6] is
non negligible. Then B has a non-negligible advantage on the extended IND-CCA2 game. How-
ever, the advantage of B cannot be more than qp times the advantage on the original IND-CCA2

experiment. Thus, |Pr [G6]−Pr [G5]| ≤ qp ·AdvIND−CCA2
PKE (λ), which is negligible by hypothesis.

The final game. The final step is to prove that the probability to win G6 is negligible. First note
that if pback (n, t ) is negligible, the adversary has a negligible probability to extract either NP0 or
NP1 by using the backdoor. Since A cannot purely relay messages without tainting the session,
for each round j :

• If A sends c ′
j

to Prover(·) before receiving c j from Verifier(·), he would be wrong with prob-

ability 1
2 .

• If A sends c ′
j

to Prover(·) after receiving c j from Verifier(·), he must send r ′
j

before receiving

r j since pure relay is not allowed. He would be wrong with probability 1
2 .

In the first case, a wrongly guessed challenge invalidates the final message τ. Hence, A must
recompute this message to succeed. He cannot do so without guessing NP, or obtaining it from
the backdoor, and his success probability is no more than max(pback (n, t ),

(1
2

)n
) (which both are

negligible). In the second case, the authentication fails if A sends a single wrong response, so his
success probability is no more than

(1
2

)n
.

From this sequence of games, it follows that the success probability of A in the MF game is
negligible.
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Terrorist Fraud Resistance

SPADE is terrorist fraud resistant. For A to have a non negligible probability of authenticating
with the help of the prover, he needs to be able to respond to both challenges for a large number of
rounds. Since knowing both responses for one round allows to recover one bit of NP, intuitively, A
should recover most of NP. He can obtain the missing bits through the backdoor, and then, send
the initial message e in a new session and use NP to authenticate.

Theorem 3. If the challenges are drawn randomly from a uniform distribution, and the backdoor

threshold t is set to α ·n, where α is a constant, then SPADE is GameTF-resistant.

Remark, if there is an adversary A that knows all the bits of NP, then there exists an adversary
B to which A is helpful, and who wins with probability 1 (i.e., in this case, SPADE is GameTF-
resistant).

Similarly, SPADE is trivially GameTF-resistant (in the sense that even an empty help from the
prover is enough) if insecure schemes are used. If an adversary can break the encryption scheme,
he can find NP encrypted in e and he can use it to authenticate himself. In addition, if an adversary
can forge a signature, he can choose the nonce NP himself, sign it and use it to authenticate.

Thus, a malicious prover cannot perform any efficient TF attacks while preserving his secret
key.

Proof. Let us assume there is a polynomial-time (t , qv, qp, qobs)-adversary A that can win the TF
game with a non-negligible probability with the help of his malicious prover. Then, we can con-
struct an adversary B that can always perform a mafia fraud later using A ’s view, contradicting
the mF resistance of SPADE. A fortiori, A can also do so.

After a winning session by A helped by the prover, either of the two following things can be
extracted from its internal state:

• Two n-bit strings r0 and r1 representing respectively the responses to the 0-challenges and
the 1-challenges.

• An algorithm A to generate these strings.

If A is stateless (i.e., the response to a challenge does not depend on the previous ones), these
two are equivalent. For simplicity, the former case is used. Hence, A has the strings (r0,r1), repre-
senting his internal viewA (sid). Depending on the strategy chosen by the prover, there are several
possibilities:

Strategy 1 : r 0
i

= ai and r 1
i

= ai ⊕ (NPi ⊕mi )
Strategy 2 : r 0

i
= ai and r 1

i
= ⊥ or

r 0
i

= ⊥ and r 1
i

= ai ⊕ (NPi ⊕mi )
Strategy 3 : r 0

i
= ⊥ and r 1

i
= ⊥

Strategy 4 : r 0
i

= ai and r 1
i

= ⊥ or

r 0
i

= ⊥ and r 1
i

= ai ⊕ (NPi ⊕mi )
Strategy 5 : r 0

i
= ai and r 1

i
= ai ⊕ (NPi ⊕mi ) or

r 0
i

= ai and r 1
i

= ai ⊕ (NPi ⊕mi )

Strategy 6 : r 0
i

= ai and r 1
i

= ai ⊕ (NPi ⊕mi )

Strategies 4 to 6 correspond to the case where the prover deliberately introduces noise in the
responses he gives to A .

In the random oracle model, and under the assumptions that (1) the same values of NP or NV
are never chosen twice by a cautious prover and an honest verifier, the values ai can be seen as
random. Thus, strategies 2 to 6 cannot leak any information on NP.

Les us now analyse the probability for the event wi , that A to correctly respond at round i

for each of these strategies. In what follows, cg ood , cbad , and cnone respectively denote the event
that the verifier sends a challenge to which A knows a correct response, an incorrect one, or no
response.
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Strategy 1: A know both responses, so he passes the round with probability 1.

Strategy 2: A succeeds if the challenge of the verifier corresponds to the response he knows, or if he
guesses the response to the second challenge. The corresponding probability is computed
as Pr [cg ood ] ·Pr [wi |cg ood ] + Pr [cnone ] ·Pr [wi |cnone ]. This is equal to 1

2 ·1+ 1
2 ·

1
2 = 3

4 .

Strategy 3: A succeeds if he guesses the response bit, so his success probability is 1
2 .

Strategy 4: A succeeds only if cnone and he guesses ri correctly. The corresponding success probability,
Pr [cnone ] ·Pr [wi |cbad ] is 1

2 ·
1
2 = 3

4 .

Strategy 5: A succeeds if cg ood occurs, so Pr[wi ] = 1
2 .

Strategy 6: A cannot succeed: Pr [w] = 0.

If the prover uses strategy 1 for all rounds, then A recovers NP, and the fraud fails. Hence,
he needs to use strategies 2, 3, 4, 5 or 6 for a given number r of rounds. Strategy 6 can only be
used if the protocol is set up to tolerate communication errors: in this case, the authentication will
be accepted even if a number ner r of responses are false. However, our analysis focuses on the
noiseless scenario, even though it could be generalised to include noise, so we leave strategy 6 out.

Assume that a malicious prover P∗ provides to his accomplice A two strings (r 0,r 1) such that
A does not know the two correct responses for r rounds. The success probability of A is at most
3
4 for each of these rounds, so that his final success probability is at most 1n−r ·

(3
4

)r

Let us suppose that the authentication of A succeeded with a non-negligible probability pA .
Consider the adversary-verifier session sid∗ for which A has fooled V. This has happened with
probability at least pA

qv
. In such a case, A has successfully guessed the missing answers, which

have been requested. Since this happened, ( 3
4 )r should be greater than the non-negligible pA

qv
.

Hence,

∃c,∀nc ,∃n > nc ,

[(

3

4

)r

>
n−c

qv
> n−c ′

]

.

since qv ∈ nO(1). Thus, r should be in O(logn).
If an adversary B gets the internal viewA (sid∗) and has eavesdropped to all the communica-

tions involving P, A , and V, he would get e and N′
P such that HD(NP,N′

P) ∈ O(logn), where HD
denotes the Hamming Distance. Thus, B (as well as A himself) would be able to retrieve NP di-
rectly through the backdoor of V and eventually authenticate on behalf of P with probability one.

Anonymity

SPADE is private and prover anonymous. These properties are due to the dynamic group signature
scheme: the only place in which a long term value linked to the prover is used in the protocol is
to compute this signature. Hence, if the verifier or an eavesdropper can link two sessions of the
prover, they break the security of the group signature.

Theorem 4. If G-SIG is an anonymous dynamic group signature scheme, then SPADE is prover

anonymous.

Proof. Assume that there is a polynomial-time adversary A having a non-negligible advantage
AdvPA

A ,SPADE(λ) on a challenger in ExpPA
A ,SPADE(λ). A can be used to build an adversary B against

the anonymity experiment on the signature scheme ExpAnon
B,G-SIG(λ), such that AdvAnon

B,G-SIG(λ) ≥
AdvPA

A ,SPADE(λ), contradicting the assumption that G-SIG is anonymous.

Initially, the challenger in ExpAnon
B,G-SIG(λ) sends the key gpk and the revoked list RL to B, which

uses it to generate the experiment ExpPA
A ,SPADE(λ) for A .

Then, B creates the empty list CU. Having access to G-SIG-oracles from his challenger, B can
simulate the DB-oracles for A as follows:
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DB.Joinh(·): A creates PID. B relays it to G.Joinh(·) and adds Pi to UL.

DB.Joinc (·): A creates PID. B relays it to G.Joinc (·), obtains the signing key sskID,and adds PID to
UL and CU. A gets sskID.

DB.Revoke(·): A revokes PID. B relays it to G.Revoke(·), which updates RL and sends it to B. He
relays it to A .

DB.Corrupt(·): A corrupts PID. B relays it to G.Corrupt(·) and gets sskID. B adds PID to CU and
returns sskID to A .

DB.Prover(·): B simulates PID as follows: B picks NP
$← {0,1}n , sends (ID,NP) to G.Sign(ID,NP)

and gets back σp from A . B then computes e = PKE.encpkV
(NP,σp ), sends e to A , receives

(m,NV), and runs the rest of the protocol normally.

Then, A picks two identities ID0 and ID1 and sends them to B. If ID0, ID1 6∈ CU, B sends
(ID0, ID1) to the challenger. In this phase, B simulates DB.Prover(·) as follows. During the ini-
tialisation phase, B picks NP

$← {0,1}n sends it to G.Signb(·, ·) and receives σp . He then computes
e = PKE.encpkV

(NP,σp ) and sends e to A , and runs the rest of the protocol normally.
Finally, during the guessing phase, A returns b′ and B forwards b′ to the challenger of the

anonymity experiment on the group signature.
The experiment is perfectly simulated for A , and consequently, B and A have the same

probability of winning their experiment, and AdvAnon
B,G-SIG(λ) = AdvPA

A ,SPADE(λ), contradicting the
assumption on G-SIG.

4.5.3 The presence of the backdoor

The objective of the backdoor in the verifier is to discourage any prover from helping help potential
accomplices. Remark that this mechanism is stateless for the verifier, as he simply has to decrypt
the initial message of the protocol to retrieve the information needed to impersonate a prover.

The probabilities for key recovery or TF attacks depends on the proximity threshold t , which is
a public parameter of the protocol. There is clearly a trade-off between these two probabilities, as
one increases and the other one decreases in function of t . In this section, we analyse the success
probability of attacks depending on t . More precisely, we bound the probability for an adversary to
recover NP through the backdoor, depending on whether this adversary was helped by the prover
or not. While we consider a noiseless environment in our security analysis, noise tolerance could
easily be included by allowing ner r errors during the time-critical phases, where ner r = β ·n for
some constant β. In this case, to avoid the terrorist frauds described in 3.3.4, t should be greater
than ner r .

The backdoor implemented in the verifier can be queried with pairs e,NP′, such that (NP,σp ) =
PKE.decxV (e). If NP′ is close to NP, then the verifier returns NP; otherwise, it returns ⊥.

Mafia fraud adversary

A mafia fraud adversary A can obtain the session key NP associated to a message e by using the
backdoor if he guesses a bitstring that is t-close to NP. Since the number of potential queries is 2n

and the number of strings at Hamming distance at most t of NP is simply
∑t

k=0(
(n

k

)

), the probability

that the i th random query is successful (let Qi denote such an event) is

Pi = Pr[Qi |n, t ] =
1

2n − i
·

t
∑

k=0

(

n

k

)

.

The probability to have a successful query among nback (which is polynomial in n) is upper

bounded by
nback
∑

i =1
pi , due to the union bound, so we have:

54



CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

Theorem 5. The probability pback (n, t ) for an adversary performing nback queries, to recover the

value NP related to an initial message e solely by querying the backdoor is upper bounded by

nback ·
1

2−n − i
·

t
∑

k=0

(

n

k

)

Terrorist fraud adversary

As described in Section 4.5.2, if the protocol does not include noise tolerance, then, for each round,
the malicious prover can either use strategy 1 (giving both responses), strategy 2 (giving only one
response), strategy 3 (giving no response at all), strategy 4 (giving only one response which is incor-
rect) and strategy 5 (giving both one correct and one incorrect response). Note that the dishonest
prover is not bound to using only one of these strategies: he can use a different strategy for different
rounds. Let Sk denote the fact that a round corresponds to strategy k, and nSk denote the number
of rounds corresponding to strategy k. Since the goal of P∗ is to prevent A from impersonating
him, we reasonably assume that he gives as little information to A as possible. In particular, he
does not tell him the values nSk . We are interested in the case where the authentication of A was
accepted, which implies that all his responses were correct, in the noiseless scenario. Hence, A

knows at least one correct response for each round, and he knows that the response he sent is cor-
rect. For the second response, either (1) he does not know it, or (2) he knows a response, whether
it is correct or incorrect. If the prover uses strategy 1 for more than n − t rounds rounds, then A

can recover NP directly through the backdoor, so that P∗ needs to use the other strategies for x > t

rounds. Let z = x − t be the number of bits for which strategy 1 is not used, which corresponds
to the number of bits left to guess for A . In case (1), A needs to guess the z missing bits, which
succeeds with probability p1 = 2−z . In case (2), A needs to find which responses are wrong to flip
them and obtain a string that is t-bit close from NP. To do so, he can try to first flip one bit, then 2,
and all the way to x. Using this strategy, he needs to try

x
∑

i =1

(

n

x

)

cases in the worst case, and succeeds with probability p2 = 1
x
∑

i =1
(n

x)
. Sine p1 > p2, we can say that A

has, in the worst case, probability p2 of recovering NP through the backdoor, at each try, where p2
depends on x.

Theorem 6. Let z = n−n1− t , where n1 is the number of rounds for which strategy 1 is used, and t is

the backdoor’s threshold. Let nback be the number of queries made to the backdoor. The probability

for a terrorist fraud accomplice A to obtain NP through the backdoor is lower bounded by 1
x
∑

i =1
(n

x)
,

and upper bounded by nback ·2−x .

4.5.4 PRF Programming Attacks

The security proofs are done in the random oracle model, using a hash function on the key con-
catenated with the input to model a PRF. If a real PRF was used instead, the protocol could be
vulnerable to a mafia fraud by key recovery: there exists a function f , such that f is a PRF, and A

can extract NP after interacting with a prover if f is used in SPADE. Consider the following func-
tion f : it uses a PRF g for most inputs, but returns non random outputs for some input values.

For inputs of length n:

fNP(NV) = gNP(NV)

For inputs of length 4 ·n:

fNP(NV,m,C,R) =NP if R = (gNP(NV)⊕NP⊕m)

gNP(NV,m,C,R) otherwise
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If g is a PRF, then f is a PRF: an adversary trying to distinguish f from a random function
does not have access to its key NP, and can thus not query the values that trigger the non-random
behaviour except with negligible probability: he cannot obtain a couple (X,R) such that R = X⊕NP
without guessing NP.

However, in SPADE, the output of the PRF is XORed with its key, which allows A to obtain
values that he would not be able to obtain in the PRF security game.

For this reason, we chose to use a construction based on a hash function instead of the PRF.
However, other options would have been possible, such as using the circular-keying security no-
tion for PRFs defined in [Boureanu et al., 2015].

4.6 TREAD

In this section, we present our protocol TREAD.

4.6.1 Protocol Description

TREAD (Figure 4.3) is a generic construction, parameterised by an encryption scheme and a sig-
nature scheme. Depending on which ones are chosen, the properties of the resulting distance
bounding protocol differ. In TREAD, as in SPADE, the value that is leaked to a Terrorist Fraud ac-
complice is not a long term secret, but a temporary, prover defined one, which can be replayed in
a further session. TREAD relies on specific design choices. The first one is to eliminate the need
for a PRF. It is now well known that PRF programming attacks are possible, and that in many cases,
the prover can strongly influence the result of the PRF. Hence, to err on the safe side, we directly
let the prover pick the two response vectors a and b, which are used during the distance bounding
phase. To prevent distance frauds, in which the prover would pick a = b, a random bitstring m

must be XORed with b, so that on average half the bits of the resulting response vector b ⊕m are
truly random and independent of a. Another strong design choice is to remove the final signature
in the verification phase. The resulting protocols are thus simpler. If a prover helps an accomplice
during a terrorist fraud attempt, then this accomplice learns large parts of the response vectors a

and b, and can use this knowledge to pass the protocol again on his own.
In TREAD, the prover (resp. verifier) each hold two keys: an encryption (resp. decryption) key,

and a signature (resp. verification) key. In a symmetric setting, where the encryption scheme is
symmetric and the signature is a MAC, the encryption and decryption keys are identical, and the
signature and verification keys are identical too. Public key instances are possible as well.

In TREAD, provers have two identities: a public one, which is sent in clear, and a private iden-
tity, which is sent encrypted for the verifier. This allows for finer grained management: for in-
stance, the prover’s public identity could be a group identity, while the private one would be his
own. Only one of these identities needs to be non null. The protocol works as follows. First, the
prover picks two random n-bit values a and b, and generates a signature on them using the signa-
ture key. Then, he encrypts these values, the signature, and his private identity with the encryption
key, and sends the resulting message, along with his public identity, to the verifier. The verifier re-
sponds with a random bitstring m, and the distance bounding phase begins. For n rounds, the
verifier sends a random bit ci , and the prover responds with either ai if ci = 0, or bi ⊕mi otherwise.
After this phase, the verifier accepts the authentication of the prover if the signature in the initial
massage corresponds to the identities of the prover and is valid, and the responses were correct
and sent in time.

Definition 31 (TREAD). The construction TREAD is composed of five algorithms and parameterised

by an encryption scheme E, a message authentication scheme S, as well as a definition for idprv(·)
and idpub(·).

DB.gen(1λ) is the algorithm run by an honest party, setting up the encryption scheme E and the

signature scheme S for a security parameter λ. It sets the number of the time-critical phases

n, which depends of λ.
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Prover P Verifier V
Encryption key: enck Decryption key: deck

Signature key: sigk Verification key: verk

Public Identity: idpub(P)
Private Identity: idprv(P)

Initialisation

a||b $← {0,1}2·n

σp = S.sigsigk(a||b||idprv(P))

e = E.encenck(a||b||idprv(P)||σp )
e||idpub(P)−−−−−−−−−−−−−−−−→ (a||b||idprv(P)||σp ) = E.decdeck(e)

if S.ververk(σp , a||b||idprv(P)) = 0 then abort
m←−−−−−−−−−−−−−−−− m

$← {0,1}n

Distance Bounding

for i ∈ [0;n −1]

ci
$← {0,1}

ri =

{

ai if ci = 0
bi ⊕mi if ci = 1

ci←−−−−−−−−−−−−−−−− Start clock
ri−−−−−−−−−−−−−−−−→ Stop clock

store ∆ti

Verification

If #{i : ri and ∆ti correct} = n then
OutV←−−−−−−−−−−−−−−−− OutV := 1; else OutV := 0

Figure 4.3: TREAD [Avoine et al., 2017], a generic and provably secure DB construction built from an
IND-CCA2-secure encryption scheme E and an EUF-CMA-secure signature scheme (or a traceable group
signature) S.

DB.prover(KID) is the algorithm executed by the prover described in Figure 4.3, in which KID =
(enck,sigk). The prover starts by drawing a random value a||b from the uniform distribu-

tion on {0,1}2·n . Then, he computes a signature σp on it with S.sigsigk(a||b||idprv(P)). After-

wards, he generates e = E.encenck(a||b||idprv(P)||σp ) and sends e||idpub(P). Finally, during

the n time-critical phases, he receives a challenge bit ci and responds with ri = (ai ∧ci )∨((bi ⊕
mi )∧ ci ).

DB.verifier(KV ,UL,RL) is the algorithm executed by the verifier interacting with a prover, in which

KV = (deck,verk). He expects an initial message e and deciphers it as (a||b||idprv(P)||σp ) =
E.decdeck(e). If σp is invalid (i.e., S.ververk(σp , a||b||idprv(P)) = 0), the verifier aborts. Other-

wise, he picks a random bit string m from the uniform distribution on {0,1}n and sends it.

Afterwards, during the n time-critical phases, he generates a random bit ci from a uniform

distribution, starts his clock, sends ci , gets back ri , stops his clock and stores the correspond-

ing time ∆ti . Finally, he verifies that (1) ∆ti ≤ tmax and (2) ri = (ai ∧ ci )∨ ((bi ⊕mi )∧ ci ), for

all i ≤ n. If these conditions hold, he sends an accepting bit OutV = 1, while otherwise he sends

OutV = 0.

DB.join(ID,UL) is the algorithm to register a new prover with identifier ID in the list UL. It returns

the keys (enck,deck) for E and (sigk,verk) for S. Depending on the primitives E and S, deck

and verk may be public or private, and can sometimes be equal respectively to enck and sigk.

DB.revoke(ID,UL,RL) is the algorithm to revoke a legitimate prover with identifier ID in UL and

transfer him to the revoked user list RL.

57



CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

4.6.2 Protocols

Our instantiations go from a computationally efficient symmetric key protocol to a prover anony-
mous one.

Efficient symmetric-key scheme TREADs ym

Computational efficiency is critical for the design of DB protocols as they are usually used in ef-
ficient construction, TREAD can be instantiated with an IND-CCA2 symmetric-key encryption
scheme SKE and an EUF-CMA message-authentication code scheme MAC. In this case, the pub-
lic identity idpub(P) is the identity of the prover and the private identity idprv(P) is set to null,
i.e., the idprv(P) field is left empty. Since SKE and MAC are symmetric, we have enck = deck and
sigk = verk. Thus, the prover and the verifier have the same symmetric key k = (enck,sigk). In this
construction, the verifiers have access to a private list UL containing all the secret keys of legiti-
mate provers. An authority adds the prover in the private list UL or in the revocation public list
RL.

Prover privacy and public-key encryption TREADpr i v . In applications such as contactless pay-
ment schemes, shared secret keys are not recommended, since a corruption of the secrets of the
verifier puts the user at risk. Thus, with the emergence of NFC-enabled smartphones, public-key
DB protocols are crucial.

TREAD can be instantiated with an IND-CCA2 public-key encryption PKE and an EUF-CMA

digital signature scheme S-SIG. In this case, the public identity idpub(P) is set to null , and the
private identity idprv(P) is the identity of P (or his verification key). The keys enck and deck are
respectively the public and the private keys of the verifier, and sigk and verk are the (private) sig-
nature key and the (public) verification key of the prover. With such a protocol, two sessions by
the same user are not linkable for an external eavesdropper as the only information sent about
the prover’s identity is encrypted with the public-key of the verifier. However, verifiers have the
power to link sessions. In this construction, the verifiers have access to a public list UL containing
the public keys of legitimate provers. An authority adds the provers to the public list UL or the
revocation public list RL.

Prover anonymity and group signature TREADano . TREAD can also be used to provide full prover
anonymity even with respect to a malicious verifier. As profiling users has become a common
threat, it is crucial to develop anonymity-preserving DB protocols. Both prover anonymity and
revocability can be achieved by instantiating TREAD with an IND-CCA2 public-key encryption
scheme PKE and a traceable and revocable dynamic group signature scheme G-SIG. In this case,
the public identity idpub(P) is set to null , and the private identity idprv(P) is set to the identity of
the group IDG. Independent groups may coexist but prover anonymity with respect to the verifier
is only guaranteed up to a prover’s group. The keys enck and deck are respectively the public and
private keys of the verifier, sigk is the prover’s signing key and verk is the public group verification
key. dynamic group signature schemes allow a user to anonymously sign on behalf of a group he
belongs to. Hence, the verifier can check if the prover belongs to the claimed group, but cannot
identify him precisely nor link his sessions. In this scenario, the join and revoke algorithms take
their full meaning.

Let (gpk,msk) be the group/master key pair of the group signature scheme G-SIG. Then,

DB.join(ID,gpk,UL) returns a prover signing key sigkID for PID. This algorithm also outputs a value

regID and adds PID to UL.

DB.revoke(ID,gpk,RL,UL) computes the revocation logs revID for PID, using regID and msk, and

moves PID from UL to RL.
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4.6.3 Properties

We now prove the security property of TREAD, as well as the privacy of TREADpr i v and TREADano .
In these proofs, in the game G0, the prover and verifier behave as defined in Definition 31.

Distance Hijacking

TREAD is distance hijacking resistant: the mask m picked by the verifier ensures that the responses
to the challenges 0 and 1 are different for half the rounds on average, so that A cannot efficiently
send a response in advance. Additionally, since the initial messages e are encrypted, A cannot
extract the values a||b picked by a honest prover, and exploit him to cheat.

Theorem 7. If E is a IND-CCA2-secure encryption scheme, and S is an EUF-CMA signature or MAC

scheme, or a traceable group signature scheme, then TREAD is DH-resistant.

Proof. First note that if A uses the oracle prompt for the initial message, i.e., he lets an honest
prover send it and then his authentication automatically fails, as idpub(P) and/or idprv(P) do not
correspond to the identity of A .

Hence, consider the case in which A initiated the protocol with a message e∗ (associated with
a∗,b∗). Let e (and a||b) denote the values picked by the nearby honest prover P. For each challenge
ci , either A uses Prompt to let P respond or he uses Commit to respond himself before receiving
ci . In Game G0, the prover and verifier follow the specification of the protocol:

DB.prover(KID) The prover starts by drawing a random value a||b from the uniform distribution
on {0,1}2·n . Then, he computes a signature σp on it with S.sigsigk(a||b||idprv(P)). Afterwards,
he generates e = E.encenck(a||b||idprv(P)||σp ) and sends e||idpub(P). Finally, during the n

time-critical phases, he receives a challenge bit ci and responds with ri = (ai ∧ ci )∨ ((bi ⊕
mi )∧ ci ).

DB.verifier(KV ,UL,RL) The verifier waits for an initial message e and deciphers it as (a||b||idprv(P)||σp ) =
E.decdeck(e). If σp is invalid (i.e., S.ververk(σp , a||b||idprv(P)) = 0), the verifier aborts. Other-
wise, he picks a random bit string m from the uniform distribution on {0,1}n and sends it.
Afterwards, during the n time-critical phases, he generates a random bit ci from a uniform
distribution, starts his clock, sends ci , gets back ri , stops his clock and stores the correspond-
ing time ∆ti . Finally, he verifies that (1) ∆ti ≤ tmax and (2) ri = (ai ∧ ci )∨ ((bi ⊕mi )∧ ci ), for
all i ≤ n. If these conditions hold, he sends an accepting bit OutV = 1, while otherwise he
sends OutV = 0.

G1: In this game, no value a||b is outputted more than once by the prover oracle.

In the i th session, the probability to have a collision with any of the previous i −1 a||b values
is bounded by i

22·n . If A runs qp prover sessions, the probability of a collision for a given

session is bounded by
qp

22·n . From the union bound, the probability that a collision occurs at

least once is bounded by
∑qp

i =0
qp

22·n , which is in turn bounded by
q2

p

22n . Thus, |Pr[G1]−Pr[G0]| ≤
q2

p

22n , which is negligible.

G2: This game aborts if σp was not generated by the prover oracle, and S.ververk(σp , a||b) 6= 0.

In this game, we rule out the possibility that A produces a valid signature on behalf of a
honest prover, which is trivially forbidden by the EUF-CMA resistance of S (or its traceability
if it is a group signature). The reduction simply consists in starting EUF-CMA experiments
(one for each prover) with a challenger and using queries to the corresponding signing oracle
to generate the signatures of a prover. Then, if A sends a valid signature on behalf of one of
the provers, we can return it to the challenger and win the EUF-CMA experiment. Hence, we
have |Pr [G2]−Pr [G1]| ≤ qp·Adv

For g e

S
(1λ) (where For g e is either the EUF-CMA or traceability

experiment, depending on S), which is negligible by hypothesis.
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G3: In this game, e is replaced by the encryption of a random string (of equal length).

This transition is based on indistinguishability, aiming at removing any leakage of a||b from
e by making a||b only appear during the DB phase. We prove that the probability ǫ = |Pr [G3]−
Pr [G2]| is negligible by building a distinguisher B such that the advantage of B against the
IND-CCA2 experiment is polynomial in ǫ. Hence, if ǫ is non-negligible, we reach a contra-
diction. By assumption, the advantage of any adversary against the IND-CCA2 experiment
on E is negligible.

To build B, we replace E.encenck(a||b||idprv(P)||σp ) by a string given by the IND-CCA2 chal-
lenger. Using the adversary A , the distinguisher B can be built as follows.

Prover simulation: B generates two messages: m0 = (δ||idprv(P)||S.sigsigk(δ||idprv(P))) and
m1 = (a||b|| S.sigsigk(a||b||idprv(P))), in which a||b and δ are random binary strings of
length 2 ·n. Then, he sends them to the challenger to obtain cb , the encryption of mb

(depending on a random bit b picked by the challenger before the experiment). He also
adds (cb , a||b) to the list WL. Afterwards, he sends cb as the initial message and uses
a||b during the challenge-response phase.

Verifier simulation: When the verifier oracle gets the initial message e, he reads the tuple
(e, a||b) in WL and uses the corresponding a||b to verify the responses. If no such tuple
exists, then he is allowed to use the decryption oracle on e (as it is not a challenge
cb). As G2 enforces that only invalid or prover generated signatures are contained in e,
then either A loses for sending an invalid signature, or e is a new encryption for values
contained in one of the challenges. In the latter case, B readily obtains the bit b by
verifying whether the decryption of e corresponds to a m0 or a m1.

Return value: B returns OutV.

If b = 1, B simulates G2 (e is the encryption of a||b). In this case, B wins if OutV = 1. By
definition, Pr [OutV = 1] in G2 = Pr [G2]. Otherwise, if b = 0, then B simulates G3 (e is the
encryption of δ). In this case, B returns 0 if A loses (i.e., with probability 1−Pr [G3]). The
winning probability of B is then Pr [G2]+1−Pr [G3]

2 = 1+(Pr [G2]−Pr [G3])
2 , resulting in an advan-

tage of ǫ = |Pr [G2]−Pr [G3]|. It follows that any significant probability difference between
the two games can be transformed into an IND-CCA2 advantage and |Pr [G3]−Pr [G2]| ≤
AdvIND-CCA2

E (λ).

The final game We now prove that the success probability of A in G3 is negligible. During the
time-critical phases, A can either Prompt or Commit.

• If he uses Prompt, then his response is valid with probability 1
2 . This corresponds to the

probability to have ai = a∗
i

(respectively bi = b∗
i

): e (from the honest prover) is the encryption
of a random string and leaks no information about a||b, so that the probability for A to
chose the same values is uniform.

• If he uses Commit, then either a∗
i

= b∗
i
⊕mi , and he can commit to a correct response with

probability 1, or a∗
i
6= b∗

i
⊕mi , and then he must guess the challenge to commit to the correct

response. Since m is uniformly distributed and unknown to A at the time when he picks
a||b, we have Pr [a∗

i
= b∗

i
⊕mi ] = 1

2 . Hence, the probability to commit to the valid response is
Pr [a∗

i
= b∗

i
⊕mi ] ·1+Pr [a∗

i
6= b∗

i
⊕mi ] · 1

2 = 3
4 .

From this, it follows that the best strategy for A is to respond by himself, as in a classical DF, using
Commit. For n challenges, his advantage AdvDH

DB
(A ) is therefore upper bounded by

(3
4

)n
(at most

3
4 for each round), which is negligible.

60



CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

Mafia Fraud

The mafia fraud resistance of TREAD comes from the fact that no adversary can efficiently obtain
the values a||b corresponding to an initial message e and use it to impersonate a prover, nor can
he generate an authenticated message e, which would be accepted, by himself.

Theorem 8. If E is an IND-CCA2-secure encryption scheme, and S is an EUF-CMA signature or

MAC scheme, or a traceable group signature scheme, then TREAD is MF-resistant.

The prover and verifier oracles are simulated as defined in the protocol definition , except that
after generating e, the prover adds an entry to a witness list WL containing (e, a||b).

In Game G0, the prover and verifier follow the specification of the protocol, except that the
prover adds entries to WL:

DB.prover(KID) The prover starts by drawing a random value a||b from the uniform distribution
on {0,1}2·n . Then, he computes a signature σp on it with S.sigsigk(a||b||idprv(P)). Afterwards,
he generates e = E.encenck(a||b||idprv(P)||σp ) and sends e||idpub(P). He also adds (e, a||b) to
WL. Finally, during the n time-critical phases, he receives a challenge bit ci and responds
with ri = (ai ∧ ci )∨ ((bi ⊕mi )∧ ci ).

DB.verifier(KV ,UL,RL) The verifier waits for an initial message e and deciphers it as (a||b||idprv(P)||σp ) =
E.decdeck(e). If σp is invalid (i.e., S.ververk(σp , a||b||idprv(P)) = 0), the verifier aborts. Other-
wise, he picks a random bit string m from the uniform distribution on {0,1}n and sends it.
Afterwards, during the n time-critical phases, he generates a random bit ci from a uniform
distribution, starts his clock, sends ci , gets back ri , stops his clock and stores the correspond-
ing time ∆ti . Finally, he verifies that (1) ∆ti ≤ tmax and (2) ri = (ai ∧ ci )∨ ((bi ⊕mi )∧ ci ), for
all i ≤ n. If these conditions hold, he sends an accepting bit OutV = 1, while otherwise he
sends OutV = 0.

Proof. We start from the initial mafia fraud game G0, and build the following sequence of games.
We first rule out the possibility for A to extract a||b from e, by forbidding a||b collisions, and
making e independent from a||b.

