
HAL Id: tel-02543073
https://theses.hal.science/tel-02543073v1

Submitted on 15 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foundations of deep convolutional models through
kernel methods

Alberto Bietti

To cite this version:
Alberto Bietti. Foundations of deep convolutional models through kernel methods. Signal and Image
Processing. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM051�. �tel-02543073�

https://theses.hal.science/tel-02543073v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Mathématiques appliquées
Arrêté ministériel : 25 mai 2016

Présentée par

Alberto BIETTI

Thèse dirigée par Julien MAIRAL, chercheur, Communauté
Université Grenoble Alpes

préparée au sein du Laboratoire Jean Kuntzmann dans l'École
Doctorale Mathématiques, Sciences et technologies de
l'information, Informatique

Méthodes à noyaux pour les réseaux
convolutionnels profonds

Foundations of deep convolutional models
through kernel methods

Thèse soutenue publiquement le 27 novembre 2019,
devant le jury composé de :

Monsieur JULIEN MAIRAL
CHARGE DE RECHERCHE, INRIA CENTRE DE GRENOBLE RHÔNE-
ALPES, Directeur de thèse
Monsieur STEPHANE MALLAT
PROFESSEUR, COLLEGE DE FRANCE - PARIS, Rapporteur
Monsieur LORENZO ROSASCO
PROFESSEUR ASSOCIE, UNIVERSITE DE GÊNES - ITALIE,
Rapporteur
Madame FLORENCE D'ALCHE-BUC
PROFESSEUR, TELECOM PARISTECH, Président
Monsieur JEAN-PHILIPPE VERT
PROFESSEUR, MINES PARISTECH, Examinateur
Monsieur JOAN BRUNA
PROFESSEUR ASSISTANT, UNIVERSITE DE NEW YORK - ETATS-
UNIS, Examinateur

Abstract

The increased availability of large amounts of data, from images in social networks,
speech waveforms from mobile devices, and large text corpuses, to genomic and medical
data, has led to a surge of machine learning techniques. Such methods exploit statistical
patterns in these large datasets for making accurate predictions on new data. In recent
years, deep learning systems have emerged as a remarkably successful class of machine
learning algorithms, which rely on gradient-based methods for training multi-layer mod-
els that process data in a hierarchical manner. These methods have been particularly
successful in tasks where the data consists of natural signals such as images or audio; this
includes visual recognition, object detection or segmentation, and speech recognition.

For such tasks, deep learning methods often yield the best known empirical per-
formance; yet, the high dimensionality of the data and large number of parameters of
these models make them challenging to understand theoretically. Their success is often
attributed in part to their ability to exploit useful structure in natural signals, such as
local stationarity or invariance, for instance through choices of network architectures
with convolution and pooling operations. However, such properties are still poorly un-
derstood from a theoretical standpoint, leading to a growing gap between the theory and
practice of machine learning. This thesis is aimed towards bridging this gap, by study-
ing spaces of functions which arise from given network architectures, with a focus on
the convolutional case. Our study relies on kernel methods, by considering reproducing
kernel Hilbert spaces (RKHSs) associated to certain kernels that are constructed hier-
archically based on a given architecture. This allows us to precisely study smoothness,
invariance, stability to deformations, and approximation properties of functions in the
RKHS. These representation properties are also linked with optimization questions when
training deep networks with gradient methods in some over-parameterized regimes where
such kernels arise. They also suggest new practical regularization strategies for obtaining
better generalization performance on small datasets, and state-of-the-art performance
for adversarial robustness on image tasks.

We begin with an analysis of the RKHS for a class of multi-layer convolutional
kernels. In particular, we study properties of a representation of signals on continuous
domains given by the kernel mapping of such kernels, showing that for appropriate
choices of convolutional architectures, they are near-invariant to translations or other
groups of transformations, stable to the action of diffeomorphisms on the input signal,
and preserve signal information when appropriately discretized. We further show that
certain classes of generic convolutional networks with smooth activations are contained
in the corresponding RKHS, and characterize their RKHS norm, which acts as a measure
of complexity, and additionally controls smoothness and stability.

The next contribution introduces a new family of practical regularization methods

2

for deep (convolutional) networks, by viewing such models as functions in the RKHS
of a certain multi-layer kernel, and approximating its RKHS norm. We show that the
obtained regularizers are effective on various tasks where only small amounts of labeled
data are available, on visual recognition and biological datasets. These strategies also
lead to state-of-the-art performance for obtaining models that are robust to adversarial
perturbations on the CIFAR10 image dataset. Additionally, our viewpoint provides new
theoretical insights and guarantees, including generalization bounds for robust learning
with adversarial perturbations.

We then study generalization properties of optimization algorithms when training
deep neural networks in a certain over-parameterized regime. Indeed, learning with gra-
dient descent in such a regime corresponds to a kernel method in the infinite-width limit,
with a kernel determined at initialization which then controls generalization properties.
We study such kernels and their RKHS for two-layer networks and deep convolutional
models, and show different trade-offs between smoothness and approximation properties,
compared to other kernels obtained when only training the weights in the last layer.

Finally, we consider optimization problems that arise from a different approach to
stability and regularization in machine learning, namely the commonly used data aug-
mentation strategy. In such settings, the objective function is a sum over the training set
of expectations over perturbations. We derive a new stochastic optimization algorithm
which always outperforms stochastic gradient descent in the strongly convex case, with
a dependence on a much smaller gradient variance quantity, that only depends on the
variance due to perturbations on a single example, rather than across the entire dataset.

Keywords: machine learning, deep learning, kernel methods, convolutional networks,
stability, regularization, optimization.

3

Résumé

La disponibilité de quantités massives de données, comme des images dans les réseaux so-
ciaux, des signaux audio de téléphones mobiles, ou des données génomiques ou médicales,
a accéléré le développement des techniques d’apprentissage automatique. Ces méth-
odes exploitent des motifs statistiques dans ces grandes bases de données pour effectuer
de bonnes prédictions sur des nouvelles images, signaux, ou séquences de protéines.
Récemment, les systèmes d’apprentissage profond ont émergé comme des algorithmes
d’apprentissage très efficaces. Ces modèles multi-couche effectuent leurs prédictions de
façon hiérarchique, et peuvent être entraînés à très grande échelle avec des méthodes
de gradient. Leur succès a été particulièrement marqué lorsque les données sont des
signaux naturals comme des images ou des signaux audio, pour des tâches comme la
reconnaissance visuelle, la détection d’objects, ou la reconnaissance de la parole.

Pour de telles tâches, l’apprentissage profond donne souvent la meilleure performance
empirique, mais leur compréhension théorique reste difficile à cause du grand nombre
de paramètres, et de la grande dimension des données. Leur succès est souvent at-
tribué à leur capacité d’exploiter des structures des signaux naturels, par exemple en
apprenant des représentations invariantes et multi-échelle de signaux naturels à travers
un bon choix d’architecture, par exemple avec des convolutions et des opérations de
pooling. Néanmoins, ces propriétés sont encore mal comprises théoriquement, et l’écart
entre la théorique et pratique en apprentissage continue à augmenter. Cette thèse vise
à réduire cet écart grâce à l’étude d’espaces de fonctions qui surviennent à partir d’une
certaine architecture, en particulier pour les architectures convolutives. Notre approche
se base sur les méthodes à noyaux, et considère des espaces de Hilbert à noyaux re-
produisants (RKHS) associés à certains noyaux construits de façon hiérarchique selon
une architecture donnée. Cela nous permet d’étudier précisement des propriétés de
régularité, d’invariance, de stabilité aux déformations du signal, et d’approximation des
fonctions du RKHS. Ces propriétés sur la représentation sont aussi liées à des questions
d’optimisation pour l’entraînement de réseaux profonds à très grand nombre de neu-
rones par descente de gradient, qui donnent lieu à de tels noyaux. Cette théorie suggère
également des nouvelles stratégies pratiques de régularisation qui permettent d’obtenir
une meilleure performance en généralisation pour des petits jeux de données, et une
performance état-de-l’art pour la robustesse à des perturbations adversariales en vision.

Nous commençons par une analyse du RKHS pour une classe de noyaux convolutifs
multi-couche. En particulier, nous étudions la représentation de signaux donnée par
le “mapping” du noyau, et montrons que pour des bons choix d’architectures, celle-ci
est quasi-invariante aux translations ou à d’autres groupes de transformations, stable à
l’action de difféomorphismes sur le signal d’entrée, et préserve l’information du signal
avec le bon sous-échantillonnage. Ensuite, nous montrons que le RKHS contient certaines

4

classes de réseaux convolutifs génériques avec des activations lisses, et caractérisons leur
norme RKHS, qui joue le rôle d’une mesure de complexité, et contrôle aussi la régularité
et la stabilité des prédictions.

Notre deuxième contribution introduit une famille de méthodes pratiques de régu-
larisation pour les réseaux (convolutifs) profonds, en voyant de tels modèles comme des
fonctions du RKHS d’un certain noyaux multi-couche, et en approximant leur norme
RKHS. Nous montrons que ces techniques de régularisation sont efficaces sur plusieurs
tâches avec peu de données étiquetées, en reconnaissance d’image et en bioinformatique.
Nous obtenons aussi une performance état-de-l’art pour obtenir des modèles robustes à
des perturbations adversariales sur le jeu de données CIFAR10. De plus, notre point
de vue fournit de nouvelles intuitions et garanties théoriques, telles que des bornes de
généralisation pour l’apprentissage robuste avec perturbations adversariales.

Ensuite, nous étudions les propriétés de généralisation de l’optimisation de réseaux
profonds dans une certain régime sur-parametrisé. En effet, l’apprentissage par descente
de gradient dans ce regime correspond à une méthode à noyau dans la limite de nombre
de neurones infini, avec un noyau déterminé par l’initialisation, qui contrôle ainsi les
propriétés de généralisation. Nous analysons ces noyaux et leur RKHS pour des réseaux
à deux couches ainsi que pour des réseaux convolutifs profonds, et montrons des com-
promis différents entre régularité et approximation, comparé à d’autres noyaux obtenus
en entraînant la dernière couche tout en fixant les couches intermédiaires.

Enfin, nous traitons des problèmes d’optimisation qui surviennent lorsque l’on utilise
une approche différente mais fréquente pour la stabilité et la régularisation en apprentis-
sage, c’est à dire l’augmentation de données. Dans ce cadre, la fonction objectif est une
somme sur les points d’entraînement d’espérances sur les perturbations aléatoires. Nous
proposons une nouvel algorithme d’optimisation stochastique avec un taux de conver-
gence toujours meilleur que celui du gradient stochastique dans le cas fortement convexe,
qui dépend d’une quantité de variance beaucoup plus petite, dépendant uniquement de
la variance induite sur les gradients par les perturbations sur un seul exemple, plutôt
que sur l’ensemble des données.

5

Contents

1 Introduction 10
1.1 Contributions of the thesis . 12
1.2 Supervised Machine Learning and Inductive Bias 13

1.2.1 Supervised learning setting . 14
1.2.2 Generalization and inductive bias 14
1.2.3 Bias-variance trade-offs . 16
1.2.4 Complexity and generalization bounds 17
1.2.5 Optimization and implicit regularization 22

1.3 Kernel Methods . 25
1.3.1 Kernels and reproducing kernel Hilbert spaces 25
1.3.2 Characterization of the RKHS . 27
1.3.3 Algorithms . 29
1.3.4 Statistical aspects . 30
1.3.5 Speeding up kernel methods with kernel approximations 32

1.4 Kernels for (Deep) Neural Networks . 33
1.4.1 Kernels from two-layer networks 33
1.4.2 Hierarchical kernels . 36
1.4.3 (Deep) convolutional kernels . 38
1.4.4 Neural tangent kernels . 40

1.5 Invariance and Stability to Deformations 40
1.5.1 Group invariant representations . 40
1.5.2 Stability to deformations . 42

1.6 Adversarial Robustness . 44

2 Invariance, Deformation Stability, and Complexity 47
2.1 Introduction . 48

2.1.1 Summary of Main Results . 49
2.1.2 Related Work . 51
2.1.3 Notation and Basic Mathematical Tools 52
2.1.4 Organization of the Chapter . 53

2.2 Construction of the Multilayer Convolutional Kernel 54
2.2.1 Signal Preservation and Discretization 57
2.2.2 Practical Implementation via Convolutional Kernel Networks . . . 58

2.3 Stability to Deformations and Group Invariance 59
2.3.1 Stability Results and Translation Invariance 61
2.3.2 Discussion of the Stability Bound (Theorem 2.7) 63

6

Contents

2.3.3 Stability with Kernel Approximations 64
2.3.4 Empirical Study of Stability . 64
2.3.5 Global Invariance to Group Actions 66

2.4 Link with Existing Convolutional Architectures 69
2.4.1 Activation Functions and Kernels Kk 70
2.4.2 Convolutional Neural Networks and their Complexity 70
2.4.3 Stability and Generalization with Generic Activations 74

2.5 Discussion and Concluding Remarks . 75

Appendices 78
2.A Useful Mathematical Tools . 78
2.B Proofs Related to the Multilayer Kernel Construction 79

2.B.1 Proof of Lemma 2.1 and Non-Expansiveness of the Gaussian Kernel 79
2.C Proofs of Recovery and Stability Results 80

2.C.1 Proof of Lemma 2.2 . 80
2.C.2 Proof of Lemma 2.3 . 81
2.C.3 Proof of Proposition 2.4 . 82
2.C.4 Proof of Lemma 2.5 . 82
2.C.5 Discussion and Proof of Norm Preservation 85
2.C.6 Proof of Lemma 2.9 . 88
2.C.7 Proof of Theorem 2.10 . 88

2.D Proofs Related to the Construction of CNNs in the RKHS 89
2.D.1 Proof of Lemma 2.11 . 89
2.D.2 CNN construction and RKHS norm 90

3 Regularization and Robustness 94
3.1 Introduction . 94
3.2 Regularization of Deep Neural Networks 96

3.2.1 Relation between deep networks and RKHSs 96
3.2.2 Exploiting lower bounds of the RKHS norm 97
3.2.3 Exploiting upper bounds with spectral norms 100
3.2.4 Combining upper and lower bounds 101
3.2.5 Deformation stability penalties . 101
3.2.6 Extensions to Non-Euclidian Geometries 103

3.3 Theoretical Guarantees and Insights . 103
3.3.1 Guarantees on adversarial generalization 103
3.3.2 New insights on generative adversarial networks 106

3.4 Experiments . 106
3.4.1 Improving generalization on small datasets 107
3.4.2 Training adversarially robust models 110

Appendices 112
3.A Additional Experiment Results . 112

3.A.1 CIFAR10 . 112
3.A.2 Infinite MNIST . 112
3.A.3 Protein homology detection . 113
3.A.4 Robustness . 113

7

Contents

4 Neural Tangent Kernels 120
4.1 Introduction . 120
4.2 Neural Tangent Kernels . 122

4.2.1 Lazy training and neural tangent kernels 122
4.2.2 Neural tangent kernel for convolutional networks 125

4.3 Two-Layer Networks . 126
4.3.1 Smoothness of two-layer ReLU networks 126
4.3.2 Approximation properties for the two-layer ReLU NTK 127
4.3.3 Smoothness with other activations 132

4.4 Deep Convolutional Networks . 133
4.5 Discussion . 135

Appendices 137
4.A Background on spherical harmonics . 137
4.B Proofs of NTK derivations . 138

4.B.1 Proof of Lemma 4.1 . 138
4.B.2 Proof of Proposition 4.2 (NTK for CNNs) 138

4.C Proofs for Smoothness and Stability to Deformations 142
4.C.1 Proof of Proposition 4.3 . 142
4.C.2 Proof of Proposition 4.4 (smoothness of 2-layer ReLU NTK) . . . 143
4.C.3 Proof of Proposition 4.11 (smooth activations) 143
4.C.4 Proof of Lemma 4.12 (smoothness of operator M in L2(Rd)) . . . 144
4.C.5 Proof of Proposition 4.14 (stability to deformations) 144

5 Optimization with data augmentation 148
5.1 Introduction . 148
5.2 Stochastic MISO Algorithm for Smooth Objectives 150
5.3 Convergence Analysis of S-MISO . 155
5.4 Extension to Composite Objectives and Non-Uniform Sampling 157
5.5 Experiments . 160

Appendices 164
5.A Proofs for the Smooth Case . 164

5.A.1 Proof of Proposition 5.1 (Recursion on Lyapunov function Ct) . . 164
5.A.2 Proof of Theorem 5.2 (Convergence of Ct under decreasing step-sizes)166
5.A.3 Proof of Theorem 5.3 (Convergence in function values under iterate

averaging) . 167
5.B Proofs for Composite Objectives and Non-Uniform Sampling 168

5.B.1 Proof of Lemma 5.4 (Bound on the iterates) 168
5.B.2 Proof of Proposition 5.5 (Recursion on Lyapunov function Cqt) . . 169

5.C Complexity Analysis of SGD . 171

6 Conclusion and Perspectives 174

A Software 176

8

Acknowledgements

The accomplishment of this thesis would not have been possible without the help of nu-
merous people. Julien, I feel very lucky to have had you as an advisor. Your knowledge,
your insight on many different problems, and your taste in research have been instru-
mental throughout my PhD and I will always strive for similarly high research standards.
I am forever grateful for your guidance and your time during these formative years.

I am thankful to all the jury members for willing to evaluate my work, and in partic-
ular to Stéphane Mallat and Lorenzo Rosasco for accepting to review this manuscript.
The Thoth team at Inria has provided an ideal environment for the last three years and
I thank Cordelia, Jakob, Karteek, Jocelyn and Nathalie making it so. In Grenoble, I’ve
enjoyed working with various collaborators on research or software projects, in partic-
ular with Grégoire Mialon, Dexiong Chen, Ghislain Durif, and more recently Houssam
Zenati, Eustache Diemert and Matthieu Martin. I’ve also had the pleasure to spend
three months at Microsoft Research in New York, where I enjoyed “baking” contextual
bandit algorithms under the great mentorship of John Langford and Alekh Agarwal,
who helped shape my interest for statistical learning theory and interactive learning.

The list of colleagues and friends that have made the last few years a memorable expe-
rience is long, and I hope those I missed will forgive me. To members of the Thoth team:
Nikita and Konstantin for being great office mates and for teaching me the most essential
russian phrases, Thomas and Mathilde for all the raclette and guacamole, Valentin for
your reliable presence at the jazz jams, Dexiong for the green tea and the dumplings,
Alex for the mornings in the snow powder, Adria for the many funny anecdotes of
deep learning practice, Vlad and Daan for the entertaining discussions, Grégoire, Bruno,
Houssam and Alexandre for the short but frequent visits full of conversations, and the
list goes on, Andrei, Minttu, Xavier, Ricardo, Lina, Hongzhou, Ghislain, Pavel, Pauline,
Shreyas, Vicky, Gregory, Nicolas, Philippe, Marco, Henrique. To friends that have been
of good company during conferences, workshops, and travel: Arthur, Lénaïc, Gaëtan,
Kevin, Mehdi, Matthew, Mathias, Yossi, Nicolas, Vincent, Thomas, and the “Quora
ML mafia” Tudor, Ofir, Denis, Jack, Jerry, Matt. To the interns, postdocs and other
members of MSR NY for fun discussions, in particular Chris, Dylan, Hoang, Chicheng,
Nan, Steven, Hal, Miro, Rob, Jacob, Marco, Yann. For the good time spent in Grenoble,
thanks Nil, Federico, Matteo, Giovanni, Lina, Gianluca, Nestor, Luciano. To musical
friends, partners, and teachers in Grenoble, Léa, Hélène, Moana, Olivier P, Lucie, Olivier
T, Christian, Audrey, Jo, Samson, Stéphane, Lionel.

To my parents, for their constant support and encouragement and for instilling cu-
riousity in me. To Elettra, for showing me the virtues of being a scholar. To Mosa, for
her endless patience and support from both sides of the ocean, in music and in life.

To Nunna, who always believed in me, and will be missed.

9

Chapter 1

Introduction

The goal of supervised machine learning is to develop algorithms that can automati-
cally learn models from a set of labeled examples, in order to make predictions on new
(unlabeled) examples. Compared to more traditional methods in statistics, this focus
on prediction has led to many empirical successes of machine learning on complex tasks
where both the data and the models are very high-dimensional. Examples of such tasks
include object recognition or scene segmentation in images, speech recognition in audio
signals, and natural language understanding, all of which are often labeled with the term
artificial intelligence (AI).

At the core of many recent successes on these problems are deep learning models,
which have emerged after a long history of developments in neural networks, dating back
to Rosenblatt’s perceptron (Rosenblatt, 1958). The first major success in this new era of
deep networks is likely the work of Krizhevsky et al. (2012), which employs a few recent
“engineering” developments for training deep neural networks, along with large amounts
of training data and efficient computation. Nevertheless, these developments have largely
been empirical in nature, and the widespread use of deep networks in later years has kept
widening the gap between theory and practice in machine learning, with models that
are perceived as clever but complex engineering black boxes developed through practical
insights while the theoretical understanding of why they work lags far behind. Multiple
contributions in this thesis are aimed at reducing this gap.

The possibility to learn something meaningful from data crucially relies on various
forms of simplicity. The no free lunch theorem states that no single learning algorithm
can succeed on all possible problems, and it is thus important to enforce a form of
simplicity in the algorithm (a form of Occam’s razor), typically by restricting the class
of models to be learned, which may reflect prior knowledge about the problem being
tackled. This is also referred to as inductive bias. In the context of neural networks,
one form of simplicity is in the choice of architecture, such as using convolutional neural
networks (LeCun et al., 1989) when learning from image data. Another form of simplicity
is smoothness, for instance in the context of non-parametric regression, when learning
functions with small Lipschitz constant or small norm in a reproducing kernel Hilbert
space (RKHS, see, e.g., Schölkopf and Smola, 2001; Berlinet and Thomas-Agnan, 2004).
A third example is sparsity, which may seek models that only rely on a few relevant
variables out of many available ones (see, e.g., Hastie et al., 2015).

In the context of neural networks, the architecture of the network has often been

10

Chapter 1. Introduction

recognized to be useful for making learning more efficient, for instance by using con-
volutional architectures on image data (LeCun et al., 1989, 2015). For example, the
effectiveness of convolutional architectures is often attributed in part to their ability to
provide some translation invariance, and exploit local stationarity in the image domain
at multiple scales. Yet, a precise theoretical study of such properties for generic convo-
lutional architectures was still missing before this thesis. One desirable property that
goes beyond translation invariance is stability of predictions to small deformations of
the input signal (e.g., leading to a small change in handwriting on handwritten digits,
which would preserve the label). A formal study of such a property was initiated in
the context of the wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat,
2013), which takes the form of a deep convolutional network based on convolutions with
wavelet filter banks, thus involving no learning per se. Other works have constructed
different architectures in order to extend invariance properties to different transforma-
tion groups, such as rotations, reflections, or scaling (Sifre and Mallat, 2013; Cohen and
Welling, 2016).

Kernels methods have been extensively studied in machine learning, for learning
non-linear functions defined on data with arbitrary structure, using techniques from lin-
ear models (see, e.g., Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004;
Berlinet and Thomas-Agnan, 2004; Wahba, 1990). In this setting, the inductive bias
of learning comes mainly from one mathematical object that determines similarities be-
tween two datapoints, namely a positive definite kernel function. This kernel defines a
Hilbert space of functions (the RKHS) that one may learn, and one can study smoothness
and approximation properties of these functions independently of the learning task. The
norm of these functions then provides a useful notion of model complexity which can be
used for model selection as well as for controlling smoothness. Hence, when dealing with
structured data such as images, one may include desired prior knowledge in the choice
of kernel; for instance, one can encourage invariance to various transformation groups,
or small shifts, by constructing a kernel that appropriately pools over such transforma-
tions, as studied, e.g., by Anselmi et al. (2016); Haasdonk and Burkhardt (2007); Mairal
et al. (2014); Raj et al. (2017). It is also possible to introduce hierarchical structure
in a kernel, by defining a kernel hierarchically (e.g. Cho and Saul, 2009; Mairal et al.,
2014; Steinwart et al., 2016). These properties of kernel methods make them a useful
framework for studying architectures in deep learning, by defining hierarchical kernels
that mimick a given architecture, as those of Cho and Saul (2009); Daniely et al. (2016);
Mairal et al. (2014); Mairal (2016). In addition to providing explicit kernels that carry
desired properties of deep architectures, such kernels also arise naturally when consid-
ering the behavior of very wide networks with certain initializations, a study initiated
by Neal (1996) for two-layer networks and recently extended to deeper architectures (Lee
et al., 2018; Matthews et al., 2018), or when considering their evolution under gradient
descent (Jacot et al., 2018).

The work described in this thesis follows these main directions, by considering theo-
retical and practical questions related to deep (convolutional) networks through the lens
of kernel methods. In particular, it provides a theoretical analysis of invariance and sta-
bility to deformations for convolutional architectures, notions of complexity for obtaining
generalization guarantees, regularization algorithms for controlling model complexity or
robustness, and a detailed study of kernels that arise from the optimization of certain

11

1.1. Contributions of the thesis

over-parameterized networks. These contributions are further described in Section 1.1.
The rest of this chapter gives an overview of key concepts that arise in the next chapters,
such as statistical supervised learning, kernel methods, invariance and robustness.

1.1 Contributions of the thesis
This thesis brings various contributions with regard to the study of invariance, stability
and regularization in machine learning, with a particular focus on deep models viewed
through kernel methods. We review these contributions hereafter.

• Chapter 2 formalizes a general class of multi-layer convolutional kernels and stud-
ies invariance, stability to deformations, and signal preservation properties of
the corresponding kernel mapping. Some of these properties naturally extend to
the empirically effective approximations of such convolutional kernels introduced
by Mairal (2016). This is followed by an analysis of the models in the correspond-
ing functional space, which provides theoretical insight into the model complexity
and generalization properties of certain neural networks with smooth activations.
This contribution is based on the following publications:

A. Bietti and J. Mairal. Invariance and stability of deep convolutional rep-
resentations. In Advances in Neural Information Processing Systems (NIPS),
2017a
A. Bietti and J. Mairal. Group invariance, stability to deformations, and com-
plexity of deep convolutional representations. Journal of Machine Learning
Research (JMLR), 20(25):1–49, 2019a

• Chapter 3 provides an empirical algorithmic framework for regularization and ro-
bustness of neural networks, based on the insights of Chapter 2 on kernel-based
complexity measures and stability. In particular, we view deep networks as (ap-
proximate) elements of a corresponding RKHS, and provide practical regulariza-
tion strategies based on approximating its RKHS norm, which we find to be large
unless explicitly controlled. Our methods are shown to perform well empirically,
displaying significant performance gains when learning on small datasets, as well as
for learning models that are robust to adversarial perturbations, where we obtain
state-of-the-art performance on CIFAR10 with `2 perturbations. This contribution
is based on the following paper:

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regu-
larizing deep neural networks. In Proceedings of the International Conference
on Machine Learning (ICML), 2019

• Chapter 4 shifts the focus to the inductive bias of optimization algorithms on
learning neural networks. In particular, it has been shown that in a certain over-
parameterization limit, gradient descent may converge to the minimum-norm solu-
tion in a particular RKHS with a kernel derived at initialization, called the neural
tangent kernel. We study properties of this kernel for various architectures and
compare it to the kernels studied in Chapter 2, showing that it may have better

12

Chapter 1. Introduction

approximation properties (i.e., a “larger” RKHS), at the cost of weaker stability
and smoothness guarantees. This contribution is based on the following paper:

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In
Advances in Neural Information Processing Systems (NeurIPS), 2019b

• Chapter 5 considers invariance and stability from a regularization perspective,
namely through commonly used data augmentation strategies, which augment the
training set with random perturbations of each example. We study optimization
algorithms for the objective that arises in such settings, and introduce a novel
algorithm based on variance reduction, which achieves similar convergence rates to
stochastic gradient descent in strongly convex problems, but with better constants,
which can be much smaller, depending on the variance induced by perturbations
on the gradients on a single example. This contribution is based on the following
paper:

A. Bietti and J. Mairal. Stochastic optimization with variance reduction for
infinite datasets with finite sum structure. In Advances in Neural Information
Processing Systems (NIPS), 2017b

• Another contribution of this thesis, which is not included in this manuscript due
to little overlap in topics, is the following paper, which is currently under revision
in the Journal of Machine Learning Research:

A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off. arXiv
preprint arXiv:1802.04064, 2018

The paper considers the problem of contextual bandit learning, where a learning
algorithm selects actions based on observed feature vectors (“contexts”), and only
observes a loss for the chosen action, highlighting the need for exploration. Such a
setting commonly arises in online recommendation systems or medical treatment
assignment. We provide an extensive empirical evaluation of existing contextual
bandit algorithms on a large corpus of over 500 datasets from supervised learning,
where the contextual bandit setting is simulated by only revealing the loss for the
chosen label. We make the surprising finding that a simple greedy baseline which
performs no exploration other than implicitly through the diversity in the data
is quite competitive on many datasets. This motivates heuristic modifications of
other algorithms which achieve more efficient exploration and thus better practical
performance on various datasets, as well as a new algorithm based on insights from
active learning algorithms, for which we provide a detailed regret analysis.

Finally, we note that this thesis contributed a few software libraries related to the
contributions above, which are presented in Chapter A.

1.2 Supervised Machine Learning and Inductive Bias
The goal of supervised machine learning is to learn to predict the labels of new examples,
given a dataset of labeled examples. For example, given a dataset of images along with

13

1.2. Supervised Machine Learning and Inductive Bias

a label indicating the category of object that they represent, one would like to find
a prediction function or program which is able to predict the category of new images
which were not seen before. The hope is that the learning algorithm will be able to
generalize to new examples from the same distribution, by trying to find patterns in the
training examples. At the core of learning algorithms are forms of simplicity, known as
inductive biases, which encode prior knowledge about a given problem in order to allow
efficient learning. This notion is a core concept throughout this thesis, which studies
such inductive biases for convolutional architectures, and introduces new regularization
methods for controlling the simplicity of learned models.

1.2.1 Supervised learning setting

The supervised learning problem can be formalized as follows. The learning algorithm
has access to i.i.d. samples Sn = {(xi, yi)}i=1,...,n ⊂ X×Y, consisting of examples xi (e.g.,
images, or biological sequences) and labels yi (e.g., the category of object in the image,
or the phenotype associated to the biological sequence) from a data distribution D with
measure ρ, and the goal is to find a prediction function f : X → Y (or hypothesis) with
small expected loss or risk

L(f) = E(x,y)∼D[`(f(x), y)],

where ` : Y × Y → R is a loss function which depends on the task of interest. The
quantity L(f) is also referred to as risk or generalization error. Supervised learning
typically one of the following tasks.

• In classification, the labels are discrete, with Y = {1, . . . ,K} in a multiclass prob-
lem with K classes (or K = 2 in binary classification), and the loss is often chosen
to be the 0-1 loss:

`(ŷ, y) = 1{ŷ 6= y}. (1.1)

• In regression, the outputs are scalars (Y = R), and one may use for instance the
squared loss:

`(ŷ, y) = (ŷ − y)2, (1.2)

though other choices are possible, such as the loss |ŷ − y|q for other values of q.

The Bayes optimal predictor is the minimizer of L(f):

f∗ ∈ arg min
f :X→Y

L(f). (1.3)

A learning algorithm A attempts to find a prediction function f̂n from the training
samples Sn, such that L(f̂n) is small and, ideally, close to the Bayes risk, L(f∗).

1.2.2 Generalization and inductive bias

Given the setting we introduced, it is reasonable to ask when it is possible to guarantee
that a learning algorithm works, in the sense that for any ε > 0, one can guarantee
that L(f̂n) − L(f∗) ≤ ε for a large enough number of samples n, with high probability

14

Chapter 1. Introduction

(over the sampling of Sn, and any randomness in the algorithm).1 It turns out that this
is not possible in general, for instance if X is infinite (e.g., X = Rp) in a classification
task. This is a form of the no free lunch theorem, which shows that one can always find
a distribution on which a given algorithm fails (see, e.g. Shalev-Shwartz and Ben-David,
2014, Corollary 5.2).

This suggests that we need to somehow limit the difficulty of the problem in order
to enable learning, either by constraining the algorithm, or by making assumptions on
the data distribution. The most common way to constrain the algorithm is to restrict
the search of possible predictors f̂ to a particular subset of functions, of hypothesis
class, F ⊂ YX , for instance linear predictors, decision trees of a certain depth, or neural
networks with a specific architecture or number of weights. Such constraints are typically
enforced by the user based on prior knowledge about the problem, and they form the
inductive bias of learning. A focus of this thesis is on studying inductive biases that are
useful for natural signal data, such as those induced by convolutional architectures in
deep learning.

