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Thèse soutenue publiquement le 16 Décembre 2019,
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General introduction

The world is facing global climate change. The average temperature of the earth has

increased more than 1.5°C in the past decade. One of the principle reasons causing global

warming is the greenhouse effect and CO2 equivalent emissions, more than 30% [16] of

which are due to electricity production. Besides, the “Industry 4.0” revolution requires

significant electrical power for the operation of electrical devices, increasing even more

the environmental impact of the sector.

Most countries in the world, for instance Vietnam, are going to cope with the lack of

energy in the future. In that context, the transformation of usage from energy resources

towards cleaner fuel is an inevitable trend. However, the interruption, as well as the

scattered distribution of these resources, pose a serious issue: How to integrate them

into the power grids while ensuring the stability of these systems?

The smart grids and microgrids concepts appeared and are being developed, notably,

as one of the answers to those issues. Combining the power grid and the Information

and Communication Technology (ICT) allows an active and more autonomous control

of the power systems, and thus makes them more resilient, durable, and robust. We call

the information network in this combination an Active Management Network (ANM),

in which a large number of sensors, smart devices, and actuators intervene.

The main challenge of the smart grid is its capability to deal with the big volume of

data generated by a vast number of sensors (data generators). We can easily deploy con-

ventional algorithms executed using centralized paradigm (like in the traditional power

grids). Nevertheless, there are enormous volumes of data collected by the systems, but

there are only few grid operators analyzing the data. The rush of data at several points

as well as the huge data traffic in a telecommunication network with limited bandwidth

may lead to system failures (e.g., bottleneck phenomenon, reduction in data velocity,

1
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single-point failure). This problem becomes severe as the system scales up. In that

situation, the smart grid needs developments to transform from a centralized paradigm

to a distributed one. The distributed paradigm can deal with the scalability issue of

the system by allowing to share computations by making use of all available computing

devices. Moreover, data are processed “in-network” (i.e., near the data producers and

consumers), which reduces the possibility of data congestion at the supervisor gate and

the risk of single-point failure. This paradigm is fully adapted to control applications in

microgrids and multi-microgrids [37].

Current researches on distributed control still show many drawbacks. Indeed, there is

no clear mechanism dedicated to handle sensing data (e.g., history data, instantaneous

data) in distributed computing units. The client-server paradigm supports distributed

computing in which data are stored centrally. That is not convenient for the distributed

data in smart grids. Besides, the distributed algorithm to deploy traditional electri-

cal applications in a distributed memory system is still not practical. For example,

consensus algorithms are used to achieve agreement on a single data value among dis-

tributed processors or systems [99]. The convergence of the algorithm depends mainly

on the network configuration, and thus lacks programming abstraction because each

node has its own program with different connection weight. That potentially impacts

the distributed implementation when the system evolves. In addition, the Alternating

Direction Method of Multipliers (ADMM) [24] is suggested as a decomposition approach

for optimal power flow because its convergence is faster than other decomposition ap-

proaches such as Gauss-Seidel Relative Error (GS-RE) [7], the Diagonal Quadrative

Approximation (DQA) [84]. However, it takes many communications (up to thousands)

to reach a convergence point.

This thesis is placed in the context of the evolution of the traditional power grid to-

wards smart grids. Through the stormy development and integration of the information

network, smart grids promise a full control and management, even at the lowest level

of the power grid. We aim at developing distributed control for smart grids. One of

the most challenging tasks of the distributed paradigm is programming. It needs to

handle a fine-level detail of the synchronization and message exchange among partici-

pants, but a high-level programming abstraction is still lacking. We propose to focus

on data and their manipulation instead of processing distributed programming: we ab-

stract the whole smart grid as a distributed database, and thus we can use a declarative



General introduction 3

approach to express distributed data manipulations. A distributed database is a set of

cooperating local databases (one per participating computing device) that perform local

data manipulations and exchange data for synchronization. The declarative approach

for data manipulation aims at describing the expected results rather than the detailed

step of computations.

Supervision and control of smart grids is reactive in its essence, i.e. the system must

react as soon as possible to abnormal situations identified by sensors. So, a declarative

and reactive approach will be more appropriate. Data manipulation languages using

this approach are based on first-order logic. A program is then a set of rules triggered

by a modification in the dataset and may produce new data that probably trigger other

rules or actions (via actuators). Datalog was the first proposal of such a logic-based

language but runs only in central databases. Datalog extensions were proposed, such

as NDlog or Netlog, that enable distributed execution by introducing communication

primitives. However, these languages are not exactly adapted to smart grids. Since there

is no key concept in data storage; there is no support for extended functions, and there

is no control of the execution order of rules. Therefore, we develop a new logic-based

distributed data manipulation language, called Smartlog to fill these gaps.

Even if Smartlog simplifies distributed programming in smart grids, we still have to

manage synchronization and data exchange among participating computing devices. So

we propose to develop a new methodology of distributed programming in Smartlog.

The principle of this methodology is to program centralized algorithms in Smartlog,

because there is a strong set of existing algorithms for traditional grids, but to execute

them in a distributed manner, because it is more efficient and scalable. We call this

methodology CPDE, for Centralized Programming and Distributed Execution. To do

this, centralized Smartlog programs have to be rewritten into distributed ones according

to data allocation.

In this thesis, we address the problem of data management and algorithm deployment

in a heterogeneous network like a smart grid. This thesis aims to propose a new imple-

mentation approach for the distributed paradigm dedicated to smart grids. The major

contributions of this thesis are summarized as follows, based on chapters descriptions:

1. We investigated the problem of algorithm deployment in smart grids and exposed
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the limitations of more conventional methods which deal with a distributed imple-

mentation (Chapter 1).

2. We proposed to abstract smart grid management as data manipulation in dis-

tributed databases so that each smart device can manage and enhance the sta-

bility and accuracy of its local data and we develop a high-level declarative data

manipulation language, called Smartlog, dedicated to smart grid needs. The main

strengths of this language are its reactivity, recursiveness, simplicity, ease of im-

plementation, and good support for distributed computations. We would like to

emphasize that declarative approaches have never been used before in electrical

engineering to the best of our knowledge.

3. We designed the node architecture for the distributed database system, imple-

mented using PostgreSQL and its triggers as a local database and a rule execution

engine respectively. We also developed a Smartlog compiler for this prototype.

The detail of these contributions is presented in Chapter 2.

4. We developed a methodology for Smartlog programming, called CPDE, that sup-

ports semi-automatic distributed programming in Smartlog. This approach helps

execute centralized algorithms in distributed systems. Details of this method are

presented in Chapter 3.

5. We conducted several experiments on a real-time simulation platform (real-time

simulation machine OPAL-RT and a network of Raspberry Pis as computing de-

vices), in both implementations: declarative programming (Smartlog) and imper-

ative programming (JAVA) to compare and evaluate our development. The qual-

itative evaluations through four typical applications for smart grids are presented

in Chapter 4.

6. We evaluated the performance of distributed Smartlog execution. For the last

application, the performance of the distributed Smartlog execution is compared to

the centralized one and to a reference Java one. Besides, the aspects which affect

the performance are studied. The detail of performance evaluations is shown in

Chapter 5.

Finally, we summarize our works and propose further research directions in the conclu-

sion chapter.



Chapter 1

Background

1.1 Context of the work

1.1.1 Global warming and possible lack of energy in the future

According to the Intergovernmental Panel on Climate Change (IPCC), the instrumental

temperature record shows a global warming of around 1.5°C during the 20th century [70].

The temperature will continue to rise in the future, according to Representative Con-

centration Pathways (RCPs) scenarios shown in Figure 1.1. Each scenario corresponds

to effort to constrain CO2 emissions, with RCP 8.5 is a very high emission scenario.

The global warming contributes to the sea level rise, and the increasing frequency of

disasters such as storms surges and hurricanes in coastal areas. All that represents a

clear risk to our environment. That also entails the escalation of electrical demand for

cooling systems.

The greenhouse effect and a large amount of CO2 emissions are the main cause of

global warming. As the report by BP statistical review of world energy in 2018, 34.7 %

of the CO2 emitted from global fossil fuel combustion in 2017 came from electricity

generation [16]. Among that, China and India are two leading countries regarding CO2

emissions since the 80s. On the 12th of December 2015, the United Nation Climate

Change conference COP 21 was held in Paris with the participant of 196 countries. This

conference achieved a global agreement to reduce emissions of greenhouse gases. Besides,

the increase of the price of fossil fuels in the world and serious considerations about the

5
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Figure 1.1: Global temperature increase at the surface ot the earth [70].

safety of nuclear power plants, which re-emerged after the Fukushima disaster in 2011

in Japan, caused concerns about the future energy developments.

The development of the “industry 4.0” requires a great energy demand. In the world, the

global electricity production grows on average of 3 % annually. Meanwhile, the global

electricity demand is expected to increase by around 25 % from 2016 to 2040 [4]. 45 % of

this electrical demand growth will be contributed by China and India. In Vietnam, the

electricity production increased sharply, 12 times from 1995 to 2018. According to the

report of EVN [95], the electricity demand in Vietnam is now bigger than the production

and the increase of electricity demand is about 10.7 % annually.

In terms of production, the energy resources will shift towards cleaner fuels such as

renewable energy (wind, solar) or natural gas. In 2017, renewable power accounted for

70 % of the net additions to the global generating capacity, raising the total capacity

by 8 % over 2016. Among that, investments in solar production have increased by 18 %.

Costa Rica, Belize and Austria, with a percentage of renewable energy in the total

energy system of 98 %, 91 %, and 73 % respectively, are the current leading countries in

renewable resource usage [81].

1.1.2 Focus: renewable energy production in Vietnam

The developments of this PhD thesis are targeting developing countries like Vietnam.

There, the development of renewable energy has a great potential. After canceling
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the plan to build nuclear power plants, the Vietnamese government encouraged the

development of renewable energy. According to the electricity 7th plan [14], at the

moment, there are 245 renewable energy projects signed, which promises to supply

electricity power up to 23.2 GW in 2020 [21]. The Vietnamese government will support

tariffs for renewable energy purchasing. In detail, the tariff is 8.77 US cent/kWh for

on-shore wind power projects, and 9.97 US cent/kWh for off-shore wind power projects

[93]. For solar energy, the tariff is 9.35 US cent/kWh. These tariffs are quite high in

comparison to the current tariffs in France (7.96 US cent/kWh for solar for example)

[49]. The solar energy is a part of the renewable energy development project of the

Vietnamese government. According to [94], the goal is to increase the percentage of

renewable energy resource specially in solar energy to 6 % in 2030 and 20 % in 2050. Up

to July 2018, there is 748 projects for solar energy deployed over the country with the

power promising to reach 11.5 MWp in 2050.

1.1.2.1 Potential of solar energy in Vietnam

As a tropical country, there is a relatively high and stable resources each year. On

average, the national solar energy is 4 to 5 kWh/m2 per day, as presented in Table 1.1.

Table 1.1: Theoretical potential of solar power in Vietnam [73].

Zone
Average total irradiation Surface Potential power

(kWh/m2/day) (km2) (MWh/day)

Northeast and Red River
Delta

3.95 65.6 21,100

Northwest region 4.80 50.7 19,800
North central 4.90 51.5 20,500
South Central and Highlands 5.30 99.0 42,700
Southeast and Mekong Delta 5.15 64.2 26,900

Total 331 131,000

According to Vietnam Green Innovation and Development (GreenID), the potential of

solar power exploitation in Vietnam is 13,000 MW [44]. But up to now, the total capacity

of installed solar panels for production is only about 5MW.

1.1.2.2 Potential of wind energy in Vietnam

According to [89], and presented in Figure 1.2, the east sea, northeast and southwestern

regions, present average wind speeds of 10 to 11 m/s. The sea area from Binh Thuan to
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Ca Mau, 300 km from the coast, presents average wind speeds of 7 to 11 m/s. It is also

the world’s largest wind energy potential.

Figure 1.2: The potential of offshore wind power in Vietnam, 2000–2009 [89].

The potential of offshore wind power in Vietnam could reach to 64.8 GW with depths

up to 30 m and 107 GW with depths from 30 to 60 m, as summarized in Table 1.2 and

Table 1.3.

Table 1.2: Potential of offshore wind power, depth 0–30m [89].

Zone
Surface Wind energy density Potential power

(km2) (MW/km2) (GW)

Gulf of Tonkin 30.8 400 12.3
Quang Binh - Quang Ngai 4.66 500 2.33
Binh Dinh - Ninh Thuan 2.48 500 1.24
Binh Thuan - Mui Ca Mau 43.8 850 37.2
Mui ca Mau - Kien Giang 29.4 400 11.8

Total 111 64.8

To conclude, Vietnam has a huge potential for renewable energy. The development of

these energy sources integrated into the grid system is essential to meet the increas-

ing energy demand. Moreover, it contributes to reducing global warming based on its

primary resource.



Chapter 1. Background 9

Table 1.3: Potential of offshore wind power, depth 30–60m [89].

Zone
Surface Wind energy density Potential power

(km2) (MW/km2) (GW)

Gulf of Tonkin 29.2 550 16.1
Quang Binh - Quang Ngai 7.10 500 3.55
Binh Dinh - Ninh Thuan 2.11 500 1.06
Binh Thuan - Mui Ca Mau 68.0 1000 68.0
Mui ca Mau - Kien Giang 36.0 500 18.0

Total 142 107

1.1.3 Evolution and challenges of the power grid

The electricity is still costly to store. At any time, the quantity of electricity demanded

(plus losses) must be equal to the quantity of power injected into the grid to avoid

blackouts. In current grids, electricity flows mainly in a single direction, from producers

to customers, and information from customers to producers. But in the future, grids

should evolve to handle a lot more constraints and bidirectional flows of both energy

and information.

Integration of variable renewable energy resources: With the integration of

variable renewable energy resources (VRES), mostly connected through power

electronics, occurs a reduction of the inertia of the grid (its capacity to damp

variations of electrical quantities). Thus, the development of renewable energy

resources is usually restrained by the stability limits of the current grids. Besides,

those resources are often allocated scattered in the grid and requiring energy trans-

portation. That leads to an increasing complexity for the energy system.

Augmentation of the number of connected devices: The “industrial revolution

4.0” expects an increment in the number of electrical devices which will cause

a growing electrical consumption. In addition, the emergence of new uses, such as

electric vehicles, will amplify this rise. Along with this foreseeable increase, the

current power grids will no longer be sufficiently adapted. To avoid reinforcing

grids, which is expensive, it will be necessary to control those loads and extract

flexibility from them; for example, by optimizing the charging periods of electric

vehicles [22].
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Energy management and two-way communication: The balance between the

supply and the demand cannot follow the traditional one-way (from the producer

to the customer) because, in smart grids, both the producer and the customer

participate in the power management to maximize their benefices and increase

the possibility to cope with VRES. In a two-way interaction, the communication

network will have more importance, as well as in its interaction with the energy

grid.

Resilience: The scalability of energy resources should lead to a change in architecture.

Particularly in Vietnam, the centralized architecture in its current situation shows

lots of drawbacks. For instance, an accident in a 500 kV line caused a blackout

in a wide area on the 22nd of May 2013. It has lead to 19 electrical factories and

43 generator sets to stop operating. The sum of the power blackout was of about

9,400 MW. More than 1.8 million citizens in the south area had no electricity [98].

Moreover, the Vietnam presents a “S-shape”, spreading on 1,650 km long and about

50 km wide at the narrowest point. That would require a decentralized production

in the future as well as renewable energy developments for the long term to ensure an

electrical security of supply, whereby, the small electrical factory is scattered throughout

the territory. Each zone has to be as much independent from the supply as possible in

the electricity, but there is still a physical connection for back-up with other zones in

case of a severe incident. The rest of the time, in each zone, it should be balanced

between supply and demand to avoid a potential cause of blackout. These constraints

in the power systems could be handled by smart grids technologies.

1.1.4 The concept of smart grid

The incredible development of Information and Communication Technology (ICT) in-

frastructure in the last decades represents a strong momentum for grids as well. For

example, fiber optic cables (the backbone of the communications network) have grown

from 95 billion km in 2000 to 180 billion km in 2011 worldwide. The growth of global

internet users grew from 0.413 billion (5.8 % of the world population) in 2000 to more

than 4.21 billion (55.1 % of the world population) in 2018 [32]. The mobile connection

has increased almost nine times to 6.3 billion in 2012 from the 2000s. The development
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of ICT infrastructures and sensor grids constitutes an Active Management Network

(AMN) which is the foundation of smart grids technologies.

In Vietnam, according to [43], in 2016, 143 million people have a mobile connection, and

internet users represent 64 % of the population in 2018. The average download/ upload

speed is 22.2 Mbps and 6.72 Mbps respectively (compared to the average upload speed

in the world which was 9.1 Mbps) in 2018.

Smart grid refers to the evolution of the power grid in which the information and com-

munication technology is integrated and participates in the control and management of

the power system, as represented in Figure 1.3. The primary goal is to balance electric-

ity supply and demand at all time and to provide a secure, sustainable and competitive

electricity supply for consumers.

Figure 1.3: The concept of smart grid [60].

There are a lot of components in the power grid which could be controllable objects such

as renewable energy sources, factories, smart houses, smart buildings, electric vehicles,

etc. All of the components participate in the decision of electricity usage in the system.

The coordination is made possible by using smart grids technologies.

In order to characterize the smart grid, a framework is proposed in Figure 1.4, allowing

to change the traditional power grid from passive to active [36]. It comprises three main

layers: application, power and ICT.
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Figure 1.4: smart grid framework [36].

1.1.4.1 Application layer

It includes advance applications providing interoperability and an easier operation of

the system. It can be mainly divided into five major categories, presented in Figure 1.5

[61], whose positive impact on the grids are described below.

Figure 1.5: Major applications in smart grid [61].

Systems: Improved resilience to faults such as disruption, attacks, and natural disas-

ters.
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Renewables: Improved accommodation and management of various power generations.

Limit of integration of renewable energy sources into the power system is enhanced

while ensuring the stability of the system.

Customers: No longer passive, they can be informed about their consumption, and

adapt to dynamic pricing. They could participate in demand-side management.

Transport: Capacity to manage electric vehicle charging in order to reduce peak load.

Service providers: A large collected data-set could be used to evaluate the optimal

compromise between economic criteria and customer needs.

1.1.4.2 Power layer

Power generation, electrical devices, and substations in energy transmission and distri-

bution systems are all contained in the power layer. That part is considered as the object

of control, where information is collected to serve for decisions in the application layer.

According to the US National Energy Technology Laboratory (NETL), the deployment

of a smart grid needs a significant quantity of technologies such as [66]:

Sensing and measurement: Includes vital technologies such as Phasor Measurement

Unit (PMU), Smart Meter (SM), and Advanced Metering Infrastructure (AMI)

to acquire data for monitoring, protection, and control. However, they are quite

expensive to meet the requirement for full coverage monitoring in wide areas.

Advanced components: Electronic devices are used in the power system to stabilize

the system facing faulty events [40].

1.1.4.3 Communication layer

The communication layer is presented as the heart of the smart grids technology. It

provides interconnections between all devices and systems. That helps data ignition,

and potentially increases the reliability of the system by collecting data in real-time and

acting on it (while increasing the sensibility to cyber-attacks).

This communication layer consists of a backbone, a back haul, and access points, as

presented in Figure 1.6 [26].
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Figure 1.6: Categories in the communication layer of smart grids [26].

Wide area network (WAN): It is considered as a backbone of the system, providing

communication between the electrical utility and the substations. It requires a

high bandwidth communication grid to deal with long distance data transmission

and fast response time of some applications such as substation automation. Fiber

and microwave communications are preferred for this grid.

Neighbor area network (NAN): It acts as a bridge between the premises of cus-

tomers and substations with collectors, access points, and data concentrators. IEC

61850 is providing the interoperability between intelligent devices [79]. Fiber optic

or WiMAX can be used in this grid [12].

Home area network (HAN): It supports home electrical appliances and smart me-

ters. Low-bandwidth, low latency, and flexible connections are preferred for HAN

such as ZigBee, WiFi, HomePlug, GPRS, 3G, 4G, etc [1].

The transmission of real-time measurement data causes a big challenge of bandwidth

use as well as investment cost for communication infrastructure in the future [10].

1.1.5 The concept of microgrid

To manage the distributed renewable energy resources as well as to improve the resilience

and autonomous operation of the power system, a big electrical grid could be divided into

smaller parts, called microgrids. Also, where no grid is available, microgrids are generally
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the most economic (and only) option. Thus, microgrids are sometimes considered as the

building blocks of smart grids [38]. The microgrid can be integrated and operated in a

low (240 to 600 V) or medium (2,4 to 69 kV) voltage and its principle is presented in

Figure 1.7.

Carbon	credit

Electricity

Micro-
source

EDSM
Load

Microgrid	controller

Figure 1.7: A sample microgrid architecture.

• A microgrid is a supply-side platform in a distributed system.

• It can contain distributed energy resources, storage devices, and loads.

• It can be interconnected to the main grid (grid-connected mode), but in case of a

fault, it can entirely operate in an autonomous way (islanded mode).

• There are also “smart” functionalities to support, monitor, manage and control

this system, called the microgrid central controller (MGCC).

The concept of multi-microgrids is extended from the microgrid concept in a high-level

infrastructure shown in Figure 1.8. It consists of several low voltage (LV) microgrids

and distributed generation units which are connected to adjacent medium voltage (MV)

feeders. In this context, each MGCC must be operated in a coordinated way to achieve

the optimal control and management in the overall system. The central autonomous

management controller (CAMC) can be installed at the MV bus, or at the high voltage

level of the substation. It is responsible for managing, for the distribution system opera-

tor (DSO e.g. ENEDIS in France), the multi-micro grid system (M-MGCC). Meanwhile,

the adaptation of the energy distribution management system (EDMS) is in charge of

the whole distribution grid.
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Figure 1.8: The hierarchical management structure of multi-microgrids [38].

The hierarchical management structure is proposed in the multi-microgrids concept be-

cause it supports a flexible control and management architecture and a large amount of

data processing. Whereby, a central controller could collect data from multiple devices

by delegating this task to lower level controllers. Moreover, in case the small system

is cut-off from the main grid, the CAMC will be in charge of the role of the DMS. A

transition has to be properly operated in that case.

1.1.6 Controlling and monitoring the power grid in real-time

In future smart grids, if the main grid is divided into multi-microgrids, the stability of

each microgrid will be a fundamental condition for the stability of the main power grid.

The real-time response of the microgrids should be controlled as well as to deal with all

variations of consumption or production.

The functionalities of the microgrids can be classified in three levels, from individual

control to global control in a normal operation, presented in Figure 1.9 [38].

Primary control: It contains all the local functionalities, performed in a single gen-

erator, storage device, or controllable load. The aim is to keep the local balance

between demand and supply. The methods used in primary control can be primary

voltage/frequency control, primary active/reactive power control, droop control,

battery management, or protection functions [29].
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Tertiary
Control

Secondary	Control

Primary	Control

Optimal	power	flow
Economic	dispatch

Restore	frequency	/voltage
Power	sharing	accuracy
Voltage	quality	enhancement

Voltage/	current	control
Droop	control
Virtual	impedence

Dynamic
response

Increase

Figure 1.9: Three level control in a microgrid [38, 37].

Secondary control: It contains functionalities within a microgrid to improve the elec-

trical quality and security of the system. These functionalities can be load and

renewable energy resources (RES) forecast, load shedding/management, unit com-

mitment/dispatch, voltage/frequency control, active/reactive power control, secu-

rity monitoring, black start, etc.

Tertiary control: It concerns the global system in which the energy market is taken

into account. This level decides the import or export of energy for each microgrid

in the multi-microgrids system on a long-term perspective.

The primary control is performed on a local machine; meanwhile, the secondary and

tertiary control need communication with a central (or partially decentralized) controller

to take a decision. The longer the computation time is, the slower the response time of

each level is. The dynamic response time decreases from the first level to the third level.

1.1.7 Data management in smart grids

Supervisory control and data acquisition (SCADA) plays a critical role in the power grid,

particularly in smart grids. It allows observing, forecasting, detecting, analyzing, and

preventing faults in large power systems. Thus, the oversight of SCADA helps power

systems to improve their overall efficiency. However, the increment of the numerous

smart devices integrated into the grid to measure and collect data causes many problems.

It is impossible for a SCADA to handle all transient oscillations of the power system

over a too short period of time [90]. Moreover, data coming from the enormous number
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of sensors lead to the problem of data management in smart grids. Without talking

about cyber-security, the technical challenges are:

Volume: For example, at the end of 2015, the total phasor measurement unit (PMU)

installation reached more than 1380, covering nearly 100% of the US transmission

system. In China, this number reached over 5000 PMUs by the end of 2018 [72].

There are hundreds of millions of smart meters (SM) installed globally. According

to Navigant Research [61], there were 139 million of SM installed in 2012, and this

number will increase up to 377 million in 2020. In Vietnam, 65 % of the houses

are equipped with SM using PLC and GPRS/3G [1]. Moreover, the automatic

meter reading (AMR) has been deployed to replace the traditional twice-a-year-

reading meter. Each meter reading more than four times an hour means 96 more

data per day, and more than 2880 times more data in a month just considering

basic metering. In reality, the rapid increase of AMR, PMU, SM and other ad-

vanced measurement devices such as intelligent electronic devices (IDE) or digital

fault recorder (DFR), produces an enormous volume of data in power systems to

store, analyze, and visualize. As an illustration, 100 PMUs with 10 measurements

generate over 50 GB of data per day at 60 Hz [46].

Variety: Data analysis in smart grids deals with multi-sources data-sets such as en-

ergy resources, geographic information, demand response management, customer

information, etc. They have various formats, modalities, and representation.

Velocity: Data collected from a huge amount of SM is done with a short time sample.

In particular, in some urgent applications such as fault, transient oscillation detec-

tion, restoration and fast voltage/frequency control, the time scale of the reaction

should be in less than milliseconds. That requires lots of data transmission in the

communication network, which can affect the latency and data loss. Some kind of

prioritization could be put in place to cope with this.
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1.2 Control infrastructures for microgrids and smart grids

1.2.1 Control and management strategy

Smart grids indirectly consist of a complex and considerable number of interconnected

distributed generators (e.g. distributed energy resources (DER), storage system, fuel

generators) and subsystems. Three strategies, presented in Figure 1.10, are usually

proposed to control such systems: centralized, distributed and decentralized [37].
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Figure 1.10: Control and management strategy for smart grids [37].

Applying the centralized control strategy (like for traditional grids) to smart grids could

be ineffective and difficult to deploy. The limits are the communication ability among the

subsystems as well as the computation ability in a single controller/node. In addition,

a failure at the central node will make the centralized system unreliable at a very large

scale. The main issue is how to deal with the scalability of the number of sensors and

the generated data which increases at an exponential rate [3].
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The decentralized control strategy is available for each subsystem. Accordingly, each

controller is designed and operates independently without a mandatory interaction with

other subsystems. Decisions are made based on local available information. However,

this control still has some drawbacks, such as the geographical limitation of information,

reducing the control performances. Moreover, the local control focuses on the operation

of its subsystem. This could affect the global stability. An example of that situation

is the widespread blackout of 2003 in north-east America [33]. On August 14, 2003, an

accident occurred in the high voltage line which supplies electricity to the Ohio area,

causing the failure of the entire line. Because of a software bug, this accident was not

alerted to operators. The electrical demand in Ohio supplied by the line was transferred

to other lines in order to maintain the power balance in this area, overloading their

protection and in the end causing a cascading failure.

In that context, the distributed control strategy presents an interesting compromise.

Based on the development of an advanced information grid, it allows communicating

data with other subsystems, which can have essential global knowledge while functioning

also locally. A distributed control strategy could be considered as the combination of

the advantages of a centralized control and a decentralized one.