G1: In this game, no value a||b is outputted more than once by the prover oracle.

In the i th session, the probability to have a collision with any of the previous i −1 a||b values
is bounded by i

22·n . If A runs qp prover sessions, the probability of a collision for a given

session is bounded by
qp

22·n . From the union bound, the probability that a collision occurs at

least once is bounded by
∑qp

i =0
qp

22·n , which is in turn bounded by
q2

p

22n . Thus, |Pr[G1]−Pr[G0]| ≤
q2

p

22n , which is negligible.

G2: This game aborts if σp was not generated by the prover oracle, and S.ververk(σp , a||b) 6= 0.

In this game, we rule out the possibility that A produces a valid signature on behalf of a
honest prover, which is trivially forbidden by the EUF-CMA resistance of S (or its traceability
if it is a group signature). The reduction simply consists in starting EUF-CMA experiments
(one for each prover) with a challenger and using queries to the corresponding signing oracle
to generate the signatures of a prover. Then, if A sends a valid signature on behalf of one of
the provers, we can return it to the challenger and win the EUF-CMA experiment. Hence, we
have |Pr [G2]−Pr [G1]| ≤ qp·Adv

For g e

S
(1λ) (where For g e is either the EUF-CMA or traceability

experiment, depending on S), which is negligible by hypothesis.

G3: In this game, e is replaced by the encryption of a random string (of equal length).

This transition is based on indistinguishability, aiming at removing any leakage of a||b from
e by making a||b only appear during the DB phase. We prove that the probability ǫ = |Pr [G3]−
Pr [G2]| is negligible by building a distinguisher B such that the advantage of B against the

61



CHAPTER 4. PROVABLY SECURE DISTANCE BOUNDING PROTOCOLS

IND-CCA2 experiment is polynomial in ǫ. Hence, if ǫ is non-negligible, we reach a contra-
diction. By assumption, the advantage of any adversary against the IND-CCA2 experiment
on E is negligible.

To build B, we replace E.encenck(a||b||idprv(P)||σp ) by a string given by the IND-CCA2 chal-
lenger. Using the adversary A , the distinguisher B can be built as follows.

Prover simulation: B generates two messages: m0 = (δ||idprv(P)||S.sigsigk(δ||idprv(P))) and
m1 = (a||b|| S.sigsigk(a||b||idprv(P))), in which a||b and δ are random binary strings of
length 2 ·n. Then, he sends them to the challenger to obtain cb , the encryption of mb

(depending on a random bit b picked by the challenger before the experiment). He also
adds (cb , a||b) to the list WL. Afterwards, he sends cb as the initial message and uses
a||b during the challenge-response phase.

Verifier simulation: When the verifier oracle gets the initial message e, he reads the tuple
(e, a||b) in WL and uses the corresponding a||b to verify the responses. If no such tuple
exists, then he is allowed to use the decryption oracle on e (as it is not a challenge
cb). As G2 enforces that only invalid or prover generated signatures are contained in e,
then either A loses for sending an invalid signature, or e is a new encryption for values
contained in one of the challenges. In the latter case, B readily obtains the bit b by
verifying whether the decryption of e corresponds to a m0 or a m1.

Return value: B returns OutV.

If b = 1, B simulates G2 (e is the encryption of a||b). In this case, B wins if OutV = 1. By
definition, Pr [OutV = 1] in G2 = Pr [G2]. Otherwise, if b = 0, then B simulates G3 (e is the
encryption of δ). In this case, B returns 0 if A loses (i.e., with probability 1−Pr [G3]). The
winning probability of B is then Pr [G2]+1−Pr [G3]

2 = 1+(Pr [G2]−Pr [G3])
2 , resulting in an advan-

tage of ǫ = |Pr [G2]−Pr [G3]|. It follows that any significant probability difference between
the two games can be transformed into an IND-CCA2 advantage and |Pr [G3]−Pr [G2]| ≤
AdvIND-CCA2

E (λ).

The final game We are left to prove that Pr [G3] is negligible. First remark that in G3, A has
absolutely no way to predict the value ri for any round i (as neither ai nor bi appears before round
i ). Hence, A can either try to guess ci or ri . His success probability in the second case is 1

2 . In the
first case, he succeeds if he guesses the challenge properly (as he can obtain the response from the
prover), but also if he wrongly guesses the challenge but guesses correctly the other response. The
corresponding probability is 1

2 ·1+ 1
2 · 1

2 = 3
4 for each round. As there are n such rounds, Pr [G3] ≤

(3
4

)n
. Note that A can learn a small number of bits of both a and b during a learning phase in

which the prover is close: by flipping a challenge, A receives r ci instead of r ci and can forward it
to V. If OutV = 1 (resp. 0), then A deduces that ai = bi ⊕mi (resp. ai 6= bi ⊕mi ), and thus learns
one bit of both ai and bi . This generalises to the case in which A flips k challenges: if for the k

corresponding rounds, ai = bi ⊕mi , then OutV = 1, and otherwise, OutV = 0. Thus, A learns k

bits of both strings in the first case, and nothing useful otherwise (except that at least one of the k

rounds has ai 6= bi ⊕mi . Hence, his probability of obtaining k bits is 1
2k , which is negligible if k is a

fraction of n. Moreover, a||b is never used more than once by the prover, so this strategy can only
be used once, and does not grant any significant advantage to A .

Terrorist Fraud

Theorem 9. If the challenges ci are drawn uniformly at random by the verifier, TREAD is strSimTF-

resistant.

The theorem says that there exists a simulator Sim, which, from the view of a TF accomplice
A who successfully authenticated once, can authenticate too with a probability at least as high.
In the following proof, we build this simulator. Note that this proof holds within the models, in
which the messages are broadcasted.
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Proof. Let sid denote the session in which A was authenticated, and sid′ denote the session played
by the simulator. The messages in sid′ are denoted with an apostrophe, for instance the message
NP′

The simulator Sim starts by sending his initial message e ′, such that e ′ = e, and receives m′.
During the time-critical phases, the response vectors are the same in sid and sid′, except for m 6= m′.
However, Sim can easily translate a response from sid to a response in sid′: r ′0 = r 0, and r ′1 = r 1 ⊕
mi ⊕m′

i
. Let us now consider the situations of A and Sim right before they receive the challenge

at round i . A has some information in his view, denoted viewi , which permits him to respond
to a random challenge with a response ri with probability pi . On the other hand, Sim knows the
complete view, including viewi . Hence, Sim has more information than A to produce his response

r ′
i
, so that p ′

i
≥ pi . The final success probability of A is P =

n
∏

i =1
pi . Since ∀i ∈ {1,n}, p ′

i
≥ pi , it follows

that P′ ≥ P, which concludes the proof.

Privacy

The only place where values linked to the identity of P appear is inside the message e. Hence,
A cannot break the privacy of TREADpr i v if he cannot distinguish the identity contained in e.
Therefore, we use the IND-CCA2 security of E to prove that TREADpr i v is MiM-private.

Theorem 10. If E is an IND-CCA2-secure encryption scheme, then TREADpr i v is MiM-private.

Proof. Assume that there is a polynomial-time adversary A such that AdvPriv
A ,TREADPub (λ) is non-

negligible. We show how to construct an adversary B such that AdvIND-CCA2
B,PKE (λ) is also non-

negligible.
Initially, the IND-CCA2 challenger sends a key pkV to B. Then, B runs a modified version of

DB.gen(1λ), in which the key generation for the verifier is omitted, and sends the public parame-
ters to A , including pkV . B possesses all the material to simulate the experiment, except for the
private key of the verifier. Additionally, during the first phase of the IND-CCA2 experiment, B is
allowed to use the decryption oracle PKE.decx freely. Hence, he can perfectly simulate the envi-
ronment for A , until A picks two identities (ID0, ID1). Then, B uses the PKE.encpk(LRb) oracle
to simulate these two provers. B first initialises a list WL, and simulates the prover and verifier
oracles as follows:

DB.Prover(·): Picks a||b $← {0,1}2·n and computes the signatures σ0
p = S.sigsigkID0

(a||b||idprv(PID0
))

and σ1
p = S.sigsigkID1

(a||b||idprv(PID1
)). He sends the messages m0 = (a||b||idprv(PID0

)||σ0
p )

and m1 = (a||b||idprv(PID1
)||σ1

p ) to PKE.encpk(LRb) in order to obtain e, and adds (a,b,e) to
WL. Finally, it sends e and receives m. The time critical phases are ran as usual, using a||b
and m.

DB.Verifier(·): Receives e from A . If there is no entry (a,b,e) in WL (i .e. if e was not generated by
the PKE.encpk(LRb) oracle), then B is allowed to use the decryption oracle and to run the
protocol normally with the deciphered value. Otherwise, it runs the protocol using the value
a,b from the tuple (a,b,e) read in WL.

When A sends his guess b′, B simply forwards it to the challenger.
The experiment is perfectly simulated for A , so that B wins when A wins. Hence, we have,

AdvPriv
A ,TREADPub (λ) = AdvIND-CCA2

B,PKE (λ), contradicting the IND-CCA2 security assumption on PKE.

Anonymity

The anonymity of TREADano directly depends of the anonymity of the dynamic group signature
scheme, since the signature issued by P is the only value related to a long term secret that identifies
him.
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Theorem 11. If S is an anonymous dynamic group signature scheme, then TREADano is prover

anonymous.

Proof. Assume that there is a polynomial-time adversary A such that AdvAnon
A ,TREADANO (λ) is non-

negligible. We show how to build an adversary B such that AdvAnon
B,G-SIG(λ) is also non negligible.

Initially, the challenger sends a key gpk and a revoked list RL to B. Then, B generates a pub-
lic/private key pair pkV , xv for the verifier using PKE.gen(1λ), sends (pkV ,gpk,RL) to A , and cre-
ates the empty list CU of corrupted users. Having access to the G-SIG-oracles from his challenger,
B can simulate the DB-oracles for A as follows:

DB.Joinh(·): On input i , creates Pi with G.Joinh(·), and adds Pi to UL.

DB.Joinc (·): On input i , creates a corrupted Pi with G.Joinc (·), adds Pi to UL and CU, and returns
sski .

DB.Revoke(·): On input i , revokes Pi with G.Revoke(·), which updates RL and returns it.

DB.Corrupt(·): On input i , corrupts Pi with G.Corrupt(·) and gets sski . B adds Pi to CU, and re-
turns sski .

DB.Prover(·): B simulates Pi as follows: B picks a||b $← {0,1}2·n and sends (i , a||b) to his oracle
G.Sign(·, ·) to obtain σp = G.sigsski

(a||b). He computes e = PKE.encpkV
(a||b||σp ), and runs

the rest of the protocol normally.

DB.Verifier(·): the verifier can be simulated as per the protocol describes it: B knows the secret
key of the verifier, and the verification key gpk.

After interacting with these oracles, A sends (ID0, ID1) to B. If ID0 or ID1 ∈ CU, B aborts
the experiment. Otherwise, B sends (ID0, ID1) to the challenger. Then, B modifies his simu-
lation for the Corrupt(·) and Revoke(·) oracles by returning ⊥ when they are called on input ID0

or ID1. Afterwards, B simulates the challenge oracle DB.Proverb for PIDb
as follows: B picks

a||b $← {0,1}2·n , sends (a||b) to his oracle G.Signb(·, ·) to get the signature σp = G.sigsski
(a||b), and

sends e = PKE.encpkV
(a||b||σp ). It then runs the rest of the protocol normally.

Finally, A sends b′ to B, who simply forwards it to the challenger.
The experiment is perfectly simulated for A , so that B wins when A wins.
Thus, AdvAnon

B,G-SIG(λ) = AdvAnon
A ,TREADAno (λ), contradicting the assumption on G-SIG.

4.6.4 Recent attacks against SPADE and TREAD

Recently, two articles [Mauw et al., 2018, Debant et al., 2018] independently proposed formal meth-
ods to verify the security of distance bounding protocols. Formal methods use a mathematical
model of the target protocol and its expected security properties, and provide them to an auto-
matic prover, which verifies whether the security properties are satisfied. Both articles use well
known provers: the first one uses the Tamarin [Meier et al., 2013], while the second one uses Cryp-
toverif [Blanchet, 2007].

Both of these articles exhibited vulnerabilities against SPADE and TREAD. Specifically, both
found distance hijacking and mafia frauds in our protocol. These attacks do not contradict our se-
curity proofs: they require multiple verifiers, some of which are dishonest, while the DFKO model
considers a single, honest verifier. More specifically, the adversaries have public/private key pairs,
just like the verifiers, and the provers do not check whether the public key corresponds to a legiti-
mate verifier, thus making the adversary effectively capable of impersonating a verifier. However,
when the adversary can control verifiers, then the basic idea behind both our protocols falls: our
protocols are secure if the temporary secrets held within the initial encrypted message e cannot
be read by an adversary. If the adversary is capable of decrypting it as a verifier, then he can extract
the temporary secrets it contains and their signature, and therefore defeat the protocol.

These attacks work as follows:
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Mafia Fraud

In both SPADE and TREAD, an initial message e contains the encryption of signed the session
keys, NP for SPADE, and (a,b) for TREAD. There exists a mafia fraud against SPADE, and the two
versions of TREAD for which e is encrypted with a public key: TREADpr i v and TREADano . To
perform a mafia fraud, A starts a session with a prover, obtains e, and extracts the session keys
and the corresponding signature from it. With these values, he can start a session with the verifier,
and authenticate as P. On the other hand, TREADs ym is secure, because A does not know the
encryption key x used by P to communicate with V. Hence, A can request a message e ciphered
with a key shared between P and A , and extract the session key and its signature from it, but he
cannot encrypt them with x to make the verifier accept.

Distance Hijacking

SPADE and all versions of TREAD are vulnerable to a distance hijacking attacks if A can corrupt
verifiers. The attack scenario is the following: the distant A starts a session as a verifier with a
prover P located close to the verifier, and receives e, from which it extracts the session keys as for
the mafia fraud. He then starts a session with V, in which he sends the same session keys, but
signed with his own signature keys. He then lets P run the rest of the protocol. The responses of P
are correct, since P uses the same session keys as A , so that A is effectively accepted even though
he is far away.

Discussion

These attacks underline an interesting problem, which is the one of multiple and possibly mali-
cious verifiers, which was overlooked by the existing formal security models. We propose hints on
how to handle these attacks.

In the article presenting SPADE [Bultel et al., 2016], we briefly mentioned this scenario, and
stated that adding the identity of the verifier inside the initial signed message would prevent mafia
frauds. Indeed, in this case, A becomes unable to use the signature produced by P with another
verifier V: V would notice that the signed message contains the identity of A instead of his own.
An inconvenient of this method is that it lowers the terrorist fraud resistance: a terrorist fraud
accomplice is only capable of impersonating P with one verifier, instead of all of them.

While including the identity of V in the signed message does prevent the mafia frauds, it does
nothing against the distance hijacking attacks. These attacks might be solved by changing the re-
sponses ri to r∗

i
= ri ⊕H(ei ), the hash of the initial encrypted message e. Intuitively, the idea is that

if A changes the signature contained in e, then he needs to reencrypt it to produce a message e ′,
which should be different from e, except with negligible probability. The hash would make sure
that the resulting string has the correct length n, and that the responses expected from P differ
from the responses expected from A on half the rounds on average. Hence, the responses from P
would not match with the responses expected by the verifier, which would reject the authentica-
tion.

4.7 Conclusion

In this chapter, we presented two construction, SPADE and TREAD, which both grant terrorist
fraud resistance by forcing the prover to leak a session key to his accomplice, which is a shift from
traditional protocols which require the leaked key to be a long term one. SPADE only comes in
one anonymous version, while TREAD has three versions, each providing a different trade-off in
terms of efficiency and privacy: TREADs ym is efficient but grants no privacy, TREADpr i v is pri-
vate against eavesdropper but not anonymous, and TREADano is fully anonymous with regards to
tracking attempts by the verifier. SPADE can be seen as a preliminary version of TREAD: it uses a
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similar idea for ensuring both anonymity and terrorist fraud resistance, but TREAD is more sim-
ple and generic. Additionally, TREAD does not require a backdoor in order to achieve provable
terrorist fraud resistance. Both constructions are provably resistant to all threats against distance
bounding protocols in the DFKO model. On the other hand, there exist attacks outside of the
security model, as shown in [Mauw et al., 2018, Debant et al., 2018], which consider multiple and
malicious verifiers. While these particular attacks can be mitigated by modifying the protocols, we
show in the next section that this is not always the case. Indeed, some specific hardware can allow
for attacks that are outside of the security models. In particular, we show that the terrorist fraud
resistance notion as we try to achieve it can never be reached.
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Achieving terrorist fraud resistance in the security models is difficult, but possible, as shown in
the previous chapter. On the other hand, a paper [Ahmadi and Safavi-Naini, 2018] presented ter-
rorist fraud attacks that circumvent the security model by using specific hardware, namely direc-
tional antennas. We proposed a more generic terrorist fraud [Boureanu et al., 2018], the Tamper-
Proof Device Attack, which uses tamper-proof devices. In this chapter, we review these results,
and present an impossibility result. A protocol is considered terrorist fraud resistant if, when the
help of a malicious prover P∗ permits his accomplice A to authenticate, then this help also gives
A significant to authenticate later. We prove that this definition cannot be satisfied. On the other
hand, we define a new notion, One-Step Terrorist Fraud (OSTF), in which a protocol is considered
TF resistant if no help from P∗ can permit A to authenticate.

5.1 Introduction

Terrorist fraud resistance is a long standing issue in the distance bounding community. There is
a long history of protocols that claimed terrorist fraud resistance, but were broken in one way or
another, e.g., [Bay et al., 2013]. Similarly, there are a wide range of definitions of what a terrorist
fraud is, some more exotic than others. This research problem led to designing protocols that
were intentionally weaker, for instance due to the presence of a backdoor as in SPADE (Chapter
4) or [Fischlin and Onete, 2013a]. However, in the past few years, the community successfully ex-
hibited designs that were proven to be terrorist fraud resistant, such as [Fischlin and Onete, 2013a,
Vaudenay, 2015b, Boureanu et al., 2015]. While this solved a difficult research problem, the relief
did not last very long. Ahmadhi et al . [Ahmadi and Safavi-Naini, 2018] exhibited an attack which,
by using directional antennas, can defeat the terrorist fraud resistance of SPADE and TREAD. This
attack is very interesting, because it bypasses the security proofs of our protocols: the security
models that are used in distance bounding assume that the messages are broadcasted, but these
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attacks, through the use of directional antennas, allow to send a message so that it is received by
one party only. It therefore allows a malicious prover to send the initial message of SPADE and
TREAD directly to the verifier, so that A cannot see it, nor replay it in a further session. Since
the terrorist fraud resistance of SPADE and TREAD depend on A knowing this initial message, if
directional antennas can be used, these protocols are not terrorist fraud resistant. However, this
result does not apply to non anonymous protocols.

Independently, at the same time, in [Boureanu et al., 2018], we proposed a different kind of
hardware based attacks. Our main result is that, if the provers can be cloned (i.e., they are not
tamper-proof and do not use physically uncloneable functions), then terrorist fraud resistance as it
is usually defined cannot be achieved. We prove that claim by exhibiting a simple, generic terrorist
fraud: the prover builds a tamper-proof device that is capable of authenticating, and programs
it to erase all its memory after one successful authentication. He then gives this device to his
accomplice. This very simple attack defeats the claim for terrorist fraud resistance of all protocols
in the literature in the white-box model, except for one [Igier and Vaudenay, 2016], which achieves
a different type of terrorist fraud resistance. We define this type of terrorist fraud resistance as
OSTF-resistance, and show that this definition is sufficient.

In this chapter, we first present the attacks by Ahmadi et al ., and we then present our generic
terrorist fraud, and the new notion of OSTF.

5.2 Directional Terrorist Frauds

5.2.1 Attacks

In [Ahmadi and Safavi-Naini, 2018], Ahmadi et al . introduced the notion of Directional TF (DTF).
In a directional TF, the prover uses a directional antenna pointed at the verifier to send some of
the messages, as represented on Figure. 5.2.1. Let us call such messages directional messages. If
the accomplice A is located near the verifier, but out of the range of the directional antenna, then
he cannot see these messages. In SPADE and TREAD, if A cannot read the initial message of the
protocol, then he cannot impersonate the prover in a latter session, even if he knows both response
vectors. The DTF against SPADE is the following:

• P∗ generates e = PKE.encpkV
(NP,σp ) as defined in the protocol, and sends it to V with the

directional antenna

• P∗ sends NP to A

• A receives NV and m from the verifier, and computes a = PRFNP(NV)

• A responds to the challenges, using a, NP, and m

• A sends the final message T = PRFNP(NV,m,C,R)

• A is accepted, but he cannot authenticate again later, since he does not know the message
e linked to NP, nor can he produce a valid signature on NP on his own.

We now describe the attack against TREAD:

• P∗ generates e = E.encenck(a||b||idprv(P)||σp ) as defined in the protocol, and sends e, idpub(P)
it to V with the directional antenna

• P∗ sends (a,b) to A

• A receives m from the verifier

• A responds to the challenges, using a,b and m

• A is accepted, but he cannot authenticate again later, since he does not know the message
e linked to (a,b), nor can he produce a valid signature on (a,b) on his own.
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Additionally, the authors of [Ahmadi and Safavi-Naini, 2018], exhibit a similar attack on their
protocol PDB [Ahmadi and Safavi-Naini, 2014].

We now discuss the relevance of these attacks.

VP

A

Figure 5.1: The position of the prover, adversary and verifier in a directional terrorist fraud. The green ray
represents the propagation of the message sent by the directional antenna: the adversary cannot see it, but
the verifier can.

5.2.2 Discussion

Directional terrorist frauds are an interesting form of attacks. They apply to SPADE and TREAD,
which both came with security proofs, which raises questions about the relevance of the proofs.
These attacks circumvent formal DB models, which consider that all messages are broadcasted,
and that the adversary can always access them, as a Dolev-Yao adversary [Dolev and Yao, 1981].
However, this assumption does not hold if specific hardware (directional antennas) is used. This
is a strong hint that hardware based attack can sometimes get around the models, which should
be adapted accordingly.

The DTF attack model however has a limitation. It requires the adversary to be located outside
of the range of the antenna, otherwise he would be able to see the directed messages and the attack
would fail. Hence, P∗ must either have a way of verifying the location of A , for instance by staying
in view range during the attack or using a video camera to observe A , or A must behave exactly
according to the instructions of P∗. The first scenario might not be feasible: even if A is located
at the position expected by the prover, he can place receiving devices on the path between P∗ and
V beforehand, or even hide one behind V. Actually, A may even use an accomplice, who would
be located between P∗ and V, and record the initial message, for instance with a smartphone in
his pocket. There are so many ways to hide a receiver that we cannot safely assume that P∗ will
notice it if A cheats. This limits the scope of application of this attack in the scenario where P∗

does not trust A . We are therefore left with the second option: the prover needs to trust his ac-
complice not to trick him by eavesdropping the directional messages. This leads to an interesting
new research direction. It seems that the implicit assumption that is usually made is that A will
follow some predefined algorithm decided by P∗ during the attack. In other words, it is generally
considered that P∗ and A are colluding, as one single entity, but the case in which A has an ad-
versarial behaviour is left on the side. For instance, in the session in which A is helped, he could
forward incorrect nonces to the prover in order to gain some information. While this does not
seem to grant a big advantage in usual protocols, for at least 3 protocols (SPADE,TREAD,PDB), an
accomplice can gain some advantage by deviating from the instructions given by P∗. It would be
interesting to distinguish trusted TF, in which A faithfully follows an algorithm given by P∗, from
untrusted TF, in which the accomplice tries to cheat.

However, the results we present in the next section indicate that, for at least one attack that
we present, either the accomplice cannot be helped, or there exists a help from which he cannot
authenticate again later, regardless of whether he follows the instructions of P∗ or not.
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5.3 Impossibility Results for Terrorist Fraud Resistance

In this section, we demonstrate that terrorist fraud resistance cannot be achieved the way it is
usually seeked. We prove that, if A authenticates thanks to a non-void help of P∗, there always
exists a strategy that prevents A to authenticate again later. We present a generic terrorist fraud,
which works for all protocols for which the prover can be cloned by its holder. Intuitively, the
prover can be cloned if the user has access to its secret material, and the protocol does not use
physically uncloneable functions (PUFs). Informally, a PUF is a function that maps challenges to
responses, but cannot be cloned. Our attack uses a clone of the prover in a tamper-proof device
that erases its memory after being used. We discuss its applicability, distinguishing white-box
provers (with full control of the algorithm), black-box provers (for which the secret material is
hidden), and the special case of provers which can physically not be cloned. White-box provers
can apply this attack in a straightforward way, black-box provers cannot, and in some protocols
using PUFs, a modified version of this attack can sometimes be applied. We also prove black-box
provers and protocols using PUFs, a different kind of terrorist fraud resistance can be achieved,
and define the corresponding notion OSTF.

5.3.1 The tamper-proof Device Attack

Preliminaries

We assume that the provers can either be white-box (WB) or black-box (BB). Provers are operated
by a person, referred to as their holder. The holder of a white-box prover knows its secret material,
and can implement any algorithm of his choice on the device. Instead, black-box provers are
completely tamper-proof, and only execute their predefined algorithm, without the holder being
able to modify it or to extract the secret material. Stated differently, the holder of a black-box
prover can only interacts with it by sending it messages that correspond to those expected during
the execution of the distance bounding protocol. In this sense, the holder of a black-box device
can only interact with his device the same way an adversary would.

White-box provers are typically employed in the distance-bounding literature, such as in the
formal models [Dürholz et al., 2011, Boureanu et al., 2015], and articles presenting new protocols
or terrorist frauds on existing protocols [Boureanu et al., 2012, Boureanu and Vaudenay, 2014]. On
the other hand, in industry, for instance in the banking protocol EMV [MasterCard, 2017], the
provers are assumed to be tamper-proof devices, and therefore, black-box.

Since it is a commonplace in the industry to have the security rely on tamper-proof hardware,
we believe that it is a safe assumption that tamper-proof devices, from which the secret material
cannot be extracted with reasonable effort, can be built.

Another assumption that we make is that no verification is performed besides the distance
bounding protocol in itself. Specifically, the identity of the holder of the device is not checked,
and the device performing the protocol can be counterfeited. This assumption is clearly made in
the distance bounding literature: for instance, in the case of a mafia fraud, the device presented in
front of the verifier is not the legitimate prover, and the person holding it is not is legitimate owner.
If additional identity checks were performed, mafia fraud would simply not exist.

A Generic Terrorist Fraud for White-Box Provers

In typical proofs for terrorist fraud resistance of distance bounding protocols, the holder of the
proving device knows the secret material and algorithm ran by the device. Additionally, only two
protocols [Igier and Vaudenay, 2016, Kleber et al., 2015] include a mechanism (PUF) that prevents
a prover from being copied by its holder. Therefore, in all distance bounding protocols of the liter-
ature, except for the 2 that use PUFs, the prover can clone his device. The case of black box provers,
which cannot be cloned due to the prover not knowing their secret material, will be treated later.

When the device can be cloned, a malicious prover P∗ can build a tamper-proof device that
runs exactly as the proving device k times, after which it self-destructs. In the usual definitions for
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TF, k is one, but some definitions require A to be helped several times, which is why we mention
the possibility of having k executions.

Our attack is as follows: P∗ builds a disposable, k-times clone of his prover in a tamper-proof
device. He then gives this to his accomplice A . The accomplice presents the tamper-proof clone
to the verifier and successfully authenticates. The device is tamper-proof, so that A learns noth-
ing more than from observing an honest execution of the protocol. Finally, the device erases its
memory after k successful authentications, so A cannot use it to perform latter authentications
that are not agreed to by the prover. This self-destruction equates in fact to a program wiping all
data (secret and otherwise) and software on the device. This is a generic terrorist fraud. The prover
permits A to authenticate, without giving him any sensitive information.

Discussion

Offline help Usually, terrorist-frauds are performed online: the prover helps his accomplice dur-
ing one specific session, at a given time. In contrast, our generic attack permits the accomplice
get the disposable device offline, and to use it at a time of his choice. However, this limitation can
be overcome by including a secure, remote activation and deactivation mechanism on the dispos-
able clone, in order to make it unusable except at a time chosen by the prover. By doing so, the
prover could delegate his authentication rights while keeping full control on his credentials and
the actions of his accomplice. Actually, this would even remove the need for a self destruction
mechanism, and the prover could perform a form of permanent terrorist fraud.

Provable Terrorist Fraud Resistance Even though our attack corresponds to the idea of a terror-
ist fraud, it is still possible to prove the terrorist fraud resistance of some protocols in the secu-
rity models. For instance, consider the SimTF definition of terrorist-fraud. The SimTF definition
compares the probability pA for A to authenticate with the help of P∗, and the probability pS for
a simulator to authenticate afterwards, using the view of A . If pA −pS is negligible, then the pro-
tocol is SimTF-resistant. Now consider a protocol which is trivially broken: the verifier sends a
challenge C, and the prover responds with C⊕ x, where x is his secret key. By eavesdropping one
session, an adversary learns x and can impersonate the prover. This protocol is SimTF-resistant:
pA = 1, regardless of the help of P∗, and pS = 1 as well, since x is in the view of A . Note that
such a protocol would also be considered TF resistant according to the Collusion Fraud definition
of [Boureanu et al., 2015], in which pA and pS are respectively replaced by γ and γ′. However, in
this case, terrorist fraud resistance is irrelevant, as A can authenticate even if the help from P∗ is
void. We elaborate on this in the next section.

5.3.2 Another Definition for Terrorist Fraud Resistance

As mentioned in the previous section, some protocols are considered terrorist fraud resistant be-
cause they are not mafia fraud resistant. We believe that this should not be the case, as the help of
P∗ is irrelevant if A can authenticate on his own. Hence, mafia fraud vulnerable protocols should
not be considered terrorist fraud resistant.

Our generic attack applies to all the protocols in which the prover can be cloned. On the other
hand, some protocols resist it. For instance, consider a protocol with only one time critical round,
in which the response to a challenge C is PUF(C), and C is n bit long, with n depending on the
security parameter. Since we consider polynomially bounded adversaries, and the number of pos-
sible challenge response pairs is exponential in the security parameter, the prover can simply not
give his accomplice enough data to be able to respond with a good probability. Moreover, if the ac-
complice forwarded C to the far away prover, then he would not receive the response early enough
to respond within the time-bound. Hence, in such a protocol, the prover has no physical way of
giving his accomplice any non-negligible advantage to succeed.

It is a different form of resistance than the one that is usually achieved. Terrorist fraud resis-
tance is usually modelled as a two-step game, one step in which A is helped, and one step in
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which A is on his own. Here, it becomes a one-step game: the protocol is resistant if the help of
P∗ brings no significant advantage to A . We therefore propose a new definition for terrorist fraud
resistance, which simply states that a protocol is terrorist fraud resistant if the success probability
of A with the help of P∗, denoted pA , is negligibly close to the success probability of the best MF
adversary, which is itself negligible. We call this definition One Step Terrorist Fraud (OSTF).

OSTF Resistance

In some cases, the prover can simply not provide any helpful information for an accomplice to
authenticate: regardless of the help provided by P∗, the success probability of the accomplice is
negligible.

We define this form of resistance as OSTF resistance. A protocol is OSTF-resistant if whatever
help is given by a malicious prover to an accomplice does not allow the accomplice to perform
significantly better than if the prover was honest. In this attack model, the prover is not forbidden
to give his secret key as in a regular terrorist-fraud. More formally, OSTF resistance is as follows.

Definition 32. One Step Terrorist Fraud. Let DB be a MF resistant distance bounding pro-

tocol, let λ be a security parameter, and let AdvMF
DB(λ) denote the success probability of the best MF

adversary against the protocol DB.

A One Step Terrorist Fraud adversary is a pair of any PPT algorithms P∗ and A , such that

P∗ is located far-away from the designated verifier, and A is at an arbitrary position.

Let pA denote the probability of an accomplice A to pass the protocol with the help of a mali-

cious prover P∗, where (P∗,A ) is a One Step Terrorist Fraud adversary.

The distance bounding protocol DB is One Step Terrorist Fraud resistant if, DB is MF re-

sistant, and, for all PPT algorithms P∗ and A , |pA −AdvMF
DB(λ)| ≤ neg l (λ).

We now prove that definition is sufficient, by proving that, if there exists (P∗,A ) such that pA is
non negligible, then the protocol is vulnerable to a form of tamper-proof device attack, even if the
device is not fully cloneable. We first prove that a tamper proof device that authenticates with the
same probability as A can always be built, and then that there exists such a device that leaks no
more information than a honest prover. We then conclude that, if P∗ can give A a non negligible
probability of authenticating, then there exists a tamper-proof device attack.

Theorem 12. LetDB be a MF resistant distance bounding protocol, and pA denote the success prob-

ability of an adversary A helped by a prover P∗. If there exists a couple of terrorist fraud adversaries

(P∗,A ) such that pA is non negligible, then DB is vulnerable to a tamper-proof device attack.