Approaches to generalization. In some frameworks, we would like the learner to
succeed regardless of the distribution, as is the case in (agnostic) PAC learning, where
the goal is to guarantee that for any ε > 0, with n large enough, we have that for any
data distribution,

L(f̂n)−min
f∈F

L(f) ≤ ε, (1.4)

with high probability. The number of samples needed to achieve this, as a function of ε, is
called the sample complexity. Here, no assumption is made about the Bayes predictor f∗,
and we simply want to do well compared to the best possible predictor in the hypothesis
class F . This is the basis of the distribution-free approach to learning (see, e.g., Devroye
et al., 1996; Vapnik, 2000; Shalev-Shwartz and Ben-David, 2014).

An alternative approach is to make modeling assumptions about the data distribu-
tion, for instance assuming a model of the form yi = f∗(xi) + εi, where εi are i.i.d.,
zero-mean noise variables, and some assumptions are made on f∗, such as Lipschitzness,
or membership to a given reproducing kernel Hilbert space. When using the squared
loss, is is easy to see that the Bayes predictor (also known as the regression function in
this case) is equal to f∗, and one would like to establish upper bounds of the form

L(f̂n)− L(f∗) ≤ ψn,

which hold in expectation or with high probability, where ψn is the rate of convergence.
The best possible rate achievable under these assumptions (that is, first taking the
worst possible f∗ for each algorithm, and then considering the best resulting algorithm)
is called the minimax rate. This approach is the one considered in non-parametric
statistics (see, e.g., Tsybakov, 2008; Wainwright, 2019).

The curse of dimensionality. It is a well-known fact that in high dimensions, there is
“exponentially more room”, as can be seen for instance when considering how the volume
of a cube of side r grows exponentially with the dimension, as rp in dimension p. This fact
makes various tasks intractable in high dimensions, and also affects the tractability of

1This is related to the PAC learning formalism (Valiant, 1984; Shalev-Shwartz and Ben-David, 2014).

15

1.2. Supervised Machine Learning and Inductive Bias

learning when the data lies in a high-dimensional space, particularly when considering
hypothesis classes that are too large, or assumptions on the data generating process
which are too weak. In the context of classification, an example is the simple nearest
neighbor classifier—where the output label is chosen to be the one of the closest training
example in Euclidian distance—, which requires a sample complexity exponential in the
dimension (e.g., Shalev-Shwartz and Ben-David, 2014, Chapter 19). Another example
is that of learning with Lipschitz functions: while the no free lunch theorem discussed
above states that it is impossible to learn with all functions f : X = Rp → Y, one
can show that it is possible to learn with Lipschitz functions, that is with a hypothesis
class FL = {f : ∀x, y ∈ X , |f(x) − f(y)| ≤ L‖x − y‖}, however the sample complexity
will grow exponentially with the dimension, something which is unavoidable in this
setting (see, e.g., von Luxburg and Bousquet, 2004; Wainwright, 2019). Thus, when
data is high-dimensional, it is important to impose further assumptions on the function
class, or on the regression function in a non-parametric setting. For natural signals
such as images or audio, which are typically very high-dimensional, it is natural to
consider certain invariance and stability properties in order to mitigate this dependence
on dimension.

1.2.3 Bias-variance trade-offs

Recall that we would like to learn a predictor with small risk, and hopefully as close as
possible to the Bayes risk L(f∗), but that we need restrictions on the hypothesis class
or data distribution in order to be able to learn at all, as explained in Section 1.2.2.
Intuitively, we want to consider a class of functions that is large enough to contain f∗
(or a close approximation thereof), but also small enough so as to make learning easier.
This leads to a trade-off which we discuss in this section.

Estimation-approximation trade-off. When considering a hypothesis class F , we
have the following decomposition on the excess risk:

L(f̂n)− L(f∗) ≤ L(f̂n)−min
f∈F

L(f)︸ ︷︷ ︸
estimation error

+ min
f∈F

L(f)− L(f∗)︸ ︷︷ ︸
approximation error

. (1.5)

The first term is a variance term that deals with the ability to learn the hypothesis
class F from a finite number of samples n, as seen in (1.4), and is known as estimation
error. It increases as the hypothesis class becomes larger, since this makes learning
harder. The second term is a bias term called approximation error, and decreases as F
gets larger, reaching zero once F is large enough to contain f∗. As an example, one
could consider fitting polynomials of a certain degree, or functions in an RKHS ball with
a certain radius. Varying the degree or the norm radius then provides a way to balance
this trade-off. Choosing a good value for such parameters is known as model selection,
and is often carried in practice through cross-validation on a held-out set.

Bias-variance decomposition for least squares. A different decomposition is often
used in the context of non-parametric estimation, which is easiest to see when using the
squared loss. In this case, we have f∗(x) = ED[y|x], and one can show that L(f) −
L(f∗) = ED[(f(x)− f∗(x))2] = ‖f − f∗‖2ρ, with the notation ‖ · ‖ρ = ‖ · ‖L2(dρ), where ρ

16

Chapter 1. Introduction

is the data distribution. For an estimator f̂n obtained from the sample Sn, we denote
f̄n = E[f̂n|x1:n]. We then have the following decomposition on the (expected) excess
risk:

ESn [L(f̂n)− L(f∗)] = ESn [‖f̂n − f̄n + f̄n − f∗‖2ρ]
= ESn [‖f̂n − f̄n‖2ρ]︸ ︷︷ ︸

variance

+Ex1:n [‖f̄n − f∗‖2ρ]︸ ︷︷ ︸
bias

, (1.6)

since the cross term cancels out when taking conditional expectations on x1:n. In this
decomposition, both terms are concerned with estimation since they depend on the data
through the estimator f̂n or its conditional expectation f̄n, however, only the first term
depends on the noise in the output variables yi and thus is referred to as variance, since
it captures how much the estimator may be overly fitting on this noise. In contrast,
the bias term considers how far the estimator is from f∗ once the effects of noise are
averaged out. A richer set of predictors should allow a small bias term: for instance,
if there is no noise then one can essentially directly measure f∗ and interpolate, so
that a richer class of functions will reduce this bias. If there is noise, however, more
complex predictors may fit the noise too well and lead to high variance predictions,
though we note that recent work has found that a perfect fit to even noisy data may be
acceptable in certain settings (see, e.g. Bartlett et al., 2019; Belkin et al., 2018a, 2019).
For common estimators, one may then evaluate these two terms as a function of some
complexity/smoothness/regularization parameter and balance them in order to obtain a
final rate of convergence. More details can be found in the monographs by Györfi et al.
(2006); Tsybakov (2008); Wainwright (2019).

1.2.4 Complexity and generalization bounds

Given a learning algorithm, it is useful to establish upper bounds on its generalization
performance in order to understand their behavior and under what conditions they may
work well. In this section, we briefly present generalization bounds that are relevant in
this thesis in the context of kernel methods.

Empirical risk minimization. In some cases, it will be useful to think of the esti-
mator f̂n as the empirical risk minimizer (ERM) for a function class F , given by

f̂n ∈ arg min
f∈F

1
n

n∑
i=1

`(f(xi), yi). (1.7)

This typically leads to an optimization problem which can be solved in closed form
or using iterative optimization algorithms for some function classes and loss functions.
When F takes the form F = {f ∈ H : Ω(f) ≤ B} for some function space H and
complexity measure Ω(f) (e.g., a ball in an RKHS, or the space of linear predictors with
bounded `1 norm), then it may be more convenient to use a penalized formulation

f̂n ∈ arg min
f∈H

1
n

n∑
i=1

`(f(xi), yi) + λΩ(f), (1.8)

which is equivalent to (1.7) for well-chosen λ when the problem is convex, by Lagrange
duality.

17

1.2. Supervised Machine Learning and Inductive Bias

In the context of classification with the 0/1 loss, it is usually computationally hard to
solve (1.7) or (1.8) directly since the objective is non-convex and discontinuous. Then,
it is common to use a surrogate loss on a scalar-valued prediction function f instead,
typically a function ¯̀(·, ·) convex in its first argument that is an upper bound on the 0/1
loss of the sign classifier sign(f(·)) (assuming binary classification with labels in {−1, 1}),
that is,

`0/1(sign(f(x)), y) ≤ `(f(x), y).

Common examples are the logistic loss `(f(x), y) = log(1 + exp(−yf(x))), whose multi-
class extension is often used in deep learning under the name cross-entropy loss, or
the hinge loss `(f(x), y) = max(0, 1 − yf(x)), which is the basis of support vector ma-
chines (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004). With these
choices, a bound on the expected surrogate loss immediately yields a bound on the
expected 0/1 loss of the corresponding sign classifier. We note that it is also possi-
ble to bound the excess risk for 0/1 loss in terms of the excess risk for some convex
surrogates (see, e.g., Boucheron et al., 2005; Bartlett et al., 2006; Rosasco et al., 2004).

Bounding estimation error using uniform convergence. In the decomposition (1.5),
the estimation error deals with the learning algorithm and the use of a finite sample.
One basic approach to control it is through uniform convergence, which control maximal
deviations between empirical and expected risk, for all functions in F . Denoting L̂(f) :=
1
n

∑n
i=1 `(f(xi), yi) the empirical risk on the sample Sn, and fF ∈ arg minf∈F L(f), the

empirical risk minimizer (1.7) satisfies

L(f̂n)− L(fF) = L(f̂n)− L̂(f̂n) + L̂(f̂n)− L̂(fF) + L̂(fF)− L(fF)
≤ L̂(f̂n)− L̂(fF) + 2 sup

f∈F
|L̂(f)− L(f)|

≤ 2 sup
f∈F
|L(f)− L̂(f)|,

where the last inequality follows from the definition of empirical risk minimizer. For
many known function classes and losses, this supremum can be bounded with high prob-
ability over Sn. In particular, when the loss is uniformly bounded by a constant c, using
concentration and a technique called symmetrization, one can show that the following
holds with probability 1−δ (e.g., Boucheron et al., 2005; Shalev-Shwartz and Ben-David,
2014):

sup
f∈F
|L(f)− L̂(f)| ≤ 2R̂n(` ◦ F(Sn)) + c

√
2 log 2

δ

n
, (1.9)

where R̂n(` ◦ F(Sn)) is known as the empirical Rademacher complexity of the set ` ◦
F(Sn) = {(`(f(x1), y1), . . . , `(f(xn), yn)) : f ∈ F} and is defined by

R̂n(A) = Eε

[
sup
a∈A

∣∣∣∣∣ 1n
n∑
i=1

εiai

∣∣∣∣∣
]
,

where ε = (εi)i are i.i.d. Rademacher random variables, that is, uniform over {±1}.
When ` is the 0/1 loss, we trivially have c = 1 in (1.9), and the Rademacher complex-

ity can be bounded using a combinatorial quantity known as the VC dimension—see,

18

Chapter 1. Introduction

e.g., Boucheron et al. (2005); Devroye et al. (1996); Shalev-Shwartz and Ben-David
(2014); Vapnik (2000) for more details. Yet, this quantity typically grows with the
number of parameters and is often unbounded for rich, non-parametric classes like ker-
nel methods; additionally, the resulting bound we obtain on estimation error is for the
empirical risk minimizer, which is typically intractable to obtain with the 0/1 loss.

In contrast, when `(·, y) is L-Lipschitz for any y, then we have the upper bound
R̂n(` ◦ F(Sn)) ≤ LR̂n(F(x1:n)) known as contraction lemma (see, e.g. Bartlett and
Mendelson, 2002; Boucheron et al., 2005; Shalev-Shwartz and Ben-David, 2014), where

R̂n(F(x1:n)) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)
∣∣∣∣∣
]

(1.10)

can now be bounded explicitly for certain classes such as kernel methods or linear models
with bounds on certain norms. If we now consider an RKHS ball FB = {f ∈ H : ‖f‖H ≤
B} of a kernel K, and assume K(x, x) ≤ R2 for all x ∈ X , one can show (Bartlett and
Mendelson, 2002; Boucheron et al., 2005)

R̂n(F(x1:n)) ≤ BR√
n
. (1.11)

Similar bounds can be obtained for linear models with various `p norm constraints (Kakade
et al., 2009). Assuming `(0, y) ≤ `0, we have the uniform bound `(f(xi), y) ≤ `0 +LBR
on the loss, so that the bound (1.9), and thus the bound on the empirical risk minimizer
is then of order

L(f̂n)− L(fF) ≤ O

(`0 + LBR)

√
log(1/δ)

n

 .
Margin bounds for classification. A number of classification algorithms have been
designed with the goal of maximizing the distance of points to the decision boundary—
these are also known as large margin classifiers, and include the well-known support
vector machine (SVM). Other than the hinge loss used in SVMs, other commonly used
losses may implicitly encourage classifiers with large margins, such as the logistic loss
or the exponential loss corresponding to some boosting classifiers (Schapire and Freund,
2012). Such margin-maximizing behavior can be used to explain the good generalization
properties of such classifiers even when they perfectly fit the training data with models
that are seemingly more complex, something which may be seen as surprising given that
the algorithm is “overfitting” the training set (see Figure 1.1 for an illustration).

Indeed, while the size of these boosting or neural network models may be increasing,
other notions of complexity, such as a norm-based quantity, may be well controlled.
We now derive such a margin-based bound for the RKHS ball FB considered above;
see Boucheron et al. (2005); Koltchinskii and Panchenko (2002); Schapire et al. (1998);
Anthony and Bartlett (2009); Kakade et al. (2009) for more details and examples for
other function classes. Here, for a given margin γ > 0, we use a specific margin-sensitive
surrogate loss instead of the loss used for obtaining f̂n, which helps characterize uniform
convergence properties of the function class at this margin level. In particular, for binary
classification with labels in {±1}, we consider the “ramp” loss `γ(f(x), y) = φγ(−yf(x))

19

1.2. Supervised Machine Learning and Inductive Bias

(a) boosting (Schapire et al., 1998) (b) NN (Neyshabur et al., 2015b)

Figure 1.1: Training and test error curves for boosting or neural network classifiers
with increasing complexity (number of base learners in boosting, or width of the neural
network). In both cases, the test error keeps decreasing even after the training error
is zero.

with

φγ(u) =

0, if u ≤ −γ
1, if u ≥ 0
1 + u/γ, otherwise,

so that the loss is zero only when an example is classified with “confidence” at least γ.
Given that this loss is upper bounded by 1 and is (1/γ)-Lipschitz, using (1.9) and
the contraction lemma on Rademacher averages introduced above, the empirical and
expected γ-losses satisfy, for all f ∈ FB,

Lγ(f) ≤ L̂γ(f) + 2BR
γ
√
n

+

√
2 log 2

δ

n
,

with probability 1 − δ. Since `0/1(f(x), y) ≤ `γ(f(x), y) ≤ 1{yf(x) ≤ γ}, we have the
following bound on the 0/1 loss of f̂n:

L0/1(f̂n) ≤ 1
n

n∑
i=1

1{yif̂n(xi) ≤ γ}+ 2BR
γ
√
n

+

√
2 log 2

δ

n
.

This is a form of data-dependent bound, as the bound depends on the empirical margins
(yif̂n(xi))i. By taking a union bound over different values of γ and B, we may obtain
the following bound which holds for all γ > 0 and for any classifier f̂n obtained from
the training data, without fixing a radius B in advance, at the cost of some additional
logarithmic factors in δ, γ, and ‖f̂n‖H which are hidden here in the Õ notation (see the
proof of Proposition 3.1 in Chapter 3 for a detailed example): for all γ > 0,

L0/1(f̂n) ≤ 1
n

n∑
i=1

1{yif̂n(xi) ≤ γ}+ 4‖f̂n‖HR
γ
√
n

+ Õ

(1√
n

)
. (1.12)

20

Chapter 1. Introduction

In particular, if the data is separated with some margin γ, then the first term vanishes and
we obtain a bound of order O(‖f̂n‖HR/γ

√
n). A more refined bound may be obtained by

trading off the first and second terms as γ varies, something which is often investigated
empirically using the cumulative distribution of normalized margins yif̂n(xi)/‖f̂n‖H; see
Section 3.3.1 of Chapter 3 or Schapire et al. (1998); Bartlett et al. (2017) for examples.

Margin bounds similar in form to (1.12) have recently been used to study general-
ization for neural networks (trained in standard manners) based on various measures of
complexity; see, e.g., Bartlett et al. (2017); Neyshabur et al. (2018, 2019); Arora et al.
(2018); Golowich et al. (2018). This thesis also contributes to this line of work with a
complexity measure given by the norm in a particular RKHS, see Chapters 2 and 3.

More refined bounds and fast rates. One drawback of the bounds above is that
they rely on properties that hold uniformly over the entire hypothesis class (due to uni-
form convergence bounds), and are thus unable to exploit favorable statistical properties
which may hold only for functions that do well on the empirical sample, leading to rates of
order O(1/

√
n) at best (these can be much worse for larger classes, e.g. of order O(n−1/p)

for Lipschitz functions in dimension p (von Luxburg and Bousquet, 2004)). In contrast,
one can often obtain better rates (known as fast rates), for instance of order O(1/n) in a
linear least squares or ridge regression problem by making assumptions on the data dis-
tribution and by leveraging the exact form of the empirical risk minimizer (e.g., Györfi
et al., 2006; Hsu et al., 2014).

For more general settings such as generic non-parametric least-squares problems, or
empirical risk minimization with other losses, one may obtain refined bounds by con-
sidering notions of complexity similar to the Rademacher complexities defined in (1.10),
but that are evaluated on balls with varying radius around the Bayes predictor (in `2

distance on the sample), an approach known as localization. By analyzing the growth of
such localized complexities in terms of this radius, one may obtain more precise bounds,
including optimal rates for various non-parametric problems. For more details, see,
e.g., Bartlett et al. (2005); Koltchinskii (2006); Wainwright (2019). For the specific case
of non-parametric least-squares in reproducing kernel Hilbert spaces, optimal conver-
gence rates are often derived in terms of spectral properties of the kernel, which are
known for many kernels used in practice (Cucker and Smale, 2002; Caponnetto and
De Vito, 2007; Yao et al., 2007). For instance, the rates on estimation error may in-
terpolate between O(1/

√
n) and O(1/n) depending on how fast the eigenvalues of the

kernel matrix decay. We discuss such spectral properties further in Section 1.3.
In the context of (binary) classification, one may achieve faster rates than O(1/

√
n)

under various assumption. A simple example is when there is a perfect classifier for 0/1
loss, i.e., L(f∗) = 0, in which case refined deviations bounds yield O(1/n) convergence
rates for the empirical risk minimizer (Boucheron et al., 2005; Vapnik and Chervonenkis,
1971). More generally, even if L(f∗) > 0, it has been noticed that fast rates are possible
as long as the regression function η(x) = P (y = 1|x) is well-behaved near the “critical
threshold” 1/2, which defines the decision boundary for the Bayes-optimal classifier. In
particular, if the data distribution puts little mass on points x such that η(x) is near 1/2,
then convergence can be much faster. This can be quantified with the so-called margin
conditions, sometimes referred to as Tsybakov or Massart noise conditions (Mammen
and Tsybakov, 1999; Massart and Nédélec, 2006). Such conditions help control localized

21

1.2. Supervised Machine Learning and Inductive Bias

forms of complexity which can lead to fast rates for classification (Boucheron et al.,
2005).

Interpolation. The empirical behavior of successful generalization despite zero train-
ing error, depicted in Figure 1.1, has challenged the theory of generalization for over
twenty years. While the margin maximization view and the margin bounds similar
to (1.12) provide a partial answer, recent observations have questioned their useful-
ness (Zhang et al., 2017a; Belkin et al., 2018b). In particular, deep learning practition-
ers typically train networks to near-zero training loss, even when the data is noisy. In
such a situation, the learned prediction function interpolates the data and may rapidly
grow in complexity with the number of examples, yet generalization still seems feasible.
Recent papers have studied this question theoretically, showing that it is indeed possible
to generalize (sometimes optimally) even in such interpolating regimes (Bartlett et al.,
2019; Belkin et al., 2018a, 2019; Liang and Rakhlin, 2019).

1.2.5 Optimization and implicit regularization

The study of generalization is tied to a specific estimation procedure, and a standard
choice is to consider the solution of a given optimization problem, such as empirical
risk minimization, possibly with regularization through a penalty term or a constraint.
Assuming such an optimization problem can be solved, the inductive bias of the proce-
dure is then governed by the precise form of the minimizer, or by the geometry of the
set of solutions. While such an analysis can be carried for many convex optimization
problems thanks to optimality conditions, it is harder to establish this precisely for non-
convex problems such as neural networks, since there may be many local minima and
it is unclear a priori where gradient descent will end up. Even looser guarantees based
on uniform convergence over a hypothesis class can be difficult to establish in this con-
text, given that it is unclear what the precise hypothesis class is when training today’s
deep neural networks, which often have millions if not billions of parameters: simple
combinatorial quantities depending on number of parameters, such as VC dimension,
are likely too pessimistic, while other norm-based capacity measures can be defined in
different ways (e.g., Bartlett et al., 2017; Golowich et al., 2018; Neyshabur et al., 2015a,
2019), and it remains unclear if any of these is controlled in practice. These observations
suggest that the optimization algorithm used for training a deep network plays a crucial
role in determining the inductive bias of the learning problem.

Implicit bias of optimization. Iterative optimization algorithms have been known to
provide a form of regularization, starting with early work in inverse problems (Landwe-
ber, 1951). In the context of learning, this regularization mechanism is known as early
stopping, referring to the fact that we may benefit from stopping the optimization proce-
dure early as a way to control the bias-variance trade-off. The generalization properties
of such strategies have been studied, e.g., for training kernel methods with the squared
loss using gradient descent (Yao et al., 2007; Raskutti et al., 2014), or for boosting (Zhang
et al., 2005) (which may be interpreted as a form of coordinate descent). For linear mod-
els f(x) = 〈w, x〉 with other losses such as the logistic or exponential loss, optimization
procedures may not converge in the absence of a regularization term, for instance if the
data is separable. In such cases, although the norm ‖w‖ will grow unbounded, one can

22

Chapter 1. Introduction

show that the direction w
‖w‖ that gradient descent will converge to is the same as that of

the maximum `2-margin solution (Soudry et al., 2018):

min ‖w‖2
s.t. yi〈w, xi〉 ≥ 1, i = 1, . . . , n.

Thus, gradient descent implicitly biases the predictor towards the hard-margin SVM so-
lution. The analysis is similar to the `1-margin-maximizing behavior of AdaBoost (Zhang
et al., 2005; Telgarsky, 2013). Similar studies can be carried on simple neural network ar-
chitectures without non-linearities (i.e., linear networks) or matrix factorization models.
Although the final model is effectively linear, the optimization problem is non-convex and
under-determined, raising the question of which model will be found by the optimization
procedure. In some cases, it can be shown that gradient descent then converges to a mini-
mum norm solution, where the norm depends on the architecture/parameterization, such
as the nuclear norm for matrix factorization, or a sparsity-inducing penalty in Fourier
domain for linear convolutional networks (Gunasekar et al., 2017, 2018). Note that the
geometry used for optimization (which is implicitly Euclidian when using gradient de-
scent) may also affect the set of solutions found, and thus inductive biases, which may
lead to different generalization properties (see, e.g., Wilson et al., 2017).

Role of over-parameterization. Many successful deep network architectures tend
to be widely over-parameterized, with many more parameters than the number of data-
points (Simonyan and Zisserman, 2014; Szegedy et al., 2016; Zagoruyko and Komodakis,
2016), which raises the question of its benefits from a theoretical perspective. One ap-
proach for studying over-parameterization is to consider limiting objects, that is, infinite-
width networks, which can lead to clean theoretical models of complexity measures for
neural networks, such as “convex neural networks” with sparsity-inducing norms (Bengio
et al., 2006; Rosset et al., 2007; Bach, 2017a), or specific kernels (Neal, 1996; Cho and
Saul, 2009; Lee et al., 2018; Matthews et al., 2018; Jacot et al., 2018).

For two-layer networks, such models can be defined through a measure on hidden
units µ on Rp:

f(x) =
∫
σ(〈w, x〉)dµ(w),

where σ is an activation function. Then, one can consider different norms on such
functions through µ, such as L1 or L2 norms on p(w) if p is a density of µ w.r.t. some
base measure τ , i.e., dµ(w) = p(w)dτ(w). One can then study statistical aspects of such
complexity measures (Bach, 2017a). In particular, the L2 norm corresponds to a kernel
method, while the L1 norm (corresponding to a total variation norm on µ) provides
benefits in terms of adapting to structure in the data thanks to its sparsity-promoting
effect. However, it is still unclear if these are tied to common training strategies.

On the optimization side, over-parameterization has also been found beneficial in var-
ious regimes, by making the optimization landscape more benign (Soltanolkotabi et al.,
2018), by enabling global convergence of gradient descent despite non-convexity (Chizat
and Bach, 2018), or by introducing good local or global optima near initialization which
can then be easily found (e.g., Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019b).
When using the squared loss in the regime considered by this last scenario, then gradient
descent attains the minimum-norm interpolating solution with respect to a kernel that

23

1.2. Supervised Machine Learning and Inductive Bias

depends on the architecture at initialization, known as the neural tangent kernel. We
study the inductive bias of such kernels in Chapter 4. A drawback of such an approach
is that kernel methods may lead to poor sample complexity compared to more adap-
tive strategies such as the “convex neural network” approach described above, which
may perform feature selection, similar to how deep networks are believed to discover
useful features (e.g., through Gabor-like filters at the early layers of CNNs). While
such a sparsity-promoting regularization behavior is not currently well-understood for
neural networks, it has been studied by Li et al. (2018) under specific assumptions for
over-parameterized matrix sensing and two-layer networks with quadratic activations.

Learning as stochastic optimization. One may also view learning directly as an
optimization problem, where the objective is the expected loss L(f) and can be accessed
through a stochastic oracle which may return for instance unbiased estimates of the
gradient at a given query function, obtained for a given sample (x, y) ∼ D. For a
linear model f(x) = 〈w, x〉 with a differentiable loss, we have L(w) = Ex,y[`(〈w, x〉, y)],
and such a stochastic first order oracle at a query point w would then return gt =
∇w`(〈w, xt〉, yt) for (xt, yt) ∼ D, so that E(xt,yt)∼D[gt] = ∇wL(w). Then, an optimization
guarantee L(wn) −minw L(w) ≤ εn after n queries to the oracle (corresponding to one
pass over the training set) yields a learning guarantee on estimation error. The most
common algorithm used in this setting is stochastic gradient descent (SGD), dating back
to Robbins and Monro (1951), which performs the following update upon receiving a
stochastic gradient estimate gt at iteration t:

wt = wt−1 − ηtgt,

where ηt is a possibly decaying step-size, and the final estimate may involve an aver-
aging of past iterates. Under various assumptions on the loss and the data, such as
(strong) convexity, bounded gradients and bounded data, one may obtain convergence
rates that are similar to the uniform convergence bounds on estimation error discussed
in Section 1.2.4 (see, e.g., Nemirovski et al., 2009; Bach and Moulines, 2011; Bubeck,
2015; Bottou et al., 2018). Under specific losses such as the squared loss, and more
precise assumptions on the data distribution, one may also obtain faster rates through
bias-variance decompositions (e.g., Bach and Moulines, 2013; Dieuleveut et al., 2017;
Neu and Rosasco, 2018). We note that different inductive biases may be used by chang-
ing the geometry of the gradient updates, typically by using a mirror descent or dual
averaging framework (Nemirovski et al., 2009; Xiao, 2010; Bubeck, 2015).

Such stochastic gradient methods are attractive computationally for linear models
since they only require to run one cheap iteration on each point of the dataset, which
can often be sufficient for good learning performance, given the nature of learning as
optimizing an expectation (Bottou and Bousquet, 2008). Nevertheless, optimizing a
(regularized) empirical risk objective may still be beneficial in some problems (e.g.,
when margin conditions may yield better statistical properties for the empirical risk
minimizer), and there are efficient stochastic algorithms—based on a strategy known
as variance reduction—for solving the resulting finite-sum optimization problems; see
Chapter 5 and the references therein. In the context of deep learning models, SGD and
its variants are the main optimization tool, yet they are used for many passes (epochs),
and usually with large batches of datapoints, suggesting that the algorithm is minimizing

24

Chapter 1. Introduction

empirical risk as opposed to expected loss (this can also be seen through the fact that
the loss can remain large on held-out data, as shown in Soudry et al., 2018, Figure 2).

1.3 Kernel Methods

In this section, we provide background on reproducing kernel Hilbert spaces (RKHSs)
and corresponding positive-definite kernels, algorithms used with such kernels, and
their generalization properties. More details no the topic can be found in the mono-
graphs (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004; Steinwart and
Christmann, 2008; Berlinet and Thomas-Agnan, 2004; Wahba, 1990) or the lecture notes
by Vert and Mairal (2017).

1.3.1 Kernels and reproducing kernel Hilbert spaces

Kernel methods in machine learning provide ways to learn non-linear models from rich
functional spaces, in a tractable way through a kernel function. A positive definite kernel
(p.d. kernel) is a symmetric function K : X × X → R such that for any collection of
points x1, . . . , xn ∈ X and scalars a1, . . . , an ∈ R, we have∑

i,j

aiajK(xi, xj) ≥ 0.

Intuitively, K(x, x′) defines a similarity measure between two objects x and x′ from a
set X which may have an arbitrary structure. This definition is reminiscent of positive-
definite matrices and inner products, and it is in fact possible to show that the such
kernels correspond to an inner product on some (possibly non-linear) features:

Theorem 1.1 (Aronszajn (1950)). A kernel K : X × X → R is positive definite if and
only if there exists a Hilbert space H and φ : X → H such that

K(x, x′) = 〈φ(x), φ(x′)〉H , (1.13)

for all x, x′ ∈ H.

Such a feature map φ may define a space H in high dimensions (see Figure 1.2) in
which a linear model may be effective, and this is what kernel methods do implicitly
through evaluating the kernel functions on pairs of datapoints, as we discuss below. In
particular, any explicitly defined feature map φ : X → Rp defines a kernel (e.g., one
defined with various monomials in the coordinates of an input vector), but the power
of kernels is that the feature map for a given kernel function may implicitly be infinite-
dimensional, for instance for the Gaussian kernel K(x, x′) = e−‖x−x

′‖2 .

Reproducing kernel Hilbert spaces. As we mentioned before, kernel methods en-
able us to learn models from certain functional spaces. These spaces are known as
reproducing kernel Hilbert spaces (RKHSs) and are defined as follows.

Definition 1.2 (RKHS). A Hilbert space H is a RKHS if there is a function K :
X × X → R such that:

25

1.3. Kernel Methods

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Figure 1.2: Illustration of the role of a kernel feature map Φ.

• For all x ∈ X , we have Φ(x) := K(x, ·) ∈ H

• For any f ∈ H and x ∈ X , we have the reproducing property:

f(x) = 〈f,Φ(x)〉H. (1.14)

If such a K exists, it is known as the reproducing kernel of H.

As our phrasing suggests, it is possible to show that the reproducing kernel is unique
for a given RKHS, and it is easy to see that it is p.d. since Φ defines a feature map
(taking f = Φ(x′) in (1.14)), often called the canonical feature map or kernel mapping.
Conversely, one can show that a p.d. kernel defines a unique RKHS. This space char-
acterizes the functions that are learned by kernel methods when using a p.d. kernel K,
and hence controls the inductive bias, thus it is important to understand its properties.

Geometry and smoothness. A given choice of kernel defines a geometry for points
in X through the Hilbert norm on its feature map Φ. The reproducing property and
Cauchy-Schwarz then imply that the variations of a function f in H is controlled ac-
cording to this geometry:

|f(x)− f(x′)| = |〈f,Φ(x)− Φ(x′)〉H|
≤ ‖f‖H · ‖Φ(x)− Φ(x′)‖H. (1.15)

In particular, this shows that the RKHS norm of f controls the smoothness of its pre-
dictions, and can provide a useful mechanism to control complexity.

Note that the geometry of the kernel does not depend on the particular choice of
feature map—indeed, if φ : X → H is another feature map for the kernel, we have ‖Φ(x)−
Φ(x′)‖2H = ‖φ(x)−φ(x′)‖2H by expanding the square. However, the norm of f is crucially
defined in the RKHS. Indeed, one may define functions through a feature map φ to
a different Hilbert space H from the RKHS H, of the form f(x) = 〈w, φ(x)〉H for
some w ∈ H, but the norm ‖w‖H in H may be larger than ‖f‖H even though both
feature maps define the same kernel. For instance, if φ(x) := (x, x)>, then the function
f(x) = 〈w, φ(x)〉 with w = (a,−a)> is just the zero function, so that ‖f‖H = 0, while
we have ‖w‖ =

√
2‖a‖. This is formalized in the following theorem (see, e.g., Saitoh,

1997, §2.1):

Theorem 1.3. Let φ : X → H be a feature map to a Hilbert space H, and let K(x, x′) :=
〈φ(x), φ(x′)〉H for x, x′ ∈ X . Let H be the linear subspace defined by

H := {fw ; w ∈ H} s.t. fw : x 7→ 〈w, φ(x)〉H ,

26

Chapter 1. Introduction

and consider the norm

‖fw‖2H := inf
w′∈H

{‖w′‖2H s.t. fw = fw′}.