1.2.2 Distributing elements of the infrastructure of grids

1.2.2.1 Distributed systems

Smart grid technologies are naturally compatible with distributed system, i.e. a set of

distributed components located in the wide-area grid and cooperating in managing the

power grid. Each component, called a node, runs as a computing unit. The operation

of the node depends on the operation of other nodes in the grid. The major goals of a

distributed system are [88]:

Making resources accessible: The distributed system allows nodes to access remote

resources or efficiently share their own resources. That makes use of the available

components in the system easier. Besides, these nodes cooperate and exchange

information over the grid. That potentially enhance the overall reliability of the

system.
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Transparency: A node can estimate the image of other nodes without concealing the

details of their location, access, migration, concurrency, failure, relocation, persis-

tence and resources.

Independent failure: Failure of a single node does not affect the whole distributed

system by default.

Openness: The system can be flexible, making it easier to (re)configure and add new

components without changing the existing infrastructure.

Scalability: Distributed systems aim at being scalable regarding geography, adminis-

tration or size.

The smart grid scenario development towards a distributed system is essential to deal

with the scalability resilience, and complexity of the energy system.

1.2.2.2 Multi-agent systems

The multi-agent system is a method proposed to manage distributed systems. It is a

set of agents that can communicate with each other. According to [74], there are four

types of agents, whose relation is presented in Figure 1.11: the control agent, the DER

agent, the user agent and the database agent. Open-source platforms such as JADE,

Zeus, SPRING Tracy, and Aglets [42] are supporting various languages dedicated to the

communication between agents. The main characteristics of multi-agent systems are:

User
	agent

Control
agent

DER
agent

Database
agent

Figure 1.11: Classifying agents in a multi-agent system.

Autonomous agents: They perform a partial control of their actions and internal

state without the intervention of humans or external devices.
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Social: Each agent can communicate with other agents.

Local view: No agent has a complete global view.

Decentralization: No agent is designated as the central controller. Computation is

asynchronous. Each agent can execute its tasks independently, without waiting

for a central control signal.

The multi-agent system supplies a method to communicate among agents. That allows

connecting independent agents into a unique entity to have a global view. However,

the deployment of centralized algorithms over this system is a challenge. One of the

proposed methods in a smart grids context is using distributed algorithms.

1.2.2.3 Distributed algorithms

Many researches apply distributed algorithms to support control strategies for power

systems [82, 57]. First of all, consensus algorithms should be taken into account. They

are used to achieve agreement on a single data value among distributed processes or

systems. There are various consensus algorithms presented in the context of smart grids

which can be non-iterative or iterative algorithms.

Simple consensus [50], K-set[50], Paxos[50], Raft[68] are proposed for non-iterative con-

sensus algorithms. They help increase the scalability of the system and reduce the risk

of single-point failure by dividing the system into groups and electing virtual leaders of

each group. However, it’s hard to deploy these algorithms because of the synchronization

among different groups and data failure detection.

For iterative consensus algorithm, the consensus problem is stated in a grid G = (N,E)

with N representing a set of nodes and E representing a set of edges, Nij|i,j∈E . Each

node has an initial real scalar xi(0). The average value of x is determined at the (k+1)th

iteration.

x(k + 1) = W × x(k) (1.1)

with W the weight matrix, and x(k) the state vector at the kth iteration.

The consensus algorithm converges when the state of all nodes at the current iteration

is equal to their state at the previous iteration. The convergence of the consensus
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algorithm depends mainly on the weight matrix W and the grid configuration. There

exist popular heuristic weight matrices assuring that the consensus algorithm is always

converging, for example the constant edge weights, the maximum degree weights and the

metropolis weights [99].

For more complex problems like the ones encountered in the context of smart grids

(for example, optimal power flow), there exist also dedicated approaches for the dis-

tributed algorithm. For instance, the Gauss-Seidel (GS) and the Gauss-Seidel Relative

Error (GS-RE) [7], the Diagonal Quadratic Approximation (DQA) [84] and the Alter-

nating Direction Method of Multipliers (ADMM) [15]. The ADMM is suggested as the

adequate algorithm to approximate the minimization of the augmented Lagrangian by

a decomposition approach [24]. ADMM with Proximal Message Passing (PMM) [65]

allows decoupling the optimization function into sub-problems in order to reduce the

number of local variables and the complexity of the problem. In each small problem,

an algorithmic loop will optimize its objective function with the local variable while

non-local variables remains constant (converged).

To conclude, there is a good variety of distributed algorithms applied in control and

management problems related to smart grids. However, this approach has still some

drawbacks, especially regarding optimization problems. There are many centralized

algorithms but less distributed algorithms for power management applications. Besides,

distributed algorithms have a slow convergence rate when the system scales up. In

addition, they usually lack the programming abstraction to be deployed in practice.

1.2.2.4 Distributed databases

Database management The management of data in active grids is operated

mainly through a database management system (DBMS) or sometimes simply a file

system [20]. In both case, the basic functionalities of data management are:

Scheme creation: Defining data format and relationships between data.

Data modification: Inserting, updating or deleting data in database.

Query and access: Retrieval of stored data as requirement.

Backup and recovery: Preventing data loses and improving data security.
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Performance optimization: Making the retrieval process faster by using specific data

structure and algorithms.

For the DBMS, relational database is the most common standard. Some commonly used

relational DBMS are Microsoft SQL server, Oracle, SAP base, PostgreSQL, MySQL

[92]. Also, structure query language (SQL) is a common interface to retrieve data from

relational DBMS.

Nowadays, a post-relational database system call NoSQL becomes more and more com-

mon. The NoSQL database systems includes document oriented databases (e.g. Mon-

goDB), XML databases (e.g, BaseX), key-value stores (e.g, Apache Cassandra), object-

oriented databases (e.g, db4o), and column-oriented databases (e.g, c-store) [63]. The

NoSQL database system uses conventional programming languages like C#, C++ or

Java. In addition to the NoSQL database system, parallel and distributed file systems

such as Apache Hadoop or Google MapReduce are getting popular [76].

Distributed database management The components of smart grids (renewable

resources, substation transformers, data concentrators, and smart meters) are by essence

geographically scattered. Moreover, a significant quantity of sensors participates in the

stable operation of the power grid. This generates a massive volume of data to support

the decisions for control and management of the grid. But that also poses a big issue in

data management. How to process and analyze the massive and diverse data? As the

size of the data started increasing, maintaining this data in central data stores became

difficult. In this context, a distributed database architecture can show its advantage in

time responses of local management in comparison with a central database. Besides, a

distributed data processing infrastructure could increase the reliability and efficiency of

smart grids [100, 102, 45]. This will be more and more true with the increasing volume

of data.

Distributed database management allows managing various cooperating databases. It

provides a structure to share and access data via a common interface. It transparently

deals with data independence, replication, and fragmentation. As an example, an in-

teresting architecture of a distributed database management was presented in [54] that

helps smart grids being more resilient to attacks. It also reduces the ICT network usage



Chapter 1. Background 25

and the streamline query processing. Moreover, distributed real-time database man-

agement is supposed to better attain stability and accuracy, as shown in many existing

systems, like for example in China [55].

Distributed relational database design The relational database is a database

where the structure is in the form of tables. A table is declared with names and

attributes, called relation schemes. A relation R is defined from an attribute set

A1, A2, ..., An to a data-item set < d1, d2, ..., dm >. Considering for example the data

model of a smart meter, the entities to be modeled are the measured parameters of the

smart meter. It includes the identifier (ID), the voltage parameter (Volt), the current

parameter (Cur), the power parameter (Pow), the power factor (PFA). This relation

scheme can be defined as presented in Figure 1.12.

ID VOLT CUR POW PFAMEASURE

Figure 1.12: Sample database scheme for a smart meter.

In the relation scheme Measure(ID, Volt, Cur, Pow, PFA), there are five attributes:

ID, Volt, Cur, Pow, and PFA. The values of a row with all schemes is called a tuple

and corresponds to < d1, d2, ..., d5 >. The key of a relational scheme is a non-empty

subset of an attribute so that the value linked to this attribute is unique in the whole

domain. For example, in above example, ID is a key, and the empty table structure

corresponds to the relation scheme. When the table is filled with rows, it corresponds to

a relation instance. A simple illustration is proposed in Table 1.4. There main relational

algebra operators are presented below.

Table 1.4: Illustration of a sample relation scheme instance for a smart meter.

ID Volt Cur Pow PFA

0001 220 10 1000 0.99

0002 221 12 1500 098

0003 219.5 5 950 0.985

0004 220.5 15 1680 0.995

Selection: It produces a horizontal subset of a given relation. The subset contains all

tuples that satisfy a condition. The selection from a relation R is: σF (R), where

F is a condition, and R is a relation. Considering the relation scheme instance
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Measure shown in Table 1.4, an example of the selected tuples is presented in

Figure 1.13.

(�������)���=0001

ID Volt Cur Pow PFA

0001 220 10 1000 0.99

Figure 1.13: Example of Selection.

Projection: It produces a vertical subset of a relation. That is a column selection

over which the projection is performed. The projection of the relation R over

the attributes (A,B) is denoted as ΠA,B(R). Note that the result of a projection

might contain tuples that are identical. For example, the projection of the relation

Measure shown in Table 1.4 over attributes ID and Volt is depicted in Figure 1.14.

(�������)Π��,� ���

ID Volt

0003

0004

0001 220

0002 221

219.5

220.5

Figure 1.14: Example of Projection.

Union: For two relations R and S, it is denoted R ∪ S, and is the set of all tuples of

both relations. As in the case of a projection, R and S have the same scheme.

Set difference For two relations R and S, it is denoted R − S, and is the set of all

tuples that are in R but not in S.

Cartesian product: For two relations R with k1 tuples and S with k2 tuples, it is the

set of (k1 × k2)-tuples, where each tuple is a concatenation of one tuple of R with

one tuple of S. The Cartesian product of R and S is denoted as R× S.

Intersection: of two relations R and S (R ∩ S) consists of the set of all tuples that

are in both R and S: R ∩ S = R− (R− S) = S − (S −R).

Join: For two relations; it is a selection formula over the Cartesian product of the two

operand relations: R ./F S = σF (R× S).
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In the distributed relational database’s design, a relation can be distributed in the system

with fundamental fragmentations which are presented as:

Data fragmentation There are two fundamental fragmentation strategies: hori-

zontal and vertical, as depicted in Figure 1.15. However, there is a possibility of nesting

fragments in a hybrid way.

Relation R

Horizontal fragmentationVertical fragmentation

Figure 1.15: Data fragmentation.

Horizontal fragmentation: For a relation R, it produces the fragments Ri, each being

the result of selector in R with a specific condition C (σCR) and usually a subset of

the tuple of the relation. The reconstruction of the relation R through horizontal

fragments gives R = ∪Ri, ∀Ri ∈ R1, R2, ..., Rw.

Vertical fragmentation: For a relation R, it produces the fragments Ri, each con-

taining a subset of R’s attributes as well as the key of R. The reconstruction of

the relation R through vertical fragments gives: R = R1 ./ R2 ./ ... ./ Rw.

For a hybrid fragmentation, we have R = (R11 ./ R1i)∪(R21 ./ R2j)∪ ...∪(Rw1 ./ Rwk).

The declarative paradigm is used for data manipulation in distributed DMS in smart

grids, in which the database is active and reacts immediately to any change in data.

Besides, declarative programming has a high-level programming abstraction, supports

distributed programming in distributed DBM. The logic programming language is one

of the categories of the declarative paradigm.
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1.2.2.5 Logic programming language

Most of the proposed algorithms for traditional and smart grids rely on imperative

paradigms which are generally programmed in common languages (e.g. Java, Python or

C). The calculations and communications in this paradigm are carried out sequentially

thanks to the time step rather than the actual meaning of data [67]. The addressed

problem is not perspicuous because the algorithm states the order in which the operation

occurs (i.e. “how to do”) and not how to react to information (i.e. “what to do”).

Nevertheless, elements in smart grid are almost eventual. This paradigm leads to com-

putations and communication redundancies. In that case, an algorithm able to react

to a concrete problem is more efficient than sequential actions to manage the system.

Thus, in this context, an algorithm supporting the declarative paradigm should be more

convenient than those supporting the imperative one.

A logic program is a part of the declarative language performed based on formal logic.

It is a set of logical forms that consist of rules. The main examples of logic program-

ming languages are Datalog (one of the first logic programming language used as query

language for deductive databases) [31], NDlog [56] and Netlog [2]. These languages are

written in the form of horn clauses: ‘‘Head :- Body’’.

Where body is a set of terms or a set of sub-goals B1, B2,...,Bn. The head part will be

deducted if all the sub-goals are approved.

A fact in logic programming is a tuple of data items, and declared as a group of

attributes and their data type. For example, coming back to the smart meter example

of Table 1.4, a declaration of fact named Measure will have three properties: identify

(with datatype integer), voltage (with datatype float) and frequency (with datatype

float), expressed in Listing 1.1.

Measure(ID: int, Voltage: float, Frequency: float).

Listing 1.1: A sample “fact” declaration.

A fact present in a rule with variables or constants is called an Atom. An atom with

all variables represents the whole data items of the attributes in a fact, as expressed

in Listing 1.2. An atom with known values represents the data tuples in the data type

where the corresponding attributes are equal to these values.
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Measure(i, v, f).

Listing 1.2: A sample “atom”.

An algorithm of logic program works based on the Kowalski’s principle [47] : ‘‘Program

= logic + control’’, where logic is a set of rules which defines the behavior of the

system as setting in data type, while control determines the order of the execution of

the rules which affects the efficiency of the program. The main advantages of the logic

programming language are:

• High-level declarative language, close to a natural reasoning;

• Reactive to changes in data;

• Recursive;

• Can be easily deployed into distributed processing programs.

Logic programming languages have received a great deal of attention in research and

development, but not in Electrical Engineering, which is the main argument motivating

the present research.

As an illustration, to express: “when there is a modification in the measured data at

the ith node, then update the value to its neighbor j, and save it in NeighborMeasure”

in Datalog [31], the rule is expressed in Listing 1.3.

NeighborMeasure(j, i, v, f): Measure(i, v, f), Neighbor(i, j).

Listing 1.3: Illustration of implementation with Datalog.

The scheme of the rule is presented in Table 1.5.

Table 1.5: Example of a scheme of a rule in Datalog.

Atom scheme’s description

Neighbor(i, j) Neighbor(Node, Neighbor)
NeighborMeasure(j, i, v, f) NeighborMeasure(Node, Neighbor, Voltage, Frequency)

Several requirements exist in declarative languages. For example for Datalog: atoms

can not hold complex terms as arguments of predicate (for example A(f(1), 2) is not
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allowed); every variable appearing in the head part must appear at least once in a non-

arithmetic positive atom in the body of the rule; and every variable, before appearing

in a negative atom, must appear in a positive atom. Both Prolog and Datalog are

implemented in a local database but Datalog expresses simple relations between data

rather than the computation support that Prolog can provide. However, there is no

option in both logic programming languages for multi-databases. This limitation shows

that these languages are not completely suited with the needs of this work, aiming at

developing a language dedicated to smart grids.

More recently, Netlog [34] and NDlog [56] have been proposed an extension of Datalog

supporting network protocols and P2P applications. Netlog defines explicit primitives for

communication, storage, as well as location instruction and destination specifier. Netlog

is based on a semi-naive evaluation, which triggers only rules over related inputs. The

affection operator in front of the head part determines where the result is affected. The

character “↑” is used to send the result of the rule to another location, the character

“↓” is used to store the result in the local database and the character “l” do both

actions. For example, to express the same rule as Listing 1.3 with Netlog rather than

with Datalog, assuming that the computation takes place in node i and the result of the

head part is stored in node j, we obtain Listing 1.4.

↑ NeighborMeasure(@j, i, v, f):- Measure(i, v, f), Neigbor(i, j).

Listing 1.4: Illustration of an implementation with Netlog.

The “@” operator added before a variable in the body part or in the head part is a

destination specifier, which indicates where the result will be stored.

Netlog supports arithmetic operations with aggregation, assignment and non-

deterministic constructions such as negation, random choice, and consumption. For

simplifying the executions of the rules, they are grouped in modules. However, the

optimization of the data storage and the rule control in Netlog has to be improved to

accommodate the smart grid’s applications.
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1.2.2.6 Rule-based system

A rule-based system (RBS) is a system that uses rules as the representation of knowledge

coded into the system [9]. A RBS consists of a knowledge base and an inference engine,

as shown in Figure 1.16. The knowledge base, described in a declarative programming

language, contains rules and facts. Each rule indicates a specified behavior of the system

when particular problem-solving data are entered. Each rule is a form of condition-

action. The body part of the rule consists of a conjunction of condition elements. The

head part specifies the action that will be performed if the conjunction in the body part

is true.

Input

Output

Working	memory

Rule	interpreter Rule	and	data
element	selection

Rule	memory Fact	memory
Triggering

data

UpdatesData

Selected	rule
Selected	data

Rule
and
fact

Knowledge	base

Inference engine

Figure 1.16: The basic features of a rule-based system.

The basic cycle of inference engine contains two main phases: selection and execution.

The selection phase chooses all rules firstly in a knowledge base satisfying the content

of the working memory and groups them into a conflict set. Then, based on the priority

and specificity of each rule, the system will select a rule in the conflict set for execution

in the next phase. In the execution phase, the system interprets the selected rules into

action or dynamic fact which is stored temporarily in the working memory. This cycle

will be repeated until no more rules are executed or the goal is achieved [39].

System storage in a RBS includes long-term static data and short-term dynamic data.

The long-term data storage is a knowledge base which consists of rules and facts. The

input data will trigger conditions for rules and data selection. These conditions present

the logical expression and the proposition or data in terms of relations. Most of func-

tionalities in RBS are dedicated to distribute their logic over numerous independent
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condition-action rules, monitoring dynamic results for triggering patterns of data, deter-

mining their sequential behaviors by selecting their next activity from a set of candidates-

triggered rules, and storing their intermediate results exclusively in the global working

memory and/or in the fact memory.

The fundamental function of a RBS is to produce an output. Whatever the considered

case is, the RBS is employed to determine its overall activity and built-in control pro-

cedure to provide the order to execute actions. The RBS addresses some shortcomings

in the programming technology, that is:

• Non-specificity of the programs;

• Changes in the principles of operation;

• Lack of expert participation in exploiting the computer program.

1.2.2.7 Distributed rule-based system

As aforementioned, a distributed computing language is preferred in the context of

distributed control strategies for smart grids. The logic programming language is one of

the first languages proposed for distributed computing because of its simplicity. From

a construction perspective, rule-based distributed systems such as OPS5 [17], MAGSY

[27] are set in the context of an individual agent architecture and respect to multi-agent

systems [9]. Each node is a rule-based system, and the coordination of the nodes can be

achieved either via shared memory or via asynchronous message passing. The distributed

system requires an algorithm which allows realizing computations over the whole system.

Lastly, it is interesting to mention the RETE algorithm [48], presented in Figure 1.17.

This algorithm appeared as a fundamental theory for developing parallel/distributed

processing in big data applications. The RETE algorithm separates data into objects

and performs the relation of data (e.g. rules) by graphs, which construct a RETE

network. During the run time, the changed data in an object will be verified based on

its graphs in the RETE network. The satisfied rules will then be ready for execution.

This process is called Evaluation. In the Execution state, a set of satisfied rules will be

fired one by one with respect to their priority.
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Figure 1.17: Principle of the RETE algorithm.

The LEAPs [11] and Treat algorithms [64] both improved the RETE algorithm by dealing

with rules activation in each rule cycle. Besides, the Parallel Prolog program [34, 80]

presents data-parallel approaches supporting concurrent computations in a database

environment. But these works are conducted in one simple machine that cannot deal

with the issues of volume when the number of facts becomes too large. The Lana-Match

algorithm [8] enhanced the performances of the Rete-Match algorithm by running it in

a distributed memory system with the Controller-Slaver paradigm. However, it lacks

flexibility and causes possibly a bottleneck phenomenon and memory intensive processor

needs in the controller. Delta-Prolog [19] developed a distributed prolog language in a

distributed memory set, but the subprograms are still distributed manually. The Rule

Matching algorithm [101, 96] proposed a distributed processing in the Spark platform

to deal with big data. Though these algorithms allow sharing the computational burden

in rule-based systems, they do not supply the description for data allocation as well as

any support for directed communication. As a summary, a solution dedicated to smart

grids still lacks, which motivates the present thesis.

1.3 Conclusion

Smart grids development is a prerequisite for the traditional power grid to better in-

tegrate renewable energy sources. However, this development demands detailed and

innovative researches to accommodate the evolutions. The centralized mechanism of the

traditional grid shows a lot of shortcomings about the problem of big data processing.

Meanwhile, some results in dispersal grid management present potentials of scalability.

So, the critical question is how to transform the system management mechanism from

centralized to distributed?
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In order to develop this strategy, in addition to the actual availability of the infrastruc-

tures (which is a hardware problem), the critical question is how to integrate traditional

grid controls and managements into this paradigm (which is a software problem)? Dis-

tributed algorithms allow deploying centralized algorithms over distributed data, but

they still have limitations. They have for instance a slow convergence and a lack of

programming abstraction, all of which make them less practical.

The main objective of this thesis is to aim at proposing a declarative and reactive

language and a programming methodology that could contribute to the evolution of

current power grids towards a smart distributed system. This approach promises to

overcome drawbacks of the current researches in a distributed implementation of smart

grids while conserving centralized expression of current regulations. The detail of the

development is presented in the next chapters.



Chapter 2

Smartlog : A declarative language

for smart grids data management

2.1 Introduction

Smart devices associated with various components of the power system, such as small

generators, renewable energy resources, storage devices, and so on, are a critical part

of active management network (AMN). The AMN participates in most controls in the

distribution grid, such as active and reactive power controls, voltage management, and

energy balancing [30]. Each node in the network can collect sensor data and commu-

nicate with grid operators. AMN development aims at optimizing the operation of the

power system and increase its resilience.

However, the management of grid data in this system poses a challenge, especially

developing countries like Vietnam. The issue is to manage the volume, the variety

as well as the velocity of data in the limitation of current infrastructures. To meet

these challenges, significant investments in computing power and communication systems

are required. That is why the centralized data management is no longer sufficient,

especially for real-time applications. A more efficient solution would be a distributed

data management. Collected sensor data are stored in distributed locations, near sensors,

to reduce the data transfer costs, to increase the data velocity, and enhance the reliability

and accuracy of the overall data system.

35
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In this context, each node of the smart grid should play the role of an elementary cell.

Based on that, we propose a new high-level programming language called Smartlog.

Smartlog is a declarative rule-based distributed data manipulation language (RBDML).

It is developed based on the Netlog language [34], itself based on Datalog [31]. It is

improved to accommodate the needs of smart grids. Some major properties of this

language such as compactness, simplicity, and scalability are highlighted in this thesis.

They should be adaptable to many power systems configurations (defined using topology,

characteristics of loads and sources, etc.) and aiming at efficiently operate the power

system in real-time with limited bandwidth.

The chapter is organized as follows. In Section 2.2, we present the architecture of each

node and of the network in which Smartlog can operate. In Section 2.3, we define the

procedural syntax and semantics of Smartlog, and explain how Smartlog can support

a distributed programming mechanism. Ultimately, in Section 2.4 and Section 2.5,

we describe the Smartlog grammar and compilation into the PostgreSQL procedural

language.

2.2 Architecture of the network

Smart grids involve many heterogeneous smart devices in order to ensure a reliable,

flexible and self-healing operation of the power system by updating and processing data

regularly or even in real-time.

2.2.1 Architecture of a node

In this thesis, each smart device is in charge of the computation and communication at

its node. Figure 2.1 presents the common architecture of nodes :

There are four main components in the architecture of a node:

Local database: It stores the node’s information, such as the parameters of the infor-

mation network infrastructure, the set-points values (output), the control parame-

ters, and the measured data which are collected from local sensors or directly from

the grid. The local data are part of the grid’s information. This mechanism limits
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Figure 2.1: The structure of each node in the considered smart grid.

data concentration on a central server as well as accelerates the time of local access

to data. Ultimately, this structure makes the smart grid become a big distributed

database which is absolutely scalable.

Sensor interface: It is set up to collect and store sensor data into the local database,

and transfer the output values to the actuators in order to control the active

electrical components.

Rule engine: It is the most important component of the node. It supplies an envi-

ronment to trigger and execute rules of local declarative programs. The main

operations of the rule engine are similar to the rule-based system shown in Sub-

section 1.2.2.6.

Communication interface: It is in charge of the interaction with the other nodes over

the communication network. Received data will be stored in the local database.

In the context of this thesis, each node in the network has a unique IP address

which allows a communication among nodes without errors.

2.2.2 Architecture of the network

Each node of the network possesses the same architecture. We consider an IP network

in which each node can work simultaneously as both a client and a server, as shown

in Figure 2.2. In this network, all nodes can provide and use resources. That allows
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increasing the robustness and reducing the damage when there is a single point of failure

in the system [53, 59] .

Node	1

Node	i

Node	...

Node	n

Node	2

Figure 2.2: Illustration of the IP network architecture.

In the context of this thesis, we developed a system based on the available infrastructure

for the information network, such as WiFi, 3G, 4G and deployed our test-cases in a

microgrid. Thus, we assume that each node in the network is thoroughly capable of

communicating with all others.

2.3 The Smartlog language

Smartlog is a rule-based data manipulation language. It is used to support declarative

network data manipulation and distributed programming. Smartlog is designed based

on Netlog, itself being an extension of Datalog. In this section, Smartlog is described

by highlighting the differences among these three languages and its specific adaptation

to the smart grid needs.

The general structure of a Smartlog program (P ) contains three main parts shown in

Listing 2.1: data types definition, initial data values and rules grouped in modules.

Program(NameOfProgram) {

Data_types{//define the data types

}

Initial_data{//set up initial data

}

Module(data_type 1){//rules

}
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Module(data_type 2) {//rules

} ..}

Listing 2.1: General structure of a “Smartlog” program.

2.3.1 The Data types block

Data are declared in the form of a scheme called the data type. It contains the name of

the data type, its attributes, and the data type of each attribute. A notion of identifiers,

the key keyword, is introduced to indicate a subset of attributes having unique values

in a data type. That allows optimizing data query and accelerating data access in the

local database. For example, the instruction presented in Figure 2.3 is used to declare

the data type Neighbor in a Data types block. The data type Neighbor has three

Neighbor(NodeID : int key, NeighborID : int key, NeighborAddr : String). 

Name of  data_type Attributes

Figure 2.3: Declaration of the data type Neighbor.

attributes, two of which are critical : NodeID and NeighborID. They are assigned a key

keyword after their data type.

In smart grids, especially for AMN, the data used for distributed control can be divided

into four types:

Sensor data: It is a set of data that are collected by sensors.

Parameters: It can be additional information in the communication network or con-

stants used in the control process.

Intermediate data: It contains the auxiliary data items used in the computation pro-

cess.

Output data: It contains the result of computations and normally represent control

variables.
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2.3.2 The Initial data block

This block is not mandatory, the data stored in this block will not activate any rule in

the Module blocks. The parameters and the output data are set up in this block, if

needed. For example, the initial data for the data type Neighbor declared in Figure 2.3

is written with the following Atom: Neighbor(1, 2, ’192.168.1.102’).

2.3.3 Rules and Modules

Rules are the active parts of a Smartlog program. All rules triggered by an update or

insertion of data items of a given data type are regrouped in an unique Module which

is identified by its data type name. Rules will be performed sequentially in a Module.

For example, a Module containing the rules triggered by the data type Measure, is

expressed in Listing 2.2.

Module(Measure) {

NeighborMeasure(j, i, v, c) :- Measure(i, v, c), Neighbor(i,j,_);

}

Listing 2.2: A sample “Module”.

If there is an update in the data type Measure, the Module named Measure will be

activated and its inside rules are evaluated.

2.3.4 Syntax of the rules

The rules are in charge of defining the behaviors of each node referring to a data type.

