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Abstract

The thesis context is that of the quantified self, a movement born in California that

consists in getting to know oneself better by measuring data relating to one’s body

and activities. The research work consisted in developing algorithms for analyzing

signals from an IMU (Inertial Measurement Unit) sensor placed on the leg to recog-

nize different movement activities such as walking, running, stair climbing... These

activities are recognizable by the shape of the sensor’s acceleration and angular

velocity signals, both tri-axial, during leg movement and gait cycle.

To address the recognition problem, the thesis work resulted in the construc-

tion of a particular hidden Markov chain, called semi-triplet Markov chain, which

combines a semi-Markov model and a Gaussian mixture model in a triplet Markov

model. This model is both adapted to the nature of the gait cycle, and to the

sequence of activities as it can be carried out in daily life. To adapt the model pa-

rameters to the differences in human morphology and behavior, we have developed

algorithms for estimating parameters both off-line and on-line.

To establish the classification and learning performance of the algorithms, we

conducted experiments on the basis of recordings collected during the thesis and

on public dataset. The results are systematically compared with state-of-the-art

algorithms.

Keywords: Quantified-self, activity recognition, inertial measurement unit,

triplet Markov model, semi-triplet Markov chain, on-line estimation.





Résumé

Le contexte de la thèse est celui du quantified-self, un mouvement né en Californie

qui consiste à mieux se connaître en mesurant les données relatives à son corps et

à ses activités. Les travaux de recherche ont consisté à développer des algorithmes

d’analyse des signaux d’un capteur IMU (Inertial Measurement Unit) placé sur la

jambe pour reconnaître différentes activités de mouvement telles que la marche, la

course, la montée d’escalier.... Ces activités sont reconnaissables grâce à la forme des

signaux d’accélération et de vitesse angulaire du capteur, tous triaxiaux, pendant

le mouvement des jambes lors du cycle de marche.

Pour résoudre ce problème de reconnaissance, les travaux de thèse ont permis

la construction d’un modèle de chaîne de Markov cachée particulier, appelé chaîne

triplet semi-Markov, qui combine un modèle semi-Markov et un modèle de mélange

gaussien dans un modèle de Markov triplet. Ce nouveau modèle est adapté à la fois à

la nature du cycle de marche et à l’enchaînement des activités que l’on peut réaliser

dans la vie quotidienne. Pour adapter les paramètres du modèle aux différences

de morphologie et de comportement humain, nous avons développé des algorithmes

d’estimation des paramètres en ligne et hors ligne.

Pour établir les performances d’apprentissage et de classification des algo-

rithmes, nous avons mené des expériences sur la base d’enregistrements recueillis

pendant la thèse et d’un ensemble de données publiques. Les résultats sont systé-

matiquement comparés aux algorithmes de reconnaissance actuels.

Mots-clés: Quantified-self, reconnaissance d’activités, capteur inertiel, modèle

de Markov triplet, chaine semi-markovienne, estimation on-line.





Chapter 1

Introduction

Quantified self is gaining interest in our modern life. It is a movement started from

2007 at California, which refers both to the self-tracking with technology and to

a community of users and makers of self-tracking tools. Self-tracking is related to

‘monitoring, measuring and recording elements of one’s body and life as a form of

self-improvement and self-reflection’, commonly using digital technologies [1]. The

objective of this practice is to obtain a precise account on particular elements of

human’s life, and keep tracking of them over time. The quantified self movement

begun to emerge in recent years, perhaps the most important factor is the reduction

in the development costs various techologies. Another reason is that more and more

people are concerned about their condition and their health marks. One user from

Finland explains why quantified self technology is such important, he used a body

wearing sensor network to track his weight, fat percentage, sleeping time for years.

And he comments: ’I want to improve myself. I want to know where I am and

where I’m going. This device has taught me how to exercise and eat right’ [2]. As

it suggests, via quantified self technologies, people can generate their own expert

knowledge about themselves.

The related practices aim at tracking the physical, mental, and emotional per-

formances of our daily life. For example, using GPS to locate where we are and

track the routine of our daily life, using smart watch or smart phone to monitor

activity and sleep. . . And the generated time series data could be various, such as

position, motion related signals, electromyography (EMG) signals, electrocardiog-

raphy (ECG) signal. . . There are many research directions in the field of quantified

self. They can be commonly classified into three categories: (i) the devices used

for collecting quantified self data; (ii) the identification methods used for extract-
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ing data of interest; (iii) the assessment and utilization of the identified data. In

this thesis we were interested in using IMU (inertial measurement unit) sensor to

recognize the lower limb locomotion activities.

Our daily life can be described by a series of activities, such as sleeping, walking,

sitting, eating food, etc. The order and sequence of the activities can be very differ-

ent between two people, and detecting the kind of activity and their duration can

be very interesting. Indeed, individuals can obtain a general view of their life over

a long period of time, which is beneficial for them to manage their schedule, such as

making fitness program or rehabilitation plan. At the people level, knowing what

kinds of activity have been done by a large number of people gives an insight view

of the statistical inference of health markers such as obesity, physical inactivity. . .

However, the main activity monitoring concerns its ability to provide an according

daily report of our activity. By knowing the amount of sports we have done and the

regular time we sleep, we will be aware of of the extent to which we lead a healthy

life. Based on these information, specialists can provide advice to reduce anxiety

or insomnia for example, or even assist the doctors to diagnose the sickness of their

patients. More than that, abnormal activity monitoring can also prevent accident.

Fall detection techniques can help the elderly to quickly access to an emergency

center. Of course these activities are performed by people very often, if looking at

all the activities that people perform every day, the lower limb locomotion activity

is one of the most frequent activity. Lower limb locomotion activity is the motion

that drives a person moving from one place to another place by using lower limb,

including walking, running, cycling. . . This kind of activity is inevitable in our daily

life. As mentioned above, the great amount of quantified self practices shows the

importance of activity monitoring, while the fundamental of activity monitoring is

the correctness of automatic activity recognition.

When a person is performing motion activity, various data can be acquired that

relate to the activity, such as ECG related to the heart, EMG of a specific muscle,

kinematic information of some body parts, etc. A lot of commercial products are

available to acquire these data. Among them, an IMU sensor is able to acquire

the kinematic information, generally it measures acceleration, angular rate and

2
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magnetic fields. Since an IMU sensor is very small and light—also it is able to

transfer data by wireless connection—, it can be worn on the body without affecting

the motion. Since the thesis investigates the lower limb locomotion activity, we

assume that the IMU sensor is placed on the lower limb to acquire the kinematic

information of the motion. As we know, when people carry out different activities,

the motion of the body will also be different. For example, walking is more moderate

than running, which means the two legs are alternating slower in walking than in

running. Additionally, the feet in walking are not lifted as high as running. Also,

the same activity is not performed exactly the same way by different people, due

to the morphology and attitude difference. As a result, the measured kinematic

information of one activity will differ from the others. This property provides us

a way to recognize different activities from the signals, if it is possible to find a

mechanism able to distinguish each pattern of the activity.

In most of the lower limb locomotion activities, continually moving from one

place to another place needs our two legs to repeatedly alternate a specific pattern.

Normally the two legs cannot lift or make forward at the same time, except for some

special motions like distance jump. Therefore, one cycle of the alternative pattern is

called gait cycle, it consists of the phases that leg starts lifting (or making forward)

and waits the other leg lifting (or making forward). Consequently, most of the lower

limb locomotion activities share a similar periodic pattern and have similar phases

inside one cycle. This kind of periodic cycle and the phases may provide a chance

to tell the activities apart.

In this context, the thesis mainly focuses on developing specific Markov chain

models to detect gait cycles and recognize the related activities. Because hidden

Markov chains are very suitable for handling time series data and state. The Markov

models are very simple, with robust ways to learn parameter both off-line and on-

line. Recently, new advances in Markov modeling have been reported (i.e. pairwise

and triplet Markov models [3–5]), and it appears to be of great interest to evaluate

and compare those models with the state-of-the-art. So, we propose some specific

Markov models that are suited for recognizing lower limb locomotion activity and

detecting gait cycle. After proper model construction and parameter learning, hid-

3
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den states can be recovered from the observed data only. Hence, the goal of the

thesis is to establish some specific Markov chain models to represent the real lower

limb locomotion activity properly. Besides, the established models should be suit-

able for on-line recognition. Therefore, the problem of parameters updating is also

studied.

Outline of the thesis

The thesis is divided into six Chapters, the remaining five Chapters are organized

as follows:

Chapter 2 introduces the recent literature work of quantified self researches.

The review introduces several aspects separately. Firstly, different types of sensors

that can be used for quantified self practices are presented. Comparison of IMU

with other sensors is described, and the advantages of IMU explain the reason why

it is chosen as the source of data for lower limb locomotion activity. A view of

the practices is given to show the wide usage of quantified self, and prevalent used

algorithms are described. Finally, some useful public datasets are described and

compared according to their characteristics and specificities.

Chapter 3 focuses on developing a specific left-to-right hidden Markov chain

(LR-HMC) to detect the gait phases of one individual activity at constant speed.

The four considered activities are: walking, running, stair ascent and stair descent.

In LR-HMC, a specific transition graph of hidden states is proposed to mimic the

real transition of the gait phases. The class-conditional observation density is as-

sumed to be Gaussian, where the observation of the model is the feature extracted

from the kinematic information of IMU sensor. Then an Expectation-Maximization

(EM)-based algorithm is introduced to automatically learn the parameters of the

LR-HMC.

Chapter 4 depicts a specific triplet Markov chain (TMC) to simultaneously rec-

ognize activity and gait phases, by introducing an auxiliary hidden state to represent

activity. To overcome the disadvantages of the class-conditional observation density

of Gaussian type, used in LR-HMC, this Chapter introduces a non-parametric rep-

4
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resentation by histogram density. This specific TMC is then referred as TMC-HIST.

Because of the non-parametric density, EM algorithm is no longer applicable for

TMC-HIST, so we introduce a method called ”Iterative Conditional Estimation”

(ICE) to learn the parameters. Based on the developed TMC-HIST model, an

adaptive on-line recognition algorithm is then proposed. It allows to recognize the

activity and gait phases at run time, and also to adjust its parameters gradually,

to approach the activity pattern of the person. An experiment containing four

activities —walking, running, stair ascent and stair descent— is performed by ten

subjects at their preferred speed, the IMU sensor being placed on a shoe.

Chapter 5 also aims a developing an algorithm that recognizes activity and

gait phases simultaneously, and on-line applicable as well. To overcome the dis-

advantages of TMC-HIST proposed in Chapter 4, this Chapter proposes a specific

parametric semi-Markov chain to fulfill the task. Firstly, the semi-Markov structure

is introduced into the TMC through a new auxiliary hidden state. Semi-Markov

structure allows the hidden state to keep the same in a period of time, which is natu-

rally consistent with the real situation. Gaussian mixture model (GMM) is utilized

to form the class-conditional observation density. GMM density helps to approxi-

mate the non-Gaussian like class-conditional observation density. At the meantime,

it involves the correlations among each dimension of class-conditional observation

density, whereas histograms in previous chapter only modelize the marginal den-

sity of each dimension. The TMC equipped with the semi-Markov structure and

GMM density is referred as SemiTMC-GMM. In this model, EM-based parameter

learning algorithm is applicable, and an on-line EM parameter learning algorithm is

adapted to the model. The experimental results show that, in batch mode recogni-

tion, SemiTMC-GMM obtains better performance than TMC, and also outperforms

other comparative methods. While in on-line mode recognition, SemiTMC-GMM

outperforms the TMC-HIST.

Finally, Chapter 6 summarizes the main contributions of this thesis. The lim-

itations of the proposed model are presented, the corresponding possible solutions

are also discussed, which give an outlook of possible future work.

5





Chapter 2

Background

The quantified self related technologies can benefit our lives in many ways, if per-

sonal data can be obtained properly. For example, smart devices such as smart

watch and smart suit are able to collect medical information, which suggests the

health status of the user and helps him/her to manage his/her life; navigation

devices are able to know where the user is and show him/her the way to their desti-

nation. Because of the great benefits of the quantified self related technologies that

can bring to our daily life, great research interest in various areas has been raised

for exploiting the potential of it.

Given the extremely wide range of quantified self related researches, this Chapter

mainly introduces some basic technique issues related to quantified self matters. The

involved aspects are: (i), the numerous sensors that may be used for quantified self;

(ii), the wide related research fields and applications; (iii), the prevalent algorithms

used in recent years; (iv), some public datasets related to the work conducted in

this thesis.

2.1 Available sensors for collecting data

As we know, human can be ’quantified’ by different kinds of data, including but

not limited to weight, calorie consumption, position, heart rate, respiration volume,

motion kinematics, etc. Thus, in order to measure different data, many types of

sensors should be used. The sensors related to quantified self can be categorized

into two categories: the group of wearable sensors, and the group of non-wearable

sensors.
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2.1.1 Wearable sensor

Commonly, wearable sensors are manufactured in small size and light weight, thus

they can be worn on human body without affecting mobility of people. As shown

in Figure 2.1, wearable sensors can be placed on different body parts, and their

functions are various based on the usage.

(a) Smart watch. (b) ECG sensor. (c) Gesture control glove.

(d) Flexible sensor. (e) VR or AR headset. (f) Portable camera.

Figure 2.1: Some wearable sensors1.

Smart watch, Figure 2.1a, is a highly integrated commercial product that con-

tains several sensors inside. Commonly there are at least three kinds of sensors in

a smart watch: IMU module, GPS and optical heart rate monitor. As a matter

of fact, IMU [6–9] is not a single sensor, but is a group of inertial sensors made

of three accelerometers and three gyroscopes. Sometimes it also contains a 3D

magnetic sensor. It measures the kinematic information, i.e. acceleration, angular

rate and magnetic field readings, in the tri-axial coordinate system of the sensor. So

IMU sensor is very suitable for analyzing the motions since it provides the kinematic

information. Also, IMU is used as an assistance of navigation in some industrial

conditions, because the kinematic information can be used for estimating position.
1The products in Figure 2.1: (a), Apple watch series 4, site in https://www.apple.

com/apple-watch-series-4/; (b), Samsung smart suit, site in https://mygoodplanet.com/
smart-clothing/; (c), Gest, site in https://gest.co/; (d), MC10 Biostamp, site in https:
//www.mc10inc.com/; (e), Vuzix AR headset, site in https://www.vuzix.com/Vuzix-Remote; (f),
AXON body camera, site in https://www.axon.com/.

8
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GPS [10, 11] is a positioning sensor that generates the latitude and longitude were

the user is, by receiving the signals from synchronous orbit satellites. GPS is able

to give accurate position and track the routine of the user. But unfortunately, GPS

is very vulnerable to the satellite signal, so it is commonly only available outdoor

without barrier (street, mountain but not tunnel). The optical heart rate monitor

uses a methodology called photoplethysmography (PPG) to measure heart rate. A

PPG is often obtained by using a pulse oximeter which illuminates the skin and

measures changes in light absorption [12]. Then, the heart rate is obtained by com-

puting the changing rate of PPG. Apart from these three sensors, some other types

of sensors can also be found in a smart watch. For example, the embedded barom-

eter measures air pressure. The air pressure value can be used for estimating the

elevation, while the value tendency can forecast short term changes in the weather.

This functionality is extremely useful during mountain climbing and parachuting.

As the name suggests, ECG sensor [13] records the electrocardiogram. In the

past, ECG was commonly seen in hospital and was used by patients to monitor the

status of their heart. The usage of ECG was limited because it needed cables to

connect the electrodes and the processor. But nowadays, as shown in Figure 2.1b,

ECG sensor can be packaged in a small case and the data is transferred through

wireless connection. The improvement allows ECGs to be worn on the body. Unlike

the optical heart rate monitor only provides the heart rate, ECGs provide richer

data related to electrocardiogram. Thus, the applications based on ECG are able to

monitor our heart at any time and anywhere, medical advice can then be deduced

based on the ECG signals.

Gesture control [14,15] is a new direction of tracking the motion of human and

controlling the machine, such as using gesture control glove to control computer, as

shown in Figure 2.1c. The idea of a gesture control system is to track the motion of

human with appropriate sensors, and then to capture a pre-defined motion gesture.

The position where the sensor is put on the body depends on the requirement of the

gesture, but normally the sensors are placed on the arm or hand since people can

make rich and agile gestures with upper limb. There are many kinds of sensors that

can be used for tracking motion, while particularly for the wearable sensors, IMU

9
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and EMG are preferably used for gesture control [16,17]. An EMG sensor measures

the electricity signal of the muscle through electrode, and by analyzing the signal

we are able to know whether the muscle is in contraction or stretching. Then, the

motion is tracked by knowing the behavior of a set of muscles. But the electrode

of EMG needs to be tightly attached to the skin, whereas an IMU sensor does not

have this restriction. Some other sensor-based gesture control devices can also be

found, such as using cameras to track the motion, which belongs to non-wearable

sensors and will be described in the following section.

Unlike the rigid shape of traditional sensors, flexible sensor [15] can be bent to

some extent. This property enables the sensor to be placed on non-flat surfaces.

Particularly for quantified self use, flexible sensor can be extremely small and light.

As shown in Figure 2.1d, the thin flexible circuit is highly integrated with sensors

such as ECG, EMG, temperature sensor, strain gauges, wireless communication

oscillator. Thus, it measures a wide range of people vitals, including the tempera-

ture, hydration levels, strain, muscle, heart rate, etc. Then the collected data can

be transferred to the server for further analysis. Because of the flexible property

and extremely light weight, this kind of sensor is quite ideal for monitoring health

status at any time, no matter whether the user is sleeping or doing something else.

Virtual reality (VR) headset, Figure 2.1e, is a device that presents built view to

the wearer, while augmented reality (AR) headset overlays digital content on top

of the real world. The two kinds of headsets are not just displayers, they are also

integrated with motion sensing sensors, some headsets even have additionally an

eye tracking sensor [18]. Therefore, the headsets are able to track the head motion

of the wearer, and record the first-person view. This characteristic is quite useful

in the fields of communication, remote control, entertainment and education, etc.

And it brings a new way of seeing the world.

Cameras have existed for more than one century. With the development of the

technology, nowadays cameras can be manufactured in a very small size and be

placed on human body, as shown in Figure 2.1f. The small size camera placed on

the body is generally regarded as a device to record life in first-person view [19]. The

portable cameras are usually utilized in the fields of extreme sports and criminal

10
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prosecutions.

Presently, there are many other types of wearable sensors used for quantified

self, such as the pressure sensor [20, 21] that measures the forces produced by feet.

Besides, we believe that new sensors and integrated products will come out in the

future, which may probably enrich the field of quantified self further.

2.1.2 Non-wearable sensor

The non-wearable sensors for the use of quantified self are limited because the

sensors are not attached to human body. Unlike the wearable sensors that measure

the signals like heart rate, muscle strain, skin humidity, non-wearable sensors mainly

detect the behavior of human. Normally these non-wearable sensors are installed at

some places and have a fixed detection area If a large detection area is required, then

it needs several sensors to cooperate together. In this Section we mainly describe

some most commonly seen sensor systems that are used for quantified self.

(a) Using markers. (b) Without marker.

Figure 2.2: Non-wearable sensors using cameras2.

Camera is very prevalently used in the motion analysis, because pictures and

videos have been extremely investigated for extracting interested objects, including

human bodies and some other salient properties. The camera-based motion capture

system is well developed and has been applied in many fields, such as sport sciences,

animation and robotics. Based on the detection methodology, the camera-based
2The products in Figure 2.2: (a), OptiTrack Prime 41, site in https://optitrack.com/

products/prime-41/; (b), Kinect, site in https://developer.microsoft.com/fr-fr/windows/
kinect.
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motion capture systems can be divided into two categories. The first category

tracks trajectory of the optic markers attached on the human body, see Figure 2.2a.

Normally people is wearing the markers and performing the motion within an area

that is surrounded by at least four well calibrated cameras [22, 23]. Then the

cameras will give accurate 3D position of the markers at run-time, through solving

the geometric problem. Therefore, if two or more markers on the body part are

placed, like lower arm and shank, it is able to obtain the motion by connecting

the markers. On the contrary, the second category does not need marker to detect

the motion, in Figure 2.2b. In fact, this kind of system uses a set of different

cameras to capture the images of the interested human body [24–28], then uses

algorithms to segment each body part and estimate the body motion in 3D space.

In the system, two cooperating cameras are involved, a conventional color camera is

used for recording general images of scene, and an infrared-based depth camera for

obtaining depth information by analyzing the infrared reflected from the objects.

Then an embedded algorithm extracts human skeleton structure from the general

images, consequently the skeleton structure is combined with the depth data to

provide how the body is moving in the 3D space.

The two kinds of camera systems have their own advantages and disadvantages.

The first system can track accurate position with an error less than 1 mm, and

velocity and acceleration can be obtained based on the accurate positions. Besides,

it tracks almost all the objects if the marker can be attached on. While the second

system normally only detects the motion of human, and the estimated motion is

not as accurate as that of the first system, velocity and acceleration are also not

available directly. However, the cost of the first system commonly is more than

ten thousand of dollars, while a commercial product of the second system only

costs about four hundred dollars. Because of that the first system requires several

cameras placed at different locations, so it needs a large room to run. And if one

camera is moved, the entire system needs to be re-calibrated to ensure the accuracy.

