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Abstract

Optimizing turbomachinery components stands as a real challenge despite recent
advances in theoretical, experimental and High-Performance Computing (HPC)
domains. This thesis introduces and validates optimization techniques assisted by
full-field Multi-Fidelity Surrogate Models (MFSMs) based on Proper Orthogonal
Decomposition (POD). The combination of POD and Multi-Fidelity Model-
ing (MFM) techniques allows to capture the evolution of dominant flow features
with geometry modifications.

Two POD based multi-fidelity optimization methods are proposed. The
first one consists in an enrichment strategy dedicated to Gappy-POD (GPOD)
models. It is more suitable for instantaneous low-fidelity computations which
makes it hardly tractable for aerodynamic design of turbomachines. This method
is demonstrated on the flight domain study of a 2D airfoil from the literature.

The second methodology is based on a multi-fidelity extension to Non-Intrusive
POD (NIPOD) models. This extension starts with a re-interpretation of the
Constrained POD (CPOD) concept and allows to enrich the reduced space
definition with abondant, albeit inaccurate, low-fidelity information.

In the second part of the thesis, a benchmark test case is introduced to test full-
field multi-fidelity optimization methodologies on an example presenting features
representative of turbomachinery problems. The predictability of the proposed
Multi-Fidelity NIPOD (MFNIPOD) surrogate models is compared to classical sur-
rogates from the literature on both analytical and industrial-scale applications. Fi-
nally, we employ the proposed tool to the shape optimization of a 1.5-stage booster
and we compare the obtained results with standard state of the art approaches.
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Résumé

L’optimisation des différents composants d’une turbomachine reste encore un sujet
épineux, malgré les récentes avancées théoriques, expérimentales ou informatiques.
Cette thèse propose et investigue des techniques d’optimisation assistées par
méta-modèles vectoriels multi-fidélité basés sur la Décomposition aux Valeurs
Propres (POD). Le couplage de la POD à des techniques de modélisation multi-
fidélité permet de suivre l’évolution des structures dominantes de l’écoulement en
réponse à des déformations géométriques.

Deux méthodes d’optimisation multi-fidélité basées sur la POD sont ici
proposées. La première consiste en une stratégie d’enrichissement adaptée aux
modèles multi-fidelité par Gappy-POD (GPOD). Celle-ci vise surtout des prob-
lèmes associés à des simulations basse-fidélité à coût de restitution négligeable,
ce qui la rend difficilement utilisable pour la conception aérodynamique de
turbomachines. Elle est néanmoins validée sur une étude du domaine de vol d’une
aile 2D issue de la littérature.

La seconde méthodologie est basée sur une extension multi-fidèle des modèles
par POD Non-Intrusive (NIPOD). Cette extension naît de la ré-interprétation
du concept de POD Contrainte (CPOD) et permet l’enrichissement de l’espace
réduit par ajout important d’information basse-fidélité approximative.

En seconde partie de cette thèse, un cas de validation est introduit pour
valider les méthodologies d’optimisation vectorielle multi-fidélité. Cet exemple
présente des caractéristiques représentatives des problèmes d’optimisation de tur-
bomachines. La capacité de généralisation des méta-modèles par NIPOD multi-
fidélité proposés est comparée, aussi bien sur cas analytique qu’industriel, à des
techniques de méta-modélisation issues de la littérature. Enfin, nous utilisons
la méthode développée au cours de cette thèse pour l’optimisation d’un étage et
demi d’un compresseur basse-pression et comparons les résultats obtenus à des
approches à l’état de l’art.
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Chapter 1

Introduction

The research presented in this thesis, has been done in the frame of industry’s
growing interest for automated optimization techniques. Particularly, the present
work is partly funded by the engine manufacturer Safran Aircraft Engines. This
introduction will now provide the motivations behind this work, as well as an
overview of the thesis’s content.

1.1 Background and motivations
Many simulation-based optimization techniques have been developed and widely
employed for the design of engineering systems. Among which, Multi-Disciplinary
Optimization (MDO) has revealed itself a very effective tool for least-weight and
high-performance designs, especially in aeronautics and aerospace engineering [I.
Kroo et al., 1994; Peoples and Willcox, 2006], or turbomachinery design [Dorn-
berger et al., 2000]. Most of the engineering design applications can be seen as
numerical models of design variables θ the designer has control over on one hand
and state variables y(θ) describing the physical state of the designed system on
the other. The design problem is then formulated as the Non-Linear Programming
Problem (NLPP):

min
θ
Y (θ,y(θ))

s.t c (θ,y(θ)) ≤ 0.
(1.1)

The computational burden associated to the resolution of Problem 1.1 depends
on many factors:

• the computational cost of the evaluation of y(θ), Y (θ,y(θ)) and c (θ,y(θ));

• the dimension of the design space θ;

1
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• the order of dependence between θ and y.

These factors are addressed in the present work.

In the recent years, there is an increasing use of high-fidelity numerical models
within MDO frameworks. Nevertheless, as observed in Giesing and Barthelemy,
1998, or more recently in Brezillon et al., 2012, solving MDO problems based
on high-fidelity simulations can be very intricate. Many difficulties remain to be
addressed such as

• the coupling of discipline dedicated high-fidelity solvers,

• the robustness of remeshing strategies for shape optimization,

• the computational burden hardly fitting the requirements in terms of number
of evaluations, especially in high-dimensional design spaces.

To this end, Surrogate-Based Optimizations (SBOs) represent a class of
optimization methodologies able to alleviate some of the aforementioned difficul-
ties [Samad and K.-Y. Kim, 2009]. As soon as Derivative Free Optimization (DFO)
is concerned, the main target of the designer is to find a gobal solution to the
considered optimization problem. The main issue in using SBO in the context
of global optimization in wide high-dimensional design spaces resides in the
number of training samples required to reach acceptable discrepancy between the
surrogate model and the “true” function of interest. Too small training samples
could lead to a weak representation of the function to minimize or even introduce
false optima [Mehmani et al., 2015]. In this regard, Multi-Fidelity Surrogate
Modeling (MFSM) has become, in the past two decades, an active field of research
within the MDO framework.

Whereas Multi-Fidelity Surrogate Models (MFSMs) are often referred to as hi-
erarchised models and tagged as physics-based models, the large majority of Multi-
Fidelity Modeling (MFM) techniques are “restrained” to the fusion of scalar data
according to pre-defined kernel functions that are disconnected from the physical
state of the optimized system. Keeping that in mind, and considering the increas-
ing interest for Reduced Order Modeling (ROM) techniques able to determine the
dominant physical features of the optimized system, one comes up naturally with
the idea that building physics based MFSMs can pave the way towards SBO reach-
ing high-precision requirements while keeping the computational burden affordable
for industrial problems.
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1.1.1 Motivation 1: Combine different levels of fidelity into
MDO cycles

Traditionally in turbomachinery design, the design cycles involve sequential re-
finements of the considered product using simulation tools of increasing accuracy
and costs. The first motivation of this work is to answer the need for surrogate
models combining coarse and fine-simulations in order to integrate different levels
of design in one conception step and make high-fidelity optimizations meet indus-
trial requirements. In the case of turbomachinery design, the dimensionality of
the optimizations engineers are running on a daily basis has been brought from
less than 10 up to more than hundred variables in a few decades. In addition,
the environmental and aircraft noise regulations now coerce aircraft engine man-
ufacturers into fine tuning local and intricate physical phenomena early in their
design cycles. This often involves taking into account flow features that are fully
3D and cannot be predicted by 2D or even quasi-3D simulations [B. Chen and
Yuan, 2008], resulting in high-fidelity computations taking up to tens of hours for
each experiment and design point. Under these conditions, one can easily under-
stand that observations made by Giesing and Barthelemy, 1998 and illustrated on
Fig. 1.1 are at the heart of the first objective of this project.

Figure 1.1: Distribution of Design Process Fidelity and Level of MDO [Giesing
and Barthelemy, 1998].

We target here the development of MFSMs able to extract as much informa-
tion as possible from “cheap” simulations to enable a wide exploration of high-
dimensional design spaces. Several impediments have to be lifted before introduc-
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ing MFSMs into industrially capable SBO software solutions. We give here an
attempt to reduce the burden carried out in order to build the surrogate training
databases. This involves either reducing the number of training points at a given
fidelity or reduce the fidelity of the simulations while maintaining the precision of
the surrogate model.

1.1.2 Motivation 2: Develop multi-level enrichment of full-
field surrogate models

The second motivation of the thesis is to elaborate surrogate models able to capture
the physics underlying the cost functions any optimization problem is working on
(being objectives or constraints). We have this objective to respond designers
calls for fast insight into the physical behavior of any experiment in the design
space. By comparison to Data Fitting Surrogate Models (DFSMs), physics-based
models should be able to build a fast estimate for the scalar quantities of interest
of the optimization on the one hand, but also give the designer a rough idea
on the physics associated to these estimated performances. Considering Proper
Orthogonal Decomposition (POD) based models as best integrators of physics with
respect to DFSMs, the target is, here, to propose a POD-based modeling technique
coping with high-dimensional design spaces and costly evaluation tools. To this
end, we attempt to create an improved POD-based surrogate model enriching
sparse high-fidelity information with densely distributed low-fidelity data in the
design space. As far as the author knows, this precise target has been enounced
only by Mifsud, 2008; Mifsud, MacManus, et al., 2016 where both high- and low-
fidelity information are fused together to construct the POD modal basis regardless
of the level of precision of each training full-field simulation. In multi-fidelity
modeling, a carefull attention has to be given to the correlation between low- and
high-fidelity solutions to build an efficient methodology. Therefore, in order to
soften the constraint on low- to high-fidelity correlation, we propose to tag the
training snapshots with respect to their level of precision during the POD basis
construction.

1.1.3 Motivation 3: Propose mulfi-fidelity optimization
techniques

The last motivation of this thesis, but not the least, pertains to the efficient inte-
gration of the developed MFSMs into online optimization schemes with dedicated
infill strategy. This is the cornerstone of any successfull industrial optimization.
When dealing with design problems involving very expensive evaluation tools, one
has to select the computed experiment parsimoniously. MFSMs are intended to
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enlarge the amount of information used for the model training but trying to build
computationally affordable models while ensuring a good precision in every inter-
esting area of the design space is pointless as soon as no precise expert knowledge
is available. To address this issue, an infill strategy and its associated ranking
criterion are proposed. They are both adapted to full-field MFSMs. This last
objective will pave the way towards efficient optimization of complex engineering
systems. Finally, to demonstrate the reached situation within this thesis project,
we target a challenging turbomachinery design.

1.2 Outline
In the current chapter, we have presented the motivations of this research
investigating the extension of Reduced Order Models (ROMs) to the multi-fidelity
paradigm. The second step targeted in this work is the coupling of full-field
MFSMs with Evolutionary Algorithms (EAs) in dedicated SBO strategies and
reduce the overall computational burden of turbomachinery design tasks. The
work done in this thesis is naturally divided into two parts.

In Chapter 2, we start presenting literature related to the applications and
developments proposed. Section 2.1 reviews the state of the art on aircraft
engine and turbomachinery design. A short introduction to secondary flows
in turbomachinery is given in Section 2.1.1. Sections 2.2 and 2.3 respectively
review SBO techniques and MFSMs. After presenting a choice of ROMs used
in the frame of SBOs in Section 2.4, we finally give literature on SBO applied
to turbomachinery design in Section 2.5. Some rationales behind the strategies
developed in this thesis conclude this chapter.

The first part describes the methodologies developed in this work. The
second part pertains to the application of the developed methodology to an
industrial-scale turbomachinery optimization problem. The remainder of the
thesis is organised as follows:

Part I : Theoretical development and methodology

Chapter 3 primarily presents and re-interprets existing methodologies based on
POD. Section 3.1 describes the POD and Non-Intrusive POD (NIPOD) methods,
along with the chosen notations employed in the proposed extension. Engineering
optimizations being usually defined with scalar quantities as objectives or
contraints, the Constrained POD (CPOD) has been introduced to interpolate
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these quantites despite non-zero truncation error. This technique is presented in
Section 3.2 in order to detail the intellectual grounds of the proposed multi-fidelity
extension. Finally, Gappy-POD (GPOD) is re-interpreted in Section 3.3.1 in
order to propose a dedicated enrichment strategy in the coming chapters.

In Chapter 4, the multi-fidelity extension to NIPOD surrogate models is
developed. The main contribution of this work is then theoretically developed in
Section 4.1 yielding a hierarchised multi-fidelity extension to NIPOD models. The
main steps of the proposed methodology are then wrapped up into algorithms
detailed in Section 4.2 in order to help the interested reader implement the
presented developments. Chapter 4 ends up with some preliminary conclusions
highlighting the main differences with existing approaches.

The performance of a Multi-Fidelity SBO (MFSBO) framework highly
depends on the capability of the method to smartly select the level of fidelity
needed to maximize, at every iteration of the overall process, the computational
cost to surrogate discrepancy reduction ratio. In order to ease the integration
of the multi-fidelity GPOD method proposed by Toal, 2014 within an online
SBO framework, Chapter 5 presents an infill strategy dedicated to this type of
surrogates. The multi-fidelity methodology [Toal, 2014] is primarily described
and reformulated. The GPOD approach [Everson and Sirovich, 1995] is also
illustrated as being the grounds of the investigated multi-fidelity framework.
A dedicated enrichment criterion, is then proposed and associated to an infill
strategy summarized in the algorithm in Section 5.1. The proposed enrichment
strategy is tested on the flight domain study of a transonic 2D airfoil. Some
preliminary conclusions end up Chapter 5, as well as perspectives for infill
strategies dedicated to full-field MFSMs as proposed in Chapter 4.

Part II : Industrial-scale surrogate modeling and optimization of aero-
dynamic performances

Chapter 6 presents the coupling of the proposed full-field MFSM developed in
Chapter 4 within an evolutionary SBO scheme. To our best knowledge, no
analytical example applicable to Multi-Fidelity NIPOD (MFNIPOD) surrogates
is referenced in the literature. Therefore, an analytical 2D-example carefully
developed to represent key features of turbomachinery optimizations is intro-
duced. The proposed MFSBO framework is then used to illustrate the interest of
physics-based MFSBO. The chapter ends up with details on the implementation
of the proposed multi-fidelity framework within a pre-existing single-fidelity SBO
tool, and some preliminary conclusions.
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In Chapter 7, the proposed industrial-scale application test case is introduced.
It is derived from a previously published study and deals with the design of a
multi-stage booster considering axial stacking and non-axisymmetric hub endwall
deformations.

In Chapter 8, the predictability of the proposed multi-fidelity extension to
POD based surrogate models is primarily assessed. The performed analysis is
detailed in Section 8.1. Section 8.2 compares the single-fidelity POD and Multi-
Fidelity POD (MFPOD) bases in order to quantify the improvement allowed
by low-fidelity enhancement. In Section 8.3, the predictability of the proposed
MFNIPOD model is compared to both existing single- and multi-fidelity tech-
niques. This is done on the evaluation of the on-design isentropic efficiency (ηis)
and pressure ratio (Πtot) of the rotating row in the presented booster. Section 8.4
closes the chapter with a discussion on the choices made in order to perform
MFSBOs.

Chapter 9 presents the results of Radial Basis Function Networks (RBFNs)
and MFNIPOD assisted optimizations applied to the presented industrial ap-
plication. As the chosen low-fidelity simulation is based on mesh coarsening
of its high-fidelity counterpart, the impact of this coarsening is evaluated in
Section 9.1 by performing two RBFN assited optimizations, respectively with low-
and high-fidelity simulations. The presented MFSBO framework is then used in
Section 9.2 to optimize the considered rotor blade, with carefull attention given
to the impact of deformations on the aerodynamics of the machine. Section 9.3
closes the chapter with a discussion about the impact of the chosen simulation
tool and some concluding remarks.

General Conclusions and perspectives on furture research terminate the thesis.

The research presented in Chapters 4, 6, and Part II gave rise to two full-size,
peer-reviewed conference papers [Benamara, Breitkopf, Lepot, and Sainvitu,
2016b; Benamara, Breitkopf, Lepot, and Sainvitu, 2017], and a peer-reviewed
research paper in Structural and Multidisciplinary Optimization [Benamara,
Breitkopf, Lepot, Sainvitu, and Villon, 2017]. The content of Chapter 5 is mainly
given in Benamara, Breitkopf, Lepot, and Sainvitu, 2016a.
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Chapter 2

Literature review

In this chapter, we present literature related to the coming developments and
the proposed industrial-scale application. Even though the targeted optimization
techniques can be applied to a wide range of engineering systems, the present
thesis takes root in the competitiveness of aircraft engine manufacturing domain.
Therefore, it seems relevant to present shortly this targeted application first in
Section 2.1. Section 2.1.1 introduces literature dealing with secondary flows in tur-
bomachines and particularly low-pressure compressors, main focus of this study.
Then, Sections 2.2, 2.3 and 2.4 respectively review Surrogate-Based Optimiza-
tion (SBO) methods, conventional Multi-Fidelity Surrogate Models (MFSMs), and
a choice of Reduced Order Models (ROMs) with their application. In Section 2.5
turbomachinery optimizations using SBO techniques are reviewed. Finally, Sec-
tion 2.6 concludes the chapter with the selected orientations for this research and
their underlying rationales.

2.1 Aircraft engine and turbomachinery design

Following the definition given by Gorla and Khan, 2003, a “Turbomachinery is
a device in which energy transfer occurs between a flowing fluid and a rotating
element due to dynamic action, and results in a change in pressure and momentum
of the fluid”. In axial machines, the rotating element (or rotor) is composed of
several rows of rotating blades and is acting together with inserted static rows
of blades composing the stator. Each couple of adjacent stator and rotor rows
consists in a stage as illustrated by the red mark on Fig. 2.1b. Figure 2.1 shows a
classical turbofan mainly composed of:

1. Fan : ensuring almost 80% of modern engines thrust;

9
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2. Compressor : increasing both total pressure and temperature of the air pass-
ing through the engine core;

3. Combustor : burning the mixture fuel-compressed air to initiate gas accel-
eration;

4. Turbine : transfering kinetic energy to the engine shaft causing the compres-
sor’s spin;

5. Exhaust nozzle : mixing hot and fresh bypass air downstream the engine
while limiting its noise emission.

(a) Cut view of the PW4000 air-
craft engine

FAN

LPC
HPC

Spin
ner

Outer Casing

Splitter
Air Inlet

Stage (stator+rotor)

(b) Fan and compressor core of the CFM56-5A
turbofan [Piscopo, 2013]

Figure 2.1: View of civil aircraft engine.

The stages, mentioned earlier, compose the low- and high-pressure compressors
on one hand and turbines on the other. The reader interested in more detailed
information on Turbofan propulsion is referred to El-Sayed, 2008.

According to Meher-Homji, 2000, the birth of turbojet engines is located
between 1920 and 1930 and resulted in Sir Frank Whittle’s patent for jet
engine. Three periods can be distinguished in nineteen century’s evolution of
turbomachinery design. Before mid-1900’s, computational power was too low to
consider numerical models higher in precision than 1D approximations. For this
reason, engine designs were largely based on experiment and driven by strong
asumptions, explaining relatively low performances. Between 1950 and 1980, 2D
“through-flow-calculation” became the dominating method for turbomachinery
design [X. D. Wang, 2010]. After 1980’s, the increase in computational power
made turbomachinery studies affordable via newly developed Reynolds Averaged
Navier-Stokes (RANS) simulations and their associated turbulence models. As
mentioned by X. D. Wang, 2010, the Computational Fluid Dynamics (CFD)
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simulations used for turbomachinery design “developed from 2D to 3D, from
planar cascade to annular cascade, from single blade passage to whole ring, from
single stage to multi-stages”. The switch from 2D to 3D computations allowed
a better control over the blades design, as reported in Dang and Isgro, 1995;
Dang, Damle, et al., 2000. The increase in fidelity is directly correlated to an
important increase in the modern engines performance, as illustrated on Fig. 2.2.
For a review on the application of CFD for turbomachinery design, the reader is
referred to Denton and Dawes, 1998 and Pinto et al., 2016.

Figure 2.2: Impact of CFD on SNECMA fan performance, over a period of 30
years (from Escuret et al., 1998; X. D. Wang, 2010)

In their review article, Pinto et al., 2016 investigate the computational methods
involved in aerodynamic study for turbomachinery. They come to the conclusion
that high-fidelity CFD numerical methods have reached a maturity allowing their
daily use in engineering offices. The predictive capability of these methods en-
ables the restriction of undesired features in the machine like strong secondary
flows in turbines or corner separations in compressors. They also highlight the
present trend to move from steady state single stage simulations to multistage
and unsteady predictions. They finally emphasize the associated computational
limitations, as unsteady computations tend to be conflicting with usual numbers
of evaluations required in any optimization campaign. Page et al., 2015 give an
overview of high-fidelity based turbomachinery automated design and optimiza-
tion.
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2.1.1 Secondary flows in turbomachines
In the recent years, the reduction of both weight and size of axial aircraft
compressors has led to high stage loadings. This tends to increase the cross flow
intensity as well as three dimensional separation phenomena. Figure 2.3 shows the
expected secondary structures in axial turbomachinery. These structures mainly
appear due to the interaction between the boundary layer with the Leading
Edge (LE) of the blade.

(a) Secondary flow in a turbine
(from Takeishi et al., 1990)

(b) Formation of hub-corner stall with
separation lines (from Lei et al., 2008)

Figure 2.3: Secondary flows in axial turbomachinery.

Most of the literature on secondary flows in axial turbomachinery is dealing
with turbines [Denton, 1993; Langston, 2001] as the amplitude of the observed
structures is increased by higher thickness to chord ratios (mainly due to turbine
internal cooling constraints), and their impact on the global performances of
the machine is strenghtened by the flow acceleration accross the passage. The
increase in static pressure in the near-LE stagnating point creates a descending /
ascending flow impacting the low-momentum boundary layer on the hub / casing
endwall. In the hub vicinity, the radial velocity gradient induces a vortex filament
upstream of the rotor LE [Levchenya et al., 2010] that rolls up into the horseshoe
vortex when skirting the blade LE (see Fig. 2.3a and Reising, 2011). Another
overwhelming secondary flow occurs in the blade channel and is known as hub or
casing passage vortices. In the low-momentum boundary layer on the bounding
walls of the passage, the equilibrium streamlines are overturned yielding a cross
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flow going from the Pressure Side (PS) to the Suction Side (SS) of adjacent
blades [Colombo, 2011, Chapter 1 - Section 3]. Two spiralling motions are thus
originated and result in counter-rotating passage vortices that can also be linked
to the corner vortex onset as they impact the boundary-layer on the blade surface.
Depending on the inlet massflow rate at the considered operating point, the PS
leg of the horseshoe vortex can cross over the passage and further complexify
the passage vortex structure on one hand and interact with the SS leg of the
horseshoe vortex from the adjacent blade on the other, as illustrated on Fig. 2.3a.