The syntax of a rule in Smartlog is the same as in other logic programming languages:

Head : Body [terminator], with the Body part B of the rule R being the intersection

of the terms B = {B1,B2, ...,Bn}. The first term of the body part relates to the identifier

of its module and represents the updated/inserted data items. If all terms in the body

part are verified, then the head part H will be produced.

The rule is a set of terms, each term can be an atom, a condition or an assignment and

use dedicated operators, each one may involve variables. All those terms are defined

below.
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2.3.4.1 Variables

A set of variables in a rule R (including the body part B and the head part H) is

called V ar(R). The variables are distinguished between uninterpreted variables, denoted

(N,≤), and arithmetic variables, denoted (R,+,×,≤) [34]. Given a set of data I, a

mapping Θ on I from V ar(R) to N∪R is denoted ΘI : V ar(R)→ N∪R. We define ϕI

a mapping on I from V ar(B), such that:

ϕI(B) = {ϕI |ϕI ⊂ ΘI , ∀Bi, ϕI(V ar(Bi)) = Bi} (2.1)

In a similar way, we define τI as a mapping on I from V ar(H), such that:

τI(H) = {τI |τI ⊂ ΘI ,∀x ∈ V ar(H), ϕI(x) = τI(x), ϕI = B} (2.2)

With

B =
n⋃
i=1

Bi (2.3)

Variables representing attributes Variables are used to store temporary values

of attributes in a scheme instance. In Smartlog, it is not necessary to declare the variables

used in the rules. The declaration of variables in an atom is defined automatically by

considering its position in the data type. Smartlog provides many formats of data types

such as int, float, long, char, string and timestamp. The symbol “ ” is used to indicate

that one attribute is ignored in the data type.

Unlinked and linked variables In Smartlog, there is no random choice for a

variable as in Netlog. The choice of data items is based on the relation of variables in

the body part of the rule. In fact, the variables are divided in two categories: variables

with assigned values (linked variable), and variables with no assigned values yet (unlinked

variables). All variables in the first atom are linked variables. The unlinked variables

are defined relying on at least one linked variable in the rule. If the linked variable

corresponds to the whole set of key attributes in the data type, there is only one possible

value for unlinked variables. Otherwise, we must check all existing values for unlinked

variables in the database. The head part needs, then, to be executed with each value
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assigned to the variable. For example, let us consider the rule described in (2.4).

NeighborMeasure(j,i,v,c):- Measure(i,v,c), Neighbor(i, j, ). (2.4)

In that example, all the variables in Measure are linked variables. The second Atom,

Neighbor, has j, an unlinked variable. But j is also a key attribute of Neighbor.

Therefore, the execution of the head part will be generated a quantity that depends on

the number of neighbors of the node i. The data type description for this example is

provided in Table 2.1.

Table 2.1: data type description for the rule described in (2.4).

Atom scheme description

Measure(i, v,c) Measure(NodeID (key), Voltage, Current).

NeighborMeasure(j, i, v, c) NeighborMeasure(NodeID (key), NeighborID (key), Voltage , Current)

Neighbor(i, j, ) Neighbor(NodeID (key), NeighborID (key), NeighborAddress)

Operators for variables Two main categories of operators are used for the

variables in Smartlog :

• Arithmetic operator: It is in the form of E1 ◦ E2, with E1 and E2 variables

or arithmetic terms, and ◦ one of the standard arithmetic operators (+,−,×,÷),

complex arithmetic operators (e.g. sin , cos , sqrt) or comparison operators (e.g.

>, <, 6=, ≤, ≥, ==) .

• Aggreation operator: It is in the form of ð(x), with x a variable and ð an

aggregate function (e.g. min, max, avg, sum , count).

The rule is a set of terms which can be atom, condition term, assignment term and use

dedicated operators presented below:

2.3.4.2 Atoms

An atom is in the form of R(r1, r2, ..., rn), where R is a name of data type and

r1, r2, ..., rn a set of variables corresponding to the data items of the attributes in the

data type R. For example, Neighbor(i, j, b) is a relational atom of the data type

Neighbor.
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2.3.4.3 Condition terms

A condition term is in the form of E1 �E2, where E1 and E2 are variables or arithmetic

terms, and � is one of the comparison operators. For example, “a > (b+c)” is a condition

term. A condition term will return a binary value (true or false).

2.3.4.4 Assignment terms

Assignment term is in the form of v := E2 with v a variable and E2 a variable or

arithmetic terms. For example, a := (t+ 1) is an assignment term.

2.3.4.5 Operators for terms

The “negation” operator To negate a relational atom (NegR(I)) we use the

form ∼ R(r1, r2, ...,, ..., rn). It is true if there is no query result in the data items at

linked variables.

NegR(I) =


true if ∀C ∈ R, R(ϕ(r1), ϕ(r2), ..., C, ..., ϕ(rn)) /∈ I

false otherwise

(2.5)

The “consumption” operator It is used to delete data items of an atom hav-

ing linked variables. Expressed by ∆−R(I), we use the form !R(r1, ..., rn) where R is a

relational atom. This operator allows managing an overload of the local data storage

capacities. The execution of the consumption operator with the rule R will modify I

such as expressed in (2.6).

I := {I \∆−R(I),∆−R(I) = R(ϕ(r1), ϕ(r2), ..., ϕ(rn)} (2.6)

Operators for the head part The head part contains linked variables with values

assigned in the body part and defines the execution of the rule. Given J a set of incoming

data via the interfaces, the result of the head part produced via the set of data (I ∪ J)

is ∆+
R(I ∪ J) = τI∪J(H). If all the terms of the body are verified, the execution of head

part is launched.
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The “store” operator By default, the execution of the head part is in storing

mode, which means the results are stored into the local database. The rule is in the

form: H :- B1, B2, ..., Bn. The execution of the storing mode of the rule (R) is denoted

by Φ↓R(I, J) and defined by:

Φ↓R(I, J) = I ∪ J ∪∆+
R(I ∪ J) \∆−R(I ∪ J) (2.7)

The “send” operator The execution can be in sending-mode and expressed as:

∧H :- B1, B2, ..., Bn. In this case, a destination’s address should be marked with the “@”

symbol in front of the address variable. For instance:

∧NeighborMeasure(j, i, v, c) : −Measure(i, v, c), Neigbor(i, j,@k);

The execution of the sending mode for the rule R is denoted Φ↑R(I ∪ J) = ∆+
R(I ∪ J).

The “store and send” operator In the storing and sending mode, the rule

is expressed of the form: &H :- B1, B2, ..., Bn. Note that the amount of local data is

updated as in storing mode and the amount of sent data is computed as in sending mode.

2.3.4.6 Terminator

A rule can be terminated by a dot (“.”) or a semi-colon (“;”). If it is a dot, the program

will exit the current Module after the rule execution. Otherwise, the next rule in the

current Module is triggered. Besides, the change in data is eventual. Modules may

be executed in parallel, which makes the order of programs undefined. The Smartlog

language specifically supports declarative programming for that purpose.

2.3.5 Fixpoint’s semantic of a Smartlog program

A Smartlog program P has possibly many rules. With a set of incoming data J , rules in

the program are triggered, and some of them are executed. The one-round execution of

P in a computing node α on datasets I and J is provided by a sequence (Iαi ,Pαi )i=0,1,....

With Iαi and Pαi the local dataset and data to send from the node α at step i, respectively.
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They are defined as follows:
Iα0 = Φ↓P (I, J)

Iαi+1 = Φ↓P (Iαi , ∅) for i ≥ 0

and


Pα0 = Φ↑P (I ∪ J)

Pαi+1 = Φ↑P (Iαi ) ∪ Pαi for i ≥ 0

(2.8)

The one-round computation of P in a node contains many one-round executions. The

one-round computation of P in α on the set of data I ∪ J terminates if all its non-

deterministic one-round executions converge to a fixpoint. This means that every se-

quence (Iαi ,Pαi ) has a limit (Iα,Pα ) for i → ∞. Such a limit is called the one-round

fixpoint of the program P in the node α.

When a local computation round l starts, the node α has a local instance Iα(l), receiving

the data Jα(l), and sending the data Fα(l). The new local data instance of the one-round

computation lth is Iα(l + 1) = limi→∞ I
α
i and the set of sending messages Pα(l + 1) =

limi→∞ Pαi ∪ Fα(l). So, in a local database, the termination of the Smartlog program

relies on the convergence of the sequence of fixpoints.

2.3.6 Smartlog as a support of distributed programming

Rules in a Smartlog program are grouped into modules which define all actions of the

system with any modification of a specific data type. Measured data are stored and

trigger calculations in local databases. Meanwhile, intermediate data, created during the

executions of the rules, support data sharing. The data transferred between nodes are in

the form of data type. Sent data allow triggering the next calculations in another node.

For example, consider two modules in two different programs as expressed in Listing 2.3

and Listing 2.3.

Module(A){

^TmpC(i, v, c) :- A(i, v, c), B(i,@j);}

Listing 2.3: “Module” A in node i.

Module(TmpC){

C(i, v, c) :- !TmpC(i, v, c), c>5;}

Listing 2.4: “Module” TmpC in node j.

When the rule of the Module A in node i is executed, the TmpC atom is sent to node

j. The Module of Listing 2.4 in node j is performed after receiving TmpC. With this

mechanism, Smartlog can support fully distributed programming. In this context, we

define the convergence of distributed Smartlog programming as follows [34]:
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Definition 2.1. Given a centralized Smartlog program P , a set of computing units in

a distributed system VG and data instances I distributed in each node (Iα ⊂ I, α ∈ VG).

For each round l, all one-round computations of P , converge to fixpoints, i.e all sequences

(Iαi (l),Pαi (l)) have a limit (Iα(l),Pα(l)) for i→∞, and all sequences (Iα(l), Pα(l)) have

a limit (Iα,Pα) for l → ∞. The collection of limits (Iα,Pα) is a distributed fixpoint of

the program P .

2.4 The grammar of Smartlog

The Smartlog grammar is defined using the meta-syntax expression, which is a formal

mathematical way for specifying the syntax of languages. There are many types of meta-

syntax, but in this thesis, we use the Extended Backus-Naur Form (EBNF) notation [51]

to describe the Smartlog grammar because of its simplicity. An EBNF notation is a set

of rules whose relation is defined as: <name> = ‘‘expansion’’;, where <name> is a

non-terminal symbol and ‘‘expansion’’ consists of terminal or non-terminal symbols,

linked together by sequencing and choices.

The terminal symbol corresponds to a single symbol or a single word that may not be

decomposed. The non-terminal symbol, on the contrary, can be decomposed into other

terminal or non-terminal symbols. Some additional definition of form for the EBNF are

proposed in Table 2.2 and explained below:

• The expansion is expressed with square brackets [...].

• The repetition of zeros or more than one symbol is expressed with braces: {...}.

• The expansion group is indicated by parentheses (...).

• Alternative choices in an expression are separated by the “|” symbol.

• The semi-column “;” indicates the end of a rule-definition.

• The terminal symbol is enclosed in quotation marks: “...”.

An expression of the grammar of a Smartlog language, defined using the ENBF, is

presented in Listing 2.5:
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Table 2.2: EBNF main notation.

Usage ENBF Notation

Definition =

Concatenation

Termination ;

Option [...]

Repetition {...}
Grouping (...)

Terminal String ”...”

Alternative choice |
Exception -

//

//* IDENTIFIER *//

//

Digit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "0" ;

Upper_case = "A" | "B" | - | "Z";

Lower_case = "a"| "b" | - | "z";

Letter = Upper_case | Lower_case;

Ident = Upper_case { Letter | Digit };

Variable_ident = Lower_case { Lettre | Digit };

//

//* CONSTANT *//

//

String = "'" { Letter | Digit } "'";

Number = Digit { Digit};

Float = Number [ "." Number ] [ "E" [ "-" ] Number ];

bool = "true" | "false";

timestamp = ( "'" [ Number "-" Number "-" Number ] [ Number ":" Number [ ":" Number [

"." Number ] ] ] "'" )| "now";

function_ident = "max"| "min" | "sum" | "count" | "avg" | "cos" | "sin" | "tan" |

"cot" | "acos" | " asin" | "atan" | "atan2" | "mod" | "pi" | "abs" | "power" |

"round" | "sqrt" | "sign" | "exp" | "log" | "div" | "length" | "random" |

"greatest" | "least" | "degrees" | "radians" ;

constant = [ "-" ] Number | [ "-" ] Float | bool | String | timestamp;

type = "int" | "float" | "boolean" | "string" | "timestamp";

//

//* DATA_TYPEs *//

//

attribute = Ident ":" Type [ "key" ] ".";

data_type_decl = Ident "(" attribute { "," attribute } ") .";

data_type_bloc = "data types {" { Data_type_decl } "}" ;
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initial_data = Ident "(" constant { "," constant } ").";

initial_data_bloc = "initial data {" { initial_Data } "}";

//

//* EXPRESSION * //

//

unary_exp = constant | function | Variable_ident | parentized_exp | negative_exp ;

negative_exp = "-" exp;

parentized_exp = "(" exp ")";

additive_op = "+ " | " - ";

multiplicative_op = "*" | "/" | "\" | "%";

multiplicative_exp = unary_exp { multiplicative_op unary_exp };

exp = multiplicative_exp { additive_op multiplicative_exp };

condition_op = "==" | "<>" | ">" | ">=" | "<" | "<=";

condition = exp condition_op exp;

assignment = Variable_ident ":=" exp;

address = "@";

function = function_ident "(" exp { "," exp} ")";

//

//* RULE HEAD * //

//

head_term = constant | Variable_ident;

head = ( [ "&"| "^" ] Ident "(" ( [ address ] head_term { "," head_term } ")" ) | (

head_term { "," head_term } [ "," address head_term ] {"," head_term } ")" ) ) | (

Ident "(" head_term { "," head_term } ")" ) ;

//

//* RULE BODY *//

//

body_term = exp | "_";

atom = Ident "(" (address Variable_ident { "," body_term } ")" |body_term["," address

Variable_ident] {" ," body_term} " )" );

literal = ( [ "!" | "~" ] atom ) | condition | assignment;

body = [ "!" | "~"] Ident "(" ( [address] Variable_ident { "," body_term } ")" { ","

literal } )

| ( body_term { "," body_term } "," address Variable_ident { ","

body_term } ")" { " , " literal } ) | ( ")" { "," literal } ) ;

// * RULE *//

rule = (head)? ":-" body [ "." | " ;" ];

// * MODULE * //

module_bloc = "module (" Ident ") {" rule{ rule } "}" ;

// * PROGRAM * //
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Program_bloc = " program (" Ident ") {" [metadata_bloc ] data_types_bloc [

initial_data_bloc ] module_bloc{ module_bloc } "}";

Listing 2.5: Smartlog grammar written in ENBF.

2.5 Smartlog ’s node prototype

The implementation of a Smartlog node architecture is done following the structure

described in Figure 2.1. As Smartlog data types are regular, we choose to use relational

database as local database. Most relational DBMS support triggers that can be exploited

for rule execution. Smartlog nodes are embedded devices, so it can be interesting to select

a free open-source DBMS that can be instantiated on various lightweight computers such

as smart meters [97] or Raspberry Pis [91] which still offers good performance. We have

selected PostgreSQL [86] for local database and rule engine as it offers what we need and

as there was preexisting expertise in our research group. The sensitivity of the language

to the DBMS is a perspective work.

2.5.1 Rule engine

PostgreSQL provides an event-based processing called trigger, which will be automat-

ically executed when a specified database event occurs. PostgreSQL also allows regis-

tering a procedure when a specified event takes place. The procedure can be executed

before, after or instead of the SQL operation generating the event, and the event can be

insert, update, delete or truncate. Triggers in PostgreSQL can be written in PostgreSQL

Procedural Language (PL/pgSQL). They can be executed once for a query or once for

every data item modified by a query (for each row syntax).

Smartlog rules must be executed for each actual insertion or update of data items stored

in the local database. Thus, the corresponding PostgreSQL triggers are executed after

insert or update for each row. The execution of a trigger is always part of the transaction

generating the event. So, if the transaction fails at run-time, then the trigger has no

effect.

A trigger will be created for each module of a Smartlog program and the corresponding

PL/pgSQL procedure will manage the selection and execution of the rules.
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2.5.2 The interfaces

A specific Java program manages the Smartlog nodes interfaces. This program man-

ages data exchange among nodes using TCP/IP sockets, and acts also as the sensor

interface. All incoming data (from sockets or sensors) are immediately stored in the

local database, eventually triggering modules and rules. This program also listens to

PostgreSQL notifications in order to initiate data communication to other nodes.

2.5.3 Smartlog ’s compiler

A compiler is a process for translating the source code of a high-level programming lan-

guage into a lower-level programming language which can be executable in the computer

[71]. Errors message should be displayed if the compilation fails. The principle of the

compiler is described in Figure 2.4

COMPILER
Source program Target program

Error Messages

Figure 2.4: Compiler’s principle.

There are many types of compilers such as Assembly, Bytecode, source-to-source, etc. In

this thesis, the Smartlog language is compiled into PostgreSQL procedures (PL/pgSQL)

as triggers installed in Smartlog nodes.

2.5.3.1 Compiler’s workflow

In the compilation process, the grammar plays an important role. It describes the

structure to analyze the input source text. The general workflow of the compilation

consists of four steps, shown in Figure 2.5.

Lexical
analysis

Syntax
analysis

Semantic
analysis

Code
generation

Figure 2.5: Steps of the compiler’s workflow.
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Let us use the expression (2.9) as an illustration support of the compiler’s workflow.

x > a+ 1 (2.9)

Lexical analysis: It is the process of converting a sequence of input characters from

source text into meaningful sequences of lexers or tokens, which are terminal sym-

bols and are declared in the Smartlog grammar. For example, with (2.9), the out-

put of lexical analysis with the grammar of Listing 2.5 is five tokens: [(Letter,

x), (condition op, >), (Letter, a), (additive op, +), (digit, 1)].

Syntax analysis (parsing): It is a process to analyze a sequence of tokens according

to the formal grammar rule. That allows detecting any errors in the source code.

The output of the syntax analysis is a parsing tree. It concretely reflects the

syntax of the input language and all relationships between individual tokens. For

instance, the parsing tree created after the syntax analysis of (2.9) is proposed in

Figure 2.6.

'x' condition_op 'a'

>

additive_op

+

1

Root

Figure 2.6: Parsing tree resulting from the syntax analysis of (2.9).

Semantic analysis: It determines the meaning of the structure of tokens and rules.

The semantics of the grammar is described in detail in Subsection 2.5.3.2. This

process helps detecting any semantic error in the input source text such as unde-

clared variables, data type incompatibilities, variable’s name duplication, and so

on.

Code Generation: It rewrites the semantics of a source text in the target language.

2.5.3.2 Semantic analysis of Smartlog

The semantics of Smartlog language are described with three main parts:
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The Data types block Each data type corresponds to the creation of a table

in PostgreSQL. This table consists of data type’s attributes. The key attributes in

Smartlog are declared as the primary keys in PostgreSQL. That is important in the

data management to accelerate the access time as PostgreSQL automatically creates

accelerating structures (index) on table keys. The data type conversion between Smartlog

and PostgreSQL is presented in Table 2.3:

Table 2.3: Smartlog to PostgreSQL data type conversion.

Smartlog data type PostgreSQL data type

String text

int int

boolean boolean

double numeric

timestamp timestamp

For example, the data type Neighbor from Figure 2.3 is translated in PostgreSQL as

expressed in Listing 2.6.

CREATE TABLE Neighbor (NodeID int, NeighborID int, NeighborAddr text, PRIMARY

KEY(NodeID, NeighborID));

Listing 2.6: Translation of a “data type” in PostgreSQL.

The Initial data block In Smartlog, it is a set of Atoms. Each atom in this

block is an insert query. The data type of these atoms must be declared before the

insertion. For instance, an initial data, described in Listing 2.7 will be translated in

PostgreSQL as expressed in Listing 2.8.

Initial_data{

Neighbor(1, 2, '192.168.1.102').

}

Listing 2.7: Smartlog’s “initial data”.

INSERT INTO Neighbor(NodeID, NeighborID, NeighborAddr) VALUES (1, 2, '192.168.1.102');

Listing 2.8: Translation of a sample “inital data” in PostgreSQL.

The Module block The Smartlog Modules are translated into PostgreSQL triggers.

Variables used in the Module have to be declared before beginning the trigger function.
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Their data type is determined according to their attribute types. The trigger function

returns the value held in the new variable. At the beginning of the function, all at-

tributes of the first atom of the body part are assigned to new. The function is executed

sequentially until reaching the return new command. For the following examples, for

simplicity, the scheme is declared as A(x, y), B(x, y, z), and C(x, y, z). A sim-

ple Module presented in Listing 2.9 is translated in PostgreSQL triggers procedure as

expressed in Listing 2.10.

Module(A){

C(i, j, v) :- A(i, v), B(i, j,_).

}

Listing 2.9: A sample “Module”.

CREATE OR REPLACE FUNCTION mod_A()

RETURN TRIGGER

LANGUAGE plpgsql AS

$$

DECLARE

i A.attribute1%TYPE;

v A.attribute2%TYPE;

j B.attribute2%TYPE;

BEGIN

i := NEW.x;

v := NEW.y;

-- define rule

...

RETURN NEW;

END;

$$

CREATE TRIGGER mod_A

AFTER INSERT OR UPDATE ON A

FOR EACH ROW

EXECUTE PROCEDURE mod_A();

Listing 2.10: Translation of the “Module” in PostgreSQL triggers.

Body part of the rule The rule will be translated from the second term of the

body part to the head part. The head part defines the action of the rule which can be
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translated into insert, update, or send data. Meanwhile, the body contains a set of terms

to be evaluated. A term can be an Atom, a comparison condition, or an assignment.

If a literal is an atom, it’s a select statement of unlinked variables from Atom data items

to linked variables. By default, if exist is added before the select statement to ensure

that the result of this statement returns a not null value.

If linked variables correspond to all the attributes of the primary key, the select statement

returns a single tuple d. If not, the select statement returns a set of tuples. In this case,

a cursor is set up to encapsulate the statement and fetch all the results of the query.

For example, for the rule is presented in (2.10), a select statement of the scheme B can

be translated in two cases.

C(i, j, v) : −A(i, v), B(i, j, ). (2.10)

Case 1: B has one key attribute x, B(x, y, z) as presented in Listing 2.11. For the

variable j, which is a non-key attribute, the selection returns a unique tuple for

each i. So, there is one result of the head part produced. This is expressed in

Listing 2.11.

IF EXIST (SELECT * FROM B WHERE x=i) THEN

SELECT y INTO j FROM B WHERE x = i;

DELETE FROM C WHERE x=i AND y = j;

INSERT INTO C(x, y, z) VALUES (j, i, v);

END IF;

Listing 2.11: Generation query for non-key attributes.

Case 2: B has two key attributes x and y, B(x, y, z) as presented in Listing 2.12. In

this case, there are possibly many tuples for each i. A cursor called Q1 is added to

handle all tuples and fetch each tuple into Q1row. Each tuple in Q1 can produce

a result in the scheme C. This is expressed in Listing 2.12.

IF EXIST (SELECT * FROM B WHERE x = i) THEN

OPEN Q1 FOR SELECT y FROM B WHERE x = i;

LOOP;

FETCH Q1 INTO Q1ROW;

EXIT WHEN NOT FOUND;

j = Q1ROW.y;
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DELETE FROM C WHERE x = i AND y = j;

INSERT INTO C(x, y, z) VALUES (j, i, v);

END LOOP;

CLOSE Q1;

END IF;

Listing 2.12: Generation quey for key attribute.

The operators of an Atom can be a “negative” (∼) and a “consumption” operator (!).

The “negative” operator (∼) is translated in PostgreSQL query if not exist. For example,

the translation of the rule (2.11) is shown in Listing 2.13.

C(i, i, v) : −A(i, v),∼ B(i, , ). (2.11)

IF NOT EXIST (SELECT * FROM B WHERE x = i) THEN

DELETE FROM C WHERE x=i AND y = i;

INSERT INTO C(x, y, z) VALUES (i, i, v);

END IF;

Listing 2.13: Generation query with the negation operator.

The “consumption” operator (!) is used to delete the atom for linked variables. It

is translated into the delete statement. For example, the rule (2.12) is translated in

PostgreSQL as shown in Listing 2.14.

C(i, j, v) : −A(i, v), !B(i, j, ). (2.12)

IF EXIST (SELECT * FROM B WHERE x = i) THEN

SELECT y INTO j FROM B WHERE x = i;

DELETE FROM C WHERE x = i AND y = j;

INSERT INTO C(x, y, z) VALUES (i, j, v);

DELETE FROM B WHERE x=i AND y=j;

END IF;

Listing 2.14: Generation query with the consumption operator.

If a term is a condition, the expression in Smartlog is translated in a if-then statement in

PostgreSQL. For example, the condition term of rule (2.13) is translated in Listing 2.15
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in PostgreSQL.

C(i, i, v) : −A(i, v), v > 380. (2.13)

IF(v > 380) THEN

DELETE FROM WHERE x = i AND y = i;

INSERT INTO C(x, y, z) VALUES (i, i, v);

END IF;

Listing 2.15: Generation query with a condition.

If a term is an assignment operator (:=), it is translated to (=). Smartlog supports

many functions that are identical in PostgreSQL, such as sin , cos , log , sqrt, except for

the aggregate function. It must be noticed that the aggregate function divides the rule

into two parts (in before and after the aggregate function) such that the terms after the

aggregate function can only intervene in linked variables which are determined at the

starting of the aggregate computation, such as i, v in rule (2.14).

C(i, v, k) : −A(i, v), B(i, j, t), k := sum(t). (2.14)

The result of the aggregate function is computed incrementally for all tuples of a query.

An initialization for the results of sum and count is required before executing the query.

For example, a sum function in rule (2.14) is translated in PosgreSQL as expressed in

Listing 2.16.

k := 0;

IF EXIST (SELECT * FROM B WHERE x = i) THEN

OPEN Q1 FOR SELECT z FROM B WHERE x = i;

LOOP;

FETCH Q1 INTO Q1ROW;

EXIT WHEN NOT FOUND;

t = Q1ROW.z;

k = k+t;

END LOOP;

CLOSE Q1;

DELETE FROM C WHERE x = i AND y = v;

INSERT INTO C(x, y, z) VALUES (i, v, k);

END IF;

Listing 2.16: Generation query with an aggregate function.
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Head part of the rule There are three possible actions in the head part: store,

send, and both store and send. By default, if there is no option in the head part, the

result will be stored into the local database. It is compiled into a delete and insert

statement. This is shown in the previous examples.

In the case of the “sending” operator “∧”, data are sent to another node. The compilation

program will raise a notification with pg notify() to the interface, in order to activate

the communication. The notification is packed using the JSONObject format, including

the target address, and the result of the head part. As an illustration, the compilation

of rule (2.15) is proposed in Listing 2.17.

∧C(i, j, v) : −A(i, v), B(i, j,@k). (2.15)

IF EXIST (SELECT * FROM B WHERE x = i) THEN

SELECT z into k FROM B WHERE x = i) ; -- choose target address

data = json_build_object( 'x' , i, 'y', j, 'z', v);

notification = json_build_object(

'address', k,

'scheme', 'C',

'data', data);

perform pg_notify('q_event', notification ::text) ;

END IF;

Listing 2.17: Generation query with a sending operator.

In case the option is “&”, the rule is translated by combining the compilation of two

actions: storing data and sending data.

Terminator If a rule terminated by a dot (“.”), the return new command is

added just after the compilation of the current rule to break out of the trigger function.

Otherwise, a rule is terminated with a semi-colon (“;”). In that case, the trigger function

continues to execute other queries.

2.5.3.3 Environment and tools for building compilers

In this work, in order to compile the Smartlog to a PostgreSQL procedural language,

we mainly use three tools: ANTLRv4, JAVA, and POSTGRESQL. ANTLRv4 provides
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an environment to define the Smartlog grammar, transforms the grammar into Parser

and Lexer classes in Java, and supports APIs for analyzing the lexicon and syntax of

the input source text.