Whereas the second system is quite small and generally only needs to be calibrated

at the first time of use.

Another system for localization and motion analysis is based on wireless bea-
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Figure 2.3: ZigBee-based sensor network deployed for elderly care application with
the integration of mobile apps visualization (Extract from [29]).

con [30–35], such as WIFI, Bluetooth, ZigBee sensors. A schematic graph of a

ZigBee-based localization sensor network [29] is shown in Figure 2.3. Normally,

the wireless signals like WIFI, Bluetooth, ZigBee are used for communication. But

apart from information of the signals convey, the wireless beacon is also aware of

the signal strength. Thus, if a set of wireless sensors are well arranged in an area,

the received signal strength (RSS) by each beacon may indicate whether there are

obstacles that block the signal. When a human is moving in the area, it may cause

fluctuations of RSS in each beacon. By analyzing the RSS fluctuations in the bea-

cons, it is able to obtain the localization of the human. Particularly, if plenty of

beacons are placed in an array, more details of the motion can be obtained, which

may probably be used for motion analysis. The wireless signal-based localization

and motion analysis system is normally installed indoor, used as a surveillance

system for the elderly, or for patients in a hospital or nursing home.

Compared with the camera-based system, a wireless beacon-based system costs

much less money. Also the radio signal is much less influenced by the obstacles,

which means a wireless beacon-based system covers larger area and uses fewer sen-

sors. However, the system may fail when the layout of the room is changed, and it

is very difficult to track two or more persons moving in the area at the same time.
3Figure from site: http://cm.jo/portfolio/smarthouse-arduino/.
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Figure 2.4: IoT sensor network for smarthome.3

Nowadays, given the development of wireless connections, low cost and low

latency connections are available, which significantly raises interest of the Internet

of Things (IoT) [36–38]. IoT allows physical devices and everyday objects to join

in the Internet. These things can communicate and interact with others over the

Internet, and can be remotely monitored and controlled. IoT has been used in many

field, such as industrial factory, transportation. As for quantified self applications,

IoT brings the possibility of involving various kinds of sensors into the Internet,

then the sensors can cooperate together to enrich the functionality of analyzing our

daily life. For example, in a smart home as shown in Figure 2.4, the IoT collects and

analyzes the data from the host and the house. By knowing the motion, health and

emotion status of the host, IoT can control the environment of the house to fit the

demands, such as switching off the light when the host goes to sleep, adjusting the

temperature through air conditioner when the host feels hot or cold. As a matter

of fact, IoT is not a kind of sensor, on contrary it provides a platform for various

sensors and bring them together to accomplish complex tasks.
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2.2 Applications of quantified self

After introducing the sensors that can be utilized for quantified self, now we are

going to describe what kind of quantified self applications could be developed based

on these sensors. To our knowledge, the applications can be mainly divided into four

categories: (i), activity recognition and analysis; (ii), robotics; (iii), localization and

navigation; (iv), health monitoring and caring. In each category, many applications

are developed on various sensors.

2.2.1 Activity recognition and analysis

In this kind of application, the sensors need to measure the data related to human

motion. Joshi et al. proposed EMG-based method to collect leg muscle signals and

recognize the walking and stair ascent activities. In [6–8], the authors used IMU

sensors placed on the lower limb to detect activity and gait phase simultaneously.

While Derawi et al. [9] used the IMU module in smartphone to detect gait cycle and

activity. They found that introducing gait phase can improve the performance of

recognizing the lower limb locomotion activity. Apart from the lower limb locomo-

tion activity recognition, the gait alone can be applied to clinical research. Liparoti

et al. [22] presented that gait analysis can be used in detecting gait abnormalities

of disabled people. TunçAşuroğlu et al. [20] used a foot-worn pressure sensor to

analyze the detected gait from Parkinson’s patients, their method provided a way

for understanding the disease evolution in the long term and simplify the detection

of precipitous changes in gait on a daily basis in the short term. On the other side,

the wearable sensors can also be used for the motion of upper limbs. Moschetti et

al. [39] used IMU sensors placed on the finger and wrist to recognize daily activities,

such as eating with hand, eating with fork, eating with spoon, drinking with glass,

drinking with cup, brushing teeth, brushing hair, etc. An armband integrated with

an IMU module and EMG sensors are used in [16, 17] to identify the gestures and

daily activities, through combining the kinematics data and muscle signals.

On the other hand, activity of the entire body can also be tracked. For wear-

able sensors, people need to put on more than one sensors, sometimes even a sensor
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network. Hsu et al. [40] used two IMU sensors that placed on wrist and ankle

respectively for recognizing 10 domestic daily activities and 11 sport activities. Ay-

achi et al. [41] proposed an algorithm that automatically selected specific sensors

for recognizing daily activities in a group of 17 IMU sensors placed on the body.

Their algorithm does not use all the 17 sensors, but selects the most likely sen-

sors related to the outgoing activity. The authors in [42] developed a wearable

biosensor network towards daily life emotion recognition, the sensor network con-

sists of electroencephalography (EEG) headset, temperature sensor, blood sensor,

pulse sensor, etc. By analyzing the collected data, their work can evaluate four

emotion status: happiness, horror, boredom and relaxation. Garcia-Ceja et al. [43]

proposed a multi-view stacking method to fuse the data from heterogeneous types

of sensors for activity recognition. Specifically, they utilized a wearable acoustic

and inertial sensor system, the sound and acceleration are collected to recognize

seven daily activities: mop floor, sweep floor, type on computer keyboard, brush

teeth, wash hands, eat chips and watch television.

Using non-wearable sensors may have a global view for recognizing the activity

of the entire body. Camera is widely used for analyzing activities through videos

or pictures, and numerous researches have been investigated in activity recognition.

Wang et al. [24] proposed a pedestrian recognition algorithm with multi-camera

networks, the algorithm is very suitable for object recognition across cameras with

disjoint views, especially for real-time long distance object tracking. In the sur-

vey [44], a lot of researches based on cameras were investigated for the recognition

of abnormal human activity. The applications such as pedestrian recognition and

abnormal activity recognition are quite useful in video surveillance system, home-

land security, crowed analysis. . . A lot of efforts can be saved with the help of these

applications. Gesture analysis is another important field and it can be accomplished

by cameras. The researches conducted in [27, 28, 45] investigated how to use hand

gesture recognition to interact with machines, such as computer, robotics. Ges-

ture recognition is also of great interest in the translation between sign language

and conventional language [46–48], which brings conveniences when communicat-

ing with the deaf or the mute. Sports analysis [49] is another potential application,

16



Chapter 2. Background

because non-wearable camera does not affect people when doing sports, which re-

sults in a non-biased motion. Another widely used non-wearable sensor for activity

recognition is the wireless beacon. In the indoor scenario, wireless signal can be

used for activity recognition [30–32]. A smart house is established in [36], which can

recognize many sophisticated activities. A lot of works showed that wireless system

is an effective way for activity recognition, however the limitations are obvious, as

described in Section 2.1.2.

2.2.2 Robotics

The link between quantified self and robotics is how to use the collected quantified

self data to communicate with and control the robotics. To be more precise, it

normally can be divided into two categories, one is remote controlling of the robotics,

another one is using robotics to assist people’s life.

A potential application of remote control and quantified self is for remote

surgery. Remote surgery can assist the doctor to conduct the surgery when he

or she is even not in the operating room. The researches [50, 51] described the

concept of remote surgery, as shown in Figure 2.5a. There is a master device that

collects the motion data of the doctor and provide image scene to the doctor. And

on the patient side, there is a slave that is controlled by the master, normally the

slave is a kind of robotics that performs the operation. The communication between

the master and slave is accomplished by satellite or optic fiber network with low

latency time. The quantified self related part in remote surgery is on the doctor

side, because the master needs to collect and analyze the motion of doctor pre-

cisely. Connolly et al. [14] developed an IMU-based electronic goniometric glove

that detects the articulation movement of the hand, the system can measure how

the hand and fingers move and then control the robotics move in the same way.

While Tanaka et al. [15] integrated flex sensor and IMU into the glove to measure

the motion of doctor’s hand, in which the flex sensor is able to obtain how the finger

is bent. The research [52] utilized EMG sensors to capture how the doctor’s arm is

moving and to control the robotic arm.

Another kind of application that uses robotic to assist people’s life is generally
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(a) Remote surgery [51]. (b) Rehabilitation or strength enhanc-
ing [53].

Figure 2.5: Quantified self application related to robotics.

in the field of haptic control, which means that the robotics and human have in-

teraction with each other. Here, the robotics is not only an actuator that moves

according to people, but also a sensor system that measures the motion of peo-

ple. A common use of this kind of robotics is wearable exoskeleton, as shown in

Figure 2.5b [53]. People can wear the device on the body to help them finish

some tasks, such as rehabilitation exercises, labor work. The survey [54] reported

the state-of-the-art researches of knee exoskeleton for gait rehabilitation. The re-

searches showed that in order to assist human to conduct lower limb activities, the

exoskeleton needs to know the exact activity and gait cycle of the wearer. This is

also the same with the arm exoskeleton [55,56]. Thus, the motion data of the body

part is significantly important for this kind of application. Most of the time the

sensors used for obtaining the data are IMUs and EMGs. Moreover, exoskeleton is

also helpful for the people who need to conduct extensive labor work. The authors

in [57] developed a lower limb exoskeleton to enhance people’s strength of carrying
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heavy cargo, the motion data is collected by EMGs placed on the shank and thigh.

2.2.3 Localization and navigation

At the beginning, when the devices and methods of localization and navigation

were firstly proposed, they were designed for the aircraft and some military use. At

that time, the used devices like GPS receiver and extremely expensive IMU are not

very prevalent in the civilians. With the development of the technology in recent

years, these sensors become cheaper and prevalent in commercial products, new

technologies for localization and navigation also have been investigated. A most

used application of localization and navigation is the digital map embedded in our

smartphone. With the help of GPS and digital map, people are able to find their

location and where are their places of interest, then the navigation provides the

route for getting there through walking or driving car. Besides, in a smart watch,

the combination of GPS and barometer obtains an accurate 3D position. This

functionality enables the smart watch to evaluate the performance when people is

climbing mountain and trail running, which is particularly very useful when in the

competition. Also, the record of position from GPS guarantees people can trace

back their route when they get lost.

Even though GPS is the most prevalent sensor in localization, it still has some

disadvantages. For example, the satellite signals are very vulnerable to obstacles.

Therefore, GPS is not suitable for indoor environment or the applications that

need high accuracy in positioning. Other types of sensors-based methods were

proposed for human localization. IMU sensor has been well investigated, since it

measures the kinematics information of people. The researches [58–61] proposed

the double integration-based pedestrian navigation system with foot-mounted IMU

sensor. The idea of this kind of navigation system is integrating the measured

acceleration twice to obtain the displacement of the sensor, with the help of some

other methods of coordinate transferring and error elimination, the localization can

be obtained from the displacement. On contrary, the authors in [62–64] used IMU

sensors and proposed a kind of pedestrian dead reckoning (PDR) system that also

provides the localization. PDR estimates the people’s orientation and walking stride
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length, then the displacement is obtained by accumulating the stride lengths.

Wireless signal is also possible for localization. Torteeka et al. [33] proposed

a receive WIFI signal strength indication (RSSI)-based indoor positioning system,

their method showed a reasonable positioning accuracy. Knauth et al. [65] proposed

a large area positioning method that uses a smartphone, a data fusion method that

fuses inertial signal and RSSI was applied into the system. It is able to identify the

floor where people are standing, and also is applicable in large building. While the

researchers in [34,35] proposed RSS-based methods that are applicable outdoor for

a larger area, the systems utilizes mobile phone signal base station as the sources of

RSS. In the work [11], the authors proposed a WIFI/GPS fusion method to reduce

the localization error. The wireless signal-based localization method is very useful

in the guidance and navigation application in museum and shopping mall.

As discussed above, the three types of sensors (GPS, IMU, wireless beacon) are

utilized for localization under different scenarios. GPS is cheap and widely used,

but it is only applicable in open area where the satellites signals are available.

By contrast, IMU sensor and wireless beacon have no such restrictions, they are

both applicable for indoor and outdoor environments. However, the error of IMU-

based method increases with the time, and the RSS-based method has large error

in outdoor environment. Therefore, many applications utilize a combination of

different sensors to ensure the accuracy of localization, such as GPS/IMU [10] for

pedestrian navigation, WIFI/GPS [11] to improve the outdoor localization accuracy

in outdoor, WIFI/IMU [33] for indoor localization.

2.2.4 Health monitoring and caring

Since quantified self captures information generated by human body, a main field

of applications is related to health, i.e. health monitoring and caring. Indeed,

in Section 2.2.2, the exoskeleton used for rehabilitation is a kind of heath caring

device. Apart from the exoskeleton, some other researches also investigated how to

help injured people. Zhu et al. [66] used a single wrist-worn tri-axial accelerometer

for rehabilitation exercise recognition, this method provides an evaluation of how

the people is performing the exercises: good, average or bad. Chiang et al. [67]
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proposed a method that monitors the knee range of motion with the help of two

IMU sensors placed on the thigh and shank, this method mainly offers a continuous

monitoring and objective assessment of knee range of motion recovery for total

knee arthroplasty surgery. Khoury et al. [21] utilized pressure sensors placed in

the shoes to detect gait cycles and to distinguish Parkinson’s disease subjects from

healthy subjects, or even to distinguish from the neurodegenerative diseases such

as Amyotrophic Lateral Sclerosis and Huntington’s disease. The author in [68–70]

proposed EMG-based systems designed for upper limb rehabilitation, these systems

can assist the injured people to fulfill daily activities and evaluate whether patients

are performing the movement correctly.

Monitoring the health status of people is another field of quantified self applica-

tions. Unlike the rehabilitation use, health monitoring can be used for both healthy

and unhealthy people. Zhou et al. [71] proposed a health care system for monitoring

the status of the elderly who is living alone via a finger worn IMU sensor and a

smartphone. The system can automatically collect and analyze the data of daily

activities, then upload the evaluation result to the supporter (the organization who

runs the system), finally the supporter is able to provide life support immediately.

Fall detection helps people can get access to medical support when they suddenly

fall down and lose the ability to move. Lee et al. [72] used inertial sensing-based to

detect the fall and near-fall scenarios, whereas Agrawal et al. [73] utilized a video

surveillance system to detect falls. The researches in [37, 38] used IoT sensor net-

work or smart home to monitor the health status. Djelouat et al. [13] developed an

ECG-based real-time heart health monitoring system using compressive sensing on

a heterogeneous multicore edge-device, this system can be joined as a node in the

network of IoT and provide heart related information.

2.2.5 Choice of the sensor

Now we have discussed about the sensors types and possible applications in quanti-

fied self. In this thesis, our research target is recognizing the lower limb locomotion

activities. Then what kind of sensor type should be adopted is a question before

starting the research, because selecting a proper sensor in the research can ensure
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the research be proceeded well and obtain acceptable results. Figure 2.6 displays

the relationships among the sensor types and possible applications, please remind

that not all the sensors and possible applications are listed in the figure, but a

dominated trends for most of the researches. As we can see, for each application

many types of sensors can be utilized. Particularly for the activity recognition and

analysis, there are five sensors that can be utilized: EMG, IMU, pressure sensor,

wireless beacon and camera.

Figure 2.6: Appropriate sensors for possible quantified self applications.

Among the five sensors for activity recognition and analysis, EMG, IMU and

pressure sensor are wearable sensor, on the other hand, wireless beacon and camera

are non-wearable sensors. As described in Section 2.1, the major distinction between

wearable and non-wearable sensors is that the former one can be worn on the body

and be taken to any place where the wearer is going. Since the aim of our research

is recognizing the locomotion activity, then it is impractical to confine people in a

certain area. On contrary, when people perform the considered activities, it may

appear in the buildings, on the road or somewhere else. Therefore, it is impossible

to use non-wearable sensors to recognize the activity in such a large area. As for
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the three wearable sensors, EMG needs to place electrodes on the muscles tightly

to measure the electric signal. So it is not very convenient to use EMG sensors

to recognize activities that take place in everyday. The pressure sensor may be a

good way to recognize the locomotion activity, but it has some drawbacks when

using it. Normally pressure sensor is made like insole and placed in the shoe, so it

may cause inconvenience when people need to change the shoes to wear. Another

problem is that pressure sensor is very expensive. By contrast, IMU sensor is easy

to wear and is relatively cheap compared to the pressure sensor, that is why IMU

sensor is widely used in the research of activity recognition. Therefore, in this

thesis, we choose IMU sensor to collect motion data for the recognition of lower

limb locomotion activity.

2.3 Algorithms in recent years

In this section, we focus on introducing the prevalent IMU-based algorithms that

recognize activities. Recently, numerous researches have been investigated in the

field of human activity recognition (HAR). The algorithms can generally classified

into two dominant categories: (i), traditional classifier; (ii) Markov classifiers; (iii),

deep learning methods.

In the first category, plenty of classifiers have been proposed and investigated.

Parri et al. [74] proposed a fuzzy-logical classifier to identify lower limb locomotion

mode, with the assistance of gait phases. The authors developed a lower limb wear-

able robot system that can help impaired people to perform locomotion activity.

Martinez-Hernandez et al. [6] developed an adaptive Bayesian inference system us-

ing three sensors placed on leg to recognize walking on different road conditions, i.e.

level-ground, ramp ascent and descent. They introduced gait phases and attempted

to recognize activities and gait phases simultaneously. The high accuracy (99.87%)

indicates that gait phases can significantly improve the accuracy for walking ac-

tivity. Chen et al. [75] proposed a robust activity recognition algorithm based on

principal component analysis (PCA) and on-line support vector machine (OSVM),

the algorithm obtained a robust recognition accuracy over a smartphone dataset
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collected in six different orientations. Safi et al. [76] proposed a system of three

IMU sensors placed on the chest, right thigh and left ankle to detect twelve static

and dynamic activities. They studied seven classifiers to recognize the activities,

including k-Nearest Neighbour (kNN), support vector machine (SVM), random for-

est (RF), multi-layer perceptron (MLP), classification and regression tree (CART),

naive Bayes (NB), and Gaussian mixture model (GMM). The results showed that

kNN obtained the best performance with 96.26% recognition rate. In the work [77],

the authors compared the performances among the classifiers of SVM, NB, kNN

and kStar. Results showed that kNN and kStar obtained the highest accuracy

while Naive Bayes obtained the lowest. The authors in [78] also used several fea-

tures and classifiers to test their impacts on recognition accuracy, with the help

of acceleration of 9 sensors on the body. They proved that detecting particular

locomotion activities accurately needs specific features and classifiers. Their results

showed that mean and standard deviation features provided the best accuracy out

of all features evaluated by both kNN and ensemble methods, while spectral entropy

produced the worst performance. They also concluded that data pre-processing has

nearly no impact on recognition accuracy. Finally, Wen et al. [79] proposed an

AdaBoost-based algorithm to adapt and refine the model at run-time, by auto-

matically selecting the most discriminating features. Their results were tested on

several smartphone data-sets and showed significant improvement in recognition

performance.

In the second category, Markov models are widely adopted in the field of activ-

ity recognition. San-Segundo et al. [80] proposed a human activity recognition and

segmentation system based on HMMs for recognizing and segmenting six activities:

walking, sitting, standing, lying, stair ascent and descent. Six HMMs are accord-

ingly trained in the system for recognizing and segmenting six activities Viterbi

algorithm is then applied to determine which model fits the data the best, the rec-

ognized activity is finally the output of the Viterbi algorithm. The experimental

results showed that the their proposed algorithm obtained an activity recognition

error rate and a segmentation error rate lower than 10% and 0.5% respectively.

Zhao et al. [81] proposed a 2-layer model to detect six gait phases of walking, the
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algorithm used Neural Network (NN) to provide a pre-decision of gait phases to

Hidden Markov Model (HMM), the final decision of gait phase from HMM ob-

tained an accuracy of 98.11%. The limitation of this study is that only the activity

of walking was considered, and the authors only tested their algorithm on straight

forward walking, not free walking. In [82], hidden semi-Markov model (HSMM) and

semi-Markov conditional random field (SMCRF) were applied to recognise human

activity in smart home. The results showed that HSMM consistently outperformed

HMM, while SMCRF obtained a similar result to CRF. However, because daily

activities at home do not have stationary property, it is not practical to use a sta-

tionary transition matrix to represent the activity switches. Moreover, the authors

only used Gaussian density to represent the class conditional observation density,

which is quite limited for a complex scenario. The authors in [83] used HMM

equipped with multiple regression (MHMMR) to automatically recognize activities

and activity transitions in an unsupervised way, their method obtained higher ac-

curacy than the other unsupervised methods, such as GMM and HMM. But in

order to obtain the highest recognition accuracy, it is required to use the all the

sensors placed on chest, thigh and ankle, which may probably reduce the flexibility

of method.