Proof. If there exists a pair (P∗,A ) such that A authenticates with a non negligible probability pA ,
then P∗ can implement the algorithm ran by A on a tamper-proof device TA , which authenticates
with the same probability pA , and instruct A to present TA to the verifier. We are now left to prove
that A does not learn enough information to authenticate again later from the execution of TA .
This would be the case if, for instance, P∗ sent some secret material to A in clear. To prevent this
kind of leaks, TA can be built in such a way that all communications with P∗ are sent over a secure
channel, and that only the messages that are part of the protocol ran with V are sent in clear. The
delay introduced by the encryption for the secure channel does not invalidate TA : time-critical
exchanges can not be relayed in time, be it encrypted or not, due to the time measurement, and
messages independent from the current challenge can be computed and encrypted in advance.
With this technique, A only sees encrypted messages, and the transcript of a correct execution of
the protocol. By hypothesis, DB is MF-resistant, so that eavesdropping honest sessions does not
grant A any advantage. Therefore, if there exists a pair (P∗,A ) such that A authenticates with a
non negligible probability, then the protocol is vulnerable to a tamper-proof device attack.

We now proceed to proving that protocols with black-box provers are all OSTF-resistant, and
that some PUF-based protocols can be too.
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5.3.3 Black-box Provers and PUFs

In this section, we study the known cases in which the provers are not cloneable. The first one is
black-box provers, as this model is commonly used in the industry, and the second one is PUF-
based protocols. To the best of our knowledge, no other strategies preventing the cloning of
provers was proposed in any protocol of the literature.

Black-box Provers

Theorem 13. Let DB be a MF-resistant distance bounding protocol. If the provers are black-box,

then DB is OSTF-resistant.

Proof. Consider a distance bounding protocol DB, in which the provers are black-box. If the
prover is black-box, then it cannot be cloned: the holder does not know the secret material of
the device. By definition, the holder of a black-box prover has exactly the same capabilities as an
adversary: They can only interact with the device through the API of the protocol. From this, it
follows that whatever help the holder gives to the adversary can be obtained by the adversary on
his own, by interacting with the device in the same way the holder would.

Consequently, it holds that pA = AdvMF
DB

(λ), and DB is OSTF-resistant.

PUF-based protocols

We now study the case of protocols which use PUFs, in which the devices are, by definition of a
PUF, not cloneable. A PUF if a function that maps ni n bit challenges to nout bit responses, and
such that it is not emulable (i.e., their output cannot be predicted without querying them), and a
response to a challenge C gives negligible information on the response to another challenge C′.
It is embedded in a hardware device. The typical use case for a PUF is to query it to obtain its
responses to a list of challenges at the time of initialisation, and then using these challenges for
authentication later. PUFs also have a public key equivalent, which does not require knowing a
list of challenge/response pairs for authentication: SIMPL (Simulation Possible but Laborious):
their output for a given challenge can be computed without the hardware device, but significantly
slower than with it. By definition, the PUF embedded in a prover device cannot be cloned, and if a
SIMPL is used, it cannot be cloned accurately either, as the computation time will be longer.

Whilst protocols without PUFs are the great majority on the DB protocols in existence, there
are two PUF-based protocols in the literature: [Igier and Vaudenay, 2016, Kleber et al., 2015]. In
these protocols, the response to the challenges is computed as the output of a PUF on some chal-
lenge, which is the concatenation of a long pre challenge and the challenges from the previous and
current rounds.

The protocol of Kleber [Kleber et al., 2015] is vulnerable to a terrorist fraud, which was exhib-
ited in [Igier and Vaudenay, 2016], and the one of Vaudenay [Igier and Vaudenay, 2016] claims to
be TF resistant, under some assumptions on the communication complexity. However, the TF
resistance achieved by the latter is stronger than usual: it is not that if P∗ helps A , then A can
authenticate alone. It is that P∗ can simply not help A by providing him with the necessary re-
sponses in time, i.e., there is no strategy for P∗ to help A authenticate. This corresponds to OSTF-
resistance.

5.4 Conclusion

Usually, protocols claiming to attain terrorist fraud resistance do it by attempting to force the ma-
licious prover to give his (long term or temporary) credentials to his accomplice. While this works
in the usual formal models, it becomes completely irrelevant if the prover is allowed to use specific
hardware countermeasure for his attack. By using directional antennas, for instance, a malicious
prover can bypass the terrorist fraud resistance mechanism of some anonymous protocols (SPADE
and TREAD). By building tamper-proof copies of his proving device, and making them usable only
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a given number of times, a malicious prover can defeat the terrorist fraud resistance of all proto-
cols which permit the cloning of provers. If the provers are black-box, i .e. their holder does not
have access to their secret material, then the prover cannot give his accomplice any more than if
the accomplice had queried the device himself. Finally, for PUF-based protocols, either the prover
is unable to help his accomplice, or a terrorist fraud attack exists. Hence, we define OSTF, a no-
tion that imposes no restriction on what the prover is allowed to leak, and does not depend on the
accomplice learning something. A protocol is OSTF-resistant if, regardless of the help provided by
a malicious prover, A cannot authenticate successfully.
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The security of contactless communication protocols depends, of course, of the protocols
themselves, but it is also dependent of the cryptographic primitives that are used to build them.
Studying the security of these primitives is a difficult and tedious task, so that the community
studies solutions to automate it [Biryukov and Nikolic, 2010, Mouha et al., 2012, Sun et al., 2014,
Derbez and Fouque, 2016]. We applied Constraint Programming (CP) to automatic cryptanaly-
sis. Constraint programming is a paradigm in which the user states the problem to be solved in
a declarative manner, and leaves the resolution to a solver. As a benchmark to evaluate the ef-
ficiency of constraint programming, we chose a specific cryptographic problem: the search for
optimal related key differential characteristics on block ciphers. In this chapter, we present the
general methods that we used for modelling, while in the following chapters, we present concrete
case studies and results.

6.1 Introduction

Contactless communication protocols, including distance bounding protocols, rely heavily on the
security of the cryptographic building blocks that compose them. For instance, the security proofs
for SPADE and TREAD (Chapter 4) only hold if secure encryption schemes are used. Contactless
applications are usually run on devices with low computational power and energy, so that there is
an incentive in minimising the number of operations they have to perform. Symmetric schemes
are typically faster than asymmetric ones [Tripathi and Agrawal, 2014], so they are preferred for
contactless applications. For instance, most distance bounding protocols [Brelurut et al., 2016]
use symmetric schemes.
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In contactless protocols, the most widely used cryptographic primitives are encryption schemes,
PRFs, hash functions, and MACs (as defined in Chapter 2). Encryption is typically performed us-
ing a block cipher. A block cipher is a symmetric encryption scheme which encrypts messages (or
blocks) of fixed length. Once a secret key is fixed, the block cipher defines a permutation on the
message space. It is said to be secure, or to behave as a good pseudorandom permutation (PRP),
if it is difficult to distinguish this permutation from a random one without being given the secret
key. The other primitives used in contactless protocols can be built from a block cipher:

Hash Functions There exist several techniques to build a hash function from a block cipher, such
as the Merkle-Damgård construction [Merkle, 1979]. In this construction, successive calls to
a block cipher are done, in which the plaintexts are blocks of the message to be hashed, and
the keys used in the encryptions are a function of the previous encryptions.

PRF A secure block cipher can directly be used as a PRF (see Theorem 1 of [Lucks, 2000]), but more
advanced constructions can be used for more security, such as the PRF Sum2(K,K′,M) =
E.encK(M)⊕E.decK′(M), where E is a block cipher, and K and K′ are random keys [Lucks, 2000].

MAC To build a MAC from a block cipher, one can either use a specialised construction such as
PMAC [Black and Rogaway, 2002], or build a hash function from the block cipher, and then
use HMAC, defined as HMACK(M) = H((K ⊕ opad)||H(K ⊕ i pad ||M)), where H(·) is a hash
function, and opad and i pad are constants [Bellare et al., 1996].

Embedded devices are typically restricted by their memory. For this reason, one could imagine
implementing a block cipher on such a device, and deriving the other primitives from it. However,
in this case, several keys are sometimes used: for instance, the PRF Sum2 uses two different keys,
and the Merkle-Damgård construction uses several keys which are partly dependent from each
other. This multiple-key use case is not covered by the classical pseudo random security notion,
which only considers one fixed key. This motivates the analysis of the security of block ciphers
in the related key model, in which the attacker has access to encryptions under several keys that
have a relation of his choice. In the related key model, the most studied kind of attacks is related
key differential cryptanalysis. Related-key differential cryptanalysis is the adaptation of differen-
tial cryptanalysis [Biham and Shamir, 1991] to the case where multiple keys are used. Differential
cryptanalysis evaluates whether it is possible to distinguish the cipher from a PRP (or to recover the
secret key used to encrypt messages) within a reasonable number of trials, by considering plain-
text pairs (X,X′) and studying the propagation of the input difference δX = X⊕X′ between X and X′

while going through the ciphering process. In other words, differential cryptanalysis exploits the
fact that the probability of observing output differences given input differences is not uniformly
distributed. Today, differential cryptanalysis is public knowledge, and block ciphers such as the
AES have proven security bounds against differential attacks. Hence, Biham proposed to consider
related-key differential attacks [Biham, 1993], in which the attacker can inject differences not only
between the plaintexts X and X′ but also between the keys K and K′ (even though the secret key
K stays unknown from the attacker). To mount related-key differential attacks, the cryptanalysts
must find optimal related-key differentials, i.e., input and output differences that maximise the
probability of observing the output difference given the input difference. The propagation of dif-
ferences through the cipher is non deterministic, so that several difference propagation paths, also
called related key differential characteristics, can result in the same input and output difference.
Computing the probability of a differential, due to the high number of paths that can lead to it, is
difficult. However, the probability of the best differential characteristic gives a lower bound on the
probability of the best related key differential attack.

Finding optimal related key differential characteristics is a highly combinatorial problem, which
is usually solved using custom algorithms [Fouque et al., 2013, Biryukov and Nikolic, 2010]. Im-
plementing such algorithms is a tedious and time consuming task, which can be error prone. On
the other hand, the optimisation research community has automatic tools designed specifically to
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tackle combinatorial problems, and be easy to use. These tools include, among others, Mixed In-
teger Linear Programming (MILP), SAT solvers, or Constraint Programming (CP). In these declara-
tive frameworks, the solving algorithm is decoupled from the problem to solve: the user describes
the problem in a given formalism, and provides the resulting model to a solver, which performs
the resolution. This approach has several advantages over the design of custom search tools: it
is significantly easier to just describe the problem than to implement a search tool from scratch,
and the solvers can be much more efficient than custom tools, since they are the result of years of
improvements. Moreover, there is a strong incentive for the developers of solvers to improve them
even more and make them faster, in particular with the solvers competitions that take place every
year. The resolution algorithms used in these solvers are therefore highly optimised.

MILP and SAT models are used more and more widely for cryptanalysis, as they save crypt-
analysts the trouble of implementing a search algorithm from scratch. While the running time
is not a crucial feature for cryptanalysts, it still needs to be reasonable: during the design of
a cipher, this analysis may have to be repeated several times, so that a short running time is
an interesting feature. The first application of a declarative framework for the cryptanalysis of
block ciphers was trying to recover the secret key used in a DES encryption with a SAT solver,
in 1999 [Massacci, 1999]. Since then, SAT was mostly applied to the cryptanalysis of hash func-
tions [Mironov and Zhang, 2006], while MILP was used for ciphers. A notable example is the dif-
ferential and linear cryptanalysis of the stream cipher Enocoro-128v2 by Mouha et al ., using the
MILP paradigm [Mouha et al., 2012]. Other authors performed cryptanalysis on block ciphers us-
ing MILP, such as [Wu and Wang, 2011], who used it to perform differential cryptanalysis against
several block ciphers (CAST256, SMS4, Clefia, Misty, Skipjack, Mars, Fourcell), or [Sun et al., 2014],
in which MILP is used to find related key differential characteristics on SIMON, PRESENT, LBLOCK
and DESL. One well known difficulty when evaluating block ciphers with MILP is that MILP is de-
signed to solve linear equations, while block ciphers include non linear part. In particular, a com-
ponent used to introduced non linearity, the substitution boxes (SBoxes), is difficult to model in
MILP, since describing it in a linear way requires a huge number of equations. When the SBoxes
operate on 4 bits, it is still reasonably easy to model them with MILP, but larger SBoxes have been
known to be more difficult. A new representation introduced in [Abdelkhalek et al., 2017] made
the modelling of 8 bit SBoxes possible. More recently, MILP was used to search for impossible
differentials, i.e., differentials which occur with probability 0, in [Sasaki and Todo, 2017].

While MILP and SAT are quite popular in the cryptography community, CP received very little
attention. The small representation of CP for cryptanalysis in the literature is surprising: MILP
is limited to solving constraints described as linear inequalities, and SAT is limited to Boolean
formulas, while the CP formalism generalises the two former methods and imposes no restric-
tions on the constraints that can be expressed, which makes it easier to use. In addition, there
exists methods to convert a CP problem to a MILP or SAT problem automatically. In particu-
lar, MILP (such as Gurobi [Gurobi Optimization, 2016]) and SAT (for instance Picat_Sat) solvers
can interpret CP models written in the MiniZinc [Nethercote et al., 2007] constraint programming
language. However, to the best of our knowledge, apart from our work, CP was only used for
two cryptography-related tasks. It was used to automate the generation of SBoxes with optimal
properties [Ramamoorthy et al., 2011]. In this work, a CP model with constraint enforcing several
design criterion is proposed, and this model generates all the optimal SBoxes within a few sec-
onds. CP was also used to perform side-channel cryptanalysis on AES in two works. The first
one [Bonneau, 2006] considers the information obtained by cache look-ups that occur during
AES operations, and builds a CP models relating trace data to key bits, in order to recover the
key. The second one [Liu et al., 2017] uses CP to perform Tolerant Algebraic Side-Channel Analy-
sis [Oren et al., 2010] against AES.

We explored the capability of CP to tackle cryptanalysis problems, and in particular, the prob-
lem of finding optimal related-key differential characteristics for block ciphers.

In this chapter, we explain how to model the search and enumeration of optimal related-key
differential characteristics with constraint programming, and define the notations that we use in
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the following chapters. We first recall the definition of block ciphers in Section 6.2.1, and then
we introduce some notions about related key differential cryptanalysis in Section 6.2. Then, after
recalling what constraint programming (Section 6.3) is, we give the general technique we used for
modelling the problem of finding optimal related key differential characteristics in Section 6.4.

6.2 Related Key Differential Cryptanalysis

In this section, we first recall the definition of block ciphers and their security, and then present
related key differential cryptanalysis.

6.2.1 Block Cipher Security

Two famous examples of block ciphers are DES (Data Encryption Standard), which was the en-
cryption standard between 1977 and 2000, and AES [Daemen and Rijmen, 2002] which is the ac-
tual standard since 2001.

Block ciphers are symmetric encryption schemes that encrypt blocks of fixed length. More
formally, a block cipher is a function E : X×K→ X, where X = {0,1}n is a message space, and K =
{0,1}l is a key space. Given a binary block X ∈X (called plaintext) of length n and a binary key K ∈K

of length l , outputs a binary ciphertext E.encK(X) ∈X of length n such that X = E.decK(E.encK(X)).

Most of today’s block ciphers have an iterated structure: They apply a round function f r times
so that E.encK(X) = Xr with X0 = X and Xi+1 = f (Xi ,Ki+1) for all i ∈ [0;r −1].

The ciphers we studied in this thesis follow the Substitution Permutation Network (SPN) struc-
ture. The round function of the block ciphers following this structure is composed of a linear per-
mutation layer, as well as a non-linear substitution layer. This non linear layer is implemented as
SBoxes. A SBox is a substitution table, which maps bitstrings of length m to bitstrings of length w .
The cipher that we studied use bijective SBoxes, so that m = w , and they are word oriented: they
group bits as words, which are either nibbles (m = 4) or bytes (m = 8).

In the single-key scenario, a block cipher is said to be secure if it behaves as a good pseudoran-
dom permutation (PRP). In other words, it is secure if it is difficult to distinguish it from a random
permutation. Let Per m(D) denote the set of all permutations over a domain D. The two following
definitions are inspired from [Bellare and Kohno, 2003]. In these definitions, concrete (as opposed
to asymptotic) security notions are used, as in a block ciphers, the key size l is fixed. Hence, secu-
rity is considered with respect to adversaries having practical resources, in terms of running time
and oracle queries.

Definition 33 (PRP Experiment for a Block Cipher). Let E be a block cipher, and AdvPRP
E (l ) denote

the advantage of an adversary against the PRP experiment. A block cipher is PRP secure if AdvPRP
E (l )

is small, for any adversary limited to a practical number of queries. This advantage is defined as

Pr
[

K
$←K : A E.encK(·) = 1

]

−Pr
[

g
$← Per m(M) : A g (·) = 1

]

.

The PRP experiment can also be defined in the related key model [Bellare and Kohno, 2003].
The model defined in [Bellare and Kohno, 2003] allows the adversary to select among several rela-
tions between the keys, but since our work focuses on XOR differences, we adopt a simpler, though
less generic, definition. Let E.encRK,(δK,K)(X) be an oracle that encrypts a message X with the key
K⊕δK. Let Per m(K,M) denote the set of block ciphers with key space K and message space M.

Definition 34 (PRP-RKA Experiment for a Block Cipher). Let E be a block cipher, and AdvPRP−RKA
E (l )

denote the advantage of an adversary against the PRP-RKA experiment. A block cipher is PRP-RKA

secure if AdvPRP−RKA
E (l ) is small, for any adversary limited to a practical number of queries. This

advantage is defined as Pr
[

K
$←K : A E.encRK,(·,K)(·) = 1

]

−Pr
[

K
$←K, g

$← Per m(K,M) : A g (K,·) = 1
]

.
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6.2.2 Related Key Differential Cryptanalysis

In a related key differential attack, the cryptanalyst has access to E.encRK,(δK,K)(X), as defined in
Definition 34. He can query the encryption of any message X of his choice, under both the secret
key K and K′ = K⊕δK, for a δK of his choice. His goal is to distinguish E from a random keyed per-
mutation. Note that recovering the key permits A to trivially distinguish, by comparing E.encK(X)
with the output of the oracle for the encryption of X, i .e, E.encRK,(0,K)(X). When trying to recover
the key, the cryptanalysis is considered successful if he can do it more efficiently than by exhaus-
tive search. Exhaustive search is the strategy of requesting the encryption of a message X with the
key K, and then computing E.enck (X) : k ∈K for each of the 2l candidate keys in K, and checking
which ciphertext matches. In general, it is not possible to mount successful cryptanalysis on the
full version of a block cipher, and cryptanalysts attack round reduced versions.

The first step to perform a related key differential cryptanalysis is to obtain related key differ-
ential characteristics. A related key differential characteristics c describes the propagation of an
initial difference in the plaintext (δX) and in the key (δK) through the cipher, as well as the proba-
bility p(c) that a given output difference δXr is observed after r rounds of the encryption process.
The cryptanalyst can expect to observe δXr once encrypting 1

p(c) messages with the correct input

difference. The number of encryptions is generally raised to T · 1
p(c) (where T is a constant), in or-

der to maximise the probability of observing the correct output difference. Hence, the number of
operations required to distinguish E from a random permutation depends on the probability p(c).

We denote δA the differential matrix obtained by applying the XOR operator on two matrices
and, for every row j and column k, δA[ j ][k] is called a differential word (or, depending on the con-
text, differential byte or differential nibble). Differential words are denoted with a lower case letter,
e.g., δa, to avoid confusion with differential matrices. The set of all differential words, which rep-
resent the inputs, outputs and intermediary differences through the cipher, is denoted diffWordsl .
Among these differential words, some of them pass through Sboxes, and we denote Sboxes this set.

The first observation is that, in a differential context, XOR operation with constants C do not
need to be considered, since they are cancelled: a ⊕C⊕a′⊕C = a ⊕a′ = δa

The propagation of a difference δA through a linear operation L is deterministic: for all differ-
ential matrix δA = A⊕A′, it holds that L(A)⊕L(A′) = L(A⊕A′), by definition. On the other hand, the
propagation of a difference through a SBox S is not deterministic. Given two bitstrings a and a′,
S(a)⊕S(a′) is not necessarily equal to S(a ⊕a′).

Therefore, given an input differential words δa = a ⊕a′, we cannot deterministically compute
the output difference after passing through Sboxes: we can only compute probabilities. More pre-
cisely, for every couple of differential words (δai n ,δaout ) ∈ [0;n]2, we can compute the probability
that the input difference δai n becomes the output difference δaout , which is the proportion of
couples (a, a′) such that δai n = a ⊕ a′ and δaout = S(a)⊕S(a′). More precisely, this probability is
denoted pS(δaout |δai n) and is defined by

pS(δaout |δai n) =
#{(a, a′)∈[0;n]2 | (a⊕a′ = δai n)∧ (S(a)⊕S(a′) = δaout )}

2m
(6.1)

To compute the probability of a given valuation of all differential words, we first have to check
that all linear operators are satisfied by the valuation. If this is not the case, then the probability
is equal to 0. Otherwise, the probability of a differential characteristic c, denoted p(c), is equal to
the product of the transition probabilities of all differential words that pass through SBoxes, i.e., :

p(c) =
∏

δa∈Sboxes

pS(δaout |δai n) (6.2)

In the ciphers we studied, the SBoxes are bijective. This implies that whenever δa = 0 (i .e, a =
a′), S(a)⊕S(a′) = a⊕a′ = 0. Stated differently, pS(0|0) = 1, and pS(0|δai n) = 0 if δai n 6= 0. The SBoxes
which have a null input difference are inactive, and the SBoxes with non zero input difference are
said to be active. Only the active SBoxes lower the probability of the differential characteristic,
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since inactive SBoxes are passed with probability 1. Hence, optimal differential characteristics
typically have a low number of active SBoxes.

We refer the reader to [Biham and Shamir, 1991] for more details on differential characteristics.

6.3 Constraint Programming

In this Section, we briefly recall basic principles of CP and we refer the reader to [Rossi et al., 2006]
for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is defined by a triple (X,D,C)
such that X is a finite set of variables, D is a function that maps every variable xi ∈ X to its domain
D(xi ) (that is, the finite set of values that may be assigned to xi ), and C is a set of constraints
(that is, relations between some variables which restrict the set of values that may be assigned
simultaneously to these variables).

Constraints may be defined in extension, by listing all allowed (or forbidden) tuples of the
relation, or in intention, by using mathematical operators. Let us consider for example a CSP with
X = {x1, x2, x3} such that D(x1) = D(x2) = D(x3) = {0,1}, and let us consider a constraint that ensures
that the sum of the variables in X is different from 1. This constraint may be defined by a table
constraint that enumerates all allowed tuples:

(x1, x2, x3) ∈ {(0,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1)}.

Conversely, it may be defined by enumerating all forbidden tuples:

(x1, x2, x3) 6∈ {(1,0,0), (0,1,0), (0,0,1)}.

Finally, it may be defined by using arithmetic operators: x1 +x2 +x3 6= 1.
Solving a CSP involves assigning values to variables such that all constraints are satisfied. More

formally, an assignment A is a function which maps each variable xi ∈ X to a value A (xi ) ∈ D(xi ).
An assignment A satisfies (resp. violates) a constraint c ∈ C if the tuple defined by the values
assigned to the variables of c in A belongs (resp. does not belong) to the relation defined by c. An
assignment is consistent (resp. inconsistent) if it satisfies all the constraints (resp. violates some
constraints) of the CSP. A solution of a CSP is a consistent assignment.

An objective function may be added to a CSP, thus defining a Constrained Optimisation Prob-
lem (COP). This objective function is defined on some variables of X and the goal is to find the
solution that optimises (minimises or maximises) the objective function. This solution is said to
be optimal.

CP languages provide high-level features to define CSPs and COPs in a declarative way.
Then, these problems are solved by generic constraint solvers which are usually based on a

systematic exploration of the search space: Starting from an empty assignment, they incremen-
tally extend a partial consistent assignment by choosing a non-assigned variable and a consistent
value for it until either the current assignment is complete (a solution has been found) or the cur-
rent assignment cannot be extended without violating constraints (the search must backtrack to
a previous choice point and try another extension). To reduce the search space, this exhaustive
exploration of the search space is combined with constraint propagation techniques: Each time
a variable is assigned to a value, constraints are propagated to filter the domains of the variables
that are not yet assigned, i.e,, to remove values that are not consistent with respect to the current
assignment. When constraint propagation removes all values from a domain, the search must
backtrack.

Let us consider for example the constraint that ensures that the sum of three variables is differ-
ent from 1. Whenever two of these variables are assigned and their sum is equal to 1 (resp. 0), the
propagation of this constraint removes the value 0 (resp. 1) from the domain of the third variable.

A key point to speed up the solving process of CSPs is to define the order in which variables are
assigned, and the order in which values are assigned to these variables, when building the search
tree. CP languages allow the user to specify this through variable and value ordering heuristics.
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6.4 Modelling the Search for Optimal Related Key Differential Charac-

teristics on Word Oriented Block Ciphers With CP

In this section, we present the strategies that we used to perform the search for optimal related-key
differential characteristics.

6.4.1 Search algorithm

Finding and enumerating the optimal related key differential characteristics for a block cipher is a
highly combinatorial task. It requires finding the difference propagation path, such that the plain-
text difference is δX, the key difference is δK, and the difference after r rounds is δXr . The search
space is very large: typical values for the block size n and the key size l are 64, 128 or even more
bits. To make the search easier, it can be decomposed into two steps[Biryukov and Nikolic, 2010,
Fouque et al., 2013].

In a first step, each differential word δa ∈ diffWords is abstracted with a Boolean variable (or
differential bit) ∆a such that ∆a = 0 ⇔ δa = 0 and ∆a = 1 ⇔ δa ∈ [1,2n −1]. We denote the fact
that ∆a is a Boolean abstraction of δa with the symbol ≺, i.e., ∆a ≺ δa. In other words, each
Boolean variable assigned to 1 gives the position of a difference. The goal is to find all abstracted
differential characteristics that optimise some objective function:

• an abstracted differential characteristic is an assignment of the Boolean variables associated
with the differential words of diffWords that satisfies the Boolean abstraction of the cipher

operations;

• the objective function aims at minimising the number of differences passing through SBoxes

(i.e., minimising
∑

δa∈Sboxes∆a).

In a second step, for each abstracted differential characteristic, we search for actual values of
the diffWords variables that satisfy the difference propagation rules and that maximise the proba-
bility p(c) defined in Eq. (6.2). When a Boolean variable ∆a is equal to 0 in the abstracted differ-
ential, there is only one possible value for δa, which is 0. However, when ∆a = 1, there are 2l −1
possible values for δa. Note that some abstracted differential characteristics are not valid and can-
not be transformed into word solutions because abstracted differential characteristics only satisfy
Boolean abstractions of the actual cipher operations. These abstracted differential characteristics
are said to be word-inconsistent. It may also happen that the maximal probability p(c) is such that
it is possible to have a greater probability with a larger number v of differences that pass through
SBoxes. In this case, we need to search for new abstracted differentials, with a larger number of
differences.

More precisely, the complete procedure to find optimal differential characteristics is described
in Algorithm 1. It first calls function Step1-opt to compute the minimal number v∗ of differences
passing through S-boxes in an abstracted differential characteristic (line 2), and it initialises v to
this minimal number of differences. Then, it calls the function Step1-enum to compute the set T
of all abstracted differential characteristics such that the number of differences passing through
S-boxes is equal to v (line 6). For each abstracted differential t ∈ T, it calls function Step2 (line 8):
if t is not word-consistent, Step2 returns null ; otherwise, it returns the optimal differential char-
acteristics c associated with t . If this optimal differential characteristics has a greater probability
than c∗, then it updates c∗ (line 9). Lines 6 to 10 are repeated with increasing values of v until
a differential characteristics has been found, and it is not possible to obtain a better differential
characteristics with a higher value of v .

6.4.2 Modelling the Cipher Operations

In this section, we describe the modelling tricks that we used for the operations of the cipher. The
detail of the modelling are cipher dependant, and are presented in the following chapter. How-
ever, some general guidelines can be defined. Indeed, many block ciphers use XOR operations,
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Algorithm 1: Computation of optimal differential characteristics

Input: The size l of the key and the number r of rounds
Output: An optimal differential characteristics c∗

1 begin

2 v∗ ← Step1-opt(l ,r )
3 v ← v∗

4 c∗ ← null

5 repeat

6 T ← Step1-enum(l ,r, v)
7 for each abstracted differential t ∈ T do

8 c ← Step2(l ,r, t )
9 if c 6= null and (c∗ = null or p(c) > p(c∗)) then c∗ ← c;

10 v ← v +1

11 until c∗ 6= null and p(c∗) ≥ mi np ;
12 return c∗

so we describe how we modelled them. SPN ciphers also use SBoxes, and we describe how to
model them with CP. Finally, AES and other block ciphers inspired by it use an operation called
MixColumn. While this operation cannot be accurately represented in Step 1, we present tricks
that exploits the properties of MixColumns to filter out inconsistent solutions during Step 1.

First Step

The advantage of decomposing the problem in two steps is that it greatly reduces the search space.
It additionally permits to report the study of the SBox operation to Step 2, for which the number of
potential solutions is greatly filtered by Step 1. Indeed, as mentioned earlier, for bijective SBoxes,
S(a)⊕S(b) = 0 if a = b, and that S(a)⊕S(b) 6= 0 otherwise, so that the output difference after a SBox
is 0 if the input difference is 0, and nonzero otherwise. Hence, for the abstraction of the SBox
operation in the Boolean domain is simply

SB(∆ai n ,∆aout ) ≡∆ai n =∆aout .

For this reason, the SBox operation is simply modelled as the identity operation in the first step.
On the other hand, some branching is introduced by the abstraction of the XOR operation:

When the words are abstracted to bits, we lose the information of whether two words are equal.
Consider the following operation: δx = δa ⊕δb. When abstracting it to the Boolean domain, we
lose information about whether δa and δb are equal, and we obtain the following three cases:

• If ∆a =∆b = 0, then ∆x = 0, because 0⊕0 is zero.

• If ∆a 6=∆b, then ∆x = 1, because 0⊕x, with x 6= 0, is always nonzero.

• If ∆a =∆b = 1, then ∆x can be either 0 (if δa = δb) or 1 otherwise.

This is expressed by the following constraint:

XOR(∆a,∆b,∆x) ≡∆a +∆b +∆c 6= 1.

where + is the integer addition.
Similarly, when k variables are XORed together, i.e, δx =

⊕

i∈[1,k]δai , we have that if all the
differential bits representing the differential words δai are zero, then ∆x is 0. If only one of these
bits is nonzero, then∆x is 1. If there is more than one nonzero bit, then the result is undetermined.

XOR({∆ai |i ∈ [1,k]},∆x) ≡
k
∑

i =1
(∆ai )+∆x 6= 1.
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Finally, the ciphers we studied include a linear transformation called MixColumns (MC), which
operates on each column of the differential matrices independently. These columns contain 4
rows for all the ciphers we studied. Let A denote a column, and MC(A) its image by the MC oper-
ation. The MC operation is chosen for its diffusion properties: For each column A, it ensures that
the number of bytes that are different from zero in A and MC(A) is either 0 or greater or equal to
its branch number b, i.e.,

(
3

∑

j =0
(A[ j ] 6= 0)+ (MC(A)[ j ] 6= 0)) ∈ {0,b,b +1, . . . ,8}.

If b = 4, the MC operation has the quasi MDS property, and if b = 5, then the MC operation has
the MDS property, where MDS stands for Maximum Distance Separable.

MC cannot be modelled precisely at the Boolean level, as knowing where differences hold in
δA is not enough to determine where they hold in δMC(A). Indeed, the values of the words in
the column are necessary to determine the positions of the zeros after MC. However, the MDS, or
quasi MDS property, is modelled by constraining the number of differences in δA and δMC(A) to
be equal to 0 or greater than B.

However, the MDS or quasi MDS property of MC also holds for the XOR difference between
two columns of differential bytes:

(
3

∑

j =0
((δA[ j ]⊕δB[ j ]) 6= 0)+ ((δMC(A)[ j ]⊕δMC(B)[ j ]) 6= 0)) ∈ {0,b,b +1, . . . ,8}.

Considering the branch number for the XOR of two columns of differential words permits to
greatly reduce the number of byte inconsistent solutions. Indeed, we can infer equalities or differ-
ences between δA and δB from other parts of the cipher, for instance the XOR operations. More
details about these inferences are given in Section 7.3.2.

Second Step

The second step is a straightforward implementation of the difference propagation rules for the
cipher at word level. It includes constraints to define the Sbox operation, as well as the XOR opera-
tion, and the permutations. MixColumns is modelled by combining XOR operations. For AES and
Rijndael, it also requires to implement multiplication in a finite field: the constraints correspond-
ing to this multiplication are described in the corresponding chapter.

For XOR, SBox, and multiplication, we use table constraints, which extensively list the allowed
tuples. A table constraint is defined with regards to a set of allowed n-tuples tuples, and a tuple of
variable t = (v1, . . . , vn). The constraint t able(t ,tuples) enforces the relation t ∈ tuples. For SBox,
we use a ternary table constraint which lists all triples (X,Y,P) such that there exists two words
w1 and w2 whose difference before and after passing through SBoxes is equal to X and Y, respec-
tively, and such that pS is the probability of this transformation: For all δw ∈ Sboxes, we add the
constraint

(δwi n ,δwout , p) ∈ {(X,Y, p) | ∃(w1, w2) ∈ [0,2l −1]× [0,2l −1],X = w1 ⊕w2,

Y = S(w1)⊕S(w2), p = log2(−pS(δwout |δwout )}.

Using the base 2 logarithm allows us to replace the product of probabilities by a sum of integers,
which is easier to model.