On that basis, the semantics of the Smartlog language are developed and compiled in

PostgreSQL with JAVA. The output program is validated in the PostgreSQL environ-

ment. We suggest referring to [52] for details on the compiler’s implementation.

Figure 2.7: Environments and tools used for the compiler.

2.6 Conclusion

In this chapter, we present a rule-based data manipulation language called Smartlog

and the architecture network of the Smartlog nodes. Smartlog is developed to be a

high-level reactive and declarative language for distributed data management. The

improvement of the syntax of this language and its functionalities are compared to

the preexisting declarative languages (Netlog and Datalog). Moreover, the Smartlog

grammar and distributed fixpoint semantic are also presented. A prototype exploiting

PostgreSQL as the local database has been realized in which we proposed to compile

Smartlog programs into PostgreSQL triggers. The translation and syntax are illustrated

through various examples.



Chapter 3

Methodology for easy distributed

rule-based programming

3.1 Introduction

There exist various applications for control and management of power systems, the

associated algorithms are traditionally deployed in a centralized way. However, along

with the development of smart grids, a centralized implementation can no longer be

sufficient. It shows many shortcomings, such as high computation and communication

costs, a single point of failure, etc. [38].

Besides, with the current development of grids infrastructures, the computing units are

almost located everywhere in the network. These enormous available resources can par-

ticipate in the management of the power system to cope with the issue of scalability. A

distributed implementation of the algorithms over the entire system seems to be more

efficient because it deals with the imminent problems of algorithms while ensuring to

replace the conventional centralized controller [87]. However, there are still some draw-

backs of the current distributed implementations that restrain its deployment in reality

(that is shown in Subsection 1.2.2.3). The slow convergence speed and the neglected

communication delay lead to new issues in distributed control and management, which

possibly will violate some boundaries of the system stability and impact the voltage and

frequency quality. Besides, there exist a large variety of centralized algorithms for the

control and management of power systems compared to distributed algorithms. One

59
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of the major challenges of distributed algorithms implementation is the lack of high-

level programming abstraction. In addition, the control and management of smart grids

in real-time requires dealing immediately with changes in the power system and easy

deployment in a large telecom network. Thus, an approach is needed to combine the ad-

vantages of both the centralized and distributed paradigms while ensuring the response

to any change in the system as fast as possible.

For those reasons, in this thesis, we aim at developing a methodology for centralized pro-

gramming and distributed execution (CPDE). Firstly, we aim at abstracting smart grids

systems in the form of a distributed database system, in which a rule-based distributed

data manipulation language, called Smartlog, is in charge of the data management.

Smartlog is suitable for real-time reaction, the scalability of the system, and distributed

programming support. In Chapter 2, we described the architecture of the distributed

database network dedicated to smart grids as well as the development of the Smartlog

language. In this chapter, we focus on the CPDE methodology, which helps sharing the

computational load over the available computing resources with a predefined data allo-

cation. It allows minimizing the possibility of overload in the central servers. Secondly,

the computation over the network are performed in a reactive manner, based on changes

of the system. This restricts redundant communications and computations. Finally, the

methodology provides an easy and simple principle for algorithms implementation in a

distributed system.

The CPDE method approaches the distributed Smartlog programming with the prin-

ciple presented in Figure 3.1. A centralized Smartlog program (which is executed in

a single machine) is exploited into multiples distributed Smartlog programs, which are

implemented in computing nodes (multiple machines) in the telecom network. These

distributed programs cooperate to accomplish centralized computations. Nevertheless,

it is still a semi-automatic distributed programming method because it is deployed based

on the data distribution, which is currently described manually. The automation of the

data distribution is a research perspective.

In this chapter, the methodology is presented following this plan: Section 3.2 provides

a model to describe the data distribution in the smart grid. The detail of the CPDE

methodology is presented in Section 3.3. In Section 3.4, the behavior of the methodology

is illustrated and validated on elementary test cases. A conclusion is finally drawn.
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CPDE

Centralized	smartlog
program

Description of data
distribution

Figure 3.1: Principle of the CPDE methodology.

3.2 Data distribution

The data, which are collected by sensors and sent to actuators, are naturally scattered

in the smart grid according to horizontal fragmentation. Meanwhile, the intermediate

data, serving for intermediate transformations, can be located anywhere in the telecom-

munication network, as shown in Figure 3.2. Data in this context are not concentrated in

one machine as in the centralized paradigm. That is why programming in a distributed

manner is more difficult than in a centralized one. In order to perform computations,

data may need to be gathered from many locations. In this section, we present the data

fragmentation and allocation model to facilitate data access.

SOURCE LOAD

LOAD SOURCE

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor
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Figure 3.2: Principle of the data distribution in smart grids.

3.2.1 Fragmentation and allocation of the data types

The design of the distributed database allows each relation scheme R to be divided

horizontally, vertically, or in a hybrid manner. Each part of the data is called a fragment.

As presented in Subsection 1.2.2.4, for horizontal fragmentation, each fragment holds

the whole attributes of the original data type, but it only contains a part of the global
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data record. The conjuncture of global data scheme is expressed as:

DTG =
⋃
i

DTi (3.1)

For a vertical fragmentation, each fragment holds several attributes including the key

one of the data scheme, and all data records of its attributes. The conjuncture of the

global data scheme based on common key attributes is expressed as:

DTG = oniDTi (3.2)

For example, a vertical fragmentation of data type A(x, y, z) can be A1(x, y) and

A2(x, z).

In the description of the data distribution, each scheme of a fragment is in charge of

describing the properties of its dataset. For a vertical fragmentation, each fragment

describes a subset of attributes of a data type. In the case of horizontal fragmentation,

we use conditions on identifiers (key attribute of data type) to distinguish fragments.

The description of the data allocation allows determining which and where data are

stored.

Sensing data and control data are prioritized to be stored nears sensors and actuators

in the smart grid. Meanwhile, intermediate data can be allocated anywhere and based

on the optimal data placement process. The design of the optimal data placement is

not the focus of this thesis. Herein, we assume that it has been well specified upstream.

A model describing the data fragment is proposed instead. Besides, in the principle of

the distributed database design [69], data can be located in one or more locations, but

for this work, data duplication has not been considered.

3.2.2 Syntax of the data distribution

The information of all participants in the network should be declared for communication

through an IP mapping table, called IPmap. This helps mapping the name of a data

location into its network address. The information of the IPmap is assigned to the

initial data block in the distributed Smartlog programs.

The description of the data distribution (fragmentation) is declared as an extension of

the data types block (D). Each data type’s description contains its original data type
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(Di|Di ⊂ D ) with its attributes (Ai|Ai ⊂ Di) and its data fragments (Fi|Fi ⊂ Di) with

Di = {Ai, Fi}. This description is considered as an extension of the Smartlog grammar

and is written using the EBNF notation, as in Listing 3.1.

//*IPMap*//

ipmap = String ":" String ";" ;

ipmap_bloc = "IPmap" "{" ipmap { ipmap} "}" ;

//*DATA_FRAGMENT_BLOC*//

condition_bloc = "Conditions" ";" condition {"," condition} ";" ;

attributes_bloc = "Attributes" ":" Ident {"," Ident} ";" ;

location_bloc = "Location" ":" String {"," String} ";" ;

fragmentation = "fragment" ["(" Ident ")"] "{"

[condition_bloc] [attributes_bloc] location_bloc "}" ;

data_fragment_bloc = data_type_decl "{" fragmentation { fragmentation} "}." ;

//*DATA_DISTRIBUTION_BLOC*//

data_distribution_bloc = ipmap_bloc data_fragment_bloc {data_fragment_bloc}

Listing 3.1: Description of the data distribution in ENBF.

For each fragment (Fij |Fij ⊂ Fi), we define three parts: the conditions Cij , the attributes

Aij and the location Lij , Fij = {Lij , Aij , Cij}. The location part has to be specified,

while it is not mandatory for the conditions and the attributes part. The conditions

part defines which identifiers of the data type belong to the considered fragment. In

the case of a horizontal data fragmentation, the condition part Cij should be declared.

Otherwise, in the case of a vertical fragmentation, the attributes part Aij describes the

attributes of the original data type stored in the fragment. For a hybrid fragmentation,

the three parts must be declared. By default, if there is no declaration of the attributes

part Aij , the fragment holds all attributes of the original data type Aij = Ai. For

example, the data type A, declared in a centralized Smartlog program, is proposed in

Listing 3.2.

Data_types{

A(ValueA1 : int key, ValueA2 : float, ValueA3 : float}.}

Listing 3.2: Description of a sample “data type” A.

The description of the data type A with two fragments located in the sites S1 and S2

is proposed in Listing 3.3.

Data_types{
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A(Value1 : int key, Value2 : int , Value3 : int) {

Fragment(A1) {

Conditions : Value1>10;

-- Attributes :

Location : 'S1';}

Fragment(A2){

Conditions : Value1<=10;

--Attributes:

Location : 'S2';}

}.

}

Listing 3.3: Description of a sample data type A with two locations, S1 and S2.

The description of the data distribution of the data type in Listing 3.3 is simplified in

Listing 3.4 with x, y, z corresponding to the first, second and third attribute of the

data type.

A(x, y, z) = A1(x>10)@'S1'
⋃

A2(x<=10)@'S2'.

Listing 3.4: Simple form for the description of the “data type” A.

3.3 Program distribution

As aforementioned, the CPDE method automatically deploys a centralized Smartlog

program (which is executed in a single machine) into multiples distributed Smartlog

programs. These distributed programs cooperate to perform the same task as the cen-

tralized one. Based on the description of the data distribution, the CPDE methodology

analyzes a set of rules in a centralized Smartlog program (called the input of the process)

into sub-rules corresponding to each location (the output of the process). Some critical

points in the methodology should be satisfied:

• The centralized Smartlog program is supposed to run without error;

• The communication network is assumed to be reliable;

• The centralized computation is executed precisely in a distributed manner and

ensures that the behaviors are the same in both implementations;
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• The number of communications and transferred data must be minimized, limiting

redundant communications over the network.

In this section, we explain how to distribute the calculations over the distributed network

(i.e. how to deal with rules distribution) and how to auto-generate a set of collaborating

distributed Smartlog programs equivalent to the centralized one. The basic algorithm

for the CPDE methodology is proposed in Figure 3.3, which contains three main steps:

rule rewriting, rule distribution and program generation.

Start

Rule rewriting

Rule
distribution

Program
generation

End

Figure 3.3: Synoptic of the CPDE methodology.

3.3.1 Rule rewriting

The objective here is to rewrite the atoms of a rule according to their fragmentation.

The main ideas of this step are:

1. To develop the original rule based on the description of the data distribution. The

centralized rule is expressed over the global data types, and the rewritten rule

should be expressed over the local fragments of the data types.

2. To deal with the problem of aggregate function, if it exists inside the rule. As

mentioned in Chapter 2, data aggregation is considered as a particular case in the

centralized Smartlog program, in which the rule is divided in two parts (before/after

the aggregate function) so that unlinked variables before the aggregate function

cannot be accessed by terms after it.

Some symbols should be presented to simplify the description of the method. We sym-

bolize the set of rules in a program as R, Ri being the ith rule (Ri ⊂ R). The set
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of terms in the body and the head part of the ith rule are respectively Bi and Hi ,

Ri = {Hi,Bi}. The jth term in a body part is called Bij . A term can be a relational

atom ak, a condition cj or an assignment sj , Bij ∈ {aj , cj , sj}.

3.3.1.1 Principe and algorithm

The general principle for the rule rewriting is to use fragments to replace the global

data types by their reconstruction. We proceed to evaluate all atoms of a rule from

the body part to the head part.

For a horizontal fragmentation, where fragments are defined by applying a condition to

one or more attributes participating in keys, the reconstructions of an atom are done

by an union of fragments. Let us consider rule (3.3) with three atoms corresponding to

three descriptions of the data distributions A, B, H, which are declared in Listing 3.5.

The underlined attribute indicates the key attribute of the data types.

R1 : H(m, k, t) : −A(m,n, t), B(m, , k). (3.3)

H(x, y, z) = H1@'S3';

A(x, y, z) = A1@'S1';

B(x, y, z) = B1(x>10)@'S1'
⋃

B2(x<=10)@'S2';

Listing 3.5: Description of the “data type” distribution of A, B and H.

In this example, H and A are not fragmented but B is fragmented horizontally. The rule

(3.3) is rewritten in two rules corresponding to two fragments of the global data type

B as follows: 
H1(m, k, t) : −A1(m,n, t), B1(m, , k),m > 10;

H1(m, k, t) : −A1(m,n, t), B2(m, , k),m <= 10;

(3.4)

For a vertical fragmentation, where fragments are defined by listing the included at-

tributes (only the key attribute is a common point to all fragments), the reconstruction

of the global data type is done by combining fragments. Using rule (3.3) again and the

data distribution description of Listing 3.5, B is fragmented vertically as in Listing 3.6.

B(x, y, z) = B1(x, y)@'S1' on B2(x, z)@'S2';

Listing 3.6: Vertical fragmentation description of B.
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Thus, rule (3.3) is rewritten as:

H1(m, k, t) : −A1(m,n, t), B1(m, ), B2(m, k); (3.5)

There is one rewritten rule for rule R1 in which the global data type B is replaced by

a set of joint B1 and B2. If the data type of the atom is a hybrid fragmentation, the

same as the vertical fragmentation is done.

For the head part of the rule Hi, after rewriting the body part, we duplicate the rule

for each fragment of the head part. If the head part is a non-vertical fragmentation,

the condition of each fragment is added at the end of the body before replacing the

head part by the atom of each Hi’s fragment. For example, the head part is fragmented

vertically as in Listing 3.7.

H(x, y, z) = H1(x>5)@'S2'
⋃

H2(x<=5)@'S3';

Listing 3.7: Vertical fragmentation of the head part.

Rule (3.5) is rewritten according to the data fragmentation of the head part as (3.6).
H1(m, k, t) : −A1(m,n, t), B1(m, ), B2(m, k),m > 5;

H2(m, k, t) : −A1(m,n, t), B1(m, ), B2(m, k),m <= 5;

(3.6)

The terminator of a rewritten rule is the same as that of the original rule. For each

intermediate rule that supports data transfer, the terminator is defined by a semicolon

(“;”). The detail of the rule rewriting process according to the data fragmentation is

presented in Algorithm 1.

3.3.1.2 Aggregate function

An aggregate function f helps to summarize information over the network [18], which

takes a set of elements I and produces an output O. It is defined as:

f : N I −→ O (3.7)

The Smartlog language also supports aggregate functions such as min, max, sum, count,

and avg like other rule-based languages (e.g. Netlog). Most of the aggregate functions

can be computed incrementally, even in distributed systems. An aggregate function f
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Algorithm 1 Rule rewriting.

1: procedure ruleRewriting(rule Ri)
2: for Bij in Bi do
3: if Bij instantOf Atom then
4: get Dj from aj
5: Djk ← Dj , ajk ← {Djk, aj}
6: if Dj is not a horizontal fragmentation then
7: Group of juncture Djk of Dj

8: Replace aj by set of junctures ajk (ajk ⊂ SA)
9: else Replace ai by set of ajk(ajk ∈ SA)

10: end if
11: if j == 0 then
12: for ajk in SA do
13: Create a new Rule Rij , add ajk to Rij
14: add Rij to list of Rule (LR|Rij ⊂ LR)
15: end for
16: else
17: for ajk in SA do
18: for Rij in LR do
19: if Cajk ∩ CRij 6= ∅ then
20: add ajk into Rij
21: end if
22: end for
23: end for
24: end if
25: else
26: for Rij in LR do
27: if CBij ∩ CRij 6= ∅ then
28: add Bij into Rij
29: end if
30: end for
31: end if
32: end for
33: for Fij in Hi do
34: Dij ← Fij , aij ← {Dij ,Hi}
35: if ∃cij ∈ Fij then
36: add cij into Rij
37: end if
38: Add aij to Rij
39: end for
40: end procedure
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that can be decomposed, is defined by:

f = f1 � f2 (3.8)

With f1 an identity function and f2 a self-decomposable aggregate function. The aggre-

gate functions in Smartlog are rewritten following equations (3.9) to (3.13) [41].
SUM(a) = a

SUM(A⊕B) = SUM(A) + SUM(B)

(3.9)


MIN(a) = a

MIN(A⊕B) = MIN(MIN(A),MIN(B))

(3.10)


MAX(a) = a

MAX(A⊕B) = MAX(MAX(A),MAX(B))

(3.11)


COUNT (a) = 1

COUNT (A⊕B) = COUNT (A) + COUNT (B)

(3.12)

{
AV ERAGE(A) = SUM(A)/COUNT (A) (3.13)

A disjoint union of a subset is denoted ⊕. In the case of a vertical data fragmentation,

elements of the set (A⊕B) are located in the same location. The output of the aggregate

function is computed easily with local queries. As an illustration, the rule (3.14) presents

an example of an aggregate function.

R2 : H(m, k, t) : −A(m,n, t), B(m, l, ), k := max(l); (3.14)

The rule (3.14) is rewritten as rule (3.15), and the aggregate function is not decomposed

in this rule because all l values are in the same location.

R21 : H1(m, k, t) : −A1(m,n, t), B1(m, l), B2(m, ), k := max(l); (3.15)

In the case of a horizontal data fragmentation, the set of elements is in different lo-

cations. The output of an aggregate function is computed based on the results of all

self-decomposable functions. In detail, each rewritten rule is split into two parts.

1. The first part holds the terms from the beginning of the body part to the self-

decomposable function.
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2. The second part expresses the identity function and holds the rest of the rule.

Using again rule (3.14) and the horizontal fragmentation of the data type B, as provided

in Listing 3.5, the rewritten rule (3.16), according to the data fragmentation, has to be

modified into rule (3.17) according to the aggregate function. It is noted that max

function in rule R31 and R32 is an aggregate function, but in rule R331 and R332 , it is a

comparison operator.
R21 : H1(m, k, t) : −A1(m,n, t), B1(m, l, ), k := max(l);

R22 : H1(m, k, t) : −A1(m,n, t), B2(m, l, ), k := max(l);

(3.16)



R31 : Tmp1(m, k1, t) : −A1(m,n, t), B1(m, l, ), k1 := max(l);

R32 : Tmp2(m, k2, t) : −A1(m,n, t), B2(m, l, ), k2 := max(l);

R331 : H1(m, k, t) : −!Tmp1(m, k1, t), !Tmp2(m, k2, t), k := max(k1, k2);

R332 : H1(m, k, t) : −!Tmp2(m, k2, t), !Tmp1(m, k1, t), k := max(k1, k2);

(3.17)

The result of the first part is generated by queries in each local database and saved

in a temporary data type (e.g. Tmp1 and Tmp2). These temporary data types are

gathered to produce the output of the aggregate function. Data items of each temporary

data type possibly trigger the calculation of the output. That is why there are many

rules generated for the second part. These data of temporary data type are deleted

once the output is produced. The deletion of the temporary data-items helps release

the working space during the rule execution as well as ensure the accuracy of the result

in the distributed computing paradigm. So, the consumption operator (“!”) is added in

front of these atoms in rule R331 and R332 .

3.3.2 Rule distribution

After determining which rules can be incurred from the original rule Ri, the next step

is to analyze these rules according to locations and decide the data transferred among

locations. In this step, each rule Rij in the set of rewritten rules LR (Rij ⊂ LR)

can possibly be separated into multiple rules according to fragments locations. In this

section, we present the steps of the optimal rule distribution.
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3.3.2.1 A rule in the form of a cyclic graph

The main purpose of this step is to specify the links existing among the terms in a rule.

We use a directed (cyclic) graph G(V, E), where (V, E) is a set of vertices and edges of

the graph respectively, indicating the link between the terms in the rewritten rule Rij .

The construction of the graph G represents the possible execution orders of a rule, in

which the rule can be performed exactly. The orders of the rule execution are determined

by passing the values from linked variables (whose value are known) to unlinked ones.

The first term of the body part of a rule is the only one that starts with all its variables

linked. Thus, all paths in the graph start with this term and end with the head part

of the rule. We analyze all variables of the terms in the rule in the reverse order (from

Hi to ai0) to constitute edges. Each term (except the condition one) which can create

new variables can be a vertex of the graph G(V, E). As the body of a Smartlog rule is a

conjunction of terms, all these terms are commutative. The commutativity of the terms

possibly leads to producing cycles in the graph.

For example, the directed cyclic graph constituted for rule (3.5) is shown in Figure 3.4.
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Figure 3.4: Intial cyclic graph for rule (3.5).

3.3.2.2 Covering irredundant directed acyclic graphs

The initial graph represents data paths among terms, which possibly contains cycles. In

practice, cyclic data paths cannot be executed; thus, covering directed acyclic graphs

have to be identified. For example, by deleting one by one the edges of a cycle in the
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cyclic graph of Figure 3.4, we generate two possible acyclic graphs shown in Figure 3.5

and Figure 3.6.
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Figure 3.5: First acyclic graph for rule
(3.5).
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Figure 3.6: Second acyclic graph for rule
(3.5).

In these graphs, there are several data paths to transfer the same value from one term to

another one potentially causing useless communications. Thus, it is essential to eliminate

redundant edges. The irredundant graph M(V, E ′) is a subset of the directed graph G

which has all vertices covered with such a number of edges that E ′ ⊂ E and the execution

order of the rule is not changed. Note that this problem is not about finding a minimum

spanning tree. Thus, methodologies such as optimum branchings [25] and Fibonacci

heap [28] cannot be applied. Before defining a redundant edge in a directed graph, we

define an indirect edge:

Definition 3.1. Let us consider a directed graph G = (V, E), with V a set of vertices, and

E a set of edges. Let us consider a direct edge ei =< u, v >, with ei ∈ E , head(ei) = u,

and tail(ei) = v. A path from the vertex q to the vertex t, called pq→t, is a set of edges

so that:

pq→t = {

{e1, ..., ek}|∀ei ∈ E ,head(e1) = q, tail(ek) = t,∀i ∈ [1..k − 1],

tail(ei) = head(ei+1)} (3.18)

q �� t...

� = < �, � >

Figure 3.7: Illustration of a path p from the vertex q to the vertex t.
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Definition 3.2. An indirect edge from the vertex q to the vertex t is ie, if it exists a

path from q to t so that the number of edges in the path (kp) is greater than 1.

ieq→t = {pq→t|∃p ⊂ E , kp > 1} (3.19)

Definition 3.3. An edge from the vertex q to the vertex t belonging to the set E is

called a redundant edge re if it exists an indirect edge from the vertex q to the vertex t.

req→t = {pq→t|pq→t ∈ E , ∃ieq→t} (3.20)

For example, the irredundant graph of Figure 3.5 and Figure 3.6 are shown in Figure 3.8

and Figure 3.9:

H1

B1 B2A1

(1)

(2
)

(3
)

(4)(5)

(6)

Figure 3.8: Acyclic irredundant graph of
Figure 3.5.
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Figure 3.9: Acyclic irredundant graph of
Figure 3.6.

In Figure 3.8, the first edge (1) from the vertex A1 to the vertex H1 is a redundant edge

because there is an indirect edge from A1 to H1 through the edges (5), (4) and (3). For

the same reason, edge (2) and edge (6) are also redundant edges because it exists an

indirect edge from B1 to H1 and A1 to B2. In the same way, the edges (1), (3), and

(5) are redundant in Figure 3.9.

3.3.2.3 Decisions to transfer data-items

The elimination of redundant edges requires rerouting of data items transitioning in the

acyclic graph so that the necessary data are still transmitted properly to the destination

(the vertex contains the head part). To decide how data items are transferred from one

vertex (i.e. A) to another vertex (i.e. B), all variables of the predecessor vertices are

taken into account. If a variable in A appears on a set of variables in A’s successor

then this variable is transferred. In case vertex A has more than one edge starting from
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it, all the key variables are transferred even if it does not appear in A’ successor. For

example, the transferred data-items for the acyclic irredundant graphs of Figure 3.5 and

Figure 3.6 are illustrated in Figure 3.10 and Figure 3.11.
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Figure 3.10: Rerouting data items in the
first acyclic irredundant graph from Fig-

ure 3.5.
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Figure 3.11: Rerouting data items in
the second acyclic irredundant graph from

Figure 3.6.

3.3.2.4 Location of terms

The location of each vertex must be determined before deciding the communication.

The location of the atom-containing vertex can be easily known in the description of the

data distribution. For instance, in rule (3.5), A1 and B1 are co-located in the site S1,

B2 in the site S2 and H1 in the site S3, as shown in Figure 3.12 and Figure 3.13 where

the red dashed rectangles indicate the locations.
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Figure 3.12: Data location in the first
acyclic irredundant graph from Figure 3.5.
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Figure 3.13: Data location in the second
acyclic irredundant graph from Figure 3.6.

Meanwhile, the location of non-atom vertices (an assignment term) is prioritized to

co-located as soon as possible within an atom-containing vertex location. The possible

positions of a non-atom vertex (NA, unknown location) with regard to an atom vertex

position (At, known location) are illustrated in Figure 3.14 to Figure 3.17.
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NAAt− 1 ...

Figure 3.14: One atom ver-
tex.

NA− 1At− 1 NA− 2 ...

Figure 3.15: Sequence of non-atom vertices.

NA− 1

At− 1

At− 2

At− 3 ...

Figure 3.16: Multiple links to a non-
atom vertex.

NA− 1

At− 1

At− 2

At− 3

At− 4

...

...

Figure 3.17: Multiple links from/to a
non-atom vertex.

Each vertex of the irredundant graph is examined. The non-atom location is assigned as

a priority to an atom vertex on its left side. In the illustration shown in Figure 3.14, a

non-atom NA is assigned to the same location as At−1. In the case of Figure 3.15, there

is a sequence of non-atom vertices. NA − 1 is assigned to the same location as At − 1

and NA−2 is assigned to the same location as NA−1. In the case of Figure 3.16, there

are many branches connecting to a non-atom vertex, but there is only one link on its

right side. Thus, the location of the non-atom is determined based on the location of its

right side’s vertex. In the case of Figure 3.17, many branches connect to the non-atom

vertex from both its left and right sides. Its location is assigned according to the first

branch on its right side At− 3.

In general, condition terms are used to evaluate already linked variables. Thus, they

have to be co-located with an atom vertex as soon as all its variables are assigned values.

After locating all the vertices, we label them according to the direction of the edges, in

order to calculate the needed volume of communication. If the next vertex has the same

location as the current one, the vertex labeling is ignored (the edge is presented by a

dash line) as shown in Figure 3.18 and Figure 3.19.

Messages between two locations are generated by local rules and include all data to be

transferred. For example in Figure 3.20, where two sets of data have to be transferred

from S1 to S2 ((m; t) from B1 to H, and (m; k) from B2 to H respectively), only one

message is transmitted, including the variables (m; t; k)
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Figure 3.18: Labeled graph of the first
acyclic irredundant graph from Figure 3.8.
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Figure 3.19: Labeled graph of the sec-
ond acyclic irredundant graph from Fig-

ure 3.9.
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H(m,k,t) :- A(m, n), B(n, t), C(m, k);

Figure 3.20: Simplify connections between two locations in a rule.

3.3.2.5 Process synchronization

It is always possible to build a minimal acyclic directed graph for a global rule com-

prising only one input (the first term of the body) and only one output (the head of

the rule), and to partition according to the data locations. Each location evaluate the

local rules that are supposed to be independent. These cooperating locations have thus

to be synchronized to achieve equivalent evaluations as the original global rule. The

synchronize locations ensure that messages contain sufficient information to match data

included in messages coming from different locations.