In the third category, the deep learning methods are also very prevalent. Gen-

erally, this family of methods is more inclined for image processing, so it needs to

convert sensor data to image description to support extraction of discriminative

features. For example, Alsheikh et al. [84] proposed to use spectrogram represen-

tation to convert a three dimensional acceleration signal into a image like function

of frequency and time. As reported in the survey [85], convolutional neural net-

work (CNN) is an important category of discriminative deep learning model for

HAR. The work [86] proposed convolutional recurrent neural network to recognize

daily activity; their algorithm gained an improvement of 6% compared to the state-

of-the-art works. While Ignatov [87] used CNN to recognize six human activities,

including three lower limb activities, in real-time from accelerometers. This method

obtained an accuracy higher than 97%, and achieved an overall accuracy of 82.76%

on a cross-dataset experiment. Hassan et al. [88] proposed a smartphone-based
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method for activity training and recognition via deep belief network (DBN), the

results showed that DBN outperformed SVM and artificial neural network with an

accuracy of 95.85% over twelve static and dynamic activities. Recently, as reported

in [89], transfer learning and semantic approach have raised great research interest.

Bao [90] and Rokni [91] used transfer learning to automatically construct model

for newly added wearable sensors; they obtained an accuracy enhancement between

9.3%-10%. Ding et al. [92] tested three transfer learning methods —CNN, maxi-

mum mean discrepancy (MMD) and domain-adversarial neural network (DANN)—

to dispose unlabeled data, and they found out that MMD work best on two public

datasets. However, the recognition accuracy highly depends on the performance of

labeling from source devices, thus it still requires a reliable method to obtain the

activity label.

Some other methods can also be applied to the dedicated applications and obtain

good results. Schneider et al. [93] proposed an automatic extraction and selection

method of highly relevant features, the method was tested on eight datasets and

obtained a general accuracy over 90%. Rezaie et al. [94] proposed a feedback con-

troller framework to adapt sampling rate for better efficiency and higher accuracy.

Dao et al. [95] introduced a man-in-loop decision architecture and data sharing

among users, and gradually obtained a high accuracy. The works in [96] and [97]

both proposed data fusion methods between motion data and location information

for indoor scenario, the area of the house is divided and labeled into several parts,

the motion data and location label together helped boosting the accuracy.

There are such a plenty of researches that have been investigated in the field

of activity recognition. Due to the limit of the space, it is impossible to list all

the methods in this thesis. But based on the introduction of the methods above,

we are able to have a general view on these methods. As described in Chapter 1,

the proposed algorithms in this thesis are based on the TMC, which belongs to the

second algorithm category and is a kind of machine learning algorithm. It needs

a carefully established model and is solved with mathematical methods, such as

Bayes’ theorem, EM algorithm, etc.
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2.4 Public datasets

A lot of IMU-based public datasets of various activities have been published on-line

by the researchers all over the world.

According to the published researches and the related IMU-based datasets, we

have made a summary of the main features of these datasets, as shown in Table 2.1.

In the Table, the listed datasets are frequently used in many researches. In a general

view, datasets D1-D10 collected the ’normal activities’ that we perform in every-

day, including static activities (sitting, lying, standing. . .), locomotion activities

(walking, running, climbing stairs. . .), sport exercises (cycling, plying soccer, rope

jumping. . .), daily activities (watching TV, house cleaning, drinking, eating. . .).

The sensors are mostly placed on the arms, legs or trunk of the subjects. Particu-

larly, D5-D9 used IMU module embedded in smartphone(s) to collect the motion

data, D10 not only used three IMUs, but also used a heart rate monitor, this enables

the dataset available for estimating the intensity of the activity. The dataset D11

used nineteen IMUs placed on two arms and collected ten factory activities, such

as open (close) hood, open (close) trunk, check steering wheel. . . Unlike the first

eleven datasets in the Table, both the datasets D12 and D13 are for gait analysis.

D12 is the largest IMU-based gait dataset in the world; it involved 744 subjects that

perform walking on three road conditions: level ground, slope up and slope down.

It used three IMUs placed on the center, left and right of the waist to collect the

data. The large quantity of involved subjects has an age ranging from 2-78 years,

and has a balanced gender ratio. D12 is targeted for the group of healthy people,

whereas D13 collected the gait from ten subjects that had Parkinson’s disease. In

this dataset, three IMUs were placed on the hip and two legs, and the collected data

were labeled in two categories: with or without the freezing of gait (FoG) during

walking.

In this thesis, we have built our own dataset that use one IMU sensor placed on

the right shoe, as shown in Figure 3.3. Ten subjects were enrolled in this dataset,

and were asked to perform four lower limb locomotion activity, i.e. walking, run-

ning, stair ascent and stair descent. This dataset is specifically designed for on-line
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recognition. So it is not only available for the algorithms that are proceeded in

batch mode, but also is available for those on-line algorithm; details are given in

Chapter 4.4.1. In addition, the dataset D1 in Table 2.1 is also utilized in this thesis,

for validating the batch mode recognition performance of SemiTMC-GMM, details

can be read in Chapter 5.4.1.

2.5 Conclusion

In this Chapter, the background of quantified self and our research target are de-

scribed carefully. In Section 2.1, the types of sensors available for quantified self

research are presented. The sensors are classified into two basic categories, i.e.

wearable and non-wearable sensors, the different types of sensors in each category

are introduced carefully, including what kind of signals they measure, how they are

used. . . In Section 2.2, the possible applications of quantified self are classified into

four categories: (i), activity recognition and analysis; (ii), robotics; (iii), localization

and navigation; (iv), health monitoring and caring. In each kind of applications,

researches that based on different sensors are discussed there. As in consequence,

according to the sensor types and related applications that are discussed, we de-

scribed how to choose sensor for a specific research. Particularly, the reason of

why choosing IMU to collect data for this thesis is carefully discussed. The recent

IMU-based algorithms for activity recognition are described in Section 2.3. In the

last Section, some public IMU-based datasets are presented.

To sum up, in this thesis we concentrate on signals issued from IMU to in-

vestigate the lower limb locomotion activities. In the next Chapter, we will start

with the presentation of a precise algorithm to detect gait cycle of the considered

activities.
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Table 2.1: Some public IMU-based datasets for the research of activity recognition and analysis.

ID Name
Sensor(s)
placement

Subjects
number

Activity number and type Description

D1
[98]

SDA 5 IMUs: torso, right arm,
left arm, right leg, left leg

8 19 daily activities and sport exercises: sitting, stand-
ing, lying on back and on right side, ascending and
descending stairs, standing in an elevator still, moving
around in an elevator, walking in a parking lot, walking
on a treadmill, running on a treadmill, exercising on a
stepper, exercising on a cross trainer, cycling on an ex-
ercise bike in horizontal and vertical positions, rowing,
jumping, playing basketball

Each activity was performed for 5 minutes, sampling rate
is 25HZ.

D2
[99]

OPPORTUNITY 19 sensors: 7 IMUs and 12
3D acceleration sensors

4 more than 18 daily living activities: lying on the
deckchair, get up, open and close door, open and close
fridge, open and close dishwasher, open and close drawer,
clean table, drink from cup, toggle switch, groom, prepare
coffee, drink coffee, prepare sandwich, eat sandwich, clean
up, break...

Sampling rate is 32Hz. The activities of the user in the
scenario are annotated on different levels: ”modes of lo-
comotion” classes; low-level actions relating 13 actions to
23 objects; 17 mid-level gesture classes; and 5 high-level
activity classes

D3
[100]

USC-HAD one IMU placed on front
right rip

14 12 daily living activities: walking forward, walking left,
walking right, walking upstairs, walking downstairs, run-
ning forward, jumping, sitting, standing, sleeping, elevator
up, elevator down

Sampling rate is 100Hz. each subject was asked to perform
5 trials for each activity on different days at various indoor
and outdoor locations. On average, it took 6 hours for each
subject to complete the whole data collection procedure.

D4
[101]

SHO 5 IMUs: right jeans
pocket, left jeans pocket,
belt position towards the
right leg, right upper arm,
right wrist

10 7 daily activities: walking, running, sitting, standing,
jogging, biking, walking upstairs and walking downstairs

Sampling rate is 50Hz. Each activity was performed for
3-4 minutes by the subjects.

D5
[102]

UCI Smartphone one IMU in a smartphone
on the waist

30 6 daily activities: walking, stair ascent, stair descent,
sitting, standing, laying

Sampling rate is 50Hz. The obtained dataset has been
randomly partitioned into two sets, where 70% of the vol-
unteers was selected for generating the training data and
30% the test data.

D6
[103]

ActiveMiles 5 smartphones, placement
not fixed

10 7 daily activities: running, walking, cycling, casual
movement, public transportation, idle, standing

Sampling rate is 50-200Hz. The dataset contains uncon-
strained real world human activity, there are no limita-
tions on where the smartphone is located, i.e. pocket,
bag, or held in the hand.
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Table 2.1: Some public IMU-based datasets for the research of activity recognition and analysis.

ID Name
Sensor(s)
placement

Subjects
number

Activity number and type Description

D7
[104]

WISDM v1.1 one smartphone placed in
front trouser pocket

29 6 daily activities: walking, jogging, upstairs, downstairs,
sitting, standing

Sampling rate is 20Hz. This dataset contains data col-
lected through controlled, laboratory conditions.

D8
[105]

WISDM v2.0 one smartphone placed in
front trouser pocket

59 6 daily activities: walking, jogging, stairs, sitting,
standing, lying down

Sampling rate is 20Hz. This dataset contains real world
data.

D9
[106]

SHL 4 smartphones placed on
torso, in backpack, in
hand, in front trouser
pocket

3 8 static and locomotion activities: still, walking, run-
ning, cycling, driving car, on the bus, on the train, on the
subway

Sampling rate is 100Hz. It contains 750 hours of labelled
locomotion data. The data was collected in a real life
scenario.

D10
[107]

PAMAP2 3 IMUs: wrist, chest, an-
kle. And a heart rate
monitor.

9 18 physical activities: lying, sitting, standing, walk-
ing, running, cycling, nordic walking, watching TV, com-
puter work, car driving, stair ascent, stair descent, vacuum
cleaning, ironing, folding laundry, house cleaning, playing
soccer, rope jumping

IMU sampling rate is 100Hz, heart monitor sampling rate
is 9Hz. Can be used for activity recognition and intensity
estimation.

D11
[108]

Skoda 19 sensors: 10 nodes on
the right arm and 9 on the
left arm

1 10 factory activities: write on notepad, open hood, close
hood, check gap door, open door, check steering wheel,
open and close trunk, close both doors, close doors, check
trunks

Sampling rate is 96Hz. Each activity was performed 19
times.

D12
[109]

world’s largest IMU-
based gait database

3 IMUs, at the left, center
and right of waist

744 3 walking activities: level walking, walking slope up,
walking slope down

Sampling rate is 100Hz. It is mainly collected for the use
of gait analysis.

D13
[110]

Daphnet Gait 3 IMUs: hip and two legs 10 2 activities: with freeze event and without freeze event Sampling rate is 64Hz. It aims at the research of Parkin-
son’s disease patients that experience freezing of gait
(FoG) during walking tasks.
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Gait cycle detection using

HMM

Genrally, the two legs in many lower limb locomotion activities repeat a specific

cycle. For example, the most general activity that people perform everyday—

walking—has the foot from attaching to the ground to swinging in the air and

then attaching to the ground again. This periodic pattern is called gait cycle and

generally there are two common ways for segmenting each gait cycle:

(1) One simplest way is that one gait cycle is divided into two gait phases [111],

namely stance phase and swing phase.

(2) Based on the two gait phases in the first approach, we can divide the gait

cycle into more detailed phases. As introduced in [112], we utilize four gait

phases in one gait cycle, i.e. stance, push-up, swing and step down.

The scheme of the second walking gait cycle characterization is shown in Figure 3.1.

If taking the three phases of push-up, swing and step down as one single phase, it

will then form the swing phase of the first gait cycle segmentation. These kinds

of segmentation work for many other lower limb activities, such as running, stair

ascent, stair descent, etc. The only difference relying on the duration and on the

motion intensity of each gait phase.

In the last decade, many researches and applications have been investigated

that involve gait analysis. In [60], we proposed a pedestrian navigation algorithm

using a foot-mounted IMU sensor. The algorithm utilized a HMM model to detect

zero velocity period (stance phases) for an extended Kalman filter to reduce the
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Figure 3.1: Right foot gait phases of walking cycle: push-up→ swing→ step down
→ stance. Similar gait cycle can be deduced for other activities, such as running,
stair climbing.

navigation error. Ertop et al. [113] developed a robotic gait trainer based on real-

time gait detection, and the precise gait assistance and resistance helped injured

people doing walking in a fluid environment. Gait can also be used for clinical

evaluation in identifying and understanding gait problems. Mueske et al. [114]

firstly studied how to use gait analysis on pathology identification and surgical

recommendations for children with spina bifida. Zhao et al. [115] proposed an IMU

sensor-based gait analysis system for the rehabilitation assessment of patients with

gait disorders, the system can provide the differences of gait phases between the

two feet, then make it possible to investigate the gait disorder.

Since gait analysis is so important for such a large number of applications, an

HMM-based gait phase detection algorithm will be described in the remaining.

3.1 Left-to-Right HMC model

In an HMM, there are two stochastic processes: observation Y and hidden state

U , particularly when the hidden state is discrete, the model is also called as hidden

Markov chain (HMC). Let us assume an HMC model with real-valued observations

Y = {Y1, · · ·YN}, each Yn ∈ Rw, where 1 ≤ n ≤ N , and w is the observation

dimension. Let the hidden state be modeled with U = {U1, · · · , UN} where Un ∈

Γ = {1, · · · , τ}, here τ equals to 4 if we consider the four gait phases.

Let a realization of Un, Yn be denoted by un and yn respectively. For simplifi-

cation, we denote the probability p(Un = un|Y1 = y1, . . . ,YN = yN ) by p(un|yN
1 )

for example. Given an observed sequence yN
1 , we can derive the probability with
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the specific hidden state uN1 :

p
(
uN1 ,yN

1

)
= p (u1) p (yn|u1)

N−1∏
n=1

p (un+1|un) p (yn+1|un+1) . (3.1)

The probability p (un+1|un) is the hidden state transition probability, and p (yn|un)

is the observation probability density conditioned on un.

Figure 3.2: Transition order of gait phases, ∆k are the transition probability that
from previous state to the current state k.

As shown in Figure 3.1, the four phases switch one after the other and repeat

periodically, thus we can introduce a Left-to-Right style state transition for U . This

kind of model is referred as LR-HMC. In Figure 3.2, the numbers 1, . . . , 4 represent

stance, push-up, swing and step down respectively. Therefore, according to the

transition graph, we get the following transition matrix.

33



Chapter 3. Gait cycle detection using HMM

A =



1−∆2 ∆2 0 0

0 1−∆3 ∆3 0

0 0 1−∆4 ∆4

∆1 0 0 1−∆1


(3.2)

In this chapter, the observation distribution conditioned on a specific hidden

state k forms:

p (yn|un = k) ∼ N (µk,Σk) , (3.3)

where k ∈ Γ, N stands for the conventional Gaussian distribution with mean value

µk and covariance Σk. Thus, the probability of sequence (uN1 ,yN
1 ) can be obtained

through Equations (3.1) to (3.3).

3.2 Parameter estimation

Before starting the explanation, we need to introduce the parameters set first. As

described above, the parameter set can be defined as θ = {ζk,∆k,µk,Σk}, in which

ζk is the initial probability of hidden state, µk and Σk are the mean value and

covariance of observation given un = k. Also, let denote alk is the l-th row and k-th

column element in A.

From previous section, it is now clear how the hidden state transfers and how to

compute the observation probability. In this section, we will focus on how to obtain

the filtering and smoothing probabilities, and applying parameter estimation based

on the well-known Baum-Welch algorithm [7], also called as ”forward-backward pro-

cedure”. This algorithm is based on the Expectation-Maximization (EM) principle.

The parameters are obtained through recursively performing the expectation and

maximization steps, i.e. using the updated θ(i) that obtained in the i-th EM iter-

ation to calculate the two steps again to obtain θ(i+1), until it reaches a maximum

iteration number. The initial θ does not need the ground truth of hidden state at

first, therefore Baum-Welch algorithm is an unsupervised learning method.
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3.2.1 Expectation step

Firstly, the forward probabilities αn(un) and backward probabilities βn(un) are

defined as follows
αn(un) = p

(
un,yn|yn−1

1

)
,

βn(un) = p
(
yN
n+1|un,yn

)
.

(3.4)

Then, it needs to recursively calculate the forward probability αn(un) and backward

probability βn(un) for all the n ∈ {1, . . . , N}, by Equations (3.5) and (3.6)

α1(un) = p (u1, y1) = p (u1) p (y1|u1) ,

αn+1(un) = p (un+1,yn+1|yn
1 )

=
∑
un∈Γ

{
p
(
un,yn|yn−1

1

)
p
(
un+1,yn+1|un,yn,y

n−1
1

)}
=
∑
un∈Γ

{
αn(un)p (un+1,yn+1|un,yn)

}
,

(3.5)

βN (un) = 1,

βn(un) = p
(
yN
n+1|un,yn

)
=

∑
un+1∈Γ

{
p (un+1,yn+1|un,yn) p

(
yNn+2|un+1,yn+1, un,yn

)}
=

∑
un+1∈Γ

{
p (un+1,yn+1|un,yn) p

(
yNn+2|un+1,yn+1

)}
=

∑
un+1∈Γ

{
p (un+1,yn+1|un,yn)βn+1(un+1)

}
.

(3.6)

Because yn and yn+1 are independent if un is given, then

p (un+1,yn+1|un,yn) = p (un+1|un) p (yn+1|un+1) . (3.7)

From forward and backward probabilities, the so-called filtering probabil-

ities p(un|yn
1 ), smoothing probabilities p(un|yN

1 ) and the joint probabilities

p(un, un+1|yN
1 ) can be obtained by

p (un|yn
1 ) =

p
(
un,yn|yn−1

1

)∑
un∈Γ

p
(
un,yn|yn−1

1

) =
αn(un)∑

un∈Γ
αn(un)

, (3.8)
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p
(
un|yN

1

)
= p

(
un|yn,y

n−1
1 ,yN

n+1

)
=

p
(
un,yn,y

N
n+1|y

n−1
1

)∑
un∈Γ

p
(
un,yn,yN

n+1|y
n−1
1

)
=

p
(
un,yn|yn−1

1

)
p
(
yN
n+1|un,yn,���yn−1

1

)∑
un∈Γ

p
(
un,yn|yn−1

1

)
p
(
yN
n+1|un,yn,���yn−1

1

)
=

αn(un)βn(un)∑
un∈Γ

αn(un)βn(un)
,

(3.9)

p(un, un+1|yN
1 ) =

p
(
un|yn−1

1

)
· p (un+1,yn+1|un,yn) · p

(
yN
n+1|un+1,yn+1

)
∑

un,un+1∈Γ

{
p
(
un|yn−1

1

)
· p (un+1,yn+1|un,yn) · p

(
yN
n+1|un+1,yn+1

)}
=

αn(un) · p (un+1,yn+1|un,yn) · βn+1(un+1)∑
un,un+1∈Γ

{
αn(un) · p (un+1,yn+1|un,yn+1) · βn+1(un+1)

} .
(3.10)

We next note that γn(un) = p
(
un|yN

1

)
and ξn(un, un+1) = p(un, un+1|yN

1 ). Esti-

mated hidden states can then be recovered through the Bayesian MPM (Maximum

Posterior Mode) criterion:

ûn = arg max
un∈Γ

γn(un). (3.11)

3.2.2 Maximization step

From the expectation results of γn(un) and ξn(un,), the parameters can be up-

dated by maximizing the likelihood function of (UN
1 ,Y N

1 ), the proof is given in the

Appendix A, here we briefly list re-estimation formula of parameters in θ:

ζk =
γ1(u1 = k)
τ∑

k=1

γ1(u1 = k)

, (3.12)

µk =

N∑
n=1

γn(un = k)yn

N∑
n=1

γn(un = k)

, (3.13)
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Σk =

N∑
n=1

γn(un = k) (yn − µk) (yn − µk)
ᵀ

N∑
n−1

γn(un = k)

, (3.14)

alk =

N−1∑
n=1

ξn(un = l, un+1 = k)

N−1∑
n=1

γn(un = l)

. (3.15)

Particularly, for the transition matrix of LR-HMC described in Equation (3.2), ∆1

to ∆4 can be obtained by

∆1 =

N−1∑
n−1

ξn(4, 1)

N−1∑
n=1

[ξn(4, 4) + ξn(4, 1)]

, (3.16)

∆k =

N−1∑
n−1

ξn(k − 1, k)

N−1∑
n=1

[ξn(k − 1, k − 1) + ξn(k − 1, k)]

, k = 2, 3, 4. (3.17)

The EM algorithm can be accomplished through recursively performing the

Expectation step and Maximization step, the procedures are shown in the pseudo-

code below:

Table 3.1: Procedures of EM algorithm.

1: θ(0) ←− initial parameters;
yN
1 ←− observations;

iterMax ←− max EM iteration;
2: For i = 1 to iterMax
2.1: αn(un) =Forward

(
θ(i−1),yN

1

)
;

2.2: βn(un) =Backward
(
θ(i−1),yN

1

)
;

2.3: [γn(un),ξn(un, un+1)]=Expectation
(
αn(un), βn(un),θ

(i−1)
)
;

2.4: θ(i)=Maximization
(
γn(un), ξn(un, un+1),y

N
1

)
;

End For
3: θ = θ(i);
4: Output θ.
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3.3 Gait phase detection using LR-HMC

This section describes the results of LR-HMC detecting gait phases for each activity.

