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General Introduction - Overview

The world is becoming increasingly complex. Hundreds of years ago, many people
almost never left their villages. Advances in transportation made people to be global
citizens, travelling the world for work and leisure. Companies, previously focused
on a city or area now span the world. In the globalised economy, goods are produced
in some parts of the world and sold in another. Modern communication, especially
the internet, allows people to meet and interact with people around the world at
any time. This complexity can be described by networks [1]. Humans have social
networks, connecting them with family, friends, colleagues or acquaintances. Large
enterprises can be seen as a large network of employees, properties and products.
Communication is based both on a real world networks which transfer data, and
on abstract networks like friends on social media. The rising complexity can be
described by changes in the structure of the underlying networks. We are able to
meet more people from different cultures, which can wildly expand and widen our
social network.

Networks are also of vital important in many fields of natural science. The brain
is a complex network of neurons, connected by synapses. The structure of these
connections are responsible for thinking and memory [2, 3]. Networks can also
be used to describe the the complicated physiological and biochemical properties
of cells [4]. A combination between the social networks and biological systems is
the modelling of virus spreads [5]. A fundamental tool in the science of stochastic
processes are the Markov chains. They model random processes with the important
property that their future development only depends on the current state and not
on the past [6]. There is a direct link between Markov chains and networks [7]. They
can be used for the long time simulation of molecular dynamics [8] or to model the
states of ion channels in neurons [9, 10].

Another network of major importance is the power system. It is responsible to
generate, transfer and consume electrical energy. The power system is the largest
man made structure [11] and spans over whole continents. From home appliances,
communication including the internet to many industrial processes, electrical en-
ergy is vital for modern life. But this network has to undergo significant changes.
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Climate change is one of the main problems the world is facing, socially and eco-
logically [12]. Greenhouse gases are directly responsible for the rise of temperature
worldwide. The production of heat and electricity is responsible for almost 60%
of the greenhouse gas emissions [13]. With increased electric mobility and heat-
ing, the demand for electric energy will further rise. Moving to renewable energy
production, like wind or solar, is a necessity. These energy sources will be more
intermittent and less centralised than the conventional sources [14]. A larger usage
of power electronics and converters will decrease the inertia of the system, which
might lead to destabilisation [15]. All of these changes and challenges will reshape
the network.

In any field, dynamics on networks are usually especially important [16]. For
example, the aforementioned neurons emit a time varying action potential, which
travels through the network. All neurons in the network can react to this signal
and fire accordingly. Schooling fish can be seen as a network between fishes. The
movement of each fish affects the movement of neighbouring fish. This results in
an interesting interplay, where the individual dynamics affect the whole system, but
the system also influences the individual behaviour.

The dynamics of power systems are crucial for the stability of the system. Dy-
namical instabilities are the main cause of large incidences, such as costly blackouts
in the system. Hence, this work focuses on the dynamics of power systems and es-
pecially the influence of the geometry of the system on these dynamic properties.
To tackle the complexity of the system, we will not use the normal simulation based
approaches common in engineering to investigate the main drivers of the dynamics.
Instead, we will use spectral graph theory to make the links between the dynamics
and the geometry of the system. We use this method to transform the geometry of
the network into the geometry of the eigenvectors of the system, which then de-
scribe the dynamics of the system.

Thesis Outline

This thesis is divided into six main chapters. Roughly, the first two chapters are
the introduction and the mathematical background. Chapters 3 and 4 are the ap-
plication of spectral graph theory to power systems research, focusing on static and
dynamic properties. Chapter 5 is a theoretical investigation of a phenomenon ob-
served in both dynamic and static power system research. In general, all sections
can be read individually. A more detailed overview about the contents of each sec-
tion is given here:
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• Chapter 1 introduces the impact of geometry in networks and explains the
modelling background of power systems. The chapter finishes with a litera-
ture review about stability problems in power systems and the role of geome-
try in these studies.

• Chapter 2 explains spectral graph theory, a method to investigate graphs.
Many methods and results from graph theory and spectral graph theory are
introduced and explained for simple graphs. Also, the application of spectral
graph theory in power system research is reviewed.

• Chapter 3 gives a short example of spectral power flow, which solves the DC
power flow problem using spectral methods. This method can be used to de-
compose the flow into different modes and investigate the flows in each line
separately. It is shown how these flows depend on the eigenvalues and eigen-
vectors of the underlying network.

• Chapter 4 is focused on spectral methods in dynamical power systems. First,
the small signal problem is introduced as a quadratic eigenvalue problem. The
properties of the quadratic eigenvalue problem are introduced and investi-
gated with respect to the power system studies. Numerical tests to investi-
gate the impact of the machine parameters (mainly the damping and the in-
ertia of the generators) and the underlying network are performed. Finally, a
new eigenvalue perturbation method is proposed to relate the solutions of the
quadratic eigenvalue problem with the easier generalised eigenvalue problem.

• Chapter 5 investigates localisation, a phenomenon observed in the previous
two chapters. First, necessary definitions are given and simple example cases
are investigated. Next, two eigenvector bounds are derived mathematically,
which can be used to describe localisation. These bounds are extensively
tested on a real power system test case to show how the bounds successfully
predict and explain localisation.

• Chapter 6 concludes this thesis and gives an outlook about further research
directions.

The main contributions in this thesis are found in Chapter 5. The eigenvector
bounds derived therein are a new tool to investigate localisation in graphs. The
application to simplified systems and a real world example show that these tools
lead to a functional method to work with localisation problems in graphs. While the
focus on this work were power systems, these methods and results might also be
applied to other fields where the eigenvectors of graphs are important.
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Résumé en français

Introduction et contexte

Le système électrique joue un rôle essentiel pour assurer un niveau de vie élevé
dans de grandes parties du monde. En raison des défis du changement climatique,
le système électrique doit s’adapter, par exemple en intégrant davantage de sources
d’énergie renouvelables. Le système électrique est un système vaste et complexe.
Ce travail tente d’étudier l’influence des propriétés topologiques du réseau sur le
comportement statique et dynamique du système.

Pour les systèmes simplifiés, le comportement dynamique du système peut être
décrit par l’équation d’oscillation, donnée comme:

Mi θ̈i + Di θ̇i = PB,i −
n

∑
j=1

aij sin
(
θi − θj

)
i ∈ VP

Di θ̇i = PB,i −
n

∑
j=1

aij sin
(
θi − θj

)
i ∈ VC

(1)

Nous pouvons linéariser le système pour les petites perturbations ∆θ autour
d’un point de fonctionnement θ∗ :

M∆̈θ + D∆̇θ = PB − L∆θ (2)

Ici, L est la matrice laplacienne du graphe sous-jacent du système. La linéarisa-
tion met en évidence l’interaction entre la topologie du réseau, encodée en L, et le
comportement dynamique du système électrique. Si les dérivées temporelles sont
considérées comme nulles, ∆̈θ = ∆̇θ = 0, on trouve les équations de flux de puis-
sance, données comme :

PB = L∆θ (3)

On trouvera plus de détails dans chapter 1 et chapter 2.

Flux de puissance spectrale

Comme nous l’avons vu dans la section précédente, les équations linéarisées de flux
de puissance peuvent être utilisées pour trouver les phases θ en utilisant la matrice
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laplacienne L et les puissances PB. Nous pouvons projeter les solutions de θ et de
la puissance P sur la base formée par les vecteurs propres φ, correspondant aux
valeurs propres λ de L. Cela décompose le système en différents modes, qui corre-
spondent aux oscillations spatiales des puissances dans le système. Les projections
sont données sous la forme :

P =
n

∑
k=1

φk · P
φk · φT

k︸ ︷︷ ︸
=:pk

φk =
n

∑
k=1

pkφk (4)

θ =
n

∑
k=1

okφk (5)

Où pk et ok décrivent comment P et θ sont répartis sur les différents modes. Ré-
soudre les équations de flux de puissance équivaut à trouver que pk = ok

λk
. En util-

isant cette décomposition, nous pouvons décomposer les flux dans chaque ligne à
chaque mode. Les flux Fk sont donnés sous la forme :

Fk = B
pk
λk
∇φk (6)

Fl
u
x
 p

a
r 

lig
n
e

(A) k = 2

Fl
u
x
 p

a
r 

lig
n
e

(B) k = 118

FIGURE 1: Flux par ligne pour la deuxième plus petite et la plus grande
valeur propre.

Dans fig. 1, nous montrons les flux pour la deuxième plus petite et la plus grande
valeur propre du cas de test IEEE 118. Nous pouvons voir qu’à la petite valeur pro-
pre, les flux sont répartis sur de nombreuses lignes. Pour la grande valeur propre,
les flux sont confinés à une seule ligne. La raison de ce phénomène est le vecteur
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p

FIGURE 2: Oscillations du modèle de système électrique linéarisé.

propre localisé φ au mode 118, qui est presque nul partout sauf pour deux nœuds,
où les flux apparaissent. Vous trouverez plus d’informations sur l’application de la
théorie des graphes spectraux sur les flux de puissance dans chapter 3.

Propriétés spectrales des systèmes d’énergie dynamiques

Dans cette section, nous voulons étudier les propriétés de l’équation dynamique
linéarisée, donnée dans eq. (2). Cette équation peut être résolue par un problème
quadratique de valeurs propres avec les matrices M, D, L as :

(
λ2M + λD + L

)
φ = 0 (7)

La réponse temporelle peut être calculée à partir des valeurs propres λ et des
vecteurs propres φ du problème quadratique des valeurs propres. Les valeurs pro-
pres décrivent les fréquences des oscillations, les vecteurs propres la participation
de chaque nœud à une fréquence donnée. La réponse temporelle pour le cas de test
IEEE 118 est indiquée dans fig. 2.

Nous nous intéressons à la façon dont les valeurs propres et les vecteurs propres
dépendent des M, des D et des L. Une enquête simple est présentée dans fig. 3. Ici,
les valeurs propres sont indiquées après avoir perturbé M et D. Les valeurs propres
originales sont en bleu, les valeurs propres perturbées en gris. Nous pouvons voir
que M influence le système beaucoup plus fortement que D. De plus, les valeurs
propres plus importantes sont plus fortement perturbées, dans les deux cas.

Cette forte perturbation aux modes élevés correspond à nouveau à des valeurs
propres localisées. Pour plus de détails sur les propriétés spectrales du problème
des valeurs propres quadratiques dans les applications de réseaux électriques, voir
chapter 4.
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(A) Modification de l’inertie
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(B) Modification de l’amortissement

FIGURE 3: Spectres du cas d’essai IEEE 118 avec inertie modifiée aléa-
toirement M et paramètre d’amortissement D.

Vecteurs propres localisés

Comme nous l’avons observé dans les sections précédentes, les vecteurs propres
de la matrice laplacienne peuvent être utilisés pour étudier les comportements im-
portants dans un système de pouvoir. Une caractéristique commune observée dans
les modèles dynamiques et statiques de réseaux électriques sont les vecteurs pro-
pres localisés, ce qui signifie que les vecteurs propres sont petits partout sauf pour
quelques nœuds. En termes mathématiques, on dit qu’un vecteur propre φ est lo-
calisé dans le sous-graphe S if :

φi =




O(1) if i ∈ S
O(ε) else

Dans cette thèse, nous dérivons deux limites de vecteurs propres et montrons
comment ces limites peuvent être utilisées pour prédire et étudier des vecteurs pro-
pres localisés. La première borne, appelée paysages du graphique, délimite la com-
posante de chaque vecteur propre à chaque nœud et est donnée sous la forme :

|φi|
|φ|max

≤





hi =
∣∣∣ 1

λ

∣∣∣∑n
j=1
∣∣Lij
∣∣

li = |λ|∑n
j=1

∣∣∣L†
ij

∣∣∣
(8)

La deuxième borne limite les vecteurs propres d’un sous-graphe S et dépend
d’un vecteur v, qui est la solution de l’équation discrète de Laplace Lv = 0 sur S . La
borne est donnée par :
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Nœuds supprimés
Nœuds restants

FIGURE 4: Nœuds restants après la suppression des nœuds en utilisant
les paysages.

‖φ‖S ≤
(

1 + max
λS

∣∣∣∣
λ

λ− λS

∣∣∣∣
)
‖v‖S (9)

Où λS sont les valeurs propres de la matrice laplacienne limitées aux lignes et
colonnes correspondant à S .

La première borne peut être utilisée pour trouver des sous-graphiques candidats
à la localisation. Ces sous-graphes sont trouvés en supprimant tous les nœuds ayant
un très petit paysage, où aucune localisation ne peut apparaître. Un exemple est
présenté dans fig. 4. Ici, la plupart des nœuds sont supprimés, mais nous nous
attendons à ce que la localisation apparaisse à des valeurs propres élevées pour les
nœuds restants.

Pour trouver à quels modes la localisation λ apparaît, on peut utiliser la deux-
ième borne. La localisation est liée à la résonance, où λS . Environ Il s’avère que
pour les sous-graphiques de fig. 4 (sauf pour un faux positif), la localisation appa-
raît exactement aux modes où λ est le plus proche d’un λS . La preuve des limites
présentées et une enquête plus approfondie se trouve dans chapter 5.

Discussion

Nous avons vu que les méthodes spectrales sont un outil puissant pour étudier le
comportement dynamique et statique des systèmes d’alimentation, notamment en
ce qui concerne les propriétés topologiques. Nous avons également étudié la lo-
calisation, qui est un comportement important. Deux limites et méthodes ont été
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dérivées pour étudier la localisation. La poursuite du développement de ces méth-
odes et leur extension à des modèles plus grands et plus réalistes constituent une
orientation de recherche prometteuse, sur la base de ces résultats.
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Chapter 1

Geometry and Power Systems

1.1 The Role of Geometry

All networks,whether they are social, biological or technical, have one common fea-
ture: their behaviour is shaped by the geometry of the network, meaning how how
the different elements are connected together. For instance, the geometry of the
power system can be changed by introducing new transmission lines, which will
impact the stability of the system. Many interesting features of the network depend
hence more on the shape of the network than the properties of the individual parts.
Understanding the geometry and thus the interactions in the system can guide ac-
tions in improving the overall system.

To highlight the role of geometry in a power system, two simple examples focus-
ing on very small electrical circuits are first presented.

Four Resistors A simple way to understand the role of geometry in an electrical
network is presented here. We consider a network of four identical resistors with
resistance R. We want to know the effective resistance between two nodes. In fig. 1.1,
the circuits for nine different configurations are shown.

A       B            C           D

    E            F            G                 H

I

FIGURE 1.1: Nine possible networks with four identical resistors with
resistance R.

Using the well known laws for resistances in serial and parallel circuits [17], we
can simply calculate the total resistance for those nine configurations. The results
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are shown in table 1.1. In [18], it is shown that these nine values are all possible
values for four identical resistors.

Circuit A B C D E F G H I
Rtotal

1
4 R 2

5 R 3
5 R 3

4 R 1R 4
3 R 5

3 R 5
2 R 4R

TABLE 1.1: Total resistance for all circuits with four identical resistors
from fig. 1.1.

The large difference in the values of the total resistance show how important
the geometry of a network is, even in a very simple network. We can observe a
difference of factor 16 in the total resistance. The results presented in table 1.1 can
calculated in a more general way as the effective resistance of a resistor graph.

FIGURE 1.2: Schematic drawing of the start delta transformation.

Star Delta Transformation A famous example in the theory of electrical networks
is the star delta transformation [19], which is depicted in fig. 1.2. The star network
on the left can be transformed to the triangle on the right. The electrical properties
of the systems, when investigated at the three nodes 1, 2 and 3 are equivalent in both
systems, if the reduced resistances r′ are calculated by:

r′12 =
r14r34 + r24r34 + r14r24

r14
=

r′

r14

r′13 =
r14r34 + r24r34 + r14r24

r34
=

r′

r34

r′23 =
r14r34 + r24r34 + r14r24

r24
=

r′

r24

This process is a simple case of the more general Kron reduction in electrical
networks [20, 21, 22]. A powerful application of the Kron reduction in dynamical
power system models is discussed later in section 4.1.2.

Both examples show the influence of geometry in simple electrical circuits, but
also how graph theoretical thinking can help in solving problems in these systems.
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We now introduce how a power system can be modelled and used to relate dynam-
ical and topological properties.

1.2 Power Systems

In this section, modelling foundations of the power system are explained. We want
to pay attention to the geometrical properties of the power system. The power sys-
tem connects the producer of energy with the consumer. Thus, the power system
has three different main functions:

1. Production of energy - The generators which produce electrical energy.

2. Transportation of energy - The transmission lines, which transport the energy
from the producers to the consumers.

3. Consumption of energy - The loads, which will use the electrical energy. Here,
all from industrial factories to the power supply at private buildings are con-
sidered.

All three parts combine to a complex and large system. It spans from large power
plants, over multiple countries, to buildings and factories. If we want to understand
and investigate this complex system, we have to find mathematical models for all
main functions in the system. In this work, we try to investigate and understand the
fundamental properties in a general way. Thus, we usually investigate simplified
power system models. More general and accurate models of the power systems are
described in detail in the main textbooks on power systems [11, 23]. An explanation
of the simplified models presented here can be found in [24].

1.2.1 Transmission of Energy - Power Flow

The largest part of the power system are the transmission lines, which are respon-
sible for transportation and distribution of electrical energy in the system. For ex-
ample, the main transmission lines of Germany is drawn on the map in fig. 1.3a. To
describe the transmission of energy, we use the power flow equations. The complex
current injected at a node i is given as Ii. From Kirchhoff’s current law [25], we know
that this current is identical to the sum of currents of all branches which end at node
i. The complex nodal voltages are called Vi. Using Ohm’s law, we can relate the
currents and voltages as:
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(A) German transmission grid

FIGURE 1.3: Example transmission system in Germany (made with
PYPSA, [26]).

I = YV (1.1)

Where Y is the nodal admittance matrix. The matrix elements Yij are non zero if
the nodes i and j are connected and are equal to the admittance between the nodes.
If i and j are not connected, the matrix elements are zero. The values on the main
diagonal are called the self-admittances and are equal to the sum of all admittances
connected to the corresponding node. If all shunt admittances are ignored, as usu-
ally done in the simplified models [20], the values on the main diagonal are identical
to the row sum of all non-diagonal terms [27]. The complex power S at node i can
be partitioned in the real and complex power P and Q, respectively:

Si = Pi + ιQi = ViI
∗
i

Using the Voltage phase angle θ, we express the complex voltages in polar form
as Vi = Vi exp(ιθi), where Vi is the Voltage magnitude or simply Voltage of the
node. The nodal admittance matrix can be separated in the conductance G and the
susceptance B as Y = G + ιB.

Pi + ιQi = Vi exp(ιθi)
n

∑
j=1

VjYij exp
(
−ιθj

)
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Separating these equations in the real and imaginary parts lead to the well known
power flow equations:

Pi =
n

∑
j=1

ViVj
(
Gij cos

(
θi − θj

)
+ Bij sin

(
θi − θj

))

Qi =
n

∑
j=1

ViVj
(
Gij sin

(
θi − θj

)
− Bij cos

(
θi − θj

)) (1.2)

We define three different types of buses in the network:

1. PV buses: The buses connected to generators are usually modelled as PV
buses, where the power output P and Voltage V are constant.

2. PQ buses: At all other buses, the active and reactive power consumption P and
Q are considered to be known and constant. Usually, the power is consumed
at these buses and they are also called load buses.

3. Slack bus: One generator bus is usually considered to be the reference or slack
bus, where the Voltage V and the phase θ = 0 are fixed. The angle of this bus
serves as a reference point for all other buses.

Using the power flow equations eq. (1.2) and the definition of the buses, the
other unknowns, for example the Voltage angles and phases at the load buses, can
be calculated. Solving the power flow equations is a complex problem in the field
of power system engineering and research. Especially finding the optimal solution
(optimal load flow) is still a very active research field with recent developments (for
example in [28]). The system described by (1.2) is nonlinear, possibly very large and
maybe ill-conditioned, which makes the computation of solutions difficult. Many
simplifications, computational schemes and algorithms to directly solve the equa-
tions have been proposed in literature [29].

DC Power Flow

When high accuracy is not necessary, simplifications of the equations are usually
employed. The probably most famous simplification, especially used in transmis-
sion systems, are the DC power flow approximations [30]. The assumptions for DC
power flow are:

1. Neglecting reactive power flow and assume all voltage magnitudes to be con-
stant.

2. Assuming that the resistances are small compared to the susceptance G � B.
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3. The difference of voltage phases is small, so that we can use sin
(
θi − θj

)
≈

θi − θj and cos
(
θi − θj

)
≈ 1.

With those simplifications, the real part of the power flow equations simplifies
to:

P = −Bθ (1.3)

Where θ is the vector of phase angles. Equation (1.3) is a linear equation which
only depends on the susceptance matrix B (the imaginary part of the admittance
matrix) and the nodal powers P.

1.2.2 Generation of Energy - Swing Equation

In the power system, electricity is classically generated by turning mechanical en-
ergy into electrical energy 1. The mechanical energy, for example wind energy in
wind parks or heated steam in thermal power plants, is injected into a generator.
Inside the generator, a rotor then rotates against the stationary stator. Both the rotor
and the stator are equipped with conductors. The rotors conductors produce a mag-
netic field, which in turn induces a current in the stator. The resulting current is the
AC current injected and used throughout the power system.

To analyse the dynamics of the generator, the swing equations are used. We define
the rotor angle as α. The angle is referred to a fixed reference frame. The mechanical
laws of motion for rotating systems can be used to describe the dynamics of the
system. The total power acting on the rotor consists of [24, 31]:

• PM: The mechanical input working on the turbine of the generator.

• PD = Dα̇: The damping power, which consists of the mechanical damping,
electrical damping effects from the damper windings and possible control ef-
fects.

• Pe: The electrical power withdrawal due to the electrical load.

Together with Newtons law, we arrive at the well known swing equation:

Mα̈ + Dα̇ = PM − Pe (1.4)

1PV or power electronic sources will be ignored here.
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With the inertia M of the generator. The electrical power Pe results from power
flow equations section 1.2.1. The description of the generator dynamics here is very
simplified. The rotor/stator interactions, damping and control included in a real
generator are much more complex than in eq. (1.4). Usually, this model is used with
other simplifications. Often, the reactive power flow and voltage dynamics are ne-
glected, as in the DC power flow approximations. This simple model is considered
to be valid for the first swing of a generator [32].

1.2.3 Consumption of Energy - Load Models

Finding suitable models for load can be very complicated, as different loads can
have very different dynamical behaviour. For example, an electrical motor has a
very different frequency behaviour than a transformer connected to the grid. Also,
the stochastic nature of loads might have to be included in the models. For the
investigations here, a simplified load model can be used. Usually, three different
models are considered [24, 33]:

1. The effective network model: All loads are modelled as passive, constant
impedances. In this case, all load nodes can be removed from the system and
an effective network only consisting of the generators, based on the Kron re-
duction [20], is sufficient to describe dynamics.

2. The synchronous machine model: Loads are modelled as electrical machines.
The load dynamics then resemble that of generators, with the swing equation,
but with negative power output. Usually, all buses between the generators
and machines are also removed from the network using the Kron reduction.

3. The structure preserving model: Here, all buses are modelled as frequency
dependent loads with PL = PL,0 + Dθ̇. The name indicates that because of the
active nature of the loads, the network is not Kron reduced and the original
topological structure of the nodal admittance matrix is preserved [34].