For example, in Figure 3.21, S5 receives two messages from S2 and S4 (m2 and m5

respectively). These two messages must be synchronized, so we need to find the location

at the origin of m2 and m5 (here S1). More precisely, we need to identify the term in S1

at the origin of these two messages. m2 is a consequence of m1, generated from terms

A, B, C and D. m5 is a consequence of m4 and m3, the latest one is generated from

terms A and B. The term causing the need of synchronization is thus B. So the key of

B has to be propagated in all outgoing messages from location S1 until location S5.

The communication cost of each candidate minimum acyclic graph must now be com-

puted in order to select the most efficient one.
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Figure 3.21: An illustrated graph for synchronization process.

3.3.2.6 Decision of communication

This part is critical to optimize the distributed computing process. All the labeled

graphs are examined to choose a graph that allows taking the best decision regarding

the communication criteria. With the hardware architecture hypotheses of [67], the

communication decision is evaluated as an objective function with priority parameters

in a descending order defined as follow:

1. Minimize the number of communications;

2. Minimize the number of transferred data-items.

In fact, to determine precisely the influence of each criterion on the objective function,

we must know the characteristics of the considered network such as bandwidth, error

rate, communication cost, etc. In the framework of this thesis, we do not approach

the cost model of communications in the context of smart grids, which represents a

perspective work.

From the point of view of the distributed programming, to simplify, we formulate the

objective function F as a nonlinear function of two criteria.

minimize F = x ∗ y (3.21)

Where x is number of communications per rule, and y the total number of data-items

transferred per rule. The decision of communication respects the optimal labeled graph

which possesses the minimum of the objective function (3.21) .

The optimal labeled graph allows determining the optimal rule execution order in which

the behavior of a rule is still transformed in the same way as in the distributed system. As

mentioned above, the transferred data items must be started from the root of the labeled
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graph (the vertex holds the first term of the body part) and end at the destination, which

holds the head part of the rule.

Let us call the objective function of the two labeled graphs (presented in Figure 3.8

and Figure 3.9) F1 and F2, respectively. We consider that the optimal labeled graph

represents the minimum of its objective function. For example, in rule (3.5), the optimal

labeled graph is the graph of Figure 3.18, because in Figure 3.19, there are 3 communi-

cations and 8 transferred data-items, but in Figure 3.18 there are only 2 communications

and 5 transferred data-items, thus F1 = 2 ∗ 5 < F2 = 3 ∗ 8.

3.3.2.7 Rule generation

The decision of communication complies with the optimal graph. The direction of the

communication between two labeled vertices respects the direction of the edge, and the

transferred data items as the edge’s weight. Data is packed in the form of a temporary

data type and sent to another location by message passing. The name of the temporary

data type, which is generated automatically, allows triggering the next actions in other

locations.

The name of the temporary data type is chosen so that temporary data types with

different attributes cannot have the same name. In the tool implementation, we name the

temporary data type in the form “Tmp + R + index-1 + NameModule + index-2 + G

+ index-3”, with index-1 being the order of the original rule in the module, index-2

its order in the list of rewritten rules, and index-3 its label order in the graph. For

example, in the optimal graph of Figure 3.18, a temporary data type named TmpR1A1G1

presents data-items transferred to the first label B2 in the first rewritten rule of rule

(3.3) in the module A.

Temporary data types are declared to the data types block in both locations (sender

and receiver). The data type IPMap is added at the end of the body part of the rule to

indicate the IP mapping of the target address as well. For example, the data sent for the

optimal graph of Figure 3.18 is expressed by sub-rules in Listing 3.8 in the site S1 and

in Listing 3.9 in the site S2. Once the data instance of data type A1 changes, the rule

in Listing 3.8 reacts and the result of this rule is sent to the address of site S2. After
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receiving the data-items of TmpR1A1G1, the rule in Listing 3.9 of the site S2 is triggered,

the result of rule execution is an update of the data items in H1 in the site S3.

Module(A1){

^TmpR1A1G1(x, t) :- A1(x, y, t), B1(x,_), IPMap('S2', @ip); }

Listing 3.8: Sub-rules generated in the site S1.

Module(TmpR1A1G1){

^H1(x,k,t) :- TmpR1A1G1(x, t), B2(x, k), IPMap('S3', @ip); }

Listing 3.9: Sub-rules generated in the site S2.

After transforming the original rule into sub-rules in which all terms of the body part

have the same location, each sub-rule is assigned to its location.

3.3.3 Program generation

After the rule distribution, the next step is to generate distributed Smartlog programs

corresponding to each participating computing units. Generating a distributed pro-

gram is the same as writing a Smartlog program with three main blocks: data types,

initial data , and Modules.

3.3.3.1 Generating the data types block

The data type block in an individual program that can be reconstructed from the

fragmentation of the original data types block and temporary data types which are

generated in the rule generation process. The temporary data types are assigned to

their locations during the rule processing.

In this section, we present how to generate data types blocks for each location. Based

on the description of the data distribution, each data type declaration (Di) in the

Data type block (D) is approved one by one. The original data type is rewritten to new

data types (Dij) according to its fragments (Fi). Algorithm 2 presents the distribution

of the data type block. In the case of a horizontal fragmentation, the fragment has no

attribute declaration part (Aij is NULL). The new data type form is the same as its
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Algorithm 2 Data types distribution.

1: procedure distributedatatypes(data type bloc)
2: for Di in D do
3: for Fij in Fi do get Aij from Fij
4: if Aij is null then
5: Rewrite new data-type Dij with Ai
6: else
7: Rewrite new data-type Dij with Aij
8: end if
9: Assign new data-type Dij to Lij

10: end for
11: end for
12: end procedure

original data type. For example, the original data type A, described in Listing 3.3 is

rewritten separately in two local databases, S1 in Listing 3.10 and S2 in Listing 3.11.

A1(Value1 : int key, Value2 : int, Value3 : int).

Listing 3.10: New data type A1 in site S1.

A2(Value1 : int key, Value2 : int, Value3 : int).

Listing 3.11: New data type A2 in site S2.

3.3.3.2 Generating the Initial data block

All initial data (Ii) in the initial data block (Ii ⊂ I) are rewritten according to

the data type (Di) and distributed to their own locations. Each fragment (Fij) of

the data types (Di) is evaluated based on its condition (Cij) before assigning a new

initial data (Iij) to its location (Lij). This process is shown in Algorithm 3.
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Algorithm 3 initial data distribution.

1: procedure distributeInitialData(initial data bloc)

2: for Ii in I do

3: for Fij in Fi|Fi ∈ Di do get Cij from Fij

4: if Cij is null then

5: Rewrite new initial data Iij

6: else if Ii is satisfied Cij then

7: Rewrite new initial data Iij

8: end if

9: Assign Iij to Lij

10: end for

11: end for

12: end procedure

Using the description of the data type A from Listing 3.3, an initial data block is

described using Listing 3.12.

Initial_data{

A(1, 2, 3).

A(3, 2, 4). }

Listing 3.12: A sample “initial data” block.

The initial data distribution in two sites S1 and S2 is proposed in Listing 3.13 and

Listing 3.14 respectively.

Initial_data{

A1(3, 2, 4). }

Listing 3.13: In site S1.

Initial_data{

A2(1, 2, 3).}

Listing 3.14: In site S2.

3.3.3.3 Modules

A Smartlog program is generated for each location by a set of its own data types,

initial data and rules that is grouped in modules according to their first atom in the

body part.
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The individual analysis of each rule in the decision of communication sometimes produces

rules duplication and replicates the message transfer through two machines. In fact, the

activation of two duplicated rules in the same module produces the same update of the

head part. That leads to unnecessary duplicate computations and may have unfortunate

side effects. A simplification of the program should be considered to eliminate this kind

of redundancy as well, as a prospective research.

3.4 Validation of the CPDE methodology

We have built a tool named semi-automatic rule distribution (SARD) implementing the

CPDE method. The SARD tool takes a centralized Smartlog program and the descrip-

tion of the data distribution, and generates a set of cooperating distributed Smartlog

programs. These programs must be installed in the distributed system in order to per-

form distributed computations. The objective of the validation process is to verify that

the behavior of the distributed execution conforms to the initial centralized one.

3.4.1 Validation methodology

The CPDE is validated by considering and evaluating behaviors of the SARD tool. Test

cases using the SARD tool are proposed as incremental tests in which the complexity is

ascending, and each test leans to the result of the previous ones. The test is constituted

of a centralized Smartlog program, a description of the data distribution and a set of

data-items insertion/modification which allows observing its behaviors (test scenarios).

The centralized Smartlog program, after being analyzed by the SARD, is installed in the

distributed system. Data items are inserted/updated to compare their behaviors in the

two versions of the implementation (the centralized one and the distributed one). If the

result of these two versions is identical, then the validation of the CPDE is positive.

3.4.2 Test campaign

The incremental tests with the structure of the test plan are presented below:

• Centralized test:
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� Rules containing only atoms;

� All co-located atoms;

� No fragmentation (1 fragment per data type).

• Fragmentation tests:

� Rules containing only atoms;

� All co-located atoms;

� Horizontal fragmentation;

� Vertical fragmentation;

� Hybrid fragmentation.

• Distribution tests:

� Rule containing only atoms;

� Distributed body part;

� Co-located body part but separated head part.

• Distribution fragmentation tests:

� Combination of the two previous tests.

• Assignment tests without aggregate function:

� With/without distribution;

� With/without fragmentation.

• Assignment tests with aggregate function:

� With/without distribution;

� With/without fragmentation.

• Condition tests:

� With/without distribution;

� With/without fragmentation;

� With/without assignment;

� With/without aggregate function.

A full detailed list of the test programs and their data distribution is available in ap-

pendix B.
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3.4.3 Results

The validationare used to refine/correct the CPDE methodology and its SARD imple-

mentation throughout the work. Appendix B shows the distributed programs obtained

with the proposed test scenarios. We have also observed the same behaviors between the

centralized and distributed versions of the test programs. The validation of the CPDE

was thus approved.

3.5 Conclusion

The Smartlog language is developed for programming and distributed data management

with a high abstraction level. Even if it is designed to be well adapted to the needs of

smart grids, distributed programming is still challenging. In this chapter, we proposed a

methodology, called Centralized Programming and Distributed Execution (CPDE), for

greatly facilitating distributed programming in Smartlog.

The CPDE methodology is proposed to translate a centralized Smartlog programs into

a set of cooperating distributed Smartlog programs according to a description of the

distribution of data while minimizing telecommunication costs. A tool, named Semi-

Automatic Rule Distribution (SARD), implementing the CPDE has been developed

and thoroughly validated using incremental tests.



Chapter 4

Smart grids applications in

Smartlog

4.1 Introduction

In Chapter 2, we developed a declarative distributed data manipulation language dedi-

cated to smart grids applications, called Smartlog. Whereby, the Smartlog language of-

fers to perform computations in local databases and to communicate over the network.

In Chapter 3, we proposed a new methodology facilitating the distributed program-

ming, called Centralized Programming and Distributed Execution (CPDE). It relies on

automatic Smartlog rule distribution according to a given data distribution.

This chapter aims at experimenting the proposed language and programming method-

ology over four real-life smart grid applications, to illustrate the pro and cons of our

proposals. The first section presents our experimental environment, involving real-time

simulation and hardware in the loop (with Raspberry Pis). The next sections present

each application, their motivation, the Smartlog implementation, and discuss the results.

The first two applications require a parallel execution in each node with real data. The

last two applications must be performed in the real-time simulation platform with the

cooperation of multiple nodes in the network architecture and real-time data production.

85
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The first application, daily load curve reconstruction, presented in Section 4.3, tends to

saturate the communication network and central servers when the number of smart me-

ters drastically increases. We show that the Smartlog parallel implementation supports

more efficiently this scalability issue.

The second one, computation of bus admittance matrix, presented in Section 4.4, exploits

the reactivity of Smartlog to reduce the quantity of computation when there is any

change occurring in the system. Reactivity allows indeed an incremental programming

approach.

The third one, presented in Section 4.5, is distributed secondary control in microgrids.

It combines the advantages of both previous applications for distributed computation.

The last one, presented in Section 4.6, is voltage regulation of a distribution grid. It

demonstrates the correctness of the CPDE methodology in a more complex, fully dis-

tributed environment.

4.2 Experimental environment

Model of power grid used as object to implement the control algorithms in Smartlog

and is simulated in the Simulink/Matlab® environment. After testing in the Simulink

environment, the model is loaded in a real-time simulation machine, an OPAL-RT target

[23], for execution. The objective is to observe the response of the grid model and its

interaction with the Smartlog language as close as possible from the real-time.

Each control node is equipped with a Raspberry Pi 2 model B to perform local computa-

tions as it hosts the node architecture shown in Figure 2.1. Depending on the number of

controlled nodes in the power grid model, the number of Raspberry Pis is variable. This

network of Raspberry Pis constitutes the distributed database network as mentioned in

Chapter 2.

Measured data are collected from the simulated grid model through the OPAL-RT server

and sent to each Raspberry Pi. At the same time, each Raspberry Pi can communicate

with the others using a TCP/IP protocol and send back control values to the OPAL-RT

server to set up actuators in the simulated grid.
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In this set-up, OPAL-RT and the network of Raspberry Pis are configured in the same

network. Thus, IP addresses supply enough information to identify nodes in the network.

The architecture of the real-time simulation platform used for experimentation is shown

in in Figure 4.1. The total communication time between OPAL-RT and the Raspberry

Pis is estimated to be around 10 ms.

Text

Figure 4.1: Architecture of the real-time simulation platform.

4.3 Daily load curve reconstruction

Raw data from utility data collection devices (sensors, smart meters, control devices,

etc.) are sent to a concentrator and data management system at the central grid operator

for processing. These devices generate a large amount of data for the central operator.

That requires considerable amount of communication, processing and storage in the

centralized data management system (CDMS) as shown in Figure 4.2. These requests

will increase even further with the addition of new devices to the distribution grid. For

centralized data management to meet these requirements, utilities must make significant

infrastructure investments to improve the computing power and storage capacity of the

CDMS. That leads to an increasing cost and complexity of maintaining and scaling the

system, as well as more and more data latency. Thus, distributed data management

systems are proposed to deal with these issues. All or part of the processing carried out

by CDMS is intended to be executed in the network computing units.
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Central server

Smart meter

Figure 4.2: Centralized data collection.

The computing units in the network process raw data in parallel. That allows the

network to naturally adapt to the addition of new computing units, and to cope with

the increasing number of devices. Besides, this paradigm also helps to improve data

latency [3]. Instead of a batch in the CDMS, the network computing units process data

on-demand as soon as they are received. Moreover, the computing units are located

near collection devices, it does not make a round trip to a central grid operator before

providing information to the customers. Latency is then further minimized.

In that context, we use Smartlog to deploy the simple processing and aggregation of

raw data in a distributed data management system (DMS). The specific application

used in this section is a local aggregation of load curves. Its purpose is to illustrate the

compactness of Smartlog and the scalability of the DMS.

4.3.1 Methodology

We assume that there are associated computing units in all smart meters (a limited

computing power is sufficient), which can be in charge of receiving data measured from

the smart meter and acting as a node in the architecture defined in Subsection 2.2.1.

For control services in an advanced distribution automation (ADA) [83], the average

active power (POW) and reactive power (REP) is collected every 15 minutes [77]. How-

ever, for a daily monitoring application, hourly data storage is sufficient. The average of
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the power consumption of the load is computed every hour, and these values are stored

for 24 hours. After 24 hours, the data is deleted to free local memory.

The measured data of active and reactive power are accumulated during each hour, and

then the mean power consumptions are computed and stored. Mean values aged of more

than 24 hours are deleted.

4.3.2 Smartlog implementation

The above principle is implemented with the description of the data types in Smartlog

presented bellow:

Measure(ID, POW, REP): Instantaneous measure of POW and REP;

CurrentHour(Time): This data type is updated every hour;

Sum(ID, SUM-POW, SUM-REP, COUNT): Accumulation of POW and REP, and number

of measures;

Curve(ID, Time, AVG-POW, AVG-REP): Generated load curve.

Four Smartlog rules, grouped in two modules implementing the load curve computation

are presented in Listing 4.1.

Module(Measure){

--R1-- Sum(x,p,q,1) :- Measure(x,p,q), ~Sum(x,_,_,_).

--R2-- Sum(x,sp,sq,c) :- Measure(x,p,q), Sum(x,spo,sqo,co), sp:=spo+p, sq:=sqo+q,

c:=co+1.

}

Module(CurrentHour){

--R3-- Curve(x,h,ap,aq) :- CurrentHour(h),a:=h-24, !Sum(x,sp,sq,c), ~Curve(x,a,_,_),

ap:=sp/c, aq:=sq/c.

--R4-- Curve(x,h,ap,aq) :- CurrentHour(h),a:=h-24, !Sum(x,sp,sq,c), !Curve(x,a,_,_),

ap:=sp/c, aq:=sq/c.

}

Listing 4.1: Daily load curve reconstruction.

When measure data items arrive (Measure module), Sum is updated by adding the

current values with new measured values and the counter is increased (rule R2). If
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it is the first measure of the hour, there is no corresponding Sum and the counter value

is set to 1 (rule R1). For every hour update (CurrentHour module), data items in Curve

are produced with sum values and count values stored in Sum (rule R3). If data items

in Curve exist before 24 hours, they are deleted (rule R4). For both rules R3 and R4,

deleting the Sum data item resets the sum computation.

This Smartlog program computes load curves for all meters from which it receives mea-

sures, either for only one smart meter (full parallel execution, program installed on every

meter), a group of them (parallel group processing, one program for a group of meters),

or even all of them (centralized processing, only one program for the whole power grid).

Parallel computing is performed on independent subsets of measures, ensuring scalabil-

ity.

4.3.3 Results and discussion

For our experiment, the data set of real measures collected every minute from a point

in the distribution grid in Vietnam is used. These data are updated consecutively to

the computing units. The data input includes values of active and reactive power from

0h, January 5th 2017 to 6h, January 6th 2017. The load curve is drawn from computing

units after updating all datasets and is shown in Figure 4.3a and Figure 4.3b.

As shown in Figure 4.3, the Smartlog program produces the expected result. A lot of

measured data are inserted to the local database, but the values stored in data type

curve cover only the last 24 hours. Each value in curve is an average value of the

measured data of the previous hour.

This experiment shows that the Smartlog language provides a simple and straightforward

program that operates in parallel in each node in the DMS for which there is no need

of a central server. With this first application, we can also see its compactness: The

program fulfills a specific description with only four rules.

4.4 Computation of the bus admittance matrix

The bus admittance matrix (Y bus) is one of the data requirements needed to run a power

flow study (optimal or not). The bus admittance matrix is constructed to simplify the
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(a) Daily active power curve.

(b) Daily reactive power curve

Figure 4.3: Daily load curve reconstruction.

representation of a complex grid with a matrix that is more suitable to solve power

balance problems with algorithms. It is developed as a useful tool for power systems. In

this application, we program the admittance matrix computation in Smartlog in order

to demonstrate reactive and incremental properties of the Smartlog language.

4.4.1 Methodology

The Y bus matrix of a grid with N nodes is a square matrix Y busNxN . It is computed

from the resistance and reactance measured between each pair of nodes in the actual

power grid and noted Rij and Xij respectively. Each element yij of the Y bus matrix

represents the admittance of the power line connecting node i to node j, with yij =

z−1ij = (Rij + jXij)
−1. yi is the admittance-to-ground of the node i. The mathematical
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expression of the Y bus matrix is expressed in (4.1) [85].

Yij =


yi +

N∑
k=1,k 6=i

yik, if i = j

−yij , if i 6= j.

(4.1)

Each element of the Y bus matrix is computed independently, except the elements in the

diagonal, which depend on the values of the other elements in the same row. An imple-

mentation of the Y bus computation with Matpower 6.0 [85] is proposed in Listing 4.2

and is used for comparison with our Smartlog implementation.

1 % Bus Admittance Matrix

2 % Copyright (c) 1998 by H. Saadat.

3

4 function[Ybus] = ybus(zdata)

5 nl=zdata(:,1); nr=zdata(:,2); R=zdata(:,3); X=zdata(:,4);

6 nbr=length(zdata(:,1)); nbus = max(max(nl), max(nr));

7 Z = R + j*X; %branch impedance

8 y= ones(nbr,1)./Z; %branch admittance

9 Ybus=zeros(nbus,nbus); % initialize Ybus to zero

10 for n = 1:nbus % formation of the diagonal elements

11 for k = 1:nbr

12 if nl(k) == n | nr(k) == n

13 Ybus(n,n) = Ybus(n,n) + y(k);

14 else, end

15 end

16 end

17 for k = 1:nbr; % formation of the off diagonal elements

18 if nl(k) > 0 & nr(k) > 0

19 Ybus(nl(k),nr(k)) = Ybus(nl(k),nr(k)) - y(k);

20 Ybus(nr(k),nl(k)) = Ybus(nl(k),nr(k));

21 end

22 end

Listing 4.2: Reference program in Matpower 6.0.

In the reference program, the zdata structure (line 5) is the input of the Y bus func-

tion and is used to store the resistance (R) and the reactance (X) values. From the

parameters of the zdata structure, the impedance (Z) and the admittance (Y ) of the

branches are computed (lines 7 and 8). Y bus is initialized in line 9. The elements of
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the Y bus matrix are then computed: the diagonal elements from line 10 to 16, and the

off-diagonal elements from line 17 to 22, according to (4.1).

As Smartlog is a reactive language, we perform an incremental computation of the Y bus

matrix. Adding or updating a value in the zdata structure triggers the computation of

new or updated values of the Y bus matrix, as sums can be computed incrementally.

4.4.2 Smartlog implementation

In Matpower 6.0, the Zdata structure contains the resistance (RES) and reactance

(REA) values of the power lines connecting each pair of nodes (ID1 and ID2). Ybus

contains the real part (RE) and the imaginary part (IM) of the elements of the bus

admittance matrix.

Zdata(ID1, ID2, RES, REA): Parameters of electrical lines;

Ybus(ID1, ID2, RE, IM): RE and IM of the admittance of the line from node ID1 to

node ID2;

The implementation in the Smartlog language for the computation of Y bus is presented

in Listing 4.3.

Module(Zdata){

--R1-- Ybus(i,i,re,im) :- Zdata(i,_,r,x), Ybus(i,i,ro,imo), re:=ro+(-r/(r*r+x*x)),

im:=imo+(x/(r*r +x*x);

--R2-- Ybus(j,j,re,im) :- Zdata(_,j,r,x), Ybus(j,j,ro,imo), re:=ro+(-r/(r*r+x*x)),

im:=imo+(x/(r*r+ x*x));

--R3-- Ybus(i,i,re,im) :- Zdata(i,_,r,x),~Ybus(i,i,_,_), re:=(-r/(r*r+r*r)),

im:=(x/(r*r+x*x));

--R4-- Ybus(j,j,re,im) :- Zdata(_,j,r,x), ~Ybus(j,j,_,_), re:=(-r/(r*r+x*x)),

im:=(x/(r*r+x*x));

--R5-- Ybus(i,j,re,im) :- Zdata(i,j,r,x), re:=-r/(r*r+x*x)), im:=x/(r*r+x*x));

--R6-- Ybus(j,i,re,im) :- Zdata(i,j,r,x), re:=-r/(r*r + x*x)), im:=x/(r*r+ x*x)).

}
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Listing 4.3: Y bus matrix computation in Smartlog.

Because the Y bus matrix is symmetrical through the diagonal elements, thus the update

of the line parameters leads to an update of four elements in the Y bus matrix. In the

Smartlog program, when a modification of the power line characteristic in Zdata occurs

(i.e. between two preexisting nodes), the corresponding diagonal values of Y bus are first

updated (rules R1 and R2) and then the off-diagonal values are updated (rules R5 and

R6).

When a new node is added to the power grid, a new power line is also added, linking the

new node to a preexisting one. A new data item is then inserted in the zdata structure,

triggering the insertion of a new diagonal admittance value for the new node (either rule

R1 or R2), the update of the diagonal admittance value of the preexisting node (either

rule R3 or R4), and the update or insertion of the off-diagonal admittance values (rules

R5 and R6).

The behavior of rules R5 and R6, insertion or update, depends on the presence of a value

in the Y bus matrix. Either the value exists and rules R5 and R6 perform an update, or

they perform an insertion. Thanks to the notion of data type key in Smartlog and also

to the different terminators of the rules making them able to chain their execution.

4.4.3 Results and discussion

We consider a sample grid with the same voltage level in all nodes and ignore the line

capacitors as in Figure 4.4.

node 1 node 2

node 3

�
�
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�����12

Figure 4.4: Grid support of the Y bus computation application.
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The reference program computes the Y bus matrix with the set of parameters for all the

power lines as input, stored in Zdata. If there are any changes in Zdata, all parameters

in Zdata must be reloaded and all elements of Y bus are recomputed. By contrast, the

Smartlog program “accompanies” each element in Zdata. By detecting a change in

Zdata, it will immediately react to that changed parameter and will not affect the other

elements of Y bus. As shown in Figure 4.5, describing the principle of the implementation,

the size of the matrix Y bus increases progressively by inserting/updating nodes (and

power lines) of the grid. The first operation creates a simple power grid (one line between

two nodes N1 and N2), the second one adds a new node N3 and a line linking it with N1,

the last one adds a new line between preexisting nodes N2 and N3. The updated values

are in red. This advantage is shown more visibly when the dimensions of the Y bus

matrix increases. Thus, this implementation eliminates the redundant computations.

This type of programming is particularly relevant for real-time applications in smart

grids in order to reduce computing time.
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Figure 4.5: Principle of the update of the Y bus admittance matrix.

With the same set of data in Zdata, both programs give the same result with two

different execution manner. However, Smartlog demonstrates its good adaptability in

incremental computations.
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4.5 Secondary control in an islanded microgrid

The development of microgrids is a part of the development of power systems as a whole.

Power systems are potentially constructed as an aggregation of microgrids, which helps

enhancing the overall resiliency and robustness of the system. The considered microgrid

is designed to operate in hybrid mode, either connected to the main power grid or not

(i.e. islanded mode). The microgrid contains power generator sources (e.g. renewable

sources, batteries) and loads to ensure that the system can work autonomously. In

normal operation, the microgrid operates in grid-connected mode, sharing local power

production with the main grid. In case of main grid failure, the microgrid operates in

islanded mode, maintaining its own system.

In islanded mode, all power sources must participate in maintaining the power balance.

For this purpose, the primary control performed on each source will manage the balance

between loads and generators. That causes possibly frequency and voltage variations.

The secondary control is designed to compensate such frequency and voltage deviation

in order to bring them back to nominal values.

We chose this application to focus on evaluating the implementation rather than the

control method itself. Some properties of Smartlog such as simplicity, compactness,

scalability, and incrementality are highlighted with this application. In addition, the

objective is to illustrate its ability to support a distributed execution. The main points

of interest are whether the execution in the local database affects the performance of the

Smartlog implementation significantly and whether the implementation can be adapted

to a near real-time operation. In this application, the computations of each node are

programmed and manually distributed over the computing resources. The results are

evaluated based on control criteria and compared to the implementation with an imper-

ative language.

4.5.1 Methodology

In islanded mode, the microgrid is disconnected from the main power grid. If the load

varies, the primary control of each available source reacts immediately to keep the system

operating in power balance (and eventually remain stable). This leads to variations in

frequency and voltage magnitude, which impact the quality of the delivered energy. The
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frequency and voltage deviation as a function of the power production are expressed by

the droop control shown in (4.2).

∆f

∆P
=

f − fo
P − Po

= −m and
∆V

∆Q
=
V − Vo
Q−Qo

= −n (4.2)

With fo and Vo the set-point values of the frequency and the voltage respectively; m

and n the droop gains; Po and Qo the initial active and reactive powers; P and Q the

instantaneous active and reactive powers. The relation of f/P and v/Q in (4.2) can be

represented by droop characteristic lines (DCL).

