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Introduction, goal and outline

“I would rather have questions that can’t be answered
than answers that can’t be questioned.”

— Richard Feynman

THIS Thesis will be devoted to the celebrated Kardar-Parisi-Zhang (KPZ) equation, the corner
stone of continuous stochastic non-linear growth models. The goal of this Thesis is two-fold.
Firstly, it aims to review the state of the art and provide a detailed picture of the search of exact
solutions to the KPZ equation, of their properties in terms of large deviations and also of their
applications to random matrix theory or stochastic calculus. Secondly, is it intended to formu-
late a number of open questions connecting the Kardar-Parisi-Zhang with integrability theory,
random matrix theory and Coulomb gas theory.

This Thesis is divided in three distinct parts:

Part I will be devoted to a general introduction to the physics of the Kardar-Parisi-Zhang
equation and its exact solutions at all times, shedding some light on the reason why this equation
is considered nowadays as a landmark to study systems driven out-of-equilibrium. In addition,
Part I will include a presentation of some elements of Random Matrix Theory and of Large Devi-
ation Theory required to understand the recent developments surrounding this equation. Finally,
Part I will also bring to light intriguing connections of the solutions of the KPZ equation to other
problems arising in probability theory.

Part II will focus on the short-time properties of the solutions to the KPZ equation from the
point of view of Large Deviation Theory. Two frameworks will be introduced to that aim: (%) the
Weak Noise Theory, interpreted as a perturbation theory on the magnitude of the noise of the KPZ
equation and (%) a general methodology developed in this Thesis, the cumulant method based
on the recently established Fredholm representation of some solutions to the KPZ equation. In
addition, the predictions for the short-time KPZ solutions will be confronted to remarkable high-
precision numerical simulations of discrete directed polymers obtained by Markov-chain Monte
Carlo methods combined with the idea of importance sampling.

Part III will focus on the late-time properties of the solutions to the KPZ equation again from
the point of view of Large Deviation Theory. Quite remarkably, the question of determining the
large fluctuations of the KPZ solutions at large time will unveil a more general problem which is
the study of truncated linear statistics at the edge of Gaussian random matrices. Four original
methods, historically dedicated to the large-time large deviations of the KPZ solutions and a
priori unrelated, will be presented and unified within Part III. These methods originate from
different backgrounds involving a generalized Painlevé 11 equation, the Stochastic Airy Operator,
the theory of Coulomb gases and an extended cumulant expansion for determinantal point pro-
cesses.



We will present in this Thesis a number of original results obtained during the three years of
its completion. These results will be equally distributed in the three parts composing this Thesis
and can be summarized as follows.

In Part I, we will introduce a new solution to the Kardar-Parisi-Zhang equation valid at all
times in a half-space for the so-called droplet initial condition in presence of a wall at the origin
characterized by a coefficient A > —% and for the Brownian initial condition with a positive
drift equal to A + % in presence of a hard-wall at the origin. We will additionally present a new
application of the exact KPZ solutions to the study of a Brownian functional, called the pairwise
coincidence time, in various geometries (Brownian motions, Brownian bridges...). Finally, on
a more technical note, we will provide a new Lemma to manipulate a certain class of Fredholm
Pfaffians including matrix-valued kernels and to transform them into Fredholm determinants with
scalar-valued kernels.

In Part II, we will construct a new method, the cumulant method, to establish at short time
a Large Deviation Principle for the solutions of the KPZ equation. The assumption required for
the use of this method will be the availability of a representation of the KPZ solution in terms
of Fredholm determinant, which was recently found for various initial conditions. This method
will appear as an analog to the Szegd theorem for Toeplitz determinants. From an exhaustive
study of the short-time properties of the KPZ solutions obtained for many initial conditions, we
will hint to some form of universality in the distribution of the large fluctuations at short time.
Finally, on a more numerical note, we will validate the conclusions of the cumulant method by
comparing the probability distribution of the large fluctuations down to values as small as 1075,

In Part III, we will develop a new systematic expansion of the Fredholm determinant related
to the solution of the Kardar-Parisi-Zhang equation for the droplet initial condition. The aim of
this expansion is to (7) uncover the presence of a Gaussian Free Field in the atypical fluctuations
of the KPZ solution at short time and (%) bring corrections at arbitrary order in time in a form
similar to a Szegd theorem to study the intermediate-time regime. This systematic expansion
will allow to shift smoothly from the short-time regime to the large-time regime in order to es-
tablish a Large Deviation Principle at late time for the solutions of the KPZ equation as well
as for the linear statistics problem. This expansion will in addition be a central pillar for our
resolution of the problem of truncated linear statistics at the edge of Gaussian random matrices
and for the discovery of a new family of phase transitions exhibiting a continuous order larger
or equal to three. To finish on a more practical note, we applied our results on the truncated
linear statistics to investigate non-intersecting Brownian interfaces subject to a needle-like poten-
tial that could potentially be realized with the help of the tip of a Scanning Tunneling Microscope.

Let us conclude this outline and this list of results by saying that we hope this Thesis will
properly portray the recent progress on the Kardar-Parisi-Zhang equation and will as well serve
as a basis for a review on the associated literature.
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Part 1

Introduction to the
Kardar-Parisi-Zhang equation and
elements of Random Matrix Theory



Abstract

In the first part of this Thesis, we will introduce the Kardar-Parisi-Zhang equation and ex-
plain why it is considered nowadays as a landmark to study systems driven out of equilibrium. In
addition, we will present some elements of Random Matrix Theory and Large Deviation Theory
required to fully understand the narrative behind the recent mathematical developments sur-
rounding this equation such as its exact solutions and its intriguing connections with models of
polymers and Brownian functionals. The pinnacle of this first part will be the presentation of a
new solution to the Kardar-Parisi-Zhang on the half-line for the droplet initial condition in the
presence of a wall at the origin.



Chapter 1

The Kardar-Parisi-Zhang equation

1.1 Birth of the model

Classifying physics in terms of critical phenomena is one of the great ambition of statistical
physics [10]. The concept of universality classes embodies this idea as many unrelated systems
such as liquid-vapor systems, magnets and binary liquid mixtures share the same critical behav-
ior. One of the first theoretical manifestation of this notion arose from the work of Onsager on
the two-dimensional Ising model [11] which predicted the existence of critical behavior far from
the prediction of mean field theory. Later on, the concept of universality emerged again from the
work of Wilson on the renormalization group [12], providing a practical way to classify critical
phenomena. Nonetheless, most historical developments did concern systems at thermal equilib-
rium.

There has been a recent shift in statistical physics from systems at equilibrium towards sys-
tems out-of-equilibrium. The field of active matter, which consists in studying active agents
consuming and spending energy to move such as flocks of birds [13], is one of the many concrete
examples showing recent interest in such problems. In the context of out-of-equilibrium physics,
a class of models called the Kardar-Parisi-Zhang (KPZ) universality class [14] is proposed as a
potential candidate to represent a large class of models out-of-equilibrium. The KPZ universality
class consists of a family of models representing the stochastic growth of interfaces. It is nowa-
days related to countless physical phenomena exhibiting non-equilibrium fluctuations such as
directed polymers, stirred fluids and stochastic particle transport [15-20]. Quite intriguingly, this
universality class in 141 dimensions was also connected these past years to integrable systems,
both classical and quantum and to random matrix theory. The discovery of these connections
triggered intense investigation of the properties of the models in this class on both theoretical
and experimental sides.

The physics of stochastic interface growth has a rich history and an even richer scope of appli-
cations. It emerges for instance in the physics of molecular deposition or film growth [21] essential
in the industry of semi-conductors, in the physics of slow combustion [22] or cell replication where
one can be interested in the front evolution of cancer cell colonies [23] and also in the physics of
population dynamics where one can be interested in the border delimiting two populations [24] or
two phases having different stability as in the famous liquid crystal growth experiment of Takeuchi
and Sano [25-31]. For all these phenomena, it has been observed and suggested that the interface
fluctuations become larger and larger as time increases. This phenomenon, called the kinetic
roughening [15], was largely observed in multiple situations and appears to be a universal feature
of any surface growing with stochastic local interactions.



(b)

Figure 1.1: Interface growing according to the Edwards-Wilkinson equation, the noise is neglected
for graphical purpose. Left (a) anisotropic growth along one direction. Center (b) isotropic growth
along the local normal direction. Right (c) geometrical construction of local coordinates. Figure
borrowed from Ref. [20] which was inspired from Ref. [15]

To investigate whether a common physics is hidden in all these systems, one should search
for some universal feature. Similarly to systems at equilibrium, a feature of interest is scale
invariance. For an interface parametrized by a function h(z,t), a scale invariance implies that
the statistical properties of the fluctuations dh(x,t) = h(x,t) — E[h(x,t)] are kept invariant under
the transformation

xr—bx, t—b’t, Ooh— bYdh, (1.1.1)

The physics of these growing interfaces and of the kinetic roughening will therefore be described
by the set of exponents {a, z}.

Having in mind the idea of universality and of critical exponents, the natural exercise is to
construct phenomenologically an equation driving a growing interface subject to external noise
due for instance to heterogeneities. In this Thesis we will be interested in surfaces growing
in one direction in space and one direction in time, thus we will build an equation in 141
dimensions. Under the usual symmetries: space-time translation, space inversion, rotation and
height translation, the simplest diffusion equation in this setting is the heat equation with an
additive white noise:

Oh(x,t) = vy + v O?h(x,t) + VD E(x,t) . (1.1.2)

This equation is the celebrated Edwards-Wilkinson equation [32]. This equation allows interfaces
to grow as one can translate the height field by a linear drift term h — h + vt to obtain a
diffusion equation in the presence of a white noise. Here v > 0 denotes the strength of the
diffusive relaxation which smoothens irregularities and £(z,t) is a centered Gaussian white noise
with E [£(z,t)¢(2,t')] = d(x—2)6(t —t'). This equation is also symmetric under height inversion
h — —h which is unrealistic for many physical problems. Imposing an invariance of the Edwards-
Wilkinson equation with respect to the rescaling (1.1.1) yields in 1 4 1 dimensions the following
values for the critical exponents

a=— z=2. (1.1.3)

These exponents are the landmark of the Edwards-Wilkinson universality class [32]. Moreover, it
is possible to solve the Edwards-Wilkinson equation in Fourier space and show that the resulting
height h(z,t) has Gaussian fluctuations.

From microscopic considerations, the Edwards-Wilkinson equation assumes that the interface
growth occurs solely along one direction, hence anisotropically, as we depict in Fig. 1.1 (a) which
we borrowed from Ref. [20]. Physically we expect growth processes to be isotropic and the growth



direction to be along the local normal of the interface, therefore the Edwards-Wilkinson cannot
describe globally the growth but rather locally in system of coordinates (Zjoc, hioc) defined by
the local tangent and normal of the interface as seen in Fig. 1.1 (b)-(c). The transformation of
local coordinates to global coordinates is obtained by considering the local slope of the interface
tan @ =|0;h| as in Fig. 1.1 (b)-(c), then

dhloc
h—
cosf’

dz = dxjee cos b . (1.1.4)

Now, taking the Edwards-Wilkinson equation with the local variables (x1oc, hioc) and inserting the
global coordinates (x, h) leads at the lowest-order in |0,h| to the celebrated Kardar-Parisi-Zhang
(KPZ) equation [14-19,33].

Ouh(z,t) = v O2h(z, ) + % (Duh(, 6)2 + VD E(x,t) (1.1.5)

The reason to introduce a coefficient Ay in front of the non-linearity is because we only consid-
ered non-linearity arising from slope effects whereas in practical situations it can come from the
interactions between different particles or other physics phenomena. In the rest of this Thesis, we
shall consider the KPZ equation starting from a given initial condition h(z,t = 0) and we shall
use units of space, time and heights such that A\g =D =2 and v = 1.

Remark 1.1.1. This is equivalent to use everywhere the following units of space, time and heights
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(1.1.6)

The addition of the non-linearity in the KPZ equation breaks the invariance under height
inversion h — —h, which is physically more acceptable for a growth process. In 1 + 1 dimensions
(one in space and one in time), the stationary distribution of the KPZ equation is known (and
can be obtained from the related Fokker-Planck equation) as

P({h(z)}) ~ exp (—; /R dx(&rh)2> (1.1.7)

This represents an interface with Brownian longitudinal fluctuations. In addition, the renormal-
ization group and symmetry invariance arguments allow to obtain critical exponents [14, 33, 34]
different from the ones of the Edwards-Wilkinson equation as
1 3

These exponents are the landmark of another universality class: the Kardar-Parisi-Zhang uni-
versality class [14,35,36]. They have also been probed experimentally and we refer the reader to
Ref. [37] for a discussion on this matter. Let us for the moment provide some more background
on this universality class before coming back to the KPZ equation.

1.2 Some elements around the KPZ universality class

The Kardar-Parisi-Zhang universality class in 1+1 dimensions includes a host of models [18,38]:
discrete versions of stochastic interface growth such as the polynuclear growth (PNG) model
[39,40], exclusion processes such as the totally asymmetric simple exclusion process (TASEP),
the asymmetric simple exclusion process (ASEP) [41], the ¢-TASEP and other variants [42-45],
discrete or semi-discrete [46-54] models of directed polymers, random walks in time dependent
random media [55,56], dimer models, random tilings, random permutations [57]. It also includes



q P
£X A 2
+—&+8& & & —1 & 1+ & & & & &+

Figure 1.2: Pictorial representation of the mapping between the ASEP and an interface growth
problem. Taken from Ref. [64]

the study of some correlation function in quantum condensates [58,59]. A common aspect of all
the models inside the KPZ class is that in the large-time limit the KPZ height field (which can be
defined for all members of the class) fluctuates on the scale /2 with ¢ the time since the beginning
of the growth. This universality extends beyond the scaling in time: the one point distribution
of the height, when appropriately scaled, converges to a few number of universal distributions,
most of them appear in random matrix theory, for instance the Tracy-Widom distributions for
the largest eigenvalue of large Gaussian random matrices [60,61]. We will extensively discuss this
point in the rest of this Thesis. The distribution characterizing the fluctuations of the height
at large times depends on some broad features of the initial condition [35,62]. There has been
recent progress in physics and mathematics in the study of the KPZ universality class, thanks to
the discovery of exact solutions and the development of powerful methods to address stochastic
integrability [63].

For completeness, let us describe in more details one of the models aforementioned: the ASEP.
This is one of the models in non-equilibrium statistical physics that plays a central role in the
exact studies of the KPZ equation. It is defined on a lattice with time ¢ > 0 and coordinate x € Z
where each site it either occupied or empty. The particles on the lattice can hop to a neighboring
site stochastically and independently, to the right at rate p and to the left at rate ¢ < p, unless
the new site is already occupied: this characterizes the exclusion. It turns out that the ASEP
can be mapped to a model of interface growth, the so-called single-step model, by replacing the
occupied and empty sites with downward and upward increments (see Fig. 1.2). Therefore the
height increase h(xz,t) — h(x,0) is given by the total number of particles that went through the
position z to the right during a time ¢. The work of Tracy-Widom in Ref. [44] on the ASEP was
important to determine exact solutions to the Kardar-Parisi-Zhang equation 141 dimensions.
The reason for that is that the KPZ equation is known to be linked to a certain asymmetric limit
of ASEP, see Ref. [65]. Indeed, setting the hopping rates of ASEP as p — ¢ = O(\/e) with € < 1,
it was shown that \/eh(|x/e|,t/€?) in the limit € — 0 satisfies the KPZ equation. More generally
it is conjectured that the KPZ equation itself is the universal scaling limit of weakly asymmetric
growth models in 1 + 1 dimensions, this is illustrated by the notion of weak asymmetry univer-
sality [36].

To conclude this Section, let us understand the following fundamental property of the KPZ
equation which states that its dynamics describes the trajectory in the space of models from the
Edwards-Wilkinson fixed point to the Kardar-Parisi-Zhang fixed point. To understand this, we
come back to the dimensional analysis for the KPZ equation, if h(z,t) solves the KPZ equation
then the rescaled field

h(z,1) := b~%h(x = b, t = b*i) (1.2.1)



solves the rescaled equation (dropping the tildes)
Ah(z,t) = b 202h(x, t) + b 2(8,h(x, 1))? + bE207D/2/9¢ (2, 1). (1.2.2)

By comparing the diffusion and the non-linearity terms for small and large b, since the exponents
z and « are positive, it is clear that the non-linearity is irrelevant at short time while the diffusion
part of the equation is irrelevant at large time. From the point of view of renormalization group,
these two terms dictate the value of the critical exponents {«, z}, hence the relative relevance of
the two terms at short and large times indicates that the dynamics of the KPZ equation describes
the flow from the Edwards-Wilkinson fixed point (irrelevance of the non-linearity) [32] towards
the Kardar-Parisi-Zhang fixed point (irrelevance of the diffusion) [35].

1.3 Some mappings of the KPZ equation

Let us now come back to the KPZ equation (1.1.5) and discuss some of its properties. It enjoys
a special Galilean invariance called the statistical tilt symmetry. For a given realization of the
white noise &(z,t), if h(z,t) is a solution of the KPZ equation, then

1
hy(x,t) = h(x — vt t) —vx + 511215, (1.3.1)
is a solution of the KPZ equation in the noise &,(x,t) = £(x — vt,t). What is more, the quantity
u(z,t) = Ozh(x,t) solves the equation

pu(x,t) = O2u(x,t) + 2u(x, t)dpu(x, t) + V20,&(x, t). (1.3.2)

This is the Burgers’s equation for a randomly forced fluid, much studied in the literature in the
context of turbulence: u(x,t) is interpreted as the velocity field of a one-dimensional fluid, see
Ref. [66]. In this framework the Galilean symmetry reads u,(z,t) = u(x — vt, t) — v.

The most important mapping of the KPZ equation is not on Burger’s equation but rather
to another stochastic process driven by the so-called Stochastic Heat Equation (SHE) which we
now present. The Cole-Hopf mapping of the Kardar-Parisi-Zhang equation consists in defining
the following change of variable

Z(x,t) = exp(h(z,t)) (1.3.3)

so that Z(z,t) which we will call the partition sum verifies in the Ito prescription the celebrated
Stochastic Heat Equation':

OZ(x,t) = P Z(x,t) + V2eE&(x,t) Z(x,t) . (1.3.4)

There has been an important amount of work undertaken to properly define mathematically
the KPZ equation which lead to the development of the theory of rough paths and regularity
structures [17].

Remark 1.3.1. The SHE can either be considered on the full-line, i.e. x € R or on the half-line
x € Ry, in which case one generally imposes at all times a Robin boundary condition at the origin
0 Z(x,t) |g=0= AZ(0,t). In terms of the KPZ equation, this corresponds to fixing the slope of
the height at the origin, i.e. Ozh(z,t) |z—0= A.

Note that we have inserted an extra factor  in the partition function for later purpose which amounts to
choose a system of units such that D = 2¢. At the very end of the calculation, we will set ¢ back to unity.



As a first comment on this equation, let us observe that we have traded the KPZ equation
which is non-linear with an additive noise with the SHE which is linear but has a multiplicative
noise viewed as a source term. Secondly, from the point of view of stochastic differential equa-
tions, let us note that the Cole-Hopf mapping is non-trivial as its validity depends on whether
the solution to the SHE remains positive at all times. Fortunately, the partition sum is almost
surely strictly positive at all times as proved by Mueller in Ref. [67]. See also Refs. [68,69] for
more recent developments.

One of the most remarkable properties of the SHE is that its solution, the partition sum, can
be seen as the partition function of a directed polymer in a random medium. Indeed, consider
an elastic polymer of length ¢ and fixed endpoints =y and y, in a random potential &(z,t) which
partition function is given by

t (T 2
a(t)=y —/0 [ (4) +V2¢ (a(r),T)| dr
Z(y,xo,1) :/x Dzx(1)e .

o (1.3.5)
=x0

By the standard Feynman-Kac path integral argument, Z(z,t) = Z(y, zo, t) solves the SHE under
the initial condition Z(x,0) = é(x — zp). Furthermore, the first endpoint of the polymer z( can
be chosen to have a distribution over the real line with a probability density Z(x,0) = eh(@0) in
which case the full solution to the SHE with initial condition Z(z,0) reads

Z(w,t) = /]R dz0Z (20, 0)Z(y, 70, ). (1.3.6)

Historically, since the KPZ equation is non-linear, it has been extremely hard to extract quan-
titative information from it. There has been controversy on the solvability of the equation to the
point where Barabasi and Stanley stated at the beginning of the Chapter 6 of Ref. [70] that “the
KPZ equation cannot be solved in closed form due to its nonlinear character”. As we shall see in
the rest of this Thesis, this statement is nevertheless wrong.

Indeed, recently exact solutions have also been obtained for the KPZ equation at all times
for various initial conditions [2,71-80]: this was achieved by various routes. First by studying
scaling limits of solvable discrete models [18,43,80], which allowed for rigorous treatments. The
second on which we will elaborate longer, pioneered by Kardar [81], is non-rigorous, but leads
to a more direct solution: it starts from the directed polymer formulation, uses the so-called
replica method together with a mapping to the attractive delta-Bose gas, or Lieb-Liniger model,
which is then studied using the Bethe ansatz, nowadays denoted the replica Bethe ansatz (RBA)
method. More recently, Borodin and Corwin introduced the Macdonald process to account for
the integrable structure of many discrete and continuous models [42, 82]. They also developed
the study of stochastic vertex models.

1.4 The Replica Bethe Ansatz

Let us describe in more details the approach initiated by Kardar. From the Cole-Hopf mapping,
we now know that the solution of the KPZ equation can be mapped to the SHE which is linear,
hence easier to manipulate. The quantities of interest for us in the SHE will be the moments of
the solution Z(z,t). As the SHE has been obtained under the Ito prescription the first moment of
the solution, i.e. the expected value Expyz[Z(z,t)], verifies the standard heat equation. Regarding
the higher moments, we will firstly define the N-point correlation function at equal time of the
solution to the SHE

‘;[/(.%'1, ...y LN, t) = EKPZ [Z(l‘l, t) e Z(.%N, t)] . (141)



Since we study N copies of the solution to the SHE, we call this object the replica. Since the
correlator of the noise is E [£(z,t)¢(2,t')] = d(x — 2/)d(t — ¢'), standard Ito manipulations show
that the replica verifies a Schrodinger equation which is the celebrated delta Bose gas, or Lieb-
Liniger model [83]

QU (x1,...,xn,1) = —HNU(z1,..., 2N, 1), (1.4.2)

where the Lieb-Liniger Hamiltonian is given as

N N 92
Hy==D 552 > d(w — @) (1.4.3)
j=1""j 1<i<j<N

The definition of the replica is fully symmetric by the exchange of positions {z; < x;}, or
equivalently by exchange of the copies of the SHE solution, therefore the quantum mechanical
problem will describe bosons with contact interactions. For ¢ < 0 the model is a repulsive one
while for ¢ > 0 it is attractive which corresponds to the physics of the Kardar-Parisi-Zhang
equation. The precise boundary conditions are such that

1. if the model is considered on a full-line, we shall impose a periodic boundary condition at
xz =0 and z = L and the real line will be considered by the limit L — +oo.

2. if the model is considered on a half-line, the variables {z;} will take value on [0, L] and the
wavefunctions ¥ will verify a Robin boundary condition at the origin

Vvt > 0,Vi € [1,N], ami\lf($1,...,x]v,t)mi:0 :A\I/(Jtl,...,l‘N,t)xi:O (1.4.4)

Another boundary condition should be imposed at © = L to define the problem properly.
In practice, as we will be interested in the limit L — 400 this boundary can be chosen
arbitrarily and we will decide to choose a hard-wall, i.e. A =+o00 at x = L.

The Lieb-Liniger is integrable on the full-line and its energy spectrum and eigenfunctions were
obtained long ago using the Bethe ansatz [83] which is a generalization of single particle plane
waves to N particles. It is an interesting model for quantum gases which has received a revived
interest from experimental realizations in dilute cold atomic gases [84]. Its properties have been
studied in non-equilibrium and equilibrium both theoretically and experimentally, and are quite
different in the attractive case ¢ > 0 and the repulsive case ¢ < 0.

In the repulsive case, a proper fixed-density thermodynamic limit exists, and the bosons form
a one-dimensional super-fluid with quasi long-range order, a sea with particle-hole excitations,
and collective modes [83] well described at low energy by the bosonisation (i.e. Luttinger liquid)
theory [85]. In the attractive case, relevant to analyze the Kardar-Parisi-Zhang, the ground state
is a bound state of all the N bosons, and the excitations are obtained by splitting it into a col-
lection of quasi-independent, smaller bound states, which behave almost as free particles, called
string states [86]. The dynamical correlations have been studied in [87,88]. It is an interesting
strongly correlated model [89] with nontrivial bound states, also observed in experiments [90,91].
Recently its non-equilibrium properties have received a large attention, in particular after a quan-
tum quench [92-94].

Quite interestingly for the KPZ equation, the delta Bose gas is integrable both on the full-line
and on the half-line. In the latter case, we refer the readers to the following references [95-97]
(see also section 5.1 of [98]) for the Dirichlet boundary condition (i.e. A = +00) and for arbitrary
A, we refer to the following extensive list of references [79,98-103].



Having in mind the properties of the Lieb-Liniger model, one can formally express the solution
to delta Bose gas as

Expz [Z(21,t) ... Z(an,t)] = (z1 ... an]e N [W(t = 0)). (1.4.5)
The initial state for the Lieb-Liniger model is denoted
EKPZ [Z(l'l,t = O) ce Z(a:N,t = 0)} = <w1 .. .1‘N’\I/(t = 0)> (1.4.6)

As this initial state corresponds to the initial condition of the SHE, we must take the initial state

|W(t =0)) as

N
(x1... 2NV (t =0)) = ®o(z1,..., 7N H (24,0 (1.4.7)

Let us note nonetheless that this is valid solely for deterministic initial conditions and we will
present later on in this Thesis an extension to random initial conditions for the KPZ equation.

To obtain the N-th moment of the solution to the SHE Z(x,t), one can now take the position
of all N -replica to coincide to some value z and use the spectral decomposition of the evolution
operator e 'V in terms of the eigenstates of the Lieb-Liniger Hamiltonian Hy as

L
Expz | Z(2, )] = Z\IJ 2Pyl o) e 2 (1.4.8)

Here the un-normalized eigenfunctions of 7, are denoted VU, (of norm denoted ||u||) with eigenen-
ergies F,. Since only symmetric eigenstates contribute (as the initial and final states are fully
symmetric in the z;), the > ,, denotes a sum over all bosonic eigenstates of the Lieb-Liniger model,
and (¥,|®g) denotes the overlap, i.e. the Hermitian scalar product of the initial state with the
eigenstate ¥,. Assuming that the moments Expyz, [Z (z, t)N } have been calculated for all integer
N, the final step of the RBA method consists in the summation of these moments to obtain the
generating function of the solution to the SHE, of equivalently the generating function of the
exponential of the KPZ height

g(s) = Expz [exp(—%h(x’t))} = Expz [exp(—sZ(x, 1)) i

EKPZ [Z2@&)™] . (1.4.9)

Remark 1.4.1. The RBA was said earlier to be non-rigorous. One of the reasons is that the
formal series (1.4.9) does not converge in general, but there exist tricks such as the Mellin-Barnes
summation formula, Lemma 3.5.3, allowing to give a meaning to the series.

In practice, an important question is to determine the probability distribution function (PDF)
for the height at one point, h(0,t), given an initial condition h(x,t = 0). Remarkably, for all ini-
tial conditions that were solved, the generating function (1.4.9) can always be expressed in terms
of algebraic objects called Fredholm determinants and Fredholm Pfaffians which are common ob-
jects in Random Matrix Theory [104,105] representing expectation values over determinantal and
Pfaffian point processes. From these, it was shown that in the large-time limit the shifted height
H(t) = h(0,t)+ {5 has fluctuations of magnitude t1/3 as predicted from the KPZ universality class
and they are described by the celebrated Tracy-Widom distributions [60,61], i.e. the distributions
of the largest eigenvalues of standard Gaussian random matrix ensembles [104, 105]. Quite sur-
prisingly, some of these Fredholm determinants are also related to the physics of trapped fermions
at finite temperature in quantum mechanics [106] where the temperature 7' of the fermions is
related to the time ¢ of the KPZ dynamics as T o< t~1/3.
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1.5 The full-space problem

For the rest of this Chapter, let us introduce and discuss some initial conditions of the Kardar-
Parisi-Zhang equation. In this Section we shall focus on the full-space problem and after that we
shall turn to the half-space one. One of the most general initial condition studied so far for the
Kardar-Parisi-Zhang equation in full-space is the following:

Wt = 0) wrx + o Br(—x) x
1]’ = =
—wrx + ogpBRr(x) T

0,

N (1.5.1)
where B, and Bp are independent one-sided unit Brownian motions with By, (0) = Bgr(0) = 0.
The two point correlators are given by E [Br(x)Bgr(z")] = min(z, 2’). The parameters wz, and wg
measure the slope of the initial profile on each side of zero and the parameters o7, and or describe
the variance of the randomness on each side of zero. At the time of completion of this manuscript,
all solvable cases of the Kardar-Parisi-Zhang equation in full-space can be considered by choosing
the parameters o7, and og in {0,1}2. Indeed, the list of solvable cases are the following:

1. The wedge initial condition where we choose op = o, = 0. In this case, (i) wyp = wr =
w — oo describes the droplet initial condition, (i) wy, = 0o, wg = 0 (resp. wr = 0o and
wr, = 0), describes the half-flat initial condition and (%ii) wy, = wr = 0 describes the flat
initial condition. Taking w; = wr = w enables to study a cross-over between the flat and
droplet initial condition.

2. The Brownian initial condition where we choose o5, = or = 1. In this case, wy, = wr =0
describes the stationary initial condition. Taking w; = wgr = w enables to study a cross-
over between the stationary and droplet initial condition.

3. The Flat-Brownian initial condition where we choose o7, = 0. Taking w; — oo describes
the half-Brownian and taking wr — oo describes the half-flat. Note that by symmetry we
can study a symmetric situation with L < R.

As indicated during the introduction to the Replica Bethe Ansatz method, the generating
function of the solution to the KPZ equation can be expressed in terms of Fredholm determinants
which provide a direct connection between random matrix ensembles and the KPZ equation.
Anticipating the rest of this Thesis, the droplet initial condition is related to the Tracy-Widom
distribution for the Gaussian Unitary Ensemble (GUE), the flat initial condition to the Tracy-
Widom distribution for the Gaussian Orthogonal Ensemble (GOE) and the stationary initial
condition to the so-called Baik Rains distribution.

The full-space problem with droplet initial condition was originally the first one to be solved
exactly. Although the KPZ equation appeared in 1986, its first solution appeared in 2010 high-
lighting its complexity and the effort engaged both in the physics and mathematics community.
In addition, recent impressive experiments on liquid crystals from Takeuchi and Sano have been
able to validate the large-time random matrix statistics of the KPZ height fluctuation [25-30].

1.6 The half-space problem

Although most of these results have been obtained on the full space, it is interesting for appli-
cations to study also half-space models, e.g. defined only on the half line x € R;. Recently
indeed experiments were able to access the half-space geometries [31]. Moreover there are strong
theoretical motivations since integrability properties are sometimes preserved by going to the
half-space, with the proper boundary conditions. Progress started with discrete models, notably
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Figure 1.3: Representation of the time evolution of the KPZ height h(z,t) (black lines) at different
times from the droplet initial condition (red line) and with a wall at the origin. We here consider
the fluctuations of the height h(z,t) next to the wall. Courtesy of J. De Nardis in Ref. [112].

in mathematics. Indeed, the half-space problem has been addressed for some models in the KPZ
universality class. In a pioneering paper, Baik and Rains [107] studied the longest increasing
sub-sequences (LIS) of symmetrized random permutations which maps to a discrete zero temper-
ature model of a directed polymer in a half-space, with a tunable parameter o« which makes the
boundary more attractive as « increases. They found, in the limit of large polymer length ¢, a
transition when « reaches the critical value a. = 1. For o« < & the PDF of the fluctuations of the
directed polymer energy is given by the Tracy-Widom distribution for the Gaussian Symplectic
Ensemble (GSE) of random matrices [61] on the characteristic KPZ scale t'/3. For a > a the
PDF is Gaussian on the scale t*/2, as the directed polymer paths are bound to the diagonal
line. At the critical point, & = a, the PDF is given by the GOE Tracy-Widom distribution on
the t'/3 scale. A similar transition was found for the height distribution in the discrete PNG
growth model on a half-line, with a source at the origin, as the nucleation rate at the origin is
increased above a threshold [108]. Finally, some results were also obtained for the TASEP in a
half-space [45] and for the (finite temperature) log-gamma DP with symmetric weights [109, 110]
and in half-quadrant geometries [111].

For the coming presentation of the KPZ equation on a half-line, we will borrow some elements
from Ref. [112]. The KPZ equation (1.1.5) on the half-line considers the space variable z € R
along with a Neumann boundary condition (b.c.)

VE>0, Oph(z,t) omo=A & (9y— A)Z(x,t) ls—o = 0. (1.6.1)

A is a real parameter which describes the interaction with the boundary (a wall at x = 0). The
wall is repulsive for A > 0 and attractive for A < 0, in addition the case A = 400 imposes
Z(x =0,t) =0, i.e. an infinitely repulsive or absorbing wall. On the contrary, A = 0 is seen as a
reflecting wall. For the half-space problem, we need in addition to regularize the initial condition
when it is not properly defined at x = 0, as it is the case for a hard-wall with boundary coefficient
A = +o0. In this case, the droplet initial condition for instance reads

|z — &l

h(z,t=0)=— ~logn , n—=0" & Zxt=0)=6x—kK). (1.6.2)

Historically the height at the origin H(t) was studied. For finite A it reads H(t) = h(k = 0,t)+ 5
and for A = +o0 it reads H (t) = h(k,t) —log k+ {5 with K — 0T since a regularization is needed.
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Figure 1.4: Top. The directed polymer in random environment with a wall on the left and fixed
endpoints along the wall. The attraction to the wall is parametrized by the parameter A. At
A = —1/2 there is a phase transition, for A < —1/2 the polymer spends most of the next to the
wall, while at A > —1/2 the polymer is unpinned. Depending on the value of A, the statistics of the
fluctuations of the corresponding free energy, equivalent to the KPZ height, changes from Gaussian
(A < —1/2), to GOE Tracy-Widom (A = —1/2) and GSE Tracy-Widom (A > —1/2). Bottom.
The same transition is observed for the ground state eigenstate of the attractive Lieb-Liniger model
for bosons on the half-line (the wall is at the left of the origin). The wave function changes from
being delocalized (A > —1/2) to being localized at the boundary (A < —1/2) where all particles are
bounded to the wall. Courtesy of J. De Nardis in Ref. [112].

The time evolution of the KPZ height from the droplet initial condition in a half-space then
resembles Fig. 1.3.

The half-space problem was considered by Kardar in Ref. [113] in the equivalent representa-
tion in terms of a directed polymer in a half space bounded by a wall. A binding transition to
the wall, that was termed depinning by quenched randomness, was predicted for A = —1/2 from
heuristic considerations on the ground state of the delta Bose gas in the presence of a wall. The
phase transition, which we represent in Fig. 1.4, separates a phase where the directed polymer is
bound to the wall for A < —% to an unbound phase for A > —%, as the attraction to the wall is de-
creased. Numerical studies also addressed the half-line problem: the convergence to the GSE was
explored [31] in a half-space geometry aiming to open the way for an experimental confirmation.
In addition, connections to conductance fluctuations in Anderson localization were explored [114].

More recently, exact solutions to the KPZ equation were obtained for three specific values
of A, ie. A= +00,0,—1/2 [71,79,80] for the droplet initial condition. In all three cases the
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solution can be expressed in terms of a Fredholm Pfaffian [6,71,79,80]. For A = 400, the in-
finitely repulsive wall, it was found [71] that the PDF of the scaled height, H(t)/t!/3, converges
at large ¢ to the GSE Tracy-Widom distribution [61,104,105]. For A = 0, it was also found that
the large-time limit of the PDF corresponds to the GSE Tracy-Widom distribution [79]. Both
cases used the mapping to the delta Bose gas, with use of respectively the RBA for A = 400 and
nested contour integral representations of the moments for A = 0. The critical case A = —% was
solved instead using a continuum limit from the ASEP model with an open boundary [80, 115].
It was found that at large time the PDF converges to the GOE Tracy-Widom distribution which

thus describes the large-time behavior at the transition.

It is natural to conjecture that the transition for the KPZ equation at A = —1/2 is in the
same universality class, in the large-time limit, as the one discovered by Baik and Rains in [107]
and that this universality is common to the full KPZ universality class, see Ref. [115]. Baik
and Rains performed a detailed analysis on a scale o — 1 = wt~1/3 around the transition. They
found that the PDF depends continously on w and interpolates between the GSE/GOE/Gaussian
distributions as w is increased. This transition PDF was obtained as a solution of Painlevé type
system of equations. Further results were obtained recently using Pfaffian-Schur processes, for
variants of TASEP models and last passage percolation in a half-quadrant [116,117]. Not only the
one-point, but also the multi-point height distributions were studied and for arbitrary positions
with respect to the wall. A Fredholm Pfaffian was obtained with an explicit expression around the
GSE/GOE/Gaussian transition, hence we may conjecture that it is compatible with the Painlevé
system of [107].

1.7 Cross-over between fixed points of the KPZ equa-
tion

So far we have explored the Kardar-Parisi-Zhang universality class but it is in fact possible to go
beyond and to define subclasses of universality in terms of initial or boundary conditions. As a
concrete example, let us recall that for the KPZ equation in a half-space, we discussed the fact
that the Robin boundary condition A controls the statistics of the fluctuations of the one-point
KPZ height at large time. Therefore, varying this parameter allows to realize a cross-over between
different large-time distributions, also seen as basin of attraction of the dynamics.

More generally, for the family of initial conditions previously introduced, it is possible to de-
fine by dimensional analysis other cross-over, or relevant, parameters [2,6,118,119]. Indeed, the
slope of the wedge initial condition or the drift of the Brownian initial condition play a cross-over
role both at short time and at large time in terms of the distribution of the solution to the KPZ
equation. We represent in Table 1.1 the relevant parameters at short time and at large time found
in the literature describing various cross-overs and indicate explicitly the related interpolation at
large time. The cross-overs are realized when the relevant parameter is increased from 0 to 4oc0.

This Table has to be understood in the following way:

e At short time, all boundary conditions with finite A will behave as the reflecting wall A = 0.
All initial conditions with finite w or w will behave as the stationary initial condition w = 0
or the flat initial condition w = 0. The singular cases will be the hard-wall A = 400 and
the droplet initial condition w = @ = 4o0.

e At late time, all boundary conditions with A > —1/2 will behave as the hard-wall A = +o0.
All initial conditions with finite w or w will behave as the droplet initial condition. The
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singular cases will be the critical wall A = —1/2, the stationary initial condition w = 0 and
the flat initial condition w = 0.

Crossover parameter Short time  Large time large-time crossover

Robin boundary condition in
half-space with droplet initial

condition

A A=AVt  A=(A+HtY*  GOE « GSE
Brownian initial condition with

variance 1 and drift

w W= w\t W = wtl/3 GUE <« Baik Rains
Wedge initial condition with

slope

w O =wVt o= wt!/3 GUE «~ GOE

Table 1.1: Table of parameters in the KPZ equation controlling a cross-over between Random
Matrix Ensembles. All relevant parameters are supposed to be positive and the cross-over occurs
between the value at 0 and at +oo.

This leads us to define new fixed points in terms of initial conditions:

e For the full-space problem, the fixed points for both short and large times are the droplet
giving the GUE TW at late time, the stationary giving the Baik Rains distribution at late
time and the flat initial condition giving the GOE TW at late time.

e For the half-space problem, the short-time fixed points are the reflecting wall (A = 0) and
the hard-wall (A = +00). At large time, they are the critical wall (A = —1/2) giving the
GOE Tracy-Widom distribution and the hard-wall (A = +00) giving the GSE Tracy-Widom
distribution.

These cross-overs have been studied at the origin z = 0, it would be interesting to obtain a
complete phase diagrams of the various cross-overs taking into account the position of the KPZ
height. Physically, if we probe the KPZ height far from the origin in a half-space, we expect
that the boundary condition at the origin to become more and more irrelevant, hence there can
additionally exist cross-overs between full-space and half-space distributions.
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Chapter 2

Elements of Random Matrix Theory

Random Matrix Theory [104, 105, 120, 121] was first introduced by Eugene Wigner in the
context of nuclear physics. He proposed to model the statistical properties of the spectrum
(eigenvalues) of the nuclei Hamiltonian by a random matrix, hence considering the nuclei as a
black box whose constituting elements interact randomly. Since Wigner, this theory has been
proven fruitful in many contexts: statistics and finance [122], disordered systems, non-intersecting
random walks [123], trapped fermions [106, 124-130], lattice quantum chromodynamics (QCD),
string theory [131,132], number theory, Anderson localization [133], quantum chaos, transport
and entanglement [134—138] and much more.

From the point of view of Number Theory, the Riemann zeta function and its generalizations
the L-functions are intimately related both to the distribution of prime numbers and to Random
Matrix Theory [139-143]. The celebrated Riemann hypothesis states that all non-trivial zeros of
zeta lie on a critical axis of real part equal to one-half. Many theorems and conjecture nowadays
state or imply that the unfolded zeros of zeta have the same statistical properties as the eigenvalues
of a random matrix of large size.

In physics, one of the applications of random matrices lies in the field of disordered systems (for
instance spin glasses) where a defect or an impurity is modeled by a random potential [144—149].
For this class of model, this naturally leads to the notion of random energy landscape in which
the stability of stationary points is described by the Hessian of the random potential which is a
random matrix by essence.

Quite surprisingly, Random Matrix Theory has also found applications in the context of non-
intersecting random walks, see Ref. [150] for an extensive review on this topic. These connections
are in some sense an implication of the seminal work of Karlin and McGregor [151]. It has been
showed that in this model, the joint distribution of the position of the random walkers is exactly
the distribution of the eigenvalues of a random matrix [152].

More recently, random matrices have appeared in the context of the Kardar-Parisi-Zhang
equation and its universality class in a quite profound way. The investigation of this connection
is a major part of this Thesis. To that aim, we shall now introduce the Gaussian ensemble of
random matrices which we will extensively use throughout this Thesis.

2.1 Gaussian [ matrices
In this Thesis, we will focus solely on the Gaussian § ensemble (GSE) of random matrices [104].

To this aim, we consider a matrix of size N x N such that its eigenvalues are real and labeled
{Ai}, and such that their joint probability distribution function (JPDF) has the form

N
P[{\;}] ox exp (ﬁ Z log |Ai — Aj| — 'BTN Z)\?) ) (2.1.1)

1<i<j<N
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Tracy-Widom ‘ fluctuations
N-s=f
° ° ° o ° e o A
—2 2

Figure 2.1: Representation of Wigner semi-circle distribution (blue line) with support [—2, 2] for a
random matrix of size N x N in the limit of large N and the Tracy-Widom distributions arising at
the edge on a scale N—2/3,

Let us first comment on the fact that the Gaussian weight in Eq. (2.1.1) is the reason for the
name of the ensemble. The logarithmic contribution of the JPDF also takes the form of a Van-
dermonde factor [, <j|)\z~ — )\j|5 , inducing a strong correlation between the eigenvalues. Under
our conventions, in the large N limit the empirical measure Ay (\) := N1 Zf\il dx; (A) converges
to the celebrated Wigner semi-circle distribution [104] with density As(A) = 5=v/4 — A21 (N<2}
which we represent in Fig. 2.1.

Historically, matrix representations for the GSE were obtained solely for 5 = 1,2,4 and are
referred to as the orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles (due to
a conjugacy symmetry of the matrix leaving the spectrum invariant) [104]. For completeness of
this introduction, let us describe the construction of a GOE matrix. Denote M the N x N real
symmetric matrix whose entries above the diagonal are independent random Gaussian variables
with mean zero and variance

1+ 0y

E|[M}] = s (2.1.2)

Then the probability measure of M is given, up to normalization, by

P(M) x eXp(—%TrM% (2.1.3)

and the JPDF of its eigenvalues is given up to normalization by Eq. (2.1.1). Since the pioneer work
of Dumitriu and Edelman around 2002 [153], matrix representations of the Gaussian ensemble
were obtained for any 3 in a tridiagonal form. Indeed, let Hg be the following tridiagonal matrix
of size N x N,
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N(0,2) xv-1)p 0
Xv-1g N(0,2) Xn-2)3

Hy = (2.1.4)

1
VNB

Xog N(0,2)  Xg
0 Xg  N(0,2)

where the diagonal terms are Gaussian random variables and the off-diagonal elements are x-
distributed with parameters kf for k € [1, N — 1] so that their PDF reads

21—(1/2
PO = tam

X le X*120(y) (2.1.5)

where a is the parameter of the random variable x,. The eigenvalues {\;} of Hs then admit
Eq. (2.1.1) as their joint probability distribution. This matrix can also be understood from the
point of view of a discrete hopping model on a one-dimensional lattice. The problem is not
translation-invariant as the hopping rates X(y_x)s depend on the position on the lattice.

Due to the presence of the § factor, the JPDF (2.1.1) can be seen as the Gibbs measure
of a Coulomb gas (CG) with logarithmic repulsion between the eigenvalues, which, at large N,
are described by a continuous density. In addition, this JPDF is the stationary measure of the
£ Dyson Brownian motion [154] which represents particles {\;} driven by a Brownian motion
and interacting with a logarithmic potential log|\; — \;|. In addition, in the case of § = 2, if
we see the eigenvalues {\;} as the positions of identical non-interacting fermionic particles as in
Ref. [106,129], then the JPDF can be represented as the square modulus of the related N-body
fermionic wave function, i.e. the quantum probability.

The particular feature of the random eigenvalues of Hg which will be of interest in this Thesis
concerns their behavior around the edge of the spectrum located at A = 2 for large N. Near
the edge, the fluctuations of the eigenvalues are stronger than in the bulk of the spectrum and
a non-trivial behavior is found in a window of width ~ N~=2/3 around the edge. In that window
for large N, the scaled eigenvalues a; = N%/3()\; — 2) define the Airyg point process (APP) which
thus describes the few largest eigenvalues of a large GSE matrix.