Together with the previous sections, the full system of equations which describes
the dynamics of a simplified power system are given as [33]:

Miθ̈i + Diθ̇i = PB,i −
n

∑
j=1

aij sin
(
θi − θj

)
i ∈ VP

Diθ̇i = PB,i −
n

∑
j=1

aij sin
(
θi − θj

)
i ∈ VC

(1.5)
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With the coupling matrix given element wise as aij = BijViVj. The power vec-
tor PB is the mechanical input or electrical load at each bus, depending on the type
of bus. This general form can be used for all load models described before, with a
appropriate choice of the parameters and the sets VP and VC . For example, in the
SP model, all load nodes are in VC and all generator nodes are in VP . The model
described in eq. (1.5) is a nonlinear dynamical system. The nonlinearity results in
a very rich and complex behaviour, but also in difficulties in mathematical treat-
ments. For many nonlinear systems, only numerical solutions can be used to in-
vestigate the system. Still, this model can be used to investigate and explain many
important properties of the power system. In the next section, an overview over the
vast literature related to power system research especially focusing on geometry is
given.

1.3 The Role of Geometry in Power System Stability

In this section, we want to give a brief overview about the role of geometry in power
systems stability. The models presented in the previous section and their complex
variants [11, 23] have been used extensively to study the stability of power systems.
Generally, three different classes of stability are considered [35]:

1. Rotor angle stability, the ability of the machines in the power system to remain
synchronised or return to a synchronised state after perturbations or faults.

2. Frequency stability, the ability of the system to maintain a steady frequency
after strong perturbations.

3. Voltage stability, the ability of the system to keep steady voltages at each bus
after disturbances.

In this work, we mostly focus on rotor angle stability. This problem has been
further divided into two problems, namely:

• Small signal stability: The response of the system to small perturbations around
an operating point. As the perturbations are sufficiently small, the systems
equations can be linearised. Usually, oscillations around this operating point
are then observed. These oscillations need to be damped and decrease over
time. Small signal stability can have long range interactions with inter area
mode oscillations or local effect, called local plant mode oscillations.
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• Transient stability: Large perturbations, where a stronger perturbation results
in an excursion in the state space. The system is supposed to return to a syn-
chronised operating mode after the perturbation. This stability depends on
the systems ability to synchronise, but also the strength and duration of the
disturbance.

Early work mainly investigated the stability of the system using energy functions
[36] or Lyapunov methods [37]. These studies usually investigated single generators
or very small systems, for example the single generator infinite bus system. The
structure of the network and its influence where usually discarded. Attempts to
consider a full network with the Lyapunov methods were later developed [34] and
it was noted that the geometry of the network had to be taken into account. With
advantages in computational power, time domain simulations became possible in
power system stability studies [38]. One advantage is that computer simulations
can take much more complex models into account, while mathematical models are
often extremely simplified. The topology can also easily be considered for these
simulations. One problem with computational simulations is that they are generally
very specific to a certain topology and parameter set. Mathematical results are more
general and can often be adopted to different scenarios without any problems [39].

In later years, the influence of the structure of networks on their properties be-
came a bigger focus of the research. Especially the topological and statistical prop-
erties of networks were of interest. For example, it was shown that power systems
may have small world and scale free behaviour. An overview about the many fea-
tures and studies about the topological properties of power systems as complex
networks can be found in [40].

Especially the interplay of topology and dynamics were of great interest [16].
The general focus of these investigations was usually synchronisation [41, 42] or
stability (mainly transient stability) [43, 44] of those systems.

Synchronisation is found in a system consisting of dissimilar coupled agents. If
the coupling overcomes the dissimilarity, the system synchronises. Synchronisation is
directly linked to transient stability of a power system. In the community, a mixture
of theoretical and statistical studies including computer simulations were usually
performed and many interesting results have been reported. It has for example
been shown that additional lines might destabilise the system [45] or results in more
overloaded lines [46]. This is a power system equivalent to Braess’ paradox, usu-
ally found in traffic networks. Braess’ paradox means that additional roads might
result in a decrease in traffic flow, even if the number of vehicles stays constant [47].
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Weaker links in power systems such as dead ends and trees has also attracted a
special attention [48, 49].

Recently, the dynamical properties of cascading failures has also been considered
[50, 51]. It has been shown that failures of some lines can have cascading effects
affecting the whole system, while other failures stay locally. While this makes it
clear that the topology plays a role in cascading failures, a complete understanding
of which topology promotes stability and which promotes failures remains to be
seen.

Complexity and Spectral Solving

While the previous results show great advantages in the confronting stability to
structural properties of power systems, many challenges remain open. One main
problem for all investigations, be mathematically, statistically or with computer sim-
ulations, is the huge complexity of the system. The dynamics of a power system
happen on very different time and length scales (a schematic drawing of the scales
and the related problems is shown in fig. 1.4). The length scales range from thoun-
sands of kilometers over whole continents to only less than a meter, on distribution
or device level. The power system has thousands of devices, connected with a com-
plex grid and with different behaviours and parameters. The power system is also
inherently non linear, which further increases the complexity, as nonlinearities can
easily result in chaotic behaviour on itself [52].

One way to address the problem of complexity is the spectral analysis. We can
use spectral analysis to decompose the system into different time and length scales
and investigate these scales individually. This analysis can be much easier than the
calculation of all scales together. The remainder of this thesis will hence mostly
focus on the concept of spectral graph theory, which is the application of spectral
decomposition on graphs.
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FIGURE 1.4: Overview over time and length scales related to power
system operation and design. Adopted from [53]
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Chapter 2

Spectral Graph Theory

The mathematical basis to investigate the topology and structure of complex net-
works is graph theory. This chapter, which serves as the theoretical background
of this thesis, gives a general overview about graph theory and especially spectral
graph theory. Spectral graph theory investigates eigenvalues and eigenvectors of
graphs. Most of the results are presented here are found in [54] or various lecture
notes from Daniel Spielman [55]. Another useful resource is [56], where many re-
sults especially of spectral properties on regular graphs and special geometries are
found. Many definitions from general or algebraic graph theory have to be used
in spectral graph theory as well. Those well known definitions and results can be
found in various textbooks about graph theory, for example [57, 58, 59].

2.1 Fundamental Properties of Graphs

Graphs are mathematical objects, which model the relations between objects. A
graph G consists of a set of vertices V (sometimes called nodes), and their relations
encoded in a set of edges (sometimes called links or lines) E . The vertices are the
objects. For example, in a social network, all people considered are the vertices. If
two people are friends, an edge between those two vertices exist. If two vertices
have an edge between them, they are called connected. We define the size of the
graph as the number of vertices.

2.1.1 Simple Graphs

In this work, we focus on a special case of graphs, called (weighted) simple graphs.
This means that the edges of every graph fulfils the following properties:

1. Undirected edges. The edge between nodes i and j is identical to the edge
between j and i.
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2. No self loops. Edges cannot start and end at the same vertex.

3. Single edges. For each pair of nodes, only one edge exist.

4. Weighted edge: Every edge has a real weight ei,j between the nodes i and j.
This weight indicates the strength of the connection between the nodes. The
larger the value is, the closer the nodes are to each other. For electrical net-
works, the admittance between two nodes would be equivalent to the edge
weight of the underlying graph1.

An unweighted graph is equivalent to a weighted graph where each edge has
a weight of one. In the spectral analysis, an edge weight of zero between nodes
is identical to a non connection. If two nodes are not connected, the weight can
be assumed to be zero. It is often very helpful to visualise graphs. In fig. 2.1, two
examples graphs are drawn. The blue circles indicate the nodes, while the black
lines indicate edges. Figure 2.1a is a simple graph, which shows the relationships
between Florentine families in the 15th century [60]. The non-simple graph fig. 2.1b
has directed edges (indicated by the arrows), self loops and multiple lines between
edges.

(A) Simple graph (B) Non-simple Graph

FIGURE 2.1: Graphical representation of a simple graph and a directed
multigraph with self loops. The blue circles are the nodes, the black line

the edges. Arrows indicate a directed line, ending in a certain node.

2.1.2 Networks and Graphs

In this thesis, both the term network and graph is used, sometimes interchangeably.
In general, we consider a graph to be a mathematical object while the network is
a physical, real world object [61]. Graphs can be used to mathematically describe
networks. The main difference between is the science behind both objects:

1We usually consider only positive, real edge weights in the remainder.
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1. Graph theory deals with fundamental properties and relationships between
classes of graphs.

2. Network science investigates properties of concrete graphs and how they re-
late with the real world examples they are based on. Network science or theory
often utilises the tools and ideas developed in graph theory.

We do exactly that, using graph theoretical and network science to investigate
properties of real work systems.

2.1.3 Paths and Connected Graphs

An important concept in the analysis of graphs are paths. A path P(VP , EP ) is de-
fined by a distinct sequence of vertices VP and a corresponding set of edges EP ,
where each vertex is connected to the next vertex in the sequence. A related concept
of walks allows for non distinct sequences of vertices or edges. A directed path is
defined similarly, just with directed edges.

Paths allow us to define a connected graph. If a graph has a path including every
vertex, this graph is connected. This means that from every vertex in the graph,
all other vertexes can be reached, just by following some edges in the graph. For
example, the simple graph from fig. 2.1a is connected. If the graph is directed, as in
fig. 2.1b, the definition is more complicated. This graph is weakly connected, which
means that replacing all directed edges with undirected edges would result in a
connected graph. This graph is not strongly connected though, as for example no
edge terminates in the top right vertex.

2.1.4 Subgraphs and Connected Components

An vertex induced subgraph S(VS , ES) of a graph G(V , E) is defined by the graph
with a vertex set VS ⊂ V and with the subset of edges ES which start and end in VS
[57]. While in principle, different definitions of a subgraph can be found (for exam-
ple, the subset of edges can be chosen), this work will consider subgraphs to always
be induced subgraphs with respect to a vertex set. Subgraphs are also not necessar-
ily connected, even when the graph is connected. The connected components of a
graphs are the largest connected subgraphs. When the graph is connected, the con-
nected component is the full graph itself. For example, fig. 2.2 shows a graph on the
left with two subgraphs (with the orange and green nodes). The orange subgraph
is connected, the green one is not. This graph has only one connected component.
On the right side, another graph is shown, which is formed by removing all blue
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vertices from the left graph. Then, the graph has three connected components, indi-
cated by the circles around the subgraphs.

FIGURE 2.2: Left: A random graph with two different subgraphs (in
orange and green). The orange subgraph is connected, the green one is
not. Right: A second graph, where all blue vertices are removed. Three

connected components are found.

2.1.5 Properties and Metrics of Graphs

In this section, some important metrics, often used in graph theory and network
science are used. To illustrate, we use the simple real world graph of the Florentine
families, as shown in fig. 2.1a.

Vertex Degree

The vertex degree, or simply degree, is the number of edges connected to each ver-
tex. A vertex with a degree of zero is called isolated, as it is not connected to any
other vertex. We can also define the weighted degree, which is just the sum of all
weights of the edges connected to the vertex.

Degrees indicate how well connected a vertex is. Vertices with a degree of one
are also called end vertex, as they are on the outside of the graph. In fig. 2.3a, the
degrees of the Florentine family graph are shown by the node colour. The most
connected graph in grey has a degree of six, which is much larger than the other
nodes. This vertex corresponds to the famous Medici family, the most influential
and richest family of Florence at the same.

An interesting basic result of graph theory, related to the degree is the handshak-
ing lemma. It states that in every graph, the sum of all degrees is an even number.
The name comes from the fact that when a group of people shake hands, the to-
tal number of hands shaken is an even number, as two hands are involved in each
handshake. In fact, in the previous graph, the total number of degrees is 40.

The average degree can be used to describe how dense a network is. The higher
the average degree, the more connections each vertex will have. The average degree
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(A) Degrees (B) Diameter

FIGURE 2.3: Vertex degree and diameter of the Florentine families
graph.

of the Florentine families from fig. 2.3a is 2.67, while the average degree graph on
the left from fig. 2.2 is 2.0. This graph is clearly less connected than the Florentine
family graph.

Shortest Path and Diameter

Methods to characterise the extend of a graph are often based on the shortest path.
The shortest path between two nodes is the path with the least amount of vertices
between the two nodes. This can be used to calculate the diameter of network. The
diameter is defined as the length of the longest shortest path between any pair of
nodes. The diameter of the Florentine families graph is 5. In fig. 2.3b, the orange ver-
tices indicate a shortest path of length five. In contrast, the graph previously shown
in fig. 2.2 is more radial. The diameter is 13 and the longest shortest path is shown in
section 2.1.5, with the orange vertices label the path as before. Similarly, the average
shortest path length can be calculated. The average shortest path is found by calcu-
lating the shortest path between all vertices of the graph and calculates the average.
It measures the average distance between vertices. For the Florentine family graph,
the average shortest path length is approximately 2.6. For the graph on the left in
fig. 2.2, the average shortest path length is around 5.3, which is more than double
the average shortest path length of the Florentine family graph.

2.1.6 Examples for Graphs

In this section, some typical graphs and properties are shown. All of these exam-
ples can be used as motives to build larger networks. At first, some typical graphs
considered in mathematical graph theory are shown. Afterwards, random graphs,
which are more common in network science as they resemble real world networks
are introduced. Those graphs are more irregular and complicated in nature.
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FIGURE 2.4: Diameter of the more radial graph from fig. 2.2. The or-
ange nodes are the vertices of the longest shortest path in the graph.

Basic Graphs

In fig. 2.5, some examples for typical graphs are shown.

1. Tree: A tree graph is a graph where any two nodes are only connected by a
single path. This means that no loops exist in this graph.

2. Cyclic: If the graph is not a tree, it has a cycle.

3. Complete: The complete graph of size n has n vertices and each vertex is con-
nected to every other vertex

4. Ring: In a ring graph, each vertex is connected to its n nearest neighbours.
This example is a 2-Ring.

The last two graphs are other examples for cyclic graphs. They are also regular
graph, which means that every vertex has the same degree (the degree is two for the
ring and five for the complete graph).

FIGURE 2.5: Examples for basic graphs.

Random Graphs

Real world networks are often not as regular as the examples described in the previ-
ous section. Thus, random networks are often used [61]. While many different type
of random networks exist, we focus on two examples here, namely the Erdős–Rényi
and the Watts–Strogatz graph.
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The creation process for both graphs is shown in fig. 2.6:

1. Erdős–Rényi: A set of vertices with the given size n is chosen. Then, all pos-
sible edges of the complete graph with n vertices are considered. For every
edge, a random number is chosen. If the random number is smaller than a
given threshold p, the edge is added to the graph.

2. Watts–Strogatz: We start with a ring graph with n vertices, connected to its m
nearest neighbours. For every edge, a random number is chosen. If a given
probability p is lower than this random number, than one of the vertices con-
nected to the edge will be randomly replaced by another vertex.

Obviously, the number of edges is constant in the Watts–Strogatz graph. The
Erdős–Rényi graph is often used in graph theory, due to its pure randomness. The
Watts–Strogatz model is a often used to model small world effects. It has a relatively
local structure (as every node is connected to it neighbours), but also some shortcuts
to other parts of the graph. This means that the average shortest path of these net-
works is often relatively small. In the real world, this has been reported as a low
degree of separation which has been reported in many real world networks [2]. For
example, it is believed that every human is connected to every other human by six
social interactions, which means that the diameter of the graph of all human beings
is only six.

0.
3

0.10.
2

0.7

0.
5

0.4

(A) Erdős–Rényi (B) Watts–Strogatz

FIGURE 2.6: Creating process of random graphs. The numbers on the
edges of the Erdős–Rényi graph correspond to the random number, a

threshold of 0.35 is used to create edges.

The impact of the random parameter p in both random graph types is illustrated
in fig. 2.7. For the Erdős–Rényi graph, a higher value of p results in more edges
included in the graph. While for low p, the graph is usually very sparse, a very
large p will resemble a complete graph. In our example, the graph is not connected
for p = 0.1. The Watts–Strogatz is an almost regular ring graph for low p. The
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larger the p, the more random the graph and further away from an ordered graph it
becomes.

p = 0.1 p = 0.3 p = 0.5

(A) Erdős–Rényi (B) Watts–Strogatz

FIGURE 2.7: Influence of the random parameter p on random graphs.

2.1.7 Graph Matrices

Graph theory, especially spectral graph theory, depends on matrices which describe
the graphs. Multiple matrices have been discussed in Literature [56, 62], which
might serve different purposes. We focus on three main matrices here.

All of these definitions are valid for a simple graph (as before). We define the
size of the graph n = |V| as the number of vertices.

Adjacency Matrix

The obvious way to describe the network by a matrix is probably the incidence
matrix A. For this, the n vertices of G are labelled from 1 to n. The symmetric
n× n matrix A is component wise defined by the edge weights. So, for all vertices i
and j, the matrix components aij = eij for the edge weight eij between these vertices.
If i and j are not adjacent to each other (which means, there is no connection), we set
eij = 0.

For an undirected graph, the adjacency matrix is symmetric and we can see that
the row sum is identical to the degree of this vertex.

Incidence Matrix

The incidence matrix Ĩ of a graph describes the edges of a graph. It is a n × |E|
matrix, where the rows are indexed by the vertices and the columns are indexed
by the edges. When a vertex i is connected to a vertex e, then Ĩi,e = 1 and zero
otherwise.
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More useful for this work is the directed incidence matrix I. This matrix is de-
fined similarly, but we set Ii,e = 1 when the edge e ends in i and Ii,e = −1 when i is
the end point of e. For an undirected graph, the start and end points of the vertices
can be chosen arbitrary. Sometimes, the directed incidence matrix for an undirected
graph is called the oriented Laplacian matrix.

Laplacian Matrix

In many cases [63, 20, 64, 65], the most interesting matrix in network science appli-
cations is the Laplacian matrix L. This matrix is again a n× n matrix, indexed by the
vertices. Element-wise, we can define the Laplacian matrix as:

Lij =




−eij if i 6= j

∑j 6=i eij else
(2.1)

Which means that, using K as the diagonal matrix with the (weighted) degrees
of the corresponding vertex on the diagonal, the Laplacian is also given as:

L = K− A

Using the previous definition of the oriented incidence matrix, we can also find
the following relationship between the incidence matrix and the Laplacian matrix
[56, 33]:

L = I IT or for weighted Graphs: L = Idiag
(

e(i,j)∈E
)

IT

Where diag
(

e(i,j)∈E
)

is a diagonal matrix, with the edge weights on the main
diagonal. The order of the weights corresponds to the order of edges in the incidence
matrix. The first row of the incidence matrix corresponds to the first value on the
diagonal and so forth. This also indicates the relationship between the Laplacian
matrix and a quadratic form for any vector x [54]:

∑
(a,b)∈E

eab (xa − xb)
2 = xT Lx (2.2)
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This work focuses on the Laplacian matrix as defined before. In some contexts,
this matrix is called the combinatorial Laplacian matrix [66]. Sometimes two related
matrices are investigated [62]:

L = K−1/2LK−1/2 (symmetric) normalized Laplacian (2.3)

∆L = K−1L discrete Laplace operator or random walk normalized Laplacian
(2.4)

Depending on the studies, these matrices have some distinct advantages. This
work only focuses on the combinatorial Laplacian matrix and will simply call it the
Laplacian matrix of a Graph.

2.2 Spectral Properties of Graphs

Spectral graph theory is a powerful tool to investigate properties of the graphs, us-
ing the graph matrices presented previously. We focus here on the eigenpairs of the
Laplacian matrix L, which are the solutions λ and φ of:

Lφ = λφ (2.5)

Where λ are the eigenvalues and φ the eigenvectors of the matrix L. We can also
define the left eigenvector ψ as the solution to:

ψL = φλ (2.6)

With the same eigenvalue λ. From the definition of the Laplacian and the fact
that we have an undirected graph with eij = eji, we know that L is a symmetric real
matrix. This means that L has only real eigenvalues and the eigenvectors can be
used to form a basis [67]. It also follows that the left eigenvector is the transpose of
the right eigenvector [68]. Thus, we generally consider only the right eigenvector.
As every scalar multiplication of an eigenvector is another eigenvector, we usually
fix each eigenvector by normalisation. To make the eigenvectors comparable, we
normalise the eigenvectors so that the two-norm of each eigenvector is equals to
one.
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From the definition of the Laplacian matrix in eq. (2.1), we can easily see that the
Laplacian matrix has zero column sum. This means that the vector φ0 = (1, 1 . . . 1)T

spans the null space, as:

Lφ0 =

(
∑
j 6=i

e0j −∑
j 6=i

e0j, . . .

)T

= (0, 0, . . . , 0)T

This also implies that the Laplacian has the zero eigenvalue, corresponding to
the eigenvector φ0. From the quadratic form eq. (2.2), we can clearly see that the
Laplacian matrix is positive semi definite, if all edge weights are positive. Thus, we
can order all eigenvalues as:

λ1 = 0 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn

The number of zero eigenvalues is identical to the number of connected compo-
nents in the graph [56, Proposition 1.3.7]. As the graphs considered in this work are
generally connected, the spectra usually have a single zero eigenvalue.

As L is a normal matrix (every real valued symmetric matrix is normal [69, pp. 7–
1]), we know that the eigenvectors for distinct eigenvalues are orthogonal [67, Chap-
ter 7]. This means that for any eigenvector φ 6= φ0, the sum over all eigenvector
components vanishes, as:

φ ·φ0 =
n

∑
i=1

φi = 0 (2.7)

Which is independent of the normalisation of φ.

2.2.1 The Laplacian Pseudo Inverse

A famous result of eigenvalues is that the determinant of a matrix is given by the
product of eigenvalues [67]. For the Laplacian matrix, this means that the determi-
nant is zero:

det L = ∏
i

λi = 0
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If the determinant of a matrix is zero, this matrix is non invertible or singular.
The pseudo inverse of the Laplacian matrix is an important tool in spectral analysis.
The most common used pseudo inverse is the (regularised) Moore-Penrose inverse
L†. For a normal, positive semi definite matrix, the pseudo inverse can be calculated
with the eigenvalue decomposition of a matrix L2 [70]:

L = U




λ1

λ2
. . .

λn




︸ ︷︷ ︸
=:Λ

UT ↔ L† = U




0
1

λ2
. . .

1
λn




︸ ︷︷ ︸
=:Λ†

UT

Where U is the matrix consisting of the eigenvectors of L and Λ is the diagonal
matrix with the eigenvalues of L on the diagonal. From this definition, we can see
that the pseudo inverse has the same eigenvectors as the original matrix and the
eigenvalues are just the reciprocals of the original eigenvalue, except for the zero
eigenvalue. We can also see from the definition that the pseudo inverse is a sym-
metric and real matrix, if L is symmetric and real.

Using the spectral decomposition, one can also show that the pseudo inverse has
the other properties of a Laplacian matrix, namely [65]:

• Zero row sum.

• Positive diagonal and negative off diagonal entries.

Thus, the Laplacian pseudo inverse is a again a Laplacian matrix. It is important
to remember the pseudo inverse does not invert the Laplacian matrix. Still, using
the fact that both matrices have zero column sum can be used to show the following
inversion property of the Laplacian pseudo inverse [70]:

LL† = L†L = In −
1
n

Jn (2.8)

With the identity matrix In and the matrix of all ones Jn. We can clearly see that
L and L† commute.

2More generally, this is done with the singular value decomposition [67, Section 5.12]. For a nor-
mal, positive definite matrix, the eigenvalue decomposition and the singular value decomposition
are identical.
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2.2.2 Algebraic Connectivity

The first non-zero eigenvalue of a graph (here λ2) is often called the algebraic con-
nectivity. It has been shown that the algebraic connectivity is a good way to measure
how connected a graph is [71]. For an unweighted graph, the following interesting
properties for the algebraic connectivity found in [72] are listed here:

1. If G is a complete graph with n vertices: λ2(G) = n

2. If G has n vertices and is not a complete graph: λ2(G) ≤ n− 2

3. If G is a ring graph with n vertices: λ2(G) = 2
(
1− cos 2π

n
)

4. If G1 is obtained by removing edge from G: λ2(G1) ≤ λ2(G)

5. If G1 is obtained by adding edge to G: λ2(G) ≤ λ2(G1) ≤ λ2(G) + 2

These examples show the connection between the algebraic connectivity and the
connectivity of the graph. For example, by definition, the complete graph is the
most connected graph. The conditions show that the complete graph has the largest
algebraic connectivity for a given number of vertices.