The secondary flows in turbine and compressor rotors are slightly different even
if the structures remain equivalent. Firstly, the turning observed in compressors is
usually far below its turbine design counterpart despite an increase in the turning
accross compressor blade rows in the last decades. Secondly, the fluid being
accelerated accross the turbine stages, the secondary structures are stretched
and their rotating kinetic energy is increased. Therefore, designs that delay
the development of hub vortices are improving the turbine efficiency simply by
reducing the impact of flow acceleration on the secondary flows. In compressor
design, this streching is not observable as the mean axial velocity is reduced
accross the compressor stages. On the contrary, the diffusion is responsible
for an increased mixing of the vortices with the main stream in the passage.
Another phenomenon called “three-dimensional separation” is also observed in
highly loaded compressor stages [Colombo, 2011, Chapter 1 - Section 4]. This
phenomenon occurs when the low momentum fluid in the boundary layer, going
from PS to SS of adjacent blades, intersects the low momentum fluid on the
suction surface hub corner and can be further induced by a descending flow on
the blade surface [Gbadebo et al., 2005]. As illustrated on Fig. 2.3b, the cross
flow between PS and SS of adjacent blades triggers the seperation of the fluid.
This phenomenon can be further induced by shock-boundary layer interaction in
the case of high turnings revealing locally supersonic hub sections.

2.2 Surrogate Based Optimization
Simulation-based optimization has proven to be an efficient tool to explore large
design spaces and target important improvements in performances while keeping
the design cycle duration within acceptable limits. Nevertheless, the involved
computational burden is often shown to be prohibitive for complex industrial
applications [Pinto et al., 2016]. In this section, we give an overview of different
attempts of industrial optimizations involving SBO techniques aiming at drasti-
cally reducing the number of costly evaluations by substituting an approximate
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to the high-fidelity computational model. For complete review on the subject,
the reader is referred to Keane and Nair, 2005; Queipo et al., 2005; Eldred and
Dunlavy, 2006; Forrester, Sóbester, et al., 2007; Forrester, Sóbester, et al., 2008;
Forrester and Keane, 2009; Koziel and Ogurtsov, 2014 or Viana et al., 2014.

The SBO paradigm is known to be an efficient approach to optimize cost func-
tions estimated from computationally expensive computer codes [Queipo et al.,
2005; Forrester and Keane, 2009]. The main idea is to replace the direct opti-
mization by an iterative process involving the creation, the optimization and the
update of a reasonably accurate analytical representation of the cost function that
is tractable for extensive evaluation [Koziel and X.-S. Yang, 2011, Chapter 3].
Conceptually speaking, the SBO procedure can be summarized as follows:

1. Generate the initial surrogate model trained on an a priori sampling of the
high-fidelity model,

2. Obtain an approximate solution to Problem 1.1 by optimizing the surrogate,

3. Evaluate the high-fidelity solution of the approximate optimum,

4. Update the surrogate model with the new high-fidelity point(s),

5. Stop the process if the arbitrary terminating conditions are met or go to step
2.

This sequence’s inner loop (steps 2 to 4) can be formulated as an iterative pro-
cedure, as in Queipo et al., 2005; Koziel, Bandler, et al., 2006; Koziel and X.-S.
Yang, 2011:

θ?
(i+1) = arg min

θ
Ỹ(i) (θ,yθ)) s.t c̃(i) (θ,y(θ)) ≤ 0. (2.1)

2.2.1 Provably convergent surrogate model management
techniques

The optimization subproblem solved at iteration (i) can be associated to a trust-
region constraint ∆(i). Depending on the order of consistency of the surrogate
model in the trust region surrounding the current optimum, the sequence of sub-
problems optima is provably convergent as demonstrated in Alexandrov, Dennis,
et al., 1998. Being based upon zero- or first-order consistent surrogate models,
the SBO strategy can target the optimization of the surrogate of the original
objective or an associated merit function, potentially integrating the original con-
straints of the problem [Eldred and Dunlavy, 2006]. As part of the large class
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of SBO methods, we can mention the Approximation Model Management Op-
timization (AMMO) by Alexandrov and R. M. Lewis, 2001, and the Surrogate
Management Framework (SMF) of Booker et al., 1999 or Torczon and Trosset,
1998 associated to “pattern search” [Torczon, 1997] Derivative Free Optimiza-
tions (DFOs) that are more suited to first-order consistent models.

2.2.2 Gradient Based Optimization
Gradient Based Optimization (GBO) is often linked with direct optimization where
a local search algorithm is based on the first-order derivative and eventually on
the Hessian of the objective function. As mentioned earlier, this kind of strategy is
untractable for industrial optimization problems associated to expensive evaluation
tools. Nevertheless, we can integrate new types of surrogate modeling related
methodologies into the class of GBOs:

• SBO techniques based on Gradient Enhanced Surrogate Mod-
els (GESMs) [Giannakoglou et al., 2006; Laurenceau and Sagaut, 2008;
Han, Görtz, et al., 2013; Zimmermann, 2013; L. T. Leifsson et al., 2016;
C. Song et al., 2016]

• GBO methods sped up with the approximate gradient of the surrogate
model [Peri and Tinti, 2012; Bellary and Samad, 2014; Bahamonde et al.,
2016].

2.2.3 Evolutionary Algorithm based optimization
Another class of SBO strategies that originated in the mid-1980’s [Grefenstette
and Fitzpatrick, 1985] and gained in popularity within the last two decades per-
tains to surrogate assisted Evolutionary Algorithms (EAs). According to Jin, 2011,
SMFs for fitness evaluation are divided into individual-based [Jin, Olhofer, et al.,
2000; Jin, Olhofer, et al., 2002; Ong et al., 2003; Branke and Schmidt, 2005],
generation-based [Ratle, 1998; Bull, 1999; Jin, Olhofer, et al., 2002; Lim et al.,
2006] and population-based [Hamza and Saitou, 2012; Gong et al., 2015] cate-
gories. The basic asumption these techniques are built on is that the surrogate
model is accurate enough to support the whole optimization process supposedly
yielding a global or near-optimal solution. This kind of Surrogate Management
Technique (SMT) is often referred to as off-line surrogate based Evolutionary Op-
timization (EO) [Redmond and Parker, 1996; Bull, 1999; Greenman and Roth,
1999]. Nevertheless this strategy can lead to false optima as illustrated in Jin,
Olhofer, et al., 2000. As opposed to previous type of SBO strategies, in that case,
the construction of a model management method is much more complicated, and
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no proof of convergence is yet associated to this class of techniques [Ong et al.,
2003]. To cope with this issue, more recent developments usually involve online
strategies [Pierret and Van den Braembussche, 1999; Branke and Schmidt, 2005;
Emmerich et al., 2006]. For a complete overview on surrogate assisted EOs, the
reader is referred to Jin, 2005; Jin, 2011.

2.3 Multi-fidelity surrogate modeling
The “multi-fidelity” terminology covers a wide range of concepts and is also
referred to as “variable-fidelity” or “multi-level”. Our main focus in this section are
surrogate models fusion techniques combining precise, albeit costly, high-fidelity
data with abondant, yet less accurate, lower-fidelity data. Nevertheless, it is
worth mentioning other strategies combining multiple fidelity codes in a different
way. For example, Burton and Hajela, 2003; Choi, Alonso, and I. M. Kroo, 2005;
Choi, Alonso, I. M. Kroo, and Wintzer, 2008; Choi, Alonso, and I. M. Kroo, 2009;
G. Singh and Grandhi, 2010 propose to restrain the use of high-fidelity simulations
to configurations poorly predicted by the low-fidelity code. Rodríguez et al.,
2001 and Peherstorfer et al., 2016 narrow down the search area by low-fidelity
exploration before increasing the precision in a second phase restricted to a
smaller design space.

Multi-fidelity strategies can be found in many disciplines with varying lev-
els of fidelity and relation between low- and high-fidelity simulations. According
to Fernández-Godino et al., 2016, the fidelity levels relation can be of three differ-
ent types:

• complex compared to simplified mathematical model

– modified differential equations : inviscid Euler / viscous RANS
– linearization by boundary conditions or geometry simplification

• precise compared to coarse mathematical simulation

– fine compared to coarsened discretization
– converged compared to semi-converged computation

• experimental data compared to modeled physics

The idea of fusing information obtained from different fidelity simulation codes
targeting similar physical phenomena has been discussed since the early 90’s. One
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possibility that originally emerged is the concept of additive or multiplicative cor-
rection. In this framework, a low-fidelity surrogate model (trained from a large
number of samples) is corrected by the addition or scaling of a correction deter-
mined from reliable, yet sparse, high-fidelity information [Keane and Nair, 2005].
In the case of low-fidelity computations affordable for extensive evaluation, the
correction can be applied directly on the low-fidelity solution, as proposed in Toal,
2014.

2.3.1 Corrective multi-fidelity surrogate models

On Fig. 2.4, we propose a synthetic view of the corrective multi-fidelity ap-
proach [Balabanov et al., 1998; Keane, 2012; Perdikaris et al., 2015].

The model (Fig. 2.4) is an additive correction, but this scheme could be easily
applied to multiplicative or linear (also called “comprehensive” in Fernández-
Godino et al., 2016) models [Keane, 2012; Perdikaris et al., 2015]. Lets consider
two different simulation codes giving access to full-field solutions y and z at
two different levels of accuracy. Stating I(·) the integration function yielding
the performance indicators of the designed industrial product from its low- or
high-fidelity full-field response, Fig. 2.4 illustrates the data flow map in corrective
MFSMs. From two nested sets (HF locations evaluated at both HF and LF level)
of low- (z) and high-fidelity (y) samples, the performance indicator ζ is computed
respectively at low- (ζL) and high-fidelity (ζH) levels. A Data Fitting Surrogate
Model (DFSM) ζ̃L is built from all the low-fidelity information as well as a
bridge function ζ̃H−L (or ζ̃H/L). The fused surrogate model ζ̃ is then obtained
by sumation (or multiplication) of ζ̃L with the scaling function. Depending on
the expected accuracy and the type of constitutive Single-Fidelity Surrogate
Models (SFSMs) ζ̃L and ζ̃H−L, some hyper-parameters can be tuned to increase
the generalization ability of ζ̃.

Many multi-fidelity frameworks presented in the literature involve additive
corrections where the scaling function (Fig. 2.4) hyper-parameters are not influ-
enced by the low-fidelity model training or vice versa [Haftka, 1991; Balabanov
et al., 1998; R. Lewis and Nash, 2000; Choi, Alonso, I. M. Kroo, and Wintzer,
2008]. The multiplicative correction framework is even more present in the
literature than its additive analogue [Chang et al., 1993; Alexandrov, R. M.
Lewis, et al., 2000; Alexandrov, Nielsen, et al., 2000; Madsen and Langthjem,
2001]. Being additive, multiplicative or linear correction, the bridge function can
ensure a first- [Alexandrov, Nielsen, et al., 2000] or second-order correction [Gano
et al., 2004; Eldred, Giunta, et al., 2004]. Concerning linear or comprehensive
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Figure 2.4: “Classical” additive multi-fidelity framework for scalar quantities [Bal-
abanov et al., 1998; Perdikaris et al., 2015].

corrections, the scaling term can be non-constant as in Qian and J. C. F. Wu,
2008, even though most of the referenced methods define it as constant [Keane,
2012; Perdikaris et al., 2015].

As demonstrated by Fernández-Godino et al., 2016, after a 20th century dom-
inated by deterministic multi-fidelity approaches, more recent researches tend to
show the rise of “non-deterministic” methods, like Kriging [Kleijnen, 2009] and
more specifically co-Kriging [Forrester, Sóbester, et al., 2007] based methodologies
which received a growing interest since the seminal publication of Kennedy and
O’Hagan, 2000.
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2.3.2 Co-Kriging related methods
Numerous references propose to use the co-Kriging method or one of its related
methodologies in SBO, Uncertainty Quantification (UQ) or design space explo-
ration. Detailed information about the technique implementation are given, for
example, in Kennedy and O’Hagan, 2000; Forrester, Sóbester, et al., 2008; Nava
et al., 2010. The reader interested in application of this MFSM technique is
also referred to Forrester, Sóbester, et al., 2007; Han, Zimmermann, et al., 2010;
Zimmermann and Han, 2010; Kuya et al., 2011; Toal and Keane, 2011; Goh et al.,
2013; Huang et al., 2013; Biehler et al., 2015 as non-exhaustive list.

The co-Kriging method [D. E. Myers, 1982; Kennedy and O’Hagan, 2000] is,
like its single-fidelity Kriging [Krige, 1951; Matheron, 1963] counterpart, known
to be limited in terms of design space dimensionality and usually restrained to
optimization problems up to 10 variables [B.-S. Kim et al., 2009]. This is due
to its hyper-parameters sub-optimization cost exponentially increasing with the
dimensionality [Bouhlel et al., 2016]. This restriction can be lifted by changing
the predictor of the sub-optimization of Kriging’s hyper-parameters or reducing
their number by ROM [Bouhlel et al., 2016].

2.3.3 Radial Basis Function Network and Artificial Neural
Network related methods

Another type of MFSM that scales better with the number of design parame-
ters is that on Artificial Neural Network (ANN) and Radial Basis Function Net-
work (RBFN) concepts. Apart from linear or comprehensive correction, the aug-
mented dimensionality formulation is a technique allowing the fusion of multi-
level information by integrating the level of fidelity as parameter for the surrogate
model [Reisenthel, Love, et al., 2006; Reisenthel, Allen, et al., 2010; Mifsud, Mac-
Manus, et al., 2016]. In ANN based modeling, the integration of empirical or
a priori knowledge proposed by F. Wang and Zhang, 1997 can be modified to
combine low-fidelity information [Leary et al., 2003].

2.3.4 Space Mapping techniques
As mentioned by Fernández-Godino et al., 2016, another approach to multi-fidelity
data fusion, as compared to corrective techniques, pertains to the mapping of the
input variables as in the Space Mapping related techniques [Bandler, Biernacki,
et al., 1994; Koziel and L. Leifsson, 2012; Bandler, Cheng, et al., 2004; Robinson
et al., 2008], in order to obtain mapped multi-fidelity data sharing the same
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variable-dimension.

2.4 Reduced Order Models
Full-field surrogate models using projection-based ROM techniques are either
used as low-fidelity models to search locally for new design points [Eldred and
Dunlavy, 2006; Bui-Thanh, Willcox, et al., 2008; Raissi, 2013], or to capture most
impacting physical phenomena and the effect of parametric changes [Bui-Thanh,
2003; Kyriacou et al., 2014; Hamdaoui et al., 2013; Bahamonde et al., 2016]. Con-
sidering the first category, the comprehension of the effect of parametric changes
on the full-field solution of the considered Partial Derivative Equation (PDE) is
obtained at the cost of important invasiveness to the simulation code. Another
disadvantage of these methods is the non-negligible cost of the low-fidelity full
field solution, as noted by Eldred and Dunlavy, 2006. On the other hand, the
projection of the system of PDEs onto the reduced basis offers an insight into
relatively important parts of the physics involved in the modeled problem.

In the case of ROM based surrogate models appropriate for intensive interro-
gation, different techniques allow to use a reduced order basis without any inter-
vention on the simulation code, regardless its level of fidelity. These techniques are
most of the time related to Proper Orthogonal Decomposition (POD) [Kerschen
et al., 2005]:

• Surrogate-POD [Mifsud, Shaw, et al., 2009]

• Shape manifold learning [Le Quilliec et al., 2015; Meng et al., 2016],

• Non-Intrusive ROMs (NIROMs) [Bistrian and Navon, 2016; Lin et al., 2016],

• Physics-based reduced-order approximation [Audouze et al., 2009],

• POD with Interpolation (PODI or POD+I, Bui-Thanh, 2003; Bui-Thanh,
Damodaran, et al., 2004; Cao et al., 2016; Verveld et al., 2016),

• Non-Intrusive POD (NIPOD) [Guénot et al., 2011; Guénot et al., 2013; D.
Xiao, Fang, et al., 2015; D. Xiao, P. Yang, Fang, Xiang, Pain, and Navon,
2016; D. Xiao, P. Yang, Fang, Xiang, Pain, Navon, and M. Chen, 2017].

In the solution to an unsteady aerodynamic problem proposed by D. Xiao,
Fang, et al., 2015; D. Xiao, P. Yang, Fang, Xiang, Pain, and Navon, 2016; D. Xiao,
P. Yang, Fang, Xiang, Pain, Navon, and M. Chen, 2017, the ROM evaluation
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cost is increased by the need to compute the initial condition of the parametrized
configuration. Once the reduced order basis is constructed, a recursive approach
is used to approximate the reduced solution at any time t for the evaluated set
of parameters. Parametrized RBFN surrogate models are built from the initial
solution at t = 0 in order to determine the right reduced approximation at time t.
NIROMs have been used in inverse problems, as in Ostrowski et al., 2008; Hamim
and R. P. Singh, 2017; Bui-Thanh, Damodaran, et al., 2004.

To the best of the author knowledge, only a few techniques have been proposed
to couple the computational alleviation brought by multi-fidelity techniques with
the physical insight allowed by ROM approaches. We can however record two
different techniques respectively associated to the multi-fidelity hierarchical
framework [L. Leifsson and Koziel, 2010; Toal, 2014; L. Leifsson and Koziel, 2015;
L. T. Leifsson et al., 2016], and the fusion related MFSM framework [Mifsud,
2008; Mifsud, MacManus, et al., 2016]. The approach presented in L. Leifsson
and Koziel, 2010 is referenced as physics-based as a shape-preserving mapping
is computed to correct a low-fidelity pressure distribution and predict its
high-fidelity counterpart. In his article, Toal, 2014 proposes to build a reduced
basis of the concatenation of low- and high-fidelity full-field solutions. Using
the so-called “Gappy-POD” technique [Everson and Sirovich, 1995; Bui-Thanh,
2003], a high-fidelity prediction can be built upon any computed low-fidelity
solution. On the other hand, the method proposed in Mifsud, 2008 and Mifsud,
MacManus, et al., 2016 allows to construct a mixed reduced basis from both low-
and high-fidelity solutions. The prediction of the full field solution associated to
an unknown parametric configuration is obtained via augmented MFSMs linking
the design space with the POD reduced space.

Figure 2.5 illustrates the dimensionality augmentation of the POD coefficient
space in Mifsud, 2008. Once the variable-fidelity POD basis is built, all the training
snapshots are projected onto the POD-based ROM yielding databases linking the
position in the design space, the level of fidelity (ε on Fig. 2.5) and the position in
the POD space. Single-Fidelity DFSMs (SFDFSMs) are constructed considering ε
as an extra parameter in the design space. The prediction of the full-field solution
of an unknown location in the design space is then obtained by evaluating the
surrogate model with ε = 1 (evaluation of an approximate high-fidelity full-field
solution) and multiplying the predicted vector of coefficients onto the basis vectors
of the variable-fidelity POD-based ROM.
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Figure 2.5: Schematic view of the “Variable-Fidelity POD-based ROM” (from Mif-
sud, 2008).

2.5 Surrogate Based Optimization in turboma-
chinery design

The application of SBO techniques to complex turbomachinery design has gained
in popularity over the past decades, and numerous papers involved this kind of
techniques in the shape design of different parts yielding increased efficiency.

Numerous references propose to treat turbomachinery related engineering de-
signs via surrogate-assisted Multi-Objective Optimization (MOO) techniques such
as:

• NSGA-II [Deb et al., 2002] as in Keskin et al., 2008; Cravero et al., 2012;
Deng et al., 2013; Khalfallah et al., 2015; Wagner et al., 2015; Siddique et al.,
2016,

• Differential Evolution (DE, Storn and Price, 1997) as in Mueller et al., 2012;
De Maesschalck et al., 2013,

• other multi-objective optimization techniques as in Aulich and Siller, 2011;
Schnell et al., 2012; Cremanns et al., 2016; Ma et al., 2016; Giovannini et al.,
2016.

Other authors propose surrogate-based Single-Objective Optimization (SOO)
tools with or without constraints management. Arsenyev et al., 2015; H. Wang
et al., 2010; L. Song et al., 2016 respectively applied the Efficient Global
Optimization (EGO) technique [D. R. Jones et al., 1998] to the shape design
of a Low-Pressure Turbine (LPT), a LPT exhaust and a transonic axial com-
pressor [Reid and Morre, 1978], while Ha and Kang, 2011; Lee et al., 2014;
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Goulos et al., 2016 respectively applied Kriging assited EA or Search Pattern
optimizations to the design of an exhaust for tonal noise reduction, the design of
a turbine stage or a centrifugal compressor impeller. Talgorn et al., 2014 coupled
the dynamic tree surrogate modeling algorithm [Taddy et al., 2011] with the Mesh
Adaptive Direct Search algorithm (MADS, Audet and Dennis, 2006), and applied
the proposed SBO strategy to the drag minimization of a simplified wing [Tribes
et al., 2004] and the Multi-Disciplinary Optimization (MDO) of a supersonic
business jet [Kodiyalam and Sobieski, 2001]. Other authors propose surrogate
assisted EAs dealing with mixed variables [Baert et al., 2015], surrogate assisted
co-evolutionary algorithms [P. Song et al., 2014], Kriging-assisted simulated
annealing techniques [Qin et al., 2013], or a linear assembly of multiple surrogate
models to support EA based optimization [Shahpar and Caloni, 2013].

Finally, hybrid techniques couple surrogate modeling with GBO techniques
such as Sequential Quadratic Programming (SQP) [Queipo et al., 2005]. In their
articles, J.-H. Kim and K.-Y. Kim, 2012 and Heo et al., 2016 compare Krig-
ing [Krige, 1951; Matheron, 1963], RBFN [Bishop, 1995] and Response Surface
Approximation (RSA) [R. Myers, 2016] assisted SQP. Samad, K.-Y. Kim, et al.,
2006, Samad and K.-Y. Kim, 2008 propose to support SQP optimization with
a selection/aggregation of multiple surrogates. Leveraging the gradient informa-
tion obtained from an adjoint solver, Giannakoglou et al., 2006 applied gradient
enhanced ANNs and RBFNs assisted EA to the optimization of 3D turbine and
compressor cascades.

2.6 Conclusions
As shown in Section 2.5, a majority of SBO techniques used in turbomachinery
design deals with DFSMs. The secondary flows introduced in Section 2.1.1
strongly impact the performances of designed machines. As stressed out
by Filomeno Coelho et al., 2008, POD based models, with respect to DFSMs give
valuable insight into the physics gouverning a system’s response. Therefore we tar-
get the integration of POD based full-field surrogate models within SBO strategies.

In the mean time, as illustrated in Section 2.3, MFSMs frequently outperform
their single-fidelity analogue. Consequently, we propose, in the remainder of this
thesis, POD based MFSMs integrated into online enrichment or Multi-Fidelity
SBO (MFSBO) techniques and their applications to aerodynamic design.
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Chapter 3

POD based methodologies

This chapter presents Proper Orthogonal Decomposition (POD) based method-
ologies re-interpreted in order to create and enrich full-field Multi-Fidelity Sur-
rogate Models (MFSMs). We present firstly the Non-Intrusive POD (NIPOD)
and its constitutive steps in Section 3.1. Section 3.2 summarizes the Constrained
POD (CPOD) intially introduced by M. Xiao, Breitkopf, Filomeno Coelho, Knopf-
Lenoir, Sidorkiewicz, et al., 2010; M. Xiao, Breitkopf, Filomeno Coelho, Knopf-
Lenoir, Villon, et al., 2013; M. Xiao, Breitkopf, Filomeno Coelho, Villon, et al.,
2014. Finally, Section 3.3 re-interprets the Gappy-POD (GPOD) for multi-fidelity
data introduced by Toal, 2014 in order to enable the later development of a dedi-
cated enrichment criterion.