In the case of 8 = 2, the Airys point process has the special structure of a determinantal
point process, see Section 2.2 below for more details. It is an infinite random point configuration
a= (a1 >ag >---) on R. Its mean density p(a) (seen as the average of the empirical density of
a) is equal to

pla) = Kai(a,a) (2.1.6)

with the standard Airy kernel Ka;, see Appendix A.3. For large negative argument the mean
density should match the Wigner semi-circle density of the bulk p(a) ~,_ %«/a!. More
generally, the k-th correlation function pg(z1,...,xy) for all £ > 1 takes a determinantal form

pr(x1, ..., zr) = det[Kai(zy, J:k)]ﬁjzl. (2.1.7)

The connection between the tridiagonal matrix and the Airyg point process is made in the large
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Figure 2.2: Tracy-Widom distributions for the GOE, 8 = 1 (blue line), the GUE, 8 = 2 (green
line) and the GSE, 8 = 4 (red line). The plots were performed on Mathematica with the dedicated
Tracy-Widom distribution function.

N limit by the convergence of Hg to an operator called the Stochastic Airy Operator (SAO) [155].

& + Ly (2.1.8)
a2 T o

where V(y) is a standard white noise. The operator Hsao acts on L2(]0, +oo[) with Dirichlet
boundary conditions at the origin and its eigenvalues are the opposite of the Airy points, i.e.
g; = —a; by construction. From a quantum mechanical point of view, this Hamiltonian describes
a quantum particle in a linear potential with an additional random potential.

N%3(21 — Hy) N e, TsA0 =
oo

Remark 2.1.1. To understand this convergence, note that the only space-dependent quantities
in Hg are the off-diagonal elements and that for fixved k and in the limit N — oo,

1

k
WX(N—MB ~Ns1 1 — N
where g is a Gaussian random variable. From the asymptotics of the X random variable at large
N, the discrete hopping model can be understood with a linear field, corresponding to the factor
k/N in the asymptotics.

+g (2.1.9)

For 8 = 1,2, 4, the cumulative distribution of the largest Airy point a; is the celebrated Tracy-
Widom (TW) distribution [60,61,156,157]. Equivalently, denoting Apax the largest eigenvalue of
Hpg, we have

. )\max -2

ey T

In addition, we present in Fig. 2.2 the plot of the Tracy-Widom PDF F é for g = 1,2,4. For
arbitrary 8 > 0, the CDF Fjg(s) or equivalently the PDF F[’g(s) has asymmetric tails [158],

<s) =P(ar < ) := Fp(s) (2.1.10)

exp (—2%|s|3) , § — —00
Fj(s) ~ (2.1.11)
exp (—%83/2> , s — 400
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Before we turn to some properties determinantal point processes and their extension to Pfaffian
point processes, let us discuss in some details the Tracy-Widom distributions in terms of their
determinantal and Painlevé representations.

2.1.1 Tracy-Widom f in terms of Fredholm determinants

We shall now present multiple properties of the Tracy-Widom distributions in terms of Fredholm
determinants anticipating the Section 2.2 for the precise definitions of these objects. For s € R,
let P; be the projector onto [s,4oo[ represented by the kernel Py(z,y) = O(x — s)d(z — y) and
let Ba; be the integral operator constructed from the kernel

Bai(z,y) = Ai(z + y) (2.1.12)

where Ai is the standard Airy function, see Appendix A.2. Note that the Airy integral operator
represented by the Airy kernel can be rewritten in terms of Ba; as Ka; = Baj PoBai. The
Tracy-Widom distributions for § = 2, 1,4 admit determinantal representations as

o Fh(s) = Det[I — PsKaj)

o Fi(s) = \/Det(I — PsKpor) = Det[I — PsBaj]

o Fi(s) = \/Det(I — P.KGIP) = L (Det[I — P,Baj] + Det[I + P.Bajl)

All operators are considered on L2 (R) and the intermediate kernels Ky, and Kgrp are given by

Krorr(z,y) = Kai(z,y) — Ai(z) (1 — /0+OO dNAi(y + )\)> , ( )
2.1.13

400
KO (a,y) = Kaglwy) — 5AI) [ WA+ ).
0

The kernel K,y was shown by Forrester in Ref. [159] to be related to the GOE Tracy-Widom
distribution function Fj(s), the kernel Ba; was proved to be related to Fj(s) by Ferrari and Spohn
in Ref. [160] and the kernel K SP was shown by Gueudré and Le Doussal in Ref. [71] to be related
to the GSE Tracy-Widom distribution function Fi(s).

Remark 2.1.2. Here Fy(s) is the cumulative distribution function of the GSE-TW distribution,
as defined in [161]. Another convention, which we denote Fy with Fy(s) = F4(%), is given
in [61, 160].

2.1.2 Tracy-Widom [ in terms of solutions to a Painlevé equation
Define g to be the solution of the Painlevé II equation for r € R,
¢ =rqg+2¢° (2.1.14)

which satisfies the asymptotic condition ¢(r) ~,_ 400 Ai(r). Let U(s) = %fjoo drq(r), then the
Tracy-Widom distributions for § = 2,1, 4 are given by [60,61]

o Fy(s) =exp (— Jreodr(r — s)q2(7‘))
o Fi(s) = exp (~U(s)) Fa(s)"/?
e Fy(s) =cosh (U(s)) Fy(s)'/?
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It allows to obtain the following relation between the three distributions:

FQ(S)
Fl(s)

Fu(s) = %(Fl(s) 4 f2ls)y (2.1.15)
The Painlevé II equation is part of a family of nonlinear ordinary differential equations that
generalize the classical theory of linear differential equations in the complex plane. Indeed, the
Painlevé II equation may be viewed as a nonlinear generalization of the Airy differential equation.
In the context of the Korteweg-de Vries equation, Hastings and McLeod [162] established the
existence of a solution to the Painlevé II equation satisfying the Airy asymptotic condition.

2.2 Determinantal and Pfaffian point processes

In this Section, we shall review the very basic properties of Determinantal and Pfaffian point
processes required to understand the recent developments on the exact solutions to the Kardar-
Parisi-Zhang equation. In pedestrian words, a determinantal point process [163] is a set of random
points on the real line {x;} such that every correlation function of these points is the determinant
of a kernel K called the correlation kernel

Vk > 1, pk(l'l, .. .,ZL‘k») = det [K(xi7xj)]f,j:l

(2.2.1)
Remark 2.2.1. In this Thestis, we shall consider integral linear operators acting on the Lebesgue
space L2(Q) with Q a subspace of R represented by a kernel K : (x,y) — K(x,y). In addition,
let us mention that the correlation kernel is not unique. If K is a correlation kernel, then the

conjugation of K with any positive weight w provides an equivalent correlation kernel

K(z,y) = w(@) K (z, y)w(y) ™ (2.2.2)
describing the process.

Determinantal processes are the landmark of exclusion models as the determinantal repre-
sentation forbids two points to be equal. They are sometimes referred in the physics literature
as Fermionic processes due to the Pauli exclusion principle and the Wick’s theorem in quantum
mechanics inducing determinantal structures in various correlation functions.

An important property of determinantal point processes is that any linear statistics of the
points can be expressed as a Fredholm determinant. Indeed, for any function f and any deter-
minantal point process {a;} with correlation kernel K acting on L2(2) we have

o0

11 - f(a)

i=1

E = Det [I — fK]p 2. (2.2.3)

where I is the identity kernel.

Remark 2.2.2. Averages such as the one in the left hand side of Eq. (2.2.3) often appear in the
context of linear statistics. Quite generally, linear statistics problems consist in calculating the
probability distribution of sums of the type L =Y, ¢(a;). Averaging over the exponential of such
sums lead to averaging over products such as the one in the left hand side of Eq. (2.2.3).

The right hand side of Eq. (2.2.3) is called a Fredholm determinant and it can be represented
by the following series

(=n"

n!

Det [I — fK]j20) =1+ Z H/Qd:mf(xl) det [K(xi’xj)]ijl (2.2.4)
n=1 i=1

A rigorous construction of Fredholm determinants can be found in [105, 164].
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Remark 2.2.3. By default, all integrations are considered with the uniform Lebesque measure on
the space €2, it is also possible and equivalent to consider the function f as a part of the integration
measure.

A generalization of determinantal point processes are Pfaffian point processes whose correla-
tion functions are expressed in terms of a Pfaffian of a correlation kernel K.

vk = 1, pk(ml, cee ,CI}k) = Pf [K(wz,x])]k

fi (2.2.5)

We recall that the Pfaffian of an anti-symmetric matrix A of size 2N x 2N is defined by

N
Pf(A) = \/Det(A) = Z sign(a) H AJ(Zp—l),o(Qp) (226)
p=1

O'GSQN
o(2p—1)<o(2p)

In this Thesis, our interest will focus on Pfaffian point processes where the kernel K is not scalar
valued but rather 2 x 2 matrix valued. We represent such a kernel K as

Kll(xvy) K12(.%',y)
K(z,y) = . 92.2.7
( y) ( KZl(x,y) K22(‘T7y) ( )
For such a kernel to be anti-symmetric, we shall also require Ko (z,y) = —Ki2(y, ).

Remark 2.2.4. If we take the diagonal elements of K to be zero, i.e. K11 = Koo =0, then

Pf[K(l‘i, xj)]i‘ij:l = det[Klg(l’i, mj)]?,j:l (2.2.8)

In this case the Pfaffian point process reduces to a determinantal point process with kernel Kis.
Therefore in a certain sense, Pfaffian point processes are more general than determinantal point
processes.

The direct generalization of the Fredholm determinant is the Fredholm Pfaffian, i.e. for any
function f and any Pfaffian point process {a;} with kernel K acting on L?(Q2) we have

E {ﬁu - f(ai))] == PE[J — [K] 20 (2.2.9)

i=1

(01
-1 0

a Fredholm Pfaffian, stands for the following series

where the matrix kernel J is defined by J(r,r’) > 1,—,» and the right hand side, called

PE[J — Klpag) =1+

ns=1

o I [ stpeiscn sy (2210

The relation between a Pfaffian and a Determinant extends to their Fredholm counterpart as

Pf[J — K]* = Det[I + JK] (2.2.11)

For the precise definition and properties of Fredholm Pfaffians see Section 8 in [165], as well as

e.g. Section 2.2. in [116], Appendix B in [41] and Appendix G in [76].

In this Thesis, we will need two special determinant and Pfaffian: the Cauchy determinant
and the Schur Pfaffian expressed as

k k
det 1 _ H1<i<j<k:(xj — ;) H1<z’<j<k(yj — Yi) Ti — X _ T; — X
Vit Yili [T 5 (@i + ;) , TitTiligm <icjer BT
(2.2.12)

In the rest of this Chapter, we will present several manipulations on Fredholm determinants
and Pfaffians which will play a capital role in the study of the exact solutions to the Kardar-
Parisi-Zhang equation later on in this Thesis.
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2.2.1 Trace expansion of a Fredholm Pfaffian

Let us recall here the first terms in the series expansion of a Fredholm Pfaffian (2.2.9) in powers
of its kernel. Here K denotes a generic 2 x 2 matrix valued kernel, hence this expansion is also
valid for a Fredholm Determinant by taking the diagonal elements of the kernel to be zero.

- (_1)715 ns oo N
PE(T = K)iagosoc) =1+ D —— [ / dr, PEK (s, )] (2.2.13)
ns=1 s p=1"S
More explicitly we write (with the convention that Ko (r,7’) = —Ki2(r', 1))
+oo 0 Klg(T, T’)
P — Kloa(osoey =1 = [ drPX ( ki

0 Kia(ri,m) Kul(ri,re) Kia(ri,m2)
L [t Koi(r1,m1) 0 Koi(r1,m2) Koa(ry,ra)

+ — dridroPf ’ ’ ’
2! //s e Kii(ra,m) Kia(re,rr) 0 Ka(rg, m2)

Koi(ro,r1) Kao(ra,m1) Kai(re,r2) 0

1 +oo
— § /// dT‘ldTQdT'g
0

Kio(ri,r1) Kii(ri,re) Kio(ri,re) Kii(ri,rs) Kia(ri,m3)
Ko (r1,71) 0 Ko (r1,r2) Koaa(ri,m2) Ko(ri,rs) Koao(ri,rs)
Pt Kii(ro,r1) Kia(ra,m1) 0 Kia(ra,r2) Ki1(ra,m3) Kio(re,r3) + O(KY
Kai(re,r1) Koaa(ra,r1) Koi(re,m2) 0 Ks1(r2,r3) Kaa(ra,73)
Kii(r3,r1) Kia(rs,r) Ki(rs,re) Kia(rs,re) 0 Kia(r3,r3)
Ko1(r3,r1) Koa(rz, 1) Koi(rs,m2) Kao(rs,re) Koi(r3,r3) 0

1
=1- TI'K12 + 5 [(TI‘KQ)Q — TI‘K122 + TrK11K22:|
1
-5 [(TrKlg)?’ + 2Tr K}y — 3Tr K19 TrK 2y + 3Tr K19 Tr Ky Koo — 6TrK12K11K22] + O(K?),
(2.2.14)

where all integrations in the traces run onto [s,+oo[. The fourth order of the expansion can be
found in Appendix G of Ref. [76]. This expansion is called the trace expansion of a Fredholm
Pfaffian.

Remark 2.2.5. In the case where Kia is rank 1 operator, we have for all integer n, Tr(K7y) =
(TrK12)"™, simplifying the expansion dramatically. In that case it becomes [76]

1 1
Pf[J — K]p2((s 400 = 1 — Tr K12 + §TrK11K22 + 5(2T1"K12K11K22 — TrK19TrKy1 Kao) + O(K*)
(2.2.15)

2.2.2 Cumulant expansion of a Fredholm determinant

In this Section, we will define the so-called cumulant expansion of a Determinantal point process.
This type of expansion first originated from the evaluation of the general quantity

+oo
Ex |exp (— Z go(ai)) (2.2.16)

where {a; };en forms a determinantal point process with kernel K and ¢ is an arbitrary function.
This expansion will later be extremely useful to investigate the exact short and large times
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behaviors of the solution to the Kardar-Parisi-Zhang equation and thus we introduce it with
great care. As we study a Determinantal point process, the linear statistics of Eq. (2.2.16) can
be cast onto a Fredholm determinant.

+0oo
Ex |exp (— Z 90(@1')) = Det[I] — (1 — e %)K] (2.2.17)

Taking the logarithm of both sides of this equality, using the property log Det = Trlog and Taylor
expanding the logarithm leads to the following expansion in e~ % (see also Ref. [121])

+00 too
logEg |exp (— Z go(ai)) =logDet[l — (1 —e ¥)K] = — 1Tr[((l — e*W)K)p] (2.2.18)
i=1

The expansion of all factors 1 — e~ % allows us to the definition of the cumulant expansion.

Definition 2.2.6 (Cumulant expansion of a determinantal process)

The n-th cumulant r,(p) of the linear statistics problem defined in (2.2.16) is n! times the
term of order ™ in the following series

logEx |exp (—igp(ai)) = i fon(9) (2.2.19)
i=1

n=1

As an example, the expansion to the third-order of 1 — e~ % allows us to obtain the first three
cumulants.

1. p=1
—Tr[(1 — e ?)K] = —Tr(pK) + %T&(QDQK) - %Tr(cp?’K) (2.2.20)
2 P 1 2 1 1
- 5T&«[(u —eP)K) ] = —5 (K oK) + S Tr(0 K K) (2.2.21)
3 p=8 1 3 1
- gm(u — e P)K) ] = — 5 Tr(pKpK oK) (2.2.22)

Grouping the various terms, we end up having

ri(p) = —Tr(pK),  ra(p) = Tr(¢’K) — Tr(pK¢K),

5 , (2.2.23)
k3(p) = —Tr(p°K) + 3Tr(pKp°K) — 2Tr(p Ko K9 K).

The formula for the general cumulant can be found in Ref. [166] where similar problems of linear
statistics have been studied
D (1)t n!

————Tr(¢" Ko™K ...p"K). (2.2.24)
m1! cee Vng!
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2.2.3 Extension of the cumulant expansion to Fredholm Pfaffians

Although initially introduced for Determinantal point processes, we shall extend the use of cu-
mulant expansions to Fredholm Pfaffians. The reason for this is the intrinsic relation between the
solutions to the Kardar-Parisi-Zhang equation and algebraic processes which scope is not only
limited to Determinantal processes but also to Pfaffian processes. When the set {a;} forms a
Pfaffian point process, the linear statistics admits a Fredholm Pfaffian representation

+o0
Ex |exp (— Z (p(ai)) =Pf[J - (1—-e ¥)K] (2.2.25)

We will subsequently assume that the kernel K is matrix valued and is represented by a 2 x 2
K1 Ky
Ko Koo
processes is the following

matrix K = . The key property to obtain the cumulant expansion for Pfaffian

2
Pf[J— (1 e #)K|" =Det |14 (1 - e #)JK]| (2.2.26)

Upon the use of the same procedure as in the Determinantal case, the linear statistics for Pfaffian
processes reads

log Exc |exp (- 3 (p(ai)) _ —% s lny (e~ )Jk]" (2.2.27)
=1

p=1P

As before, the expansion in powers of ¢ provides the cumulant expansion. For the rest of this
Thesis, we will only require the expression of the first cumulant which reads

1
K1 = §Tr(g0JK) = —Tr(pKi2) (2.2.28)

2.3 From two to one-dimensional kernels

Later in this Thesis, when encountering exact solutions to the Kardar-Parisi-Zhang equation we
will need to juggle between matrix-valued kernels and scalar value kernels. For this purpose, we
present in this Section an equivalent representation of a class of Fredholm Pfaffians with 2 x 2
block kernels in terms of a Fredholm determinant with a scalar valued kernel. Consider a measure
du on a contour C' € C and another measure dv, on the real line R, depending on a real parameter
z. Consider the quantities Q(z) defined by

Q=) =1+ (_18)!n5Z(ns,z) (2.3.1)

ns=1 n

and

202 = 11 [ 0200 [, dnC62p 1))

P CE )
®odd (X2p71)Qbeven(X2p)€_Tp[X2p71+X2p] pr|l=—=7
X+ X; iie1

Then, we have the following equivalent representations for Q(z).
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Lemma 2.3.1 (Fredholm Schur Pfaffian)

Q(z) is equal to a Fredholm Pfaffian with a 2 x 2 matrix valued skew-symmetric kernel

Q(2) =PE[J — Kl 2. (2.3.3)

For (r,r') € R? the matrix kernel K is given by

Kulr,r) :/ dpa(0)dps(w) = Goaa (v) doda(w)e "

+

K22 T T / du ¢even(v)¢even(w)eirvirlw
/ (2.3.4)

K12 T T / d;,L 7¢odd( )¢even(w)€77ﬂvir v

K21 7" 7’ // d/L e w¢even(v)¢odd(w)€irvir/w

; . / 0 1
and the matrix kernel J is defined by J(r,r") = 10 T,—.

Proof. This Lemma is a direct consequence of Bruijn’s theorem, see Ref. [167]. O

Note that Koi(r,7’) = —Kiy2(r',r) so the kernel is skew-symmetric. The type of kernel pre-
sented in this Lemma appear in the context of Pfaffian Schur processes. Quite remarkably, we
have shown in [6] that the associated Fredholm Pfaffian can be cast in a Fredholm determinant
with a scalar kernel.

Proposition 2.3.2 (Krajenbrink & Le Doussal, Proposition B.2 of Ref. [6])

Q(z) is equal to the square root of a Fredholm determinant with scalar valued kernel

:wMP_MM®> (2.3.5)

where L2(R,.) is considered with the uniform measure. Introducing the functions

Jodd(r /du ) Godd(v)e™ "™, feven(T ):/Cdu(v) Poven(v)e (2.3.6)

which are assumed to be in L?(R), the scalar kernel K is given, for (z,y) € R2, by

K(z,y) = 20, /Rduz(r) [feven (% + 7)foad (7 + y) — foda (@ + 7)feven(r + ¥)] (2.3.7)

and the scalar kernel I is the identity kernel I(x,y) = 1,—,.

The form (2.3.7) is quite reminiscent of a Christoffel-Darboux representation of kernels. This
might also indicate another integral rewriting of the bracket involving odd and even functions. It
is also useful to note the effect of similarity transformations on the kernel obtained. Rescaling the
variables by a factor a, i.e. (z,y) — (az,ay), leads to the kernel K with K(z,y) = oK (az, ay).
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Proof. We start back from the definition of the matrix valued kernel K in Eq. (2.3.4) and use the
following identity Y=% = © — 2% jzlong with the identities valid for ®(w) > 0 and R(v +w) > 0

v+w w v+w

1 oo 1 oo : :
— = / dze™ ™", = / dze W) e = —gue Y (2.3.8)
w 0 v+ w 0

These identities are used to separate the integrals w.r.t the variables v and w. One can now introduce the
odd and even functions, foqa(r) = [, 1(dv) podad(v)e™™ and feven(r) = [ 1(dv) Peven(v)e™"", to write the
elements of the kernel K as

—+00
Kii(r,r') = / dz [2foqa(r + 2)fqq(r' + 2) — foaa(r)fqa(r’ + 2)]
0

+oo
Kaa(rr') = [ 4o Pl + 0o (74 ) ~ o) 1+ )]
. (2.3.9)

“+o00
Kua(r,r') = / dr [26oaa(r + @) oon (' + ) — Foaa (N even (' + 2)]
0

+oo
Koy (r,r') = / dx [Qfeven(r + ) 4q(r' + ) — foven ()L gq (' + .’L‘)}
0

Consider the notation for the matrix valued kernel

no__ Kll(’f’,T/) Klg(T,’I"/)
K(r,r') = < Kor(rr')  Koo(rr') ) (2.3.10)

One of the two main steps of the proof is to notice that the kernel K can be factorized as a product
of a matrix that depends only on r and another matrix that depends only on r’.

K= [ ae (o inZeeh ) (i )T (23.11)

We now write this matrix product as an operator product, K (r,r") = f0+°° dz AMW (r,2) A (2, r"), where
the operator A : L2(R,v,) — L2(Ry) is defined by

1002y = ((giolr 720D ) 212

and A® :L?(R,) — L*(R,v,) is defined by

A(?) (I 7’/) — ftl)dd(rl + (E) g (2 3 13)
’ N féven (T/ —"_ aj) o
We further suppose that both operators are Hilbert-Schmidt. Let us summarize this factorization by the

following notation Pf [J — K]]LZ(R,VZ) = Pf [J — A(l)A(Z)}Hﬁ(R ) Using that for a skew-symmetric kernel

K, Pf[J — K]? = Det[I + JK], (see [165], Lemma 8.1), where the scalar kernel I is the identity kernel
I(z,y) = 1,—,, this gives
2
P = Kl o, = Det |1+ JA(l)A(Q)LQ(RWz) (2.3.14)

Following [156, 168], one uses the "needlessly fancy” general relation det(I + AB) = det(l + BA) for
arbitrary Hilbert-Schmidt operators A and B. They may act between different spaces as long as the
products make sense. In the present context det(I + AB) is the Fredholm determinant of a matrix valued
kernel whilst det(I + BA) is a Fredholm determinant of scalar valued kernel.

Pf[J — K2, = Det [I +A@gAM] . (2.3.15)

Let us compute the scalar valued kernel of the operator A2 JAM : L2(R,) — L2(Ry).
ADTA @) = [ dor) AP, r) T4V 1)
R

1 (2.3.16)
= IC(x7y) - §IC(Q;‘7O)
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where K : L%(R;) — L2(R.) is defined by
K(z,y) = 2/ dv(r) [fédd(r + &) feven(r +y) — féven(r + x)foaa(r + y)] (2.3.17)
R

We observe that K can be written as a partial derivative w.r.t its first variable K(z,y) = 0, k(x,y) where
k is a skew-symmetric scalar kernel given by

k(x,y) =2 /R dv.(r) [foad(r + @)feven(r + Y) — foven (T + 2)foaa (r + y)] (2.3.18)

The operator (z,y) — K(x,0) is of rank 1 and can be written as K |d) (1] where all products have to be
taken in the sense of Hilbert-Schmidt integral operator products. Here § is the d-function at z = 0 and 1
denotes the function 1(x) =1 for all > 0. This leads to the equality

Pf[J - K2z, = Det

I+K (1— % 16) <1|>] (2.3.19)

L2(Ry)

As |0) (1] is of rank 1, by the matrix determinant lemma, we have
1
Pf[J — K]EQ(R%) = Det [I + K2, ) <1 e (KT +K)! 6>> (2.3.20)

We now want to prove the following identity to be able to conclude
AIK(I+K)"H8) =0 (2.3.21)

The main ingredient to prove this is the remarkable fact that K is expressed as a product K = Dk, where
D = 9, and k is a skew-symmetric kernel as introduced in (2.3.18). Hence, we rewrite the identity (2.3.21)
as Q = (11 K(I+K)71[8) = — (§| k(I + Dk)~1|6) where we used for any function f that (1| Df = — (4] f.
Note also the commutation relation k(I + Dk)~! = (I + kD) 'k. We recall that D is the derivative
operator defined by its matrix element (f| D |g) = fR+ dz f(z)¢'(x). By integration by part, the adjoint of

D is DT = —D —|6) (§|. Taking the adjoint of the operator k(I + Dk)~!, we have
Q=— (| (I+Kk"DT) " kT |8) = (| (I + kD + k|6) (5]) " k6) (2.3.22)
We can use the Sherman-Morrison identity since the last term in the inverse is a rank 1 operator.

(6| (I + kD)™ " k|6) (8| (I + kD)™ " k|6)

Q=1 +kD)" k1) - 1+ (0] (I + kD) " k|8)

(2.3.23)
=—-Q -

1-Q

which implies @ = 0 or @ = 2. Since the amplitude of k£ can be increased continuously from 0 to any
value, by continuity, the solution is @ = 0. Defining K = —K and taking the square root on both sides of
Eq. (2.3.20) ends the proof. O

2.3.1 Equivalence of different matrix kernels at the level of Fredholm Pfaffians

To conclude this Section of the transformation of matrix valued kernels to scalar kernels, let us
mention for completeness a useful proposition which states the equivalence at the level of Fred-
holm Pfaffians of different kernels. The reason why we mention this result is that some kernels
appearing in the literature are not directly suited to the Proposition 2.3.2 but are equivalent to
kernels verifying its hypothesis by the use of the following Proposition 2.3.3.
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Proposition 2.3.3 (Matrixz kernel equivalence, Proposition 5.2 of Ref. [116])
Let A : R? — Skews(R) be a kernel of the form

[ A(z,y) —0yA(z,y)
A(x,y) = (—&;A(g,y) 8x8yA(:U,ZZJJ)> ’

where A is smooth, antisymmetric, and A satisfies the following decay hypotheses: there exist
constants C' > 0 and a > b > 0 such that

Az, y)] < Ce™ =%, |9, A(z,y)| < Cew+by. 10:0,A(z, )| < Cebat+by.

Let B be the kernel

B Az, y) —20,A(x,y)

where &' is a distribution on R? such that

// f(z,y)d (x,y)dzdy = / <8yf(ac,y) — axf(x,y)) dz, (2.3.24)

y=r

for smooth and compactly supported test functions f. Then for any s € R,

Remark 2.3.4. Our work on the half-space Kardar-Parisi-Zhang solution in Ref. [2] strongly sug-
gests that this proposition is a particular case of a more general identity. Indeed, this Proposition
was introduced in Ref. [116] to study different kernels leading to the same GSE Fredholm Pfaffian.
In Ref. [2], we hint that a same phenomenon should occur for the GOE Fredholm Pfaffian.
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Chapter 3

Exact solutions to the
Kardar-Parisi-Zhang equation

In this Chapter, we will browse the recent achievements regarding the exact solutions to the
Kardar-Parisi-Zhang equation, from its first solution which arose in 2010 from multiple research
teams at the same time to the last solution obtained by us in [2].

3.1 A brief historical note

Since 2010, there has been a revival in both physics and mathematics communities in the search
of exact solutions to the Kardar-Parisi-Zhang equation. So far, without taking into account this
Thesis, in full-space three initial conditions have been solved and in half-space the droplet initial
condition has been solved for three specific boundary conditions. We present in the Table 3.1 the
chronology of the discovery of these exact solutions.

Initial condition Authors Year  Ref.
Full space
Droplet Sasamoto, Spohn 2010 [72]
Calabrese, Le Doussal, Rosso [73]
Dotsenko [74]
Amir, Corwin, Quastel (x) [75]
Flat Calabrese, Le Doussal 2011 [76]
Brownian Imamura, Sasamoto 2012 [77]
Borodin, Corwin, Ferrari, Veto (*) 2014 [78]
Half space
Droplet with hard wall Gueudré, Le Doussal 2012 [71]
Droplet with reflecting wall Borodin, Bufetov, Corwin 2015 [79]
Droplet with critical wall Barraquand, Borodin, Corwin, Wheeler (x) 2017 [80]
Droplet with general A > —% Krajenbrink, Le Doussal 2019 2]
Brownian with hard wall Krajenbrink, Le Doussal 2]

Table 3.1: Chronology of the discovery of exact solutions to the KPZ equation. In half-space, we
use the shorthand notatons: Reflective wall for A = 0, hardwall for A = oo and critical wall for
A= —%. The solutions displayed with a (x) were obtained rigorously.
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At the end of this Chapter, we will present two new solutions to the Kardar-Parisi-Zhang
equation in half-space: the Brownian with a hard-wall and the droplet with arbitrary boundary
coefficient larger than —1/2.

3.2 Solutions at all times in full-space

For the completeness of the presentation, we shall recall here the exact expressions for the solutions
to the KPZ equation at all times. We will focus on the droplet and Brownian initial conditions
in full and half-space and we will not discuss the solution to the flat initial condition, expressed
in Ref. [76], as we will not use its exact expression in this Thesis. In particular, we will be
interested in the generating function of the exponential of the KPZ height which exhibits a
Fredholm representation for all aforementioned initial conditions .

3.2.1 Droplet initial condition

The moment generating function of the exponential shifted height H(t) = h(0,t) + &5 is given in

terms of a Fredholm determinant with the Airy kernel and the so-called Fermi factor measure.
The solution was found originally by several research groups and was presented in Refs. [72-75].

Expy |exp (—zeH(t))] — Det[ — 0. 1 Kail iz - (3.2.1)

where Ka; is the Airy kernel, Kai(u,v’) = [;°dr Ai(r + u)Ai(r + u'), and the weight of the Airy
kernel o ; is the Fermi factor expressed as
z

o (3.2.2)

O'Z’t(u) =

Remark 3.2.1. The only time-dependence of the Fredholm determinant lies in the Fermi factor.

To further study properties of the Fredholm determinant and the droplet solution in this
Thesis, we additionally need the following facts:

e To investigate the short-time behavior of the droplet solution, we will need the behavior
of the diagonal element of the kernel Kp; for large argument. Up to exponentially small
corrections, it is given by [169]

v
Kai(ot™13 ot713) ~ g \/jjt_l/G@(—v). (3.2.3)

e To investigate the late-time behavior of the droplet solution, it is useful to change variable
and define z = e=*t"*. From the work of Amir, Corwin and Quastel [75], it has been proved
that the Fredholm determinant (3.2.1) also has a representation in terms of a solution of a
generalized Painlevé II equation?. Indeed,

“+o0o
Det[I — 0, Kailr2r) = exp (—/ dr(r — s)\I/t(r)> (3.2.4)
where U, and ¢ verify the following differential equations

() = [ dola(r,v)ot (o),
D2qi(r,v) = [v+ 1 4 204 (r)] g (7, v).

(3.2.5)

with asymptotic behavior g (r,v) ~, o0 Ai(r + v).

2This is interpreted as a finite-time version of the Painlevé property of the Tracy-Widom distribution for § = 2.

31



At late time, the Fermi factor becomes a projector: o, :(u) —¢—400 O(u — ), the double
exponential becomes an indicator function e As+oo 1(- < 0) and hence we find that the
cumulative distribution of the shifted height H(t) = h(0,t) 4+ {5 converges to the Tracy-Widom
distribution for 5 = 2.

) H(t)
tl}+moo P( e < 5) = Det[I — Kailr2 (s 400]) = F2(5) (3.2.6)

The Tracy-Widom fluctuations at large time are a landmark of the Kardar-Parisi-Zhang univer-
sality class.

3.2.2 Brownian initial condition

Another initial condition that has been solved is the Brownian one, sometimes also called the sta-
tionary interface in the case of zero drift. Mathematically, it is described by a two-sided Brownian
interface pinned at x = 0 and in addition to averaging over realizations of the dynamic stochastic
process, one has to average over all possible initial pinned Brownian interfaces with diffusivity v.
Imamura and Sasamoto [77,170] and Borodin, Corwin, Ferrari, Veto [78] derived exact explicit
representations for the generating function of the exponential KPZ height in terms of a Fredholm
determinant. They also showed that, in the long-time limit and for typical fluctuations, the cu-
mulative distribution of the KPZ height converges to the so-called Baik-Rains distribution which
is also encountered in the studies of the stationary TASEP, polynuclear growth and last passage
percolation.

For the Brownian initial condition h(x,0) = B(z)—w|z|, the exact solution is written in terms
of an additional random variable x independent of h(x,t), with probability density p(x)dx =
e~2wx=¢" JT'(2w)dy. As announced the generating function of ef/()*+X where H(t) is the shifted
height H (t) = h(0,t) + {5, exhibits a Fredholm determinant representation [77,78,170] given by

EKPZ,B [exp (—ZeH(t))] = Det[[ — Uz,tKAi,F]]LQ(R) . (3.2.7)

where 0 ; is the Fermi factor previously introduced in Eq. (3.2.2) and K;p is the deformed Airy
kernel which expression is

400
Kair(u,u') = / drAiF(r+u,tié,w,w)AiII:(r—i—u/,f%,w,w) , (3.2.8)
0

where the deformed Airy function is equal to

: d 3\ T(ibp+d
Alg(a, b,c,d) = / %exp (zg + zan)lw . (3.2.9)
R+ie

where I' is the Gamma function and e € [0, R(d/b)[ due to the pole of the I' function.

Remark 3.2.2. Contrary to the droplet initial condition, the time-dependence lies both in the
Fermi factor and in the kernel itself. Note also that the generating function over the KPZ height
comprises an average over the initial Brownian condition.

To further study properties of the Fredholm determinant and the Brownian solution in this
Thesis, we additionally need the following facts:

e At short time, the relevant physical parameter is @ = wt*/2 and whereas at large time it is
w = wt'/3.
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e To investigate the short-time behavior of the Brownian solution, we shall need the behavior
of the diagonal element of the kernel Kx;r for large argument. Up to exponentially small
corrections, it is given by [9]

W (11726_17+1I’2) — 2

™

Kair(vt™13 0t713) ~ 169 (—0). (3.2.10)

where ¥ = v + log W? — logt and Wj is the first real branch of the Lambert function.

3.3 Solutions at all times in half-space

We now turn to the solutions of the Kardar-Parisi-Zhang on the half-line. A common feature of
all known solutions is that the generating function of the exponential KPZ height is expressed
as a Fredholm Pfaffian rather than a Fredholm determinant. Here we shall solely focus on the
droplet initial condition, which is the only initial condition studied until this Thesis. We recall
on the half-line of the presence of a wall with parameter A. We shall present the three known
solutions for A = —1/2,0, +oc.

3.3.1 Critical case A = —1

No|

Defining the shifted height H(t) = h(0,t) + {5, Barraquand, Borodin, Corwin and Wheeler
obtained in Ref. [80] the following Pfaffian representation of the generating function of the expo-

nential height for A = 5

Expy {exp(—e () :| Ecor (3.3.1)

H 1V1+ zetl/‘"’“l]

where the set {a;} forms a Pfaffian GOE point process.

Remark 3.3.1. The only time-dependence of the Fredholm Pfaffian lies in the measure which is
here the square root of the Fermi factor.

At large time, the cumulative distribution of the shifted height will converge to the Tracy-
Widom distribution for § = 1.

lim P(if ) < 5 = Fi(s) (3.3.2)

3.3.2 Reflective (symmetric) wall A =0

A solution to the case A = 0 was obtained in [79] by Borodin, Bufetov and Corwin. The
generating function of the exponential shifted height H(t) = h(0,t) + 1% shows the following
Pfaffian representation for z > 0.

Expz lexp (—Z >]

z
[ S PO, 339

ns=1
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where K is a 2 x 2 block matrix with the following elements

1 _1 1 _1
Kiu(r.1') dvdwv —wl(5 —vt73) (g —wt™3) _ s yw S
11( t1/3

e
Am? v+ w (1 — vt8) T(1 — wt™3)

Ko7, 7“ / / dvdwv —w T(vt™ é) F(wt*%) efrvfr’w+“3gw3
22(
t1/3 w AT vt w (L o E) DL +wt3) (3.3.4)
dvdwv—wf‘(%—vt %) F(wt_%) o +w3
Kz(r,r') 1/3/ / 3 o0 —1.¢
4t w AT U+ W(1—vt3) T(3 +wt™s)

Kgl(’l",T‘ ) = —Klg(T‘ ,’I“)
The contours C, and C,, are such that C, ., = %av,w + iR for a, 4, €]0,1].

Remark 3.3.2. Contrary to the critical case, the time-dependence lies both in the Fermi factor
and in the kernel itself, similarly to the Brownian initial condition in full-space.

This representation can be cast in a Fredholm Pfaffian form

z
Expz [exp (—4eH <t>)] =Pf[J — 0. K]12(r) - (3.3.5)

To further study properties of the Fredholm Pfaffian in this Thesis, we additionally need the
following facts:

e To investigate the short-time behavior of the solution with parameter A = 0, we shall
need the behavior of the off-diagonal element of the kernel K15 for large argument. Up to
exponentially small corrections, it is given by [6]

Kia(vt™1/3 pt71/3) ~ \gjtlm@(—v) (3.3.6)

e The large-time limit of the K was obtained in Ref. [79] as the GSE kernel so that the
cumulative distribution of the shifted height converges to the Tracy-Widom distribution for

8 =4

) = Fy(s) (3.3.7)

3.3.3 Hard wall A = +o00

The droplet initial condition with a hard-wall was originally studied in [71] and we revisited it
in Ref. [6] to provide a new identity for the generating function of the exponential KPZ height.
The generating function of the exponential shifted height H(t) = h(e,t) + 15 — 2loge for e < 1
is given for z > 0 as a Fredholm Pfaffian

o (~2e0)] =

The expected value of the L.h.s of (3.3.8) is taken over the realization of the KPZ white noise,
and K is a 2 x 2 block matrix with elements

EKPZ —Pf [K(Tz‘, Tj)] (338)

—t1/3r NgXMNg
na=1 z +e P

d d ! U3 U73
K (r,r') 251/3 /U /w 7@1;750 Z—i— wF(QUt 3)P(2’wt_%)COS(7T’Ut_%) cos(ﬂwt_%)e_”’_’" w5
K / / dodw v = W o =31 (2wt 3) sin(rot—3 ) sin(ruwt— e w5
') ———T(2v w sin(7v sin(rwt”3)e
z2( t1/3 (2im)? v+ w

dvd s
Kiz(r,1) m/s/ / ﬁZTwFW 5)D(2wt™ %) cos(mvt™F) sin(mwt ™ 5)e VT
K21<T,'l“ ) = —Klz(T ,T‘)

(3.3.9)
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The contours C, and C,, pass at the right of 0 as Cy ., = %av,w + iR for a, 4 €]0,1].

Remark 3.3.3. As in the case of the reflecting wall, the time-dependence lies both in the Fermi
factor and in the kernel itself.

This representation can be cast in a Fredholm Pfaffian form
Expy, {exp (—zeH(t)ﬂ = Pf[J — O‘t’ZK]]LQ(R) . (3.3.10)

To further study properties of the Fredholm Pfaffian in this Thesis, we additionally need the
following facts:

e To investigate the short-time behavior of the solution with parameter A = +o00, we shall
need the behavior of the off-diagonal element of the kernel K, for large argument. Up to
exponentially small corrections, it is given by [6]

_ _ 1 t t _ t
Kip(vt™/3,0t71/3) ey oy or <\/—W—1(—4€T) - \/_WO(_46T>> 1% (‘1 - log(4))

(3.3.11)
where Wy and W_; are the two real branches of the Lambert function, see [171] and the
Appendix A.1. The extremal value r + log(%) = —1 corresponds to evaluating the Lambert
functions W (z) at z = —e~! which is the lower edge of the domain of definition of W (z) to
remain real valued. From the definition of the Fermi factor, one can substitute T+log(%) -7
up to the replacement z — £z as seen from the definition of oy . in (3.2.2).

e The large-time limit of the K was obtained in Ref. [79] as the GSE kernel so that the
cumulative distribution of the shifted height converges to the Tracy-Widom distribution for

B =4

lim IP’(H(t)

Jim P75 < s) = Fuls) (3.3.12)

3.4 A new duality in half-space and general solution
to the droplet initial condition

Until this Thesis, the KPZ equation in half-space for general boundary condition A has resisted
the analysis. There have been attempts to extend the Replica Bethe Ansatz approach for the
hard-wall configuration [71] to general A [79,112,172] using the fact that the associated Bose gas
is integrable. The structure for generic A is nevertheless much more complicated as multi-particle
states bound to the wall arises in the spectrum of the associated delta Bose gas [112,172]. This
problem did not impact the study in [71] since for A = 400 there are no boundary bound states.
Here we will provide the solution to half-space puzzle for an extended range of A > —1/2 which
is obtained through a recent breakthrough in the mathematics community. Another approach
was followed recently: the full structure of the states bound to the wall was obtained [112,172]
leading to improved formulae for the moments on the partition sum a priori valid for all A.

3.4.1 The game changer for the half-space problem

Quite recently in the mathematics community, a game changer theorem has been presented in
Ref. [173] relating the problem of the half-space KPZ equation with droplet initial condition in
the presence of a wall of parameter A and the Brownian initial condition in the presence of a
hard-wall but with a drift equal to A + % We now present this Theorem and explain how we can
manipulate it solve the half-space KPZ problem [2].
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Theorem 3.4.1 (Parekh. Theorem 1.1 of Ref. [173])

For A € R, let Z(x,t) denote the solution of the SHE on the half-line with Robin-boundary
parameter A and droplet initial condition Z(x,0) = §(z). Let Zp,(x,t) be the solution to
the SHE with Brownian initial condition with drift A + 3, i.e. Zp,(x,0) = eB@)—(At3)r
where B is a (zero drift) Brownian motion with Dirichlet boundary condition on the half-line
Zp:(0,t) = 0. Then one has the following equality in distributions

Z r )
2(0,4) = Tim 220520

k—0 K

(3.4.1)

Remark 3.4.2. This theorem comes as a limit of an identity proved in Ref. [110], Proposition
8.1, on half-space Macdonald processes.

Let us quote the author of Ref. [173] which summarizes well the strategy we implemented in
Ref. [2] to obtain a new solution to the KPZ equation in half-space.

“ Mathematically, we believe that [Theorem 3.4.1] is interesting because it hints
at an intriguing duality between the initial data of a solution to the half-space SHE
and the boundary conditions one imposes on it. This duality can in turn be exploited
in order to obtain useful results on quantities of interest. ” (Taken from Ref. [173])

We thus choose to study, rather than our original problem with parameter A, the KPZ problem
on the half-line with Dirichlet boundary conditions, but with Brownian initial conditions. To be
able to apply the theorem we choose the drift of the Brownian to be A + % Since the boundary
conditions are Dirichlet (i.e. A = 400) we can apply the same Replica Bethe Ansatz (RBA)
method as in [71]. The only technical difficulty is the calculation of the ”overlap” of the Brownian
initial condition with the eigenstates of the delta Bose gas, which we are able to perform. We then
obtain a formula for the n-th integer moment of Zg,(x,0), which then leads us to a formula for the
moments of the droplet initial condition for generic A using the theorem. Mathematically, defining
the limit Zp,(t) = lim,_,o+ Zp:(k,t)/k, we shall use the following consequence of Theorem 3.4.1.

Expzp | Z:(t)"] = Expz [2(1)"] (3.4.2)

To relate to the Kardar-Parisi-Zhang problem in half-space, we shall study in a single unified
calculation the statistics of

1. Z(t) = "® and H(t) = h(0,t) + - where h(t) is the KPZ height at = 0 with droplet
initial condition in the presence of a wall of parameter A;

2. Zpi(t) = e ® = lim,_,o+ eMBr(07108% and Hp, (1) = hpe(t) + 15 where hp(k,t) is the
KPZ height at © = x with Brownian initial condition with a drift A + % in the presence of
a hard-wall.

The ultimate goal of this Section will be the calculation of the generating function of the expo-
nential KPZ heights which, from the Theorem 3.4.1 of Parekh in [173], are related for any ¢ > 0
as

IE‘KPZ,Brownian [exp(_Q?HBr(t))] = IEfKPZ {exp(—@H(t))} (343>

The expected value of the left hand side is taken over the white noise of the KPZ equation and
the Brownian initial condition while the expected value of the right hand side is taken over the
white noise of the KPZ equation. Note that although the Theorem is valid for any A € R, we
will only make use of it for A > —1/2.
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3.4.2 The Replica Bethe Ansatz solution for the half-space problem

Before entering the details of the calculation of the RBA for the Brownian initial condition, we
shall state our main result, obtained in Ref. [2], valid for all times ¢t > 0 and all parameter A > —%
for the generating function for ¢ > 0 of the exponential KPZ height in terms of its representation
as a Fredholm Pfaffian.

Result 3.4.3 (Finite-time Fredholm Pfaffian solution to the half-space KPZ problem)

The generating function of the exponential KPZ height at x = 0 for the droplet initial
condition in half-space in the presence of a wall of parameter A > —1/2 is given at all times
by the following Fredholm Pfaffian.