Then H is the reproducing kernel Hilbert space associated to kernel K.

1.3.2 Characterization of the RKHS

We saw that the geometry of the kernel mapping provides a control on the global smooth-
ness of functions in the RKHS through (1.15). While this provides some insight into all
RKHS functions of a given norm, a more precise description of the RKHS is desirable.
For instance, one can show for various kernels that the kernel mapping is 1-Lipschitz
(see, e.g., Lemma 2.1 in Chapter 2), so that functions in the unit ball of their RKHS are
1-Lipschitz; yet, as discussed in Section 1.2.4, an RKHS ball is much smaller (in terms of
complexity) than the set of all 1-Lipschitz functions, prompting us to characterize these
functions more precisely.

When considering functions defined on a compact metric space X , one approach is
to study functions in the RKHS through their decomposition in an orthonormal basis
of L2(X , dν), for some non-negative measure ν on X .2 Indeed, for common choices of X
and ν, such orthonormal bases are well studied and will lead to a good understanding of
the RKHS. This can be achieved through a spectral decomposition of a linear operator
associated to the kernel known as integral operator (e.g., Cucker and Smale, 2002), in a
similar fashion to spectral decompositions of positive semi-definite matrices. The integral
operator TK of a kernel K on X is defined for f ∈ L2(X , dν) by

TKf(x) :=
∫
X
K(x, y)f(y)dν(y). (1.16)

Mercer’s theorem then provides such a decomposition:

Theorem 1.4 (Mercer). If X is compact and K is continuous, then there exists an
orthonormal basis (φi)i∈N of L2(X , dν), and non-negative eigenvalues (µi)i∈N such that

TKφi = µiφi, i = 1, 2,

Moreover, we have the expansion

K(x, y) =
∞∑
i=1

µiφi(x)φi(y),

where the convergence is absolute and uniform over X × X . Then, one can verify that
the RKHS H is given by

H =

f =
∑
i:µi 6=0

aiφi : ai ∈ R,
∑
i:µi 6=0

a2
i

µi
<∞

 ,
where the norm of f =

∑
i:µi 6=0 aiφi is given by ‖f‖2H =

∑
i:µi 6=0

a2
i
µi
.

2Recall that L2(X , dν) = {f : X → R s.t.
∫
X f

2dν < ∞}.

27

1.3. Kernel Methods

One can in particular verify that Im TK = H and that for f ∈ H, we have

‖f‖H = ‖T−1/2
K f‖L2(X ,dν), (1.17)

where T−1/2
K is the negative square root of TK (which is self-adjoint), which can be de-

fined on Im TK = H. When using the RKHS norm as a regularizer, Eq. (1.17) provides
an interpretation of T−1/2

K as a regularization operator in L2(X , dν) (e.g., Schölkopf and
Smola, 2001). Here, this operator is diagonal in the basis (φi)i, multiplying by 1/√µi
the Fourier coefficient for φi, so that it will tend to attenuate most the components of f
where µi is small. Conversely, if one is given a regularization operator D on L2(X , dν),
such as a differential operator, then one may find the RKHS H and corresponding repro-
ducing kernel such that ‖f‖H = ‖Df‖L2(X ,dν) by leveraging the reproducing property:
f(x) = 〈Df,DK(x, ·)〉L2 . Solving for K(x, ·) corresponds to finding a Green’s function
for the operator D∗D (where D∗ is the adjoint of D); see, e.g., Schölkopf and Smola
(2001, Chapter 4).

Example 1.5. We provide a few canonical examples.

• (first-order Sobolev space) For the kernel K(x, y) = min(x, y) on X = [0, 1], the
corresponding RKHS is a first-order Sobolev space which can also be expressed using
a differential operator:

H = {f : [0, 1]→ R, f(0) = 0, f abs. cont. and
∫ 1

0
f ′(x)2dx <∞}.

The Mercer decomposition when ν is the Lebesgue measure is given by

φj(x) = sin (2j − 1)πx
2 , µj =

(2
(2j − 1)π

)2
, j = 1, 2, . . .

• (dot-product kernels on the sphere) For a kernel of the form K(x, y) = κ(x>y) defined
on the p-dimensional sphere X = Sp−1, when ν is the uniform measure on the sphere,
then the Mercer decomposition can be given in the basis of spherical harmonics. A
more detailed description for specific dot-product kernels is given in Chapter 4.

• (translation-invariant kernels) For kernels of the form K(x, y) = κ(x − y), such as

the Gaussian kernel K(x, y) = e−
‖x−y‖2

2σ2 , the input space is often taken to be Rp, in
which case Mercer’s theorem does not hold due to lack of compactness. However, a
continuous decomposition can be given in terms of the Fourier transform κ̂ of κ (a
consequence of Bochner’s theorem); this yields the RKHS norm

‖f‖2H = 1
(2π)p

∫
Rp

|f̂(ω)|2

κ̂(ω) dω.

For a Gaussian kernel, κ̂(ω) decreases exponentially with ‖ω‖2 as well as σ2. When X
is a compact subset of Rd, Mercer’s theorem applies, but the spectral decomposition is
less straightforward, though it can be shown that the eigenvalues µi decay exponen-
tially (Wainwright, 2019, Example 12.25), leading to a much smaller RKHS compared
to the Sobolev space above.

28

Chapter 1. Introduction

The examples above show that many known kernels lead to spectral decompositions
in known bases, such as Fourier or spherical harmonics. Then, one can relate the decay
of eigenvalues µi to the regularity of functions in the RKHS; indeed it is well known that
regularity is tightly linked to a certain decay of Fourier coefficients. In particular, the
functions in the RKHS of the Gaussian kernel must be infinitely differentiable due to
the exponential decay. One can also use these properties to provide approximation rates
to certain classes of functions in terms of the radius of the RKHS ball (e.g., Smale and
Zhou, 2003); see also Bach (2017a) and Chapter 4 for such approximations for specific
dot-product kernels arising from neural networks.

1.3.3 Algorithms

Kernel methods have been very successful in machine learning, because they lead to
computationally tractable algorithms even though they are dealing with possibly infinite-
dimensional function spaces. One way to see this is that any algorithm which can be
written in terms of inner products between some (explicit) feature vectors φ(xi) can be
modified to use kernel evaluations instead, using (1.13), so that it will implicitly work
with possibly infinite-dimensional features in the corresponding RKHS. This is known as
the kernel trick, and applies particularly naturally when dealing with dual formulations
of some optimization problems such as support vector machines, though it can also be
readily applied in other contexts including clustering (leading to the Kernel K-means
algorithm). We now present a more formal approach to learn with kernels.

The representer theorem. Fitting supervised machine learning models using kernel
methods typically involves solving a regularized empirical risk minimization problem
where the hypothesis space is a RKHS H associated to a kernel K:

min
f∈H

1
n

n∑
i=1

`(f(xi), yi) + λ‖f‖2H. (1.18)

While solving this seems intractable at first sight since H may be infinite-dimensional,
the representer theorem, due to Kimeldorf and Wahba (1971), states that any solution
to (1.18) takes the form

f(x) =
n∑
i=1

αiK(xi, x),

for some α1, . . . , αn ∈ R. Indeed, any non-zero component in f that is orthogonal to
span(Φ(x1), . . . ,Φ(xn)) does not change f(xi) in the first term of (1.18), but leads to
a suboptimal regularization term, and hence must be zero at a minimizer. Denoting
by (K)ij = K(xi, xj) the kernel matrix and letting α = (α1, . . . , αn), the problem then
simplifies to

min
α∈Rn

1
n

n∑
i=1

`((Kα)i, yi) + λα>Kα,

which can be solved using standard convex optimization tools when the loss is con-
vex (e.g., Schölkopf and Smola, 2001). For the squared loss `(ŷ, y) = (ŷ − y)2, we have
the explicit kernel ridge regression solution α = (K + nλIn)−1y, with y = (y1, . . . , yn)>.

29

1.3. Kernel Methods

This type of approach may also be applied to obtain non-linear formulations for
other tasks, such as principal component analysis (Schölkopf et al., 1998) or independent
component analysis (Bach and Jordan, 2002).

1.3.4 Statistical aspects

When learning with kernels, the choice of kernel affects the inductive bias of the learning
procedure, and thus the resulting learning guarantees. If, for instance, one expects a
problem to be solved well using a certain class of functions (e.g., with certain smooth-
ness properties), then using an RKHS adapted to these properties should lead to small
estimation error. Kernel methods are particularly well-suited for such statistical analysis
since the Hilbert structure of RKHSs makes this analysis similar to that of linear models,
and particular ridge regression.

Rademacher complexity. For instance, the empirical Rademacher complexity of an
RKHS ball FB = {f ∈ H, ‖f‖H ≤ B} on a sample Sn = {x1, . . . , xn} with kernel
matrix K can be upper bounded as follows (see also Section 1.2.4):

R̂n(FB) = Eε

[
sup
f∈FB

1
n

∑
i

εif(xi)
]

= 1
n
Eε

[
sup
f∈FB

〈f,
∑
i

εiΦ(xi)〉H

]

≤ B

n
Eε
[√
ε>Kε

]
(Cauchy-Schwarz)

≤ B

n

√
Eε[ε>Kε] (Jensen)

= B

n

√
Tr(K Eε[εε>])

= B√
n

√
1
n

∑
i

K(xi, xi),

where ε is a vector of i.i.d. Rademacher variables. This suggests in particular that
regularization using the RKHS norm is useful for controlling estimation error. This result
can be leveraged to obtain margin bounds on classification problems for any estimator
learned from training data, as detailed in Section 1.2.4. We use this viewpoint to study
regularization and generalization for neural networks through an appropriate RKHS in
Chapters 2 and 3.

For settings where the estimator is the (regularized) empirical risk minimizer, one
may obtain faster rates than the O(1/

√
n) rate above by using localized complexities,

which will additionally display a dependence on the eigenvalues of the kernel matrix (see
Bartlett et al., 2005; Wainwright, 2019). In particular, the rates depend on the rate
of decay of these eigenvalues, and leads to a fast O(1/n) rate for the Gaussian kernel
where the decay is exponential, at least for a data distribution close to uniform. For
the specific case of ridge regression, one can obtain such rates with a different approach
which we now describe.

30

Chapter 1. Introduction

Kernel ridge regression and degrees of freedom. A more direct approach to
analyzing the kernel ridge regression estimator is to consider a bias-variance decompo-
sition of the form (1.6). For simplicity, here we describe such a decomposition in the
fixed design setting, where the inputs x1:n are considered fixed, and we look at expected
“in-sample” prediction error due to the noise in the outputs only. Consider a simple
model where yi = f∗(xi) + εi, where εi are i.i.d. N (0, σ2I) noise variables. Denoting
y∗i = Eε yi = f∗(xi), K the kernel matrix, and ŷ = K(K + nλI)−1y the ridge regression
predictions, we have the following decomposition on the in-sample prediction error (e.g.,
Wahba, 1990):

1
n
Eε ‖ŷ − y∗‖2 = 1

n
Eε ‖K(K + nλI)−1(y∗ + ε)− y∗‖2

= 1
n
Eε ‖(K(K + nλI)−1 − I)y∗ +K(K + nλI)−1ε‖2

= 1
n
‖(I −K(K + nλI)−1)y∗‖2 + 1

n
Eε ‖K(K + nλI)−1ε‖2

= nλ2‖(K + nλI)−1y∗‖2︸ ︷︷ ︸
bias

+ σ2

n
Tr(K2(K + nλI)−2)︸ ︷︷ ︸

variance

.

Here, the bias term increases with a non-zero λ, depending on how well y∗ decomposes
on the eigenvectors of K, while the variance term decreases with λ, based on a quantity
known as degrees of freedom (Hastie et al., 2009), given by df(λ) = Tr(K2(K +nλI)−2).
This quantity provides a notion of effective dimension for a given value of λ (indeed, it
replaces the dimension in the analysis of a standard least-squares estimate). If µ̂k denote
the eigenvalues of the normalized kernel matrix 1

nK, we have

df(λ) =
∑
i

(
µ̂i

µ̂i + λ

)2
. (1.19)

This decreases with λ at a rate which depends on the rate of decay of µ̂i (assuming they
are arranged in decreasing order), and precise rates of convergence can be established by
trading-off the two above terms when f∗ is assumed to belong to various non-parametric
classes.

In the random design setting where x1:n are no longer fixed but drawn randomly from
a data distribution, the analysis is more involved but similar quantities appear (e.g., Hsu
et al., 2014). In this setting, kernel methods are often analyzed under assumptions that
are based on the integral operator as defined in (1.16), but where ν is now the marginal
of the data distribution on the input data. In particular, when its eigenvalues µi decay as
O(i−α), α > 1 (known as capacity condition, characterizing the “size” of the RKHS), then
one may show excess risk bounds of order O(n−α/(α+1)) when f∗ ∈ H, which interpolate
between the slow O(1/

√
n) rate when α ≈ 1 and the fast O(1/n) rate when α → ∞

(e.g., for exponential decays as is common for the Gaussian kernel). One can also obtain
more refined rates when placing additional conditions (so-called source conditions) on the
smoothness of f∗, even for f∗ /∈ H, which allow a more precise control of approximation
error. We refer, e.g., to Caponnetto and De Vito (2007); Fischer and Steinwart (2017);
Lin et al. (2018) for more details. A similar analysis may also be carried for other
learning algorithms, such as early stopping (Yao et al., 2007) or stochastic gradient
methods (Dieuleveut et al., 2016).

31

1.3. Kernel Methods

1.3.5 Speeding up kernel methods with kernel approximations

One drawback of kernel methods that arose with the surge of big datasets is their poor
scalability to settings where n is very large. Indeed, while the kernel trick and representer
theorem make kernel methods tractable, the algorithms presented in Section 1.3.3 quickly
become computationally prohibitive with large n as they depend on the kernel matrix,
and thus scale at least quadratically with n. Luckily, there has been work on providing
good approximations of such a kernel matrix, making such approaches more scalable,
while preserving good prediction properties. There are two main approaches in this
direction: Nyström/column sampling, and random features.

Nyström or column sampling. This approach tries to exploit the fact that the ker-
nel matrix is often approximately low rank, so that more efficient computations may be
achieved through approximation. This is often achieved through selecting or sampling
some columns (Smola and Schölkopf, 2000; Williams and Seeger, 2001) or through in-
complete Cholesky decompositions (Fine and Scheinberg, 2001; Bach and Jordan, 2005).
In a simple column sampling approach, one randomly selects p anchor points z1, . . . , zp
from the dataset,3 and uses the following finite-dimensional subspace of the RKHS H
instead of the full RKHS for learning:

F = span(Φ(z1), . . . ,Φ(zp)).

Then, points Φ(x) can be approximated by their orthogonal projections on F , de-
noted ΠΦ(x), leading to inner product approximations of the form

〈Φ(x),Φ(x′)〉H ≈ 〈ΠΦ(x),ΠΦ(x′)〉H = KZ(x)>K−1
ZZKZ(x′),

where we use the notation KZ(x) = (K(z1, x), . . . ,K(zp, x))> and (KZZ)ij = K(zi, zj).
In particular, this can be written as 〈Φ(x),Φ(x′)〉H ≈ 〈ψ(x), ψ(x′)〉2, where 〈·, ·〉2 is
the Euclidian inner product, and ψ(x) = K

−1/2
ZZ KZ(x) ∈ Rp can be used as finite-

dimensional feature map, including at test time. Denoting KZX ∈ Rp×n the matrix with
entries (KZX)ij = K(zi, xj), the corresponding kernel matrix is then given by

K̃ = K>ZXK
−1
ZZKZX ,

which can be seen as a low rank approximation to the full matrix K.
It is then possible to study the influence of p, the number of sampled columns, on

learning performance. While initial work has mainly analyzed approximation properties
in matrix norms, more recent work has showed that by directly focusing on prediction
performance on a given learning task, at least in the context of ridge regression, then p
need only be of the order of degrees of freedom-like quantities similar to (1.19) in order
to preserve good convergence rates (Bach, 2013; El Alaoui and Mahoney, 2015; Rudi
et al., 2015). In particular, such quantities are often much smaller than n, leading to
significant computational gains.

3We note that other strategies are possible for selecting anchor points, such as through clustering
techniques, as in Zhang et al. (2008); Mairal (2016).

32

Chapter 1. Introduction

Random features. A second popular approach for improving the tractability of kernel
methods is to leverage a favorable structure of some kernels which may be defined as
expectations, that is, of the form

K(x, x′) = Ew∼p(w)[ϕ(x;w)ϕ(x′;w)],

where ϕ(x;w) are known as random features and p(w) is a probability measure. Such a
structure appears naturally for translation-invariant kernels K(x, x′) = κ(x− x′), where
Bochner’s theorem yields p(w) ≈ κ̂, and real-valued random features ϕ(x;w) can be
constructed, known as random Fourier features (Rahimi and Recht, 2007). Other such
kernels appear when considering infinitely-wide neural networks with one hidden layer,
where the random features are now given by ϕ(x;w) = σ(w>x), where σ is an activation
function and one may optionally add a (random) bias term (Cho and Saul, 2009; Bach,
2017a; Daniely et al., 2016).

Learning with random features consists of sampling w1, . . . , wm i.i.d from p(w) and
using a finite-dimensional feature map ψ(x) = 1√

m
(ϕ(x;w1), . . . , ϕ(x;wm))>, so that

when m is large we have
K(x, x′) ≈ 〈ψ(x), ψ(x′)〉2, (1.20)

and ψ(·) may thus be used as a finite-dimensional feature map for learning, leading to
computational benefits when m is not too large.

It is possible to control the deviation in the approximation (1.20) with high proba-
bility over a compact domain (Rahimi and Recht, 2007), however this may only yield
poor generalization bounds unless the number of random features m is larger than n,
which would lose the computational benefits of approximation compared to using the
full kernel. Yet, by using more refined analyses that directly tackle generalization rather
than kernel approximation, one can show as in the Nyström case that a number of fea-
tures of the order of a degrees of freedom quantity may be sufficient for good prediction
performance (Bach, 2017b; Rudi and Rosasco, 2017). Rudi and Rosasco (2017) also show
that for ridge regression, Õ(

√
n) random features are sufficient for obtaining worst-case

O(1/
√
n) generalization bounds.

A point worth mentioning is that in contrast to the Nyström approach above, the
models obtained via random features do not generally belong to the original RKHS, and
therefore may lack desired smoothness properties.

1.4 Kernels for (Deep) Neural Networks
This section focuses on relationships between kernel methods and (deep) neural networks,
such as kernels described by two-layer networks with an infinitely-wide hidden layer, and
hierarchical constructions of kernels which can lead to descriptions of deep architectures.

1.4.1 Kernels from two-layer networks

The starting point that establishes links between kernels and deep networks is the early
work on the Gaussian process behavior of infinitely wide networks with one hidden
layer (Neal, 1996; Williams, 1997). Considering a neural network of the form

f(x) = 1√
m

m∑
i=1

viσ(w>i x), (1.21)

33

1.4. Kernels for (Deep) Neural Networks

where vi ∈ R and wi ∈ Rp for i = 1, . . . ,m are parameters and σ an activation function
such as the rectified linear unit (ReLU), σ(u) = max(u, 0). If we let m→∞ with i.i.d.
parameters vi ∼ N (0, 1) and wi ∼ p(w) for some probability measure p(w), we obtain
that f tends to a centered Gaussian process with covariance

K(x, x′) = lim
m→∞

E[f(x)f(x′)] = Ew∼p(w)[σ(w>x)σ(w>x′)],

which corresponds precisely to a random features kernel as described in Section 1.3.5,
and motivates the use of such kernels to approximate the inductive bias of wide two-layer
neural networks through a Gaussian process prior, or in general kernel methods.

Explicit forms of the kernels. For the example of the ReLU activation with w ∼
N (0, 2I), the kernel can be expressed in closed form (Cho and Saul, 2009):

K(x, x′) = ‖x‖‖x′‖κ
(

x>x′

‖x‖‖x′‖

)
, with κ(u) = 1

π
(u·(π−arccos(u))+

√
1− u2). (1.22)

Cho and Saul (2009) similarly characterize kernels for other positively homogeneous
activations of the form σα(u) = max(uα, 0), for α ∈ N. When inputs are restricted
to the p-dimensional sphere X = Sp−1 and w ∼ N (0, I), Daniely et al. (2016) show
how to obtain explicit expressions of K in terms of the decomposition of the activation
function σ in the basis of Hermite polynomials.4 Specifically, if (ai)i are the coefficients
of the expansion of σ in the Hermite basis, then we have, for x, x′ ∈ Sp−1,

K(x, x′) = κ(x>x′), with κ(u) =
∑
i

a2
iu
i, (1.23)

where κ is sometimes called dual activation. This result leads to explicit expressions for a
few choices of σ in addition to positively homogeneous activations, and provides calculus
rules to compute such dual activations; see Daniely et al. (2016) for more details.

Description of the RKHS. As shown in Bach (2017a), the RKHS corresponding to
kernel K, denoted H, contains functions of the form

f(x) =
∫
h(w)σ(w>x)dp(w),

with h ∈ L2(dp), with norm ‖f‖H = inf{‖h′‖L2(dp), h
′ s.t. f(x) =

∫
h′(w)σ(w>x)dp(w)}

(this is a consequence of Theorem 1.3). Such a function f takes the form of an infinitely
wide neural network, with output weights given by h(w) for a given hidden neuron
parameterized by w. The random features approximation with m features then yields a
finite-width neural network, where the first layer weights w are fixed and equal to their
random initialization, while the output weights are learned with an `2 penalty. When
the number m of such neurons is large enough, one can still learn nearly as well as for
infinite width, as discussed in Section 1.3.5 for random features.

For positively homogeneous activations σα, Bach (2017a) studies their decomposition
in the basis of spherical harmonics when inputs are restricted to the p-dimensional

4We recall that Hermite polynomials define an orthonormal basis of L2(R) equipped with the standard
Gaussian measure.

34

Chapter 1. Introduction

sphere X = Sp−1, which leads to Mercer decompositions of the corresponding kernel,
and hence a precise characterization of the RKHS. By studying the eigenvalue decay of
such decompositions, this leads to necessary regularity conditions for belonging to H,
as well as rates of approximations to Lipschitz functions defined on the sphere. For
activations σα, the eigenvalues of the kernel corresponding to spherical harmonics of
degree k are of order O(k−p−2α), leading to regularity requirements on derivatives up to
order p/2 + α. This is discussed in more detail in Chapter 4.

It is important to mention that while such kernels provide good approximation prop-
erties on the sphere, the RKHS H does not necessarily contain simple neural network
functions, such as a single basis function x 7→ σ(w>∗ x). This is in contrast to a learning
procedure which might adapt the position of the neurons in the first layer depend-
ing on the data, such as learning with an `1 penalty on the second layer weights (or
rather, a total-variation norm on the corresponding measure), which may however be
intractable (see Bach, 2017a).

Dimension-free RKHS description. The description above relies on spherical har-
monic decompositions, which depend on the underlying dimension p. A less precise
description may be obtained independently of the dimension by using the decomposi-
tion (1.23), assuming that inputs lie on the sphere. Indeed, we can write K(x, x′) =
〈φ(x), φ(x′)〉2, with the explicit feature map

φ(x) = (a0, a1x, a2x⊗ x, . . . , akx⊗k, . . .), (1.24)

where x⊗k = x ⊗ · · · ⊗ x (k times) denotes the k-th order tensor product, and is such
that (x⊗k)i1,...,ik = xi1 · · ·xik . Note that such a decomposition also holds for other
dot-product kernels which may not directly come from a known activation, such as the
inverse-polynomial kernel:

K(x, x′) = 1
2− 〈x, x′〉 ,

for which a2
i = 2−(i+1) (see Shalev-Shwartz et al., 2011; Zhang et al., 2016, 2017b). By

Theorem 1.3, the RKHS then contains functions of the form fv(x) = 〈v, φ(x)〉2, with
norm ‖fv‖H = inf{‖v′‖2 : fv = fv′}. Unlike the Mercer decomposition above, this
identity does not readily provide closed-form expressions of the norm, since the explicit
feature map does not correspond to an orthogonal basis, but it still provides an upper
bound ‖fv‖H ≤ ‖v‖2.5

Application to improper learning. The approach we just described has been used
to show that a certain class of neural networks with smooth activations is in the RKHS
of specific kernels with a known upper bound on the norm, and thus are improperly
learnable using kernel methods with this kernel. This means that learning with such
kernels is guaranteed to perform at least as well as learning with this class (e.g., Zhang
et al., 2016, 2017b). Results of a similar flavor have been shown in the context of learning
with gradient descent on over-parameterized neural networks, where the learning process

5We note that such a decomposition may still provide precise characterizations asymptotically in high
dimensions, since Hermite and Legendre decompositions coincide for p → ∞; see, e.g., Ghorbani et al.
(2019).

35

1.4. Kernels for (Deep) Neural Networks

may approximate a kernel method with a certain kernel, and hence can improperly learn
functions in the RKHS (e.g., Allen-Zhu et al., 2019a; Arora et al., 2019b). In particular,
one may consider functions of the form

gw(x) =
∑
i≥0

γi(w>x)i = θ(w>x), (1.25)

where θ(u) =
∑
i≥0 γiu

i, which may be seen as a neural network function with a smooth
activation function θ. Then, we can write gw(x) = 〈vw, φ(x)〉2 with

vw =
(
γi
ai
w⊗i

)
i≥0

,

assuming γi = 0 whenever ai = 0. We then have gw ∈ H if ‖vw‖2 < ∞, with ‖gw‖H ≤
‖vw‖2. This last quantity is often written as Cθ(‖w‖2), with

Cθ(B2) :=

√√√√∑
i≥0

(
γi
ai

)2
B2i.

The quantity C(‖w‖2) may be seen as a measure of complexity of the corresponding
neural network, and can be used to upper bound the Rademacher complexity of such
a class of neural networks with smooth activations and constraints on weights. This
approach can be extended to deep networks, through the use of hierarchical kernels, as
we present next.

1.4.2 Hierarchical kernels

In many successful applications of neural networks, the architectures used involve mul-
tiple layers, raising the question of how to extend the approach of the previous section
to include a form of depth or hierarchy.

Kernel construction. A reasonable approach is to define a kernel in terms of the ge-
ometry induced by another kernel. For instance, given an initial Gaussian kernelK(x, x′) =
e−‖x−x

′‖2/2σ2 with feature map Φ : X → H to its RKHS, one may define a hierarchical
Gaussian kernel by

K2(x, x′) = e−
‖Φ(x)−Φ(x′)‖2H

2σ2 = e−
K(x,x)+K(x′,x′)−2K(x,x′)

2σ2 = e−
1−K(x,x′)

σ2 .

With an abuse of notation, this kernel may be written through an explicit feature map
as

K2(x, x′) = 〈Φ(Φ(x)),Φ(Φ(x′))〉,

although technically, the outer Φ is different than the inner one, since it corresponds to
a feature map for a Gaussian kernel with a different input space X ′ = H, making it more
difficult to study theoretically. Yet, the hierarchical kernel K2 defines a new p.d. kernel
on X which can be studied on its own. An example which is perhaps easier to parse is
the following: if we combine a Gaussian kernel with scale σ into a simple polynomial
kernel (x, x′) 7→ (x>x′)2, then we obtain a new Gaussian kernel with smaller scale σ/

√
2.

36

Chapter 1. Introduction

While this example is a bit dull in itself (indeed, why not consider the smaller scale right
away?), it suggests that combining kernels hierarchically may produce richer kernels with
better approximation properties (in this case, a smaller scale leads to a slower eigenvalue
decay as per Section 1.3.2, thus a “larger” RKHS).

The dot-product kernels obtained in section 1.4.1 are particularly well-suited for
such a hierarchical construction. Indeed, considering inputs on the sphere and a ker-
nel K(x, x′) = κ(x>x′), we may easily define a hierarchical version of it by composing κ
with itself:

KL(x, x′) = κ(L)(x>x′) = κ ◦ · · · ◦ κ︸ ︷︷ ︸
L times

(x>x′).

A similar relation holds for homogeneous dot-product kernelsK(x, x′) = ‖x‖‖x′‖κ(x>x′

‖x‖‖x′‖)
satisfying κ(1) = 1, such as the kernel in (1.22). Now, the L-layer kernel is given by

KL(x, x′) = ‖x‖‖x′‖κ(L)
(

x>x′

‖x‖‖x′‖

)
.

Such hierarchical kernels were introduced by Cho and Saul (2009) as a multi-layer
extension of the kernel (1.22), and similar concepts were used for describing other archi-
tectures (Mairal et al., 2014; Mairal, 2016; Anselmi et al., 2015; Daniely et al., 2016).
These kernels also arise as limit objects when considering infinitely-wide fully-connected
neural networks, such as when training only the last layer at initialization (Daniely et al.,
2016; Daniely, 2017), or as the covariance function when considering Gaussian process
limits at infinite width (Lee et al., 2018; Matthews et al., 2018). Daniely et al. (2016)
shows that for such constructions when κ(1) = 1, the kernel KL tends to a degener-
ate limit when L → ∞, suggesting that it may not be beneficial to have too many
fully-connected layers in a row.

Networks in the RKHS. For a hierarchical kernel K(x, x′) = κ(K0(x, x′)), we may
consider a similar decomposition to (1.23) based on the polynomial expansion of κ:

K(x, x′) =
∑
i

a2
i (K0(x, x′))i.

Then, if Φ0 : X → H0 is the canonical feature map of K0, we may then define an explicit
feature map for K similar to (1.24), given by

ψ(x) = (a0, a1Φ0(x), . . . , akΦ0(x)⊗k, . . .).

Following a similar construction to the non-hierarchical case, we may then construct
functions of the form f(x) = θ(〈g,Φ0(x)〉H0) = θ(g(x)), for a smooth non-linearity θ as
before and where g ∈ H0. We then have

‖f‖H ≤ Cθ(‖g‖2H0).

If K0(x, x′) is defined in a similar way as κ(K1(x, x′)), we may then consider g as a
neural network function itself, or a linear combination thereof, such as

g(x) =
m∑
j=1

wjθ(〈hj ,Φ1(x)〉H1),

37

1.4. Kernels for (Deep) Neural Networks

where Φ1 : X → H1 is the canonical feature map forK1, h1, . . . , hm ∈ H1 and w1, . . . , wm ∈
R. Iterating this process, we may obtain a deep neural network as an element of the
RKHS of a deep hierarchical kernel, and we may bound its RKHS norm using compo-
sitions of the complexity function Cθ. Following Chapter 2, it is possible to show an
upper bound on the norm of a neural network f(x) = w>L θ(WL−1θ(· · ·W2θ(W1x) · · ·)),
of the form

‖f‖2 ≤ ‖wL‖2C2
θ (‖WL−1‖22C2

θ (· · · ‖W2‖22C2
θ (‖W1‖2F) · · ·)),

where ‖ · ‖2 and ‖ · ‖F denote the spectral norm and Frobenius norm of a matrix,
respectively. Zhang et al. (2016) provide different upper bounds on such networks with `1
constraints on the weights.

1.4.3 (Deep) convolutional kernels

The above construction of hierarchical kernels, while providing a nice functional space
for defining multi-layer fully-connected networks, merely describes a new kernel defined
on input vectors, and does not seem to clearly reflect benefits of the hierarchy. In
contrast, deep learning architectures often incorporate elements which can exploit a
certain structure in the data. A popular example, which will be a key topic in later
chapters, is the convolutional architecture. Such architectures attempt to exploit the
local stationarity in natural signals (i.e., localized features present in similar form across
the spatial domain), as well as shift-invariance and their multi-scale nature.

Similar design principles can be encoded into a (possibly hierarchical) kernel, by
following similar architectural choices as convolutional networks. Such kernels were
studied both for shallow architectures (Bo et al., 2010; Raj et al., 2017) and deep ones (Bo
et al., 2011; Mairal et al., 2014; Mairal, 2016; Daniely et al., 2016).

Using notations from later chapters, we may consider discrete input signals x[u]
in `2(Ω,Rp), meaning that the signal takes values x[u] ∈ Rp at location u ∈ Ω ⊂ Zd (we
have, e.g., d = 2 and p = 3 for RGB images), and

∑
u∈Ω ‖x[u]‖2 < ∞. Rather than

feeding the entire signal into a kernel mapping, we first consider local neighborhoods,
known as patches, and feed each of them into a kernel mapping, so that the kernel
performs comparisons at a patch level rather than on the entire signal, allowing to
take into account local stationarity. Define S ∈ Zd a small patch shape (e.g., S =
{−s, . . . , s}d) and P : `2(Ω,Rp) → `2(Ω,Rp|S|) the linear patch extraction operator on
signals given by

Px[u] = (x[u+ v])v∈S .