3.3.1 Experiment setups

We utilize a foot-mounted IMU sensor1 to obtain the foot acceleration and angular

rate. As shown in Figure 3.3, the sensor is small enough, it can transfer the data

through wireless connection or store the data in a SD card for the analysis after

experiment. The coordinate of the sensor is also shown in the Figure, with X -

axis of the sensor pointing to right, Y-axis pointing ahead and Z-axis up. Thus,

the acceleration in the 3 axes are referred as aX , aY and aZ , the angular rate are

referred as ωX , ωY and ωZ . Given the orientation of the sensor fixed on the shoe

and the normal motion of the ankle, aY and aZ seem to be the most informative in

acceleration, ωX seems to be the most informative in angular rate. Throughout this

thesis, the Shimmer3 sensor sampling rate is set to 100Hz, the scale of accelerometer

is set to ±8G, the scale of gyroscope is set to ±1000deg/s.

Figure 3.3: Left: Shimmer3 IMU sensor. Right: the placement of the sensor on
right shoe.

Four lower limb activities —walking, running, stair ascent and stair descent—

are considered here for the gait phase detection. One subject was asked to perform

these four activities, each activity kept a constant speed, i.e. speed did not change

during the activity. The Figure 3.4 shows the sensor acceleration acquired from the

four activities, and Figure 3.5 shows the angular rate. Through the figures, we can

see that the signals vary differently among the four activities, and they all have
1Shimmer3 GSR+, more details at the manufacturer’s site http://www.shimmersensing.com/

images/uploads/docs/ConsensysPRO_Spec_Sheet_v1.1.0.pdf
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periodic cycles, which indicate the gait cycle.

(a) Walking. (b) Running.

(c) Stair ascent. (d) Stair descent.

Figure 3.4: Sensor acceleration of four activities for each axis, i.e. aX , aY , aZ .

(a) Walking. (b) Running.

(c) Stair ascent. (d) Stair descent.

Figure 3.5: Sensor angular rates of four activities for each axis, i.e. ωX , ωY , ωZ .
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3.3.2 Model initialization

Before using Baum-Welch algorithm to learn parameters, the parameter initializa-

tion θ(0) should firstly be obtained. So we need a roughly segmented gait phases

that can be used for parameter learning. An initialization of gait phases of one

specific activity is developed for the LR-HMC, with the following procedure:

(1) Set filtering cut-off frequency f and stance threshold h for the specific activity.

These two values are obtained through experience.

(2) Use a Butterworth low-pass filter to filter the norm of angular rate according

to f , then segment the filtered angular rate by h. All the periods below h

will be regarded as stance gait phase, all the periods above will be regarded

as non-stance phases.

(3) In each period of non-stance phase, the three peaks represent the three non-

stance gait phases, i.e. push-up, swing, and step-down. Thus, the three

non-stance gait phases can be initialized according to the peaks. Here, we

simply use four indices: the start and end indices of the non-stance phase, the

middle index between the first and second peaks, the middle index between

the second and third peaks, to obtain the three non-stance gait phases.

(4) Once gait phases have been segmented for all the activities, p(un, un+1) and

p(yn|un) can be easily obtained by using trivial empirical estimators, ζ and

A can be derived from p(un, un+1).

An excerpt of the initialization procedure is given in Fig. 3.6. The f and h

of each activity are set according to Table 3.2. The initialization is only a rough

segmentation, it does not work for every gait cycle because bias may sometime

appear. Its usage is to initialize θ as θ(0), then use this θ(0) to learn the model, so

it does not need to segment all the gait cycles.

3.3.3 Feature extraction

Feature extraction provides LR-HMC the needed observations. In [78], the authors

proved that detecting particular locomotion activities accurately needs specific fea-
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(a) Walk. (b) Run.

(c) Stair ascent. (d) Stair descent.

Figure 3.6: The initial hidden state obtained by the initialization process. In each
sub-figures, blue line is the filtered angular rate norm. The red, purple, cyan and
green represent stance, push-up, swing and step-down, respectively.

Table 3.2: Filter cut-off frequency f and stance threshold h used for each activity.

Walk Run Stair ascent Stair descent
f(Hz) 5.00 9.00 4.50 6.00

h(rad/s) 0.52 1.92 0.52 0.52

tures and classifiers, and the results showed that mean and standard deviation

features on sliding window provided the best accuracy out of all features evaluated

by both KNN and ensemble methods, while spectral entropy produced the worst

performance. As a matter of fact, many kinds of features in time domain or fre-

quency domain can be extracted from the original signals, such as mean, standard

deviation, maximum, root mean square, peak count, magnitude, spectral energy or

entropy, mean/median/peak frequency. The combination of mean and standard
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deviation may depict the main characters in time domain, i.e. the direction (pos-

itive or negative), amplitude, variation. Thus, using these two features is enough

to represent the characters in time domain. As for the frequency domain, it needs

a large quantity data to obtain accurate features to depict frequency, which is not

appropriate in our case. Then, based on their conclusion and our own tests, two

kinds of features are selected for observations: the sliding mean µn and sliding stan-

dard deviation σn of the acceleration and angular rate along the 3 sensor axes. The

calculations w.r.t. acceleration is done according to

mi
n =

1

W

n∑
j=n−W+1

aij ,

σi
n =

√√√√ 1

W

n∑
j=n−W+1

(
aij −mi

n

)2
, (3.18)

where i ∈ {X ,Y,Z} represents the axis of sensor, W is the length of the sliding

window, it is set to 15 according to our experience. Same features can be extracted

from angular rate. Hence, the observation dimension is w = 12.

3.3.4 Gait detection

After feature extraction and parameter initialization, we are able to learn model

parameters through the Baum-Welch algorithm, by using Equations (3.4) to (3.16).

At the mean time, the detected gait phases can be obtained by Equation (3.11).

Table 3.3 shows the learned transition matrix of each activity. We can see that

transition matrices are different from each other activity, due to the duration of

each gait phase of the activities are different. Since the gait phases last a period

of time, which means that hidden states keep the same in most of the time, so ∆1

to ∆4 are very small. Another reason is because the experiment of each activity

started from standing still on the ground. Thus, the learned initial probability ζk

of all the activities are the same, i.e. ζ1 = 1 and ζ2 = ζ3 = ζ4 = 0. Table 3.4 shows

the estimated mean value of Gaussian p(yn|un), we can see that µ varies differently

in one activity.
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Table 3.3: Gait phase transition matrices A for the four activities.

Stance Push-up Swing Step down

Walk

Stance 0.9712 0.0288 0 0
Push-up 0 0.9400 0.0600 0
Swing 0 0 0.9614 0.0386
Step down 0.0307 0 0 0.9693

Run

Stance 0.9267 0.0733 0 0
Push-up 0 0.9600 0.0400 0
Swing 0 0 0.9518 0.0482
Step down 0.0620 0 0 0.9380

Stair ascent

Stance 0.9800 0.0200 0 0
Push-up 0 0.9577 0.0423 0
Swing 0 0 0.9649 0.0351
Step down 0.0404 0 0 0.9596

Stair descent

Stance 0.9785 0.0215 0 0
Push-up 0 0.9570 0.0430 0
Swing 0 0 0.9574 0.0426
Step down 0.0376 0 0 0.9624

In order to evaluate the segmentation performance, the threshold method pro-

posed in [23] is compared to LR-HMC; the used parameters for the threshold method

are tuned for getting the best result. As shown in Figure 3.7, the threshold method

can only detect stance and swing gait phases, it also fails several times to detect

stance phase for walking, running and stair ascent. By contrast, LR-HMC can de-

tect more complex gait phases and obtains a very regular gait pattern. Besides, the

parameters in LR-HMC can be automatically learned by the unsupervised Baum-

Welch algorithm, while the threshold method need to manually set the parameter

for each activity.

3.4 Conclusion

This chapter aims to use HMM-based algorithm to detect gait phases related to

lower limb locomotion activity. We developed a LR-HMC model that can detect

the gait phases from a single activity, with the help of a foot-mounted IMU sensor.
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(a) Walk.

(b) Run.

(c) Stair ascent.

(d) Stair descent.

Figure 3.7: The detected gait cycle by LR-HMC and threshold method.
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In the LR-HMC model, the gait phase acts as the hidden state, a specific left-right

state transition graph is applied. The learned model and restored hidden state show

that the proposed model is applicable for gait detection.

However, there are some limitations. First of all, the LR-HMC is a stationary

model, the learned parameters can only work for one pattern of a single activity.

That means the model is not able to handle more complex cases, such as various

activity speeds, suitable for many people, change of activity pattern caused by

different road conditions, etc. Therefore, it is very limited to use this model in a

realistic application. Secondly, the model only suits for one activity, i.e. it can

not automatically identify the activity. In the next two chapters, we will focus on

dealing with these issues.
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Chapter 4

Adaptive on-line recognition

using non-parametric TMC

This chapter details a non-parametric triplet Markov chain (TMC) model designed

for adaptive on-line recognition of lower limb locomotion activity. The proposed

algorithm is able to recognize different activities and detect gait phases simultane-

ously. Besides, it should consider a wide range of activity pattern from different

healthy people, and be robust to different speeds as well.

In the Chapter 3, the LR-HMC is utilized for detecting the gait phases of differ-

ent lower limb locomotion activities. Figure 4.1 shows the angular rate histogram of

each gait phase and the estimated Gaussian probability density, w.r.t. the activity

of walking. Seeing the histograms, we can observe that their shapes are not strictly

Gaussian, especially for the histograms of ωX , which is prevalent for angular rate.

Therefore, the estimated Gaussian density cannot match the real class-conditional

observation density perfectly. On the other hand, for the swing and step down gait

phases, apparently their histograms are extremely different from each other, but the

estimated Gaussian densities look like similarly. It is because that the mean value

µ are very close, even though their densities are totally different. Please note that

this is only one activity performed by one person at a constant speed. However our

goal is to recognize activity in a much more complex situations, then such a simple

density approximation is not realistic. A straight forward idea is using histograms

themselves rather than Gaussian density to represent the class-conditional observa-

tion density. So, following this idea, we propose a non-parametric TMC, referred

as TMC-HIST, to fulfill the recognition task. Based on TMC-HIST, an adaptive

on-line recognition algorithm is then established.
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(a) Stance.

(b) Push-up.

(c) Swing.

(d) Step down.

Figure 4.1: The histogram of the sliding mean of angular rate, and the estimated
marginal Gaussian probability density, w.r.t. the activity of walking.
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4.1 TMC-HIST

In previous LR-HMC, only the hidden state U is considered because we just need to

detect the gait phase. However, since now we need to recover both the activity and

gait phase at the same time, a TMC is introduced here to model the motion infras-

tructure. Consider three stochastic processes. The first one is X = (X1, · · · , XN ),

where Xn ∈ Λ = {1, · · · , r}, n ∈ {1, · · · , N}. Xn represents the desired activity, r is

the number of activities that are considered. The second one is U ∈ Γ = {1, · · · , τ},

which represents the gait phase, it is the same as the one in LR-HMC that described

in Section 3.1. The real-valued process Yn ∈ Rw represents the observation. There-

fore, total number of possible combinations of the couple (Xn, Un) is r × τ .

Denote V = (X,U) and T = (V ,Y ). Then T is said to be a TMC if

it is Markovian [116]. TMCs are strictly more general than pairwise Markov

chains (PMCs) [117], which are themselves more general than HMMs, see for ex-

ample [118] for detailed explanations. In a general TMC, none of the processes

X,Y , (X,U), (X,Y ), (U ,Y ) are necessarily Markovian [119], but the conven-

tional algorithms of the parameter learning still work for TMCs. The Baum–Welch

algorithm (but not necessarily the Viterbi algorithm) applies in triplet Markov mod-

els, so Bayesian MPM criterion can be used to recover both X and U , i.e. activities

and gait phases, from Y only, once parameters of the model are known.

Let the realizations of Xn, Un and Yn be denoted by xn, un and yn respectively,

so vn = (xn, un), tn = (vn,yn). Also, for simplification, we will denote the prob-

ability p(Xn = xn, Un = un|Y1 = y1, . . . ,YN = yN ) by p(xn, un|yN
1 ) for example.

The dependency graph of the specific TMC suited for our application is shown in

Figure 4.2. The transition probability of T , p (tn+1|tn) = p (vn+1,yn+1|vn,yn), is

simplified to

p (tn+1|tn) = p (xn+1, un+1|xn, un) p (yn+1|xn+1, un+1) , (4.1)

which provides the process T = (V ,Y ), with V = (X,U), the structure of a classi-

cal HMC. The first term p (xn+1, un+1|xn, un) is the state transition probability, the
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dimension of the transition matrix being (r× τ)× (r× τ). For activity recognition,

the state can only transfer from one gait phase to the next gait phase within the

same activity, or, from stance phase of one activity to push-up phase of another

activity, as shown in Figure 4.3. Because the number of activities is r = 4, so the

dimension of the state joint probability matrix p(vn,vn+1) is 16. Therefore, there

are only 44 non-zero entries in the total 256. Process V has the shape of a cyclic

left-right Markov chain similar as the one in LR-HMC.

Figure 4.2: TMC dependency graph for activity recognition.

Figure 4.3: State transition graph of the TMC-based activity recognition algo-
rithm. The values (1,2,3,4) represent the stance, push-up, swing and step down
respectively, for the four gait phases.
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The second term in Equation (4.1) is the probability of observing yn condi-

tionally to each state. Most of the time, this kind of density is modeled by using

Gaussian densities, whereas in this work we propose a non-parametric modeling

method by using histograms to represent p(yn|vn) for its best ability to fit users’

steps, whatever their size. Because yn is a w-dimensional vector, then w histograms

can be derived from yn for each vn, thus the total number of histograms in TMC-

HIST is 16×w. In LR-HMC, p(yn|un) is obtained by the Gaussian density function

given the µk and Σk, while in TMC-HIST, p(yn|vn) is provided by the histograms

w.r.t. specific vn. Since there are w histograms for each vn, then p(yn|vn) equals

to the product of all the w histogram densities.

It is sure that the three axes of the sensor are correlated in the movement,

while the applied histograms represent the marginal probability density of each

axis. Using a high dimensional histogram would probably suit the motion more

closely, but it may require too much data to form a reliable density and drastically

increase the computation time.

4.2 Parameter estimation

The parameter set to be estimated is θ = {ζk, alk, Bk},l, k ∈ Λ×Γ, where alk is the

l-th row and k-th column element in the transition matrix A, B is the histograms.

The calculation of forward-backward procedure for TMC-HIST is very similar with

the one of LR-HMC, as described in Section 3.2. Replace un with vn in the Equa-

tions (3.4) to (3.6), the forward probability αn(vn) and backward probability βn(vn)

are then obtained. Denote the filtering probability p(vn|yn
1 ), smoothing probabil-

ities γn(vn) = p(vn|yN
1 ) and ξn(vn,vn+1) = p(vn,vn+1|yN

1 ), they can be similarly

calculated by

p (vn|yn
1 ) =

αn(vn)∑
vn∈Λ×Γ

αn(vn)
, (4.2)

γn(vn) =
αn(vn)βn(vn)∑

vn∈Λ×Γ

αn(vn)βn(vn)
, (4.3)
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ξn(vn,vn+1) =
αn(vn) p (vn+1,yn+1|vn,yn) βn+1(vn+1)∑

vn,vn+1∈Λ×Γ

αn(vn) p (vn+1,yn+1|vn,yn) βn+1(vn+1)
. (4.4)

The estimated hidden state is then recovered by

v̂n = arg max
vn∈Λ×Γ

p
(
vn|yN

1

)
. (4.5)

These calculations can be performed once the parameter set θ is known. The

well-known Expectation-Maximization (EM) principle is generally applied for learn-

ing parameters because it provides the exact re-estimation formula for parameters

under Gaussian distribution assumptions. As we deal with non-parametric his-

tograms, the expectation step can be acomplished by Equations (4.3) and (4.4).

But unfortunately it is not possible to retrieve θ through the maximization step

that described in Section 3.2.2, which utilizes partial differential to seek the max-

imum point. Hence, we make use of another unsupervised learning method called

“Iterative Conditional Estimation” (ICE) [117, 120], which is applicable in a wide

range of situations. Here, we simply recall the ICE procedure:

(1) Based on the known activity xn, initialize hidden state un by the same method

described in Section 3.3.2, then the initial ζk, alk and Bk can be very easily

acquired;

(2) Compute the forward-backward algorithm using current parameters, and com-

pute the state transition probability conditioned on observations:

p
(
vn+1|vn,yN

1

)
=

ξn(vn,vn+1)

γn(vn)
; (4.6)

(3) Simulate a realization of state sequence ṽ = (ṽ1, . . . , ṽN ) by using p(v1|yN
1 )

and p(vn+1|vn,yN
1 ) given in Equations (4.3) and (4.6);

(4) Update ζk, A and Bk according to ṽ and yN
1 ;

(5) Stop when the number of ICE iterations reaches a predefined maximum value,

100 for example, else go back to step (2).
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The ICE parameter estimation algorithm is an unsupervised learning method, even

though we use the ground truth of activity in the first step. In fact, the initial-

ization is a kind of semi-unsupervised method, but ICE applied here is exactly

unsupervised. Then, using the learned model we can recover activity x̂n and gait

phase ûn in the batch mode (or off-line), by adopting the smoothing described in

Equation (4.3), then obtain

x̂n = arg max
xn∈Λ

{ ∑
un∈Γ

p
(
xn, un|yN

1

)}
,

ûn = arg max
un∈Γ

{ ∑
xn∈Λ

p
(
xn, un|yN

1

)}
.

(4.7)

4.3 Adaptive on-line recognition

In the previous section, the model learning is relied on the assumption that TMC-

HIST is stationary, i.e. once the model is learned, the estimated parameters are not

able to change. This limits the application of recognition and may probably reduce

the recognition accuracy. Because in our daily life, the pattern of our activity may

change according to the activity speed and road condition. Besides, the pattern is

of course differed among the people, according to their gender, height, stride length,

etc. Therefore, it is unrealistic to generate a universal model that can fits for the

situations and people as much as possible. While, an alternative way to cope with

this problem is making the model can adapt itself according to the situation at run

time. So, this section will explain how to make TMC-HIST work adaptively on-line.

The diagram of the adaptive on-line algorithm based on TMC-HIST for lower

limb locomotion activities recognition is displayed in Figure 4.4. The entire algo-

rithm is composed of four stages: (i) model training, (ii) data acquisition and pre-

processing, (iii) complete gait detection, (iv) final decision and posterior update.

The (i) stage will be described firstly, (ii) and (iii) stages will then be presented

together, (iv) stage will finally be described.
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Figure
4.4:
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iagram
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on-line
recognition

algorithm
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4.3.1 Model Training

The TMC-HIST model needs to be trained before being used on-line, this trained

model will act as an initial model for the on-line recognition. It guarantees that the

algorithm is initialized in a status that will allow a roughly correct classification.

The trained model needs to detect all kinds of activities and activity switches, thus

the training data should contain the four activities and all possible activity switches.

While it should be noticed that on-line data does not have this restriction.

As similar in the Section 3.3.3, the extracted features are sliding mean m and

standard deviation σ of acceleration and angular rate. Let the extracted features

be the observation and use ICE algorithm depicted in Section 4.2 to obtain the

learned model.

4.3.2 On-line Data Acquisition and Complete Gait Detection

The data is fed to the on-line algorithm once it arrives. Then feature extraction is

performed based on the new data and the stored ones.. The data is accumulated

during the required time to obtain a complete gait with the sequence: push-up →

swing → step down → stance. In order to decide whether a gait cycle is complete,

a one-step forward process of TMC-HIST model is firstly conducted to estimate

current gait phase, which derives from the marginal probability of p(xn, un|yn
1 )

over xn, using MPM method

ũn = arg max
un∈Γ

{ ∑
xn∈Λ

p (xn, un|yn
1 )

}
. (4.8)

Then, the current gait phase and the features are stored in a stack, which contains

all the gait phases and corresponding features of the current gait cycle. Afterward,

a decision is made to verify whether an entire gait is complete or not. If the stack

is shorter than a threshold tmin or does not contain a complete sequence of gait

phases, the algorithm will return and wait for another new data to come in. The

current forward result p(xn, un|yn
1 ), obtained from Equation (4.2), will be stored for

the use of the forward process of the next sampling time. The value of tmin is set to
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0.5s based on the fastest speed of gait cycle among the four activities. Otherwise,

it means that an entire gait is completed and all the features stored will be sent to

the last stage.

4.3.3 Final Decision and Posterior Update

The activity and gait phases in one detected gait cycle are denoted by x′n and u′n, and

N ′ is the number of samples for the corresponding gait cycle. This stage proceeds

only when one gait is completed and contains two steps: 1) final decision for activity

and gait phases, 2) posterior update of the joint probability p(v′
n,v

′
n+1|yN ′

1 ) and

the histograms that represent p(yn|xn, un), if necessary. First, the features from

the previous stage are smoothed by the forward-backward process to get p(v′
n|yN ′

1 ),

then the smoothed activities and gait phases are obtained using MPM criterion

again:

x̂′n = arg max
x′
n∈Λ

{ ∑
u′
n∈Γ

p
(
x′n, u

′
n|yN ′

1

)}
,

û′n = arg max
u′
n∈Γ

{ ∑
x′
n∈Λ

p
(
x′n, u

′
n|yN ′

1

)}
.