+oo n
—1 ns s IS
EKPZ [eXp(—geH(t))} =1 —+ Z ( )‘ 1_[1/Rdrp§—|—67‘ppf [K(Ti,rj)]nans (344)
p:

na=1 Ng:

where kernel K is matrix valued and represented by a 2 x 2 block matrix with elements

Kutra') = [ dw dzw—2P(A+5 —w)T(A+5—2)
ulr,r) = c2 2im2imw+ 2T(A+ 1+ w)T(A+ 3 +2)

! ’UJ3 23
x T(2w)T(22) cos(mw) cos(mz)e ™" #H* 5

/ dw dz w—2T(A+ 5 —w)T(A+ 1 —2)
Km(m,):// % 2 1 1
2 2@772z7rw+zF(A—|—§+w)F(A+§+z)
« F(211))11(22)sin(7rw) sin WZ)e_rw_,ﬂ/Ht#, (3.4.5)
™ ™

/ dw dz w—2T(A+ 5 —w) I(
KIQ(T,T):// =~ 1 1
c2 im2imw+ z2D(A+ 5 +w) (A4 5+ 2)

x I'(2w)T'(22) cos(ww).Te ,

K21(7", T/) = —K12 (T‘l, ’f‘).

In this formula the contours C' are parallel to the imaginary axis and cross the real axis
between 0 and A + %

Remark 3.4.4. For a visual illustration of the block structure in the Pfaffians of matriz valued
kernel, appearing in Eq. (3.4.4), see e.g. Eq. (2.2.14).

The series in Eq. (3.4.4) can also be interpreted as a Fredholm Pfaffian, see Eq. (3.4.34),
implying a duality between the generating function of the exponential KPZ height and an average
of a "Fermi factor” over a Pfaffian point process

+o0 1

I1

=1

Expz {exp(—ceH(t))] =Ek (3.4.6)

1 +qe

where the set {a;} forms a Pfaffian point process with kernel K. At large time, we have addition-
ally obtained in Ref. [2] the following limit behavior of the solution of the Kardar-Parisi-Zhang
equation.
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Result 3.4.5 (Late-time cumulative distribution of the KPZ solution)

The late-time KPZ height has Tracy-Widom type fluctuations for any A > —1/2, i.e.
e For any A > —%, the one-point KPZ height fluctuations follow the Tracy-Widom GSE
distribution 0.6)+ ¢
R(0,t) + 15
<s)=
tliglo P( Y < s) = Fy(s) (3.4.7)
e For A = —%, the one-point KPZ height fluctuations follow the Tracy-Widom GOE
distribution. 0.6) 1 ¢
_ h(0,t) + 15
AN 12 - —
t1i>r£o P( Y < s) = Fi(s) (3.4.8)
What is more, near the transition point A = —1/2, there is a critical regime for A + % — 0

and ¢t — 400 simultaneously, with the crossover parameter ¢ = (A + %)tl/ 3 being kept fixed and
of order 1. Under a proper rescaling of the kernel (3.4.5) we obtain a large-time limit of the
matrix kernel which depends continuously on € and name it the transition kernel. Its expression,
K¢, is given in two equivalent forms in Eqs. (3.4.41) and in Eqs. (3.4.48) for € > 0. In the limit
€ — 400 this transition kernel becomes equal to the standard kernel of the GSE. The transition
around A = —1/2 for the KPZ equation is believed to be in the same universality class than the
one for last passage percolation in a half-quadrant. For the latter an explicit Fredholm Pfaffian
was obtained in Ref. [116,117] and we provide a conjecture on the equivalence between our
Fredholm Pfaffian of Ref. [2] and theirs. Finally, although we do not address the case A < —1/2
or € < 0 we conjectured in Ref. [2] from the equivalence of our cross-over kernel with the kernel
of Ref. [116,117] that for any A < —%, the one-point KPZ height has Gaussian fluctuations.

Conjecture 3.4.6 (Late-time cumulative distribution for A < —1/2)

The late-time KPZ height grows with a velocity equal to (A + %)2 — % and has Gaussian

fluctuations for A < —1/2

‘ h0,t) + (5 — (A+1)?) 1 /s
<s§)= —
tll>r<1>1o P /224 + 1 <) V2r [oo dye

2
2

(3.4.9)

3.4.3 Bethe ansatz formula for the moments of the partition sum

Let us recall that the partition sum Zp,(z,t) verifies the Stochastic Heat Equation on the half-
line z > 0 and that the general equal time moments of the solution of the SHE, Zp,(z,t), over
the KPZ noise can be expressed [81] as quantum mechanical expectation values of the evolution
operator in imaginary time of the Lieb Liniger model [83].

Expzs [Z5:(21,8) . .. Zge(2, 8)] = (21 ... 2| n [T (¢ = 0)) (3.4.10)

where H,, is the Hamiltonian of the Lieb-Liniger model [83] for n quantum particles with attractive
delta function interactions of strength ¢ = —¢ < 0. The initial state for the Lieb-Lininer model

is denoted
Expz.B [ZBr(xl,t = O) e ZBr(xnat = 0)] = <a}1 .. a:n]\I/(t = 0)> (3.4.11)

and since we are considering the Brownian initial condition and we are interested in averages
both over the Brownian and the KPZ noise we must take the initial state |¥(¢ = 0)) as

(z1...2,|U(t = 0)) = Dg(z1,...,2,) = Ep [H eB<xj><A+%>%'] : (3.4.12)
j=1
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A simple calculation shows that ®g(z1, ..., x,) is the fully symmetric function which in the sector
0<x; <--- <, takes the form

Bo(a1,...,m,) = [[ e2® ¥V~ (A+3)z; (3.4.13)
j=1

We can now rewrite the quantum mechanical problem (3.4.10) at coinciding points using the
spectral decomposition of the evolution operator e **» in terms of the eigenstates of the Lieb-
Liniger Hamiltonian H,, as

I
Expzp [Zp:(2,1)"] Z\I' z)(U M!®0>HMH2 B, (3.4.14)

Here the un-normalized eigenfunctions of 7, are denoted ¥, (of norm denoted ||u||) with eigenen-
ergies I,. Here we used the fact that only symmetric (i.e. bosonic) eigenstates contribute since
the initial and final states are fully symmetric in the z;. Hence the }°, denotes a sum over all
bosonic eigenstates of the Lieb-Liniger model, also called delta Bose gas, and (¥,|®q) denotes
the overlap, i.e. the Hermitian scalar product of the initial state (3.4.13) with the eigenstate ¥ .

From the Bethe ansatz the eigenstates ¥, are thus Bethe states, i.e. superpositions of plane
waves over all permutations P of the n rapidities \; for j € [1,n] with an additional summation
over opposite pairs +\; due to the infinite hard wall. The bosonic (fully symmetric) eigenstates
can be obtained everywhere from their expression in the sector z; < --- < x,, which reads

‘I/u(xl, X ( Z 5peiEPxPAP(P)) A[El)\P(l), 62)\13(2), e ,En/\p(n)]
" Pes, p=1 ep=+1 (3.4.15)
A A = H 1+ a1
nz>k>1 Ae = Ak At A
This wavefunction automatically satisfies both
1. The matching condition arising from the 6(z; — x;) interaction
(a$i+1 - 8% + 5) \Ilu(xla cee axn) ‘gci_‘_l:gci: 0 (3.4.16)

2. The hardwall boundary condition ¥, (x1,...,2,) = 0 if some x; = 0.

The allowed values for the rapidities \;, which parametrize the true physical eigenstates are de-
termined by the Bethe equations arising from the boundary conditions at x = L. One will find
that the normalized eigenstates 1, = ¥, /||x|| vanish as (A\; — A;) or (A\; + ;) when two rapidities
become equal or opposite: hence the rapidities obey an exclusion principle.

The detailed Bethe equations, which determine the allowed values for the set of rapidities
{\;}, depend on the choice of boundary condition at # = L. However, in the L — 400 limit,
these details do not matter. For simplicity we choose another hardwall at x = L. The Bethe
equations then read

Q2N _ Aj— e — ZE)\ + Ay —ic
)\ — X +ichj+ A\ +ic

(3.4.17)

In the case of the infinite hardwall, these equations are also given in Ref. [97] and their
solutions in the large L limit were studied in Ref. [174]. The structure of the general states for
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infinite L are built by partitioning the n particles into a set of ns bound-states formed by m; > 1
particles with n = "7, m;. Each bound state is a perfect string [80] , i.e. a set of rapidities

N9 — 4 1 -2 3.4.18

—J+§(m]+ — 2a) (3.4.18)

where a € [1,m;] labels the rapidities within the string. Such eigenstates have momentum and

energy
=2

Ns Ns c
Ky=> mjkj,  E,=)Y mjk;— Emj(m§ —1). (3.4.19)
— =

The difference with the standard case is that the states are now invariant by a sign change of any
of the momenta A\; — —\;, i.e. k; — —k;. From now on, we shall denote the wavefunctions of
the string states as Wy, ,,,,3. The inverse of the squared norm of an arbitrary string state was
obtained in Ref. [71] as

1 1., o _
3 = ﬁéﬂ o2 H Ski,mi H Dki,mi>kj7mjL "
|[ ]| n. i=1 1<i<j<ns
4k’1—k22+ ml—m22024k1+k22+ ml—mgch
Dklam17k27m2 = < ) ( ) ( ) ( )2 2 (3420)

4(k1 — k‘2)2 + (m1 + m2)262 4(k‘1 + k2)2 + (m1 + ’m2) c

B 22m—2 [m/2] 4]4)2 + 02(m _ 2p)2
’ m?2 sk 4k? 4+ c2(m + 1 — 2p)?

Note that we have only kept the leading term in L as L. — +o00. Inserting the norm formula
Eq. (3.4.20) into the spectral decomposition of the n-th moment of Zp;, we obtain the starting
formula for the integer moments of the partition sum with Brownian weight on the endpoint in
the limit L — +o0

24

H Z/ mpskp,mpe(mg ™) 52 ~mekit

=1mp=>1

n IMs Gl
ExpzB [Zp:r(2,0)"] = Z c

'cnsn'

(3.4.21)
X 5n,Z;—Z‘1 m; H Dki,mz‘,kyqul{ke,mg}(xa ) <\Ij{k‘g,mg}‘¢)0>
1<j

Remark 3.4.7. Here the Kronecker delta enforces the constraint Z > my =n withm; > 1 and
in the summation over states we used 3y — m;L Jo L& 5. Which holds also here in the large L limit.

An important identity, which makes the problem solvable, is that the inverse norms of the
states can be expressed as a Schur Pfaffian. Introducing the reduced variables X9, 1 = m, + 2ik,
and Xo, = my — 2ik, for p € [1,n], the factor D reads

H Dy ok — ﬁ M pg [XZ—XJ] (3.4.22)
iy K5, My . S
1<i<j<ns 7 j=1 2'Lk] 2nsX2ns X’L + X]
Since we are interested in the wave-function near the wall, i.e. ZBr(t) = lim,_,o+ M7 we
can simplify the factor Wy, ., 1 (2, ,2) in (3.4.21) by taking its small z limit,
n
y(z,...,z) =nla" [ A + O@@™) (3.4.23)

J=1

To obtain the n-th moment of Zp,(t) from (3.4.21) we need to calculate the overlap (¥ u|®o) where
g is given in (3.4.13). In general it involves sums over permutations and leads to complicated
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expressions but in this case, we have found in Ref. [2] that the overlap in the half-space for
Brownian initial conditions is quite simple
Aj

(U,|®0) = n!jH1 eyl (3.4.24)

Remark 3.4.8. It is important to note that the formula (3.4.24) for the overlap of the string states
with the Brownian initial condition is valid only when the integrals are convergent. This requires

the condition n/2 < A—i—% and hence the above formula for the integer moments Expz B {ZBr(t)”}
s valid only when the drift is large enough, for each value of n. This requirement is identical to
the one obtained in the full space, for the Brownian initial condition in [77, 170]. There, it was
shown how to use these restricted moment formula to construct the full solution for the generating
function of the moments at finite time. In Ref. [2] we have followed the same path.

Inserting the rapidities A; of the string state and taking ¢ = 1, one gathers the contribution
from the S term, from the overlap of the Bethe wave functions with the Brownian initial condition
and from the value of the Bethe wave at small x in the following quantity factor

(52 + A+ ik) T(A52 + A —ik)
(A2 4+ A4 ik) T(H2 + A —ik)

2k
By m = — sinh(27k)I'(2ik + m)I'(—2ik + m) (3.4.25)
m
After some simple manipulations on various I' functions on the initial formula for the moments
Expz.B [EBr(t)”} in Eq. (3.4.21), we obtained in Ref. [2] an intermediate representation for the

moments of our two equivalent problems (droplet initial conditions with any A, and Brownian
initial condition with drift A 4+ 1/2 and Dirichlet).

Result 3.4.9 (Moments of the partition function in a Pfaffian representation)

The moments of the partition sums for the droplet and Brownian initial conditions have the
following Pfaffian representation.

Expyz [Z(t)"] = EkpzB {ZBr(t)n]

Sy 2 s [ Yo B im s -miity
=27 R 2m dik, © st

i=1" 2ngx2n,

X, - X;| (3.4.26)

Xi—l-Xj

where the factor By, n, was introduced in Eq. (3.4.25).

We shall now write the generating function for the moments of Z(t), i.e. focusing on the
droplet initial condition with generic A > —1/2 and with some efforts, we will be able to extend
it to A = —1/2 the critical case. Since the problems of the droplet and Brownian initial conditions
are in correspondence due to the theorem of Parekh in [173], the solution for the droplet initial
condition and wall parameter A will have the same range of validity as for the Brownian initial
condition.

3.4.4 Generating function in terms of a Fredholm Pfaffian

The generating function is defined, for ¢ > 0, as

|

n

Z(t))} =1+ i @EKPZ [Z(t)"] (3.4.27)
n=1 :

n

|+
¥

N

9(s) = Expz {exp(—ceH(t))} = Expy {exp(—gel
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The constraint > *;m; = n in Eq. (3.4.26) can then be relaxed by reorganizing the series
according to the number of strings:

g(e) =1+ Z iZ (ns, <) (3.4.28)

ns—l

where Z(ng,<) is the partition sum at fixed number of strings. As we shall see, the generating
function exhibits the remarkable structure of a Fredholm Pfaffian arising thanks to the Schur
Pfaffian nature of the inverse norm of the Bethe wave functions in half-space.

Let us first manipulate the partition sum at fixed number of strings expressed in terms of the
reduced variables Xo, 1 = m, + 2ik, and Xg, = m, — 2ik, for p € [1,ns].

kp»mp e tm k2+ m3
Z(n —r P e Pf
N H Z / 4zk; 2ns X 21

p=1mp=>1

X; - X;

_— 3.4.29
X; + Xj ( )

where By, ,, was given in (3.4.25). The summation over the variables m,, can be done using the
usual Mellin-Barnes summation trick, see Lemma 3.5.3. To this aim, let us define a contour
Co = a + iR with a €]0,min(2A + 1,1)[, then denoting f the function gathering all the integer
terms in (3.4.29), we have

mp _ N dwp —WpTp
S (—6)™ f(my) = /Rdrp§+ /CO P ¢ (wp)e " (3.4.30)

—
1 e 2w

For each m,, we therefore introduce two variables r, and w, and we redefine the reduced variables
Xop and Xop,_1 under the minimal replacement m, — w, imposed by the Mellin-Barnes formula.

We will require one last trick of calculation to present our final expression for the partition
sum at fixed number of strings. By anti-symmetrization, we separate the following term of By,
in X9, and Xy, 1 as

. . T T
sinh(27k) = sm( (Xop — Xop—1)) — 2S1n(§X2p) cos(EXgp,l). (3.4.31)

Finally, rescaling all variables X by a factor 2, we obtain our final expression for Z(ns,<).

Result 3.4.10 (Partition sum at fired number of strings)

Let C be a contour of the form C = % + iR where a €]0, A+ %[. The partition sum at fixed
number of strings then reads

Z(TLS, g) : ns d?“ dXQp 1 dX2p SIH(FXQP) COS(ﬂ'sz 1)
p§ +eTr C2

20 2m s

T(A+ 35— Xop) T(A+ 5 — Xpp 1)
DA+ 3+ Xop) T(A+ 2 + Xop 1)
X —X;
X; —I-Xj

X (23 1)D(2X2)) - (3.4.32)

x5, 1 X3
e~ (Xop-1+Xop)rptt(—5—+—3%)  pg
2N X2ns

This partition sum and the generating function (3.4.28) are now perfectly suited for the application
of our Lemma 2.3.1 leading to the introduction of a Fredholm Pfaffian representation for g(s).
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Let us define the functions

_ sin(mX) L(A+35-X) —rp X2
) = F(QX)F( Ari+x)° (3.4.33)
MA+1-X) | o *
Pop—1(X) = cos.(7rX)F(2X)F(A+ +X)e

Lemma 2.3.1 precisely states that the generating function g(<) admits a closed form in terms of
a Fredholm Pfaffian, which is our main result for the generating function at finite time together
with the explicit expression of the kernel given in Egs. (3.4.5) in the Result 3.4.3.

71+Z

ns=1

Ns

H / trom B (Km0 =PI = oK)y (3434)

The function o¢ is given by o (r) = Finally, recalling that the generating function g(c) is

S
Ste= "
precisely the generating function of the exponential height, i.e. g(s) = Expyz {exp(—geH(t))}, we

finished the derivation of our main result 3.4.3 for the KPZ solution at all times.

3.4.5 An equivalent kernel

To study the cumulative distribution of the KPZ solution at large time, we shall need to in-
troduce a new kernel, equivalent to the one presented in Egs. (3.4.5). We recall that for the
antisymmetrization procedure, we used the trigonometric decomposition

sin(m(Xop — Xop—1)) = sin(nXop) cos(mXop—1) — cos(mXsp) sin(mXop—1) (3.4.35)

which lead to the replacement showed in Eq. (3.4.31). It turns out that this decomposition can
be made more general. For any real a, we decompose the sine function as

sin(m(Xop — Xop—1)) = sin(n(Xgp — a)) cos(m(Xop—1 — a)) — cos(m(X2p — @)) sin(m(Xgp—1 — @)

(3.4.36)
and we call this the a-decomposition. To study the limit A — +oo, we use a = 0 and for the
limit A — —%, we use a = A + % Following the same derivation for the Fredholm Pfaffian, the
a-decomposition leads to an a-extension of our functions ¢ (Eq. (3.4.33)).

. 1
¢2p(X) _ SID(TF(); - a))r(2X)£Eji 2 " X;e TpX—i-tX
- (3.4.37)

Pap—1(X) = cos(m(X — a))I‘(QX)A—i__;e rp XX

(
T(A+Ll+Xx

We see that this choice o = A+ % can be interesting since it suppresses the pole at X = A+ % in
the function ¢9,. At the end we obtain a similar Fredholm Pfaffian expression for the generating
function, with the minimal replacement in the kernel (3.4.5)

sin(7X) — sin(m(X — «)), cos(mX) — cos(m(X — ) (3.4.38)

Remark 3.4.11. We emphasize that all the kernels parametrized by « yield the same Fredholm
Pfaffian by construction.
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3.4.6 Large-time limit of the Fredholm Pfaffian and the distribution of the
KPZ height

We will now study the large-time limit of our kernel and of the KPZ height. At the moment,
the time factor is only present in the cubic exponential in Egs. (3.4.5) and we precisely want to
eliminate the time factor in the exponential. This implies that we have to perform the following
change of variable in the kernel.

1
(w,2) =t B@@,2), r=t5F A+ 5’2:6t71/3. (3.4.39)

Furthermore, in the large-time limit, the Gamma, cosine and sine functions simplify using that
for small positive argument

I(z) ~—, cos(x) ~ 1, sin(z) ~ x. (3.4.40)

SR

This rescaling introduces a new kernel K¢ the large-time kernel which is obtained equivalently
from the kernel (3.4.5) as Kii(t'/37,t1/37) = K (7, 7), Koo(t'/37,t1/37) = t=23KS,(7,#),
Kio(t'/37, 137y = t—1/3 K<, (7 #). This produces a factor t~"s/3 from the Pfaffian (Eq. (3.4.4),
compensating for the change of measure [[,dr, = tns/3 I1, d7p.

Result 3.4.12 (Large-time kernel for the half-space KPZ problem)

The large-time kernel K€ of the Fredholm Pfaffian of the solution to the Kardar-Parisi-Zhang
equation in half-space with droplet initial condition in the presence of a wall with parameter
A (such that e = (A + %)t1/3) >0 is

// dw%w—zie—i—we—i—zeﬂwﬂ,/yrﬁ;z?’
T4 c

2 UTNT W+ ZWZE—WE— 2

dw dzw—zet+we+z oy w3
K€ —TWTE T 3.4.41
2 (r. 1) 4/Ke%wmww+ze—we—ze ( )

// dw%w—zle—i—we—}—zefmfrlﬁw%z?’
T4 c

2 20M2IMTW+ZWE—WE— 2

KHT‘T

K127“r

The contours C' have now to be understood as C' = a + iR, where a €]0,¢[. We emphasize
that the contours all lie at the left of the poles at X = e.

Besides, as usual for the study of the late-time KPZ dynamics, let us choose the variable ¢ as

1/3 . . . . .
¢c=¢ 5t / so that at large time, the "Fermi factor” becomes an indicator function

1/3y _ _
tl>1+mooa (rt*?) = 0(r —s) (3.4.42)
where © is the Theta Heaviside function. The Fredholm Pfaffian formula for the generating
function then becomes in the limit

— sty =
tilgloog(g e ™) = PE(J — K°)12([s 4-00])- (3.4.43)
On the other hand, at large time, the Laplace transform of the distribution of the exponential of
the KPZ height converges towards the cumulative probability of the height, i.e.

e—stl/S) 6H(t)—stl/s)

~1vo0 Expz [0t/ — H(1))]

H(t
=t—+o0 ]P)(tl(/:)’) X 3)

g(s = = Expz |exp(—

(3.4.44)
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where O is the Theta Heaviside function. From this, we obtain the CDF of the height distribution
in the large-time limit as a Fredholm Pfaffian

lim P(--/

t—>Foo +1/3 < S) = Pf(J - KE)]LQ([S,Jroo[) (3445)

in terms of the matrix kernel given in (3.4.41), also called the transition kernel, as it describes
the critical region around the transition. As shown in Ref. [2], it describes the crossover from
GSE/GOE/Gaussian expected from universality arguments. Our formula for the kernel is limited
at this stage to € > 0.

3.4.7 General ¢ behavior of the matrix valued kernel at large time

Performing the large-time limit at any fixed A > —1/2 corresponds to the previous calculation
with € = +00. As the contours of kernel K€ are parallel to the imaginary axis and cross the real
axis between 0 and ¢, we can push the limit € — oo without any ambiguity and the kernel in this

limit K*° reads
Ko(r, 1) // dwdzw—-2z1 _T,w_r,z+w33+23
i 4 o2 2T 2T w + 2 wz

dw dz w—z o w3
K3 / / — TrwmrEt Ty 3.4.46
22 TT 4 o2 2z'7r2i7rw+ze ( )
KS(r, r // dw dz w—21 e—rw—r’z+“’33+23
12 c? 2@7r227rw+zw

This is the kernel associated to the GSE random matrices as given in Lemma 2.7. of Ref. [116].
Hence the distribution of the KPZ height at x = 0 converges at large time for boundary conditions
such that € — co (e.g. for any fixed A > —1/2) to the GSE Tracy-Widom distribution.

M < 5) = F4(8) (3'4'47)

To study the general € behavior of our kernel, we shall compare it with the transition kernel
obtained in in Ref. [116] from the solution of discrete models, i.e. last passage percolation and
facilitated TASEP.

To this aim, it is useful to return to the a-decomposition and choose a« = A+ % Inserting the
replacement (3.4.38) into the finite-time kernel (3.4.5) and repeating the same steps one obtains
a large-time kernel equivalent to (3.4.41) (which, for simplicity, we shall also denote by K¢).

Kurr // dw dzw—zie+we+z _Tw_r/z+w33+z3
4 c2217r227rw+zwzw—ez—e
dw dz w—z (z+€)(WH€) _ oy w’ez?
K3 — rw=Tet Ty 3.4.48
22rr 4//@2 2w 2mw + 2z wz € ( )
K12r7’ // d»wdfzwfzz+ee+wefrw%/z+w3;z3
4 c2NT2iTw+ 2 wz w—¢

Remark 3.4.13. As advertized above, this choice of o = A+% has decreased the number of poles
for w or z equal to €, which will be useful below.

An important conjecture of our work in Ref. [2] is that our transition kernel K€ in Eq. (3.4.48)
is equivalent to the cross-over kernel® Koss in Ref. [116] Definition 2.9.

3This kernel appeared previously in Refs. [175, 176].
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Conjecture 3.4.14 (Fredholm Pfaffian equivalence)

The transition kernel found for the solution to the KPZ equation in half-space with crossover
parameter € > 0 is equivalent to the one found at the transition for the last passage percolation
and facilitated TASEP models in a half-space.

PE(J — K2 (s 1o0p) = PE(T — Keross)L2([s.oo) (3.4.49)

We recall from Ref. [116] Definition 2.9 that the cross-over kernel Ko is the sum of two
kernels I and R, the latter having a single non-zero component Rs2. In our notations and contour
conventions, these kernels read for ¢ > 0

() // dz dww—zw—l—ez—l—e T,Z_Tw+w3;z3
022277227rw+z w Z ’

1127"7“ // dZdﬂw_ZM+6 1 e—rz rw+ ¥z +z
2 c2UTt2itw+z w €e—=z ’

IQQ’I“T = // dz dww -z 1 1 6—r’z—rw+% (3.4.50)
4))c2 2in2imw+ 26— 26— w ’

121(7’,7") — _I12(T 7T))

—|7“—r'|e

1
Ros(r,7") = ngn(r’ —r)e

where we recall that the contour C' is parallel to the imaginary axis and crosses the real axis
between 0 and e.

Remark 3.4.15. With these definitions the above formula holds for ¢ > 0. The kernel of
Ref. [116] is also valid for € < 0, with various changes on the contours.

Since it is already proved in Ref. [116] that in the large positive € — +o0 limit, the kernel
Kross 18 the GSE kernel, we see that in this limit it is equivalent to ours. For general ¢ > 0 we
have expanded in Ref. [2] the Fredholm Pfaffians on both sides of Eq. (3.4.49) in series of their
traces up to the third-order in Airy function with perfect matching. Thus we have a strong case
for the conjecture of the full equivalence of the Fredholm Pfaffians.

3.4.8 Solution for the KPZ generating function at all times for generic A in
terms of a scalar kernel

The general kernel we have obtained in Eq. (3.4.5) has a particular structure in the form of a
Schur Pfaffian. With this structure, the kernel verifies the hypothesis of Proposition 2.3.2 which
we have proved in Ref. [6]. This proposition states that we can transform the Fredholm Pfaffian
of Eq. (3.4.34) which involves a matrix valued kernel, into a Fredholm determinant of a scalar
kernel. To proceed, let us first define the functions
dw T(A+ % —w)
c 2irT(A+ 3 +w)
dzT(A+1 -2 sin(mz) ...z
feven(T) — / 7(—%) ( 2)¥€ rzttZ
c2imT(A+ 35+ 2) T

and the kernel K, ¢ such that for all (z,y) € R2

Ki(z,y) = 2&5/ dr = [foven (7 + ) foad (T + ¥) = fodd (T + ) foven (T + )]
dwszA+§—w) T(A+1-2)
_28/drg+e7'//c2 (2im)2T(A+ 5 +w) T(A+ 1 +2) (3.4.52)

Me—rz—yw—m—rm%
™

w3
['(2w) cos(mw)e ™75

foda(r) =
(3.4.51)

x I'(2w)T'(22)
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Then, the generating function of the exponential of the KPZ height admits the Fredholm deter-
minant representation with a scalar valued kernel.

Result 3.4.16 (Scalar kernel Fredholm determinant for the KPZ generating function)

The generating function of the exponential KPZ height enjoys a Fredholm determinant rep-
resentation with a scalar kernel.

9(<) = Expr, [exp(—se! )| = PH(J — 0 K)oy = \/Det( — Kioiam,)  (3.4.53)

To obtain the large-time limit of (3.4.53) one performs the same rescaling as in Sec. 3.4.6,
namely one chooses ¢ = e~*"/*% and one rescales (w, z) = t~Y3(w, z), r — t'/3r. The Fermi factor
o produces a Heaviside function ©(r —s) and then (3.4.53) allows us to obtain a transition kernel

for e > 0 as dwd 1 3,.3
Re) // wdz e+ we+zw— 2z fxzfwar% (3.4.54)
9 c2 (2im)? we—zw4+ zw

The contours C are parallel to the imaginary axis and cross the real axis between 0 and e. This
additionally allows us to obtain the cumulative distribution of the one-point KPZ height in terms
of a Fredholm determinant as

. H(t) -
lim P(—5 5 <s) = VDet(I — K)o yoo (3.4.55)

t—o0

We will now be interested in the ¢ — 0T limit which is extremely delicate to handle, but via
a careful analysis we will show that it converges towards the scalar kernel of the GOE-TW
distribution.

3.4.9 Small € limit of the scalar kernel and convergence to the GOE

To investigate the small € behavior of the scalar kernel, one proceeds by moving the contours C
of the scalar kernel of Eq. (3.4.54) to the right of € (and we denote C' the corresponding contour),
and collecting all residues along the way. Doing so, we rewrite the scalar kernel as

dwdz e+we+zw—21 ﬁzfywwhzi%
xy // 3
2 ¢z (2im)? e—zw+zw

i (3.4.56)
6676x+% / dMAi(y + ) + Ai(z)e s
0

It would be tempting at this stage to set e = 0 in the last two terms, but this is wrong and that
is the whole subtlety. Indeed the operator product of the third term with the second one leads
to a non trivial contribution for small but finite e. We now study the e — 0T delicate limit in
details. We first conjugates the kernel on the left by the multiplication of e and on the right
by the multiplication of e® which leaves the associated Fredholm determinant unchanged. The
new kernel obtained by this manipulation is the following

dwdz e+we+zw—21 7zzfyw+€y7m+w3+z3
(z,y) 3
2 ¢z ( 227? e—zw+zw

. (3.4.57)
ce2ertert s / dMAi(y 4 A) + Ai(z)e T
0

As the devil hides in the details, the e — 0 limit of this kernel is not trivial and we have shown
in Ref. [2] that is it equal to

1 +0oo
lim K(z, ) =Kz, 9) — 5uc(2) / dAAi(y + )) + Ai(z) (3.4.58)
€ 0

where 0 is a distribution on R such that [p dzf(2)dss(2) = limx 40 f(X).
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Remark 3.4.17. As generic kernels decay fast enough at infinity, one would think that the ds
contribution should not play any role. That is indeed wrong as the third term in Eq. (3.4.58) does
not show decay in its second variable.

Our last effort in Ref. [2] was to prove that the Fredholm determinant of K for ¢ = 0 was
identical to the one of the GOE-TW distribution. We achieved this by manipulating the Fredholm
determinant of K with the Sherman-Morrison formula and with the matrix determinant lemma.
We were able to show that our Fredholm determinant is equal to the one of Forrester in Ref. [159]
which directly relates to the GOE Tracy-Widom cumulative distribution F}.

Det (I — K)]LQ(

s,4+00

= Det (I — Kai — |AD) (1 (1 = A1) 2y ooy = F1(5)? (3.4.59)

[s,+00[)

Hence, we concluded in Ref. [2] that for e — 0T, the cumulative probability of the one-point KPZ
height field is given by the GOE TW distribution.

Jim IP’(I;(/? < s) = Fi(s) (3.4.60)

Conclusion and summary

In this Chapter we have extended the replica Bethe ansatz solution to the KPZ equation in a
half-space for droplet initial condition near the wall to generic value of A > —1/2. Despite much
progress in the topic of exact solutions for the KPZ equation, this has remained a challenge for
several years. A recent theorem which maps this problem to the case of a hardwall with a Brow-
nian initial condition was the key tool to find this solution.

It allows to demonstrate the convergence to the GSE Tracy-Widom distribution at large time
in this phase and to the GOE Tracy-Widom distribution for A = —%. We have also obtained
the crossover or transition kernel valid in the critical region A + % = et~ /3. Additionally, let us
note that the phase diagram we have presented for the solution to the KPZ equation echoes the
one obtained in Ref. [110] Section 8 for the log-gamma polymer. Let us close by mentioning that
the physics content of the mapping between the Brownian initial condition and the droplet initial

condition with different interactions with the wall remains to be understood deeper.

Before investigating several applications and connections of the solutions to the KPZ equation
to other mathematical oddities, let us formulate various open questions regarding the exact
solutions to the KPZ equation.

3.5 Open questions regarding the exact solutions to
the KPZ equation

The open directions we would like to introduce point towards the relation of the solutions to the
Kardar-Parisi-Zhang equation and the family of Painlevé equations and towards the nature of
the kernels involved in the Fredholm determinant and Pfaffian representation of the generating
function of the exponential KPZ heights.

3.5.1 Relation between KPZ solutions and Painlevé equations

So far, a proper relation has been established between a finite-time generalization of the Painlevé
IT equation and the solution to the KPZ equation for droplet initial condition. This relation was
established in [75] by algebraic manipulations on the Fredholm determinant involving the Airy
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kernel and the Fermi factor.

We may wonder whether there exists a way to obtain this correspondence directly from the
Replica Bethe Ansatz. If so it would be of great importance to obtain such a correspondence
with Painlevé equations for all solved initial conditions of the Kardar-Parisi-Zhang equation.

Finally, if some sort of connection between the solved initial conditions and Painlevé equations
was established, it would also be paramount to determine whether the general solution to the
KPZ equation can be expressed in the Painlevé language. The reason for such a question is
that it is not known at the moment whether the general solution to the KPZ equation has a
determinantal or Pfaffian representation or if it is the luxury of a few initial conditions.

3.5.2 Time-dependence of the kernels

At the moment, all known solutions to the Kardar-Parisi-Zhang equation exhibit a determinantal
or Pfaffian representation for their generating function. These Pfaffians or determinants always
exhibit a weight interpreted as a Fermi factor or as the square root of a Fermi factor. Nonethe-
less, the associated kernels look generally quite complicated and involve various Gamma functions
incorporating a non-trivial time-dependence, allowing a Random Matrix interpretation only at
infinite time. The only counter-examples to this observation are the droplet initial condition in
full-space and in half-space for the critical parameter A = —1/2 where respectively the GUE and
GOE kernels appear at all times.

From our work in Ref. [2] on the half-space KPZ problem with droplet initial condition in
the presence of a wall of parameter A > —1/2, we have seen that at all times the kernel (3.4.5)
involves a Fermi factor and multiple Gamma functions. For the case A = —1/2, this seems a
priori in contradiction with the work of [80] where the GOE kernel appears at all times: the
resulting kernel does not present any time-dependence. The natural question to ask ourselves is
how we can reconcile both results.

It would be extremely interesting to sort this question out. At the moment, the Gamma func-
tions simplify only at large time onto rational fractions leading to the late-time transition kernel.
Although we have no technical claim of the following, we would like to formulate a conjecture on
this matter for the half-space KPZ problem.

Conjecture 3.5.1 (Fredholm representation at all times with the cross-over kernel)

The generating function of the exponential of the KPZ height with droplet initial condition in

the presence of a wall with parameter A can be expressed at all times as a Fredholm Pfaflian
with the infinite time transition kernel and a weight generalizing the Fermi factor carrying a
non-trivial time-dependence.

Remark 3.5.2. If this conjecture were true, it would provide an additional formulation of the
solution to the Brownian initial condition in full-space.

Although we have at the moment no calculation to corroborate this conjecture, we have
identified a possible mechanism to tackle this problem which we named the extended Mellin-
Barnes summation.

The Mellin Barnes summation trick and its generalization

Most derivations of the solutions at all times to the Kardar-Parisi-Zhang equation require at some
point the use of the Mellin-Barnes summation trick which allows to transform a series into an
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integral in the complex plane. We first present the usual Mellin-Barnes summation and briefly
discuss it before introducing its extended version. We suppose here and below that all interchange
of integrals and series are benign.

Lemma 3.5.3 (Mellin-Barnes summation trick)

Let I' = a+iR for some a €]0, 1[ be a contour in the complex plane, parallel to the imaginary
axis and z € C such that R(z) > 0. The Mellin-Barnes summation formula allows to substitute
a summation over integers to an integral over I'.

S (ampm) = - [ar o [ e w) (35.1)

o T 2im

For completeness, we provide a short non-rigorous proof of the classical Mellin-Barnes summation
formula, see Ref. [42] Lemma 3.2.13 for some more convergence details.

Proof. By a residue calculus (and ignoring any convergence issue), we note the identity

S (—oynpm) = [ T

m>1

2" f(w) (3.5.2)

r 2im sin(mw)

using that Resy=m [/ sin(rw)] = (—1)™. Furthermore, we note the second identity for $(z) > 0

™ z
v=[d —wr 3.5.3
sin(mw) : /R et ( )
where the r.h.s can be viewed as a Mellin transform of a Fermi factor. O

The issue with the classical Mellin-Barnes trick is that there is no way to obtain another
function than a Fermi factor® (z,7) — - ——. There is nonetheless a certain freedom in the
Mellin-Barnes formula that has not been exploited yet in the literature. When introducing the
function w — 7/ sin(mw), we corrected for the residue by proceeding to the change (—z)™ — z%.
One could introduce more general functions that would still have some poles at the positive in-
tegers and correct the corresponding residue in the integral. We claim to extend the classical

Mellin-Barnes formula by the following assertion.

Claim 3.5.4 (Extended Mellin-Barnes summation)

For any function g such that all summations and interchanges of integrals are benign, we
have the identity

S (—2)™ f(m) = /R dr /F dw e—wrfgw) S emg(m)(—2)™ (3.5.4)

= s g(w) v

Although we expect a rigorous proof to emerge from complex analysis, in the same spirit as
the regular Mellin-Barnes trick, we provide here another way to introduce this extended trick,
which is closer to some calculation of Sasamoto and Imamura in Ref. [77,170] in the case of the
stationary initial condition for the KPZ equation in full-space.

4Note that we can interpret this function as a Fermi factor where log z plays the role of a chemical potential
and 7 of an energy.
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Physicist’s heuristics. We introduce an auxiliary function g such that for all m

flm +iy)
—2)" f(m :/dyéy —z)"——2g(m 3.5.5
(=2 fm) = [ dys) (=L tm) (35.5)
We express the d-function in Fourier space and proceed to the change of variable w = m + iy
) dw/ erm—wl(_ m () m 3.5.6
ram = [ f 5 " gty 1 (3:5:0)

Suppose that we can shift the contour of integration of w such that there is no m dependency anymore.
Let’s call I' this new contour. We then have

/m/d”m K )"y 9m) (3.5.7)

Let us now proceed to the m summation

m2>:1 /227r/ e Z glermg(m)(—Z)m (3.5.8)
0

We hope that this extended summation will be able to solve some of our open question and
to motivate its use, we now exhibit some particular cases of this formula.

Example 3.5.5 (The binomial case g(m) = %)
In this case Y ,,~1 € g(m)(—2)" = m — 1 and hence
(W + DI(B) 1
(=2 som) = [ 5= [arer Fw) | gy~ ! (359)
m2>:1 2im (w4 B) (1+ zer)B

In particular,
e (3 =1 recovers the usual Fermi factor,
e 3= % introduces the square root of the Fermi factor,

S (=2)" f(m) /m/dre*“"f E ?) (w) l\/liw—ll (3.5.10)

m>=1

Remark 3.5.6 (Other applications of the extended Mellin-Barnes trick). We expect that this new
summation identity readily applies to other problems such as the Riemann ( function. Indeed,
the integral representation of ¢

00 xsfl
((s) = F(ls) /0+ dfcez — (3.5.11)

can be obtained within a line of calculation with the standard Mellin-Barnes trick and the term
1/(e® — 1) is seen as a Bose factor. It would be interesting to obtain more general integral
representations of the ¢ function.
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Chapter 4

Connections and applications of the
Kardar-Parisi-Zhang equation

In this Chapter, we shall introduce and discuss some unexpected connections and applications of
the Kardar-Parisi-Zhang equation with Random Matrix Theory and Brownian functionals. As
we shall see, these connections open more questions than they actually answer, which makes the
discussion even more interesting leading to new research directions.

4.1 Hidden connections between RMT and KPZ: the
Gorin-Sodin Mapping

As a first connection, we discuss here a mapping that was unveiled by Gorin and Sodin in Ref. [177]
between the partition function of walker on a random complete graph in the thermodynamic limit
and the solution of the Stochastic Heat Equation for two particular initial conditions.

For the next Theorem to come, we shall suppose that the GOE and GUE ensembles of size
N x N are defined with the convention that the edge of their spectrum is located at 2v/N rather
than 2 as presented before. The result of Gorin and Sodin is the following.

Theorem 4.1.1 (Gorin & Sodin, Corollary 1.5 of Ref. [177])
Let My be a N x N Hermitian (resp. symmetric) matrix with independent (up to symmetry)

complex (resp. real) elements, so that the moments of the matrix elements E[M N]’ZI‘C SIM N}fﬂ-
with k 4+ | < 4 match those of GUE (resp. GOE) - in this case, we write the matrix M](Vﬁ)
with = 1 for the GOE matching (resp. 8 = 2 for the GUE matching) - and suppose that
SUp y MaX1|<; j<N EHMN}M|C° < oo where Cy is the absolute constant from Ref. [178]. Then
for all t > 0, one has the equality in law

(B) 2Lt1/3N2/3J (B) 2Lt1/3N2/5J+1
N My My~ _ 78 t
]\[1_1>I_~I_loO 3 (2\/N) + (2\/N) =7 (O,t)exp(12) (4.1.1)

)

where Z#=1) is the solution of the Stochastic Heat Equation in half-space for droplet initial
condition and the critical Robin boundary condition A = —1/2 and where Z#=2) is the
solution in full-space for droplet initial condition. The factor t is then the true time of the
Kardar-Parisi-Zhang dynamics.
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There is a striking heuristic interpretation of the theorem of Gorin and Sodin. On the right
hand side of Eq. (4.1.1), the solution to the Stochastic Heat Equation represents the partition
function of a continuum directed polymer in a space-time random medium. For the case of the
point to point polymer (or point to line), the partition function sums all paths from the initial
point to the final points, each path being weighted by the successive random weights of the bonds
encountered by the polymer. On the other hand, a random matrix can be seen as an adjacency
matrix of a complete random graph. Taking a matrix M to some power k and evaluating its ele-
ment (1, 1) amounts to calculate the total weight of the bonds encountered by a directed polymer
on this graph, proceeding to a loop from the node labeled by 1 back to the same node in k discrete
steps. Hence taking an adjacency matrix to some power (left hand side of Eq. (4.1.1)) has also
the interpretation of a partition function although of a different problem. In this problem, the
disorder is time independent. This makes the connection between the two problems highly non
trivial.

Besides, from the theory of tridiagonal random matrix ensembles, we know that a GOE or
GUE matrix can also be constructed in a tridiagonal fashion, it is shown in Ref. [177] Proposition
1.7 that Eq. (4.1.1) also applies to tridiagonal matrices given in Eq. (2.1.4). Keeping in mind the
adjacency matrix interpretation stated above, we can now represent the directed polymer not on a
complete graph, but rather on one dimensional lattice closed at its ends with symmetric transition
probability xs; between sites (i <+ ¢ + 1) and a probability N(0, %) to remain at the same site.
Such lattice and hopping rate are represented in Fig. 4.1. Another consequence of the result of
Gorin and Sodin is that the partition function of the directed polymer on this one-dimensional
lattice is equal in law to the partition function of a polymer in a space-time random environment
which partition sum is the solution to the SHE (right hand side of Eq. (4.1.1)). We would like
to highlight that this graph theoretical interpretation is highly non trivial and this could serve
conversely as a cornerstone to map one-dimensional random hopping models to directed polymers
on complete graphs with possible applications to stochastic spin chains.

N(0,3) N(0,2) N(0,2) N(0,3)

1—1 . S . i+ 1)< . -
Wxﬁ(i_l) WX& WXﬂ(iH)

Figure 4.1: Representation of a random walk on a one dimensional lattice with symmetric transition
probability x distributed with parameters 8¢ between sites (i <> i + 1) and a probability N(0,2/3)
to remain at the same site. We recall that the density of a x variable with parameter a > 0 is
P(x) = O(x)2'*/2/T(a/2)x" *e *"/2 where © is the Theta Heaviside function.

To understand how this result arises, let us recall the two identities regarding the generating
function of the solutions to the Stochastic Heat Equation Z(®(0,t). For all t > 0 and z > 0,

e For 5 =2,
(B=2) (0. )ot !
E exp(—zZ\V=(0,t)e1z)| = Eajg= _ 4.1.2
k7 [exp( 0] = Expma | I 17—, (4.12)
e For 5 =1,
: s 1
Exp7z [eXp(—ZZ(ﬂzl)(O,t)eﬁ)] = EAi,ﬁ:l H (4.1.3)

i1 V14 4zet'Pax
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The Theorem of Gorin and Sodin was proved showing an equality between the Laplace transform
of both random variables of appearing in Eq. (4.1.1). From the point of view of random matrices,
the important observation is that for GOE/GUE ensembles, the eigenvectors are independent
from the spectrum. Besides, they are uniformly distributed on the unit sphere (of RY for f =1
and of CV for f = 2) and as N — oo their components become independent Gaussians, hence
the squared norm of each component becomes y? distributed with parameter 3. Now, the key
point to make Fermi factors appear is the following lemma:

Lemma 4.1.2 (Laplace transform of x? variables)

Let z > 0 and xg be a random variable x-distributed with parameter 3. For the case of
integer (3, a X% variable corresponds to the sum of 8 squared standard Gaussians. Then we
have the following Laplace transform:

Ele~ %] = (4.1.4)

Remark 4.1.3. If we read the fine lines of the paper of Gorin and Sodin, the "Fermi factor”
is interpreted as the Laplace transform of the distribution of eigenvectors of the related random
matriz. Hence, if one finds a solution to the Kardar-Parisi-Zhang equation that takes the form of
a Fredholm determinant with the kernel of a usual matriz ensemble but with a different measure
than the Fermi factor, then this solution will be related to a random matriz that can be constructed
entirely based on the knowledge of the distribution of the eigenvectors (determined from the mea-
sure of the Fredholm determinant replacing the "Fermi factor”) and the related spectrum (which
correlation function is determined from the kernel of the Fredholm determinant).