Then, given a kernel k1 defined on Rp|S| (a patch kernel) with RKHS H1 and feature
map ϕ1, we may define a convolutional kernel by

K(x, x′) =
∑
u∈Ω

k(Px[u], Px′[u]),

where the sum may be restricted to points u such that u + S ⊂ Ω, when Ω is finite, or
zero-padding may be applied to the signal instead. This may seen seen as defining a
feature map φ(x) ∈ `2(Ω,H1) given by

φ(x)[u] = ϕ1(Px[u]).

38

Chapter 1. Introduction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Figure 1.3: Construction of one layer of a convolutional kernel representation.

The kernel is then given by K(x, x′) = 〈φ(x), φ(x′)〉`2(Ω,H1).
One may then incorporate some shift-invariance through a pooling operation, either

globally on the entire signal, or locally around each location. The former may be achieved
through a local averaging of the feature map, e.g., with a Gaussian or average pooling
filter, through a linear convolution operator A given by

(Aφ(x))[u] =
∑
v∈Ω

h[u− v] · φ(x)[v],

where h[u] is a given filter. This leads to a kernel of the form

K(x, x′) =
∑
u

∑
v

∑
v′

h[u− v]h[u− v′]k(Px[v], Px′[v′])

=
∑
v

∑
v′

(h ∗ h)[v − v′]k(Px[v], Px′[v′]),

where the last equality holds at least if we assume symmetric filters h and Ω = Zd. This
takes the form of a match kernel (e.g., Bo et al., 2010; Mairal et al., 2014; Raj et al.,
2017), where similarities between patches are weighted by a function of their distance.
Using global pooling instead of local pooling simply yields the kernel

K(x, x′) =
∑
v

∑
v′

k(Px[v], Px′[v′]). (1.26)

An illustration for such a one-layer kernel representation consisting of patch extrac-
tion, patch kernel mapping, and local pooling is given in Figure 1.3. This construction
may be extended in a multi-layer fashion, by considering further patch extraction, patch
kernels and pooling on top of the obtained feature map Aφ(x)[u]. Such a construction
is provided in detail in Chapter 2, where the corresponding RKHS is also studied. In
particular, one can construct generic CNNs with smooth activations in the RKHS, and
provide upper bounds on their RKHS norm, in a similar fashion to the fully-connected
case presented in the previous section.

39

1.5. Invariance and Stability to Deformations

1.4.4 Neural tangent kernels

The hierarchical kernels described in the previous sections arise naturally in overparam-
eterized networks (that is, with large or infinite width), when considering their Gaussian
process behavior (Lee et al., 2018; Matthews et al., 2018), or when training only the last
layer and keeping other layers fixed at random initialization (Daniely et al., 2017). A dif-
ferent line of work has shown that such over-parameterized networks are easy to optimize
with gradient descent, and may converge in the infinite-width limit to a minimum-norm
solution in the RKHS corresponding to a different kernel known as neural tangent ker-
nel (NTK, Jacot et al., 2018). See, e.g., Allen-Zhu et al. (2019b); Chizat et al. (2019);
Du et al. (2019b,a); Li and Liang (2018). This kernel is given by the infinite-width limit
corresponding to a feature map given by the gradient of the model with respect to its
parameters, at initialization. For instance, for a two-layer network of the form (1.21),
the NTK is of the form

Kntk(x, x′) = lim
m→∞

〈∇v,wf(x),∇v,wf(x′)〉

= (x>x′)Ew∼p(w)[σ′(w>x)σ′(w>x′)] + Ew∼p(w)[σ(w>x)σ(w>x′)].

Such kernels are studied in more detail in the contribution (Bietti and Mairal, 2019b) of
this thesis, detailed in Chapter 4, where we derive the NTK for a class of convolutional
architectures, and compare its properties to the more straightforward hierarchical kernels
from previous sections.

1.5 Invariance and Stability to Deformations

Many learning problems may benefit from prior knowledge expressed in terms of in-
variance to certain transformations. An example is translation-invariance for images
in a classification task; indeed, one may expect that two images that are identical up
to a translation should lead to the same prediction, making it useful to provide such
an inductive bias in the choice of representation or function class, for improved sample
complexity. Beyond translations, one may be interested in different groups of transfor-
mations, such as rigid transformations, or more local transformations on signals such as
deformations.

1.5.1 Group invariant representations

Consider a group G of transformations to which we would like to be invariant, such
as the translation or rotation group, where we denote by Lgx the transformation of an
example x by a given group element g ∈ G. For instance, if x is a signal x(u) on a
continuous domain, then we may consider

Lgx(u) = x(g−1 · u),

where g−1·u denotes the action of g−1 on u. For translations, this may simply be Lgx(u) =
x(u− g).

40

Chapter 1. Introduction

Invariance via averaging. One way to make a data representation Φ invariant to
the group G is to consider an averaged representation over the group. Assuming the
group is locally compact, we can consider the right-invariant Haar measure µ, which
satisfies µ(Sg) = µ(S) for any S ⊆ G and g ∈ G. Then, we may define the averaged
representation

Φ̄(x) =
∫
G

Φ(Lg′x)dµ(g′).

We then have that Φ̄ is an invariant representation:

Φ̄(Lgx) =
∫
G

Φ(Lg′Lgx)dµ(g′) =
∫
G

Φ(Lg′gx)dµ(g′) =
∫
G

Φ(Lg′x)dµ(g′) = Φ̄(x).

If Φ is a kernel mapping for a kernel K, then this corresponds to learning with a different
kernel of the form

K̄(x, x′) =
∫ ∫

K(Lgx, Lg′x′)dµ(g)dµ(g′).

The convolutional kernel with global average pooling in (1.26) is an example of such a
kernel, and is this invariant to translations assuming the average is over all translations.
Using a weighted average instead of such a global average may lead to a more local form
of invariance. See Anselmi et al. (2016); Mroueh et al. (2015); Raj et al. (2017) for
further details on such invariant kernels. Other forms of pooling based on hierarchical
maxima can also yield invariance and information preservation properties (Smale et al.,
2010; Bouvrie et al., 2009).

Hierarchy and equivariance. For signal representations that are defined hierarchi-
cally in a multi-layer fashion, it can be useful to preserve a given group structure across
layers. For instance, for signals defined on a domain Ω = Rd, there is an inherent struc-
ture given by the translation group, and one may obtain new feature maps at each layers
defined themselves on the same domain. A desirable property of such hierarchical con-
structions is that the obtained feature maps are equivariant (or covariant) to the group
action, meaning that the feature maps obtained from a transformed signal are equal to
the corresponding transformation of the feature map obtained on the original signal.
Formally, a representation Φ(x) of a signal x is equivariant to the action of a group G if
for any g ∈ G we have

Φ(Lgx) = LgΦ(x).

Here, both x and Φ(x) are defined on the group G, or on subsets thereof (such as quo-
tient spaces of the group, see Kondor and Trivedi (2018)). Convolutional layers in deep
networks have this property for the translation group, as do the patch extraction opera-
tors used in convolutional kernels. One may define similar operations to convolutions for
other groups, obtaining multi-layer networks or kernels with desirable equivariance prop-
erties for other transformations such as rotations, reflections, or roto-translations (which
combines translations and rotations); see, e.g., Cohen and Welling (2016); Cohen et al.
(2018); Kondor and Trivedi (2018); Oyallon and Mallat (2015); Sifre and Mallat (2013)
and Chapter 2. Note that such ideas can be extended to signals defined on domains that
may lack Euclidian or group structures, such as graphs or manifolds; see Bronstein et al.
(2017) for a review.

41

1.5. Invariance and Stability to Deformations

Figure 1.4: Examples of variabilities in handwritten digits which may be seen as small
deformations and should lead to the same predictions in a classification task: (top)
variability due to different hand-writings; (bottom) small, hand-crafted deformations of
a given image of the digit 5.

While equivariance in itself does not provide invariance, one can easily obtain an in-
variant representation from an equivariant one by averaging the obtained representation
on the group:

Φ̄(x) =
∫
G
LgΦ(x)dµ(g),

which, by the equivariance property, is equivalent to averaging on transformed input
signals. Such an equivariant construction can help achieve invariance jointly with other
desirable properties such as stability to deformations, by only averaging on a specific
group in the final representation. Such constructions were initially considered in the
context of the scattering transform by Mallat (2012); Sifre and Mallat (2013); Oyallon
and Mallat (2015), and in Chapter 2 of this thesis, we analyze such joint stability and
invariance properties for the roto-translation group.

1.5.2 Stability to deformations

While invariance to groups of rigid transformations such as translations is clearly helpful
for learning from natural signals, such data typically presents much richer classes of
variabilities to which we would like to be nearly invariant. An example is to consider
small local perturbations around translations, given by deformation fields, as pictured
in Figure 1.4 for hand-written digits. While one may be able to deform an image of
the digit 1 into a 7, we may expect that when the deformation is “small”, the label of
the image should be preserved. The stability of signal representations to such smooth
deformations can be studied mathematically, a line of work initiated by Mallat (2012)
with the scattering transform, a wavelet-based representation of signals which has been
successful for images, textures, and audio signals among others (Bruna and Mallat, 2013;
Oyallon et al., 2017; Sifre and Mallat, 2013; Andén and Mallat, 2014). It is an important
contribution of this thesis to extend such a mathematical study to representations given
by more standard convolutional architectures, and to relate such stability properties
to learning guarantees through kernel methods; see Chapter 2 and the corresponding
publications (Bietti and Mairal, 2017a, 2019a).

Motivation. Representations that are globally invariant to translations are impor-
tant, yet some simple approaches to obtain such representations may lack some other

42

Chapter 1. Introduction

desirable properties. For instance, a global averaging of a local representation taken on
small patches may throw away information about interactions at larger scales, which can
provide useful discriminative features for learning.

Another example of a simple translation-invariant representation is the modulus of
the Fourier transform, given by Φ(x) = |x̂| for a signal x(u), where x̂(ω) is the Fourier
transform of x. Such a representation is translation-invariant, since a translation only
affects the phase of the Fourier transform, and thus does not change its modulus. It
also preserves much of the signal information, as in many tasks most of the useful
information is in the amplitude of the Fourier transform. Yet, it can be shown that
such a representation is unstable to small deformations, such as a small dilation xε(u) =
x((1−ε)u) with a small ε > 0; indeed, ||x̂|−|x̂ε|| can be arbitrarily large if x has isolated
high frequencies (see, e.g., Mallat, 2012; Bruna and Mallat, 2013). Such instabilities
can be mitigated through local averaging in frequency domain, with a bandwidth that
becomes larger for high frequencies as in mel-frequency spectrograms, which behaves
similarly to certain wavelet filter banks followed by averaging in order to obtain some
invariance (see Andén and Mallat, 2014). Nevertheless, such averaging operations may
lead to information loss.

These examples suggest that more elaborate representations, possibly defined hier-
archically, may be needed to obtain deformation stability while preserving information
about the original signal.

Definitions of stability. A deformation may be seen as a vector field of translations
applied to each location u in a signal x(u). For such a deformation τ : Ω→ Ω, assumed
to be a C1 diffeomorphism, we denote a deformed image by Lτx, given by Lτx(u) =
x(u− τ(u)). Following the definitions of Mallat (2012), we will say that a signal repre-
sentation Φ is stable to deformations if

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖,

where ∇τ denotes the Jacobian of τ , and we define

‖∇τ‖∞ := sup
u∈Ω
‖∇τ(u)‖, and ‖τ‖∞ := sup

u∈Ω
|τ(u)|.

Note that one may include further terms based on higher-order derivatives of τ ; for
instance, Mallat (2012) includes a term depending on

‖∇2τ‖∞ := sup
u∈Ω
‖∇2τ(u)‖,

where ‖∇2τ(u)‖ denotes the operator norm of the Hessian tensor of τ at u. One typi-
cally assumes ‖∇τ‖∞ < 1 to ensure invertibility of the deformation. If Φ is translation-
invariant, then we have C2 = 0, but we may consider near-translation invariant rep-
resentations for which C2 is non-zero but small. When τ deviates from a translation,
∇τ is non-zero, but stability guarantees that the representation does not deviate too
much when the operator norm of ∇τ is small. For instance, a small scaling (i.e.,
u− τ(u) = (1− ε)u) or small rotation (i.e., u− τ(u) = Rεu, with Rε a rotation matrix
with small angle) lead to ‖∇τ‖∞ = O(ε).

43

1.6. Adversarial Robustness

Assumptions on the class of signals. Different assumptions on the signals may be
needed in order to achieve deformation stability, depending on the choice of represen-
tation. The signal x is typically assumed to by in L2(Rd), and some representations
may additionally assume that the signal has little or no energy beyond a certain level
of frequencies. Such an assumption on the signals frequencies is made in our work in
Chapter 2 and in the work of Wiatowski and Bölcskei (2018), while Mallat (2012) does
not require such an assumption, with stability guarantees which hold uniformly for any
frequential support. This is made possible by the joint treatment of all frequencies in
the wavelet transforms considered by Mallat (2012), while in Chapter 2 we treat each
layer of a deep convolutional representation separately, corresponding to different scales.

Achieving stability. As discussed above, instabilities can arise when applying high-
frequency filters on a signal with isolated high-frequencies. The scattering representation
of Mallat (2012) overcomes this by applying cascades of well-chosen wavelet transforms
and modulus non-linearities, while extracting coefficients through local averages. Such
wavelets are localized and can be shown to be stable to deformations, for any input
signal x in L2(Rd). They are equivariant to translations, thus other mechanisms are
needed for invariance, in this case modulus non-linearities followed by average pooling
at a target scale of invariance. Such pooled coefficients capture variabilities at certain
scales, and the signal energy lost from pooling is recovered through the following layers,
ensuring that the energy of the original signal is preserved for representations with
enough layers. While signal energy only concerns the norm of the signal, recovery of the
original signal may also be possible through a form of phase recovery.

Extending such properties to deep convolutional networks with learned filter is more
complicated, as the filters may not have desirable properties for stability as wavelets do.
Wiatowski and Bölcskei (2018) show quite general guarantees on stability for arbitrary
convolutional networks on band-limited signals, that is, signals with no energy beyond
a certain frequency R. However, such results are quite weak, essentially obtaining the
same stability guarantee as the original signal itself, which grows linearly with the cutoff
frequency R, and thus is not realistic for signals with high-frequencies, as R may be quite
large in practice. In contrast, in Chapter 2 we show that for appropriate architectures
with well-chosen patch sizes and pooling layers, stability can be achieved with only a
logarithmic dependence on R. We also show that the representation given by multi-
layer convolutional kernels with such architectures may preserve signal information by
allowing reconstruction of the original signal.

1.6 Adversarial Robustness

A notion related to the invariance and stability of representations is the robustness of
a machine learning model to small perturbations. In particular, it is desirable to learn
models that not only generalize well to unseen samples, but to do so in a robust manner,
meaning that small perturbations of the test examples will also result in predictions
similar to those for the clean examples. Such issues are important to take into account
for security concerns, and have been recently popularized through the observation that
deep neural networks tend to be very sensitive to small, imperceptible perturbations
known as adversarial examples; see Figure 1.5. In Chapter 3, we tackle the problem of

44

Chapter 1. Introduction

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

Figure 1.5: Illustration of adversarial examples on ImageNet images for an AlexNet deep
network; from Szegedy et al. (2014). Clean images with correct predictions (left) can be
modified with well-chosen, imperceptible perturbations (middle), so that the resulting
images (right) fool the model to predict the label “ostrich”.

adversarial robustness from the lens of regularization and kernel methods, and obtain
guarantees on robust generalization as well as state-of-the-art performance for robustness
to `2 perturbations on the CIFAR10 dataset.

Goal of robust learning. We may formulate a different goal for statistical learning of
robust models, assuming a perturbation set denoted Bε(x) around a point x. Typically,
this is chosen to be a set of additive perturbations in an ε-ball around x, such as Bε(x) =
{x + δ, ‖δ‖ ≤ ε}, for some norm ‖ · ‖, commonly taken to be the `2 or `∞ norm. Then,
the goal is to find a good predictor in terms of expected robust loss:

Lε(f) = E(x,y)∼D

[
sup

x′∈Bε(x)
`(f(x′), y)

]
.

It is possible to show that robust supervised learning is a distinct goal from standard
supervised learning, which attempts to minimize L(f) = L0(f). Indeed, there may be
features that are slightly correlated with the label despite being non-robust with respect
to a small perturbation, making them useful for standard supervised learning, but not
for robust learning (see, e.g., Tsipras et al., 2019, for an example). This suggests that
different learning algorithms may be needed for robustness.

Approaches to robustness. The observations that neural networks are highly sen-
sitive to adversarial perturbations have led researchers to propose various strategies to
obtain robust models, which in the terminology of security are often referred to as “de-
fenses” to adversarial “attacks”. A key ingredient in many defense strategies is to train
models by attempting to optimize the following empirical robust loss,

L̂ε(f) = 1
n

n∑
i=1

sup
x′i∈Bε(xi)

`(f(x′i), yi),

45

1.6. Adversarial Robustness

leading to a robust optimization problem. In the context of training deep networks with
SGD, this is typically achieved by finding approximate maximizers for the perturbed
examples x′i in a batch using a few steps of (variants of) projected gradient descent,
and then performing back-propagation on the model f at these points (see, e.g., Madry
et al., 2018). The inner loop which finds perturbed examples essentially boils down to
finding adversarial examples that are then used for training, which is why variants of
this method are sometimes referred to as adversarial training.

While the approach described above often lead to good empirical robustness perfor-
mance against standard attacks at test time, they do not guarantee such a performance
for all possible attacks. This has motivated various authors to obtain certified meth-
ods, meaning that one can guarantee a given performance for all possible attackers
constrained to Bε. This can be achieved by obtaining upper bound certificates on the
robust optimization problem above, for instance by propagating the entire constraint
set through the layers of the neural network (e.g., Wong and Kolter, 2018) or through
relaxations (Raghunathan et al., 2018). Another approach which was found to be more
scalable is to randomize the classifier, for instance through smoothing by injecting noise,
in order to provide high-probability certified guarantees (Lecuyer et al., 2019; Cohen
et al., 2019; Salman et al., 2019).

Links with regularization. In the case of a linear or kernel-based model, the norm
may provide a control of stability and robustness; indeed, for a linear model f(x) = w>x
we have

sup
x′∈Bε(x)

f(x′) = w>x+ ε‖w‖∗,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. For an RKHS function f(x) = 〈f,Φ(x)〉H, we may
obtain a similar control of robustness for perturbations in an RKHS ball:

sup
‖u‖H≤ε

〈f,Φ(x) + u〉H = f(x) + ε‖f‖H, (1.27)

and such perturbations often include additive perturbations in the input space, for in-
stance when the kernel mapping is non-expansive, in which case the norm also controls
robustness to additive perturbations in Bε by (1.27). Indeed,

sup
x′∈Bε(x)

f(x′) = sup
x′∈Bε(x)

〈f,Φ(x) + (Φ(x′)− Φ(x))〉H ≤ sup
‖u‖H≤ε

〈f,Φ(x) + u〉H.

Note that aiming for small generalization error alone does not necessarily require a small
norm; indeed, even in a setting where the regression function itself belongs to the class
with small norm, one may obtain good generalization with large-norm models, such
as those obtained by interpolating noisy labels (e.g., Bartlett et al., 2019; Liang and
Rakhlin, 2019), but such a large norm could cause poor robustness properties. Then,
controlling this dual norm through regularization may help obtain more robust models.
We use this point of view for providing new algorithms which achieve state-of-the-art
results in `2 robustness for deep models in Chapter 3, by providing ways to explicitly
regularize a deep network using (approximations of) an RKHS norm. In Chapter 3, we
also show that the margin bounds presented in Section 1.2.4 can be extended to provide
generalization guarantees for robust generalization.

46

Chapter 2

Invariance, Stability to
Deformations, and Complexity of
Deep Convolutional
Representations

The success of deep convolutional architectures is often attributed in part to their ability
to learn multiscale and invariant representations of natural signals. However, a precise
study of these properties and how they affect learning guarantees is still missing. In
this chapter, we consider deep convolutional representations of signals; we study their
invariance to translations and to more general groups of transformations, their stabil-
ity to the action of diffeomorphisms, and their ability to preserve signal information.
This analysis is carried by introducing a multilayer kernel based on convolutional ker-
nel networks and by studying the geometry induced by the kernel mapping. We then
characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that
it contains a large class of convolutional neural networks with homogeneous activation
functions. This analysis allows us to separate data representation from learning, and
to provide a canonical measure of model complexity, the RKHS norm, which controls
both stability and generalization of any learned model. In addition to models in the
constructed RKHS, our stability analysis also applies to convolutional networks with
generic activations such as rectified linear units, and we discuss its relationship with
recent generalization bounds based on spectral norms.

This chapter is based on the following material:
A. Bietti and J. Mairal. Invariance and stability of deep convolutional represen-

tations. In Advances in Neural Information Processing Systems (NIPS), 2017a
A. Bietti and J. Mairal. Group invariance, stability to deformations, and com-

plexity of deep convolutional representations. Journal of Machine Learning Research
(JMLR), 20(25):1–49, 2019a

47

2.1. Introduction

2.1 Introduction

The results achieved by deep neural networks for prediction tasks have been impressive
in domains where data is structured and available in large amounts. In particular,
convolutional neural networks (CNNs, LeCun et al., 1989) have shown to effectively
leverage the local stationarity of natural images at multiple scales thanks to convolutional
operations, while also providing some translation invariance through pooling operations.
Yet, the exact nature of this invariance and the characteristics of functional spaces
where convolutional neural networks live are poorly understood; overall, these models
are sometimes seen as clever engineering black boxes that have been designed with a lot
of insight collected since they were introduced.

Understanding the inductive bias of these models is nevertheless a fundamental ques-
tion. For instance, a better grasp of the geometry induced by convolutional represen-
tations may bring new intuition about their success, and lead to improved measures of
model complexity. In turn, the issue of regularization may be solved by providing ways
to control the variations of prediction functions in a principled manner. One meaningful
way to study such variations is to consider the stability of model predictions to naturally
occuring changes of input signals, such as translations and deformations.

Small deformations of natural signals often preserve their main characteristics, such
as class labels (e.g., the same digit with different handwritings may correspond to the
same images up to small deformations), and provide a much richer class of transfor-
mations than translations. The scattering transform (Mallat, 2012; Bruna and Mallat,
2013) is a recent attempt to characterize convolutional multilayer architectures based
on wavelets. The theory provides an elegant characterization of invariance and stability
properties of signals represented via the scattering operator, through a notion of Lip-
schitz stability to the action of diffeomorphisms. Nevertheless, these networks do not
involve “learning” in the classical sense since the filters of the networks are pre-defined,
and the resulting architecture differs significantly from the most used ones, which adapt
filters to training data.

In this work, we study these theoretical properties for more standard convolutional
architectures, from the point of view of positive definite kernels (Schölkopf and Smola,
2001). Specifically, we consider a functional space derived from a kernel for multi-
dimensional signals that admits a multi-layer and convolutional structure based on
the construction of convolutional kernel networks (CKNs) introduced by Mairal (2016);
Mairal et al. (2014). The kernel representation follows standard convolutional architec-
tures, with patch extraction, non-linear (kernel) mappings, and pooling operations. We
show that our functional space contains a large class of CNNs with smooth homogeneous
activation functions.

The main motivation for introducing a kernel framework is to study separately data
representation and predictive models. On the one hand, we study the translation-
invariance properties of the kernel representation and its stability to the action of dif-
feomorphisms, obtaining similar guarantees as the scattering transform (Mallat, 2012),
while preserving signal information. When the kernel is appropriately designed, we also
show how to obtain signal representations that are invariant to the action of any locally
compact group of transformations, by modifying the construction of the kernel repre-
sentation to become equivariant to the group action. On the other hand, we show that
these stability results can be translated to predictive models by controlling their norm

48

Chapter 2. Invariance, Deformation Stability, and Complexity

in the functional space, or simply the norm of the last layer in the case of CKNs (Mairal,
2016). With our kernel framework, the RKHS norm also acts as a measure of model
complexity, thus controlling both stability and generalization, so that stability may lead
to improved sample complexity. Finally, our work suggests that explicitly regularizing
CNNs with the RKHS norm (or approximations thereof) can help obtain more stable
models, a more practical question which we study in Chapter 3.

2.1.1 Summary of Main Results

Our work characterizes properties of deep convolutional models along two main direc-
tions.

• The first goal is to study representation properties of such models, independently
of training data. Given a deep convolutional architecture, we study signal preser-
vation as well as invariance and stability properties.

• The second goal focuses on learning aspects, by studying the complexity of learned
models based on our representation. In particular, our construction relies on kernel
methods, allowing us to define a corresponding functional space (the RKHS). We
show that this functional space contains a class of CNNs with smooth homogeneous
activations, and study the complexity of such models by considering their RKHS
norm. This directly leads to statements on the generalization of such models, as
well as on the invariance and stability properties of their predictions.

• Finally, we show how some of our arguments extend to more traditional CNNs
with generic and possibly non-smooth activations (such as ReLU or tanh).

Signal preservation, invariance and stability. We tackle this first goal by defining
a deep convolutional representation based on hierarchical kernels. We show that the rep-
resentation preserves signal information and guarantees near-invariance to translations
and stability to deformations in the following sense, defined by Mallat (2012): for signals
x : Rd → Rp0 defined on the continuous domain Rd, we say that a representation Φ(x)
is stable to the action of diffeomorphisms if

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖,

where τ : Rd → Rd is a C1-diffeomorphism, Lτx(u) = x(u − τ(u)) its action operator,
and the norms ‖τ‖∞ and ‖∇τ‖∞ characterize how large the translation and deformation
components are, respectively (see Section 2.3 for formal definitions). The Jacobian ∇τ
quantifies the size of local deformations, so that the first term controls the stability of
the representation. In the case of translations, the first term vanishes (∇τ = 0), hence
a small value of C2 is desirable for translation invariance. We show that such signal
preservation and stability properties are valid for the multilayer kernel representation Φ
defined in Section 2.2 by repeated application of patch extraction, kernel mapping, and
pooling operators:

• The representation can be discretized with no loss of information, by subsampling
at each layer with a factor smaller than the patch size;

49

2.1. Introduction

• The translation invariance is controlled by a factor C2 = C ′2/σn, where σn repre-
sents the “resolution” of the last layer, and typically increases exponentially with
depth;

• The deformation stability is controlled by a factor C1 which increases as κd+1,
where κ corresponds to the patch size at a given layer, that is, the size of the
“receptive field” of a patch relative to the resolution of the previous layer.

These results suggest that a good way to obtain a stable representation that preserves
signal information is to use the smallest possible patches at each layer (e.g., 3x3 for im-
ages) and perform pooling and downsampling at a factor smaller than the patch size, with
as many layers as needed in order to reach a desired level of translation invariance σn.
We show in Section 2.3.3 that the same invariance and stability guarantees hold when
using kernel approximations as in CKNs, at the cost of losing signal information.

In Section 2.3.5, we show how to go beyond the translation group, by constructing
similar representations that are invariant to the action of locally compact groups. This
is achieved by modifying patch extraction and pooling operators so that they commute
with the group action operator (this is known as equivariance).

Model complexity. Our second goal is to analyze the complexity of deep convolu-
tional models by studying the functional space defined by our kernel representation,
showing that certain classes of CNNs are contained in this space, and characterizing
their norm.

The multi-layer kernel representation defined in Section 2.2 is constructed by using
kernel mappings defined on local signal patches at each scale, which replace the lin-
ear mapping followed by a non-linearity in standard convolutional networks. Inspired
by Zhang et al. (2017b), we show in Section 2.4.1 that when these kernel mappings come
from a class of dot-product kernels, the corresponding RKHS contains functions of the
form

z 7→ ‖z‖σ(〈g, z〉/‖z‖),

for certain types of smooth activation functions σ, where g and z live in a particular
Hilbert space. These behave like simple neural network functions on patches, up to
homogeneization. Note that if σ was allowed to be homogeneous, such as for rectified
linear units σ(α) = max(α, 0), homogeneization would disappear. By considering multi-
ple such functions at each layer, we construct a CNN in the RKHS of the full multi-layer
kernel in Section 2.4.2. Denoting such a CNN by fσ, we show that its RKHS norm can
be bounded as

‖fσ‖2 ≤ ‖wn+1‖2 C2
σ(‖Wn‖22 C2

σ(‖Wn−1‖22 . . . C2
σ(‖W2‖22 C2

σ(‖W1‖2F)) . . .)),

whereWk are convolutional filter parameters at layer k, wn+1 carries the parameters of a
final linear fully connected layer, C2

σ is a function quantifying the complexity of the simple
functions defined above depending on the choice of activation σ, and ‖Wk‖2, ‖Wk‖F
denote spectral and Frobenius norms, respectively, (see Section 2.4.2 for details). This
norm can then control generalization aspects through classical margin bounds, as well
as the invariance and stability of model predictions. Indeed, by using the reproducing

50

Chapter 2. Invariance, Deformation Stability, and Complexity

property f(x) = 〈f,Φ(x)〉, this “linearization” lets us control stability properties of
model predictions through ‖f‖:

for all signals x and x′, |f(x)− f(x′)| ≤ ‖f‖ · ‖Φ(x)− Φ(x′)‖,

meaning that the prediction function f will inherit the stability of Φ when ‖f‖ is small.

The case of standard CNNs with generic activations. When considering CNNs
with generic, possibly non-smooth activations such as rectified linear units (ReLUs),
the separation between a data-independent representation and a learned model is not
always achievable in contrast to our kernel approach. In particular, the “representation”
given by the last layer of a learned CNN is often considered by practitioners, but such
a representation is data-dependent in that it is typically trained on a specific task and
dataset, and does not preserve signal information.

Nevertheless, we obtain similar invariance and stability properties for the predictions
of such models in Section 2.4.3, by considering a complexity measure given by the product
of spectral norms of each linear convolutional mapping in a CNN. Unlike our study based
on kernel methods, such results do not say anything about generalization; however,
relevant generalization bounds based on similar quantities have been derived (though
other quantities in addition to the product of spectral norms appear in the bounds, and
these bounds do not directly apply to CNNs), e.g., by Bartlett et al. (2017); Neyshabur
et al. (2018), making the relationship between generalization and stability clear in this
context as well.

2.1.2 Related Work

Our work relies on image representations introduced in the context of convolutional
kernel networks (Mairal, 2016; Mairal et al., 2014), which yield a sequence of spatial
maps similar to traditional CNNs, but where each point on the maps is possibly infinite-
dimensional and lives in a reproducing kernel Hilbert space (RKHS). The extension to
signals with d spatial dimensions is straightforward. Since computing the corresponding
Gram matrix as in classical kernel machines is computationally impractical, CKNs pro-
vide an approximation scheme consisting of learning finite-dimensional subspaces of each
RKHS’s layer, where the data is projected. The resulting architecture of CKNs resem-
bles traditional CNNs with a subspace learning interpretation and different unsupervised
learning principles.

Another major source of inspiration is the study of group-invariance and stability to
the action of diffeomorphisms of scattering networks (Mallat, 2012), which introduced
the main formalism and several proof techniques that were keys to our results. Our
main effort was to extend them to more general CNN architectures and to the kernel
framework, allowing us to provide a clear relationship between stability properties of the
representation and generalization of learned CNN models. We note that an extension of
scattering networks results to more general convolutional networks was previously given
by Wiatowski and Bölcskei (2018); however, their guarantees on deformations do not
improve on the inherent stability properties of the considered signal, and their study
does not consider learning or generalization, by treating a convolutional architecture
with fixed weights as a feature extractor. In contrast, our stability analysis shows the

51

2.1. Introduction

benefits of deep representations with a clear dependence on the choice of network archi-
tecture through the size of convolutional patches and pooling layers, and we study the
implications for learned CNNs through notions of model complexity.

Invariance to groups of transformations was also studied for more classical convolu-
tional neural networks from methodological and empirical points of view (Bruna et al.,
2013; Cohen and Welling, 2016), and for shallow learned representations (Anselmi et al.,
2016) or kernel methods (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015; Raj
et al., 2017). Our work provides a similar group-equivariant construction to (Cohen and
Welling, 2016), while additionally relating it to stability. In particular, we show that in
order to achieve group invariance, pooling on the group is only needed at the final layer,
while deep architectures with pooling at multiple scales are mainly beneficial for stabil-
ity. For the specific example of the roto-translation group (Sifre and Mallat, 2013), we
show that our construction achieves invariance to rotations while maintaining stability
to deformations on the translation group.