(4.9)

The final decision of gait phases is û′n, for each sampling time. However, there is

only one possible activity for each gait cycle, so the final decision of activity x̂′

depends on the most frequent estimated activity among x̂′n:

x̂′ = arg max
k∈Λ

{
N ′∑
n=1

1
x̂′
n=k

}
, (4.10)

where 1 is a boolean-valued function which takes value 1 when it satisfies the

condition, or takes 0 if not. Then, all the x̂′n within one gait cycle are set to the

final decision x̂′.

Based on the final decision of activity and gait phases, we can accumulate the

features into the stacks for posterior update. Since the activity number is r and gait

phase number is τ = 4, so in the gait phase stacks, there are r different 4×4 matrices

for each activity and each matrix is a counter relative to the p(u′n, u
′
n+1|yN ′

1 ), which

is a marginal probability of p(v′
n,v

′
n+1|yN ′

1 ) over all x′n and x′n+1. The sequence

56



Chapter 4. Adaptive on-line recognition using non-parametric TMC

of gait phases from final decision are divided into N ′ − 1 pairs of (u′n, u
′
n+1), the

number of each (u′n, u
′
n+1) case is then accumulated into the matrix according to

x̂′. As the name suggests, the observation histograms stacks contain m×q different

stacks and accumulate the observations, i.e. features, according to x̂′ and û′n.

Two thresholds ηgait and ηobservation are applied here to decide whether these two

kinds of stacks are large enough to update the TMC-HIST model. When one matrix

in gait phase stacks has accumulated more than ηgait gaits, the joint probability of

the relative activity will be calculated, and the corresponding joint probability in

TMC-HIST model will be updated. After that, all the entries in this matrix are

reset to zero. Likewise, the histograms in TMC-HIST model are replaced if the

related stack’s volume exceeds ηobservation; reset is also conducted after the update.

It should be noticed is that all the matrices and histogram stacks are accumulated

and updated independently, because the duration of each gait phase is different

from each other. Thanks to the posterior update, the on-line algorithm can adjust

the parameters in TMC-HIST model according to the users’ activity patterns and

the road conditions, such as the speed of foot strike, ascent or descent slope. . .

4.4 Experiment and results

4.4.1 Experiment setup

Ten healthy subjects were invited for the experiment: three females and seven

males, age from 25 to 47 years old, weight from 47 to 83 kg, height from 160 to

184 cm. The sensor sampling rate was set to 100Hz, and the range of gyroscope

to ±1000deg/s. The window size W for feature extraction was set to 15 samples

based on our experience, which corresponds to 0.15s. It was determined by the

stance duration when running, which is the shortest gait phase duration of all the

activities. This is reasonable since a window size bigger than the duration may

reduce the detection accuracy of the shortest gait phase, whereas a too small W

may not be sufficient for calculating the mean value and standard deviation. The

ranges of the histograms in TMC-HIST were set from −15rad/s to 15rad/s for mean

value, and from 0rad/s to 15rad/s for standard deviation, and the bins number of
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the histograms was all set to 300.

The proposed algorithm is evaluated on a designed experiment, which is con-

ducted by the subjects. We utilize a 2-fold cross-validation method, by equally sep-

arating the subjects into two groups. This way guarantees that training data and

testing data come from different sources. The experiment was conducted around

a building with four floors on the campus of École Centrale de Lyon (France).

The selected path consists of walking and running around the building (with ramp

road conditions), as well as climbing and descending stairs. The exact sequence of

activities is

(1) 600 meters of walking,

(2) 600 meters of running,

(3) four round trips of climbing stairs from ground floor to the 4th floor and back

to the ground floor,

(4) repeat Steps (1) to (3) a second time.

Hence, one experiment consists in repeating two times the same sequence of activ-

ities, called here “a section”. The ground truth of the experiment can be seen in

Figure 4.7. It consists of 1200m of walking and running, 32 floors of stair ascent

and descent. So, in the experiment there are four lower limb locomotion activities

considered, which are most frequently performed in our daily life. The average

time to complete one experiment is about 30 minutes. All the subjects perform

the activities at their preferred speed, but are asked to keep the same speed within

one experiment as much as possible. This ensures that the activity patterns and

speeds vary among the subjects, but almost keep constant within one experiment.

The speed ranges of the four activities among the subjects are 1.09 − 1.68m/s,

2.14 − 3.82m/s, 89.79 − 123.68 stairs/min, 96.07 − 140.97 stairs/min. The details

of the activities of each subject is displayed in Table 4.1.

The implementation of the algorithms is done in Matlab, the code is running

on a 3.2GHz CPU computer with 64-bit Win7 operating system. The average

experiment time of all the subjects is 29.80 minutes, while the average calculation
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time by code is 2.60 minutes. Since calculation time are more than 11 times faster

than that experimental one, thus the processing can be theoretically made on-line

on a processor of frequency higher than 3.2GHz/11 = 291MHz.

4.4.2 Experimental results

As shown in Figure 3.3, the sensor is fixed on the shoe of each of subject. In

Chapter 3, both acceleration and angular rate are involved in the feature extraction.

However, because the subjects wear different types of shoes, especially for the front

slope where the sensor is placed, thus the acceleration readings vary differently in

each sensor axis. Therefore, in order to verify whether the variation of acceleration

has an impact on the recognition performance, we utilize two kinds of features to

test our TMC-HIST model. The first one only takes the angular rate and extract

the sliding mean and standard deviation in the three sensor axes, whereas the

second one take both acceleration and angular rate to extract the sliding mean and

standard deviation. Thus, the observation dimension for the two kinds of features

are 6 and 12 respectively.

Hereinafter, the experimental results will be displayed separately according to

the two observations. In each of them, a global analysis over the ten subjects is

given at first, to show a general performance of the batch model recognition and of

the adaptive on-line recognition algorithm. Then, one subject’s data will be used

for precisely analysing the parameters updating.

4.4.2.1 Observation of angular rate

The confusion matrix of batch mode recognition using TMC-HIST based on 6-

dimensional (6D) observation is shown in Table 4.2. The overall accuracy is 83.17%

and the Matthews correlation coefficient (MCC)1 [121]) is 0.7823. Table 4.3 shows

the sensitivity, specificity, F1 score and MCC of each individual activity by the

batch mode recognition.

For investigating the influences of ηgait and ηobservation –the size of the stacks
1MCC is a measure for multi-category classification, it can balance the influence that produced

by the different proportion of each category, a value close to 1 means a perfect classification.
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Table 4.2: Confusion matrix of batch mode recognition, using 6D observation.

Predicted activity

Walk Run Stair ascent Stair descent

Tr
ue

ac
ti

vi
ty Walk 74.34% 16.71% 5.45% 3.50%

Run 3.79% 95.38% 0.54% 0.29%
Stair ascent 2.45% 4.00% 85.70% 7.85%

Stair descent 1.82% 2.32% 3.70% 92.15%

Table 4.3: The sensitivity, specificity, F1 score, MCC value of the batch mode
recognition by TMC-HIST, using 6D observation.

Activity
Walking Running Stair ascent Stair descent Total

Sensitivity 0.7434 0.9538 0.8570 0.9215 0.8689
Specificity 0.9715 0.8834 0.9610 0.9656 0.9454
F1 Score 0.8385 0.8048 0.8250 0.8654 0.8334
MCC 0.7368 0.7554 0.7935 0.8437 0.7823

before updating TMC-HIST– have on the activity recognition performance. Fig-

ure 4.5 shows the influence on average accuracy over the ten subjects w.r.t. different

values of the thresholds ηgait and ηobservation. From the results, ηobservation affects

the accuracy more than ηgait does, which means that the update of histograms is

more critical than the update of joint probability matrix. The accuracy obtained

in the second section is higher than in the first section, which indicates our pro-

posed on-line algorithm can adjust the parameters in TMC-HIST model properly

and improve the accuracy gradually. We can see that, as the value of ηobservation

increases, the average accuracy reaches above 99% when ηobservation ∈ [600, 750].

According to this experiment, we select ηobservation = 700 and ηgait = 6 to analyse

the performance of the proposed on-line algorithm.

Confusion matrices of the first and second sections of the experiment are shown

in Table 4.4. We can see that the recognition performance of each activity is im-

proved from the first to the second section. The overall accuracy increases from
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(a)

(b)

Figure 4.5: Averaged activity recognition accuracy (in %) according to ηobservation
and ηgait (size of stacks), for the first section of experiment (a) and for the second
section (b), using 6D observation.
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Table 4.4: Confusion matrix of the first section (up) and second section (down) of
experiments, using 6D observation.

Predicted activity

Walk Run Stair ascent Stair descent

Tr
ue

ac
ti

vi
ty Walk 98.69% 0.58% 0.37% 0.36%

Run 0.48% 99.44% 0.00% 0.08%
Stair ascent 0.13% 1.18% 97.65% 1.05%

Stair descent 0.29% 0.05% 4.96% 94.70%

Predicted activity

Walk Run Stair ascent Stair descent

Tr
ue

ac
ti

vi
ty Walk 99.39% 0.21% 0.23% 0.16%

Run 0.16% 99.83% 0.01% 0.00%
Stair ascent 0.86% 0.00% 98.62% 0.52%

Stair descent 0.09% 0.00% 1.71% 98.20%

Table 4.5: The sensitivity, specificity, F1 score, MCC value of the on-line mode
recognition by TMC-HIST, using 6D observation. Up: first section, down: second
section.

Activity
Walking Running Stair ascent Stair descent Total

Sensitivity 0.9869 0.9944 0.9765 0.9470 0.9762
Specificity 0.9968 0.9940 0.9897 0.9959 0.9941
F1 Score 0.9918 0.9864 0.9590 0.9606 0.9744
MCC 0.9838 0.9827 0.9520 0.9544 0.9682

Activity
Walking Running Stair ascent Stair descent Total

Sensitivity 0.9939 0.9983 0.9862 0.9820 0.9901
Specificity 0.9965 0.9987 0.9958 0.9982 0.9973
F1 Score 0.9951 0.9968 0.9815 0.9855 0.9897
MCC 0.9905 0.9959 0.9782 0.9831 0.9869
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98.14% in the first section to 99.20% in the second section, while MCC increases

from 0.9682 to 0.9869. Table 4.5 shows the sensitivity, specificity, F1 score and

MCC of each individual activity by the on-line recognition. In a general view, the

coefficients are improved in the second section. The better performances in the sec-

ond section show that the parameters adjustment in the proposed on-line algorithm

is beneficial, which gradually leads to an improvement of recognition performances.

In order to intuitively understand the adaptation of the proposed on-line al-

gorithm, Figure 4.6 shows the accuracy of each activity in the most recent 1000

samples, i.e., the accuracy that calculated from the latest 10 seconds with respect

to each activity. The most recent accuracy can be used for investigating the con-

verging rate. As shown in the figure, running is the fastest to converge at an

accuracy over 99%, walking converges at about 40s, stair ascent and descent reach

a relatively high accuracy after 100s. The drops in accuracy after convergence is

due to the activity switch, which may affect the recognition behavior during a short

time, but will perform well again after the activity switch. It is not difficult to find

that walking and running are easier to be classified than climbing stairs, showing

that the model approximation with respect to climbing stairs is slower than that of

walking and running. Nevertheless, all the activities reach a high accuracy level in

the experiments finally.

Figure 4.6: Accuracy in the most recent 1000 samples w.r.t. each activities.
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For better understanding parameters updating, a typical subject’s data is se-

lected here (subject 5, male, 25 years old, 52kg weight and 170cm tall). One reason

for selecting this experimental data is because the accuracy and MCC in the second

section, 98.99% and 0.9800 respectively, are lower than the averaged values of all

the subjects. So, Figure 4.7 shows the ground truth and classified activities of the

subject 5. It can be seen that, in the second section, some samples of walking are

wrongly classified as stair descent. And stair ascent and stair descent are misclas-

sified at the beginning. But as expected, the performance in the second section

is much better than in the previous one. Regarding the gait phases, there is no

precise evaluation method because of the lacking of the proper device to collect

the ground truth of gait cycles. However, as shown in Figure 4.8, it is obvious

that the gait cycles detection becomes more regular when the model’s parameters

have converged to fit the subject gait rhythm. Indeed, gait cycles are introduced in

the proposed algorithm to make the on-line algorithm possible and help to obtain

a better activity recognising result, therefore, a well-detected gait cycle assists to

obtain a good recognition of activity.

Figure 4.7: Recognized activities from TMC-HIST for subject 5, using 6D observa-
tion. For the first section, accuracy and MCC are 94.49% and 0.9055 respectively,
while, for the second section, the values are 98.99% and 0.9800 respectively.
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(a) Walking at beginning. (b) Walking when converged.

(c) Running at beginning. (d) Running when converged.

(e) Stair ascent at beginning. (f) Stair ascent when converged.

(g) Stair descent at beginning. (h) Stair descent when converged.

Figure 4.8: The detected gait cycles at the beginning of each activity (left column)
compared to the ones when the estimation of the model’s parameter has converged
(right column).
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4.4.2.2 Observation of acceleration and angular rate

The confusion matrix of batch mode recognition using TMC-HIST based on 12-

dimensional (12D) observation is shown in Table 4.6, the accordingly coefficients

are displayed in Table 4.7. The overall accuracy is 78.66% and the Matthews

correlation coefficient is 0.7319.

Figure 4.9 shows the influence on average accuracy over the ten subjects w.r.t.

different values of the thresholds ηgait and ηobservation. We can see that the accuracy

at ηobservation = 700, ηgait = 6 is the same as the one in Figure 4.5b. But the

accuracy at ηobservation = 1300, ηgait = 6 is much lower than the one in Figure 4.5a.

Table 4.6: Confusion matrix of batch mode recognition, using 12D observation.

Predicted activity

Walk Run Stair ascent Stair descent

Tr
ue

ac
ti

vi
ty Walk 64.30% 15.51% 12.44% 7.75%

Run 1.24% 95.83% 0.61% 2.33%
Stair ascent 1.54% 2.70% 87.39% 8.37%

Stair descent 0.66% 0.72% 6.11% 92.51%

Table 4.7: The sensitivity, specificity, F1 score, MCC value of the batch mode
recognition by TMC-HIST, using 12D observation.

Activity
Walking Running Stair ascent Stair descent Total

Sensitivity 0.6430 0.9583 0.8739 0.9251 0.8501
Specificity 0.9884 0.8964 0.9166 0.9352 0.9341
F1 Score 0.7770 0.8231 0.7449 0.7986 0.7859
MCC 0.6762 0.7781 0.7031 0.7701 0.7319

Particularly when ηobservation = 1300, ηgait = 6, the confusion matrices of the

two sections are displayed in Table 4.8. The sensitivity, specificity, F1 score, MCC

of the two sections are shown in Table 4.9.

As the same as the Section 4.4.2.1, we display the results from subject 5 to

show the performance of on-line updating, where the thresholds ηobservation = 1300,
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(a)

(b)

Figure 4.9: Averaged activity recognition accuracy (in %) according to ηobservation
and ηgait (size of stacks), for the first section of experiment (a) and for the second
section (b), using 12D observation.
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Table 4.8: Confusion matrix of the first section (up) and second section (down) of
experiments, using 12D observation.

Predicted activity

Walk Run Stair ascent Stair descent

Tr
ue

ac
ti

vi
ty Walk 98.48% 0.39% 0.78% 0.35%

Run 0.27% 99.56% 0.08% 0.09%
Stair ascent 2.47% 0.00% 95.42% 2.11%

Stair descent 0.98% 0.00% 6.52% 92.50%

Predicted activity

Walk Run Stair ascent Stair descent

Tr
ue

ac
ti

vi
ty Walk 99.56% 0.06% 0.29% 0.09%

Run 0.13% 99.86% 0.01% 0.00%
Stair ascent 0.79% 0.00% 98.5% 0.66%

Stair descent 0.28% 0.00% 2.07% 97.65%

Table 4.9: The sensitivity, specificity, F1 score, MCC value of the on-line mode
recognition by TMC-HIST, using 12D observation. Up: first section, down: second
section.

Activity
Walking Running Stair ascent Stair descent Total

Sensitivity 0.9848 0.9956 0.9542 0.9250 0.9649
Specificity 0.9889 0.9975 0.9845 0.9942 0.9913
F1 Score 0.9867 0.9933 0.9337 0.9436 0.9643
MCC 0.9737 0.9915 0.9223 0.9348 0.9556

Activity
Walking Running Stair ascent Stair descent Total

Sensitivity 0.9956 0.9986 0.9855 0.9765 0.9891
Specificity 0.9963 0.9996 0.9949 0.9983 0.9973
F1 Score 0.9958 0.9987 0.9787 0.9830 0.9890
MCC 0.9919 0.9983 0.9748 0.9802 0.9863
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ηgait = 6. Figure 4.10 is the accuracy in recent 10 seconds of each activity. Fig-

ure 4.11 is the recognized activities of subject 5. From the Figures, we can see

that the performance of using 12D feature is similar with the one of 6D feature

(Figure 4.7 and 4.6). All the activities reach a high accuracy level before 100 sec-

onds. While the recognition accuracy is improved from 93.25% in the first section

to 98.81%, MCC is improved from 0.8869 to 0.9766. The detected gait cycles are

shown in Figure 4.12.

Figure 4.10: Accuracy in the most recent 1000 samples w.r.t. each activities.

Figure 4.11: Recognized activities from TMC-HIST for subject 5, using 12D obser-
vation. For the first section, accuracy and MCC are 93.25% and 0.8869 respectively,
while, for the second section, the values are 98.81% and 0.9766 respectively.
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(a) Walking at beginning. (b) Walking when converged.

(c) Running at beginning. (d) Running when converged.

(e) Stair ascent at beginning. (f) Stair ascent when converged.

(g) Stair descent at beginning. (h) Stair descent when converged.

Figure 4.12: The detected gait cycles at the beginning of each activity (left column)
compared to the ones when the estimation of the model’s parameter has converged
(right column).

4.5 Discussion

This section proposes an in-depth discussion on the experimental results for key

points of the proposed algorithm, such as the impact of observation, classification
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accuracy, convergence rate, gait phase detection, parameter update. . .

4.5.1 Impact of acceleration

The two Sections 4.4.2.1 and 4.4.2.2 show the performances obtained by two kinds of

observations, the first section only uses angular rates as observation (6D), while the

second section uses both angular rates and accelerations (12D). In a general view,

only using angular rates seems to be more appropriate than using both angular rates

and accelerations in our experiments. The former one obtains better performances

in both batch mode and on-line mode recognition.

In batch mode recognition, 6D observation obtains an accuracy of 83.17%, while

the one of 12D observation is 78.66%. The MCC values of the two are 0.7823

and 0.7319 respectively. In on-line mode recognition, both of the two kinds of

observations can reach a high accuracy in the second experiment section. However,

comparing the Figure 4.5b and 4.9b, we can see that 6D observation is more robust

and suitable w.r.t. different ηgait and ηobservation, especially when ηobservation is

very large. The distinctions in batch mode recognition is because of the different

shoes that used by different subjects, since the front slopes of the shoes may cause

distinctions in aX and aY (Figure 3.3). Consequently, the batch mode trained model

acts as the initial model for the on-line recognition. It is sure that a better initial

model can obtain a more robust on-line recognition result.

Specifically, at the point ηobservation = 700 and ηgait = 6 where both the two

kinds of observations reach an accuracy of 99.20%, Figure 4.6 and 4.10 show that the

parameter update behaves similarly between the two. Likewise, the detected gait

cycles, Figure 4.8 and 4.12, also behave similarly. This is because that if the initial

model can properly provide estimated state at the beginning, then the model will

be updated to fit the pattern of specific subject. It means that all the histograms

related to angular rates and accelerations reflect the specific subject after correct

parameter update. Therefore, the impact of acceleration is reduced.

Because using 6D observation is more robust than the other one, the discussions

in following will be based on the results of 6D observation.
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4.5.2 Recognition Performance

A comparison of the performances of the proposed adaptive on-line algorithm com-

pared to some state-of-the-art algorithms is displayed in Table 4.10. These algo-

rithms are evaluated according to several aspects including the number of sensors,

the average accuracy, the MCC. . .

Among all the works that use one single sensor reported in Table 4.10, the

proposed algorithm obtains the highest average accuracy with 99.20%. While the

Phase Variable obtained an accuracy of 98.30% for only 3 activities: walking, stair

ascent and descent. Descriptor-based methods obtained 97.12% on 6 lower limb

activities, whereas energy expenditure prediction obtained 95.05% on 5 lower limb

activities. Adaboost Stump got an accuracy range from 95%-98% on 5 lower limb

activities and PLP+HMM obtained 97.5 ± 1.6% on 6 activities, with 3 lower limb

activities identical to the work of Phase Variable. In the group of multiple sensors,

Log-Sum distance used 5 sensors to classify 6 activities (standing still, sitting still,

laying down, walking forward, stair ascent and descent). The accuracy of Log-sum

distance can reach 99%. Empirical mode decomposition used 17 sensors to classify

9 activities and obtained an overall accuracy at 97.78%. Among the 9 activities,

the 7 lower limb activities had an accuracy at about 96%. Adaptive BasIS used

3 sensors and obtained 99.87% on three activities: walking on level ground, ramp

ascent and descent. NWFE+PCA+LS-SVM used 2 sensors and obtained an overall

accuracy at 99.65% for 10 daily activities. Among the 10 activities, the 5 lower limb

activities had an accuracy at about 96.46%. If looking at all the algorithms that

give an accuracy higher than 99%, the proposed algorithm is the only one that uses

one single sensor, besides, the proposed algorithm obtained the highest MCC value.