For completeness, we discuss the choice of scaling in the theorem of Gorin and Sodin. Using a
spectral decomposition of the matrix My and denoting W7 the a-th coordinate of the eigenvectors
associated to the eigenvalue A, of My for a € [1, N], we have

2(t1/3N?/3 ) 1/3772/3
N MJ(\?) N N ‘\I}jf ( )\j >2Lt N2/3] (4 . 5)
_— ——— = — E 1 ——— P
B\ 2vN B4 2V N

1,1

As we have the convergence for large IV of the eigenvalues to the Airy-3 process \; ~ 2v/N +

L)2|_t1/3]\[2/3j
2vV'N )
transform of the L.h.s of Eq. (4.1.5) is now easy to evaluate using the independence of ‘\I/j ‘ and a;
and the fact that N|¥|? is y distributed with parameter 3. We refer to Refs. [179,180] for further
details. Finally, the reason why the Theorem of Gorin and Sodin contains two terms shifted by a
power one is to break the symmetry of the left and right edges of the spectrum to keep only the
right one.

a; N —1/6 the eigenvalue factor converges towards ( ~ exp(tl/ 3aj). The Laplace

We would like to end the discussion on this surprising connexion between RMT and the KPZ
equation with several open questions:

e The Theorem of Gorin and Sodin relates the element (1,1) of a GOE/GUE type matrix to
the solution of the KPZ equation at position z = 0. Can this discussion be pursued further
to obtain a position z # 0 of the KPZ solution and if yes, would this be translated in other
elements of the matrix (such as (,7)) ?
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1/3N2/3J

e Is there a possible interpretation of the multi-time joint distribution of [My L2t ]11 and
1/3 nr2/3
[My L2ty N J]ll ?7 Similarly, is there an interpretation for the multi-space joint distribution
1/3N2/3 1/37n2/3
of (M i and [N 7

e Is there a similar interpretation or theorem using perturbed matrices such as the one of
Baik, Ben Arous and Péché ? If yes, a possible candidate on the Kardar-Parisi-Zhang side
would be the solution for the stationary initial condition.

4.2 Coincidence of Brownians walkers and exponential
moments of KPZ

In this Section, we introduce another intriguing application of the exact solution to the Stochastic
Heat Equation to some Brownian functional which we call the coincidence time of independent
Brownian walkers. We refer to Ref. [3] for the further details on the calculations and some ex-
tensions and discussions not presented here.

To this aim, we consider a model of Brownian walkers identified to a Langevin evolution of
particles of positions z;(7) on the time interval 7 € [0, ¢] such that

(1) = mi(r) with (:(7)) =0 (n;()n;(7")) = 2Dd;;0(r —7') . (4.2.1)

and consider the case where the walkers start at ¢ = 0 from a single source x;(0) = xo for
i € [1, N]. The time spent by the walkers in at a distance at most ¢ to each other is

v (6, 8) Z/ dr © [—m( ) —ay(r )ﬂ, (4.2.2)

i#j

We are particularly interested in the limit where the length ¢ is small compared to all the other
scales of the problem and therefore define in the limit ¢ — 0,

TN()—lgngTNE £) %/ §lai(r) — x;(r))dr . (4.2.3)

We refer to this observable as the coincidence time of N random walkers, i.e. the amount of
time that these independent particles spend crossing each other. Note however that Ty (¢) does
not have the dimension of a time, which is a usual property of the local time of a stochastic
process [181-183]. Using the Brownian scaling, the process has a simple rescaling to the time
interval 7 € [0, 1], and we obtain the equality Ty (t = 1) = Ty = TNTS:) The N-dependence is
what makes the problem highly non-trivial. Indeed, the case N = 2 is solved easily by considering
the process z(7) = %(ml(ﬂ —x2(7)) which is also a diffusion process of same diffusion coefficient

D (which we take to be D = 1),

(1) =€&(7), with (£(7)) =0 (&(1)é(7)) =2D6(r —1') . (4.2.4)

The coincidence time 73 of the two Brownian particles can be expressed in terms of the local time
Li(z) of the process z(7) defined as L;(z) = [J d7d(z(7) — z). Setting 2 = 0, we obtain

1 _ Ta(t)
/ dré (= / dré <ﬂ(x1(7)—x2(7))> - (4.2.5)
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The joint Probability Distribution Function (PDF) of the local time L;(0) = L and the final po-
sition z(t) = x¢ was obtained by Borodin [182] and further exploited by Pitman [183]. However,
as soon as N = 3, one cannot define independent processes for which our coincidence time is a
simple observable. The goal of the remaining of this Section is to study the coincidence time for
an arbitrary number N of walkers.

In particular, we study the PDF of 7Ty for two cases, Brownian motions and Brownian
bridges. In the first case (Brownian motion) one defines the Moment Generating Function (MGF)
(e=¢Tv(®)_ ' where (...)x, denotes the expectation value with respect to the PDF of Ty(t) for
given initial conditions x(7 = 0) = x9 = (2o,...,20). This MGF can be expressed in the
Feynman-Kac¢ framework as an N-dimensional path integral

(e TN W) = /N dyZn(y.tlxo;c) , with, (4.2.6)
R
t | N i?i(T)Q N
(t)=y —/0 [Z1 1 +2625[$i(7) —z;(7)]| dr
Zuythoie) = [ Dx(r)e L= L2
x(0)=xo
where x(7) = (z1(7),x2(7), -+ ,zn(7)). As the final point y is arbitrary, we integrated here over

all the possible realisations. In the second case (Brownian bridges) we define the MGF as the
following expectation value with fixed initial and final positions

B Zn(y, tlxo; )
cTn (t) _ N\Y, 05 428
<6 >X07y ZN(y,t’X();C: 0) ( i )

where Zy(y,t/xgic = 0) = (4nt)N/2e~(—x0)*/(4) ig the free propagator. This situation is
depicted in Fig. 4.2. The function Zn(y,t|x0;c) can be interpreted as the imaginary time N-
body propagator of the bosonic Lieb-Liniger Hamiltonian [83]

N N
— 0 Zn =HN(c)Zy with Hy(c) =D P2 +2¢> 8(2; —35) - (4.2.9)
i=1 i<j

We therefore see that this MGF, eq. (4.2.8), for non-interacting diffusing classical particles is
mapped onto the propagator of a quantum problem of identical bosons with a contact interaction
and hence this problem is also related to the directed polymer in a random potential through the
Stochastic Heat Equation and equivalently to the Kardar-Parisi-Zhang equation.

The MGF of our diffusion problem, or N independent Brownian bridges, and negative value
of the parameter ¢ = —c¢ is thus related to the moments of the solution of the SHE as follows

(€)oo = (4.2.10)

where Zy(z,0,t) = \/%ﬂte_ﬁ/(‘”) is the free Brownian propagator (for ¢ = 0). Note that all initial
and final points here are set to 0. The moments of the solution of the SHE being the exponential
moments of the solution of the KPZ equation, the connexion is now unveiled.

In the following, we will present exact formulae for the Laplace transform of the coincidence
time (e~<"¥®)) and we will denote the case of N independent Brownian bridges (e=¢"¥(®))pp =
(e*CTN (t)>0,0, and the case of N Brownian motions all starting from, xg = 0, with free final points,
(e=TN gy = (e=TV()g. We will be able to invert the Laplace transform in the two cases and
to obtain the small and large T' asymptotics of the PDF of Tx ().
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Figure 4.2: Plot of a simulation of N = 5 Brownian bridges for a diffusion coefficient D = 1 starting
from o = (0;0;0) and endpoints in y = (0;0;0).

4.2.1 Coincidence time for Brownian bridges and the KPZ equation with
droplet initial conditions

The Lieb-Liniger Hamiltonian in Eq. (4.2.9) is exactly solvable using the Bethe ansatz. Here
we need only the symmetric eigenstates of H ~n(c), which in the repulsive case ¢ > 0, are single
particle states. We recall here that the eigen-energies Fy of this system form a continuum indexed
by N real momenta {k;}’s such that

N
Hy(0)|5) = Ex|UE) , with By =k*=> k?, (4.2.11)
=1
¢ icsign(@; — i) \ i aik,
(x|Tg) = —k (1 — = W) et Zu=1 TR G) (4.2.12)
Nt U§N EIJ ko(j) = Koti)
( )2 1/2
ki — k;j
Ci = — : 4.2.13
k (g (ki—k:j)Q—l-cQ) ( )

where the |Uf) denote the eigenstates of Hn(c). The calculation is similar to the one in Refs. [73,
74] except that we retain here for ¢ > 0 only the particle states, meaning that the momenta {k;}
are real and do not carry a complex component. Consider the imaginary time propagator at
coinciding endpoints

dk

Zn(0,1]0; ¢) = (0]~ x|y — /R oy O (TEI0)e (4.2.14)
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Using that (0|¥f) = Cf, we arrive at the following Laplace transform for the PDF of the coinci-
dence time for N Brownian bridges

N
2

(e TNy — (4t /

dk oKt (ki — kj)z
ry (2m)N

(k‘i — k‘j)z +c2

(4.2.15)
1<J
where we have divided by the result at ¢ = 0 which coincides with the free propagator Zx(0,t|0;0) =
(47rt)_% to ensure that the 1.h.s is equal to unity when c is zero.

Remark 4.2.1. There is an alternative formula for the moments of the directed polymer problem,
which was derived using Macdonald processes, see Refs. [42, 18/].

Having determined the Laplace transform of the coincidence time of the N Brownian bridges,
we now pursue and obtain from Eq. (4.2.15) an expression for the PDF of their coincidence time.
To this aim, we first first recall the Cauchy identity

(ki — k;)° ¢ ) (4.2.16)

_ N\ qet [ — &
iy (ki = kj)? + ¢ 1<bm<N (c +i(ke — k)

Expanding the determinant as a sum over permutations and exponentiating each denominator

by introducing auxiliary variables r = (ry,--- ,7ry) yields
(ki — kj)g N - —cy T al —ike(Te—"o(0))
— = Z 81gn(0)/ dre et He areTTe ) (4.2.17)
i<j (ki = kj)? + ¢ €SN RY =1

Proceeding to the replacement of the integrand of Eq. (4.2.15), we are able to compute the
integrals over the momenta k and sum back over all permutations, yielding

(ri—rj)?
<echN(t)>BB:cN/Ndr e 2"t det <e i > (4.2.18)
R+

1<e,i<N
The inversion of the Laplace transform is now straightforward, and we conclude this calculation

by giving the PDF Py pgp(7’) of the rescaled coincidence time Tn = Tn(t = 1).

Result 4.2.2 (PDF of the coincidence time for N Brownian bridges)

The probability distribution function of the coincidence time of N independent Brownian
bridges is given by

N (ri—r)?
Prp(T) =07 /RN dr © (T — ZW> et (e_ T ) (4.2.19)
+ Z:l <XHhJ=

Having the full distribution Py pg(T) of the rescaled coincidence time Ty = Tn(t)/Vt, we
now investigate for arbitrary IV its tails respectively for small 7' — 0 and large T — oo.

To obtain the small 7" limit of Py pg(T), it is convenient to consider the ¢ — 400 limit of
the Laplace transform (e~¢’~)gg, which is given in Eq. (4.2.15). The interpretation of such
consideration is that the trajectories of Brownian bridges which contribute to a small coincidence
time are repelled from each others. In the Lieb-Liniger picture, this is consistent with the repulsive
case where the states are described as single particle states rather than bound state, meaning that
each particle has own momentum that does not carry a complex part. Taking the large ¢ — 400
limit of Eq. (4.2.15), we obtain

N1 G(N +2)

_e —N _N(N- —k?
(e TN>BB%7I- e NN=1) dke ¥ H(ki_kj)2:2 ¢N(N-1)

N
R i<j

(4.2.20)

o8



where G(n) = HZ;% k! is the Barnes GG function and where have used the Mehta integral formula
e.g. (1.5)-(1.6) in [185]. Inverting this approximate Laplace transform, we obtain the small T
behavior of the PDF of Py pg(T) as

Result 4.2.3 (Small T limit of the PDF of the coincidence time of Brownian bridges)

The small T' limit of the PDF Py gg(T') is given by

_ N1 G(N +2)

—TN(N—I)—I TN(N—1)+1 ) 4.9.91

PN,BB (T) Ti 2

We now turn to the large T' limit of Py pp(7") and in this case, we need to investigate the
¢ — —oo limit of the expectation (e~7~)gp which is dominated by large values of Ty. The
trajectories which contribute to a large coincidence time are attracted to each others. In the
Lieb-Liniger picture, this corresponds to the attractive case, where particles form bound states
called strings, in which the momenta of the particles share the same real part but also have a
quantized imaginary part. Upon increasing ¢ = —c, the potential becomes more and more attrac-
tive and the trajectories become dominated by the configuration where all particles are bounded
into a single string.

Mathematically, for ¢ = —¢ < 0 the expression of the moments of the directed polymer
partition function is more involved as it involves a sum over string states, see the extensive list of
publications [42,73,74,186] on this topic for further details. Nonetheless, in the limit ¢ — 400,
the energy spectrum of the Lieb-Liniger model is dominated by its ground state which is a single
string containing all particles with energy Fo(NN) = 7521\7(1\177;*1)_ It follows from the contribution
of the ground state to the moment (see for instance Eqgs. (65-66) in the Supp. Mat. of Ref. [187]
replacing ¢ by ¢t and multiplying by ¢V) that

N!(4w)¥ _N_1 @2NW-y
= 7]\73 72 C e 12

This behavior is consistent with the following T" — oo asymptotics:

(e=T¥)pp 1+ O(emaN -] (4.2.22)

Result 4.2.4 (Large T limit of the PDF of the coincidence time of Brownian bridges)
The large T asymptotics of the PDF Py ggp(T') is given by

N!QN_ITI'%_l

_ _ 2 _ 2
Pnes(T) = — Van (=or)Ntemon T 4 O(e7PNTT) (4.2.23)
NiN-1z3-1 n
——mozﬁ, Hy_1 (/anT) e NT? L O(ePNT?Y | (4.2.24)

N3/2

where Hy,(x) = e*’ (—8,)Pe~*" is the Hermite polynomial of degree p. The exponential factors

are equal to
3 3

N(N2—1) ON = N5 3NN

ay = (4.2.25)

This is in particular verified by calculating the Laplace transform of the aproximate PDF
of Eq. (4.2.23) using a saddle point approximation. The saddle point T* = ¢(2ax)~! > 0 is
therefore on the contour of integration for ¢ = —¢ > 0 making our approximations valid.

In addition to the asymptotics, we calculated in Ref. [3] the mean and variance of the coinci-
dence time for N Brownian bridges, the result is the following:
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Result 4.2.5 (Mean value and variance of TnBB)

The mean value of coincidence time for Brownian bridges with diffusion coefficient D =1 is

(Tn)BB = N(NQ_D\/Z (4.2.26)

The variance of the coincidence time for Brownian bridges with diffusion coefficient D =1 is

8 W] L N(N=1) [1 _ ”} . (4.2.27)

Var (Tn)gg = N(N — 1)(N —2) l9\f 5 i

4.2.2 Coincidence time for Brownian motions and the KPZ equation with flat
initial condition

We now turn to the case of the Brownian motion, where the final points are not fixed (i.e. they
are integrated upon). This is connected to the directed polymer problem with one free endpoint
and equivalently to the Kardar-Parisi-Zhang equation with a flat initial condition. A solution for
the latter was given in Refs. [76]. As in the case of the Brownian bridges, we shall use the solution
to the KPZ equation both for ¢ > 0 and ¢ < 0. Since the calculation of the moments of solution to
the SHE for flat initial is quite intricate and involves first the half-flat initial condition, we start
by recalling some results on the half-flat solution first. The half-flat initial condition corresponds
for our problem to N Brownians all starting at 0 and ending on a given half line.

Let us discuss the Bethe ansatz solution of the Lieb-Liniger model for half-flat initial condition.
To this aim, consider the partition sum of the directed polymer with half-flat initial condition

0
Zo(@,t) = / dye™ Z(z, y, 1) (4.2.28)

From Eq (52) in [119], or Eq. (88) in [76], we have the following: restoring the factors of ¢ (by
a change of units), with ¢ = —¢, restricting to ¢ > 0 and retaining only the single particle states
(as they are the only states of the repulsive Lieb-Liniger model, this is the same argument as for
the Brownian bridges), we obtain

xtN_H/ —k3t—izk; H (ki — k;)? ik +ik; + 2w +c (4.2.29)
21 ’Lk‘ +w 1<i<g<N(ki_kj)2+c2 ik,;—i—ikj—i—Qw o

From this we obtain the Laplace transform of the coincidence time of N Brownian walkers which
start at a position x and reach the negative half line |—o0, 0], as

_ Zy(x, )N dk =K t—izk
(e CTN>half—BM:m . Zh(zt) = /Zwm (4.2.30)

Remark 4.2.6. The extra weight e“® is a regqularization prescription and it will be considered in
the limit w = 07 .

The knowledge of the half-flat initial condition is actually enough to get information for the
flat case: indeed, as was shown in Refs. [76] the flat initial conditions can be viewed as a certain
limit of the half-flat. More particularly, the moments of the partition function of the directed
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polymer with one free endpoint i.e. Zga(t) = [ dyZ(x,y,t), associated to the Kardar-Parisi-
Zhang equation with flat initial condition, can be obtained from the ones for the half-flat initial
condition in the double limit z — —oco and w — 0. We refer the readers to Ref. [76] for the fine
details on this double limit. Taking the language of the Bethe ansatz, in this double limit only
paired strings and strings with zero momenta remain: this then provides the Laplace transform
of the coincidence time of unconstrained Brownians walkers all starting at 0.

After having taken the double limit and using the formulae for the moments of Refs. [76], we
determine that the Laplace transform of the coincidence time of N Brownian motions depends

on the parity of N as:

For N even

N N —2/{:2 2 9
—Tw _ (2¢)2 N! £ / dkp e (kp — kq) (kp + kq)
€ =" /Ny oo 1 L2 4.2.31
< v (%)‘ ];1_[1 R 27 4kg+c2 1_£<N (kp = kq)? + ¢ (kp + kq)? + 2 ( )
=2
For N odd
N‘l L j:2o—2k2 9 )
<6_CTN>BM ( H / p€ H (k‘ —k ) (kp + kq)

3R 2w (K ) (dkg £ ) (B — kg)? + 2 (R + kg)? + 2
= 1<p<q< =L

(4.2.32)

These results are obtained from Eq. (108) in [76] by noting that for ¢ > 0 and N even

only particle states (meaning each particle carries its own real momentum) with paired momenta

(k1,=k1,...,kn/2, —k_n/2) contribute, while for N odd there are N —1 paired momenta and one
zero momentum. This is the reason why the parity of N plays a role.

As in the case of Brownian bridges, we manipulate the Laplace transform to be able to in-
vert it. In the following, we will indeed obtain from Eqs. (4.2.31) and (4.2.32) an expression for
the PDF of the coincidence time for N Brownian motions. Nonetheless, the calculation is more
intricate than for the Brownian bridges as it will involve Pfaffians rather than determinants. We
first carry the calculation for N even and then we will pursue with the odd case.

For N even For p € [1, N/2], we define the conjugate variables

XQp =cCc— 2ikp, Xgp_l =c+ Qik'p (4.2.33)
and rewrite the factor coupling different momenta in terms of these variables,
(kp — kq)2 (kp + kq)2 _ (X2q — X2p)(X2q—1 — X2p—1)(X2q—1 — X2p)(X2q - X2p—1)
(kp - kq)2 + ¢ (kp + kq)Q +c2 (X2p + X2q)(X2p—1 + X2q—1)(X2p—1 + X2q)(X2p + X2q—1) .
(4.2.34)

Then using the explicit values of Xy, and Xs,_1, one rewrites Eq. (4.2.31) as

<6—CTN _ c NVE N' H/ dk‘ 1e” Hf H M (4235)

p 1<p<g<N Xq + Xp

Using formulae (9.1) and (9.4) from Bruijn, see Ref. [167], we write the last part of (4.2.35) as a
form that is amenable to a Laplace inversion

N

N 5
1 X, — X

[ [] 2= dr e=¢22eTe [T sign(re—ro) [] e ~2ikp(r2p-1=r20) - (4.2.36)

N
Xp 1pegeny Xa T Xp  JRY 1<h<(<N p=1
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From this identity, after anti-symmetrizing the last exponential with respect to ry, and 7,1 we
obtain for the Laplace transform of the coincidence time the following expression

<€_CTN>BM

=

V! - > Ak, oesin(2k(ro,_1 — 1

N
(X Jry LRt R kp (4.2.37)
N
N NI 2 _
- fv N' dr e €227 H sign(ry — 1) H erf <r2p1 r2p>
22 (5)! /RY 1<k<t<N =1 V2

where we computed the integral w.r.t {k,}’s. The final trick consists in (i) changing the la-
bels in the r variables in the error function from 72, to r,(, where o belongs to the sym-
metric group Sy, (i) using the fact that there are N!/(2N/2(N/2)!) ways of pairing N ob-
jects (N is even) and (74) using the definition of the Pfaffian of an anti-symmetric matrix

PE(A) = Y pe sy o@p1)<o2p) Si8(0) TInLs As(ap1)o(ap) to finally obtain

7CTN _ cz re . . Tk —T¢
(e =c / dr e”“ 2w 1<kg<N sign(ry — r¢) 1<1§£f<N [erf( 7 >] (4.2.38)

The Laplace inversion is now as straightforward as in the Brownian case and we obtain the
PDF Py pm(T) of the rescaled coincidence time Ty = Tn(t = 1) as:

Result 4.2.7 (PDF of the coinidence time for N even Brownian motions)

The probability distribution function of the coincidence time of N (even) independent Brow-
nian motions is given by

N+1 . Tk —T¢
Pypu(T) =07+ / dr © (T ng) H sign(ry — 7o) 1<15;<N [erf( 7 )}

(=1 1<k<l<N
(4.2:39)

Remark 4.2.8. FEven though the product of sign functions can itself be written as a Pfaffian, we
have not tried to simplify further Eq. (4.2.39).

We now pursue with the odd case.
For N odd For p € [1,(N — 1)/2], define the conjugate variables

Xgp =Cc— Qikp, X2p71 =c+ 2ikp, Xy =c (4.2.40)

Then, in a similar fashion as the even N case, one rewrites the Laplace transform for the odd N
case Eq. (4.2.32) as

(™™ )py = &= H/dk e H— 11 m (4.2.41)

p p 1<p<q<N

By the same argument as in the even N case, using Bru1Jn s results of Ref. [167], the Laplace
transform of the coincidence time is written in a form amenable to inversion as

N—-1
NN 2 _
(e~ )py = 617]“ Ldr e 2 II  sign(re—re) ] erf (M> (4.2.42)
272 (S /RY 1<k<t<N pei V2
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We have to be careful in the odd case as there are IV variables r but only N —1 of them are involved
in the error functions whereas all N variables are involved in the product of sign functions. We
now wish to employ the same Pfaffian trick as the even N case and hence have to consider all
(N -1)/ (2% (%)') ways of pairings N — 1 objects. Hence, we obtain our final expression for
the Laplace transform in the odd N case

<€*CTN>BM — NV dr e €2_e™ H sign(ry — 7¢) Pf {erf (Tk — W)] (4.2.43)

N < <N—
RY 1<k<f<N 1<k, SN -1 V2

Once again, the inversion is straightforward and we obtain the PDF Py pm(T') of the rescaled
coincidence time Ty = Ty (t = 1) as

Result 4.2.9 (PDF of the coinidence time for N odd Brownian motions)

The probability distribution function of the coincidence time of N (odd) independent Brow-
nian motions is given by

N
- N4+1 _ . _ Ty — Ty
Pnem(T) = NOp /Rf dr © (T ;lw) II sien(re —ro) Kk}f;fN_l [erf ( 7% >]

1<k<l<N
(4.2.44)

As for the Brownian bridges, having the full distribution Py gym(T") of the rescaled coincidence
time Ty = Tn(t)/+/t for Brownian motions, we now investigate for arbitrary N its tails respec-
tively for small 7' — 0 and large T" — oo.

We first discuss the small T’ behavior of the PDF Py pm(T) of Ty = Tn(t)/v/t. It can be
extracted from the ¢ — +oo limit of (e*CTN )BM as for the Brownian bridges. When c is increased,
the interaction in the Lieb-Liniger model becomes more repulsive and the corresponding Brown-
ian trajectories with small coincidence time are those where none of the Brownian are bounded
together. Taking the large ¢ — +oo limit of Eqgs. (4.2.31) and (4.2.32) we see that the leading
term is in all cases ¢ VW=1/2_ Inverting the effective Laplace transform, we obtain the small T
behavior of Py pm(T) as

Result 4.2.10 (Small T limit of the PDF of the coincidence time of Brownian motions)

The small T' limit of the PDF Py pm(T) is given by
Pypu(T) = INT" 7 L+ 0=+, (4.2.45)
%
where Iy is determined as
1 2 v j
Iy = - )N TIra+32%) (4.2.46)
QWF(N(A;A)) NG ]1;[1 2

It is quite surprising that the small T limit does not depend on the parity of N bearing in mind
that all other formulae do. From the ¢ — +oo limit, the factors I do appear differently for N
even and odd but at the end of the calculation they coincide to a formula that do not depend on
the parity of N. Indeed, we see that
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For N even

N
22 N! 2 1 dk >
Iy = —P 2k k2 — k2)? 4.2.47
2 2 P ISp<g<sw
For N odd
955+ dk
Iy = —— H/ SPR2e M T (K2 kD)2 (4.2.48)
(5T ( 1<p<g< A2

The k integrals are typical examples of Selberg-Mehta integrals, and further details can be
found in Ref. [185] in Section 1.4 or Formulae (1.5)-(1.6). In both cases, the calculation yields
the result of Eq. (4.2.46).

Similarly to the Brownian bridges, we determine the large 7' tail of the PDF Py ggp(7') of
Tn = Tn(t)/V/t by investigating the ¢ — —oc limit of the Lieb-Liniger model. It again determined
by the same ground state as for the Brownian bridges. From Egs. (65-66) of Ref. [187], it follows
that the Laplace transform in the ¢ — —oo limit reads

2_ _
(g = 2V 1T 14 (e IV (4.2.49)
This behavior is consistent with the following T" — oo asymptotics:

Result 4.2.11 (Large T limit of the PDF of the coincidence time of Brownian motions)

The large T asymptotics of the PDF Py g\m(T') is given by

Pyvpu(T) = 2N /SN e-anT? 4 o(e=AnT?) (4.2.50)
’ T—o0 47
with the exponential factors again given by eqs. (4.2.25), i.e. any = m and By =
3
N3-3N2+2N

Finally, in addition to the asymptotics, we calculated in Ref. [3] the mean and variance of the
coincidence time for N Brownian motions, the result is the following:

Result 4.2.12 (Mean value and variance of Tn.Bm)

The mean value of coincidence time of N independent Brownian motions with diffusion

coefficient D =1 is
N(N -1 2
(Tn)BM = NN -1) )\/; (4.2.51)

2
The variance of the coincidence time for Brownian motions with diffusion coefficient D =1 is
2 2 1 1
Var (T = NOV = DV =2) [ = 2|+ NV =[5 = 2. (4.2.52)
T T

In conclusion, we have investigated the probability distribution function Py (7") of the total
pairwise coincidence time Ty = T of N independent Brownian walkers in one dimension. Our
main results have been obtained for two special geometries: (7) Brownian motions (BM) starting
from the same point 0 and (%) Brownian bridges (BB). We have obtained explicit expressions for
the moment generating function (MGF), i.e. the expectation of e~“/~N. We have mapped, through
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a Feynman-Ka¢ path integral representation, the determination of the MGF to the calculation
of a Green function in the Lieb-Liniger model of quantum particles interacting with a pairwise
delta interaction. Restricting to Brownians all starting all at 0 allows to consider only bosonic
states, i.e. the delta Bose gas. For ¢ > 0 the MGF is the standard Laplace transform of Py (T),
for which we obtained a formula for any N using the eigenstate (spectral) decomposition of the
repulsive Bose gas. A Laplace inversion then led us to a compact formula for Py (T') for each
geometry, one involving a determinant (for the BB) and the other one a Pfaffian (for the BM). We
have shown that for ¢ < 0 the MGF is related to the exponential moments of the one dimensional
Kardar-Parisi-Zhang (KPZ) equation, equivalently to the moments of the directed polymer in a
random potential. These moments are calculated using a summation over the eigenstates of the
attractive Lieb-Liniger model. These include bound states called strings. Here we obtained the
large T' asymptotics of Py (7T) from the contribution of the ground state of the Lieb-Liniger model,
for the BB and the BM. Our main result is that the PDF of the coincidence time has a universal
decay at large T', of the form Py (T) ~ exp(—312/(N?— N)), and only the pre-exponential factor
depends on the geometry. For the BB we used the connection to the droplet solution of the KPZ
equation, and for the BM to the flat initial condition. It is possible to extend some of the above
considerations to other geometries, for instance Brownian motions starting at different points,
or to relate the problem to other initial conditions of the Kardar-Parisi-Zhang equation, and we
refer the readers to Ref. [3] for further details and discussion. We hope this work will motivate
further studies of the coincidence properties of multiple diffusion processes.

4.2.3 Open questions

Apart from being a technical exercise, the study of the coincidence time PDF raises one impor-
tant question. The Lieb-Liniger model for ¢ > 0 only comprises particle states and there is no
string structure at that level: this is why it was easy to evaluate the moment generating function
<e‘CTN )BB- A question is whether one could do things conversely and start from the knowledge of
the PDF Py pg(T) to study the physics of the Kardar-Parisi-Zhang equation. This is stunning as
obtaining its solutions requires solving the Lieb-Liniger model for a coupling constant ¢ < 0. In
this regime, the so-called attractive regime, additional states appear in the Lieb-Liniger model:
these are the string states representing particles bounded together.

To obtain the moments of the directed polymer for a coefficient ¢ < 0, one can equivalently
evaluate this generating function

(eTV)BB :/ dT e Py pa(T). (4.2.53)
0

As the PDF Py pp(T') has the particular structure,

N (ri—r;)?
PN,BB(T) = 87]5”“1 /]RN dr© | T — ZT‘@ det (6 T ) , (4.2.54)
+ /=1

1<i,j<N

the new generating function can be calculated by simple integrations by part and it is well-defined
thanks to the fact that the distribution of the coincidence time has a Gaussian tail.

The open questions are: (i) how one could extract the string structure out of this generating
function and (77) what the algebraic structure in this approach between the cases ¢ > 0 and ¢ < 0
is. In particular we have to manipulate N + 1 integrations by part, each of them induces a bracket
that can be controlled by the small and large 17" asymptotics of the PDF Py gp(T") given in the
Results. (4.2.3) and (4.2.4), providing an interpretation of the brackets could be interesting by
itself.
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Chapter 5

Introduction to the large deviations
of the KPZ equation

To investigate the distribution of the Kardar-Parisi-Zhang height field in certain regimes of
time, namely at short time and at large time, we shall require the use of Large Deviation Prin-
ciples. The theory of Large Deviations [188, 189] can be understood through the point of view
of Extreme Value Statistics. Extreme Value Statistics describes the fluctuations of a random
variable far away from its typical value. It models the probability that rare and extreme events
occur, which is of paramount importance in many domains, e.g. statistics of records, genetic
mutations or risk analysis on financial markets.

Extreme Value Statistics has been also studied in the context of Random Matrix The-
ory [158,164] where a lot of effort has been engaged to obtain the large deviations of the distribu-
tion of the largest eigenvalue a random matrix. It is known since the work of Tracy and Widom
that the fluctuations of the largest eigenvalue of a random matrix converges to the so-called
Tracy-Widom distribution [60]. Since the eigenvalues of a random matrix are strongly correlated,
the largest eigenvalue can be seen as the maximum of correlated random variables which is an
order of magnitude harder to study than non-correlated random variables for which the maximum
is described by either the Gumbel, Fréchet or Weibull distributions [190,191]. Nonetheless, the
Tracy-Widom distribution describes only the typical fluctuations of the largest eigenvalue around
its average. The determination of large fluctuations requires different methods. In the context of
Random Matrix Theory, a fruitful method to investigate the Large Deviations is the Coulomb gas
method [120,192]. As we shall see in this Thesis, Coulomb gas methods can also be adapted to
investigate the Large Deviations of the solution to the Kardar-Parisi-Zhang equation at large time.

More generally, large deviation theory play an important role in the study of non-equilibrium
systems [193-201] and the central object is the Large Deviation rate function which controls the
atypical fluctuations: this function can be viewed as an non-equilibrium analog of the free energy
for a system at equilibrium. In the context of the KPZ equation in this Thesis, we will be inter-
ested in large deviations in two situations: at short time and at large time.

At large time in 141 dimensions, the KPZ equation belongs to the Kardar-Parisi-Zhang
universality class. The feature of interest for us is that this class is characterized by various
growth models and experimental systems which share asymptotically the same scaling behavior
of the typical fluctuations of the associated height dh at a position x

Sh ~ 13 ~ g1/2 (5.0.1)

It is besides understood that these typical fluctuations are the universal Tracy-Widom distribu-
tions. The question of the large deviations within the KPZ universality class remains has not
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been explored in details before. In the Section 5.2, we will put in place some elements to under-
stand how to build a large deviation theory for the KPZ equation. Although the large deviations
functions related to the KPZ equation are not expected to be universal within the KPZ class, our
hope is to present some mechanisms which will turn to be useful to understand the problem in
the whole class.

At short time, the motivation to study large deviations is completely different. Since, the
dynamics of the KPZ equation describes the flow from the Edwards-Wilkinson fixed point to the
Kardar-Parisi-Zhang fixed point, it is important to know how the fluctuations of the solutions to
the KPZ equation depart from their initial Gaussian distribution. As we have seen in the first
Chapter, in the short-time regime by contrast with the scaling of the KPZ class; the scaling of
the typical height fluctuations is Gaussian and verifies the Edwards-Wilkinson exponents [32],

Sh ~ t1/4 ~ 12 (5.0.2)

As we will see in the rest of this Thesis, the large deviations at short time will allow us to under-
stand how the solution to the KPZ equation becomes non-Gaussian.

Before introducing some particular ideas relevant to the short and large times regimes, let
us conclude by mentioning that unlike diffusive interacting particle systems for which powerful
methods [199,201] were developed to quantify large deviations, the Kardar-Parisi-Zhang equation
requires new theoretical efforts. One of the objective of this Thesis was to understand the physical
mechanisms behind these large deviations.

5.1 Large deviations at short time

By a dimensional analysis of the Kardar-Parisi-Zhang equation, the natural time scale of the
dynamics is

26,5

DEN
The dynamics occurring at times ¢ very small compared to g will be considered as the short-
time dynamics. By a naive perturbation theory in the time ¢, the KPZ equation boils down at
the leading order to the Edwards-Wilkinson equation, easily solvable in Fourier space since it is
linear. In the Edwards-Wilkinson world, the typical fluctuations of the centered height H(t) at
one space point are Gaussian and their distribution takes the form

to (5.1.1)

H2
P(H,t) < exp(—co—= 5.1.2
(H,t) =< exp(—co \/i) (5.1.2)
Nevertheless, away from the typical fluctuations where the centered height is of order O(1), the
presence of the KPZ non-linearity plays a increasingly important role, even at very small times.
Anticipating from the second part of this Thesis, the large deviations of the KPZ height are far
from the Gaussian realm and their distribution takes the following form

O(H)
Vi

where the Large Deviation function ® is highly asymmetric with the following asymptotic

P(H,t) = exp(— ) (5.1.3)

5/2 _
@(H)—{C_OO|H‘ o e (5.1.4)

CyooH3/2, H — +o00
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Remark 5.1.1. The matching of the typical Edwards-Wilkinson fluctuations imposes that at
small argument, the function ® is quadratic. Besides, the coefficients co,c_ ,cto00 will highly
depend on the initial condition.

Quite amazingly, as we will see in the rest of this Thesis, the exponents 5/2 and 3/2 will be
conserved by the dynamics of the Kardar-Parisi-Zhang equation. What is more, the exponent
3/2 is a landmark of the fluctuations of models lying in the KPZ universality class and is also
the exponent of the right tail of the Tracy-Widom fluctuations.

The daunting work regarding the short-time large deviations of the solutions to the KPZ
equation is the exact evaluation of the function ®. In particular, it is of utter importance to
determine whether which information in ® depends on the initial condition and which is uni-
versal. In addition, as the large deviation function is the analog of the free energy for systems
at equilibrium, the search for non-analyticities in ® will amount to investigate the existence of
dynamical phase transitions for the solutions of the Kardar-Parisi-Zhang equation.

Before turning to the large deviations at late time for the KPZ equation, let us emphasize that
the rate of the deviations 1/v/¢ was obtained thanks to the results on the Edwards-Wilkinson fixed
point. At late time, an additional difficulty comes from the fact that we also have to determine
the corresponding rate.

5.2 Large deviations at large time

To introduce the large deviations at late time for the KPZ equation, we shall heavily borrow the
elegant arguments and presentation of Refs. [158,187]. We have already seen in the introduction
to the exact solutions to the KPZ equation that at large time, the typical fluctuations of the
height are of magnitude t'/3 and are given by the celebrated Tracy-Widom distributions. It was
recently emphasized [158] that in several systems having Tracy-Widom fluctuations there is a
hidden third-order phase transition between a strong and a weak coupling phase. Tracy-Widom
distributions appear in these systems as a finite-size cross-over function connecting the free en-
ergies of the two phases across the critical point. In the strong coupling phase, the degrees of
freedom of the system act collectively while in the weak coupling phase, there is a single domi-
nant degree of freedom. The appearance of the Tracy-Widom distributions in the growth models
in the KPZ universality class therefore raises the natural question: is there a third-order phase
transition 7 If yes, what is the interpretation of the two related phases 7

As in the short time case, we shall first recall some properties about the typical fluctuations
before investigating the large deviations. From our introduction to the solutions of the KPZ
equation, we know that at large time, the PDF P(H,t) of the shifted scaled height H(t) o
h(0,t) + 5 rescaled by t1/3 is equal to the PDF of a Tracy-Widom § random variable F 5, for
some [ depending on the precise initial or boundary condition.

1 H

P(H,0) = 5 Fhloi75) (5.2.1)

The Tracy-Widom 8 PDF admits the following asymptotics (dismissing any prefactor) [158]

B 1.3
exp ——24|5] ), s — —00
Fl(s) = 5.2.2
5( ) exp ——2??53/2> , § — +00 ( )
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typical fluctuations
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left large deviation tail

deviation tail

Figure 5.1: A schematic picture of the height distribution at the origin at large time. The typical
fluctuations H ~ O(tl/ %) around the mean are distributed according to a Tracy-Widom g law (blue
line). The atypical large fluctuations to the left (red line) and to the right (green line) are described
respectively by the left and right large deviation functions in Eq (5.2.4). Figure courtesy of P. Le
Doussal, S. N. Majumdar and G. Schehr [187].

which translates for P(H,t) into

3
PH exp (—2’6;1 “;I‘ ) H— —
(H,t) = 28 HE/2 (5.2.3)
exp (—? 7 ) H — 400

Having the information about the typical fluctuation regime, we now want to turn to the large
deviation one, bearing in mind that we will have to match for small arguments the Tracy-Widom
asymptotics of Eq. (5.2.3).

Remark 5.2.1. [t is quite remarkable to observe that the exponents of the right tail of the typical
regime at large time presented in (5.2.3) match perfectly the asymptotic of the right large deviations
of the height at short time as displayed in Eq. (5.1.4)

Anticipating the rest of this Section, the solutions to the KPZ equation admit at large time
a Large Deviation principle when the centered height is of order O(t). Such fluctuations are of
the order of magnitude of the velocity of the interface, which means that these large deviations
will be interpreted as the interface having an anomalous velocity or growth rate: physically this
corresponds to having an excess growth or a mass die-out. Nevertheless, contrary to the short-
time regime, the rate of the large deviations will be asymmetric: the rate will be 2 for the left
large deviations and ¢ for the right large deviations. The goal of the rest of this Section will be
to explain heuristically why. We summarize in Fig. 5.1 our discussion on the typical and atypical
fluctuation regimes and present the large deviations result for P(H,t) in Eq. (5.2.4).

exp (—t2®_(H)) , H~O(t) <0
P(H,t) ~ P eq )) (¥ (5.2.4)
exp —t<1>+(7)> , H~O({t)>0
For the large deviations to match the typical ones, we additionally require
®_(2) ~, o |2
(2) ~emo |2 525

(I)Jr (Z) ~z—0t+ Z3/2
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h(ﬂf,tz)

h(x,t1)

—ty  —t xz=0 ts z

Figure 5.2: The height h(z,t) evolving on a substrate —t < x < t. The light cone (black lines)
describes the growth of the interface. The solid line (in blue) represents the average height at two
different times. Figure courtesy of P. Le Doussal, S. N. Majumdar and G. Schehr [187].

One remarkable property of the prediction of the rate of the large deviations is that the PDF
P(H,t) is expected to encounter a third-order phase transition, i.e.

1 o_
lim ——=log P(H = zt,t) = (2)

dim o . (5.2.6)

0
0

VoA

z
z

We recall that ®_ is expected to have a cubic behavior for small argument and that this cubic
behavior is a general property of the Tracy-Widom distributions which are the late-time distribu-
tions of the KPZ universality class. This answers positively the question of the existence of the
famous third-order phase transition [158]. One of the goal of this Thesis will be the derivation of
the exact expression of ®_ for specific initial conditions of the KPZ equation.

Remark 5.2.2. One may wonder why we are only interested at the fluctuations of the height at a
single point. The KPZ fixed point scaling tells us that the fluctuations are correlated on a longitu-
dinal width of order x ~ t2/3. Hence if the growing interface is sufficiently long, disparate regions
will see roughly independent growth and therefore by standard extreme-value theory, the mazximal
and minimal height of the entire interface will be determined by the one-point tail behavior.

In order to get a flavor of these large deviations at late time, let us briefly analyze a directed
polymer model belonging to the KPZ universality class introduced and solved by Johansson [52]
and we shall again heavily borrow from the elegant presentation of Ref. [187]. This model is
equivalent to a discrete space-time (x,t) growth model which takes place on a substrate —t <
x < t, starting from the seed at the origin = 0 at initial time. The interface height h(x,t),
represented in Fig. 5.2, evolves in the bulk as

h(z,t) = max [h(z — 1,t — 1), h(z + 1,t — 1)] + n(z, 1) (5.2.7)
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where n(x,t) > 0 are i.i.d positive random variables with exponential distribution. Johansson
showed that at late times, the average height has a semi-circular shape

E[h(z,t)] = t (1 /1 (‘f)?) (5.2.8)

In addition, the height at the origin at lates times behaves as
h(0,t) ~ 2t 4 2tY/3x, (5.2.9)

where 2 is GUE Tracy-Widom distributed. By exploiting an exact mapping of the growing
height with the largest eigenvalue of complex Wishart matrices, Le Doussal, Majumdar and
Schehr obtained precisely in Ref. [187] the large deviations of the height H = @ — t of the
form presented in Eq. (5.2.4). The reasoning behind the rates ¢ and ¢? in the large deviations is

the following;:

e To obtain a configuration of H much smaller than its typical value, the noise variables
n(xz,t) at all sites should be small. The probability of this event, where all noise variables
inside the wedge |z| < t of area ~ t? are small, is proportional to et
composed of i.i.d random variables.

since the noise is

e Configurations where H is much bigger than its typical value are realized by concatenating
large positive noise at the origin x = 0 at all times between 0 and ¢. Since the noise is
i.i.d, the probability of this event is proportional to e~*. This is not a collective action as
it solely involves a column of the lattice.

We assume that this argument for the rate of the large deviations in this discrete model holds in
the continuum and this will serve as a cornerstone for the rest of this Thesis.
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Part 11

Short-time height distributions of the
solutions to the KPZ equation
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Abstract

The second part of this Thesis is devoted to the investigation of the short-time properties
of the solutions to the Kardar-Parisi-Zhang equation. We will introduce two recently developed
analytic methods which allow to extract complementary exact information about the solutions at
short time: (i) the Weak Noise Theory and (i) the cumulant method, based on the Fredholm rep-
resentation of the KPZ solutions. In addition, we will present some recent remarkable numerical
progress which allowed to confront the theoretical predictions at short time with high-precision
Monte Carlo simulations. The knowledge of the exact short-time distribution for the KPZ so-
lutions will shed some light on how the solutions flow from the Edwards-Wilkinson fixed point,
which is Gaussian by essence, to the Kardar-Parisi-Zhang fixed point, developing asymmetric
non-Gaussian fluctuations. In particular, we will see that the short-time expansion of the KPZ
equation formally identifies with a perturbation theory in its noise. It predicts a non-trivial large
deviation regime where the probability distribution of the KPZ height H(t) takes the form

O(H)
Vi

The calculation of the function ®(H) has required to develop new theoretical methods and their
presentation is the goal of this second part.

P(H,t) ~ exp(——7=2). (5.2.10)
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Chapter 6

Perturbative noise rescaling of the
KPZ equation: Weak Noise Theory

This Chapter is dedicated to a method introduced to probe the Gaussian fluctuations of the
solution to the Kardar-Parisi-Zhang equation, i.e. of its height, at short time as well as the asym-
metric tails of the distribution at one point. It has different names in the literature: Instanton
method, Macroscopic fluctuation theory, Weak Noise Theory (WNT) and for the sake of this
Chapter we shall use the latter. The range of application of this method is wide, but concerning
the Kardar-Parisi-Zhang equation and the directed polymer, it was pioneered by Kolokolov and
Korshunov in Refs. [202] and then mostly been developed by Meerson and collaborators [203-212].
Although we have not worked directly with this theory in this Thesis, we present it for complete-
ness as it plays an important role in our story and is quite complementary to our work. The
Weak Noise Theory is based on a Principle of Least Action for the path integral representation of
the Kardar-Parisi-Zhang equation. It can be seen as a perturbative expansion in the magnitude
of the noise itself.