Similarly, for the XOR operations (δa⊕δb = δc), we use a ternary table constraint which exten-
sively lists all triples (A,B,C), such that A⊕B = C. The corresponding tuples are called tupleXOR:

TX = {(A,B,C) : (A,B,C) ∈ [0;2m −1]3, A⊕B = C},

where m is the word size used in the cipher (typically 4 or 8 bits).
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Objective function

The same model is used to solve two problems, i.e., Step1-opt and Step1-enum. The difference
between these problems is in their goals.

For Step1-opt, the goal is to find the minimum number of differences passing through SBoxes,
i.e., the number of ∆B variables that are associated with differential words in Sboxesl and that are
assigned to 1. Thus, we define an integer variable ob jStep1 which is constrained to be equal to the
number of differences passing through SBoxes:

ob jStep1 =
∑

δB∈Sboxes

∆B.

The domain of this variable is D(ob jStep1) = [1, l
6 ]. Indeed, the smallest possible value is 1 because

we need to have at least one active SBox to have a differential characteristics (we forbid the obvious
solution such that δX and δK only contain words set to 0, meaning that there is no difference
in the initial plaintext and key). The largest possible value is l

6 because the highest probability
pS(δout |δi n) to pass through the AES SBox is 2−6 = 4

256 when δi n 6= 0 [Daemen and Rijmen, 2002],
and because we want a differential characteristics which is more efficient than the key exhaustive
search (i.e., the probability of which is greater than 2−l ). The objective function is to minimise
ob jStep1

For Step1-enum, the goal is to enumerate all abstracted differentials when ob jStep1 is assigned
to a given value v , and we simply ask the solver to enumerate the solutions that satisfy the con-
straint.

Ordering heuristics

As the goal is to minimise the number of active SBoxes (for Step1-opt) or enumerate all abstracted
differentials with a small number of active SBoxes (for Step1-enum), we define ordering heuristics
as follows: first assign variables associated with bytes that pass through SBoxes (those in Sboxes),
and first try to assign them to 0.

Tools and Experimental Setup

There exists a wide range of CP solvers, as well as SAT and MILP solvers. In preliminary exper-
iments [Minier et al., 2014], both steps were performed with Choco [Prud’homme et al., 2016], a
CP solver based on the java programming language. The problem that was studied was the search
for related key differential characteristics on AES-128, and is presented in the next chapter. How-
ever, the resolution of Step 1 scaled poorly with Choco, even though the times for Step 2 were
good. To remedy this, we investigated the use of different solvers, by implementing our model
in the MiniZinc language [Nethercote et al., 2007]. MiniZinc is a dedicated language, which is
interpreted (after compilation) by many CP solvers, as well as some SAT and MILP solvers: the
whole list of compatible solvers can be found on minizinc.org. We ran experiments with Gecode
[Gecode Team, 2006], Choco [Prud’homme et al., 2016], Chuffed [Chu and Stuckey, 2014], and Pi-
cat_SAT [Zhou et al., 2015]. The solver Chuffed [Chu and Stuckey, 2014] performed very well on
the small instances of our problems [Gerault et al., 2016], but for larger instances, it was not suf-
ficient. In particular, while our problem was solved efficiently for AES-128, the instances related
to AES-192 were problematic. We switched to Picat_SAT after submitting our models to a compe-
tition of solvers called the MiniZinc challenge, in 2016, and noticing that it obtained particularly
good results. In fact, Picat_SAT was consistently better than Chuffed, or at least as good, for solv-
ing our models. Hence, we use it to perform Step 1 in all the experiments described in the rest of
this thesis. Note that Picat_SAT actually uses a SAT solver to solve CSPs: It first translates the CSP
instance into a Boolean satisfiability formula, and then uses the SAT solver Lingeling [Biere, 2014]
to solve it.
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On the other hand, Step 2 is solved fast enough by Choco for all our instances. Moreover, it
can be parallelized: each Step 1 solution can be solved in Step 2 independently. Hence, Step 2 was
never a bottleneck, and we did not investigate its resolution with other solvers.

All our experiments were performed on a server with a 24-core Intel(R) Xeon(R) E5-2687Wv4 @
3.00GHz CPU, and 768 Gb of RAM. We used version 2.1.7 of the MiniZinc suite, and Picat version
1.9#6.

When we report our results, all times are given in seconds unless otherwise specified.

6.5 Conclusion

In this chapter, we presented the problem of finding optimal related key differential characteristics
on block ciphers, i.e., relations between input and output differences which hold with maximal
probability, and defined the associated notations. Additionally, we presented the general mod-
elling techniques that we used, including a two-step resolution, and the use of table constraints
to model the SBoxes at word level. The following chapters instantiate our techniques to two block
ciphers: AES and Midori.
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Related Key Differential Cryptanalysis of

AES with CP
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The AES is the most widely used block cipher since its standardisation in 2001. In this chapter,
we present the methods and results of our related key cryptanalysis on it using constraint pro-
gramming. Using the methods described in the previous chapter, we solve the problem within
some hours even for the hardest instances, whereas the state of the art method require several
weeks. Additionally, we disprove some results that were claimed optimal in the literature.

7.1 Introduction

In 1997, a call for proposals was launched in order to replace the DES (Data Encryption Stan-
dard), which had been in use since the 1970’s, and had become insecure. One of the candidates,
Rijndael [Daemen and Rijmen, 2002], was modified and adopted as the AES (for Advanced En-
cryption Standard) in 2001. While the original in algorithm, Rijndael, several block sizes n ∈
{128,160,192,224,256} could be chosen, independently of the key size l ∈ {128,160,192,224,256},
the AES only supports one block size (128 bits) and three key sizes: 128, 192 and 256 bits.

After almost two decades of active cryptanalysis, the community failed to find any signifi-
cant threat to the security of the AES in the single-key setting. The best published single-key
attacks on full-round AES [Tao and Wu, 2015] are biclique attacks. Biclique attacks on block ci-
phers [Bogdanov et al., 2011] permit to extend the number of rounds attacked by meet-in-the mid-
dle attacks, in which the cipher is considered as two independent subciphers. The biclique attacks
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on AES only give a very small advantage over exhaustive search: their complexity, for AES-128, -
192 and -256, are respectively 2126, 2189.9 and 2254.3. The difficulty to find attacks in the single-key
model motivated the community to investigate the related-key setting, which seems more promis-
ing. There exist related-key attacks on the full-round versions of AES-192 and AES-256, and on 9
rounds (out of 10) of AES-128 [Biryukov and Nikolic, 2010].

To this day, only two papers (apart from ours) perform an automatic search for related key dif-
ferential characteristics on the AES. The first one, by Biryukov et al . [Biryukov and Nikolic, 2010],
uses a branch and bound approach, which is a variant of Matsui’s algorithm [Matsui, 1995], in or-
der to solve the first step of the search, i.e., to enumerate the optimal abstracted differential char-
acteristics. Matsui’s algorithm was initially designed to find single-key differential characteristics
iteratively, starting from one-round characteristics and building up to r -rounds, using the results
from the i previous iterations to bound the probability of the best characteristic for round i +1.
With this approach, they solve Step1-opt (from Algorithm 1) in several days for AES-128, and sev-
eral weeks for AES-192. Their give no time for AES-256. The second work [Fouque et al., 2013], by
Fouque et al ., represents the possible differential paths as a graph, and uses a graph traversal al-
gorithm in order to obtain the optimal path. However, for AES-128, the size of the graph is around
60 GB, so that the authors did not apply their method to AES-192 and AES-256. Building the graph
takes around 30 minutes on a 12-core machine, and the optimal path for AES-128 is found within
one hour after the graph is built.

We model this problem with constraint programming for the three versions of AES. We build up
from a straightforward, naive model, which is very inefficient and finds a lot of word-inconsistent
solutions, to a final model that includes some advanced reasoning on the properties of the op-
erations of the AES, and which greatly reduces the number of word-inconsistent solutions, while
being much faster. With this last model, coupled with a different decomposition strategy, we enu-
merate the optimal abstracted related key differential characteristics within less than one hour for
AES-128, less than 4 hours for AES-192, and less than 2 minutes for AES-256, on a single core of
an Intel(R) Xeon(R) E5-2687Wv4 @ 3.00GHz CPU. Interestingly, both [Biryukov and Nikolic, 2010]
and [Fouque et al., 2013] find that the optimal 4-round related key differential characteristic for
AES-128 has 13 active SBoxes, whereas we prove that the optimal one actually had only 12 ac-
tive SBoxes. Similarly, our CP model finds an inconsistency in the related key differential char-
acteristic claimed to be optimal for AES-192 in [Biryukov and Khovratovich, 2009], and obtains
a better related key differential for 14 rounds of AES-256 than the one claimed to be optimal
in [Biryukov and Khovratovich, 2009].

In this chapter, we first describe the AES in Section 7.2, and then our CP models for Step 1 in
Section 7.3. We then present the model for Step 2 in section 7.4, and our decomposition technique
in Section 7.5.

7.2 The AES

AES ciphers blocks of length n = 128 bits, where each block is seen as a 4×4 matrix of 8-bit words,
or bytes. Given a 4× 4 matrix of bytes M, we note M[ j ][k] the byte at row j ∈ [0,3], and column
k ∈ [0,3]. The plaintext and key are transformed from strings of words to matrices by ordering
them in columns, as shown on Figure 7.2.

The length of keys is l ∈ {128,192,256} bits, and we note AES-l the AES with keys of length l .
The initial key K contains KC columns. Each column is 4 bytes, or 32 bits, so that KC = l

32 : there are
4 columns for AES-128, 6 for AES-192, and 8 for AES-256. The only difference when changing the
length l of the key is in the KeySchedule operation. In what follows, we illustrate AES and describe
our cryptanalysis models.

Like most of today’s block ciphers, AES is an iterative process which is composed of r rounds.
The number of rounds r depends on the key length: r = 10 (resp. 12 and 14) when l = 128 (resp.
192 and 256). An AES round has an SPN (Substitution-Permutation Network) structure and is
described in Figure 7.1 for l = 128. Before the first round, AddRoundKey (ARK) is applied on the
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Operations applied at each round i ∈ [0,r −1] for AES-128:

Key K = K0
(4×4 bytes)

KS

KS
Subkey Ki+1

ARK

XiPlaintext X

(4×4 bytes)

ARK

SB

SXi

SR MC

Yi Zi Xr

SB

Ciphertext

= AESK (X)

Figure 7.1: AES ciphering process for 128 bit keys. Each 4×4 array represents a group of 16 bytes. Before
the first round, X0 is obtained by applying ARK on the initial text X and the initial key K = K0. Then, for each
round i ∈ [0,r −1], SB is applied on Xi to obtain SXi , SR is applied on SXi to obtain Yi , MC is applied on Yi

to obtain Zi , KS is applied on Ki to obtain Ki+1, and ARK is applied on Ki+1 and Zi to obtain Xi+1. Finally,
the ciphertext is obtained by applying SB on Xr .

M =











m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15











Figure 7.2: The representation of a block in the AES, where M is a matrix, and m is a string of words.

original plaintext X and the initial key K0 = K to obtain X0 = ARK(X,K0). Then, for each round
i ∈ [0,r−1]: SubBytes (SB) is applied on Xi to obtain SXi = S(Xi ); ShiftRows (SR) is applied on SXi to
obtain Yi = SR(SXi ); MixColumns (MC) is applied on Yi to obtain Zi = MC(Yi ); KeySchedule (KS) is
applied on Ki to obtain Ki+1 = KS(Ki ); and AddRoundKey (ARK) is applied on Zi and Ki+1 to obtain
Xi+1 = ARK(Zi ,Ki+1). Finally, after r rounds, the ciphertext is obtained by applying SubBytes on Xr .

Let us now describe each of these AES operations.

SubBytes (SB) SB, also called SBox, is a non-linear permutation which is applied on each byte of
Xi separately, according to a look-up table S : [0,255] → [0,255], i.e.,

∀i ∈ [0,r −1],∀ j ,k ∈ [0,3],SXi [ j ][k] = S(Xi [ j ][k]).

ShiftRows (SR) SR rotates on the left by one (resp. two and three) byte position the second (resp.
third and fourth) row of SXi , i.e., :

∀i ∈ [0,r −1],∀ j ,k ∈ [0;3],Yi [ j ][k] = SXi [ j ][(k + j )%4],

where % is the modulo operator that returns the rest of the euclidean division.

MixColumns (MC) MC multiplies each column of the input matrix Yi by a 4×4 fixed matrix M:

∀i ∈ [0,r −1],∀ j ,k ∈ [0;3],Zi [ j ][k] =
3

⊕

x=0
M[ j ][x] ·Yi [x][k],

where · is a finite field multiplication operator. The matrix M is chosen for its good properties
of diffusion (see [Daemen and Rijmen, 2002]). In particular, it has the Maximum Distance
Separable (MDS) property: For each column, it ensures that the number of bytes that are
different from zero at this column in Yi and Zi is either equal to zero or greater than four,
i.e.,

∀i ∈ [0,r −1],∀k ∈ [0;3], (
3

∑

j =0
(Yi [ j ][k] 6= 0)+ (Zi [ j ][k] 6= 0)) ∈ {0,5,6,7,8}.
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The matrix M, and its inverse M−1 (used for decryption), are presented in Figure 7.3.

M =











2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2











,M−1 =











14 11 13 9
9 14 11 13

13 9 14 11
11 13 9 14











Figure 7.3: The M matrix used for the MixColumn operation in AES encryption (left), and its inverse M−1,
used for decryption (right).

AddRoundKey (ARK) Before the first round, ARK performs a xor between the initial plain text X
and the initial key K0 to obtain X0:

∀ j ,k ∈ [0;3],X0[ j ][k] = X[ j ][k]⊕K0[ j ][k].

Then, at each round i , ARK performs a xor between Zi and subkey Ki+1 to obtain Xi+1, i.e.,

∀i ∈ [0,r −1],∀ j ,k ∈ [0;3],Xi+1[ j ][k] = Zi [ j ][k]⊕Ki+1[ j ][k].

Key Schedule (KS) KS computes the subkey Ki of each round i ∈ [0,r ] from the initial key K. It
is represented as a 4× r ×4 matrix EK (for Extended Key). Each column of the matrix cor-
responds to one column of the key. To compute the round key Ki , we simply take the cor-
responding columns of EK: K0 is composed of the first 4 columns of EK, K1 is the 4 next
columns, and so on:

∀i ∈ [0,r ],∀ j ,k ∈ [0;3],Ki [ j ][k] = EK[ j ][i ·4+k].

The KC = l
32 (where l is the key length) first columns of EK are the columns of the initial key.

The rest of EK is computed by combining values from the previous round subkeys. The
exact formula is different for AES-256 than for the other versions. We first describe the al-
gorithm for AES-128 and AES-192, which is the same for both. The computation of the byte
column EK[ j ][k], for j ,k ∈ [0;3]2, is simply the XOR of two values from previous columns
(EK[ j ][k −KC] and EK[ j ][k −1]) if k is not a multiple of KC. Otherwise, an intermediary col-
umn SK[ j ][k − 1] is built by rotating up each byte of column EK[ j ][k − 1] by one position,
applying a SB operation to the resulting column, and XORing a round constant Ci to its first
row. Then, EK[ j ][k −1] is obtained by XORing SK[ j ][k] and EK[ j ][k −KC].

Hence, we have,

∀ j ∈ [0;3],∀k ∈ [0;KC−1] : EK[ j ][k] = K[ j ][k],

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC = 0 : SK[ j ][k −1] = S(EK[( j +1)%4][k −1]),

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC = 0 : EK[ j ][k] = SK[ j ][k −1]⊕EK[ j ][k −KC],

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC 6= 0 : EK[ j ][k] = EK[ j ][k −1]⊕EK[ j ][k −KC].

For AES-256, an additional SBox operation is applied, without rotations, when k%KC is
equal to 4 (where KC is 8):

∀ j ∈ [0;3],∀k ∈ [0;KC−1] : EK[ j ][k] = K[ j ][k],

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC = 0 : SK[ j ][k −1] = S(EK[( j +1)%4][k −1]),

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC = 4 : SK[ j ][k −1] = S(EK[ j ][k −1]),

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%4 = 0 : EK[ j ][k] = SK[ j ][k −1]⊕EK[ j ][k −KC],

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%4 6= 0 : EK[ j ][k] = EK[ j ][k −1]⊕EK[ j ][k −KC].
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7.3 Our CP Models

We describe three models for solving the first step of the search for optimal related key differential
characteristics for the AES, and the model for Step 2. The first model, S1Basi c , is a very straight-
forward implementation of the AES rules. It finds many word-inconsistent solutions. The second
one, S1Di f f , exploits equalities that can be infer ed from the key schedule in order to make prune
inconsistent solutions, and make the search practical for AES-128. The last one, S1XOR, exploits ad-
ditional information by considering the possible combinations of variables from the key. Finally,
we present a decomposition, which shifts the frontier between steps one and two, and permits to
solve the problem efficiently for all versions of the AES.

7.3.1 S1Basi c

The functions Step1-opt and Step1-enum used in Algorithm 1 for computing optimal differential
characteristics share the same CP model. The only difference is in the goal of the solving process:
in Step1-opt the goal is to search for a solution that optimises a given variable called objStep1,
whereas in Step1-enum the goal is to enumerate all abstracted differentials when the variable
objStep1 is assigned to a given value.

We describe a first CP model for Step1-opt and Step1-enum, called S1Basi c , which was intro-
duced in [Minier et al., 2014] and is derived in a straightforward way from the definition of the AES
operations. It associates one Boolean variable ∆B with the differential word δB ∈ diffWordsl : ∆B
is assigned to 0 if δB = 0, and to 1 otherwise.

Variables

As defined in Section 6.2, the variables representing a related-key differential characteristic are the
ones included in the DiffWords set. The variables that go through a SBox, among these, form the
Sboxes set.

For readability, we include both variables representing the round subkeys Ki , and to represent
the extended key EK. Even though they represent the same thing (the Ki matrices are simply the
EK matrix split into 4-column blocks), having both makes the modelling easier. The key schedule
algorithm is simpler to define using EK, while the ARK operations are more readable with the Ki

notation.
For AES-128 and AES-192, diffWords contains the following differential words, representing:

• The plaintext: δX

• The round keys: δKi [ j ][k],∀i ∈ [0;r ], j ,k ∈ [0,3]2

• The extended key: δEK[ j ][k],∀ j ∈ [0;3],k ∈ [0, (r +1) ·4−1]

• The state after ARK: δXi [ j ][k],∀i ∈ [0;r ], j ,k ∈ [0,3]2

• The state after SB: δSXi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• The state after SR: δYi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• The state after MC: δZi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• The SK columns: δSK[ j ][k],∀k ∈ [0;4 · (r +1)−1],k%KC = KC−1

The Sboxes set contains:

• δXi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• δSK[ j ][k],∀k ∈ [0;4 · r −1],k%KC = KC−1

For AES-256, only the δSK variables change: The diffWords set becomes
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• The plaintext: δX[ j ][k],∀ j ,k ∈ [0,3]2

• The round keys: δKi [ j ][k],∀i ∈ [0;r ], j ,k ∈ [0,3]2

• The extended key: δEK[ j ][k],∀ j ∈ [0;3],k ∈ [0, (r +1) ·4−1]

• The state after ARK: δXi [ j ][k],∀i ∈ [0;r ], j ,k ∈ [0,3]2

• The state after SB: δSXi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• The state after SR: δYi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• The state after MC: δZi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• The SK columns: δSK[ j ][k],∀k ∈ [0;4 · (r +1)−1],k%4 = 3

and the Sboxes set becomes:

• δXi [ j ][k],∀i ∈ [0;r −1], j ,k ∈ [0,3]2

• δSK[ j ][k],∀k ∈ [0;4 · r −1],k%4 = 3

Note that the SBoxes of δKr are not taken into account. For AES-128 and AES-256, δKr can
still be computed fully, since the last SBoxes needed to compute the whole δKr are at round r −1.
On the other hand, for AES-192, it might occur that a SBox needs to be crossed at round r : if
r %3 = 1, then column 1 of δKr goes through a SBox. In this case, our model produces a truncated

differential characteristic, where the words of the δKr that depend on the output of a SBox crossed
at round r are undetermined. Similarly, the words of δXr that are the result of a XOR with an
undetermined word of δKr are undetermined.

Not all differential words are abstracted in Step 1. Indeed, during Step 2, the initial differential
plaintext δX, the last round differential subkey δKr (as well as the corresponding columns of EK),
and the final differential ciphertext δXr can be deterministically computed given the values of all
other differential words:

• δX is obtained by XORing δX0 and δK0.

• δKr is obtained by applying the key schedule algorithm. The non deterministic aspect of the
SB operation can be lifted: For the bytes δB that pass through S-boxes during this last round,
we deterministically choose for δSB the value that maximises pS(δSB|δB).

• δXr is obtained by XORing δZr−1 and δKr .

Hence, S1Basi c associates a Boolean variable∆B with every differential byte, except for δX,δXr and
δKr : δB ∈ diffWordsl \ {δX[ j ][k],δKr [ j ][k],δXr [ j ][k],δEK[ j ][n · 4+k] : j ,k ∈ [0,3]}. Each Boolean
variable ∆B is assigned to 0 if δB = 0, and to 1 otherwise.

We also define an integer variable ob jStep1 which corresponds to the number of active S-boxes.
The domain of this variable is D(ob jStep1) = [1, l

6 ]. Indeed, the smallest possible value is 1 because
we need to have at least one active S-box to have a differential characteristics (we forbid the obvi-
ous solution such that δX and δK only contain bytes set to 0, meaning that there is no difference
in the initial plaintext and key). The largest possible value is l

6 because the highest probability
pS(δout |δi n) to pass through the AES S-box is 2−6 = 4

256 when δi n 6= 0 [Daemen and Rijmen, 2002],
and because we want a differential characteristics which is more efficient than the key exhaustive
search (i.e., we want a differential characteristics whose probability is greater than 2−l ).

The corresponding list of variables is the following. We use the ≺ symbol, as defined in Sec-
tion 6.4.1, to denote the fact that a differential bit ∆a is a Boolean abstraction of the differential
word δa.

∆K: ∀i ∈ [0;r −1], j ,k ∈ [0,3]2,∆Ki [ j ][k] ≺ δKi [ j ][k]
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∆EK: ∀ j ∈ [0;3],k ∈ [0,r ·4−1],∆EK[ j ][k] ≺ δEK[ j ][k]

∆X: ∀i ∈ [0;r −1], j ,k ∈ [0,3]2,∆Xi [ j ][k] ≺ δXi [ j ][k]

∆SB: ∀i ∈ [0;r −1], j ,k ∈ [0,3]2,∆SBi [ j ][k] ≺ δSBi [ j ][k]

∆Y: ∀i ∈ [0;r −1], j ,k ∈ [0,3]2,∆Yi [ j ][k] ≺ δXi [ j ][k]

∆Z: ∀i ∈ [0;r −1], j ,k ∈ [0,3]2,∆Zi [ j ][k] ≺ δZi [ j ][k]

∆SK: ∀ j ∈ [0;3],k ∈ [0,r ·4−1],∆SK[ j ][k] ≺ δSK[ j ][k]

ob jStep1: ob jStep1 =
∑

i∈SBoxesl

(i )

The constraints that model AES operations are described below.

Constraints

SubBytes As the SBox is bijective, there is an output difference if and only if there is an input
difference (i.e., (B⊕B′ 6= 0) ⇔ (S(B)⊕S(B′) 6= 0)). As a consequence, the SubBytes operator has
no effect on the presence/absence of differences during Step 1, as explained in Section 6.4.2.
This is ensured by the following constraint:

∀i ∈ [0,r −1],∀( j ,k) ∈ [0;3]2 :∆SBi [ j ][k] =∆Xi [ j ][k]. (CSB)

XOR constraint As explained in Section 6.4.2, the XOR operation cannot be modelled precisely,
since the information about whether two differential words are equal is abstracted. Hence,
the XOR constraint is defined as

XOR(∆B1,∆B2,∆B3) ⇔∆B1 +∆B2 +∆B3 6= 1 (XOR)

AddRoundKey ARK is modelled by XOR constraints:

∀i ∈ [1,r −1],∀( j ,k) ∈ [0,3]2 : XOR(∆Yi−1[ j ][k],∆Ki [ j ][k],∆Xi [ j ][k]). (CARK)

ShiftRows SR is modelled by equality constraints that link shifted bytes:

∀i ∈ [0,r −1],∀ j ,k ∈ [0,3] :∆Yi [ j ][k] =∆SXi [ j ][( j +k)%4] (CSR)

MixColumns MC cannot be modelled precisely at the Boolean level, as knowing where differ-
ences hold in Yi is not enough to determine where they hold in Zi . Indeed, the values of the
bytes in the column are necessary to determine the positions of the zeros after MC. However,
the MDS property is modelled by constraining the number of differences in a same column
of Yi and Zi to be equal to 0 or greater than 4:

∀i ∈ [0,r −2],∀k ∈ [0,3] :

(

3
∑

j =0
∆Yi [ j ][k]+∆Zi [ j ][k]

)

∈ {0,5,6,7,8}. (CMDS1)

As MC is not applied during the last round, we have

∀ j ,k ∈ [0,3] :∆Zr−1[ j ][k] =∆Yr−1[ j ][k]. (CMDS2)

This set of constraints {CMDS1,CMDS2} is denoted CMDS .
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KeySchedule KS is modelled by XOR constraints (combined with a rotation of the bytes of SK).
The first step is to relate the ∆K and ∆EK variables:

∀ j ∈ [0;3],∀k ∈ [0;KC−1] : δEK[ j ][k] =∆K[ j ][k]. (C∆EK)

We then need to define the ∆SK variables, with a special case when for AES-256 (KC = 8). As
for the constraint CSB, the S operation does not change the value of the differential bit.

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC = 0 :∆SK[ j ][k −1] =∆EK[( j +1)%4][k −1],

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],k%KC = 0 :∆SK[ j ][k −1] =∆EK[( j +1)%4][k −1],

∀ j ∈ [0;3],∀k ∈ [KC;4 · (r +1)−1],KC = 8,k%KC = 4 :∆SK[ j ][k −1] =∆EK[ j ][k −1].











(C∆SK)

We can now describe the key schedule constraints, which are different depending on the
value of KC:

∀ j ∈ [0;3],

∀k ∈ [KC;4 · (r +1)−1],KC < 8,k%KC = 0 : XOR(∆EK[ j ][k],∆SK[ j ][k −1],∆EK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC = 8,k%4 = 0 : XOR(∆EK[ j ][k],∆SK[ j ][k −1],∆EK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC < 8k%KC 6= 0 : XOR(∆EK[ j ][k],∆EK[ j ][k −1],∆EK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC = 8k%4 6= 0 : XOR(∆EK[ j ][k],∆EK[ j ][k −1],∆EK[ j ][k −KC]).



























(Csi mpl eKS)

Performance of S1Basi c . S1Basi c is complete in the sense that for any solution at the byte level
(on δ variables), there exists a solution of S1Basi c at the Boolean level (on ∆ variables). However,
the experiments reported in [Gerault et al., 2016] have shown us that there is a huge number of
solutions of S1Basi c which are byte inconsistent and do not correspond to solutions at the byte
level. For example, for AES-128, when the number of rounds is r = 3, the optimal solution of Step1-

opt has ob jStep1 = 3 active SBoxes, and Step1-enum enumerates more than five hundred abstracted
differentials with this number of active SBoxes. However, none of these abstracted differentials is
byte-consistent. Actually, the optimal byte-consistent abstracted differentials has 5 active SBoxes.
In this case, most of the solving time is spent at generating useless abstracted differentials which
are discarded in Step 2. Hence, we had to introduce more subtle reasoning in the model to limit
the number of solutions.

7.3.2 S1Di f f

The problem with S1Basi c is that it does not filter enough word-inconsistent solutions, so that
it does not permit to solve the problem for difficult instances. To solve this problem, we devel-
oped S1Di f f . In S1Di f f , additional constraints and variables are introduced. They are used to
infer equality relations between differential bytes, and these relations are used to propagate the
MDS property of MixColumns at the byte level. They remove most binary solutions that cannot be
transformed into byte solutions, thus speeding up the solution process.

A first weakness of S1Basi c comes from the fact that the XOR constraint between Boolean vari-
ables is a poor abstraction of the xor relation at the byte level, because whenever two XORed bytes
are different from zero, we cannot know whether the result is equal to zero or not. A second weak-
ness of S1Basi c comes from the fact that MC is only poorly approximated at the Boolean level, as
we only propagate a Boolean abstraction of the MDS property. S1Di f f aims at overcoming these
issues.

Propagation of MDS at Byte Level

For each round i ∈ [0,r −2] and each column j ∈ [0,3], the MDS property of MixColumns ensures,
for two columns Y and Z such that Z = MC(Y):

3
∑

j =0
(Yi [ j ][k] 6= 0)+ (Zi [ j ][k] 6= 0)) ∈ {0,5,6,7,8}.
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At differential byte level, this property still holds:

3
∑

j =0
(δYi [ j ][k] 6= 0)+ (δZi [ j ][k] 6= 0)) ∈ {0,5,6,7,8}.

In the first model, this property is ensured by the constraint CMDS :

∀i ∈ [0,r −1],∀k ∈ [0,3] :

(

3
∑

j =0
∆Yi [ j ][k]+∆Zi [ j ][k]

)

∈ {0,5,6,7,8}.

However, the MDS property also holds for any xor difference between two different columns in
two different rounds of the differential byte model:

∀i 1, i 2 ∈ [0,r −2]2,∀k1,k2 ∈ [0;3]2 :

(
3

∑

j =0
((δYi 1[ j ][k1]⊕δYi 2[ j ][k2]) 6= 0)+ ((δZi 1[ j ][k1]⊕δZi 2[ j ][k2] 6= 0)) ∈ {0,5,6,7,8}.

To ensure this property, which removes most inconsistent solutions, we need to be able to
verify whether two differential bytes are equal or not. To this end, we introduce additional Boolean
variables: given two differential bytes δB1 and δB2, the Boolean variable diff δB1,δB2

is equal to 1 if
δB1 6= δB2, and to 0 otherwise. We do not define a diff variable for every couple of differential bytes
in diffWordsl , but restrict our attention to couples of bytes for which it is useful to know whether
they are equal or not.

More precisely, we consider three separate sets of differential bytes and we only compare dif-
ferential bytes that belong to a same set.

• The first set, called DK, contains bytes coming from the δK matrices.

• The second and third sets, called DY and DZ, contain bytes coming from δY and δZ matrices,
respectively.

For each of these three sets, we consider a separate subset for each row j ∈ [0,3]:

• For DK, we know that every initial xor equation due to the key schedule either involves three
bytes on a same row j , or it involves two bytes on a same row j and a byte that has just passed
through an S-box on the next row (( j + 1)%4). As we cannot know if the input and output
differences of S-boxes are equal or not, we can limit diff variables to couples of differential
bytes that occur on a same row of δK matrices.

• For DY and DZ, the MDS property implies relations between columns of DY and DZ and,
in Section 6.4.2, we use a generalisation of this property that xors bytes of a same row for
different columns. As these xors are only performed on bytes that occur in a same row,
we can limit diff variables to couples of differential bytes that occur on a same row of δY
matrices (for DY) and δZ matrices (for DZ).

For each row j ∈ [0,3], we define the three following sets:

DK j = {δKi [ j ][k] : i ∈ [1,r ],k ∈ [0,3]},

DY j = {δYi [ j ][k] : i ∈ [0,r −2],k ∈ [0,3]},

DZ j = {δZi [ j ][k] : i ∈ [0,r −2],k ∈ [0,3]}.

Given these sets, we define the diff variables as follows: For each set D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},
and for each pair of differential bytes {δB1,δB2} ∈ D, we define a Boolean variable diff δB1,δB2

, which

97



CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

is equal to 1 if δB1 and δB2 are equal, and to 0 otherwise. Using these differential byte difference
variables, the MDS property between different columns is ensured by the following constraint:

∀i 1, i 2 ∈ [0,r −2]2,∀k1,k2 ∈ [0;3]2 :

(
3

∑

j =0
(diffδYi 1[ j ][k1],δYi 2[ j ][k2]) 6= 0)+ (diffδYi 1[ j ][k1],δYi 2[ j ][k2] 6= 0)) ∈ {0,5,6,7,8}. (CDIFFMDS)

We now describe how these difference variables are defined.

Constraints Defining the Difference Variables

When defining the constraint xor (∆A,∆B,∆C) (where ∆A, ∆B and ∆C are binary variables as-
sociated with differential bytes δA, δB and δC, respectively), if ∆A =∆B = 1, then we cannot know
whether ∆C is equal to 0 or 1. However, whenever ∆C = 0 (resp. ∆C = 1), we know for sure that the
corresponding byte δC is equal to 08 (resp. different from 08), meaning that the two bytes δA and
δB are equal (resp. different), i.e., that diffδA,δB = 0 (resp. diffδA,δB = 1). The same reasoning may be
done for ∆A and ∆B because (δA⊕δB = δC) ⇔ (δB⊕δC = δA) ⇔ (δA⊕δC = δB).