3.1 Non-Intrusive POD
Also known as Karhunen-Loève Expansion (KLE), or Principal Component
Analysis (PCA), POD was first introduced in the field of turbulence by Lumley,
1967. POD is widely used to capture the essential dynamics of the physical
phenomenon under study from a set of full-field simulations within a lower
dimensional space [Gogu et al., 2009]. Assuming only a few independent modes
strongly impact the dynamics of the system, an important decrease in the com-
putational cost of the solution can be obtained concessing few in terms of precision.

While the POD-Galerkin model reduction intends to project the set of Partial
Derivative Equations (PDE) onto the subspace spanned by the “most energetic”
modes, the NIPOD interpolates the relation between the design space D ⊂ IRp

and the reduced output space. This step enables the prediction of the physical
response for any defined configuration in D. This type of models are referred to
as NIPOD [Guénot et al., 2011; Guénot et al., 2013; D. Xiao, Fang, et al., 2015],

27
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“Galerkin-free” Reduced Order Models (ROMs) [Shinde et al., 2016], “surrogate”
POD [Hamdaoui et al., 2013], or POD “with interpolation” (PODI) [Bui-Thanh,
2003; Cao et al., 2016].

3.1.1 Basics of POD
We consider a p-dimensional D and a “costly” evaluation function yielding high-
fidelity (or, at least, precise enough) discretized solutions y ∈ IRn, where n � p.
We also define θ ∈ IRp the vector of parameters associated to a given position in
D and a computed solution y(θ). Given a Design of Experiments (DoE) Θ of M
samples in D, we define the column-dominant snapshot matrix Y containing the
snapshots yi(θi) ∀i ∈ [[1,M ]], and a centering snapshot ȳ, usually taken as the

mean vector ȳ := 1
M

M∑
i=1

yi. Following the formulation introduced in Raghavan

et al., 2013, the POD procedure is presented as the best orthogonal projector for
the vectors contained in the set of snapshots Y.

Each snapshot y is considered as a point in an Euclidean affine space E on the
vector space E ∈ IRn associated with:

1. the coordinate system (O,B) where B is the canonical basis of E and O is a
point chosen as origin (usually the mean snapshot ȳ);

2. the usual inner product 〈u,v〉;

3. the usual norm ‖u‖2 = 〈u,u〉.

The POD based ROM associated to the known vectors contained in Y′ (where
Y′·i := yi − ȳ ∀i ∈ [[1,M ]]) lies in the m-dimensional Euclidean affine subspace
F which is at most M -dimensional, and far smaller than the output vector space
dimension n (O < m ≤ M � n). Let Φ := [φ1, · · · ,φm] be an orthonormal basis
generating F . We characterize the POD orthogonal projector 〈ΦΦ>,y−ȳ〉 : E →
F with the optimality and orthogonality conditions

min
Φ

(∥∥∥(I−ΦΦ>
)

Y′
∥∥∥2

F

)
, with Φ>Φ = Im, (3.1)

where ‖A‖2
F := tr(A>A) is the Frobenius norm, yielding Φ the eigenmodes of the

covariance matrix Y′Y′>.
By limiting the basis Φ to the m most “energetic” modes, the reconstruction error

ε(m) = 1−
∑m
i=1 λi∑M
j=1 λj

, (3.2)
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where λ is the vector of monotonically decreasing eigenvalues associated with the
eigenvalue problem

Y′Y′>φi = λiφi. (3.3)

Practically, following the “snapshots” method proposed by Sirovich, 1987, the basis
Φ is determined by Singular Value Decomposition (SVD) of the deviation matrix
Y′. For further information regarding the connections and equivalence between
POD, PCA, KLE and SVD, one can refer to Liang et al., 2002. The reduced-order
solution ỹ(θ) ∈ IRn may be written:

ỹ(θ) = ȳ +
m∑
i=1
φiαi, (3.4)

where αi is the projection coefficient of the full-field solution y(θ), of any vector
of parameters θ ∈ D, onto the i-th vector in the basis Φ.

3.1.2 Surrogates of the projection coefficients
NIPOD targets a fast evaluation of the full-field simulation by interpolating each
of the projection coefficients αi ∀i ∈ [[1,m]], with respect to the position θ ∈ D.
The surrogate model for each of the projection coefficients α̃i is constructed using
a data fitting method such as:

• Polynomial Responses (RSMs) [Forrester, Sóbester, et al., 2008],

• Diffuse Approximations (DAs) [Nayroles et al., 1992; Breitkopf et al., 1998],

• Radial Basis Function Networks (RBFNs) [Bishop, 1995, Section 5],

• Support Vector Regressions (SVRs) [Smola and Schölkopf, 2004],

• Gaussian Processes (GPs) [Rasmussen and Williams, 2006],

• Artificial Neural Networks (ANNs) [Bishop, 1995, Section 4].

In the present work, RBFNs are used to train the surrogate models of the projection
coefficients. We denote H the matrix such that hjk = hj (‖θk − θj‖2, σj) ∀j, k ∈
[[1,M ]]2, with hj the Radial Basis Functions (RBFs) composing the network and
centered around the M training experiments. To ensure H is positive definite, we
use non-conditionally invertible multi-quadric

hj(θ, σ) =
√
‖θ − θj‖2

σ2 + 1, (3.5)
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or Gaussian

hj(θ, σ) = exp
(
−‖θ − θj‖

2

2σ2

)
(3.6)

kernels. Denotingαi the “target” vector [Bishop, 1995, Chapter 5] of the projection
coefficients of all the training snapshots onto the i-th mode of the basis Φ, ωij are
the weights of the linear regression obtained by resolution of

Hωi = αi. (3.7)

The computation of the weight vector ωi associated to each dimension i ∈ [[1,m]]
of the ROM, gives access to a fast estimation (α̃i(θ) ≈ αi(θ)) of the reduced-order
solution in the POD space for any θ in the design space D:

α̃i(θ) =
M∑
j=1

ωjhj (‖θ − θj‖2, σj) . (3.8)

α̃1(θ)

θ

α̃1

α̃m(θ)

θ

α̃m

(Φ, ȳ,θ)

ỹ(θ) = ȳ + Φα̃ (θ)

Figure 3.1: Illustration of the approximation procedure of the surrogate model.

Figure 3.1 illustrates the way the surrogate models of the projection coefficients
(α̃i(θ) ∀ i,θ ∈ [[1,m]]×D) give access to a fast evaluation of the full-field reduced
solution ỹ of any unknown location θ.
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3.2 Constrained POD

As mentioned in Section 3.1.1, it is possible to reduce the dimension of the ROM
built by POD conceding a sensible increase in the reconstruction error of the
training full-field solutions. Equation 3.2 gives the reconstruction error depending
on the number of dropped modes. In this matter, the storage of eigenmodes
in descending order (with respect to their associated eigenvalues) given by the
SVD technique is of first importance in order to limit the error mentioned above.
Even though POD based surrogate models give access to the reduced full-field
solution, classical optimization algorithms deal with scalar quantities of interest
describing the objectives and constraints of the optimization problem. Therefore,
an integration is performed on the full-field solution to obtain these quantities
of interest (I(y or z) on Fig. 2.4 and I(ỹ?) on Fig. 4.1). The idea of CPOD has
been introduced by M. Xiao, Breitkopf, Filomeno Coelho, Knopf-Lenoir, Villon,
et al., 2013 in order to insure the precise estimation of the quantities of interest
of all the training experiments while truncating the POD basis.

Two different approaches have been proposed in M. Xiao, Breitkopf, Filomeno
Coelho, Knopf-Lenoir, Sidorkiewicz, et al., 2010 and M. Xiao, Breitkopf, Filomeno
Coelho, Knopf-Lenoir, Villon, et al., 2013. The former one proposes to keep the
POD basis Φ unchanged (see Section 3.1.1), and to modify the way the projec-
tion coefficients are obtained from the full-field solutions. Usually, the coefficients
database is obtained by projecting the full-field training snapshots onto the re-
duced basis Φ which minimizes the full-field reconstruction error. This step is
here modified to minimize this error constrained by the vectorial error of estima-
tion of all the integral quantities. In the latter approach, the authors propose to
modify the basis itself accounting for the impact of truncation on the prediction
of the integral quantities.

As soon as all the quantities of interest for the optimization problem are linearly
dependent on the full-field solution, one can express the integrations performed on
the snapshots as constraints in the optimal linear subspace spanned by the con-
strained POD basis Ψ. These constraints can be taken into account in the search
for the optimal basis. We denote here the vector of integral quantities of inter-
est g gathering objectives and constraints of the optimization problem together,
and assemble the constraint matrix G puting the constraints associated to all the
training experiments together. We characterize the constrained orthogonal projec-
tor

〈
ΨΨ>,y− ȳ

〉
: E → F with the constrained optimality and orthogonality

conditions
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min
Ψ

(∥∥∥(I−ΨΨ>
)

Y′
∥∥∥2

F

)
,

with Ψ>Ψ = Im,
and G>ΨΨ>Y′ = G>Y′,

(3.9)

where card(g) < m�M the number of training snapshots.
The constraint matrix G is decomposed thanks to QR-factorization

G = [Q1 Q2] [R1 0]> , (3.10)

and the modes are sought in the orthogonal space spanned by Q2. It ensures the
integral constraints to be satisfied before minimizing the full-field reconstruction
error. To this end, the deviation matrix Y′ is projected onto the orthogonal space
YQ2 = Q>2 Y′ and the optimal basis for YQ2 is obtained by SVD:

YQ2 = VDU>. (3.11)

Finally the constrained orthogonal basis is buit as

Ψ = [Q1 Q2Vq] , (3.12)

where Vq stands for the matrix of q first columns of V such that card(g) + q = m.

In Chapter 4, this methodology is re-interpreted to interpolate sparse
high-fidelity information and approximate abondant low-fidelity data instead of
focusing on integral quantities defined in the constraint matrix G. The main
difficulty is the centering technique mentioned in Section 4.1.1 that should now
handle low- and high-fidelity mean vectors potentially lying in different vectorial
spaces. This issue is detailed and lifted in Section 4.1.3.

3.3 Gappy POD-based multi-fidelity modeling
Initially introduced by Everson and Sirovich, 1995 in the context of image
processing, the so-called “Gappy-POD” has been used in aerodynamics by
Bui-Thanh, Damodaran, et al., 2004 especially for inverse design problems.
The “gappy” denomination of this method comes from its ability to reconstruct
missing information of a given vector or to fulfill the “gaps” in the corrupted data.
In image processing domain, missing pixels is a problem engineers are confronted
frequently with. In this frame, the GPOD procedure allows to build a matrix
basis from complete images and to reconstruct the missing pixels of corrupted



3.3. GAPPY POD-BASED MULTI-FIDELITY MODELING 33

material.

Following the introduction to POD in Section 3.1.1, this section presents the
concept of POD associated to incomplete data. The mathematical notations given
in Section 3.1 are, as far as possible, respected in this section. We start defining
the term “multi-fidelity” as employed in Toal, 2014, and the associated snapshots
in Section 3.3.1. GPOD is introduced in the context of Multi-Fidelity Model-
ing (MFM), as well as the mathematical definitions required for a dedicated en-
richment criterion to be proposed in Section 5.1. This enrichment criterion aims
at pointing out the surrogate low-accuracy areas. Its ability to detect and propose
locations in the design space to explore in order to maximize the improvement
of the model is compared against enrichment criteria from the literature on a 2D
airfoil flight condition study.

3.3.1 Multi-fidelity modeling and associated Gappy-POD
technique

The GPOD based MFSM, proposed in Toal, 2014, parametrizes the high-fidelity
full-field solution by its low-fidelity counterpart, where other surrogate models
usually tend to create a direct link between the design space and the output space.
Following the respective definition of z and y as low- and high-fidelity full-field
solutions, we construct the concatenated snapshot s obtained for any experiment
θ in the design space D:

s(θ) =



z1
...
znL
—
y1
...
ynH


=

 z(θ)
—

y(θ)

 . (3.13)

The term “multi-fidelity” is here understood in a different way than the definition
stated in Chapter 4, where the discretized full-field low- and high-fidelity solutions
have to share the same output space. In GPOD based Multi-Fidelity Surrogate
Modeling (MFSM), two potentially different sizes nL and nH represent respectively
the number of nodes in the low- and high-fidelity discretizations. We consider here
a unique DoE Θ ofM points θi in the design space D, ∀i ∈ [[1,M ]]. The matrix of
all multi-fidelity snapshots is denoted S, by analogy with the high-fidelity matrix
Y defined in Section 3.1.1. We also consider a centering snapshot s̄ and the devia-
tion matrix S′, such that its column vectors s′i = si− s̄, ∀i ∈ [[1,M ]]. For the sake
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of simplicity, we denote in this chapter y′ = y−


s̄nL+1

...
s̄nL+nH

, and z′ = z−


s̄1
...
s̄nL

.
The GPOD procedure is based on the Singular Value Decomposition of

the deviation matrix S′. We call Φ the orthonormal basis associated with the
concatenated multi-fidelity subspace. The model reduction is performed by taking
only the m “most energetic” modes of Φ, where m ≤ M as in Section 3.1.1.
Given a location θ in the design space D, the estimation of the high-fidelity
solution ỹ(θ) by GPOD is enabled by projecting the computed low-fidelity full-
field solution z(θ) onto the basis Φ. This is done in a step we call gappy-projection.

Let α = Φ>s′ be the vector of the projection coefficients of s′ onto the POD
space, and denote P(s′) = ΦΦ>s′ the projector associated to the basis Φ. α can
be seen as the vector of coefficients minimizing the distance between s′ and P(s′):

α = argmin
α∗

(
‖s′ −Φα∗‖2

)
. (3.14)

Gappy-POD as a predictor of high-fidelity data

The GPOD can be interpreted as the filtered projection of a vector onto the sub-
space spanned by the basis Φ. Once the Φ basis built with a set of snapshots(

z
y

)
, we use the GPOD to predict high- from low-fidelity data [Toal, 2014].

Following [Bui-Thanh, Damodaran, et al., 2004], a mask vector associates 1 with
low-fidelity and 0 with high-fidelity data. We start revisiting this formulation by
introducing a projector G(s′) : E → E allowing the same association

G(s′) = Γs′,

where Γ =

 InL 0

0 0

 } nL

} nH︸︷︷︸
nL

︸︷︷︸
nH

. (3.15)

We now seek the best projection Pg = Φβ of a filtered and centered snapshot

Γs′ =
(

z′
0

)
by minimizing the functional

J (β) = 1
2‖Γs′ − ΓΦβ‖2, β ∈ IRm. (3.16)

Using the idempotence property of G ⇔ ΓΓ = Γ, the diagonal property of Γ and
the orthonormality of Φ, the minimization of J (β) yields
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β =
(
Φ>ΓΦ

)−1
Φ>Γs′. (3.17)

Let H be the projector associated with the diagonal matrix Γ= In − Γ, ex-

tracting the high-fidelity part Γs′ =
(

0
y′

)
. The GPOD operator [Toal, 2014]

is referred to as Pt hereafter and is obtained by replacing ΓΦβ with Γs′ in the
reconstructed snapshot:

Pt(s) = Γs + Γ(s̄ +Φβ) . (3.18)

vector notation expression

centering snapshot s̄ = 1
M

M∑
i=1

si

deviation snapshot s′ = s− s̄

multi-fidelity snapshot s =
(

z
y

)

low-fidelity data Γs =
(

z
0

)

high-fidelity data Γs =
(

0
y

)
POD projection P(s) = s̄ +ΦΦ>s′

GPOD projection Pg(s) = s̄ +Φ
(
Φ>ΓΦ

)−1
Φ>Γs′

GPOD prediction [Toal, 2014] Pt(s) = Γs + ΓPg(s)

Table 3.1: Multi-fidelity / POD notations.

The notations in Table 3.1 are used in the following sections. Note that ΓPt(s) =
ΓPg(s) and ΓPt(s) = Γs by construction.

3.3.2 Illustration of the Gappy-projection operator
We give here a short illustration of the difference between full-field and gappy-
projection. We consider the fonctional space defined by the linear combination of
three Legendre’s polynomials (namely L2,L3, and L5). We select several combina-
tions of this functional space as high-fidelity solutions yi(x) = θ1L2 + θ2L3 + θ3L5,
where θ1 ∈ [−2, 2], θ2 ∈ [−2, 2], θ3 ∈ [−1, 2], and i ∈ [[1,M ]]. The associated
low-fidelity snapshots are defined as zi(x) = yi(x)− θ3L5. In this case, we impose
nL = nH for simplicity, but the illustration would remain unchanged if not. We
denote χ, the evenly distributed discretization of the real line between −1 and 1
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with n = nH = nL x-values, and Lχk the real-valued vector of the χ-discretized kth

Legendre’s polynomial Lχk = [Lk(χ1), · · · ,Lk(χn)]. We also define a concatenated

multi-fidelity snapshot s = θ1

(
Lχ2
Lχ2

)
+ θ2

(
Lχ3
Lχ3

)
+ θ3

(
0
Lχ5

)
.

We sample the 3D design space D, such that all multi-fidelity experiments lie
on a plane as illustrated on Fig. 3.2. The subspace spanned by the POD basis
Φ is represented by the plane denoted Φ on Fig. 3.2. Considering the unknown
location θ ∈ D, Fig. 3.2 illustrates the different projections of the concatenated
snapshot s realized typically by POD and GPOD. It is important to keep in mind
that a POD projection requires to know the entire snapshot at both low- and
high-fidelity levels. Therefore, this kind of projection is usually of no interest
in the context of engineering optimization, and is only used to quantify the
completeness of the subspace spanned by the POD basis with respect to the real
output space of the problem at hand. The gappy-projection finds the point in
Im Φ minimizing the error in Eq. 3.16 as illustrated by the green point located on
the minimum.
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Figure 3.2: Comparison of classical and gappy-projection for an arbitrary snapshot
outside the training ensemble of the multi-fidelity POD.

Figure 3.3 shows the low- and high-fidelity functions associated to the snapshot
s illustrated on Fig. 3.2. We can also see the low- and high-fidelity parts of
the POD projection and gappy-projection of the test vector s. We can see that
gappy-projection presents an error only on its high-fidelity part, whereas the POD
projection presents an error for both parts. One can say that the gappy-projection
is better adapted to the low-fidelity vector than the POD projection as no con-
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Figure 3.3: Low- and high-fidelity solutions with their classical and gappy-
projection.

straint on the high-fidelity representation is applied. We can also see that the error
of the POD projection is lower when considering the high-fidelity part of the vector.
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Chapter 4

Multi-Fidelity POD based model

This chapter introduces the Hierarchised Multi-Fidelity POD (HMFPOD) based
surrogate model developed in this research. It settles the mathematical deriva-
tions and numerical implementation of the proposed multi-fidelity extension to
Non-Intrusive POD (NIPOD) based surrogate models and gives the mathematical
notations employed in subsequent chapters. The training data is hierarchised with
respect to the level of precision of each experiment, which constitutes the main
contribution of the present work. The developed surrogate model is composed of
two main ingredients:

1. multi-fidelity extension for Proper Orthogonal Decomposition (POD) bases
computation to improve the output space modeling,

2. multi-fidelity Data Fitting Surrogate Models (DFSMs) to improve the quality
of the surrogate mapping between input and ROM spaces.

Concerning the multi-fidelity extension for POD bases, we re-interpret the
Constrained POD (CPOD) [M. Xiao, Breitkopf, Filomeno Coelho, Knopf-Lenoir,
Villon, et al., 2013; M. Xiao, Breitkopf, Filomeno Coelho, Villon, et al., 2014; D.
Xiao, Fang, et al., 2015] concept to estimate from numerous low-fidelity samples
the structures or patterns in the output space that high-fidelity samples alone
were unable to illustrate. With regard to multi-fidelity DFSM of the mapping
between input and ROM spaces, we employ either co-Kriging [Kennedy and
O’Hagan, 2000] or additive correction based multi-fidelity Radial Basis Function
Networks (RBFNs) [Balabanov et al., 1998].

The remainder of this chapter is organised as follows: Section 4.1 gives
the mathematical definitions and derivations required for the Multi-Fidelity
POD (MFPOD) basis enrichment. All the notations are conserved in the coming
sections and chapters to help the reader identify the link between mathematical

39
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development, algorithmic implementation and application. Section 4.2 presents
step-by-step algorithms in order to handle multi-fidelity information and build
multi-fidelity enhanced POD bases. Section 4.2.2 specifies the POD coefficients
interpolation proposed for MFPOD based surrogate modeling. Finally, concluding
remarks are given in Section 4.3.

4.1 Bi-level Proper Orthogonal Decomposition
This section introduces the mathematical principles involved in the enhancement
of POD based models with multi-fidelity information. Two levels of fidelity are
considered here but the extension to multiple levels of fidelity is suggested at the
end of the section.

4.1.1 Concept introduction
We consider a design space D defined in Section 3.1.1 and two different simulations
of a single physical phenomenon associated with different levels of accuracy. We
assume the high- and low-fidelity solutions respectively known on MH and ML

different locations in D, resulting in snapshots y1, · · · ,yMH
, and z1, · · · , zML

.
The low-fidelity solution assumed far cheaper than its high-fidelity counterpart to
compute, we consider the case MH �ML.

The methodology is composed of the following steps:

1. Find the modal responses of the system at hand, as defined by the high-
fidelity experiments (see Section 3.1.1),

2. Extract from the low-fidelity experiments the “motion” explained by previ-
ously determined high-fidelity modes,

3. Compute the part of modal responses, defined by the low-fidelity experi-
ments, but missed by the known high-fidelity solutions,

4. Use the concatenated basis of all modal responses computed as hierarchised
MFPOD basis.

By opposition to the corrective multi-fidelity framework illustrated on Fig. 2.4,
in the proposed framework (Fig. 4.1), the modal functions associated to low-
fidelity information (Ξ on Fig. 4.1) are directly dependent on their high-fidelity
counterpart (Φ⊥ on Fig. 4.1).
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Figure 4.1: Proposed full-field hierarchised Multi-Fidelity NIPOD (MFNIPOD)
framework.

All the notations on Fig. 4.1 are consistent with the definitions and derivations
detailed in Sections 4.1.2, 4.1.3, and 4.2.

Without loss of generality, we assume hereafter, low- and high-fidelity simula-
tions sharing the same mesh or resulting in equally sized solutions. In the case
of different discretizations, a pre-processing step on the data y and z has to be
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performed for the vectorial solutions to share the same output space, prerequisite
for the proposed method to be applicable. Conceptually speaking, the aggregation
of new modes, computed from low-fidelity snapshots, to enrich the output sub-
space obtained from high-fidelity requires all the modes to be equally sized. This
compels automatically the user to ensure a low- to high-fidelity mesh consistency.
For the sake of readability, we prefer referring to the different levels of code as the
vectors y (high-fidelity) and z (low-fidelity) than using index notations such as
{z1, z2, · · · } [Le Gratiet and Garnier, 2014], {z(x, t1), z(x, t2), · · · } [Kennedy and
O’Hagan, 2000], or {ye,yc} [Forrester, Sóbester, et al., 2008].