In the Weak Noise Theory, the logarithm of the one-point probability distribution of the KPZ
height H at time T, —log P(H,T), is interpreted as the classical action over an optimal path:
this is analogous to a semi-classical expansion in quantum mechanics with the parameter h equal
to VT. The optimal path is then interpreted as the most probable evolution of the interface
h(z,t) conditioned on the specified large deviation at final time.

The Weak Noise Theory has been used to study (i) the first few cumulants of the solution to
the Kardar-Parisi-Zhang equation at short time, (i) the tails of the short-time one-point distri-
bution and (74) as we shall see below, the effect of the initial and boundary conditions [203—212].
It is important to note that the WNT does not rely on the knowledge of the exact solution of the
KPZ equation at all times hence is a versatile method. However, the WNT does not provide the
analytic full expression of the large deviation function ®(H) (5.2.10) at short time but allows for
a numerical evaluation for arbitrary value of H. This function ®(H) will be calculated explicitly
in the next Chapter using another method which we developed, complementary to the WN'T.

Before constructing the Weak Noise Theory, we would like to refer for further details the
readers to the extensive list of publications [203-212], related to the use of WNT to study short-
time properties of the KPZ solutions. The presentation below follows the arguments of these
publications.
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6.1 Construction of the Weak Noise Theory

For the sake of the Weak Noise Theory, let us reexpress the Kardar-Parisi-Zhang equation with
the original system of units.

Oth(z,t) = v O2h(x,t) + % (8:h(z,1))? + VD E(x,t) . (6.1.1)

We are interested in the probability density P(H, L,T) of observing the height H at position L
at a final time 7.

H =h(L,T) . (6.1.2)
For convenience, let us introduce the following rescaling® t = Tt, x = /TvZ, and h = I/\Lo\ﬁ’ the

final time being 7" and the rescaled time t spanning the interval [0,1]. The variables L and H
will be rescaled identically L = vTvL and H Y- H.

= Mol
H=hi=1Lt=1). (6.1.3)
By a dimensional analysis, P(H,L,T) depends on three parameters: |\o| H/v, L/vVTv and e.

One then rewrites the KPZ equation (6.1.1) in these scaled variables (from now on we drop the
tildes on all variables including L and H)

Ve€(x,t) = Oh — 02,h — %(axh)% (6.1.4)
where s
DXNevT

is the dimensionless noise magnitude and £ is a unit Gaussian white noise in the rescaled vari-
ables. The probability to encounter a realization of the Gaussian white noise is proportional to

exp(—%), where Sqyy is called the dynamical action®

1 2
Sim=1 [ dt [ do oih— o2 - S@.n?] (6.1.6)

The Weak Noise Theory assumes that ¢ is small. Hence, in the limit of ¢ < 1, the stochastic
problem for the KPZ equation, formulated as a functional integral, will be solved via a saddle-
point evaluation (akin to a semi-classical expansion), leading to a minimization problem for the
action functional over all fields h(x,t). In our case of interest, the regime ¢ < 1 corresponds to

the short-time regime
5

1%
T 6.1.7
< 5ape (6.1.7)

and the semi-classical saddle point will lead to a hydrodynamic problem. In all generality, we
can associate to the dynamical action Sqyn (6.1.6) a Lagrangian functional £

1 2
£y = [ o [on - 8 - S0y (6.1.5)

and a momentum field p(x,t) associated to the height field h(z, 1)

oL

_ _ 92 _1 2
p(e,t) = 50 = Ol — Ok = S(0h) (6.1.9)

5The absolute value comes from the fact that people in the literature alternatively use Ao > 0 or Ao < 0 without
a consensus, hence we opt for the neutral choice of the absolute value.

SWe implicitly assume a full-space problem here by integrating over R. The half-space problem problem would
instead be formulated only on the half-line R.
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The momentum field at the saddle point plays the role of the optimal noise and we can express
again the dynamical action only in terms of the momentum as

1 1
Sdyn = 2/Odt/Rdxp2(x,t). (6.1.10)

For the action to be bounded, we shall require the momentum p to vanish fast enough at infinity.
Having defined the Lagrangian L, it is possible to define a Hamiltonian H such that

H{h) = /R dz p(a, D)Oh(z,t) — L{h)

1 1
_ / dz p(, 1) [agxh + 2002 + S p(a,0)
R 2 2

(6.1.11)

The second Euler-Lagrange equation governing the dynamics of the momentum p(z,t) is then
Op(x,t) = —%. Gathering both Euler-Lagrange equations, we summarize the system of equa-
tions verified by the two conjugated fields h, p.

_ 92 1 2
{ath = 02,h+ 5(0:h)2 + p (6.1.12)

Orp = —0z,p + Ou(pdzh)

Remark 6.1.1. The second equation of (6.1.12) leads to a conservation law [p dz p(z,t) = cst.

The initial and boundary conditions of these equations have yet to be defined. To calculate
P(H,L,T), we need to fix the constraint

Wz=Lt=1)=H (6.1.13)

since x = L is the point at which we probe the distribution. From the principle of least action,
if one perturbs the height field h by dh, the resulting perturbation on the dynamical action is

1
§Sayn = /0 dt /R da p(a 1) [45h — 02,0h — (0:h)(0,0h)| (6.1.14)

Integrating d.Sqyn by part leads to the second equation of (6.1.12). Upon this integration by part,
there are additional boundary terms in time which must vanish independently at t = 0 and t = 1.
In particular, h(x,t = 1) is arbitrary everywhere except at © = L where it is fixed. The boundary
term in time (b.t.) reads

bt = /R dz p(a,t = 1)5h(z) |1 — /]R dz p(x,t = 0)5h(x) | (6.1.15)

As there is a single constraint at ¢ = 1, the momentum field p should act as a Lagrange multiplier
at time ¢ = 1, hence
plx,t=1) = Ai6(x — L) (6.1.16)

The unknown constant A; will ultimately be determined by the condition h(x = L,t = 1) = H
together with the conservation law on the momentum p(z,t). The fact that the constraint ap-
pears at t = 1 indicates that the equation verified by p will be solved backwards in time.

The other constraints arising at t = 0 will highly depend on the initial condition of the KPZ

equation. For completeness, we present the example of Brownian initial condition to show how
to incorporate initial time considerations in the hydrodynamic problem.
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6.1.1 Intermediate example: the Brownian initial condition

Consider now Eq. (6.1.1) with an initial field h(x, ¢ = 0) which is a two-sided unit Brownian inter-
face pinned at the origin h(z = 0,t,0) = 0 (note that in this paragraph we use the physical units
associated to Eq. (6.1.1)). We express this initial condition and specify the physical constants (in

the original system of units) as
A

2v

where B(z) is the two-sided unit Brownian motion and a = (2v)~3/2AD'/2. Here the drift is zero
and this corresponds to the so-called stationary KPZ initial condition.

—h(z,t =0) = aB(x) (6.1.17)

Going now to the rescaled units, for this initial condition, in addition to the dynamical action,
there is an initial action corresponding to the cost of the initial height. The probability to
encounter a realization of the initial condition is proportional to exp (—%), where

S = / dz(8sh)? |imo (6.1.18)
R

The total action is finally given by the sum of the two contributions
S = den + Sin (6.1.19)

There is one remaining constraint for this random initial condition case is at x = 0 which is
h(z,=0,t =0) = 0. Hence the boundary term should become a Lagrange multiplier. Considering
the total action and perturbing the height h by dh, the perturbation of the total action is given
by

1
55 = / dt / de pr,1) [9uh — 02,60 — (9:h)(0:0h)] + 2 / dz0,hddh iy (6.1.20)
0 R R

There is an extra term appearing at ¢ = 0. Once again, the boundary terms in time must vanish
independently at t = 0 and ¢t = 1. Now h(x,t = 0) is arbitrary everywhere except at x = 0 where
it is fixed and is equal to zero. The boundary term in time b.t.2 reads

bt.2 = /]R dz p(a,t = 1)5h(z) i1 — /R de [ple,t = 0) +20%,h(z,t = 0)] 6h(x) o (6.1.21)

To ensure the single point constraint at x = 0, we naturally add another Lagrange multplier Ao
such that

p(z,t =0) +20% h(z,t =0) = Ayd(x) (6.1.22)
Using the conservation law [, dz p(z,t) = cst, we can further conclude that A; = As.

Remark 6.1.2. In several papers about WNT, see e.g. [210], it is stated that there exists a general
relation to relate A1 to H at the saddle point
ds dH
—=A 6.1.23
dA, — TdAL ( )
This provides another way to relate Ay to H.
We now summarize all boundary conditions of the WNT equations for the Brownian initial
condition:

h(zr=0,t=0)=0

Me=Lt=1)=H (6.1.24)
p(x,t =0) + 202, h(z,t = 0) = Aé(z)

oot = 1) = Ad(x — L)

To ensure boundedness of the overall action, we also require p and all derivatives of h to vanish
fast enough at infinity.
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6.2 Large deviation function of the Kardar-Parisi-Zhang
equation at short time

Assuming that we can solve the hydrodynamic equations for p and h of the Weak Noise Theory
(6.1.12), the probability density, P(H, L,T), of the one-point Kardar-Parisi-Zhang height H will
be given for small time by
vo/? 5 M| H L

DNVT & VT
where the total action S, evaluated at the saddle point, naturally plays the role of the large
deviation function at short time. From this general scaling relation at L = 0, we can interpret
the relative importance of the different terms in the Kardar-Parisi-Zhang equation. If we want
the distribution not to depend on the non-linear coefficient Ay, then the distribution should be
Gaussian in H. If we want the distribution not to depend on the diffusion coefficient v, then the
distribution should be a streched-exponential in H with exponent 5/2.

—log P(H,L,T) ~ ) (6.2.1)

The general solutions to the WNT equations (6.1.12) and S in Eq. (6.2.1) can globally be
obtained numerically but there are some limits which can be studied analytically. The WNT
equations are generally solvable for small H using a perturbation theory in the parameter A ~ H.
It is possible to probe the typical Gaussian fluctuations for small H and to calculate the first few
cumulants. For very large and positive H, the solutions can (up to exponential small corrections)
be found analytically using soliton solutions for p and ramps for h. For very large and negative
H, the solutions can be found using inviscid hydrodynamics, i.e. neglecting the diffusion terms
02,h and 92,p in the WNT equations. In all generality the negative H tail (in our conventions)
for L = 0 was shown to take the following form:

‘H‘5/2
—log P(H,L=0,T) = fXo, D)—= (6.2.2)

——00 VT '
where the prefactor f(Ag, D) depends on the initial condition of the KPZ equation. The impor-
tant feature of this tail is that is does not depend on the diffusion coefficient v, consistent with
the inviscid approximation. This tail has also been argued to remain valid at all times. Indeed
since this tail does not depend on v, one could have chosen instead an arbitrary time 7T and a
coefficient v > 1 in order to remain within the validity of the WNT approximation (¢ < 1). The
reasoning presented above would still be valid and the tail would be determined equivalently. For
intermediate regimes in H, the equations require to be solved numerically. Once again, we refer
the readers to the extensive list of publications [203-212] related to WNT for further details on
the analytic solutions at large positive and negative H.

In the rest of this Chapter, we provide some more details about the symmetries of the WNT
equations in full-space, and about the half-space problem. We also present the perturbative solu-
tion of the WNT equations at small H, and describe the phenomenon of spontaneous symmetry
breaking for the Brownian initial condition. Finally, we will report some recent progress of the
WNT.

6.3 Symmetries of the WINT equations in full-space
and some considerations in half-space

In addition to the previous considerations on the WN'T equations, it is interesting to study their
symmetries. Indeed if an initial condition verifies some of them, it then provides an ansatz to
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solve the equations. The symmetries in the full-space case have been studied extensively in
Ref. [208] and we give them here without any proof. The equations (6.1.12) are invariant under
the following transformations

e Translation invariance (taking xg,to, C' arbitrary)

(6.3.1)

h(x — xo,t — to) + C = h(z,t)
plx — xo,t —to) = p(x,t)

e Spatial inversion invariance

(6.3.2)
o Galilean invariance (taking v arbitrary)

(6.3.3)

xv + h(x — vt, t) — h(z,t)
ol — vt) = pla 1)

e Generalized time reversal invariance I

{—h(x, —t) = 2log[2p(x, —t)| — h(x,1) (6.3.4)

p(l‘, _t) - p(iL', t)

e Generalized time reversal invariance I1

—h(x,—t) — h(x,t)
) (6.3.5)
p(l’, _t) + 28x:vh(xa _t) - ,O(SL', t)
e Generalized time reversal invariance III : For any given profiles ho(x) and hj(x) such that
Ozho(z| = +00) = Ozhi(z| — +o00) = 0 and for a trajectory h(x,t) such that h(z,0) =
ho(x) and h(z,1) = hi(x), one has

Sinlho(2)] + Sayn[A(z, )] = Sin[—h1 (x)] + Sayn[h(z,1 — )] (6.3.6)

Remark 6.3.1. Some of these symmetries are in general violated by the boundary and initial
conditions of the WNT problem. The Brownian initial condition for instance does not verify the
spatial tnversion invariance.

In general, if the equations governing a system possess a discrete symmetry, the solution to
these equations need not exhibit that symmetry. For example, the differential equation §(t) = y(t)
is symmetric under the discrete time-reversal symmetry ¢ — —¢, but the solutions ¢ + e’ and
t — e~! do not exhibit this symmetry whereas ¢ — cosh(t) does. The same is true for the WNT
equations: even if the WNT equations are symmetric under space reflection, their solution may
not be symmetric under space reflection. When the solution is space-reversal symmetric, we say
that the symmetry is unbroken. Conversely, if the solution does not possess a space-reversal sym-
metry, we say that the symmetry is broken. This argument can be extended to all symmetries
mentioned above.

In the following, we shall discuss in some details the half-space problem and then we shall
provide an example of symmetry breaking.
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6.3.1 Some properties of the WNT in half-space

The half-space problem consists in restricting the range of z to Ry and adding a boundary
condition at x = 0, which we impose to be

Vt >0, Oph(z,t) [s—o= A (6.3.7)

The scaling of the Kardar-Parisi-Zhang equation remains the same in the half-space as given

above. The boundary parameter becomes A = /\%Tfl. The general WNT scaling arguments
0

can then be extended [210] to show that the height distribution at z = 0 takes the form

Vo/2 NoH \T
_logP(H,A,T):D)\2\/TS( OV LA (,), ) (6.3.8)
0

This scaling regime has the property to introduce a new time-scale which is

vA?

Ty=""
A )\ga

(6.3.9)
it is interpreted as the time 7" above which the boundary condition start to play a role in the
large deviations. Recalling that WNT is valid for T" <« D’;—i\“ if the time T4 is greater than the

0
limiting time at which WNT remains valid, i.e. Ty > D‘;—i\g the boundary parameter A will play
no role and the problem can be simplified using e.g. a reflective boundary condition A = 0. This
is the case in the short-time regime when A is fixed and of order 1. If; on the contrary, the time

T4 is much smaller than the typical limiting time of WNT T4 < D’Q—i‘l or equivalently A > l?,éo,
0
then there can exist two regimes [210] for the large deviations:
T < Ta
o (6.3.10)
TA <T <K D22
0

controlled respectively by the reflective wall fixed point (A = 0) and the hard wall fixed point
(A = +00). In addition to these new timescale considerations, from the Principle of Least Action,
it is possible to see that the boundary condition on h also imposes a boundary condition [209] on
p as 3

Dup(z,t) [a=0= Ap(z = 0,1). (6.3.11)

Finally, from the symmetries of the full-space problem, Meerson and his collaborators found
that for any initial condition that is deterministic and mirror symmetric around 0, there is a
relation [209,210] between the large deviations of the Kardar-Parisi-Zhang height in full-space
and the one in half-space for A =0 at z = 0:

1
Shalf—space = isfull—space (6312)

In particular, they concluded that this relation implies that it is more likely to observe unusually
large values of H in a half-line system than in the full-line system with the same parameters. The
same conclusion (6.3.12) was also obtained by us [6] by different arguments, see below.

6.4 From small H to large H and spontaneous symme-
try breaking

We now turn to some specific details of the small H expansion of the WNT equations. In this
regime, the WNT problem can be solved via a regular perturbation expansion in the powers of
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H or A. Writing h = Ah; + O(A?) and p = Ap; + O(A?), we expand the WNT equations and the
first order leads to the Edwards-Wilkinson equation where the Gaussian white noise is replaced
by the optimal noise py:

{8th1 = 92,h1 + p1 (6.4.1)

dp1 = =02,

with the aforementioned boundary conditions. For small H and at any order of the perturbation,
the solution for h was found to be reflection symmetric h(z) = h(—z).

It turns out that for large positive H, the symmetric solution can lose stability and the solution
is such that h(x) # h(—=z), leading to singular behaviors the total action S. This is interpreted as
dynamical phase transitions. In Ref. [205], Janas, Kamenev and Meerson have found that for the
Brownian initial condition, the action S exhibits a second order phase transition (or singularity
of second order). They defined the following order parameter which, in addition, is a conserved
quantity in the WNT dynamics

A = h(oo,t) — h(—oo,t) = /Rdxé?xh(x,t) . (6.4.2)

This order parameter describes the asymmetry of the height field. It is equal to zero when the
solution is reflection symmetric. A non zero value of A will then be associated to a spontaneous
breaking of this symmetry, inducing a phase transition or singularity in the large deviation func-
tion S. In Figure 6.1, we report the numerical values of A for the Brownian initial condition and
increasing values of H found in Ref. [205].

A
gl

Hi

2 - 6 8

Figure 6.1: A vs. |[H|at H < 0. Symbols: numerical results, solid line: fit of the data for|H| >|H.|.
|H.| ~ 3.7. These data were originally presented in Ref. [205], courtesy of B. Meerson.

The figure clearly indicates a breaking of the reflection symmetry for some H = H.. Crossing

this information with other numerical simulations of Ref. [205] led Janas, Kamenev and Meerson
to formulate the following conclusion:

81



“ This suggests a mean-field like second order transition, where the large devia-
tion function S exhibits a discontinuity in its second derivative 8% ,S at H = H,. ”
(Taken from Ref. [205])

This conclusion turned out to be correct as we showed analytically in Ref. [9] by obtaining the
analytic value of H, and ®(H) using the exact solution of the Kardar-Parisi-Zhang equation. We
will come back to the precise derivation of ®(H) for the Brownian initial condition in Section 7.3.2.

6.5 Recent applications of the Weak Noise Theory

Before we end this Chapter on Weak Noise Theory, let us mention a few recent problems related
to the KPZ equation at short time to which this theory has been applied.

e The study of the parabolic initial condition h(x,t = 0) = % in full-space which interpolates
between the flat and the droplet initial conditions [204].

e The study of the stationary initial condition, the discovery of the dynamical phase transition
due to the symmetry breaking [205,206] and the development of an effective Landau theory
to explain the phenomenon. In particular, the authors of Ref. [207] Smith, Kamenev and
Meerson concluded that when studying the one-point height distribution H at position L,
|H| plays the role of an inverse temperature and L the role of an external magnetic field in
the Landau model.

e The study of finite size effects for the Kardar-Parisi-Zhang height distribution at x = 0 on
a ring of length 2L with flat initial condition [211].

e The study in the half-space of the flat initial condition with different boundary conditions
[209,210].

e The study in the full-space of a relation between the height distribution for stationary and
flat initial conditions leading to the exact relation

Sﬂat(H) Sstat(QH) (651)

1
= 72\/5

for the analytic (or symmetric) branch of Sgat(2H) [208], see below.

e The study of the time-averaged height distribution for flat initial condition in full-space [212]
_ 1t

) = / dt' h(z = 0,t). (6.5.2)
0

The next Chapter will be dedicated to a method called the first cumulant approximation which
allows to obtain exactly and entirely the large deviation function S, i.e. not only its tails and the
small argument behavior. It would be interesting to see whether the exact solutions we provide
in the next Chapter could allow to solve the WNT equations exactly in any regime of H.
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Chapter 7

Large deviation solutions at short
time: one method to rule them all

In this Chapter, we will present the theoretical framework that we introduced in Refs. [5, 6, 8,
9] building on the pioneering work of Ref. [169] to obtain the exact distribution of the KPZ
solutions at short time in a large deviation form. This framework is readily applicable to any
initial conditions of the KPZ equation for which the generating function exhibits a Fredholm
representation.

7.1 The first cumulant approximation of Fredholm de-
terminants at short time

As presented in the first part of this Thesis, for all known solutions to the KPZ equation there is
a duality between the generating function of the exponential of the KPZ height at one point and
a linear statistics of a Determinantal or Pfaffian process. Indeed for z > 0, we have the equality

200 po s 1
Expz [exp <_\/ieH( )>:| =Ex Ll_[l [14_2@“/3@1])(] (7.1.1)

where the parameters o > 0, x > 0 depend on the initial condition and where the set of points
{a;}ien forms, see Chapter 2,

e cither a Determinantal point process with scalar kernel K in which case

EK |:H L = Det[[ - O_Z,tK]]LZ(R) (712)

paie [1 + Zetl/Sai]X

e or a Pfaffian point process with 2 x 2 matrix valued kernel K in which case

= 1
E ——— | =Pf[J -0 K 7.1.3
K LHl 1 —|—zet1/3ai]><] [J — 024 K] (w) (7.1.3)

In both cases the "generalized Fermi factor” o, ; is defined as

1

—_— 7.1.4
[1 4 zet'/?a)x (7.1.4)

o.i(a) =1—

83



Remark 7.1.1. In practice, the coefficient o will account for an eventual shift in the solution of
the KPZ equation to center its distribution around 0. For the solved cases of the KPZ equation,
the power in the Fermi factor is either x =1 or x = %

We recall that the mean density of the associated Determinantal or Pfaffian processes are
given by the diagonal elements of the associated kernels, i.e. by K(v,v) for Determinantal pro-
cesses, see Eq. (2.2.1), and K2(v,v) for Pfaffian processes, see Egs. (2.2.5) and (2.2.7). It has
been observed for all known initial conditions of the KPZ equation that these densities have a
similar asymptotic behavior:

Result 7.1.2 (Density of the point processes related to the KPZ equation I)

1. The asymptotic behavior of the densities is given as

—a)

(11 [1]

Kua(at ™13, at™3) sy 75 (a)O(Z — a)

{K(at‘1/3,at_1/3) ~re1 10 poo(a)O(

for some finite = < oo where © is the Heaviside function.

This scaling in t is consistent for instance with the behavior of the mean density of the Airy point
process which should match the semi-circle for large negative argument. The precise form of pso
depends on the initial condition.

As the generating function of the exponential of the KPZ height is written as a linear statistics
over a Determinantal (or Pfaffian) point process, let us study its first cumulant ;. From our
introduction of cumulant expansions in the first Part of this Thesis, see Eqgs. (2.2.23) and (2.2.28),
we know that it reads

K1 = —X/ dalog(1 + zet1/3a)K(a, a) (7.1.5)
R
and equivalently with Kj2(a,a). Rescaling the integration variable a — t=1/34 leads to
K1 = —Xt_1/3/ dalog(1 + ze®) K (at™'/3 at=1/3) (7.1.6)
R

Upon the use of the Result 7.1.2, the first cumulant thus admits the following leading order
behavior at short time

U(z)
== 7.1.7
1 NG (7.1.7)
where the function ¥(z) is defined on z € {—675, +oo{ as
() =x [ dalog(l+ z¢")puc(a) (7.1.8)
—00

This first cumulant is a good starting point to investigate the short-time properties. The pa-
rameter 1/+/t being large, it allows to use saddle points or Legendre transforms. This factor
matches the same scaling used in Weak Noise Theory. The empirical observation is that higher
cumulants are all subdominant and hence one can truncate the cumulant series at the first order
at short time. We call this truncation the first cumulant approximation, a conjecture which was
introduced by us in Ref. [8] and reads:
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Result 7.1.3 (First cumulant approximation for the KPZ solution at short time)

The first cumulant approximation conjectures that for all solved initial conditions of the
Kardar-Parisi-Zhang equation, the following Large Deviation Principle is exact

exp ({j‘gemw)

for U(z) given in Eq. (7.1.8). In other words for small time t < 1,

Expz [exp (—f/a%eH(t)>} = exp (— W\;?) (7.1.10)

The validity of this conjecture can be understood as follows. As seen from Eq. (2.2.27), the

%E}I(l)—\/ilogEKpZ = \I/(Z) (7.1.9)

cumulants k,, are the ones of the random variable X = x> 2%, log(1 + zetl/g‘“) and the set {a;}
forms a Determinantal /Pfaffian point process. In the limit ¢ < 1 many of the a;’s contribute
to the sum, and by a law of large number, the fluctuations of X around the mean value are
subdominant. This is fully confirmed by us by an explicit calculation of higher order cumulants
n > 2 in Ref. [5] where cancellations occur leaving only subdominant powers of ¢, see Chapter 9.

7.1.1 Towards rigorization: a flavor of the Szeg6 theorem

Although the first cumulant conjecture is presented non-rigorously within this Thesis, there exists
in the case of the droplet initial condition and the Airy 5 = 2 point process a rigorous version of
it proved by Basor and Widom in Ref. [213].

Theorem 7.1.4 (Basor & Widom. Theorem 3.8 of Ref. [213])
Let f € L°°(R), let A4(f) an integral operator on L?(R) with kernel given by

f (xt1/3> /OOO dz Ai(z + 2)Ai(z+y) = f (wtl/?’) Kai(z,y) (7.1.11)

Assume that f(—x?) # —1 for all x. Then as t — 0, the Fredholm determinant of Ay(f) is
given by

Det(I + Ay(f)) :exp{% +er+o(1)} (7.1.12)
where
= /(J+OO dxflog(l + f(—z)), c2= ;/OOO dz zG(z)2. (7.1.13)

with G(x) = % Jrdy e log(1 + f(—y?)).

From the point of view of the theory of operators, the first cumulant conjecture along with
the Theorem of Basor and Widom appear as a continuous version of the Szegd theorem [214] for
Toeplitz determinants. The first cumulant provides the weak version of the theorem and we have
shown in Ref. [5] that the second cumulant provides the additional term of the strong version of
the theorem: the Gaussian free field correction. In the third part of this Thesis, we will extend
the Theorem of Basor and Widom up to arbitrary order in the variable t.
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7.2 Large deviations for various initial conditions

In the first Part of this Thesis, we recalled various exact solutions to the Kardar-Parisi-Zhang
valid at all times. In particular, we provided the asymptotic density po, for:

e In full-space: the droplet initial condition and the Brownian initial condition
e In half-space: the droplet initial condition for a wall with parameter A = —%, 0, +o0

From the knowledge of the asymptotic density p.., we have determined the expression of the
large deviation function ¥(z) using Eq. (7.1.8) for various initial conditions and we present our
result in the Table 7.1.

dk _ . o g2 dk . 2 dk_. e ¥
—U(2) x /R%ng(—zk e ™) /Rngg(—ze ) A %LIQ(—Z 12 )
Full space Droplet
Brownian
Flat
Half space || Droplet (A = o0) Droplet (A =0)
Brownian (A = c0) Brownian (A = 0)
Flat (A =0)

Table 7.1: Large deviation function ¥(z) resulting from the first cumulant approximation for various
initial conditions. The proportionality notation  indicates a possible numerical factor such as in the
case of the half-space problem, where the function ¥(z) has a factor 1/2 compared to the full-space
case.

In addition to the four cases for which we performed analytic calculations, the Table 7.1
contains four other cases which we have obtained using the following facts. From a scaling
argument at short time given in the Chapter 1 and from the Weak Noise Theory, four rules have
been determined to relate the short-time behavior of the KPZ solution in half-space:

1. The solutions to the KPZ equation in half-space for any finite A < +o0o have the same
behavior at short time as for A = 0;

2. The large deviation function ®(H) of the exponential of the KPZ height in half-space for
any finite A < oo is half of the one of the same initial condition in full-space.

3. From the Theorem of Parekh of Ref. [173], the large deviation function for the Brownian
initial condition in half-space with a hardwall is the same as for the droplet initial condition
with A = 0.

4. The short-time distribution of the flat initial condition in full-space is proportional to the
analytic branch of the distribution for the Brownian initial condition, see below.

This Table is quite striking to us as it seems to indicate some universality in the short-time
behavior of the large deviation function W(z). We have no interpretation at present of why
polylogarithm functions appear in the KPZ problem, nor why the different cases involve various
quadratic k factors in the polylogarithms.
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7.3 Inverting the Legendre transform

From the first cumulant approximation, the next step consists in inverting the generating function
to obtain the short-time distribution of the height H of the KPZ equation. As stated before, the
short-time scaling in 1/v/t leads to a natural Large Deviation formulation of the probability
distribution of the one-point KPZ height as

®(H)

P(H,t) < exp <_\/{5> (7.3.1)

where the function @ is obtained by inverting the following Legendre transform:
. "]
min (O(H) + zacf] = w(z) (7.3.2)

The goal of the remainder this Section will be to determine the large deviation function ®(H).
Before we turn to the inversion of the Legendre transform, we shall need some more properties
on the asymptotic densities of the Determinantal (or Pfaffian) processes, since po, controls ¥(z),
and hence all the properties of ®(H). It has been observed for all known initial conditions of the
KPZ equation that these asymptotic densities behave as:

Result 7.3.1 (Densities of the point processes related to the KPZ equation II)

2. The asymptotic density ps is positive, real-valued and strictly decreasing on |—oo, Z]
and grows towards —oo as
Poo(@) ~—gs1 Bi[—a]”

for some 51 > 0 and 1 > 0.
3. The asymptotic density p., vanishes algebraically at the right edge = as
poo(a) sz (E—a)”

for some 0 < v < 1.

The precise values of all constants 51, v1 and v will depend on the initial condition. Finally, there
exists one last property that is verified by the asymptotic density po, of all initial conditions
except the Brownian initial condition in full-space.

Result 7.3.2 (Densities of the point processes related to the KPZ equation III)

4. The extension of ps, on the interval |=,+oo| is purely imaginary-valued and behaves
towards 400 as
Poo(@) a1 Bo[—a]™

for some [y > 0 and 7 a half-integer.

In the remainder of this Section, we will formulate the result and properties of the function
®(H) for all initial conditions ezcept the Brownian initial condition in full-space, which we shall
treat as a singular case afterwards.

7.3.1 Solution to the general case

Let us first analyze the function W(z) which will be central in the Legendre inversion. To obtain
®(H) for all H € R, it turns out that one needs more information than ¥(z) for z € {—8_5, +00 {:
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Figure 7.1: Riemann surface of z — $(log z).

one needs a continuation of ¥(z). For z € [—6_5, —i—oo[, the expression of ¥(z) is given by

U(z) = X/—Eoo da log(1 + ze®)poo(a) (7.3.3)

Defining the strictly positive variable ¢ = e~= and the integrated density up to =

) =x [ dvps(o) (3.0

—logy

U also admits the following rewriting ¥(z) = [ ELOO dyf(y) : y—iz by integration by part on Eq. (7.3.3).
The pole of the integrand at y = —z, coupled to Result 7.3.2 which states that p. rotates to the
imaginary axis above Z, indicates that W(z) exhibits a branch cut along the interval z € |—o0, —(]
akin to the one of the usual logarithm along the negative real axis. In Fig. 7.1, we represent some
Riemann sheets of the logarithm composing the full associated Riemann surface. Keeping the
analogy with the usual logarithm, it is possible to construct ¥(z) in a Riemann surface. This can
be done either by proceeding Riemann sheet by Riemann sheet or by constructing a multi-valued
function over the complex plane. Indeed, the jump of ¥ across the branch cut at |—oo, —([ will
be defined as

A(z) = ll_r}I(l) [U(z 4 ie) — W(z —i€)] = 2im f(—2) (7.3.5)
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Figure 7.2: Schematic representation of the parametric solution of the optimization problem. For
H < H. one uses the function ¥ to invert the Legendre transform taking the parameter z to decrease
from +o00 to —(. At H = H. or z = —(, one needs to turn around the branching point and replace
¥ by its continuation ¥ + A to determine all H > H. by increasing the parameter z from —( to 0.

From the result 7.3.2, we know that for z € [—(,0[, A will be real valued and hence we use this
interval for the domain of definition of A and we subsequently define the continuation of ¥ as a
multi-valued function Weontinued defined on [—¢, 0[ as

Vz € [_C7O[= \I}continued(z) - \I/(Z) + 2i7Tf(—Z) (7.3.6)

The reason behind this construction of Weontinued is that naively, the Legendre transform of the
distribution of H gets inverted as

. H] _ _ _ H
min [CD(H) + zae } =U(z) = OH)= max [\I/(z) zae } (7.3.7)
As shown in Ref. [6], this is only partially valid for the solutions of the KPZ equation as this
procedure will not provide the full function ®(H) on R but only its expression on some interval
H € ]—o00, H.| as depicted in Fig. 7.2. We proved in Ref. [6] that continuing ¥ to ¥continued allows
to obtain the missing part of ®(H) on the interval H € [H,, +o0].

In particular, we obtained the complete solution for ®(H) in two equivalent forms: one is an

implicit equation and the other is a parametric system of equations. The formal statement of our
result is the following:
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Result 7.3.3 (Ezxpression of the large deviation function ®(H))

The shifted height defined by H = H(t) + log o — log ¥'(0) is centered, i.e. E[H] = 0. If the
parameter « was initially free (due to a shift in the initial condition of H ), one could choose
at this stage « = W'(0). We further introduce the "branching height” H..

V'(—e%)
H.=log ———. 3.
og T0) (7.3.8)
Then, ® is the solution of the implicit equations
“Ho/(H
VH < Hey O(H) - /(1) = w(- <),
, e 1o/ (H) e HO/(H) (7.3.9)
H>H., ®H)-Q(H) =V (————) + 2inf(—F7=—).
®(H) is also solution to the parametric equations
e VH < H,, or equivalently, Vz € [—e™=, 4+o0]
\II/ 0 H — \I], ,
(0)e (=) , (7.3.10)
O(H)=T(z) — 20'(2).
e VH > H,, or equivalently, Vz € [—e™=,0]
U (0)efl = W'(2) — 2inf'(-2), (7.3.11)
O(H) = V(z) — 20/ (2) + 2in f(—2) + 2imzf'(—2). o
We recall that ¥(z) and f(z) are given in (7.3.3) and (7.3.4).

Remark 7.3.4. The parametric solution is quite useful to plot ® while the implicit solution is
useful to derive the small argument expansion and the large argument asymptotics of P.

In principle, to leading order in the variable ¢, this result fully solves the problem of determining
the short-time one-point height distribution. In addition to the general equations verified by
®(H) we have also established some of its properties regarding its regularity and its asymptotic
behavior. These results are summarized in the following result.
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Result 7.3.5 (Properties of the large deviation function ®(H))
The properties of ® are the following :

1. & is infinitely differentiable everywhere on the real line, i.e. it has no singularity.

2. ® is quadratic for small argument, i.e. ®(0) = ®'(0) =0 and

(2
" (0) = —‘\II’JIEE’O)) . (7.3.12)
Hence the distribution of H is Gaussian for small H around 0 and its second cumulant
reads ¥(0)
E[H?] = ~Wi(0)? (7.3.13)
3. The left tail of ® is given by
O(H) ~5s oo XP1 |H[M+2, (7.3.14)
(1 +1)(n+2)
4. The right tail of ® is given by
BUH) ~py sy 22 ot (7.3.15)

72+ 1

We applied this very general framework to all known solutions to the KPZ equation ezcept
the Brownian initial condition which violates one of the conditions of application, specifically the
Result 7.3.2. The consequence is that the Brownian initial condition has two branching points
instead of one and its associated large deviation function ®(H) has a singularity, see Section 7.3.2
below. This result additionally allowed us to obtain most of the tails of the distribution of the
KPZ height presented in Table 7.2.

Remark 7.3.6. Although the results are obtained for arbitrary v1 and 7y, the known solutions
to the KPZ equation all exhibit the same exponents
1

M= =g (7.3.16)

7.3.2 The singular case of the Brownian initial condition

As we announced earlier in this Section and as mentioned in the Section related to Weak Noise
Theory, the Brownian initial condition is a singular case where the short-time large deviation
function will exhibit a singularity. In the following, we shall present step by step the calculation
of large deviation function ®(H) and show that our exact results match the numerical simulations
obtained through Weak Noise Theory. Our goal here will be to study the short-time behavior
of the stationary initial condition, represented by the Brownian initial condition with a drift w
equal to 0.

In the case of the Brownian initial condition, the generating function of the exponential of the
height comprises an additional term x, which is a random variable, but nonetheless it is still equal
to a Fredholm determinant (see Chapter 3 Eq. (3.2.7)) to which we can apply the first cumulant
conjecture. Hence, our starting point is the Large Deviation principle established for Fredholm

determinants which reads v
z

$

Expz,y eXP(—ieH(tHX) =e (7.3.17)
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We recall that y is a real random variable, independent of H with the following distribution
p(x)dx = e~ 2wx—exp(=X)dy and that starting from a Brownian with drift w, the relevant parameter
at short time is w = wt!/? (see Chapter 1 Table 1.1). Proceeding to a saddle point method on
the variable x in the generating function, one shows [9] that the generating function simplifies in
the limit @ = 0 as

z 2z H
Expz,x [GXP(_eH(tHX)} = Expz |exp(- 22 e4) (7.3.18)
t Vi
In addition, in that limit the function W(z) is given by
dk ek’ +oo dy [2 z 1
U(z)= | —Lig(—2—5) = — |z 32 4 9 1/2] 3.1
(2) o i2(=2—5) /0 - {BWo(y) + 2Wo(y) Jiie (7.3.19)

where Wy is the first real branch of the Lambert function, see Appendix A.1.

Remark 7.3.7. This function V(z) is not analytic in z at z =0, in fact it admits the following
expansion

V20, W(z)— _\/1? Z(—1)”(4Z!)g r (;‘) (Z) = (7.3.20)

n=>1 n

The inversion of the Laplace transform of the exponential height requires to perform the
following Legendre transform

O(H) = max [(z) — 2vzel] (7.3.21)

2=0

The inspection of this optimization problem along with the exact expression of ¥ leads to the
following observations:

e This optimization problem allows to obtain ®(H) for H € |—o0, 0];
e The branch cut of ¥(z) is located along the negative half-line z € |—o0, 0].

Similarly as the general case, we may define the continuation of ¥ by adding the corresponding
value of the jump towards the upper Riemann sheet. This leads us to define for z € [O, 6_1] the
jump Ag as

| W~

Ao(z) = = [-Wo(=2)]** — 4 [-Wo(—2)] /2. (7.3.22)

—~ W

In the general case, the jump Ag(z) would diverge along the imaginary axis at the edge of
its domain of definition which is z = e~! in the present case. This divergence, mentioned in
Result 7.3.2 for all initial conditions except the Brownian one, indicated that it was sufficient
to consider Veontinued = ¥ + Ap to obtain the rest of the distribution ®(H). Since the jump
Ap(z) does not diverge at z = e~!, this is not true for the Brownian initial condition and this
continuation only allows to obtain ®(H) for H € [0, H.,] where

H. = 2log[2e — ¥'(e71)] — 1 ~ 1.85316
+oo 1 7.3.23
vt = [T l1 + ] /- (7329
0

T y| e !l 4+ yey

The delicate point here is to define again another continuation of ¥, yet the continuation has to be
taken over Ag. In the general case, the Riemann surface associated to ¥ was only a deformation
of the one of the logarithm. In the present case, this is modified due to the presence of the

Lambert function W: indeed the Lambert function W (y) is multi-valued for y € [—6_1, 0[ and
the two real branches are Wy and W_;, see Appendix A.1. In Ref. [9], we identified the proper
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continuations of the jump Ay allowing to solve the problem. Defining the jump A_; where the
Lambert function Wy in A is simply substituted by W_4

4
Ai(x) =3 [~ W_1(=2)]% — 4 [-W_y (—2)] "/ (7.3.24)
Then the two continuations of W .untinued that we have found are defined for z € }0, 6_1{ and are

expressed as

qjcontinued,—l(z) = \II(Z) + A—1<2)
A_1(2) + Ag(2) (7.3.25)
2

‘llcontinued,—l/2(z) = \I’(Z) +

These two continuations allow to find two physical” continuations of ®(H) in the missing range
[Hc2, +oo[ which we denote ®_; /o and ®_1. Besides, in Ref. [9] we proved the following properties:

e If we choose to continue ®(H) with ®_; 5(H), then the second derivative ®” has a discon-
tinuity at H = Ho.

e If we choose to continue ®(H) with ®_;(H), then the branching is smooth and all derivatives
of any order match between ® and ®_;.

e Forall H > H., these continuations are ordered as ®_1(H) > ®_; 5(H ). This implies that
®_; is subdominant in terms of large deviations and hence only ®_; /5 survives.

These observations lead us to call ®_; /5 the asymmetric non-analytic continuation and ®_; the
symmetric analytic continuation of ®. The reason for the names asymmetric and symmetric
comes from the fact that these continuations will match the large deviation distributions found
in the Weak Noise Theory using asymmetric or symmetric solutions of the hydrodynamic equa-
tions. Before comparing our predictions to the estimates obtained in the Weak Noise Theory,
we summarize the variational representations of ®(H) for the Brownian initial condition for all
branches as follows.

7As we shall see below, they can be both associated to some initial conditions.
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Result 7.3.8 (Variational solution for the large deviation function ®(H))

The large deviation function ®(H) for the Brownian initial condition verifies the following
optimization problems.

B(H)
= zer[%ixoo[ [\I/(z) — 2\/267[{} , (for H<0)
= erfréaufl] U(z) + %[—Wg(—z)]% — 4[—W0(—z)]% +2V zeH} ,  (for 0< H < He)
= min [U(2) AWy (—2)]E — AWy (—2)]E + 2\/zeH] ,
zE]O,e—l] L 3
(for H > H.), analytic branch
= i, [0+ 2 Wo(=2) + 2 [-Woa (=] — 2~ Wo(—2)]E — 2 W1 (~2)]} +2v/zeH|.

(for H > H.), non-analytic branch
(7.3.26)

Although there is coexistence of two branches above H., the analytic branch gives a higher
contribution in the large deviation function, hence is not optimal and can be neglected com-
pared to the non-analytic one. The function V(z) is given in Eq. (7.3.17), we have inserted
the explicit expressions of the different jumps and continuations and we recall that in our
system of units H.o =~ 1.85316.

Remark 7.3.9. One can understand the change of sign in front of 2Vzell in the variational
problem as follows: we first decrease z from +o0o to 0 and then increase it to e~t. In the complex
z-plane, turning around 0 induces a branch change in the square root function /z — —\/z. The
change from a mazimum to a minimum can be seen from a change of convexity in the argument
of the variational problem.

To observe the singularity in the large deviation ®(H) we have plotted in Fig. 7.3 the deriva-
tive of ®(H) for a set of H which allows to observe the different continuations of ®(H). It is
visible on Fig. 7.3 that the asymmetric non-analytic branch (the dot-dashed brown line) induces
a discontinuity in the second derivative of ®(H). For completeness, we also plot the whole large
deviation function ®(H) in Fig. 7.4 displaying both symmetric and asymmetric branches.

We now turn to the comparison of our exact solution for the large deviation function ®(H)
with the numerical estimates obtained by Janas, Kamenev and Meerson in [205]. In our system
of units®, the comparison is possible for a range H € [0,4] which comprises all continuations of
®(H). The comparison is made for both symmetric and asymmetric WNT solutions, allowing us
to test our hypothesis whether our analytic and non-analytic branches match these two solutions.
In our system of units, the critical height at which the phase transition was observed in Ref. [205]
is He.o =~ 1.85. The exact value that we have found for H.o matches this numerical estimate. That
fact already hints that the conclusion of this study will coincide with the one of WNT. We present
in Fig. 7.4 our general solution along with the comparison with the results of Janas, Kamenev
and Meerson. The interpretation of Fig. 7.4 is that our analytic branch matches point to point
the symmetric WNT solution and that our non-analytic branch also matches point to point the
asymmetric WNT solution for the interval considered H € [0,4]. Further numerics would be

8Note that Ref. [205] uses a sign of Ao opposite to ours. Equivalently, their variable H is opposite to ours,
which exchanges right and left tails. More precisely, in our units ®(H) = %S(—QH) where S(H) is the rescaled
total action given in [205].
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Figure 7.3: The function ®'(H) vs H for the Brownian initial condition. The blue line corresponds
to the exact solution for H < 0, the dashed red line corresponds to a first analytic continuation for 0 <
H < H.z, the dot-dashed green line corresponds to a second symmetric analytic continuation for H >
H.2 and the dot-dashed brown line corresponds to a second asymmetric non-analytic continuation
for H > H.o, where H.o & 1.85316. At the point H = H.» the asymmetric continuation of ®'(H) is
continuous but not differentiable.

required to allow a comparison outside H € [0, 4] but according to the overlap of our exact result
with numerical estimates, we are confident that our branching point H.o is the critical field where
a phase transition was observed in [205].

7.4 A hint of universality for the solutions at short
time

Before giving in the next Chapter the explicit formulae for ®(H) for all cases mentioned in the
Table 7.2, we will discuss the tails properties of the large deviations, i.e. the asymptotics of
®(H). We have represented in the Table 7.2 the tails obtained for various initial conditions both
in full-space and half-space. These tails are important as they provide the information on how
the solutions to the Kardar-Parisi-Zhang equation depart from the Gaussian world. Besides, as
we shall discuss in the third Part of this Thesis, these tails seem to be persistent in time hence
indicating the presence of conserved quantities or the establishment of some properties of the
Kardar-Parisi-Zhang universality class at short time.