Results like the last two generally hold true for the weighted case as well (as long
as we only allow positive edge weights). For example, the algebraic connectivity of
G1 after inserting a weighted edge with edge weight eij between the vertices i and j
results in [63]:

λ2(G1) = λ2(G) + eij
(
φ2,i − φ2,j

)2

Where φ2,i is the i-th component of the eigenvector φ2 of G, corresponding to
the eigenvalue λ2. Obviously, from this follows that λ2(G1) ≤ λ2(G), as for the
unweighted case.

2.2.3 Nodal Domains

Another interesting property are nodal domains. Nodal domains are the maximum
connected subgraphs, whose nodes have eigenvector components with the same
sign. For the zero eigenvalue, all nodes have the same eigenvector components, so
the whole graph is defined as having a single nodal domain. In mathematical terms,
a (strong) nodal domain is the maximum induced subgraphW of G with φiφj > 0
for all i, j ∈ W . These domains are either positive (if φi > 0 for all i ∈ W) or
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negative. A weak nodal domain is defined similarly, just allowing for equality with
zero.

The number of nodal domains of an eigenvector φ are called SND(φ) or WND(φ)

for strong and weak nodal domains, respectively. These numbers can be bounded
similarly to the Courant nodal domain theorem in the continuous case [73, 74] and
depends on the order of the eigenvalue. For the k-th eigenvector with eigenvalue
multiplicity mk, the number of nodal domains is bounded as:

SND(φk) ≤ k + mk − 1 and WND(φk) ≤ k

In fig. 2.8, two graphs and the corresponding (strong) nodal domains are shown.
In fig. 2.8a, the eigenvector of the algebraic connectivity is used, so we observe two
nodal domains. In fig. 2.8b, the third eigenvalue (or second nonzero eigenvalue) is
used, so up to three nodal domains can be found. Those three nodal domains can
also be observed.

Of special interest are the nodal domains and eigenvectors of the algebraic con-
nectivity. The eigenvector is often called the Fiedler vector and is used to partition
the graph in two sets [71]. In [75], it is shown that using spectral methods, especially
the Fiedler vector, is a good method to find a good cut of the graph, where the nodes
are partitioned into useful, separated partitions.

(A) Fiedler eigenvector

i 0
i < 0

(B) Second eigenvector

FIGURE 2.8: Examples showing the nodal domains on the Florentine
families graph.
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2.2.4 Coherency

A further property of the eigenvectors of a graph, which is related to nodal domains,
is coherency. Coherency means that some eigenvectors for a given graph have, for
a set of connected nodes, similar components. The problem of coherent clusters
is directly related to nodal domains, as coherency is only possible inside a nodal
domain. One exception would be a coherent cluster with very small components,
which might be distributed around zero and thus cross the nodal domain bound-
aries. While some theory for the number of nodal domains exist, the number and
shape of coherent clusters is generally even harder to predict. Even inside a sin-
gle nodal domain, multiple coherent clusters might exist. Under certain conditions,
coherency can be predicted by [63, Theorem 5.3]. The referenced theorem can be
summarised as follows:

If a graph can be partitioned into nq partitions, where each partition has intra
area connections of link strength O(1) and inter area link strengths of O(ε),
then:

1. There are n− nq eigenvalues of order O(1).
2. The remaining nq eigenvalues are of order O(ε).
3. The eigenvectors corresponding to the q slow eigenvalues exhibit approx-

imate coherency.

An example showing this behaviour is provided in [63, Example 5.8]. This ex-
ample is exactly recreated in fig. 2.9a, where the node colour corresponds to the
eigenvector components of the Fiedler eigenvector. The graph is divided into four
partitions, which are connected according to the requirements of the theorem. Cal-
culating the eigenvectors, we can clearly see the coherency in the four clusters. We
can also observe two nodal domains, where the two four node clusters and the two
other clusters have different signs.

It should be noted that this is only a sufficient, but not a necessary condition for
coherency. For example, the unweighted graph shown with the eigenvector com-
ponent of the algebraic connectivity in fig. 2.9b exhibits coherency (and two nodal
domains) as well. Interestingly, right side of fig. 2.9b is actually the Florentine fam-
ilies graph again. In both plots, the algebraic connectivity is used. We see a very
different behaviour inside the cluster at the Fiedler eigenvector, where the connec-
tion results in a very coherent behaviour, instead of the nodal domains observed
before.
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(B) Unweighted graph

FIGURE 2.9: Two example graphs which exhibit coherency in the
Fiedler eigenvector. The node colour is calculated from the eigenvector

components.

2.3 Spectral Graph Theory on Power Systems

2.3.1 Small Signal Stability

The first application of spectral graph theory was usually done to investigate (slow)
coherency and its application to network partitioning [76]. It has been shown that
spectral methods can decompose the system into multiple modes. The eigenvectors
of this decomposition result in a mode shape [77], which describes how the mode is
distributed in the system. This was used to find coherent areas, where at a given
mode, all generators behave similarly. The generators in a coherent cluster where
often aggregated to a single generator, which simplified the analysis of the whole
system significantly [78]. The coherency was mostly observed at small eigenvalues,
which corresponds to low frequencies (hence the name slow coherency). On larger
scale, these coherent clusters rotate against each other. The resulting inter area os-
cillations3 can severely disturb the power system and are directly linked to some
blackout occurrences [79]. The main focus of many research papers in this field is to
find and identify these partitions efficiently and correctly, which means that many
articles are focused on algorithmic problems [80].

A different approach to the studies of slow coherency is shown in [63]. Instead
of trying to identify clusters in a given network, this work investigates the math-
ematical background of slow coherency and derived sufficient conditions for the
emergence of coherency (these conditions were already presented in section 2.2.4).

3Very interesting videos showing these oscillations can be found on http://fnetpublic.utk.
edu/index.html

http://fnetpublic.utk.edu/index.html
http://fnetpublic.utk.edu/index.html
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In general, the work focuses on the structure of the eigenvectors and how they relate
to the topology of the network. In contrast to other investigations, the analysis here
was valid for dissimilar generators and allows for passive load nodes. One main
drawback is that it is only valid for undamped oscillatory networks. The damping
of the oscillation has been identified as vital for the stability of the system [35], es-
pecially in small signal stability. The oscillations in the afromentioned study thus
never decay. Still, the results give insight about the distribution and shape of these
oscillations, especially the coherency.

The elegant analysis of a linearised power system model in [21] highlights the
role of the damping for the stability of the system. It was shown that the small signal
stability of the system depends on the second smallest eigenvalue of the Laplacian
and the dissipation (damping divided by inertia) of the system. Using a master sta-
bility function framework, a parameter set with maximum stability, depending on
the second smallest eigenvalue and the machine parameters was identified. A sim-
ilar, but more detailed analysis is found in [65]. This study explores the stability of
multiple special cases. It was argued that the undamped case can only be marginally
stable, which means that the oscillations do not grow, but also do not decay. In both
investigations, the network is modelled as a set of generators without loads and
with identical machine parameters. Also, both studies exclusively investigate the
eigenvalues of the system, which define the stability. The eigenvectors, which are
important for the clustering and the distribution of oscillations in the system are
ignored.

2.3.2 Transient Stability

While the previous applications of spectral graph theory focus on small signal stabil-
ity, links between transient stability and spectral graph theory have been identified.

In recent works, the applications of the spectral decomposition of the Laplacian
matrix of a graph to vulnerability studies and disturbance propagation has been
performed [81, 82]. It has been shown that the RoCoF (rate of change of frequency)
of a perturbation directly depends on the eigenvectors of the Laplacian matrix and
that the values of the Fiedler vector shape the propagation of disturbances over the
system. The RoCoF is a typical measure to investigate the strengths of a fault in the
power system.

Synchronisation is also linked to spectral properties of the graph. A provable
bound for the existence of a synchronised solution is given as [32]:
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λ2(L) ≥
∥∥∥ITPB

∥∥∥
2

(2.9)

Where λ2(L) is the algebraic connectivity of the network, I the oriented incidence
matrix and PB the dissimilarity of the system. In the dynamical system presented
here, it is the inherent frequency with which each generator oscillates. The product
ITPB is a vector where each line corresponds to the difference of a pair of dissimilari-
ties which is connected by an edge of the underlying graph. The spectral properties,
linked to the algebraic connectivity, is directly linked to these results. While this con-
dition is sufficient, it has been shown to be a conservative bound. A tighter bound
has been proposed in [83, 33]:

∥∥∥IT L†PB

∥∥∥
∞
≤ 1 (2.10)

The proof of this bound is not complete yet, numerical and mathematical inves-
tigations show that it is accurate and very tight for many networks and different
conditions. This condition means that the maximum of the vector L†PB over any
transmission line has to be less than one for a synchronised solution to exist. The
topological properties are encoded in the pseudo inverse L†. Due to the links with
the eigenvalue decomposition of the Laplacian matrix, the pseudo inverse of the
Laplacian can be seen as a spectral property of the graph. While this condition is
easy to calculate, it can be difficult to understand from a geometrical point of view.
Especially, it is not clear how the Laplacian matrix L† depends on the geometrical
features of the system. Interestingly though, the condition also links the synchro-
nisation problem with the DC power flow problem. The vector L†PB can be inter-
preted as a solution for the voltage phases of eq. (1.3). This means that the condition
of synchronisation is identical with a upper bound on the voltage phase differences
over any transmission line.

Another interesting result, are the fixed point equations also found in [33]. It
can be shown that the synchronised phases θ of a dynamical power system can be
calculated as:

ITθ = arcsin
(

IT L†PB

)
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Exploring the properties of L†PB thus not only gives insight about the synchro-
nisation of the system, but also about the values of the phases in a synchronised
state.

More details of the spectral properties of L† have been developed in [64]. In
there, explicit formulas for the pseudo inverse for some simple geometries (for ex-
ample, the complete and the path graph) are given. For further development of the
properties of the pseudo inverse, the eigenvectors of the Laplacian matrix have to
be understood.

2.3.3 Conclusion

Spectral properties are a powerful tool to quantify graph properties in a mathemat-
ical concise way. This overview shows how important the spectral properties are
in the investigation of power systems. They play a major role for synchronisation,
transient stability and small signal stability.

While most publications focus on the eigenvalues of the Laplacian matrix, we
want to highlight the role of the eigenvectors. The strong condition for synchroni-
sation presented earlier depends on the pseudo inverse of the Laplacian, which is
build by the eigendecomposition of the Laplacian matrix and thus linked with the
eigenvectors.

In chapter 4, we will analyse the small signal stability of a power system. In the
literature, eigenvectors have been identified as being of major importance, for exam-
ple for slow coherency or localised oscillations [84]. The best results were found for
undamped systems, especially in [63]. The lack of damping (and thus, dissipation
of energy), which has been described as being of major importance for the stability,
is a drawback of this study. Investigating the effects of missing damping and trying
to extend the results is the main goal of chapter 4.

While this work is motivated by dynamical studies, we first investigate the static
power flow problem from a spectral point of view. The static problem is generally
easier to investigate. It also allows us to make very clear connections between the
behaviour of the system and the eigenvectors and show that spectral analysis is a
powerful tool for power flow studies. The static analysis is also a further motiva-
tion for chapter 5, as well as linked with synchronisation studies as shown by the
condition presented in eq. (2.10).
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Chapter 3

Spectral Analysis of power flow

3.1 Methodology and Theory

In this section, we want to present how to investigate the power flow properties
of a simple system by its spectral properties. This allows us to make powerful ob-
servation about the behaviour of the system and to link geometrical and spectral
properties with the load flow results. Most of the analysis here is based on previous
studies, especially [85]. The theoretical framework is also derived in [86, 46], with
further applications therein.

This method is based on the DC power flow equations eq. (1.3), derived in sec-
tion 1.2.1. The susceptance B in eq. (1.3) can be seen as a weighted laplacian matrix
of the underlying network and we use B = −L in the remainder of this section, as
we are interested at the properties of the graph encoded in the Laplacian. Important
properties of laplacian matrices have been discussed in section 2.2. We know that
the Laplacian matrix L is singular, so eq. (1.3) cannot be solved directly. One option
is to use the pseudo inverse L†, to solve for the voltage phase as:

θ = L†P (3.1)

In the remainder, the k-th eigenvectors and eigenvalues of L are called λk and φk,
respectively. As the eigenvectors of L form a basis, we can project the real power P
on the eigenvectors:

P =
n

∑
k=1

φk · P
φk ·φT

k︸ ︷︷ ︸
=:pk

φk =
n

∑
k=1

pkφk (3.2)
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This projection can be used to decompose the power into the modes of the sys-
tem. The power at every mode k depends on the scalar projection pk and the eigen-
vector φk. We can use the previous equation to express the power at each node i
as:

Pi =
n

∑
k=1

pk (φk)i

In a balanced system, the power consumption and generation is balanced, which
means that the sum over all nodal power vanishes ∑n

i=1 Pi = 0. This leads to:

0 =
n

∑
i

Pi =
n

∑
i

n

∑
k

pk (φk)i =
n

∑
i

p1 (φ1)i +
n

∑
k=2

pk

n

∑
i
(φk)i

From eq. (2.7), we know that the sum over all eigenvector components is zero,
except for φ1. From this, it is clear that p1 = 0. Similar to the powers, we can
decompose the voltage phases θ in the spectral domain using the same eigenvectors
φk with the scalar projection ok:

θ =
n

∑
k=1

okφk (3.3)

Using the DC load flow equation eq. (1.3), we see that:

n

∑
k=1

pkφk = L
n

∑
k=1

okφk =
n

∑
k=1

λkokφk

As the eigenvectors are orthogonal, we can clearly see that ok = pk
λk

for all k 6= 1.
This system is undetermined, as we cannot define o1 in this case. The factor o1 is
related to the reference angle of the system, which can be chosen arbitrary. For
simplicity, we set o1 = 0.

Flows over Transmission Lines

The flow over a transmission line F can be expressed as:
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F = YL∇θ (3.4)

Where YL is a diagonal matrix with the lines admittances on the diagonal and∇
is the difference of the vertices of the edges in a graph. This means that∇ is identical
to the transpose of the oriented incidence matrix I presented in section 2.1.7. Using
the spectral decomposition of θ, the line flows can be calculated with:

F = YL

n

∑
k=1

pk
λk
∇φk (3.5)

The individual terms of the sum in the previous equation allow us to investigate
the flow over the lines at each individual modes k0 as:

Fk0 = YL
pk0

λk0

∇φk0

From these equations, it is clear how the power flows of a DC power flow prob-
lem are directly linked to the spectral properties of the Laplacian matrix of the un-
derlying network. Especially the flow between two vertices is directly linked to the
difference of their eigenvector components.

3.2 Numerical Results

Using the theoretical results from the previous section, we know want to explore
the spectral properties of a power flow problem. We focus our attention to the IEEE
118 test case [87]. The IEEE 118 test cases has 118 nodes (hence the name) and is
supposed to represent a part of the Midwestern US grid.

3.2.1 Spectral Properties of the IEEE 118 Test System

At first, we want to present the spectral properties of the Laplacian matrix of the
IEEE 118 test case. The eigenvalues are shown in fig. 3.1a. As we discussed previ-
ously, all eigenvalues are positive as L is a positive semi definite matrix. The zero
eigenvalue is omitted here. We also show the Fiedler vector, corresponding to the
smallest nonzero eigenvalue drawn on the network in fig. 3.1b. As predicted by
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the theory, we observe two nodal domains, which divide the graph into two large
clusters (a smaller one on the right and a large cluster on the left).
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FIGURE 3.1: Ordered eigenvalues and Fiedler vector drawn on a graph
plots for the IEEE 118 test system. In the network, the diamonds repre-

sent generators, while the circles represent loads.

The eigenvector components for all nodes and all modes are shown in fig. 3.2.
We can see a general trend. For small modes, we can see large clusters with large
eigenvector components, often very similar. We can also see that most nodes have a
non zero eigenvector component. While the indexing of the nodes does not directly
corresponds to the representation in the system, we can also observe some coherent
clusters or nodal domains. For the second smallest eigenvalue, the negative nodal
domain can be observed for small indices, while the large indices correspond to
the positive domain. On the other hand, especially at the highest modes, we see
that only very few nodes have a non zero eigenvector component. At the largest
eigenvalue, we can see that only two modes have a non vanishing eigenvector com-
ponent. This difference between the low and high modes are a major factor in the
analysis of the thesis and play a role the steady-state and dynamic behaviours of
power systems. We will first to investigate the more simple case of the steady-state
loadflow.

3.2.2 Powerflow Decomposition

To investigate the power flow in the modes, we first calculate the spectral projections
pk and ok. The power decomposition is shown in fig. 3.3a. We can see that the power
is distributed over the whole range of modes. The highest values are found for high
modes, around 100. At the whole range, some modes have very little influence in the
total power as the values of pk are very small. On the other hand, the decomposition
of the phases θ are plotted in fig. 3.3b. Clearly, the phases are mostly dominated by
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FIGURE 3.2: Eigenvector components of the IEEE 118 test case. The
colour code corresponds to the value at a given node and mode. It
should be noted that these eigenvectors are normalised so that their

largest value is equal to one, for better visualisation.
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the lowest modes and the high modes do not influence the phases a lot. We know
that ok =

pk
λk

. As the eigenvalues grow very large for large k, as seen in fig. 3.3b, this
is the expected behaviour.
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FIGURE 3.3: Scalar projections pk and ok to project the power and volt-
age phase on the eigenbasis of the laplacian matrix of the IEEE 118 sys-

tem.

We can see how the decomposition influences the power flow solutions in fig. 3.4.
In the left panel, we show the voltage phases calculated with the DC power flow cal-
culation. The eigenvectors corresponding to the largest values ok are shown, except
the Fiedler vector already presented in fig. 3.1b. Investigating the voltage phases, we
clearly see how distinct the left and the right side of the network are. This cluster-
ing is very similar to the nodal domains for the smallest nonzero eigenvalue shown
before. In the right cluster, the voltage phases are further divided in two clusters.
These clusters can be seen at φ4. On the lower side of the left cluster, a branch with
a very different phases in contrast to the rest can be observed. This branch can also
be observed at mode k = 15. We see that some of the most prominent features of the
voltage phases can be described by just a few modes.

3.2.3 Flows in Line

Now, we focus our attention to the flows on lines in the system. At first, we can in-
vestigate the flows in each individual line in the system. The IEEE 118 test case has
179 edges. In fig. 3.5a, the total flow in each line (for all modes) is shown. Clearly,
some lines are loaded much more than the other lines. Especially lines 23, 112 and
162 are highly loaded, while some other lines have almost no flow in them. The
highly loaded lines are especially important for the power system operation. On the
other hand, we can calculate for each line the maximum power transferred at a sin-
gle mode. This example is shown in fig. 3.5b- We can clearly see that the peak at line
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FIGURE 3.4: Phases and most dominant modes of the IEEE 118 test
case.

23 vanishes, while the peak at 112 is still observable. This means that line 112 has a
large amount of flow at a single mode, while the flow in line 23 is a consequence of
many modes. In fact, in 25% of the total flow in line 112 happens at a single mode,
while less than 11% of the flow in line 23 are a consequence of the most dominant
mode..
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FIGURE 3.5: Total and maximum power flow in each transmission line
in the IEEE 118 test case.

We can do a similar analysis, this time focusing on the flow per mode. This
means that we calculate the flows in all the lines of the system at each 118 modes
and the results are shown in fig. 3.6. The total flows are shown in fig. 3.6a. The
total amount of power flow at each mode seem to decrease for larger modes and
the highest peak is observed at mode 15. Again, we can calculate the maximum
power in any line for each mode, which is shown in fig. 3.6b. In general, we see that
maximum flows per line does not decrease as much with increasing modes as the
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total flow. This means that for higher modes, the flows are more concentrated on
single lines. We can also observe that some new peaks appear, for example mode
18. While this mode already has a large total flow, it also has one line which has a
very high flow at a single line.
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FIGURE 3.6: Total and maximum power flow at each mode in the IEEE
118 test case.

The percentage of the maximum flow to the total flow per mode is shown in
fig. 3.7a. Here, we can clearly see the increase for high modes. This means that for
higher modes, the flow is limited to less lines. The largest values was found at mode
110, where almost 80% of the flow is found at a single line.
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FIGURE 3.7: Percentage of total flow to maximum for each line per
mode or for each mode per line of the IEEE 118 test case.

We can investigate this difference in more detail by calculating the mode decom-
position of power flows line per line. Two cases are shown in fig. 3.8. These cases
correspond to the Lines with the lowest and the highest values in fig. 3.7b. On line
153, the flows are separated over multiple lines. At the other hand, almost all flow
in Line 137 happens at two single modes.



3.2. Numerical Results 51

FIGURE 3.8: Decomposed power flow through two different lines in
the IEEE 118 test case.

Again, we can also focus on power per line for different modes. In fig. 3.9, the
flow per line at three different modes were shown. We choose the examples from
fig. 3.7a where the ratio from largest to total flow is the smallest (mode 37) and
the two modes with the largest ratio (110 and 117). Here we see that the global
behaviour of the system is very different at different modes. For mode 37, many
lines have some flows. On the other hand, at mode 110, basically only a single line
is active and the remaining flows basically zero.

This behaviour of lines can directly be associated with the eigenvectors. We show
two eigenvectors corresponding to the nodes 37 and 117 drawn on the network in
fig. 3.10. The edge width corresponds to the flow in the lines at the corresponding
mode. We can clearly see that the differences in the eigenvector components are
a major factor in the flow in the lines. At mode 117, almost all eigenvector nodal
values are zero, except for two. Exactly between these nodes, the flow is relatively
large. On the other hand, the eigenvectors of mode 37 are very complex and no
large structure or special features can be seen. At the same time, we observe flows
all over the network.



52 Chapter 3. Spectral Analysis of power flow

FIGURE 3.9: Flow in line of three different modes of the IEEE 118 test
case.
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FIGURE 3.10: Eigenvectors and flows corresponding to two nodes of
the IEEE 118 test case. The colours of the vertices correspond to the
eigenvector components and the width of the edges to the flow at the

corresponding mode between the nodes.
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3.3 Conclusions

In this chapter, we derived the equations to solve the power flow equations in the
spectral domain. We used these equations to deeply investigate the spectral decom-
position of the flows in the power system. These flows can be investigated per line
or per mode, which results in interesting and different behaviour.

One general observation is that for low modes, the flow is spread over the whole
system, with large flows from one to the other side. At the opposite side, we found
that the flow in the highest modes is almost completely limited to a single edge.
Mathematically, this was linked to the eigenvectors, that were zero almost every-
where, except around this edge. The next issue is now to determine if this notice-
able localisation of eigenvectors and the differences of eigenvector geometry with
the modes plays also a major role for the dynamic properties on the dynamic prop-
erties.
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Chapter 4

Spectral Properties of Dynamical
Power Systems

4.1 Modelling and Background

In this chapter, we analyse the spectral properties of dynamical power system prob-
lems. Building on the previous studies, discussed in section 2.3.1, we aim to do two
things:

1. Investigate the small signal properties of a dynamical power system model.
We want to know how the model behaves and how the various parameters,
the inertia, the damping and the coupling matrix of the network, influence the
dynamics of the system.

2. Try to bridge the gap between the studies of the undamped network from [63]
and the research on damped systems with identical machine parameters from
[65, 21]. We first focus our attention on the role of the damping in the system
and later propose a theoretical method to directly link both results.