Note also that other techniques combining deep neural networks and kernels have
been introduced earlier. Multilayer kernel machines were for instance introduced by Cho
and Saul (2009); Schölkopf et al. (1998). Shallow kernels for images modeling local re-
gions were also proposed by Schölkopf (1997), and a multilayer construction was pro-
posed by Bo et al. (2011). More recently, different models based on kernels have been
introduced by Anselmi et al. (2015); Daniely et al. (2016); Montavon et al. (2011) to
gain some theoretical insight about classical multilayer neural networks, while kernels
are used by Zhang et al. (2017b) to define convex models for two-layer convolutional
networks. Theoretical and practical concerns for learning with multilayer kernels have
been studied in Daniely et al. (2017, 2016); Steinwart et al. (2016); Zhang et al. (2016)
in addition to CKNs. In particular, Daniely et al. (2017, 2016) study certain classes of
dot-product kernels with random feature approximations, Steinwart et al. (2016) con-
sider hierarchical Gaussian kernels with learned weights, and Zhang et al. (2016) study a
convex formulation for learning a certain class of fully connected neural networks using
a hierarchical kernel. In contrast to these works, our focus is on the kernel represen-
tation induced by the specific hierarchical kernel defined in CKNs and the geometry
of the RKHS. Our characterization of CNNs and activation functions contained in the
RKHS is similar to the work of Zhang et al. (2016, 2017b), but differs in several ways:
we consider general homogeneous dot-product kernels, which yield desirable properties
of kernel mappings for stability; we construct generic multi-layer CNNs with pooling in
the RKHS, while Zhang et al. (2016) only considers fully-connected networks and Zhang
et al. (2017b) is limited to two-layer convolutional networks with no pooling; we quantify
the RKHS norm of a CNN depending on its parameters, in particular matrix norms, as
a way to control stability and generalization, while Zhang et al. (2016, 2017b) consider
models with constrained parameters, and focus on convex learning procedures.

2.1.3 Notation and Basic Mathematical Tools

A positive definite kernel K that operates on a set X implicitly defines a reproducing
kernel Hilbert space H of functions from X to R, along with a mapping ϕ : X → H.
A predictive model associates to every point z in X a label in R; it consists of a linear
function f in H such that f(z) = 〈f, ϕ(z)〉H, where ϕ(z) is the data representation.
Given now two points z, z′ in X , Cauchy-Schwarz’s inequality allows us to control the

52

Chapter 2. Invariance, Deformation Stability, and Complexity

variation of the predictive model f according to the geometry induced by the Hilbert
norm ‖.‖H:

|f(z)− f(z′)| ≤ ‖f‖H‖ϕ(z)− ϕ(z′)‖H. (2.1)

This property implies that two points z and z′ that are close to each other according to
the RKHS norm should lead to similar predictions, when the model f has small norm
in H.

Then, we consider notation from signal processing similar to Mallat (2012). We call
a signal x a function in L2(Rd,H), where the domain Rd represents spatial coordinates,
and H is a Hilbert space, when ‖x‖2L2 :=

∫
Rd ‖x(u)‖2Hdu <∞, where du is the Lebesgue

measure on Rd. Given a linear operator T : L2(Rd,H) → L2(Rd,H′), the operator
norm is defined as ‖T‖L2(Rd,H)→L2(Rd,H′) := sup‖x‖

L2(Rd,H)≤1 ‖Tx‖L2(Rd,H′). For the sake
of clarity, we drop norm subscripts, from now on, using the notation ‖ · ‖ for Hilbert
space norms, L2 norms, and L2 → L2 operator norms, while | · | denotes the Euclidean
norm on Rd. We use cursive capital letters (e.g., H,P) to denote Hilbert spaces, and
non-cursive ones for operators (e.g., P,M,A). Some useful mathematical tools are also
presented in Appendix 2.A.

2.1.4 Organization of the Chapter

The rest of the chapter is structured as follows:

• In Section 2.2, we introduce a multilayer convolutional kernel representation for
continuous signals, based on a hierarchy of patch extraction, kernel mapping, and
pooling operators. We present useful properties of this representation such as
signal preservation, as well as ways to make it practical through discretization and
kernel approximations in the context of CKNs.

• In Section 2.3, we present our main results regarding stability and invariance,
namely that the kernel representation introduced in Section 2.2 is near translation-
invariant and stable to the action of diffeomorphisms. We then show in Sec-
tion 2.3.3 that the same stability results apply in the presence of kernel approxima-
tions such as those of CKNs (Mairal, 2016), and describe a generic way to modify
the multilayer construction in order to guarantee invariance to the action of any
locally compact group of transformations in Section 2.3.5.

• In Section 2.4, we study the functional spaces induced by our representation, show-
ing that simple neural-network like functions with certain smooth activations are
contained in the RKHS at intermediate layers, and that the RKHS of the full ker-
nel induced by our representation contains a class of generic CNNs with smooth
and homogeneous activations. We then present upper bounds on the RKHS norm
of such CNNs, which serves as a measure of complexity, controlling both gener-
alization and stability. Section 2.4.3 studies the stability for CNNs with generic
activations such as rectified linear units, and discusses the link with generalization.

• Finally, we discuss in Section 2.5 how the obtained stability results apply to the
practical setting of learning prediction functions. In particular, we explain why
the regularization used in CKNs provides a natural way to control stability, while
a similar control is harder to achieve with generic CNNs.

53

2.2. Construction of the Multilayer Convolutional Kernel

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Figure 2.1: Construction of the k-th signal representation from the k–1-th one. Note
that while the domain Ω is depicted as a box in R2 here, our construction is supported
on Ω = Rd.

2.2 Construction of the Multilayer Convolutional Kernel

We now present the multilayer convolutional kernel, which operates on signals with d
spatial dimensions. The construction follows closely that of convolutional kernel net-
works but is generalized to input signals defined on the continuous domain Rd. Dealing
with continuous signals is indeed useful to characterize the stability properties of sig-
nal representations to small deformations, as done by Mallat (2012) in the context of
the scattering transform. The issue of discretization on a discrete grid is addressed in
Section 2.2.1.

In what follows, we consider signals x0 that live in L2(Rd,H0), where typically H0 =
Rp0 (e.g., with p0 = 3 and d = 2, the vector x0(u) in R3 may represent the RGB pixel
value at location u in R2). Then, we build a sequence of reproducing kernel Hilbert
spaces H1,H2, . . . , and transform x0 into a sequence of “feature maps”, respectively
denoted by x1 in L2(Rd,H1), x2 in L2(Rd,H2), etc... As depicted in Figure 2.1, a new
map xk is built from the previous one xk–1 by applying successively three operators that
perform patch extraction (Pk), kernel mapping (Mk) to a new RKHS Hk, and linear
pooling (Ak), respectively. When going up in the hierarchy, the points xk(u) carry
information from larger signal neighborhoods centered at u in Rd with more invariance,
as we formally show in Section 2.3.

Patch extraction operator. Given the layer xk–1, we consider a patch shape Sk,
defined as a compact centered subset of Rd, e.g., a box, and we define the Hilbert space
Pk := L2(Sk,Hk–1) equipped with the norm ‖z‖2 =

∫
Sk
‖z(u)‖2dνk(u), where dνk is the

normalized uniform measure on Sk for every z in Pk. Specifically, we define the (linear)
patch extraction operator Pk : L2(Rd,Hk–1)→ L2(Rd,Pk) such that for all u in Rd,

Pkxk–1(u) = (v 7→ xk–1(u+ v))v∈Sk ∈ Pk.

54

Chapter 2. Invariance, Deformation Stability, and Complexity

Note that by equipping Pk with a normalized measure, it is easy to show that the
operator Pk preserves the norm—that is, ‖Pkxk–1‖ = ‖xk–1‖ and hence Pkxk–1 is in
L2(Rd,Pk).

Kernel mapping operator. Then, we map each patch of xk–1 to a RKHS Hk thanks
to the kernel mapping ϕk : Pk → Hk associated to a positive definite kernel Kk that
operates on patches. It allows us to define the pointwise operator Mk such that for all
u in Rd,

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk.

In this paper, we consider homogeneous dot-product kernels Kk operating on Pk, defined
in terms of a function κk : [−1, 1]→ R that satisfies the following constraints:

κk(u) =
+∞∑
j=0

bju
j s.t. ∀j, bj ≥ 0, κk(1) = 1, κ′k(1) = 1, (A1)

assuming convergence of the series
∑
j bj and

∑
j jbj . Then, we define the kernel Kk by

Kk(z, z′) = ‖z‖‖z′‖κk
(〈z, z′〉
‖z‖‖z′‖

)
, (2.2)

if z, z′ ∈ Pk\{0}, andKk(z, z′) = 0 if z = 0 or z′ = 0. The kernel is positive definite since
it admits a Maclaurin expansion with only non-negative coefficients (Schoenberg, 1942;
Schölkopf and Smola, 2001). The condition κk(1) = 1 ensures that the RKHS mapping
preserves the norm—that is, ‖ϕk(z)‖ = Kk(z, z)1/2 = ‖z‖, and thus ‖MkPkxk–1(u)‖ =
‖Pkxk–1(u)‖ for all u in Rd; as a consequence, MkPkxk–1 is always in L2(Rd,Hk). The
technical condition κ′k(1) = 1, where κ′k is the first derivative of κk, ensures that the
kernel mapping ϕk is non-expansive, according to Lemma 2.1 below.

Lemma 2.1 (Non-expansiveness of the kernel mappings). Consider a positive-definite
kernel of the form (2.2) satisfying (A1) with RKHS mapping ϕk : Pk → Hk. Then, ϕk
is non-expansive—that is, for all z, z′ in Pk,

‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖.

Moreover, we remark that the kernel Kk is lower-bounded by the linear one

Kk(z, z′) ≥ 〈z, z′〉. (2.3)

From the proof of the lemma, given in Appendix 2.B, one may notice that the
assumption κ′k(1) = 1 is not critical and may be safely replaced by κ′k(1) ≤ 1. Then,
the non-expansiveness property would be preserved. Yet, we have chosen a stronger
constraint since it yields a few simplifications in the stability analysis, where we use the
relation (2.3) that requires κ′k(1) = 1. More generally, the kernel mapping is Lipschitz
continuous with constant ρk = max(1,

√
κ′k(1)). Our stability results hold in a setting

with ρk > 1, but with constants
∏
k ρk that may grow exponentially with the number of

layers.
Examples of functions κk that satisfy the properties (A1) are now given below:

55

2.2. Construction of the Multilayer Convolutional Kernel

exponential κexp(〈z, z′〉) = e〈z,z
′〉−1

inverse polynomial κinv-poly(〈z, z′〉) = 1
2−〈z,z′〉

polynomial, degree p κpoly(〈z, z′〉) = 1
(c+1)p (c+ 〈z, z′〉)p with c = p− 1

arc-cosine, degree 1 κacos(〈z, z′〉) = 1
π (sin(θ) + (π − θ) cos(θ)) with θ = arccos(〈z, z′〉)

Vovk’s, degree 3 κvovk(〈z, z′〉) = 1
3

(
1−〈z,z′〉3
1−〈z,z′〉

)
= 1

3
(
1 + 〈z, z′〉+ 〈z, z′〉2

)
We note that the inverse polynomial kernel was used by Zhang et al. (2016, 2017b)

to build convex models of fully connected networks and two-layer convolutional neural
networks, while the arc-cosine kernel appears in early deep kernel machines (Cho and
Saul, 2009). Note that the homogeneous exponential kernel reduces to the Gaussian
kernel for unit-norm vectors. Indeed, for all z, z′ such that ‖z‖ = ‖z′‖ = 1, we have

κexp(〈z, z′〉) = e〈z,z
′〉−1 = e−

1
2‖z−z

′‖2 ,

and thus, we may refer to kernel (2.2) with the function κexp as the homogeneous Gaus-
sian kernel. The kernel κ(〈z, z′〉) = eα(〈z,z′〉−1) = e−

α
2 ‖z−z

′‖2 with α 6= 1 may also be
used here, but we choose α = 1 for simplicity since κ′(1) = α (see discussion above).

Pooling operator. The last step to build the layer xk consists of pooling neighboring
values to achieve local shift-invariance. We apply a linear convolution operator Ak with a
Gaussian filter of scale σk, hσk(u) := σ−dk h(u/σk), where h(u) = (2π)−d/2 exp(−|u|2/2).
Then, for all u in Rd,

xk(u) = AkMkPkxk–1(u) =
∫
Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk, (2.4)

where the integral is a Bochner integral (see, Diestel and Uhl, 1977; Muandet et al.,
2017). By applying Schur’s test to the integral operator Ak (see Appendix 2.A), we
obtain that the operator norm ‖Ak‖ is less than 1. Thus, xk is in L2(Rd,Hk), with
‖xk‖ ≤ ‖MkPkxk–1‖. Note that a similar pooling operator is used in the scattering
transform (Mallat, 2012).

Multilayer construction and prediction layer. Finally, we obtain a multilayer
representation by composing multiple times the previous operators. In order to increase
invariance with each layer and to increase the size of the receptive fields (that is, the
neighborhood of the original signal considered in a given patch), the size of the patch Sk
and pooling scale σk typically grow exponentially with k, with σk and the patch size
supc∈Sk |c| of the same order. With n layers, the maps xn may then be written

xn := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x0 ∈ L2(Rd,Hn). (2.5)

It remains to define a kernel from this representation, that will play the same role as
the “fully connected” layer of classical convolutional neural networks. For that pur-
pose, we simply consider the following linear kernel defined for all x0, x

′
0 in L2(Rd,H0)

56

Chapter 2. Invariance, Deformation Stability, and Complexity

by using the corresponding feature maps xn, x′n in L2(Rd,Hn) given by our multilayer
construction (2.5):

Kn(x0, x
′
0) = 〈xn, x′n〉 =

∫
u∈Rd
〈xn(u), x′n(u)〉du. (2.6)

Then, the RKHS HKn of Kn contains all functions of the form f(x0) = 〈w, xn〉 with w
in L2(Rd,Hn) (see Appendix 2.A).

We note that one may also consider nonlinear kernels, such as a Gaussian kernel:

Kn(x0, x
′
0) = e−

α
2 ‖xn−x

′
n‖2 . (2.7)

Such kernels are then associated to a RKHS denoted by Hn+1, along with a kernel map-
ping ϕn+1 : L2(Rd,Hn)→ Hn+1 which we call prediction layer, so that the final represen-
tation is given by ϕn+1(xn) in Hn+1. We note that ϕn+1 is non-expansive for the Gaus-
sian kernel when α ≤ 1 (see Section 2.B.1), and is simply an isometric linear mapping for
the linear kernel. Then, we have the relation Kn(x0, x

′
0) := 〈ϕn+1(xn), ϕn+1(x′n)〉, and in

particular, the RKHSHKn of Kn contains all functions of the form f(x0) = 〈w,ϕn+1(xn)〉
with w in Hn+1, see Appendix 2.A.

2.2.1 Signal Preservation and Discretization

In this section, we show that the multilayer kernel representation preserves all informa-
tion about the signal at each layer, and besides, each feature map xk can be sampled
on a discrete set with no loss of information. This suggests a natural approach for dis-
cretization which will be discussed after the following lemma, whose proof is given in
Appendix 2.C.

Lemma 2.2 (Signal recovery from sampling). Assume that Hk contains all linear func-
tions z 7→ 〈g, z〉 with g in Pk (this is true for all kernels Kk described in the previous
section, according to Corollary 2.12 in Section 2.4.1 later); then, the signal xk–1 can be
recovered from a sampling of xk at discrete locations in a set Ω as soon as Ω + Sk = Rd
(i.e., the union of patches centered at these points covers Rd). It follows that xk can be
reconstructed from such a sampling.

The previous construction defines a kernel representation for general signals lying
in L2(Rd,H0), which is an abstract object defined for theoretical purposes. In practice,
signals are discrete, and it is thus important to discuss the problem of discretization. For
clarity, we limit the presentation to 1-dimensional signals (d = 1), but the arguments
can easily be extended to higher dimensions d when using box-shaped patches. Notation
from the previous section is preserved, but we add a bar on top of all discrete analogues
of their continuous counterparts. e.g., x̄k is a discrete feature map in `2(Z, H̄k) for some
RKHS H̄k.

Input signals x0 and x̄0. Discrete signals acquired by a physical device may be
seen as local integrators of signals defined on a continuous domain (e.g., sensors from
digital cameras integrate the pointwise distribution of photons in a spatial and temporal
window). Then, consider a signal x0 in L2(Rd,H0) and s0 a sampling interval. By
defining x̄0 in `2(Z,H0) such that x̄0[n] = x0(ns0) for all n in Z, it is thus natural

57

2.2. Construction of the Multilayer Convolutional Kernel

to assume that x0 =A0x, where A0 is a pooling operator (local integrator) applied to
an original continuous signal x. The role of A0 is to prevent aliasing and reduce high
frequencies; typically, the scale σ0 of A0 should be of the same magnitude as s0, which
we choose to be s0 = 1 without loss of generality. This natural assumption is kept later
for the stability analysis.

Multilayer construction. We now want to build discrete feature maps x̄k in `2(Z, H̄k)
at each layer k involving subsampling with a factor sk with respect to x̄k–1. We now de-
fine the discrete analogues of the operators Pk (patch extraction), Mk (kernel mapping),
and Ak (pooling) as follows: for n ∈ Z,

P̄kx̄k–1[n] := 1
√
ek

(x̄k–1[n], x̄k–1[n+ 1], . . . , x̄k–1[n+ ek − 1]) ∈ P̄k := H̄ekk–1

M̄kP̄kx̄k–1[n] := ϕ̄k(P̄kx̄k–1[n]) ∈ H̄k

x̄k[n]=ĀkM̄kP̄kx̄k–1[n] := 1
√
sk

∑
m∈Z

h̄k[nsk −m]M̄kP̄kx̄k–1[m]=(h̄k ∗ M̄kP̄kx̄k–1)[nsk] ∈ H̄k,

where (i) P̄k extracts a patch of size ek starting at position n in x̄k–1[n], which lives
in the Hilbert space P̄k defined as the direct sum of ek times H̄k–1; (ii) M̄k is a kernel
mapping identical to the continuous case, which preserves the norm, like Mk; (iii) Āk
performs a convolution with a Gaussian filter and a subsampling operation with factor
sk. The next lemma shows that under mild assumptions, this construction preserves
signal information.

Lemma 2.3 (Signal recovery with subsampling). Assume that H̄k contains the linear
functions z 7→ 〈w, z〉 for all w in P̄k and that ek ≥ sk. Then, x̄k–1 can be recovered
from x̄k.

The proof is given in Appendix 2.C. The result relies on recovering patches using
linear “measurement” functions and deconvolution of the pooling operation. While such
a deconvolution operation can be unstable, it may be possible to obtain more stable
recovery mechanisms by also considering non-linear measurements, a question which we
leave open.

Links between the parameters of the discrete and continuous models. Due
to subsampling, the patch size in the continuous and discrete models are related by a
multiplicative factor. Specifically, a patch of size ek with discretization corresponds to a
patch Sk of diameter eksk−1sk−2 . . . s1 in the continuous case. The same holds true for
the scale parameter σk of the Gaussian pooling.

2.2.2 Practical Implementation via Convolutional Kernel Networks

Besides discretization, convolutional kernel networks add two modifications to implement
in practice the image representation we have described. First, it uses feature maps
with finite spatial support, which introduces border effects that we do not study (like
Mallat, 2012), but which are negligible when dealing with large realistic images. Second,
CKNs use finite-dimensional approximations of the kernel feature map. Typically, each

58

Chapter 2. Invariance, Deformation Stability, and Complexity

RKHS’s mapping is approximated by performing a projection onto a subspace of finite
dimension, which is a classical approach to make kernel methods work at large scale (Fine
and Scheinberg, 2001; Smola and Schölkopf, 2000; Williams and Seeger, 2001). If we
consider the kernel mapping ϕk : Pk → Hk at layer k, the orthogonal projection onto
the finite-dimensional subspace Fk = span(ϕk(z1), . . . , ϕk(zpk)) ⊆ Hk, where the zi’s are
pk anchor points in Pk, is given by the linear operator Πk : Hk → Fk defined for f in
Hk by

Πkf :=
∑

1≤i,j≤pk
(K−1

ZZ)ij〈ϕk(zi), f〉ϕk(zj), (2.8)

where K−1
ZZ is the inverse (or pseudo-inverse) of the pk × pk kernel matrix [Kk(zi, zj)]ij .

As an orthogonal projection operator, Πk is non-expansive, i.e., ‖Πk‖ ≤ 1. We can then
define the new approximate version M̃k of the kernel mapping operator Mk by

M̃kPkxk–1(u) := Πkϕk(Pkxk–1(u)) ∈ Fk. (2.9)

Note that all points in the feature map M̃kPkxk–1 lie in the pk-dimensional space Fk ⊆
Hk, which allows us to represent each point M̃kPkxk–1(u) by the finite dimensional vector

ψk(Pkxk–1(u)) := K
−1/2
ZZ KZ(Pkxk–1(u)) ∈ Rpk , (2.10)

with KZ(z) := (Kk(z1, z), . . . ,Kk(zpk , z))>; this finite-dimensional representation pre-
serves the Hilbertian inner product and norm1 in Fk so that we have

‖ψk(Pkxk–1(u))‖22 = ‖M̃kPkxk–1(u)‖2Hk .

Such a finite-dimensional mapping is compatible with the multilayer construction,
which builds Hk by manipulating points from Hk–1. Here, the approximation provides
points in Fk ⊆ Hk, which remain in Fk after pooling since Fk is a linear subspace.
Eventually, the sequence of RKHSs {Hk}k≥0 is not affected by the finite-dimensional
approximation. Besides, the stability results we will present next are preserved thanks
to the non-expansiveness of the projection. In contrast, other kernel approximations
such as random Fourier features (Rahimi and Recht, 2007) do not provide points in
the RKHS (see Bach, 2017b), and their effect on the functional space derived from the
multilayer construction is unclear.

It is then possible to derive theoretical results for the CKN model, which appears
as a natural implementation of the kernel constructed previously; yet, we will also show
in Section 2.4 that the results apply more broadly to CNNs that are contained in the
functional space associated to the kernel. However, the stability of these CNNs depends
on their RKHS norm, which is hard to control. In contrast, for CKNs, stability is
typically controlled by the norm of the final prediction layer.

2.3 Stability to Deformations and Group Invariance
In this section, we study the translation invariance and the stability under the action
of diffeomorphisms of the kernel representation described in Section 2.2 for continuous
signals. In addition to translation invariance, it is desirable to have a representation

1We have 〈ψk(z), ψk(z′)〉2 = 〈Πkϕk(z),Πkϕk(z′)〉Hk . See Mairal (2016) for details.

59

2.3. Stability to Deformations and Group Invariance

that is stable to small local deformations. We describe such deformations using a C1-
diffeomorphism τ : Rd → Rd, and let Lτ denote the linear operator defined by Lτx(u) =
x(u−τ(u)). We use a similar characterization of stability to the one introduced by Mallat
(2012): the representation Φ(·) is stable under the action of diffeomorphisms if there exist
two non-negative constants C1 and C2 such that

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖, (2.11)

where ∇τ is the Jacobian of τ , ‖∇τ‖∞ :=supu∈Rd ‖∇τ(u)‖, and ‖τ‖∞ :=supu∈Rd |τ(u)|.
The quantity ‖∇τ(u)‖ measures the size of the deformation at a location u, and like Mal-
lat (2012), we assume the regularity condition ‖∇τ‖∞ ≤ 1/2, which implies that the de-
formation is invertible (Allassonnière et al., 2007; Trouvé and Younes, 2005) and helps us
avoid degenerate situations. In order to have a near-translation-invariant representation,
we want C2 to be small (a translation is a diffeomorphism with ∇τ = 0), and indeed
we will show that C2 is proportional to 1/σn, where σn is the scale of the last pooling
layer, which typically increases exponentially with the number of layers n. When ∇τ is
non-zero, the diffeomorphism deviates from a translation, producing local deformations
controlled by ∇τ .

Additional assumptions. In order to study the stability of the representation (2.5),
we assume that the input signal x0 may be written as x0 = A0x, where A0 is an initial
pooling operator at scale σ0, which allows us to control the high frequencies of the signal
in the first layer. As discussed previously in Section 2.2.1, this assumption is natural and
compatible with any physical acquisition device. Note that σ0 can be taken arbitrarily
small, so that this assumption does not limit the generality of our results. Then, we are
interested in understanding the stability of the representation

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

We do not consider a prediction layer ϕn+1 here for simplicity, but note that if we
add one on top of Φn, based on a linear of Gaussian kernel, then the stability of the
full representation ϕn+1 ◦ Φn immediately follows from that of Φn thanks to the non-
expansiveness of ϕn+1 (see Section 2.2). Then, we make an assumption that relates the
scale of the pooling operator at layer k−1 with the diameter of the patch Sk: we assume
indeed that there exists κ > 0 such that for all k ≥ 1,

sup
c∈Sk
|c| ≤ κσk−1. (A2)

The scales σk are typically exponentially increasing with the layers k, and characterize
the “resolution” of each feature map. This assumption corresponds to considering patch
sizes that are adapted to these intermediate resolutions. Moreover, the stability bounds
we obtain hereafter increase with κ, which leads us to believe that small patch sizes lead
to more stable representations, something which matches well the trend of using small,
3x3 convolution filters at each scale in modern deep architectures (e.g., Simonyan and
Zisserman, 2014).

Finally, before presenting our stability results, we recall a few properties of the
operators involved in the representation Φn, which are heavily used in the analysis.

60

Chapter 2. Invariance, Deformation Stability, and Complexity

1. Patch extraction operator: Pk is linear and preserves the norm;

2. Kernel mapping operator: Mk preserves the norm and is non-expansive;

3. Pooling operator: Ak is linear and non-expansive ‖Ak‖ ≤ 1;

The rest of this section is organized into three parts. We present the main stability
results in Section 2.3.1, explain their compatibility with kernel approximations in Sec-
tion 2.3.3, and provide numerical experiment for demonstrating the stability of the kernel
representation in Section 2.3.4. Finally, we introduce mechanisms to achieve invariance
to any group of transformations in Section 2.3.5.

2.3.1 Stability Results and Translation Invariance

Here, we show that our kernel representation Φn satisfies the stability property (2.11),
with a constant C2 inversely proportional to σn, thereby achieving near-invariance to
translations. The results are then extended to more general transformation groups in
Section 2.3.5.

General bound for stability. The following result gives an upper bound on the
quantity of interest, ‖Φn(Lτx)−Φn(x)‖, in terms of the norm of various linear operators
which control how τ affects each layer. An important object of study is the commutator
of linear operators A and B, which is denoted by [A,B] = AB −BA.

Proposition 2.4 (Bound with operator norms). For any x in L2(Rd,H0), we have

‖Φn(Lτx)− Φn(x)‖ ≤
(

n∑
k=1
‖[PkAk−1, Lτ]‖+ ‖[An, Lτ]‖+ ‖LτAn −An‖

)
‖x‖. (2.12)

For translations Lτx(u) = Lcx(u) = x(u− c), it is easy to see that patch extraction
and pooling operators commute with Lc (this is also known as covariance or equivari-
ance to translations), so that we are left with the term ‖LcAn − An‖, which should
control translation invariance. For general diffeomorphisms τ , we no longer have ex-
act covariance, but we show below that commutators are stable to τ , in the sense that
‖[PkAk−1, Lτ]‖ is controlled by ‖∇τ‖∞, while ‖LτAn − An‖ is controlled by ‖τ‖∞ and
decays with the pooling size σn.

Bound on ‖[PkAk−1, Lτ]‖. We note that Pkz can be identified with (Lcz)c∈Sk isomet-
rically for all z in L2(Rd,Hk–1), since ‖Pkz‖2 =

∫
Sk
‖Lcz‖2dνk(c) by Fubini’s theorem.

Then,

‖PkAk−1Lτz − LτPkAk−1z‖2 =
∫
Sk

‖LcAk−1Lτz − LτLcAk−1z‖2dνk(c)

≤ sup
c∈Sk
‖LcAk−1Lτz − LτLcAk−1z‖2,

so that ‖[PkAk−1, Lτ]‖ ≤ supc∈Sk ‖[LcAk−1, Lτ]‖. The following result lets us bound the
commutator ‖[LcAk−1, Lτ]‖ when |c| ≤ κσk−1, which is satisfied under assumption (A2).

61

2.3. Stability to Deformations and Group Invariance

Lemma 2.5 (Stability of shifted pooling). Consider Aσ the pooling operator with kernel
hσ(u) = σ−dh(u/σ). If ‖∇τ‖∞ ≤ 1/2, there exists a constant C1 such that for any σ
and |c| ≤ κσ, we have

‖[LcAσ, Lτ]‖ ≤ C1‖∇τ‖∞,
where C1 depends only on h and κ.

A similar result can be found in Lemma E.1 of Mallat (2012) for commutators of the
form [Aσ, Lτ], but we extend it to handle integral operators LcAσ with a shifted kernel.
The proof (given in Appendix 2.C.4) follows closely Mallat (2012) and relies on the fact
that [LcAσ, Lτ] is an integral operator in order to bound its norm via Schur’s test. Note
that κ can be made larger, at the cost of an increase of the constant C1 of the order
κd+1.

Bound on ‖LτAn−An‖. We bound the operator norm ‖LτAn−An‖ in terms of ‖τ‖∞
using the following result due to Mallat (2012, Lemma 2.11), with σ = σn:

Lemma 2.6 (Translation invariance). If ‖∇τ‖∞ ≤ 1/2, we have

‖LτAσ −Aσ‖ ≤
C2
σ
‖τ‖∞,

with C2 = 2d · ‖∇h‖1.

Combining Proposition 2.4 with Lemmas 2.5 and 2.6, we obtain the following result:

Theorem 2.7 (Stability bound). Assume (A2). If ‖∇τ‖∞ ≤ 1/2, we have

‖Φn(Lτx)− Φn(x)‖ ≤
(
C1 (1 + n) ‖∇τ‖∞ + C2

σn
‖τ‖∞

)
‖x‖. (2.13)

This result matches the desired notion of stability in Eq. (2.11), with a translation-
invariance factor that decays with σn. We discuss implications of our bound, and com-
pare it with related work on stability in Section 2.3.2. We also note that our bound
yields a worst-case guarantee on stability, in the sense that it holds for any signal x. In
particular, making additional assumptions on the signal (e.g., smoothness) may lead to
improved stability. The predictions for a specific model may also be more stable than
applying (2.1) to our stability bound, for instance if the filters are smooth enough.

Remark 2.8 (Stability for Lipschitz non-linear mappings). While the previous results
require non-expansive non-linear mappings ϕk, it is easy to extend the result to the
following more general condition

‖ϕk(z)− ϕk(z′)‖ ≤ ρk‖z − z′‖ and ‖ϕk(z)‖ ≤ ρk‖z‖.

Indeed, the proof of Proposition 2.4 easily extends to this setting, giving an additional
factor

∏
k ρk in the bound (2.11). The stability bound (2.13) then becomes

‖Φn(Lτx)− Φn(x)‖ ≤
(

n∏
k=1

ρk

)(
C1 (1 + n) ‖∇τ‖∞ + C2

σn
‖τ‖∞

)
‖x‖. (2.14)

This will be useful for obtaining stability of CNNs with generic activations such as
ReLU (see Section 2.4.3), and this also captures the case of kernels with κ′k(1) > 1
in Lemma 2.1.

62

Chapter 2. Invariance, Deformation Stability, and Complexity

2.3.2 Discussion of the Stability Bound (Theorem 2.7)

In this section, we discuss the implications of our stability bound (2.13), and compare
it to related work on the stability of the scattering transform (Mallat, 2012) as well as
the work of (Wiatowski and Bölcskei, 2018) on more general convolutional models.

Role of depth. Our bound displays a linear dependence on the number of layers n
in the stability constant C1(1 + n). We note that a dependence on a notion of depth
(the number of layers n here) also appears in Mallat (2012), with a factor equal to
the maximal length of “scattering paths”, and with the same condition ‖∇τ‖∞ ≤ 1/2.
Nevertheless, the number of layers is tightly linked to the patch sizes, and we now
show how a deeper architecture can be beneficial for stability. Given a desired level
of translation-invariance σf and a given initial resolution σ0, the above bound together
with the discretization results of Section 2.2.1 suggest that one can obtain a stable
representation that preserves signal information by taking small patches at each layer
and subsampling with a factor equal to the patch size (assuming a patch size greater than
one) until the desired level of invariance is reached: in this case we have σf/σ0 ≈ κn,
where κ is of the order of the patch size, so that n = O(log(σf/σ0)/ log(κ)), and hence
the stability constant C1(1 + n) grows with κ as κd+1/ log(κ), explaining the benefit of
small patches, and thus of deeper models.