We observe that the exponents of the tails are always 5/2 and 3/2 and therefore neither side
of the distribution is Gaussian and the distribution is highly asymmetric. This asymmetry can be
understood from the Kardar-Parisi-Zhang equation where the height field is driven by the square
of the gradient of the field which is always positive. Besides, the pre-factors are extremely similar
between the different initial conditions, hinting to some form of universality for the large devia-
tions of the solution to the KPZ equation. Finally, aesthetically speaking we observe a difference
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Figure 7.4: Top: The rate function ®(H) defined which describes the distribution of the KPZ
height H = H(z = 0,t) at small time for the Brownian initial condition with ®(0) =0 and (H) = 0.
The blue line corresponds to the exact solution for H < 0, the dashed red line corresponds to a first
analytic continuation for 0 < H < H_.2, the dot-dashed green line corresponds to a second symmetric
analytic continuation for H > H,.2 and the dot-dashed brown line corresponds to a second asymmetric
non-analytic continuation for H > H.2, where H.o ~ 1.85316. Note the symmetric continuation,
is not the optimal one in the sense of WNT and the asymmetric continuation is regarded as the
optimal one. Bottom: The large deviation function ®(H) is compared with the numerical estimates
from [205]. The blue squares represent the value of the action obtained from the asymmetric WNT
solution and the grey triangles represent the value of the action obtained from the symmetric WNT
solution. The numerical estimates of [205] and our exact results match point to point for both
branches. Data courtesy of B. Meerson.

in factor of m between the left tail and the right tail. In our construction, a factor m appeared
when considering the jump between different Riemann sheets obtained by picking a residue in
the integral definition of W(z). It would be interesting to see whether this factor = has a more

profound meaning.

The problem of determining the Large Deviation behavior of a random object is in general
complicated and in this Chapter we have made a number of predictions in that direction for the
short-time KPZ equation. Nonetheless, from the point of view of physics, it would be satisfactory
to have some kind of confirmation of these predictions: either experimentally or numerically.
Measuring large deviations in experiments is unfortunately a daunting task as the probability of
an extreme event to occur is extremely low. Numerically on the contrary, there exist techniques
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Initial condition Left tail Right tail

Full space

Droplet | H[P/? 1H3/?
Brownian - |H|%/? %H3/2
Flat 2| H[P/? 1H3/?
Half space

Droplet with reflecting wall (A4 = 0) %|H|5/2 %HP’/Q
Droplet with repulsive hard wall (A = c0) 15%|H|5/2 %H3/2
Brownian with repulsive hard wall (A = c0) 2 |H |5/2 2H 3/2

Table 7.2: Tails of the large deviation function for various initial conditions.

such as Importance sampling for Monte Carlo algorithms that allow to probe the regions of
extreme events. This will constitute the next Chapter of this Thesis.
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Chapter 8

High-precision simulations of the
short-time large deviations of the
KPZ solutions

This Chapter will be devoted to high-precision simulations of Directed Polymers on a square
lattice. These numerical estimates will serve as a basis to confirm the theoretical predictions on
the short-time distribution of the solutions to the Kardar-Parisi-Zhang equation. We shall first
introduce the model of a Directed Polymer on a lattice and explain briefly the idea on how to
reach Large Deviation regimes necessary to validate our theoretical predictions. The end of this
Chapter will be dedicated to the presentation of these simulations in various geometries, hence
probing different initial conditions for the Kardar-Parisi-Zhang equation. We will in addition
provide the exact large deviation functions ®(H) related to each initial condition presented in
the previous Chapter.

The numerical work presented in this Chapter originates from a collaboration with A. Hart-
mann and we refer the reader to Refs. [1,215] for further details. As we shall see, the agreement
between the theoretical predictions and the simulations is remarkable, even down to probability
densities as small as 1071090,

8.1 Directed polymer on a lattice

Define a polymer on the rotated square lattice (y,7), see Fig. 8.1, which is allowed to grow
according to the following rule

(y,7) = (yi%,ﬂrl) (8.1.1)

For each site of the square lattice, define a quenched random variable V, -, a temperature 7" and

an associated Boltzmann weight exp(—vi}’). For a path v : (0,0) = (yy, L), we define its weight
by

Vy.r
wy= [[ e 7. (8.1.2)
(y,m)€y

For paths of length L with a starting point (0,0) and an end-point (yy, L)? the partition sum
over all possible polymers is given by the sum of the weight of all paths joining these points

Zyop = ws. (8.1.3)
Y

9By construction of the lattice, the final coordinate L means that the polymer will have a length L.
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Figure 8.1: Representation of a directed polymer on a square lattice. The square is rotated by 45°
and the path of the polymer starts from one of the corner of coordinate (0, 0).

With these definitions, the partition sum verifies a natural recursion formula which constitutes a
discretized version of the Stochastic Heat Equation

Zyrt1 = (Zy—é,r + Zy-i-;,T) e Mo, (8.1.4)

Numerically, this problem is solved by the transfer matrix method and the complexity to compute
the partition sum up to some discrete time 7 is of order O(72). It is interesting to investigate the
extreme regimes of zero temperature and high temperature.

At zero temperature, T — 0, the free energy defines as F, ; = —T'log Z, , verifies the opti-
mization/recursion equation

Fyri1= min(Fy_%J,Fy_’_%ﬂ_) + Vyri1 (8.1.5)
which is sometimes referred to as the Bellman equation in the mathematical literature.

In the high temperature regime, 7" — 00, the continuum polymer, whose partition function
is the solution of the Stochastic Heat Equation, is obtained using the following parametrization
[73,216]

dyr 2L
The proper convergence of the partition function is expressed as
li 217, 1=2 1.
Jm yp.l = Z(2,1) (8.1.7)
T—+o00
t fixed

If the random variables V,, ; are chosen as independent unit Gaussian (which is the choice made
everywhere in this paper) then Z(z,t) is solution of the SHE (1.3.4). We emphasize that for the
rest of this Chapter, the coordinates (z,t) will be associated to the continuum limit. From this
continuum parametrization, we see that an infinite temperature 7" and infinite lattice length L
limit while keeping the time ¢ small and fixed will be equivalent to a short-time dynamics of the
Stochastic Heat Equation or equivalently the Kardar-Parisi-Zhang equation and this is what we
should aim for.

Having defined the temperature regime, we now need to choose the geometry of the polymer
problem. We consider two type of configurations.
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e The point to point polymer whose starting and ending points are fixed.

e The point to line polymer whose starting point is fixed. On the contrary its ending point is
arbitrary on some line and, the partition sum will be obtained by summing over all ending
points on this line with possibly an additional weight. In the limit of large temperature
T and the large lattice size L, this sum will be viewed as a Riemann sum approaching an
integral.

For the purpose of comparing our predictions for the solution to the Kardar-Parisi-Zhang and
the simulations of a directed polymer, we need to define a height field associated to the partition
function of the discrete polymer log(Z, ), which should converge to the KPZ height under the
continuum rescaling. In addition, in the following, the discrete partition sum Z,, ; will be the
analog of the propagator for the Stochastic Heat Equation. We recall that if we want to evaluate
the final KPZ height at x = 0, then its formal expression at time ¢ is given by

(00 :/d:EZ(O,t|x,0)eh($’t:0) (8.1.8)
R

where Z(z,t|2',0) = Z(z,t) denotes the solution of the SHE with initial condition Z(z,t =
0] 2’,0) = 6(z — 2’), and where the initial condition of the KPZ equation in encoded in the weight
e"(@1=0) " This tells us that we will need to encode the initial condition of the Kardar-Parisi-Zhang
equation in the configuration of the polymer using the correspondence

Z(0,t|2,0) +— 277, 1 (8.1.9)
The usual initial conditions will be encoded as follows:

e The droplet initial condition is e ®*=0) = §(z) so "0t = Z(0,t|0,0), this is precisely the
point to point polymer;

e The flat initial condition is e"@*=0) = 1 so M0 = [ da’ Z(0,¢|2’,0). This integral is
obtained on the discrete lattice by summing over all points over the final line: this is
precisely the point to line polymer (see Fig 8.1 where the notion of final line is clear);

e The Brownian initial condition is e(®!=0) = ¢B(@) 50 "0 = [ da’ Z(0,t|2’,0)eB*) where
B(z') is the unit two-sided Brownian motion with B(0) = 0. This integral will be obtained
on the discrete lattice by summing over all point over the final line with an additional weight
representing the Brownian contribution, hence this is another type of point to line polymer.
The exact method and scaling to introduce the Brownian contribution will be discussed
later.

The one-point KPZ height we studied in the short-time case was centered, hence we also
require to center the distribution of the height obtained in the simulations. Calling Z, the
discrete partition function up to time 7 (whatever configuration), we will compare our theoretical
predictions to the distribution of the quantity H(t) defined by

where Z, is the average value of the partition function over many realizations.

8.2 Introduction to importance sampling

For the purpose of the introduction of the idea of importance sampling, we borrow the very ele-
gant presentation made in Ref. [215].
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In principle one could obtain an estimate of the probability distribution P(H,t) numerically
from simple sampling. For this, one generates many disorder realisations and calculates the
partition function for each. Then Zj, is estimated by averaging over all samples, and the distri-
bution is the histogram of the values of H according to Eq. (8.1.10). Nevertheless, this limits the
smallest probabilities which can be resolved to the inverse of the number of samples, hence reach-
ing probabilities as small as 10719 is strictly impossible. Hence, a different approach is required.

To estimate P(H,t) for a much larger range, where probability densities as small as 1071000
may appear, we use a more powerful approach, called importance sampling as discussed in
Refs. [217-219]. This approach has been successfully applied in many cases to obtain the tails
of distributions arising in equilibrium and non-equilibrium situations, for instance the number of
components of Erdés-Rényi (ER) random graphs [220], the distribution of free energies of RNA
secondary structures [221], some large-deviation properties of random matrices [222,223] or the
distribution of endpoints of fractional Brownian motion with absorbing boundaries [224].

The idea behind importance sampling is to sample the different disorder realisations with
a suitable additional bias [225]. Here we use the bias exp(—0H(V)) where 0 is an adjustable
parameter interpreted as a fictive inverse temperature. If 8 > 0 the configurations with a negative
H become more likely, conversely if # < 0 the configurations with a positive H are favored.
A standard Markov-chain Monte Carlo simulation is used to sample the biased configurations
[226, 227]. At each time step a new disorder realisation V* is proposed by replacing on the
current realisation V' a certain fraction r of the random numbers V,, ; by new random numbers.
The new disorder realisation is then accepted with the usual Metropolis-Hastings probability

Prier = min |1, e MHI=HM] (8.2.1)

otherwise the old configuration is kept [228]. Note that the average partition function Z, appear-
ing in the definition of H (8.1.10) drops out of the Metropolis probability. By construction, the
algorithm fulfils detailed balance and is ergodic, since within a sufficient number of steps, each
possible realisation may be constructed. Thus, in the limit of infinitely long Markov chains, the
distribution of biased disorder realisations will follow the probability

b
Q(0)

where Pyi(V) is the original disorder distribution and Q(6) = Yy, Pais(V)e ?#(V) is the normal-
ization factor. Note that Q(6) also depends on L and T because of finite size and temperature
effects. Q(0) is generally unknown but can be determined. The output of this Markov chain
allows to construct a biased histogram Py(H,t). In order to get the correct empirical probability
density P(H,t) one should debias the result so that

g6(V) = — o Pais(V)e 7, (8.2.2)

P(H,t) =’ Q(0)Py(H, ). (8.2.3)

Hence, the target distribution P(H,t) can be estimated, up to a normalisation constant Q(0).
The method used to determine Q(0) is described in Ref. [215]. For each value of the parameter
6, a specific range of the distribution P(H,t) will be sampled and using a positive (respectively,
negative) parameter allows to sample the region of a distribution at the left (respectively, at the
right) of its center.
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8.3 Comparison of the theoretical predictions with the
simulations

In this Section, we will compare the theoretical predictions of the probability distribution of the
solutions to the Kardar-Parisi-Zhang equation with the numerical simulations of the directed
polymer on a lattice for each initial condition. The purpose of this Section is three-fold (i) to
give explicitly the large deviation solutions for every initial condition, (ii) to proceed to the com-
parison of both the center of the distribution and its tails and finally (iii) to provide details on
how to encode the random weights on the lattice to account for particular initial conditions. We
will address here both full-space and half-space initial conditions and hence the construction of
the lattice for the directed polymer will be introduced carefully when required.

We recall that the large deviation function ®(H) has been constructed so that it is centered
around 0 and hence for a fair comparison, the probability densities obtained in the simulations
will be shifted so that their maximum is also reached at 0. Finally, we insist on the fact that the
comparison will be done without any fitting parameter.

8.3.1 The droplet initial condition in full-space

To provide the short-time probability distribution for the droplet initial condition in full-space,
let us first define the branching field H. = log( (%), where ( is the Riemann zeta function and
denote the intervals:

I = [—1,+OO[, Iy = [—1,0[7

8.3.1
J1 :]—OO,HC], Jo = [Hc,—l—oo[. ( )
The associated large deviation function ®(H) is expressed by the parametric system
—z_lLi%(—z), ze€l,H e J;
el =
1
—z_l[L%( )+4f[1og( )H, zel,He
(8.3.2)
= {Li%(—z) - Li%(—z)}, zely
O(H) =
. 1
=[Lis(—2) = Lis (=2)] + 3[log(~1))2 + [log(-1)]7, z€ I

The numerical simulations for the droplet initial condition were originally presented in Ref. [215].
There were run for polymers of length L = {64, 128,256} and temperature T' chosen so that the
corresponding time for the Kardar-Parisi-Zhang equation is fixed at ¢ = 1/16. Convergence to the
analytic predictions is expected for L — +00. We now display the simulations in Figs. 8.2 and
8.3 and we observe that the agreement between numerical and analytical results is spectacular
(on the left tail, down to values of the order 10-8%).

8.3.2 The flat and stationary initial conditions in full-space

To provide the short-time probability distribution for the flat and the stationary initial condition
in full-space, let us first define the critical height H.o = 2log(2e —Z) — 1 ~ 1.85316 with

7= /Mdyl 1] VY (8.3.3)

—1 4 yev’
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Figure 8.2: Distribution of P(H,t) for a short time ¢ = 1/16 for three different polymer lengths
L = {64,128,256} for the droplet initial condition in full-space. The solid line indicates the analytical
result in Eq. (8.3.2) obtained in Ref. [169]. Plot taken from Ref. [215]
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Figure 8.3: Blow up of the left and right tails of the data shown of Fig. 8.2 compared to the
prediction given in the Table 7.2. Plots taken from Ref. [215].

together with the function W¥(z) expressed as

U(z) =

.

dk ze=F*
—Lip(————
27 iz k2 )

and its reduced version ¥(z) = W(z) — 22¥/(z). We further denote the intervals:

I
J1

e P
- ]_0070] ’ Jo = [07 HCQ] ’ J3 = [Hc2,+00[.
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We define a large deviation function ®(H) given in a parametric form by

v 20 (2)2, zeli,HeJ
© - z {‘P’(z) — 22_1[—W0(fz)]%]2, z€lr,H € Jy
(8.3.6)
(I)(H) _ 1/)(2), \ . zelh
¥(2) + 5[=Wo(=2)]7, zel

For z € I3, H € J3, we define two continuations of ®(H): a symmetric analytic one (resp.
asymmetric non-analytic) denoted ®a (resp. ®na) such that their parametric representations
read

:|2

and (8.3.7)
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The large deviation solutions for the flat and the Brownian initial conditions are by far the most
difficult to study as a two successive continuations are required. Indeed, the large deviation
functions for the stationary and flat initial conditions in full-space are given by

3
VH € R, Dprownian(H) = OPNA(H), Paa(H) =27 2P (2H). (8.3.8)

The indices A and NA are explicitly indicated for the region H € [H.,+oo[ where the two
continuations are distinct and can be omitted for the region where H € |—o0, H.o] where the two
functions are the same. We further recall that Wy and W_; are the two real branches of the
Lambert function, see Appendix A.1.

The result for the Brownian which follows the NA branch was already obtained in Section
7.3.2. The result for the flat initial condition arises from (i) the identification made in the context
of the WNT in Ref. [208] (mentioned in Eq. (6.5.1)) of the analytic branch and the large devia-
tion function of the flat initial condition (the rationale being that no phase transition is expected
for the flat initial initial condition) and (ii) the analytic result for the A branch in Eq. (8.3.7)
obtained in Ref. [9].

The verification of (8.3.8) will be an important point to seek in numerical simulations. Before
we introduce the results of the simulations obtained through the importance sampling method,
we will explain in some details the lattice construction of these initial conditions.

Point to line directed polymer mapping

We first introduce the reader to the mapping of the flat initial condition of the KPZ equation to
the directed polymer model on the lattice and then extend the discussion to the Brownian initial
condition. As mentioned earlier, contrary to the droplet initial condition, the flat initial condition
requires to perform a summation of the partition sum over the final line of the lattice, i.e.

L
Zr =Y Zy.L (8.3.9)
k=—L

where the points {y;} are all the points over the final line of the lattice.
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Remark 8.3.1. Note that this amounts to set a uniform weight over the final line. Comparatively,
for the droplet initial condition, all the weight was concentrated at k = 0 (the above sum with a
Kronecker delta at k = 0 yields the droplet).

Recalling the continuum parametrization of Eq. (8.1.6), the infinite temperature limit (up to

a proportionality constant)
4y 2L
Z’yk,L <—>Z( ﬁ,t_ ﬁ), (8310)
by a Riemann summation using a step of size Ax = ﬁ < 1 we obtain the partition function of
the flat condition (up to a proportionality constant)

AL/T?

dz Z(x,t 8.3.11
T2 Z sl LD (8.3.11)

Remark 8.3.2. We emphasize that because of our construction of the height (8.1.10), the pro-
portionality constants are irrelevant.

As we renormalize the partition sum by its average according to Eq. (8.1.10), the prefactor
4/T? can be discarded and will play strictly no role in the numerics. To approximate the integral
as being over the real line, the factor 4L /T2 should be taken as large as possible: its finiteness
might induce additional finite size and discretization effects as compared to the point to point
continuum polymer. To provide orders of magnitude, the simulations that we will present will
have a time ¢ = 1/16 and the factor 4L/T? is then in the range [4, 8] for the different lattice sizes
used.

The extension of this mapping to the stationary initial condition is obtained by adding Brow-
nian weights e on the final line on the lattice.
(%

B, gz = 2k 4)eB@) (8.3.12)

Zyk’Le T2 )

By self-similarity, we have B (4y’“) =2 #B(yy) and hence B(yy) can be easily sampled by a random
walk with Gaussian increments with umt variance. Note that the final partition function assumes
an additional average over the Brownian motion compared to a deterministic initial condition,
hence this provides an extra challenge on the numerical side.

Presentation of the simulations

The numerical simulations for the flat and Brownian initial conditions in full-space are displayed in
Ref. [1]. They were run for polymers of length L = {32, 64, 128} and temperature 7' chosen so that
the corresponding time for the Kardar-Parisi-Zhang equation is fixed at ¢ = 1/16. Convergence
to the analytic predictions is expected for L — +o0o. We present the simulations in Figs. 8.4
and 8.5. We observe for the flat and Brownian initial conditions that the agreement between
the numerics and the theory is fairly good and improves as L increases. We should note that
there are additional sources of finite size effects and statistical errors since for the flat and the
Brownian initial conditions we need to perform a summation of the partition function over the
final line in both cases and an additional average over the Brownian weights in the second case.
Nonetheless, the simulations are able to probe both tails of the distribution of P(H,t) for quite
a range of values for both initial conditions as can be seen in Fig. 8.5.
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Figure 8.4: Distribution of P(H,t) for a short time ¢ = 1/16 for three different polymer lengths
L = {32,64,128}. The solid lines indicates on the left plot the analytical result in Eq. (8.3.8)
obtained in Ref. [208] for the flat initial condition and on the right plot the analytical result in
Eq. (8.3.8) obtained in Ref. [9] for the Brownian (stationary) initial condition. Plots taken from
Ref. [1].

Discussion around the choice of branch ®5 /®an for flat and Brownian initial condi-
tions

We now turn to the crucial discussion of the choice of branch ® o /® A for both flat and Brownian
initial conditions. We recall that considerations coming from Weak Noise Theory [208] together
with the precise study of the Fredholm determinant associated to the solution for the Brownian
initial condition [9] concluded that

3
VHER,  ®prownian(H) = Ona(H), Opae(H) =27 204 (2H). (8.3.13)

This implies that if we rescale the simulation data for the flat initial condition, they should coin-
cide pointwise up to the critical height H.s and then separate to the symmetric and asymmetric
branches. We emphasize that the choice of branch is critical as it determines the tails of the
distribution and the existence of a singularity in the large deviation function.

We present in Fig. 8.6 the comparison in a region around H.o between the exact expression of
the different branches of ®(H ) written in Egs. (8.3.6) and (8.3.7) and the directed polymer simu-
lations of length L = 128 at a time ¢t = 1/16 for the Brownian and the flat initial conditions. Note
that we rescaled the distribution for the flat initial condition according to the scaling proposed
in Eq. (8.3.8) for a fair comparison. Figure 8.6 confirms in a remarkable way that each condition
corresponds to the one of the two branches we have obtained analytically. The coincidence of the
two distributions before the point H = H.o is also quite spectacular.

8.3.3 The droplet initial condition in half-space with a hard-wall A = 400

To provide the short-time probability distribution for the droplet initial condition in a half-space
in presence of a hard wall, let us first define the branching height H, = log(8/7 Z) ~ 0.9795 with

T= /Mdy l1 - 1] VY (8.3.14)
0

T ylevly—e
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Figure 8.5: Top: blow up of the left and right tails of the data shown in the left plot of Fig. 8.4 for
the flat initial condition. Bottom: blow up of the left and right tails of the data shown in the right
plot of Fig. 8.4 for the Brownian initial condition. In all four plots the solid line is the analytical
prediction given in Eq. (8.3.8), together with Eqgs. (8.3.6) and (8.3.7). The leading tails at large |H |
given in the Table 7.2 are also plotted in each case. Plots taken from Ref. [1].

The functions ¥(z), A(z) and its derivative A’(z) are expressed as

U(z) = —/Rjing(—zkze_kQ)
s =2 e 2 n ] e fmd)] e [rnd] e

and we define their reduced versions ¢ and §
P(z) = U(z) — 20'(2), §8(2) = Az) — 2zA(2). (8.3.16)

We further denote the intervals:
I =[—e,+o0[, I»=]—¢,0],

8.3.17
le]—OO,HC], JQZ[H07+OO[' ( )
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Figure 8.6: The analytic expression of ®(H) obtained in Egs. (8.3.6) and (8.3.7) is compared with
the simulation data obtained for the flat and for Brownian initial conditions. In the case of the flat
initial condition, the data are rescaled according to Eq. (8.3.8) for a fair comparison. The blue line
corresponds to the function ®(H) before the critical point Hez ~ 1.85316 which position is indicated
by a vertical grey dotted line. The green dashed line corresponds to the symmetric analytic branch
® A and the red dot-dashed line corresponds to the asymmetric non-analytic branch ®na. The square
markers represent the Brownian initial condition simulation data and the triangle markers represent
the rescaled flat initial condition data.

The associated large deviation function ®(H) is expressed by the parametric system

JH _ 8TV (2), zel,HeJ
C8VAY () + A(2)], zel,He
(8.3.18)
B(H) U(z), zely
¢(Z) + 6(2)7 S I2

Before we introduce the results of the simulations obtained through the importance sampling
method, we will explain in some details the lattice construction of the half-space problem in the
presence of a wall.

Point to point directed polymer mapping in a half-space with a hard-wall A = 400

To mimic a hard-wall type problem, one can forbid the polymer to visit some edges and introduce
a tabu list for edges bringing the polymer towards the diagonal of the lattice. Indeed, the partition
function should be strictly zero on the diagonal so that the probability of crossing the diagonal
is strictly zero. We introduce this idea of forbidden edges in Fig. 8.7. Finally, extension of this
construction to a generic value of A would be interesting.

Presentation of the simulations

The numerical simulations for the droplet initial condition in half-space in the presence of a
hardwall are displayed in Ref. [1]. They were run for polymers of length L = {64, 128,256} and
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Figure 8.7: Square lattice designed for the half-space problem with a hard-wall. The dashed lines
are forbidden edges for the polymer constraining it to stay on the right of the lattice. An example
of a polymer realization is drawn on the blue line.
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Figure 8.8: Probability distribution P(H,t) for a short time ¢ = 1/16 for three different polymer
lengths L = {64,128,256} for the droplet initial condition in a half-space with an infinite hard-wall
at the origin. The solid line indicates the analytical result displayed in Eq. (8.3.18) obtained in [6].
Plots taken from Ref. [1]

temperature T’ chosen so that the corresponding time for the Kardar-Parisi-Zhang equation is
fixed at t = 1/16. Convergence to the analytic predictions is expected for L — 400. We present
the simulations in Figs. 8.8 and 8.9 and we observe that the agreement between numerical and
analytic results is remarkable in the tails (for H < —25 and all H > 0), but nonetheless there
is an intermediate region for negative H (—20 < H < —10) where the matching is not entirely
perfect: this could possibly come from finite size effects but it still need to be further investigated.
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Figure 8.9: Blow up of the left and right tails of the data shown of Fig. 8.8. The solid lines indicate
the analytical prediction displayed in Eq. (8.3.18) obtained in [6]. The data is also compared with
the leading behavior of each tail as displayed in the Table 7.2. Plots taken from Ref. [1].

8.4 What do the large deviation polymers look like ?

Before we conclude this Chapter on the numerical simulations of the short-time distributions of
the solutions to the Kardar-Parisi-Zhang equation, let us now change the point of view and briefly
discuss the physics of directed polymers and the implications of our large deviation studies. This
Section will act as an outlook on the subject.

It is quite intuitive that the polymers which will contribute to the large deviations of the
Kardar-Parisi-Zhang height are atypical and will have a special shape and a special roughness.
Additionally, we expect that the configurations of the polymer which contribute to the left tail of
the distribution of H will be quite different from the ones which contribute to the right tail. It
would be extremely interesting to determine the roughness exponent of these atypical polymers.
The knowledge of the shape of such polymers could be of great benefits as we could hope to learn
or at least get some insight on how to sample from atypical polymer distributions.

Finally, to summarize this Chapter, we introduced a large-deviation sampling approach to
measure the distribution P(H,t) of heights for the KPZ for various initial conditions. This was
achieved using a directed polymer on a lattice, whose partition function converges, in the high
temperature limit, to the solution of the SHE where the boundary condition of the polymer maps
to the initial condition of the SHE. This allowed us to determine numerically the probability
distribution of the height over a large range of values, allowing for a precise comparison with the
theoretical predictions. We find that the agreement with the short-time large-deviation function
®(H) predicted by the theory, which differs according to the geometry and the initial condition,
is very good over hundreds of decades in probability, even very far in the tails. The existence and
location of a phase transition for the stationary initial condition are fully confirmed, as well as
the close connection of the rate function for the flat and stationary initial conditions.
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From the large deviations of KPZ at
late time to linear statistics at the
edge of (Gaussian [ random matrices.
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Abstract

The third and final part of this Thesis will focus on the late-time properties of the solutions
to the Kardar-Parisi-Zhang equation. We will smoothly shift from short time to late time by
showing that the left tail of the short-time distribution is conserved during the dynamics and
by extending our cumulant expansion of the Fredholm representation of the KPZ solutions from
short time to large time. Quite surprisingly, we will show that the late-time KPZ problem lies
within a more general framework which is the linear statistics at the edge of Gaussian random
matrices. The capstone of the end of this Thesis will be the unification of four a priori unrelated
methods to solve this microscopic linear statistics problem.
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Chapter 9

From small times to large times

In this Chapter, we will be interested in developing a systematic approach to study the late-time
behavior of the Kardar-Parisi-Zhang solutions. Here and below, we will focus on the solution to
the droplet initial in full-space which is related at all times to a Fredholm determinant involving
the Airy kernel. Most of this Chapter will based on our publications [5, 8].

Our first focal point will be dedicated to the left tail of the distribution of the KPZ height
and particularly to the recent developments showing that the left tail is a conserved quantity
in the KPZ dynamics. The second spotlight of this Chapter will be the presentation of a time
expansion of a Fredholm determinant involving the Airy kernel, allowing us to confirm the first
cumulant conjecture by calculating corrections to a high order. Quite surprisingly, there will
be several other outcomes of our study, some unexpected. Firstly, a careful examination of the
structure of the short-time expansion allows to obtain some results at long time which apply to
the solution to the KPZ equation. The second outcome relates to random matrix theory. There
has been a lot of interest recently in linear statistics and central limit theorems for eigenvalues
of large random matrices in the Gaussian Unitary Ensemble (GUE) [104], see e.g. [166,229,230]
but there are not so many results concerning the linear statistics near the edge of the GUE. Our
systematic expansion will shed some new light on this edge.

The inspiration for this work comes from the connection between the KPZ equation with
droplet initial condition and the Airy point process, which describes the (scaled) eigenvalues of
the GUE at the edge [43,72-75,106,231]. Here and in the following Chapters, we will be able to
use that connection to make several detailed predictions for (i) the higher cumulants of the linear
statistics of the Airy point process (ii) the large deviations of the linear statistics.

9.1 How negative can the solution of KPZ be ?

As any calculation on the solution to the Kardar-Parisi-Zhang equation is obtained by the Cole-
Hopf mapping Z = e, it is paramount to guarantee that the solution to the Stochastic Heat
Equation remains positive at all time. More than the positivity of the solution to the SHE, we
might want to control how small it can become, or equivalently, how negative can the solution of
the KPZ equation be. At short time, we have determined that the left tail of the distribution of
the KPZ height is a stretched exponential with exponent 5/2 as stated in Table 7.2 in the second
part of this Thesis.

At short time, this negative tail for the distribution of the KPZ height can be obtained either

from the Weak Noise Theory or the cumulant method on the Fredholm representation of the
solutions. In Refs. [6, 8], we showed that the first cumulant approximation remains valid at all
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times for the far negative tail

—logP(h(0,t) + L < —st'/3) gy itl/?’s5/2 (9.1.1)
12 157

which thus remains a stretched exponential with exponent 5/2 and the indicated prefactor for
all time ¢. This is quite an important statement as the left tail of the distribution of the KPZ
height is therefore a conserved quantity in the dynamics. In addition, this provides a direct way
to control how small the solution to the Stochastic Heat Equation is. This statement about
the left tail was proved rigorously by Corwin and Ghosal in Ref. [232] where they provided the
following theorem for the solution to the KPZ equation in full-space with droplet initial condition.

Theorem 9.1.1 (Corwin & Ghosal, Theorem 1.1 of Ref. [232])

Fix €,6 E]O,%[ and tg > 0. Then, there exist S = S(e,0,t9), C = C(ty) > 0, K; =
Ki(€,0,t9) > 0 and Ky = Ks(tg) > 0 such that for all s > S and t > t,

41-Ce) L 5/2 3-6 1/3 (1-Ce¢) 3
——q5.t3s / +€—Kls —etl/3s + e~ 12 S

P(h(0,t) + % < —st') <e : (9.1.2)

and
_404Ce) 4 5/2
157

t
P(h(0,t) + 3 < —st'/?) > e + e Kas?, (9.1.3)

Let us briefly comment on this result. For t¥/3 >> s > 1, the second and third terms of the
upper bound (9.1.2) dwarf the first term and represent a cubic decay (in the exponential) in s. In
particular, as ¢ gets large, only the third term survives and provides the predicted Tracy-Widom
tail 1—1233. On the other hand, for s > t2/3 the first term of the lower bound dwarfs the others
and one recovers the %85/ 2 decay for all t. Prior to the Theorem 9.1.1 of Corwin and Ghosal,
the only finite time bounds were in [67] which provided a Gaussian upper-bound on the decay,
hence a weaker result than the stretched exponentials with exponent 5/2 and 3. Theorem 9.1.1
was also recently extended in two cases: (i) for the half-space droplet initial condition with Robin
boundary coefficient A = —1/2 by Kim in Ref. [233] and (ii) for larger class of initial conditions
by Corwin and Ghosal in Ref. [234].

At infinite time, we have seen in the first part of this Thesis that the cumulative distribution
of the KPZ height is a Tracy-Widom distribution with a stretched exponential left tail with
exponent 3. At all times, we have also seen that the left tail of the distribution of the KPZ height
is a stretched exponential with exponent 5/2. To fully understand how this is consistent, we have
to reconcile both tails. The upper bound (9.1.2) provides a visual way to compare both tails
which seem in competition at large time. We have to balance the following terms

§% ~ t1/355/2 (9.1.4)

This implies that there is an intermediate region with s ~ t2/3 where the tail of the KPZ height
interpolates between the extreme 3 and 5/2 exponents. In this regime, denoting s = t2/3u, the
cumulative probability that we study is thus P(h(0,t) + {5 < —ut). It probes fluctuations of the
KPZ height of order h ~ ¢ rather than t'/3. This scaling in ¢ indicates a large deviation regime
whereas the scaling ¢t1/3 is affiliated to typical fluctuations. In that regime, the KPZ interface has
an average velocity different than —1/12 at large time.

The rest of the third part of this Thesis will be devoted to understand this large deviation
regime. This will be achieved by studying the right hand side of Eq. (3.2.1), i.e. the Fredholm
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determinant associated to the KPZ solution with droplet initial condition in full-space. As a first
step, we will introduce a systematic time expansion of this Fredholm determinant which we call
the edge GUE Fredholm determinant. This will validate the first cumulant approximation that
we used at short times and will lead the path towards describing the late-time properties of the
solutions to the KPZ equation.

9.2 Systematic time expansion of the edge GUE Fred-
holm determinant

In this Section, we will present a systematic time expansion of the edge GUE Fredholm deter-
minant developed in Ref. [5] in collaboration with S. Prolhac, which goes much beyond previous
studies. We will see that, although initially devised for short time, a resummation of the series
expansion allows to obtain also a long-time large deviation function. This also extends a result
of Basor and Widom [213] to a much higher order. The main motivation for this systematic
expansion in Ref. [5] was to investigate corrections to the first cumulant approximation for the
KPZ problem at short time. In addition, it also allowed us to study the late-time behavior of the
KPZ solution for droplet initial condition.

We study the linear statistics for the Airy 8§ = 2 point process, namely averages over the
Airy point process {a;} of the type Ea;[exp(3°1% f(a;))]. Since explicit expressions are difficult
to obtain for arbitrary function f(x), we focus on two problems which will include a parameter
t > 0 denoting the time since it will exactly identify with the time of the KPZ equation in the
applications.

e We calculate the following average in an expansion for short time t

Ea; |exp (io f(t1/3ai)) (9.2.1)

i=1

for a large class of functions f. It allows us to obtain the cumulants of the scaled empirical
measure p(at~'/3) = S0 §(at~1/3 —a;) of the Airy point process, in an expansion in small
t, i.e. for value a; ~ ¢t~/3 which correspond to a region close to the bulk of the GUE
spectrum. We are thus studying the matching region with the bulk going towards the edge.
In the bulk of the GUE, it was shown by Borodin and Ferrari [235,236] that the second
cumulant of linear statistics can be obtained equivalently using the Gaussian free field. We
will show that our result for the second cumulant for small ¢ matches theirs. In addition, we
will obtain systematic corrections to the Gaussian free field (higher cumulants, expansion
towards the edge) and we will additionally extend a classical result of Basor and Widom to
a much higher order [213].

e We calculate the following average in an expansion for large time t

+00
Ea; |exp (—tz ¢(t2/3ai)) ~ exp (—t22¢> . (9.2.2)
i=1

This is a large deviation result, with a rate function ¥, which we obtain explicitly for a
class of functions ¢.
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Both results are obtained in a single framework by studying the following generating function

Qta(0) =Ea; |exp (i ag(aetmai)) = Det [1 - (1- eaf’tv")KAi} (9.2.3)

i=1

where « is a book-keeping parameter which we will set to 1 at the very end of the calculation,
where we used the shorthand notation §;,(a) = g(o’etl/g“). For the purpose of this Chapter, we
consider general functions g with ¢(0) = 0 which is mandatory for convergence, and g(—o0) < 0.

After some manipulations on the Fredholm determinant (9.2.3), we will obtain the alternative
series expression (9.2.12), from which the short and large-times expansions (9.2.1) and (9.2.2) of
log Q¢ o (o) will be obtained in a systematic way. We will present below some crucial steps of the
derivation of the expansion and we refer the readers to Ref. [5] for the complete presentation of
the calculation.

9.2.1 Manipulations on the Fredholm determinant

The overall goal on the systematic expansion of the edge GUE Fredholm determinant is to derive
Large Deviation principles for small and large ¢t. To this aim, it is advantageous to consider the
logarithm of our generating function (9.2.3), i.e. log Q¢ .o (0) = gt,o(0) defined as

o
Gr.o(0) =logEa; |exp (azgwet“%)) : (9.2.4)

Jj=1

We recall that {a;} forms the Airy point process. The expectation value over the Airy point
process has the Fredholm determinant expression to which we apply the identity log Det = Trlog.

Gra(0) = log Det [ — (1 — e297) Kz (9.2.5)
> 1 m /30
=— Z —/ dup ...duy, H 1—exp|ag(oe’ ) || Kai(uj,ujt1) | -
m=1 "¢ JR™ j=1

Here and below cyclicity on the variables u; is assumed, ujy, = u;. It turns out that it is
more convenient for the following to consider the derivative ¢; (o). This leads to a sum over

t1/3uj)) is replaced by Oy exp (ag(getl/sm)). By

k € [1,m] of terms where the factor exp (ag(ae
cyclicity of the product over j, one can make the derivative act only on the factor with £k = 1
after renaming the variables u; cancelling the factor 1/m of the Fredholm expansion. The crucial

identities allowing to pursue the calculation are the following

~1/3
Oy exp (ag(oet” 3“1>> =

8u1 exXp (ag(06t1/3m)> ) (8u + 81}) KAi(ua U) = *Ai(u)Ai(v)

(9.2.6)
After one partial integration on u1, g; (o) reads

G ol0) = 1 OO / [duj (1 — exp (ag(aetl/auﬂ')))l Ai(uy) (”ﬁl Ky uj,u]+1)) Ai(uy,)

’ (9.2.7)

Writing the Airy kernels explicitly in terms of Airy functions, expanding the prefactors as

+o00o
Kai(z,y) = /0 dz Ai(z+2)Ai(y+=2), 1—exp (ozg(aetl/3 ) Z Ao 0"e /5 , (9.2.8)
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and introducing the Airy propagator

/Rdu e Ai(u + a)Ai(u +b) = , (9.2.9)

the integration over the variables {u;} can be performed upon the introduction of m — 1 variables
{#;} arising from the integral representation of the Airy kernel. At this stage, we obtain a first
intermediate representation for ¢; (o) as

Ny, =1

mo ()i (zi=2i0)?
/ ) dzy ... dzm_1 H e 2 4nj .
RT™ .
+ 20=2m=0

After a consequent amount of combinatorial manipulations on Eq. (9.2.10), we have obtained
in Ref. [5] a second representation of ¢; (o) presented in Eq. (9.2.12). This other expression
depends on a quantity L, (o, a,b) defined as

b= S £ (e 0210

o m Uno 0" W*W—l)z
Lo(0,a,b) / dzy...dzp,— e in . (9.2.11
mz::l R} ' m g (Z 47m z0=a ( )

Zm=b

As we will see in the rest of this Chapter, this second representation is much more suited to the
systematic expansion we wish to obtain. It reads

[ (o) = — (o)’ fj[ e ”23%3”iaaz'><2?=f”"’””az”"1}
Qt,a - Uﬁ 8Zj

p=0 -j=1

p

<[] La(aj,zj,zjﬂ)) : (9.2.12)

7=0 z0=...=2zp+1=0
00=...=0p=0
At this stage, it is hard to see why the expansion (9.2.12) is a formidable interpretation of the
initial Fredholm determinant as it depends on the quantity L. which itself depends on a certain
Taylor expansion of g. We will now present a systematic procedure or algorithm to obtain the
successive time contributions of the Fredholm determinant, this algorithm will highly depend on
four remarkable recursion properties of L.

9.2.2 Algorithm for the short-time expansion of ¢ ,(0)

In this Section, we explain how the short-time expansion of (9.2.12) can be performed system-
atically to arbitrary order in ¢. This leads to the short-time expansion (9.2.22) for log Q¢(o).
The algorithm giving the expansion is based on the following identities verified by the functions
L,(0,a,b) defined in (9.2.11):

La(0,0,0) = 200, / dz Vz g(oe™)
0

Lo(0,a,b) = Ly(0,b,a)
(aa + 8{,) a(U, CL, b) = —La(O', CL, O)LCM (07 07 b)
b—a

(9.2.13)

00,00 Lo (0,a,b) = L,(0,a,b) — La(0,a,0) 00sLa(0,0,b) .
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Remark 9.2.1. These identities are proved in Ref. [5] and we recall the proof of Eq. (9.2.13) in
Appendiz B.3 as it is highly non-trivial and quite elegant.

From (9.2.12), each term in the short-time expansion of og; , () is a polynomial in the vari-

ables £; ;1 = (a@U)iL&O’j’k) (0,0,0), where (i,7,k) > 0 indicates the order of partial derivatives
with respect to each variable of L. In terms of the £; ;, the identities (9.2.13) imply

£i0,0 = g((780)1‘"’1/ dz vz g(oe™) = g(080,)1'/ dpg(ae_pZ) (9.2.14)
T 0 27 R
Lijk = Lik,; (9.2.15)
‘(i
Lijrke T Lijks1 = — Z <€> L£05,08i—0,0.k (9.2.16)
(=0
Lit1,j+1,0 = —% Lij-1,0 — Z <£> L£5,0Li41-00,0 - (9.2.17)
=0

At each order in ¢ in (9.2.12), the index k of the variables £; ; can be set to zero everywhere
after applying recursively (9.2.16). Then, using (9.2.17), the index j can be reduced as well, as
long as ¢ > 1. Because of this constraint on 4, it is not guaranteed that (9.2.17) will be sufficient
in order to make j = 0 everywhere. In practice, we observed that using repeatedly (9.2.17) does
eliminate all variables £; ; x with either j > 0 or k > 0: only variables of the form £; o remain.
Hence, we define the notation

QZ(U) = 21 = 2@070 = %(080)”1/ dzx \/Eg(ae_x). (9.2.18)
0

Applying our algorithm recursively, we find the first orders in ¢ as

1 3 4 1
G o(0) = e e13(00)° (20 + L2Vt 428280t + <3 £305 +4030% G £2£3) 32 4 (’)(t2)>
o
(9.2.19)
Computing explicitly the action of the operator e12(99%)* and integrating with respect to o, we
observe empirically that the integral at each order can be performed explicitly, except the one at

order t. The term at order t° is given by

o 2 o 5 12
/ d—uiﬁl(u)2 = %/ duu {816/ dp g(ue™® )} (9.2.20)
0 ™ Jo R

u

Remark 9.2.2. This second term can also be written equivalently in the form

7 du 5 a? [
; ?Sl(u) _8?/0 duu

2
(9.2.21)

/ dp ei“pg(ae_pQ)
R

The equality is checked by Taylor expanding the function g in both r.h.s of (9.2.20) and (9.2.21)
and checking that the series match. This representation of the t0 contribution will be used later on
to comment on the emergence of a Gaussian free field for the edge GUE Fredholm determinant.

We finally obtain our main result for the expansion of ¢; o (c) defined in (9.2.5) for an arbitrary
function g as shown in Ref. [5]. We present in the following result the first orders of this expansion.
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Result 9.2.3 (Systematic time expansion of the edge GUE Fredholm determinant)

The first five orders of the systematic expansion of the edge GUE Fredholm determinant read

Gtalo) = Wi\/f /OOO dz vz g(oe™) + a—Z /00 duu {&L/deg(ue_ﬁ)r

472
223 £ 4 5 £2 218
L 2N (2 ~2 ¢ 9.2.22
+(3 +12>\f+<3£1£2+12+ c > ( )
8 1302 Qg 2 4 2 2%24 SS) 3/2 2
- =4z - )t O(t
+<3£1£2+ o T3ttt g lilals + ==+ o0 +0(t) ,

where the £; are defined in (9.2.18).

The first two terms can also be rewritten as

g/ dz vz gloe™) = L4
™ Jo

2 2
@ /U duu {&L/ dpg(ue_pz)] = /U d—uﬁl(u)Q
472 o R 0o U
Now that we obtained a procedure to expand the edge GUE Fredholm determinant in suc-
cessive orders in time, our goal is to relate it to the cumulant expansion that we have previously
introduced in Eq. (2.2.19). This allows to justify the first cumulant approximation at short time
and control the behavior of the higher order cumulants, both at short and large times. We recall

that all terms proportional to o™ in the expansion of ¢; (o) belong to the n-th cumulant: each
term £ includes a factor a and hence the combinatorics is easy.

(9.2.23)

9.3 Cumulants of the Airy point process: from small
times to large times

It is interesting to note that the degree in terms of £ indicates from which cumulant each term
originates (i.e. a product of n factors £ comes from the n-th cumulant). We compared in Ref. [5]
the expansion in Eq. (9.2.22) and the explicit calculation of the first three cumulants which
coincide term by term. We shall present in this Section the time properties of the different
cumulants and explain how their large-time behavior can be extrapolated from their short-time
behavior.

9.3.1 Linear statistics at the edge of the GUE at short time: Gaussian free
field and beyond

By inspection on the series (9.2.22), we have determined in Ref. [5] a few orders in time of the
first five cumulants, which we present in Eqs. (9.3.1).
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Cumulant First order Second order Third order

K1 +—1/2 $1/2 +3/2
Ko 1 t 12
K3 /2 13/2 £5/2
K4 t 12 t3
K5 $3/2 £5/2 £7/2

Table 9.1: Leading orders in times for the contributions to a given order of each cumulant of the
Airy point process Kkn, up to n = 5.

1 e U ) L5 30 5/2
HI_W\/Z/O dzv/zg(oe )+12\/E+2 /% 4+ O(t”7)

88
1 f° NSV B VY 29 o805  £,8

_ —p ~2 3 25 1~6 2 3

Ko 727r2/0 duu {&L/deg(ue )} —|—(6 + 3 )t+<3602324+ o1 + = )t + O(t°)
243
Ky = 483Vt + <32 + 481838 + £§£4)t3/2 + Ot
8

Ky = 3283 8ot + <4£3 + 48818302 +24£38,85 + 162282 + 3 2{’25)752 +O(t?) (9.3.1)

K5 = (80L£3L% + 32023£3)¢%/2 + O(t7/?)

where the £; are defined in (9.2.14) and where we did set a to 1. We presented in the second
Part of the Thesis the first cumulant conjecture, i.e. that the first cumulant k1 = k1(g) gives the
leading order in the short-time expansion. The expansion presented in Eq. (9.3.1), summarized in
Table 9.1 validates our conjecture, higher cumulants being indeed subdominant at small ¢. The
systematic expansion in time Eq. (9.3.1) additionally extends considerably the theorem of Basor
and Widom presented in Theorem 7.1.4 (see also Ref. [213]).