The use of multiple sensors is very interesting and can give very high accuracy.

Nevertheless, recognizing activities with only one sensor is still relevant because it

is more realistic than multiple sensors for quantified-self applications. It should be

noticed that the state-of-the-art works and our algorithm are tested on different

datasets, consisting of different activities and different amounts of samples. But

from a general view of the results, we can still state that our proposed algorithm
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obtain performances comparable to or even better than the best ones, whereas

allowing on-line processing.

4.5.3 Convergence Rate

It can be deduced from Figure 4.5 and 4.6 that the convergence rate is affected by

two aspects: the thresholds (ηobservation, ηgait) and the activity category. These two

aspects will be discussed in the following.

The first aspect is the thresholds that control the parameters updating, cf.

Figure 4.5. In the first experimental section, the accuracy at ηobservation = 1300 is

relatively lower than that of ηobservation = 700 (96.41% compared to 98.14%), which

means that using a small value of ηobservation gives a faster convergence rate than

using a large value. While in the second section, the accuracies where ηobservation =

700 and ηobservation = 1300 are improved to 99.2% and 99.22% respectively. The

close performance in the second section indicates that high accuracy can be reached

through parameter updating with sufficient data. It should be noticed that in

Figure 4.5b, there are some isolated values when ηobservation is larger than 1200. This

is because that in the experiment of one special subject, a large quantity of walking

data are classified as running at the beginning, and the too late updating makes all

the consequent walking data be classified as running. On the contrary, we can see

that a too small ηobservation leads to a worse result in the second section compared

to the first section. It is due to the fact that the accumulated data number in each

stack is not enough for representing the distribution of p(yn|vn). A large number of

bins in histogram requires more data to form the proper density, if ηobservation is too

small, the updated histograms can not properly represent p(yn|vn). In this case,

the classification performance will be not too bad since the initial model is obtained

from training data. But, after several updates by the inadequate observation stacks,

TMC-HIST model will be far from the actual one, which results in a reduction of

accuracy. Therefore, based on the accuracy shown in Figure 4.5b, we recommend

ηobservation to be equal to 2− 2.5 times the bins number of histograms.

It seems like the variation in hgait has little impact on the accuracy. The main

reason is that the transition probability p(tn+1|tn) where vn+1 ̸= vn is very small
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for all kinds of vn and all subjects. Indeed, each state will keep the same for a period

of time and then transfer to the next state. Thus, a slight change in p(vn,vn+1)

will not lead to a significant change in the classification performance.

Another aspect is the activity category. Figure 4.6 shows that walking and

running are faster than the other two to reach an accuracy higher than 99%. This

means that the parameters in TMC-HIST relative to walking and running converge

faster than those of stair ascent and stair descent. This phenomenon is certainly

to the amount of effort required to climb 32 floors. It is then more difficult to keep

the same pace within one experiment. As shown in Figure 4.8, we can find that

the feature patterns of each gait cycle corresponding to walking and running are

similar in both two experimental sections, while the distinctions of stairs ascent

and descent are larger than the former two activities. As a result, convergence

rates corresponding to stair ascent and descent are slowed down by the distinction,

and that is also why the accuracy fluctuates extensively after reaching a high value.

Regarding the fastest convergence rate (running), the signal values are much higher

than the others, which indicates that the running signal is unique from the others

and easy to distinguish.

4.5.4 Adaptation and On-line

As a matter of fact, the gait complete detection stage of the algorithm makes the

on-line possible, while the posterior update stage enables the TMC-HIST model to

be adaptive. Introducing the gait cycle to assist locomotion is practical, because

each gait phase gives a prior condition to confine the number of possible states to be

estimated in TMC-HIST. Indeed, the Adaptive BasIS algorithm [6] also introduced

gait cycles to help classifying three activities of level ground walking, ramp ascent

and descent walking. The Phase Variable algorithm tried to segment each gait cycle

to classify the activities of level ground walking, stair ascent and descent activities.

Both of these two algorithms obtained good results, as illustrated in section 4.5.2,

but they did not utilize the actual structure of the gait phases in one gait cycle, i.e.

the transition sequence of gait phases. While in our proposed algorithm, a Markov

chain is established to mimic this structure. Generally, segmentation of gait cycles
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can only be accomplished in an off-line scenario, it is difficult to make a decision if

only one sample is known. The authors of Phase Variable algorithm [122] stated that

their method can be applied to the on-line scenario if using a small time window.

However, thanks to the state transitions among the activities and gait phases, gait

phase can be estimated at each sampling time with the help of previous estimation.

Activity is then detected after the current gait cycle is completed, and does not

need to wait for the entire data or to set a time window for segmentation. It should

be noticed that the gait detection is based on the forward procedure of TMC-HIST

model, which is not as reliable as the backward procedure. A precise evaluation of

the algorithm behavior with respect to gait phases was not conducted because of

the lacking of proper device to collect ground truth.

Many adaptive methods were proposed for motion analysis. A machine learning

method using adaptive local motion descriptor in [127] was proposed for recognizing

human motion in videos. A fast and adaptive sparse representation method in [128]

reached an accuracy up to 94% for the recognition of human activities using wear-

able sensors. Zhang [129] proposed an adaptive time window method for human

activity classification and reached an accuracy up to 99.2%. Hameed [130] proposed

adaptive zero crossing technique to detect muscle activity based on electrocardiog-

raphy signals. Li [126] and Wen [79] used Adaboost for human activity classification

with inertial sensors, and obtained accuracy up to 98%, particularly, Li’s method

was applied in on-line scenarios. In our proposed algorithm, the adaptive function-

ality is conducted by the posterior update stage, by updating the parameters in

TMC-HIST to approximate the user’s activity patterns. Combining with the gait

cycle detection, our results show that a roughly estimated gait cycle makes poste-

rior update works appropriately, then activity classification is improved because of

parameters adaptation. See Figure 4.8, for each activity, the detected gait cycles

are more regular than the ones detected at the beginning. In return, the improved

activity classification results can refine the gait cycle detection till to the gait cycle

detection behaves well.
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4.6 Conclusion

In this Chapter, we were looking for an algorithm which can recognize lower limb lo-

comotion activities and gait phases simultaneously. The LR-HMC model presented

in Chpater 3 is then extended into a more sophisticated structure, i.e. TMC-HIST

that recognizes lower limb locomotion activities and gait phases simultaneously. In

TMC-HIST, an auxiliary hidden process X is introduced into the model, then a

hidden state transition graph (Figure 4.3) is proposed to mimic the real transition

order of the activities and gait phases. Histograms are utilized in TMC-HIST to

represent the class conditioned observation density, for better representing the den-

sity than the Gaussian. Because of the non-parametric densities, ICE principle is

applied to learn the parameters of the model. Then, an adaptive on-line recognition

activity algorithm based on TMC-HIST is developed. This algorithm is designed

for recognising activities at run-time and adaptively updating the model to fit the

motion pattern of subject. Finally, the algorithm is performed over the experiment

data. Experimental results show that TMC-HIST is capable of estimating gait

phases and activities accurately, and the adaptive on-line algorithm can adjust the

model parameter correctly to reach a high recognition accuracy.

However, there are some weaknesses of TMC-HIST. The activity estimation

is only available when an entire gait cycle is completed, and also the estimated

activity is obtained by taking the dominated one within one gait cycle. So, on the

next Chapter, a parametric TMC model is proposed to tackle these issues.
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Chapter 5

Adaptive on-line recognition

using Parametric Semi TMC

We described in the previous Chapter of using TMC-HIST to recognize lower limb

locomotion activities. However, the TMC-HIST algorithm presents some weak-

nesses.

From the Figures 4.7 and 4.8, we can see that the activity (hidden state X)

and gait phase (hidden state U) share transition similarities: they both keep sta-

ble most of the time, the transitions from one state to another one are quite rare.

In fact, this is the reality when people perform displacement: they do not switch

activity every second, while the gait phase also keeps the same over many sam-

plings, if the sensor sampling rate is not set very low. In TMC-HIST, we defined

the hidden state transition graph (see Figure 4.3) to restrict the possible directions

among the hidden states, i.e. the hidden state transition matrix A is a specific

sparse matrix with many zero probabilities. For the non-zero entries in A, the

diagonal elements (the states keep same) is nearly close to 1, and the others are

close to 0, which means that the probability of transferring to a different state is

very low. Please note that it is still possible for the state to transfer to another

state at every sampling time, even though the probability is very low. As shown

in Equation (4.3), the estimated state depends on the forward probability αn(vn)

and backward probability βn(vn), while αn(vn) and βn(vn) depend on state tran-

sition probability and class-conditional observation density respectively, see Equa-

tions (3.5) and (3.6). Thus, the smoothed probability p(vn|yN
1 ) is affected by both

transition probability and class-conditional observation density. That is why the

estimated gait phases in the left column of Figure 4.8 have unusual transition or-
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der, since the non-converged class-conditional observation densities may give biased

probability to calculate p(vn|yN
1 ). To overcome the limit of the state transition in

TMC-HIST, semi-Markov structure is introduced in this Chapter. Semi-Markov

structure allows the hidden state to keep the same for a while by introducing a

sojourn hidden state process into the model, which naturally coincides the activity

and gait transition during the motion. Therefore, using semi-Markov may help to

detect a more regular gait cycle than TMC-HIST, which in return may probably

enhance the activity recognition accuracy.

Another problem is the non-parametric class-conditional observation density in

TMC-HIST, in which each histogram represents the marginal density w.r.t. one sen-

sor axis and does not consider the correlations among the three axes of the sensor. It

is sure that the three axes of the sensor are correlated during the motion, and the ex-

tracted features are correlated with each other. So using a w-dimensional histogram

should be more reasonable than the 1-dimensional histogram, i.e. the marginal

density. However, too much data should be needed to build the w-dimensional his-

togram. As an example, Figure 4.5 shows that the 1-dimensional histogram needs

at least 600 data to form the density. Because there are 16 possible hidden states,

then the minimum needed data volume is about 600× 16 = 9600. By contrast, the

minimum data volume for w-dimensional histogram may probably be 600w × 16,

which is impractical in the application. Hence, Gaussian mixture model (GMM)

density is introduced to approximate the non-linear class-conditional observation

density in this Chapter, by adding another hidden state process into the model.

GMM involves the correlation through the w×w covariance matrices, so it conveys

more information than that of 1-dimensional histogram. Since the parametric den-

sity is introduced in the model, on-line EM algorithm can be adopted to make the

model adaptive and work at run time.

Because of the weaknesses of TMC-HIST and their corresponding solutions, a

new model is going to be developed in this Chapter. Based on the conventional

TMC structure described in Section 4.1, semi-Markov structure and GMM density

are added to enrich the model, this new model is referred as SemiTMC-GMM. Thus,

apart from the three already existing processes (X,U and Y ), other two hidden
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state processes are added to support the semi-Markov structure and GMM density

respectively. Regarding to the sophisticated infrastructure of SemiTMC-GMM,

TMC is gradually equipped with the other two processes in following sections,

i.e. applying GMM to TMC to obtain the TMC-GMM model and then applying

semi-Markov to TMC-GMM to obtain SemiTMC-GMM. Then, how to learn the

parameter of SemiTMC-GMM in batch mode is given, an on-line parameter learning

algorithm based on EM is given as well.

5.1 TMC-GMM

Assume that the Markovian T = (X,U ,Y ) forms the conventional TMC model as

described in Chapter 4, where Xn ∈ Λ = {1, · · · , r} and Un ∈ Γ = {1, · · · , τ} are the

hidden state processes representing activity and gait phase respectively, Yn ∈ Rw

is a real-valued process representing the observation. Recalling that V = (X,U)

and T = (V ,Y ), then Vn ∈ Λ× Γ. The transition of T follows the Equation (4.1).

Unlike the non-parametric class-conditional observation density in TMC-HIST, let

p(yn|vn) be the conventional Gaussian density:

p (yn|vn = i) ∼ N (µi,Σi) , i ∈ Λ× Γ. (5.1)

For obtaining the probability of individual xn conditioned on all observations,

we only need to compute the marginal probability of p(xn, un|yn
1 ) and p(xn, un|yN

1 );

the p(xn|yn
1 ), p(xn|yN

1 ) are simply given by:

p(xn|yn
1 ) =

∑
un

p(xn, un|yn
1 ),

p(xn|yN
1 ) =

∑
un

p(xn, un|yN
1 ).

(5.2)

Likewise, p(un|yn
1 ) and p(un|yN

1 ) can be obtained in a similar way. The estimated
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hidden state x̂n and ûn are obtained by the MPM criteria:

x̂n = arg max
xn∈Λ

p
(
xn|yN

1

)
,

ûn = arg max
un∈Γ

p
(
un|yN

1

)
.

(5.3)

When extending TMC to TMC-GMM, it needs to introduce Gaussian mixture

density into the class-conditional observation probability. In fact, embedding GMM

in TMC can be regarded as introducing a new statistic process H = (H1, · · · ,HN )

into TMC, where Hn takes its value hn in a finite set K = {1, · · · , κ} and κ is

the number of Gaussian components in the mixture. Please remind that H has no

realistic meaning, it is just a latent variable in the model to introduce the mixtures.

Let cij be the weight of jth Gaussian mixture component when vn = i, with the

constraint
∑κ

j=1 cij = 1. µij and Σij are the mean value and covariance of the

Gaussian mixture component. Let us set Z = (T ,H), and consider that Z is

Markovian with the following transitions:

p(zn+1|zn) = p(vn+1|vn)p(hn+1|vn+1)p(yn+1|vn+1, hn+1), (5.4)

where p(yn|vn) is

p(yn|vn) =
κ∑

j=1

cij · p(yn|vn = i, hn = j),

p(yn|vn = i, hn = j) ∼ N (µij ,Σij) , i ∈ Λ× Γ, j ∈ K,

(5.5)

with p(hn = j|vn = i) = cij . We can see that Equations (5.4) and (5.5) are the

extensions from Equations (4.1) and (5.1), by introducing a new process H. The

dependency graph of TMC-GMM is shown in Figure 5.1a.

Please notice that the only difference between TMC and TMC-GMM is the

Gaussian densities in TMC are replaced with Gaussian mixtures, all the other

calculations remain the same. Then estimating the individual xn and un in TMC-

GMM follows the same as in TMC, by using Equation (5.2) and (5.3).
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5.2 Semi TMC-GMM

In the Markov model considered in our previous work [7], the remaining time of the

sojourn of the hidden state vn is of geometric distribution. While considering V

as semi-Markovian seems to better suited to our problematic, as in general vn has

no geometric remaining sojourn time. For example, the gait phase has a minimum

duration, while in geometric distribution the maximal probability is for null dura-

tion. In real applications of classic hidden semi-Markov model (HSMM) [131,132],

there is a fixed maximum sojourn time for each possible value of vn. When vn

switches to a new value, the maximal possible random sojourn time is shorter than

a fixed value M . Once the sojourn time has elapsed at time n, the hidden state

must change to a different value, i.e. p(vn+1 = vn) = 0. This implies that the

maximum sojourn time should be large enough to cover the largest possible sojourn

time, which appears as a drawback in our application. In another semi-Markov

approach described in [133] that we adopt here, the random sojourn time is not the

exact remaining duration of the state, but the minimum remaining sojourn time.

This means that once the sojourn time elapsed, the next hidden state is possible

to stay the same. This character allows make the maximum value M , which is

the maximum of the minimum sojourn time, significantly smaller than the one in

classic HSMM. This accelerates the entire method since the dimension of transition

matrix is reduced.

To be more precise, consider a new stochastic process D = (D1, · · · , DN ) that

represents the minimum remaining sojourn time in current hidden state vn, and the

possible realization of each Dn (denoted by dn) takes its value in L = {0, 1, · · · , ℓ}.

Thus for Vn = vn and Dn = dn, we have vn = vn+1 = · · · = vn+dn . And vn+dn is

obtained w.r.t. p(vn+dn+1|vn+dn), which is a transition similar to the ones in the

TMC and TMC-GMM. Thus, vn+dn+1 is possible to be the same as vn+dn . Once

vn+dn+1 is set, a new minimum sojourn time dn+1 is obtained in L = {0, 1, · · · , ℓ}.

Please notice that for Dn = dn ̸= 0, there is Dn+1 = dn+1 = dn − 1, which is

specified in Equation 5.8.

Finally, SemiTMC-GMM is extended from TMC-GMM Z via the couple (Z,D),
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and follows the transition probabilities:

p(zn+1, dn+1|zn, dn) = p(vn+1|zn, dn)p(hn+1|vn+1)p(dn+1|vn+1, dn)p(yn+1|vn+1, hn+1),

(5.6)

p(vn+1|zn, dn) =


δvn(vn+1), dn > 0

p∗(vn+1|vn), dn = 0

, (5.7)

p(dn+1|vn+1, dn) =


δdn−1(dn+1), dn > 0

p(dn+1|vn+1), dn = 0

, (5.8)

where δ is the Kronecker function (δa(b) = 1 for a = b and δa(b) = 0 for a ̸= b).

The properties of the four terms on the right side of Equation (5.6) are clarified

in following:

1. p(vn+1|zn, dn) is the transition probability of vn+1 conditioned on (zn, dn).

In Equation (5.7), p∗ is introduced for representing the transition probability

when dn = 0. We can see that vn+1 is only probably be different from vn

when dn = 0, otherwise vn+1 will be exactly the same as vn. When dn = 0,

the transition p∗(vn+1|vn) behaves the same as the state transition of TMC

and TMC-GMM, which means that vn+1 can be different from or same as vn,

depending on the distribution of p∗(vn+1|vn).

2. p(dn+1|vn+1, dn) is the probability of the minimal remaining sojourn time of

vn+1, conditioned on vn+1 and dn.

3. p(hn+1|vn+1) and p(yn+1|vn+1, hn+1) are same as the ones in TMC-GMM,

shown in Equation (5.5).

Now, Equations (5.7) and (5.8) together describe how the hidden states, Vn and

Dn, transfer in SemiTMC-GMM.

By comparing the two models, i.e. TMC-GMM and SemiTMC-GMM, the de-

pendency graphs are shown in Figure 5.1. The couple V = (X,U) is regarded

as one hidden state for reducing the complexity of the graphs, also remind that

the total number of processes in the three models are 3, 4 and 5 respectively. For
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the dependency of TMC in Figure 4.2, the observation Y (red node) is dependent

on V (blue node), whereas Y is dependent on both V and H (yellow node) in

TMC-GMM and SemiTMC-GMM. Besides, sojourn state D (green node) has no

link with Y in SemiTMC-GMM.

(a) TMC-GMM. (b) SemiTMC-GMM.

Figure 5.1: Dependency graph.

Estimating the individual xn and un will be different from the former models,

for the sense of introducing the sojourn state Dn. The probabilities of xn can be

obtained by
p(xn|yn

1 ) =
∑
un

∑
dn

p(xn, un, dn|yn
1 ),

p(xn|yN
1 ) =

∑
un

∑
dn

p(xn, un, dn|yN
1 ).

(5.9)

The probabilities p(un|yn
1 ) and p(un|yN

1 ) are obtained in a similar way. Finally, the

estimated hidden state x̂n and ûn can be obtained by Equation (5.3).

To summarize, the proposed SemiTMC-GMM is a model contains five stochastic

processes X, U , D, H, Y , with Markov distribution of Z∗ = (X,U ,D,H,Y ).

The process X models the activities we are looking for, Y models the observation,

U models the introduced gait or leg phase, D models the semi-Markovianity of

V = (X,U), and H models the presence of Gaussian mixtures. Thus, Z∗ =

(V ,Y ,W ) can be regarded as a classic TMC with hidden state V , observed Y ,

and an additional latent W = (D,H).
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5.3 Parameter estimation

From the previous section, it is now clear how the additional hidden states H and

D work in SemiTMC-GMM and how to compute the observation probability. In

this section, we focus on how to obtain the filtering and smoothing probabilities,

and to apply parameter updating based on the on-line EM algorithm.

Before starting the explanation, we need to introduce the parameter set first.

As described in the previous section, the parameter set can be defined as θ =

{ζk, alk, cij ,µij ,Σij}, in which ζk is the initial probability of hidden state, and alk

is the l-th row and k-th column element in the transition matrix A. Because GMM

density only depends on vn, then i ∈ Λ × Γ, j ∈ K. While in SemiTMC-GMM,

the entire hidden state is (V ,D), then l, k ∈ Λ × Γ × L, and l, k equal to the

couple of (i, dn). Therefore, the initial probability becomes ζk = p((v1, d1) = k),

and alk = p((vn+1, dn+1) = k|(vn, dn) = l). For simplification, the indices i, j, l, k

will keep the same meaning and will no longer be specified in the remaining of this

Chapter.