Since our difference variables concern differential bytes that belong to the same matrices (ei-
ther δK, δY or δZ), and the key schedule is the single place where variables from the same matrix
are XORed together, we introduce a different XOR constraint for the key schedule. The resulting
constraint, XORKS, is defined as follows:

XORKS(∆A,∆B,∆C) ⇔ ((∆A+∆B+∆C 6= 1)

∧(diffδA,δB =∆C)

∧(diffδA,δC =∆B)

∧(diffδB,δC =∆A))























(XORKS)

The key schedule constraint is modified accordingly. When no SBox is involved, we replace
XOR with XORKS. Otherwise, since we do not consider diff variables for the output of SBoxes,
we use the regular XOR constraint. We however add an additional constraint: when computing
XOR(δa,δb,δc), where δb is the SBox output, δa is different from δc if δb is nonzero. Hence, the
constraint Csi mpl eKS is replaced by a different constraint CKS , defined as follows:

∀ j ∈ [0;3],

∀k ∈ [KC;4 · (r +1)−1],KC < 8,k%KC = 0 : XOR(∆EK[ j ][k],∆SK[ j ][k −1],∆EK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC < 8,k%KC = 0 : diffδEK[ j ][k],δEK[ j ][k−KC] =∆SK[ j ][k −1],

∀k ∈ [KC;4 · (r +1)−1],KC = 8,k%4 = 0 : XOR(∆EK[ j ][k],∆SK[ j ][k −1],∆EK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC = 8,k%KC = 4 : diffδEK[ j ][k],δEK[ j ][k−KC] =∆SK[ j ][k −1],

∀k ∈ [KC;4 · (r +1)−1],KC < 8k%KC 6= 0 : XORKS(∆EK[ j ][k],∆EK[ j ][k −1],∆EK[ j ][k −KC]).

∀k ∈ [KC;4 · (r +1)−1],KC = 8k%4 6= 0 : XORKS(∆EK[ j ][k],∆EK[ j ][k −1],∆EK[ j ][k −KC]).



























































(CKS)

Constraints to ensure that difference variables define an equivalence relation.

To be consistent, our difference variables need to have both symmetry and transitivity.
Symmetry is ensured by:

∀D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2} ∈ Ddiff δB1,δB2
= diff δB2,δB1

. (CSYM)

Transitivity is ensured by:

∀D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2,δB3} ∈ D,

diff δB1,δB2
+diff δB2,δB3

+diff δB1,δB3
6= 1. (CTRANS)
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Constraints that relate difference variables with binary differential variables. If∆A 6=∆B, then
diffδA,δB = 1, and that if∆A 6=∆B = 0, then diffδA,δB = 0 . This is enforced by the following constraint:

∀D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2} ∈ D,diff δB1,δB2
+∆B1 +∆B2 6= 1. (CDIFF)

Finally, as ARK defines Xi+1[ j ][k] as the result of a xor between Ki [ j ][k] and Zi [ j ][k], we post
the constraint: ∀i1, i2 ∈ [0,r −1],∀ j ,k1,k2 ∈ [0,3],

diff δKi1 [ j ][k1],δKi2 [ j ][k2] +diff δZi1 [ j ][k1],δZi2 [ j ][k2] +∆Xi1 [ j ][k1]+∆Xi2 [ j ][k2] 6= 1. (CDIFFARK)

Additional equalities derived from KS

We now describe the constraints that are derived from the key schedule. We give examples of these
constraints for AES-128 for the sake of simplicity.

The KeySchedule mainly performs xor operations. For instance, in AES-12, at each round i ,
the first column Ki [0] is obtained by performing a xor between bytes of Ki−1[0] and Ki−1[3]; for the
last three columns j ∈ {1,2,3}, Ki [ j ] is obtained by performing a xor between Ki−1[ j ] and Ki [ j −1].
Besides these xor operations, all bytes of Ki−1[3] pass through the SBox before XORing them with
Ki−1[0] to obtain Ki [0]. Therefore, each byte of Ki , for each round i ∈ [1,r ] may be expressed as a
combination of xor operations between bytes of the initial key K0, and bytes obtained by applying
the S operation on column 3 of rounds j < i . For example (recall that A⊕A = 08 and 08 ⊕A = A):

K2[1][1] = K2[0][1]⊕K1[1][1]

= K1[0][1]⊕S(K1[3][2])⊕K1[0][1]⊕K0[1][1]

= S(K1[3][2])⊕K0[1][1]

When reasoning at the differential byte levels, we have

δK2[1][1] = δSK1[3][2]⊕δK0[1][1],

where δSK1[3][2] = S(K1[3][2])⊕S(K′
1[3][2]). As S is a non linear operation, we cannot assume that

δSK1[3][2] = S(δK1[3][2]). Therefore, δSK1[3][2] is a new differential byte. However, there is a finite
number of such new differential bytes.

We propose to exploit the fact that each differential byte of Ki is the result of a xor between a
finite set of bytes. We first use the KS rules defined in Section 7.2 to build, for each i ∈ [1,r −1], and
j ,k ∈ [0,3], the set V(δKi [ j ][k]) of all differential bytes (coming either from δK0 or from the set of
new differential bytes δSK), such that:

δKi [ j ][k] =
⊕

δA∈V(i , j ,k)

δA.

For example, V(δK2[1][1]) = {δK0[1][1],δSK1[3][2]}.
Note that these sets are computed before the search and do not depend on the initial values of

plaintexts and keys.
For each of these sets, we introduce a set variable which contains the corresponding binary

differential variables which are equal to 1:

Vi nst (δKi [ j ][k]) = {∆A | δA ∈ V(δKi [ j ][k])∧∆A = 1}.

For example, in AES-128, if ∆K0[1][1] = 1 and ∆SK1[3][2] = 0, then Vi nst (δK2[1][1]) = {∆K0[1][1]}.
Whenever two differential key bytes δKi 1[ j 1][k1] and δKi 2[ j 2][k2] have the same Vi nst sets,

then we may infer that δKi 1[ j 1][k1] = δKi 2[ j 2][k2]. More precisely, we define the constraint:

∀ j ∈ [0;3],∀{δB1,δB2} ∈ DK j (Vi nst (δB1) = Vi nst (δB2)) ⇒ (diffδB1,δB2 = 0). (CVSETSEQ)
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Also, if Vi nst (δB) is empty (resp. contains one element), we infer that ∆B is equal to 0 (resp. a
nonzero variable. This is enforced by the following constraint:

∀ j ∈ [0;3],∀{δB} ∈ DK j Vi nst (δB)+∆B 6= 1. (CVSETSCARD)

From a practical point of view, the Vi nst variables are not modelled with set variables, but with
vectors of Boolean variables. The dimension of these vectors is equal to the number of possible
elements in these sets, i .e one for each byte of the initial key, plus number of key bytes that go
through an SBox. Each Boolean variable V[p] is equal to 1 if the p th element belongs to Vi nst (i.e.,
if the variable associated with the p th element is equal to 1), and to 0 otherwise.

The set of variables used S1Di f f are the same as the variables of S1Basi c , plus the diff variables,
and the variables representing the Vi nst sets.

The constraints used in S1Di f f are CSB, XOR, XORKS, CSR, CMDS , CARK, C∆EK, C∆SK, CKS ,
CDIFFMDS , CSYM, CTRANS , CDIFF, CDIFFARK, CVSETS , CVSETSEQ, and CVSETSCARD.

Performance of S1Di f f

Compared to S1Basi c , S1Di f f filters a lot of byte inconsistent solutions, which makes it capable of
solving all the instances for AES-128 and AES-256 within 24 hours. These results are summed up in
Table 7.1, and commented and compared to S1XOR in Section 7.3.4. In essence, S1Di f f is capable
of solving all instances but one in less than 13 hours each (at most 43359 seconds), but it fails at
solving Step1-enum for 10 rounds of AES-192 after two weeks.

We therefore introduce another model, which reasons differently about the equalities intro-
duced by the key schedule, and which is presented in the following section.

7.3.3 S1XOR

In S1Di f f , we exploit the fact that the bytes of the round subkeys are computed as a combination of
other bytes from the previous round subkeys. With S1XOR, we push this reasoning further: instead
of just considering the XORs that appear in the key schedule, we combine them in order to build
additional XORs, results in an improved propagation of the constraints, and in a faster resolution.

Generation of Additional Xors

Every subkey differential byte δKi [ j ][k] either comes from the initial differential key δK, or is ob-
tained by XORing two differential bytes according to the key schedule rules. Hence, the whole key
schedule implies a set of 16∗(r −1) (resp. 16∗(r −1)−8 and 16∗(r −2)) xor equations for AES-128
(resp. AES-192 and AES-256), where each of these equations involves three differential bytes. We
propose to combine these initial equations to infer additional equations.

Let us consider, for example, the three equations that define δK1[0][3], δK2[0][2] and δK2[0][3],
respectively, for AES-128:

δK0[0][3]⊕δK1[0][2]⊕δK1[0][3] = 0 (7.1)

δK1[0][2]⊕δK2[0][1]⊕δK2[0][2] = 0 (7.2)

δK1[0][3]⊕δK2[0][2]⊕δK2[0][3] = 0 (7.3)

These equations share bytes: δK1[0][2] for Eq. (7.1) and (7.2), δK1[0][3] for Eq. (7.1) and (7.3), and
δK2[0][2] for Eq. (7.2) and (7.3). We can combine Eq. (7.1), (7.2), and (7.3) by XORing them, and
exploit the fact that B⊕B = 0 for any byte B, to generate the following equation:

δK0[0][3]⊕δK2[0][1]⊕δK2[0][3] = 0 (7.4)

This new equation is redundant at the byte level, as (7.1)∧ (7.2)∧ (7.3) ⇒ (7.4). However, at the
Boolean level, the propagation of the XOR constraint corresponding to Eq. (7.4) detects incon-
sistencies which are not detected when only considering the XOR constraints corresponding to
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Eq. (7.1), (7.2), and (7.3). Let us consider, for example, the case where ∆K0[0][3] = 1, ∆K2[0][1] =
∆K2[0][3] = 0, and all other Boolean variables still have 0 and 1 in their domains. In this case, the
propagation of XOR constraints associated with Eq. (7.1), (7.2), and (7.3) does not detect an in-
consistency as only one variable is assigned for each constraint, and for the two other variables,
we can always choose values such that the sum is different from 1. However, at the byte level,
δK0[0][3] cannot be assigned to a value different from 0 when δK2[0][1] = δK2[0][3] = 0. Indeed, in
this case, Eq. (7.2) and (7.3) imply:

δK1[0][2]⊕δK2[0][2] = δK1[0][3]⊕δK2[0][2] = 0

⇒ δK1[0][2] = δK2[0][2] = δK1[0][3]

⇒ δK0[0][3]⊕δK1[0][2]⊕δK1[0][3] = δK0[0][3]

As a consequence, if δK0[0][3] 6= 0, we cannot satisfy Eq. (7.1). This inconsistency is detected when
propagating the XOR constraint associated with Eq. (7.4), as it ensures that ∆K0[0][3]+∆K2[0][1]+
∆K2[0][3] 6= 1.

Hence, we propose to combine xor equations of the key schedule to generate new equations.
More precisely, given two equations δB1⊕. . .⊕δBn = 0 and δB′

1⊕. . .⊕δB′
m = 0 such that {B1, . . . ,Bn}∩

{B′
1, . . . ,B′

m} 6= ;, we generate the equation:

⊕

B∈{B1,...,Bn }∪{B′
1,...,B′

m }\{B1,...,Bn }∩{B′
1,...,B′

m }

δB = 0.

This new equation is recursively combined with existing ones to generate other equations until no
more equation can be generated.

For example, from Eq. (7.1), (7.2), and (7.3), we generate the following equations:

From (7.1) and (7.2): δK0[0][3]⊕δK1[0][3]⊕δK2[0][1]⊕δK2[0][2] = 0 (7.5)

From (7.1) and (7.3): δK0[0][3]⊕δK1[0][2]⊕δK2[0][2]⊕δK2[0][3] = 0 (7.6)

From (7.2) and (7.3): δK1[0][2]⊕δK1[0][3]⊕δK2[0][1]⊕δK2[0][3] = 0 (7.7)

Then, from Eq. (7.1) and (7.7) (or, equivalently, from Eq. (7.2) and (7.6) or from Eq. (7.3) and (7.5)),
we generate Eq. (7.4). As no additional equation can be generated from Eq. (7.1), (7.2), (7.3), (7.5),
(7.6), (7.7), and (7.4), the process stops.

The number of additional equations that may be generated grows rapidly with respect to the
number r of rounds. For example, for AES-128, when r = 3 (resp. r = 4), the total number of new
equations that may be generated is 988 (resp. 16332). When further increasing r to 5, the number
of new equations becomes so large that we cannot generate them within a time limit of one hour.

To avoid this combinatorial explosion, we only generate equations that involve at most four
differential bytes.

Indeed, our constraints on the diff variables operate on at most three pairs of Boolean vari-
ables. Preliminary experiments have shown us that these strengthened XOR constraints both re-
duce the number of choice points and speed-up the solution process, and that further adding XOR
constraints for equations that involve more than four variables (to forbid that their sum is equal to
one) does not significantly reduce the number of choice points and often increases time.

For AES-128 (resp. AES-192 and AES-256) with r = 10 (resp. r = 12 and r = 14) rounds, the
number of initial equations coming from the key schedule is 144 (resp. 168 and 192). From these
initial equations, we generate 122 (resp. 168 and 144) new equations that involve three differential
bytes, and 1104 (resp. 1696 and 1256) new equations that involve four differential bytes.

The time needed to generate all these equations is very small (compared to the time needed
to solve Step 1): The algorithm that generates equations has been implemented in Picat, and the
time spent by Picat to search for all equations of length smaller than or equal to four is always
smaller than 0.1 seconds.

We note xorEql the set of all equations (both initial and generated equations) coming from the
key schedule when the key length is l .
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Note that xorEql actually contains all possible equations with at most four differential bytes
implied by the key schedule algorithm. In other words, our procedure for generating new equa-
tions is complete, even if it does not allow the generation of intermediate equations of length
greater than 4. We have proven this by exhaustively generating all possible equations with at most
four differential key bytes and, for each equation that does not belong to xorEql , we have proven
that it is not consistent with the initial set of equations of the key schedule. The whole proof, for
all possible equations, is done in less than an hour for the three possible key lengths.

Constraints associated with xor equations of xorEql As in S1Di f f , we use diff variables.
From S1Di f f , we keep the constraints ensuring an equivalence relation between the diff vari-

ables, defined in Section 7.3.2, as well as the constraints relating the diff variables to the Boolean
variables representing differential bytes, defined in Section 7.3.2. However, we now also include
diff variables for the differential bits of ∆SK. This results in a different DK2 set, defined, for each
row j , as

DK2 j = {δKi [ j ][k] : i ∈ [1,r ],k ∈ [0,3]}∪ {δSK[ j ][k] : k ∈ [0;r ∗4−1]}

This extended set is used to redefine the CSYM, CTRANS and CDIFF constraints as follows: Sym-
metry is ensured by:

∀D ∈ {DK2 j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2} ∈ Ddiff δB1,δB2
= diff δB2,δB1

. (Cs ym2)

Transitivity is ensured by:

∀D ∈ {DK2 j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2,δB3} ∈ D,

diff δB1,δB2
+diff δB2,δB3

+diff δB1,δB3
6= 1. (Ctr ans2)

and CDIFF is redefined as

∀D ∈ {DK2 j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2} ∈ D,diff δB1,δB2
+∆B1 +∆B2 6= 1. (CDIFF2)

In S1Di f f , we only considered a XOR constraint of arity 3: XOR(∆A,∆B,∆C). In S1XOR, we also
define a constraint for XOR relations of size 3, but we also build XOR relations of size 4.

The constraint related to XORs of size 3, is:

∀(δB1 ⊕δB2 ⊕δB3 = 0) ∈ xorEql ,

(diff δB1,δB2
=∆B3)∧ (diff δB1,δB3

=∆B2)∧ (diff δB2,δB3
=∆B1). (CXOR3)

For each equation δB1 ⊕δB2 ⊕δB3 = 0 in xorEql , it ensures that whenever two differential bytes of
{δB1,δB2,δB3} have different values, then the third one is different from 0 and therefore its asso-
ciated Boolean variable is equal to 1. Note that this constraint combined with CDIFF ensures that
∆B1 +∆B2 +∆B3 6= 1. Indeed, if ∆B1 = 1 and ∆B2 = ∆B3 = 0, then Constraint (C′

9) implies that
diff∆B2,∆B3

= 0, which is inconsistent with the fact that diff δB2,δB3
must be equal to ∆B1.

For XOR relations of size 4, we define another constraint. Let us consider an equation δA⊕
δB⊕δC⊕δD = 0 that involves four differential bytes, and let ∆A, ∆B, ∆C, and ∆D be the Boolean
variables associated with δA, δB, δC, and δD, respectively. We know that whenever two differential
bytes of {δA,δB,δC,δD} are equal then the two other ones must also be equal. This is modelled by
the following constraint:

∀(δB1 ⊕δB2 ⊕δB3 ⊕δB4 = 0) ∈ xorEql ,

(diff δB1,δB2
= diff δB3,δB4

)∧ (diff δB1,δB3
= diff δB2,δB4

)∧ (diff δB1,δB4
= diff δB2,δB3

). (CXOR4)

The combination of CDIFF and CXOR4 ensures that ∆A+∆B+∆C+∆D 6= 1. Indeed, if ∆A = 1
and ∆B =∆C =∆D = 0, then we have that diff∆B,∆C = 0 and diff∆A,∆C = 1, which is inconsistent
with the fact that diff δB,δC must be equal to diff∆A,∆C.

The set of variables used S1XOR are the same as the variables of S1Basi c , plus the diff variables.
The constraints used in S1XOR are CSB, CXOR, CXOR3, CXOR4, CSR, CMDS , CARK, C∆EK, C∆SK,

CDIFFMDS , CSYM, CTRANS , CDIFF, and CDIFFARK.

102



CHAPTER 7. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF AES WITH CP

7.3.4 Comparison of S1XOR with S1Di f f

The main difference between S1XOR and S1Di f f is that in S1Di f f we do not infer new xor equa-
tions from the initial equations of the key schedule, as explained in Section 7.3.3. Instead of this
equation generation step, S1Di f f uses the key schedule rules to pre-compute, for each differential
byte δKi [ j ][k], a set V(δKi [ j ][k]) of differential bytes such that δKi [ j ][k] is equal to the result of
XORing all bytes in V(i , j ,k).

Then, for each differential byte δKi [ j ][k], a variable Vi nst (δKi [ j ][k]) is constrained to be equal
to the subset of bytes of V(i , j ,k) that are different from 0. These Vi nst variables are used to infer
that two differential bytes are equal when their corresponding Vi nst variables are equal, and that
∆Ki [ j ][k] is equal to 0 (resp. 1) when Vi nst (δKi [ j ][k]) is empty (resp. contains only one variable).

Additionally, the set DK is extended to include the δSK variables in S1XOR.

In this section, we experimentally compare S1XOR with S1Di f f .

Experimental results All our experiments are performed according to the setting described in
Section 6.4.2. While the machine used for the experiments has 24 cores, we ran these experiments
on one core at a time, to avoid perturbations due to other processes and make time measurements
more accurate and reproducible.

We compare S1XOR and S1Di f f on the two problems described in Section 6.4.1, i.e., Step1-opt,
that aims at finding the minimal value of ob jStep1, and Step1-enum, that aims at enumerating all
abstracted differentials when the value of ob jStep1 is fixed to a given value v .

We consider 23 instances denoted AES-l-r where l ∈ {128,192,256} is the key length and r is
the number of rounds: r ∈ [3,5] (resp. [3,10] and [3,14]) when l = 128 (resp. 192 and 256). We do
not consider values of r larger than 5 (resp. 10) when l = 128 (resp. 192) because for these values
the maximal probability becomes smaller than 2−l .

S1XOR and S1Di f f are implemented with MiniZinc [Nethercote et al., 2007], a high-level mod-
elling language. Many CP solvers accept MiniZinc models, and we have made experiments with
Gecode [Gecode Team, 2006], Choco [Prud’homme et al., 2016], Chuffed [Chu and Stuckey, 2014],
and Picat-SAT [Zhou et al., 2015]. Note that Picat-SAT actually uses a SAT solver to solve CSPs: It
first translates the CSP instance into a Boolean satisfiability formula, and then uses the SAT solver
Lingeling [Biere, 2014] to solve it.

We report experimental results obtained with Picat-SAT, which is the solver that has the best
results.

Results for Step1-opt For each instance, Table 7.1 reports the optimal value v∗ of Ob jStep1 com-
puted by Step1-opt. This optimal value may be different for S1XOR and S1Di f f as they consider
different abstractions of the KS xor operations. In practice, for all instances but one, both models
find the same optimal value, and for this optimal value there exists at least one byte-consistent
abstracted differential (see Section 7.4) so that the repeat loop (lines 6-10) of Algorithm 1 is exe-
cuted only once. However, for AES-192-10, the minimal value of ob jStep1 is equal to 27 with S1Di f f

whereas it is equal to 29 with S1XOR. As a consequence, if we use S1Di f f to solve Step1-opt, the re-
peat loop of Algorithm 1 is executed three times: v is successively assigned to 27, 28, and 29, and
for each of these values, we need to solve Step1-enum and Step2. When v = 27 (resp. 28), Step1-

enum with S1Di f f finds 92 (resp. 1436) abstracted differentials. All these abstracted differentials
are byte-inconsistent and Step2 returns null for each of them.

When v = 29, some abstracted differentials are byte-consistent and the repeat loop is stopped.
For this instance, S1XOR is able to infer that there is no byte-consistent abstracted differential with
27 or 28 active S-boxes, and it returns 29, which is the smallest possible value for which there are
byte-consistent abstracted differentials.

When comparing CPU times needed to solve Step1-opt with S1Di f f and S1XOR, we note that
S1XOR is faster on all instances. S1XOR is at most 4.9 times times as fast as S1Di f f (AES-192-9). The
hardest instance, AES-192-10, is solved in less than one hour with S1XOR.
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Step1-opt Step1-enum

S1Di f f S1XOR S1Di f f S1XOR

v∗
1 t1 v∗

2 t2
t1
t2

#T1 t3 #T2 t4
t3
t4

AES-128-3 5 4 5 3 1,3 4 6 4 4 1,5
AES-128-4 12 21 12 14 1,5 8 74 8 38 1,9
AES-128-5 17 44 17 33 1,3 1113 32340 1113 22869 1,4
AES-192-3 1 3 1 2 1,5 15 16 15 10 1,6
AES-192-4 4 8 4 5 1,6 4 12 4 7 1,7
AES-192-5 5 14 5 8 1,8 2 13 2 9 1,4
AES-192-6 10 34 10 18 1,9 6 65 6 45 1,4
AES-192-7 13 72 13 37 1,9 4 98 4 66 1,5
AES-192-8 18 205 18 73 2,8 8 752 8 333 2,2
AES-192-9 24 2527 24 520 4,9 240 43359 240 13524 3,2
AES-192-10 27 3715 29 3285 1,1 27548 - 602 216120 -
AES-256-3 1 3 1 3 1 33 39 33 29 1,3
AES-256-4 3 8 3 7 1,1 14 38 14 25 1,5
AES-256-5 3 13 3 8 1,6 4 21 4 15 1,4
AES-256-6 5 25 5 17 1,5 3 29 3 20 1,5
AES-256-7 5 48 5 47 1 1 22 1 15 1,5
AES-256-8 10 61 10 49 1,2 3 76 3 52 1,5
AES-256-9 15 172 15 106 1,6 16 705 16 430 1,7
AES-256-10 16 236 16 112 2,1 4 385 4 224 1,7
AES-256-11 20 488 20 286 1,7 4 705 4 312 2,3
AES-256-12 20 625 20 140 4,5 4 1228 4 463 2,7
AES-256-13 24 1621 24 822 2 4 1910 4 597 3,2
AES-256-14 24 2179 24 682 3,2 4 1722 4 607 2,8

Table 7.1: Comparison of S1Di f f and S1XOR for solving Step 1. For each instance, we display the results with
S1Di f f and S1XOR for Step1-opt (optimal value v∗

1 (resp. v∗
2 ) of ob jStep1, and time t1 (resp. t2 in seconds)

and Step1-enum (number #T1 (resp #T2) of truncated differentials when ob jStep1 is assigned to the value
v∗

1 found with S1XOR, and time t3 (resp. t4) in seconds). We report ’-’ when the time exceeds two weeks. We

also give the speedup t1
t2

for Step1-opt, and t3
t4

for Step1-enum. The machine used for these experiments is
the one mentioned in Section 6.4.2.

Results for Step1-enum In Table 7.1, we report results for solving Step1-enum when v is fixed to
the optimal value v∗ found when solving Step1-opt with S1XOR. S1XOR is always faster than S1Di f f ,
and it is able to solve all instances but three in less than 607 seconds. The three most challeng-
ing instances are AES-128-5, AES-192-9, and AES-192-10, which are solved by S1XOR in less than
7 hours (22869 seconds), 4 hours (13524 seconds) and 60 hours (216120 seconds), respectively.
S1Di f f is able to solve AES-128-5 and AES-192-9 in less than 9 and 12 hours (32340 and 43339 sec-
onds), respectively. However, AES-192-10 cannot be solved by S1Di f f within two weeks. Actually,
for this instance, S1XOR strongly reduces the number of solutions: There are 602 abstracted differ-
entials with S1XOR instead of 27548 with S1Di f f

1. For Step1-enum, S1XOR is at most 3,2 times as
fast as S1Di f f (AES-192-9 and AES-256-13).

Note that reducing the number of abstracted differentials is very important to reduce the total
solving time as for each abstracted differential of Step 1, we need to search for an optimal byte so-
lution (or prove that it is not byte-consistent, as for the abstracted differentials found with S1Di f f

but not with S1XOR). In Section 7.5, we propose another decomposition to solve Step1 even faster.

1The number of solutions with S1Di f f has been found by decomposing Step1-enum into two sub-steps that have
been solved by Chuffed and Picat, respectively, in order to take advantage of the complementarity of the two solvers:
Picat has been used to compute the number of differences per round whereas Chuffed has been used to enumerate
abstracted differentials given the number of differences per round (see [Gerault et al., 2017a] for more details).
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7.4 CP model for Step 2

Given an abstracted differential computed by Step1-enum, Step 2 aims at searching for the byte
values with the highest differential probability (or proving that the abstracted differential is not
byte-consistent). In this section, we describe the CP model introduced in [Gerault et al., 2016] for
AES-128, extended to AES-192 and AES-256 in a straightforward way.

7.4.1 Variables

For each differential byte δB ∈ diffWordsl , we define an integer variable the domain of which de-
pends on the value of ∆B in the abstracted differential: If ∆B = 0, then D(δB) = {0}; otherwise,
D(δB) = [1,255].

As mentioned in Section 6.4.2, we declare an integer variable PδB for each differential byte
δB ∈ Sboxesl : This variable corresponds to the base 2 logarithm of the probability Pr(δB → δSB)
of obtaining the S-box output difference δSB when the S-box input difference is δB. The domain
of PδB depends on the value of ∆B in the abstracted differential: If ∆B = 0, then Pr(0 → 0) = 1 and
therefore D(PδB) = {0}; otherwise, Pr(δB → δSB) ∈ { 2

256 , 4
256 } and D(PδB) = {−7,−6}. These values are

derived from the properties of the SBox of the AES. The constraint associated with the SubBytes
operation forbids couples (δB,δSB) such that Pr(δB → δSB) = 0.

7.4.2 Constraints

The constraints basically follow the AES operations to relate variables, as described in Section 7.3.1
for Step 1, but consider the definition of the operations at the byte level, instead of the Boolean
level.

The main difference is that the SubBytes operation, which has no effect at the Boolean level,
must be modelled at the byte level. This is done thanks to a ternary table constraint which exten-
sively lists all triples (X,Y,P) such that there exists two bytes B1 and B2 whose difference before and
after passing through S-Boxes is equal to X and Y, respectively, and such that P is the probability
of this transformation: For all δB ∈ Sboxesl , we add the constraint:

(δB,δSB,PδB) ∈ {(X,Y,P)|∃(B1,B2) ∈ [0,255]× [0,255],X = B1 ⊕B2,

Y = S(B1)⊕S(B2),P = log2(Pr(X → Y))}.

}

(CSBS2)

We also use a table constraint for the XOR of two bytes, as defined in Section 6.4.2, with tuples
tupleXOR:

XORBy te(δa,δb,δc) ≡ (δa,δb,δc) ∈ tupleXOR. (XORBy te)

In what follows, we assume that CXORBy te can take an arbitrary number of arguments (the last one
being the result), event though in the implementation, when a XOR of multiple variables is needed,
we XOR them two by two and use temporary variables to store the intermediary results.

The MixColumn operation also needs to be modelled at byte level. MixColumn is the multi-
plication of each column of the state by a fixed matrix M, given in section 7.2, in Rijndael’s Galois
field, in which addition is replaced by XOR (see [Daemen and Rijmen, 2002] for more details). For
instance, let us consider a column C = (δa,δb,δc,δd)t . Then

MC(C) =











(2 ·δa)⊕ (3 ·δb)⊕δc ⊕δd

δa ⊕ (2 ·δb)⊕ (3 ·δc)⊕δd

δa ⊕δb ⊕ (2 ·δc)⊕ (3 ·δd)
(3 ·δa)⊕δb ⊕δc ⊕ (2 ·δd)











where · is multiplication in the a finite field called Rijndael’s Galois field. We did not implement
the multiplication rules, but used multiplication tables instead. AES uses multiplications by 2 and
3 for encryption, and by 9, 11, 13 and 14 for decryption. For MC, we use a table tupleMUL2⊕3, such
that

tupleMUL2⊕3 = {(a,b,c) ∈ [0;255]3,c = (2 ·a)⊕ (3 · c).
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For its inverse, we use 4 tables such that

∀ j ∈ [0;255],tupleMULi [ j ] = i · j

where · is the multiplication in Rijndael’s finite field, and i ∈ {9,11,13,14}. The multiplication tables
we use are given in Appendix A.

We implement both MC and its inverse. Indeed, it permits the solver to obtain the k th column
of δYi directly from the k th column of δZi , instead of having to enumerate all possible values and
applying MC in the forward direction to verify whether the affectation is correct.

The constraint for MC is defined as follows, using temporary variables tz :

∀i ∈ [0;r −2],∀k ∈ [0;3]

t able((δYi [0][k],δYi [1][k], t0),tupleMUL2⊕3)

∧ XORBy te(t0,δYi [2][k],δYi [3][k],δZi [0][k])

∧ t able((δYi [1][k],δYi [2][k], t1),tupleMUL2⊕3)

∧ XORBy te(t1,δYi [0][k],δYi [3][k],δZi [1][k])

∧ t able((δYi [2][k],δYi [3][k], t2),tupleMUL2⊕3)

∧ XORBy te(t2,δYi [0][k],δYi [1][k],δZi [2][k])

∧ t able((δYi [3][k],δYi [0][k], t3),tupleMUL2⊕3)

∧ XORBy te(t3,δYi [1][k],δYi [1][k],δZi [3][k])















































































(CMCS2−1)

And for the last round, where MC is skipped:

∀ j ,k ∈ [0;3]2 : DZr−1[ j ][k] = DYr−1[ j ][k]. (CMCS2−2)

The CMCS2 constraint is the set {CMCS2−1,CMCS2−2}.
The inverse of the MC operation is defined similarly: We first define a temporary variable

Mul z [ j ][k] holding the product of each word of the input column by 9,11,13 and 14:

∀i ∈ [0;r −2],∀( j ,k) ∈ [0;3]2, z ∈ {9,11,13,14}t able((δYi [ j ][k],Mul z
i [ j ][k]),tupleMULz ).

(INVMCS2-1)
We then use these variables to define the inverse operation of MC:

∀i ∈ [0;r −2],∀k ∈ [0;3]

XORBy te(Mul 14[0][k],Mul 11[1][k],Mul 13[2][k],Mul 9[3][k]δZi [0][k])

XORBy te(Mul 9[0][k],Mul 14[1][k],Mul 11[2][k],Mul 13[3][k]δZi [1][k])

XORBy te(Mul 13[0][k],Mul 9[1][k],Mul 14[2][k],Mul 11[3][k]δZi [2][k])

XORBy te(Mul 11[0][k],Mul 13[1][k],Mul 9[2][k],Mul 14[3][k]δZi [3][k])



































(CINVMCS2−2)

The CINVMCS2 constraint is the set {CINVMCS2−1,CINVMCS2−2}.
The constraint for SR is described in the same way as for Step 1:

∀i ∈ [0,r −1],∀ j ,k ∈ [0,3] : δYi [ j ][k] = δSXi [ j ][( j +k)%4]. (CSRS2)

The constraint for ARK uses XORBy tes:

∀( j ,k) ∈ [0,3]2 : XOR(δX[ j ][k],δK0[ j ][k],δX0[ j ][k]),

∀i ∈ [1,r ],∀( j ,k) ∈ [0,3]2 : XOR(δYi−1[ j ][k],δKi [ j ][k],δXi [ j ][k]).

}

(CARKS2)

Finally, KS is defined in a very straightforward way:

∀ j ∈ [0;3],

∀k ∈ [KC;4 · (r +1)−1],KC < 8,k%KC = 0 : XORBy te((δEK[ j ][k],δSK[ j ][k −1],δEK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC = 8,k%4 = 0 : XORBy te(δEK[ j ][k],δSK[ j ][k −1],δEK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC < 8k%KC 6= 0 : XORBy te(δEK[ j ][k],δEK[ j ][k −1],δEK[ j ][k −KC]),

∀k ∈ [KC;4 · (r +1)−1],KC = 8k%4 6= 0 : XORBy te(δEK[ j ][k],δEK[ j ][k −1],δEK[ j ][k −KC]).



