At short time, we see that only the first two cumulants are relevant: 1 provides the 1//
necessary to study the large deviations of the linear statistics over the Airy point process and ko
provides a correction of order O(1) which was already present in the result of Basor and Widom.
We shall now interpret these two contributions in terms of the first two cumulants of the empirical
measure of the Airy point process. Indeed, let us recall the expression of the empirical measure
1, and define the height field H of the Airy point process as

+o0 0o
wa) =Y 6(a—a;),  H(a)=-— / ™ ua)dd. (9.3.2)
i=1 @

The height field counts the number of points above a certain level with H'(a) = p(a). The linear
statistics problem has a natural rewriting in terms of the empirical measure p

Ea;i |exp (Z g(aetl/sai)) =Ep; lexp </ da g(aetl/sa),u(a)) (9.3.3)
i=1 R
By definition, the cumulants of the empirical measure are determined from k, as
day ...day ] g(oe®) B ut=1Bay) ... p(t=3ay) = kn(g) (9.3.4)

R” ke

120



In Ref. [5], we were able to determine the first cumulant x; at any order in ¢ as

6%(080)3 +o0
o)==

which allowed us to obtain the expected value of the empirical measure to any order in .

dzv/xg(oe™) (9.3.5)

Result 9.3.1 (Mean density of the Airy point process)

The expected value of the empirical measure of the Airy point process has the following
expansion to all orders in t from the bulk towards the edge

V17 = 259 - e = (9.3.6)

™

We can compare this result to the known exact result for the mean density of the Airy point
process ju(a) = Kai(a,a) = Ai'(a)? — aAi(a)?. Asymptotics of the Airy functions allow indeed
to recover (9.3.6), but only upon discarding terms which are fast oscillating for large negative
a. Hence Eq. (9.3.6) is valid in the weak sense. Additionally, by identification, we obtained in
Ref. [5] the second cumulant of the height field at short time.

Result 9.3.2 (Two-point correlator of the height field of the Airy point process)

The two-point correlation function of the Airy point process integrated density reads at
leading order

C \/ \/ a
H(axt /%) H(axt™1/%) el o2 08 \/—a1 —i-\/—az

O(—a1)O(—az) + O(t)  (9.3.7)

This logarithmic correlator is a particular case of the correlator of the Gaussian free field.
In [235,236] it is shown that the height field associated to the GUE in the bulk, Hgug de-
fined likewise by counting the number of eigenvalues above a certain level, is described upon
rescaling by a Gaussian free field with a specific correlator (see also [237]). We have shown that
it matches precisely Eq. (9.3.7) when taking the limit to the edge.

To summarize, we have been able to validate the first cumulant conjecture at short time
for the linear statistics Ea; {exp ( 1 g(Uetl/gai))] and we have obtained its corrections to any

order in t, deep in intermediate time regime. Our main result is that the fluctuations around
the first cumulant are to leading order at small ¢ the one of the Gaussian free field: this echoes
a continuous version of the strong Szegd theorem as we already mentioned in the second Part of
this Thesis. However, the higher orders in our expansion thus allow to calculate the deviations
from the Gaussian free field in the edge region. In the rest of this Section, we shall see that
quite remarkably, the short-time structure of the cumulants can be used to infer their late-time
behavior.

9.3.2 Linear statistics at the edge of the GUE at late time

Since we are studying formally an expansion in ¢, but for arbitrary fixed o, it turns out that
one can in fact obtain some results for arbitrary ¢ and even for large ¢. Obtaining such results
assumes that the observed structure of the series in ¢t when ¢ — —oo holds to arbitrary order
(and in a non perturbative sense). The examination of our results (9.3.1) for the cumulants led
us to formulate in Ref. [5] the following conjecture for the structure of the cumulant expansion.
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Conjecture 9.3.3 (Behavior of various contributions in the cumulant expansion)

The contribution in time of each cumulant within the expansion (o) at fixed o in power of
t can be expressed as

@)=Y “’;l(!g) (9.3.8)

n=1

kin(g) = 27160 (o) + > t2 7P kP (o) (9.3.9)

p=1

The leading order for n > 1 is conjectured to be equal to
KO(0) = 2" Ha0,)" 3L ()" (9.3.10)
The general terms kP (o) was conjectured to have the following homogeneity

K2 () = [(00,)" 3 37][€41(0)"]. (9.3.11)

Remark 9.3.4. A direct consequence of this decomposition is that each cumulant at short time
is dominated by the leading order k2 (o).

The result for the dominant term x9(g) holds for n = 1 since £ = (09,)2£_1 and k1 =
t=1/2¢ | and for n = 2, from (9.2.20) interpreting (00,) ! 7du " Tet us understand the

= Jo w-

homogeneity relation by recalling the relation from Eq. (9.2.18)

£ = (00,)" 181 = Z(00,)" [ devagloe ) (9.3.12)

and by examining the expression of the second cumulant

1 (7 du 5 (L3 £183 29 285 £186) o 5
_ - =2 i =1~ 9.3.13
Ko uzl(u) +<6 + =3 )t+<360£3£4+ 51 T )t +0(%) )

The homogeneity of the first order in ¢ has been checked above. For the second order in ¢:
e Each factor £9 provides one factor (0d,) and one factor £i;
e The factor £3 provides two factors (00,) and one factor £;.

Hence the combinatorics agree with (9.3.11) and similarly for the third term. More generally, the
number of factors £, is fixed by the index of the cumulant (as each £; was carrying one «) and the
power of (00, is given by the multiplication of the power of each factor £ by its index minus one.

Equation (9.3.9) can now be studied at fixed ¢ but in the limit ¢ — —oo. In that limit
the first term in (9.3.9), t2 k9 (o), is the dominant one, which gives the leading asymptotics
of gi(0) for 0 — —oo for any ¢. Indeed we see from (9.3.1) and the above conjecture that the
term ¢z 1P kP (o) contains n — 3 + 3p derivatives 00,. Each derivative makes the term more
subdominant: more precisely, setting o = —e”, the condition on g(z) for this to hold is that

—e’) = v .3.14

o) = o) (9:3.14)

i.e. g(—e") is a sub-exponential function of v. A remarkable consequence of the ¢ — —oo limit for
structure of the series (9.3.9) is that its large-time limit is also controlled by the term 2 19 (o).
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This can be seen as follows. Let us choose o0 = —e¥, with fixed u > 0. From the conjecture
above we can write in a symbolic form the general term of (9.3.9) as

2Rl (0 = —e) ~ 5T (00,)" (24 (0)"] (9:3.15)
~ o, posre ety

where here we just count the degree of homogeneity in derivatives and function £4. Since the p
dependence in the power of ¢t now behaves t =2 we see that p = 0 is the leading term for each
fixed n in the large ¢ limit.

Until now our considerations where valid for general function g. Inspired by a family of
functions appearing in the Kardar-Parisi-Zhang problem, we shall consider functions g; which
exhibit the following asymptotics

_ tu
im — 9 (9.3.16)

t—+o00 t

and ¢:(0) = 0 which implies that ¢(z) = 0 for = < 0.

Example 9.3.5. The family of polylogarithms verifies this property, i.e.
gi(z) = " T (y + 1)Liy (). (9.3.17)

With this asymptotic expression of g;, as announced in Eq. (9.2.2), our original linear statistics
problem reads

Eai [exp (Z gt(Uetl/gaj)) >1 Eai [exp (—tZ d(u + t_2/3aj)) : (9.3.18)
j=1

j=1

Inserting o = —e“ into the expression of the leading term of each cumulant (o) in Eq. (9.3.10),
recalling the expression of £; in (9.3.12) and taking the large-time limit of the function g,
Eq. (9.3.16), the n-th cumulant reads

0 t n_y 207!
Ko =—€e") = t27 " ——
t>1 i

1

Regrouping the different time factors, one observes that all leading terms of x, are proportional
to 2 and we can then write the summation over the cumulant index n.

Result 9.3.6 (Large-time resummation of the cumulant series)

At large time, the dominant contribution of the cumulant expansion is of magnitude t*> and
enjoys the following expression

Kn

alo=—¢") = 3= 0y, Dylu) =5 Y (A" (9.3.20)

|
n>1 n: n>1

where

f(u) :/IR db Vb ¢" (u — b) (9.3.21)

From the subleading contributions of the different cumulants (see Eq. (9.3.15)) we also know
that the next contribution in time for q;(u) will be of order O(t°).
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To conclude, we have been able to obtain some information at late time about our linear
statistics starting from the short-time expansion. This allowed us in Ref. [5] to derive a large
deviation principle for the solution to the KPZ equation with droplet initial condition. As we
shall see in the next Chapter, this also allowed us to investigate more general linear statistics at
the edge of Gaussian matrices. We refer the reader to Refs. [4,5] for the complete picture of this
work.

9.3.3 Open questions related to a systematic expansion at hard edges or in
the bulk

The problem of linear statistics we have investigated in this Chapter concerned the edge of Her-
mitian Gaussian random matrices and we based the whole calculation on the representation of
our linear statistics in terms of a Fredholm determinant involving the Airy kernel. It would be
interesting as well to study the same linear statistics at the hard edge of the spectrum of Laguerre
random matrices using the Bessel kernel or in the bulk of generic random matrices using the Sine
kernel.

In the next Chapter, we shall pursue the investigation of the linear statistics at large time,
and we shall unveil some surprising connections between our systematic expansion of the edge
GUE Fredholm determinant, the Stochastic Airy Operator and a Coulomb gas at the edge of
Gaussian matrices. We will start from recalling the original motivation of the problem: the study
of the late-time behavior of the solution to the Kardar-Parisi-Zhang equation for droplet initial
condition. Then we will generalize our results to consider perturbations localized at the edge of
Gaussian matrices, represented as a certain linear statistics.
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Chapter 10

Introduction to the linear statistics
at the edge of Gaussian matrices

10.1 The late-time large deviations of KPZ as a mi-
croscopic linear statistics

In this Section, we will describe the problem of the late-time behavior of the solution to the
Kardar-Parisi-Zhang equation in full-space for the droplet initial condition. This will motivate
the introduction to the problem of linear statistics at the edge of random matrices. We recall
the duality relation between the KPZ solution and the Airy point process, see Egs. (3.2.1) and
(2.2.3).

t
Ekpz |exp (—eh(o’tHl? +"t) = Eaip=2

> 1
S 10.1.1
i:l_Il 1+ et'/Paitut ( )

We investigate the convergence of both sides of Eq. (10.1.1), in the late-time regime, t — oo

e The left hand side of Eq. (10.1.1) approaches the cumulative distribution of the one-point
KPZ height at large time:

L P(R(0,1) + - < —ut) (10.1.2)

_h(0,t)+ 5 4ut
Expz {eXp< ¢ ) 1 12

e The right hand side of Eq. (10.1.1) can also be manipulated in the following fashion:

1

1o ot et exp (— log(1 + etl/gaiJr“t)) — exp (—t(t_Q/gai + u)+> (10.1.3)
e 3

t>1
where (z)1 = max(0,z).

This allows us to rewrite the duality between the solution to the Kardar-Parisi-Zhang equation
and the Airy point process at large time as

t -2
— < = e . — /3 . . 1.
P(h(0,t) + 9 S ut) S Eaipg=2 |exp ( tig 1(t a; + u)+) (10.1.4)

The right hand side of Eq. (10.1.4) has a very particular structure and is reminiscent of the

type of expressions studied in the systematic time expansion of the edge GUE Fredholm deter-
minant, see Eq. (9.2.2) with ¢(z) = (2 + u)4+. It takes the form of a linear statistics problem
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(which we precisely define in the next Section) over the Airy point process. As the Airy point
process arises at the edge of the spectrum of random matrices, this linear statistics problem can
also be viewed as a microscopic linear statistics for a large random matrix. To our knowledge, the
late-time KPZ problem was the first in the literature to motivate an actual study of microscopic
linear statistics at the edge of Gaussian random matrices, i.e. on the scale of the first few points
of the Airy process.

Very recently, no less than four methods were devised to evaluate the right hand side of
Eq. (10.1.4): (%) the electrostatics of a Coulomb gas [7] (i) a random Schrédinger problem known
as the stochastic Airy operator [238] (74) a cumulant expansion explained in the previous Chap-
ter [5] (iv) a non-local non-linear differential Painlevé type equation [239]. Although apparently
unrelated, they lead to the same large deviation principle expressed in the Result 10.1.1 for the
late-time KPZ problem with droplet initial condition. The aim of this Chapter and the follow-
ing Chapters is to unveil the connections between these methods, make explicit the underlying
structure and apply them to more general microscopic linear statistics.

Result 10.1.1 (Large deviation principle for KPZ at large time: first part)

For allu > 0, the probability that the KPZ interface, starting from a droplet initial condition,
has a velocity smaller than —1/12 at large time is given by the following large deviation
principle of rate t*

4

- 1 t _ 2.\5/2
t£+moo—t—2 log P(h(0,t) + 12 < —ut) = 15?(1 + 7u) =

4 2 1
L —
1576 374 272

This result was first obtained in Ref. [239)].

As expected from the beginning of Section 9.1, the right hand side of (10.1.5) interpolates between
a u® behavior for small v and a u%/2 behavior for large w.

Remark 10.1.2. From an experimental point of view, these large deviations correspond to an
interface with an excess growth.

The other side of the large deviations has also been obtained in Ref. [187] (see also [234]). We
provide here the result for completeness but we will not discuss it in this Thesis.

Result 10.1.3 (Large deviation principle for KPZ at large time: second part)

For all uw < 0, the probability that the KPZ interface, starting from a droplet initial condition,
has a velocity larger than —1/12 at large time is given by the following large deviation principle
of rate t

' 1 t 4 3/2
_= S ut) = - 1.
t_lggo ; log P(h(0,¢) + The ut) SM (10.1.6)

In the next Section, we will recall the definition of a linear statistics problem in Random Matrix
Theory, review some cases where it has been investigated and show how to change scale to turn
from a macroscopic problem into a microscopic one.

10.2 From macroscopic to microscopic linear statistics

10.2.1 Introduction to macroscopic linear statistics

A classical problem, called linear statistics, amounts to study the probability distribution func-
tion (PDF) of sums £ = YV, f()\;) over eigenvalues \; of a size N random matrix. Varying
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the function f and the ensemble, it describes e.g. conductance and shot noise [240,241], Renyi
entropies [242], interfaces center of mass [123] and more, see below.

Definition 10.2.1 (Linear statistics in Random Matrixz Theory)

The linear statistics problem amounts to determine the probability distribution of the fol-
lowing quantity

L= i () (10.2.1)
=1

where the \; are the eigenvalues of an N x N random matrix. In practice, we will evaluate
the generating function of L, i.e. E[e™%] and invert the Laplace transform to obtain the
distribution.

We call this problem macroscopic linear statistics which natural extension is the truncated
linear statistics.

Definition 10.2.2 (Truncated linear statistics in Random Matriz Theory)

The truncated linear statistics is a refinement of the macroscopic linear statistics where we
consider solely the Ny largest eigenvalues of the consider random matrix.

Ny
L= f(N) (10.2.2)
=1

Truncated linear statistics were first considered in Ref. [229)].

In the Table 10.1 which data are extracted from Ref. [229], we summarize a few cases where linear
statistics have been investigated in the physics community. At large IV, central limit theorems,
universality, and connections to the Gaussian free field were shown [5,166,235-237,243-247] for
typical fluctuations of £ in the bulk of the spectrum.

Large deviations of the linear statistics have also been studied in the bulk [164,192,248-250],
from the Coulomb gas representation or from special Selberg integrals, and these studies have
been recently extended to truncated linear statistics [229,230], showing numerous phase transi-
tions. These phase transitions share remarkable properties with ones observed in several other
physics models related to random matrices [158,251], including large- N gauge theories [252-255],
longest increasing subsequences of random permutations [256], random tilings [257, 258].

Recalling the Coulomb gas picture of the eigenvalues of Gaussian S random matrices, the
linear statistics problem amounts to study this Coulomb gas with an external potential f(\).
Hence, we shall call it a perturbed gas. In this context, two observables of the linear statistics
have a particularly simple interpretation:

e The quantity E[e™%] is the ratio of the partition functions of the perturbed gas and the
unperturbed one ;

e The quantity log E[efc] is the free energy difference between perturbed and unperturbed
gas. We shall also refer to this quantity as the excess energy.

10.2.2 From the bulk towards the edge

From now on, we shall only consider Gaussian random matrices with general $ and in particular,
we will be interested at linear statistics near their right edge A; = 2 + 355 where the set {a;}
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Physical observable

Matrix ensemble

Linear statistics

Wigner time delay Laguerre [135]
At

Renyi entropy Laguerre [259]
2 A

Conductance Jacobi [241,260)
Zn >‘TL

Shot noise Jacobi [260]
2 An(1 = An)

Moments Jacobi [260]
PORP

Normal metal - superconductor conductance Jacobi [261]
Y An(2 = )72

Largest eigenvalue Gaussian, [192]
A Laguerre [158,262]
Index Gaussian, [249, 250]
>on (M) Laguerre, Cauchy, . .. [125,263]
Index (2D) Complex [264]
> O(An] — 1) Ginibre

Mean radius (2D) Complex [265]
>on [ Anl Ginibre

Center of mass of interface Laguerre [123]
Zn % An

Truncated linear statistics

PORIRVOY Laguerre [229,230]
vazll Ai Jacobi

Table 10.1: List of different linear statistics problem studied in the physics literature.

The infor-

mation of this Table is extracted from Ref. [229)].
form the Airy 8 point process. In this case, for large IV, the truncated linear statistics £ reads

L=Nf(2 +Z f(2 + O(N~43) (10.2.3)

N2/3

If the linear statistics function f is smooth at the edge, we observe that the observable which
determines the fluctuations of £ is Z;N:ll a;. Hence the following natural question arises:

How to study truncated linear statistics at the edge, such as L = Zfill g(a;) ?

The answer to this question requires new mathematical tools dedicated to the edge of random
matrices: the linear statistics at the edge are not a simple extension of macroscopic linear statis-
tics. The purpose of the rest of this Thesis will be devoted to answering this question and to
providing applications of such linear statistics at the edge.
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Studying the Airyg point process by itself is complicated, even at the simplest level of the
mean, variance, skewness of the Tracy-Widom distributions, there do not exist closed expressions
in the literature. Hence, keeping in mind our main goal which is to describe the late-time behavior
of the Kardar-Parisi-Zhang equation, we want to study the following linear statistics at the edge:

L= ti ot 3a; +u) (10.2.4)
i=1

where u is a positive parameter and ¢ is taken to be positive and large: ¢ > 1 (this is exactly the
time of the KPZ dynamics). In the following and for rest of the third Part of this Chapter, we
will be interested in a class of functions ¢ that we call monomial soft walls.

Definition 10.2.3 (Monomial soft walls)
Let v > 1/2, the monomial soft wall potential is defined by the function

é(x) = (z)] = max(0,27) (10.2.5)

Remark 10.2.4. The late-time behavior of the KPZ equation is considered by taking v = 1.

Remark 10.2.5. From our estimates in Eq. (10.2.3), we have seen that any truncated macro-
scopic linear statistics over a sufficiently smooth function at the edge converges to the linear
statistics (10.2.4), (10.2.5) for v = 1 which is precisely the case associated to the KPZ equation.
Hence, we may wonder whether there exist a deeper connection between the edge limit of macro-
scopic linear statistics and the Kardar-Parisi-Zhang problem at late time which belongs to the
KPZ universality class.

Although we restrict here to the monomial walls, a wider class of walls and functions ¢ have been
studied in Ref. [4].

The truncated linear statistics were originally introduced by truncating the sum of the linear
statistics at a certain index. Here we reformulate the truncation by the use of the positive
parameters t and u and we will study the limit of fixed v and ¢t — +o00. Indeed, due to our choice
of function ¢, there is only a finite number of a;’s that contribute to the linear statistics. For a
point a; to contribute, we have the following constraint

a; > —ut?/? (10.2.6)

Heuristically, for large negative a, the density of the Airy point process grows proportionally to
v/ —a, hence the number of particles perturbed by this potential is

0
Nj x dav/—a o u®/?t (10.2.7)

—ut2/3
The interpretation of this dependence of N1 with ¢ is that in our problem, we shall perturb an
effective gas containing O(t) particles. Because we have roughly ¢ non zero terms in the lin-
ear statistics and we added an extra ¢ factor in front of the sum, the overall (truncated) linear
statistics will be of magnitude O(t?). As we shall see in the next Section, this magnitude for the
microscopic linear statistics matches the magnitude of macroscopic linear statistics which is N2
for a matrix that has NV eigenvalues (or equivalently a Coulomb gas that has N particles).
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0.8

Y

1 2

Figure 10.1: Plot of the density of the semi-circle at the right edge (blue line) and of the monomial
soft wall function ¢ for three values of v: 1/2 (orange), 3/2 (green) and 3 (red).

For the following of this Chapter, we will define an empirical density (depending on a param-

eter t) for the rescaled points b = —t=%/3q as 10
13X

plb) = >0+ t=3q;) (10.2.8)
i=1

With this definition, the linear statistics reads

L = /R db p(b)é(u — b), (10.2.9)

and we can calculate the average of L to leading order at large ¢ using the asymptotics of the
density of the Airy point process

E[L] = /Om db \fqﬁ(u —b) 4 o(t?). (10.2.10)

Remark 10.2.6. The expected value of L (which we also refer to as the first cumulant) can be
interpreted as an overlap between the potential ¢ and the edge of the semi-circle which has density

pai(b) = v/ (b) 4 /7.

We represent in Fig. 10.1 the density of the semi-circle at the right edge on a scale ¢t~
together with the monomial soft walls ¢. We see from Fig. 10.1 that as  increases, the potential
¢ becomes less and less sharp at its point of application. Besides, since the potentials that we
consider are positive they will compress or push the edge of the Coulomb gas. Since ¢ is not
infinite, the potential ¢ acts as soft or permeable wall.

2/3

Our goal for the rest of this Thesis will be to derive the following result through four appar-
ently unrelated methods:

10 A5 it will be made clear in the next Section, we reverse the points a — —a since either the left or the right
edge of the semi-circle are considered in the literature.
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Result 10.2.7 (Large deviation principle for the linear statistics at the GBS E edge)

The linear statistics L in Eq. (10.2.4) at the edge of Gaussian [ random matrices, with
the scaling previously introduced, and for the monomial soft walls (10.2.5), admits the large
deviation principle

. 1 —L
tlg(r)lo—t—z logEle "] = X4 (u) (10.2.11)
where E[e™!] is the ratio of partitions function of the perturbed Coulomb gas at the edge and

the unperturbed one and ¥.4(u) is the excess energy resulting from the reorganization of the
gas.

In addition to deriving the large deviation principle, we will be interested in four subsequent
questions.

1. How does the Coulomb gas look like after its reorganization 7 Or, what is the density of
the gas after the rearrangement ?

2. What is the expression of the excess free energy 4 of the gas after its reorganization ?

3. How rigid is the soft edge of a random matrix ? In other words, what is the nature of the
transition between the perturbed (pushed, u > 0) gas and the unperturbed (free, u < 0)
one ?

4. What are the physical applications of the linear statistics at the soft edge of random matrices
?

We will discover in the rest of this Chapter that the problem of linear statistics at the edge
is much richer than in the bulk. Indeed, four independent methods have been used to solve the
problem and we refer to them as the four paths to the large deviations. This problem is also
richer as new physical phenomena are found to exist at the edge which are absent in the bulk.
This will be related to the physics of phase transitions: while they are usually of third-order in
the bulk, they can exhibit continuously varying exponent larger than three at the edge.

Before we introduce the four methods to solve the linear statistics problem at the edge, we
require one last tool: the Coulomb gas at the edge of Gaussian [ random matrices which we
define now. As linear statistics in the bulk are generally solved by the means of Coulomb gas
methods, we first construct properly the gas at the edge by following the approach undertaken
in our work in Ref. [7].

10.3 From the bulk of the Coulomb gas to its edge

We choose to focus from now on to the edge of the spectrum of Gaussian § random matrices of
size N x N and recall that the joint probability distribution function (JPDF) of the eigenvalues
\; reads

BN K,
PAl~exp B > log|hi— Xl — e SN (10.3.1)
1<i<j<N i=1

so that the eigenvalue density has support [—2,2]. We also recall that this JPDF (10.3.1) can be
seen as the Gibbs measure of a Coulomb gas with logarithmic repulsion between the eigenvalues,
which, at large N, can be described by a continuous density. Indeed, the empirical measure
An(A) :== N71S2N 6y, (N) converges as N — oo to the Wigner semi-circle distribution with
density Agc(A) = %\/4 — )\2]l{|)\|<2}.
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In the following, our aim will be to study here the eigenvalues located near the left edge of this
Coulomb gas, in a window of width ~ N~2/3. In that window for N — oo, we finally recall that the
scaled eigenvalues b; = N%/3()\; + 2) define the space-reversed Airyg point process (APP)!. Our
aim will be to provide a large deviation principle for the empirical measure rescaled near the edge.

It was proved in the work of Ben Arous and Guionnet, see Ref. [266], that the macroscopic
empirical measure Ay () enjoys an large deviation principle, so that for a given density function
A, in the large N limit, P(Ay &~ A) & exp(—N2I3(A)), where I5(A) = B(E(A) — E(Ag)), and

2
E(N) = le/Rd/\ NZA(N) — ;//R log [A1 — Aao| [T dAA(A). (10.3.2)
=1

We now manipulate this formula to a form that will be amenable to the rescaling to the Airyg
point process. Since the semicircle law Ag. is the minimizer of £ among the set of densities A()\)
with unit normalization [p dAAA(X) = 1, it satisfies

A2 1
T / dN log |\ — N|Asc(N) = iV()\) + const. (10.3.3)
R

for some potential V' that vanishes V|y¢[—2,2)} = 0 within the support [~2,2] of the semi-circle
density Asc, and is nonnegative V|¢5>2) = 0 off the support. More explicitly, by calculating the
Hilbert transform of the semi-circle density fEQ %, and then integrating the result with

respect to A\, we find

V() = /OM AN /(N2 —4), = <|;| VAT =4~ 2log (W))nwﬂ} (10.3.4)

3/2
Remark 10.3.1. Near the edge |\| = 2, the potential V' behaves as V (\) ~ %(|)\| —2) / Lyn>2)-
The exponent and pre-factors are reminiscent of the one of the right large deviations of the largest
eigenvalue of a Gaussian B random matriz.

Now, given a generic density A with unit mass, we write A = (A — Agc) + Asc, and insert this
into the electrostatic energy function £(A) to get

2
E(A) — E(Ay) = %J(A) + /R A (AN) ~ (V) (1 - /]R AN Tog |\ — X|ASC(X)>, (10.3.5)

where J(A) = — [[g2 log |\ — Xa| [T21 AN (A(N) — Ase(\i)). We may substitute (10.3.3) into the
last term above. Recall that we normalized the empirical measure Ay so as to have total mass 1,
which implies [p dA(A(X) — Age(A)) = 0. Thus, the constant in (10.3.3) does not contribute after
integrating over . From these considerations we obtain

T5(A) = BE(A) — E(Aw)) = gj(A) + g /]R AAV(V)A(N). (10.3.6)

Note that in deriving this, we have also used the fact that Eq. (10.3.6) indeed vanishes for A = Agc
(since the potential V(A) = 0 on the support [—2, 2] of As.). We now may consider the edge limit
of the spectrum.

HEor consistency and to avoid further headaches, we shall keep the letter a for the Airy point process (i.e. the
right edge of the semi-circle) and the letter b for the space-reversed process (i.e. the left edge of the semi-circle).
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In accordance with earlier work of Dean and Majumdar in Refs. [192,248], it is more convenient
to work with the space-reversed Airy point process which arises as a scaling limit of the Gaussian
random matrices spectrum near its lower edge A = —2. To relate the GSE large deviation principle
to the Airyg point process large deviation principle, we introduce the scaling A = —2412/3N—2/3p
with an extra parameter ¢ > 0. In the N — oo limit, the change of measure should read (recalling
the definition of p in Eq. (10.2.8))

NdAXAn(X) ~ tdb p(b) (10.3.7)
Inserting this ansatz in large deviation function of Eq. (10.3.6), we find

2 2
SN?I5(A) =~ — ¢? //2 log |by — b| [ db: (p(bi) — 7 BNIBA(—2 + t2/3N_2/3bi))
R i=1

B (10.3.8)

—t? / db p(b)tINV (=2 + t23N~2/3p,).
R

Taking N — oo on the r.h.s., with ¢ fixed, we obtain the Airyg point process large deviation rate
function Iai(p) = Jai(p) + U(p), where the two contributions are given by

Tnito) == [ 1oglb - bzlﬁdbi [p03) — pasth)],

Ui =5 [ i) (1039)

Vb
pai(b) = —Lps0)-

Remark 10.3.2. A crucial assumption is that the mass-conservation [p db(p(b) — pai(b)) =0 is
still verified after having taken the large N limit for any candidate p.

We therefore conclude that the empirical density p enjoys a large deviation principle, so that
for a given density function y, in the large ¢ limit, P(p ~ u) ~ exp(—t2§IAi(,u)). We observe that
the rate of the large deviations is now ¢? rather N? which has the following interpretation: the
magnitude of macroscopic large deviations is of order N? because they involve the interactions
between ~ N? pairs of particles (hence roughly N particles are involved in the fluctuations). The
rate t2 hence means that the number of points in the Airyg process involved in the microscopic
large deviations is of order t.

The Airy density pa; is the equilibrium density at the left edge of the semi-circle. Let us take a
moment to interpret the functional U(p) in Eq. (10.3.9). At equilibrium, the density has support
on R} and hence, U(pa;) = 0. If we perturb the edge of the Coulomb gas out of equilibrium, then
two different situations arise. If we decide to compress the gas so that the support p is strictly
included in Ry, then U(p) will still have a zero contribution. On the contrary, if we decide to
expand the gas so that p has a support with a non-zero intersection with R_, then the functional
U(p) will play a role. In the rest of this Thesis, we will be interested in the former situation to
which we now refer to as the pushed Coulomb gas.
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Chapter 11

The four tales of the one tail: solving
the linear statistics at the edge

In this Chapter, we will solve the linear statistics problem at the edge of Gaussian § random
matrices by the means of four methods and we will closely follow our work from Ref. [4]. The
problem is non-trivial since at the edge of the spectrum of a random matrix, fluctuations are
stronger and much fewer results exist [213]. For the classical random matrix ensembles, an array
of methods exists to study spectral correlations [104, 105,120, 121], such as the Coulomb gas,
resolvant, orthogonal polynomials, Selberg integrals, determinantal processes, Painlevé equations,
the Dimitriu-Edelman tridiagonal representation [153] and the stochastic operators [155,267,268].
These methods however often appear disconnected but in this Chapter we unveil relations between
some of them, valid at the edge. The quantity of interest for the linear statistics at the edge is
Q¢(u) expressed as follows

Qi(u) =E |exp (—t i o(t3a; + u)) (11.0.1)

i=1

where the set {a;} forms the Airy 8 point process. The linear statistics considered are for positive
and increasing functions ¢ which vanish for negative argument. This amounts to study a Coulomb
gas delicately pushed at its edge. For further purpose, we shall also recall the shorthand notation

L= tiqa(t—?/f’)ai +u) . (11.0.2)
1=1

11.1 From the cumulants of the linear statistics to the
free energy

In this Section, we study the linear statistics from the point of view of a cumulant expansion
following Refs. [4,5]. Although initially introduced for the GUE (8 = 2), we have been able to
extrapolate the large-time cumulants for any 8 ensemble. From our work on the cumulants of
the Airy point process for 8 = 2 [4,5], we have determined that at large ¢ all cumulants have a
dominant term of order ¢

logEgle ™ ] =" (_nll)nEﬁ[L”]c ~ 125 (u) (11.1.1)
n>1 :

From Eq. (9.3.20) for § = 2 and from the extension to any 8 found in [4], identifying order by
order we obtain
Eg[L")¢ = (—1)"ky, = é1&2(i)"a”—?{f(u)” (11.1.2)
4 “fBr’ Y
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The function f relates to the potential ¢ as follows

1 oo db ,
fluy = 0 %¢ (u—1b). (11.1.3)
Note that for soft monomial walls the function f is positive and vanishes for negative arguments
f(u < 0)=0. It is possible and convenient to perform the summation of the series representation

of ¥y by writing its third derivative as

15} 1 4

DY) = =7 X g O ) (1114
n=1

To proceed to the summation, we use a Mellin-Barnes summation method presented in the Ap-

pendix B.1, and displayed in Eq. (B.1) with a = —% and X3 (u) = —gS(u). The summation

requires solving the following equation for w = w(u)

4
U— —w) =w 11.1.5
flu= ) (11.1.5)
In the context of monomial soft walls, the function f is positive, increasing and vanishes for
negative argument hence w is also positive. This ensures that there is a unique solution of

Eq. (11.1.5) which can be written

4
ui=u(w) = fHw) + ﬁ—w, Vw >0, andu(0)=0 (11.1.6)
™
It is convenient to extend w and u to negative values setting u(w < 0) = 0 and w(u < 0) = 0.
Given the uniqueness, from Eq. (B.1) and (B.9) in the Appendix, ¥ is given by
1

Y5 (u) = ;w'(u) (11.1.7)

To obtain back ¥4, we perform successive integrations, using that for u — —oo the Coulomb gas
is not affected by the wall and hence ¥4(u) and its derivatives should vanish. For monomial soft
walls, both f and w vanish for u < 0, so we can even use that ¥(0) = ¥'(0) = ¥”(0) = 0. The
successive integrations of X3 give the following result.

Result 11.1.1 (Free energy from the cumulant method)

The large deviation function ¥4 obtained by the cumulant method reads

Yo(u) ! /Ow(u) dw’ [u - u(w')}2 = 71r/0u du’ w(u') {u - u'} (11.1.8)

T or

where u(w) is given in Eq. (11.1.6).

The forms as integrals in w’ are quite useful in practice when f~!(w) has a simple form, since u(w)
is then explicit using (11.1.6) and the integral can often be calculated. The second form allows
easy comparison with the other methods we will subsequently present in this Chapter. Having
understood how to obtain the large deviation function through the cumulant expansion, we now
turn to the second method which deals with a semi-classical WKB treatment of the Stochastic
Airy Operator.

11.2 A WKB semi-classical density of states for the
Stochastic Airy Operator

The second tale of the linear statistics relies on the Stochastic Airy Operator (SAO) [267] and is
an extension of the method introduced by Tsai for the late-time Kardar-Parisi-Zhang problem in
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Ref. [238]. It is known [155] that the Airy point process {a;} can be generated as —a; = ¢; where
g; are the eigenvalues of the following Schrédinger problem on the half-line y > 0, defined by the
Hamiltonian

Hsao = —0; +y+ ;BV(y) (11.2.1)

where V (y) is a unit white noise and the wave functions vanish at y = 0. Since we are interested

in energy levels of order t*/3 we can rescale y = t*/3z, V(y) = t2/3§0(:n), tao = 17 Hsa0

2/3@' = —t*2/3ai and obtain

Hino = —t 20% + z + v(x) (11.2.2)

with energy levels b; =t~

This corresponds to a Schrodinger problem on the half-line = > 0 for a particle of mass m = 1/2
with i = 1/t. At h — 0 in the large-time limit, we can treat the Hamiltonian Hg, using a
semi-classical Wentzel-Kramer-Brilloin (WKB) approach.

In particular, we use the standard WKB argument [269,270] which we state in its generality
to obtain the semi-classical density of states associated to a Schrédinger Hamiltonian describing
a quantum particle of mass m in a potential W (zx) in one dimension

p? h

H(p,z) = om +W(x) , p= ;é?m (11.2.3)

One considers classical periodic trajectories between two consecutive turning points x4+ where the
classical momentum p(z) = \/2m(E — W (z)) vanishes. In the limit of small &, or for high energy
levels, the quantification condition for the n-th level becomes well approximated by [7+ dz p(z) =
mnh. Hence the integrated density of states, i.e. the number of levels below the energy E reads

N(E) = hlw/dx J2m(E—W(z)) (11.2.4)

Taking H = H'q 40, which corresponds to W(z) =z +v(z), m =1/2, E=band h = 1/t, we can
apply for large ¢ this WKB estimate for the density of energy levels of (11.2.2), p(b) = >, 5(b—b;)
as p(b) ~ tp(b) with

1d [*o°
)= | Vb —z o)), (11.2.5)
In the present case there is an infinite barrier at x = 0, hence z_ = 0 and x4 denotes the first

turning point.

The linear statistics is an average over the Airy Point Process and can also be interpreted as
an average over the white noise of the SAO V(y)

Qi(u) = /DV e—tziff ¢(—t~2/3a;(V)+u)—3 [dyV(y)? (11.2.6)

where a;(V') = —;(V) and €;(V) denote the eigen-energies in the potential V. Under the proposed
rescaling adapted to the WKB method, the measure of the white noise rescales to

ez S V) — 50 [dev(@)? (11.2.7)

Since the linear statistics is itself proportional to ¢ and the measure of the rescaled white noise
is also proportional to ¢, the large ¢ limit allows to obtain Y (u) as the solution of the following
variational problem for x > 0

Zo(u) = min [/Rdbp(b)qﬁ(u —b) + g/;oo dzv(z)?] (11.2.8)

where p(b) is defined in Eq. (11.2.5). This approach was made rigorous in the case ¢xpz = (x)+
in Ref. [238] using explosions in the Riccati formulation of the SAO.
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Remark 11.2.1. The highly surprising, and quite non-trivial point is that the WKB method can
be a useful approximation despite the fact that the typical v(z) is a white noise hence not at all
smooth. One way to understand it is to remember that the approximation is used for describing
the optimal v(x) (or near optimal one) which by contrast is smooth.

The expression of ¥, (u) taken at the saddle point expression is now

+oo
() :/dbp*(b)gb(u—b)—i—g/ dz va(x)? (11.2.9)
R 0
where v, (z) is the solution of the saddle point SP1 and p,(b) is the optimal density
g 1 [ db , 1 /+°° 1
i) = — —0 (u—b—x—v.(x , «(b) = — dx 11.2.10

By simple manipulations, one can find a virial identity at the saddle point of the SAO method
which reads . )
/dbp*(b)qb(u—b) - B/ dz (zv.(z) - v(2) ) (11.2.11)
R 4 Jo 2
Combining the virial identity with the expression of the free energy at the optimum (11.2.8)
provides a simple expression for ¥4 presented in the following result.

Result 11.2.2 (Free energy simplified at the saddle point of the SAO)
The large deviation function ¥4 obtained by the Stochastic Airy Operator method reads

S(u) = g /0+°° dz 2. (2) (11.2.12)

11.2.1 From the Stochastic Airy Operator back to the cumulant expansion

As an intermediate step of our presentation, we now relate the two first tales, i.e. the cumulant
expansion and the Stochastic Airy Operator method. The saddle point of the SAO (11.2.10) can
be expressed in terms of the function f (11.1.3) as

1 1
gv*(x) = %/R ((i:)+¢/(u—b—x—v*(x)) = ;f(u—:n—v*(:v)) (11.2.13)
To make contact with the method of cumulants, we study a solution v, (x) which has the form
4
vi(x) = —w(u — x), 0<z<u (11.2.14)
g
with v, (x) = 0 for x > u. With this parametrization, the saddle point equation becomes
4
flu— ﬁ—ﬂw(u)) = w(u) (11.2.15)

This is precisely the equation (11.1.5) encountered in the resummation of the series in the cumu-
lant method. In addition, using this parametrization, the resulting equation for ¥4(u) within the
SAO method Eq. (11.2.12) reads

Yo(u) = f/o+oo dzzv.(z) = 71r/0u dv/w(u)[u — o] (11.2.16)

This identifies with the Result 11.1.1 from the cumulant method. We now derive through the
SAO method the series expansion previously obtained from the cumulant method: this is realized
by the means of the Lagrange inversion formula which we recall.
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Lemma 11.2.3 (Lagrange inversion formula)

The Lagrange inversion formula states that for a sufficiently nice function f, the equation
z =12+ yf(z) can be inverted as

z—:n—l—z ) ()" (11.2.17)
n>1
The identification 4 4
x = u, z:u—ﬁ—ﬂw, y:—ﬂ—ﬂ (11.2.18)

leads to a series representation for the solution w(u) of Eq. (11.2.15)

_iwu: i_inn—l w)"
S = 30 (=)o () (11.219)

From Eq. (11.2.16), we also have ¥{(u) = Lw(u) and hence we obtain
1 4
) = 5 5 L - Lyt g 11.2.2
o) = 4 2 g (11.2.20)

which coincides precisely with the second derivative of the series expansion obtained for the
cumulant method.

11.2.2 Optimal density from the semi-classical Stochastic Airy Operator point
of view

We now derive an explicit formula for the optimal density obtained by the SAO method. Let us

start from the correspondence between the saddle points of the SAO and the cumulant methods:

vy () = %rw(u —z) for 0 < z < wand v, (x) =0 for x > u. Then the WKB semi-classical density

of states at the optimal v, reads

1 [t dz 1 /“ du’ N (b—u)y

2 Jo  J(b—z—v.(2))r 27 Jo \/(b—u—l—u’—%w(u’))_;_ s
(11.2.21)

Using the saddle point SP1 or equivalently the functional relation verified by w: f(u'— %rw(u’ ) =

p«(b) =

w(u’), we have found in Ref. [4] that the optimal density can be factorized in a simple and com-
pact form.

Result 11.2.4 (Optimal density of state for the linear statistics problem at the edge)

The optimal density obtained through the WKB approximation on the Stochastic Airy Op-
erator for the linear statistics problem reads

(b— Zw)s | "
pa(b) = 7 1+—][ : o) (11.2.22)
m 5”Rb+b_u\/(u—%w(u)—b’)+
In particular, the edge of the support can be identified easily as
_ 4 (u) (11.2.23)
ug = Bﬂw 2.
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Remark 11.2.5. Using this result, we have shown in Ref. [/]] that for fized u, in the large b limit,
one recovers the density of the Airy process, i.e. the edge limit of the semi-circle density. More
precisely, we have controlled the difference between the optimal density p. and the Airy density

PAi; i€
1
p«(b) — pai(b) E>1 O(W) (11.2.24)

As both densities behave asymptotically as the semi-circle, i.e. p(b) = O(\V/b), it is not trivial to

see that the difference between the optimal density and the Airy one is of order 1/(73/2 and not
1/b%/2,

We now turn to the third tale of the linear statistics which is the story of the Electrostatic
Coulomb gas, originally introduced in the context of the late-time KPZ dynamics in Ref. [7] and
extended to linear statistics at the edge in Ref. [4].

11.3 Electrostatic Coulomb gas approach to the linear
statistics

In Section 10.3, we have determined the measure of the Coulomb gas at the edge which we shall
use to express our linear statistics: this constitutes the third tale. Indeed from Egs. (10.3.8) and
(10.3.9), the linear statistics is written as

E |exp (—ti¢(t‘2/3ai+u)) X/Dp exp(—tz[/Rdbp(b)qS(u—b)+J(p)+U(p)D (11.3.1)

i=1

where J(p) = —g [fgelog |b1 — bo| T2 dbi(p(b;) — pai(b;)) and U(p) is irrelevant for our linear
statistics problem as we study a pushed phase (U(p) is relevant solely for a pulled gas). The free
energy is then obtained readily as

(u) = min [/Rdb p(b)(u —b) + T (p)] (11.3.2)
The optimal density p*(b) is then the unique solution'? of the variational equation
Bu—b) =5 [ dblog b= ¥|(p. () — pai(t)) > ¢ (11.33)
R

for some real ¢, with equality on the support of p*. The derivative of Eq. (11.3.3) on the support
of the density provides a saddle point SP2. The Coulomb gas problem is usually solved through
the use of the Tricomi theorem but here we shall completely bypass this approach by unveiling a
connection between the Coulomb gas and the Stochastic Airy Operator method. Indeed, compar-
ing the variational formulation of the free energy X, for the SAO (Eq. (11.2.8)) and the Coulomb
gas (Eq. (11.3.2)) methods, there should exist a mapping to relate the following objects

2 400
—g //R;ogb1—b2|i:Hldbi<p(bz->—pAi<bi>><—> g /0 dz v(z)? (11.3.4)

We have found in Ref. [4] a general parametrization of the density p which relates the two
objects and we now present it.

12Gee Theorem 2.6.1, Lemma 2.6. from Ref. [164].
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11.3.1 Reparametrization of the Coulomb gas

The Stochastic Airy Operator method suggests to study a parametrization of the density p(b) of
a Coulomb gas in terms of a function v(x) for z > 0 as

1 [ 1
b) = — / dx 11.3.5
O =22y T, (159
where v(z) encodes the deviation from the Airy density which is recovered for v(x) = 0.
b 1 [t 1
0 _ )

r 2h Voo

pai(b) = (11.3.6)

Remark 11.3.1. At this stage, nothing is assumed on the function v, in particular, we do not
assume that it is a saddle point: it is completely arbitrary!

Remark 11.3.2. This parametrization of the density verifies the bare condition of mass conser-
vation [p db(p(b) — pai(b)) =0

The extraordinary property of this change of variable is that the electrostatic energy of the
Coulomb gas adopts the remarkably simple representation in terms of the above function v.

Result 11.3.3 (Parametrization of the logarithmic energy of the Coulomb gas)

Under the parametrization of Eq. (11.3.5), the logarithmic energy of the Coulomb gas is equal
to the quadratic energy of a white noise.

2 o0
J(p) = —g //R2 log |b1 — bo| i:r[ldbz'(P(bz‘) — pai(b)) = §/0+ dz v(av)2 (11.3.7)

This equality precisely identifies the Brownian weight in the SAO method. It is valid under
some mild assumptions on v (see Ref. [4]). In particular it does not assume any saddle point
property of v, hence the scope of this mapping is much more general than what we use it for.