We use the general power system model explained eq. (1.5), which can models
the generators with the swing equations and offers multiple options to model the
loads. We want to investigate the small signal stability, which are small perturba-
tions around an operating point θ∗. We can linearise the right hand side of these
equations around the operating point, resulting in:

Miθ̈i + Diθ̇i = PB,i −
n

∑
j=1

aij cos
(

θ∗i − θ∗j

)
(θi − θj) i ∈ VP

Diθ̇i = PB,i −
n

∑
j=1

aij cos
(

θ∗i − θ∗j

)
(θi − θj) i ∈ VC

(4.1)
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The right hand side of these equations are equal to L̃θ, with L̃:

L̃ =




−aij cos

(
θ∗i − θ∗j

)
if i 6= j

∑j 6=i L̃ij else
(4.2)

Which is the Laplacian matrix for small perturbations around an operating point
[63, 65, 81, 21]. As L̃ is a Laplacian matrix, we drop the tilde and call this matrix by
L in the remainder of this chapter. The linearised power system model is then given
as:

Mθ̈+ Dθ̇ = PB − Lθ (4.3)

The topological properties of the network are encoded in the Laplacian matrix L.
M and D are diagonal matrices which describe the machine parameters at each node
in the system. We generally consider the SP model, as described in section 1.2.3.
Here, the inertia M is zero at the load nodes. This means that M is a singular di-
agonal matrix. As we are mostly interested in the influence of the topology and
machine parameters, we will focus on the free response system by setting PB = 0.
Then, we can use spectral methods to solve the system of ordinary differential equa-
tions. From [88], we can express the time evolution of the phases θ as:

θ(t) =
2n

∑
k

γ(k)φ(k) exp(λkt) (4.4)

Here, the vector γ = [γ1 . . . γ2n] is a vector of arbitrary constants related to the
initial values of the problem. The factors λk and φ(k) are the eigenpairs of the
quadratic eigenvalue problem (QEP) of the matrices M, D and L, which is given as:

(λ2M + λD + L)φ = 0 (4.5)

Theoretically, we could transform the quadratic eigenvalue problem in a gener-
alised eigenvalue problem using state-space formalism. This form would have a
dimension of 2n, but would be linear again. The process and results are shown in
appendix A.1. The main problem is that the resulting state matrix F does not retain
any of the features of the matrices M, D and L. Especially the topological features
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of the underlying graph are directly encoded in L but will be lost in F. This is why
it can be beneficial to tackle the problem in the quadratic form. The next subsection
presents some mathematical properties of the quadratic eigenvalue problem.

4.1.1 Quadratic Eigenvalue Problem

The quadratic eigenvalue problem is directly related to the eigenvalue problem,
with the differences being the additional matrices M and D and supplementary
quadratic and linear eigenvalue terms. Even when the matrices are n× n sizes, the
quadratic nature results in 2n eigenpairs. This can be understood as a result of the
positive and negative solutions of a square root. From a theoretical point of view,
the following properties can be found in a QEP [88]:

1. M is non singular - 2n finite eigenvalues

2. M, D, L are real matrices - eigenvalues are either real or come in complex con-
jugate pairs

3. M hermitian and positive definite, D and L positive semi definite - The real
parts of the eigenvalues are non positive

When M is singular, there will be infinite eigenvalues. As M is a diagonal matrix
with zero entries for the nC load nodes, there are nC infinite eigenvalues. These
infinite eigenvalues correspond to an infintaly fast time response in eq. (4.4) . Infinite
eigenvalues correspond to algebraic equations related to passive loads.

Overdamped Behaviour

Under some conditions, an overdamped behaviour is found, named after the phe-
nomena in mechanical systems. Under overdamped conditions, all eigenvalues are
real and negative, with a gap between the largest n and smallest n eigenvalues. The
eigenvalues can then be separated into two distinct sets. The corresponding eigen-
vectors then form two separate, linear independent sets. If M and D are symmetric
and positive definite, L is positive semi definite, it can be shown that overdamped
behaviour is found if damping factor γ(M, D, L) is positive [88]. The damping factor
is defined as:

γ(M, D, L) = min
‖x‖2=1

(
(x∗Dx)2 − 4 (x∗Mx) (x∗Lx)

)
(4.6)
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A simple approximation γup, which upper bounds the damping factor, can be
calculated using the Courant–Fischer Theorem [67]:

γup(M, D, L) = λ2
D,min − 4λM,maxλL,max > γ(M, D, L) (4.7)

Here, λX,min/max is the smallest/largest eigenvalue of the matrix X. Overdamped
behaviour can be archived by increasing the damping coefficient of the generators
or by lowering the inertia or connectivity of the network. The systems relevant for
our work are generally not overdamped and the results do not apply here. In [89],
we showed that in the IEEE 145 test case, the damping has to be increased by a factor
of more than 1000 to reach overdamped behaviour.

Companion Form

The most used method to analyse the quadratic eigenvalue problem results in the
companion form of the QEP. The companion form can easily be constructed by using
a substitution like u = λφ inserted in eq. (4.5). Rearranging the QEP with this
substitution leads to:

(
0n In

−L −D

)

︸ ︷︷ ︸
=:X

(
φ

u

)

︸ ︷︷ ︸
=:v

= λ

(
In 0n

0n M

)

︸ ︷︷ ︸
=:Y

(
φ

u

)

︸ ︷︷ ︸
=:v

(4.8)

Which is just a (linear) generalised eigenvalue problem for the 2n× 2n matrices
X and Y with the eigenvector v = (φ u)T. In general, other companion forms
for the quadratic eigenvalue problem [88] or general polynomial eigenvalue prob-
lems [90, 91] can be found. Depending on the properties of the involved matrices,
some companion forms might have more desirable properties, but for this work, the
companion form described here is sufficient. It should be noted that, while the re-
sulting problem in eq. (4.8) is linear, the companion form is not an approximation
and the solutions φ and λ are identical to the solutions of the quadratic eigenvalue
problem. Numerically, solving the 2n × 2n problem might result in increased nu-
merical errors. Methods to reduce or estimate these errors are discussed in [92], but
are out of scope for this work. We consider the numerical solution of eq. (4.8) to be
accurate enough for our investigations. In all numerical experiments, the solutions
from eq. (4.8) are inserted in eq. (4.5) and the equation is checked for equality. Up to
rounding errors, all solutions obtained by the companion form have been accurate.
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4.1.2 Kron Reduction

In section 1.2.3, the SP-model was introduced either with or without damping of the
load nodes. If all load nodes are undamped, the dynamics of the loads are described
by purely algebraic equations. The system will have 2nC infinite eigenvalues, where
nC is the number of load nodes in the system. The infinite eigenvalues again cor-
respond to the instantaneous response of the loads. In this case, the system can be
simplified by the Kron reduction. The following calculations show the mathemat-
ical steps. For simplicity, all generator nodes are considered to be undamped, but
the calculations for damped generators is analogous. Partitioning the system in the
load C and generator P sets leads to:

(
LP LPC
LT
PC LC

)(
φP
φC

)
= λ2

(
MP 0

0 0

)(
φP
φC

)

In this case, the eigenvector of the load nodes can be removed by inserting the
second row of the block matrix equation in the first one and calculating:

LPφP + LPCφC = LPφP − LPCL−1
C LT

PCφP︸ ︷︷ ︸
=LredφP

= λ2MPφP

The reduced matrix Lred is identical to the Schur complement of the Laplacian
matrix with respect to the submatrix of the load nodes. This matrix is also a Lapla-
cian matrix [63, 20] with a size of nP × nP . The graph corresponding to the reduced
Laplacian is a complete, weighted graph. The topological properties of the original
graph are encoded into the edge weights of the reduced graph. To solve the QEP,
the reduced Laplacian and reduced matrices MP and DP can be used. These are
now full diagonal matrices. An example for the graph before and after the Kron
reduction is shown in fig. 4.1 for the IEEE 57 bus system [93].

4.1.3 Condition Numbers

One important theoretical tool to investigate the properties of eigenvalue problems
are the condition numbers. They measure how robust an eigenvalue, and therefore
the spectral properties of a systems are regarding to perturbations of the inputs and
parameters. Usually, these numbers are defined for matrix perturbations. In [92,
88], the condition number κ of a quadratic eigenvalue problem of the form eq. (4.5)
for a given nonzero and finite eigenvalue λ is given as:
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(A) Full Graph (B) Reduced Graph

FIGURE 4.1: Full IEEE 57 test system and graph after Kron reducing all
load nodes. Circles depict the generators, diamonds the load nodes.

κ(λ) =
|λ|2 αM + |λ| αD + αL

|λ| |ψ∗ (2λM + D)φ| ‖ψ‖ ‖φ‖ (4.9)

Where ψ is the left eigenvector of eq. (4.5). The non negative parameters αi can be
used to determine how strong each matrix is perturbed. Each αi corresponds to one
of the matrices M, D or L. If the parameters αi are set to zero for two matrices, the
sensitivity of the quadratic eigenvalue problem in perturbations of the remaining
matrix can be assessed. Usually, the perturbations are measured relatively, meaning:

αM = ‖M‖ αD = ‖D‖ αL = ‖L‖

So, the perturbation of each matrix corresponds to the size of the matrix. The
perturbations can also be calculated absolute, for example αM = 1 and αD = αL =

0. The larger α is chosen, the larger the influence of the corresponding matrix is
on the conditioning number. In general, a large condition number means that the
eigenvalue is very sensitive to perturbations of the corresponding matrix.

4.1.4 Oscillatory Networks

Oscillatory networks are systems closely related to QEP and have been studied ex-
tensively [63]. Good examples for these systems are linear mass spring models or
LC circuits. Those systems result in:
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λ2Mφ = −Lφ (4.10)

For example, in the linear LC circuits, the capacitors represent M, while the con-
nection via inductive cables result in a Laplacian L. This quadratic problem is equiv-
alent to the more simple generalised eigenvalue problem µMφ = Lφ with µ = λ2.
The generalised eigenvalue problem can be solved and investigated in many ways.
It can be easily transformed to a normal eigenvalue problem by the straightforward
calculation of M−1L or investigated directly, as for example shown in [63].

4.2 The Laplacian Spectrum and the QEP

Here, we want to investigate how the spectrum of the quadratic eigenvalue problem
behaves with respect to the Laplacian spectrum. We consider the Kron reduced
system as discussed previously. This means that M and D are diagonal matrices
without any zeros, which corresponds to the absence of any infinite eigenvalues.
One main simplification, which is vital for the investigations in [65, 21] is that the
inertia and damping parameters are equal for all generators. This means that:

M = m0In and D = d0In

This allows us to significantly simplify the quadratic eigenvalue problem to:

(
λ2 + λ

d0

m0

)

︸ ︷︷ ︸
:=−ζ2

φ +
1

m0
L

︸︷︷︸
L̃

φ = 0 (4.11)

Where L̃ is a Laplacian matrix, where each edge weight is divided by m0. The
resulting equation is just the eigenvalue problem for the new Laplacian matrix L̃
with the eigenvalue ζ. Using the dissipation factor a = d0

m0
, the eigenvalues λ of the

QEP are then calculated as:

λi,± = − a
2
±
√

a2

4
− ζ2

i (4.12)
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For very small dissipation a ≈ 0, we see that the eigenvalues of the quadratic
eigenvalue problems are just the negative square root of the Laplacian eigenvalues.
The dynamical properties of the system are then directly linked to the eigenvalues
of the Laplacian matrix and thus to the geometric properties of the underlying net-
work.

Dissipation Mode

One interesting consequence of eq. (4.12) is the zero eigenvalue of the Laplacian
matrix. As the quadratic eigenvalue problem effectively doubles the eigenvalues, it is
interesting to find out what happens in this case. For ζ = 0, we find that λ = 0,−a.
This means that one zero eigenvalue is kept, while another eigenvalue becomes a
purely real, negative eigenvalue. This eigenvalue has the same eigenvector as the
zero eigenvalue, which is the constant vector of all ones1. In the power system
background, we can interpret this eigenvalue as the dissipation of energy of the
whole system.

4.3 Experimental Investigations

In this section, the spectral properties of a dynamical power system are investigated.
As in the previous chapter, we focus on the IEEE 118 test system. It should be noted
that the IEEE 118 test case has many generators without any active power output
[87]. Some of the generators of the IEEE 118 test case do not produce any active
power and are treated as loads in the analysis. As load nodes, these generators will
be removed by the Kron reduction, as discussed in section 4.1.2 A similar investiga-
tion, with the 50 generator dynamical test case [94], has been performed by us pre-
viously [89]. The IEEE 118 test case is a usually a static power flow test case, and no
dynamical parameters are given. We use the algorithms presented in [21, 24] to find
suitable dynamic paramters (M and D) for the IEEE 118 test case. One main chal-
lenge in the investigations is that the default parameters of the IEEE 118 test case are
not overdamped. This means that all solutions to the eigenvalue problem are gener-
ally complex numbers. Using eq. (4.7), we can predict that overdamped behaviour
would occur of the damping matrix D is multiplied with a factor of approximately
1100. As condition 1 and 2 from section 4.1.1 are then fulfilled, all eigenvalues have
negative real parts and the imaginary parts are zero or come in complex conjugate

1Remember that this is only true for the assumption of identical inertia and damping!
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pairs. As all the real parts of the eigenvalues are negative (or zero), we also know
that the system is always (marginally) stable.

Similar to the behaviour of a mechanical system, the complex eigenvalues re-
sult in a damped oscillation. The imaginary part corresponds to the frequency of
the oscillations, while the real part is the damping. Comparing and ranking com-
plex numbers is not directly possible, but important for some applications here. In
eq. (4.4), a complex eigenvector φ = |φ| eιη results in a phase shift of η, which is the
angle of the eigenvector. As we are more interested in the general dynamical prop-
erties and not the exact shape of each time evolution, we focus on the magnitude
of the eigenvector and ignore the phase shift. While the difference in the imaginary
parts and the real parts of the eigenvalues are generally important to describe the
oscillations, we will investigate the sensibility of the spectra in the absolute value
as well. In some cases, we will use other methods to rank complex numbers (for
example their real part).

4.3.1 Time Response and Oscillations

As mentioned, the time response of the normal IEEE 118 system is a damped oscilla-
tion. We plot the time response, calculated with eq. (4.4) for all nodes of the reduced
system in fig. 4.2a. While all nodes show a damped oscillations, the individual be-
haviour of the nodes is very different. In figs. 4.2b to 4.2d, the same curves are plot-
ted with different colours. The colour (and opaqueness) of each curve corresponds
to the eigenvector component of a certain mode. This allows us to investigate the
influence on single modes on the complete time response.

In fig. 4.2b, we observe multiple nodes which have a very similar time response
for most of the time. They all seem to oscillate with roughly the same frequency
and a similar amplitude. This corresponds to coherent behaviour of these genera-
tors. On the other hand, fig. 4.2c shows a single node which oscillates with a very
high frequency. Especially the fast oscillation also seems to decay very fast. These
high frequency oscillations are not observed in any other nodes. The single node
in fig. 4.2d also oscillates with an individual frequency, this time a much lower fre-
quency though.

These examples show the complex dynamics which can be found even in a lin-
earized system. Especially interesting is the difference between behaviour which
is similar in multiple nodes, as in fig. 4.2b in contrast to some oscillations only ob-
served in individual nodes, for example the fast oscillations in fig. 4.2c or the single
slowly oscillating node fig. 4.2d. The different behaviour of the nodes can be ex-
plained by the eigenvectors of the system, which is presented in the next section.
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FIGURE 4.2: Time response of the linearized IEEE 118 test case. In (B)
to (D), the colour and opaqueness corresponds to the eigenvector com-

ponents at different modes.

4.3.2 Eigenvectors

In fig. 4.3a, the absolute value of the eigenvector components from the QEP are
shown. The eigenvectors are sorted by the real part of the eigenvalues. As the eigen-
values come in complex conjugate pairs, all eigenvectors are doubled. We can also
observe that generally that the eigenvectors with high rank are more localised, while
the lower ranked eigenvalues are distributed over many nodes. This means that the
eigenvalues corresponding to the high ranked eigenvalues are only observed in the
time response of a few single nodes, while the lower ranked eigenvalues correspond
to long ranging interactions possibly observed in the whole system. We also show
two eigenvectors drawn on the reduced network in fig. 4.3b. Those two examples
can be used to explain some behaviour observed before in fig. 4.2. For k = 30, multi-
ple nodes are active. For k = 30, four nodes have a relatively large eigenvector com-
ponents(13,14,15,16). Those node are exactly the ones showing a coherent oscillation
in fig. 4.2b. On the other hand, at k = 37, only node 18 has nonzero eigenvector com-
ponents. This node corresponds to the fast oscillating time response highlighted in
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FIGURE 4.3: Eigenvector components of reduced IEEE model for all
modes and drawn on a network for two different modes.

fig. 4.2c.

4.3.3 Spectrum of the Reduced Power System Laplacian
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FIGURE 4.4: Spectra of Laplacian and reduced Laplacian matrix.

Section 4.3.3 shows the spectra of the full Laplacian matrix of the IEEE 118 test
case and the Laplacian matrix after removing the inertialess nodes. Obviously, the
reduced system is much smaller, which corresponds to less eigenvalues. The sim-
ilar ranked eigenvalues of the reduced system are larger than those of the normal
Laplacian, which corresponds to a higher connectivity in the reduced system. Espe-
cially the algebraic connectivity in the reduced system is much larger than in the
full network. As the graph of the reduced system is a complete graph, this system
is maximally connected. In both spectra, we see a large increase of the eigenvalues
in the highest modes. As the number of eigenvalues is much lower for the reduced
system, this system is less complex than the full system.
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4.3.4 Parameter Influence

The previous examples and theoretical approaches show the basic behaviour of a
linearised power system. We now focus our attention on the influence of the param-
eters of the machines (M and D) and the Laplacian L. We want to know how these
parameters influence the spectrum, which in turns influences the time behaviour
observed in fig. 4.2. We are interested how sensitive the spectrum is to changes of
the parameters and especially how the damping influences the system.

Bifurcation Diagrams

At first, we investigate possible bifurcations in the eigenvalues of the quadratic
eigenvalue problem. We consider a bifurcation diagram and investigate the real and
imaginary parts of λ, under the influence of changes in the damping and the inertia.
In both cases, the relevant matrix is multiplied with a scalar mi or di, respectively.

(A) Inertia (B) Damping

FIGURE 4.5: Bifurcations of the real and (positive) imaginary parts for
constant change of inertia or damping coefficients. The literature value

is indicated by the black vertical line.

The results are shown in fig. 4.5. We see relative regular behaviour when the
inertia is changed. Decreasing the inertia increases the imaginary parts and results
in larger negative real parts. Generally, the real parts correspond to the damping.
When the inertia decreases, the damping is thus more influential. Increase of the
imaginary parts is similar to the behaviour of a damped oscillator, where the nat-
ural frequency, which is the imaginary part of the eigenvalue, is inversely propor-
tional to the mass of the oscillator. Thus, decreasing the inertia increases the imag-
inary parts. It should be noted that only the positive imaginary parts are shown,
as all eigenvalues come in complex conjugate pairs. Changing the damping shows
very different behaviour on both sides. Decreasing the damping results in real parts
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which converge to zero. The imaginary parts are almost constant and correspond
to the imaginary values of the undamped case. When the damping is increased, we
see more complex behaviour for large damping. The real parts increase with damp-
ing, as expected. For very high values, we can observe bifurcations, as highlighted
in the inserted zoom. At these bifurcations, the imaginary parts of one complex
pair become zero and the real parts split up to two different real parts. This is the
transition to overdamped behaviour. As discussed in the theoretical background, at
under damped conditions we observe complex conjugate eigenvalue pairs. Under
overdamped conditions, we observe only real eigenvalues with a gap between the
highest and lowest eigenvalues. We observe this transition here, when the imagi-
nary parts of a eigenvalue pair becomes zero but the real parts splits up.

It should be noted that the rate of parameter change is generally larger in the
bifurcation diagrams for the inertia than for the damping. The imaginary parts are
bounded to a narrow range when the damping is changed. Also, the negative real
parts reach higher values for very low inertia than for high damping.

Randomly Perturbed Matrices

More insight in the influence of the matrices can be found with a simple Monte Carlo
simulation. We calculate the spectra after slightly perturbing the relevant matrices.
Comparing the resulting spectra can be used to answer two questions. First, how
sensitive is the spectra to perturbations of a matrix. Secondly, are some modes more
sensitive than other modes? The randomly perturbed matrices Mi are calculated
with:

Mi = M · diag(uni(0.5, 1.5))

Where uni(a, b) are uniformly distributed random numbers supported on the in-
terval (a, b). The same procedure can be done to find perturbed damping matrices
Di. In both cases, 200 perturbed matrices were calculated and the results are shown
in fig. 4.6. In fig. 4.6a, the inertia is randomly perturbed. We can observe a band
of perturbed eigenvalues in grey around the original eigenvalues. For small eigen-
values, this band is relatively narrow and the eigenvalues will not divert far from
the original value. For the highest ranked eigenvalues, this band grows much larger
and the influence of M is much bigger on those eigenvalues.

Similarly, the spectra for perturbed damping matrices is shown in fig. 4.6b. This
time, the eigenvalues are basically not changed by the matrix perturbations. Even
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with a increased range of random value (the figure actually used random values
uni(0.1, 1.9)), the damping almost does not influence the behaviour. This is similar
to the observation from fig. 4.5, where small changes around the original value of D
has very little influence.
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FIGURE 4.6: Spectra of the IEEE 118 test case with randomly changed
inertia M and damping parameter D.

We can also change the weights of the Laplacian matrix L as shown in fig. 4.7a.
This calculation was done by randomly changing all weights of the underlying
graph related to L and then creating a new Laplacian matrix Li. This matrix has dif-
ferent weights than L, but similar mathematical properties, like symmetry and zero
column sum. The behaviour observed here resembles that of the inertia M. High
eigenvalues are sensitive to changes of the matrix, while lower ranked eigenvalues
are almost constant. In general, the band around the Laplacian matrix is more tight
than that around the inertia matrix.

To investigate the difference between changing D and M in more detail, the vari-
ance of the grey values from fig. 4.6 for each mode is shown in fig. 4.7b. Also, addi-
tional data where M and D are perturbed at the same time is included. As observed
before, changing the inertia has a much larger influence on the spectrum. The vari-
ance differs by multiple orders of magnitude. We can also observe that the variance
increases with higher ranked eigenvalues, for all cases.

In general, these results show multiple important features. The matrices M and
L mostly influence the higher ranked eigenvalues. In the eigenvectors, we observed
that these eigenvalues correspond to the more localised dynamics. When the eigen-
value only corresponds to a single node, changing a machine parameter like the
inertia results in a large change of the dynamics at this mode. We can also observe
again that the system seems less sensitive for changes in the damping parameter
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FIGURE 4.7: Spectra of the IEEE 118 test case with randomly changed
Laplacian L and relativle changes between M and D.

than the inertia and the coupling matrix. Still, the random perturbations observed
here show that the spectrum seem relatively stable to small perturbations.

4.3.5 Pseudo Spectra

A powerful tool to investigate the sensitivity of the spectra of an eigenvalue problem
are the the so called pseudo spectra. It allows to measure to global sensitivity of
the eigenvalues depending on perturbations of the matrices. The pseudo spectra
displays the region where eigenvalues will change after a relative perturbation of a
certain strength [88]. While pseudo spectra are usually used for normal eigenvalue
problems, they can be extended to quadratic eigenvalue problems. To do this, we
calculate the scaled resolvent norm [95] r(z) for a grid of complex numbers. The
values of r are calculated as:

r(z) =
((
|z|2 αM + |z| αD + αL

) ∥∥∥∥
(

z2M + zD + L
)−1

∥∥∥∥
)−1

Where the parameters αi are defined as for the condition numbers in section 4.1.3.
At each point z, the resolvent norm measures how strong perturbations of the orig-
inal matrices of the QEP have to be to make z a solution of the perturbed problem.
From the definition above, it is clear that the pseudo spectra are related to the con-
dition numbers and can work together to explain the sensitivity of the system.