5.3.1 Batch mode EM algorithm

Baum-Whelch algorithm is used again for obtaining parameters. Here we simply

describe how to extend it to SemiTMC-GMM model. The forward probability αn(k)

and backward probability βn(k) can be obtained similarly as TMC, according to

Section 4.2. Then, expectation step is done by defining the following probabilities:

γn(k) = p((vn, dn) = k|yN
1 ) =

αn(k)βn(k)∑
k′∈Λ×Γ×L

αn(k′)βn(k′)
, (5.10)

γ̃n(i) =
∑
dn

γn((i, dn)) =
∑
dn

p(vn = i, dn|yN
1 ), (5.11)

γ̃n(i, j) = γ̃(i) · cijp(yn|vn = i, hn = j)∑
j′∈K

cij′p(yn|vn = i, hn = j′)
, (5.12)

86



Chapter 5. Adaptive on-line recognition using Parametric Semi TMC

ξn(l, k) =
αn(l) · p (yn+1, hn+1, (vn+1, dn+1) = k | yn, hn, (vn, dn) = l) · βn+1(k)∑

l′,k′∈Λ×Γ×L

{
αn(l′) · p (yn+1, hn+1, (vn+1, dn+1) = k′ | yn, hn, (vn, dn) = l′) · βn+1(k′)

} .

(5.13)

γn(k) is the probability of (vn, dn) conditioned on all observed data yN
1 . γ̃n(k) is

the marginal probability of γn(k) over dn, this probability is the one that we are

looking for to estimate the concerning hidden state vn. γ̃n(i, j) is the probability

of each Gaussian component w.r.t. γ̃n(k); this probability helps to compute the

parameters related to Gaussian mixture, i.e. ckj , µkj , Σkj . ξn(l, k) is the joint

probability of (vn, dn) = l and (vn+1, dn+1) = k conditioned on yN
1 . Here we give

the formula of parameter update by using Equations (5.10)-(5.13):

ζk = γ1(k), (5.14)

alk =

N−1∑
n=1

ξn(l, k)

N−1∑
n=1

γn(l)

, (5.15)

cij =

N∑
n=1

γ̃n(i, j)

N∑
n=1

γ̃n(i)

, (5.16)

µij =

N∑
n=1

γ̃n(i, j)yn

N∑
n=1

γ̃n(i, j)

, (5.17)

Σij =

N∑
n=1

γ̃n(i, j)(yn − µij)
T(yn − µij)

N∑
n=1

γ̃n(i, j)

. (5.18)

In fact, Equations (5.10)-(5.13) are the expectation step in one iteration of EM

algorithm, while Equations (5.14)-(5.18) are the maximization step. Then, the

parameter can be learned by recursively performing the two steps.
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5.3.2 On-line estimation

Now, let us consider the statistics of SemiTMC-GMM below:

s
(1)
n′,lk = 1{(vn′ , dn′) = l, (vn′+1, dn′+1) = k}, (5.19)

s
(2)
n′,k = 1{(vn′ , dn′) = k}, (5.20)

s
(3)
n′,ij = 1{vn′ = i, hn′ = j}, (5.21)

s
(4)
n′,ij = 1{vn′ = i, hn′ = j}yn′ , (5.22)

s
(5)
n′,ij = 1{vn′ = i, hn′ = j}yT

n′yn′ , (5.23)

where 1{·} is the indicator function, n′ = 1, . . . , N . Then, the statistics vector

at time n′ is of the form sn′ =
{
s
(1)
n′,lk, s

(2)
n′,k, s

(3)
n′,ij , s

(4)
n′,ij , s

(5)
n′,ij

}
. Then, denote that

Sn =
{
S
(1)
n,lk, S

(2)
n,k, S

(3)
n,ij , S

(4)
n,ij , S

(5)
n,ij

}
, which follow the calculations:

Sn =
1

n
Eθ

(
n∑

n′=1

sn′

)∣∣∣∣∣∣∣∣y
n
1 . (5.24)

S̃
(2)
n,i =

∑
dn

S
(2)
n,(i,dn)

, (5.25)

ζk = S
(2)
1,k , (5.26)

an,lk = S
(1)
n,lk

/
S
(2)
n,k, (5.27)

cn,ij = S
(3)
n,ij

/
S̃
(2)
n,i , (5.28)

µn,ij = S
(4)
n,ij

/
S
(3)
n,ij , (5.29)

Σn,ij = S
(5)
n,ij

/
S
(3)
n,ij − µT

n,ijµn,ij , (5.30)

In order to apply the on-line estimation, a common way [134] is to update the

sufficient statistics when a new observed data come in

Sn+1 = (1− ρn+1) · Sn + ρn+1 ·Eθn

(
sn+1

∣∣∣yn+1

)
, (5.31)
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where ρn is the stepsize sequence that satisfies
∑∞

n=1 ρn = ∞,
∑∞

n=1 ρ
2
n < ∞.

Normally it is set to ρn = 1/n. Then, the new parameter θn+1 is available by Equa-

tions (5.25)-(5.30). The estimation of xn+1, un+1 can be obtained by Equation (5.9)

and (5.3).

Unlike [134], we do not update θ at every sampling time. Instead, we set

a window length Wl and accumulate the latest Wl observed data first. Then

use Equations (5.10)-(5.13) to get the smoothed result, compute the sequenced

statistics sn|Wl
1 for all the Wl data by Equations (5.19)-(5.23). Afterward, update

the sequenced sufficient statistics Sn|Wl
1 and θn|Wl

1 by Equation (5.31) and Equa-

tions (5.25)-(5.30), respectively. It should be noticed that in on-line mode, the

initial probability ζk is not necessary.

Figure 5.2: SemiTMC-GMM diagram of the traning stage, and the testing stage
for both batch mode and on-line testing.

After describing the batch mode and on-line parameter learning of SemiTMC-

GMM, a diagram of the training and testing is displayed in Figure 5.2. The model

is updated in on-line testing, but not in the batch mode testing. Comparing to the
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diagram of TMC-HIST shown in Figure 4.4, there are some differences. The first

one is that the estimated hidden state is dependent on the filtering results when

using SemiTMC-GMM, but is dependent on the smoothed results of an gait cycle

in TMC-HIST. The second one is that there is no gait cycle detection in SemiTMC-

GMM, thus the estimated hidden state is given at every sampling time, which does

not need to wait the entire gait cycle is completed as TMC-HIST.

5.4 Experimental results

Two datasets are used to validate the proposed algorithm. The first dataset is

the Sports and Daily Activities (SDA) dataset [98], in which eight subjects were

enrolled to perform 19 daily and sports activities while wearing five Xsens MTx1

IMUs on their torso, left arm, right arm, left thigh and right thigh (shown in

Figure 5.3), all the sensors measure the acceleration and angular rate of where

the sensors are placed. The five sensor placements are determined in this dataset

because the involved activities are not only lower limb locomotion activities, but

also include static activities and upper limb activities, such as sitting, lying, rowing

and playing basketball. . . So they used the 5 sensors to collect the motion data

from different part of the body. However, in this paper, the proposed algorithm is

designed for recognizing the lower limb locomotion activity with periodic gait or

leg cycle performed by healthy people. Since we only care about the movement

of the lower limbs and healthy people have a symmetric motion of the two legs,

then it is possible to use only one sensor placed on either the left or right leg to

recognize the considered activities. Therefore, we only use the sensor placed on the

right thigh to validate our algorithm. The sensor sampling rate was set to 25 Hz,

the acceleration sensing range was set to ±18g, the angular rate sensing range was

set to ±1200◦/s. Because the objective of the proposed algorithm is to detect lower

limb locomotion activities that have gait cycle or leg cycle, while the 19 activities

consists of both lower limb locomotion activities with and without the cycles, then

only 11 suitable activities out of the total are selected in this work: walk in parking

1Details of Xsens MTx can be found in http://www.xsens.com/en/general/mtx.
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Figure 5.3: The five sensor placements in SDA dataset, the selected sensor is the
one placed on the right thigh [98].

lot, walk on treadmill with incline, walk on treadmill on flat, stair descent, stair

ascent, run on treadmill, jump, exercise on stepper, exercise of cycling in vertical

position, exercise of cycling in horizontal position, exercise on cross trainer. These

11 locomotion activities of SDA dataset are referred to as D1A1 to D1A11 in the

remaining of this paper. In the dataset, the subjects performed each activity for

about 5 minutes separately, and each activity was divided into 60 segments of 5

seconds. Therefore, there are 60 × 8 = 480 segments for each activity. In order to

make the dataset available for our algorithm, we firstly combined the 60 segments of

one activity from one subject to recover the 5 minutes activity, then combined the

data of the same activity from all the subjects to form 40 minutes for each activity,

the final data was obtained by combining the 11 activities. Thus, the duration of

the data is 11× 40 = 440 minutes.

Unlike the sensor is placed on the foot in the previous chapters, since the IMU

sensor is placed on the right thigh in SDA dataset. The segmentation of gait cycle

is based on the motion of foot, so similarly we can define ’leg cycle’ based on the

motion of leg. One leg cycle can be segmented into four leg phases, which are low

position, lifting, high position and dropping.

There are only 7500 samplings for each experiment of SDA, the data length is

not long enough to use on-line EM recognition. Therefore we utilize the second

dataset for the validation of the proposed on-line EM algorithm. This the same

dataset that described in Chapter 4.
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In Chapter 4, we use both 6D features (angular rate only) and 12D features

(angular rate and acceleration) to validate the TMC-HIST model, and showed that

only using angular rate is better than using both angular rate and acceleration. So

in this Chapter, we also use the 2 kinds of features to see what impacts will be made

for different sensor positions. The proposed SemiTMC-GMM model is compared

with TMC-GMM to see the advancement of semi-Markov structure in recognizing

lower limb locomotion activities. While GMM is implemented by different κ to

see the impact of the GMM components number that has on recognition accuracy.

TMC-HIST is also compared with SemiTMC-GMM to show the improvement from

TMC-HIST to SemiTMC-GMM.

5.4.1 SDA dataset

The batch mode recognition is tested by a leave-one-out cross-validation (LOOCV)

strategy, i.e. taking one subject for testing and the others for training, then make

the test for all the subjects. The sliding window length of feature extraction is

set to 5 based on our experience. Both SemiTMC-GMM and TMC-GMM model

are involved in the validation, the GMM mixture number κ is set to 1, 3, 6, 9

respectively. Particularly when κ = 1, the class-conditional observation density

yields to the conventional Gaussian distribution.

Figure 5.4: The overall batch mode recognition accuracy using different features on
SDA dataset, according to different GMM mixture number κ.

The overall accuracy of batch mode recognition on SDA dataset is shown in
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Table 5.1: The sensitivity, specificity, F1 score, MCC value of the batch mode
recognition using 6D features, for each activity of SDA dataset. Up: TMC-HIST;
middle: TMC-GMM when κ = 6; down: SemiTMC-GMM when κ = 6.

Activity

TMC-HIST

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.5877 0.5694 0.6413 0.8175 0.6562 1.0000
Specifivity 0.9322 0.9520 0.9685 0.9710 0.9053 0.9745
F1 score 0.5207 0.5571 0.6570 0.7704 0.4955 0.8880
MCC 0.4698 0.5114 0.6234 0.7486 0.4515 0.8822

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.4952 0.4434 0.4865 0.3900 0.1878 0.5705
Specifivity 0.9906 0.9525 0.9452 0.9529 0.9811 0.9569
F1 score 0.6229 0.4638 0.4800 0.4207 0.2732 0.5590
MCC 0.6200 0.4127 0.4266 0.3683 0.2676 0.5257

TMC-GMM

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.4549 0.6274 0.6233 0.7901 0.6733 0.9720
Specifivity 0.9329 0.9772 0.9620 0.9605 0.9152 0.9914
F1 score 0.4295 0.6772 0.6237 0.7169 0.5256 0.9451
MCC 0.3689 0.6499 0.5857 0.6907 0.4840 0.9399

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.7322 0.4892 0.7492 0.3513 0.3002 0.6148
Specifivity 0.9940 0.9592 0.9154 0.9765 0.9906 0.9614
F1 score 0.8170 0.5169 0.5798 0.4439 0.4311 0.6097
MCC 0.8075 0.4720 0.5444 0.4206 0.4505 0.5831

SemiTMC-
GMM

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.4707 0.7577 0.5588 0.8636 0.7739 1.0000
Specifivity 0.9631 0.9657 0.9735 0.9726 0.9071 0.9950
F1 score 0.5130 0.7226 0.6139 0.8028 0.5634 0.9761
MCC 0.4708 0.6940 0.5824 0.7850 0.5346 0.9739

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.7730 0.6241 0.8797 0.3433 0.3640 0.6735
Specifivity 0.9891 0.9521 0.9320 0.9903 0.9988 0.9672
F1 score 0.8211 0.5951 0.6898 0.4772 0.5291 0.6640
MCC 0.8064 0.5528 0.6709 0.4898 0.5738 0.6486

Table 5.2: Overall performances summary of Table 5.1.

Sensitivity Specificity F1 Score MCC
TMC-HIST 0.5705 0.9569 0.5590 0.5257
TMC-GMM 0.6148 0.9614 0.6097 0.5831
SemiTMC-GMM 0.6735 0.9672 0.6640 0.6486
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Table 5.3: The sensitivity, specificity, F1 score, MCC value of the batch mode
recognition using 12D features, for each activity of SDA dataset. Up: TMC-HIST;
middle: TMC-GMM when κ = 6; down: SemiTMC-GMM when κ = 6.

Activity

TMC-HIST

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.4900 0.5463 0.6997 0.9017 0.7885 1.0000
Specificity 0.9392 0.9883 0.9649 0.9839 0.9222 0.9939
F1 Score 0.4687 0.6574 0.6837 0.8708 0.6057 0.9709
MCC 0.4128 0.6461 0.6511 0.8587 0.5781 0.9684

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.8308 0.7116 0.9489 0.9972 0.6618 0.7797
Specificity 0.9911 0.9924 1.0000 1.0000 0.9813 0.9779
F1 Score 0.8654 0.7966 0.9737 0.9986 0.7168 0.7826
MCC 0.8535 0.7854 0.9715 0.9985 0.6936 0.7652

TMC-GMM

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.6784 0.6797 0.5483 0.9146 0.8980 1.0000
Specificity 0.9322 0.9993 0.9866 0.9689 0.9465 0.9995
F1 Score 0.5777 0.8059 0.6525 0.8164 0.7305 0.9978
MCC 0.5353 0.8067 0.6382 0.8025 0.7151 0.9975

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.8843 0.8917 0.8602 0.9876 0.8784 0.8383
Specificity 0.9961 0.9940 0.9987 0.9998 0.9999 0.9838
F1 Score 0.9197 0.9140 0.9184 0.9930 0.9348 0.8419
MCC 0.9129 0.9059 0.9132 0.9923 0.9309 0.8319

SemiTMC-
GMM

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.6672 0.7247 0.6182 0.9638 0.8767 0.9990
Specificity 0.9457 0.9972 0.9860 0.9773 0.9563 0.9990
F1 Score 0.6054 0.8273 0.7039 0.8752 0.7509 0.9944
MCC 0.5644 0.8223 0.6862 0.8666 0.7327 0.9939

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.9025 0.9410 0.8561 0.9956 0.9215 0.8606
Specificity 0.9936 0.9922 0.9996 0.9994 1.0000 0.9860
F1 Score 0.9175 0.9324 0.9208 0.9948 0.9590 0.8620
MCC 0.9096 0.9255 0.9165 0.9943 0.9560 0.8516

Table 5.4: Overall performances summary of Table 5.3.

Sensitivity Specificity F1 Score MCC
TMC-HIST 0.7797 0.9779 0.7826 0.7652
TMC-GMM 0.8383 0.9838 0.8419 0.8319
SemiTMC-GMM 0.8606 0.9860 0.8620 0.8516
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Figure 5.4. As it can be seen, SemiTMC-GMM achieves an accuracy improvement

of about 6%-7% compared to TMC-GMM when using 6D features, whereas the im-

provement when using 12D features is 2%-3%. However, using 6D features obtains

lower performances than using 12D features. For 6D features, the SemiTMC-GMM

model reaches the highest accuracy of 67.19% when κ = 6, while the one of TMC-

GMM is 61.34%. While for the 12D features, SemiTMC-GMM and TMC-GMM

obtain the accuracy of 86.00% and 83.76% respectively. As for the TMC-HIST

model, it obtains 56.89% and 77.91% recognition accuracy for 6D and 12D fea-

tures respectively, which are lower than that of SemiTMC-GMM and TMC-GMM.

Table 5.1 and 5.3 show the sensitivity, specificity, F1 score, and MCC of each indi-

vidual activity that using the different features. Particularly for the sensitivity of

each individual activity, it equals to the accuracy of corresponding activity. Activ-

ities D1A1 to D1A3 are recognized with relatively poor performance, it is because

that these three activities are all walking and are very easily misclassified. In a

general view of the two Tables, using 12D features is better than using 6D features.

It is reasonable for SDA dataset because the selected sensor is placed on the same

place (right thigh) and in the same direction of each subject. In Chapter 4, the

IMU sensor is placed on the shoes and the distinctions in the front slope of each

subject may lead in the distinction of orientation, which may finally have an impact

on the acceleration. That is why using 12D features is better for SDA dataset, and

using 6D features is better for our own dataset.

As reported in [90], the classifiers of kNN, SVM and decision tree are tested

on SDA dataset using all the five sensors. The accuracies are 78.97%, 84.03%

and 84.63% respectively. In [91], the authors used SDA dataset and showed single

sensor recognition accuracy of four classifiers: kNN, decision tree, discriminant

analysis and Naive Bayes. Specifically for the right leg sensor that is used in our

paper, the four classifiers obtained accuracies of 81.72%, 78.78%, 87.03%, 76.93%.

Therefore, we can state that SemiTMC-GMM outperforms the generic classifiers

like kNN, SVM, decision tree and Naive Bayes, and obtains a similar performance

of discriminant analysis. On the other hand, the authors in [135] used CNN to

recognize human daily activities in OPPORTUNITY dataset [99], which contains
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activities such as open (close) door, open (close) drawer, clean table, drink cup. . .

They obtained an accuracy of 85.8% by using 23 body-worn sensors, 12 object

sensors and 21 ambient sensors. Also for the OPPORTUNITY dataset, [86] used

CNN obtains an accuracy of 77.99% by using the body-worn sensors only. While

in [136], CNN obtained an accuracy of 93.75% on six activities: walking, stair

ascent, stair descent, sitting, standing and laying. Because of the prevalent CNNs

can generate high dimensional features that suit for the recognition task, then CNNs

may probably be suited for sophisticated activities. But it requires huge quantity of

data to train the network, and it is difficult to make CNN work for adaptive on-line

scenario. So, maybe CNN could obtain higher accuracy than SemiTMC-GMM, we

still believe that our proposed model is competent in some scenarios.

5.4.2 Our own dataset

For this dataset, the size of sliding window for computing features is set to 15 as the

same as Chapter 4. Firstly, the batch mode recognition is performed using LOOCV

strategy. Figure 5.5 shows the batch mode recognition accuracy w.r.t. different

κ that using different features. For the 6D features, the accuracy of SemiTMC-

GMM when κ = 9 is 98.06%, while the one of TMC-GMM is 88.72%. For the 12D

features, the accuracy of SemiTMC-GMM when κ = 9 is 95.16%, while the one of

TMC-GMM is 92.57%. Meantime, the choice of κ has less impact on accuracy for

SemiTMC-GMM. The recognition accuracy obtained by TMC-HIST are 85.32% and

80.42% respectively for 6D and 12D features, which are lower than the ones of TMC-

GMM and SemiTMC-GMM when κ > 1. Therefore, using SemiTMC-GMM and 6D

obtains highest accuracy. Table 5.5 and 5.6 show the sensitivity, specificity, F1 score,

and MCC of each individual activity that using different features. By comparing the

batch mode recognition shown in Table 5.1 5.3 and 5.5 5.6, both TMC-GMM and

SemiTMC-GMM outperform TMC-HIST. It means that considering the observation

correlation improves the recognition performance.

There is an irregular behavior when using TMC-GMM. As shown in Figure 5.5

and Tables 5.5, 5.6, the performances of 6D feature is lower than the ones of 12D

feature. However in Chapter 4, we have explained why 6D feature is better than
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Figure 5.5: The overall batch mode recognition accuracy on LMFIMU dataset,
according to different GMM mixture number κ.

Table 5.5: The sensitivity, specificity, F1 score, MCC value of the batch mode
recognition using 6D features, for each activity of LMFIMU dataset. Up: TMC-
HIST; middle: TMC-GMM when κ = 9; down: SemiTMC-GMM when κ = 9.