We proved in Ref. [4] that if one chooses the optimal v, in the reparametrization of the
Coulomb gas density, then for all b in R, the following inequality holds

d(u—b) — B/Rdb’ log‘b Y

(P (V') = pas(¥')) = 0 (11.3.8)

which turns to be an equality in the support of the optimal density py, i.e. b € [ug, +oo[. As
we have mapped the Coulomb gas problem to the Stochastic Airy Operator method, we fully
rely on the results obtained through the latter which concludes this Section on the electrostatic
approach. It would be of utter importance to have a more in-depth understanding of this mapping
and to determine whether it holds in the bulk of the spectrum as well and whether it holds for
tridiagonal random matrices of finite size. We now turn to the fourth and final method able to
investigate the linear statistics at the edge of GUE matrices: the semi-classical treatment of the
non-local Painlevé II equation.

11.4 A WKB approximation for the Painlevé II rep-
resentation of the linear statistics

The fourth and last method we present in this Section was first introduced in the context of the
large deviations in [187], (based on [75]) and later pushed much further in [239] to study the
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late-time behavior of the solution to the KPZ equation for droplet initial condition. It was then
extended in Ref. [4] for the purpose of linear statistics at the edge of GUE random matrices (this
method applies solely for 8 = 2). For § = 2 the set {a;} forms the usual Airy point process and
one rewrites the linear statistics

oo

Qi(u) = E [exp (t Z Pt Pa; + u)) (11.4.1)
i=1

for all ¢ as a Fredholm determinant Q;(u) = Det[I — 0y K ;] where o4(a) =1 — e~to(ut™%a) ypq

K4; is the standard Airy kernel. This Fredholm determinant was shown in Ref. [75] to obey the

following equation, with s = —ut?/?

+oo
log Q; (u) = / dr(s — r)Wy(r) (11.4.2)
Wy(r) = —/Rdv(qt(r, v))Q%e—W(”t’”S) (11.4.3)
D2qi(r,v) = [v + 7+ 29, (1)]qi (1, v) (11.4.4)

with g4(r,v) >~ 400 Ai(r 4+ v). Let us recall here the analysis of Ref. [239] to treat the problem
and present its generalization. To make it easier we stick to the notations of Ref. [239]. Starting
from Egs. (11.4.2) we introduce as in Ref. [239] the scaled variables r = t*/3X, v = t*/3V and
make the ansatz

a(rv) =t7V5G(X, V),  W(r) = g (X), (11.4.5)

with ¢¢(X) > 0. The remarkable fact is that the function g;(X) becomes independent of ¢ at
large ¢, and one denotes g(X) = limy_ 4o g:(X). Performing the large-time rescaling, the second
equation in (11.4.2) becomes

g(X) = /R AV [G,(X, V)2 (V)e o), (11.4.6)

The condition that the r.h.s. of Eq. (11.4.6) does not eventually depend on ¢ at large ¢ will lead
to two stationary equations SP1 and SP2 which we will obtain in Eq. (11.4.12). To obtain these
equations, let us first perform the large-time rescaling, under which the third equation of (11.4.2)
becomes

—t720% (X, V) + (V+ X +29(X))@(X,V) =0 (11.4.7)
exp(—%t(X—i—V)S/Q)

with the boundary condition G;(X, V) = x— 400 tY/0AI(H(X +V)) ~ ATV

Remark 11.4.1. This boundary condition implies the condition ¢(+o0) = 4o00. If this is not
the case, e.g. ¢(+00) = ¢oo < 00 then the boundary condition becomes G(X,V) —x— 100
t1/6y/1 — e~ 9= Ai(t(X + V), see Ref. [60], hence generalizing Proposition 5.2 of Ref. [75].

Equation (11.4.7) can be interpreted as the Schrodinger equation of a quantum particle of
mass m = 1/2 at energy —V in the potential X + 2¢(X), in the semi-classical limit since h = 1/t
is small. As in Ref [239] we consider cases such that g(X) is a positive and monotonic decreasing
function, and, as seen below, g(X) vanishes for X > 0. The potential X + 2¢(X) is however
an increasing function of X. Hence there is a unique classical turning point at X = a with
V +a+ 2g(a) = 0. The classical momentum of the particle is p(X,V) = /-V — X — 2¢(X),
which is positive in the the classically allowed region X < a, and imaginary for X > a, the
forbidden region. The standard WKB method then gives the following approximation of the
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wave function for large ¢

X T
\V—FXC—:—(;/;( Xy <cos [t/ dX'\/(—V — X' —2g(X")y — 4] 0=V — X —2¢(X))

+1exp[ t/ dX\/V+X’+2g(X/))}@(V+X+29(X))

G (X, V) =~

2
(11.4.8)
The boundary condition determines the amplitude Cy(V') as
V) = j% exp (t /R ax' [\ (V4 X+ 29(x)5 — /(v + X/)+D (11.4.9)
Inserting (X, V) into Eq. (11.4.6) we obtain a sum of two contributions
/ 4 ¢ (V)e toV)
|V+X+2g( e (11.4.10)

(@(—V — X —-29(X)) | OV + X +29(X)) -2 [* ax’ <V+X/+29<X'>>+>
9 4

The second term can be neglected at large ¢ compared to the first (see Ref. [239] for more
discussion of the validity of the WKB approximations) leading to

E /‘X‘29<X> dve/(V)
27 J- V-V =X —2¢(X)

9(X) =

(11.4.11)

exp (t(Z /R AX[\/(V + X7 +2g(X") s —/(V + X7)4] - ¢(V))>

The condition of ¢ independence gives two equations SP1 and SP2 that have to be solved simul-
taneously

L1 X vy
9(X) = 7/ T (11.4.12)
V) =2 /R dx’ [\/<v + X+ 29(X7)5 —J(V + X’)+] (11.4.13)

Remark 11.4.2. The authors of Ref. [259] qualified the compatibility of these two equations for
the late-time KPZ problem as a "miracle”. In Ref. [}], we explained and proved this compatibility
and showed that the two equations were in fact the saddle points of the SAO and the Coulomb gas
methods upon the identification w(X) = %rg(—X).

We shall suppose that ¢ is increasing ¢/'(V') > 0 and strictly vanishes for all V' < 0, hence one
finds that ¢(X) > 0 with g(X) = 0 for X > 0. Hence the upper bound of the integral in the sec-
ond equation of (11.4.12) can be chosen to be X’ = 0. Finally, performing the large-time rescaling
in the first equation of (11.4.2) and introducing the excess energy ¥, leads to the following result.

Result 11.4.3 (Free energy from the analysis of the Painlevé equation)

The large deviation function ¥4 obtained by the WKB analysis of the Painlevé equation

reads
Yo(u) = ’ dX (u+ X)g(X). (11.4.14)

—Uu
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By consistency with the other methods, see Ref. [4], the formula for general /3 is obtained by
multiplying the r.h.s of (11.4.14) by /3/2 and by replacing the potential ¢ in Egs. (11.4.12) by 2¢/p.

The stationary equations being identified to the saddle point equations of the SAO and
Coulomb gas methods, we finally rely on the solutions obtained through the first three meth-
ods to conclude. This method based on the Painlevé representation of the linear statistics for
B = 2 was proved to be extremely useful for the developments of this Thesis. Indeed, as the saddle
points of all methods appeared simultaneously this provided the first hints of their equivalence.

Brief summary of the results

So far we have introduced four methods to solve the linear statistics problem at the edge: each
method has its own saddle points. For clarity we briefly provide a dictionary between the different
variables introduced. The saddle points of the different methods are related as

4

Ve >0, v(x)= B—ﬂ_w(u —x) =2g(xr — u). (11.4.15)
The different variables vanish for
vi(z <u) =0, w(u < 0) =0, g(X > 0)=0. (11.4.16)

The lower edge of the support of the perturbed Airy gas is

uy = ;ﬂw(u) = v,(0). (11.4.17)

Finally, let us emphasize that quite remarkably, the sole knowledge of the edge ug as a function
of u determines completely the energy ¥ ,(u) since Eg(u) = guo. By construction for positive
and increasing potentials ¢, the position of the edge is positive ug > 0, ensuring the convexity of
the excess energy.

11.5 Solution for monomial walls with parameter ~

Our considerations on the four methods have been quite general in the choice of the potential ¢,
the only requirements being that ¢ is positive, increasing and vanishes for negative arguments.
We now specify the problem to the monomial soft walls ¢(z) = (z)] for which the function f
introduced in Eq. (11.1.3) is

flu)=1 O+O° %(u N e N () HL B A ‘fm (11.5.1)

The rest of this Section will be dedicated to obtaining the exact expression of the excess
energy of the Coulomb gas subject to the monomial soft wall and the related optimal density.
For completeness and clarity we shall also provide a couple of examples for some values of v and
some figures to represent the optimal density at different values of v and the parameter w.

11.5.1 Expression of the excess energy

We present the excess energy for general v in terms of two representations: firstly as a series in
u and secondly as a solution to a parametric system involving a trinomial equation. We start by
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recalling the series expansion of 34(u) obtained from the cumulant method, as given in Result
11.1.1. Inserting the expression (11.5.1) of f(u) for monomial soft walls, the excess energy reads

B 1n 2 F(’y_’_l) ! n—3 n('yf%)
n; n! (,Bﬁr(;Jrfy)) a3y (11.5.2)

The derivative can be taken explicitly and we finally obtain the following result.

Result 11.5.1 (Free energy expressed as a series)

The series expansion of the free energy of a Coulomb gas pushed by a soft monomial wall of
parameter -y is given by

o B D2 T+ D)\ T —5)+1) 5 s
Yy(u) = n%:l (ﬁ\/ﬂ(;ﬂ)) ) g (11.5.3)

Following the cumulant method, we have to solve the following equation for w = w(u),
flu — Bi‘ﬂw(u)) = w(u) where f(u) is given in (11.5.1). This leads to a trinomial algebraic
equation for w from which we retain only the positive root (with the additional constraint that
this root should vanish for u = 0)

1
—)-1/2, (11.5.4)
Result 11.1.1 on the expression of the excess energy from the SAO method provides another
representation for X4 as

ww) ww W
i/ dw' (u(w) — u)? = 1/0 W (e FE)TE —u? (1155)

27 Jo 2T B 5

The integrals over w can be taken explicitly, yielding a parametric representation for ¥.

g(u) =

Result 11.5.2 (Free energy expressed as a parametric system)

The parametric representation of the free energy of a Coulomb gas pushed by a soft monomial
wall of parameter vy is given by

4w (u) (27 — 3)(67y + Duw(u)? = 4(2y — 3)%w(u)3
T2y +1)(2v+3) 7w2By(2y+1)(2y+3) 3352y (2 + 3)

Sy (u) = (11.5.6)

where C., was given in Eq. (11.5.1) and w(u) is the unique positive root of Eq. (11.5.4) which
vanishes for u = 0.

In Table 11.1 we give a few examples of closed analytic forms which can be obtained for some
values of 7. These have been obtained by summing the cumulant series using Mathematica. The
same result (in a different, though equivalent form) can be obtained by solving the trinomial
equation, generally by the means of hypergeometric functions.

Now that we have a complete picture for the excess energy of a Coulomb gas perturbed at
its edge by a soft monomial wall, we shall continue our story by answering to the question of the
nature of the rearrangement of the gas after its perturbation: we now provide an exact expression
for the optimal density of the perturbed gas.
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Table 11.1: Excess energies X4 (u) for f = 2 for different values of v for v > 0 with the two first
orders of their expansion around v = 07 and u = +oo0.

11.5.2 Expression of the optimal density

Before providing the exact expression of the optimal density of the gas, let us discuss briefly the

properties of its support. In the case of soft monomial walls, the optimal density has a single

support of the form [ug,+oo[ where ug is the unique positive solution of the following trinomial

equation:

B VrT(y+1)

TR S om v
7y (v+3)

The edge of the support enjoys some elementary properties:

(1 — )% = (11.5.7)

1. ug should be chosen positive (because we are in a pushed phase);

2. wp is smaller than u (because the monomial walls are soft, the position of the new edge
should be smaller than the point of application of the wall)

3. ug should vanish for u = 0 (because the gas is unperturbed for u = 0).

The asymptotic behaviors of uy as a function of u exhibit a change at v = 3/2, indeed
4,

o for v < 3/2, for u> 1, uy ~ IB—WuV_I/2 and for u < 1, ug >~ u.

e for v >3/2 for u>> 1, up ~ u and for u < 1, ug ~ %u”‘l/?

Remark 11.5.3. The regime ug ~ u should be interpreted as a hard-wall type situation as the
point of application of the wall provides the new edge of the gas.

We consider soft monomial walls which can possibly have an extra positive amplitude B
(amounting to replace ¢ by B¢) and we additionally consider general 8 ensembles. It is interest-
ing in the first place to understand how the density behaves with respect to these parameters.
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We have determined in Ref. [4] the scaling property of the optimal density for the soft-monomial
walls ¢(z) = (2)], with v > 1/2 and v # 3/2.

Result 11.5.4 (Scaling properties of the optimal density)
Let v > 1/2 and 7 # 3/2, the optimal density scales in B and [ as

1 2
ppall) = BT p o (57
11.5.8
pB) () = (%ﬁp(?) , (b(E)Qﬁg) ( )
I} u(%)mfs I5]

where pp,,(b) (resp. pgﬁ)(b)) denotes here the optimal density associated to the monomial wall
#(z) = B(z)] (resp. to () for a parameter u. In particular, we may from now on consider
only f =2 and B = 1, all other regimes will be obtained simply by a scaling transformation.

Having the scaling laws in mind, we now present the expression of the optimal density p.
derived from Eq. (11.2.22) upon the insertion of the expression of the potential ¢.

Result 11.5.5 (Expression of the optimal density with a hypergeometric function)

Defining the positive parameter T = ’g:;‘g, where ug is the lower edge of the support of the
optimal density, we have

—_

Vb > u, p*(b) _ (b - u0)+ Uo —

1
1+ _— oF1 (1, 77+,T)]
2(b = uo) ’ (11.5.9)
ﬁ

w
w N
—_

— _1
vb < u, p*(b) = (b UO)Jr (,7 Q)UO 2F1(]-a

U — UQ 2

1+

77277_

A remarkable property is that the monomial soft walls keep the semi-circle property at the
new edge of the gas b = ug. Indeed the expansion of the optimal density around this point reads

3/2
pu(b) = (b ;u0)+ | o (272;(113 v S?O)— up) | (4(2 - 72;(;31@020()52— ug)y LO0b- uO)g

(11.5.10)
Hence it is not possible to create a different order of cancellation at the edge with such kind of

potentials. From the scaling law of the optimal density, we also recover the result for a hard-wall
by taking B — +oo. For any ~, we have

2b—u
PB=toou(b) = prw (b) = —F— (11.5.11)
2/ (b —u)+

We now provide a few examples of these optimal densities for y = 1,2 at § =2 and B = 1.

e For v =1, using Cyy = 1, up = Bi‘ﬂ\/u — ug we find for all b the optimal density

O(b — ug) (11.5.12)

b — ug 2 \/b—uo—i-\/u—uo
+ 1
T pr? og( |b— ul

We represent in Fig. 11.1 this optimal density (seen from the right edge of the spectrum)
for v = 1 and for two values u = {0.05,25}. For u = 25 the deformation of the semi-circle is
small and the logarithmic divergence due to the accumulation of particles at the application
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! 10.1

< 40.05

— Pu+b), y =1
1 1 o 1 1 L 1 1 '] 1
-50 -40 -30 =20 -10 0 -0.125 -0.1 -0.075 -0.05 -0.025 0.
(a) u=25 (b) w=0.05

Figure 11.1: Optimal density p.(—b) for 8 = 2 and the linear wall v = 1 (solid line) with u = 25
and u = 0.05, compared to the semi-circle density pai(—b) (dashed line), to the potential ¢(u + b),
and to the infinite hard-wall density prw (—b). The optimal density for u = 0.05 shows a good
agreement with the hard-wall density.

point of the wall is seen easily. For u = 0.05, the deformation of the semi-circle is much
more important, and the optimal density strongly resembles the hard-wall density.

e For v =2, we find for all b the optimal density

\/b—uo

™

ps(b) =

2 Vb —ug — /u — ug
— | 24/b — — b—u)l
+W2ﬂ<\/ uovu — ug + (b — u) Og\/b—uo—i—\/u—uo

> @(b — UO)

(11.5.13)
We represent in Fig. 11.2 this optimal density (seen from the right edge of the spectrum)
for v = 2 and for two values u = {1,100}. For u = 1 the deformation of the semi-circle is
small and there is no divergence at the application point of the wall as the potential is not
sharp enough'®. For v = 100, the deformation of the semi-circle is much more important,
and the optimal density strongly starts to resemble the hard-wall density.

Lt : 0.

—-200 —-150 —-100 =50 0 =25 -2. -15 -1. -0.5 0.
(a) w=100 (b) u=1

Figure 11.2: Same as Fig. 11.1 for the quadratic wall v = 2 with v = 100 and u = 1.

13We have proved in Ref. [4] that a divergence occurs only for v < 1.
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11.5.3 Relation to truncated linear statistics: matching bulk and edge

To conclude this Chapter on the soft monomial walls, we would like to mention a final result
about the matching of the truncated linear statistics in the bulk and at the edge of the spectrum.
Indeed, we have shown in Ref. [4] that there is a smooth matching between the results of Ref. [229]
for truncated linear statistics in the bulk and the results presented in this Thesis at the edge for
the linear wall v = 1. The details of the matching are non-trivial and instructive and furthermore
it can be shown a form of universality, i.e. that any macroscopic linear statistics problem which
is smooth around the edge of a Gaussian S random matrix yields the same results as for v = 1.

11.6 Where all the physics hides: upper bounds of the
excess energy

The presentation of the linear statistics at the edge of Gaussian S random matrices has been so far
quite mathematical. In this Section, we will trade technicality with simple arguments to discuss
the physics of phase transitions in the perturbation of a Coulomb gas at its edge. In particular,
we will show the existence of a general free-to-pushed transition of order larger than or equal to
three and we will show that this transition can be of two types depending on the value of the
parameter 7: (i) a perturbative rearrangement of the edge (v > 3/2) and (7i) a non-perturbative
hard-wall-like breaking of the edge of the Coulomb gas (v < 3/2). The critical value v = 3/2 will
be called the critical rigidity of the edge.

The two simple ingredients we shall require for our discussion are two upper bounds for the
free energy ¥4: a convexity bound and a linear statistics comparison bound. The key ingredient

is that these bounds are shown to be saturated in some regime.

Lemma 11.6.1 (Jensen’s bound)

Jensen’s convexity inequality states that g [e7t] > e Eslll. Specifying to the linear statistics

L= t2/Rdb p(b)p(u — b), (11.6.1)

and recalling the expected value of L in Eq. (10.2.10), this inequality provides an upper bound
for ¥4(u) valid for any potential ¢

Sy (u) < /Om db\fqﬁ(u ). (11.6.2)

The interpretation of this bound is that the free energy is not larger than the first cumulant, 7.e.
the energy provided by the additional potential on the unperturbed gas. This is intuitive as the
gas will tend to reorganize itself to lower its energy when the new potential is applied.

The second upper bound will relate two different linear statistics with two different potentials
that are ordered.
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Figure 11.3: Right edge of the semi-circle (blue line) and two wall potentials: a hard-wall (green
line) and a soft wall with coefficient v = 1 (orange line).

Lemma 11.6.2 (Comparison bound)

Let two linear statistics with potentials ¢, and ¢ ordered such that ¢1 < ¢o. Then for all
u =0,

<Eg

i=1

rm o (utt=2/3a;)
Eﬁ He v
=1

+oo
H e—t¢1(u+t2/3ai)] (11.6.3)

In particular, this allows to compare the excess energies of both problems as

Yu >0, X4 (u) < Xp,(u) (11.6.4)

The interpretation of this bound is that the larger the additional potential is, the more free energy
the system gains. Hence, if one increases the amplitude of the perturbing potential, there cannot
exist a rearrangement of the particles that decreases the free energy.

The second upper bound is potential specific in the sense that to be able to have an upper
bound, we require the exact knowledge of another linear statistics problem. Since the beginning
of this Chapter, we have considered soft permeable walls ¢ and we shall compare them to a hard
impermeable wall potential which is defined by the function ¢yw defined by part as

¢uw(z 2 0) = 400 -

We represent in Fig. 11.3 the edge of the semi-circle along with two potentials used for the linear
statistics: a permeable wall with coefficient v = 1 and a hard wall.

By construction all monomial soft walls verify the inequality ¢ < ¢pw, which leads to, using
the comparison bound of Lemma 11.6.2,

Es
i=1 i=1

+00 too
[ e tomwlwtt™ a0 | <Ry | T etotwtt™*/ % (11.6.6)

Denoting the largest point amax = max;{a;}, the left hand side of Eq. (11.6.6) is equal to the cumu-
lative distribution of the largest Airy point, i.e. Eg {H:;Of e‘wHW(““iwgai)} =P (amax < —ut2/3>
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which leads to the following inequality

P (amax < —ut2/3) < Eg

+oo
I1 e_t¢("+t_2/3“i)] . (11.6.7)
=1

Using the standard result for the large deviations of the largest eigenvalue of S-ensembles (i.e.
from Tracy Widom for 8 = 1,2,4 [158]) leads to an upper bound of the excess energy of the
Coulomb gas subject to a soft wall potential.

Ye(u) < %ui” (11.6.8)

Remark 11.6.3. By construction, this upper bound is saturated by the hard wall, hence if one

multiplies ¢ by an amplitude B, then for any positive potential ¢, imp_, ;o Xpg(u) = ;%u?’.

Gathering the two upper bounds of Egs. (11.6.2) and (11.6.8) brings a strong constraint on
the free energy X pe(u), indeed we find after the precise calculation of the first cumulant the
following result.

Result 11.6.4 (Saturation of the bounds)

(B 3 T(y+1)B 3
Ypo(u) < min | =—u’, —————u7"2 11.6.9
5o(u) < mig (24 VATT (5 + ) (11.6.9)

From the precise mathematical treatment of the previous Section, it is easy to show that this
upper bound is tight for small and large u.

Let us take a moment to comment on this upper bound.

e The u? bound describes a non-perturbative response of the gas to the external potential. It
is equivalent to the application of a hardwall which inevitably breaks the edge of the gas.

e The «'*3 bound described a perturbative response of the gas to the external potential.
Indeed, coming from the first cumulant, it is seen as an elastic or linear deformation of the
edge of the gas.

In particular, we deduce the small v > 0 behavior of the free energy X4 (u)

wl oy <

11.6.1
uw%’ N> (11.6.10)

Yg(u) o {

ol N

As the potentials ¢ are positive, one should also have Y4(u < 0) = 0. This is easily seen as the
free energy is positive as the potential is positive, and for negative u the first cumulant is equal
to zero, hence by Jensen’s inequality the free energy should be zero for negative u.

Result 11.6.5 ( Critical rigidity of the edge)

The consequence of this study is the appearance of a singularity in the free energy of order
v at u = 0, where

3
v =max(3,v+ 5) (11.6.11)

The soft wall parameter v has a critical value at v = % which we call the critical rigidity of

the edge of the semi-circle. The reason for this name is quite transparent as this critical value
is the frontier between the elastic and inelastic regimes.
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In the previous Chapter, we introduced the soft monomial walls with their coefficient v and
interpreted v as a measure of the sharpness of the potential at the point of application. This
interpretation is now even more transparent as we unveiled the existence of a critical rigidity for
the edge of Gaussian § random matrices for a critical value of ~.

There are many applications of the study of linear statistics at the edge, the late KPZ equation
being one of them. We refer the reader to Ref. [4] for a broader discussion on this matter. In the
next Section, we will introduce one of these applications, the non-intersecting Brownian interfaces,
and we will propose a possible experimental realization of our predictions.

11.7 Application to non-intersecting Brownian inter-
faces subject to a needle potential

The results presented in this Thesis additionally apply to non-intersecting Brownian interfaces
representing elastic domain walls between different surface phases adsorbed on a crystalline sub-
strate and perturbed by a soft, needle like potential. Here we heavily borrow from the very elegant
presentation given in Refs. [123,229]. There is a related extensive work on the fluctuations of
vicinal surfaces: a vicinal surface of a crystal can be obtained by cutting a crystal at a small angle
from a high-symmetry direction, as represented in Fig. 11.4. Because of the discrete periodicity
of the crystal, the cut gives a sequence of terraces separated by irregular steps. Seen from above,
the steps are described by one-dimensional non intersecting random walks. We refer to [271] for
further details on vicinal surfaces.

Consider N non-intersecting ordered interfaces at heights hqi(z) < --- < hy(x) that live
around a cylinder of radius L/(27), they can be thought as random walkers with periodic bound-
ary condition. Add a hard wall at h = 0 (so that h;(x) > 0 for all ) induces some effective
potential for each interface and consider the large system limit, i.e. L — oo, where the interfaces
reach equilibrium. We now introduce four contributions to the energy of the interfaces:

1. An elastic energy Fejastic(h) = %(%)2,

2. A confining energy V' (h) = % + a(a—1)

2h?

with b > 0 and o > 1,

3. A pairwise interaction between interfaces Vpair(hi, hj) = g(g -1) (h'+1h-)2 + (h__lh_)2 with
i J T J
B >0,

4. An external needle soft potential probing the interfaces at the position £ = 0 on the cylinder,
Vaeedle(h, 2, U) = §(x)W (h(x)—U) (see Fig. 11.5). The parameter U > 0 controls the depth
of the probe and the exact form of W controls the type of measurement on the interfaces.
The § function indicates that the probe is sufficiently local in space. It could be realized in
practice as an Scanning Tunneling Microscope tip.

The choice of the confining energy comes from the fact that confinement is necessary not to
have a zero mode, so for simplicity we consider a quadratic one, plus a repulsive inverse square
potential natural from entropic considerations as shown by Fisher in Ref. [272]. By a path inte-
gral calculation, it was proved in Ref. [123] that the equilibrium joint distribution of heights at
a fixed space point can be obtained from the spectral properties of the quantum Calogero-Moser
Hamiltonian. However, concerning the edge properties that we are probing here, these are not
important details. From the universality of the soft edge, a purely quadratic confining potential
with no hard wall at h = 0, as considered in [271], would do as well.
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Figure 11.4: Vicinal surface of a crystal: the terrace-step-kink picture is obtained by cutting a
crystal at a small angle from a high-symmetry direction. The figure is a Monte Carlo simulation of
Einstein [271].

Indeed, at equilibrium, the probability to observe a particular realization of N lines is given
by the Boltzmann weight (in units where temperature is unity)

N
P [{hi(2)}iepm | o exp (—ZE [hi(=)] = > Vpair(hz'ahj)> Ly, (2)>0 (11.7.1)
i=1 1<i<j<N

where the total energy reads E[h| = Eelastic(h) + V(h) + Vieedle (R, z,u). The joint probability to
see interfaces at positions {hi,...,hn} at © = 0 and = = L (because of the periodic boundary
condition) is given by the path integral

N - hi(L)=h;
LOES | O L | B (11.7.2)
i=1hi(0)=hi 1<i<j<N
which in turn can be seen as a propagator of N quantum particles

N
P(hy,... hy) oc e 2im WU ipy o | e Dinertace |y L ) (11.7.3)

subject to the many-body Hamiltonian

N 2
1d
Hintertace = Y |55 + V(R [+ D Voair(hi, hy) (11.7.4)
| 2dh; e
i= ( <i<gj<N

In the large L limit, the marginal PDF is given by the N-body ground state of Hinterface Which
is exactly the Calogero-Moser model [273]. As the brownian interfaces are non-intersecting, the
corresponding quantum particles are fermionic and the ground state is formed by filing the first N
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external potential

hi(x)

ha(x)
h3(x) !
ha(x) W

hs(x)+

he(x)

ha(x) V\/\/Jf\/\/\/\JM

Figure 11.5: Representation of the seven top Brownian lines subject to the needle external potential.
In absence of the potential, the density of the top lines as a function of the depth is described by
the edge of the semi-circle pa; (dashed lined on the right) and in presence of a smooth potential, the
reorganization of the interfaces imposes a new optimal density p. (black line on the right).

eigenstates of the Hamiltonian and given by the Slater determinant of the first IV eigenfunctions
{%i};en- This determinant was computed in Ref. [123] using exacts results on the Calogero-Moser
Hamiltonian eigenstates.
N 2
P(hl, - ,h]v) X H 67W(h¢7U) ‘det[wi(h‘j)]i’je[LN}‘
o (11.7.5)
. H h?ae—W(hi—U)—bhf H (hf _ h?)ﬁ

i=1 1<i<j<N

After the change of variable bh? = );, this PDF corresponds to the general Wishart ensemble
with arbitrary 8 > 0 and an external potential W. In the large N limit and in the absence of
the potential W, the arrangement of the top brownian lines is described by the soft edge of the
Marcenko-Pastur distribution around A ~ 4N or equivalently h ~ 2v/N.

The results of this Thesis readily apply to describe the linear statistics of the top non-
intersecting Brownian interfaces in the ground state in a region of width N~1/¢ around the
top line located at a height ~ 2¢/N. Indeed, if one considers the rescaled heights h; = (v/bh; —
2\/N)41/3N1/6, then these behave for large N jointly as the Airyg process h; := a;. One ob-
servable studied in [229] in the bulk is the center of mass position of the N; top interfaces
H(N,) = N% vazll h;. In presence of the needle potential W, parameters can be adjusted so that
the soft potential W translate into the soft potential ¢ in our units, using the correspondence
W(h; —U) = to(u+t2/3a;) with vVbh; = 2¢/N +471/3N~1/6q;. A practical way to measure the
value of u is to measure the position of the center of mass H(Nj), from which we can determine
the optimal density of the first Vi brownian lines. Finally, we represent in Fig. 11.5 the top
interfaces (at a distance of order N=1/6 to the first line) subject to an external potential and the
optimal density for the first top lines.

Note that other applications of our work have been studied in Ref. [4], in particular to fermions.
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11.8 Open questions regarding linear statistics at the
edge of random matrix spectra

The work we have presented on the linear statistics at the edge of Gaussian random matrices
was, to the best of our knowledge, the first to provide a precise picture of phenomena such as
free-to-pushed phase transitions at the edge or to propose a definition of the rigidity of the soft
edge, describing its stability against small perturbation localized around the edge.

Let us mention that our work in Ref. [4] does not restrict to soft monomial walls, indeed we
have analytically solved the problem (i.e. determined the exact expression of the excess energy
and the optimal density) for other potentials which contrary to the monomial walls can penetrate
the entire spectrum:

e The exponential wall ¢(z) = e?;

e The inverse monomial wall ¢(z) = (—z)~° with § > 3/2 for z < 0 and ¢(z) = +oc else. The
inverse monomial wall can be viewed as a wall which penetrates the semi-circle as a power
law for © < 0 and as a hardwall for u > 0.

There are still many open directions which we would like to briefly discuss before closing this
Chapter.

11.8.1 Pulling the edge rather than pushing it

The original motivation for the linear statistics problem at the edge arose from the determination
of the left tail of the solution to the Kardar-Parisi-Zhang for droplet initial condition at late time.
In this setting, the problem amounted to study a Coulomb gas in its pushed phase, i.e. by adding
an additional confining potential localized at the edge: these were the soft monomial walls we
have extensively discussed.

It would be extremely interesting to extend this research program to pulled Coulomb gases by
applying a potential which decreases the confinement of the gas in order to expand it. From the
knowledge of macroscopic linear statistics, this problem will turn out to be much more complicated
due to the fact that the density of the gas can have multiple supports. It will be extremely
interesting to see how the support splitting occurs in the Stochastic Airy Operator method.
We believe that in this case the WKB method will be more involved due to the presence of
multiple classical turning points and the saddle points or stationary equations will have non-
unique solutions: there will be one solution for each interval of support of the optimal density
of the Coulomb gas. We also believe that at the moment, the most natural way to initiate this
research direction would be by the cumulant method, where our Mellin-Barnes summation trick
provides a way of summing over all solutions of the saddle point equation, see Appendix B.1.

11.8.2 Linear statistics at hard edges

The linear statistics problem we have treated so far concerns the soft edge of random matrices
where the Airy ( point process arises. Another interesting direction would be to extend our
research to the hard edge of random matrices in the Laguerre 8 ensemble for instance. We
believe that the problem is well posed and that all tools necessary to solve it exist: indeed there
is an analog of the Stochastic Airy Operator at the hard edge which is the Stochastic Bessel
Operator. Additionally, a Coulomb gas formulation near the hard edge could easily be obtained
from the joint probability distribution of the eigenvalues in the Laguerre 5 ensemble.
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11.8.3 Universality of the linear statistics at soft edges of generic random
matrices

In this Thesis, we have presented our results on the linear statistics problem at the soft edge of
Gaussian random matrices. For the sake of universality, it would be interesting to prove that our
results hold for a larger class of random matrices exhibiting a soft edge. A possible direction would
come from the Stochastic Airy Operator whose universality has been investigated by Krishnapur,
Rider and Virag [274] by an operator approach, by Bekerman, Figalli and Guionnet [275] by the
means of measure transportation and by Bourgade, Erdés and Yau [276] by their relaxation of
Dyson Brownian motion approach. In particular, it would be interesting to know whether the
order of the free-to-pushed phase transition is always larger than three for all soft edges and if
the critical rigidity is always 3/2.

Conclusion

In conclusion to this Chapter on linear statistics at the edge of Gaussian random matrices, we
presented and unified four apparently distinct methods to study the large deviations for linear
statistics at the edge of the S ensemble of random matrices. It equivalently describes the response
of a logarithmic Coulomb gas pushed delicately at its edge. The results of this Thesis raise multiple
questions such as the extensions to more general soft potentials leading to possibly non-unique
solutions of the saddle points or multiple supports for the optimal density.
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Conclusion and perspectives

“One never notices what has been done; one can only
see what remains to be done.”
— Marie Curie

IN this Thesis, we have made meaningful progress in the understanding of the properties of
the solutions to the Kardar-Parisi-Zhang equation. We have revisited the KPZ equation in
a half-space, extending previous exact solutions obtained in the literature. In addition we have
introduced in a self-contained way a general framework to understand the large deviations of the
solutions to the KPZ equation at short time. This framework allowed us to discover analytically
the singularity of the large deviation function of the KPZ height at short time for the Brownian
initial condition. At large time, we have unveiled and unified different perspectives to obtain
the large deviations of the solutions to the KPZ equation. This was intimately connected to the
understanding of linear statistics at the edge of Gaussian random matrices at the microscopic
level for which we have obtained new results.

We have tried to highlight in this Thesis that the physics surrounding the Kardar-Parisi-Zhang
equation is extremely rich, ranging from its origin in out-of-equilibrium physics to its remarkable
mathematical ties. In particular, we have presented some intriguing connections between the
solutions to the KPZ equation, Random Matrix Theory, Brownian functionals and the theory of
Coulomb gases. Nonetheless, we think that these connections are just the tip of an iceberg and
that further developments will shed some light on a more general physics, especially regarding
the various cross-overs appearing in the KPZ universality class. This is the reason why we stated
a large number of open questions all along this Thesis.

There is an extensive number of research directions to undertake regarding the Kardar-Parisi-
Zhang equation. The first and maybe most difficult one is the question of solving the equation
for any initial condition. Even without going to that level of ambition, the existing solutions
raise already a number of questions. Can one construct an appropriate generating function of the
KPZ solution which could always be expressed by a Fredholm determinant or Pfaffian 7 Can we
relate other initial conditions to random matrix ensembles at all times 7 Can we establish general
properties of the large deviations of the KPZ solution at short time for a general initial condition
? Could we use the integrability of the KPZ equation to discover new integrability features in
the WNT ? Could we use the exact short-time solutions obtained with the cumulant method to
solve the hydrodynamic equations of the Weak Noise Theory 7 At the moment, the large-time
behavior of the solution to the KPZ equation is well understood in two restricted cases: the
droplet in full-space and in half-space in the critical case. Can we extend our study and obtain
the large-time behavior of the solutions for other initial conditions such as the flat initial con-
dition ? We have made a conjecture in this direction for the stationary initial condition in Ref. [6].

To finally conclude, let us say that we hope to have raised enough interesting questions in
this Thesis to stimulate the interest of the ever-growing Kardar-Parisi-Zhang community.
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157



A Properties of some functions (Airy, Lambert)

A.1 The Lambert W function

We introduce the Lambert W function [171] which we use extensively throughout this thesis.
Consider the function defined on C by f(z) = ze*, the W function is composed of all inverse
branches of f so that W(ze*) = z. It does have two real branches, W, and W_; defined re-
spectively on [—e~ !, +o00[ and [—e~!,0[. On their respective domains, Wy is strictly increasing
and W_y is strictly decreasing. By differentiation of W(z)ew(z) = z, one obtains a differential
equation valid for all branches of W (z)

aw - W(z)

1z (2) = A+ W () (A.1)

Concerning their asymptotics, Wy behaves logarithmically for large argument Wy(z) ~, 400
log(z) — loglog(2) and is linear for small argument Wy(2) =, 0 2z — 22 + O(z3). W_; behaves
logarithmically for small argument W_;(z) ~, - log(—z) — log(—log(—z)). Both branches
join smoothly at the point z = —e~! and have the value W(—e~!) = —1. These remarks are
summarized on Fig. 6. More details on the other branches, Wj for integer k, can be found
in [171].

Figure 6: The Lambert function W. The dashed red line corresponds to the branch Wy whereas
the blue line corresponds to the branch W_j.

A.2 Airy function
The Airy function is defined for v € R as

d 3
Ai(v) = /R » 2 exp (z’; + ivn) (A.2)

where € = 0F. The Airy function verifies the second order differential equation
A" (v) = vAi(v), (A.3)

It is normalized [p dv Ai(v) =1 and we recall the following asymptotics of the Airy function

2,3/2
e—5vY

[ ] AS v — _“OO7 Al(?}) ~ W
™V
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sim(%(fv)?’/2 + %)
STt/

e As v — —o0, Ai(v) ~

A.3 Airy kernel

The Airy kernel is defined either by its integral representation for u,v € R as
+oo
Koai(u,0) = / dr Ai(u + r)Ai(r + v), (A.4)
0

or by its Christoffel-Darboux representation

Ai(u)Ai' (v) — Ai' (u)Ai(v) .

Kai(u,v) = A5
ai(0) )= (A5)
The Airy kernel also verifies the separation relation

(Oy + Op) K ai(u,v) = —Ai(u)Ai(v). (A.6)

B Some technical theorems and lemmas

B.1 Mellin-Barnes derivation of the Lagrange inversion formula

Here we perform the summation of the series which appears in (11.1.4). We use a Mellin-Barnes
summation method inspired from Lemma 6 of Ref. [170] which was introduced to calculate the
sum over replicas in the context of the KPZ equation. For benign real test functions f, assumed
to be positive, the following series admits a closed algebraic form

S(u):;?ﬂ( Z|af’u+awZ ) —1] -1 (B.1)

where the {w;}’s are the positive solutions of the equation f(u + aw) = w. We use this formula
in this Thesis only in the case of a unique solution. The present Mellin-Barnes method proposes
a formula in the case of multiple solutions.

Physicist’s heuristics. Let us start by manipulating the summand

a™ .
0" " = [ dys) S @) 1w (B.2)
n: R n:
Let us express the delta in Fourier space and proceed to the change of variable z = n + iy,

a”

- P —r(z— n)a new)? )
' /11+le /QW !(a“) Fw) (B-3)

Let us suppose that we can shift the contour of integration of z such that there is no n dependency
anymore. Let us call I the new shifted contour.

an

(@ /2m/d7’67’“(z g (8u)"f(u)z (B.4)

Let us choose the contour I' = a + iR for some a €]0, 1] so that T is parallel to the imaginary axis and let
us proceed to the summation over n.

Zg / - / dre (n>162f”(au>") f(u)? (B.5)

n>1
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One recognizes an exponential series, and more particularly, the series of a translation operator.

n

> = [ 5 [arer [ 1]
n>1 i (B.6)

dz
— _~ dre "* Nz _ z
/1“2”/]1& re [f(u—i—ae )? = f(u) ]
As T is parallel to the imaginary axis and as both r and f are real valued, one recognizes the integral over
z as Fourier transform and we therefore have
a” .

Z m(au)”f(u)" = /Rdr [6(log f(u+ ae”) —r) — 6(r)]
=t (B.7)
1

1
B ;|af’(u+ae”) 1]

where r; are the real solutions of the equation f(u + ae”) = e”. As r is real, we define w = e” > 0 which
concludes the derivation. O

Furthermore suppose now, as in this Thesis, that there exists a unique real solution w = w(u)
to the equation f(u + aw) = w and that 1 — af’(u + aw) > 0 for this solution. It is possible to
further simplify the series. Indeed, differentiating the equation f(u + aw) = w leads to

{1 - af’(u—{—aw)} dw = f'(u+ aw)du (B.8)
Inserting this differential relation into Eq. (B.1) yields

st = 32 oy syt = Lt g

n>1 n.

(B.9)

B.2 Sparre Andersen theorem

The Sparre-Andersen theorem lies in the framework of random partial sums S; = X1 +--- + X;
of a sequence of random variables {X;}. Here we make the hypothesis that our process forms
a bridge, i.e. Sy = Sp41 = 0 and we are interested in N;; be the number of points (j,S5;),
j =1,...,n which lie above the straight line from (0,0) to (n + 1,S,+1 = 0).

Theorem B.1 (Sparre Andersen Corollary 1, Ref. [277])

If the random variables X1, ..., X,+1 are independent and each has a continuous distribution,
or if the random variables are symmetrically dependent and the joint distribution function is
absolutely continuous, then for any C which is symmetric with respect to Xy, ..., X, 1 and
has P(C) > 0, we have

1

Vm € [0,n], IP’(N;Z:m|C):n+1

(B.10)

For our case of interest, the event C will be our hypothesis that the process is a bridge.

C = {SO = 0} N {Sn—l—l = 0} (B.ll)
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B.3 Proof of the identity (9.2.13) for the systematic expansion of the Fredholm
terminant of the Airy kernel

In this Appendix, we prove the identity (9.2.13) for the function L,(0,a,b). Starting from the
definition in Eq. (9.2.11), one has

0' O 0 Z Z (Hanha O'nl> / le...de_l (HKnj(Z[—Zg_1)>
k=1 ni,...,np=1 \f=1 0 /=1 jgzg
(B.12)

where K, (z) = f/z% is the Gaussian kernel. The integral in the expression above can be inter-
preted as the probability that a random walker, starting initially at position 0, ends at position 0
after k — 1 steps after staying only on positive positions for all intermediate steps. The transition
probabilities depend on the variables n;, but in a symmetric way since each n; has the same
weight. Thus, it is possible to use the Sparre Andersen theorem (see Appendix B.2) to replace
the integral by + Ky, 4...4n, (0). This leads to

1 S (_1)k_1 > Hﬁ 10an a()’
Lo(0,0,0) = A=t O 07
(0,0,0) = = kz::l Eo E;k Vit

(B.13)

= ;(080) /0+00 dav/zg(oe™)

With no boundary term using that g(0) = 0 as long as y/zg(ce™*) — 0 for x — +o00. We precisely
obtain (9.2.13).
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RESUME

Cette thése de doctorat porte sur I'étude du modele de croissance stochastique Kardar-Parisi-Zhang (KPZ) en 1+1
dimensions et en particulier de I'équation qui le régit. Cette thése est d’'une part destinée a effectuer un état de I'art
et dresser un portrait moderne de la recherche des solutions exactes de I'équation KPZ, de leurs propriétés en terme
de théorie des grandes déviations et également de leurs applications (en théorie des matrices aléatoires ou en calcul
stochastique notamment). D’autre part cette thése a pour but de formuler un certain nombre de questions ouvertes a
l'interface avec la théorie de l'intégrabilité, la théorie des matrices aléatoires et la théorie des gaz de Coulomb.

Cette these est divisée en trois parties distinctes portant (i) sur les solutions exactes de I'équation KPZ, (ii) sur les
solutions a temps court sous la forme d’un principe grandes déviations et (iii) sur les solutions a temps long et leurs
extensions aux statistiques linéaires au bord de spectre de matrice aléatoire.

Nous présenterons les résultats de cette these comprenant notamment (a) une nouvelle solution de I'’équation KPZ a tout
temps dans un demi-espace, (b) une méthodologie générale pour établir a temps court un principe de grandes déviations
pour les solutions de KPZ a partir de leur représentation sous forme de déterminant de Fredholm et (c) une unification
de quatre méthodes permettant d’obtenir a temps long un principe de grandes déviations pour les solutions de I'équation
KPZ et de maniére plus générale d'étudier des statistiques linéaires au bord du spectre de matrices aléatoires.

MOTS CLES

Systémes désordonnés et hors équilibre, polymeére dirigé, Kardar-Parisi-Zhang, modeéles exactement sol-
ubles, large déviations, théorie des matrices aléatoires, statistique linéaire, processus ponctuel d’Airy,
fermions froids.

ABSTRACT

Throughout this Ph.D thesis, we will study the Kardar-Parisi-Zhang (KPZ) stochastic growth model in 1+1 dimensions
and more particularly the equation which governs it. The goal of this thesis is two-fold. Firstly, it aims to review the state
of the art and to provide a detailed picture of the search of exact solutions to the KPZ equation, of their properties in
terms of large deviations and also of their applications to random matrix theory or stochastic calculus. Secondly, is it
intended to express a certain number of open questions at the interface with integrability theory, random matrix theory
and Coulomb gas theory.

This thesis is divided in three distinct parts related to (i) the exact solutions to the KPZ equation, (ii) the short-time
solutions expressed by a Large Deviation Principle and the associated rate functions and (iii) the solutions at large time
and their extensions to linear statistics at the edge of random matrices.

We will present the new results of this thesis including (a) a new solution to the KPZ equation at all times in a half-space,
(b) a general methodology to establish at short time a Large Deviation Principle for the solutions to the KPZ equation from
their representation in terms of Fredholm determinant and (c) the unification of four methods allowing to obtain at large
time a Large Deviation Principle for the solution to the KPZ equation and more generally to investigate linear statistics at
the soft edge of random matrices.

KEYWORDS

Disordered and out-of-equilibrium systems, directed polymer, Kardar-Parisi-Zhang, exactly solvable models,
large deviations, random matrix theory, linear statistics, Airy point process, cold fermions.
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