Norm preservation. While the scattering representation preserves the norm of the
input signals when the length of scattering paths goes to infinity, in our setting the norm
may decrease with depth due to pooling layers. However, we show in Appendix 2.C.5 that
a part of the signal norm is still preserved, particularly for signals with high energy in the
low frequencies, as is the case for natural images (e.g., Torralba and Oliva, 2003). This
justifies that the bounded quantity in (2.13) is relevant and non-trivial. Nevertheless, we
recall that despite a possible loss in norm, our (infinite-dimensional) representation Φ(x)
preserves signal information, as discussed in Section 2.2.1.

Dependence on signal bandwidth. We note that our stability result crucially relies
on the assumption σ0 > 0, which effectively limits its applicability to signals with fre-
quencies bounded by λ0 ≈ 1/σ0. While this assumption is realistic in practice for digital
signals, our bound degrades as σ0 approaches 0, since the number of layers n grows
as log(1/σ0), as explained above. This is in contrast to the stability bound of Mallat
(2012), which holds uniformly over any such σ0, thanks to the use of more powerful tools
from harmonic analysis such as the Cotlar-Stein lemma, which allows to control stabil-
ity simultaneously at all frequencies thanks to the structure of the wavelet transform,
something which seems more challenging in our case due to the non-linearities separating
different scales.

We note that it may be difficult to obtain meaningful stability results for an un-
bounded frequency support given a fixed architecture, without making assumptions
about the filters of a specific model. In particular, if we consider a model with a high
frequency Fourier or cosine filter at the first layer, supported on a large enough patch
relative to the corresponding wavelength, this will cause instabilities, particularly if the
input signal has isolated high frequencies (see, e.g., Bruna and Mallat, 2013). By the

63

2.3. Stability to Deformations and Group Invariance

arguments of Section 2.4, such an unstable model g is in the RKHS, and we then have
that the final representation Φ(·) is also unstable, since

‖Φ(Lτx)− Φ(x)‖ = sup
f∈HKn ,‖f‖≤1

〈f,Φ(Lτx)− Φ(x)〉

≥ 1
‖g‖
〈g,Φ(Lτx)− Φ(x)〉 = 1

‖g‖
(g(Lτx)− g(x)).

Comparison with Wiatowski and Bölcskei (2018). The work of Wiatowski and
Bölcskei (2018) also studies deformation stability for generic convolutional network mod-
els, however their “deformation sensitivity” result only shows that the representation is
as sensitive to deformations as the original signal, something which is also applicable
here thanks to the non-expansiveness of our representation. Moreover, their bound
does not show the dependence on deformation size (the Jacobian norm), and displays a
translation invariance part that degrades linearly with 1/σ0. In contrast, the translation
invariance part of our bound is independent of σ0, and the overall bound only depends
logarithmically on 1/σ0, by exploiting architectural choices such as pooling layers and
patch sizes.

2.3.3 Stability with Kernel Approximations

As in the analysis of the scattering transform of Mallat (2012), we have characterized the
stability and shift-invariance of the data representation for continuous signals, in order
to give some intuition about the properties of the corresponding discrete representation,
which we have described in Section 2.2.1.

Another approximation performed in the CKN model of Mairal (2016) consists of
adding projection steps on finite-dimensional subspaces of the RKHS’s layers, as dis-
cusssed in Section 2.2.2. Interestingly, the stability properties we have obtained pre-
viously are compatible with these steps. We may indeed replace the operator Mk

with the operator M̃kz(u) = Πkϕk(z(u)) for any map z in L2(Rd,Pk), instead of
Mkz(u) = ϕk(z(u)); Πk : Hk → Fk is here an orthogonal projection operator onto a
linear subspace, given in (2.8). Then, M̃k does not necessarily preserve the norm any-
more, but ‖M̃kz‖ ≤ ‖z‖, with a loss of information equal to ‖Mkz−M̃kz‖ corresponding
to the quality of approximation of the kernel Kk on the points z(u). On the other hand,
the non-expansiveness of Mk is satisfied thanks to the non-expansiveness of the projec-
tion. In summary, it is possible to show that the conclusions of Theorem 2.7 remain
valid when adding the CKN projection steps at each layer, but some signal information
is lost in the process.

2.3.4 Empirical Study of Stability

In this section, we provide numerical experiments to demonstrate the stability properties
of the kernel representations defined in Section 2.2 on discrete images.

We consider images of handwritten digits from the Infinite MNIST dataset of Loosli
et al. (2007), which consists of 28x28 grayscale MNIST digits augmented with small
translations and deformations. Translations are chosen at random from one of eight
possible directions, while deformations are generated by considering small smooth de-
formations τ , and approximating Lτx using a tangent vector field ∇x containing partial

64

Chapter 2. Invariance, Deformation Stability, and Complexity

Figure 2.2: MNIST digits with transformations considered in our numerical study of
stability. Each row gives examples of images from a set of digits that are compared to
a reference image of a “5”. From top to bottom: deformations with α = 3; translations
and deformations with α = 1; digits from the training set with the same label “5” as the
reference digit; digits from the training set with any label.

derivatives of the signal x along the horizontal and vertical image directions. We in-
troduce a deformation parameter α to control such deformations, which are then given
by

Lατx(u) = x(u− ατ(u)) ≈ x(u)− ατ(u) · ∇x(u).

Figure 2.2 shows examples of different deformations, with various values of α, with or
without translations, generated from a reference image of the digit “5”. In addition,
one may consider that a given reference image of a handwritten digit can be deformed
into different images of the same digit, and perhaps even into a different digit (e.g., a
“1” may be deformed into a “7”). Intuitively, the latter transformation corresponds to
a “larger” deformation than the former, so that a prediction function that is stable to
deformations should be preferable for a classification task. The aim of our experiments
is to quantify this stability, and to study how it is affected by architectural choices such
as patch sizes and pooling scales.

We consider a full kernel representation, discretized as described in Section 2.2.1. We
limit ourselves to 2 layers in order to make the computation of the full kernel tractable.
Patch extraction is performed with zero padding in order to preserve the size of the
previous feature map. We use a homogeneous dot-product kernel as in Eq. (2.2) with
κ(z) = eρ(z−1), ρ = 1/(0.65)2. Note that this choice yields κ′(z) = ρ > 1, giving
an ρ-Lipschitz kernel mapping instead of a non-expansive one as in Lemma 2.1 which
considers ρ = 1. However, values of ρ larger than one typically lead to better empirical
performance for classification (Mairal, 2016), and the stability results of Section 2.3 are
still valid with an additional factor ρn (with n = 2 here) in Eq. (2.13). For a subsampling
factor s, we apply a Gaussian filter with scale σ = s/

√
2 before downsampling. Our

65

2.3. Stability to Deformations and Group Invariance

0.0 0.5 1.0 1.5 2.0 2.5 3.0

deformation α

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

m
e
a
n
 r

e
la

ti
v
e
 d

is
ta

n
ce

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

last layer pooling

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
n
 r

e
la

ti
v
e
 d

is
ta

n
ce

deformations

deformations + translation

same label

all labels

(b)

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

patch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
e
a
n
 r

e
la

ti
v
e
 d

is
ta

n
ce

(c)

Figure 2.3: Average relative representation distance for various 2-layer models. Lines
in the legend corresponds to rows of images in Figure 2.2. In (b-c), deformations are
obtained with α = 1. We show the impact on relative distance of: (a) the value of α in
deformations, in {0.01, 0.03, 0.1, 0.3, 1, 3}; (b) the subsampling factor of the final pooling
layer, in {1, 3, 5}; (c) the patch size, in {3, 5, 7}.

C++ implementation for computing the full kernel given two images is available at
https://github.com/albietz/ckn_kernel.

In Figure 2.3, we show average relative distance in representation space between a
reference image and images from various sets of 20 images (either generated transforma-
tions, or images appearing in the training set). For a given architecture A and set S of
images, the average relative distance to an image x is given by

1
|S|

∑
x′∈S

‖ΦA(x′)− ΦA(x)‖
‖ΦA(x)‖ = 1

|S|
∑
x′∈S

√
KA(x, x) +KA(x′, x′)− 2KA(x, x′)√

KA(x, x)
,

where ΦA denotes the kernel representation for architecture A and KA(x, x′) the corre-
sponding kernel. We normalize by ‖ΦA(x)‖ in order to reduce sensitivity to the choice of
architecture. We start with a (3, 2)-layer followed by a (3, 5)-layer, where (p, s) indicates
a layer with patch size p and subsampling s. In Figure 2.3b, we vary the subsampling
factor of the second layer, and in Figure 2.3c we vary the patch size of both layers.

Each row of Figure 2.2 shows digits and deformed versions. Intuitively, it should be
easier to deform an image of a handwritten 5 into a different image of a 5, than into a
different digit. Indeed, Figure 2.3 shows that the average relative distance for images
with different labels is always larger than for images with the same label, which in turn
is larger than for small deformations and translations of the reference image.

Adding translations on top of deformations increases distance in all cases, and Fig-
ure 2.3b shows that this gap is smaller when using larger subsampling factors in the last
layer. This agrees with the stability bound (2.13), which shows that a larger pooling
scale at the last layer increases translation invariance. Figure 2.3a highlights the depen-
dence of the distance on the deformation size α, which is near-linear as in Eq. (2.13)
(note that α controls the Jacobian of the deformation). Finally, Figure 2.3c shows that
larger patch sizes can make the representations less stable, as discussed in Section 2.3.

2.3.5 Global Invariance to Group Actions

In Section 2.3.1, we have seen how the kernel representation of Section 2.2 creates in-
variance to translations by commuting with the action of translations at intermediate

66

https://github.com/albietz/ckn_kernel

Chapter 2. Invariance, Deformation Stability, and Complexity

layers, and how the last pooling layer on the translation group governs the final level of
invariance. It is often useful to encode invariances to different groups of transformations,
such as rotations or reflections (see, e.g., Cohen and Welling, 2016; Mallat, 2012; Raj
et al., 2017; Sifre and Mallat, 2013). Here, we show how this can be achieved by defin-
ing adapted patch extraction and pooling operators that commute with the action of a
transformation group G (this is known as group covariance or equivariance). We assume
that G is locally compact such that we can define a left-invariant Haar measure µ—that
is, a measure on G that satisfies µ(gS) = µ(S) for any Borel set S ⊆ G and g in G.
We assume the initial signal x(u) is defined on G, and we define subsequent feature
maps on the same domain. The action of an element g in G is denoted by Lg, where
Lgx(u) = x(g−1u). In order to keep the presentation simple, we ignore some issues
related to the general construction in L2(G) of our signals and operators, which can be
made more precise using tools from abstract harmonic analysis (e.g., Folland, 2016).

Extending a signal on G. We note that the original signal is defined on a domain Rd
which may be different from the transformation group G that acts on Rd (e.g., for 2D
images the domain is R2 but G may also include a rotation angle). The action of g
in G on the original signal defined on Rd, denoted x̃(ω) yields a transformed signal
Lgx̃(ω) = x̃(g−1·ω), where · denotes group action. This requires an appropriate extension
of the signal to G that preserves the meaning of signal transformations. We make the
following assumption: every element ω in Rd can be reached with a transformation uω
in G from a neutral element ε in Rd (e.g., ε = 0), as ω = uω · ε. Note that for 2D images
(d = 2), this typically requires a group G that is “larger” than translations, such as the
roto-translation group, while it is not satisfied, for instance, for rotations only. A similar
assumption is made by Kondor and Trivedi (2018). Then, one can extend the original
signal x̃ by defining x(u) := x̃(u · ε). Indeed, we then have

Lgx(uω) = x(g−1uω) = x̃((g−1uω) · ε) = x̃(g−1 · ω),

so that the signal (x(uω))ω∈Rd preserves the structure of x̃. We detail this below for the
example of roto-translations on 2D images. Then, we are interested in defining a layer—
that is, a succession of patch extraction, kernel mapping, and pooling operators—that
commutes with Lg, in order to achieve equivariance to G.

Patch extraction. We define patch extraction as follows

Px(u) = (x(uv))v∈S for all u ∈ G,

where S ⊂ G is a patch shape centered at the identity element. P commutes with Lg
since

PLgx(u) = (Lgx(uv))v∈S = (x(g−1uv))v∈S = Px(g−1u) = LgPx(u).

Kernel mapping. The pointwise operator M is defined exactly as in Section 2.2, and
thus commutes with Lg.

67

2.3. Stability to Deformations and Group Invariance

Pooling. The pooling operator on the group G is defined by

Ax(u) =
∫
G
x(uv)h(v)dµ(v) =

∫
G
x(v)h(u−1v)dµ(v),

where h is a pooling filter typically localized around the identity element. The construc-
tion is similar to Raj et al. (2017) and it is easy to see from the first expression of Ax(u)
that ALgx(u) = LgAx(u), making the pooling operator G-equivariant. One may also
pool on a subset of the group by only integrating over the subset in the first expression,
an operation which is also G-equivariant.

In our analysis of stability in Section 2.3.1, we saw that inner pooling layers are useful
to guarantee stability to local deformations, while global invariance is achieved mainly
through the last pooling layer. In some cases, one only needs stability to a subgroup of G,
while achieving invariance to the whole group, e.g., in the roto-translation group (Oyallon
and Mallat, 2015; Sifre and Mallat, 2013), one might want invariance to a global rotation
but stability to local translations. Then, one can perform patch extraction and pooling
just on the subgroup to stabilize (e.g., translations) in intermediate layers, while pooling
on the entire group at the last layer to achieve the global group invariance.

Example with the roto-translation group. We consider a simple example on 2D
images where one wants global invariance to rotations in addition to near-invariance and
stability to translations as in Section 2.3.1. For this, we consider the roto-translation
group (see, e.g., Sifre and Mallat, 2013), defined as the semi-direct product of transla-
tions R2 and rotations SO(2), denoted by G = R2 o SO(2), with the following group
operation

gg′ = (v +Rθv
′, θ + θ′),

for g = (v, θ), g′ = (v′, θ′) in G, where Rθ is a rotation matrix in SO(2). The element
g = (v, θ) in G acts on a location u ∈ R2 by combining a rotation and a translation:

g · u = v +Rθu

g−1 · u = (−R−θv,−θ) · u = R−θ(u− v).

For a given image x̃ in L2(R2), our equivariant construction outlined above requires
an extension of the signal to the group G. We consider the Haar measure given by
dµ((v, θ)) := dvdµc(θ), where dv is the Lebesgue measure on R2 and dµc the normalized
Haar measure on the unit circle. Note that µ is left-invariant, since the determinant of
rotation matrices that appears in the change of variables is 1. We can then define x by
x((u, η)) := x̃(u) for any angle η, which is in L2(G) and preserves the definition of group
action on the original signal x̃ since

Lgx((u, η)) = x(g−1(u, η)) = x((g−1 · u, η − θ)) = x̃(g−1 · u) = Lgx̃(u).

That is, we can study the action of G on 2D images in L2(R2) by studying the action
on the extended signals in L2(G) defined above.

We can now define patch extraction and pooling operators P,A : L2(G) → L2(G)
only on the translation subgroup, by considering a patch shape S = {(v, 0)}v∈S̃ ⊂ G
with S̃ ⊂ R2 for P , and defining pooling by Ax(g) =

∫
Rd x(g(v, 0))h(v)dv, where h is a

Gaussian pooling filter with scale σ defined on R2.

68

Chapter 2. Invariance, Deformation Stability, and Complexity

The following result, proved in Appendix 2.C, shows analogous results to the stability
lemmas of Section 2.3.1 for the operators P and A. For a diffeomorphism τ , we denote
by Lτ the action operator given by Lτx((u, η)) = x((τ(u), 0)−1(u, η)) = x((u− τ(u), η)).

Lemma 2.9 (Stability with roto-translation patches). If ‖∇τ‖∞ ≤ 1/2, and the follow-
ing condition holds supc∈S̃ |c| ≤ κσ, we have

‖[PA,Lτ]‖ ≤ C1‖∇τ‖∞,

with the same constant C1 as in Lemma 2.5, which depends on h and κ. Similarly, we
have

‖LτA−A‖ ≤
C2
σ
‖τ‖∞,

with C2 as defined in Lemma 2.6.

By constructing a multi-layer representation Φn(x) in L2(G) using similar operators
at each layer, we can obtain a similar stability result to Theorem 2.7. By adding a global
pooling operator Ac : L2(G)→ L2(R2) after the last layer, defined, for x ∈ L2(G), as

Acx(u) =
∫
x((u, η))dµc(η),

we additionally obtain global invariance to rotations, as shown in the following theorem.

Theorem 2.10 (Stability and global rotation invariance). Assume (A2) for patches S̃
at each layer. Define the operator L(τ,θ)x((u, η)) = x((τ(u), θ)−1(u, η)), and define the
diffeomorphism τθ : u 7→ R−θτ(u). If ‖∇τ‖∞ ≤ 1/2, we have

‖AcΦn(L(τ,θ)x)−AcΦn(x)‖ ≤ ‖Φn(LRτθx)− Φn(x)‖

≤
(
C1 (1 + n) ‖∇τ‖∞ + C2

σn
‖τ‖∞

)
‖x‖.

We note that a similar result may be obtained when G = Rd oH, where H is any
compact group, with a possible additional dependence on how elements of H affect the
size of patches.

2.4 Link with Existing Convolutional Architectures
In this section, we study the functional spaces (RKHS) that arise from our multilayer
kernel representation, and examine the connections with more standard convolutional
architectures. The motivation of this study is that if a CNN model f is in the RKHS,
then it can be written in a “linearized” form f(x) = 〈f,Φ(x)〉, so that our study of
stability of the kernel representation Φ extends to predictions using |f(x) − f(x′)| ≤
‖f‖‖Φ(x)− Φ(x′)‖.

We begin by considering in Section 2.4.1 the intermediate kernels Kk, showing
that their RKHSs contain simple neural-network-like functions defined on patches with
smooth activations, while in Section 2.4.2 we show that a certain class of generic CNNs
are contained in the RKHS HKn of the full multilayer kernel Kn and characterize their
norm. This is achieved by considering particular functions in each intermediate RKHS
defined in terms of the convolutional filters of the CNN. A consequence of these results
is that our stability and invariance properties from Section 2.3 are valid for this broad
class of CNNs.

69

2.4. Link with Existing Convolutional Architectures

2.4.1 Activation Functions and Kernels Kk

Before introducing formal links between our kernel representation and classical convo-
lutional architectures, we study in more details the kernels Kk described in Section 2.2
and their RKHSs Hk. In particular, we are interested in characterizing which types
of functions live in Hk. The next lemma extends some results of Zhang et al. (2016,
2017b), originally developed for the inverse polynomial and Gaussian kernels; it shows
that the RKHS may contain simple “neural network” functions with activations σ that
are smooth enough.

Lemma 2.11 (Activation functions and RKHSs Hk). Let σ : R → R be a function
that admits a polynomial expansion σ(u) :=

∑∞
j=0 aju

j. Consider a kernel Kk from
Section 2.2, given in (2.2), with κk(u) =

∑∞
j=0 bju

j, and bj ≥ 0 for all j. Assume
further that aj = 0 whenever bj = 0, and define the function C2

σ(λ2) :=
∑∞
j=0(a2

j/bj)λ2j.
Let g in Pk be such that C2

σ(‖g‖2) <∞. Then, the RKHS Hk contains the function

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖), (2.15)

and its norm satisfies ‖f‖ ≤ Cσ(‖g‖2).

Noting that for all examples of κk given in Section 2.2, we have b1 > 0, this result
implies the next corollary, which was also found to be useful in our analysis.

Corollary 2.12 (Linear functions and RKHSs). The RKHSs Hk for the examples of κk
given in Section 2.2 contain all linear functions of the form z 7→ 〈g, z〉 with g in Pk.

The previous lemma shows that for many choices of smooth functions σ, the RKHS
Hk contains the functions of the form (2.15). While the non-homogeneous functions
z 7→ σ(〈g, z〉) are standard in neural networks, the homogeneous variant is not. Yet,
we note that (i) the most successful activation function, namely rectified linear units,
is homogeneous—that is, relu(〈g, z〉) = ‖z‖relu(〈g, z〉/‖z‖); (ii) while relu is nonsmooth
and thus not in our RKHSs, there exists a smoothed variant that satisfies the conditions
of Lemma 2.11 for useful kernels. As noticed by Zhang et al. (2016, 2017b), this is for
instance the case for the inverse polynomial kernel. In Figure 2.4, we plot and compare
these different variants of ReLU.

2.4.2 Convolutional Neural Networks and their Complexity

We now study the connection between the kernel representation defined in Section 2.2
and CNNs. Specifically, we show that the RKHS of the final kernel Kn obtained from our
kernel construction contains a set of CNNs on continuous domains with certain types of
smooth homogeneous activations. An important consequence is that the stability results
of previous sections apply to this class of CNNs, although the stability depends on the
RKHS norm, as discussed later in Section 2.5. This norm also serves as a measure of
model complexity, thus controlling both generalization and stability.

CNN maps construction. We now define a CNN function fσ that takes as input
an image z0 in L2(Rd,Rp0) with p0 channels, and build a sequence of feature maps,
represented at layer k as a function zk in L2(Rd,Rpk) with pk channels; the map zk is

70

Chapter 2. Invariance, Deformation Stability, and Complexity

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2

Figure 2.4: Comparison of one-dimensional functions obtained with relu and smoothed
relu (sReLU) activations. (Left) non-homogeneous setting of Zhang et al. (2016, 2017b).
(Right) our homogeneous setting, for different values of the parameter w. Note that
for w ≥ 0.5, sReLU and ReLU are indistinguishable.

obtained from zk–1 by performing linear convolutions with a set of filters (wik)i=1,...,pk ,
followed by a pointwise activation function σ to obtain an intermediate feature map z̃k,
then by applying a linear pooling filter. Note that each wik is in L2(Sk,Rpk–1), with
channels denoted by wijk in L2(Sk,R). Formally, the intermediate map z̃k in L2(Rd,Rpk)
is obtained by

z̃ik(u) = nk(u)σ
(
〈wik, Pkzk–1(u)〉/nk(u)

)
, (2.16)

where z̃k(u) = (z̃1
k(u), . . . , z̃pkk (u)) is in Rpk , and Pk is a patch extraction operator for

finite-dimensional maps. The activation involves a pointwise non-linearity σ along with
a quantity nk(u) := ‖Pkxk−1(u)‖ in (2.16), which is due to the homogenization, and
which is independent of the filters wik. Finally, the map zk is obtained by using a
pooling operator as in Section 2.2, with zk = Akz̃k, and z0 = x0.

Prediction layer. For simplicity, we consider the case of a linear fully connected
prediction layer. In this case, the final CNN prediction function fσ is given by

fσ(x0) = 〈wn+1, zn〉,

with parameters wn+1 in L2(Rd,Rpn). We now show that such a CNN function is
contained in the RKHS of the kernel Kn defined in (2.6).

Construction in the RKHS. The function fσ can be constructed recursively from
intermediate functions that lie in the RKHSs Hk, of the form (2.15), for appropriate
activations σ. Specifically, we define initial quantities f i1 in H1 and gi1 in P1 for i =
1, . . . , p1 such that

gi1 = wi1 ∈ L2(S1,Rp0) = L2(S1,H0) = P1,

f i1(z) = ‖z‖σ(〈g0
i , z〉/‖z‖) for z ∈ P1,

71

2.4. Link with Existing Convolutional Architectures

and we define, from layer k–1, the quantities f ik in Hk and gik in Pk for i = 1, . . . , pk:

gik(v) =
pk–1∑
j=1

wijk (v)f jk–1 where wik(v) = (wijk (v))j=1,...,pk–1 ,

f ik(z) = ‖z‖σ(〈gik, z〉/‖z‖) for z ∈ Pk.

For the linear prediction layer, we define gσ in L2(Rd,Hn) by:

gσ(u) =
pn∑
j=1

wjn+1(u)f jn for all u ∈ Rd,

so that the function f : x0 7→ 〈gσ, xn〉 is in the RKHS of Kn, where xn is the final
representation given in Eq. (2.5). In Appendix 2.D.2, we show that f = fσ, which
implies that the CNN function fσ is in the RKHS. We note that a similar construction
for fully connected multilayer networks with constraints on weights and inputs was given
by Zhang et al. (2016).

Norm of the CNN fσ. We now study the RKHS norm of the CNN constructed
above. This quantity is important as it controls the stability and invariance of the
predictions of a learned model through (2.1). Additionally, the RKHS norm provides a
way to control model complexity, and can lead to generalization bounds, e.g., through
Rademacher complexity and margin bounds (Boucheron et al., 2005; Shalev-Shwartz
and Ben-David, 2014). In particular, such results rely on the following upper bound
on the empirical Rademacher complexity of a function class with bounded RKHS norm
Fλ = {f ∈ HKn : ‖f‖ ≤ λ}, for a dataset {x(1), . . . , x(N)}:

RN (Fλ) ≤
λ
√

1
N

∑N
i=1Kn(x(i), x(i))
√
N

. (2.17)

The bound remains valid when only considering CNN functions in Fλ of the form fσ,
since such a function class is contained in Fλ. If we consider a binary classification task
with training labels y(i) in {−1, 1}, on can then obtain a margin-based bound for any
function fN in Fλ obtained from the training set and any margin γ > 0: with probability
1− δ, we have (see, e.g., Boucheron et al., 2005)

L(fN) ≤ LγN (fN) +O

λ
√

1
N

∑N
i=1Kn(x(i), x(i))
γ
√
N

+

√
log(1/δ)

N

 , (2.18)

with

L(f) = P(x,y)∼D(yf(x) < 0)

LγN (f) = 1
N

N∑
i=1

1{y(i)f(x(i)) < γ},

where D is the distribution of data-label pairs (x(i), y(i)). Intuitively, the margin γ
corresponds to a level of confidence, and LγN measures training error when requiring

72

Chapter 2. Invariance, Deformation Stability, and Complexity

confident predictions. Then, the bound on the gap between this training error and the
true expected error L(fN) becomes larger for small confidence levels, and is controlled
by the model complexity λ and the sample size N .

Note that the bound requires a fixed value of λ used during training, but in practice,
learning under a constraint ‖f‖ ≤ λ can be difficult, especially for CNNs which are
typically trained with stochastic gradient descent with little regularization. However,
by considering values of λ on a logarithmic scale and taking a union bound, one can
obtain a similar bound with ‖fN‖ instead of λ, up to logarithmic factors (see, e.g.,
Shalev-Shwartz and Ben-David, 2014, Theorem 26.14), where fN is obtained from the
training data. We note that various authors have recently considered other norm-based
complexity measures to control the generalization of neural networks with more standard
activations (see, e.g., Bartlett et al., 2017; Liang et al., 2018; Neyshabur et al., 2017,
2015a). However, their results are typically obtained for fully connected networks on
finite-dimensional inputs, while we consider CNNs for input signals defined on continuous
domains. The next proposition (proved in Appendix 2.D.2) characterizes the norm of fσ
in terms of the L2 norms of the filters wijk , and follows from the recursive definition of
the intermediate RKHS elements f ik.

Proposition 2.13 (RKHS norm of CNNs). Assume the activation σ satisfies Cσ(a) <∞
for all a ≥ 0, where Cσ is defined for a given kernel in Lemma 2.11. Then, the CNN
function fσ defined above is in the RKHS HKn, with norm

‖fσ‖2 ≤ pn
pn∑
i=1
‖win+1‖22Bn,i,

where Bn,i is defined by B1,i = C2
σ(‖wi1‖22) and Bk,i = C2

σ

(
pk–1

∑pk–1
j=1 ‖w

ij
k ‖22Bk–1,j

)
.

Note that this upper bound need not grow exponentially with depth when the filters
have small norm and Cσ takes small values around zero. However, the dependency of
the bound on the number of feature maps pk of each layer k may not be satisfactory in
situations where the number of parameters is very large, which is common in successful
deep learning architectures. The following proposition removes this dependence, relying
instead on matrix spectral norms. Similar quantities have been used recently to obtain
useful generalization bounds for neural networks (Bartlett et al., 2017; Neyshabur et al.,
2018).

Proposition 2.14 (RKHS norm of CNNs using spectral norms). Assume the activa-
tion σ satisfies Cσ(a) < ∞ for all a ≥ 0, where Cσ is defined for a given kernel in
Lemma 2.11. Then, the CNN function fσ defined above is in the RKHS HKn, with norm

‖fσ‖2 ≤ ‖wn+1‖2 C2
σ(‖Wn‖22 C2

σ(‖Wn−1‖22 . . . C2
σ(‖W2‖22 C2

σ(‖W1‖2F)) . . .)). (2.19)

The norms are defined as follows:

‖Wk‖22 =
∫
Sk

‖Wk(u)‖22dνk(u), for k = 2, . . . , n

‖W1‖2F =
∫
S1
‖W1(u)‖2Fdν1(u),

where Wk(u) is the matrix (wijk (u))ij, ‖ · ‖2 the spectral norm, and ‖ · ‖F the Frobenius
norm.

73

2.4. Link with Existing Convolutional Architectures

As an example, if we consider κ1 = · · · = κn to be one of the kernels introduced in
Section 2.2 and take σ = κ1 so that C2

σ(λ2) = κ1(λ2), then constraining the norms at
each layer to be smaller than 1 ensures ‖fσ‖ ≤ 1, since for λ ≤ 1 we have C2

σ(λ2) ≤
C2
σ(1) = κ1(1) = 1. If we consider linear kernels and σ(u) = u, we have C2

σ(λ2) =
λ2 and the bound becomes ‖fσ‖ ≤ ‖wn+1‖‖Wn‖2 · · · ‖W2‖2‖W1‖F . If we ignore the
convolutional structure (i.e., only taking 1x1 patches on a 1x1 image), the norm involves
a product of spectral norms at each layer (ignoring the first layer), a quantity which also
appears in recent generalization bounds (Bartlett et al., 2017; Neyshabur et al., 2018).
While such quantities have proven useful to explain some generalization phenomena,
such as the behavior of networks trained on data with random labels (Bartlett et al.,
2017; Zhang et al., 2017a), some authors have pointed out that spectral norms may
yield overly pessimistic generalization bounds when comparing with simple parameter
counting (Arora et al., 2018), and our results may display similar drawbacks. We note,
however, that Proposition 2.14 only gives an upper bound, and the actual RKHS norm
may be smaller in practice. It may also be that the norm is not well controlled during
training, and that the obtained bounds may not fully explain the generalization behavior
observed in practice. Using such quantities to regularize during training (as in Chapter 3)
may then yield bounds that are less vacuous.

Generalization and stability. The results of this section imply that our study of
the geometry of the kernel representations, and in particular the stability and invariance
properties of Section 2.3, apply to the generic CNNs defined above, thanks to the Lips-
chitz smoothness relation (2.1). The smoothness is then controlled by the RKHS norm
of these functions, which sheds light on the links between generalization and stability.
In particular, functions with low RKHS norm provide better generalization guarantees
on unseen data, as shown by the margin bound in Eq. (2.18). This implies, for instance,
that generalization is harder if the task requires classifying two slightly deformed images
with different labels, since separating such predictions by some margin requires a func-
tion with large RKHS norm according to our stability analysis. In contrast, if a stable
function (i.e., with small RKHS norm) is sufficient to do well on a training set, learning
becomes “easier” and few samples may be enough for good generalization.

2.4.3 Stability and Generalization with Generic Activations

Our study of stability and generalization so far has relied on kernel methods, which
allows us to separate learned models from data representations in order to establish
tight connections between the stability of representations and statistical properties of
learned CNNs through RKHS norms. One important caveat, however, is that our study
is limited to CNNs with a class of smooth and homogeneous activations described in
Section 2.4.1, which differ from generic activations used in practice such as ReLU or
tanh. Indeed, ReLU is homogeneous but lacks the required smoothness, while tanh is
not homogeneous. In this section, we show that our stability results can be extended
to the predictions of CNNs with such activations, and that stability is controlled by a
quantity based on spectral norms, which plays an important role in recent results on
generalization. This confirms a strong connection between stability and generalization
in this more general context as well.