Activity

Walk Run Stair
ascent

Stair
descent Total

TMC-HIST

Sensitivity 0.7900 0.9607 0.8295 0.9307 0.8777
Specificity 0.9712 0.9063 0.9663 0.9648 0.9521
F1 Score 0.8681 0.8371 0.8212 0.8683 0.8487
MCC 0.7763 0.7954 0.7893 0.8474 0.8021

TMC-GMM

Sensitivity 0.8967 0.9456 0.8774 0.7750 0.8737
Specificity 0.9720 0.9996 0.9512 0.9787 0.9754
F1 Score 0.9536 0.9974 0.9273 0.9706 0.9622
MCC 0.9220 0.9673 0.7665 0.7938 0.8624

SemiTMC-
GMM

Sensitivity 0.9887 0.9761 0.9862 0.9537 0.9762
Specificity 0.9856 0.9992 0.9906 0.9960 0.9929
F1 Score 0.9869 0.9865 0.9671 0.9644 0.9762
MCC 0.9743 0.9828 0.9614 0.9587 0.9693
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Table 5.6: The sensitivity, specificity, F1 score, MCC value of the batch mode
recognition using 12D features, for each activity of LMFIMU dataset. Up: TMC-
HIST; middle: TMC-GMM when κ = 9; down: SemiTMC-GMM when κ = 9.

Activity

Walk Run Stair
ascent

Stair
descent Total

TMC-HIST

Sensitivity 0.7007 0.9721 0.7705 0.9385 0.8454
Specificity 0.9858 0.8931 0.9174 0.9595 0.9389
F1 Score 0.8169 0.8258 0.6885 0.8596 0.7977
MCC 0.7194 0.7833 0.6317 0.8382 0.7431

TMC-GMM

Sensitivity 0.9399 0.9475 0.9105 0.8590 0.9142
Specificity 0.9720 0.9996 0.9512 0.9787 0.9754
F1 Score 0.9547 0.9723 0.8327 0.8641 0.9060
MCC 0.9130 0.9654 0.8044 0.8419 0.8812

SemiTMC-
GMM

Sensitivity 0.9608 0.9829 0.9483 0.8749 0.9417
Specificity 0.9831 0.9987 0.9634 0.9910 0.9841
F1 Score 0.9713 0.9891 0.8799 0.9071 0.9368
MCC 0.9445 0.9861 0.8600 0.8932 0.9210

the 12D feature, and our experiment results show TMC-HIST and SemiTMC-GMM

perform better when using 6D feature. But TMC-GMM has an opposite results, i.e.

using 12D feature is better. It is mainly due to TMC-GMM is not able to detect the

gait phases when using 6D features. The Figures 5.6 and 5.7 show the relationship

between the estimated gait phases and activity, by using different features, κ is set

to 9. Comparing the second line in the two Figures, we can see that the gait detect

when using 6D feature is not as good as the one of using 12D feature, and so as to

the recognized activity. Since the introduction of the hidden state U (gait cycle) is

aiming at improving the accuracy of recognizing activity, then that is why TMC-

GMM obtains higher recognition accuracy when using 6D features. In addition, if

comparing the second line and third line in Figure 5.6 or Figure 5.7, SemiTMC-

GMM obtains better gait cycle than that of TMC-GMM, which results in higher

accuracy of activity recognition. Also, the recognition accuracy improvements from

TMC-GMM to SemiTMC-GMM are 9.34% and 2.59% respectively for the 6D and

12D features. Because of the highest accuracy and bigger improvement obtained

by using 6D features, we can conclude that only considering angular rate is more
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proper for the proposed SemiTMC-GMM model.

As a matter of fact, Figures 5.4, 5.5 and 5.8 show that introducing semi-Markov

structure into the TMC model can improve the accuracy. Meanwhile, using GMM

with κ > 1 also improves the recognition significantly. But it does not mean that

using a larger κ allows higher accuracy to be achieved. In Figure 5.4, the accuracy

when κ = 9 is slightly lower than that obtained when κ = 6, it is because the

observation of SDA dataset is more closer to a GMM mixture of 6 densities. A too

much larger κ may probably lead to an overfitting problem. It is sure that κ can be

automatically acquired through the methods such as BIC [137] and AIC [138], to

make κ consistent with different activities. While for simplification in this thesis,

we manually set κ to 6 for all the activities based on the experimental results.

Then, the on-line EM algorithm is performed to validate the adaptive on-line

recognition performances. The proposed algorithm is implemented in Matlab code,

running on a 64-bit system computer with 3.2GHz CPU and 32G RAM. In the

dataset, the average experiment time is 32.33 minutes, while the computing time

of SemiTMC-GMM when κ = 1, 3, 6, 9 are 9.72, 14.72, 21.53 and 27.65 minutes

respectively. Thus, using on-line EM is applicable in on-line scenarios. The window

length Wl for updating the parameters is set to 1000, which means that parameters

are updated every 10 seconds.

Figure 5.8 shows the on-line recognition accuracy obtained by LOOCV strategy.

The solid lines are higher than the dashed lines which means that the on-line EM

algorithm can improve the recognition performance. Also the GMM with κ > 1

can significantly improve the accuracy. For the 6D feature (Figure 5.8a), when

κ = 9, SemiTMC-GMM has an accuracy improved from 97.22% in the first section

to 98.21% in the second section, while TMC-GMM achieves an improvement from

89.58% to 91.12%. For the 12D feature (Figure 5.8b), when κ = 9, SemiTMC-GMM

has an accuracy improved from 95.48% in the first section to 96.93% in the sec-

ond section, while TMC-GMM achieves an improvement from 93.83% to 95.04%.

Therefore, using SemiTMC-GMM and 6D features outperforms the others. By

contrast, the adaptive on-line algorithm using the TMC-HIST in Chapter 4, the

accuracy was improved from 98.11% to 99.17% (95.32% to 96.93%) using 6(12)D
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(a)

(b)

Figure 5.8: The on-line mode recognition accuracy of the two experiment sections
in our own dataset, according to different GMM mixture number κ. (a): using 6D
features; (b): using 12D features.

features. However, this high accuracy is mainly because of the gait cycle complete

detection in the adaptive on-line algorithm, which manually sets the activity of

all the samplings in one gait cycle to be identical. If without using the gait cycle

complete detection, TMC-HIST will fail in the on-line recognition, with the accu-

racies of 86.37% (78.32%) in the first section and 76.46% (65.20%) in the second

section using 6(12)D features. Table 5.7 and 5.8 show the sensitivity, specificity,

F1 score, and MCC of the two experiment sections that using different features,

the results of each individual activity also indicate that the proposed model can

improve the accuracy gradually. Comparing SemiTMC (when κ = 1) and TMC-

HIST, we can conclude that semi-Markov structure is more robust for recognizing

the hidden states which have sojourn time. Therefore, the results indicate that both
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GMM density and semi-Markov structure improve the on-line recognition, and the

combination the two improves the performance the most.

By comparing the two different sensor placements in SDA and our own dataset,

the proposed algorithm shows that the sensor is not necessary to be placed at a

specific place of the lower limb. In fact, the sensor can be placed in any position

that implies the introduced gait phase and leg phase.

In order to understand the dynamic performance of the parameter updating,

Figure 5.9 shows the recognition accuracy computed during the latest 10 seconds,

using the 6D features. Notice that some lines of κ = 1 and κ = 3 are not displayed

in Figures 5.9a, 5.9g, 5.9h because the accuracies are lower than 70% for the cor-

responding activities. SemiTMC-GMM obtains a relatively fast convergence rate

when κ equals to 6 and 9. The activities walking and running reach high accuracy

within 20 seconds in the first section of the experiment, 99.24% and 98.51% respec-

tively. By contrast, stair ascent and descent are slower (take about 100 seconds)

than the former two activities, and obtain lower accuracies of 96.40% and 96.22%

respectively. The main reason of this phenomenon is that the activity patterns of

stair ascent and descent vary much more differently among the subjects. But in

a general view, we can still state that the on-line EM algorithm can dynamically

improve the recognition accuracy to a reasonable level.

Figure 5.10 displays the estimated gait cycles of each activity that using 6D

features. The gait cycles are obtained when the model converged, κ is set to 1

and 6 for both TMC-GMM and SemiTMC-GMM. ωx, ωy and ωz are the sliding

mean of angular rate along the three axes of sensor. The features are 6D, but

here we only display the acceleration of along the three axes to show how the gaits

proceed. Hence, the estimated gait cycles are displayed w.r.t. four models, i.e.

TMC, SemiTMC, TMC-GMM and SemiTMC-GMM. In fact, the gait phases or leg

phases are introduced in the model to improve the recognition accuracy of the lower

limb locomotion activity. The Figure shows that SemiTMC-GMM obtains the most

regular gait cycle, with no fluctuation in short period and no missing detection. As

a consequence, the well estimated gait or leg cycle obtained from SemiTMC-GMM

leads to a higher activity recognition performance.
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TMC-GMM SemiTMC-GMM
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Figure 5.9: Recognition accuracy computed in the latest 10 seconds w.r.t. each
activity of LMFIMU dataset, using 6D features. Left column: TME-GMM, right
column: SemTMC-GMM.
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(a) Walking. (b) Stair ascent.

(c) Running. (d) Stair descent.

Figure 5.10: Estimated gait cycle of each activity, using 6D features. The blue,
cyan, black and magenta represent the gait obtained by TMC, SemiTMC, TMC-
GMM and SemiTMC-GMM respectively.

5.5 Conclusion

This Chapter proposes a SemiTMC-GMM model to recognize activities and gait

(leg) phases. Comparing with the non-parametric TMC-HIST that proposed in

Chapter 4, two different aspects are introduced in SemiTMC-GMM: i), semi-Markov

structure is added to more naturally replicate the realistic transition of activity and

gait (leg) phase; ii), the non-parametric class-conditional observation density is re-

placed by a parametric GMM density. Under the scenario of this thesis, our experi-

mental results show that semi-Markov model outperforms the conventional Markov

model. Due to the sojourn state D enables the hidden state V to keep the same

in a short period of time, the estimated hidden states by semi-Markov model are

much more stable than the one of conventional Markov model. On the other hand,

GMM densities in SemiTMC-GMM enable the model to take the correlation among
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the dimensions of Y into consideration, which is not considered in TMC-HIST. The

batch mode recognition over the two datasets proves that the combination of us-

ing semi-Markov and GMM can significantly improve the recognition performance.

Besides, thanks to the parametric GMM density, on-line EM algorithm is able to

be applied for SemiTMC-GMM. The on-line recognition results show that on-line

EM can adjust the parameters correctly, the recognition accuracy can be gradually

improved to a high level. By comparing the on-line recognition between TMC-HIST

and SemiTMC-GMM, both of them can recognize the activities correctly, and the

detected gait phases become more regular after parameter update. But TMC-HIST

needs the help of gait complete detection to successfully recognize the activity, oth-

erwise it may fail. This phenomenon indicates that semi-Markov model is more

suitable for recovering the hidden state with sojourn time.
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Chapter 6

Conclusion and perspectives

Quantified-self applications are gaining great research interest recently and Markov

models are widely used in many fields. This thesis focuses on using recent Markov

model-based methods to study the detection and recognition problems of lower

limb locomotion activities, with the help of a unique IMU sensor placed on the

lower limb.

The main contributions of this thesis are divided in three points:

(1) A specific Left-Right Hidden Markov Chain (LR-HMC) is developed to detect

the four gait phases of lower limb locomotion activities, i.e. stance, push-up,

swing and step down. In LR-HMC, the hidden state U represents the gait

phase, the observation Y comes from the feature extraction of sensor acceler-

ation and angular rate. An unsupervised EM (Expectation-Maximization

algorithm)-based parameter learning algorithm is described. Four experi-

ments on four individual activities (walking, running, stair ascent and stair

descent) are conducted to validate the performance of LR-HMC w.r.t. a com-

petitive method called threshold method. The LR-HMC model outperforms

the threshold method in detecting the gait phases of the four individual activ-

ities with two advantages: (i), LR-HMC can detect four gait phases whereas

the threshold method can only detects two (stance and swing); (ii), LR-HMC

does not need to set the parameters manually, while threshold method needs

to manually tune the parameters for each activity. But there are still some

limitations for LR-HMC:

(i) The model is stationary. Thus, one trained model is only able to detect

the gait phases when the activity pattern keeps the same, i.e. from



Chapter 6. Conclusion and perspectives

the same subject, at the same speed, stride length. . . Otherwise, the

performance will be reduced.

(ii) One LR-HMC model is only able to detect the gait phases of one in-

dividual activity, it is not suitable to use LR-HMC in a multi-activity

scenario.

(iii) The Gaussian density used for representing class-conditional observation

density is not very suitable, especially for the task of detecting gait phases

over a wide range of activity patterns.

(2) Hence, a non-parametric triplet Markov chain (TMC-HIST) is then proposed

to recognise lower limb locomotion activity and gait phases simultaneously.

An auxiliary hidden state X is introduced into the model to represent the

activity, the couple V = (X,U) is then the hidden state to be recovered from

observations Y . A specific transition graph is designed to mimic the real

transition among activities and gait phases. Histograms are used in TMC-

HIST to represent the class-conditional observation density. This kind of

density allows the class-conditional density to suit for a wide range of activity

patterns. Unlike parametric density, since the EM algorithm is not suitable for

non-parametric density, the ICE principle is adopted to learn the stationary

model. A TMC-HIST-based adaptive on-line algorithm is then proposed to

enable the model to recognise activity and gait phases at run-time, and to

adaptively adjust model parameters. This adaptation property allows the

model to be performed under a non-stationary scenario (speed up or slow

down).

The algorithm is validated over a dataset from 10 subjects conducting four

activities: walking, running, stair ascent and stair descent. The results show

that the proposed algorithm obtains high activity recognition accuracy after

the parameters are adjusted to the pattern of activity. Meantime, the gait

phases are also well detected.

However, there are two drawbacks of using TMC-HIST:
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(i) The remaining sojourn time of the hidden state (V ) in TMC-HIST fol-

lows a geometric distribution, what seems to be inconsistent with the

intended application.

(ii) Because of the massive The histograms used in TMC-HIST do not con-

sider the correlation between each dimension of the observation Y , which

can lead to a loss of information of the class-conditional observation den-

sity.

(3) Finally, a parametric triplet semi Markov chain that uses GMM (Gaussian

mixture model) density as class-conditional observation density (SemiTMC-

GMM) is proposed. In SemiTMC-GMM, semi-Markov structure is utilized

to better replicate the transition of hidden states that has non-geometrical

sojourn time, an auxiliary state D is introduced to modelize semi-Markov

structure. GMM density is utilized in SemiTMC-GMM to not only approx-

imate the non-Gaussian density, but also to take the correlation among the

dimensions of Y into consideration. Another auxiliary state H is introduced

to modelize the mixture component in GMM density. Because of the para-

metric density, an on-line EM algorithm is adapted to the model. The on-line

EM algorithm enables the model to recognize activity and gait (leg) phase at

run-time, and adaptively adjust the model as well.

The algorithm is validated over two datasets, the results show that SemiTMC-

GMM outperforms the TMC-HIST in both batch mode and on-line mode

recognition. Also it shows that semi-Markov model provides better perfor-

mance than the conventional Markov model, meanwhile GMM is more suit-

able for representing the class-conditional density than conventional Gaussian

density.

Our work in this thesis achieves good results, but our proposed algorithms still

have some limitations:

(1) Only motion activities are considered in this thesis. The static activity is not

considered, such as standing, sitting and lying. . . These kind of activities are
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also very important in our daily life. Adding static activities into the model

is quite straight forward, as we only need to calculate features that enable

to distinguish between mobility and immobility. For example, the standard

deviation of acceleration and angular rate is close to zero when a person is

static, otherwise it varies according to the motion [139].

(2) Non-periodic lower limb locomotion activities are not considered. Even though

this kind of activity does not take place very often, it is still worth of inves-

tigating. For example, fall detection monitoring device can help people when

there is an emergency. Therefore, distinguishing periodic and non-periodic

motions could be of interest. Possible periodic pattern mining methods suit

for this task are fast Fourier transform-based [140] and principle component

analysis-based [141] approaches.

(3) In this thesis, the sensors are tightly fixed on the body part (on the shoe

or the thigh). The proposed algorithms assume that the orientation are not

changing during the motion, because a change in position and/or orientation

may significantly affect the performances of the algorithms. Besides, tightly

fixing the sensor on our body is not very practical in daily life. On contrary,

the sensors are not placed on the same part of body and are normally not

tightly fixed, such as a smartphone placed in our pocket. So, it is of great

interest to investigate how to make it insensitive to orientation. A feasible

method consists in using a coordination transformation method to transfer the

signals measured in sensor coordinate system to a global coordinate system,

which does not change during the motion. Then feature extraction will be

conducted on the transferred signals.

(4) Only one single IMU sensor is considered in our proposed algorithms. How-

ever, more sensors are suitable in the algorithms, which may provide a pos-

sibility to recognize the imbalanced motion between the two lower limbs of

impaired people, such as investigating the freezing of gait of patients who have

Parkinson’s disease [110]. Or, data fusion can be introduced into the system

that has different types of sensors [142], which can contain more information
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from different aspects, such as kinematics from IMU sensor, EMG signals,

pressure sensor in the insole.

This thesis proposes some algorithms to recognize activities and gait phases, this

fundamental functionality of motion analysis is of great importance and can be fur-

ther used in many other research fields. The pedestrian navigation algorithms [60]

detect the stance gait phase to reduce the integration error of positioning. In these

algorithms, the stance phase provides the ground truth of velocity (zero velocity)

in a short period of one gait cycle, then it is possible to reduce the integration

error according to the ground truth. Normally, using stance phase to detect zero

velocity duration and reducing the positioning error is called zero velocity update

(ZUPT) [58]. However, to the best of our knowledge, most of the pedestrian navi-

gation algorithms only considered walking, while our algorithms provides a way to

navigate over different activities. In another research field, precise gait detection

and analysis have been used in sports training. For example, assessing the equilib-

rium between the two lower limbs of a runner, and evaluating the pose of gait. This

kind of application can be helpful to refine the training effect, but normally the

assessment is done after the training and the entire data is collected, the refinement

can only be done in the next time of training. However, our adaptive on-line algo-

rithms may probably enable the athlete to adjust the motion timely, make sports

training more efficient and productive.
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Appendix A

Likelihood maximization in

Baum-Welch algorithm

Based on Equation (3.1), assuming that θ ∈ Θ, the we derive the claimed calcula-

tions of the Baum-Welch algorithm suited for the parameter updating,

Lθ′(uN1 ,yN
1 , θ) = E

(
ln p(uN1 ,yN

1 |θ)|yN
1 , θ′

)
, (A.1)

in which

ln p(uN1 ,yN
1 |θ) = ln

(
p(u1) · p(y1|u1)

N−1∏
n=1

p(un+1|un) · p(yn|un)

)

= ln p(u1) +
N−1∑
n=1

ln p(un+1|un) +
N∑

n=1

ln p(yn|un).

(A.2)

Then the likelihood Lθ′ can be reformed as Lθ′ = Lθ′0 + Lθ′1 + Lθ′2, where

Lθ′0 = E
(
ln p(u1)|yN

1 , θ′
)
=

N−1∑
k=1

γ1(k) log ζk, (A.3)

Lθ′1 = E
(

ln
N−1∏
n=1

p(un+1|un)

)
=

N−1∑
n=1

τ∑
k=1

τ∑
l=1

ξn(l, k) ln alk, (A.4)
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Lθ′2 = E
(

ln
N∏

n=1

p(yn|un)

)

=
N∑

n=1

τ∑
k=1

γn(k) ln
(

1√
(2π)w|Σk|

exp
(
−1

2
(yn − µk)

ᵀΣ−1
k (yn − µk)

))

= −1

2

N∑
n=1

τ∑
k=1

γn(k)
(
w ln(2π) + ln |Σk|+ (yn − µk)

ᵀΣ−1
k (yn − µk)

)
.

(A.5)

in which, l, k ∈ Γ, and w is the observation dimension. γn(k) and ξn(l, k) are the

expectations of un and (un, un+1) conditionally to yN
1 obtained in the expectation

step of Baum-Welch algorithm, through Equations (3.9) and (3.10). |Σk| is the

determinant of matrix Σk.

In fact, the calculations of log-likelihood function, using the Equations (A.1)

to (A.5), involve the expectation step. Then we are able to solve the maximization

problematic through partial differential over θ.

For µk:

Through the equilibrium formula of

∂Lθ′
∂µk

= 0, (A.6)

there is
∂Lθ′2
∂µk

= 0

⇒ µk =

N∑
n=1

γn(k)yn

N∑
n=1

γn(k)

.

(A.7)

For Σk:

116



Appendix A. Likelihood maximization in Baum-Welch algorithm

Similar as µk, Σk can be obtained through

∂Lθ′2
∂Σk

= 0

⇒ Σk =

N∑
n=1

γn(k)yny
ᵀ
n

N∑
n=1

γn(k)

− µkµ
ᵀ
k.

(A.8)

For ζk:

Given the constraint
∑τ

k=1 ζk = 1, we can then introduce Lagrange multiplier

λ to obtain the Lagrange function, and the partial differential of the function is

∂

{
Lθ′ + λ(1−

τ∑
k=1

ζk)

}
∂ζk

= 0. (A.9)

From the equation above we obtain ζk = γ1(k).

For alk:

Similar, given the constraint
∑m

k=1 alk = 1, then there is

∂

{
Lθ′ + λ(1−

τ∑
k=1

alk)

}
∂alk

= 0. (A.10)

From the equation above we also get

alk =

N−1∑
n=1

ξn(l, k)

N−1∑
n=1

γn(l)

.

All the re-estimation equations lead to a possibly local maximum of the likeli-

hood.
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