We want to define a subspace for all the computed solutions of the problem
at hand. After computing the optimal subspace for the representation of sparse
high-fidelity full-field solutions, we extend it considering the “cheap” information
extracted from abondant low-fidelity snapshots. To cope with the multi-fidelity
centering issue, we propose an automated strategy to determine the centering
snapshot from the difference between low- and high-fidelity sets of snapshots. The
completion of the multi-fidelity basis is obtained as explained in Sections 4.1.2
and 4.1.3.

4.1.2 High-fidelity decomposition and centering snapshot
selection

We first seek an orthonormal basis Φ for the MH-dimensional subspace in IRn

spanned by the high-fidelity snapshots yi by minimizing

J(ȳ,Φ) = 1
2

MH∑
i=1
‖yi − ȳ−ΦΦ>(yi − ȳ)‖2. (4.1)

In our case zero projection error is desirable on the high-fidelity snapshots, as
legitimated by the hypothesisMH �ML related to low- to high-fidelity simulation
cost ratio. ȳ may be chosen as any vector satisfying

yi − ȳ ∈ Im Φ, (4.2)

without any effect on the projection error (Eq. 4.1). Therefore, as no truncation
will be performed on the basis Φ, we use the QR decomposition of the deviation
high-fidelity matrix Y′:

[Y′] = [Q1 | Q2] [R] , (4.3)

where,
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R =





MH

r

0

n
−
M
H

.

We choose Φ = Q1 and look in span(Q2) for the modes corresponding to the
low-fidelity snapshots. The basis completion is sought in the subspace orthogonal
to the centered snapshots in Y′, also linked with the lower (n −MH ×MH)-null
block of R.

4.1.3 Low-fidelity enhancement
We assume a set of low-fidelity snapshots zi, ∀i ∈ [[1,ML]] is available and stored in
the matrix Z. Stating the search of the optimal projection basis (denoted Ψ here-
after) and of the multi-fidelity centering snapshot z̄ for both low- and high-fidelity
snapshots as a minimization problem, the global cost function can be written as

J(z̄,Ψ) = 1
2

MH∑
i=1

∥∥∥(I−ΨΨ>
)

(yi − z̄)
∥∥∥2

IRn︸ ︷︷ ︸
TH

+ 1
2

ML∑
i=1

∥∥∥(I−ΨΨ>
)

(zi − z̄)
∥∥∥2

IRn︸ ︷︷ ︸
TL

,

(4.4)
where we define the orthonormal basis

Ψ = [Φ | Ξ] , (4.5)

and
z̄ = ȳ + d (4.6)

with d ∈ IRn.
Knowing Φ, and ȳ (see Section 4.1.2), the minimized functional becomes

J (z̄,Ψ) = J (d,Ξ) , (4.7)
s.t

Φ>Ξ = 0(MH×ML), (4.8)
Ξ>Ξ = IML

. (4.9)
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Without any loss of generality, we impose d ∈ (Im Φ)⊥, equivalent to

Φ>d = 0(MH×1). (4.10)

For the sake of readability, we first develop the terms TH and TL in order to
simplify the functionals J (z̄,Ψ) and J (d,Ξ).

Decomposition of TH = 1
2

MH∑
i=1

∥∥∥(I−ΨΨ>
)

(yi − z̄)
∥∥∥2

IRn

We use the definition in Eq. 4.6 to develop

TH = 1
2

MH∑
i=1

∥∥∥(I−ΨΨ>
)

(yi − ȳ− d)
∥∥∥2

IRn

= 1
2

MH∑
i=1

∥∥∥(I−ΨΨ>
)

(yi − ȳ)−
(
I−ΨΨ>

)
d
∥∥∥2

IRn
.

(4.11)

Equation 4.2 gives yi− ȳ ∈ ImΦ, with ImΦ ⊂ ImΨ by construction (see Eq. 4.5),
yielding

(
I−ΨΨ>

)
(yi − ȳ) = 0. (4.12)

By construction (Eq. 4.5),

ΨΨ> = ΦΦ> + ΞΞ>. (4.13)

Considering the result in Eq. 4.12 on one hand, and the properties given in Equa-
tions 4.10 and 4.13 on the other yields the decomposition

(
I−ΨΨ>

)
(yi − z̄)=

(
I−ΨΨ>

)
(yi − ȳ)−

(
I−ΨΨ>

)
d

= −
(
I−ΨΨ>

)
d

= −
(
I−ΞΞ>

)
d−ΦΦ>d

= −
(
I−ΞΞ>

)
d.

(4.14)

Introducing this result into Eq. 4.4 reduces its first term to

TH = MH

2 d>
(
I−ΞΞ>

)
d. (4.15)
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Decomposition of TL = 1
2

ML∑
i=1

∥∥∥(I−ΨΨ>
)

(zi − z̄)
∥∥∥2

IRn

We demonstrate hereafter
(
I−ΨΨ>

) (
I−ΦΦ>

)
=
(
I−ΨΨ>

)
to develop TL.

Considering Eq. 4.13, we develop

(
I−ΨΨ>

) (
I−ΦΦ>

)
=
(
I−ΦΦ>

) (
I−ΦΦ>

)
−ΞΞ>

(
I−ΦΦ>

)
, (4.16)

and use the orthonormality of Φ⇒ Φ>Φ = IMH
to write(

I−ΨΨ>
) (

I−ΦΦ>
)

= I−ΦΦ> −ΞΞ>
(
I−ΦΦ>

)
. (4.17)

Finally, taking Eq. 4.8 into account results in(
I−ΨΨ>

) (
I−ΦΦ>

)
=
(
I−ΨΨ>

)
. (4.18)

We use Equations 4.2, 4.10, and 4.18 to simplify the inner term in TL:(
I−ΨΨ>

)
(zi − z̄) =

(
I−ΨΨ>

) (
I−ΦΦ>

)
(zi − d) .

We also define

z⊥i :=
(
I−ΦΦ>

)
zi, (4.19)

and use Eq. 4.10 to further simplify the previous equation to(
I−ΨΨ>

)
(zi − z̄) =

(
I−ΨΨ>

) (
z⊥i − d

)
. (4.20)

Finally, taking into account that z⊥i ∈ (Im Φ)⊥ ∀i ∈ [[1,ML]] by definition (see
Eq. 4.19), and considering Equations 4.10, and 4.13 yields

TL = 1
2

ML∑
i=1

∥∥∥(I−ΞΞ>
) (

z⊥i − d
)∥∥∥2

IRn
. (4.21)

Optimality condition for J (d,Ξ)

To develop the optimality condition of J , we first define the Φ-projected low-
fidelity snapshots z⊥i and introduce the simplified TH (Eq. 4.15) and TL (Eq. 4.21)
into Eq. 4.4, to obtain the reduced functional to minimize:

J (d,Ξ) = MH

2 d>
(
I−ΞΞ>

)
d + 1

2

ML∑
i=1

(
z⊥i − d

)> (
I−ΞΞ>

) (
z⊥i − d

)
. (4.22)
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To satisfy the optimality condition on J (d,Ξ), we now seek

min
d,Ξ
J (d,Ξ) = min

Ξ

{
min

d
J (d,Ξ)

}
, (4.23)

where d ∈ IRn, Φ>d = 0(MH×1), Ξ>Ξ = IML
, and Φ>Ξ = 0(MH×ML).

The optimality of J (d,Ξ) w.r.t. d satisfies

〈
∂J
∂d

, δd
〉

= 0 ∀ δd ∈ Im Q2, (4.24)

with

〈
∂J
∂d

, δd
〉

= −δd>
(
I−ΞΞ>

) [
d− ML · z̄⊥

(MH +ML)

]
,

where z̄⊥ = 1
MH

ML∑
i=1

z⊥i .

The optimal d has to satisfy the condition d? − ML · z̄⊥
MH +ML

∈ Im Ξ, which is

possible as both d and z⊥i ∈ (Im Φ)⊥ ∀ i ∈ [[1,ML]].

For the sake of simplicity, we impose the solution to the sub-problem min
d
J (d,Ξ)

in Eq. 4.23 as

d? = ML

MH +ML

· z̄⊥. (4.25)

We also introduce,

z⊥0 =
(√

MH + 1
)

d?, (4.26)

such that the cost function J (d?,Ξ) := J (Ξ) is simplified as follows:
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J (Ξ) = MH

2 d?>
(
I−ΞΞ>

)
d?

+ 1
2

ML∑
i=1

(
z⊥i − d?

)> (
I−ΞΞ>

) (
z⊥i − d?

)
= 1

2

(√
MHd?>

(
I−ΞΞ>

)√
MHd?

)

+ 1
2

ML∑
i=1

(
z⊥i − d?

)> (
I−ΞΞ>

) (
z⊥i − d?

)
= 1

2
(
z⊥0 − d?

)> (
I−ΞΞ>

) (
z⊥0 − d?

)
+ 1

2

ML∑
i=1

(
z⊥i − d?

)> (
I−ΞΞ>

) (
z⊥i − d?

)

= 1
2

ML∑
i=0

(
z⊥i − d?

)> (
I−ΞΞ>

) (
z⊥i − d?

)
.

(4.27)

To complete the basis Ψ = [Φ | Ξ], we now seek Ξ satisfying the conditioned
POD problem

min
Ξ

1
2

ML∑
i=0

(
z⊥i − d?

)> (
I−ΞΞ>

) (
z⊥i − d?

)
,

s.t
Ξ>Ξ = ImL with mL ≤ML,

Φ>Ξ = 0.

(4.28)

Problem 4.28 implies Ξ ∈ Im Q2 ⇒ ∃t, Ξ = Q2t, where Q2 is the orthonormal
basis given by the first QR-decomposition (Equation 4.3) spanning (Im Φ)⊥, and
t is a (n−MH)×mL real-valued matrix. Keeping in mind the orthonormality of
Q2, Q>2 Q2 = In−MH

yields t>t = t>Q>2 Q2t = Ξ>Ξ = ImL .
One can notice that z⊥i −d? ∈ Im Q2 ∀ i ∈ [[0,ML]], and introduce ui ∈ IR(n−MH),
such that z⊥i − d? = Q2ui.

By replacing Ξ and z⊥i − d?, respectively with Q2t and Q2ui in Eq. 4.28, we
obtain:

(
z⊥i − d?

)> (
I−ΞΞ>

) (
z⊥i − d?

)
= u>i Q>2

(
I−Q2tt>Q>2

)
Q2ui

= u>i ui − u>i tt>ui
= u>i

(
I− tt>

)
ui.

(4.29)
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The completion problem is therefore reduced to

min
t

1
2

ML∑
i=0

u>i
(
I− tt>

)
ui,

s.t
t>t = ImL with mL ≤ML,

(4.30)

which is equivalent to a classical POD problem on t, and can be solved by
Singular Value Decomposition (SVD), mL being the number of retained modes.
We finally denote t? the solution of the aforementioned problem (Eq. 4.30).

To conclude this procedure, the resulting ROM is given by the couple z̄ = ȳ+d?
(Equations 4.6 and 4.25), and Ψ = [Φ | Q2t?] from Equations 4.3 and 4.30, and
is computed as follows:

ỹ (θ) =
[
ΨΨ> (y(θ)− z̄)

]
+ z̄. (4.31)

4.2 Algorithmic implementation
In this section, algorithms are given in order to illustrate how the proposed method-
ology can be implemented practically. As already indicated, the hierarchised multi-
fidelity reduced order surrogate model proposed in the present work is composed
of two main ingredients that are linked to Algorithms 1 and 2.

4.2.1 Multi-fidelity hierarchised basis construction
We consider here two solvers of different levels of precision returning the vectorial
solutions z and y for low- and high-fidelity respectively, and both lying in IRn.
To better illustrate the steps involved in the multi-fidelity reduction of the output
space, we propose the algorithm below yielding the reduced basis Ψ leveraging
sparse high-fidelity data as well as abondant low-fidelity information in the design
space.

To sum up the presented developments, the proposed method enriches the
sparse high-fidelity interpolating subspace with densely distributed low-fidelity in-
formation. The proposed algorithm yields a “hierarchised” MFPOD basis in the
sense that the addition of Ξ basis does not introduce error in the reconstruction
of high-fidelity snapshots.
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Algorithm 1 MFPOD basis enhancement
Require: Training Design of Experiments (DoE) phase completion

- Training DoE ΘH of MH points
(Latinized Centroidal Voronoï Tesselation sampling, from Saka et al., 2007)

- Training DoE ΘL of ML points |ML > MH

- Low-fidelity training set Z|Z·i = z(ΘL
·i) ∀i ∈ [[1,ML]]

- High-fidelity training set Y|Y·i = y(ΘH
·i ) ∀i ∈ [[1,MH ]]

- High-fidelity centering snapshot ȳ

1: procedure High-fidelity data decomposition(Y, ȳ)
2: Center the high-fidelity data Y′, Y′·i = Y·i − ȳ
3: Decompose (QR-algorithm) Y′ = [Q1 | Q2] [R]
4: Define Φ := Q1
5: return Φ,Q2
6: end procedure

7: procedure Low-fidelity completion(Z, ȳ,Φ,Q2)
Require: High-fidelity data decomposition → Φ,Q2

8: Project Z onto (Im Φ)⊥

Z⊥ :=
(
I−ΦΦ>

)
Z

9: Compute d? (Equation 4.25) and z⊥0 (Equation 4.26)
10: Enrich Z⊥ with z⊥0
11: Center the low-fidelity data around d?

Z⊥′·i := Z⊥·i − d? ∀ i ∈ [[0,ML]]
12: Compute the U matrix

U = Q>2 Z⊥′

13: Compute Ξ = Q2t? (see Eq. 4.30 and Section 4.1.3)
14: Concatenate the ROM Ψ = [Φ | Ξ], and z̄ = ȳ + d
15: return z̄,Ψ
16: end procedure

4.2.2 Multi-fidelity surrogate models of the projection co-
efficients

Each training vector being associated to a single location in the design space
D ⊂ IRp, NIPOD models are based on an approximate relation between the design
space D and the POD space. While Section 4.1.1 introduced the methodology
to enhance any POD basis with cheap information gathered from a low-fidelity
representation of the physical phenomenon under study, this section (notations
from Section 3.1 are respected) builds the NIPOD model allowing to predict the



50 CHAPTER 4. MULTI-FIDELITY POD BASED MODEL

full field high-fidelity solution in the reduced output space Im Ψ at virtually no
additional cost.

By projecting the z̄-centered low- and high-fidelity training snapshots Z̄ and
Ȳ onto the basis Ψ, two databases of coefficients are built.

One surrogate model is trained for each dimension of the Reduced Order
Model (ROM) itself. For MFNIPOD, the projection of low- and high-fidelity cen-
tered snapshots gives two databases of m-dimensional outputs, βi = Ψ>Z̄·i ∀i ∈
[[1,ML]] and αi = Ψ>Ȳ·i ∀i ∈ [[1,MH ]]. The framework presented on Fig. 2.4 is
then used for the first m dimensions (MH ≤ m ≤ MH + ML) of α and β, along
with the experiment locations in the design space ΘH and ΘL, to build m scalar
multi-fidelity surrogate models, with αj and βj replacing respectively ζH and ζL
on Fig. 2.4 ∀j ∈ [[1,m]]. The construction of the resulting surrogate model is
illustrated on Fig. 4.2 and summarized in Algorithm 2.

Algorithm 2 Multi-fidelity NIPOD construction
Require: Multi-fidelity POD basis enhancement → z̄,Ψ (Algorithm 1)

1: procedure Multi-fidelity NIPOD model(Y,Z, z̄,Ψ)
2: Center the data

Y′, Y′·i = Y·i − z̄
Z′, Z′·i = Z·i − z̄

3: Compute the high-fidelity m-dimensional POD coefficients
αi = Ψ>Y′·i ∀i ∈ [[1,MH ]]

4: Compute the low-fidelity m-dimensional POD coefficients
βi = Ψ>Z′·i ∀i ∈ [[1,ML]]

5: Build m multi-fidelity surrogate models* from α1,··· ,MH
and β1,··· ,ML

α̃ : D → IRm

θ → [α̃1(θ), · · · , α̃m(θ)]>
6: end procedure

The surrogate models* mentioned in Algorithm 2 can be:

1. nested multi-level models ← Ensure: ΘH ⊂ ΘL

• co-Kriging
• multi-fidelity nested RBFN

2. classical corrective models.
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We call nested multi-level models, Multi-Fidelity Models (MFMs) within the
fusion paradigm and based on a nested MFDoE. Theoretically, no restriction to
interpolating surrogate models has to be made, but approximating the POD coef-
ficients could have a non-negligible impact on the physical response prediction of
known locations, especially for truncated ROMs.

α̃1(θ)
α1(θi)

β1(θi)

θ

α̃1

α̃m(θ)
αm(θi)

βm(θi)

θ

α̃m

(Ψ, z̄,θ)

ỹ(θ) = z̄ + Ψα̃ (θ)

Figure 4.2: Illustration of the approximation procedure of the Multi-Fidelity Sur-
rogate Model (MFSM).

The couple (α̃(θ),Ψ) then gives access to an immediate prediction of the
vectorial output of any new location θ ∈ D, as detailed in Algorithm 3.

Algorithm 3 MFNIPOD prediction
Require: Choice of the ROM dimensionality m

1: procedure MFNIPOD prediction
2: Predict the POD coefficients α̃j(θ) ∀j ∈ [[1,m]] | θ ∈ D
3: Build the POD coordinate m-dimensional vector α̃
4: Evaluate the solution field ỹ(θ) = z̄ + Ψα̃
5: end procedure

As mentioned earlier, the extension to multiple levels of fidelity (mf ≥ 2)
is possible. In this case, the procedure called “low-fidelity completion” (Sec-
tion 4.1.3) is repeated to add information from lower fidelity snapshot matrices.
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This repetition gives a further enhanced basis, we denote Ψ for simplicity. Project-
ing all the centered snapshots onto Ψ yields mf databases of coefficients used to
train mf -level surrogate models such as corrective RBFNs or mf -levels co-Kriging.

4.3 Concluding remarks
In this chapter, we have developed a surrogate model fusing full-field information
simulated at different levels of precision, and enabling the capture of more
modal features composing the output space spanned throughout the design
space exploration. The proposed technique interpolates sparse high-fidelity
full-field solutions and takes low-fidelity snapshots to enrich the model in the un-
explored areas of the design space or with features not experienced on high-fidelity.

In the variable-fidelity ROM introduced by Mifsud, MacManus, et al., 2016,
all the information is concatenated in the deviation matrix Y′ regardless of the
level of precision which is only considered at the projection coefficient surrogate
modeling step. The main difference in the methodology proposed in this chapter
lies in the hierarchy conservancy between all the levels of fidelity involved in the
training data sets.

Although the construction of a suitable surrogate model constitutes a funda-
mental stone of a Surrogate-Based Optimization (SBO) strategy, the integration
of any surrogate model within the optimization loop and its effective operation to-
gether with an Evolutionary Algorithm (EA) reveals itself hard task. In the next
chapter, we introduce an infill strategy dedicated to Gappy-POD (GPOD) based
models as proposed by Toal, 2014. The developed HMFPOD is integrated into an
Multi-Fidelity SBO (MFSBO) framework and tested on an analytical example, as
well as on an industrial-scale problem in Part II.



Chapter 5

Enrichment criteria for GPOD
surrogates

This chapter addresses the question of the infill strategy inherently related to
any online Surrogate-Based Optimization (SBO) framework and its development
towards efficient coupling with the surrogate and optimizer components. The
computational effort required to reach an acceptable accuracy for the surrogate
models involved in any SBO loop is unaffordable in many challenging industrial
optimization problems. In addition, the reduction of design cycles duration and
CPU budget limitations drive engineers to reduce the size of a priori Design
of Experiments (DoE) and concentrate the computational effort in potentially
interesting areas of the design space. In this situation, not only the performance
of the optimizer or the predictability of the surrogate models are crucial but
also their coupling via dedicated infill strategies. Therefore, we propose here
an infill strategy and its associated enrichment criterion to further improve the
Gappy-POD (GPOD) based Multi-Fidelity Surrogate Models (MFSMs) proposed
by Toal, 2014.

As introduced in the literature review on Reduced Order Models (ROMs)
in Section 2.4, the multi-fidelity methodology presented by Toal, 2014 intends
to parametrize a high-fidelity solution by its low-fidelity counterpart. This
method firstly builds a “multi-fidelity” subspace defined by all the experiments
fusing low- and high-fidelity full-field solutions. For the GPOD based MFSM
strategy, the low- and high-fidelity solutions are concatenated to form an
extended solution snapshot. The subspace is then created according to a set
of extended snapshots. Assuming the computational cost associated with the
low-fidelity simulation is moderate enough to consider exploring the whole design
space, a GPOD based MFSM estimates the lacking high-fidelity solution. By
projecting the low-fidelity solution onto the subspace basis, the entire snapshot

53
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is estimated. It then contains an approximate reconstruction of the low-fidelity
solution and the prediction of its high-fidelity counterpart. We claim the
gappy-reconstruction error of the low-fidelity full-field representation can indicate
where the surrogate model lacks accuracy in the design space and drive the
selection of new interesting points in an online SBO framework. This proposed
error estimator is verified on a 2D aerodynamic test case taken from the literature.

In the case of engineering optimization, the less the high-fidelity solver is called
the better. Therefore, the procedure presented in Toal, 2014 uses the gappy-
projection to predict the high-fidelity full-field solution. However even if the gappy-
projection is better adapted to the representation of the low-fidelity solution, the
reconstruction error can be non-negligible. The gappy-reconstruction error on
the low-fidelity solution is, in the case presented in Section 3.3.2 (see Fig 3.3),
null for simplicity and readability purposes. We claim in the remainder that the
quantifiable error (if the low-fidelity solution is computed) between the low-fidelity
full-field solution and its gappy-reconstruction on Ψ is somehow related to the
overall accuracy of the Proper Orthogonal Decomposition (POD) basis and can
serve to detect low-accuracy areas, as soon as a good correlation between low- and
high-fidelity is verified.

5.1 Gappy-POD enrichment criterion
As long as the low- and high-fidelity models are well correlated and the amount
of available data is sufficient, it seems natural that GPOD and POD projections
should be well correlated too. On the other hand, a large GPOD projection
error foretells a lack of precision of the POD approximation in the considered
area. The proposed error estimator δ (Eq. 5.1) is then based on the following
hypothesis : if ρ(z,y) high ∀θ ∈ D, then ρ(δ,‖P(s)−s‖2) high too, where ρ(a,b) stands
for the correlation between two general variables so that ρ(z,y) pertains to the
low- and high-fidelity solutions correlation. Setting an arbitrary case dependent
threshold εapp on δ allows for detecting areas of potential enrichment and results in
an adaptive infill criterion associated with Algorithm 4, and used in Section 5.2.4.

It is important to keep in mind that the high-fidelity computations and so
the projection P(s) are usually available on limited locations of the design space
D. On the contrary, the low-fidelity model has a computational cost enabling
a more exhaustive simulation campaign over the design space. Therefore, we
consider here a current snapshot s(θ) only simulated with the low-fidelity model,
and propose as criterion the maximization of the error estimator δ hereafter for the
DoE enrichment procedure dedicated to multi-fidelity GPOD based surrogates:
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δ = ‖ΓPg(s)− Γs‖2

‖Γs‖2 . (5.1)

The numerator ‖ΓPg(s)−Γs‖2 can be seen as the norm of the low-fidelity difference
between the GPOD projection Pg(s) and the GPOD prediction Pt(s) given the
equality ΓPt(s) = Γs.