74

Chapter 2. Invariance, Deformation Stability, and Complexity

Stability bound. We consider an activation function σ : R → R that is ρ-Lipschitz
and satisfies σ(0) = 0. Examples include ReLU and tanh activations, for which ρ = 1.
The CNN construction is similar to Section 2.4.2 with feature maps zk in L2(Rd,Rpk),
and a final prediction function fσ defined with an inner product 〈wn+1, zn〉. The only
change is the non-linear mapping in Eq. (2.16), which is no longer homogeneized, and
can be rewritten as

z̃k(u) = ϕk(Pkzk–1(u)) := σ

(∫
Sk

Wk(v)(Pkzk–1(u))(v)dνk(v)
)
,

where σ is applied component-wise. The non-linear mapping ϕk on patches satisfies

‖ϕk(z)− ϕk(z′)‖ ≤ ρk‖z − z′‖ and ‖ϕk(z)‖ ≤ ρk‖z‖,

where ρk = ρ‖Wk‖2 and ‖Wk‖2 is the spectral norm of Wk : L2(Sk,Rpk–1) → Rpk
defined by

‖Wk‖2 = sup
‖z‖≤1

∥∥∥∥∫
Sk

Wk(v)z(v)dνk(v)
∥∥∥∥ .

We note that this spectral norm is slightly different than the mixed norm used in Propo-
sition 2.14. By defining an operator Mk that applies ϕk pointwise as in Section 2.2, the
construction of the last feature map takes the same form as that of the multilayer kernel
representation, so that the results of Section 2.3 apply, leading to the following stability
bound on the final predictions:

|fσ(Lτx)− fσ(x)| ≤ ρn‖wn+1‖
(∏

k

‖Wk‖2

)(
C1 (1 + n) ‖∇τ‖∞ + C2

σn
‖τ‖∞

)
‖x‖.

(2.20)

Link with generalization. The stability bound (2.20) takes a similar form to the
one obtained for CNNs in the RKHS, with the RKHS norm replaced by the product
of spectral norms. In contrast to the RKHS norm, such a quantity does not directly
lead to generalization bounds; however, a few recent works have provided meaningful
generalization bounds for deep neural networks that involve the product of spectral
norms (Bartlett et al., 2017; Neyshabur et al., 2018). Thus, this suggests that stable
CNNs have better generalization properties, even when considering generic CNNs with
ReLU or tanh activations. Nevertheless, these bounds typically involve an additional
factor consisting of other matrix norms summed across layers, which may introduce
some dependence on the number of parameters, and do not directly support convolu-
tional structure. In contrast, our RKHS norm bound based on spectral norms given in
Proposition 2.14 directly supports convolutional structure, and has no dependence on
the number of parameters.

2.5 Discussion and Concluding Remarks

In this chapter, we introduce a multilayer convolutional kernel representation (Sec-
tion 2.2); we show that it is stable to the action of diffeomorphisms, and that it can
be made invariant to groups of transformations (Section 2.3); and finally we explain

75

2.5. Discussion and Concluding Remarks

connections between our representation and generic convolutional networks by showing
that certain classes of CNNs with smooth activations are contained in the RKHS of the
full multilayer kernel (Section 2.4). A consequence of this last result is that the stability
results of Section 2.3 apply to any CNN function f from that class, by using the relation

|f(Lτx)− f(x)| ≤ ‖f‖‖Φn(Lτx)− Φn(x)‖,

which follows from (2.1), assuming a linear prediction layer. In the case of CNNs with
generic activations such as ReLU, the kernel point of view is not applicable, and the
separation between model and representation is not as clear. However, we show in
Section 2.4.3 that a similar stability bound can be obtained, with the product of spectral
norms at each layer playing a similar role to the RKHS norm of the CNN. In both cases, a
quantity that characterizes complexity of a model appears in the final bound on predicted
values — either the RKHS norm or the product of spectral norms —, and this complexity
measure is also closely related to generalization. This implies that learning with stable
CNNs is “easier” in terms of sample complexity, and that the inductive bias of CNNs
is thus suitable to tasks that present some invariance under translation and small local
deformation, as well as more general transformation groups, when the architecture is
appropriately constructed.

In order to ensure stability, the previous bounds suggest that one should control
the RKHS norm ‖f‖, or the product of spectral norms when using generic activations;
however, these quantities are difficult to control with standard approaches to learning
CNNs, such as backpropagation. In contrast, traditional kernel methods typically con-
trol this norm by using it as an explicit regularizer in the learning process, making such
a stability guarantee more useful. In order to avoid the scalability issues of such ap-
proaches, convolutional kernel networks approximate the full kernel map Φn by taking
appropriate projections as explained in Section 2.2.2, leading to a representation Φ̃n that
can be represented with a practical representation ψn that preserves the Hilbert space
structure isometrically (using the finite-dimensional descriptions of points in the RKHS
given in (2.10)). Section 2.3.3 shows that such representations satisfy the same stability
and invariance results as the full representation, at the cost of losing information. Then,
if we consider a CKN function of the form fw(x) = 〈w,ψn(x)〉, stability is obtained
thanks to the relation

|fw(Lτx)− fw(x)| ≤ ‖w‖‖ψn(Lτx)− ψn(x)‖ = ‖w‖‖Φ̃n(Lτx)− Φ̃n(x)‖.

In particular, learning such a function by controlling the norm of w, e.g., with `2 regu-
larization, provides a natural way to explicitly control stability.

Implicit and explicit regularization of CNNs. In the context of generic CNNs
trained with backpropagation and variants of stochastic gradient descent, it has been
suggested (see, e.g., Zhang et al., 2017a) that optimization algorithms play an impor-
tant role in controlling their generalization ability. Viewing a generic CNN with ReLU
activations as approximately an element of the RKHS as described in Section 2.4.2 (up to
the smoothed activations), we may then wonder if training algorithms implicitly control
the RKHS norm for a kernel as defined in this chapter. Yet, modern CNNs trained with
SGD have been found to be highly unstable to small, additive perturbations known as
“adversarial examples” (Szegedy et al., 2014), which suggests that the RKHS norm of

76

Chapter 2. Invariance, Deformation Stability, and Complexity

these models may be quite large, and that controlling it explicitly during learning might
be important to learn more stable models—this is the subject of Chapter 3 in this thesis.

Separately, a recent line of work has studied relationships between gradient training
of neural network in a certain over-parameterized regime and kernel methods, through so-
called neural tangent kernels (Jacot et al., 2018; Allen-Zhu et al., 2019b; Du et al., 2019b;
Chizat et al., 2019). In this case, optimization may implicitly bias learning towards
functions with small norm in a RKHS, however learning is done improperly, that is, one
may learn stable target functions in the RKHS, but the networks used for learning are
not in the RKHS themselves, as in the case of random feature approximations (Rahimi
and Recht, 2007; Bach, 2017b), which may lead to good generalization despite poor
stability properties of the neural network. The inductive bias of the kernels arising in
such a regime is the subject of Chapter 4.

77

Appendix

2.A Useful Mathematical Tools

In this section, we present preliminary mathematical tools that are used in our analysis.

Harmonic analysis. We recall a classical result from harmonic analysis (see, e.g., Stein,
1993), which was used many times by Mallat (2012) to prove the stability of the scat-
tering transform to the action of diffeomorphisms.

Lemma 2.A.1 (Schur’s test). Let H be a Hilbert space and Ω a subset of Rd. Consider
T an integral operator with kernel k : Ω × Ω → R, meaning that for all u in Ω and x
in L2(Ω,H),

Tx(u) =
∫

Ω
k(u, v)x(v)dv, (2.21)

where the integral is a Bochner integral (see, Diestel and Uhl, 1977; Muandet et al.,
2017) when H is infinite-dimensional. If

∀u ∈ Ω,
∫
|k(u, v)|dv ≤ C and ∀v ∈ Ω,

∫
|k(u, v)|du ≤ C,

for some constant C, then, Tx is always in L2(Ω,H) for all x in L2(Ω,H) and we have
‖T‖ ≤ C.

Note that while the proofs of the lemma above are typically given for real-valued
functions in L2(Ω,R), the result can easily be extended to Hilbert space-valued func-
tions x in L2(Ω,H). In order to prove this, we consider the integral operator |T | with
kernel |k| that operates on L2(Ω,R+), meaning that |T | is defined as in (2.21) by re-
placing k(u, v) by the absolute value |k(u, v)|. Then, consider x in L2(Ω,H) and use the
triangle inequality property of Bochner integrals:

‖Tx‖2 =
∫

Ω
‖Tx(u)‖2du ≤

∫
Ω

(∫
Ω
|k(u, v)|‖x(v)‖dv

)2
du = ‖|T ||x|‖2,

where the function |x| is such that |x|(u) = ‖x(u)‖ and thus |x| is in L2(Ω,R+). We
may now apply Schur’s test to the operator |T | for real-valued functions, which gives
‖|T |‖ ≤ C. Then, noting that ‖|x|‖ = ‖x‖, we conclude with the inequality ‖Tx‖2 ≤
‖|T ||x|‖2 ≤ ‖|T |‖2‖x‖2 ≤ C2‖x‖2.

The following lemma shows that the pooling operators Ak defined in Section 2.2 are
non-expansive.

78

Chapter 2. Invariance, Deformation Stability, and Complexity

Lemma 2.A.2 (Non-expansiveness of pooling operators). If h(u) := (2π)−d/2 exp(−|u|2/2),
then the pooling operator Aσ defined for any σ > 0 by

Aσx(u) =
∫
Rd
σ−dh

(
u− v
σ

)
x(v)dv,

has operator norm ‖Aσ‖ ≤ 1.

Proof. With the notations from above, we have ‖Aσx‖ ≤ ‖|Aσ||x|‖ = ‖hσ ∗ |x|‖, where
hσ := σ−dh(·/σ) and ∗ denotes convolution. By Young’s inequality, we have ‖hσ ∗ |x|‖ ≤
‖hσ‖1 · ‖|x|‖ = 1 · ‖|x|‖ = ‖x‖, which concludes the proof.

Kernel methods. We now recall a classical result that characterizes the reproducing
kernel Hilbert space (RKHS) of functions defined from explicit Hilbert space mappings
(see, e.g., Saitoh, 1997, §2.1).

Theorem 2.A.1. Let ψ : X → H be a feature map to a Hilbert space H, and let K(z, z′) :=
〈ψ(z), ψ(z′)〉H for z, z′ ∈ X . Let H be the linear subspace defined by

H := {fw ; w ∈ H} s.t. fw : z 7→ 〈w,ψ(z)〉H ,

and consider the norm

‖fw‖2H := inf
w′∈H

{‖w′‖2H s.t. fw = fw′}.

Then H is the reproducing kernel Hilbert space associated to kernel K.

A consequence of this result is that the RKHS of the kernel Kn(x, x′) = 〈Φ(x),Φ(x′)〉,
defined from a given final representation Φ(x) ∈ Hn+1 such as the one introduced in
Section 2.2, contains functions of the form f : x 7→ 〈w,Φ(x)〉 with w ∈ Hn+1, and the
RKHS norm of such a function satisfies ‖f‖ ≤ ‖w‖Hn+1 .

2.B Proofs Related to the Multilayer Kernel Construction

2.B.1 Proof of Lemma 2.1 and Non-Expansiveness of the Gaussian
Kernel

We begin with the proof of Lemma 2.1 related to homogeneous dot-product kernels (2.2).

Proof. In this proof, we drop all indices k since there is no ambiguity. We will prove
the more general result that ϕ is ρk-Lipschitz with ρk = max(1,

√
κ′(1)) for any value of

κ′(1) (in particular, it is non-expansive when κ′(1) ≤ 1).
Let us consider the Maclaurin expansion κ(u) =

∑+∞
j=0 bju

j < +∞ with bj ≥ 0 for
all j and all u in [−1,+1]. Recall that the condition bj ≥ 0 comes from the positive-
definiteness of K (Schoenberg, 1942). Then, we have κ′(u) =

∑+∞
j=1 jbju

j−1. Noting
that jbjuj−1 ≤ jbj for u ∈ [−1, 1], we have κ′(u) ≤ κ′(1) on [−1, 1]. The fundamental
theorem of calculus then yields, for u ∈ [−1, 1],

κ(u) = κ(1)−
∫ 1

u
κ′(t)dt ≥ κ(1)− κ′(1)(1− u). (2.22)

79

2.C. Proofs of Recovery and Stability Results

Then, if z, z′ 6= 0,

‖ϕ(z)− ϕ(z′)‖2 = K(z, z) +K(z′, z′)− 2K(z, z′) = ‖z‖2 + ‖z′‖2 − 2‖z‖‖z′‖κ(u),

with u = 〈z, z′〉/(‖z‖‖z′‖). Using (2.22) with κ(1) = 1, we have

‖ϕ(z)− ϕ(z′)‖2 ≤ ‖z‖2 + ‖z′‖2 − 2‖z‖‖z′‖
(
1− κ′(1) + κ′(1)u

)
= (1− κ′(1))

(
‖z‖2 + ‖z′‖2 − 2‖z‖‖z′‖

)
+ κ′(1)

(
‖z‖2 + ‖z′‖2 − 2〈z, z′〉

)
= (1− κ′(1))

∣∣‖z‖ − ‖z′‖∣∣2 + κ′(1)‖z − z′‖2

≤
{
‖z − z′‖2, if 0 ≤ κ′(1) ≤ 1
κ′(1)‖z − z′‖2, if κ′(1) > 1

= ρ2
k‖z − z′‖2,

with ρk = max(1,
√
κ′(1)), which yields the desired result. Finally, we remark that we

have shown the relation κ(u) ≥ κ(1)− κ′(1) + κ′(1)u; when κ′(1) = 1, this immediately
yields (2.3).

If z = 0 or z′ = 0, the result also holds trivially. For example,

‖ϕ(z)− ϕ(0)‖2 = K(z, z) +K(0, 0)− 2K(z, 0) = ‖z‖2 = ‖z − 0‖2.

Non-expansiveness of the Gaussian kernel. We now consider the Gaussian kernel

K(z, z′) := e−
α
2 ‖z−z

′‖2 ,

with feature map ϕ. We simply use the convexity inequality eu ≥ 1 + u for all u, and

‖ϕ(z)− ϕ(z′)‖2 = K(z, z) +K(z′, z′)− 2K(z, z′) = 2− 2e−
α
2 ‖z−z

′‖2 ≤ α‖z − z′‖2.

In particular, ϕ is non-expansive when α ≤ 1.

2.C Proofs of Recovery and Stability Results

2.C.1 Proof of Lemma 2.2

Proof. We denote by Ω̄ the discrete set of sampling points considered in this lemma.
The assumption on Ω̄ can be written as {u+ v ; u ∈ Ω̄, v ∈ Sk} = Rd.

Let B denote an orthonormal basis of the Hilbert space Pk = L2(Sk,Hk−1), and
define the linear function fw in Hk such that fw : z 7→ 〈w, z〉 for w in Pk. We thus have

Pkxk–1(u) =
∑
w∈B
〈w,Pkxk–1(u)〉w

=
∑
w∈B

fw(Pkxk–1(u))w

=
∑
w∈B
〈fw,MkPkxk–1(u)〉w,

80

Chapter 2. Invariance, Deformation Stability, and Complexity

using the reproducing property in the RKHS Hk. Applying the pooling operator Ak
yields

AkPkxk–1(u) =
∑
w∈B
〈fw, AkMkPkxk–1(u)〉w,

=
∑
w∈B
〈fw, xk(u)〉w.

Noting thatAkPkxk–1 = Ak(Lvxk–1)v∈Sk = (AkLvxk–1)v∈Sk = (LvAkxk–1)v∈Sk = PkAkxk–1,
with Lvxk–1(u) := xk–1(u + v), we can choose v in Sk and obtain from the previous re-
lations

Akxk–1(u+ v) =
∑
w∈B
〈fw, xk(u)〉w(v).

Thus, taking all sampling points u ∈ Ω̄ and all v ∈ Sk, we have a full view of the
signal Akxk–1 on all of Rd by our assumption on the set Ω̄.

For f ∈ Hk–1, the signal 〈f, xk–1(u)〉 can then be recovered by deconvolution as
follows:

〈f, xk–1(u)〉 = F−1
(F(〈f,Akxk–1(·)〉)

F(hσk)

)
(u),

where F denotes the Fourier transform. Note that the inverse Fourier transform is well-
defined here because the signal 〈f,Akxk(·)〉 is itself a convolution with hσk , and F(hσk)
is strictly positive as the Fourier transform of a Gaussian is also a Gaussian.

By considering all elements f in an orthonormal basis of Hk–1, we can recover xk–1.
The map xk can then be reconstructed trivially by applying operators Pk, Mk and Ak
on xk–1.

2.C.2 Proof of Lemma 2.3

Proof. In this proof, we drop the bar notation on all quantities for simplicity; there
is indeed no ambiguity since all signals are discrete here. First, we recall that Hk
contains all linear functions on Pk = Hekk–1; thus, we may consider in particular functions
fj,w(z) := e

1/2
k 〈w, zj〉 for j ∈ {1, . . . , ek}, w ∈ Hk–1, and z = (z1, z2, . . . , zek) in Pk.

Then, we may evaluate

〈fj,w, s−1/2
k xk[n]〉 =

∑
m∈Z

hk[nsk −m]〈fj,w,MkPkxk–1[m]〉

=
∑
m∈Z

hk[nsk −m]〈fj,w, ϕk(Pkxk–1[m])〉

=
∑
m∈Z

hk[nsk −m]fj,w(Pkxk–1[m])

=
∑
m∈Z

hk[nsk −m]〈w, xk–1[m+ j]〉

=
∑
m∈Z

hk[nsk + j −m]〈w, xk–1[m]〉

= (hk ∗ 〈w, xk–1〉)[nsk + j],

81

2.C. Proofs of Recovery and Stability Results

where, with an abuse of notation, 〈w, xk–1〉 is the real-valued discrete signal such that
〈w, xk–1〉[n] = 〈w, xk–1[n]〉. Since integers of the form (nsk + j) cover all of Z according
to the assumption ek ≥ sk, we have a full view of the signal (hk ∗ 〈w, xk–1〉) on Z. We
will now follow the same reasoning as in the proof of Lemma 2.2 to recover 〈w, xk–1〉:

〈w, xk−1〉 = F−1
(F(hk ∗ 〈w, xk–1〉)

F(hk)

)
,

where F is the Fourier transform. Since the signals involved there are discrete, their
Fourier transform are periodic with period 2π, and we note that F(hk) is strictly positive
and bounded away from zero. The signal xk–1 is then recovered exactly as in the proof
of Lemma 2.2 by considering for w the elements of an orthonormal basis of Hk–1.

2.C.3 Proof of Proposition 2.4

Proof. Define (MPA)k:j := MkPkAk−1Mk−1Pk−1Ak−2 · · ·MjPjAj−1. Using the fact
that ‖Ak‖ ≤ 1, ‖Pk‖ = 1 and Mk is non-expansive, we obtain

‖Φn(Lτx)− Φn(x)‖ = ‖An(MPA)n:2M1P1A0Lτx−An(MPA)n:2M1P1A0x‖
≤ ‖An(MPA)n:2M1P1A0Lτx−An(MPA)n:2M1LτP1A0x‖

+ ‖An(MPA)n:2M1LτP1A0x−An(MPA)n:2M1P1A0x‖
≤ ‖[P1A0, Lτ]‖‖x‖

+ ‖An(MPA)n:2M1LτP1A0x−An(MPA)n:2M1P1A0x‖.

Note that M1 is defined point-wise, and thus commutes with Lτ :

M1Lτx(u) = ϕ1(Lτx(u)) = ϕ1(x(u− τ(u)) = M1x(u− τ(u)) = LτM1x(u).

By noticing that ‖M1P1A0x‖ ≤ ‖x‖, we can expand the second term above in the same
way. Repeating this by induction yields

‖Φn(Lτx)− Φn(x)‖ ≤
n∑
k=1
‖[PkAk−1, Lτ]‖‖x‖+ ‖AnLτ (MPA)n:1x−An(MPA)n:1x‖

≤
n∑
k=1
‖[PkAk−1, Lτ]‖‖x‖+ ‖AnLτ −An‖‖x‖,

and the result follows by decomposing AnLτ = [An, Lτ]+LτAn and applying the triangle
inequality.

2.C.4 Proof of Lemma 2.5

Proof. The proof follows in large parts the methodology introduced by Mallat (2012) in
the analysis of the stability of the scattering transform. More precisely, we will follow in
part the proof of Lemma E.1 of Mallat (2012). The kernel (in the sense of Lemma 2.A.1)
of Aσ is hσ(z−u) = σ−dh(z−uσ). Throughout the proof, we will use the following bounds

82

Chapter 2. Invariance, Deformation Stability, and Complexity

on the decay of h for simplicity, as in Mallat (2012):2

|h(u)| ≤ Ch
(1 + |u|)d+2

|∇h(u)| ≤ C ′h
(1 + |u|)d+2 ,

which are satisfied for the Gaussian function h thanks to its exponential decay.
We now decompose the commutator

[LcAσ, Lτ] = LcAσLτ − LτLcAσ = Lc(Aσ − L−1
c LτLcAσL

−1
τ)Lτ = LcTLτ ,

with T := Aσ − L−1
c LτLcAσL

−1
τ . Hence,

‖[LcAσ, Lτ]‖ ≤ ‖Lc‖‖Lτ‖‖T‖.

We have ‖Lc‖ = 1 since the translation operator Lc preserves the norm. Note that we
have

2−d ≤ (1− ‖∇τ‖∞)d ≤ det(I −∇τ(u)) ≤ (1 + ‖∇τ‖∞)d ≤ 2d, (2.23)
for all u ∈ Rd. Thus, for f ∈ L2(Rd),

‖Lτf‖2 =
∫
Rd
|f(z − τ(z))|2dz =

∫
Rd
|f(u)|2 det(I −∇τ(u))−1du

≤ (1− ‖∇τ‖∞)−d‖f‖2,

such that ‖Lτ‖ ≤ (1− ‖∇τ‖∞)−d/2 ≤ 2d/2. This yields

‖[LcAσ, Lτ]‖ ≤ 2d/2‖T‖.

Kernel of T . We now show that T is an integral operator and describe its kernel. Let
ξ = (I − τ)−1, so that L−1

τ f(z) = f(ξ(z)) for any function f in L2(Rd). We have

AσL
−1
τ f(z) =

∫
hσ(z − v)f(ξ(v))dv

=
∫
hσ(z − u+ τ(u))f(u) det(I −∇τ(u)), du

using the change of variable v = u− τ(u), giving
∣∣∣ dvdu ∣∣∣ = det(I −∇τ(u)). Then note that

L−1
c LτLcf(z) = LτLcf(z+ c) = Lcf(z+ c− τ(z+ c)) = f(z− τ(z+ c)). This yields the

following kernel for the operator T :

k(z, u) = hσ(z − u)− hσ(z − τ(z + c)− u+ τ(u)) det(I −∇τ(u)). (2.24)

A similar operator appears in Lemma E.1 of Mallat (2012), whose kernel is identical
to (2.24) when c = 0.

Like Mallat (2012), we decompose T = T1 + T2, with kernels

k1(z, u) = hσ(z − u)− hσ((I −∇τ(u))(z − u)) det(I −∇τ(u))
k2(z, u) = det(I −∇τ(u)) (hσ((I −∇τ(u))(z − u))− hσ(z − τ(z + c)− u+ τ(u))) .

The kernel k1(z, u) appears in (Mallat, 2012), whereas the kernel k2(z, u) involves a
shift c which is not present in (Mallat, 2012). For completeness, we include the proof
of the bound for both operators, even though only dealing with k2 requires slightly new
developments.

2Note that a more precise analysis may be obtained by using finer decay bounds.

83

2.C. Proofs of Recovery and Stability Results

Bound on ‖T1‖. We can write k1(z, u) = σ−dg(u, (z − u)/σ) with

g(u, v) = h(v)− h((I −∇τ(u))v) det(I −∇τ(u))
= (1− det(I −∇τ(u)))h((I −∇τ(u))v) + h(v)− h((I −∇τ(u))v).

Using the fundamental theorem of calculus on h, we have

h(v)− h((I −∇τ(u))v) =
∫ 1

0
〈∇h((I + (t− 1)∇τ(u))v),∇τ(u)v〉dt.

Noticing that
|(I + (t− 1)∇τ(u))v| ≥ (1− ‖∇τ‖∞)|v| ≥ (1/2)|v|,

and that det(I−∇τ(u))) ≥ (1−‖∇τ‖∞)d ≥ 1−d‖∇τ‖∞, we bound each term as follows

|(1− det(I −∇τ(u)))h((I −∇τ(u))v)| ≤ d‖∇τ‖∞
Ch

(1 + 1
2 |v|)d+2∣∣∣∣∫ 1

0
〈∇h((I + (t− 1)∇τ(u))v),∇τ(u)v〉dt

∣∣∣∣ ≤ ‖∇τ‖∞ C ′h|v|
(1 + 1

2 |v|)d+2 .

We thus have
|g(u, v)| ≤ ‖∇τ‖∞

Chd+ C ′h|v|
(1 + 1

2 |v|)d+2 .

Using appropriate changes of variables in order to bound
∫
|k1(z, u)|du and

∫
|k1(z, u)|dz,

Schur’s test yields
‖T1‖ ≤ C1‖∇τ‖∞, (2.25)

with
C1 =

∫
Rd

Chd+ C ′h|v|
(1 + 1

2 |v|)d+2dv

Bound on ‖T2‖. Let α(z, u) = τ(z+ c)− τ(u)−∇τ(u)(z− u), and note that we have

|α(z, u)| ≤ |τ(z + c)− τ(u)|+ |∇τ(u)(z − u)|
≤ ‖∇τ‖∞|z + c− u|+ ‖∇τ‖∞|z − u|
≤ ‖∇τ‖∞(|c|+ 2|z − u|). (2.26)

The fundamental theorem of calculus yields

k2(z, u) = −det(I −∇τ(u))
∫ 1

0
〈∇hσ(z − τ(z + c)− u+ τ(u)− tα(z, u)), α(z, u)〉dt.

We note that |det(I − ∇τ(u))| ≤ 2d, and ∇hσ(v) = σ−d−1∇h(v/σ). Using the change
of variable z′ = (z − u)/σ, we obtain∫
|k2(z, u)|dz

≤ 2d
∫ ∫ 1

0

∣∣∣∣∇h(z′ + τ(u+ σz′ + c)− τ(u)− tα(u+ σz′, u)
σ

)∣∣∣∣ ∣∣∣∣α(u+ σz′, u)
σ

∣∣∣∣ dtdz′.
84

Chapter 2. Invariance, Deformation Stability, and Complexity

We can use the upper bound (2.26), together with our assumption |c| ≤ κσ:∣∣∣∣α(u+ σz′, u)
σ

∣∣∣∣ ≤ ‖∇τ‖∞(κ+ 2|z′|). (2.27)

Separately, we have |∇h(v(z′))| ≤ C ′h/(1 + |v(z′)|)d+2, with

v(z′) := z′ + τ(u+ σz′ + c)− τ(u)− tα(u+ σz′, u)
σ

.

For |z′| > 2κ, we have∣∣∣∣τ(u+ σz′ + c)− τ(u)− tα(u+ σz′, u)
σ

∣∣∣∣ =
∣∣∣∣t∇τ(u)z′ + (1− t)τ(u+ σz′ + c)− τ(u)

σ

∣∣∣∣
≤ t‖∇τ‖∞|z′|+ (1− t)‖∇τ‖∞(|z′|+ κ)

≤ 3
2‖∇τ‖∞|z

′| ≤ 3
4 |z
′|,

and hence, using the reverse triangle inequality, |v(z′)| ≥ |z′| − 3
4 |z
′| = 1

4 |z
′|. This yields

the upper bound

|∇h(v(z′))| ≤

C
′
h, if |z′| ≤ 2κ

C′h
(1+ 1

4 |z′|)d+2 , if |z′| > 2κ.
(2.28)

Combining these two bounds, we obtain∫
|k2(z, u)|dz ≤ C2‖∇τ‖∞,

with

C2 := 2dC ′h

(∫
|z′|<2κ

(κ+ 2|z′|)dz′ +
∫
|z′|>2κ

κ+ 2|z′|
(1 + 1

4 |z′|)d+2dz
′
)
.

Note that the dependence of the first integral on κ is of order kd+1. Following the same
steps with the change of variable u′ = (z − u)/σ, we obtain the bound

∫
|k2(z, u)|du ≤

C2‖∇τ‖∞. Schur’s test then yields

‖T2‖ ≤ C2‖∇τ‖∞. (2.29)

We have thus proven

‖[LcAσ, Lτ]‖ ≤ 2d/2‖T‖ ≤ 2d/2(C1 + C2)‖∇τ‖∞.

2.C.5 Discussion and Proof of Norm Preservation

We now state a result which shows that while the kernel representation may lose some of
the energy of the original signal, it preserves a part of it, ensuring that the stability bound
in Theorem 2.7 is non-trivial. We consider in this section the full kernel representation,
including a prediction layer, which is given by Φ(x) = ϕn+1(Φn(x)), where ϕn+1 is the

85

2.C. Proofs of Recovery and Stability Results

kernel feature map of either a Gaussian kernel (2.7) with α = 1, or a linear kernel (2.6).
In both cases, ϕn+1 is non-expansive, which yields

‖Φ(Lτx)− Φ(x)‖ ≤ ‖Φn(Lτx)− Φn(x)‖,

such that the stability result of Theorem 2.7 also applies to Φ. For the Gaussian case,
we trivially have a representation with norm 1, which trivially shows a preservation
of norm, while for the linear case, at least part of the signal energy is preserved, in
particular the energy in the low frequencies, which is predominant, for instance, in
natural images (Torralba and Oliva, 2003).

Lemma 2.15 (Norm preservation). For the two choices of prediction layers, Φ(x) sat-
isfies

‖Φ(x)‖ = 1 (Gaussian), ‖Φ(x)‖ ≥ ‖AnAn–1 . . . A0x‖ (Linear).

It follows that the representation Φ is not contractive:

sup
x,x′∈L2(Rd,H0)

‖Φ(x)− Φ(x′)‖
‖x− x′‖

= 1. (2.30)

Proof. We begin by studying ‖Φ(x)‖. The Gaussian case is trivial since the Gaussian
kernel mapping ϕn+1 maps all points to the sphere. In the linear case, we have

‖Φ(x)‖2 = ‖Φn(x)‖2 = ‖AnMnPnxn–1‖2

=
∫
‖AnMnPnxn–1(u)‖2du

=
∫
〈
∫
hσn(u− v)MnPnxn–1(v)dv,

∫
hσn(u− v′)MnPnxn–1(v′)dv′〉du

=
∫ ∫ ∫

hσn(u− v)hσn(u− v′)〈ϕn(Pnxn–1(v)), ϕn(Pnxn–1(v′))〉dvdv′du

≥
∫ ∫ ∫

hσn(u− v)hσn(u− v′)〈Pnxn–1(v), Pnxn–1(v′)〉dvdv′du

=
∫
‖AnPnxn–1(u)‖2du = ‖AnPnxn–1‖2,

where the inequality follows from 〈ϕn(z), ϕn(z′)〉 = Kn(z, z′) ≥ 〈z, z′〉 (see Lemma 2.1).
Using Fubini’s theorem and the fact that An commutes with translations, we have

‖AnPnxn–1‖2 =
∫
Sn
‖AnLvxn–1‖2dνn(v)

=
∫
Sn
‖LvAnxk–1‖2dνn(v)

=
∫
Sn
‖Anxk–1‖2dνn(v)

= ‖Anxn–1‖2,

where we used the fact that translations Lv preserve the norm. Note that we have

Anxn–1 = AnAn–1Mn–1Pn–1xn−2 = An,n–1Mn–1Pn–1xn−2,

86

Chapter 2. Invariance, Deformation Stability, and Complexity

where An,n–1 is an integral operator with positive kernel hσn ∗hσn–1 . Repeating the above
relation then yields

‖Φ(x)‖2 ≥ ‖Anxn–1‖2 ≥ ‖AnAn–1xn−1‖2 ≥ . . . ≥ ‖AnAn–1 . . . A0x‖2,

and the result follows.
We now show (2.30). By our assumptions on ϕn+1 and on the operators Ak,Mk, Pk,

we have that Φ is non-expansive, so that

sup
x,x′∈L2(Rd,H0)

‖Φ(x)− Φ(x′)‖
‖x− x′‖

≤ 1.

It then suffices to show that one can find x, x′ such that the norm ratio ‖Φ(x)−Φ(x′)‖
‖x−x′‖ is

arbitrarily close to 1. In particular, we begin by showing that for any signal x 6= 0 we
have

lim
λ→1

‖Φ(λx)− Φ(x)‖
‖λx− x‖

≥ ‖Aσx‖
‖x‖

, (2.31)

where Aσ is the pooling operator with scale σ = (σ2
n +σ2

n–1 + . . .+σ2
1)1/2, and the result

will follow by considering appropriate signals x that make this lower bound arbitrarily
close to 1.