The objective of the secondary control is to bring back the frequency and the voltage

at their nominal values. Ordinarily, the secondary control for power generators using

alternators is taken in charge by the automatic generation control (AGC). The principle

of the AGC is to move the DCL in parallel to the actual one by changing the initial

power parameters of the generator [62]. As shown in Figure 4.6, increasing the initial

power value (from P0 to P
′
0) moves the DCL to the right and consequently act on the

frequency. The same behavior is observed for reactive power and voltage.
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(b) Voltage and reactive power.

Figure 4.6: The principle of the secondary control used in the AGC.

The resources in a microgrid scenarios are mostly DER such as photovoltaic panels

and storage systems. The integration of DER, which usually contains DC sources,

implies the use of a voltage source inverter (VSI) [62]. In our application, we consider

a combination of three elements: (i) an array of photovoltaic panels producing a DC

current, (ii) a battery facilitating the power control by storing or discharging power on

demand, and (iii) a VSI converting the DC current into AC and emulating a primary

control.
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Figure 4.7: Diagram of the integration of DER into the AC microgrid.

The power calculation block instantaneously computes the active and reactive powers

from measured three-phases voltage and current data. Meanwhile, the inner controller,

part of the VSI, is in charge of tracking the voltage and current reference and sending

the control signals to the pulse width modulation (PMW) unit.

The secondary control of the VSI sends compensation values of frequency and voltage

(∆f and ∆V , respectively) to the primary control to bring the frequency and voltage

values back to the nominal ones. The values of ∆f and ∆V are specific to each power

source and must be computed using the characteristics of all sources. As shown in

Figure 4.8a, increasing the frequency parameter (from f0 to f) permits to move the

DCL up and thus to increase the power while maintaining the nominal frequency.

To compute the values of ∆f and ∆V , we start with:
P ′o = Po + ∆P

Q′o = Qo + ∆Q

with


−m∆P = ∆f

−n∆Q = ∆V

(4.3)

The derivative of the frequency and the voltage are computed in (4.4).
ḟ = ḟo −m(Ṗo − Ṗ )

V̇ = V̇o − n(Q̇o − Q̇)

(4.4)
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Figure 4.8: The principle of the secondary control used in the application.

In the secondary control, the set-point frequency (fo) and set-point voltage magnitude

(Vo) are constant, but the initial active and reactive powers are changed by a quantity

∆P and ∆Q respectively. So, (4.4) is rewritten in:
ḟ = −m(Ṗ + ∆̇P )

V̇ = −n(Q̇+ ∆̇Q)

(4.5)

Combining (4.5) and (4.3), we get:
∆̇f = ḟ +mṖ

∆̇V = V̇ + nQ̇

(4.6)

To ensure an effective active power sharing, the product of the active power and the

droop coefficient of each generator must be identical [35]. This is expressed in (4.7).

mi.Pi = mj .Pj (4.7)

The synchronous tracking error method [13] allows synchronizing the frequency, the

voltage and the active power sharing of all DER-based clusters or microgrids. It de-

fines the derivative of the frequency, the voltage and the active power sharing for each

generator i as: 
ḟi = cf × eif

v̇i = cv × eiv

mi.Ṗi = cp × eip

(4.8)
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Where cf , cv and cp are control coefficients. The local neighborhood errors, eif , eiv and

eip, are defined with (4.9). Herein, the coefficients cf , cp and cv are chosen identical, and

from now on are called c-coefficient.
eif =

∑
j∈Ni

aij .(fj − fi) + ai0.(fo − fi)

eiv =
∑

j∈Ni
aij .(Vj − Vi) + ai0.(Vo − Vi)

eip =
∑

j∈Ni
aij .(mj .Pj −mi.Pi)

(4.9)

Where aij is a coefficient representing the connection of node i to node j (1 if connected

and 0 if not).

The derivation of the reactive power is computed with a low-pass filter, expressed in

(4.10) in the Laplace domain.

Q =
wc

wc + s
Q′ ⇒ Q.s = wc.(Q

′ −Q) ≡ Q̇ (4.10)

Where Q′ and Q are feedback values of the reactive power, respectively before and after

the low-pass filter. The cut-off frequency of the filter is wc.

To implement this method in the real-time experimental installation, all equations must

be transformed in their discrete-time representation. The output is then calculated as

follows: 
∆fi =

∫
∆̇fidt

∆Vi =

∫
˙∆Vidt

(4.11)

These Laplace functions are transformed into discrete time with Ts as sample time.


∆fi(k) = Tsuf (k) + ∆fi(k − 1)

∆Vi(k) = Tsuv(k) + ∆vi(k − 1)

with


uf (k) = −cfeif (k)− cpeip(k)

uv(k) = −cveiv(k) + uq(k)

uq = −ni(Q(k)−Q(k − 1))/Ts

(4.12)

The method converges if Ts × c < 1 [58], c relates to the response time of the system.

To evaluate the performance of the Smartlog implementation, the c-coefficient will be

fixed, and Ts will vary, because Ts depends mostly on the sum of the computation and

communication time. The value of Ts will affect the smoothness of the system response.

The smaller Ts is, the smoother the system response is. On the contrary, if Ts is too big
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and violates the convergence criteria, the system will be unstable and possibly go out of

control.

4.5.2 Smartlog implementation

In the context of this application, we denote the identification (ID) of each node as

an integer number, the set-point values of frequency and voltage are 50 Hz (standard

frequency in Europe) and 311 V (nominal voltage in three-phases low-voltage grid) re-

spectively. The c-coefficient is chosen depending mainly on the network characteristic.

Ts itself is always bigger than the delay time of each communication Tdelay. Based on

the condition of method convergence, the value of C is chosen so that Ts > Tdelay and

at least, with a Ts guarantying that the control method converges in the traditional

implementation. In our case, C is set to 2.

The description of the data types used in the Smartlog program is proposed as follows:

Measure(ID, FRE, VOLT, POW, REP): Instantaneous measure of the frequency, volt-

age, active and reactive powers for each node;

Droop(ID, m, n): Droop constants for each DER generator;

DynamicMeasure(ID, FRE, VOLT, mPOW, nREP, REP): Data sent to neighbor

nodes;

Neighbor(ID, ID-neighbor, Address): Neighbor name/network address mapping;

NeighborData(ID, ID-Neighbor, δfij, eif, δvij, eiv, δpij, eip): Local neighbor er-

rors of frequency, voltage and power sharing;

NeighborSum(ID,
∑
δfij,

∑
δVij): Sum of local neighbor errors;

Output(ID, ∆fi, ∆Vi): Compensation values of frequency and voltage for each node;

The program, shown in Listing 4.4, is loaded into each computing unit for real-time

experimentation.

Module(Measure){

--R1-- & DynamicMeasure(i,f,v,mp,nq,q) :- Measure(i,f,v,p,q),

DynamicMeasure(i,_,_,_,_,qo), f<>50, Droop(i,m,n), mp:=m*p, nq:=n*(q-qo),

Neighbor(i,j,@k);
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}

Module(DynamicMeasure){

--R2-- NeighborData(i,j,ef,sef,emp,semp,ev,sev):- DynamicMeasure(i,f,v,mp,_,_),

NeighborData(i,j,df,_,dmp,_,dv,_), DynamicMeasure(j,fj,vj,mpj,_,_), ef:=fj-f,

sef:=-df+ef, emp:=mpj-mp, semp:=-dmp+emp, ev:=vj-v, sev:=-dv+ev;

--R3-- NeighborData(i,j,ef,sef,emp,semp,ev,sev):- DynamicMeasure(j,fj,vj,mpj,_,_),

NeighborData(i,j,df,_,dmp,_,dv,_), DynamicMeasure(i,fi,vi,mpi,_,_), ef:=fj-fi,

sef:=-df+ef, emp:=mpj-mpi, semp:=-dmp+emp, ev:=vj-vi, sev:=-dv+ev;

--R4-- Output(i,ef,ev,now) :- DynamicMeasure(i,f,v,_,nq,_), Output(i,efo,evo,to),

NeighborSum(i,sf,sv), ef:=(efo+(now-to)*0.001*2*(sf+(50-f))),

ev:=(evo+(now-to)*0.001*(2*(sv+311-vm)+nq)).}

Module(NeighborData){

--R5-- NeighborSum(i,ef,ev):- NeighborData(i,_,_,sdf,_,smp,_,sdv),

NeighborSum(i,df,dv), ef:=df+sdf+smp, ev:=sdv+dv.}

Listing 4.4: Distributed secondary control implementation in Smartlog.

When a data item in Measure is modified and its frequency value violates the setpoint

value, the data item in DynamicMeasure are sent to the neighboring nodes (rule R1)

and the neighborhood error is updated in the current node (rule R2). Otherwise, if a

node receives the modification of neighbor’s data, it also updates the neighborhood error

(rule R3). Every change in the neighborhood’s error leads to the incremental update in

the sum of the neighborhood’s errors (rule R5). The output control values consecutively

change if there is a modification of each measured data item, itself or one of its neighbors

(rule R4).

4.5.3 Experimental results

To illustrate the behaviors of the secondary control, we chose a simplified islanded mi-

crogrid with three distributed energy resources (DER) which supply AC static loads, as

shown in Figure 4.9.

The parameters of the VSI as well as the coefficients of the primary control are presented

in detail in appendix A. The model is constructed and simulated in the Simulink/Mat-

lab environment, then it is executed in the experimental environment as described in

Section 4.2.
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Figure 4.9: Simulated microgrid to illustrate the secondary control [75].

We perform the simulation of the microgrid in islanded mode for 60 s and load changes

at T=20 s and T=40 s by a variation of 25 % of the maximal power. The parameters

of the primary control are computed so that the stability of the grid, when the load

changes, should be reached after 0.5 s.

At times T=20 s and T=40 s, the load change leads to the change of frequency. The

secondary control is activated to restore the frequency and voltage magnitude to their

set-point value and share the powers among resources, as shown in Figure 4.10a, Fig-

ure 4.11a and Figure 4.12a.

(a) Smartlog implementation. (b) Java implementation.

Figure 4.10: Frequency response after a 25 % load change.

We focus on considering the behaviors of the controllers facing the changes in the sys-

tem. The fluctuation of the starting moment is ignored as it should only(rarely) occur

in the microgrid life (i.e. transitions from connected mode to islanded mode). The
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(a) Smartlog implementation. (b) Java implementation.

Figure 4.11: Voltage response after a 25 % load change.

(a) Smartlog implementation. (b) Java implementation.

Figure 4.12: Active power sharing after a 25 % load change.

incremental programming implementation in Smartlog in the real-time simulation plat-

form obtains the same desired results as in the secondary control theory. These results,

from distributed Smartlog implementation, allows once again confirming the distributed

fixpoints of the Smartlog program as well as the distributed programming mechanism

of Smartlog. In the following section, we discuss on qualitative evaluations in Smartlog

and its limitations.

4.5.4 Discussion

4.5.4.1 Simplicity

The Smartlog language supports working simply with database management and com-

munication. It uses simple symbols (“^”, “@”) to describe communications for which

others languages need much more command rules. Moreover, it is not necessary to de-

clare variables in modules because this declaration is made automatically and optimally

with Smartlog. In each component, a Smartlog program clarifies which subproblem
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in the system is activated and the corresponding commands are executed, so that no

additional commands are executed.

4.5.4.2 Compactness

Each rule in Smartlog represents a concrete problem. A rule can be a combination of the

condition operator and computations, i.e. the execution. This combination leads to a

program being more perspicuous. Indeed, the secondary control is programmed in only

five rules in Smartlog. Moreover, the implementation in Smartlog is simple, because it

works on the database which is available in each node in the smart grid. No sequence of

code is really defined in the algorithm, as computations depend on the meaning of data

and not only follow the steps of the algorithm. The output of the control is immediately

adjusted after a change in the data.

For comparison, the same implementation in Java JDK 1.8.0 (whose data are stored in

the temporary memory, not in the database) is used as a reference scenario. The Java

program is available in [78]. The comparison of both implementations allow confirming

the quantitative evaluations as well as the impact of an execution in the database on

the response of the Smartlog implementation.

The results of the secondary control implemented in Java are shown with the frequency

(Figure 4.10b), voltage magnitude (Figure 4.11b), and power sharing (Figure 4.12b) as

a function of the time. The response-time of both implementation of the control are

similar in both programming languages. However, the number of command lines in Java

is much more significant than in the Smartlog implementation. The compactness of

Smartlog in this test-case is summarized in Table 4.1.

Table 4.1: Number of command lines and instructions in Smartlog and Java for the
secondary control implementation.

Smartlog Java

Lines 5 54
Instructions 36 108

The implementation in Smartlog needs almost 10 times less lines of code and 3 times

less instructions than the implementation with Java. Looking at the level of the number

of machine-level instructions is the next step of this comparison but was not easily
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accessible for the experiment, because both the Java and the Smartlog implementations

were not directly compiled into machine code.

4.5.4.3 Increment and scalability

Because Smartlog is designed for declarative programming, the computation is based on

detecting changes in the database. Smartlog supports algorithms developed for real-time

control based on the current measure and history data. The output values are corrected

step by step. For this reason, no sample communication timing between neighbors are

fixed. Those timings are defined by the interval between updates in data and the actual

computation time.

Moreover, by keeping the same configuration of network and the same program (mod-

ules), the performance of the load computation is conducted on an increasing number of

Raspberry PIs. We get the same result, but the computation is shared. This proves the

potential of the approach in sharing the calculations and data as the computing resource

of the system grows up.

4.5.4.4 Execution in the local database

Smartlog is designed to perform computations via local databases. This architecture

presents some advantages but affects the performance of the program execution. This

particular application is also interesting to evaluate the possibilities of control and man-

agement of a microgrid with Smartlog.

As stated in Subsection 4.5.1, the sample time Ts affects the smoothness of the response.

When we look more closely at the voltage response of the first generator (at T=20 s)

in both implementations, presented in Figure 4.13, the Java implementation is better

performing. It means that Ts is bigger in the Smartlog implementation than in the Java

one. This can be explained simply by the fact that data in the Java implementation are

stored in Read-Only Memory, which has a faster query time than the database used in

the Smartlog implementation.

However, it should be admitted that this does not affect the results and the response

time of the system significantly. The performance of Smartlog is apparently sufficient
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(a) With Smartlog. (b) With Java.

Figure 4.13: Voltage response in both implementations.

for the operating requirements in the context of this islanded microgrid, which was our

initial goal. The procedure for the acceleration of the computing time in Smartlog is

a research perspective, for example by using in-memory databases or dedicated rule

execution engines.

4.6 Voltage regulation with PV production

The integration of renewable energies into power systems is a challenge for the develop-

ment of smart grids. The increase in the percentage of penetration of these resources,

especially photovoltaic (PV) systems into traditional power systems, causes risks of

power imbalance as well as impacts the energy quality. One of the most notable issues,

when this energy source is integrated into the grid, is over-voltage due to the overproduc-

tion. There are many solutions to tackle this problem, and one of the most interesting

methods, being suitable for the CPDE methodology illustration, is the Adaptive Ac-

tive Power Capping (AAPC) method [6]. AAPC method is preferred for execution in

a central server. We approach this application as a centralized algorithm to validate

our CPDE programming methodology (refer to Chapter 3). The objective is, with a

well-behaved (converging) centralized program, to verify that the distributed programs

also converges, and that its transformation into a set of distributed programs by CPDE

does not affect the algorithm.
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4.6.1 Methodology

The purpose of the AAPC method is to prevent the highest voltage node in the grid to

exceed the threshold in which the node has to be cut off from the grid. In [6], there

are two over-voltage thresholds: warning (VC1) and alert (cut off from the grid, VC2).

They are set to [VC1 ;VC2 ] = [1.042; 1.058] pu. The node having the highest voltage is

called the critical node. If the voltage of a critical node is in the threshold [VC1 ;VC2 ]

then other nodes have also the corresponding threshold [Vt0 ;V
′
C2

], with V
′
C2
< VC2 . We

consider that the variation of the voltage in the distribution grid (on a short time) is

assumed to be linear and proportional to the injected active power. Thus, we can predict

the value of the limited active power for each photovoltaic system corresponding to its

upper bound voltage at each node. If a photovoltaic system produces at its limited

power, it will prevent the over-voltage. The general principle of the method is presented

in Figure 4.14.
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Figure 4.14: Principle of Active Power capping method [6].

The over-voltage occurs in one or several nodes in the grid. When the voltage of a

node is superior to Vc1 , it is called a critical node (Cri). In the AAPC method, V
′
c2

(Figure 4.14) is estimated based on the ratio PROV expressed as follows:

PROV =
Vc2 − V k(t1)

V k(t1)− Vc1
=

V
′
c2 − V

j(t1)

V j(t1)− V j(t0)
(4.13)

In principle, the AAPC uses the linear regressive method for each photovoltaic source

to predict the upper power limitation (Plim) P jl .

P jl (t1) = P j(t0) + (V
′
c2 − V j(to))/ξ

j (4.14)
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with ξ the linear coefficient (Slope) calculated by the ratio of voltage variation (Vvar)

and power variation (Pvar):

ξj =
V j(t1)− V j(t0)

P j(t1)− P j(t0)
(4.15)

The photovoltaic power production within its threshold will prevent over-voltage in the

grid. P jref , the generated power of the jth photovoltaic node in the next step, is its limit

power (Plim) or maximal produced power (Pmax) predicted by maximum power point

tracking calculation, defined as follows:

P jref (t1) = min(P jl (t1), P
j
m(t2)) (4.16)

Each photovoltaic node has the same responsibility to participate in stable grid opera-

tions. Thus, the curtailment of each PV panel must be controlled. The power production

of each node at time t2, called P ja (t2), is expressed as:

P ja (t2) =

j=n∑
j=1

P jref (t1)

j=n∑
j=1

P jm(t2)

∗ P jm(t2) (4.17)

with η the power curtailment (Pcur), defined as:

η =

j=n∑
j=1

P jref (t1)

j=n∑
j=1

P jm(t2)

(4.18)

4.6.2 Smartlog implementation

The description of the data types in this application is presented as follows:

Measure(ID, Timestamp, VOLT, POW, Pmax): Instantaneous measure of the voltage,

current, active power and maximal predictive active power;

Warning(ID, Timestamp): Keeps the timestamp at which the node ID attains the warn-

ing status;

WarningMeasure(WarningID, ID, VOLT, POW): Measure the data of all nodes when

the grid is in warning status;
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Alert(ID, Timestamp, PROV): Stores the timestamp at which the critical node attains

the alert status, and the corresponding value of the PROV ratio;

Slope(Cri-ID, ID, Slope, Vvar): Slope coefficient and Vvar for the linear regres-

sion;

Plimit(Cri-ID, ID, Pref): Computed injected power limit for each node;

Curtail(ID, Pcur): Computed power curtailment percentage of each PV node;

Actuator(ID, Yield): Output curtailment values for each PV node actuator;

Rules are expressed in the Smartlog language as follows:

Module(Measure) {

--R1-- Warning(i,t) :- Measure(i,t,vi,p,pmi), ~WarningMeasure(i,i,_,_), vi>=1.042;

--R2-- :- Measure(i,t,vi,p,pmi), !WarningMeasure(i,i,_,_), vi <1.042;

--R3-- Alert(i,t,co) :- Measure(i,t,vi,p,pmi), WarningMeasure(i,i,_,_), vi >= 1.047,

co := (1.058-vi)/(vi-1.042);

}

Module(Warning) {

--R4-- WarningMeasure (i,j,vj,pj) :- Warning(i,t), Measure(j,t,vj,pj,_);

}

Module(Alert) {

--R5-- Slope(i,j,s,dv) :- Alert(i,t,co), Measure(j,t,vj,pj,pmj),

WarningMeasure(i,j,vo,po), pj<>po, s:= (vj-vo) /(pj-po), s<>0, dv := (co+1)*(vj-vo);

--R6-- Curtail(i,pe) :- Alert(i,t,_), Measure(j,t, _,_, pmj), Plimit(i,j,pli), pli :=

least(pli,pmj), prs := sum(pli), pms := sum(pmj), pe:= prs/pms;

}

Module(Slope) {

--R7-- Plimit(i,j,pli) :- Slope(i,j,s,dv), WarningMeasure(i,j,_, po), pli := po+ dv/s;

}

Module(Curtail) {

--R8-- Actuator(j,pe) :- Curtail(i,pe), Actuator(j,_,_);

}

Listing 4.5: Smartlog rules for the AAPC algorithm.

The measured data are updated regularly, if the voltage of a node in the grid reaches the

warning value (1.042 pu), rule R1 updates the warning value and the status of all nodes

in the grid are saved by rule R4. When the voltage of the critical node reaches Vc1+0.5 %
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(1.047 pu), the alert value is updated by rule R3. The modification of the Alert item

leads to compute the limit of the active power at each node with the AAPC method (by

rule R5, R6, R7). The output of the control is then updated once the modification of

Curtail is done by R8. If the voltage of the critical node presents a warning value, its

warning status is deleted by rule R2.

4.6.3 Experimental result

A distribution grid from the G2Elab experimental platforms, PREDIS [5], is used as

a test object for this application. This grid comprises 14 nodes, with five distributed

sources, three asynchronous machines, and static loads. The grid configuration is shown

in Figure 4.15. This grid is simulated in the Matlab/Simulink environment in a grid-

connected mode and executed in the experimental enviroment described in Section 4.3.

Each Raspberry Pi plays the role of a local computing unit which is installed near a

photovoltaic source corresponding to node 5, 7, 9, 12 and 14.

Figure 4.15: The PREDIS grid configuration [5].

In the voltage control problem, we consider the change of power injected at each node.

In order to illustrate this methodology, the injected power must change by time and

sometimes causes over-voltage in the grid. The experiment lasts 10 min, during which

the load is kept constant and the photovoltaic production changes. The variation of

solar power depends mainly on climate and clouds which cannot be precisely predicted
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by time series. The curve presented in Figure 4.16 is used to evaluate the method as

well as to consider the performance of the execution.

Figure 4.16: PV production of the study case.

Dataset are automatically generated during the real-time simulation. Each distributed

photovoltaic source has a Raspberry Pi in charge of the local computation. There are

five Raspberry Pis used in this case at nodes 5, 7, 9, 12, and 14.

According to the objective of the work, we focus on demonstrating the correctness of the

CPDE methodology. We also implement the centralized algorithm in Java as a reference

implementation. The result of this implementation is compared to the results obtained

with the distributed Smartlog implementation.

We first present the data distribution of the implementation, used as input in the SARD

tool. There are 8 data types used in the centralized Smartlog program, including three

common data types (Warning, Alert, Curtail). We have five Raspberry Pis corre-

sponding to five photovoltaic generators. Common data are only located in one machine

and the other data types are fragmented horizontally over the five machines. The five

distributed smartlog programs corresponding to five Raspberry Pis and generated by

the SARD (Section 3.4) are presented in Appendix C.

We consider the Predis model with the described scenario, the 7th node, corresponding

to the Raspberry Pi No7, is a critical node (the node with the highest voltage in the

grid). Therefore, we observe the behaviors of this node with both a Java and a Smartlog

implementations. Results are shown in Figure 4.17 for both the centralized and the

distributed implementations.
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Figure 4.17: Voltage response at the 7th photovoltaic node.

In general, the voltage in both implementations is controlled and does not exceed the

upper bound (1.058 pu) when the grid has an over-voltage tendency.

4.6.4 Discussion

The result proves that our methodology works well in the real-time simulation platform.

The centralized Smartlog program is transformed by the SARD according to the data

distribution, and executed correctly in a distributed manner. Starting from the pre-

allocation of the data distribution under the constraint of data production locations,

the CPDE methodology produces a number of distributed programs. These programs

cooperate in the distributed system but do not affect the centralized algorithm. Besides,

this provides a simple and efficient methodology for distributed computing programming.

This approach offers a simple solution for running smart grid centralized applications in

distributed environments.

However, the CPDE methodology should not be stopped by confirming its correctness.

It must be analyzed more on other aspects such as performance and scalability for

instance. These evaluations are addressed in the next chapter.
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4.7 Conclusion

The principal purpose of this chapter is to present the qualitative evaluations of Smartlog

for applications in smart grids. By presenting applications with increasing complexity,

the main benefits of Smartlog are highlighted, such as simplicity, compactness, and

scalability, especially as the support of incremental programming. That is necessary to

limit the redundancy of computations and communications for real-time applications.

Besides, in this chapter, the correctness of the distributed programming methodology is

also verified in real-time.

This promises a simple and easy implementation to deal with the convergence proof of

distributed programs as well as the scalability of the distributed system, even when the

distribution of computing resources is uneven.

The results of the test applications in the real-time simulation platform also show that

the operation on database management systems more or less affects the performance of

Smartlog. Nevertheless, its performances remain acceptable for real-time applications

and are comparable to more traditional implementations. The issue of computing time

acceleration needs to be tackled in the future.



Chapter 5

Experimental evaluation of

a distributed Smartlog execution

5.1 Introduction

Distributed programming with a declarative language (Smartlog) is a new approach to

the distributed paradigm for smart grids. In order to convince that this approach is

suitable for smart grids applications, besides the qualitative evaluations mentioned in

Chapter 4 as well as the correctness of the CPDE method for a distributed implemen-

tation, the effects of the SARD tool on the performance of the distributed executions

should be considered.

In this chapter, we analyze three main aspects of the distributed execution in a smart

grid’s application. First, the performance of the distributed programming implementa-

tion is compared to the centralized deployment (traditional one). Second, the influence

of the number of computing units is assessed for the case where the system scales up

(which represents one of the major supposed advantage of the language). Ultimately,

the impact of various data distributions on the performance is discussed. Based on

the results of the implementations in the experimental environment, we point out the

advantages and disadvantages of our proposed CPDE approach.

For the experiment, we continue using the application of the fair over-voltage regulation

in a distribution grid with high penetration of photovoltaic sources, presented in Sec-

tion 4.6. The parameters and the model of the experiment are retained for the following

115
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evaluations. The results are observed as well in the 7th node of the PREDIS grid, the

highest voltage node in the scenario mentioned in previous chapter. Detail of evaluations

are presented as sections below.

5.2 Performance of the distributed programming

In Figure 5.1, the voltage of the 7th node is shown with a Smartlog implementations

(centralized and distributed) and a centralized Java implementation as reference. The

results are similar, which confirms the correctness of the CPDE method as well as the

SARD tool. The purpose of this section is to assess the performance of the distributed

execution with the SARD tool in comparison to the centralized implementations.

5.2.1 Methodology

In the case of the distributed programming, data are distributed to five Raspberry Pis.

We assume that two common data Warning and Alert are located in the Raspberry

Pi No7 and Curtail is located in the Raspberry Pi No9, the other data types are

fragmented horizontally over five Raspberry Pis.

We use the response time of the PV system when the system is in alert status as a

criterion to evaluate and compare the performance of each implementation. As seen in

Figure 5.1, during the simulation time, the voltage is controlled many times in order not

to exceed its limit.

At the second minute of the simulation, the active power of the PV system increases

and causes an over-voltage in the PREDIS grid. The adaptive active power capping

method (AAPC) [6] is activated to restrain the percentage of the power production of

each PV system. In continuous, when the node is in alert status, the power curtailment

of each node is computed, which is inversely proportional to the rise of voltage. This

also means that the curtailment decreases linearly when the power production increases

and exceeds the power upper bound.

Practically speaking, the response time is defined as the interval between two consecutive

reactions of the PV system when the grid operates in over-voltage. We thus estimate

the response time of each deployment in the experiment based on this definition. Before
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Figure 5.1: Voltage response at the 7th photovoltaic node with distributed program-
ming and centralized programming, implemented in Java and Smartlog.

showing the results of the response time estimation in the experimentation, it is analyzed

according to the computation and communication times.

We call ti the processing time of the ith rule in the local node, tc the average delay time

for each communication and N the number of considered computing units in the grid.

The response time of the jth node is estimated with (5.1).

Tres = Tcomp + Tcomm =
∑
i∈Rj

ti + kj ∗ tc (5.1)

Where Rj and kj are respectively the number of executed rules and the number of

communications from the jth node. The analysis of the response time is presented in

Table 5.1 for both the centralized and the distributed Smartlog implementations.