5.1.1 Algorithm
Maximizing the error estimator δ (Eq. 5.1) indicates the areas where the low-
fidelity GPOD reconstruction reveals high relative error with respect to the com-
puted low-fidelity data itself. Algorithm 4 is proposed as a simple implementa-
tion of this error estimate associated with a stopping criterion within an adap-
tive sampling strategy involving MFSMs and potentially improving the exploita-
tion/exploration balance of an online SBO. In the coming sections, the error esti-
mator δ (Eq. 5.1) is referred to as enrichment criterion and linked to the stopping
condition εapp. In the context of multi-fidelity optimization, the low-fidelity solu-
tion is usually considered far cheaper than the high-fidelity simulation affording
the designer to compute z on a large number of points in the design space D.

Algorithm 4 DoE enrichment algorithm
Require: Training DoE phase completion + verification set availability

- Training DoE Θ of M points (LCVT, Saka et al., 2007)
- Low-fidelity solution for the training set z(θ) ∀θ ∈ Θ
- High-fidelity solution for the training set y(θ) ∀θ ∈ Θ
- Multi-fidelity database S =

[(
z1
y1

)
, · · · ,

(
zM
yM

)]
- Basis Ψ associated with S
- Verification set Θv of V points, where M � V � n
- Low-fidelity solution on Θv

- Filtered multi-fidelity database ΓSv
Ensure: δmax > εapp, with δ̄ the metamodel of δ over the design space D
1: procedure Adaptive-DoE
2: while δmax = max

θ∈D
δ̄(θ) > εapp do

3: Compute δ(θ) ∀θ ∈ Θv (Eq. 5.1)
4: Build a metamodel δ̄ over the design space D
5: Search θnext = argmax

θ∈D
δ̄(θ)

6: if θnext /∈ Θv then
7: Compute sL(θnext)
8: end if
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9: Compute y(θnext)

10: Concatenate s(θnext) =
(

z(θnext)
y(θnext)

)
11: Update the POD basis Ψ with s(θnext) [Brand, 2006]
12: end while
13: end procedure

In the next section, we apply the proposed procedure on a 2D application
test case pertaining to the flight domain study of a 2D airfoil. The selected test
case allows for a fast low-fidelity computation in order to predict the missing
high-fidelity solution and an easy illustration of all new locations suggested for
enrichment by the proposed algorithm.

5.2 RAE2822 Application case
A usual application illustrating multi-fidelity approches deals with 2D airfoil
optimization [Lopez Peña et al., 2012; L. Leifsson and Koziel, 2010; Luliano
and Quagliarella, 2013; Filomeno Coelho et al., 2008]. We propose to use the
panel theory as the low-fidelity model and a more expensive Reynolds Averaged
Navier-Stokes (RANS) computation as the high-fidelity model. The multi-fidelity
hierarchy considered in this application is linked to levels of physics. The
addressed application is the air flow around the RAE2822 airfoil [Cook et al.,
1979] illustrated on Fig. 5.1 under free stream conditions given in Table 5.1.
The low-fidelity simulations are performed under potential flow hypothesis
using the well documented panel code Xfoil [Drela, 1989] enabling viscous and
compressibility corrections. The high-fidelity computations are performed using
the 2D RANS solver elsA [Cambier et al., 2013].

The variations in free-stream Mach number (M∞) are expected to induce
appearance of shock waves for some points in the design space. These changes in
the flow regime constitute the major difficulty to create a global surrogate model
on the entire design space.

The low-fidelity experiments are performed on a mesh of 352 panels along the
airfoil. Each simulation takes approximately one second to run on a workstation
Intel Xeon 4x1.6GHz with 48 Go of RAM and gives access to the pressure
distribution along the shape as well as the Lift Coefficient (CL) and the Drag
Coefficient (CD). The high-fidelity computation is run on a 40 chord length (c)
scaled C-H types structured mesh containing 47104 cells over 10000 iterations with
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Figure 5.1: Mach number distribution around the airfoil RAE2822, study case
9 [Cook et al., 1979] : α∞ = 2.79° and M∞ = 0.73.

a Spalart-Allmaras turbulence model [Spalart and Allmaras, 1992] and a 3-level
multigrid acceleration. We extract the static pressure distribution and the friction
vector on the shape, the lift and drag coefficients as well as the temperature,
pressure and velocity over the all domain. Each simulation takes approximately
15 minutes on 8 cores of Ivy Bridge Intel Xeon E5-2697(v2) processors with 1.8
Go of RAM allocated.

variable value unit
heat capacity ratio γ 1.4 −
gaz constant r 287.053 Jkg−1K−1

temperature T∞ 303.15 K
chord length c 1.0 m
Reynolds number Re 6.5 · 106 −
Mach number M∞ 0.55 < M∞ < 0.75 −
angle of attack α∞ −1. < α∞ < 3.5 °

Table 5.1: Aerodynamic and free stream conditions.

We can expect the low-fidelity to fit the high-fidelity data concerning the
pressure distribution but also to reveal a reduced precision of the drag coefficient
for increased M∞ and α∞ because of missing friction information. This is due
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to the enlarged part of pressure and friction induced drag in the area where the
low-fidelity model lacks precision (shock waves development).

5.2.1 Multi-fidelity snapshots
To ensure a good agreement between low- and high-fidelity extractions, the low-
fidelity mesh χL generated by Xfoil v6.1 is projected on the high-fidelity mesh
χH generated by Autogrid v8r10.3. The multi-fidelity snapshots are then built by
concatenating the linear interpolation of the low-fidelity pressure P̃L

s ∈ IR352 on
χH , the skin distribution of high-fidelity pressure PH

s ∈ IR352 and the wall friction
components τpx ∈ IR352 and τpy ∈ IR352,

s =


z =

(
P̃L
s

)
y =

(
PH
sτpxτpy

)
 . (5.2)

In our case, each design point is taken in the (M∞−α∞)-space D ⊂ IR2 (p = 2).
Therefore, the low- and high-fidelity meshes remain unchanged for all experiments.
An intermediate mapping of each solution on a fixed reference grid should be oper-
ated to perform the “snapshot”-POD in the case of shape optimization [Quarteroni
and Rozza, 2014, Chapter 4]. In complex industrial cases involving moving meshes,
a specific attention has to be payed to the interpolation scheme [Fang et al., 2009].

5.2.2 Design of Experiments and POD initialization
The design space D being 2D, we choose to compute an initial DoE composed of
10 snapshots. The a priori sampling method is the Latinized Centroidal Voronoï
Tesselation (LCVT) [Saka et al., 2007; Romero et al., 2006].

As shown on Fig. 5.2, only two points are populating the transonic region
confined between the red line and the top-right corner of the figure. This leads to
a poor definition of the transonic behavior in the snapshot matrix yielding reduced
prediction capabilities of the model. In addition, the top-left corner corresponds
to incidences bringing out brutal accelerations of the fluid in its path around the
leading edge. This phenomenon is partially captured by the low-fidelity simulations
whereas real shocks appearing for M∞ > 0.63 are visible only on the high-fidelity
solutions. Given the low density of samples (Fig. 5.2), no reduction is made on
the POD basis (m = M = 10), built from the snapshots matrix with substracted
mean.
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Figure 5.2: Initial samples repartition over D and delimitation between shocked
and shock-free configurations.

5.2.3 Enrichment criterion
Figure 5.3 shows the correlation between three relative characteristic errors:

1. the high-fidelity relative error made by the POD projection of a complete

snapshot

√√√√‖ ΓP(s)− Γs‖2

‖ Γs‖2 ;

2. the high-fidelity relative error of the GPOD projection of a low-fidelity snap-

shot

√√√√‖ ΓPg(s)− Γs‖2

‖ Γs‖2 ;

3. the low-fidelity relative error of the GPOD projection of a low-fidelity snap-

shot

√√√√‖ΓPg(s)− Γs‖2

‖Γs‖2 .

We propose to use this information to identify the areas of poor represen-
tativeness of the POD basis. The results illustrated on Fig. 5.3c represent the
distribution of the δ criterion proposed in Section 5.1 over the design space D. The
multi-fidelity training points are shown as white squares, whereas the validation
points supposed to be simulated only at the low-fidelity level are represented by
circles colored according to the error value.
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(a) Relative L2 POD projection error on

high-fidelity data
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(b) Relative L2 GPOD projection error

on high-fidelity data
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Figure 5.3: Comparison of POD and GPOD errors.

One can notice that the areas of high relative errors seem correlated
to each other regardless of the chosen criterion ‖ ΓP(s)− Γs‖2

‖ Γs‖2 (Fig. 5.3a),

‖ ΓPg(s)− Γs‖2

‖ Γs‖2 (Fig. 5.3b), or δ (Fig. 5.3c). Our previous hypothesis seems thus
confirmed on this study case, even though the order of magnitude of the criterion
δ if far lower than the orders of the two other errors.

5.2.4 Adaptive DoE procedure
The results presented are obtained by implementing Algorithm 4 except for its
4th step (metamodeling of δ̄). Indeed, in our case, Θv is rich enough (100 points
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over a 2-D design space), to only use the additional DoE as potential enrichment
locations such that the criterion δ is directly computed all over the sample set Θv.

In order to assess the efficiency of the enrichment criterion defined in Sec-
tion 5.1, we propose to compare our approach with a cross-validation based
method [Guénot et al., 2011; Guénot et al., 2013; Braconnier et al., 2011].
This method is based on an adapted leave-one-out (LOO) algorithm giving
an estimation of the influence of a training snapshot on the POD basis (see
Fig. 5.4). On Fig. 5.4a, one can see the evolution of the POD basis improvement
coefficient [Braconnier et al., 2011] over the design space and notice the increase
of its value for highM∞ and α∞ conditions. In Guénot et al., 2013, this coefficient
is scaled by the distribution of distance to training points as shown on Fig. 5.4b.
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(PBI) [Braconnier et al., 2011]

0.55 0.60 0.65 0.70 0.75
M∞ [−]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

α
∞

[◦
]

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

(b) Scaled POD basis improvement crite-
rion (PBI+) [Guénot et al., 2013]

Figure 5.4: Reference criteria.

As explained previously, the enrichment criterion in Guénot et al., 2013
considers a weighted distance between a new point θ ∈ D and the training
database Θ ∈ DM . On the other hand, our criterion δ is based on the scaled
GPOD projection error over the low-fidelity data as defined in Equation 5.1.

The two enrichment strategies based on both criteria [Guénot et al., 2013]
and δ are illustrated on Fig. 5.5 where the squares are used for training the initial
POD basis and 15 points are added (one at a time) according to the considered
criterion. The selected points are highlighted by a color map associated with the
current iteration number. One can notice that the two criteria both lead to the
infill of the transonic regime (M∞ > 0.7) first. After the first iterations (5 in this
case), the PBI+ criterion [Guénot et al., 2013] leads to the high α∞ and low M∞
area whereas the δ-criterion heads to the low α∞ and high M∞ region. These two
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(b) POD basis improvement criterion
(PBI+) [Guénot et al., 2013]

Figure 5.5: Comparison of enrichment strategies.

regimes are supposed to reveal bad correlations between the low- and high-fidelity
pressure distributions because of shocks appearance.

Figure 5.6 shows the low- (left) and high-fidelity (right) pressure distributions
of the snapshots selected at iterations 1 to 3 for POD basis enrichment by the
proposed δ-criterion. The illustrated points are connected to the poor precision
area of the low-fidelity code. The computed pressure distribution is depicted by
the blue solid curve while the POD and GPOD projections are respectively in
red and green dotted curves. It is important to keep in mind the good agreement
of low- and high-fidelity simulations hypothesis. In our case, the development
of shocks tends to deteriorate the low-fidelity pressure distribution as shown on
Figures 5.6a, 5.6b, and 5.6c (left column).

Indeed, the shocks are not predicted by the low-fidelity code, but a non-
negligible noise appears in these regions increasing the GPOD projection error on
the low-fidelity data. This increases the error δ and leads the proposed algorithm
towards these areas.

At the same time, the PBI+ criterion (Fig. 5.7) leads the algorithm towards
the same region according to the space filling and the influence of each training
snapshot on the POD basis (see Fig. 5.4).

Once again, the emergence of new patterns associated with shocked config-
urations incites the algorithm to add new points in the high M∞ and α∞ area.
The former criterion [Guénot et al., 2013] is attracted to this region by the lack
of shocked configurations in the initial training set while the proposed one δ is
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(a) Selected point at iteration 1 (M∞ = 0.698 , α∞ = 3.430)
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(b) Selected point at iteration 2 (M∞ = 0.738 , α∞ = 3.179)
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(c) Selected point at iteration 3 (M∞ = 0.748 , α∞ = 2.020)

Figure 5.6: Low-fidelity (left) and high-fidelity (right) pressure distributions of 3
enrichment points according to the proposed δ-criterion.

drawn because of the inaccuracy of the low-fidelity code in unadapted regions.

The mean and maximum projection errors over the design space can be
analyzed along with the enrichment iterations for both criteria on Fig. 5.8.
The magenta and green curves give the evolution of the error obtained with an
enrichment driven (max value in the flight domain targeted) by the maximum
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(a) Selected point at iteration 1 (M∞ = 0.748 , α∞ = 2.020)
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(b) Selected point at iteration 2 (M∞ = 0.738 , α∞ = 3.179)
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(c) Selected point at iteration 3 (M∞ = 0.725 , α∞ = 2.224)

Figure 5.7: Low-fidelity (left) and high-fidelity (right) pressure distributions of 3
enrichment points according to the PBI+ criterion [Guénot et al., 2013].

uncertainty of a Kriging metamodel (denoted GP for Gaussian Process on
Fig. 5.8) built over the two aerodynamic scalars CD and CL, usually interesting in
the study of the flight domain. The global projection errors ‖P(s) − s‖2 present
the same trends (see Fig. 5.8b) regardless of the chosen criterion. On the contrary,
the high-fidelity GPOD projection errors ‖ ΓPg(s) − Γs‖2 (see Fig. 5.8a) reveal a
real impact of the criterion at hand.
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Figure 5.8: Comparison of the evolution of the mean (solid line) and maximal
(dotted line) errors along iterations for the different enrichment strategies.

After the first iterations, the POD-based strategies diverge due to the lack
of precision of the low-fidelity simulation. At the same time, the maximum un-
certainty strategy remains stable but with a reduced efficiency compared to the
proposed criterion and, as major drawback, its dependence to the variable the
Kriging model is built on.
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Figure 5.9: GPOD high-fidelity projection error
√
‖ ΓPg(s)− Γs‖2
‖ Γs‖2 after 12 iterations

of PBI+ enrichment.

After several experiments in the high α∞ and low M∞ region are added by the
PBI+ strategy to the training set (iteration 13 on Fig. 5.8a), the high-fidelity error
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of the GPOD projection is widely increased (see Fig. 5.9). These experiments
correspond to high angle of attack and are typically associated with a poor
prediction of the low-fidelity model as shown on Fig. 5.10.
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Figure 5.10: Pressure distribution of low-fidelity poorly simulated experiments.

Figure 5.10a illustrates the low- and high-fidelity pressure distributions
computed for a design point with high M∞ and high α∞. One can see that the
shock around 50% of the chord is observed only on the high-fidelity simulation
while the pressure is increased just after the leading edge on the low-fidelity
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solution.

As shown on Fig. 5.10b, the low M∞ and high α∞ area also presents an
important lack of accuracy in the low-fidelity solution. The high-fidelity static
pressure (2nd row on Fig. 5.10b) suddenly increases around the leading edge of
the airfoil whereas the low-fidelity solution presents a smoother evolution (1st row
on Fig. 5.10b). One can notice the similarity between the low-fidelity pressure
distributions on Figures 5.10a and 5.10b coming from different regions in the
design space. This confusion drives the GPOD projection unable to predict
correctly the high-fidelity data from a low-fidelity simulation.
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Figure 5.11: Influence of the random initialization of 10 initial DoE on the evolu-
tion of the GPOD prediction error of the high-fidelity data ‖ ΓPg(s)− Γs‖2

‖ Γs‖2 along with
the enrichment strategy.

To assess the impact of randomness in DoE initialization, we built 10 different
DoE with the LCVT sampling method and observed their impact on the enrich-
ment locations chosen by each strategy. Figure 5.11 shows that the previous
comments are verified for the 10 initial DoE available. The shaded areas corre-
spond to the gap between the lowest and highest high-fidelity GPOD prediction
error observed at each enrichment iteration. One can see that the shaded area
associated with the δ strategy is very small compared to the blue shaded area
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presenting the PBI+ results. In addition, the mean and maximum level of GPOD
prediction errror along with the enrichment iterations is much higher for the PBI+
enrichment strategy. A converged statistical study of the impact of the initial
DoE on the enrichment performances being unaffordable, we can argue from this
last comparison that the proposed enrichment method outperforms the strate-
gies from the literature and is robust with respect to the stochastic initial sampling.

5.3 Concluding remarks
The proposed enrichment criterion showed its capacity to detect the surrogate
low-accuracy areas. We also highlighted the limits of a more “classical” enrichment
criterion based on the impact of previously computed simulations on the subspace
basis. As shown in the previous section, the criterion proposed in Braconnier
et al., 2011 and Guénot et al., 2013 tends to add new simulations making the
gappy-projector rapidly instable. The proposed one limited this behavior while
targeting low-accuracy areas. Considering the presented capabilities of the
proposed infill criterion, we claim the integration of this criterion into an infill
strategy targeting the optimization of an integral quantity derived from the
predicted high-fidelity information could be of first interest.

Nevertheless, one of the main drawbacks of the GPOD based Multi-Fidelity
Surrogate Modeling (MFSM) as defined by Toal, 2014 is the hypothesis on the
cost of the low-fidelity simulations. Indeed, to be affordable in an intensive
Evolutionary Algorithm (EA) based optimization, the low-fidelity computational
charge should be way smaller than usual appropriate low-fidelity models of
complex engineering systems. This remark is especially well-founded in the
turbomachinery application we target in this thesis.

Most of multi-fidelity applications consider low-fidelity CPU durations ranging
from a few seconds up to tens of minutes, as compared to hours or day-scaled
high-fidelity simulations. For this kind of applications, the surrogate models
proposed in Section 4.1 are more satisfactory because of their very low evaluation
cost, in the order of the millisecond on actual machines. Next chapter addresses
the integration of such surrogate models into a Multi-Fidelity SBO (MFSBO)
framework.
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Industrial-scale surrogate
modeling and optimization of
aerodynamic performances
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Chapter 6

Implementation of Multi-Fidelity
NIPOD and analytical example

In this chapter we introduce an analytical example carefully built to exhibit
typical features of aerodynamic optimization problems on one hand and to
provide an insight on Multi-Fidelity SBOs (MFSBOs) on the other. This example
allows to discuss in detail several issues such as fidelity levels correlation or
constraints handling among others, and to compare methods without having to
run time-consuming proprietary codes. The notations used in this chapter are
made coherent with Chapters 3 and 4.

This chapter presents the introduction of the Multi-Fidelity POD (MFPOD)
based surrogate models, proposed in Chapter 4, within a Surrogate-Based Opti-
mization (SBO) framework. This is to alleviate the high-fidelity simulation-based
optimization for engineering designs dilemma. As mentioned in Chapter 1, the
computational burden associated to high-fidelity optimizations being unafford-
able, we now integrate the Multi-Fidelity NIPOD (MFNIPOD) model into an
Evolutionary Algorithm (EA) based optimization method.

Exploring the entire design space to determine the best configuration for a
given optimization problem has become untractable for the considered number
of parameters to vary at the same time. A solution to cope with this “curse of
dimensionality” is to explore restricted areas (also called “search boxes”) and
narrow down or enlarge these search boxes as well as move their center. This
solution can slightly accelerate the convergence towards interesting areas, being
in terms of constraints satisfaction or objective minimization. Considering all the
ingredients composing a surrogate based optimization, the real challenge is not
only to improve all these ingredients separately but make them properly operate
in concert in order to increase the performances of the overall SBO framework.
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This chapter is organised as follows. Section 6.1 gives the major steps of an
online MFSBO methodology. Then, Section 6.2 presents an analytical example
illustrating the interest of the Multi-Fidelity Surrogate Model (MFSM) for a 2D
constrained optimization problem targeting features that are representative of typ-
ical aerodynamical optimization problems. Section 6.3 gives information on the
implementation of the proposed MFSMs into the SBO tool Minamo. An overview
of the functionalities of the SBO methodology available in Minamo as well as the
outline of the developments involved for the coupling of the proposed MFNIPOD
surrogate models with the surrogate-assisted optimizer are presented in this sec-
tion. Finally, some concluding remarks are given in Section 6.4. The industrial
example addressing the scaling aspects of the proposed method is presented in the
last chapters of this thesis (Chapters 7, 8, and 9).

6.1 Surrogate Based Optimization
The proposed process of SBO starts with the definition of the optimization problem
in terms of parameters (design space D ⊂ IRp), objective Y and constraints c
associated with multiple evaluation chains able to evaluate the quantities of interest
at different levels of fidelity. The Design of Experiments (DoE) samples the D
according to multi-fidelity sets of experiments ΘH and ΘL (see Alg. 1) that are
respectively evaluated via high- and low-fidelity numerical models yielding the
matrices Y and Z (see Fig. 4.1 and Algorithm 1) for Non-Intrusive POD (NIPOD)
models, or the databases Y and C for Data Fitting Surrogate Models (DFSMs).
The SBO loop is then performed iteratively:

1. EA based optimization on the surrogate model (no accurate simulation is
performed);

2. Evaluation of the most interesting point with both low- and high-fidelity
simulation tools;

3. Enrichment of the training database with the new computations to improve
the surrogate model’s accuracy;

4. Stopping criterion.

As a first step towards smart integration of MFSMs into dedicated SBO
strategies, we restrict the analysis in this section to online enrichment adding one
evaluated point at each iteration either at the high-fidelity level for Single-Fidelity
Surrogate Models (SFSMs) or at both low- and high-fidelity levels for the proposed
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MFSMs.

In the next section, we illustrate the MFNIPOD based surrogates within an
online SBO framework. No selection of the level of fidelity required for the evalu-
ation of the enrichment points is performed. One location is estimated with both
low- and high-fidelity solvers at each iteration.