(CKSS2)
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#T #B p t t
#T

AES-128-3 4 2 2−31 10 2.5
AES-128-4 8 8 2−75 40 5
AES-128-5 1113 97 2−105 235086 211.2
AES-192-3 15 15 2−6 15 1
AES-192-4 4 4 2−24 13 3.3
AES-192-5 2 2 2−30 11 5.5
AES-192-6 6 6 2−60 35 5.8
AES-192-7 4 4 2−78 46 11.5
AES-192-8 8 8 2−108 119 14.9
AES-192-9 240 80 2−146 35254 146.9
AES-192-10 602 202 2−176 55310 91.9
AES-256-3 33 33 2−6 26 0.8
AES-256-4 14 14 2−18 25 1.8
AES-256-5 4 4 2−18 12 3
AES-256-6 3 3 2−30 11 3.7
AES-256-7 1 1 2−30 9 8.8
AES-256-8 3 1 2−60 19 6.3
AES-256-9 16 16 2−92 457 28.6
AES-256-10 4 4 2−98 160 40
AES-256-11 4 4 2−122 178 44.5
AES-256-12 4 4 2−122 237 59.3
AES-256-13 4 4 2−146 244 61
AES-256-14 4 4 2−146 302 75.5

Table 7.2: Results of Choco for solving Step 2. For each instance, we display: the number #T of truncated
differentials, the number #B of byte-consistent truncated differentials, the maximal probability p among all
byte-consistent truncated differentials, the total time t for solving Step 2 for all truncated differentials, and
the average time t

#T for solving Step 2 for one truncated differential. Times are in seconds.

Objective function The goal is to find a byte-consistent solution with maximal differential prob-
ability. As we consider logarithms, this amount to searching for a solution that maximises the sum
of all PδB variables. Hence, we introduce an integer variable ob jStep2 which is constrained to be
equal to the sum of all PδB variables:

ob jStep2 =
∑

δB∈Sboxesl

PδB

and we define the objective function as the maximisation of ob jStep2. The domain of ob jStep2 is
derived from the number of differences that pass trough S-boxes in the abstracted differentials,
i.e., D(ob jStep2) = [−7 · v,−6 · v] where v =

∑

δB∈Sboxesl
∆B.

We sum up the constraints used in Step2: CSBS2, CXORBy te , CMCS2, CINVMCS2, CSRS2, CARKS2,
CKSS2.

Experimental evaluation Step 2 is implemented in Choco [Prud’homme et al., 2016], and we
have used the domOverWDeg variable ordering heuristic, and the lastConflict search strategy that
are predefined in Choco. The domOverWDeg implements the domain over weighted degree black-
box search strategy [Boussemart et al., 2004], which orders variables according to a metric which
considers the ratio between the size of their domain, and the number of constraints they are in-
volved in. The lastConflict heuristic [Lecoutre et al., 2009] consists in finding the variable at the
origin of an incorrect solution, in order to change the assignment of the variable which is at the
root of the conflict first.
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In Table 7.2, we display the CPU time needed to search for optimal differential characteris-
tics, given the set of abstracted differentials computed by Step1-enum. For all instances but three
(AES-128-5, AES-192-9, and AES-192-10), the time needed to find the optimal solution given one
abstracted differential is smaller than 100 seconds, and the number of abstracted differentials is
smaller than 20, so that the optimal solution for all abstracted differentials is found in less than
500 seconds. However, for AES-128-5 (resp. AES-192-9 and AES-192-10), the average solving time
per abstracted differential is 210 (resp. 147 and 92) seconds, and there are 1236 (resp. 240 and
602) abstracted differentials so that the total solving time for all abstracted differentials exceeds 65
hours (235036 seconds) (resp. 9 hours (35254 seconds) and 15 hours (55310 seconds)). Note that
for these three instances most abstracted differentials are not byte consistent: Among the 1236
(resp. 240 and 602) abstracted differentials enumerated by Step1-enum, only 97 (resp. 13 and 202)
are byte-consistent.

7.5 A different two-step decomposition

Given an abstracted differential, Step 2 is rather quickly solved, as shown in Table 7.2. However,
in some cases the number of abstracted differentials is quite large, and it becomes rather time-
consuming to solve Step 2 for all abstracted differentials.

To reduce the number of abstracted differentials, we propose to shift the frontier between
Steps 1 and 2. More precisely, we modify the goal of Step1-enum: Instead of enumerating all
Boolean solutions, we restrict our attention to the variables associated with bytes that pass through
S-boxes, i.e., we enumerate all assignments of Boolean variables associated with the differential
bytes in Sboxesl . For AES-128, this amounts to enumerating all assignments of ∆Xi [ j ][k] and
∆Ki [ j ][3] that belong to Boolean solutions (in other words, we do not enumerate the values of
∆Ki [ j ][k] with k ∈ [0,2], and we do not enumerate the values of ∆Yi [ j ][k] and ∆Zi [ j ][k]).

Step 2 is adapted to integrate the fact that abstracted differentials do not assign values to some
variables. More precisely, the domains of the variables that are not assigned in an abstracted dif-
ferential is [0,255].

This simple reduction of the scope of abstracted differentials strongly reduces the number
of different assignments (as many assignments only differ on values assigned to ∆Yi , ∆Zi , or
∆Ki [ j ][k] with k ∈ [0,2]), without increasing the size of the search space to explore in Step 2. In-
deed, the values of δYi , δZi , and δKi [ j ][k] with k ∈ [0,2] are deterministically inferred from the
values of the variables associated with inputs and outputs of S-boxes (i.e., δXi , δSXi , δKi [ j ][3],
and δSKi [ j ][3] for AES-128).

Table 7.3 gives the results obtained with this decomposition, for shifted Step 1 and shifted Step
2. For shifted Step 1, we compare S1Di f f and S1XOR for the enumeration problem. Again, S1XOR

is faster than S1Di f f , and it is able to solve all instances but two in less than 7 minutes. The two
hardest instances are AES-128-5, which is solved in 24 minutes (1409 seconds), and AES-192-10,
which is solved in less than 4 hours (13558 seconds). This last instance cannot be solved with
S1Di f f within three days: We have stopped the solution process after three days and report in
Table 7.3 the number of abstracted differentials enumerated within these three days.

Both S1Di f f and S1XOR find the same number of abstracted differentials (#T) for all instances
but one. For instance AES-192-10 there are 7 abstracted differentials with S1XOR, and more than
40 with S1Di f f . As expected there are less abstracted differentials with the shifted decomposi-
tion than with the original one for many instances. In some cases the reduction is drastic: from
1236 (resp. 240 and 602) to 103 (resp. 3 and 7) for AES-128-5 (resp. AES-192-9 and AES-192-10).
As a consequence, the time needed to enumerate all abstracted differentials is also smaller with
the shifted decomposition. In some cases, the speed-up is important. For example, with S1XOR,
Step1-enum is solved in more than 6 (resp. 3, and 60) hours, or 22869 (resp. 13524 and 216120 sec-
onds) with the initial decomposition for AES-128-5 (resp. AES-192-9, and AES-192-10), whereas it
is solved in less than 24 (7, and 226) minutes (resp. 1409, 386 and 13558 seconds) with the shifted
decomposition.
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Shifted Step 1 Shifted Step 2 Total time
S1Di f f S1XOR seq par

#T t1 #T t1 #B t2
t2
#T

AES-128-3 2 3 2 2 2 7 3.5 12 9
AES-128-4 1 16 1 8 1 13 12.6 35 35
AES-128-5 103 2651 103 1409 27 52313 507.9 53755 1950
AES-192-3 14 14 14 8 14 19 1.4 29 11
AES-192-4 2 7 2 4 2 7 3.5 16 13
AES-192-5 1 9 1 4 1 4 3.8 16 16
AES-192-6 2 27 2 11 2 14 7.0 43 36
AES-192-7 1 41 1 17 1 7 7.4 61 61
AES-192-8 1 221 1 57 1 8 8.2 138 138
AES-192-9 3 1720 3 386 3 109 36.3 1015 939
AES-192-10 ≥40 - 7 13558 7 281 40.1 17124 16883
AES-256-3 33 34 33 23 33 36 1.1 62 27
AES-256-4 10 25 10 14 10 24 2.4 45 23
AES-256-5 4 20 4 10 4 15 3.8 33 22
AES-256-6 3 27 3 12 3 16 5.3 45 34
AES-256-7 1 21 1 8 1 7 7.4 62 62
AES-256-8 2 55 2 18 2 14 7.0 81 74
AES-256-9 4 203 4 63 4 69 17.3 238 186
AES-256-10 1 99 1 41 1 45 45.3 198 198
AES-256-11 1 320 1 77 1 28 27.8 391 391
AES-256-12 1 258 1 89 1 35 35.2 264 264
AES-256-13 1 694 1 140 1 46 46.0 1008 1008
AES-256-14 1 1087 1 97 1 35 34.8 814 814

Table 7.3: Results with the shifted decomposition. For each instance, we display: the results for the shifted
Step 1 with S1Di f f and S1XOR (#T = number of truncated differentials; t1 = time spent by Picat-SAT), the
results for the shifted Step 2 (#B = number of Byte-consistent truncated differentials; t2 = time spent by
Choco for all truncated differentials; t2

#T = average time per truncated differential), and total time for solving
the whole problem by Algorithm 1 with S1XOR and the new decomposition (seq = time when using a single
core = time for solving Step1-opt + t1 + t2; par = time when using #T cores in parallel for solving Step 2 =
time for solving Step1-opt + t1 + t2

#T ). Times are in seconds, and we report ’-’ when time exceeds 3 days.

For all instances but one (AES-128-5), every abstracted differential computed by Step1-enum

is byte consistent. However, for AES-128-5, only 27 abstracted differentials, among the 103 com-
puted by Step1-enum, are byte consistent.

The time needed to find the optimal differential characteristics given one abstracted differen-
tial ( t2

#T ) is rather comparable to the one displayed in Table 7.2, for the initial decomposition: it
is larger for 9 instances, equal for 3 instances, and smaller for 10 instances. As there are less ab-
stracted differentials with the shifted decomposition than with the initial one, the total time for
Step 2 (t2) is often smaller and, for the most challenging instances it is much smaller: it is larger
than 65 hours (resp. 9 hours, and 15 hours) with the initial decomposition for AES-128-5 (resp.
AES-192-9, and AES-192-10), whereas it is smaller than 15 hours (9 minutes, and 4 hours) with the
shifted decomposition.

The last column of Table 7.3 gives the time needed to solve the whole problem as described
in Algorithm 1, i.e., solve Step1-opt with S1XOR, then solve Step1-enum with S1XOR and the shifted
Step 1, and finally solve Step 2 for each abstracted differential computed by Step1-enum (for all
instances, the loop lines 6 to 10 is executed only once as the exit condition is satisfied when v = v∗).
This total time is smaller than one hour for all instances but two, and 11 instances are solved in
less than one minute. The two hardest instances are AES-128-5, which is solved in less than 15
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hours, and AES-192-10, which is solved in less than 5 hours. However, these two instances are
rather different: For AES-128-5, there are 103 abstracted differentials and most of the solving time
is spent in Step 2, to compute the optimal probability given these abstracted differentials; For AES-
192-10 there are 7 abstracted differentials and most of the solving time is spent to enumerate them
whereas Step 2 is solved in less than 5 minutes. Note that Step 2 may be run in parallel for each
abstracted differential. In this case, the solving time of AES-128-5 may be decreased to less than
one hour if we solve Step 2 in parallel for the 103 abstracted differentials.

This is a clear improvement over dedicated approaches such as [Fouque et al., 2013], which
cannot be extended to keys of size l > 128 bits, due to its memory complexity, and the approach
of [Biryukov and Nikolic, 2010], which needs several weeks to solve Step 1 for AES-192.

As already pointed out in [Gerault et al., 2016], for AES-128-4, find a byte-consistent solution
with ob jStep1 = 12 and a probability equal to 2−75. This solution is better than the solution claimed
to be optimal in [Biryukov and Nikolic, 2010] and [Fouque et al., 2013]: In these papers, the au-
thors claim that the best byte-consistent solution has ob jStep1 = 13, and a probability equal to
2−81. Our solution is given in Figure 7.4.

Finally, we find better solutions for AES-256. In particular, we have computed the actual opti-
mal differential characteristics for AES-256-14, and its probability is 2−146, instead of 2−154 for the
one given in [Biryukov and Khovratovich, 2009]. Our solution is given in Figure 7.5.

Round δX δKi Pr(States) Pr(Key)
init. 0a 00 0a 02 0a bc 06 06 0a 0c 06 06 0a bc 06 06
i = 0 00 00 00 00 00 bc 00 00 00 00 00 00 00 bc 00 00 0a 00 0a 02 0a 00 06 06 0a 0c 06 06 0a 00 06 06 2−6·2 2−6·3

1 00 00 00 00 00 0c 00 00 00 0c 00 00 00 00 00 00 0a 0c 06 06 00 0c 00 00 0a 00 06 06 00 00 00 00 2−6·2 −
2 00 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 0a 0c 06 06 0a 0c 06 06 00 00 00 00 00 00 00 00 2−6 −
3 00 00 00 00 00 0c 00 00 00 0c 00 00 00 0c 00 00 0a 0c 06 06 00 0c 00 00 00 0c 00 00 00 0c 00 00 2−7·3 2−6

4 0b 91 06 06 0b 91 06 06 0b 91 06 06 0b 00 06 06 0b 0c 06 06 0b 00 06 06 0b 0c 06 06 0b 00 06 06 2−6·2 −

Table 7.4: Our 4-round related-key differential characteristic for AES-128, which occurs with probability
2−75.

Round δX δKi Pr(States) Pr(Key)
init. ad db db 76 ad db db 76 ad db db 76 ad db db 76
i = 0 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 c4 db db 76 ad db db 76 c4 db db 76 ad db db 76 2−6·2 −

1 9a 00 00 00 00 00 00 00 9a 00 00 00 00 00 00 00 b5 9a 9a b5 00 00 00 00 b5 9a 9a b5 00 00 00 00 2−6·2 −
2 69 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 c4 db db 76 69 00 00 00 ad db db 76 00 00 00 00 2−6·2 −
3 9a 00 00 00 9a 00 00 00 00 00 00 00 00 00 00 00 b5 9a 9a b5 b5 9a 9a b5 00 00 00 00 00 00 00 00 2−6·2 −
4 69 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c4 db db 76 ad db db 76 00 00 00 00 00 00 00 00 2−6 −
5 9a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 b5 9a 9a b5 00 00 00 00 00 00 00 00 00 00 00 00 2−6 −
6 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 c4 db db 76 69 00 00 00 69 00 00 00 69 00 00 00 2−6·4 2−6

7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 2 f 9a 9a b5 2 f 9a 9a b5 2 f 9a 9a b5 − 2−7·2 ×2−6·2

8 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 2−6·2 −
9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 00 00 00 00 2 f 9a 9a b5 00 00 00 00 − −

10 69 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 2−6·2 −
11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 2 f 9a 9a b5 00 00 00 00 00 00 00 00 − −
12 69 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−6 −
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 f 9a 9a b5 00 00 00 00 00 00 00 00 00 00 00 00 − −
14 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 69 00 00 00 − −

Table 7.5: Our 14-round related-key differential characteristic for AES-256, which occurs with probability
2−146.

7.6 Conclusion

In this chapter, we present 3 CP models for the search of optimal related-key differential charac-
teristics on the AES. The first one, S1Basi c , is a straightforward implementation of the propagation
rules for the differences in the AES. It finds too many inconsistent solutions to be usable. The sec-
ond one, S1Di f f , introduces reasoning about equalities that can be inferred from the key sched-
ule, as well as a constraint that propagates the MDS property of the MC operation between two
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columns of differential bytes. This model can solve all instances but one in less than 13 hours.
However, the remaining instance cannot be solved after 2 weeks of computation. We therefore in-
troduce S1XOR, which introduces more advanced reasoning about the equalities in the key sched-
ule, by considering all possible XORs that can be built between words of the key. Using this model,
the instance which could not be solved with SADi f f , AES-192-10, is solved in approximately 60
hours (216120 seconds). Moreover, the number of inconsistent solutions for this instance is greatly
reduced, as the total number of solutions goes from 27548 for S1Di f f to 602 for S1XOR. We then in-
troduce a shift in the frontier between Step 1 and Step 2: instead of enumerating the assignments
of all the Boolean variables in Step 1, we only enumerates the assignments for the Boolean vari-
ables which abstract words that go through SBoxes, i.e., the SBoxesl set. We adapt Step 2 accord-
ingly. This shift greatly reduces the number of solutions found in Step 1. The most significantly
changes are for AES-128-5, AES-192-9 and AES-192-10: from S1XOR to the shifted S1XOR they from
1113, 240 and 602 to 103, 3 and 7 solutions respectively. This reduction in the number of solutions
permits to reduce the time needed for Step 2, from 235086 to 52313 seconds for AES-128-5, from
35254 to 109 seconds for AES-192-9, and from 55310 to 281 seconds for AES-192-10.

It would be interesting to extend this approach to Rijndael, which allows more key and block
sizes than the AES. Some instances, such as the one with 256-bit keys and 256-bit blocks, are an
interesting evaluation of the scale up properties of CP, due to the larger search space.
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Midori is a lightweight block cipher with 2 versions, Midori64 and Midori128, which was intro-
duced in [Banik et al., 2015]. It was designed for devices with low computational resources.Many
distance bounding protocols are designed to be computationally efficient in order to run on such
devices, so that Midori is susceptible to be used for contactless applications.

While several attack models are discussed by the authors of Midori, the authors made no
claims concerning the security of Midori against related-key differential attacks. Its structure is
very close to that of the AES, so that we can apply our CP methods to search for optimal related-
key differential characteristics on Midori. This permits us to find full-round related-key differen-
tial characteristics for both versions of Midori, and to present related-key differential attacks for
Midori64 (resp. Midori128) which require 236 (resp 244) operations.

8.1 Introduction

The increasing usage of embedded devices led to a lot of research on how to adapt existing crypto-
graphic primitives for the low power and energy constraints associated with the internet of things.
Lightweight block ciphers follow this principle, and aim at providing energy efficient ways to en-
crypt data. The authors of Midori [Banik et al., 2015] consider the problem of minimising the
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Type Rounds Data Time Reference

Midori64

Impossible differential 10 262,4 280,81 [Chen and Wang, 2016]

Impossible differential 10 261,97 287,71 [Shahmirzadi et al., 2018]

Impossible differential 11 261,87 290,63 [Shahmirzadi et al., 2018]

Impossible differential 12 261,87 290.51 [Shahmirzadi et al., 2018]

Meet-in-the-middle 12 255.5 2125,5 [Lin and Wu, 2015]

Invariant subspace1 full(16) 2 216 [Guo et al., 2016]

Related-key differential 14 259 2116 [Dong and Shen, 2016]

Related-key differential full(16) 224 236 Section 8.6.2

Midori128

Impossible differential 11 2121 2122,75 [Tolba et al., 2017]

Related-key differential full(20) 244 244 Section 8.6.3

Table 8.1: Summary of the attacks against Midori

energy cost for a lightweight block cipher. They propose a lightweight symmetric block cipher
scheme called Midori, composed of two versions Midori64 and Midori128, which respectively ci-
pher 64- and 128-bit message blocks, with 128-bit keys.

In this chapter, we present CP models for the search of optimal related-key differential charac-
teristics on Midori64 and Midori128. Using our models, we give the optimal full-round related key
differential characteristics for both versions. For Midori64, the probability of the best full-round
related-key differential characteristic is 2−16, and for Midori128, it is 2−40. Using these differen-
tial characteristics, we present key recovery attacks for both versions of Midori, which require 236

operations for Midori64, and 244 operations for Midori128.

The existing attacks against Midori are summed up in Table 8.1.

In [Chen and Wang, 2016], the authors propose an impossible differential attack on 10 rounds
of Midori64. Impossible differential attacks use differentials with probability 0 to attack the ci-
pher. In [Shahmirzadi et al., 2018], impossible differential attacks are proposed against 10, 11 and
12 rounds of Midori64. However, the attacks on 11 and 12 rounds are performed on versions of
Midori which do not include the final XOR with the whitening key. In [Lin and Wu, 2015], Li Lin
and Wenling Wu describe a meet-in-the-middle attack on 12-round Midori64. In [Guo et al., 2016],
the authors exhibit a class of 232 weak keys, which can be distinguished with a single query. As-
suming a key from this class is used, it can be recovered recovered with as little as 216 opera-
tions, and a data complexity of 21. Finally, a related-key cryptanalysis of Midori64 is performed
in [Dong and Shen, 2016]. It covers 14 rounds and has a complexity of 2116, as opposed to 236 for
ours. This difference is due to their differential characteristics being far from optimal.

For Midori128, the only attack apart from ours, to the best of our knowledge, is an impossible
differential cryptanalysis on 11 rounds [Tolba et al., 2017]. We propose a key recovery attack on
the whole cipher, requiring 243.7 encryptions.

In Section 8.2, we give a brief description of Midori. We then present our CP model for Step
1 in Section 8.3, and for Step 2 in Section 8.4. Finally, we detail our results in Section 8.5, before
concluding in the last section.

1Note that this attack only works if a key from the weak class is used
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8.2 Midori

Both versions of Midori, Midori64 and Midori128, use 128-bit keys. In both versions, the blocks
are treated as 4×4 matrices of words of m bits, with m = 4 for Midori64 and m = 8 for Midori128.
The encryption process consists in applying a round function that updates an internal state S,
represented as shown on Figure 8.1 (where the si are 4-bit words for Midori64 and 8-bit words
(bytes) for Midori128), for a given number of rounds R.

S =











s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15











Figure 8.1: Representation of the state in Midori.

For Midori64, R is equal to 16, whereas for Midori128 R is 202.

SC MCKA KA

 

SB

KA

Operations applied at each round i ∈ [0, r − 2] for Midori:

X

KiWK

Yi Zi
Xi SXi

WK

XrXr−1 SXr−1

Figure 8.2: Midori ciphering process. Each 4× 4 array represents a group of 16 nibbles for Midori64, and
bytes for Midori128.

Midori is composed of r rounds. It uses 128-bit keys, and ciphers blocks of either 64 bits (Mi-
dori64) or 128 bits (Midori128). The number of rounds r depends on the block length: r = 16 (resp.
20) for Midori64 (resp. Midori128). Midori has an SPN structure and is described in Figure 8.2.
Before the first round, KeyAdd (KA) is applied on the original plaintext X and the whitening key
WK to obtain X0 = KA(X,WK). Then, for each round i ∈ [0,r −2]: SubCell (SB) is applied on Xi to
obtain SXi = S(Xi ); ShuffleCells (SC) is applied on SXi to obtain Yi = SC(SXi ); MixColumns (MC)
is applied on Yi to obtain Zi = MC(Yi ); KeySchedule (KS) is applied on Ki to obtain Ki = KS(IK, i )
(where IK is the initial key); and KeyAdd (KA) is applied on Zi and Ki to obtain Xi+1 = ARK(Zi ,Ki ).
Finally, after r −1 rounds, the ciphertext is obtained by applying SubCell on Xr−1 to obtain SBr ,
and then a final KeyAdd with WK to obtain Xr = KA(SBr ,WK).

The round function is composed of the following consecutive operations:

SubCell (SB) A non-linear permutation, also called SBox, is applied on each word of Xi separately,
according to a look-up table S : [0,15] → [0,15] for Midori64, i.e.,

∀i ∈ [0,r −1],∀ j ,k ∈ [0,3],SXi [ j ][k] = S(Xi [ j ][k]).

The SBox of Midori64 is given in Figure 8.3. For Midori128, 4 different SBoxes S j : [0,255] →
[0,255] are used (one for each line of the state), i.e.,

∀i ∈ [0,r −1],∀ j ,k ∈ [0,3],SXi [ j ][k] = S j (Xi [ j ][k]).

The SBoxes of Midori128 are given in Appendix B

2The full specification is presented in [Banik et al., 2015].
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SB(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Figure 8.3: The SBox of Midori64.

ShuffleCell (SC) Operates a permutation of the cells of the state. On input (s0, . . . , s15), it applies
the following permutation:

P = (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

of SXi to obtain Yi .

MixColumns (MC) Multiplies the state by the symmetric matrix given in Figure 8.4, thus applying
a linear transformation on each column independently. It has the quasi-MDS property:

∀i ∈ [0,r −2],∀k ∈ [0;3], (
3

∑

j =0
(Yi [ j ][k] 6= 0)+ (Zi [ j ][k] 6= 0)) ∈ {0,4,5,6,7,8}.

and
∑3

j =0(Yi [ j ][k]) = 0 ≡
∑3

j =0(Zi [ j ][k]) = 0.











0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0











Figure 8.4: The MixColumn matrix of Midori.

KeyAdd (KA) Before the first round, KA performs a xor between the initial plain text X and the
whitening key WK to obtain X0:

∀ j ,k ∈ [0;3],X0[ j ][k] = X[ j ][k]⊕WK[ j ][k].

Then, at each round i , KA performs a xor between Zi and subkey Ki to obtain Xi+1, i.e.,

∀i ∈ [0,r −1],∀ j ,k ∈ [0;3],Xi+1[ j ][k] = Zi [ j ][k]⊕Ki+1[ j ][k].

Finally, a last KA is applied to obtain the ciphertext:

∀ j ,k ∈ [0;3],Xr [ j ][k] = SBr−1[ j ][k]⊕WK[ j ][k].

Key Schedule (KS) The round key derivation is very straightforard: the key Ki for each round i is
obtained by XORing the initial key IK with a predefined 4× 4 constant matrix αi . For Mi-
dori64, the 128-bit key is considered as two 4×4 matrices of 4-bit nibbles IK0 and IK1, and
WK is computed as IK0⊕IK1. The round key Ki is computed as IKi mod 2⊕αi . For Midori128,
IK is a single 4×4 bytes matrix, and WK = K. The round key Ki is then computed as IK⊕αi .

8.3 CP Model for Step 1

In this section, we describe our CP models for the search of related-key differential characteristics
on Midori. It is performed in two steps, as described in Chapter 6.

The model we use is similar to the S1Di f f model (Section 7.3.2), in the sense that it includes
difference variables, and a constraint on the quasi MDS property between the XOR of two differ-
ential columns. However, the key schedule contains no XOR operations, so that the S1XOR model
would be irrelevant for Midori. Instead of using XORs to determine the equalities in the round
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keys, we simply use the key schedule rules: For Midori64, the differential matrices representing
the round keys of the even rounds are equal, and so are the ones of the off rounds. For Midori128,
the differential matrices representing the round keys are equal at all rounds. In other words, we
have that δKi 1[ j ][k] = δKi 2[ j ][k] if i 1%2 = i 2%2 for Midori 64, and δKi 1[ j ][k] = δKi 2[ j ][k] for Mi-
dori128.

We first describe the variables used in our model, and then the associated constraints.

8.3.1 Variables

We first define the diffWords and SBoxes sets for Midori. For both versions of Midori, diffWords

contains the following differential words, representing:

• The plaintext: δX[ j ][k],∀ j ∈ [0;3],k ∈ [0,3]

• The initial key: δIK[ j ][k], j ∈ [0;3],k ∈ [0,3]

• The whitening key: δWK[ j ][k], j ∈ [0;3],k ∈ [0,3]

• The round keys: δKi [ j ][k],∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0,BC−1]

• The state after KA: δXi [ j ][k],∀i ∈ [0;r −1], j ∈ [0;3],k ∈ [0,3]

• The state after SB: δSXi [ j ][k],∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0,3]

• The state after SC: δYi [ j ][k],∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0,3]

• The state after MC: δZi [ j ][k],∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0,3]

and the Sboxes set contains:

• δXi [ j ][k],∀i ∈ [0;r −1], j ∈ [0,3],k ∈ [0,BC−1]

As for AES, not all differential words are abstracted in Step 1. Indeed, during Step 2, the initial
differential plaintext δX, as well as the whitening key WK, can be deterministically computed given
the values of all other differential words. Hence, our model for Midori associates a Boolean vari-
able ∆B with every differential byte δB ∈ diffBytesl \ {δX[ j ][k],δWK[ j ][k]}. Each Boolean variable
∆B is assigned to 0 if δB = 0, and to 1 otherwise.

We also define an integer variable ob jStep1 which corresponds to the number of active SBoxes.
The highest transition probability through the SBoxes of both versions of Midori is 2−2, so up to 64
SBoxes can be active before the probability goes below 2−128 (the key size being 128 bits for both
versions). The domain of the ob jStep1 is set to D(ob jStep1) = [1,64] accordingly.

The corresponding list of variables is the following. We use the ≺ symbol, as defined in Sec-
tion 6.4.1, to denote the fact that a differential bit ∆a is a Boolean abstraction of the differential
word δa.

∆IK: For Midori 64, the key is interpreted as two 4×4 matrices IK0 and IK1, so we have

∀i ∈ [0;1],∀ j ∈ [0;3],k ∈ [0;3],∆IKi [ j ][k] ≺ δIKi [ j ][k],

and for Midori128, where the key is interpreted as a single 4×4 matrix,

∀ j ∈ [0;3],k ∈ [0;3],∆IK[ j ][k] ≺ δIK[ j ][k].

∆Ki : ∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0;3],∆Ki [ j ][k] ≺ δKi [ j ][k]

∆X: ∀i ∈ [0;r −1], j ∈ [0;3],k ∈ [0;3],∆Xi [ j ][k] ≺ δXi [ j ][k]

∆SB: ∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0;3],∆SBi [ j ][k] ≺ δSBi [ j ][k]
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∆Y: ∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0;3],∆Yi [ j ][k] ≺ δXi [ j ][k]

∆Z: ∀i ∈ [0;r −2], j ∈ [0;3],k ∈ [0;3],∆Zi [ j ][k] ≺ δZi [ j ][k]

ob jStep1: ob jStep1 =
∑

i∈SBoxesl

(i )

The DK,DY,DZ sets, used to define the difference variables, are defined as follows, for all j ∈
[0;3]:

DK j = {δKi [ j ][k] : i ∈ [0,r −2],k ∈ [0,3]}

DY j = {δYi [ j ][k] : i ∈ [0,r −2],k ∈ [0,3]}

DZ j = {δZi [ j ][k] : i ∈ [0,r −2],k ∈ [0,3]}.

Given these sets, we define the diff variables as follows: For each set D ∈ {DK j ,DY j ,DZ j : j ∈
[0,3]}, and for each pair of differential bytes {δB1,δB2} ∈ D, we define a Boolean variable diff δB1,δB2

,
which is equal to 1 if δB1 and δB2 are equal, and to 0 otherwise.

8.3.2 Constraints

In the model for Step 1, we have one constraint for each operation, and an additional constraint
for the quasi MDS property. These constraints are defined as follows.