Table 5.1: Analysis of the response time in both the centralized and distributed
Smartlog implementations.

Tcomp Tcomm

Centralized programming
∑

j∈N
∑

i∈Rj
ti 0

Distributed programming max(
∑

i∈RNo7
ti,
∑

j∈RNo9
tj) Ntc

Although the computation load is shared over the participating computing devices, the

response time still relies on the communication time that depends on the characteristics
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of the network. If the communication time is significant, the response time with a

distributed programming may be bigger than the one of a centralized implementation.

5.2.2 Results and discussion

In the experiment, the statistics of the response time are recorded and drawn. The

average response time in the three implementations is shown in Figure 5.2 with a “X”

mark. The deviation from the mean of the distributed programming implementation is

smaller than the one of the centralized implementations.

x
x

x

Figure 5.2: The average response time of each implementation.

To simplify for the following evaluations, the average value of the response time is used

to represent the performance. As seen, the average response time of the distributed

implementation is better than the average response time of both centralized implemen-

tations. It means that max(
∑

i∈R2
ti,
∑

j∈R3
tj) + Ntc <

∑
j∈N

∑
i∈Rj

ti, because, in

the real-time simulation platform, the time delay tc is not greater than the computing

time (ti) in the Raspberry Pis. Besides, the data sharing over the network makes the

local query time faster than through a server. Moreover, the computing units work in

parallel and share the computing load, which apparently reduces the response time (i.e.

increases the execution performance).

5.3 Sensitivity to the number of computing units

As aforementioned, we proposed the CPDE methodology, and subsequently the SARD

tool, to handle the increasing complexity of distributed programming when the number



Chapter 5. Experimental evaluation of a distributed Smartlog execution 119

of computing node scales up. With the CPDE, the same Smartlog program is used in

the SARD whatever the number of nodes is. But the increasing number of participating

computing nodes may have an impact on the response time of the distributed execution.

5.3.1 Methodology

We increase the number of PV systems and associated computing units in the network

from 3 to 10, in order to observe its influence on the performance of the distributed

execution. Our experimental infrastructure limits the number of Raspberry Pis to 10

(the maximum number of Raspberry Pis in our real-time simulation platform). We

continue to perform the same test-case in the same experimental environment with the

three implementations: centralized Java, centralized Smartlog, and distributed Smart-

log obtained with the SARD. The average response time, which is determined as in

Section 5.2, is once again used for the execution performance evaluation.

5.3.2 Results and discussion

The results of the experiment are shown in Figure 5.3.
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Figure 5.3: Impact of the number of nodes on the response time of the voltage
regulation implementations.

In all situations (3, 5 and 10 computing nodes), the response time of the distributed

Smartlog execution is better than both centralized ones. The gain in response time

increases with the number of computing nodes. When the number of nodes is small,

the response time of the distributed execution is just a bit smaller than the centralized
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ones. Nevertheless, as the number of nodes increases, the difference in the response

time of the three implementations is more and more significant. The response time

of the distributed Smartlog execution is much better than the one of the centralized

programs when the number of nodes equal to 10. Contrariwise, the response time of

the centralized Smartlog is lower than the centralized Java one for 3 and 5 nodes. The

situation is inverted for 10 nodes. Experimentation with more than 10 nodes is necessary

to confirm or infirm this tendency.

The better performance of the distributed Smartlog execution can be justified us-

ing the following arguments. Calling t̄i the average time to execute a rule, and R̄j

the average number of rules processed by a node. When N is big enough, so that

Ntc � max(
∑

i∈R2
ti,
∑

j∈R3
tj), the limitation of the response time of the distributed

programming is:

lim
N
{max(

∑
i∈R2

ti,
∑
j∈R3

tj) +Ntc} = Ntc (5.2)

Meanwhile, the limit of the response time of a centralized programming is:

lim
N
{
∑
j∈N

∑
i∈Rj

ti} = NR̄j t̄i (5.3)

With the same architecture of experimentation, so that tc < R̄j t̄i, when the number

of nodes in the network increases (N → ∞), the response time of the centralized pro-

gramming becomes much larger than the one of the distributed programming. That

demonstrates the advantage of distributed programming regarding the scalability of the

system. Besides, the distributed programs are automatically generated by the SARD

tool. The increasing number of computing nodes does not affect the simplicity of the

implementation.

5.4 Sensitivity to the distributed data configuration

The SARD tool operates at the level of the predefined data distribution. In this section,

the sensitivity to the data distribution is considered. This work aims at confirming the

correctness of the CPDE method with various data distributions as well as observing the

effects of various distributed data configurations on the performance of the execution.
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5.4.1 Methodology

To show the influence of the distributed data configurations, we use once again the

last application, presented in Section 4.6. We focus mainly on the impact of the frag-

mentation and allocation of the intermediate data types that are used to perform the

aggregate computation over the network. If all the intermediate data types are stored

in the same place, this place is in charge of the computation of the aggregation functions.

Otherwise, if we distribute these intermediate data types, the aggregated computation

is carried out in parallel by multiple nodes of the network. The different data distribution

schemes of the intermediate data types are expressed below:

Case 1: These intermediate data types are stored in only one of the five Raspberry

Pis (the second one in this case).

Case 2: Two intermediate data types (Warning and Alert) are stored in the Rasp-

berry Pi No7 and Curtail in the No9.

Case 3: We add a new Raspberry Pi on the 6th node of the grid to store these inter-

mediate data types.

Case 4: Similar to Case 2, but Alert is fragmented vertically and stored in the No7

and No9 Raspberry Pis.

Only the first activation of the voltage regulation is considered to analyze the influence of

the data configurations on the performances. We use again (5.1) to assess the response

time of each data distribution configuration. Note that cases 1, 2 and 4 have five

computing units, and case 3 uses six units; this new computing unit is called Raspberry

Pi No6.

5.4.2 Results and discussion

Every configuration mentioned above is tested with the application used in Section 5.2.

The two main purposes of this test-case are to show the influence of multiple data dis-

tribution configurations on the performances as well as the adaptation of the developed

tool to multiple data distribution designs.
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Figure 5.4: Responses at the 7th PV node at the first moments of the voltage regu-
lation with 4 schemes of data distribution.

The response of the four cases are presented in Figure 5.4. For all cases, the objec-

tive of the voltage regulation is reached. The voltage is controlled around the up-

per limit (1.058 pu) when there is PV over-production. Once again, we can conclude

that our methodology can work well with many designs of data distribution, even with

data types that are fragmented horizontally or vertically. The centralized algorithm is

always transformed exactly in the distributed programming.

As explained in Section 5.2, the response time in the experiment is collected based on

the interval of consecutive changes of the power curtailment, once the power production

increases linearly and causes over-voltage. We proceed with a statistic study of the

four cases for the first moments, when the voltage regulation is activated during the

experimentation. The results are placed next to the performance of the centralized

implementations for comparison, as shown in Figure 5.5. The “X” mark presents the

mean of the response time corresponding to each case study.

In Figure 5.5, the mean of response time of case 2 is the best one. That can be explained

as follows. In case 1 and the centralized implementation, all the common data are stored

at the same place. Intermediate computations based on common data are performed

in only one node, which is why the response time is larger than in the other cases. In

cases 2, 3, and 4, common data are allocated in multiple nodes. For case 3, another

Raspberry Pi (No6) is in charge of the aggregated computation, but it takes more time

than in case 2 because it requires more communications to request data from/to the

various locations. The vertical data fragmentation in case 4 is also good for the average

response time, which is smaller than cases 1, 3 and equal to case 2 in the distributed
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Figure 5.5: Responses time of all considered cases study.

implementation. However, the vertical fragmentation in case 4 seems to not fit in this

application as case 4 has a big deviation compared to case 2. Table 5.2 presents the

comparison of the four cases and the related response times expressions.

Table 5.2: Expression of the response time for each data distribution scheme.

Case Tcomp Tcomm

1
∑

i∈RNo7
ti (2N − 2)tc

2 max(
∑

i∈RNo7
ti,
∑

j∈RNo9
tj) Ntc

3 max(
∑

i∈Rj(j<>No6) ti,
∑

i∈RNo6
ti) 2Ntc

4 max(
∑

i∈RNo7
ti,
∑

j∈RNo9
tj) Ntc

According to Table 5.2, the communication time of cases 2 and 4 are equal, but the

number of fired rules in a node is not the same in each case. Case 4 has possibly longer

computing time than case 2 because case 4 must deal with data integrity by regrouping

vertical fragments. For case 3, the aggregate function is dispersed on another node

bus, which needs more communications than in case 1. In fact, the comparison of their

performance depends on the deviation of the average time delay of communications

and the required time to execute a rule. This analysis reinforce the results shown in

Figure 5.5 and presents the impact of the data distribution configuration on the response

time of each distributed implementation.

As a result, the configuration of the data distribution has a strong influence on the

performances of the execution. Thus, the problem of the optimal data distribution must
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be addressed in the future to reach the best performances with the upcoming Smartlog

implementations.

5.5 Conclusion

In this chapter, we analyzed various aspects of the distributed execution performances

through an actual smart grid application. The performances of the distributed execution,

the sensitivity to the number of computing units as well as to the data distribution

configuration were analyzed and discussed in detail through the obtained results in the

real-time simulation platform.

The CPDE provides a new approach of distributed deployment of smart grids applica-

tions. It deals with the scalability issue of the system and the sharing of computation

load in local computing units. With the same experimental environment, the distributed

programming promises to accelerate the response time compared to the centralized pro-

gramming, even with imperative language.

The analysis also shows that the performances of the distributed execution depends on

the data distribution. That leads to a question of choosing the best data distribution

for each application to obtain the best performance. The answer to this question is the

objective of perspective researches.



General conclusion and

perspectives

The development of the smart grid scenario with full control and management even at

the lowest level of the power grid poses the problem of managing a huge volume of sensor

data as well as the scalability issue of the system. The traditional (centralized) paradigm

is no longer sufficient to meet these requirements due to the high cost of server invest-

ments and the strengthening of the ICT infrastructure. In this context, the distributed

paradigm seems to be more efficient because they deal with the imminent problems of

control and management while ensuring the replacement of the conventional centralized

controller. However, deploying control and management in the smart grid with a dis-

tributed paradigm remains a challenging task. In fact, distributed programming must

perform centralized algorithms, while considering the various roles of the participants.

It needs to manage the synchronization and message exchanges between participants

in the network. These challenges increase with the growing number of participating

computing devices.

The general context of power system development and the main challenges of smart grid

scenarios are presented as the background of the thesis. The brief state of the art of

distributed paradigm approaches such as distributed algorithms, multi-agent systems,

distributed rule-based systems is taken into account. Based on that, we raised their

contributions as well as their potential difficulties.

Regarding the needs for supervision and control in smart grids as well as lack of high-

level programming abstraction in distributed programming, we abstracted the whole

smart grid as a distributed database in which the declarative approach is suggested for

distributed data manipulation in Chapter 2. Each participating computing device is in

125
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charge of a network node that performs data manipulation and exchange data to other

nodes. The architecture of each node in such an ad-hoc network is standardized as a rule-

based system comprising four parts: network communication interface, sensors interface,

local database, and rule engine. The prototype of implementation in this thesis used

ProgreSQL as local databases and the triggers as a rule engine. Smartlog was proposed

and developed as a new logic-based distributed data manipulation language dedicating

to smart grids scenario. The general structure of the Smartlog language contains three

parts: data types for declaring data schemes, initial data for initializing values, and

Modules for defining actions. Smartlog, based on Datalog, supports the declarative

mechanism; reacting to changes in the environment (i.e. change in the sensor data) to

adjust parameters (i.e. acting on actuators).

In Chapter 3, we aim at simplifying distributed programming in smart grids by totally

hiding data exchange among computing devices. We propose to use Smartlog rule-based

data manipulation language to program centralized control and management algorithms

and then to automatically transform these centralized programs into sets of cooperating

programs (i.e. to distribute the rules of the programs) in order to achieve distributed

execution. This distributed programming methodology is called CPDE, for Centralized

Programming and Distributed Execution. This methodology was implemented as SARD

tool (Semi-automatic Rule Distribution). This name is used since the analysis of the

method automatically distributes centralized Smartlog program into multiple ones but

the data distribution description must be done manually. SARD expresses the data

relationships in centralized rules by graphs. Based on the predefined data allocation, it

decides on data routing in the graph by considering minimum communication costs. The

output of this method is a set of distributed programs corresponding to data allocations.

Test cases using the SARD tool are also proposed as incremental test to evaluate its

behaviors.

The CPDE methodology was then applied to four typical applications in smart grids.

The applications, from simple to complex, are local computations of load curve, in-

cremental computation of bus admittance matrix, distributed secondary control in an

isolated microgrid, and fair-sharing voltage control of distribution grid with high pene-

tration of PV systems. All this served to show the adaptation of the intrinsic qualities of

Smartlog in a smart grid context. The language presents a high-level programming ab-

straction, focusing on the expected result not on the processes, compactness, increment,
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and simplicity. Besides, the execution time with Smartlog in the prototype was also

assessed. The slower execution of data stored in the database gave a delayed response in

control applications in comparison to data stored in read-only memory. However, that

remained acceptable and sufficient for these near real-time control applications.

The performance of distributed Smartlog execution was also considered. The average

response time in the last and most complex application was taken as a criterion for

evaluating the performance of distributed and centralized execution (compared to a

Java and a Smartlog centralized implementation). The result of the comparison is quite

promising for the distributed Smartlog execution as it performs better than the others

on a real-time simulation platform (OPAL-RT and Raspberry Pis). In addition, the

sensitivity of the method to the increasing number of computing units and the change

of data distribution design was discussed. The distributed Smartlog execution has the

same advantage with the distributed paradigm: when the system scales up, the increase

in performance is more visible. Also, the data distribution designs strongly affect the

execution performance.

In this thesis, we have proposed a declarative approach for smart grids applications.

Through experiments, we have highlighted evident qualities such as compactness, sim-

plicity, reactivity, as well as a good performances of the distributed execution. The con-

clusions mentioned above only fulfills the first step of this prospective research. Many

tasks still need to be developed and analyzed to complement the goal. The following

perspectives are proposed for future researches:

Intermediate data placement: The data distribution description significantly affects

the performance of the distributed deployment. It should provide a criterion to

determine the best configuration for each application.

Optimizing the distribution of Smartlog program: in the CPDE method, we for-

mulated the objective function of the communication decision with two criteria:

the number of communications and the number of data-item transferred. How-

ever, the weight of the two criteria in the objective function is actually variable

and depends mainly on the network characteristics. A cost model estimation for

each specific network should be taken into account. Besides, other optimization

techniques could be applied to deploy the distributed rules to improve the perfor-

mances.
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Data replication and duplication: In the distributed database design, data can be

duplicated and replicated in the distributed system, but in Chapter 3, this problem

is not automatically addressed. Thus, the method needs to be developed to support

these cases, and to consider the synchronization costs of the copies to potentially

increase the performances.

Rule engine improvement: In our development, PostgreSQL was chosen as a rule

engine in which the Smartlog program can be executed in the computing devices.

The main reason for choosing this DBMS are that it is open source and freely

available. However, we know that the performance of this engine is not good in

comparison with other DBMSs. A dedicated engine which doesn’t have triggers,

such as NoSQL-lite, is possible. Development in another DBMS may accelerate

the execution performances if needed.
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[69] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems.

Springer Science & Business Media, 2011.

[70] R. K. Pachauri and L. A. Meyer. Climate change 2014: Synthesis report. Technical

report, IPCC, Geneva, Switzerland, 2014.

[71] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[72] Arun G. PHADKE and Tianshu BI. Phasor measurement units, wams, and their

applications in protection and control of power systems. Journal of Modern Power

Systems and Clean Energy, 6(4):619–629, Jul 2018.



Bibliography 136

[73] C.Huy Pham. Wind and solar energy prospects in vietnam, 2018. [Online; accessed

13-December-2018].

[74] M. Pipattanasomporn, H. Feroze, and S. Rahman. Multi-agent systems in a dis-

tributed smart grid: Design and implementation. In 2009 IEEE/PES Power Sys-

tems Conference and Exposition, pages 1–8, March 2009.

[75] Nagaraju Pogaku, Milan Prodanovic, and Timothy C Green. Modeling, analy-

sis and testing of autonomous operation of an inverter-based microgrid. IEEE

Transactions on power electronics, 22(2):613–625, 2007.

[76] S. Prasad and S. B. Avinash. Application of polyglot persistence to enhance perfor-

mance of the energy data management systems. In 2014 International Conference

on Advances in Electronics Computers and Communications, pages 1–6, Oct 2014.

[77] Ellery E Queen. A discussion of smart meters and rf exposure issues. Edison

Electric Institute (EEI), Washington, DC, A Joint Project of the EEI and AEIC

Meter Committees, 2011.

[78] Nguyen Thanh Quynh. Implementation a distributed secondary control, May 2018.

[79] Rafiq Mahmud Rahat, Mohammad Hasan Imam, and Narottam Das. Comprehen-

sive analysis of reliability and availability of sub-station automation system with

iec 61850. In 2019 International Conference on Robotics, Electrical and Signal

Processing Techniques (ICREST), pages 406–411. IEEE, 08 2019.

[80] Louiqa Raschid, Timos Sellis, and Alex Delis. A simulation-based study on the

concurrent execution of rules in a database environment. J. Parallel Distrib. Com-

put., 20:20–42, 01 1994.

[81] REN21. World energy outlook 2018. http://www.ren21.net/wp-content/

uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf, 2018.

[82] B. A. Robbins, C. N. Hadjicostis, and A. D. Dom nguez-Garc a. A two-stage

distributed architecture for voltage control in power distribution systems. IEEE

Transactions on Power Systems, 28(2):1470–1482, May 2013.

[83] L. H. L. Rosa, N. Kagan, C. F. Meschini Almeida, and D. De Souza Pereira. A

systemic approach for assessment of advanced distribution automation function-

alities. IEEE Transactions on Power Delivery, pages 1–1, 2019.

http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf
http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf


Bibliography 137
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Appendix A

Descriptions of the primary

control in island microgrid

The structure of the VSI converter [75] in grid forming scenarios shown in Figure A.1

includes three main blocks: the power controller, the voltage controller and the current

controller.

Figure A.1: The structure of control in VSI converter

The power controller uses the droop control method and has the structure proposed in

Figure A.2.

The Voltage controller is computed by:
i∗ld = Fiod − wnCfVoq +Kpv(V

∗
od − Vod) +KivΦd

i∗lq = Fioq − wnCfvod +Kpv(v
∗
oq − voq) +KivΦq

(A.1)

139
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Figure A.2: The structure of power controller

With Φ̇d = v∗od − vod ; Φ̇q = v∗oq − voq.

The current controller is designed as bellow equations:
v∗id = vod − wnLf ilq +Kpc(i

∗
id − ild) +Kicγd

v∗iq = voq −WnLf ild +Kpc(i
∗
iq − ilq) +Kicγq

(A.2)

with γ̇d = i∗od − iod; γ̇q = i∗oq − ioq.

The parameters for the VSI converter are shown in Table A.1.

Table A.1: Parameters of VSI converter

Parameter Symbol Value

Maximum power P 100kW

Voltage line to line Vl 380V

Setpoint frequency Wn 50 Hz

Maximum current Imax = 2P/3V 175.44A

Basic impedance Zb = V 2
l /P 1.444 Ω

Continuous voltage Vdc = Vs ∗ 2 760V

Angular frequency Wg = 2 ∗ π ∗Wn 100π

Switch frequency fsw 10kHz

Desired attenuation Ka 20%

Maximum variation of the network x 5%

Basic capacity Cb = 1/(wg ∗ Zb) 2200µ F

Ripple current ∆Imax = 10Imax 17.5A

Capacity Cf = x ∗ Cb 110µ F

Inductance 1 Lf = Vdc/6 ∗ fsw ∗∆Imax 7.22e-4H

Inductance 2 Lc =
√

1/K2
a + 1/(Cff

2
sw) 1.36e-5H

Angular frequency of resonance wres =
√

(Lf + Lc)/(LfLcCf 26096 rad/s

Frequency of resonance Fres = Wres/2π 4155 Hz

Resistance Rf = 1/(2WresCf 0.729 Ω



Appendix B

Executable test-cases and report

B.1 Centralized test

B.1.1 Rules containing only atoms and no fragmentation

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.1: Centralized SM program

IPmap {

"`S1"' : '192.168.1.101:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S1';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.2: Data distribution

Output

Program(Test) {

Data_types{

A (AttrA1:int key, AttrA2:float, AttrA3:float).

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n);

141
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}

}

Listing B.3: Centralized test - generated program by SARD tool

B.2 Fragmentation tests

B.2.1 Horizontal fragmentation

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.4: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Conditions : AttrA1>5;

Location : 'S1';}

Fragment(A2) {

Conditions : AttrA1 <=5;

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S1';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.5: Data distribution

Output

Program(Test) {

Data_types{

A1 (AttrA1:int key, AttrA2:float, AttrA3:float).

A2 (AttrA1:int key, AttrA2:float, AttrA3:float).

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Module(A1){

H(i, m, n) :- A1(i, m, k), B(i, n);

}

Module(A2){

H(i, m, n) :- A2(i, m, k), B(i, n);
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}

}

Listing B.6: Horizontal fragmentation - generated program by SARD tool

B.2.2 Vertical fragmentation

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.7: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Attributes : AttrA1, AttrA2;

Location : 'S1';}

Fragment(A2) {

Attributes : AttrA1, AttrA3;

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S1';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.8: Data distribution

Output

Program(Test) {

Data_types{

A1 (AttrA1:int key, AttrA2:float).

A2 (AttrA1:int key, AttrA3:float).

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Module(A1){

H(i, m, n) :- A1(i, m), A2(i, k), B(i, n);

}

Module(A2){

H(i, m, n) :- A2(i, k), A1(i, m), B(i, n);

}

}

Listing B.9: Vertical fragmentation -generated program by SARD tool
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B.2.3 Hybrid fragmentation

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.10: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Attributes : AttrA1, AttrA2;

Location : 'S1';}

Fragment(A2) {

Conditions: AttrA1>5;

Attributes : AttrA1, AttrA3;

Location : 'S1';}

Fragment(A3) {

Conditions: AttrA1<=5;

Attributes : AttrA1, AttrA3;

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S1';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.11: Data distribution

Output

Program(Test) {

Data_types{

A1 (AttrA1:int key, AttrA2:float).

A3 (AttrA1:int key, AttrA3:float).

A2 (AttrA1:int key, AttrA3:float).

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Module(A2){

H(i, m, n) :- A2(i, k), A1(i, m), B(i, n);

}

Module(A1){

H(i, m, n) :- A1(i, m), A2(i, k), B(i, n);

H(i, m, n) :- A1(i, m), A3(i, k), B(i, n);

}

Module(A3){

H(i, m, n) :- A3(i, k), A1(i, m), B(i, n);

}



Executable test-case and report 145

}

Listing B.12: Hybrid fragmentation - generated program by SARD tool

B.3 Distribution test

B.3.1 Distributed body part

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.13: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S2';}}.

Listing B.14: Data distribution

Output

Program(Test) {

Data_types{

A (AttrA1:int key, AttrA2:float, AttrA3:float).

IPMap (Name:string key, Address:string).

TmpR1A1G2 (AttrA2:float, AttrA1:int key).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(A){

^TmpR1A1G2(m, i) :- A(i, m, k), IPMap('S2', @ip);

}

}

Listing B.15: Distributed body at site S1 - generated program by SARD tool
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Program(Test) {

Data_types{

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A1G2 (AttrA2:float, AttrA1:int key).

}

Module(TmpR1A1G2){

H(i, m, n) :- !TmpR1A1G2(m, i), B(i, n);

}

}

Listing B.16: Distributed body at site S2 - generated program by SARD tool

B.3.2 Seperated head part

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.17: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S1';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S2';}}.

Listing B.18: Data distribution

Output

Program(Test) {

Data_types{

A (AttrA1:int key, AttrA2:float, AttrA3:float).

IPMap (Name:string key, Address:string).

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Initial_data{



Executable test-case and report 147

IPMap('S2','192.168.1.102:30000').

}

Module(A){

^H(i, m, n) :- A(i, m, k), B(i, n), IPMap('S2', @ip);

}

}

Listing B.19: Seperated head part at site S1 - generated program by SARD tool

Program(Test) {

Data_types{

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

}

Listing B.20: Seperated head part at site S2 - generated program by SARD tool

B.4 Distribution fragmentation test

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, n) :- A(i, m, k), B(i, n).}}

Listing B.21: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Attributes : AttrA1, AttrA2;

Location : 'S1';}

Fragment(A2) {

Conditions: AttrA1>5;

Attributes : AttrA1, AttrA3;

Location : 'S1';}

Fragment(A3) {

Conditions: AttrA1<=5;

Attributes : AttrA1, AttrA3;

Location : 'S2';}}.

B(AttrB1 : int key, AttrB2 : float, AttrB3 : float) {

Fragment(B) {

Location : 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.22: Data distribution

Output
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Program(Test) {

Data_types{

A1 (AttrA1:int key, AttrA2:float).

A2 (AttrA1:int key, AttrA3:float).

IPMap (Name:string key, Address:string).

TmpR1A2G3 (AttrA1:int key, AttrA2:float).

TmpR1A3G2 (AttrA2:float, AttrA1:int key).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A1G3 (AttrA1:int key, AttrA2:float).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(A2){

^TmpR1A2G3(i, m) :- A2(i, k), A1(i, m), IPMap('S2', @ip);

}

Module(A1){

^TmpR1A1G3(i, m) :- A1(i, m), A2(i, k), IPMap('S2', @ip);

^TmpR1A3G2(m, i) :- A1(i, m), i<=5, IPMap('S2', @ip);

}

}

Listing B.23: At site S1 - generated program by SARD tool

Program(Test) {

Data_types{

A3 (AttrA1:int key, AttrA3:float).

IPMap (Name:string key, Address:string).

TmpR1A2G3 (AttrA1:int key, AttrA2:float).

TmpR1A3G2 (AttrA2:float, AttrA1:int key).

B (AttrB1:int key, AttrB2:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A1G3 (AttrA1:int key, AttrA2:float).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').

}

Module(TmpR1A1G3){

^H(i, m, n) :- !TmpR1A1G3(i, m), B(i, n), IPMap('S1', @ip);

}

Module(TmpR1A2G3){
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^H(i, m, n) :- !TmpR1A2G3(i, m), B(i, n), IPMap('S1', @ip);

}

Module(TmpR1A3G2){

^H(i, m, n) :- !TmpR1A3G2(m, i), A3(i, k), B(i, n), IPMap('S1', @ip);

}

}

Listing B.24: At site S2 - generated program by SARD tool

B.5 Assignment tests without aggregate function

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : int,

AttrB3:float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, l) :- A(i, m, k), B(i, j, n), l:=

k+n.}}

Listing B.25: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Attributes : AttrA1, AttrA2;

Location : 'S1';}

Fragment(A2) {

Attributes : AttrA1, AttrA3;

Location : 'S2';}}.

B(AttrB1 : int key, AttrB2 : int, AttrB3 : float) {

Fragment(B1) {

Conditions: AttrB1 <5;

Location : 'S1';}

Fragment(B2) {

Conditions: AttrB1>=5;

Location : 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.26: Data distribution

Output

Program(Test) {

Data_types{

TmpR1A1G2 (AttrA1:int key, AttrA3:float).

A1 (AttrA1:int key, AttrA2:float).

B1 (AttrB1:int key, AttrB2:int, AttrB3:float).

IPMap (Name:string key, Address:string).

TmpR1A3G2 (AttrA2:float, AttrA1:int key).
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H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(TmpR1A1G2){

H(i, m, l) :- !TmpR1A1G2(i, k), A1(i, m), B1(i, _, n), l:=k+n.