In fig. 4.8 the pseudo spectra for the IEEE 118 system are shown. In total, four
spectra for the influence of different matrices are pictured. The colour indicates r
on the grid of complex numbers while the crosses are the unperturbed eigenvalues.
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We can observe a region with identical colour around each eigenvector. This region
indicates the possible values for the eigenvalue, after matrix perturbation with the
strength corresponding to the colour. Stronger perturbations can make the eigen-
values leave the area with equal colour and the necessary perturbation strength is
also indicated by r.

At first in figs. 4.8a to 4.8c, the matrices M, D and L are perturbed individually
and finally all matrices are perturbed together in fig. 4.8d. We can make the follow-
ing observations about the perturbations of the various matrices:
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FIGURE 4.8: Pseudo spectra after perturbation of different matrices of
the QEP. The crosses are the eigenvalues of the unperturbed system.

• Perturbing M: The spectrum is relatively sensitive to perturbations, especially
in the real direction. The eigenvalues with a small imaginary parts are less
sensitive, especially the eigenvalues with zero imaginary part.

• Perturbing D: The spectrum is less sensitive in general. Only the eigenval-
ues with large imaginary parts can be perturbed in the real direction. Also,
perturbing the eigenvalues to positive real parts requires very strong pertur-
bations.

• Perturbing L: Again, the system is easier perturbed in the real direction. One
main difference is that the eigenvalues with zero imaginary parts are very sen-
sitive, even to small changes. This is very different for perturbing the inertia or
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the damping. The imaginary parts are also less sensitive as for perturbations
of M.

• Perturbing all: The smallest perturbations of M dominate the pseudo spectra.
The main difference are the zero imaginary eigenvalues, which resemble the
perturbation of the Laplacian matrix.

Some of these observations are easily explained by the properties of the matrices
M, D and L. The zero eigenvalues are a direct consequence of the Laplacian matrix.
So, perturbing this matrix might influence these eigenvalues directly. If L is con-
stant, these eigenvalues are basically independent of those matrices. This explains
why the zero eigenvalues are very insensitive, especially when M is perturbed.

4.3.6 Condition Numbers

As explained in section 4.1.3, an important tool in the theoretical studies of eigen-
value sensitivity are the condition numbers. We investigate the influence of absolute
and relative perturbations for each individual matrix M, D and L and the results are
shown in fig. 4.9.

If absolute perturbations are considered, the system is most sensitive when the
inertia M is perturbed, as seen in fig. 4.9a. Higher ranked modes are more sensi-
tive than lower ranked modes in this case. In absolute perturbations, the Laplacian
matrix is the least sensitive with damping in the middle. One exception is the zero
eigenvalue, which is very sensitive to changes of the Laplacian matrix. As discussed
in the pseudo spectra, this is a result of the zero eigenvalue being a direct result of
the Laplacian matrix.

When relative perturbations are considered, the condition numbers are almost
identical for M and L, except for the zero eigenvalue, as before. The eigenvalues are
less sensitive to relative perturbations of the damping matrix.

4.3.7 Eigenvector Sensitivity

Calculating the sensitivity of the eigenvectors can be more complex. The different
normalisation and the sheer amount of values to compare make a good investiga-
tion difficult. The best way, also used in many perturbation and sensitivity analysis
studies, for example [96], are the complex angle between vectors. The larger the an-
gle between two vectors is, the more different these vectors are. As before, we will
use the absolute values of the eigenvectors to calculate the difference. For complex
vectors, different methods to calculate angles exist [97]. Again, in this analysis, only
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FIGURE 4.9: Conditioning numbers for the IEEE 118 test case. In each
plot, the perturbations parameters are chosen so that one of the three
matrices are perturbed. Absolute and relative perturbation strength are

investigated.

the absolute value of the eigenvector matters, which is why we restrict our investi-
gations to this case.

If the angle between the original and perturbed value is very small, the pertur-
bation has almost no effect. The maximum angle of π/2 means that the vector is
changed almost completely. Values in between mean that the vector is changed to
some extend, but some structure of the original value can still be observed. Exam-
ples for all three behaviours are found in appendix B.1.2.

We can investigate the influence of the damping and the inertia on the eigenvec-
tor with a similar investigation as for the eigenvalues. We concentrate here on the
method of using randomly perturbed matrices. As before, we solve the quadratic
eigenvalue problem for 200 randomly perturbed matrices. Now, we compare the
eigenvectors with the original eigenvectors. The results for randomly perturbed
inertia and damping are shown in fig. 4.10.

For the inertia, we observe that except for the smallest mode, the angles are dis-
tributed over the whole range of possible values. Only for the smallest modes, we
see a clustering of values around small angles. This means that even these small
perturbations have a strong influence on the eigenvectors. On the other hand, the
damping perturbations shown in fig. 4.10b have much less influence. For the first
ten modes, the angles are almost zero, which means that both eigenvectors are the
same. For higher modes, we see many eigenvectors still around zero, but some indi-
vidual eigenvectors being perturbed. This can be explained by the localised nature
of higher modes. Even if the damping has little influence on the eigenvectors, if the
vector is relatively localised, the local changes of D might be able to influence the
vector. As mentioned previously, we observe that the highly ranked modes have
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FIGURE 4.10: Euclidean angles between the original eigenvectors φ0
and perturbed eigenvector φi.

a more local, while the lower ranked modes a more global behaviour. The local
change of parameters in M and D thus generally influence the eigenvectors, which
determine the interactions, stronger at higher modes. This is exactly what is ob-
served here. At low modes, the eigenvectors are often almost identical (sometimes
pointing in the other way), while the higher ranked eigenvectors are changed com-
pletely.

4.3.8 Damped and Undamped Oscillations

As seen in the previous sections, the damping parameter is less influential than the
inertia or the Laplacian matrix of the system. Also the bifurcation diagrams from
section 4.3.4 show that especially for very low values of the damping parameters,
the spectrum is almost constant. In this section, we want to explore the differences
between the damped and the undamped system in more detail.

At first, fig. 4.11 shows the time series, calculated from eq. (4.4) of a damped
and an undamped system. We highlight two nodes (this time nodes 0 and 1). We
observe many similarities between the damped and undamped system. Especially
the two highlighted nodes have very similar behaviour for both systems. We can
observe that the oscillations decay slightly for the damped case. The frequencies of
Node 1 and Node 2 are almost identical in the damped and undamped case.

The different eigenvalues are shown in fig. 4.12. At first, the absolute value of
the eigenvalues are compared in fig. 4.12a. The absolute value of the eigenvalues
are almost identical over all ranks. The difference can only be observed in fig. 4.12b,
where it is clear that the damped eigenvalues have a small negative real part, while
the undamped values are purely imaginary. The imaginary parts of the damped and
undamped eigenvalues are almost identical.
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FIGURE 4.11: Time series of the phases for the undamped and the
damped system.
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FIGURE 4.12: Eigenvalues of the damped and undamped quadratic
eigenvalue problem. Magnitude of the eigenvalues and real and imag-

inary parts are shown.
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The eigenvectors, which are responsible for the similarities in the time series of
the nodes 0 and 1 are shown in fig. 4.13. This time, the eigenvectors are sorted by
the absolute value of the corresponding eigenvalues, similar to fig. 4.12a. There is
no observable difference in the absolute parts of the eigenvectors, similar to the re-
sults for the absolute part of the spectrum. As before, the main difference is that the
eigenvectors for the damped case are complex numbers, while they are purely real
for the undamped system. Especially for the eigenvectors, we are mostly interested
in the absolute value, as the complex phase only results in a phase shift of the oscil-
lations, which are not as interesting as the frequencies and decay of the oscillations.
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FIGURE 4.13: Magnitude of eigenvector components of the dynamical
IEEE 118 test case with and without damping.

In this section, we have seen that the damped and undamped system of the IEEE
118 behave almost identical. The damping of the literature value is very low and
the damping parameter has very little influence on the frequencies of the system.

As the influence of D is almost negligible, it seems plausible that it is sufficient to
investigate the undamped system, as has been done in [63]. As discussed previously,
the undamped case is much easier to investigate. In the next section, we therefore
propose a method to use eigenvalue perturbation to assess the spectral properties of
the damped system using the results from the undamped case.

4.4 Proposal - Perturbations of the Undamped System

As we have seen in the previous sections, the damping parameter is not very in-
fluential on the spectral properties of a dynamical power system. The system was
always less sensitive to perturbations of D and the damped and the undamped sys-
tems often behaved very similarly.
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The damping values observed in Literature are also far from over damped be-
haviour and it is reasonable to assume that the systems investigated here are only
slightly damped.

Thus, we propose to extend the results of the undamped system, especially those
which are found in [63] by introducing small perturbations on the zero damping
value.

4.4.1 Small Damping Perturbation

In this section, we want to explore the possibility to use eigenvalue perturbation to
relate the results of the undamped system, which is a generalised eigenvalue prob-
lem, to the damped, full quadratic eigenvalue problem. The unperturbed system is
identical to eq. (4.10). The solutions of the unperturbed system λ0 and φ0 (as well
as the left eigenvector ψ0) are supposed to be known. We then introduce a small
damping D = ∂D, which leads to eq. (4.5). As L and M are positive semi definite,
we know that λ0 is purely imaginary. Introducing a damping results in a complex
number with nonzero real part (similar to the damped oscillator in classical mechan-
ics). While eigenvalue perturbation has been studied extensively [98], perturbation
theory in the quadratic eigenvalue problem remains a more niche field in mathe-
matics. The strongest results are usually found for the overdamped case [99]. The
sensitivity of perturbations is for example investigated in [92], with extensions for
higher order polynomial eigenvalue problems. The most complete treatment of per-
turbations in the quadratic eigenvalue problem known to the authors is probably
given in [96]. This theory is not applicable to the problem described here, as the
Laplacian matrix L is not invertible, which is required in the method presented in
this publication. In general, no directly applicable eigenvalue perturbation methods
for the problem here were found in literature. Mathematically, the following main
problems for the eigenvalue perturbations are:

1. The Laplacian matrix L is singular.

2. The unperturbed matrix D0 = 0 is singular as well.

3. If the unperturbed system is undamped, even small perturbations ∂D have a
very large relative perturbation strength. This means that the assumption of
linearity is less valid.

The first problem makes companion forms except the one described by eq. (4.8)
hard to work with, as they become singular as well. The second problem means
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that relative perturbation bounds cannot be used directly, as all perturbations are
large compared to D0. Keeping these problems in mind, we propose an eigenvalue
perturbation method in the next section.

4.4.2 Companion Form Method

Here, we use the companion form as eq. (4.8). We can transform the generalised
eigenvalue problem in a simple eigenvalue problem by inverting the matrix Y. As
M is a diagonal matrix, the inverse of Y is just another diagonal matrix with the
inverse diagonal entries. Using the rules of block matrix multiplication then leads
to the following eigenvalue problem:

Cφ =:
(

Y−1X
)

φ =

(
0n In

−M−1L −M−1D

)
φ = λφ (4.13)

The perturbation in C can be expressed by the unperturbed matrix C0 and ∂C.
Those matrices are defined, using eq. (4.13), as:

C0 =

(
0n In

−M−1L 0n

)
and ∂C =

(
0n 0n

0n M−1∂D

)
(4.14)

Obviously, C0 has the same eigenvalues λ0 and (left and right) eigenvectors φ0

and ψ0 as the unperturbed system eq. (4.8), while C has the eigenvalues of the
quadratic eigenvalue problem eq. (4.5). As C is an analytical matrix function of
∂D, we can use the eigenvalue perturbation methods presented in [100, Theorem 1].
For eigenvectors which are normalised so that ψ∗0 φ0 = 1 and small perturbations
∂C, the perturbed eigenvalues λ̃ are given as:

λ̃ = λ0 + ψ∗0 ∂Cφ0 +O(‖∂C‖2
2) (4.15)

This eigenvalue perturbation is identical to the results presented in [69, pp. 15–
2]. As M and ∂D are diagonal matrices, ∂C is just a diagonal matrix and all non-zero
entries are the generators damping divided by the inertia. The magnitude of the
error of eq. (4.15) can be estimated in this simple case, using ‖∂C‖2

2 = max( ∂Di
Mi

)2.
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Validation of Eigenvalue Perturbation

We want to test the accuracy of this perturbation approach on a simple system. The
inertia M, damping D and Laplacian L are given in eq. (4.16):

L =




1 0 0 −1 0
0 3 −1 −1 −1
0 −1 2 0 −1
−1 −1 0 2 0
0 −1 −1 0 2




M =




2
3

1
2

4




D = 0.1 ·




4
5

3
1

2




(4.16)

The solutions for the unperturbed system, the solution of the QEP and the per-
turbed eigenvalues are shown in table 4.1. We can see that the perturbation mostly
changes the real part of the eigenvalues and the imaginary part is almost identi-
cal. The real parts of the perturbed eigenvalues are very close to the true solutions,
except for the dissipation mode. As the real parts of the undamped systems are
zero, we see that the perturbation approach is good in predicting the real part of the
damped system.

λ0 0 + ι1.533 0 + ι1.225 0 + ι0.959 0 + ι0.481 0 + ι0
λ −0.134 + ι1.524 −0.055 + ι1.222 −0.062 + ι0.954 −0.069 + ι0.477 −0.126 + ι0
λ̃ −0.134 + ι1.533 −0.055 + ι1.225 −0.063 + ι0.959 −0.069 + ι0.481 −0.062 + ι0

TABLE 4.1: Eigenvalues of the example system eq. (4.16), calculated
with eq. (4.15). Only the positive imaginary parts are shown and the

zero eigenvalue is omitted.

For illustration, we also show the perturbed eigenvalues and the damped eigen-
values in fig. 4.14a. Now, we want to investigate how the damping matrix influ-
ences the perturbation error. We do predict that the error increases with increasing
damping. To investigate this behaviour, we calculate the distance of the perturbed
solution with the real solution for different values of di, which is the scalar factor
applied to the damping matrix in eq. (4.16). The original choice was di = 0.1. We
can investigate the difference in the real part, the imaginary part or the magnitude
of the complex number and the results are shown in fig. 4.14b. The error in the
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real part dominates the error of the perturbation, as it is more than two magnitudes
larger than the error in the imaginary part. We can also observe that for large damp-
ing values, the error in the imaginary part flattens out and is not dependent on di

anymore. This appears to be around the case of overdamped behaviour, when the
imaginary parts of the full solutions become zero and not change with di anymore.
For very small damping values, the levelling out of the error for the imaginary part
is probably due to numerical accuracy. Apart from that, we see that this method is
able to predict the eigenvalues of a small damped system with decent accuracy.
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FIGURE 4.14: Eigenvalues and perturbed solutions of system eq. (4.16)
and perturbation error depending on the damping coefficient.

4.4.3 Eigenvector Perturbations

Calculating eigenvector perturbations can be more complicated. Eigenvectors can
be very sensitive, so even small changes in the matrices can have a large impact.
Also, the choice of normalisation of the eigenvectors can influence how to calculate
the eigenvector perturbations. A method to calculate first order perturbations is
found in [100, Theorem 2]. This method depends on the so called group-inverse (or
reduced resolvent) of the matrix C for the unperturbed eigenvalue λ0. The group
inverse is defined in [101] to be the only matrix S for any matrix K which solves:

KS = SK and SKS = S and KSK = K (4.17)

Here, we search S which solves eq. (4.17) for K = C0 − λ0In. A algorithm to find
a solution is given in [100]. For each eigenvector perturbation, this matrix has to be
calculated with the corresponding unperturbed eigenvalue λ0. The perturbations
for the left and right eigenvalues φ̃ and ψ̃, respectively, are then calculated as:
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φ̃ = φ0 − S (∂Cφ0) (4.18)

ψ̃∗ = ψ∗0 −ψ∗0 (∂CS) (4.19)

The perturbed eigenvectors can be normalised together with ψ̃∗φ̃ = 1. Ap-
plying this theory to calculate perturbations of weakly damped oscillators showed
that the perturbation error is much larger than for the eigenvalues. The eigenvec-
tor components of all nodes and all modes for the example system are shown in
fig. 4.15. In this figure, all eigenvectors components for each mode are shown. The
index l first counts the eigenvector components for k = 0, then for k = 1 and so
on. The perturbed eigenvector is only sometimes closer to the real solution than the
unperturbed solution. This shows that the eigenvector perturbation is not directly
successful. Other perturbation methods were tested (for example, based on [102]).
None of the methods resulted in better perturbation results. Eigenvector perturba-
tion from the undamped to the damped system might not be directly possible, but
further investigations are needed.
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FIGURE 4.15: Absolute part of damped, undamped and perturbed
eigenvector components for all modes and nodes from the example sys-

tem described in eq. (4.16).

4.5 Conclusions

In this section, the spectral properties of a dynamical power model were investi-
gated. The linearized equations result in a quadratic eigenvalue problem, which
features many unique properties which explain the dynamical properties of the sys-
tem. This quadratic eigenvalue problem was introduced and the most important
properties were explained. Numerical analysis for the IEEE 118 test case was then
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carried out. We investigated the sensitivity of the eigenvalues and eigenvectors of
the system. The main results were:

1. The inertia and the Laplacian matrix greatly influence the spectral properties
of the system. The damping parameter has a much lesser impact on the dy-
namical properties. In fact, the undamped and the damped system behave
very similar.

2. The higher ranked eigenvalues and eigenvectors are more sensitive to pertur-
bations of the machine parameters, especially of M. The zero eigenvalues of
the QEP are directly linked with the Laplacian matrix and those are very sen-
sitive to perturbation of corresponding matrix.

The observation that the damping is less influential than the inertia has been pre-
viously reported by us [89] using the 50 generator 145 bus test system [94]. While
the conclusion that the damping is less influential than the inertia is valid in both
systems, the observed differences are smaller. One possibility is that with the pa-
rameters we found, the 50 generator test case is more damped than the IEEE 118
test case. For example, the system was much closer to overdamped behaviour. Sim-
ilar results to the IEEE 118 test case have been found using the IEEE 300 test case
[93]. A subset of the results presented here are shown for the IEEE 300 system in
appendix B.1.1.

In the time response, we have identified some localised, very high frequency
oscillations (plant mode oscillations). These oscillations are very sensitive to the
systems parameter. Those oscillations have to be identified and sufficiently damped,
to prevent a local collapse of the associated generator [84]. In the following chapter,
we will investigate the problem of mode localisation from a theoretical point of view.

Lastly, we tried to use eigenvalue perturbations to relate the behaviour of the un-
damped to the damped system. While the eigenvalue perturbation worked well in
the proposed method, perturbing the eigenvectors was much more difficult and did
not lead to desirable results. We believe that the method to perturb the quadratic
eigenvalue problem might be the best approach to successfully perturb the un-
damped system to the damped system, further investigations about the sensitivity
and the shape of the group inverse K are necessary to conclude this method.
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Chapter 5

Localisation of Modes

As we have seen in the previous chapters, one of the phenomena found in the spec-
tral analysis of power systems is the localisation of modes. Here, the eigenvectors
corresponding to a given frequency are zero in most nodes, but non zero (and thus
relatively large) in the remaining nodes. This indicates a short range interaction at
this frequency, in contrast to the often long range interactions found for example
in nodal domains. For example, localised oscillations in fig. 4.2c dominates the be-
haviour of the relevant node. In a complex network, the interplay between short
and long range interactions are complicated and important for the understanding,
control and design of the system. Localised modes are directly linked to those short
range interaction and have to be considered for applications in the system.

This chapter gives a comprehensive investigation of localisation of Laplacian
eigenvectors of a network. At first, two simple examples for systems with locali-
sation are given and investigated analytically. We then proceed to give the formal
definitions and explanations of localisation. In the second section, two eigenvector
bounds are derived which are able to help in predicting and explaining localisation.
In the third section, these bounds are tested numerically on the example systems
from before and more extensively on a power system test case..

5.1 Background, Definitions and Simple Examples

In the remainder of the chapter, we are interested in the eigenvectors φ, correspond-
ing to the eigenvalues λ of a Laplacian matrix L, as defined in eq. (2.5).

To illustrate the existence and properties of localisation, two simple examples
are investigated. Both examples can be seen as building blocks of a real network. A
larger, realistic graph, especially in power system applications, might include one or
both of these parts and features some of the localisation properties. The investigated
graphs are drawn in fig. 5.1, where the orange nodes correspond to the nodes of
interest, where localisation appears.
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(A) Fork (B) High impedance line

FIGURE 5.1: Examples for the two motives which exhibit localisation.
The important nodes are highlighted in orange.

5.1.1 Fork

This section investigates the fork, shown in fig. 5.1a as an unweighted graph. A
more general investigation is found in [103], where it was shown that the same re-
sults are valid for the weighted graph, as long as the branches of the fork have the
same weight.

We assume that the orange nodes are labelled 1 and 2 and the connecting node
number 3. The first two rows of the eigenvalue equation for a Laplacian matrix (as
in eq. (2.5)) are:

(1− λ)φ1 −φ3 = 0

(1− λ)φ2 −φ3 = 0

From which directly follows that either φ1 = φ2 or λ = 1 and φ3 = 0. For λ = 1,
we can now easily construct a valid solution to the eigenvalue problem. Letting all
eigenvector components φj for each j > 3 be zero solves all rows in the eigenvalue
problem for j > 3, as the nodes 1 and 2 are not connected to any of the nodes. Then,
the third row of the eigenvalue problem is:

−φ1 −φ2 +

(
1 +

n

∑
j>3

L3,j

)
φ3 −

n

∑
j>3

L3,jφj = λφ3

As all φj for j ≥ 3 are zero, it follows that φ1 = −φ2. So, the eigenvalue problem
of the fork graph has a solution where the mode is totally localised in the fork,
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at the eigenvalue 1. For all other eigenvalues, we also know that the eigenvector
components of the fork are identical to each other.

5.1.2 High Impedance Line

Another simple example for localisation is a high impedance line, as shown in
fig. 5.1b. Here, we consider a weighted graph with all but one edge weights set
to a very low value of order O(ε). The remaining line (called the high impedance
line) has an edge weight of order O(1). Calculating the eigenvectors of the result-
ing Laplacian matrix, we observe localisation around the high impedance line for
the largest eigenvalue. For all lower modes, the eigenvector components around
this line will be (almost) identical. We can mathematically show this behaviour us-
ing the analytical results for coherency described in section 2.2.4 and some simple
calculations:

1. The high impedance line can be seen as a single, strongly connected cluster.
All other edges are the connecting edges of lower order. From this follows that
the system has a single eigenvalue of order O(1), while all other eigenvalues
are of order O(ε).

2. For all eigenvalues of order O(ε), coherency is observed around the high
impedance line.

3. To show localisation in the largest eigenvalue, some calculations are necessary.
We define the largest eigenvalue of orderO(1) as λs. May the high impedance
line be located between the nodes i and j with a edge weight of b, while the
link strength between the remaining nodes is called alm. Consider a node m
which is not connected to the high impedance line, so m 6= i, j:

n

∑
l=1

almφl = λsφm

As no eigenvector component can be larger than O(1) (due to the normalisa-
tion of the eigenvector) and all edge weights alm are of order O(ε), the left
hand side is of order O(ε). As λs is of order O(1), φm must be of order O(ε)
for all m 6= i, j.

4. Now, calculate the sum of the i-th and j-th row of the eigenvalue problem,
which correspond to the nodes around the high impedance line. When we
calculate the rows, we observe that the terms with the factor b cancel each
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other out. The sum of these rows is then given as:

n

∑
l 6=i

ailφl +
n

∑
l 6=j

ajlφl

︸ ︷︷ ︸
O(ε)

= λs
(
φi + φj

)

From which follows that φi ≈ −φj. As all eigenvector components outside
of i, j are of order ε, the normalisation requires the eigenvector components
around the impedance line to be of order O(1).