SubCell As explained in Section 6.4.2, the SBoxes do not introduce differences during Step 1, so
the constraint is defined as

∀i ∈ [0,r −2],∀( j ,k) ∈ [0;3]2 :∆SBi [ j ][k] =∆Xi [ j ][k]. (CM
SB)

XOR constraint As explained in Section 6.4.2, the XOR operation cannot be modelled precisely,
since the information about whether two differential words are equal is abstracted. Hence,
the XOR constraint abstracting δB3 = δB1 ⊕δB2 is

XOR(∆B1,∆B2,∆B3) ⇔∆B1 +∆B2 +∆B3 6= 1 (CM
XOR)

We also use a XOR constraint for the XOR of 3 variables into a fourth one δB4:

XOR(∆B1,∆B2,∆B3,∆B4) ⇔∆B1 +∆B2 +∆B3 +∆B4 6= 1 (CM
XOR4)

KeyAdd KA is modelled by XOR constraints:

∀i ∈ [1,r −2],∀( j ,k) ∈ [0,3]2 : XOR(∆Yi−1[ j ][k],∆Ki [ j ][k],∆Xi [ j ][k]). (CM
KA)

118



CHAPTER 8. RELATED KEY DIFFERENTIAL CRYPTANALYSIS OF MIDORI

WITH CP

ShuffleCells SC is modelled by equality constraints that link shifted words:

∀i ∈ [0;r −2] :

∆Y[i ][0][0] =∆SB[i ][0][0],

∆Y[i ][1][0] =∆SB[i ][2][2],

∆Y[i ][2][0] =∆SB[i ][1][1],

∆Y[i ][3][0] =∆SB[i ][3][3],

∆Y[i ][0][1] =∆SB[i ][2][3],

∆Y[i ][1][1] =∆SB[i ][0][1],

∆Y[i ][2][1] =∆SB[i ][3][2],

∆Y[i ][3][1] =∆SB[i ][1][0],

∆Y[i ][0][2] =∆SB[i ][1][2],

∆Y[i ][1][2] =∆SB[i ][3][0],

∆Y[i ][2][2] =∆SB[i ][0][3],

∆Y[i ][3][2] =∆SB[i ][2][1],

∆Y[i ][0][3] =∆SB[i ][3][1],

∆Y[i ][1][3] =∆SB[i ][1][3],

∆Y[i ][2][3] =∆SB[i ][2][0],

∆Y[i ][3][3] =∆SB[i ][0][2].
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
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


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


















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
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


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


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
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
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
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(CM
SC)

MixColumns MC cannot be modelled precisely at the Boolean level, as knowing where differ-
ences hold in Yi is not enough to determine where they hold in Zi . Indeed, the values of the
words in the column are necessary to determine the positions of the zeros after MC. How-
ever, the quasi MDS property is modelled by constraining the number of differences in a
same column of Yi and Zi to be equal to 0 or greater than 3:

∀i ∈ [0,r −2],∀k ∈ [0,3] :

(

3
∑

j =0
∆Yi [ j ][k]+∆Zi [ j ][k]

)

∈ {0,5,6,7,8}. (CM
MC)

Then, we model the fact that MC(0,0,0,0) = (0,0,0,0) as follows:

∀i ∈ [0,r −2],∀k ∈ [0,3] :

(

3
∑

j =0
∆Y[i ][ j ][k] = 0

)

⇔
(

3
∑

i =0
∆Z[i ][ j ][k] = 0

)

. (CM
MC0)

Finally, we can model the XORs implied in the computation of MC, since all the coefficients
are 1. We implement the product of the vector ∆SB with the matrix given in Midori to get
∆Z. It is modelled as follows:

∀i ∈ [0;r −2],k ∈ [0;r −2] :

XOR(∆Y[i ][1][k]∧∆Y[i ][2][k]∧∆Y[i ][3][k]∧∆Z[i ][0][k])

XOR(∆Y[i ][0][k]∧∆Y[i ][2][k]∧∆Y[i ][3][k]∧∆Z[i ][1][k])

XOR(∆Y[i ][0][k]∧∆Y[i ][1][k]∧∆Y[i ][3][k]∧∆Z[i ][2][k])

XOR(∆Y[i ][0][k]∧∆Y[i ][1][k]∧∆Y[i ][2][k]∧∆Z[i ][3][k]).
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(CM
MCXOR)

KeySchedule KS depends on the version of Midori that we consider. For Midori64, we have

∀i ∈ [0;r −1] :∆Ki =∆Ki %2, (CM
KS)

and for Midori128,
∀i ∈ [0;r −1] :∆Ki =∆K. (CM

KS)
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Constraint relating DK and the di f f variables For Midori64, two differential words of the key
δKi 1[ j ][k] and δKi 2[ j ][k], for two different rounds i1 and i2, are equal by definition of the
key schedule if i 1%2 = i 2%2:

∀(i1, i2) ∈ [0;r −1]2,∀( j ,k) ∈ [0;3]2, i1%2 = i2%2 : diff δKi1 [ j ][k],δKi2 [ j ][k] = 0. (CM
DIFFK)

For Midori128, by definition, the differential matrices abstracting the round subkeys are
equal:

∀(i 1, i 2) ∈ [0;r −1]2,∀( j ,k) ∈ [0;3]2 : diff δKi 1[ j ][k],δKi 2[ j ][k] = 0. (CM
DIFFK)

Symmetry To be consistent, our difference variables need to have symmetry:

∀D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2} ∈ Ddiff δB1,δB2
= diff δB2,δB1

. (CM
SYM)

Transitivity To be consistent, our difference variables need to have transitivity:

∀D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2,δB3} ∈ D,

diff δB1,δB2
+diff δB2,δB3

+diff δB1,δB3
6= 1. (CM

TRANS)

Relating diff variables and ∆ variables If ∆A 6= ∆B, then diffδA,δB = 1, and that if ∆A 6= ∆B = 0,
then diffδA,δB = 0 . This is enforced by the following constraint:

∀D ∈ {DK j ,DY j ,DZ j : j ∈ [0,3]},∀{δB1,δB2} ∈ D,diff δB1,δB2
+∆B1 +∆B2 6= 1. (CM

DIFF∆
)

Constraints relating KA and the diff variables ARK defines Xi+1[ j ][k] as the result of a xor be-
tween Ki [ j ][k] and Zi [ j ][k], we post the constraint: ∀i1, i2 ∈ [0,r −2],∀ j ,k1,k2 ∈ [0,3]3,

diff δKi1 [ j ][k1],δKi2 [ j ][k2] +diff δZi1 [ j ][k1],δZi2 [ j ][k2] +∆Xi1 [ j ][k1]+∆Xi2 [ j ][k2] 6= 1. (CM
DIFFKA)

Quasi MDS property As in the S1di f f model for AES, we exploit the quasi MDS property for the
XOR of two differential columns by

∀i 1, i 2 ∈ [0,r −2]2,∀k1,k2 ∈ [0;3]2 :

(
3

∑

j =0
(diffδYi 1[ j ][k1],δYi 2[ j ][k2]) 6= 0)+ (diffδYi 1[ j ][k1],δYi 2[ j ][k2] 6= 0)) ∈ {0,5,6,7,8}. (CM

DIFFMDS)

8.4 Step 2

Given an abstracted differential computed by Step1-enum, Step 2 aims at searching for the word
values with the highest differential probability (or proving that the abstracted differential is not
word-consistent). In this section, we describe the CP model for Step 2 on Midori.

8.4.1 Variables

For each differential word δB ∈ diffWordsl , we define an integer variable the domain of which
depends on the value of ∆B in the abstracted differential: If ∆B = 0, then D(δB) = {0}; otherwise,
D(δB) = [1,15] for Midori64, or D(δB) = [1,255] for Midori128.

As we look for a word-consistent solution with maximal probability, we declare an integer vari-
able PδB for each differential word δB ∈ Sboxes: This variable corresponds to the base 2 logarithm
of the probability Pr(δB → δSB) of obtaining the Sbox output difference δSB when the SBox in-
put difference is δB. This probability is obtained by applying equation 6.1. The domain of PδB

depends on the value of ∆B in the abstracted differential: If ∆B = 0, then Pr(0 → 0) = 1 and there-
fore D(PδB) = {0}; otherwise, Pr(δB → δSB) ∈ {2−3,2−2} and D(PδB) = {−3,−2} for Midori64, and
Pr(δB → δSB) ∈ {2−6,2−5,2−4,2−3,2−2} and D(PδB) = {−6,−5,−4,−3,−2} for Midori128. The con-
straint associated with the SubCell operation forbids couples (δB,δSB) such that Pr(δB → δSB) = 0.
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8.4.2 Constraints

The constraints basically follow the Midori operations to relate variables, as described in Section
8.3 for Step 1, but consider the definition of the operations at the word level, instead of the Boolean
level.

The main difference is that the SubCell operation, which has no effect at the Boolean level,
must be modelled at the word level. This is done thanks to a ternary table constraint which exten-
sively lists all triples (X,Y,P) such that there exists two words B1 and B2 whose difference before and
after passing through S-Boxes is equal to X and Y, respectively, and such that P is the probability
of this transformation: For all δB ∈ Sboxes, we add the constraint

(δB,δSB,PδB) ∈ {(X,Y,P)|∃(B1,B2) ∈ [0,15]× [0,15],X = B1 ⊕B2,

Y = S(B1)⊕S(B2),P = log2(Pr(X → Y))}. (CM
SBS2)

for Midori64, and

(δB,δSB,PδB) ∈ {(X,Y,P)|∃(B1,B2) ∈ [0,255]× [0,255],X = B1 ⊕B2,

Y = S(B1)⊕S(B2),P = log2(Pr(X → Y))}. (CM
SBS2)

for Midori128.
We also use a table constraint for the XOR of two words, as defined in Section 6.4.2, with tuples

tupleXOR.
We define:

XORWor d(δa,δb,δc) ≡ (δa,δb,δc) ∈ tupleXOR. (CM
XORWor d s

)

In what follows, we assume that XORWor d s can take an arbitrary number of arguments (the last
one being the result), event though in the implementation, when a XOR of multiple variables is
needed, we XOR them two by two and use temporary variables to store the intermediary results.

The MixColumn operation also needs to be modelled at word level. MixColumn is the multi-
plication of each column of the state by a fixed matrix M, given in section 8.2. In Rijndael’s Galois
field, addition is replaced by XOR. For instance, let us consider a column C = (δa,δb,δc,δd)t . Then

MC(C) =











δb ⊕δc ⊕δd

δaδδc ⊕δd

δa ⊕δb ⊕δd

δa ⊕δb ⊕δc











We implemented both MC and its inverse. Indeed, it permits the solver to obtain the k th col-
umn of δYi directly from the k th column of δZi , instead of having to enumerate all possible values
and applying MC in the forward direction to verify whether the affectation is correct.

The MC operation is modelled as follows, using temporary variables tz :

∀i ∈ [0;r −2],∀k ∈ [0;3] :

XORWor d(δYi [1][k],δYi [2][k],δYi [3][k],δZi [0][k]),

XORWor d(δYi [0][k],δYi [2][k],δYi [3][k],δZi [1][k]),

XORWor d(δYi [0][k],δYi [1][k],δYi [3][k],δZi [2][k]),

XORWor d(δYi [0][k],δYi [1][k],δYi [2][k],δZi [3][k]).


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(CM
MCS2)

The inverse of the MC operation is modelled similarly.

∀i ∈ [0;r −2],∀k ∈ [0;3]

XORWor d(δZi [1][k],δZi [2][k],δZi [3][k],δYi [0][k])

XORWor d(δZi [0][k],δZi [2][k],δZi [3][k],δYi [1][k])

XORWor d(δZi [0][k],δZi [1][k],δZi [3][k],δYi [2][k])

XORWor d(δZi [0][k],δZi [1][k],δZi [2][k],δYi [3][k])


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INVMCS2)
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The constraint for SC is described in the same way as for Step 1:

∀i ∈ [0;r −2] :

δY[i ][0][0] = δSB[i ][0][0],

δY[i ][1][0] = δSB[i ][2][2],

δY[i ][2][0] = δSB[i ][1][1],

δY[i ][3][0] = δSB[i ][3][3],

δY[i ][0][1] = δSB[i ][2][3],

δY[i ][1][1] = δSB[i ][0][1],

δY[i ][2][1] = δSB[i ][3][2],

δY[i ][3][1] = δSB[i ][1][0],

δY[i ][0][2] = δSB[i ][1][2],

δY[i ][1][2] = δSB[i ][3][0],

δY[i ][2][2] = δSB[i ][0][3],

δY[i ][3][2] = δSB[i ][2][1],

δY[i ][0][3] = δSB[i ][3][1],

δY[i ][1][3] = δSB[i ][1][3],

δY[i ][2][3] = δSB[i ][2][0],

δY[i ][3][3] = δSB[i ][0][2].
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(CM
SCS2)

The key addition KA uses XORWor d s:

∀( j ,k) ∈ [0,3]2 : XOR(δX[ j ][k],δWK[ j ][k],δX0[ j ][k]),

∀i ∈ [1,r −1],∀( j ,k) ∈ [0,3]2 : XOR(δYi−1[ j ][k],δKi [ j ][k],δXi [ j ][k]).

}

(CM
KAS2)

Finally, KS is defined in a very straightforward way: for Midori64, it is

∀i ∈ [0;r −1],∀( j ,k) ∈ [0,3]2 : δKi [ j ][k] = δIKi %2[ j ][k], (CM
KS)

and for Midori128,

∀i ∈ [0;r −1],∀( j ,k) ∈ [0,3]2 : δKi [ j ][k] = δIK[ j ][k]. (CM
KS)

Objective function The goal is to find a byte-consistent solution with maximal differential prob-
ability. As we consider logarithms, this amount to searching for a solution that maximises the sum
of all PδB variables. Hence, we introduce an integer variable ob jStep2 which is constrained to be
equal to the sum of all PδB variables:

ob jStep2 =
∑

δB∈Sboxesl

PδB

and we define the objective function as the maximisation of ob jStep2.

8.5 Results

In this section, we list the results obtained with our models. All our experiments are performed
according to the setting described in Section 6.4.2, on a single core of an Intel(R) Xeon(R) E5-
2687Wv4 @ 3.00GHz CPU. We consider 30 instances denoted Midori64-r (resp Midori128-r ), for a
number of rounds r : r ∈ [3;16] (resp. [3;20]) for Midori64 (resp. Midori128).

S1XOR and S1Di f f are implemented with MiniZinc [Nethercote et al., 2007].
We report the experimental results obtained with Picat_SAT.
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Step1-opt Step1-enum Step 2
v∗ topt #T tenum #B t2

#T tStep2 ob jStep2

Midori64-3 1 < 1 48 14 48 < 1 9 2−2

Midori64-4 2 < 1 32 31 32 < 1 3 2−4

Midori64-5 2 1 16 15 16 < 1 2 2−4

Midori64-6 3 2 32 109 32 < 1 4 2−6

Midori64-7 3 4 16 62 16 < 1 3 2−6

Midori64-8 4 7 32 87 32 < 1 5 2−8

Midori64-9 4 6 16 40 16 < 1 4 2−8

Midori64-10 5 9 32 141 32 < 1 6 2−10

Midori64-11 5 10 16 51 16 < 1 4 2−10

Midori64-12 6 23 32 126 32 < 1 6 2−12

Midori64-13 6 39 16 70 16 < 1 4 2−12

Midori64-14 7 29 32 194 32 < 1 7 2−14

Midori64-15 7 28 16 92 16 < 1 5 2−14

Midori64-16 8 45 32 236 32 < 1 7 2−16

Table 8.2: Our results for Midori 64. For each instance, we give the optimal number of SBoxes v∗ and the
time topt needed to solve the Step1-opt. We then give the results of the enumeration problem: the number
of solutions #T and the corresponding search time tenum . Finally, we present the results of Step 2: the
number of byte consistent solutions #B, the average solving time t2

#T , the total time tS2, and the probability
of the best abstracted related key differential characteristic ob jStep2. All times are given in seconds.

The results are given in Table 8.2 for Midori64, and in Table 8.4 for Midori128. For all instances
of Midori64, the resolution, Step1-opt is performed in at most 12 seconds, Step1-enum in less than
4 minutes, and Step 2 always takes less than 1 second per solution. The instance with the longest
total time, including Step1-opt, Step1-enum and Step2, is Midori64-14, and it is solved in less than
5 minutes. For each instance, we find solutions with

⌈R
2

⌉

SBoxes, and there is always an assignment
to the differential nibbles that reaches the optimal probability 2−2·v∗

(where v∗ is the number of
active SBoxes). Hence, we obtain 32 full-round related key differential characteristics for Midori64
with 8 active SBoxes, and probability 2−16. One of these characteristics is given in Table 8.3.

For Midori128, Step1-opt is performed in at most 64 seconds, Step1-enum in at most 424 sec-
onds, and Step 2 always takes less than 3 seconds per solution. The instance with the longest total
time, including Step1-opt, Step1-enum and Step2, is Midori128-20, and it is solved in less than 10
minutes. For each instance, we find solutions with R SBoxes, and there is always an assignment to
the differential bytes that reaches the optimal probability 2−2·v∗

. Hence, we obtain 18 full-round
related key differential characteristics for Midori128 with 20 active SBoxes, and probability 2−40.
One of these characteristics is given in Table 8.5.
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δK 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0

δX Value Pr
init 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0
δX0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2−2·1

δX15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
δX16 0 0 0 1 0 0 0 0 2 0 2 2 0 0 0 0

Table 8.3: A 16-round related-key differential characteristic for Midori64. It has probability 2−16. The nib-
bles are given in hexadecimal notation.

Step1-opt Step1-enum Step 2
v∗ topt #T tenum #B t2

#T tStep2 ob jStep2

Midori128-3 3 <1 42 21 30 < 1 16 2−6

Midori128-4 4 1 18 15 18 < 1 15 2−8

Midori128-5 5 3 18 21 18 < 1 17 2−10

Midori128-6 6 9 18 40 18 < 2 23 2−12

Midori128-7 7 9 18 46 18 < 2 21 2−14

Midori128-8 8 10 18 54 18 < 2 28 2−16

Midori128-9 9 15 18 87 18 < 2 24 2−18

Midori128-10 10 28 18 108 18 < 3 41 2−20

Midori128-11 11 21 18 127 18 < 3 37 2−22

Midori128-12 12 38 18 149 18 < 2 35 2−24

Midori128-13 13 75 18 174 18 < 2 34 2−26

Midori128-14 14 76 18 260 18 < 3 49 2−28

Midori128-15 15 82 18 146 18 < 3 47 2−30

Midori128-16 16 193 18 400 18 < 3 47 2−32

Midori128-17 17 177 18 413 18 < 3 47 2−34

Midori128-18 18 367 18 517 18 < 4 69 2−36

Midori128-19 19 194 18 557 18 < 4 57 2−38

Midori128-20 20 239 18 674 18 < 4 55 2−40

Table 8.4: Our results for Midori128. For each instance, we give the optimal number of SBoxes v∗ and the
time needed to solve the Step1-opt topt . We then give the results of the enumeration problem: the number
of solutions #T and the corresponding search time tenum . Finally, we present the results of Step 2: the
number of byte consistent solutions #B, the average solving time t2

#T ,the total time tS2, and the probability
of the best abstracted related key differential characteristic ob jStep2. All times are given in seconds.
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δK 00 02 00 00 01 01 01 00 00 00 00 00 00 00 00 00

δX Value Pr
init 00 00 00 00 01 01 01 00 00 00 00 00 00 00 00 00
δX0 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX1 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX2 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX3 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX4 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX5 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX6 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX7 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX8 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX9 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX10 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX11 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX12 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX13 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX14 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX15 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX16 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX17 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX18 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX19 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2−2·1

δX20 00 03 00 00 01 01 01 00 00 00 00 00 00 00 00 00

Table 8.5: A 20-round related-key differential characteristic for Midori128. It has probability 2−40. The bytes
are given in hexadecimal notation.
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8.6 Related Key Differential Attacks against Midori

In this section, we show how to use the related-key differential characteristics found with our mod-
els to perform a key recovery attack against both versions of Midori. We first present the method
for mounting a related-key differential attack, and then apply it to Midori64 and Midori128.

8.6.1 Related-Key Differential Attacks

We remind that in a related key differential attack, we can use an oracle E.encRK,(δIK,IK)(X) that
encrypts a message X with the key IK ⊕δIK. In order to mount a related-key differential attack,
we use the related-key differential characteristic to derive the most likely input difference to the
last SB operations, i.e., δXr−1. We then obtain T · p(c)−1 pairs of ciphertexts C = E.encRK,(0,K)(X)
and C′ = E.encRK,(δIK,IK)(X⊕δX), where p(c) is the probability of the differential characteristic. The
computation of T is detailed in each of our attacks. We computeδC = C⊕C′, and thenδSBr−1 = δC⊕
δWK, where δWK is known from the value of δIK in the differential characteristics. We then make
the assumption that δXr−1 takes the value corresponding to the differential characteristic. If this
actually occurs, the pair (C,C′) is called a good pair. When we have a good pair, we know the input
differences to the SBoxes (δXr−1), and the output difference (δSBr−1). In a bijective SBox, there
only a given number t of values which satisfy the relation a ⊕a′ = δi n,S(a)⊕S(a′) = δout . Hence,
we can derive t candidate values for each word of SBr−1 for which δSBr−1[ j ][k] 6= 0. However,
when δSBr−1[ j ][k] = 0, we cannot derive a candidate, since δSBr−1[ j ][k] = 0 only indicates that
SBr−1[ j ][k] is equal to SB′

r−1[ j ][k]. Let CSBi [ j ][k] be the set of candidates for SBi [ j ][k]. We can
derive a set of candidates for WK[ j ][k] by combining the known value of C[ j ][k] (given by the
oracle), and CSBr−1[ j ][k]: CWK[ j ][k] = {x : x = C[ j ,k]⊕ z, z ∈ CSBr−1[ j ][k]}. After repeating these
operations for each of the T ·p(c)−1 ciphertexts, we keep the candidate for WK[ j ][k] that occurred
the most often.

8.6.2 Midori64

Our key recovery attack against Midori64 works in two steps. We first use a set of 16 related-key
differential characteristics to recover WK, one word at a time, in 16 ·220 = 224 operations. Then, we
use another set of 4 related key differential characteristics to obtain K14 = IK0, in 236 operations.
By combining WK and K14, we obtain IK1 = IK0 ⊕WK and deduce IK (composed of IK0 and IK1),
for a total complexity of 224 +236 ≈ 236.

Recovery of WK

Among the 32 16-round related-key differential characteristics obtained with our solvers, 16 have
exactly one active word in δX15. These characteristics are given in Appendix C.1.1.For each of these
characteristics, the active word is at a different position. Let this position be denoted δX15[ j ][k].
With each of these characteristics, we recover one word of WK, WK[ j ][k], by directly applying the
method presented in Section 8.6.1. Note that we do not derive key candidates for all ciphertext
pairs, as we only keep the ones for which δSB15 matches what is expected from the differential
characteristic, except for position δSB15[ j ][k], where any value is accepted. In Midori128, IK = WK,
so that after recovering WK, we directly obtain IK.

Complexity Analysis We now determine how many ciphertext pairs we need to recover each
word of WK, by computing the value T mentioned in Section 8.6.1. To determine T, we follow
the approach given in [Selçuk, 2008]. It uses the signal to noise ratio S/N introduced by Biham

in [Biham and Shamir, 1993]. The signal to noise ration is defined as S/N = 2k ·p
α·β , where k is the

number of key bits that we want to recover, p is the probability of the related-key differential char-
acteristic, α is the number of key candidates suggested for each good pair, and β is the ratio of the
pairs that are not discarded.
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.........15 rounds
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Figure 8.5: An example of a related-key differential characteristic provided by the solver.

In our attack, k is 4, since we want to recover a 4-bit nibble. We take p = 2−14: the probability of
the whole differential characteristic, including the final SB operation, is 2−16, but the probability
to have the correct difference in δX15 is 2−14. The α parameter is obtained through the properties
of the SBox: either two of 4 values can correspond to a given input/output difference, i.e., for a
given input difference δi n and output difference δout ,

#{a : S(a)⊕S(a ⊕δi n) = δout } ∈ {2,4}.

We want to upper bound the number of ciphertext pairs that we need, so that we take α = 4, which
minimises the signal-to-noise. For β we have 2−14+2−60, where 2−14 is the probability given by the
solvers and 2−60 corresponds to the false positives, i.e., pairs having the same difference pattern
in δSB15, with 4 bits of undetermined difference at position δSB15[ j ][k]. Using these values, we

obtain S/N = 2k ·p
α·β = 24·2−14

4·(2−14+2−60) = 2−10

2−12+2−58 ≈ 4. We denote by pS the probability to obtain the true
key. We use the equation (19) of [Selçuk, 2008], where Φ denote the density probability function of

the standard normal distribution, and Φ
−1 its inverse: pS =Φ

(p
T·S/N−Φ−1

(1−2−k )p
S/N+1

)

(19). Then we can

obtain pS for given values of T, S/N and α. We want to compute which T gives us a high enough
probability to recover a key word. Moreover, since we repeat the analysis 16 times (one for each
word of WK), we need to have p16

S sufficiently large as well. By numerical approximation we obtain
T = 20 ≈ 24.32, which gives pS > 0.99, and p16

S > 0.99. Hence, using T ·p−1 plaintext pairs, we recover
a key word with a probability greater than 0.99. The corresponding data complexity is then upper
bounded by 16·2·20·214 ≈ 224 chosen plaintexts, as well as 16 related keys, one for each related-key
differential characteristic used.

Recovery of K0

For this step, we use a different set of differential characteristics, which have one active SBox in
δSB14, denoted δSB14[ j ][k]. More specifically, we use 4 characteristics, and for each of them, the
active SBox is moved to a different column after SC. Each of these characteristics is used to recover
one different column of K14 = K0 ⊕α14. These characteristics are given in Appendix C.1.2. We first
cipher pairs X,X⊕δX with the keys IK,IK⊕δIK through the oracle. Using WK, previously computed,
we partially decrypt C and C′. We obtain SB15 = C⊕WK and SB′

15 = C′⊕WK ⊕δWK, and X15 and
X′

15 by inverting the SB operation. From there we compute δX15 = X15⊕X′
15, and δZ14 = δX15⊕δK0,

where δK0 is given by the differential characteristic. We then invert MC and SC to obtain δSB14.
Knowing δX14 (assuming the characteristic held), and δSB14, we can compute candidates for the
active differential word δSB14[ j ][k]. Since we want to recover a whole column k of K14, we want the
candidates for the column k of δY, after the SC operation. Hence, we exhaustively try the possible
combinations of the 3 other nibbles that are in the same column after SC for each candidate. This
results in a number of operations of 24 ·24 ·24 ·x, where x is the number of candidates for SB14[ j ][k].
x is upper bounded by 4, so we have at most 24 ·24 ·24 ·4 = 214 combinations to try. Each of these 214

combinations gives a candidate column of Z14. By XORing these candidates to the corresponding
column of X15, which we obtained from the partial decryption, we obtain candidates for 4-nibble
columns of K14. Note that we do not derive key candidates for all ciphertext pairs, as we only keep
the ones for which δSB14 matches what is expected from the differential characteristic, except for
position δSB14[ j ][k], where any value is accepted. Once K14 is recovered, we obtain IK0 = K14⊕α14.
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Complexity Analysis This time we try to recover 16 bits (4 nibbles) of the key, so k = 16. The
probability of having the correct δX14 is p = 2−14, as given by the differential characteristic. The
value of α is the number of candidate columns we obtain, which is 214, as detailed in the previous
section. Finally, β = 2−14+2−60, since we are interested in values of δSB14 with one arbitrary nibble

difference, and zero differences in the other nibbles. Using these values, we obtain S/N = 2k ·p
α·β =

216·2−14

214·(2−14+2−60) = 2−12

2−14+2−58 ≈ 4. Then by numerical approximation we find T = 28 ≈ 25, which gives pS >
0.99, and p4

S > 0.99. Hence, the total number of operations is upper bounded by 4·2·25·214·214 = 236

and the number of encryptions is upper bounded by 2 · 4 · 25 · 214 = 222, and we need a total of 4
related keys.

8.6.3 Midori128

The solver finds 18 full-round differential characteristics, each of which have a different active
word in δX15. The probability to obtain the correct difference in δX15 is 2−38 for each characteristic.
The corresponding related-key differentials are given in Appendix C.2. Hence, we directly apply
the attack presented in Section 8.6.1, to recover one word of WK = IK, at position j ,k, with each of
the differential characteristics. We only keep the ciphertext pairs for which δSB19[ j ][k] is all zeros,
except in position j ,k.

Complexity evaluation: We need to use 16 related-key differential characteristics, so we want
p16

S ≥ 0.99. To compute S/N, we use k = 8 as we recover a 8-bit word of the key for each related-key
differential characteristic, and p = 2−38. For α, we once again pick the value that minimises the
signal to noise ratio, to obtain an upper bound on the number of operations, so we have α = 64.
Finally, β = 2−38+2−120. With these values, we have S/N = 4, and need T = 25 ≈ 25 to have p16

S > 0.99.
Thus, the data complexity of the attack is upper bounded by 2 ·25 ·238 = 244 encryptions, under 16
related keys, and the time complexity is 244 as well.

8.7 Conclusion

In this chapter, we present our CP models to perform the search for optimal related-key differential
characteristics on Midori. These models are similar to S1Di f f (Section 7.3.2), as they include diff

variables and the CM
DIFFMDS constraint, that propagates the quasi-MDS property of MC between

two columns of differential words. The longest instance to solve, Midori-128-20, is solved in less
than 17 minutes (239 seconds for Step1-opt, 674 for Step1-enum, and 55 for Step 2). For Midori64
(resp. 128), we find full-round related-key differential characteristics with probability 2−16 (resp.
2−40). Using these differential characteristics, we mount key recovery attacks. We show how to
recover the key in 236 operations, and 224 plaintexts encrypted with 20 related keys for Midori64,
and 244 operations and 244 plaintexts encrypted with 16 related keys for Midori128.

The search for optimal related-key differential characteristics is significantly faster for Midori
than for the AES. The instance that takes the most time to solve for Midori is solved within 17
minutes. The most difficult instance for AES is solved in almost 4 hours, using more advanced
techniques (in particular, the different decomposition described in Section 7.5). In addition, the
hardest instance of AES is on 10 rounds, whereas the hardest instance for Midori is 20 rounds. The
fact that the search is faster for Midori than for AES, despite a larger number of rounds, can partly
be explained by the simplicity of the MixColumns operation: all coefficients of the MixColumns
matrix of Midori are zeroes or ones, so that we can model this operation more accurately during
Step 1, with the constraint CM

MCXOR. Another factor is the linearity of the key schedule. In the AES,
every key schedule round contains SBoxes and XOR operations, which introducs branching. The
key schedule of Midori in Step 1 only requires to determine three 4×4 matrices (∆IK0, ∆IK1 and
∆WK) for Midori64, and one (∆IK) for Midori128. In addition, the simple key schedule of Midori
makes it more vulnerable to related-key attacks: while the hardest instance for AES has 29 active
SBoxes, the hardest one for Midori only has 20.
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Conclusions

This thesis contains two two parts: in the first one, we treat the security of contactless commu-
nications with regards to relay attacks, while the second one deals with related key cryptanalysis
with constraint programming.

In the first chapter, we present the problem of secure contactless authentication. We identify
two security aspects: the security of the protocol itself, and the security of the primitives compos-
ing it, which correspond to the two parts of this thesis. In the first part, we introduce relay attacks,
which permit an adversary to defeat protocols by simply relaying messages between the partici-
pants, and a countermeasure: distance bounding protocols, which deter relay attacks by measur-
ing the time of flight of the messages. In the second part, we present the symmetric cryptographic
primitives that are used for contactless protocols, and note that they can all be instantiated using a
block cipher. We then present the problem of related-key cryptanalysis of block ciphers, in which
an adversary has access to an oracle that ciphers messages under several different keys, which are
related in a way chosen by the adversary. This form of cryptanalysis is particularly relevant when
block ciphers are used to build other primitives, since this use case sometimes requires using sev-
eral keys which are not necessarily independent one another.

In the second chapter, we define the notations the cryptographic primitives that we use in the
rest of the thesis, as well as some mathematical tools.

The third chapter is an introduction to provable security for distance bounding. We present
the general structure of distance bounding protocols, as well as some classical protocols. We then
present the existing threats against distance bounding protocols: mafia fraud, distance fraud, dis-
tance hijacking and terrorist fraud. Mafia fraud is an attack in which an adversary authenticates
in the presence of a far away prover, while the three other attacks concern a malicious, far away
prover, authenticating from a distance. In a distance fraud, he is on his own, in a distance hijack-
ing, he uses honest provers who are in the proximity of the verifier, and in a terrorist fraud, he is
helped by an accomplice, and tries to make the accomplice succeed in the protocol, while pre-
venting him from learning enough information to authenticate on his own later. We then present
these threats in a more formal way, with the DFKO model, in which our proofs are done. Finally,
we present the methodology we use for our proofs.

Chapter 4 introduces two protocols we designed: SPADE and TREAD. Both are provably se-
cure in the DFKO model, and use the same original technique to combine terrorist fraud resistance
and anonymity. Instead of forcing the prover to leak a long term secret in order to help his accom-
plice, these protocols have the prover leak a temporary secret. This temporary secret is meant to be
used in one session only, but an adversary can start a session using the same secret. If the terrorist
fraud adversary learns this secret, then he can use it again at will. In both protocols, this tempo-
rary secret chosen by the prover, and sent encrypted and authenticated to the verifier. The way it
is encrypted and authenticated depends on the protocol: for SPADE, the encryption is public key
and the authentication is performed with a group signature scheme, which allows a prover to sign
anonymously on behalf of a group. In TREAD, we present three instances: TREADs ym uses a sym-
metric encryption scheme, and a MAC for authentication. It provides no privacy. TREADpr i v uses
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a public key encryption scheme and a digital signature: it is MiM-private. Finally, TREADano uses
public key encryption and a group signature, and provides anonymity against malicious verifiers.
We give the security proofs of these protocols in the DFKO model. The idea of using a tempo-
rary secret during the protocol can be related to the notion of one-time secure distance bounding
protocols presented in [Vaudenay, 2015a], and provides interesting options for provable security.
Combining it with group signatures permits to attain anonymity, revocability and terrorist fraud
resistance at the same time. Group signatures are a computationally expensive primitive, which
contrasts with the use of lightweight primitives in most distance bounding protocols. However,
this restriction to lightweight primitives is mostly due to the traditional use of contactless on RFID
devices, which typically have low power. On the other hand, we believe that in the future, distance
bounding will be applied more broadly, for instance on smartphones [Gambs et al., 2016], so that
the limitation on computational power will not be as relevant.

In Chapter 5, we discuss attacks that were published against SPADE and TREAD, and which
use specific hardware, namely directional antennas [Ahmadi and Safavi-Naini, 2018]. Directional
antennas permit to circumvent the security model, by sending messages to one specific party
instead of broadcasting these messages. Hence, in a terrorist fraud, the malicious prover can
send messages to the verifier without his accomplice seeing them, which enables terrorist frauds
against some anonymous protocols, in which the adversary needs to see the initial messages to
be able to authenticate again later. However, the attacks of [Ahmadi and Safavi-Naini, 2018] have
limited applicability, since it is difficult to make sure that the accomplice will not cheat, by plac-
ing receivers in the range of the directional antennas. We then proceed with describing our own
terrorist fraud, which also uses specific hardware (temper-proof devices), and applies to all pro-
tocols of the literature in which the provers can be cloned, which concerns all protocols but 2.
With this attack, we show a loophole in the models, since protocols that have been proved ter-
rorist fraud resistant are actually vulnerable. We propose a definition for terrorist fraud, called
One Step Terrorist Fraud. In this definition, the prover is allowed to give any information to
his accomplice, even secret keys, and wins if the accomplice is able to authenticate with this help.