6.2 Analytical example
To our best knowledge, no analytical test case presenting multi-fidelity and vec-
torial aspects is referenced in the literature. Therefore, we present in this section
a 2D analytical optimization problem based on the multi-fidelity definitions pro-
posed in Forrester, Sóbester, et al., 2008, Chapter.8 and Le Gratiet and Garnier,
2014. The notations used in this section respect, as far as possible, that of Sec-
tions 4.1.1 and 4.2. A carefull attention has been paid to make the proposed
analytical example present typical features of aerodynamical optimizations. These
features, a non-exhaustive list is given hereafter, concern either the objective or
the constraint functions and are observable in the whole design space D or a part
of it:

F-1 multi-modal functions : isentropic efficiency (ηis)

F-2 multi-class functions as objectives or constraints :

F-2.1 C0 class functions : chord relative shock location
F-2.2 ...
F-2.3 C∞ class functions : mass or volume of the geometry

F-3 “plateau” like functions : blind probe after separation

F-4 highly correlated low- and high-fidelity functions : pressure ratio (Πtot)

F-5 poorly correlated low- and high-fidelity functions : ηis in presence of separa-
tion

6.2.1 Problem definition
We consider here a 2D design space D ⊂ IR2 such that each configuration in
D = [4, 6]×[10, 14] describes two continuous functions in IR depending on x ∈ [0, 1]:

• Low-fidelity approximation



74 CHAPTER 6. IMPLEMENTATION OF MFNIPOD OPTIMIZATION

zθ(x) : D → Fl
(
IR{0,1}

)
θ → 1

2 ((6x− 2)2sin(θ2x− 4)) + 10
(
x− 1

2

)
− θ1

, (6.1)

• “High-fidelity” function

yθ(x) : D → Fh
(
IR{0,1}

)
θ → 1

2 ((6x− 2)2sin(θ2x− 4)) + sin (10cos(θ1x))
. (6.2)

We denote respectively zθ (x) , yθ (x), the instances of above functions for a
given vector of parameters θ. Let also fθ (x) represent any function in either
Fl
(
IR{0,1}

)
, or Fh

(
IR{0,1}

)
regardless of the level of fidelity. Figures 6.1b and 6.1c

show function instances obtained from Equations 6.1 and 6.2 throughout the
design space according to the DoE on Fig. 6.1a.

Following notations in Problem 1.1, we define the arbitrary constrained opti-
mization problem as follows:

minimize functional
Y (θ, yθ) = min

x∈[0,1]
(yθ(x)) ,

s.t constraints
c1 (θ, yθ) = argmin

x∈[0,1]
(yθ(x))− 0.75 ≤ 0,

c2 (θ, yθ) = 7.5− max
x∈[0,1]

(yθ(x)) ≤ 0.

(6.3)

The low-fidelity counterparts to Y and c are hereafter denoted YL (θ, zθ),
c1L (θ, zθ) and c2L (θ, zθ). One can see, on Fig. 6.1b, the maximum value (H)
and the minimum position (N) associated to each of the illustrated experiments.
We can especially notice that despite the proximity of red and green points
(Fig. 6.1a), the minimal locations (Fig. 6.1b) associated to these two points are
slightly different. In addition, we can also observe that the low-fidelity formula
(Eq. 6.1) tends to make the minimum position (argmin) insensitive to parameter
modifications (all minima are located around 0.1 on Fig.6.1c and −→∇θ(c1L) ≈ −→0 ).
By comparing Figures 6.1b and 6.1c, we can also observe that the ordering of the
illustrated experiments w.r.t. their maximum value is not consistent between low-
and high-fidelity.

The low- and high-fidelity distributions of objective and constraints are
illustrated on Fig. 6.2. One can observe that some features highlighted above are
met on the objectives and constraints of Problem 6.3. For example the objective
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(c) Low-fidelity snapshots

Figure 6.1: Selection of 6 experiments in D and associated snapshots.

Y (θ, yθ) and the constraint c2 (θ, yθ) are clearly multi-modal (Feature F-1), as
illustrated on Figures 6.2a and 6.2c. The high-fidelity constraint c1 (θ, yθ) presents
discontinuities in its derivative (Feature F-2.1) because of brutal modification of
the position of the minimum value. The low-fidelity functions seem of C∞-class
(Feature F-2.3) and present relatively weak correlations with respect to their
high-fidelity counterparts as mentioned in Feature F-5. Particularly, a “plateau”
is observable on the top area of Fig. 6.2b, representative of high-fidelity func-
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tions with a global minimum at x = 1. The low-fidelity constraint c1L (θ, zθ) is
obviously constant in the whole design space and also representative of Feature F-3.
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(d) low-fidelity objective
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Figure 6.2: Comparison of high- (1st row) and low-fidelity (2nd row) distribution
of the objective and constraints of Problem 6.3

Figure 6.3 presents the map of the optimization objective in the design space
with both constraints represented by hatched areas.

One can see the discontinuities of the gradient of c1 constraint (circled jump on
Fig. 6.3) which is explainable by the appearance of new waves with large amplitude
(gap between red and green points on Fig. 6.1) brutally changing the position
of the function’s minimum. It is noteworthy that the real optimum associated
to the optimization problem 6.3 is located close to the intersection between the
constraint boundaries, resulting in optimizations highly sensitive to the precision
of the surrogates on constraints.

6.2.2 POD bases comparison
We start comparing the NIPOD and MFNIPOD bases associated with snapshots
defined by the low- and high-fidelity functions discretized with 404 points evenly
distributed on the [0, 1] interval (χ = χH = χL). To do so, we first train a
Proper Orthogonal Decomposition (POD) model with 2601 training samples evenly
distributed in the design space D yielding a “perfect” hierarchised basis BF of
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Figure 6.3: Distribution of high-fidelity minimal value (objective) in the design
space with hatched constrained areas (see Problem 6.3).

the functional space Fh at hand. We therefore focus on the 25 first modes of
this basis ordered according to decreasing singular values of the snapshot matrix,
as the 25th mode of this basis is associated to a relative eigenvalue lower than
1.e−8. Figure 6.4 shows the evolution of the L2-norm of the projection of the 25
first modes of the ideal basis BF onto the orthogonal space of the bases Φ and Ψ
obtained respectively from single- and multi-fidelity POD approaches, as measured
by λi∑

j λj

∥∥∥∥(I− B̃B̃>
)
BFi

∥∥∥∥2
, where B̃ is either Φ or Ψ, and λ is the vector of

eigenvalues associated to BF in descending order. It is important to note that
the lower the norm of the projection outside the modeled subspace, the better the
model. We can see that the “lost” part of the real modes is almost always higher
for the single-fidelity basis.

Table 6.1 gives the coefficients associated to the “cross”-projection of the first
modes of the single- and multi-fidelity bases Φ and Ψ. By computing the scalar
product of each mode in Φ with each mode in Ψ, we can evaluate the misalignment
of the bases. The bases Φ and Ψ are respectively trained with 6 high-fidelity
samples for the former, and 10 low-fidelity experiments added to 4 high-fidelity
samples for the latter. This ratio represents equivalent training costs considering
an evaluation cost ratio of 20% between low- and high-fidelity evaluation chains.

One can see that the absolute diagonal coefficients (green cells) are close
to unity (well correlated modes) for modes 1 et 2, but are fairly different
afterwards. This remark is further confirmed by the presence of off-diagonal
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Figure 6.4: Comparison of single- and multi-fidelity POD bases w.r.t. to the 25
first modes of the ideal basis trained with 2601 evenly distributed snapshots.

1 2 3 4 5

1 0.9617 0.2557 0.0465 −0.0847 −0.0190

2 0.2362 −0.9402 0.2126 −0.0639 0.1048

3 −0.0420 −0.0403 −0.4575 −0.8783 0.1258

4 −0.0024 0.0016 0.0152 −0.0104 −0.0176

5 0.0040 −0.0080 −0.0268 0.0114 −0.0194

6 −0.0802 0.1842 0.5398 −0.1974 0.6176

7 −0.0382 0.0370 0.2435 −0.1507 −0.1676

ψi

φj

Table 6.1: “Cross”-projection coefficients between Φ and Ψ.

non-zero terms (orange cells : | · | > 0.1 , red cells : | · | > 0.2). It is im-
portant to keep in mind the orthonormality of each basis, Φ on one hand, and
Ψ on the other. Therefore, the projection coefficients are scaled between −1 and 1.

The modification introduced by low-fidelity enhancement now appears clearly
from the “cross”-projections coefficients (Table 6.1), as well as the improvement of
the output subspace representativeness (Fig. 6.4). As explained previously, once
the output space is modeled by POD-based Reduced Order Model (ROM), NIPOD
surrogates are built by “mapping” the design space to the modeled subspace. In
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the coming section, we compare the predictivity of the proposed NIPOD surrogate
model, and single-fidelity Radial Basis Function Networks (RBFNs) w.r.t. the
objective and constraints of the optimization problem 6.3.

6.2.3 Surrogate modeling
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(c) Multi-fidelity NIPOD model c1 (ỹθ)
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Figure 6.5: Comparison of modeled constraint w.r.t. high-fidelity (grey and white
circles locating respectively low- and high-fidelity training samples, black line de-
picting c1 = 0, HAA=high argmin area, LAA=low argmin area, TLCAS=top left
corner added sample).

Figure 6.5 presents the distribution of c1 in the design space. We can clearly
see on the real distribution (Fig. 6.5a), that some discontinuities related, as
explained before, to new waves arising (as illustrated by experiments red and
green on Fig. 6.1) brutally in the design space. The space segmentation is
observable on POD based models (Figures 6.5c and 6.5d) while impossible to
capture by the Radial Basis Function (RBF) based model (Fig. 6.5b).
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The main idea behind the proposed methodology is illustrated by the exten-
sion of the high c1 (ỹθ) area on top of Figures 6.5c and 6.5d (HAA highlighted
zone). Indeed, we previously observed that the low-fidelity function c1L is not
representative of its high-fidelity counterpart. To be more precise, the distribution
of c1L is constant everywhere in the design space. Nevertheless, we can see on
Fig. 6.5c, that adding a low-fidelity training sample (TLCAS on Fig. 6.5c) on
the top left corner of the design space makes the MFNIPOD model much more
predictive of the HAA area w.r.t. the single-fidelity NIPOD model (Fig.6.5d).
This behavior is due to the “activation” of a different pattern thanks to the
multi-fidelity enrichment of the POD basis (Ξ in Section 4.1.3) and the improve-
ment of the models on the POD projection coefficients (α̃ in Section 4.2.2) via
low-fidelity information enhancement. Figure 6.6 shows the functions associated
to the HAA area mentioned above. Adding the low-fidelity training sample
(TLCAS) evidently improves the prediction in its surrounding area whereas
its c1L (circle on the dotted dark curve on Fig. 6.6) is clearly not representa-
tive of its high-fidelity analogue c1 (filled circle on the solid dark curve on Fig. 6.6).
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Figure 6.6: Comparison of computed (low- and high-fidelity) and modeled (NI-
POD and MFNIPOD) functions for θ = ( 4.16 , 13.92 ), with minimum points
highlighted by colored circles.

The capture of c1 constraint boundary (see Problem 6.3) remains better with
the proposed methodology than both single-fidelity NIPOD and RBF-based mod-
els, even when the number of training samples increases. This last observation
opens the door to optimizations trageting the correct feasibility area in the design
space (as the feasible sub-space is shown non-convex on Fig. 6.3).
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6.2.4 MFNIPOD assisted optimization
We can first evaluate the capacity offered by a MFNIPOD and a RBFN surrogate
model (Fig. 6.5) to the EA in order to closely estimate the interesting zones in
the design space. To this purpose, Fig. 6.7 shows the constrained design space as
modeled by the surrogates trained at the end of the DoE phase.
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Figure 6.7: Comparison of two modeled search spaces after the DoE phase.

The maps on Fig. 6.7 have to be compared to the high-fidelity distribution
(Fig. 6.3) to evaluate the accuracy given by each surrogate model to the opti-
mizer. Considering that the EA always targets feasible points with respect to
Problem 6.3, rapidly capturing the constraints boundaries is a key element for the
SBO strategy. These maps and associated surrogate models are independently
enriched for 20 iterations (one θ-location at each iteration), to compare the opti-
mization efficiency associated to both RBFN and MFNIPOD surrogate models.
Figure 6.8 shows the points added iteratively (point size increasing with the
iteration number) by the two independent optimizations based either on RBFN or
MFNIPOD surrogates. One can see that after the first iteration adding a point in
the right feasible zone (MFNP1 on Fig. 6.8), the MFNIPOD assisted optimization
targets the feasible area in the center of the design space and rapidly converges
to the real constrained optimum of the presented problem. In the contrary, the
successive RBF models are unable to capture the right feasible zone and keep on
driving the EA towards the right zone of the design space (grey points on Fig. 6.8).

As every surrogate based optimization is highly dependent on the initial train-
ing samples, we performed 100 autonomous optimizations based on independently
generated training ensembles. The number of training samples in the DoE phase
is exactly conserved for all these parallel runs, as well as the number of enrichment
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Figure 6.8: 20 first added new points during RBFN assisted (grey) and MFNIPOD
assisted (white) independent optimizations.

points. Figure 6.9 shows the mean convergence and the related deviation of the
optimum evolution with the number of iterations. The transparent areas represent
the ±1σ interval around the mean value of the sample of optima obtained in each
independent optimization, bounded by the extreme values mesured in the samples.
This correction explains why the decrease of the lower bound of the transparent
areas is restricted to value higher than the known solution of Problem 6.3. The
minimal value obtained with the MFNIPOD based surrogate modeling is lower
than its RBF based counterpart.
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Figure 6.9: Convergence history of the optimum value (mean and standard-
deviation) with the number of iterations during the optimization processes
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In order to illustrate the convergence of the optimizations in the design space,
we plot on Fig 6.10 the evolution of the distance between the best evaluated
candidate (denoted θ∗) at iteration i and the optimal value satisfying Problem 6.3
(denoted θ?). We can see that this distance decreases along the optimization
process assisted either by MFNIPOD or RBFN. The convergence rate seems higher
in the case of MFNIPOD assisted optimizations because the central feasibility area
on Fig. 6.3 is almost captured everytime by the MFNIPOD driven optimizations
whereas, the RBFN driven optimizations often target the area on the right of the
2D map on Fig. 6.3.
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Figure 6.10: Evolution of the distance between the best candidate of i-th iteration
and the optimal solution of Problem 6.3

6.3 Implementation
The chosen SBO framework is the optimization platform Minamo developed by
Cenaero. Its last released version (2.7.1) integrates an EA strongly coupled with
Single-Fidelity DFSMs (SFDFSMs) in an adaptive/online scheme. The available
regressive models are Kriging [Krige, 1951; Matheron, 1963], RBFN [Bishop,
1995, Chapter 5] and its Leave One Out (LOO) [Rippa, 1999] optimized version.
For binary responses, the Support Vector Machine (SVM) model [Cortes and
Vapnik, 1995] is available and is for example used to cope with evaluation chain
failures and detection of forbidden areas in the design space. The extension of
this framework to multi-fidelity problems is illustrated on Fig. 6.11.

As mentioned earlier, the more accurate the surrogate model, the faster the
convergence of the optimization process in interesting areas for the designer. This
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Figure 6.11: Integration of MFSBO procedure in Minamo.

statement comes with two important facts an efficient SBO framework is built
on. Firstly, ensuring the required accuracy of the surrogate model through the
whole design space is untractable for complex industrial problems. Secondly,
interaction between the parametrization and the constraints definition usually
creates large zones in the design space associated to either failed computations
or bad performances. The solution developed to cope with this issue is based
on selection operators targeting “crash-free” areas in the design space dynam-
ically modified by a dedicated strategy. This technique is inherited from the
so-called Trust Region Management Methodologies (TRMMs) and automatically
moves, and narrows down or enlarges the searching box, in which the surrogate
model is built and the EA is working. Initially introduced by Sorensen, 1982
and Moré, 1983, the TRMMs estimate the size of the trustable surrogate
region surrounding a high-fidelity estimated location in the design space. These
methods inspired provably convergent “move-limit” strategies as in Alexandrov,
Dennis, et al., 1998, which underlie the move-limit strategy implemented in
Minamo. Even though no proof of convergence is given when coupling zero-order
surrogate models with an EA and a move-limit strategy, the ability to reduce
or increase the size of the training and searching domains for the surrogate
model construction and the EA optimization usually reduces significantly the
number of calls to expensive high-fidelity simulations towards the areas of interest.

The implementation of MFSMs within Minamo required the adaption of this
scheme in order to manage multiple databases associated to each level of fidelity,
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resulting in the MFSBO framework illustrated on Fig. 6.11. It is important to
keep in mind that a more classical single-fidelity SBO design cycle is obtained by
removing the low-fidelity model and updating the database only with one type of
evaluator.

In our case, the shift from data regressive to full-field models also required to
update the databases in order to handle and maintain high-dimensional snapshot
solutions at multiple levels of fidelity that are linked to integrated scalar responses.
Anticipating the important amount of data involved in Computational Fluid Dy-
namics (CFD) full-field solutions, as illustrated in the coming chapter, an efficient
implementation within Minamo’s kernel has been preferred to a weak coupling of
external libraries. The test of the modified optimization platform is presented on
an industrial-scale application in the remainder of this thesis.

6.4 Concluding remarks
The presented analytical problem is intended to model some key features of
targeted turbomachinery applications. The proposed MFNIPOD coupled with
EA outperformed more conventional RBFN assisted EA optimizations.

The interest for multi-fidelity increases with the ratio between low- and
high-fidelity evaluation costs. The proposed benchmark allows to construct
performance indicators by investigating the impact of an assumed CPU ratio on
the convergence rate of the proposed methodology. On the other hand, a relevant
cost ratio has to be associated to real engineering simulations to justify the sizes
of the training ensembles and elaborate a multi-fidelity dedicated enrichment
strategy.

We consider the interest of analytical benchmarks highly valuable for the esti-
mation of performance of reduced order MFSBOs.

Nevertheless, mathematical examples can suffer from their apparent lack of
representativeness. For instance, the chosen condensation (min, argmin and max
functions such as in Section 6.2) can be representative of “plateau” like signals
or other important features but may appear artificial as opposed to physics
based integrations like efficiency computations in CFD or von Mises indicator in
structural mechanics.

Next chapters are dedicated to the study and optimization of the performances
of a Low-Pressure Compressor (LPC) in order to assess the reliability of the pro-
posed model w.r.t. existing surrogates.
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Chapter 7

3D-rotor case presentation

In this chapter, we present an industrial-scale application in order to evaluate the
capacity of the surrogate models proposed in Section 4.1 to study and optimize
a turbomachinery component, namely a Low-Pressure Compressor (LPC). The
insight allowed by this kind of surrogate models is first assessed and compared
to single-, and multi-fidelity Data Fitting Surrogate Models (DFSMs) as well as
single-fidelity Non-Intrusive POD (NIPOD) models. Their integration into the
Surrogate-Based Optimization (SBO) framework presented in Sections 6.1 and 6.3
is also tested on the constrained maximization of the isentropic efficiency ηis of an
industrial 1.5-stage booster (illustrated in its engine environment on Fig. 7.1).

Figure 7.1: Safran Aero-Booster’s engine with LPC highlighted (from Safran Aero
Boosters, 2016).

Aerodynamic design of LPCs is of major interest and still stands as endeavor
for engine manufacturers. The first constraint imposed to the compressor
manufacturer is the total-to-total pressure ratio Πtot observed between the inlet
plane upstream the Inlet Guide Vane (IGV) and the outlet plane downstream the
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Outlet Guide Vane (OGV). In addition to this pressure ratio achievement, the
overall efficiency has to be maximized while ensuring the right stall margin at
all flight conditions. The stall margin is the distance from an operating point to
the line of separation between stable and unstable conditions in the compressor
map [Rukavina, 1991, Chapter 1]. In reality, finding a design satisfying all the
aforementioned conditions is very challenging for engineers.

The remainder of this chapter is structured as follows. Section 7.1 introduces
the application with its technical challenges. Section 7.2 presents the chosen
design space and illustrates the allowed modifications on the blade. The complete
multi-fidelity evaluation chain at both low- and high-fidelity is presented in
Section 7.3. Section 7.4, illustrates the Multi-Fidelity DoE (MFDoE) used to
train and assess the surrogate’s predictability.

The performance of the proposed Multi-Fidelity Models (MFMs) is assessed
on the isentropic efficiency prediction of a 3D 1.5-stage LPC. The chosen test
case is taken back from the SBO performed by Lepot et al., 2011 on the rotor
R1 of the 1.5-stage booster (see Fig. 7.2) initially designed by Safran Aero Boosters.

hub
endwall

meanflow
→

vector

Figure 7.2: Throughout view of the computational domain.

7.1 Physical context
The reference design presents highly loaded hub sections on the rotor stage R1.
This implies high diffusion and shocked suction sides, as illustrated on Fig. 7.3.

Axisymmetric endwall contouring is a classical method to improve efficiency
of highly loaded compressor designs [Hoeger et al., 2002; P. P. Chen et al.,
2012; Kröger et al., 2011]. As mentioned in Lepot et al., 2011, the important
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Figure 7.3: Isentropic Mach number (Mis) across rotor’s 10%-span section (black
line depicting sonic conditions).

acceleration at the suction side of highly loaded rotors implies strong pressure
gradients between suction and pressure side of adjacent blades. The 3D resulting
cross flows being responsible for a non-negligible part of the passage losses,
non-axisymmetric endwall contouring has been proposed to improve the overall
efficiency of highly loaded compressor stages, for example in Lepot et al., 2011;
Dorfner et al., 2011; Hu et al., 2010. The joint modification of axial blade
stacking and non-axisymmetric hub contouring is carried out to precisely control
the spanwise mass flow distribution and the intensity and behavior of corner stall
secondary flows presented in Section 2.1.1.

7.2 Design space definition
We consider here a design space associated to geometric modifications of both
the blade and hub endwall of the rotating row R1 in the booster presented on
Fig. 7.2. Two independent sets of parameters are implemented. On one hand the
rotor axial stacking is controlled by 2 parameters in a 3D in-house blade modeler
allowing one slice between 30% and 70% span to move axially from 20% hub axial
chord upstream up to 20% chord downstream. On the other hand, the rotor hub
endwall is parametrized within the CATIA V5R19 software. Figure 7.4 illustrates
the splines (green lines) controlling the 3D non-axisymmetric contouring and the
17 independent parameters involved, ∆ representing the type of displacement
allowed for each control point moving independently.

The whole design space D ⊂ IRp lies in IR19 and enables important modi-
fications of the aerodynamic conditions in the passage. The radial parameters
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∆ : none

∆ : axial
→ 1 param

� ∆ : azimutal
→ 1 param/point

• ∆ : axial & radial
→ 2 params/point

• ∆ : free
→ 3 params/point

⇒
Figure 7.4: Hub contouring definition.

driving the non-axisymmetric hub endwall contouring can go up to almost 20%
of the hub pitch angle (s), which yields high amplitude deformations as shown on
Fig. 7.5. The described parametrization is considered as a black-box operator so
that no exhaustive parameters list with their associated ranges of variation is given.

(a) Reference geometry (b) Modified geometry
−1 −0.5 0 0.5 1

Variations of the platform radius

Figure 7.5: Comparison of geometries and hub elevation on the rotor.

The modification of the 3D-hub contouring has an important impact on
near-hub losses and on massflow distribution. Indeed, modifying the hub elevation
tends to locally decrease or increase the velocity and has a non-negligible impact
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on the transverse pressure gradient, which is the driving force behind secondary
flows responsible for non-negligible efficiency losses [Reising and Schiffer, 2009]
and potential hub corner stall phenomena [Lei et al., 2008]. We can observe the
large deformations enabled by the described parametrization by comparing the
hub geometries on Figures 7.5a (reference configuration) and 7.5b. These large
deformations are responsible for non-negligible amount (≈ 50%) of computa-
tion chain failures occuring either during the Computer Aided Design (CAD)
generation process, the mesh generation and quality check or the flow solution
convergence analysis.