Together, this shows that we can expect localisation in a graph around a high
impedance line. This is also compatible to the results found in [104], as a graph with
a single high impedance line will have a large (weighted) degree heterogeneity.

Case max E min E mean(E)
IEEE 30 384.6 16.0 82.8
IEEE 118 247.0 2.4 19.8
IEEE 300 2156.2 0.2 50.1
Poland test case 10000.0 2.2 607.6

TABLE 5.1: Largest, smallest and average connection weight in differ-
ent IEEE test systems.

To see that this situation is actually realistic in a power system setting, table 5.1
shows the largest, smallest and average edge weight for IEEE test systems. In the
larger systems, the largest edge weight are more than a magnitude larger than the
smallest edge weights. So, in a system with a line which has a very large edge
weight, localisation should appear in the highest modes around this line. For exam-
ple, the line with the largest edge weight in the IEEE 118 test case corresponds to the
localised flow in mode 117 observed in fig. 3.9.

5.1.3 Exact Localisation

To investigate localisation in a more general way, we partition the graph into the
subgraph S , the boundary ∂S around S and the complement S. We can then parti-
tion the eigenvalue problem eq. (5.1) as:

Lφ =




LS LS∂S LSS
L∂SV L∂S L∂SS

LSS LS∂S LS







φS
φ∂S
φS


 = λ




φS
φ∂S
φS


 = λφ (5.1)
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Of certain interest are the so called Dirichlet eigenvectors of L on S . Dirichlet
vectors are all vectors which are zero for all indices of S . If and only if these vectors
are eigenvectors of the submatrix LS , they are called Dirichlet eigenvectors [66, 62].
Dirichlet vectors can be eigenvectors of L, but not all of them are [62, Example 4].

Exact localisation to S means that the corresponding eigenvector φ of L is exactly
zero on all nodes S (to simplify notation, we set ∂S = ∅ here). Obviously, this
means that φ is a Dirichlet eigenvector of S and an eigenvector of L. For a Dirichlet
eigenvalue, we know that the components belonging to S of Lφ are given as [62,
Lemma I.4]:

(Lφ)S = LSφS

To examine exact localisation, we can use eq. (5.1) for φS = 0, which leads to:

LSSφS = 0

LSφS = λφS

For every subgraph S , we know that LS is an invertible matrix [63, Theorem
3.16]. Combining the two equations for a nonzero eigenvalue yields:

LSSL−1
S φS = 0 (5.2)

So, all exact localised eigenvectors lie in the null space of LSSL−1
S . This is a nec-

essary condition: all exact localised eigenvalues are part of the null space of LSSL−1
S ,

but not all vectors of this null space are necessarily eigenvectors of L. Showing that
LSSL−1

S has an empty null space thus proves that no exact localisation for the vec-
tor φS exists. For example, from the graph shown in fig. 5.1a (the corresponding
Laplacian matrix is shown in eq. (B.1) in the appendix), using the nodes of the fork
to span the subgraph S , we find that:

LSSL−1
S =

(
−1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0

)T

Calculating the null space shows that the non zero vector φS = (−1, 1)T is a
solution to eq. (5.2). This means that exact localisation can be observed in the sub-
graph, where both modes have eigenvector components with opposite signs, as we
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have seen in the analytical investigation.
On the other hand, for the high impedance line graph shown in fig. 5.1b, using

the nodes around the high impedance line as S , we find the following (the data for
L is again shown in the Appendix eq. (B.2)):

LSSL−1
S =

(
−0.29 0 0 −0.14 0 0 0 0 0 0 0 −0.14 0 0 0 0 −0.14 −0.29
−0.29 0 0 −0.14 0 0 0 0 0 0 0 −0.14 0 0 0 0 −0.14 −0.29

)T

Which has an empty null space. Thus, this graph does not have exact localisation
and the eigenvector components for S are only small. We consider this to be an
example of approximate localisation, as discussed in the next section.

5.1.4 Approximate Localisation

Another possibility, which is observed in many real world graphs, is approximate
localisation of a mode. We speak of approximate localisation if the eigenvector com-
ponents not included in S are small in comparison with the values included in S .
For example, we search for a eigenvector φ with:

φi =




O(1) if i ∈ S
O(ε) else

From the previous examples, the fork shows exact localisation, while the high
impedance line shows approximate localisation. Of course, exact localisation can be
seen as a subset of approximate localisation. In the following sections, we mostly
focus on approximate localisation, as this is what we mostly observed in real world
graphs.

5.2 Localisation Bounds

In this section, we derive two eigenvector bounds which we can use to predict and
explain localisation. The analysis is based on the investigations presented in [105],
where localisation in vibrating systems was investigated. Vibrating systems are con-
tinuous and with boundary conditions (for example, Dirichlet boundary conditions
were considered). In contrast, the graph theoretical analysis is discrete without any
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boundary conditions. Arguably, the bounds presented here are structurally similar
to those in [105], but the transfer to discrete systems in graphs is non trivial. The
first bound consist of a landscape which the Laplacian matrix imposes on the eigen-
vectors. This landscape bounds the individual eigenvector components and can be
used to predict the behaviour of individual nodes and to find clusters which might
exhibit localisation. The second bound relates the eigenvalues of a subgraph with
those of the main graph. The eigenvector norm on the subgraph will depend on the
distance of the eigenvalues between graph and subgraph. This bound can be used
to predict at which eigenvalue localisation occurs.

5.2.1 Localisation of Modes

The landscapes of a graph are a powerful tool to predict localisation in a graph.
Mathematically, the landscapes bound the eigenvector components by the following
theorem:

Theorem 1 The eigenvector components φi corresponding to the solution of eigenvalue
problem of the Laplacian L (2.5) with the corresponding eigenvalue λ are bounded by the
two landscapes h and l:

|φi|
|φ|max

≤





hi

li
(5.3)

Where |φ|max is the largest component of φ. The landscapes are defined as:

hi =

∣∣∣∣
1
λ

∣∣∣∣
n

∑
j=1

∣∣Lij
∣∣ (5.4)

li = |λ|
n

∑
j=1

∣∣∣L†
ij

∣∣∣ (5.5)

PROOF This proof starts with a special property of pseudo inverses of Laplacian
matrices L, which was previously shown in eq. (2.8). To repeat, the product of a
Laplacian L and its pseudo inverse L† is given as:

LL† = L†L = In −
1
n

Jn



90 Chapter 5. Localisation of Modes

Where In is the n× n identity matrix, Jn the n× n matrix of all ones and n is the
number of rows/columns of L. eq. (2.8) directly implies that φ = LL†φ + 1

n Jφ. The
i-th component of φ is then given as:

|φi| =
∣∣∣∣
(

LL†φ +
1
n

Jnφ

)

i

∣∣∣∣ =
∣∣∣
(

LL†φ
)

i

∣∣∣ =
∣∣∣∣

1
λ
(Lφ)i

∣∣∣∣

The second equality depends on the fact that Jnφ is zero for all eigenvectors of
a Laplacian matrix. This can be easily shown by multiplying the eigenvalue prob-
lem eq. (2.5) with Jn and using that the Laplacian matrix has zero column and row
sum. The second equality is shown in [65, Section 2.3.1] for the pseudo inverse of
a Laplacian matrix. The i-th element of the matrix product Lφ is ∑n

j=1 Lijφj, which
leads to:

|φi| =
∣∣∣∣∣

1
λ

n

∑
j=1

Lijφj

∣∣∣∣∣ ≤
∣∣∣∣

1
λ

∣∣∣∣
n

∑
j=1

∣∣Lijφj
∣∣ ≤

∣∣∣∣
1
λ

∣∣∣∣
n

∑
j=1

∣∣Lij
∣∣ ∣∣φj

∣∣ ≤
∣∣∣∣

1
λ

∣∣∣∣
n

∑
j=1

∣∣Lij
∣∣ |φ|max

Which leads to the desired result of the landscape hi:

|φi|
|φ|max

≤
∣∣∣∣

1
λ

∣∣∣∣
n

∑
j=1

∣∣Lij
∣∣ =: hi

The proof for the other landscape is analogous, by replacing LL† with L†L and
repeating the same steps. For Laplacian matrices, we know that λ ≥ 0, so we can
drop the absolute value around the eigenvalue factor (|λ| = λ).

The landscapes are easy to calculate and only depend on the edge weights and
the spectrum of the graph. Obviously, |φi|

|φ|max
≤ 1. Because of this, both landscapes

only bound the eigenvector components if they are smaller than one. If any of the
landscapes is very low for many nodes, the mode will be localised in the remaining
nodes. Obviously, the strength of the landscapes depends on λ. Landscape h is
stronger at high eigenvalues, while landscape l is stronger at low eigenvalues (hence
the names).

This behaviour of the landscapes indicate a possible phenomenon reported for
localisation in random graphs previously, for example in [106]. It has been reported
that localisation mostly appears for larger and smaller eigenvalues. For large or
small λ, one of the landscapes is bounding the nodes stronger, which might explain
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localisation at this mode inside the weaker bounded nodes. As the two landscapes
and their dependency on the eigenvalue can get very complicated, we make the
following corollary:

Corollary 1 Consider the both landscapes hi and li for the same eigenvalue λ from Theorem
1. The eigenvector components φi are also bounded by the combined landscape ui,λ:

|φi|
|φ|max

≤ ui

Where ui,λ = min(hi, li).

PROOF As both landscapes bound φi individually and are true at the same time,
we only need to consider the smaller bound, as the other one is more conservative.
Thus, we can just replace both landscapes by the composite landscape made by the
smaller one.

In the remainder, we will focus on the landscape ui,λ. Of special interest are the
two extreme cases for the largest and smallest eigenvalue. Those will be called the
algebraic landscape ua for the second smallest eigenvalue (or the algebraic connec-
tivity) and the spectral landscape us for the largest eigenvalue (the spectral radius).

5.2.2 Localisation in Subgraphs

To accurately predict if and at which mode localisation appears in a given subgraph,
we find a bound for the eigenvector components of a connected subgraph S . This
bound can be used to calculate or predict localisation, or the absence of localisation,
for a connected subgraph of arbitrary size.

Theorem 2 The components of an eigenvector φ of the eigenvalue problem (2.5) belonging
to a subgraph S are bounded by:

‖φ‖S ≤
(

1 + max
λS

∣∣∣∣
λ

λ− λS

∣∣∣∣
)
‖v‖S (5.6)

Where λS are the eigenvalues of the Laplacian matrix restricted to the nodes of S and
vS is a vector which solves the Laplace equation on S and coincides with φ on the boundary
∂S .
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PROOF For this proof, we need to define a vector vS , which solves the Laplace equa-
tion on S and which coincides with the eigenvector φ of the Laplacian matrix L
outside of S :

(Lv)S = 0 with vS∪∂S = φS∪∂S (5.7)

In [7], it was shown that a solution exists for all connected graphs and a construc-
tion for this vector is given. The exact solution is not necessary for the remainder of
this proof, but the details necessary to calculate the vector are described in more de-
tail in Appendix A.2. The main calculations are carried out by a supporting vector
w, which is defined as w = φ− v. With the definition of v, this leads to:

wi =





φi − vi if i ∈ S
0 else

This vector is used to calculate:

((L− λ)w)S = LSSwS + LS∂Sw∂S︸ ︷︷ ︸
=0

+LSwS − λwS = (LS − λ)wS

As the submatrix LS is symmetrical and real, we can find a basis of orthonormal
eigenvectors [67, Chapter 7]. We denote the eigenvectors of LS as φS , with the
eigenvalues λS , as before. We can use this basis to express wS with the coefficients
of the projection ai onto the basis of φS . Inserted in the previous equation, we find
that:

((L− λ)w)S = (LS − λ)wS = (LS − λ)
n

∑
i=1

aiφ
S
i

=
n

∑
i=1

ai

(
LSφSi − λφSi

)
=

n

∑
i=1

ai (λS ,i − λ)φSi

≥ min
λS

(λS − λ)
n

∑
i=1

aiφ
S
i = min

λS
(λS − λ)wS

The left hand side can also be simplified using the definition of the vector v,
resulting in:
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((L− λ)w)S =


Lφ− λφ︸ ︷︷ ︸

=0

−Lv + λv




S

= − (Lv)S︸ ︷︷ ︸
=0

+λvS = λvS

Taking the norm over S , we find that:

‖w‖S ≤ max
λS

(∣∣∣∣1−
λS
λ

∣∣∣∣
−1
)
‖φ‖S (5.8)

With ‖w‖S ≤ ‖φ‖S + ‖v‖S , we finally arrive at the desired condition:

‖φ‖S ≤
(

1 + max
λS

∣∣∣∣
λ

λ− λS

∣∣∣∣
)
‖v‖S

To simplify notation, we define the leading factor of eq. (5.6) as ξ:

ξ(λS) :=
(

1 + max
λS

∣∣∣∣
λ

λ− λS

∣∣∣∣
)

The advantage of this bound in comparison to the previous landscape approach
is that this bound works with subgraphs, instead of single nodes. Often, localisation
happens on a few connected nodes. This bound depends on the choice of the sub-
graph and can thus help to predict which subgraphs might be localised. Also, while
the landscape can find candidates localisation, it cannot predict at which modes lo-
calisation appears. In contrast, this mode predicts that localisation appears at certain
eigenvalues. To use the bound eq. (5.6), we need the vector v and the factor ξ. To cal-
culate the vector v, we need to know the solutions of the eigenvalue problem on the
boundary ∂S . This leads to some circular reasoning, as the bound of the eigenvector
can only be calculated when the eigenvector is already known. In [105], which is the
inspiration for this bound, the landscape was able to bound v to a very small value,
when the subgraph S was chosen correctly. We will show that the bound also works
when only ξ is considered because it is reasonable to assume that v is not very large,
so that the leading factor can dominate the bound.
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5.3 Empirical Studies of Landscape Properties

In this section we are going to investigate the properties of the two bounds derived
in the last section. At first, both bounds are tested on the simple examples discussed
in the introduction. As we already know that both systems show localisation, we
can see whether the bounds are able to predict this behaviour and not. After this, we
perform statistical analysis on the landscapes. We want to know which landscapes
performs better and which modes can be investigated by the landscapes. Then,
we propose a method to investigate localisation in a complex network using the
two different landscapes. For all this analysis, we again focus on the IEEE 118 test
system. As seen in the previous chapters, we can observe localisation in the IEEE
118 test system.

5.3.1 Simple Systems

We now focus on the two simple test systems from section 5.1. The localisation
properties are already calculated in the previous section, so we can use those to
benchmark the two new bounds.

Fork Graph

As seen before, the fork graph exhibits exact localisation for the eigenvalue λ = 1.
Another observation is that the eigenvector components of the fork are very small
for larger frequencies. Calculating the landscapes from section 5.2.1 shows that the
landscapes indicate this behaviour, as seen in fig. 5.2. The spectral landscape us is
very small at the fork and we predict small eigenvector components. On the other
hand, the algebraic landscape is much larger at the fork, but smaller at all other
nodes. This means that the landscapes would predict possible localisation for small
eigenvalues at the fork, but small eigenvector components for larger modes.

Also, the localisation bound for subgraphs from section 5.2.2 can be used for the
fork graph. The submatrix for the fork is given as:

LS =

(
1 0
0 1

)

Which obviously has the double eigenvalue 1. From the previous analysis, we
also know that the matrix L also has the eigenvalue 1 and we observe exact localisa-
tion at this eigenvalue in S . As λS in this case is perfectly identical to λ, ξ grows to
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FIGURE 5.2: Landscapes us and ua, calculated with the largest and
smallest eigenvalue of L for the fork graph.

infinity, which means that the eigenvalues are totally unbounded on S . For all other
eigenvalues λ, the bound is smaller for S . While this indicates possible localisation
on the subgraph S , it is important to mention that a large eigenvector bound is a
necessary, but not sufficient condition to find the localised subgraph. For example,
other subgraphs with the eigenvalue one (which then corresponds to an unbounded
eigenvector) can be found. All of those subgraphs will include one or both of the
fork nodes1.

High Impedance Line

Doing the same calculations on the high impedance line graph, we see that the spec-
tral landscape is completely dominated by the nodes around the line, see fig. 5.3.
This corresponds to what was theoretically calculated and observed, that the nodes
around the high impedance line are localised in the highest mode. For the algebraic,
we do not observe anything specific around the high impedance line. The algebraic
landscape used the pseudo inverse of the Laplacian, which averages out the impact
of the high impedance line. As the eigenvector components at lower eigenvalues
were not very small either way, the landscapes again work really well in predicting
the behaviour of the eigenvectors.

Looking at the second bound, we can calculate that the largest eigenvalue of the
matrix is close to two times the edge weight of the high impedance line. If this edge
weight is set to 1, while all other edge weights are set to ε, the submatrix LS for the
subgraph S of the nodes around the high impedance line is given as:

1All these subgraphs are not connected and thus diagonal matrices. These matrices only have the
one eigenvalue if the degree of at least one of the nodes is one, which is limited to the fork nodes.
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FIGURE 5.3: Landscapes us and ua, calculated with the largest and
smallest eigenvalue of L for the high impedance graph.

LS =

(
1 + ε −1
−1 1 + ε

)

The eigenvalues of this matrix are ε, 2 + ε. The second eigenvalue is very close
to the spectral radius of the full matrix and thus ξ grows very large, which predicts
the observed localisation. For any subgraph not consisting of the nodes around the
high impedance line, Gershgorins circle theorem [67, Chapter 7] tells us that the
eigenvalues can only be of order 1 + ε, but is smaller than two. This means that
for this mode, the subgraph bound will never be as large for subgraphs without the
high impedance line.

5.3.2 Landscape Statistics of the IEEE 118 Test System

Now, we want to analyse the properties of the landscapes. We first investigate the
general properties of the landscapes h and l as defined in theorem 1. Both landscapes
bound, for each eigenvalue, the corresponding eigenvector component. All bounds
depend on the mode λ. Depending on the eigenvalue, the bound u will consist
more of l or h. Figure 5.4a shows at how many nodes l is smaller (and larger) than
h for each mode. This indicates which bound is stronger at this eigenvalue. It is
clear that h is generally smaller for larger eigenvalues, while the opposite is true for
large eigenvalues. Obviously, if one landscape is smaller for all nodes at a given
frequency, the combined landscape u is identical to that landscape. Especially, the
spectral landscape is identical to h at the largest eigenvalue, while the algebraic
landscape is identical to l at the algebraic connectivity.
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FIGURE 5.4: Number of nodes where h or l is the smaller landscape
and number of nodes where each landscape is smaller than one with

respect to the eigenvalue.

The amount of nodes bounded for a given mode is shown in fig. 5.4b. Here, it
is clear that l only bounds the first two modes, while h is effective for many higher
modes, but with varying strength. For low modes, a region without any effective
bounds exists, from mode three to about 50. For these frequencies, the bound is
essentially useless for all nodes. The interesting cross section observed in fig. 5.4a
completely lies in this region. It should be noted that the bound itself is too conser-
vative in the intermediate area. While this bound cannot give any concrete informa-
tion about the individual eigenvector component, we can see later that these values
can still be used to partition the graphs, which help the analysis of localisation.

In section 5.3.2, the (sorted) values of the spectral and algebraic landscape are
given. The difference between those landscapes is interesting. The spectral land-
scape increases very slowly, but suddenly rises strongly, while the other landscape
shows a more gradual increase. It should be noted that us is identical to two times
the weighted degree of each node2 divided by the largest eigenvalue. The graph
considered here has a large degree heterogeneity, which can be observed in the large
increase of the spectral landscape values as well. In contrast, the algebraic landscape
depends on the pseudo inverse of the Laplacian matrix. The more steady increase
indicates a more global behaviour. The pseudo inverse does not just depend on the
values of a single node, but also on connected nodes. This results in an effective
smoothing of the heterogeneity and thus the heterogeneity of the landscape. The
lowest values of the spectral landscape are much smaller the those of the algebraic
landscape. This means that in general, us is a stronger bound than ua. More than
half of the nodes are bounded to a value less than 0.25 from the spectral radius.

2The weighted degree, introduced in section 2.1.5, is identical to the diagonal value of the Lapla-
cian or the absolute value of the row sum of all non diagonal values.
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The algebraic landscape is way more conservative and even the lowest eigenvector
bounds are still around 0.4.
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FIGURE 5.5: The sorted values of the spectral and algebraic landscapes
of the IEEE 118 test case.

This statistical analysis will become helpful in the next section, where the land-
scapes are used to cluster the graph and find possible candidates for localisation.

5.4 Localisation Candidates

Having understood the statistical properties, we can now use the landscapes to find
candidates for localisation. One way is to use the landscapes to remove nodes which
are bounded strongly from the graph. The landscapes tells us that those nodes will
not have a large eigenvector component and can thus not exhibit localisation. So, a
threshold is chosen in the range of values of the corresponding landscape. All nodes
which landscape value is lower than the threshold will be removed from the graph.
The remaining nodes will then have a more conservative bound and we predict that
localisation will mostly happen in these nodes. For a suitable large threshold, the
remaining graph will not be connected anymore. The connected components (CCs)
of this graph are candidate subgraphs for localisation. This method is applied to
large eigenvalues first and for low eigenvalues later.

5.4.1 Node removal - High Frequencies

At first, the spectral landscape us is used. For the IEEE 118 test case, the statistical
influence of removing nodes with a varying threshold is shown in in fig. 5.6. Fig-
ure 5.6a shows the number of connected components and the number of remaining
nodes for each threshold. The number of connected components reach a maximum
for a threshold of around 0.3. The number of remaining nodes is relatively small. To
investigate the structure of the reduced graph, fig. 5.6b shows the number of nodes
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of each connected component. For smaller thresholds, only some outer nodes are
removed, but the main structure keeps intact. Just at a threshold of around 0.15,
the main graph seems to break apart and multiple, intermediate sized subgraphs
emerge.
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FIGURE 5.6: Removal of nodes by the spectral landscape and a varying
threshold in the IEEE 118 test system. The number of connected com-
ponents (CC) the number of remaining nodes and the number of nodes
in all connected components are shown. The landscape us is calculated

for the largest eigenvalue of the Laplacian L.

As an example, fig. 5.7 shows the IEEE 118 system before and after removing
nodes with a threshold of approximately 0.23. This threshold corresponds to the
smallest threshold where the most connected components with at least two nodes
are found (in total, six connected components are found). The vertical dotted lines
in fig. 5.6 indicate this threshold. The node colour in fig. 5.7a shows the values of the
spectral landscape at each node. The connected components of the reduced graph
fig. 5.7b are the candidates for localisation.

The nodes corresponding to each connected components, the largest eigenvector
components and the node rank of the largest eigenvector component is shown in
table 5.2. We can see that every connected component, except S2, exhibits localisa-
tion at a high frequency. Some of these subgraphs exhibit localisation at multiple
frequencies, as shown in fig. 5.8a. There, the largest eigenvector components of all
subgraphs Sj from table 5.2 for all mode ranks between 105 and 117 (the spectral ra-
dius). All modes in this figure show localisation in at least one of the candidate sub-
graphs. If we zoom out of this picture, as in fig. 5.8b, we see that the connected com-
ponents which do not exhibit localisation have landscape components very close to
zero.

An interesting outlier is S2, where no localisation is observed. In fig. 5.8b, the
eigenvector components corresponding to S2 is almost identical to zero everywhere.
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FIGURE 5.7: Full graph of the IEEE 118 test system and graph after
removing nodes by minimal landscape.

j ‖φ‖Sj,max k(‖φ‖Sj,max) Node indices
S1 0.9977 116 1, 20, 21, 73, 75, 95, 101, 106, 111
S2 0.7486 100 3, 26
S3 0.9973 111 17, 22, 64, 69
S4 0.9988 114 29, 40, 41, 42
S5 0.9990 117 37, 39, 43, 50, 52, 80, 82, 85, 86, 113, 114
S6 0.9946 110 98, 99

TABLE 5.2: Connected components, maximum eigenvector compo-
nents and corresponding mode rank k of IEEE 118 test case after re-

moving nodes with the spectral landscape with a threshold of 0.23.
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A slight increase in the threshold would remove both nodes, as they are two of the
three nodes with the lowest landscape values.