In the second part of the thesis, we focus on the cryptographic primitives themselves, includ-
ing the lightweight block cipher Midori. In Chapter 6, we present the cryptographic problem that
we study, which is related-key differential cryptanalysis of block ciphers. To perform related key
differential cryptanalysis, we need to study the propagation of differences in the plaintext and in
the key though the cipher, and find which input/output difference pairs are the most likely. These
propagation patterns are called related-key differential characteristics. We propose to tackle this
problem with constraint programming, a declarative programming paradigm, in which the prob-
lem to solve is expressed in terms of variables and constraints. From this modelling, dedicated
solvers perform the resolution, so that the programmer is freed from the task of designing a solv-
ing algorithm. We present the methodology we use: the problem is decomposed into two steps. In
the first step, we track the positions of the differences though the cipher, and minimise the number
of nonzero differences that go through SBoxes, as they lower the overall probability of the differen-
tial characteristic. In the second step, we search for actual word values that satisfy the propagation
rules of the cipher, and correspond to the results of Step 1. We also present the general method-
ology for solving Step 2, which mostly uses table constraints. Table constraints permit to express
allowed tuples, and allow to represent the SBoxes differential distribution table. The choice of us-
ing CP over MILP or other methods is motivated by the expressivity of CP: while MILP problems
must be expressed in terms of linear equations, and SAT problems as Boolean formulas, none of
these limitation applies to CP. Hence, the modelling is more natural and straightforward. More-
over, by writing our models in the MiniZinc CP language, we can use different solvers, in particular
the SAT solver Pica_SAT.

In the seventh chapter, we apply our techniques to the search of optimal related-key differ-
ential characteristics on the encryption standard AES. We propose 3 models for Step 1, as well as
a decomposition that is different from the two step decomposition used at first. The first model,
S1Basi c , is a straightforward implementation of the problem, and does not filter out enough incor-
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rect solutions to be usable. The second model, S1Di f f , introduces reasoning about the differences
between differential words that can be inferred in Step 1. It scales up to AES-192 and AES-256,
but fails at solving one of the instances (AES-192-10) within the allocated time. Finally, S1XOR in-
fers even more differences by combining equations from the key schedule, and solves AES-192-10
in approximately 60 hours. By shifting the frontier between steps 1 and 2, in a different decom-
position of the problem, we are capable of solving AES-192-10 in less than 4 hours. Using our
models, we additionally disprove incorrect results that were previously published, in papers using
custom search algorithms. The results we obtain on CP indicate that it is a promising approach
for cryptanalysis. On the particular example of related-key differential cryptanalysis on the AES, it
performed much faster than dedicated approaches (less than four hours, instead of several weeks).
We also notice that the modelling choices are determinant for the resolution speed. This limits the
ability of non experts to use CP for cryptanalysis.

In Chapter 8, we extend our study to Midori, which has a structure close to the AES. We use a
model derived from the S1Di f f model we used for the AES, and solve the most difficult instances
in less than 10 minutes. We find full-round related key differential characteristics with probability
2−16 for Midori64, and 2−40 for Midori128. Using these differential characteristics, we mount key
recovery attacks, with complexity 236 for Midori64, and 244 for Midori128. Interestingly, the search
for Midori is significantly faster than the search for AES. This can be explained by several factors.
First, the size of the search space is smaller for Midori: Midori64 has 64-bit blocks and 128-bit
keys, and Midori128 has 128-bit blocks and 128-bit keys. In contrast, AES has 128-bit blocks, and
up to 256-bit keys. Moreover, the key schedule of the AES is more complex, and includes a non
linear part. Additionally, the MixColumns operation is less efficient for diffusion in Midori, since it
is quasi-MDS, while the MixColumns operation of AES is MDS. For these reasons, Midori is weaker
than AES in the related-key setting, and the search is faster.

The security of contactless communication is a vast research topic. In this thesis, we stud-
ied two aspects: provably secure distance bounding protocols, and the related-key cryptanalysis
of block ciphers. For distance bounding protocols, there are several future research avenues. It
is interesting that, almost 10 years after the first formal framework [Avoine et al., 2009] was in-
troduced, and after several different formal models appeared, new attacks, such as the ones pre-
sented in [Ahmadi and Safavi-Naini, 2018, Boureanu et al., 2018], are still frequently discovered.
Hopefully, the advances in automatic verification [Debant et al., 2018, Mauw et al., 2018] for dis-
tance bounding will permit to come up with definitive models, as it already uncovered some at-
tacks, such as distance hijacking [Cremers et al., 2012]. There is still clearly some progress to be
done about the formalisation of attacks, in particular terrorist fraud. It would be interesting to
confront the existing security models, to establish clearly which attacks are covered by one and
not the others, and which are covered by none of them. There also needs to be a reflection about
which threats are relevant and which are not, as industries do not seem to be interested in the
most exotic threats, such as terrorist fraud or distance hijacking.

As for the application of CP to cryptanalysis, there are even more new research opportunities.
Related-key differential cryptanalysis is just one of the many forms of cryptanalysis that could be
automated. We explored some other forms of cryptanalysis in [Sun et al., 2017]. In particular, im-
possible differential cryptanalysis would be a good application for CP. MILP methods for finding
impossible differentials exist, but they only tell that a differential is impossible. On the other hand,
CP has a mechanism called explanations, which could help finding exactly where the incompat-
ibility is in an impossible differential, therefore permitting the cryptographer to verify them by
hand more easily. Finally, it would be interesting to design a declarative framework, in which the
cryptanalysts describe a cipher, and an automatic tool builds an efficient CP model from the de-
scription, integrating modelling tricks such as the ones we present.
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Appendix A

Rijndael’s Finite Field Multiplication

Tables

0x00 0x02 0x04 0x06 0x08 0x0a 0x0c 0x0e 0x10 0x12 0x14 0x16 0x18 0x1a 0x1c 0x1e
0x20 0x22 0x24 0x26 0x28 0x2a 0x2c 0x2e 0x30 0x32 0x34 0x36 0x38 0x3a 0x3c 0x3e
0x40 0x42 0x44 0x46 0x48 0x4a 0x4c 0x4e 0x50 0x52 0x54 0x56 0x58 0x5a 0x5c 0x5e
0x60 0x62 0x64 0x66 0x68 0x6a 0x6c 0x6e 0x70 0x72 0x74 0x76 0x78 0x7a 0x7c 0x7e
0x80 0x82 0x84 0x86 0x88 0x8a 0x8c 0x8e 0x90 0x92 0x94 0x96 0x98 0x9a 0x9c 0x9e
0xa0 0xa2 0xa4 0xa6 0xa8 0xaa 0xac 0xae 0xb0 0xb2 0xb4 0xb6 0xb8 0xba 0xbc 0xbe
0xc0 0xc2 0xc4 0xc6 0xc8 0xca 0xcc 0xce 0xd0 0xd2 0xd4 0xd6 0xd8 0xda 0xdc 0xde
0xe0 0xe2 0xe4 0xe6 0xe8 0xea 0xec 0xee 0xf0 0xf2 0xf4 0xf6 0xf8 0xfa 0xfc 0xfe
0x1b 0x19 0x1f 0x1d 0x13 0x11 0x17 0x15 0x0b 0x09 0x0f 0x0d 0x03 0x01 0x07 0x05
0x3b 0x39 0x3f 0x3d 0x33 0x31 0x37 0x35 0x2b 0x29 0x2f 0x2d 0x23 0x21 0x27 0x25
0x5b 0x59 0x5f 0x5d 0x53 0x51 0x57 0x55 0x4b 0x49 0x4f 0x4d 0x43 0x41 0x47 0x45
0x7b 0x79 0x7f 0x7d 0x73 0x71 0x77 0x75 0x6b 0x69 0x6f 0x6d 0x63 0x61 0x67 0x65
0x9b 0x99 0x9f 0x9d 0x93 0x91 0x97 0x95 0x8b 0x89 0x8f 0x8d 0x83 0x81 0x87 0x85
0xbb 0xb9 0xbf 0xbd 0xb3 0xb1 0xb7 0xb5 0xab 0xa9 0xaf 0xad 0xa3 0xa1 0xa7 0xa5
0xdb 0xd9 0xdf 0xdd 0xd3 0xd1 0xd7 0xd5 0xcb 0xc9 0xcf 0xcd 0xc3 0xc1 0xc7 0xc5
0xfb 0xf9 0xff 0xfd 0xf3 0xf1 0xf7 0xf5 0xeb 0xe9 0xef 0xed 0xe3 0xe1 0xe7 0xe5

Table A.1: Lookup table for multiplication by 2 in Rijndael’s Galois field. The i th element of the table con-
tains the value i ·2, where · denotes multiplication in Rijndael’s Galois field.
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0x00 0x03 0x06 0x05 0x0c 0x0f 0x0a 0x09 0x18 0x1b 0x1e 0x1d 0x14 0x17 0x12 0x11
0x30 0x33 0x36 0x35 0x3c 0x3f 0x3a 0x39 0x28 0x2b 0x2e 0x2d 0x24 0x27 0x22 0x21
0x60 0x63 0x66 0x65 0x6c 0x6f 0x6a 0x69 0x78 0x7b 0x7e 0x7d 0x74 0x77 0x72 0x71
0x50 0x53 0x56 0x55 0x5c 0x5f 0x5a 0x59 0x48 0x4b 0x4e 0x4d 0x44 0x47 0x42 0x41
0xc0 0xc3 0xc6 0xc5 0xcc 0xcf 0xca 0xc9 0xd8 0xdb 0xde 0xdd 0xd4 0xd7 0xd2 0xd1
0xf0 0xf3 0xf6 0xf5 0xfc 0xff 0xfa 0xf9 0xe8 0xeb 0xee 0xed 0xe4 0xe7 0xe2 0xe1
0xa0 0xa3 0xa6 0xa5 0xac 0xaf 0xaa 0xa9 0xb8 0xbb 0xbe 0xbd 0xb4 0xb7 0xb2 0xb1
0x90 0x93 0x96 0x95 0x9c 0x9f 0x9a 0x99 0x88 0x8b 0x8e 0x8d 0x84 0x87 0x82 0x81
0x9b 0x98 0x9d 0x9e 0x97 0x94 0x91 0x92 0x83 0x80 0x85 0x86 0x8f 0x8c 0x89 0x8a
0xab 0xa8 0xad 0xae 0xa7 0xa4 0xa1 0xa2 0xb3 0xb0 0xb5 0xb6 0xbf 0xbc 0xb9 0xba
0xfb 0xf8 0xfd 0xfe 0xf7 0xf4 0xf1 0xf2 0xe3 0xe0 0xe5 0xe6 0xef 0xec 0xe9 0xea
0xcb 0xc8 0xcd 0xce 0xc7 0xc4 0xc1 0xc2 0xd3 0xd0 0xd5 0xd6 0xdf 0xdc 0xd9 0xda
0x5b 0x58 0x5d 0x5e 0x57 0x54 0x51 0x52 0x43 0x40 0x45 0x46 0x4f 0x4c 0x49 0x4a
0x6b 0x68 0x6d 0x6e 0x67 0x64 0x61 0x62 0x73 0x70 0x75 0x76 0x7f 0x7c 0x79 0x7a
0x3b 0x38 0x3d 0x3e 0x37 0x34 0x31 0x32 0x23 0x20 0x25 0x26 0x2f 0x2c 0x29 0x2a
0x0b 0x08 0x0d 0x0e 0x07 0x04 0x01 0x02 0x13 0x10 0x15 0x16 0x1f 0x1c 0x19 0x1a

Table A.2: Lookup table for multiplication by 3 in Rijndael’s Galois field. The i th element of the table con-
tains the value i ·3, where · denotes multiplication in Rijndael’s Galois field.

0x00 0x09 0x12 0x1b 0x24 0x2d 0x36 0x3f 0x48 0x41 0x5a 0x53 0x6c 0x65 0x7e 0x77
0x90 0x99 0x82 0x8b 0xb4 0xbd 0xa6 0xaf 0xd8 0xd1 0xca 0xc3 0xfc 0xf5 0xee 0xe7
0x3b 0x32 0x29 0x20 0x1f 0x16 0x0d 0x04 0x73 0x7a 0x61 0x68 0x57 0x5e 0x45 0x4c
0xab 0xa2 0xb9 0xb0 0x8f 0x86 0x9d 0x94 0xe3 0xea 0xf1 0xf8 0xc7 0xce 0xd5 0xdc
0x76 0x7f 0x64 0x6d 0x52 0x5b 0x40 0x49 0x3e 0x37 0x2c 0x25 0x1a 0x13 0x08 0x01
0xe6 0xef 0xf4 0xfd 0xc2 0xcb 0xd0 0xd9 0xae 0xa7 0xbc 0xb5 0x8a 0x83 0x98 0x91
0x4d 0x44 0x5f 0x56 0x69 0x60 0x7b 0x72 0x05 0x0c 0x17 0x1e 0x21 0x28 0x33 0x3a
0xdd 0xd4 0xcf 0xc6 0xf9 0xf0 0xeb 0xe2 0x95 0x9c 0x87 0x8e 0xb1 0xb8 0xa3 0xaa
0xec 0xe5 0xfe 0xf7 0xc8 0xc1 0xda 0xd3 0xa4 0xad 0xb6 0xbf 0x80 0x89 0x92 0x9b
0x7c 0x75 0x6e 0x67 0x58 0x51 0x4a 0x43 0x34 0x3d 0x26 0x2f 0x10 0x19 0x02 0x0b
0xd7 0xde 0xc5 0xcc 0xf3 0xfa 0xe1 0xe8 0x9f 0x96 0x8d 0x84 0xbb 0xb2 0xa9 0xa0
0x47 0x4e 0x55 0x5c 0x63 0x6a 0x71 0x78 0x0f 0x06 0x1d 0x14 0x2b 0x22 0x39 0x30
0x9a 0x93 0x88 0x81 0xbe 0xb7 0xac 0xa5 0xd2 0xdb 0xc0 0xc9 0xf6 0xff 0xe4 0xed
0x0a 0x03 0x18 0x11 0x2e 0x27 0x3c 0x35 0x42 0x4b 0x50 0x59 0x66 0x6f 0x74 0x7d
0xa1 0xa8 0xb3 0xba 0x85 0x8c 0x97 0x9e 0xe9 0xe0 0xfb 0xf2 0xcd 0xc4 0xdf 0xd6
0x31 0x38 0x23 0x2a 0x15 0x1c 0x07 0x0e 0x79 0x70 0x6b 0x62 0x5d 0x54 0x4f 0x46

Table A.3: Lookup table for multiplication by 9 in Rijndael’s Galois field. The i th element of the table con-
tains the value i ·9, where · denotes multiplication in Rijndael’s Galois field.

0x00 0x0b 0x16 0x1d 0x2c 0x27 0x3a 0x31 0x58 0x53 0x4e 0x45 0x74 0x7f 0x62 0x69
0xb0 0xbb 0xa6 0xad 0x9c 0x97 0x8a 0x81 0xe8 0xe3 0xfe 0xf5 0xc4 0xcf 0xd2 0xd9
0x7b 0x70 0x6d 0x66 0x57 0x5c 0x41 0x4a 0x23 0x28 0x35 0x3e 0x0f 0x04 0x19 0x12
0xcb 0xc0 0xdd 0xd6 0xe7 0xec 0xf1 0xfa 0x93 0x98 0x85 0x8e 0xbf 0xb4 0xa9 0xa2
0xf6 0xfd 0xe0 0xeb 0xda 0xd1 0xcc 0xc7 0xae 0xa5 0xb8 0xb3 0x82 0x89 0x94 0x9f
0x46 0x4d 0x50 0x5b 0x6a 0x61 0x7c 0x77 0x1e 0x15 0x08 0x03 0x32 0x39 0x24 0x2f
0x8d 0x86 0x9b 0x90 0xa1 0xaa 0xb7 0xbc 0xd5 0xde 0xc3 0xc8 0xf9 0xf2 0xef 0xe4
0x3d 0x36 0x2b 0x20 0x11 0x1a 0x07 0x0c 0x65 0x6e 0x73 0x78 0x49 0x42 0x5f 0x54
0xf7 0xfc 0xe1 0xea 0xdb 0xd0 0xcd 0xc6 0xaf 0xa4 0xb9 0xb2 0x83 0x88 0x95 0x9e
0x47 0x4c 0x51 0x5a 0x6b 0x60 0x7d 0x76 0x1f 0x14 0x09 0x02 0x33 0x38 0x25 0x2e
0x8c 0x87 0x9a 0x91 0xa0 0xab 0xb6 0xbd 0xd4 0xdf 0xc2 0xc9 0xf8 0xf3 0xee 0xe5
0x3c 0x37 0x2a 0x21 0x10 0x1b 0x06 0x0d 0x64 0x6f 0x72 0x79 0x48 0x43 0x5e 0x55
0x01 0x0a 0x17 0x1c 0x2d 0x26 0x3b 0x30 0x59 0x52 0x4f 0x44 0x75 0x7e 0x63 0x68
0xb1 0xba 0xa7 0xac 0x9d 0x96 0x8b 0x80 0xe9 0xe2 0xff 0xf4 0xc5 0xce 0xd3 0xd8
0x7a 0x71 0x6c 0x67 0x56 0x5d 0x40 0x4b 0x22 0x29 0x34 0x3f 0x0e 0x05 0x18 0x13
0xca 0xc1 0xdc 0xd7 0xe6 0xed 0xf0 0xfb 0x92 0x99 0x84 0x8f 0xbe 0xb5 0xa8 0xa3

Table A.4: Lookup table for multiplication by 11 in Rijndael’s Galois field. The i th element of the table
contains the value i ·11, where · denotes multiplication in Rijndael’s Galois field.
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0x00 0x0d 0x1a 0x17 0x34 0x39 0x2e 0x23 0x68 0x65 0x72 0x7f 0x5c 0x51 0x46 0x4b
0xd0 0xdd 0xca 0xc7 0xe4 0xe9 0xfe 0xf3 0xb8 0xb5 0xa2 0xaf 0x8c 0x81 0x96 0x9b
0xbb 0xb6 0xa1 0xac 0x8f 0x82 0x95 0x98 0xd3 0xde 0xc9 0xc4 0xe7 0xea 0xfd 0xf0
0x6b 0x66 0x71 0x7c 0x5f 0x52 0x45 0x48 0x03 0x0e 0x19 0x14 0x37 0x3a 0x2d 0x20
0x6d 0x60 0x77 0x7a 0x59 0x54 0x43 0x4e 0x05 0x08 0x1f 0x12 0x31 0x3c 0x2b 0x26
0xbd 0xb0 0xa7 0xaa 0x89 0x84 0x93 0x9e 0xd5 0xd8 0xcf 0xc2 0xe1 0xec 0xfb 0xf6
0xd6 0xdb 0xcc 0xc1 0xe2 0xef 0xf8 0xf5 0xbe 0xb3 0xa4 0xa9 0x8a 0x87 0x90 0x9d
0x06 0x0b 0x1c 0x11 0x32 0x3f 0x28 0x25 0x6e 0x63 0x74 0x79 0x5a 0x57 0x40 0x4d
0xda 0xd7 0xc0 0xcd 0xee 0xe3 0xf4 0xf9 0xb2 0xbf 0xa8 0xa5 0x86 0x8b 0x9c 0x91
0x0a 0x07 0x10 0x1d 0x3e 0x33 0x24 0x29 0x62 0x6f 0x78 0x75 0x56 0x5b 0x4c 0x41
0x61 0x6c 0x7b 0x76 0x55 0x58 0x4f 0x42 0x09 0x04 0x13 0x1e 0x3d 0x30 0x27 0x2a
0xb1 0xbc 0xab 0xa6 0x85 0x88 0x9f 0x92 0xd9 0xd4 0xc3 0xce 0xed 0xe0 0xf7 0xfa
0xb7 0xba 0xad 0xa0 0x83 0x8e 0x99 0x94 0xdf 0xd2 0xc5 0xc8 0xeb 0xe6 0xf1 0xfc
0x67 0x6a 0x7d 0x70 0x53 0x5e 0x49 0x44 0x0f 0x02 0x15 0x18 0x3b 0x36 0x21 0x2c
0x0c 0x01 0x16 0x1b 0x38 0x35 0x22 0x2f 0x64 0x69 0x7e 0x73 0x50 0x5d 0x4a 0x47
0xdc 0xd1 0xc6 0xcb 0xe8 0xe5 0xf2 0xff 0xb4 0xb9 0xae 0xa3 0x80 0x8d 0x9a 0x97

Table A.5: Lookup table for multiplication by 13 in Rijndael’s Galois field. The i th element of the table
contains the value i ·13, where · denotes multiplication in Rijndael’s Galois field.

0x00 0x0e 0x1c 0x12 0x38 0x36 0x24 0x2a 0x70 0x7e 0x6c 0x62 0x48 0x46 0x54 0x5a
0xe0 0xee 0xfc 0xf2 0xd8 0xd6 0xc4 0xca 0x90 0x9e 0x8c 0x82 0xa8 0xa6 0xb4 0xba
0xdb 0xd5 0xc7 0xc9 0xe3 0xed 0xff 0xf1 0xab 0xa5 0xb7 0xb9 0x93 0x9d 0x8f 0x81
0x3b 0x35 0x27 0x29 0x03 0x0d 0x1f 0x11 0x4b 0x45 0x57 0x59 0x73 0x7d 0x6f 0x61
0xad 0xa3 0xb1 0xbf 0x95 0x9b 0x89 0x87 0xdd 0xd3 0xc1 0xcf 0xe5 0xeb 0xf9 0xf7
0x4d 0x43 0x51 0x5f 0x75 0x7b 0x69 0x67 0x3d 0x33 0x21 0x2f 0x05 0x0b 0x19 0x17
0x76 0x78 0x6a 0x64 0x4e 0x40 0x52 0x5c 0x06 0x08 0x1a 0x14 0x3e 0x30 0x22 0x2c
0x96 0x98 0x8a 0x84 0xae 0xa0 0xb2 0xbc 0xe6 0xe8 0xfa 0xf4 0xde 0xd0 0xc2 0xcc
0x41 0x4f 0x5d 0x53 0x79 0x77 0x65 0x6b 0x31 0x3f 0x2d 0x23 0x09 0x07 0x15 0x1b
0xa1 0xaf 0xbd 0xb3 0x99 0x97 0x85 0x8b 0xd1 0xdf 0xcd 0xc3 0xe9 0xe7 0xf5 0xfb
0x9a 0x94 0x86 0x88 0xa2 0xac 0xbe 0xb0 0xea 0xe4 0xf6 0xf8 0xd2 0xdc 0xce 0xc0
0x7a 0x74 0x66 0x68 0x42 0x4c 0x5e 0x50 0x0a 0x04 0x16 0x18 0x32 0x3c 0x2e 0x20
0xec 0xe2 0xf0 0xfe 0xd4 0xda 0xc8 0xc6 0x9c 0x92 0x80 0x8e 0xa4 0xaa 0xb8 0xb6
0x0c 0x02 0x10 0x1e 0x34 0x3a 0x28 0x26 0x7c 0x72 0x60 0x6e 0x44 0x4a 0x58 0x56
0x37 0x39 0x2b 0x25 0x0f 0x01 0x13 0x1d 0x47 0x49 0x5b 0x55 0x7f 0x71 0x63 0x6d
0xd7 0xd9 0xcb 0xc5 0xef 0xe1 0xf3 0xfd 0xa7 0xa9 0xbb 0xb5 0x9f 0x91 0x83 0x8d

Table A.6: Lookup table for multiplication by 14 in Rijndael’s Galois field. The i th element of the table
contains the value i ·14, where · denotes multiplication in Rijndael’s Galois field.
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Appendix B

The SBoxes of Midori128

In this appendx, we give the 4 SBoxes used in Midori128.

11 10 51 50 b4 30 f4 70 59 58 19 18 fc 78 bc 38
01 00 13 12 a4 20 b6 32 0b 0a 1b 1a ae 2a be 3a
15 31 55 71 b5 35 f5 75 5d 79 1d 39 fd 7d bd 3d
05 21 17 33 a5 25 b7 37 0f 2b 1f 3b af 2f bf 3f
4b 4a 5b 5a ee 6a fe 7a 49 48 41 40 ec 68 e4 60
03 02 53 52 a6 22 f6 72 09 08 43 42 ac 28 e6 62
4f 6b 5f 7b ef 6f ff 7f 4d 69 45 61 ed 6d e5 65
07 23 57 73 a7 27 f7 77 0d 29 47 63 ad 2d e7 67
95 b0 d5 f0 94 90 d4 d0 dd f8 9d b8 dc d8 9c 98
85 a0 97 b2 84 80 96 92 8f aa 9f ba 8e 8a 9e 9a
91 b1 d1 f1 14 34 54 74 d9 f9 99 b9 5c 7c 1c 3c
81 a1 93 b3 04 24 16 36 8b ab 9b bb 0e 2e 1e 3e
cf ea df fa ce ca de da cd e8 c5 e0 cc c8 c4 c0
87 a2 d7 f2 86 82 d6 d2 8d a8 c7 e2 8c 88 c6 c2
cb eb db fb 4e 6e 5e 7e c9 e9 c1 e1 4c 6c 44 64
83 a3 d3 f3 06 26 56 76 89 a9 c3 e3 0c 2c 46 66

Table B.1: The S0 SBox of Midori128

88 8a 4b cb ac ae 6f ef 80 82 43 c3 94 96 57 d7
a8 aa 6b eb 8c 8e 4f cf 98 9a 5b db 9c 9e 5f df
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ca c8 4a 0a ee ec 6e 2e c2 c0 42 02 d6 d4 56 16
ea e8 6a 2a ce cc 4e 0e da d8 5a 1a de dc 5e 1e
f6 f4 76 36 e6 e4 66 26 d2 d0 52 12 c6 c4 46 06
fe fc 7e 3e e2 e0 62 22 fa f8 7a 3a f2 f0 72 32
08 89 09 8b 2c ad 2d af 00 81 01 83 14 95 15 97
28 a9 29 ab 0c 8d 0d 8f 18 99 19 9b 1c 9d 1d 9f
34 b5 35 b7 24 a5 25 a7 10 91 11 93 04 85 05 87
3c bd 3d bf 20 a1 21 a3 38 b9 39 bb 30 b1 31 b3
49 c9 48 0b 6d ed 6c 2f 41 c1 40 03 55 d5 54 17
69 e9 68 2b 4d cd 4c 0f 59 d9 58 1b 5d dd 5c 1f
75 f5 74 37 65 e5 64 27 51 d1 50 13 45 c5 44 07
7d fd 7c 3f 61 e1 60 23 79 f9 78 3b 71 f1 70 33

Table B.2: The S1 SBox of Midori128
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APPENDIX B. THE SBOXES OF MIDORI128

44 c3 47 43 40 c0 c2 42 54 d3 57 53 50 d0 d2 52
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0c 8b 0f 0b 08 88 8a 0a 5c db 5f 5b 58 d8 da 5a
2c ab 2f 2b 28 a8 aa 2a 6c eb 6f 6b 68 e8 ea 6a
24 a3 27 23 20 a0 a2 22 1c 9b 1f 1b 18 98 9a 1a
45 c7 46 41 c4 c5 c6 c1 55 d7 56 51 d4 d5 d6 d1
3d bf 3e 39 bc bd be b9 7d ff 7e 79 fc fd fe f9
75 f7 76 71 f4 f5 f6 f1 65 e7 66 61 e4 e5 e6 e1
35 b7 36 31 b4 b5 b6 b1 15 97 16 11 94 95 96 91
05 87 06 01 84 85 86 81 4d cf 4e 49 cc cd ce c9
0d 8f 0e 09 8c 8d 8e 89 5d df 5e 59 dc dd de d9
2d af 2e 29 ac ad ae a9 6d ef 6e 69 ec ed ee e9
25 a7 26 21 a4 a5 a6 a1 1d 9f 1e 19 9c 9d 9e 99

Table B.3: The S2 SBox of Midori128

22 2b 20 29 a2 ab 26 2f 4b 0b 49 09 cb 8b 4f 0f
b2 bb 34 3d 32 3b 36 3f db 9b 5d 1d 5b 1b 5f 1f
02 43 00 41 82 c3 06 47 42 03 40 01 c2 83 46 07
92 d3 14 55 12 53 16 57 d2 93 54 15 52 13 56 17
2a 23 28 21 aa a3 2e 27 6b 0a 69 08 eb 8a 6f 0e
ba b3 3c 35 3a 33 3e 37 fb 9a 7d 1c 7b 1a 7f 1e
62 63 60 61 e2 e3 66 67 6a 4a 68 48 ea ca 6e 4e
f2 f3 74 75 72 73 76 77 fa da 7c 5c 7a 5a 7e 5e
b4 bd 24 2d b6 bf a6 af dd 9d 4d 0d df 9f cf 8f
b0 b9 30 39 a0 a9 a4 ad d9 99 59 19 c9 89 cd 8d
94 d5 04 45 96 d7 86 c7 d4 95 44 05 d6 97 c6 87
90 d1 10 51 80 c1 84 c5 d0 91 50 11 c0 81 c4 85
bc b5 2c 25 be b7 ae a7 fd 9c 6d 0c ff 9e ef 8e
b8 b1 38 31 a8 a1 ac a5 f9 98 79 18 e9 88 ed 8c
f4 f5 64 65 f6 f7 e6 e7 fc dc 6c 4c fe de ee ce
f0 f1 70 71 e0 e1 e4 e5 f8 d8 78 58 e8 c8 ec cc

Table B.4: The S3 SBox of Midori128
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Appendix C

Related-Key Differential Characteristics

For Midori

In Chapter 8, we presented related-key key recovery attacks against Midori64 and Midori128. In
this appendix, we give the corresponding related key differential characteristics.

C.1 Midori64

C.1.1 Recovery of WK

The 16 related-key differential characteristics used for the recovery of WK are the following ones.

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x02 0x02
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x03 0x02 0x02

Table C.1: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x01 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x03 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.2: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00

Table C.3: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 0x01 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02 0x03 0x00 0x00 0x00

Table C.4: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00

Table C.5: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x01 0x01 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x01 0x00 0x00 0x00 0x00

Table C.6: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00

Table C.7: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01

Table C.8: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02

Table C.9: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00

Table C.10: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x02 0x02 0x02 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x02 0x02 0x02 0x00

Table C.11: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x03 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x01 0x00 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.12: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x02 0x02 0x00 0x02 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x02 0x02 0x00 0x02 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.13: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x01 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x03 0x02 0x02 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.14: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02

δX Value Pr
init 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 2−2·1

δX16 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03

Table C.15: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00

Table C.16: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

C.1.2 Recovery of K0

The 4 related-key differential characteristics used for the recovery of K0 are the following ones.

δK 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX2 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX4 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX6 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX8 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX10 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX12 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX14 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX16 0x00 0x02 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.17: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02
δX0 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX2 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX4 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX6 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX8 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX10 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX12 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX14 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX16 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x02 0x00 0x02

Table C.18: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX2 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX4 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX6 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX8 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX10 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX12 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX14 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX16 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02 0x00 0x00 0x00 0x00

Table C.19: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

XVIII



APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x010x010x010x000x000x000x000x000x000x000x000x000x000x000x000x00

δX Value Pr
init 0x010x010x010x000x000x000x000x000x000x000x000x000x000x000x000x00
δX0 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX1 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX2 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX3 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX4 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX5 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX6 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX7 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX8 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX9 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX10 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX11 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX12 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX13 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX14 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x02 2−2·1

δX15 0x000x000x000x000x000x000x000x000x000x000x000x000x000x000x000x00
δX16 0x010x010x010x000x000x000x000x000x000x000x000x000x000x000x000x02

Table C.20: A 16-round related-key differential characteristic for Midori64. It has probability 2−16.

C.2 Midori128

The 16 related-key differential characteristics used for the recovery of WK are the following ones.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x09 0x00 0x09 0x09 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x09 0x09 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x09 0x00 0x09 0x09 0x00 0x00 0x00 0x00

Table C.21: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x02 0x02 0x00 0x02 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x02 0x02 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x02 0x02 0x00 0x02 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.22: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x20 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x21 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.23: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x01 0x01 0x01 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x21 0x00 0x00 0x00 0x01 0x01 0x01 0x00

Table C.24: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x20 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x21 0x00 0x00 0x00

Table C.25: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00

Table C.26: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x09 0x09 0x09

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x09 0x09 0x09
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x00 0x09 0x09 0x09

Table C.27: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x06 0x00

Table C.28: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x00 0x06 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00

Table C.29: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01
δX0 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x00 0x01

Table C.30: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x09 0x09 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01

δX Value Pr
init 0x09 0x09 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 2−2·1

δX20 0x09 0x09 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x08

Table C.31: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x02 0x02

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x02
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x03 0x02 0x02

Table C.32: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.

XXXI



APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x06 0x00 0x00 0x00 0x00 0x00

Table C.33: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x21 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x01 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x20 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.34: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x03 0x01 0x01 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00
δX0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x01 0x01 0x00 0x00 0x00 0x00

Table C.35: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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APPENDIX C. RELATED-KEY DIFFERENTIAL CHARACTERISTICS FOR

MIDORI

δK 0x00 0x02 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

δX Value Pr
init 0x00 0x00 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
δX0 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX1 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX2 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX3 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX4 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX5 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX6 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX7 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX8 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX9 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX10 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX11 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX12 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX13 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX14 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX15 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX16 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX17 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX18 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX19 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2−2·1

δX20 0x00 0x03 0x00 0x00 0x01 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table C.36: A 20-round related-key differential characteristic for Midori128. It has probability 2−40.
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