Local fluctuations in the hub platform radius (R) (illustrated on Fig. 7.5),
combined to the axial stacking parametrization of the rotor, allow for strongly
reshaping massflow distribution and coupling between mid-span streamlines and
corner stall vortices.

7.3 Flow field evaluation and multi-fidelity defi-
nition

Booster’s performances are evaluated using 3D-Reynolds Averaged Navier-
Stokes (RANS) computations. The multi-block cell-centered solver elsA
v3.3p1 [Cambier et al., 2013] is used for all low- and high-fidelity simulations
presented hereafter. Launder-Sharma’s k − ε turbulence model [Launder and
Sharma, 1974] without any near-wall treatment closes the RANS system of
equations and is associated with an entropy corrected [Harten, 1983] second order
extension of Roe’s flux discretization scheme [Roe, 1981].

The multi-fidelity hierarchy is based on variable mesh refinement computations
as in Kennedy and O’Hagan, 2000 or Leary et al., 2003. A first high-fidelity
3-level fully structured mesh is generated with Autogrid v9r1.1. The reference
mesh is taken from Lepot et al., 2011 where a mesh dependence study has been
performed to define the appropriate number of grid points. Leveraging the nested
characteristic of the resulting mesh, the low-fidelity configuration is obtained by
considering only the grid points of the 1st level of coarsening (see Fig. 7.6).

The dimensionless wall distance (y+) indicates how well the velocity gradient
is captured in the boundary layer. Considering the turbulence model used in this
case, it should stay below 1. One can see on Figures 7.6b and 7.6a, that the
y+ distribution is going above 1 (scale is saturated for values above 2) for the
low-fidelity mesh while maintained lower in the accelerated area on the suction
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R1

(a) High-fidelity mesh

R1

(b) Low-fidelity mesh

Figure 7.6: Comparison of low- and high-fidelity meshes (white line depicting
y+ = 1).

side for the high-fidelity mesh.

In addition to the increase in mesh density, high-fidelity convergence is
accelerated thanks to a 2-level V-cycling multigrid. The low- and high-fidelity
configurations are summarized in Table 7.1.

The impact of mesh coarsening is the dissipation of vortices in the loss-
generating areas as illustrated on Figures 7.7 and 7.8.

One can see on Fig. 7.6 the impact of coarsening the mesh on y+. Considering
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Mesh size [cells] CPU
IGV R1 OGV multigrid cost [h]

LF 183,872 199,616 183,872 none 6
HF 1,470,976 1,596,928 1,470,976 V 2-level 60

Table 7.1: Mesh density and computational costs.
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Figure 7.7: Skin velocity profile on the rotor blade suction side.

the skin velocity profile, the underestimation of the velocity in the viscous sublayer
is verified in attached areas of the blade (see Fig. 7.7a). On the other hand, the
low-fidelity solution is unable to capture the detached zones of the skin yielding
the low-fidelity overestimation of the axial velocity on the blade, as illustrated
on Fig. 7.7b representing the low- and high-fidelity skin velocity profiles at 75%-
span and 80%-chord on the rotor blade. The rotor blade boundary layer contains
between 10 and 15 mesh cells in the low-fidelity computation which is not sufficient
to capture its behavior. On the opposite, the high-fidelity computations respect
the recommandation for the number of mesh cells in the boundary layer to be over
20 for the type of simulations involved in this study.

As shown by highlight A on Fig. 7.8, the reference low-fidelity computation
presents a weaker separation on the suction side than its high-fidelity counterpart.
Coarsening the mesh provokes a rough positionning of the shock and changes the
position of the shock induced boundary separation (highlight A). At the same
time, a smoothing of the solution post-treated in the downstream mixing plane
(highlight B) can be observed on the low-fidelity field on Fig. 7.8b with respect to
Fig. 7.8a.
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A

B

(a) High-fidelity solution

A

B

(b) Low-fidelity solution

−1 −0.5 0 0.5 1

Hrel

Figure 7.8: Comparison of low- and high-fidelity near endwall flow behavior and
relative helicity downstream the reference rotor blade.

The aforementioned changes in conservative and derived variable distributions
accross the mixing planes are responsible for a non negligible error on the ηis and
Πtot, usual objectives and constraints of a compressor optimization. In our case,
these indicators are computed from the inlet and outlet states of the computa-
tional domain. One can observe on Fig. 7.9 that low-fidelity simulations are well
correlated to high-fidelity results. This is a requirement for every multi-fidelity
strategy to lead an optimizer towards interesting regions in the design space while
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maintaining low computational costs.
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Figure 7.9: Comparison of global objective ηis and contraint Πtot of the 1.5-stage
booster at on-design configuration.

7.4 Design of Experiments
Considering the computational cost of a single high-fidelity computation in the
proposed application, we propose to select “randomly” all the training databases
in a fixed Design of Experiments (DoE) and validate all the surrogate models on
another fixed validation DoE. A first DoE ΘF of 1000 points has been performed
yielding 500 successfully computed and converged experiments (at both low- and
high-fidelity levels) distributed along the 19-dimensional design space D accord-
ing to an improvement to the Latin Hypercube Sampling (LHS) called Latinized
Centroidal Voronoï Tesselation (LCVT) sampling method [Saka et al., 2007]. A
second LCVT DoE ΘV containing 110 successfull high-fidelity experiments is in-
dependently generated to estimate the quality of all trained surrogate models and
is therefore never used as training information for surrogates but only for val-
idation. To assess the impact of randomness underlying the a priori sampling
methods utilized, multiple indepedent groups of training ensembles with the fol-
lowing properties are built ($ LF

HF
recalling the computational cost ratio between

low- and high-fidelity simulations):

1. ΘT : LHS DoE of MH +ML points

2. ΘC : LHS DoE of MH + dML · $ L
H
e points
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3. ΘH : LCVT DoE of MH points,
with ΘH ⊂ ΘC ⊂ ΘT .

The LHS conditions of ΘC and ΘT are met by generating and enriching ΘH re-
spectively with the LCVT sampling method [Saka et al., 2007] and the “inherited”
LHS enrichment method [G. Wang, 2003]. The collision free projection illustrated
(on a 2D toy example) on Fig. 7.10 yields pseudo-independent training ensembles
ΘT while limiting the training computational time to the simulation of the first
DoE ΘF . It is important to keep in mind that the theoretical computational costs
implied by the high-fidelity simulations of ΘC on one hand and the sum of high-
fidelity simulations of ΘH and low-fidelity simulations of ΘT on the other hand are
equivalent. In fact, running MH high-fidelity and ML low-fidelity simulations is
associated to a computational cost of MH ·$H +ML ·$L. To take into account the
cost associated to low-fidelity experiments utilized for training the multi-fidelity
surrogate models, we compare these surrogates to mono-fidelity models trained on
extended databases, this extension being represented by ΘC .
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jection of ΘT

0.0 0.2 0.4 0.6 0.8 1.0
θ1

0.0

0.2

0.4

0.6

0.8

1.0

θ 2

ΘV

ΘH

ΘC

ΘT

(b) Fixed validation DoE ΘV and pro-
jected training DoE

Figure 7.10: Fixed computed and validation DoEs and Random generation of
training DoEs for surrogate model construction.

This collision free process allows for taking into account a biased randomness
on the predictability while both insuring a certain number of training points and
restraining the CPU budget within acceptable limits.

In Chapter 8, we present a study of the the predictability of the proposed
Multi-Fidelity NIPOD (MFNIPOD) surrogate models on the on-design quantities
of interest for the considered booster.



Chapter 8

Surrogate model prediction of
3D-rotor aerodynamic
performances

Following the notations of Sections 4.1-4.2, and Chapter 7, this chapter evalutes
the predictability of the proposed Hierarchised Multi-Fidelity NIPOD (HMFNI-
POD) on the performance indicators of the studied 1.5D-booster. Section 8.1
primarily explains the training and validation methodology applied to the study.
Stressing the advantages and limitations of the proposed surrogate model w.r.t.
reference models [Bishop, 1995; Kennedy and O’Hagan, 2000; Forrester, Sóbester,
et al., 2007; Guénot et al., 2013; D. Xiao, Fang, et al., 2015; Shinde et al., 2016;
Hamdaoui et al., 2013], single- and Multi-Fidelity POD (MFPOD) bases are com-
pared in Section 8.2, as well as Non-Intrusive POD (NIPOD) and Multi-Fidelity
NIPOD (MFNIPOD) in Section 8.3. Finally, Section 8.4 discusses choices made
in order to perform optimizations of the aforementioned 1.5D-booster.

8.1 Validation methodology and snapshot defi-
nition

We denote Z(Θ) and Y(Θ), the snapshot matrices obtained by computation of
the points in DoE Θ respectively at low- and high-fidelity, and ζL or ζH any scalar
quantity of interest respectively integrated from a low- or high-fidelity full field
solution of the problem at hand. To assess the quality of the proposed surrogate
model, a comparison of its predictability will be made with:

• full-field models :

– single-fidelity

97
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1. Y(ΘH) trained NIPOD
2. Y(ΘC) trained NIPOD

– multi-fidelity SM := [Y(ΘH),Z(ΘT )]
3. SM trained NIPOD (Mifsud, MacManus, et al., 2016)
4. SM trained NIPOD (Sections 3.1-4.2, and Chapter 7)

• scalar models (ζ is either ηis or Πtot) :

– single-fidelity ζ := ζH

5. ζ(ΘH) trained RBFN
6. ζ(ΘC) trained RBFN

– multi-fidelity ζ := [ζH(ΘH), ζL(ΘT )]
7. ζ trained co-Kriging.

The quantities of interest (ηis and Πtot) will be predicted by above list of refer-
ence models yielding the Pearson’s correlation coefficients [Pearson, 1895; Pearson,
1896]:
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and,
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where MV is the number of points in the validation DoE ΘV and k naming a
defined model type in the list above.

The NIPOD-based models will be trained for each conservative variable of the
3D computations and from the distributions on the coarse mesh nodes in the
mixing planes, as illustrated on Fig. 8.1. The conservative variables are stored
dimensionless in order to keep different physical units from changing the relative
variances associated to each conservative variable. As mentioned in Kirby et al.,
1990 and Jolliffe, 2002, units artificially introducing important variances (static
pressure [Pa] in the order of five as compared to density [−] in the order of 1
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(a) High-fidelity snapshot (b) Low-fidelity snapshot
ρe

Figure 8.1: ρe distribution on coarse mesh nodes in the mixing planes (iso-range).

for example) would clearly dominate the first POD modes despite a potentially
weaker link to the parametric changes.

To predict the quantities of interest ηis and Πtot, one NIPOD model per conser-
vative variable ρ, ρu, ρv, ρw, ρe, ρk, ρε is built in each mixing plane. This yields
28 models trained on snaphots lying in IR1961.

8.2 Comparison of single- and multi-fidelity
POD bases

As explained in Section 4.1.3, the proposed method tends to leverage multi-fidelity
information to improve both the basis and the projection coefficient models of a
NIPOD-based surrogate. To evaluate the POD basis improvement with respect
to both single-fidelity [Guénot et al., 2011] and non-hierarchised multi-fidelity ba-
sis [Mifsud, MacManus, et al., 2016], we propose to compute the “ideal” repre-
sentation ΦF of our problem’s output space, from the whole database ΘF , and
quantify the lacking information of all approximate bases. In the following, we
consider the comparison of the bases listed in Table 8.1 and associated to the
corresponding training ensemble(s). For the sake of readability, all Φ, Υ and Ψ
bases will be respectively associated to single-fidelity POD basis training, multi-
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fidelity POD construction as defined by Mifsud, MacManus, et al., 2016, and the
hierarchised multi-fidelity method proposed in Section 4.1.3.

DoE fidelity level snapshots matrix basis
ΘF high SF ΦF

ΘH high SH ΦH

ΘC high SC ΦC

ΘT both SM ΥM [Mifsud, MacManus, et al., 2016]
ΘT both SM ΨM

Table 8.1: Compared bases and associated training set

Figure 8.2 shows the energy decay of the bases ΦF associated to each POD
model and built on the SF snapshot matrices. As illustrated on Fig. 8.2a, the
energy of the modes associated to the inlet plane of the booster is decaying very
rapidly as a fixed massflow boundary condition is imposed. On the contrary,
the other post-processed planes show a gentler slope for the POD modes energy
decay, especially the last two planes (R1–OGV and booster’s outlet) where more
than 100 modes are needed to capture 99.9% of the total energy contained in the
snapshot matrices.

ΦF representing the “ideal” basis spanning the high-fidelity output spaces of
pair of conservative variables in post-processing planes, we evaluate δi (Eq. 8.3)
the “missing” relative L2-norm of each vector φF.i :

δi =
‖
(
I−BB>

)
ΦF·i‖2

‖ΦF·i‖2 . (8.3)

δi measures the part of the vector outside the subspaces spanned by the
bases ΦH , ΦC , ΥM , ΨM , Υ99%

M , and Ψ99%
M , where ×99% represents any basis B

truncated at 99% of its energy ε(m)× =
∑m
i=1 λi∑M
i=1 λi

, with λ the vector of decreas-
ing eigenvalues and the number of modesm < M the number of training snapshots.

The bases presented on Fig. 8.3 are trained on DoE’s associated to the couple
(MH ,ML) = (38, 190) being respectively 2× dim(D) and 10× dim(D). Figure 8.3
shows the first interest of multi-fidelity enrichment for the POD basis construction.
We can notice that the error δ is always higher for the POD basis ΦC than for the
proposed basis ΨM despite equivalent training costs. Figure 8.3 also illustrates
that the methodologies proposed in this work and in Mifsud, MacManus, et al.,
2016 are equivalent if “un-truncated”, as both curves ΨM and ΥM lie on top of
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Figure 8.2: Energy decay of the POD bases ΦF associated to each conservative
variable.

each other. Nevertheless, truncating the POD basis brings out much broader error
for the multi-fidelity POD basis Υ99%

M with respect to Ψ99%
M . This can be explained

by the fact that all “high-fidelity” information is kept in the first modes of ΨM

whereas a part of it is diffused in the last modes of ΥM and thus not available
anymore after truncation.
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Figure 8.3: Evolution of δ for each mode of ΦF computed for ρw in the mixing
plane R1–OGV.

8.3 Comparison of surrogate models on the pre-
diction of aerodynamic quantities

The previous section illustrated the improvement of the POD basis w.r.t. single-
fidelity POD models as well as to the methodology in Mifsud, MacManus, et al.,
2016. Once the surrogate models are built on the projection coefficient databases,
the NIPOD prediction is available for any experiment in the design space D. The
presented results associated to NIPOD models are obtained with projection coeffi-
cients modeled by Radial Basis Function Networks (RBFN) tuned via their Leave-
One-Out coefficient [Rippa, 1999]. As soon as multi-fidelity NIPOD is concerned,
the projection coefficients are here modeled by additive multi-fidelity RBFN with
tuned low-fidelity and bridge submodels. By applying the validation methodology
in Section 8.1, the mean and standard deviation over 20 “independent” runs are
computed for the Pearson’s coefficient r [Pearson, 1895; Pearson, 1896] of high-
fidelity versus predicted values of ηis and Πtot. Table 8.2 presents the observed
correlations for ηis throughout 1.5-stage of booster at on-design conditions and for
different configurations (MH ,ML).

The quality of POD bases appears clearly from the first block of numbers
in Table 8.2. Considering all training ensembles yields a very good agreement
(above 0.999 in mean value) between predicted and computed isentropic efficiency
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k Training configuration (MH ,ML)
(19, 95) (38, 190) (38, 380)

r̄η σrη r̄η σrη r̄η σrη

ΦHα 0.9987 1.0× 10−3 0.9998 1.2× 10−4 0.9998 1.3× 10−4

ΦCα 0.9992 6.4× 10−4 1.0000 2.7× 10−5 1.0000 6.7× 10−6

ΥMα 1.0000 5.4× 10−6 1.0000 1.2× 10−7 1.0000 1.2× 10−8

ΨMα 1.0000 5.4× 10−6 1.0000 1.2× 10−7 1.0000 1.2× 10−8

ΦHα̃ 0.153 2.0× 10−1 0.180 2.1× 10−1 0.174 1.8× 10−1

ΦCα̃ 0.178 1.6× 10−1 0.250 1.1× 10−1 0.260 1.1× 10−1

ΥMα̃ 0.3551 2.5× 10−2 0.381 3.9× 10−3 0.462 7.2× 10−4

ΨMα̃ 0.3553 10.0× 10−3 0.392 1.6× 10−3 0.482 2.9× 10−4

η̃RBFH 0.151 1.9× 10−1 0.175 2.2× 10−1 0.168 1.8× 10−1

η̃RBFC 0.176 1.6× 10−1 0.244 1.1× 10−1 0.253 1.2× 10−1

η̃CoKM 0.196 1.7× 10−1 0.288 1.4× 10−1 0.563 9.8× 10−4

Table 8.2: High-fidelity to modeled isentropic efficiency correlations rkη over the
validation DoE ΘV

(this observation being confirmed for total-to-total pressure ratio, the associated
numerical values are hidden in Table 8.3). The increase in the number of training
points tends to improve the predictability of all models as shown by the increase
in mean values r̄η with couples (MH ,ML). Despite the good quality of all POD
bases, one can also observe a slight jump in mean correlations related to the
proposed multi-fidelity NIPOD model w.r.t. both NIPOD based models and data
fitting regressions. This trend seems stable for every couple (MH ,ML) except
for the multi-fidelity co-Kriging model able to fill in the gap with multi-fidelity
NIPOD for the “richest” training ensemble, as shown on the last line of r̄(38,380)

η

in Table 8.2. The multi-fidelity approaches also present the smallest variances σrη
in Table 8.2, w.r.t. the 20 “independent” runs mentioned earlier.

The Table 8.3 shows that conclusions drawn from ηis (Table 8.2) also hold for
Πtot, the other quantity of interest of the problem at hand. One can see that the
co-Kriging model predictivity is increasing more rapidly with the training ensemble
size for Πtot than for ηis. This situation can be explained by the relative easiness
to model Πtot w.r.t. ηis, which can also be observed from the fidelity analysis
on Fig. 7.9. It is also interesting to note that multi-fidelity POD based models
seem to better capture the correlations between quantities of interest. As stressed
in the introduction, Data Fitting Surrogate Models (DFSMs) usually treat each
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quantity of interest independently, whereas POD based models work at the full-
field simulation level. Therefore, scalar quantities derived from a single POD-based
model are all integrated from the same physical response, potentially yielding an
increased coherency between modeled quantities. This remark is illustrated by the
important difference between r̄Π(Π̃) and r̄η(η̃) with respect to differences between
r̄Π(Υα̃) and r̄η(Υα̃) on one hand, and r̄Π(Ψα̃) and r̄η(Ψα̃) on the other hand
(see Tables 8.2 and 8.3). In the case of full-field models, the predictability of
all the scalar quantities of interest is correlated by their derivation from a single
full-field prediction, whereas in the case of DFSMs, each scalar quantity is modeled
independently.

k Training configuration (MH ,ML)
(19, 95) (38, 190) (38, 380)

r̄Π σrΠ r̄Π σrΠ r̄Π σrΠ

ΦHα̃ 0.158 2.4× 10−1 0.206 2.1× 10−1 0.201 1.1× 10−1

ΦCα̃ 0.189 1.6× 10−1 0.277 4.6× 10−2 0.297 5.1× 10−2

ΥMα̃ 0.369 1.8× 10−2 0.384 4.0× 10−3 0.460 6.1× 10−4

ΨMα̃ 0.369 5.7× 10−3 0.391 2.0× 10−3 0.480 1.8× 10−4

Π̃RBF
H 0.156 2.4× 10−1 0.202 2.2× 10−1 0.196 1.1× 10−1

Π̃RBF
C 0.187 1.7× 10−1 0.270 4.9× 10−2 0.290 6.0× 10−2

Π̃CoK
M 0.207 1.9× 10−1 0.412 3.9× 10−2 0.593 2.5× 10−8

Table 8.3: High-fidelity to modeled total-to-total pressure ratio correlations rkΠ
over the validation DoE ΘV

Figure 8.4 illustrates the improvement of secondary flows prediction in
the OGV outlet plane. It is important to note that the validation exper-
iment on Fig. 8.4 is chosen representative of mean values in Table 8.2 at
(MH ,ML) = (38, 190).

Comparing Figures 8.4b and 8.4a, we can observe that, as illustrated on
Fig. 7.8, the intensity of secondary flows is reduced by mesh coarsening (highlights
A, B and C). As single-fidelity NIPOD (see Fig. 8.4c) is trained only with
high-fidelity snapshots, the mainstream intensity of ρw is increased (highlight
B) with respect to Fig. 8.4d. Nevertheless we can see that adding low-fidelity
information helps capturing new patterns as illustrated on Fig. 8.4d, where
low-fidelity experiments presenting the same type of near hub behavior allow for
capturing the low-ρw area in highlight C.
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Figure 8.4: Comparison of ρw distribution in the OGV outlet plane for one specific
experiment of the validation DoE ΘV .

Figure 8.5 presents the dimensionless error of relative helicity in the OGV
outlet plane. Relative helicity is defined as the scalar product of velocity (−→V )
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and vorticity (−→Ω = ∇×−→V ), Hrel =
−→Ω · −→V
|
−→Ω | · |−→V |

, and indicates streamwise oriented

vortical motion [Colombo, 2011]. As explained in Moore et al., 1987, streamwise
oriented vortices tend to dissipate kinetic energy to heat yielding an increase in
stage losses.

(a) Mono-fidelity NIPOD prediction er-
ror ΦCα̃

(b) Multi-fidelity NIPOD prediction er-
ror ΨM α̃

0 0.2 0.4 0.6 0.8 1

|H̃rel −Hrel|
2

Figure 8.5: Comparison of adimensionalised error of relative helicity in the OGV
outlet plane for one specific experiment of the validation DoE ΘV .

Figure 8.5b shows a reduction of the relative helicity error below 30%-span with
respect to Fig. 8.5a. We can speculate that the improved capture of losses gener-
ating phenomena associated to relative helicity distribution explains the increase
in overall isentropic efficiency observed in Table 8.2.
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8.4 Discussion and groundwork for rotor opti-
mization

The presented results stress out the ability of the proposed methodology to reduce
the prediction error w.r.t. single-fidelity DFSMs that are as demanding in terms
of training computational cost. The predictability of the proposed NIPOD model
is shown comparable to widely used co-Kriging models but avoids a training cost
linearly increasing with the number of scalar quantities of interest, which justifies
its capability to drive an EA-based optimization towards interesting designs. The
presented results are obtained with very low DoE size to design space dimensional-
ity ratios and reveal an acceptable simulated to modeled performance correlation
coefficients also inciting its usage in the remainder of this chapter. Neverthe-
less, some properties of the snapshot definition given in Section 8 are changed
in the next chapter in order to better capture the most impacting parameters
for the optimization. The previous low- and high-fidelity snapshots are extracted
from the mixing planes, in order to avoid any interpolation scheme for the snap-
shot construction. To reduce the impact of diffusion of coarse mesh cells close to
the mixing planes, we move the post-treatment planes closer to the rotor blade.
The impact of this diffusion can be observed by computing an ANalysis of VAri-
ance (ANoVA) [Pearce, 1992; Sobol, 2001]. Figure 8.6 shows the increase of high
order correlations when increasing the distance between the post-processed planes.
The higher diffusion caused by coarser mesh cells close to the mixing planes tends
to confuse the link between design parameters and outputs.