Investigating the values of table 5.2, we can also make a direct connection with
the flows over a line found in fig. 3.9. We see that the flows at mode 110 and mode
117 are almost only found in a single line. These lines are just the lines between the
localised nodes from table 5.2. At mode 110, the most overloaded line is in fact the
line connecting the nodes 98 and 99, while at mode 117, the largest flow is between
nodes 113 and 114.
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FIGURE 5.8: Eigenvector components of largest eigenvalues of con-
nected components found after removing nodes with small spectral

landscape.

5.4.2 Node Removal - Low Frequencies

Now, we present a similar analysis as before, this time using the algebraic landscape.
This landscape is calculated with the second smallest eigenvalue of the Laplacian
matrix. As for the spectral landscape, we first look at the number of connected com-
ponents and the size of those components for varying thresholds, shown in fig. 5.9.
The behaviour here is very different from what was observed for the spectral land-
scape. From a threshold of about 0.4, which is indicated by the light blue line the
graph splits in two large subgraphs. These subgraphs stay mostly constant until a
threshold of about 1.0, when one subgraphs breaks up, as indicated by the grey line.
It should be noted again that the thresholds here are generally larger than for the
spectral landscapes, as was seen previously in section 5.3.2.

The graphs after removing nodes with four different thresholds are shown in
fig. 5.10. Because of the more complicated shape of the number of connected com-
ponents, multiple thresholds r are shown here. The first threshold is just after the
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FIGURE 5.9: Removal of nodes by the algebraic landscape and a vary-
ing threshold in the IEEE 118 test system. The number of connected
components (CC) and the number of nodes in all connected compo-
nents are shown. The landscape ua is calculated for the algebraic con-

nectivity of the Laplacian L.

graph brakes up in two large subgraphs. The second threshold is chosen when one
of the larger subgraphs breaks up into two, while the third threshold is shows the
total breakup of this subgraph. The largest threshold shown indicates the largest
number of connected components with at least two nodes, which is five (with six
connected components in total).

r1 = 0.40 r2 = 0.54

r3 = 1.01 r4 = 1.22

FIGURE 5.10: IEEE 118 graph after removing nodes with four different
thresholds on the algebraic landscape.

In a similar fashion as before, we calculate the connected components and their
eigenvectors. For a threshold of r3 = 1.015, the results are shown in table 5.3. This
threshold is chosen as this is the lowest threshold without any single nodes sub-
graphs and a maximum number of subgraphs. Many interesting properties are
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directly clear. To distinguish these sets from the sets of the previous section, the
sets calculated with the second smallest eigenvalue (the algebraic connectivity) are
called Ai here. Of course, there is no intrinsic difference between those sets and all
general remarks about any sets S are valid for all Ai.

j ‖φ‖Aj,max k(‖φ‖Aj,max) Node indices
A1 0.9999 108 1, 16, 19, 20, 21, 25, 30, 58, 72, 93, 95, 97, 100, 101, 106, 111, 117

A2 0.9999 60 2, 3, 4, 5, 6, 7, 14, 26, 27, 28, 44, 45, 46, 47, 49, 55, 56, 60, 92, 94, 102, 104, 105, 107, 108, 109

A3 0.9999 110 11, 15, 18, 48, 84, 87, 98, 99
A4 0.8703 63 76, 77

TABLE 5.3: Connected components of IEEE 118 test case for alge-
braic landscape, maximum eigenvector components and correspond-

ing mode k.

The following observation can be made:

1. A1 shows localisation at mode 108. We can also see that A1 has many similar
nodes as S1 from the previous section.

2. A2 is localised at mode 60.

3. A3 shows localisation at mode 110. We can see that A3 is a superset of S6,
which also exhibited localisation at mode 110. This time, the localisation at
mode 110 was almost complete in S6, which means that some eigenvector
components of A3 must be relatively small.

4. A4 does not show localised behaviour, similar to S2 from before. Again, the
two nodes ofA4 have the lowest bounds of all remaining nodes and would be
removed with a slightly larger threshold.

Interestingly, we can see that some nodes are predicted as localisation candidates
from both the algebraic and the spectral landscapes. It seems like the two bounds
complement each other, as they are able to predict localisation in similar nodes, but
the resulting sets are not completely.

It should be noted that the subgraphs here, especially A1 and A2, are very large.
In some contexts, the large eigenvector components in this subgraphs are referred to
as mode confinement [63]. While the physical interpretation of this mode confine-
ment different, the tools and techniques developed here are generally applicable in
both cases.
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5.4.3 Mode Prediction

In the last sections, it was shown how the landscapes can be used to partition the
graph and find possible candidates for localisation. While this method is successful
in this task, one main question cannot be answered: at which mode is localisation
observed? Here, the second bound derived in section 5.2.2 can be used to investigate
this question. As calculating the vector v required for the bound from eq. (5.6) is dif-
ficult and requires knowledge about the eigenvectors, we concentrate on the factor
ξ(λS). We predict that large eigenvector components on a subgraph S correspond
to a large ξ(S). To test this hypothesis and try to predict the right modes for local-
isation, we use all subgraphs from tables 5.2 and 5.3 and calculate ξ for all modes
λ. In table 5.4, the four mode ranks kξ for which ξ(λS) is the largest are shown, as
well as the four ranks with the largest eigenvector components k|φ|. Similar colours
indicates where the same values are found kξ and k|φ| among the four maxima.

j kξ,1 kξ,2 kξ,3 kξ,4 k|φ|,1 k|φ|,2 k|φ|,3 k|φ|,4
S1 116 103 45 46 116 108 105 107
S2 86 85 89 84 100 99 76 85
S3 111 115 23 22 111 115 91 6
S4 35 114 34 99 114 101 103 33
S5 117 46 108 112 117 112 113 109
S6 32 110 31 33 110 22 23 69
A1 108 34 52 116 108 116 102 52
A2 60 100 29 72 60 100 72 29
A3 110 22 86 85 110 86 48 69
A4 20 60 19 59 63 8 37 46

TABLE 5.4: Localisation candidates, modes for the four largest ξ and
modes with maximum activation in subgraph in IEEE 118 test system.
The coloured numbers correspond to the mode ranks where identical

modes are found.

Obviously, for all subgraphs where localisation is observed (so all except S2 and
A4), either the largest or second smallest ξ corresponds to the mode where local-
isation was observed. In some cases (e.g. S4), some kind of false positives can be
observed, where a very large ξ does not correspond to localisation. Obviously, the
bound in eq. (5.6) only bounds the eigenvalue components to be smaller than a value
and does not indicate how tight this bound is at all. In the values presented here,
the false positives happen mostly for intermediate modes. We expect localisation
mostly at very large or low modes, as shown in the examples for the fork and high
impedance graph or discussed in [104, 106]. Also, the candidates for localisation
were found by the algebraic and spectral landscape, which are bounding the largest
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and smallest eigenvector. Thus, it might be reasonable in practice to discard the
intermediate values, for example from mode 20 to mode 80. If those values are dis-
carded, the large values of ξ in table 5.4 directly correspond to large eigenvector
components.

5.4.4 Bounds on the Relative Complement Subgraph

Instead of investigating S , where we predict localisation, we can use the eigenvalue
bound to investigate the relative complement subgraph S . This graph is obtained
by removing S from G and thus has the complement vertex set of S3. The rela-
tive complement subgraph is not necessarily connected. We would expect that the
bound on the eigenvectors is very large, except at the modes where localisation is
observed in S . As for those values, the eigenvector components of S should be very
small and the bound from eq. (5.6) should predict this small values.

We can use this behaviour to further discriminate the false positives from the
previous section. Focusing on S4 and S5 from table 5.2, we can calculate ξ with
eq. (5.6) for the subgraphs and the complement. We focus on the two modes with
the largest factor ξ. The results are shown in table 5.5. We can see that at the false
positives (35 and 32), ξ is very large at the complement. For the second value of
kξ , where localisation is observed, this factor is much larger at the subgraph. Us-
ing this discrepancy hints that the false positive modes can be removed when the
complement graph in this cases, as the bounding factor is much larger.

kξ 35 114 kξ 32 110
ξ(S4) 2896 469 ξ(S6) 164 134
ξ(S4) 30202 14 ξ(S6) 3839 17

TABLE 5.5: Factors ξ for the false positives of table 5.2 for the subgraph
and the complement subgraph.

This can be verified in a general way if we look at all eigenvector components
and all ξ for each complement subgraph. In fig. 5.11, those values are plotted against
each other. Clearly, for the smallest factors ξ, the eigenvectors are small as well.
When the eigenvalues of the complement subgraphs are small, it necessarily follows
that the subgraph of the candidate subgraphs Si and Ai are large and the mode is
localised in those.

3This graph is not the complement graph!
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At the other hand, for very large values of ξ in the complement subgraphs, the
eigenvector components are basically one. This means that no localisation in the
candidates can be found at those modes.

The orange points for the spectral and red points for the algebraic landscape cor-
respond to S2 andA4 from table 5.4. Those two subgraph did not show localisation,
thus the relative component graph will not have very low eigenvector components.
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FIGURE 5.11: Eigenvector components and factor ξ for the relative
complement graphs S of the subgraphs from table 5.4. The different

colours indicate the different complement graphs.

5.5 Localisation and Resonance

As seen in the previous section, the landscapes are a powerful tool to find possible
subgraphs for localisation These candidates can be used with the second bound to
predict at which eigenvalue the localisation takes place, which usually was when ξ

was very large. These very large ξ are found when one eigenvector of the subgraph
λS is very close to the eigenvector λ of the graph at the given mode. In this section,
we focus on this situation, namely that:

λS ≈ λ

Under this condition, we say that the subgraph S resonates with the the graph G.
In this section, we want to test the condition from section 5.2.2 without the knowl-
edge of the subgraphs from the landscape calculations and see how this resonance
can be used to explain localisation.
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5.5.1 Small Subgraphs

One possibility to show the direct relationship between localisation and resonance
is to investigate whether resonance and localisation always happen in conjunction.
For this, we explore all possible subgraphs of a given length (l = 2, 3, 4, 5) in the
graph. Using these large sets of subgraphs allows us to perform statistical inves-
tigations to test the condition. Finding all subgraphs has been performed with a
simple brute force algorithm, which has a complexity of O(nl). More sophisticated
algorithms have been proposed in literature (see [107, 108]), but no implementation
of those algorithms has been found. The brute force algorithm was fast enough to
find all subgraphs in the IEEE 118 test case up to l = 5. For larger networks or search
for larger subgraphs, better algorithms should be used. The number of connected
subgraphs of the IEEE 118 test system of size l from 2 to 5 is shown in table 5.6.

l 2 3 4 5
NSl 179 463 1429 4701

TABLE 5.6: Number of subgraphs of size l in the IEEE 118 test case.

To see the relationship between localisation and ξ, we calculate ξ and ‖φk‖S
for all subgraphs S and all modes k (which are in total 4701 · 118 = 554718 data
points for l = 5). For each mode k, we then search the subgraph with the largest
eigenvector component (the vertex set is called Smax,k) and the subgraph with the
largest value ξ. If both subgraphs are identical, the bound ξ successfully predicts
the right subgraphs for localisation. The number of modes nE for which the found
subgraphs are identical for a given length l is shown in table 5.7. We also include an
analysis for all lengths l = 2, 3, 4, 5, where a total of 6772 subgraphs are investigated.
For all lengths l, this number is relatively small. When looking at the modes which
are predicted correctly kE, especially the largest frequencies are predicted well, for
every length. These are exactly the frequencies which can also be found in table 5.4.

We can investigate those modes further, leading to the following observations
and comparisons with the sets found in table 5.4:

• Mode 117: For all length l, the same subgraphs was found for maximal ξ and
maximal eigenvector component. For l = 5, this subgraph is given by the
nodes Smax,117 = (82, 43, 37, 114, 0). This set is very similar to S5, found by the
spectral landscape. Interestingly though, node 0 is not part of S5, but has been
observed as part of the best match.
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• Mode 116: The most localised subgraphs were found again, and the nodes are
Smax,116 = (101, 20, 1, 25, 100). This subgraph is a subset of S1 and A1. While
node 25 is not in the former, it is in the latter subgraph.

• Mode 115 and 111: In both cases, the set with the largest eigenvector compo-
nents is given as Smax,115 = (17, 22, 57, 64, 69, 74). This set has been predicted
correctly for mode 115 at all l, but for mode 111, only for length l = 4, 5. This
nodes are also identified as a localisation candidate with the landscape as S3,
except for node 74.

• Mode 114: The largest set is given as Smax,114 = (40, 29, 41, 62, 115), which is
almost identical to S4, except for node 115. For l = 3 and l = 4, the largest
eigenvector component corresponds to the largest ξ, but not for l = 4. For
l = 4, we have observed that the largest ξ is observed for (29, 40, 41, 62), but
the largest eigenvector is reached for (29, 40, 41, 115).

l nE kE
2 10 3, 5, 7, 14, 17, 26, 110, 115, 116, 117
3 9 3, 5, 7, 29, 110, 114, 115, 116, 117
4 7 3, 7, 110, 111, 115, 116, 117
5 10 3, 47, 55, 86, 110, 111, 114, 115, 116, 117
2,3,4,5 10 3, 47, 55, 86, 110, 111, 114, 115, 116, 117

TABLE 5.7: Modes and number of modes in which the largest eigen-
vector component subgraph is identical to the subgraph of largest ξ.

It should be noted that if a mode is localised in a subgraph with for example
three nodes, it will also be localised in the subgraph with five nodes, but not vice
versa. We do now that increasing the size l of the landscape always increases the
size of ‖φ‖S , while not necessarily the size of ξ.

We can see that the resonance alone is able to predict localisation at the highest
modes. We also observe very similar results for the subgraphs found by the reso-
nance and the subgraphs found by the landscapes.

5.5.2 Statistical Properties

To investigate the cases in which the largest ξ does not correspond to the most lo-
calised subgraph, we plot the largest eigenvector components against the eigenvec-
tor component of the subgraphs with the largest ξ. Now, we are interested in the
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situation where the largest ξ does not directly correspond to the largest eigenvec-
tor components. For every mode, we search the subgraph with the largest eigen-
value component and the subgraph with the largest ξ. We then plot the eigenvector
components of these two subgraphs against each other. The results are shown in
fig. 5.12. All points on the main diagonal correspond to the exact matches, as listed
in table 5.7. While the perfect matches are rare, we can clearly see that most data
is close to the main diagonal. This indicates that for every mode, a largest ξ corre-
sponds to a large eigenvalue component. Also, we can see that for increasing l, the
outliers seem to decrease and more data points are close to the main diagonal. We
can repeat the investigation with the subgraphs of all sizes together. In fig. 5.12e,
a similar plot is shown, calculating the maximum values of ‖φ‖S and ξ for sub-
graphs of all lengths l. The graph is very similar to fig. 5.12d, calculated with the
largest subgraphs, except for some outliers further away from the main diagonal.
As discussed before, larger size of the subgraph increases the norm of the eigenvec-
tor components restricted to this subgraph, but not necessarily the factor ξ. Because
of this, all largest eigenvector components are found for l = 5, but the largest values
of ξ can be found at other lengths. This is why the results of l = 5 are not identical
to the ones found for all lengths l.

The analysis in this section shows that we can use the resonance to find localised
subgraphs, without using the landscapes. Especially for the very localised modes
(k = 115, 116, 117), we see that eigenvalue resonance and localisation are directly
linked to each other.

5.6 Conclusion

In this section, localisation was defined and investigated for very simple test cases.
In these simple examples, we were able to prove the existence of localisation in cer-
tain modes. To generalise the investigations of localisation, two different bounds
which are able to predict at which nodes and for which eigenvalue localisation
might appear were derived. These bounds are able to predict the eigenvector com-
ponents of a graph and are thus able to predict localisation in the system. Both
bounds have been tested in the simple test cases and in various ways on a large real
world network, especially the IEEE 118 test case. It was shown that in combination,
the bounds are a powerful tool to predict and explain localisation.

One main result useful for power system research is the equivalence of localisa-
tion and resonance. We have found that localisation in a subgraph usually appears
when an eigenvalue of the subgraph is identical to an eigenvalue of the full graph.
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FIGURE 5.12: Investigations on the IEEE 118 test case network. Show-
ing the maximum eigenvector components of all connected subgraphs
of size l against the eigenvector components of the subgraph with the

largest ξ.
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With this condition, we can relate localisation to the geometry of the subgraph and
the full graph which describes the system.

While the experimental validation in this system only showed the results for the
IEEE 118 test case, we have tested the method on the IEEE 300 test case as well.
To streamline the presentation, the data has not been included in detail here. Some
results can be found in appendix B.1.1. Generally, the method appears to work as
good in the IEEE 300 test case.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

This work investigated the spectral graph properties in power systems, especially
dynamical power systems. One of the main problems in power system research
is the complexity of the system, due to its many components and many different
scales, both length and time wise. Spectral methods were shown to be a powerful
tool to investigate this complexity and is thus useful to approach many problems
arising in power system research.

Spectral graph methods in power system research mainly investigates the eigen-
values and eigenvectors of the Laplacian matrix of the underlying network. While
often the eigenvalues are the focus of the research, we have shown that the eigen-
vectors are of main importance to understand the system. The eigenvectors play
a fundamental role in both static and dynamic analysis. In spectral power flow
analysis, the eigenvectors are responsible for the shape of the Voltages. Also, the
flow over each line per mode is proportional to the gradient of the eigenvector com-
ponents adjacent to the line. In dynamical systems, the eigenvectors describe the
participation of each node to the oscillations in the systems and are thus responsible
for important effects like local plant modes or coherent generator.

For dynamical power systems we showed how network with generators behave
similarly to networks with damped generators. We also found that the system is
more sensitive to parameter changes, especially of the inertia, at the high ranked
eigenvalues. These eigenvalues correspond to short range interactions in the sys-
tem. The large range interactions at lower ranked eigenvalues are more influenced
by the underlying geometry of the system.

One main problem is to relate the structure of the eigenvectors with the struc-
ture of the network. Of the many interesting properties of eigenvectors, we further
investigated localisation, which means that only a subset of nodes have a non zero
(or non small) eigenvector component at a given mode. These localised dynamics
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have some important impact on the power system. In power flow, localised eigen-
vectors correspond to localised flows at a given mode, as only the lines around the
localisation have any flow in them. As seen earlier, the localised modes in the dy-
namical power systems are more sensitive to parameter changes. These modes are
also important for stability studies, as they correspond to local plant modes.

To investigate localisation, we propose and derived two bounds for the eigen-
vectors. These bounds can be used to explain and predict localisation of the eigen-
vectors of a Laplacian matrix of a graph. We believe that both bounds are useful
tools to investigate localisation, in power system research and related fields, where
the spectral properties of graphs are important. We have shown that the bounds
are able to predict localisation in simple example systems, where the localisation
properties can be calculated theoretically. Then, we have used the bounds to show
that the localisation properties of a real power system test case can be predicted
successfully.

While this work was motivated by and focused on properties of power systems,
the results from chapter 5 might have greater appeal. The method to find and de-
scribe localisation in graphs can be applied to all graphs. Localisation of eigenvec-
tors is, as far as we know, not yet used a lot in spectral graph theory, but applications
might arise in the future. More generally, only few results show the relationship be-
tween Laplacian eigenvectors and the properties of the graph. This localisation re-
sults might be a step in finding a comprehensive explanation of these eigenvectors.

6.2 Outlook

As usual, a thesis like this poses as many (if not more) questions than it answers.
This is not a weakness, but a strength of science, the eternal search for more knowl-
edge and wisdom. As an outlook, we want to highlight some research directions
and possible extensions.

6.2.1 Localisation Bounds

The eigenvector bounds in section 5.2 have been proven a powerful tool to investi-
gate and predict localisation in graphs. Still, some shortcoming are obvious. First
of all, both bounds are only valid for the eigenvectors of the eigenvalue problem of
a Laplacian matrix. Ideally, we would like to extend these bounds for general ma-
trices or the generalised eigenvalue problem, which would allow us to investigate
oscillatory networks. Together with the results of the chapter on spectral properties
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of dynamical power systems, this would allow to investigate the dynamical localisa-
tion properties of the system in great detail. The landscapes presented in theorem 1
are also valid for all invertible matrices. The extension to general matrix problems
is not trivial, as the pseudo inverse matrices generally do not have the same eigen-
values as the normal matrix.

Another question would be whether it is possible to tighten any of the bounds
presented here. Especially for the landscapes, some modifications of the bounds
seem possible. One different approach is presented in appendix A.3, but the draw-
backs of this bound are also obvious and explained therein. Circumventing these
drawbacks would result in an improved landscape.

The bound for the subgraphs presented in section 5.2.2 might be investigated
further. The bound depends on a factor ξ and the norm of a vector ‖v‖S . In the
analysis presented in chapter 5, we focused on the factor ξ. The vector v can be
calculated by:

v = ∑
i∈S

(
1

λSi
∑

x∈S ,x∼y∈∂S
φSi,xσyex,y

)
φSi (6.1)

Which is discussed in appendix A.2. As we can see, the calculation of this bound
required the eigenvector φ. This means that this method fails to predict eigenvector
components, as we need to know the values beforehand. A similar problem was
observed in the continuous system in [105]. There, the landscapes were able to suf-
ficiently bound the eigenvector components, so that it was clear that ‖v‖S is small.
This is not possible on the discrete problems on graphs discussed here, as the land-
scapes are much more conservative. We hope that in the future, further analysis of
eq. (6.1) or tighter landscapes can be used to approximate the vector v, which would
improve the localisation bounds.

6.2.2 Spectral Properties of Dynamical Power Systems

The first challenge is to continue the combination of the theoretical results for the
undamped oscillatory networks with the power system network. While the effect of
the damping in the analysis appears to be almost negligible, a theoretical foundation
of this result and a possible quantification of the impact of damping would be a great
step forward.
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One first outlook is coherency. When the damping can be neglected, we believe
that more theoretical results on the geometry of the eigenvectors are possible. We be-
lieve that the geometry of the eigenvectors can be understood further, which might
result in better methods to predict important properties such as coherency.

In many fundamental studies on small signal stability, the inertia of the system
is simplified to uniform values. We have shown in this work how important the
inertia is for the spectral properties and believe that this has to be taken under con-
sideration. We also found that in some cases, generalised eigenvalue problem found
in oscillatory networks might be further simplified to separate eigenvalue problems
of the inertia and the Laplacian matrix. This method is proposed in appendix A.4.
Continuing these investigations might make it possible to use even more theoretical
results, for example the localisation studies presented in this work or the investiga-
tions popular in mathematics.

Another interesting outlook, related to the synchronisation metrics and fixed
point equations discussed in section 2.3.2. In both equations, the product of the
pseudo inverse L† on the bus power PB is of interest. As in chapter 3, we can ex-
press the vector PB in the eigenbasis of L and link the synchronisation property and
values of the synchronised phases to the flows in a line. The synchronisation prop-
erties developed in [33] and spectral solution of the DC power flow problem are
thus related problems. A promising research direction might be to use the results
of spectral power flow investigations to explore more details about the synchroni-
sation property in electrical networks.