}

Module(A1){

^TmpR1A3G2(m, i) :- A1(i, m), IPMap('S2', @ip);

}

}

Listing B.27: At site S1 -generated program by SARD tool

Program(Test) {

Data_types{

TmpR1A1G2 (AttrA1:int key, AttrA3:float).

B2 (AttrB1:int key, AttrB2:int, AttrB3:float).

A2 (AttrA1:int key, AttrA3:float).

IPMap (Name:string key, Address:string).

TmpR1A3G2 (AttrA2:float, AttrA1:int key).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').

}

Module(A2){

^TmpR1A1G2(i, k) :- A2(i, k), IPMap('S1', @ip);

}

Module(TmpR1A3G2){

^H(i, m, l) :- !TmpR1A3G2(m, i), A2(i, k), B2(i, _, n), l:=k+n, IPMap('S1', @ip);

}

}

Listing B.28: At site S2 - generated program by SARD tool
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B.6 Aggregate function

B.6.1 Without Fragmentation

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : int key,

AttrB3:float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, l) :- A(i, m, k), B(i, j, n), l:=

sum(n).}}

Listing B.29: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : int key, AttrB3 : float) {

Fragment(B1) {

Location : 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.30: Data distribution

Output

Program(Test) {

Data_types{

A1 (AttrA1:int key, AttrA2:float, AttrA3:float).

IPMap (Name:string key, Address:string).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A1G2 (AttrA2:float, AttrA1:int key).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(A1){

^TmpR1A1G2(m, i) :- A1(i, m, k), IPMap('S2', @ip);

}

}

Listing B.31: At site S1 - generated program by SARD tool

Program(Test) {

Data_types{
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IPMap (Name:string key, Address:string).

B1 (AttrB1:int key, AttrB2:int key, AttrB3:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A1G2 (AttrA2:float, AttrA1:int key).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').

}

Module(TmpR1A1G2){

^H(i, m, l) :- !TmpR1A1G2(m, i), B1(i, j, n), l:=sum(n), IPMap('S1', @ip);

}

}

Listing B.32: At site S2 - generated program by SARD tool

B.6.2 With fragmentation

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : int key,

AttrB3:float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, l) :- A(i, m, k), B(i, j, n), l:=

sum(n).}}

Listing B.33: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : int key, AttrB3 : float) {

Fragment(B1) {

Conditions: AttrB2<5;

Location : 'S1';}

Fragment(B2) {

Conditions: AttrB2 >=5;

Location: 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.34: Data distribution

Output

Program(Test) {

Data_types{

A1 (AttrA1:int key, AttrA2:float, AttrA3:float).

TmpH2 (AttrA1:int key, AttrA2:float, L:float).

IPMap (Name:string key, Address:string).
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TmpH1 (AttrA1:int key, AttrA2:float, L:float).

B1 (AttrB1:int key, AttrB2:int key, AttrB3:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A2G2 (AttrA1:int key, AttrA2:float).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(A1){

TmpH1(i, m,l) :- A1(i, m, k), B1(i, j, n), l:=sum(n).

^TmpR1A2G2(i, m) :- A1(i, m, k), IPMap('S2', @ip);

}

Module(TmpH2){

H(i, m, l) :- !TmpH2(i, m,l1), !TmpH1(i, m,l2), l:=l1+l2.

}

Module(TmpH1){

H(i, m, l) :- !TmpH1(i, m,l1), !TmpH2(i, m,l2), l:=l1+l2.

}

}

Listing B.35: At site S1 - generated program by SARD tool

Program(Test) {

Data_types{

TmpH2 (AttrA1:int key, AttrA2:float, L:float).

IPMap (Name:string key, Address:string).

B2 (AttrB1:int key, AttrB2:int key, AttrB3:float).

TmpR1A2G2 (AttrA1:int key, AttrA2:float).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').

}

Module(TmpR1A2G2){

^TmpH2(i, m,l) :- !TmpR1A2G2(i, m), B2(i, j, n), l:=sum(n), IPMap('S1', @ip);

}

}

Listing B.36: At site S2 - generated program by SARD tool
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B.7 Condition test

B.7.1 With assignment

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : int,

AttrB3:float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, l) :- A(i, m, k), B(i, j, n), l:=

k+n, k>10.}}

Listing B.37: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : int key, AttrB3 : float) {

Fragment(B1) {

Conditions: AttrB2<5;

Location : 'S1';}

Fragment(B2) {

Conditions: AttrB2 >=5;

Location: 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.38: Data distribution

Output

Program(Test) {

Data_types{

TmpR1A2G2 (AttrA2:float, AttrA1:int key, AttrA3:float).

A1 (AttrA1:int key, AttrA2:float, AttrA3:float).

IPMap (Name:string key, Address:string).

B1 (AttrB1:int key, AttrB2:int key, AttrB3:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(A1){

H(i, m, l) :- A1(i, m, k), B1(i, j, n), l:=k+n, k>10.

^TmpR1A2G2(m, i, k) :- A1(i, m, k), k>10, IPMap('S2', @ip);

}

}

Listing B.39: At site S1 - generated program by SARD tool
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Program(Test) {

Data_types{

TmpR1A2G2 (AttrA2:float, AttrA1:int key, AttrA3:float).

IPMap (Name:string key, Address:string).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

B2 (AttrB1:int key, AttrB2:int key, AttrB3:float).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').

}

Module(TmpR1A2G2){

^H(i, m, l) :- !TmpR1A2G2(m, i, k), B2(i, j, n), l:=k+n, k>10, IPMap('S1', @ip);

}

}

Listing B.40: At site S2 - generated program by SARD tool

B.7.2 with aggregate function

Input

Program(Test) {

Data_types{

A(AttrA1 : int key, AttrA2 : float, AttrA3

: float).

B(AttrB1: int key, AttrB2 : int key,

AttrB3:float).

H(AttrH1 : int key, AttrH2 : float, AttrH3

: float).}

Module(A){

H(i, m, l) :- A(i, m, k), B(i, j, n),

n>10, l:= sum(n).}}

Listing B.41: Centralized SM program

IPmap {

'S1' : '192.168.1.101:30000';

'S2' : '192.168.1.102:30000';}

A(AttrA1 : int key, AttrA2 : float, AttrA3 : float) {

Fragment(A1) {

Location : 'S1';}}.

B(AttrB1 : int key, AttrB2 : int key, AttrB3 : float) {

Fragment(B1) {

Conditions: AttrB2<5;

Location : 'S1';}

Fragment(B2) {

Conditions: AttrB2 >=5;

Location: 'S2';}}.

H(AttrH1 : int key, AttrH2 : float, AttrH3 : float) {

Fragment(H) {

Location : 'S1';}}.

Listing B.42: Data distribution

Output

Program(Test) {

Data_types{
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A1 (AttrA1:int key, AttrA2:float, AttrA3:float).

TmpH2 (AttrA1:int key, AttrA2:float, L:float).

IPMap (Name:string key, Address:string).

TmpH1 (AttrA1:int key, AttrA2:float, L:float).

B1 (AttrB1:int key, AttrB2:int key, AttrB3:float).

H (AttrH1:int key, AttrH2:float, AttrH3:float).

TmpR1A2G2 (AttrA1:int key, AttrA2:float).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

}

Module(A1){

TmpH1(i, m,l) :- A1(i, m, k), B1(i, j, n), n>10, l:=sum(n).

^TmpR1A2G2(i, m) :- A1(i, m, k), IPMap('S2', @ip);

}

Module(TmpH2){

H(i, m, l) :- !TmpH2(i, m,l1), !TmpH1(i, m,l2), l:=l1+l2.

}

Module(TmpH1){

H(i, m, l) :- !TmpH1(i, m,l1), !TmpH2(i, m,l2), l:=l1+l2.

}

}

Listing B.43: At site S1 - generated program by SARD tool

Program(Test) {

Data_types{

TmpH2 (AttrA1:int key, AttrA2:float, L:float).

IPMap (Name:string key, Address:string).

B2 (AttrB1:int key, AttrB2:int key, AttrB3:float).

TmpR1A2G2 (AttrA1:int key, AttrA2:float).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').

}

Module(TmpR1A2G2){

^TmpH2(i, m,l) :- !TmpR1A2G2(i, m), B2(i, j, n), n>10, l:=sum(n), IPMap('S1', @ip);

}

}

Listing B.44: At site S2 - generated program by SARD tool
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Distributed programs generated

by the SARD tool

Program(VoltageRegulation) {

Data_types{

Actuator (ID:int key, Yield:float).

Slope (WarningID:int key, ID:int key, Slope:float, Vvar:float).

TmpR1Warning1G2 (WarningID:int key, Timestamp:int).

TmpR1Curtail1G2 (Pcur:float, ID:int key).

TmpCurtail1 (ID:int key, PRS:float, PMS:float).

Measure (ID:int key, Timestamp:int key, VOLT:float, POW:float, Pmax:float).

IPMap (Name:string key, Address:string).

Alert (ID:int key, Timestamp:int, Proportion:float).

WarningMeasure (WarningID:int key, ID:int key, VOLT:float, POW:float).

Plimit (WarningID:int key, ID:int key, PrefPower:float).

TmpR1Alert1G2 (Proportion:float, Timestamp:int, ID:int key).

Warning (WarningID:int key, Timestamp:int).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

IPMap('S3','192.168.1.103:30000').

}

Module(Measure){

^Warning(i, t) :- Measure(i, t, vi, p, pmi), vi>=1.042, ~WarningMeasure(i, i, _, _),

IPMap('S2', @ip);

:- Measure(i, t, vi, p, pmi), vi<1.042, !WarningMeasure(i, i, _, _);

157
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^Alert(i, t, co) :- Measure(i, t, vi, p, pmi), vi>=1.047, co:=(1.058-vi)/(vi-1.042),

WarningMeasure(i, i, _, _), IPMap('S2', @ip);

}

Module(TmpR1Warning1G2){

WarningMeasure(i, j, vj, pj) :- !TmpR1Warning1G2(i, t), Measure(j, t, vj, pj, _), j==1;

}

Module(TmpR1Alert1G2){

Slope(i, j, s, dv) :- TmpR1Alert1G2(co, t, i), Measure(j, t, vj, pj, pmj),

WarningMeasure(i, j, vo, po), pj<>po, s:=(vj-vo)/(pj-po), s<>0, dv:=(co+1)*(vj-vo),

j==1;

^TmpCurtail1(i,prs,pms) :- !TmpR1Alert1G2(co, t, i), Measure(j, t, _, _, pmj),

Plimit(i, j, pli), pli:=least(pli,pmj), prs:=sum(pli), pms:=sum(pmj), IPMap('S3',

@ip);

}

Module(Slope){

Plimit(i, j, pli) :- Slope(i, j, s, dv), WarningMeasure(i, j, _, po), pli:=po+dv/s,

j==1;

}

Module(TmpR1Curtail1G2){

Actuator(j, pe) :- !TmpR1Curtail1G2(pe, i), Actuator(j, _), j==1;

}

}

Listing C.1: Distributed program for Raspberry N°5

Program(VoltageRegulation) {

Data_types{

Actuator (ID:int key, Yield:float).

Slope (WarningID:int key, ID:int key, Slope:float, Vvar:float).

TmpR1Warning1G2 (WarningID:int key, Timestamp:int).

TmpR1Curtail1G2 (Pcur:float, ID:int key).

TmpCurtail2 (ID:int key, PRS:float, PMS:float).

Measure (ID:int key, Timestamp:int key, VOLT:float, POW:float, Pmax:float).

Alert (ID:int key, Timestamp:int, Proportion:float).

IPMap (Name:string key, Address:string).

WarningMeasure (WarningID:int key, ID:int key, VOLT:float, POW:float).

Plimit (WarningID:int key, ID:int key, PrefPower:float).

TmpR1Alert1G2 (Proportion:float, Timestamp:int, ID:int key).

Warning (WarningID:int key, Timestamp:int).

}

Initial_data{

IPMap('S1','192.168.1.101:30000').
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IPMap('S3','192.168.1.103:30000').

IPMap('S4','192.168.1.104:30000').

IPMap('S5','192.168.1.105:30000').

}

Module(Measure){

Warning(i, t) :- Measure(i, t, vi, p, pmi), vi>=1.042, ~WarningMeasure(i, i, _, _);

:- Measure(i, t, vi, p, pmi), vi<1.042, !WarningMeasure(i, i, _, _);

Alert(i, t, co) :- Measure(i, t, vi, p, pmi), vi>=1.047, co:=(1.058-vi)/(vi-1.042),

WarningMeasure(i, i, _, _);

}

Module(Warning){

^TmpR1Warning1G2(i, t) :- Warning(i, t), IPMap('S1', @ip);

WarningMeasure(i, j, vj, pj) :- Warning(i, t), Measure(j, t, vj, pj, _), j==2;

^TmpR1Warning1G2(i, t) :- Warning(i, t), IPMap('S3', @ip);

^TmpR1Warning1G2(i, t) :- Warning(i, t), IPMap('S4', @ip);

^TmpR1Warning1G2(i, t) :- Warning(i, t), IPMap('S5', @ip);

}

Module(Alert){

^TmpR1Alert1G2(co, t, i) :- Alert(i, t, co), IPMap('S1', @ip);

Slope(i, j, s, dv) :- Alert(i, t, co), Measure(j, t, vj, pj, pmj), WarningMeasure(i, j,

vo, po), pj<>po, s:=(vj-vo)/(pj-po), s<>0, dv:=(co+1)*(vj-vo), j==2;

^TmpR1Alert1G2(co, t, i) :- Alert(i, t, co), IPMap('S3', @ip);

^TmpR1Alert1G2(co, t, i) :- Alert(i, t, co), IPMap('S4', @ip);

^TmpR1Alert1G2(co, t, i) :- Alert(i, t, co), IPMap('S5', @ip);

^TmpCurtail2(i,prs,pms) :- Alert(i, t, _), Measure(j, t, _, _, pmj), Plimit(i, j, pli),

pli:=least(pli,pmj), prs:=sum(pli), pms:=sum(pmj), IPMap('S3', @ip);

}

Module(Slope){

Plimit(i, j, pli) :- Slope(i, j, s, dv), WarningMeasure(i, j, _, po), pli:=po+dv/s,

j==2;

}

Module(TmpR1Curtail1G2){

Actuator(j, pe) :- !TmpR1Curtail1G2(pe, i), Actuator(j, _), j==2;

}

}

Listing C.2: Distributed program for Raspberry N°7

Program(VoltageRegulation) {

Data_types{

Actuator (ID:int key, Yield:float).

TmpCurtail5 (ID:int key, PRS:float, PMS:float).
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TmpCurtail4 (ID:int key, PRS:float, PMS:float).

TmpR1Curtail1G2 (Pcur:float, ID:int key).

TmpCurtail3 (ID:int key, PRS:float, PMS:float).

TmpCurtail2 (ID:int key, PRS:float, PMS:float).

TmpCurtail1 (ID:int key, PRS:float, PMS:float).

Measure (ID:int key, Timestamp:int key, VOLT:float, POW:float, Pmax:float).

Alert (ID:int key, Timestamp:int, Proportion:float).

WarningMeasure (WarningID:int key, ID:int key, VOLT:float, POW:float).

Plimit (WarningID:int key, ID:int key, PrefPower:float).

TmpR1Alert1G2 (Proportion:float, Timestamp:int, ID:int key).

Curtail (ID:int key, Pcur:float).

Slope (WarningID:int key, ID:int key, Slope:float, Vvar:float).

TmpR1Warning1G2 (WarningID:int key, Timestamp:int).

IPMap (Name:string key, Address:string).

Warning (WarningID:int key, Timestamp:int).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

IPMap('S1','192.168.1.101:30000').

IPMap('S4','192.168.1.104:30000').

IPMap('S5','192.168.1.105:30000').

}

Module(Measure){

^Warning(i, t) :- Measure(i, t, vi, p, pmi), vi>=1.042, ~WarningMeasure(i, i, _, _),

IPMap('S2', @ip);

:- Measure(i, t, vi, p, pmi), vi<1.042, !WarningMeasure(i, i, _, _);

^Alert(i, t, co) :- Measure(i, t, vi, p, pmi), vi>=1.047, co:=(1.058-vi)/(vi-1.042),

WarningMeasure(i, i, _, _), IPMap('S2', @ip);

}

Module(TmpR1Warning1G2){

WarningMeasure(i, j, vj, pj) :- !TmpR1Warning1G2(i, t), Measure(j, t, vj, pj, _), j==3;

}

Module(TmpR1Alert1G2){

Slope(i, j, s, dv) :- TmpR1Alert1G2(co, t, i), Measure(j, t, vj, pj, pmj),

WarningMeasure(i, j, vo, po), pj<>po, s:=(vj-vo)/(pj-po), s<>0, dv:=(co+1)*(vj-vo),

j==3;

TmpCurtail3(i,prs,pms) :- !TmpR1Alert1G2(co, t, i), Measure(j, t, _, _, pmj), Plimit(i,

j, pli), pli:=least(pli,pmj), prs:=sum(pli), pms:=sum(pmj);

}

Module(TmpCurtail3){
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Curtail(i, pe) :- !TmpCurtail3(i,prs1,pms6), !TmpCurtail2(i,prs2,pms7),

!TmpCurtail5(i,prs3,pms8), !TmpCurtail4(i,prs4,pms9), !TmpCurtail1(i,prs5,pms10),

prs:=prs1+prs2+prs3+prs4+prs5, pms:=pms6+pms7+pms8+pms9+pms10, pe:=prs/pms;

}

Module(TmpCurtail2){

Curtail(i, pe) :- !TmpCurtail2(i,prs1,pms6), !TmpCurtail3(i,prs2,pms7),

!TmpCurtail5(i,prs3,pms8), !TmpCurtail4(i,prs4,pms9), !TmpCurtail1(i,prs5,pms10),

prs:=prs1+prs2+prs3+prs4+prs5, pms:=pms6+pms7+pms8+pms9+pms10, pe:=prs/pms;

}

Module(TmpCurtail5){

Curtail(i, pe) :- !TmpCurtail5(i,prs1,pms6), !TmpCurtail3(i,prs2,pms7),

!TmpCurtail2(i,prs3,pms8), !TmpCurtail4(i,prs4,pms9), !TmpCurtail1(i,prs5,pms10),

prs:=prs1+prs2+prs3+prs4+prs5, pms:=pms6+pms7+pms8+pms9+pms10, pe:=prs/pms;

}

Module(TmpCurtail4){

Curtail(i, pe) :- !TmpCurtail4(i,prs1,pms6), !TmpCurtail3(i,prs2,pms7),

!TmpCurtail2(i,prs3,pms8), !TmpCurtail5(i,prs4,pms9), !TmpCurtail1(i,prs5,pms10),

prs:=prs1+prs2+prs3+prs4+prs5, pms:=pms6+pms7+pms8+pms9+pms10, pe:=prs/pms;

}

Module(TmpCurtail1){

Curtail(i, pe) :- !TmpCurtail1(i,prs1,pms6), !TmpCurtail3(i,prs2,pms7),

!TmpCurtail2(i,prs3,pms8), !TmpCurtail5(i,prs4,pms9), !TmpCurtail4(i,prs5,pms10),

prs:=prs1+prs2+prs3+prs4+prs5, pms:=pms6+pms7+pms8+pms9+pms10, pe:=prs/pms;

}

Module(Slope){

Plimit(i, j, pli) :- Slope(i, j, s, dv), WarningMeasure(i, j, _, po), pli:=po+dv/s,

j==3;

}

Module(Curtail){

^TmpR1Curtail1G2(pe, i) :- Curtail(i, pe), IPMap('S1', @ip);

^TmpR1Curtail1G2(pe, i) :- Curtail(i, pe), IPMap('S2', @ip);

Actuator(j, pe) :- Curtail(i, pe), Actuator(j, _), j==3;

^TmpR1Curtail1G2(pe, i) :- Curtail(i, pe), IPMap('S4', @ip);

^TmpR1Curtail1G2(pe, i) :- Curtail(i, pe), IPMap('S5', @ip);

}

}

Listing C.3: Distributed program for Raspberry N°9

Program(VoltageRegulation) {

Data_types{

Actuator (ID:int key, Yield:float).
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Slope (WarningID:int key, ID:int key, Slope:float, Vvar:float).

TmpR1Warning1G2 (WarningID:int key, Timestamp:int).

TmpCurtail4 (ID:int key, PRS:float, PMS:float).

TmpR1Curtail1G2 (Pcur:float, ID:int key).

Measure (ID:int key, Timestamp:int key, VOLT:float, POW:float, Pmax:float).

IPMap (Name:string key, Address:string).

Alert (ID:int key, Timestamp:int, Proportion:float).

WarningMeasure (WarningID:int key, ID:int key, VOLT:float, POW:float).

Plimit (WarningID:int key, ID:int key, PrefPower:float).

TmpR1Alert1G2 (Proportion:float, Timestamp:int, ID:int key).

Warning (WarningID:int key, Timestamp:int).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

IPMap('S3','192.168.1.103:30000').

}

Module(Measure){

^Warning(i, t) :- Measure(i, t, vi, p, pmi), vi>=1.042, ~WarningMeasure(i, i, _, _),

IPMap('S2', @ip);

:- Measure(i, t, vi, p, pmi), vi<1.042, !WarningMeasure(i, i, _, _);

^Alert(i, t, co) :- Measure(i, t, vi, p, pmi), vi>=1.047, co:=(1.058-vi)/(vi-1.042),

WarningMeasure(i, i, _, _), IPMap('S2', @ip);

}

Module(TmpR1Warning1G2){

WarningMeasure(i, j, vj, pj) :- !TmpR1Warning1G2(i, t), Measure(j, t, vj, pj, _), j==4;

}

Module(TmpR1Alert1G2){

Slope(i, j, s, dv) :- TmpR1Alert1G2(co, t, i), Measure(j, t, vj, pj, pmj),

WarningMeasure(i, j, vo, po), pj<>po, s:=(vj-vo)/(pj-po), s<>0, dv:=(co+1)*(vj-vo),

j==4;

^TmpCurtail4(i,prs,pms) :- !TmpR1Alert1G2(co, t, i), Measure(j, t, _, _, pmj),

Plimit(i, j, pli), pli:=least(pli,pmj), prs:=sum(pli), pms:=sum(pmj), IPMap('S3',

@ip);

}

Module(Slope){

Plimit(i, j, pli) :- Slope(i, j, s, dv), WarningMeasure(i, j, _, po), pli:=po+dv/s,

j==4;

}

Module(TmpR1Curtail1G2){

Actuator(j, pe) :- !TmpR1Curtail1G2(pe, i), Actuator(j, _), j==4;

}
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}

Listing C.4: Distributed program for Raspberry N°12

Program(VoltageRegulation) {

Data_types{

Actuator (ID:int key, Yield:float).

TmpCurtail5 (ID:int key, PRS:float, PMS:float).

Slope (WarningID:int key, ID:int key, Slope:float, Vvar:float).

TmpR1Warning1G2 (WarningID:int key, Timestamp:int).

TmpR1Curtail1G2 (Pcur:float, ID:int key).

Measure (ID:int key, Timestamp:int key, VOLT:float, POW:float, Pmax:float).

IPMap (Name:string key, Address:string).

Alert (ID:int key, Timestamp:int, Proportion:float).

WarningMeasure (WarningID:int key, ID:int key, VOLT:float, POW:float).

Plimit (WarningID:int key, ID:int key, PrefPower:float).

TmpR1Alert1G2 (Proportion:float, Timestamp:int, ID:int key).

Warning (WarningID:int key, Timestamp:int).

}

Initial_data{

IPMap('S2','192.168.1.102:30000').

IPMap('S3','192.168.1.103:30000').

}

Module(Measure){

^Warning(i, t) :- Measure(i, t, vi, p, pmi), vi>=1.042, ~WarningMeasure(i, i, _, _),

IPMap('S2', @ip);

:- Measure(i, t, vi, p, pmi), vi<1.042, !WarningMeasure(i, i, _, _);

^Alert(i, t, co) :- Measure(i, t, vi, p, pmi), vi>=1.047, co:=(1.058-vi)/(vi-1.042),

WarningMeasure(i, i, _, _), IPMap('S2', @ip);

}

Module(TmpR1Warning1G2){

WarningMeasure(i, j, vj, pj) :- !TmpR1Warning1G2(i, t), Measure(j, t, vj, pj, _), j==5;

}

Module(TmpR1Alert1G2){

Slope(i, j, s, dv) :- TmpR1Alert1G2(co, t, i), Measure(j, t, vj, pj, pmj),

WarningMeasure(i, j, vo, po), pj<>po, s:=(vj-vo)/(pj-po), s<>0, dv:=(co+1)*(vj-vo),

j==5;

^TmpCurtail5(i,prs,pms) :- !TmpR1Alert1G2(co, t, i), Measure(j, t, _, _, pmj),

Plimit(i, j, pli), pli:=least(pli,pmj), prs:=sum(pli), pms:=sum(pmj), IPMap('S3',

@ip);

}

Module(Slope){
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Plimit(i, j, pli) :- Slope(i, j, s, dv), WarningMeasure(i, j, _, po), pli:=po+dv/s,

j==5;

}

Module(TmpR1Curtail1G2){

Actuator(j, pe) :- !TmpR1Curtail1G2(pe, i), Actuator(j, _), j==5;

}

}

Listing C.5: Distributed program for Raspberry N°14
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Résumé – Cette thèse a pour objectif de développer le mécanisme de supervision et de

contrôle distribué dans le réseau intelligent, dans lequel le système est composé d’une

multitude d’unités de calcul coopérantes, et les calculs sont effectués à proximité des

producteurs et des utilisateurs de données. Le défi de la programmation distribuée est de

savoir comment gérer l’échange de données et la synchronisation des unités participantes

lorsque le système évolue.

Dans cette thèse, nous proposons une approche innovante de la programmation

d’un niveau d’abstraction élevé masquant ces difficultés. Premièrement, nous suggérons

d’abriter toutes les unités de calcul Smartgrid (compteurs intelligents, capteurs, concen-

trateurs de données, etc.) sous forme de base de données distribuée. Chaque unité de

calcul héberge une base de données locale et seules les données nécessaires à la poursuite

du calcul sont échangées avec d’autres unités, ce qui diminue l’utilisation de la bande

passante disponible. Par ailleurs, nous proposons également SmartLog, un langage basé

sur des règles basé sur le langage Datalog) à dédier à la programmation d’applications

de contrôle et de gestion en répondant immédiatement à toute modification des données.

Nous proposons ensuite une méthodologie pour simplifier le programme distribué, ap-
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log et (ii) traduire le programme centralisé en programmes distribués en se basant sur

la localisation réelle des données.

L’évaluation de la méthode basée sur les résultats de la simulation en temps réel

montre sa adaptation à de nombreuses configurations de distribution de données, capa-

bles de programmer avec un niveau d’abstraction plus élevé, de résoudre le problème de

scalabilité ainsi que de simplifier les implémentations en temps réel.
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anism in smart grid in which the system is made up of a multitude of co-operating

computing units, and calculations are performed close to the producers and consumer

of data. The challenge of distributed programming is how to handle data exchange and

the synchronization of the participating units when the system evolves.

In this thesis, we propose an innovative approach to programming of a high level

of abstraction masking these difficulties. Firstly, we suggest to abstract all Smart-

grid computing units (smart meters, sensors, data concentrators, etc.) as a distributed

database. Each computing unit hosts a local database and only the data needed to

continue the calculation are exchanged with other units, which decreases the use of the

available bandwidth. Besides, we also propose SmartLog, a rule-based language based

on the Datalog language) to dedicate to the programming of control and management

applications by immediately responding to any changes in the data. We then propose a

methodology to simplify the distributed program, named CPDE consisting of two steps:

(i) programming the centralised application and (ii) translating the centralised program

into distributed programs based on the actual location of data.

The evaluation of the method based on the real-time simulation results shows its
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