(a) ANoVA computed from interpolated
planes

(b) ANoVA computed from R1-mixing
planes

Figure 8.6: RBF based ANoVA of rotor’s pressure ratio.

Figure 8.7a illustrates the difference between former and closer planes. For
the previously introduced post-processing plane, no interpolation of the solution
was required to extract the snapshots. In the present case, a 3D-interpolation
of the solution is needed. To keep the topology of the interpolated solution, the
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extracted nodes are linearly interpolated in the initial structured grid. Once the
post-processed plane is discretized linearly as illustrated on Fig. 8.7b, the solution
is interpolated on the newly defined discretization thanks to the algorithm cK-
DTree [Maneewongvatana and Mount, 2001] implemented in the python library
SciPy [E. Jones et al., 2001–].

Former planes
Closer planes

R1

(a) R1 surrounding blocks with former and closer
post-processing planes

(b) Linear interpolation of
the low-fidelity mesh on a x-
fixed plane

Figure 8.7: Difference between former and new post-processing planes and inter-
polation procedure.

It is important to note that the discretization topology in the post-processing
planes remains unchanged.



Chapter 9

3D-rotor optimization

This chapter gives results obtained on the design of the presented 1.5-stage
booster with the Multi-Fidelity NIPOD (MFNIPOD) assisted optimization
framework introduced in Chapter 6. In Section 9.1, we primarily compare the
capacity given by the low- and high-fidelity levels of simulation to optimize the
considered blade row and its hub endwall. Optimized geometries obtained from
MFNIPOD and Radial Basis Function Networks (RBFNs) assisted optimizations
are then compared in Section 9.2. Analysis of the flow features observed on both
the reference and optimized geometries are given, as well as their link to the
associated deformations. In order to put the presented results into perspectives,
Section 9.3 compares Computational Fluid Dynamics (CFD) of the reference
geometry as estimated by two different turbulence models from the literature.

Two operating points are considered, the design point and a second point close
to numerical stall (hereafter called “stall” for simplicity). The optimizations tend
to maximize the isentropic efficiency (ηis) on design while ensuring a certain total-
to-total pressure ratio (Πtot) both on- and off-design as well as ensuring a certain
on-design inlet massflow:

• Objectives

1. η on-design → MAXIMIZE

• Constraints

1. on-design ΠPt ≥ on-design Πref
Pt

2. off-design ΠPt ≥ off-design Πref
Pt

3. on-design ṁin ≥ on-design ṁref
in

109
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A large DoE with high-fidelity computations is primarily evaluated to assess
how intricate the problem at hand is. As expected, the parameters controlling
radial deformation as well as the amplitude of axial stacking deformation for the
blade are contributing the most in performances.

9.1 High- and low-fidelity driven RBFN assisted
optimizations

To first evaluate the capability of the low-fidelity to drive the optimizations, two
independent optimizations based on either high- or low-fidelity simulations are
run. For all computed experiments during the low-fidelity driven optmization, the
high-fidelity solutions of new points are also computed to be able to compare the
performances attained at each iteration. The starting DoE associated to these op-
timizations is composed of 500 Latinized Centroidal Voronoï Tesselation (LCVT)
points yielding 250 (≈ 13× card(D)) converged experiments.

Scalar quantity Design point Stall point

η 4.1× 10−5 9.7× 10−5

ΠPt 9.4× 10−6 4.8× 10−5

ṁin 9.9× 10−6 4.9× 10−5

Table 9.1: Correlation coefficient (r) between low- and high-fidelity estimated
performances (1− r values).

Despite very high correlation coefficients between low- and high-fidelity
estimated performances, as illustrated in Table 9.1, low-fidelity cost functions
would lead to degenerated optimization as shown on Fig. 9.1. It is important
to keep in mind that both HF-driven and LF-driven optimizations are starting
from the same DoE, meaning that the low-fidelity cost function is not able to
properly rank the initial training ensemble. Indeed, rankings associated to low-
and high-fidelity functions yield different best candidates. This indicates that
either the low- to high-fidelity on-design isentropic efficiency transfer function is
not monotonic, or that the low- and high-fidelity definitions of the constraints
drive the optimizer towards different regions in the design space.

One can observe, on Figures 9.2 and 9.3, the hub profiling scaled by hub pitch
angle (s) and blade axial sweep drawn respectively by LF- and HF-driven opti-
mizations.
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Figure 9.1: Comparison of low- and high-fidelity driver for on-design isentropic
efficiency optimization.

(a) Forward swept low-fidelity driven op-
timum

(b) Backward swept low-fidelity driven
optimum
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Figure 9.2: Hub profiling and blade sweep deformation of two low-driven optima
(Reference blade in grey).

As expected, optimizations tend to limit the flow acceleration on the suction
side by locally reducing the platform elevation in the Trailing Edge (TE) vicinity
(see Fig. 9.4). The pattern observed in Lepot et al., 2011 is also present on the
high-fidelity optima where a digging along the suction side in the Leading Edge
(LE) vicinity and close to the rear pressure side area, and bumps appear on the
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(a) Forward swept high-fidelity driven
optimum

(b) Backward swept high-fidelity driven
optimum
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Figure 9.3: Hub profiling (∆R/s) and blade sweep deformation of two high-fidelity
driven optima (Reference blade in grey).

pressure side close to the LE and at the rear part of the suction side. This pattern
associated to forward sweeping is responsible for an increase in the on-design
isentropic efficiency as it tends to increase the massflow rate in mid-span sections,
as shown on Fig. 9.5.
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∆R
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[·10−3]

(a) Forward swept high-fidelity driven
optimum

−2.5 −1.25 0

∆R
s

[·10−3]

(b) Forward swept low-fidelity driven op-
timum

Figure 9.4: Comparison of low- and high-fidelity hub profiling patterns (∆R/s).



9.1. HIGH- AND LOW-FIDELITY DRIVEN SBOS 113

One can notice, from Fig. 9.4, that the low-fidelity driver tends to apply, in a
crude way, the same hub profiling that is proposed by high-fidelity optimization.
Keeping in mind the impact of mesh coarsening, low-fidelity simulations are made
unable to properly evaluate the characteristics of the boundary layer, which is
furthermore modified by the non-axisymmetric endwall contouring.

(a) Reference blade (b) Forward swept high-fidelity driven
optimum

0.3 0.45 0.6 0.75 0.9

Pstag [−]

Figure 9.5: Normalized total pressure at design point.

Even though both low- and high-fidelity evaluation chains target the capture
of the same physics and despite very high low-to-high correlation factors (see
Fig. 7.9), the low-fidelity information reveals itself too inaccurate to drive properly
the optimizer towards the interesting zones in the design space. Any multi-fidelity
optimization targets directly this kind of problems where the high-fidelity informa-
tion is needed to correctly rank experiments in the design space, but its prohibitive
computational cost makes the required number of evaluations for large and accu-
rate view of the terrain shape unaffordable.



114 CHAPTER 9. 3D-ROTOR OPTIMIZATION

9.2 MFNIPOD assisted optimization
In this section, the surrogate model proposed in Section 4.1, primarily integrated
into an Surrogate-Based Optimization (SBO) framework (as in Section 6.1), is
used to the optimization of the presented booster application. As mentioned in
Section 6.1, every selected enrichment location is both evaluated at low- and
high-fidelity levels, as soon as multi-fidelity optimization is concerned.

0 20 40 60 80 100
# iteration [− ]

η i
s

[−
]

RBF0

RBF1

MFNP

ref

0.05
pts

DoE
improvement

Figure 9.6: History of convergence of RBFN and MFNIPOD assisted optimizations
of the on-design isentropic efficiency.

Figure 9.6 shows the convergence history of two independent RBF-assisted
optimizations on one hand and a multi-fidelity non-intrusive POD-assisted
optimization on the other. The single-fidelity optimizations are initialized with
a high-fidelity DoE containing 240 experiments, of which 125 are successfull.
The multi-fidelity optimization is associated to a multi-fidelity DoE containing
190 high-fidelity experiments, of which 100 are successfull, and 500 low-fidelity
experiments, including 250 successfull computations. As previously mentioned
(Section 7.4), the DoE sizes used make the single- and multi-fidelity samplings
comparable in terms of computational cost. In order to reduce the bias intro-
duced by comparing single- and multi-fidelity strategies, the best (optimization
objective) point known at high-fidelity level from the DoE phase is the same
for all the optimizations, as illustrated by the superimposed curves for the first
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30 iterations on Fig. 9.6. With respect to RBF-assisted optimizations, the
multi-fidelity non-intrusive POD-assisted optimization showed itself a bit longer
to detect improved efficiency areas but spotted a highly efficient experiment after
50 iterations whereas RBF-based optimizations required at least 65 to reach
a comparable level of efficiency. The optimized configurations satisfied all the
aforementioned constraints, which are nevertheless responsible for the limitation
of the on-design isentropic efficiency.

The optimized geometries associated to the MFNIPOD and RBF1-assisted
optimizations (see Fig. 9.6) are here compared in terms of aerodynamic properties
and of shape deformation. Here, the RBF1-assisted optimization is chosen as a
higher efficiency is obtained after 100 iterations with respect to the RBF0-assisted
optimization.

9.2.1 Flow field comparison

S

(b)(a) (c)

(a) Reference geometry

S

(b)(a) (c)

(b) MFNIPOD-Optimized
geometry

S

(b)(a) (c)

(c) RBF1-Optimized ge-
ometry

Figure 9.7: Comparison of oil traces on the suction side of the rotor.

Figure 9.7 gives a comparison of the “skin motion” on the reference and
optimized rotor blades. Considering viscous flows, the no-slip condition gives a
cancelling velocity at a solid boundary. The oil traces are therefore computed via
line integral convolution [Cabral and Leedom, 1993] from the friction vector on the
blade. The reduction of the recirculation area at 65%-span is clearly observable
on the optimized geometries. The reference geometry presents a shock-induced
separation bubble stretching from 35%-span and 20%-chord to 80%-span and
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60%-chord. An important loss-generating area is also visible between 60%- and
80%-span, due to the interaction between the aforementioned shock-induced
separation bubble and the tip leakage flow. As shown in Shi and Fu, 2013, this
interaction tends to stretch out the separation bubble and further increase the
losses generated by the reference geometry; local reattachments and separations
of the fluid are also probably visible at the top limit of the highlighted area (red
box on Fig. 9.7a). A contrario, the optimized blades present reduced separated
zones.

As the flow goes through the rotor passage, it is decelerated and boundary
layer’s kinetic energy is lowered on the blade skin. Figure 9.8 shows the skin
velocity profiles at 75%-span of the rotor blade. The probe locations associated
to the skin velocity profiles at 20%-, 50%-, and 80%-chord are respectively
highlighted by marks (a), (b), and (c) on Fig. 9.7. One can distinguish, on
Fig. 9.8c for example, the increased boundary layer thickness on the reference
blade with respect to optimized geometries. One can also clearly see the reversed
flow at 50%-chord on Fig. 9.8b, highlighting the aforementioned separation bubble.
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Figure 9.8: Comparison of skin velocity profiles at 75%-span on reference and
optimized rotor blades.

Figure 9.9 shows the normalized streamwise vorticity Ωs =
−→Ω · −→V
|
−→
V |

as an

indicator of the development of tip leakage vortices observed on the reference and
optimized blades. Two colormaps are used to distinguish between negative and
positive oriented vortices, the scales are saturated and the opacity is decreased
for low magnitudes of streamwise vorticity in order to focus on the vortex growth.
The development of tip leakage vortices appears in agreement with the insight
given in Y. Wu and Chu, 2007. As illustrated in Shi and Fu, 2013, two iso-oriented
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(a) reference geometry (b) MFNIPOD-optimized
geometry

(c) RBF1-optimized geom-
etry
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Figure 9.9: Comparison of tip leakage vortices

(orange colormap on Fig. 9.9) vortices are created in the tip leakage, the first
one starts right after the leading edge and is advected and mixed with the
second vortex after 70%-chord approximately. We can also see a counter-rotating
vortex (blue colormap on Fig. 9.9) created around 20%-chord, due to tip leakage
sheet scratching the low-momentum boundary layer on the casing endwall. This
phenomenon is called interaction between the leakage flow and the annulus wall
boundary layer in Lakshminarayana et al., 1995. These observations seem in
accordance with the literature [Shi and Fu, 2013; Y. Wu and Chu, 2007]. We can
notice from Fig. 9.9 that the rise of the tip leakage vortex core is delayed by the
forward stacking deformation performed on the two optimized blades. It occurs
despite the zero displacement condition applied to the extreme sections of the
rotor blade.

The secondary flows primarily targeted by the utilized parametrization are
the vortices located near the hub endwall of the rotor’s platform as presented on
Fig. 2.3b. Figure 9.10 presents a comparison of the hub corner stall observed on
the reference and optimized geometries. The overturning of near hub generated
streamlines explained in Section 7.1 is observable on the red stream tubes (OT
mark) on Fig. 9.10. It appears clearly reduced on the optimized geometry on
Fig. 9.10c as indicated by the lower normalized streamwise vorticity Ωs. The
lowering of hub sections loading is also represented by the shock onset on the
suction side of the blades, which is highlighted by the normalized axial derivative
of the density 1

ρ
· ∂ρ
∂x

. Comparing reference and optimized geometries, one can
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Figure 9.10: Comparison of Hub Corners

observe the change in massflow distribution by the increase in the shock intensity
on mid-span sections of the optimized blades, and its reduction on hub sections
and endwall. The shock-induced increase in blade’s boundary layer thickness is
also noticeable as the normalized streamwise vorticity of streamlines on the blade
brutally increases across the shock (SL mark). At the rear part of the channel,
one can see the development of the corner vortex (CV mark). This phenomenon
is overwhelmed on the RBF1-optimized geometry as illustrated by the CV mark
on Fig. 9.7c.

9.2.2 Comparison of shape deformations
As illustrated on Figures 9.7 and 9.11, very similar forward swept configurations
are here proposed by both the MFNIPOD- and RBF-assisted optimizations. As
illustrated on Figures 9.7 and 9.10, this kind of deformations tends to change the
spanwise massflow distribution. By decreasing the loading on hub sections, the
hub-corner stall is slightly reduced as the cross-flow and skewed inlet flow effects
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are attenuated by a diminished suction (see Fig. 2.3b). Figure 9.11 gives the
blade shape deformation as the ratio between axial stacking deviation from the
reference geometry over the mean chord length ∆X

c
. The similarity between the

two optimized geometries appears clearly, as well as the amplitude of deformation
with respect to the reference axial stacking shown in transparent grey on Fig. 9.11.

(a) MFNIPOD-assisted optimum (b) RBF-assisted optimum

0 6.25 · 10−2 0.13 0.19 0.25

∆X
c

Figure 9.11: Mean chord-scaled stacking deformation (∆X
c
) w.r.t. reference blade.

Whereas the axial stacking deformation proposed by MFNIPOD- and RBF-
assisted optimizations are very close to each other, the amplitude of the platform
deformation is very different. Only the RBF based optimum presents a non neg-
ligible deformation as shown on Fig. 9.12.
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(a) MFNIPOD-optimized platform (b) RBF-optimized platform

−2 −1 0 1

∆R
s

[·10−3]

Figure 9.12: Comparison of pitch-scaled platform deformation for MFNIPOD- and
RBF-assisted optima.

9.3 Discussion on numerical results
In their study, Rodi and Scheuerer, 1986 show that the classical k − ε turbulence
model can be seriously in error when dealing with decelerated flows. It has also
been demonstrated in Chambers and Wilcox, 1977 that the curvature has no
impact on the transport equation of the turbulent dissipation rate per unit energy
ω, whereas it should be taken into account in the turbulent dissipation rate
equation ε. The same difference holds when dealing with surface-roughness effects
in the viscous sublayer region, where viscous damping functions are needed for the
integration of the model [Wilcox, 1993]. In addition, the k − ω turbulence model
is known to be able to accurately predict the defect-layer structure under all
pressure gradient condition [Wilcox, 1993]. Nevertheless, one of its disadvantages
is related to its sensibility to turbulent freestream conditions as demonstrated
in Menter, 1992. For these reasons, and as the flow is mainly decelerated across
axial compressor stages, the turbulence model proposed by Menter, 1993; Menter,
1994 has been widely used in the compressor community [Hellsten, 1998; Dragan
et al., 2015].

In this section, we propose to evaluate the discrepancies of the reference
geometry as simulated with the k − ε model from one hand and the k − ω model
on the other. Figure 9.13 presents a comparison of the skin motions predicted by
the two aforementioned turbulence models associated with the high-fidelity mesh.
The discretization scheme is conserved as described in Section 7.3, as well as the
mesh topology. The k − ω turbulence model is associated with the Shear-Stress
Transport (SST) correction proposed by Menter et al., 2003.
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(a) Launder-Sharma’s k − ε turbulence
model [Launder and Sharma, 1974]

(b) Menter’s k − ω SST turbulence
model [Menter, 1994]

Figure 9.13: Comparison of oil traces on the reference geometry.

The features of the flow around the blade are totally different from one com-
putation to the other. It appears that the massive separation on the blade skin
observable on the initial simulation (Fig. 9.13a) has almost totally disappeared on
the k−ω computation. This is in accordance with a commonly admitted drawback
of the k−ε turbulence model in presence of strong adverse pressure gradient which
states that this model tends to make the boundary layer separate faster in some
cases. This behavior is related to the defect-layer problem and the production
term of turbulent kinetic energy that should be constant in the sublayer zone, but
is in the case of strong adverse pressure gradient increased by the k − ε model in
a non-physical way. On the other hand, the relatively low intensity of the corner
separation, initially observed on the k−ε computation, is contradicted by the k−ω
SST simulation. It is important to keep in mind the parametrization involved in
the optimization presented above. Targeting mostly the platform deformation and
its impact on the corner stall development, the switch to the k − ω turbulence
model could have strongly modified the shape of the optimized geometries. Keep-
ing that in mind, the initial choice of the k− ε turbulence model is justified by the
required coherency between former study in Lepot et al., 2011 that was started
after a first validation of the reference computation against existing k − ε based
technical data.
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Conclusions and perspectives

This thesis develops and applies multi-fidelity optimization techniques that are
broadly applicable to the design of any engineering system considering its physical
behavior is assessable at different levels of fidelity. The focus is on turbomachinery
applications that present complex flow features strongly impacting macro-scale
indicators of the machine efficiency.

The developed methods tackled both the fusion of multi-level information and
the online enrichment and Surrogate-Based Optimization (SBO) aspects. The
work presented in this thesis spreads from analytical developments to industrial-
scale applications, by way of efficient implementation within a pre-existing
industrialized single-fidelity SBO tool.

With respect to methodologies, Part I presents the mathematical develope-
ments and justifications of the main contributions of this work in the frame
of Proper Orthogonal Decomposition (POD) based modeling. The enrichment
criterion proposed for Gappy-POD (GPOD) surrogate models in Chapter 5 can
serve as error estimator for multi-fidelity strategies. Nevertheless, this kind
of strategies hardly meets the industrial optimization needs if a low-fidelity
evaluation is not instantaneous. This issue is addressed by the proposed POD
based Multi-Fidelity Surrogate Model (MFSM) called Hierarchised Multi-Fidelity
NIPOD (HMFNIPOD) and detailed in Chapter 4.

Part II pertains to the implementation of a Multi-Fidelity SBO (MFSBO)
framework integrating the proposed HMFNIPOD surrogate models. An analytical
example is given in Chapter 6 in order to benchmark futur full-field multi-fidelity
methodologies on a problem we claim representative of features in turbomachinery
design. The developed MFSBO is also tested on the constrained optimization of
a 1.5D-stage booster designed by 3D-Reynolds Averaged Navier-Stokes (RANS)
computations.

Chapter 8 validated the interest of the proposed methodology on an industrial-
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scale problem. The predictability of the proposed surrogate model has been first
evaluated on the estimation of the isentropic efficiency of a highly loaded rotor in a
compressor stage, which is at the state-of-the-art in terms of daily optimization in
engineering offices. The presented results, obtained from relatively low Design of
Experiments (DoE) sizes, have shown a real potential for the proposed surrogate
model to capture highly non-linear and localized features of the flow. The
comparison of validation coefficients showed non-negligible improvements in the
prediction of the isentropic efficiency over the design space.

Chapter 9 presented the optimization performed with the proposed
HMFNIPOD-assisted optimization scheme introduced in Chapter 6. The
increase in rotor’s efficiency is shown comparable to that obtained from a more
classical RBF-based optimization. By comparison with usual regressive models,
the question of snapshot definition is of first importance. We showed for example
a non-negligible impact of the selection of the post-treatment planes on the
analysis of variances associated to the mapping between design parameters and
responses. In the case presented in this chapter, the increase in the distance
between the blade and the post-treatment planes makes the surrogate model
more sensible to the numerical diffusion of both low- and high-fidelity models.
This constraint is to be considered more carefully when dealing with POD based
surrogate models as a fixed snapshot grid is usually preferred. A short analysis
of the impact of the turbulence model has also been presented in this chapter
in order to put the optimization results into the perspective of numerical model
selection. Although this comparison is not likely to fondamentaly question the
suitability of the proposed full-field MFSMs, it emphasizes the impact of the
simulation tool selected for the engineering optimization, especially when dealing
with physics as complex as turbulent flows.

To our best knowledge, full-field MFSMs is a relatively new field and only a
very limited research proposes their use for the optimization of complex industrial
systems. In order to answer more efficiently to the industrial challenges MFSBO
tools have to face in the future, many potential research and developments can
be carried out. The mentioned questions mainly concern the Multi-Fidelity NI-
POD (MFNIPOD) framework as low-fidelity simulations in turbomachinery design
are not suitable for intensive evaluation.

• No truncation has been used in the presented applications. As far as the
author knows, this issue remains opened for both single and multi-fidelity
POD models. In the case of MFNIPOD, this question is more stringent as
the truncation of the high-fidelity basis Φ should be done at the training
step in order to relax the constraint on the low-fidelity enhancement.
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• Classical Multi-Fidelity DFSMs (MFDFSMs) try to correct a low-fidelity
surrogate with higher-fidelity information, whereas the HMFNIPOD starts
capturing the physics in high-fidelity data before enhancing the basis with
low-fidelity. This order of treatment could be questioned and investigated
with its associated impact on the truncation strategy mentioned above.

• No fidelity level selection method is proposed for full-field MFSM. This con-
stitutes the corner stone of a more efficient coupling between the surrogate
model and the optimization algorithm composing the SBO tool.

• The proposed implementation requires the computation of the orthogonal
space Q2 (Algorithm 1). In the case of fine discretizations the computational
cost involved in the search of and operation on Q2 slows down the training
of the surrogate model drastically.

• All the developments considered a unique design space D while different
levels of fidelity can be associated to multiple levels of parametrization.

All these questions could greatly serve the dissemination of full-field multi-
fidelity surrogate models into industrial optimization platforms and help to tackle
other complex optimization problems.
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