6.2.3 Nodal Domains and Localisation Bounds

While not the objective of the landscape method, we observed another interesting
property in the connected components after removing nodes with a low threshold
of the algebraic connectivity. Looking at the low ranked eigenvectors, we observed
some patterns in the remaining eigenvector components. The results are shown in
fig. 6.1. For the smallest threshold r1 at k = 1, we see that the eigenvectors are al-
most partitioned in positive and negative values. This means that the method could
maybe help in finding the nodal domains of the graph. For the larger thresholds
r3/4, we can observe similarity in the eigenvector components for many subgraphs,
indicating possible sets with coherent behaviour.

This shows that the landscapes of the graph might be used not just to investigate
localisation, but might be used to hint nodal domains or coherent clusters. How to
extend those domains to the full graph is a open question which should be investi-
gated in more detail as well.
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FIGURE 6.1: Eigenvector patterns for connected components after re-
moving low algebraic landscape nodes in the IEEE 118 test case. The
different colours indicate the different connected components found at

the given threshold.

6.2.4 Eigenvectors from Eigenvalues

One of the main problems we need to understand is how the eigenvectors of a graph
correspond to the topology of the graph. The extensive research on nodal domains
and some results on coherency are one step. We believe that understanding the lo-
calisation is another step to understand this interplay better. In a very recent math-
ematical publication1, a new method to calculate eigenvectors from eigenvalues in
hermitian matrices was presented [109]. Here, we denote φi,j to be the j-th entry of
the eigenvector corresponding the the i-th eigenvalue λi(L). For any hermitian ma-
trix L with the principal submatrix Lj, where the j-th row and column were deleted,
the eigenvector components are given as:

∣∣φi,j
∣∣2

n

∏
k=1;k 6=i

(λi(L)− λk(L)) =
n−1

∏
j=1

(
λi(L)− λk(Lj)

)
(6.2)

From this, it directly follows that if any φi,j = 0, one eigenvalue of Lj must be
identical to λi(L). This can be used to predict exact localisation. For example, the

1The article was published during the writing period of this work.
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exact localisation in section 5.1.1 can be predicted. For each node not in the fork
(where exact localisation appears), the principal submatrix has at least one identical
eigenvalue to the full graph. If this condition could be extended to a subgraph, it
might be possible to investigate exact localisation with this technique. It might also
be interesting to investigate whether eq. (6.2) can be used to predict nodal domains
or coherent clusters.

6.2.5 Application to realistic power system cases

The analysis presented in this work was applied to very simplified systems, both in
modelling and in size. To improve the application and compare the system to more
realistic test cases, we have to investigate how to apply the theory to

To apply the localisation bounds and theory developed in this work to realistic
systems, the computational complexity for large systems has to be taken to account
at first. Realistic transmission system models for the European transmission system
have over 16000 buses [110]. The solution of the eigenvalue equations and applica-
tions of the methods presented here might be impossible for system of this size. It
might still be possible to use the spectral landscape to find possible candidates for
localisation. While the spectral radius might not be available, the relative strength
of the bound at individual nodes can highlight possible nodes which might exhibit
localised behaviour. For the landscape investigations, approximations of the largest
and the smallest eigenvalues (for example [72, 111, 112, 113]) might be used in com-
bination with the landscapes to investigate bound the eigenvectors without solving
the whole system. Approximations of the spectral radius might also be used to find
the most localised subgraph of length 2, as finding subgraphs with this length is
computationally easy (all subgraphs are given by the edges of the graph).

6.2.6 Beyond AC systems

All the results were presented for AC systems. With integration of renewable energy
sources, more HVDC connections will be included in the power system. An inter-
esting and ongoing research direction is to apply the results and methods obtained
here to the HVDC system ans especially a incorporated systems, consisting of AC
and DC parts. Our ongoing research shows that the equations of the incorporated
system have similarities with the equations discussed in chapter 4. The connection
of the AC and the DC system require more complex control schemes, which have to
be included in the simplified equations.
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This thesis offer many perspectives for either applied mathematicians or power
engineers for power systems and maybe other field of applications. We hope that
the methods and ideas presented here can help engineers to design and operate a
stable power system but also motivate further scientific studies in the field of power
system research and complex networks.
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Appendix A

Additional Theoretical Results

A.1 State Space Formalism

In [21, 65], the linearization of the system eq. (1.5) has been performed in state space
form. We define the state vector x = (ωP , θP , θC)

T, where P are the producers (gen-
erators), C the consumers (loads) and ωP = θ̇P . The resulting state space formalism
of the linearised power systems equation is then:

ẋ =




M−1
P DP −M−1

P LP 0
1nP 0 0

0 0 −DCLC




︸ ︷︷ ︸
=:F

x +




M−1
P PP
0

D−1
P PC


 (A.1)

The properties of the matrix F and the role of the Laplacian matrix L are not at
all clear in this formalism, even though it is theoretically equivalent to the quadratic
eigenvalue problem from (4.5). The aforementioned studies only investigate gener-
ator networks without any consumers. The resulting state space formalism is much
easier in this case. Using the simplified vector x̃ = (ωP , θP )

T, one finds:

ẋ =

(
M−1
P DP −M−1

P L
1nP 0

)

︸ ︷︷ ︸
=:F̃

x̃ +

(
M−1
P PP
0

)

The spectral properties of this matrix has been extensively studied in [21, 65].
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A.2 Solution to the Laplace Equation on Graphs

For the proof of theorem 2, we require a vector v statisfying the Laplace equation
on a subgraph. In technical terms, we search a solution v inside a region S , given
Dirichlet boundary conditions σ on ∂S , of the following equation:

(Lv)S = 0 and v∂S = σ (A.2)

A similar problem has been solved for the discrete Laplacian operator ∆ = D−1L
in [7, Theorem 1].

v = ∑
i∈S

(
1

τSi
∑

x∈S ,x∼y∈∂S
d1/2

x ψSi,xσy

)
1√
dS

ψSi (A.3)

Where τS and ψS are the solutions of the eigenvalue problem of LS , which is
defined in [114] as L = D−1/2LD−1/2. It should be noted that the proof of [7, Theo-
rem 1] is only valid for unweighted graphs. Including weighted graphs is possible
by introducing the edge weight eij between edges i and j in the proof, leading to:

v = ∑
i∈S

(
1

τSi
∑

x∈S ,x∼y∈∂S
d1/2

x ψSi,xex,yσy

)
1√
dS

ψSi (A.4)

While this solution generally only solves the Laplace equation for the discrete
Laplace operator, it is easy to show that this also solves the equation for the combi-
natorial Laplacian as stated in eq. (A.2):

(∆v)S =
(

D−1Lv
)
S
= 0

(Lv)S = D−10 = 0

Experimentally, we were able to verify that the eigenpairs of LS can be replaced
by the eigenpairs of LS , using the following, simplified equation, which also solves
eq. (A.2):
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v = ∑
i∈S

(
1

λSi
∑

x∈S ,x∼y∈∂S
φSi,xσyex,y

)
φSi (A.5)

The solution of the Laplace equation thus depends on the topological structure of
the subgraph (which is also responsible for the eigenpairs) and the boundary values
σ. Outside of S, where eq. (A.5) defines v and the boundary ∂S , where the values
are defined, v can be defined freely.

A.3 Improved Landscape Bounds

A possible improvement of the landscape bounds derived in section 5.2 are dis-
cussed here. Following a similar argument as before, we can improve the bounds
using the fact that the sum of the landscapes sums over (φ)i:

|(φ)i| ≤
1
λ

n

∑
j=1

∣∣Lij
∣∣
∣∣∣(φ)j

∣∣∣ = 1
λ

(
∑
j 6=i

∣∣Lij
∣∣
∣∣∣(φ)j

∣∣∣+ |Lii| |(φ)i|
)

≤ 1
λ

(
∑
j 6=i

∣∣Lij
∣∣ |φ|max + |Lii| |(φ)i|

)

Which results in the improved landscape:

|(φ)i|
|φ|max

(
1− |Lii|

λ

)
≤ 1

λ ∑
j 6=i

∣∣Lij
∣∣ =: h̃i

In similar fashion, the landscape l̃ can be defined using the pseudo inverse L†.
One of the main problem with both landscapes is the factor 1− |Lii|

λ =: ν. For exam-
ple, if this factor is negative, the whole interpretation of the bound changes, as this
bound turn to a lower bound then.

For a unweighted, complete graph of size N we know that Lii
λ = N−1

N = 1 −
1
N . Thus, the factor ν is always positive and this bound can be used without any
problems. On the other hand, ν is smaller than zero for roughly half of the possible
cases of the Florentine family graph discussed in chapter 2. Obviously, the chance
of ν being negative is higher for smaller eigenvalues. In fact, all observed graphs
have completely positive factors for the spectral radius1.

1For regular graphs, this can be easily proven using the bound presented in [113, Theorem 2].
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This improvement of the bounds might be useful for further studies. In this
work, only the original landscapes were used, as they already produced desirable
results. To use the improved bounds, finding provable estimations for the values of
ν would be needed.

A.4 Proposal - from the GEP to the Eigenvalue Problem

As we have seen in chapter 4, it might be possible to transform the quadratic eigen-
value problem to a generalised eigenvalue problem, which has been discussed in
[63]. In this section, we want to note that in some cases, the generalised eigenvalue
problem can be further simplified to a normal eigenvalue problem. If M is a diago-
nal matrix, this is directly obvious and has already been discussed in section 4.2.

Following the arguments in section 4.1.4, we can use the GEP, given in eq. (4.10),
for the investigation of spectral properties of dynamical power systems. An inter-
esting result can be found if M and L are simultaneously diagonalisable. Then, a
unitary matrix S exists, for which S−1MS = ΛM and S−1LS = ΛL with λM and
ΛL being diagonal matrices. Left- and right multiplying eq. (4.10) with S−1 and S,
respectively, results in:

λ
(

S−1MS
)

v = λ (ΛM) v =
(

S−1LS
)

v = ΛLv

λ = Λ−1
M ΛL

A necessary condition for simultaneous diagonalisation is that the matrices M
and L commute [67, Ex. 7.2.16]. A diagonal matrix (like M) on commutes with
another matrix (and thus, is simultaneously diagonalisable), iff all entries mi are
identical. For the systems investigated in this work, this is not generally the case2.
Writing down the products LM and ML makes it clear why the matrices do not
commute:

2In many simplifying investigations, equal machine parameters are assumed. Then, this is possi-
ble.



A.4. Proposal - from the GEP to the Eigenvalue Problem 125

LM =




(N − 1)m1 −m1 −m1 . . . −m1

−m2 (N − 1)m2 −m2 . . . −m2
...

...
... . . . ...

−mN −mN −mN . . . (N − 1)mN




ML =




(N − 1)m1 −m2 −m3 . . . −mN

−m1 (N − 1)m2 −m3 . . . −mN
...

...
... . . . ...

−m1 −m2 −m3 . . . (N − 1)mN




From this, it is also clear that ML = (LM)T. We can see though that both prod-
ucts will be approximately identical if for each i, j, (N − 1)mi � mj. With this, we
can argue that the system is almost diagonalisable if:

N � Nmin =
mmax

mmin
+ 1 (A.6)

Another interesting result on the diagonalisation of non-commuting matrices is
found in [115]. There, it was shown that for two hermitian N × N matrices X and
Y, the sum of the squares of all off-diagonal elements K (X, Y) of the almost diago-
nalisation U−1XU and U−1YU is bounded by the commutators [X, Y] = XY − YX
as:

1
4
‖[X, Y]‖2

F ≤ K (X, Y) ≤ Nε (‖[X, Y]‖F)

With some function ε (x) x→0
= 0 and the Frobenius norm ‖X‖F =

√
∑ij
∣∣xij
∣∣2.

Here, the matrices X and Y are normalised (‖X‖F = 1). This means that the error
of the diagonalisation decreases when the commutator decreases, as the upper and
lower bounds of the error K decrease. The norm of the commutator depends on
the differences of the inertia over each connected line. The larger the difference, the
larger the commutator. As the matrices have to be normalised for this equation, the
interpretation can difficult. We observed though that more meshed systems have a
smaller commutator, which mostly follows from the impact of the normalisation of
the Laplacian matrix.

While the approximation for the generalised eigenvalue problem is not valid in
general, it would be very useful in the study of the dynamic properties of the general
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eigenvalue problem. The eigenvalues of M are, as M is diagonal, directly obvious.
The spectral properties of L have been intensively studied as part of spectral graph
theory. Examples for this approximations are shown in fig. A.1. There, the real
eigenvalues of the GEP λ(M, L) are plotted against the approximation λ̃(M, L) =
λ(L)
λ(M)

. In fig. A.1a, three regular networks with an random inertia taken form a uni-
form distribution uni(0.5, 1.5) are used. The networks are a complete network, a
ring network and a ring connected to its sixteen nearest neighbours are shown. Ob-
viously, for the complete graph, the approximation is very accurate, but the accu-
racy decreased with the less connected networks. The values for the commutator
are 0.007 for the complete graph, 0.024 for the ring and 0.012 for the sixteen nearest
neighbour graph. We also test the IEEE 118 test case, with values identical to those
investigated in section 4.3. The approximation is not very accurate, which probably
depends on the large range of inertia in the system. The different values of m vary
by a factor of 151, which is too large for this approximation.

0 1 2
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0

1

2

λ
(L
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λ

(M
)

Complete

Ring

16 NN

y=x
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0.0

0.1

0.2

0.3

0.4

λ
(L

)/
λ

(M
)

Complete

y=x

(B) IEEE 118

FIGURE A.1: Examples for the approximation of the generalised eigen-
value problem by the eigenvalues of the corresponding eigenvalue

problems.
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Additional Data and Figures

B.1 Additional Information for Chapter 4

B.1.1 Dynamical properties of the IEEE 300 test case

The complete analysis of section section 4.3 has also been performed with the IEEE
300 test case [93]. While this system obviously behaves different, only a few major
differences were observed.

The eigenvectors in fig. B.1a show a similar behaviour to the IEEE 118 test case,
some features are just more obvious. We especially observe a strong localisation in
the highest modes, while more coherent and long range dynamics are observed for
the low ranked eigenvalues. Figure B.1b shows the sensitivity of the spectrum after
perturbations of M and D and we again observe that the inertia perturbations are
much more influential than perturbations of the damping parameter. The bifurca-
tion diagram shown in fig. B.1c closely resemble those of the IEEE 118 test case. Es-
pecially decreasing the damping parameter has little effect on the eigenvalues of the
system. The biggest difference between the IEEE 118 test case and the IEEE 300 test
case is probably found in fig. B.1d, where the real and imaginary parts of the eigen-
values are shown. The eigenvalues here can be grouped into two main groups. One
group has a small negative real part and small imaginary parts. The other group has
much larger negative real parts and the imaginary parts are also much larger. This
groups might correspond to the different behaviour of the eigenvectors observed
in fig. B.1a, where the higher ranked eigenvalues (which are the eigenvalues with
the larger negative real part) correspond to the localised eigenvectors. The divide
in the eigenvalues might also be observed in the eigenvectors, where two different
behaviours can be observed.
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FIGURE B.1: Examples for the investigations of the IEEE 300 test case.
The eigenvector components, the relative changes of the eigenvalues,
the bifurcation diagram with respect to the damping parameters and
the eigenvalues of the damped and the undamped system are shown.
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B.1.2 Angles Between Eigenvector Examples

To illustrate what the angles between eigenvectors mean, we show three typical
examples for angles found in figure fig. 4.10. The illustrations are shown in fig. B.2.
Figure B.2a shows a small angle between the vector. We can see that all modes of
φ and φ0 are almost identical. So, the vectors are almost identical and the angle
is small. In fig. B.2b, the difference between the nodes is more obvious and the
angles are not similar anymore. This corresponds to a much larger angle. Lastly, the
largest angle observable is shown in fig. B.2c. Here, the original eigenvector is very
localised at one node. The perturbed eigenvector is also normalised, but at another
node. This corresponds to a angle of π/2.
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FIGURE B.2: Examples for angles between different eigenvectors. The
three figures correspond to the eigenvectors of a perturbed matrix cal-
culated with the QEP. Each figures corresponds to a typical example of

the mentioned angle.

B.2 Additional Information for Chapter 5

B.2.1 Localisation in the IEEE 300 Test Case

The landscapes and resonance properties for localisation have also been performed
for the IEEE 300 test case. As before, we will not show all results in the main text, to
improve the flow. In general, we have found that the proposed method works well
for the IEEE 300 test case. While the localisation properties might not be identical,
the methods function the same. We only show two examples to highlight this be-
haviour here. At first, the nodes with a low spectral landscape were removed from
the graph, as before. The eigenvector components for the remaining connected com-
ponents for the highest modes are shown in fig. B.3a. Again, we see very large eigen-
vector components in some components and almost zero in the other components,
which indicate successful prediction of localisation in the connected components.
The interplay between resonance and localisation is shown in fig. B.3b, where all
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connected subgraphs of lengths l = 2, 3, 4 are calculated of the IEEE 300 test case.
The largest value of the resonance is plotted against the largest eigenvector compo-
nent. We again see that in many cases, the largest eigenvector corresponds to the
largest resonance in the system, which generally means that resonance corresponds
to localisation.
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FIGURE B.3: Localisation bounds on the IEEE 300 test case. Show-
ing the eigenvector components of connected components after remov-
ing nodes with the spectral landscape and relationship between ξ and

eigenvector components for all possible subgraphs.

B.2.2 Example Graphs showing Localisation

Fork

The Laplacian matrix of the graph with a fork given in section 5.1.1 is:




1 0 −1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
−1 −1 7 −1 −1 0 0 0 −1 0 −1 −1
0 0 −1 4 −1 0 0 −1 0 0 0 −1
0 0 −1 −1 5 −1 −1 −1 0 0 0 0
0 0 0 0 −1 4 0 0 −1 −1 −1 0
0 0 0 0 −1 0 3 −1 −1 0 0 0
0 0 0 −1 −1 0 −1 4 −1 0 0 0
0 0 −1 0 0 −1 −1 −1 5 −1 0 0
0 0 0 0 0 −1 0 0 −1 3 0 −1
0 0 −1 0 0 −1 0 0 0 0 3 −1
0 0 −1 −1 0 0 0 0 0 −1 −1 4




(B.1)
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Here, the fork are the nodes one and two, which are connected only to the third
node.

High Impedance Line

The Laplacian matrix of the graph with a high impedance line, investigated in sec-
tion 5.1.2 is:




3 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1

−1 5 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0

0 −1 3 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 4 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 −1 −1 7 −1 −1 0 −1 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 −1 −1 4 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 −1 0 −1 −1 5 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 3 0 −1 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 −1 0 4 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 −1 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 −1 0 2 0 0 0 0 0 0 0 0 0

0 −1 0 0 −1 0 0 0 0 0 0 5 −1 −1 0 0 0 0 0 −1

0 0 0 0 −1 0 0 0 0 0 0 −1 4 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 −1 4 −1 −1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 −1 −1 5 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 3 0 −1 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 4 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 4 −1 −1

−1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 10004 −10000

−1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 −10000 10003




(B.2)

Here, the high impedance line is the edge between the nodes corresponding to
the last and the second to last row.
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Summaries

Summary in English

This thesis investigates the fundamental properties of a simplified dynamical power
system model. These models can be used to study the influence of the geometrical
properties of the network describing the power system. These models and some im-
portant properties of the models are presented in chapter 1. One of the main chal-
lenges in power system research is the complexity of the system. We want to use
spectral graph theory to decompose the system into different modes, which can be
studied individually. The second chapter introduces the mathematical background
of spectral graph theory and the applications to power systems. A simple example
for the application of spectral graph theory in power system research is given in
chapter 3, where the static power flow system is investigated. We can see that the
eigenvalues and eigenvectors of the nodal admittance matrix of the power system
can be used to calculate the phases and flows in a static system. The dynamical prop-
erties are then deeper investigated in the next chapter. Here, a quadratic eigenvalue
problem has to be used to investigate the system. We introduce the fundamental
properties of the quadratic eigenvalue problem and the application to power system
research. An extensive investigation of the spectral properties of a dynamical power
system using the quadratic eigenvalue problem is then performed. We observe short
and long range interactions in the system and see that the short range interactions
are more sensitive to the machine parameters and are important for the stability of
the power system, as they are related to local plant modes. The emergence of this
localised behaviour is investigated in chapter 5. We derive two eigenvector bounds
which can be used to predict and describe localisation in a network. These bounds
are then applied to simple example graphs and a power system test case, to show
how they can successfully predict, explain and describe localisation.
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Summary in French

Cette thèse porte sur les propriétés fondamentales d’un modèle simplifié de sys-
tème d’alimentation dynamique. Ces modèles permettent d’étudier l’influence des
propriétés géométriques du réseau décrivant le système électrique. Ces modèles
et certaines propriétés importantes des modèles sont présentés au chapitre 1. L’un
des principaux défis de la recherche sur les systèmes électriques est la complex-
ité du système. Nous voulons utiliser la théorie du graphique spectral pour dé-
composer le système en différents modes, qui peuvent être étudiés individuelle-
ment. Le deuxième chapitre présente le contexte mathématique de la théorie des
graphes spectraux et les applications aux systèmes d’alimentation. Un exemple sim-
ple d’application de la théorie des graphes spectraux à la recherche sur les systèmes
d’alimentation est donné au chapitre 3, où l’on étudie le système d’alimentation
statique. Nous pouvons voir que les valeurs propres et les vecteurs propres de la
matrice d’admission nodale du système électrique peuvent être utilisés pour cal-
culer les phases et les flux dans un système statique. Les propriétés dynamiques
sont ensuite étudiées plus en profondeur dans le chapitre suivant. Ici, un problème
de valeur propre quadratique doit être utilisé pour étudier le système. Nous présen-
tons les propriétés fondamentales du problème de la valeur propre quadratique et
son application à la recherche sur les systèmes d’alimentation. Une étude appro-
fondie des propriétés spectrales d’un système de puissance dynamique utilisant le
problème des valeurs propres quadratiques est ensuite réalisée. Nous observons
des interactions à courte et longue portée dans le système et constatons que les in-
teractions à courte portée sont plus sensibles aux paramètres de la machine et sont
importantes pour la stabilité du système électrique, car elles sont liées aux modes lo-
caux de la centrale. L’émergence de ce comportement localisé est étudiée au chapitre
5. Nous dérivons deux limites de vecteurs propres qui peuvent être utilisées pour
prédire et décrire la localisation dans un réseau. Ces limites sont ensuite appliquées
à des exemples simples de graphiques et à un cas de test de système électrique, pour
montrer comment ils peuvent prédire, expliquer et décrire avec succès la localisa-
tion.
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English This thesis studies the influence of geometry on the dynamic properties
of power systems. We use a mathematical technique, called spectral graph theory,
to break down the system into its frequencies, which can be studied individually.
Thanks to this technique, we are able to analyze the system in a fundamental way.
One of the main observations concerns short-range interactions in the system, which
can have a huge impact on the overall stability of the system. These interactions are
studied theoretically, which leads to a method to characterise, predict and explain
this localised behaviour. The developed method can be used to facilitate the design
and control of power grids, but it can also be applied to different scientific fields,
where location properties in networks are important.

French Cette thèse étudie l’influence de la géométrie sur les propriétés dynamiques
des systèmes d’alimentation. Nous utilisons une technique mathématique, appelée
théorie des graphes spectraux, pour décomposer le système en ses fréquences, qui
peuvent être étudiées individuellement. Grâce à cette technique, nous sommes en
mesure d’analyser le système de manière fondamentale. L’une des principales ob-
servations concerne les interactions à courte portée dans le système, qui peuvent
avoir un impact énorme sur la stabilité globale du système. Ces interactions sont
étudiées théoriquement, ce qui aboutit à une méthode pour caractériser, prédire
et expliquer ce comportement localisé. La méthode mise au point peut être util-
isée pour faciliter la conception et le contrôle des réseaux électriques, mais elle peut
également s’appliquer à différents domaines scientifiques, où les propriétés de lo-
calisation dans les réseaux sont importantes.
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