Note that by homogeneity of the kernels maps ϕk (which follows from the homogene-
ity of kernelsKk), and by linearity of the operators Ak and Pk, we have Φn(λx) = λΦn(x)
for any λ ≥ 0. Taking λ > 0, we have

‖Φn(λx)− Φn(x)‖ = (λ− 1)‖Φn(x)‖ ≥ (λ− 1)‖AnAn–1 . . . A0x‖ = (λ− 1)‖Aσx‖,

adapting Lemma 2.15 to the representation Φn. Thus,

lim
λ→1

‖Φn(λx)− Φn(x)‖
‖λx− x‖

≥ ‖Aσx‖
‖x‖

.

When ϕn+1 is linear, we immediately obtain (2.31) since ‖Φ(λx)− Φ(x)‖ = ‖Φn(λx)−
Φn(x)‖. For the Gaussian case, we have

‖Φ(λx)− Φ(x)‖2 = 2− 2e−
1
2‖Φn(λx)−Φn(x)‖2

= 2− 2e−
1
2 (λ−1)2‖Φn(x)‖2

= (λ− 1)2‖Φn(x)‖2 + o((λ− 1)2)
= ‖Φn(λx)− Φn(x)‖2 + o((λ− 1)2),

which yields (2.31).
By considering a Gaussian signal with scale τ � σ, we can make ‖Aσx‖‖x‖ arbitrarily

close to 1 by taking an arbitrarily large τ . It follows that

sup
x

lim
λ→1

‖Φ(λx)− Φ(x)‖
‖λx− x‖

= 1,

which yields the result.

87

2.C. Proofs of Recovery and Stability Results

2.C.6 Proof of Lemma 2.9

Proof. We have

Px((u, η)) = (v ∈ S̃ 7→ x((u, η)(v, 0)))
= (v ∈ S̃ 7→ x((u+Rηv, η)))
= (v ∈ RηS̃ 7→ x((u+ v, η)))

Ax((u, η)) =
∫
R2
x((u, η)(v, 0))h(v)dv

=
∫
R2
x((u+Rηv, η))h(v)dv

=
∫
R2
x((v, η))h(R−η(v − u))dv

=
∫
R2
x((v, η))h(u− v)dv,

where the last equality uses the circular symmetry of a Gaussian around the origin.
For a diffeomorphism τ , we denote by Lτ the action operator given by Lτx((u, η)) =
x((τ(u), 0)−1(u, η)) = x((u − τ(u), η)). If we denote x(·, η) the L2(R2) signal obtained
from a signal x ∈ L2(G) at a fixed angle, we have shown

(Px)(·, η) = P̃η(x(·, η))
(Ax)(·, η) = Ã(x(·, η))

(Lτx)(·, η) = L̃τ (x(·, η)),

where P̃η, Ã, L̃τ are defined on L2(R2) as in Section 2.2, with a rotated patch RηS̃ for
P̃η. Then, we have, for a signal x ∈ L2(G),

‖[PA,Lτ]x‖2L2(G) =
∫
‖([PA,Lτ]x)(·, η)‖2L2(R2)dµc(η)

=
∫
‖[P̃ηÃ, L̃τ](x(·, η))‖2L2(R2)dµc(η)

≤
∫
‖[P̃ηÃ, L̃τ]‖2‖x(·, η)‖2L2(R2)dµc(η)

≤
(

sup
η
‖[P̃ηÃ, L̃τ]‖2

)
‖x‖2L2(G),

so that ‖[PA,Lτ]‖L2(G) ≤ supη ‖[P̃ηÃ, L̃τ]‖2L2(R2). Note that we have supc∈RηS̃ |c| =
supc∈S̃ |c| ≤ κσ, since rotations preserve the norm, so that we can bound each ‖[P̃ηÃ, L̃τ]‖
as in Section 2.3.1 to obtain the desired result. Similarly, ‖LτA − A‖ can be bounded
as in Section 2.3.1.

2.C.7 Proof of Theorem 2.10

Proof. First, note that Ac can be written as an integral operator

Acx(u) =
∫
x((v, η))k(u, (v, η))dµ((v, η)),

88

Chapter 2. Invariance, Deformation Stability, and Complexity

with k(u, (v, η)) = δu(v), where δ denotes the Dirac delta function. We have∫
|k(u, (v, η))|dµ((v, η)) =

∫
|k(u, (v, η))|du = 1.

By Schur’s test, we thus obtain ‖Ac‖ ≤ 1. Then, note that (τ(u), θ) = (0, θ)(R−θτ(u), 0),
so that L(τ,θ) = L(0,θ)Lτθ , where we write τθ(u) = R−θτ(u). Additionally, it is easy to
see that AcL(0,θ) = Ac. We have

‖AcΦn(L(τ,θ)x)−AcΦn(x)‖ = ‖AcΦn(L(0,θ)Lτθx)−AcΦn(x)‖
= ‖AcL(0,θ)Φn(Lτθx)−AcΦn(x)‖
= ‖AcΦn(Lτθx)−AcΦn(x)‖
≤ ‖Φn(Lτθx)− Φn(x)‖,

using the fact that the representation Φn is equivariant to roto-translations by construc-
tion.

We conclude by using Lemma 2.9 together with an adapted version of Proposition 2.4,
and by noticing that ‖∇τθ‖∞ = ‖∇τ‖∞ and ‖τθ‖∞ = ‖τ‖∞.

2.D Proofs Related to the Construction of CNNs in the
RKHS

2.D.1 Proof of Lemma 2.11

Proof. Here, we drop all indices k since there is no ambiguity. We will now characterize
the functional space H by following the same strategy as Zhang et al. (2016, 2017b)
for the non-homogeneous Gaussian and inverse polynomial kernels on Euclidean spaces.
Using the Maclaurin expansion of κ, we can define the following explicit feature map for
the dot-product kernel Kdp(z, z′) := κ(〈z, z′〉), for any z in the unit-ball of P:

ψdp(z) =
(√

b0,
√
b1z,

√
b2z ⊗ z,

√
b3z ⊗ z ⊗ z, . . .

)
=
(√

bjz
⊗j
)
j∈N

,
(2.32)

where z⊗j denotes the tensor product of order j of the vector z. Technically, the explicit
mapping lives in the Hilbert space ⊕nj=0⊗j P, where ⊕ denotes the direct sum of Hilbert
spaces, and with the abuse of notation that ⊗0P is simply R. Then, we have that
Kdp(z, z′) = 〈ψ(z), ψ(z′)〉 for all z, z′ in the unit ball of P. Similarly, we can construct
an explicit feature map for the homogeneous dot-product kernels (2.2):

ψhdp(z) =
(√

b0‖z‖,
√
b1z,

√
b2‖z‖−1z ⊗ z,

√
b3‖z‖−2z ⊗ z ⊗ z, . . .

)
=
(√

bj‖z‖1−jz⊗j
)
j∈N

.
(2.33)

From these mappings, we may now conclude the proof by following the same strategy
as Zhang et al. (2016, 2017b). By first considering the restriction of K to unit-norm
vectors z,

σ(〈w, z〉) =
+∞∑
j=0

aj〈w, z〉j =
+∞∑
j=0

aj〈w⊗j , z⊗j〉 = 〈w̄, ψ(z)〉,

89

2.D. Proofs Related to the Construction of CNNs in the RKHS

where

w̄ =
(
aj√
bj
w⊗j

)
j∈N

.

Then, the norm of w̄ is

‖w̄‖2 =
+∞∑
j=0

a2
j

bj
‖w⊗j‖2 =

+∞∑
j=0

a2
j

bj
‖w‖2j = C2

σ(‖w‖2) < +∞.

Using Theorem 2.A.1, we conclude that f is in the RKHS of K, with norm ‖f‖ ≤
Cσ(‖w‖2). Finally, we extend the result to non unit-norm vectors z with similar calcu-
lations and we obtain the desired result.

2.D.2 CNN construction and RKHS norm

In this section, we describe the space of functions (RKHS) HKn associated to the ker-
nel Kn(x0, x

′
0) = 〈xn, x′n〉 defined in (2.6), where xn, x′n are the final representations

given by Eq. (2.5), in particular showing it contains the set of CNNs with activations
described in Section 2.4.1.

Construction of a CNN in the RKHS.

Let us consider the definition of the CNN presented in Section 2.4. We will show that it
can be seen as a point in the RKHS of Kn. According to Lemma 2.11, we consider Hk
that contains all functions of the form z ∈ Pk 7→ ‖z‖σ(〈w, z〉/‖z‖), with w ∈ Pk.

We recall the intermediate quantities introduced in Section 2.4. That is, we define
the initial quantities f i1 ∈ H1, g

i
1 ∈ P1 for i = 1, . . . , p1 such that

gi1 = wi1 ∈ L2(S1,Rp0) = L2(S1,H0) = P1

f i1(z) = ‖z‖σ(〈g0
i , z〉/‖z‖) for z ∈ P1,

and we recursively define, from layer k–1, the quantities f ik ∈ Hk, gik ∈ Pk for i =
1, . . . , pk:

gik(v) =
pk–1∑
j=1

wijk (v)f jk–1 where wik(v) = (wijk (v))j=1,...,pk–1

f ik(z) = ‖z‖σ(〈gik, z〉/‖z‖) for z ∈ Pk.

Then, we will show that z̃ik(u) = f ik(Pkxk–1(u)) = 〈f ik,MkPkxk–1(u)〉, which corre-
spond to feature maps at layer k and index i in a CNN. Indeed, this is easy to see

90

Chapter 2. Invariance, Deformation Stability, and Complexity

for k = 1 by construction with filters wi1(v), and for k ≥ 2, we have

z̃ik(u) = nk(u)σ
(
〈wik, Pkzk–1(u)〉/nk(u)

)
= nk(u)σ

(
〈wik, PkAk–1z̃k–1(u)〉/nk(u)

)
= nk(u)σ

 1
nk(u)

pk–1∑
j=1

∫
Sk

wijk (v)Ak–1z̃
j
k–1(u+ v)dνk(v)

= nk(u)σ

 1
nk(u)

pk–1∑
j=1

∫
Sk

wijk (v)〈f jk–1, Ak–1Mk–1Pk–1xk–2(u+ v)〉dνk(v)

= nk(u)σ

(1
nk(u)

∫
Sk

〈gik(v), Ak–1Mk–1Pk–1xk–2(u+ v)〉dνk(v)
)

= nk(u)σ
(1
nk(u)

∫
Sk

〈gik(v), xk–1(u+ v)〉dνk(v)
)

= nk(u)σ
(1
nk(u)〈g

i
k(v), Pkxk–1(u)〉

)
= f ik(Pkxk–1(u)),

where nk(u) := ‖Pkxk–1(u)‖. Note that we have used many times the fact that Ak
operates on each channel independently when applied to a finite-dimensional map.

The final prediction function is of the form fσ(x0) = 〈wn+1, zn〉 with wn+1 in
L2(Rd,Rpn). Then, we can define the following function gσ in L2(Rd,Hn) such that

gσ(u) =
pn∑
j=1

wjn+1(u)f jn,

which yields

〈gσ, xn〉 =
pn∑
j=1

∫
Rd
wjn+1(u)〈f jn, xn(u)〉du

=
pn∑
j=1

∫
Rd
wjn+1(u)〈f jn, AnMnPnxn−1(u)〉du

=
pn∑
j=1

∫
Rd
wjn+1(u)Anz̃jn(u)du

=
pn∑
j=1

∫
Rd
wjn+1(u)zjn(u)du

=
pn∑
j=1
〈wjn+1, z

j
n〉 = fσ(x0),

which corresponds to a linear layer after pooling. Since the RKHS of Kn in the linear
case (2.6) contains all functions of the form f(x0) = 〈g, xn〉, for g in L2(Rd,Hn), we have
that fσ is in the RKHS.

91

2.D. Proofs Related to the Construction of CNNs in the RKHS

Proof of Proposition 2.13

Proof. As shown in Lemma 2.11, the norm of a function f : z ∈ Pk 7→ ‖z‖σ(〈w, z〉/‖z‖)
in Hk is bounded by Cσ(‖w‖2), where Cσ depends on the activation σ. We then have

‖f i1‖2 ≤ C2
σ(‖wi1‖22) where ‖wi1‖22 =

∫
S1
‖wi1(v)‖2dν1(v)

‖f ik‖2 ≤ C2
σ(‖gik‖2)

‖gik‖2 =
∫
Sk

‖
pk–1∑
j=1

wijk (v)f jk–1‖
2dνk(v)

≤ pk–1

pk–1∑
j=1

(∫
Sk

|wijk (v)|2dνk(v)
)
‖f jk–1‖

2

= pk–1

pk–1∑
j=1
‖wijk ‖

2
2‖f

j
k–1‖

2,

where in the last inequality we use ‖a1 + . . . + an‖2 ≤ n(‖a1‖2 + . . . + ‖an‖2). Since
C2
σ is monotonically increasing (typically exponentially in its argument), we have for

k = 1, . . . , n− 1 the recursive relation

‖f ik‖2 ≤ C2
σ

pk–1

pk–1∑
j=1
‖wijk ‖

2
2‖f

j
k–1‖

2

 .
The norm of the final prediction function f ∈ L2(Rd,Hn) is bounded as follows, using
similar arguments as well as Theorem 2.A.1:

‖fσ‖2 ≤ ‖gσ‖2 ≤ pn
pn∑
j=1

(∫
Rd
|wjn+1(u)|2du

)
‖f jn‖2.

This yields the desired result.

Proof of Proposition 2.14

Proof. Define

Fk = (f1
k , . . . , f

pk
k) ∈ Hpkk

Gk = (g1
k, . . . , g

pk
k) ∈ Ppkk

Wk(u) = (wijk (u))ij ∈ Rpk×pk–1 for u ∈ Sk.

We will write, by abuse of notation, Gk(u) = (g1
k(u), . . . , gpkk (u)) for u ∈ Sk, so that we

can write Gk(u) = Wk(u)Fk–1. In particular, we have ‖Gk(u)‖ ≤ ‖Wk(u)‖2‖Fk–1‖. This
can be seen by considering an orthonormal basis B ofHk, and defining real-valued vectors
Fwk = (〈w, f1

k 〉, . . . , 〈w, f
pk
k 〉), Gwk (u) = (〈w, g1

k(u)〉, . . . , 〈w, gpkk (u)〉) for w ∈ B. Indeed,
we have Gwk (u) = Wk(u)Fwk–1 and hence ‖Gwk (u)‖ ≤ ‖Wk(u)‖2‖Fwk–1‖ for all w ∈ B, and
we conclude using

‖Gk(u)‖2 =
∑
w∈B
‖Gwk (u)‖2 ≤ ‖Wk(u)‖22

∑
w∈B
‖Fwk–1‖2 = ‖Wk(u)‖22 ‖Fk–1‖2.

92

Chapter 2. Invariance, Deformation Stability, and Complexity

Then, we have

‖Gk‖2 =
∑
i

‖gik‖2 =
∑
i

∫
Sk

‖gik(u)‖2dνk(u) =
∫
Sk

‖Gk(u)‖2dνk(u)

≤
∫
Sk

‖Wk(u)‖22 ‖Fk–1‖2νk(u) = ‖Wk‖22 ‖Fk–1‖2.

Separately, we notice that C2
σ is super-additive, i.e.,

C2
σ(λ2

1 + . . .+ λ2
n) ≥ C2

σ(λ2
1) + . . .+ C2

σ(λ2
n).

Indeed, this follows from the definition of C2
σ, noting that polynomials with non-negative

coefficients are super-additive on non-negative numbers. Thus, we have

‖F1‖2 =
p1∑
i=1
‖f i1‖2 ≤

p1∑
i=1

C2
σ(‖wi1‖2) ≤ C2

σ(‖W1‖2F)

‖Fk‖2 ≤
pk∑
i=1

C2
σ(‖gik‖2) ≤ C2

σ(‖Gk‖2), for k = 2, . . . , n.

Finally, note that

‖gσ(u)‖2 ≤

 pn∑
j=1
|wjn+1(u)|‖f jn‖

2

≤ ‖wn+1(u)‖2‖Fn‖2,

by using Cauchy-Schwarz, so that ‖gσ‖2 ≤ ‖wn+1‖2‖Fn‖2. Thus, combining the previous
relations yields

‖fσ‖2 ≤ ‖gσ‖2 ≤ ‖wn+1‖2 C2
σ(‖Wn‖22 C2

σ(‖Wn−1‖22 . . . C2
σ(‖W1‖2F) . . .)),

which is the desired result.

93

Chapter 3

A Kernel Perspective on
Regularization and Robustness of
Deep Neural Networks

We propose a new point of view for regularizing deep neural networks by using the norm
of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be com-
puted, it admits upper and lower approximations leading to various practical strategies.
Specifically, this perspective (i) provides a common umbrella for many existing regular-
ization principles, including spectral norm and gradient penalties, or adversarial train-
ing, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies
combining lower and upper bounds to get better approximations of the RKHS norm.
We experimentally show this approach to be effective when learning on small datasets,
or to obtain adversarially robust models. In particular, some of our approaches lead to
state-of-the-art performance for robustness to `2 perturbations on the CIFAR10 dataset.

This chapter is based on the following paper:
A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regu-

larizing deep neural networks. In Proceedings of the International Conference on
Machine Learning (ICML), 2019

The thesis author and G. Mialon are joint first authors on the paper. The thesis
author focused on lower bound approaches and theoretical insights based on kernel
methods, while G. Mialon focused on the upper bound approaches based on spectral
norms. D. Chen worked on the applications to protein homology detection.

3.1 Introduction
Learning predictive models for complex tasks often requires large amounts of annotated
data. For instance, convolutional neural networks are huge-dimensional and typically
involve more parameters than training samples, which raises several challenges: achieving
good generalization with small datasets is indeed difficult, which limits the deployment
of such deep models to many tasks where labeled data is scarce, e.g., in biology (Ching
et al., 2018). Besides, imperceptible adversarial perturbations can significantly degrade
the prediction quality (Szegedy et al., 2014; Biggio and Roli, 2018). These issues raise the

94

Chapter 3. Regularization and Robustness

question of regularization as an essential tool to control the complexity of deep models,
as well as their stability to small variations of their inputs.

In this chapter, we present a new perspective on regularization of deep networks,
by viewing convolutional neural networks (CNNs) as elements of a RKHS following the
work of Bietti and Mairal (2019a) on deep convolutional kernels. For such kernels,
the RKHS contains indeed deep convolutional networks similar to generic ones—up to
smooth approximations of rectified linear units. Such a point of view provides a natural
regularization function, the RKHS norm, which allows us to control the variations of
the predictive model and to limit its complexity for better generalization. Besides, the
norm also acts as a Lipschitz constant, which provides a direct control on the stability
to adversarial perturbations.

In contrast to traditional kernel methods, the RKHS norm cannot be explicitly com-
puted in our setup. Yet, this norm admits numerous approximations—lower bounds
and upper bounds—which lead to many strategies for regularization based on penalties,
constraints, or combinations thereof. Depending on the chosen approximation, we re-
cover then many existing principles such as spectral norm regularization (Cisse et al.,
2017; Yoshida and Miyato, 2017; Miyato et al., 2018a; Sedghi et al., 2019), gradient
penalties and double backpropagation (Drucker and Le Cun, 1991; Simon-Gabriel et al.,
2019; Gulrajani et al., 2017; Roth et al., 2017, 2018; Arbel et al., 2018), adversarial
training (Madry et al., 2018), and we also draw links with tangent propagation (Simard
et al., 1998). For all these principles, we provide a unified viewpoint and theoretical
insights, and we also introduce new variants, which we show are effective in practice
when learning with few labeled data, or in the presence of adversarial perturbations.

Moreover, regularization and robustness are tightly linked in our kernel framework.
Specifically, some lower bounds on the RKHS norm lead to robust optimization objectives
with worst-case `2 perturbations; further, we can extend margin-based generalization
bounds in the spirit of Bartlett et al. (2017); Boucheron et al. (2005) to the setting of
adversarially robust generalization (see Schmidt et al., 2018), where an adversary can
perturb test data. We also discuss connections between recent regularization strategies
for training generative adversarial networks and approaches to generative modeling based
on kernel two-sample tests (MMD) (Dziugaite et al., 2015; Li et al., 2017; Bińkowski
et al., 2018).

Summary of the contributions.
• We introduce an RKHS perspective for regularizing deep neural networks models
which provides a unified view on various practical regularization principles, together
with theoretical insight and guarantees;
• By considering lower bounds to the RKHS norm, we obtain new penalties based
on adversarial perturbations, adversarial deformations, or gradient norms of prediction
functions, which we show to be effective in practice;
• Our RKHS point of view suggests combined strategies based on both upper and lower
bounds, which we show often perform empirically best in the context of generalization
from small image and biological datasets, by providing a tighter control of the RKHS
norm.

95

3.2. Regularization of Deep Neural Networks

Related work. The construction of hierarchical kernels and the study of neural net-
works in the corresponding RKHS was studied by Mairal (2016); Zhang et al. (2016,
2017b); Bietti and Mairal (2019a). Some of the regularization strategies we obtain
from our kernel perspective are variants of previous approaches to adversarial robust-
ness (Cisse et al., 2017; Madry et al., 2018; Simon-Gabriel et al., 2019; Roth et al.,
2018), to improving generalization (Drucker and Le Cun, 1991; Miyato et al., 2018b;
Sedghi et al., 2019; Simard et al., 1998; Yoshida and Miyato, 2017), and stable training
of generative adversarial networks (Roth et al., 2017; Gulrajani et al., 2017; Arbel et al.,
2018; Miyato et al., 2018a). The link between robust optimization and regularization
was studied by Xu et al. (2009a,b), focusing mainly on linear models with quadratic or
hinge losses. The notion of adversarial generalization was considered by Schmidt et al.
(2018), who provide lower bounds on a particular data distribution. Sinha et al. (2018)
provide generalization guarantees in the different setting of distributional robustness;
compared to our bound, they consider expected loss instead of classification error, and
their bounds do not highlight the dependence on the model complexity.

3.2 Regularization of Deep Neural Networks

In this section, we recall the kernel perspective on deep networks introduced in Chapter 2,
and present upper and lower bounds on the RKHS norm of a given model, leading to
various regularization strategies. For simplicity, we first consider real-valued networks
and binary classification, before discussing multi-class extensions.

3.2.1 Relation between deep networks and RKHSs

Kernel methods consist of mapping data living in a set X to a RKHS H associated to
a positive definite kernel K through a mapping function Φ : X → H, and then learn-
ing simple machine learning models in H. Specifically, when considering a real-valued
regression or binary classification problem, classical kernel methods find a prediction
function f : X → R living in the RKHS which can be written in linear form, i.e., such
that f(x) = 〈f,Φ(x)〉H for all x in X . While explicit mapping to a possibly infinite-
dimensional space is of course only an abstract mathematical operation, learning f can
be done implicitly by computing kernel evaluations and typically by using convex pro-
gramming (Schölkopf and Smola, 2001).

Moreover, the RKHS norm ‖f‖H acts as a natural regularization function, which
controls the variations of model predictions according to the geometry induced by Φ:

|f(x)− f(x′)| ≤ ‖f‖H · ‖Φ(x)− Φ(x′)‖H. (3.1)

Unfortunately, our setup does not allow us to use the RKHS norm in a traditional way
since evaluating the kernel is intractable. Instead, we propose a different approach that
considers explicit parameterized representations of functions contained in the RKHS,
given by generic CNNs, and leverage properties of the RKHS and the kernel mapping in
order to regularize when learning the network parameters.

Consider indeed a real-valued deep convolutional network f : X → R, where X is
simply Rd, with rectified linear unit (ReLU) activations and no bias units. By construct-
ing an appropriate multi-layer hierarchical kernel, Bietti and Mairal (2019a) show that

96

Chapter 3. Regularization and Robustness

the corresponding RKHS H contains a CNN with the same architecture and parame-
ters as f , but with activations that are smooth approximations of ReLU. Although the
model predictions might not be strictly equal, we will abuse notation and denote this
approximation with smooth ReLU by f as well, with the hope that the regularization
procedures derived from the RKHS model will be effective in practice on the original
CNN f .

Besides, the mapping Φ(·) is shown to be non-expansive:

‖Φ(x)− Φ(x′)‖H ≤ ‖x− x′‖2, (3.2)

so that controlling ‖f‖H provides some robustness to additive `2-perturbations, by (3.1).
Additionally, with appropriate pooling operations, Bietti and Mairal (2019a) show that
the kernel mapping is also stable to deformations, meaning that the RKHS norm also
controls robustness to translations and other transformations including scaling and ro-
tations, which can be seen as deformations when they are small.

In contrast to standard kernel methods, where the RKHS norm is typically available
in closed form, this norm is difficult to compute in our setup, and requires approxi-
mations. The following sections present upper and lower bounds on ‖f‖H, with linear
convolutional operations denoted by Wk for k = 1, . . . , L, where L is the number of
layers. Defining θ := {Wk : k = 1, . . . , L}, we then leverage these bounds to approxi-
mately solve the following penalized or constrained optimization problems on a training
set (xi, yi), i = 1, . . . , n:

min
θ

1
n

n∑
i=1

`(yi, fθ(xi)) + λ‖fθ‖2H or (3.3)

min
θ:‖fθ‖H≤C

1
n

n∑
i=1

`(yi, fθ(xi)). (3.4)

We also note that while the construction of Bietti and Mairal (2019a) considers VGG-
like networks (Simonyan and Zisserman, 2014), the regularization algorithms we obtain
in practice can be easily adapted to different architectures such as residual networks (He
et al., 2016).

3.2.2 Exploiting lower bounds of the RKHS norm

In this section, we devise regularization algorithms by leveraging lower bounds on ‖f‖H,
obtained by relying on the following variational characterization of Hilbert norms:

‖f‖H = sup
‖u‖H≤1

〈f, u〉H.

At first sight, this definition is not useful since the set U = {u ∈ H : ‖u‖H ≤ 1} may
be infinite-dimensional and the inner products 〈f, u〉H cannot be computed in general.
Thus, we devise tractable lower bound approximations by considering smaller sets Ū
such that Ū ⊂ U .

97

3.2. Regularization of Deep Neural Networks

Adversarial perturbation penalty. Thanks to the non-expansiveness of Φ, we can
consider the subset Ū ⊂ U defined as Ū = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}, leading
to the bound

‖f‖H ≥ ‖f‖2δ := sup
x∈X ,‖δ‖2≤1

f(x+ δ)− f(x), (3.5)

which is reminiscent of adversarial perturbations. Adding a regularization parameter
ε > 0 in front of the norm then corresponds to different sizes of perturbations:

ε‖f‖H = sup
‖u‖H≤ε

〈f, u〉H ≥ sup
x∈X ,‖δ‖2≤ε

f(x+ δ)− f(x). (3.6)

Using this lower bound or its square as a penalty in the objective (3.3) when training a
CNN provides a way to regularize. Optimizing over adversarial perturbations has been
useful to obtain robust models (e.g., the PGD method of Madry et al., 2018); yet our
approach differs in two important ways:

(i) it involves a penalty that is decoupled from the loss term such that in principle, our
penalty could be used beyond the supervised empirical risk paradigm. In contrast, PGD
optimizes the robust formulation (3.7) below, which fits training data while considering
perturbations on the loss.

(ii) our penalty involves a global maximization problem on the input space X , as
opposed to only maximizing on perturbations near training data. In practice, optimiz-
ing over X is however difficult and instead, we replace X by random mini-batches of
examples, yielding further lower bounds on the RKHS norm. These examples may be
labeled or not, in contrast to PGD that perturb labeled examples only. When using such
a mini-batch, a gradient of the penalty can be obtained by first finding maximizers x̂, δ̂
(where x̂ is an element of the mini-batch and δ̂ is a perturbation), and then computing
gradients of fθ(x̂+ δ̂)− fθ(x̂) with respect to θ by using back-propagation. In practice,
we compute the perturbations δ for each example x by using a few steps of projected
gradient ascent with constant step-lengths.

Robust optimization yields another lower bound. In some contexts, our penal-
ized approach is related to solving the robust optimization problem

min
θ

1
n

n∑
i=1

sup
‖δ‖2≤ε

`(yi, fθ(xi + δ)), (3.7)

which is commonly considered for training adversarially robust classifiers (Wong and
Kolter, 2018; Madry et al., 2018; Raghunathan et al., 2018). In particular, Xu et al.
(2009b) show that the penalized and robust objectives are equivalent in the case of the
hinge loss with linear predictors, when the data is non-separable. They also show the
equivalence for kernel methods when considering the (intractable) full perturbation set U
around each point in the RKHS Φ(xi), that is, predictions 〈f,Φ(xi) + u〉H with u in U .
Intuitively, when a training example (xi, yi) is misclassified, we are in the “linear” part
of the hinge loss, such that

sup
‖u‖H≤ε

`(yi, 〈f,Φ(xi) + u〉H) = `(yi, f(xi)) + ε‖f‖H.

For other losses such as the logistic loss, a regularization effect is still present even for
correctly classified examples, though it may be smaller since the loss has a reduced

98

Chapter 3. Regularization and Robustness

slope for such points. This leads to an adaptive regularization mechanism that may
automatically reduce the amount of regularization when the data is easily separable.
However, the robust optimization approach might only encourage local stability around
training examples, while the global quantity ‖f‖H may become large in order to better
fit the data. We note that a perfect fit of the data with large complexity does not prevent
generalization (see, e.g., Belkin et al., 2018a,b); yet, such mechanisms are still poorly
understood. Nevertheless, it is easy to show that the robust objective (3.7) lower bounds
the penalized objective with penalty ε‖f‖H.

Gradient penalties. Taking Ū = {Φ(x)−Φ(y)
‖x−y‖2 : x, y ∈ X}, which is a subset of U by

Eq. (3.2)—it turns out that this is the same set as for adversarial perturbation penalties,
since Φ is homogeneous (Bietti and Mairal, 2019a) and X = Rd—we obtain a lower bound
based on the Lipschitz constant of f :

‖f‖H ≥ sup
x,y∈X

f(x)− f(y)
‖x− y‖2

≥ ‖∇f‖ := sup
x∈X
‖∇f(x)‖2, (3.8)

where the second inequality becomes an equality when X is convex, and the supremum
is taken over points where f is differentiable. Although we are unaware of previous
work using this exact lower bound for a generic regularization penalty, we note that
variants replacing the supremum over x by an expectation over data have been recently
used to stabilize the training of generative adversarial networks (Gulrajani et al., 2017;
Roth et al., 2017), and we provide insights in Section 3.3.2 on the benefits of RKHS
regularization in such a setting. Related penalties have been considered in the context
of robust optimization, for regularization or robustness, noting that a penalty based on
the gradient of the loss function x 7→ `(y, f(x)) can give a good approximation of (3.7)
when ε is small (Drucker and Le Cun, 1991; Lyu et al., 2015; Roth et al., 2018; Simon-
Gabriel et al., 2019).

Penalties based on deformation stability. We may also obtain new penalties by
considering more exotic sets Ū = {Φ(x̃)−Φ(x) : x ∈ X , x̃ is a small deformation of x},
where the amount of deformation is dictated by the stability bounds of Chapter 2 in
order to ensure that Ū ⊂ U . More precisely, such bounds depend on the maximum
displacement and Jacobian norm of the diffeomorphisms considered. These can be eas-
ily computed for various parameterized families of transformations, such as translations,
scaling or rotations, leading to simple ways to control the regularization strength through
the parameters of these transformations. One can also consider infinitesimal deforma-
tions from such parameterized transformations, which approximately yields the tangent
propagation regularization strategy of Simard et al. (1998). These approaches are further
detailed in Section 3.2.5 below. If instead we consider the robust optimization formula-
tion (3.7), we obtain a form of data augmentation where transformations are optimized
instead of sampled, as done by (Engstrom et al., 2019).

Extensions to multiple classes. We now extend the regularization strategies based
on lower bounds to multi-valued networks, in order to deal with multiple classes. For
that purpose, we consider a multi-class penalty ‖f1‖2H + . . .+ ‖fK‖2H for an RK-valued

99

3.2. Regularization of Deep Neural Networks

function f = (f1, f2, . . . , fK), and we define

‖f‖2δ :=
K∑
k=1
‖fk‖2δ and ‖∇f‖2 :=

K∑
k=1
‖∇fk‖2,

where ‖fk‖δ is the adversarial penalty (3.5), and ‖∇fk‖ is defined in (3.8). For defor-
mation stability penalties, we proceed in a similar manner, and for robust optimization
formulations (3.7), the extension is straightforward, given that multi-class losses such as
cross-entropy can be directly optimized in an adversarial training or gradient penalty
setup.

3.2.3 Exploiting upper bounds with spectral norms

Instead of lower bounds, one may use instead the following upper bound from Bietti and
Mairal (2019a, Proposition 14):

‖f‖H ≤ ω(‖W1‖, . . . , ‖WL‖), (3.9)

where ω is increasing in all of its arguments, and ‖Wk‖ is the spectral norm of the
linear operator Wk. Here, we simply consider the spectral norm on the filters, given
by ‖W‖ := sup‖x‖2≤1 ‖Wx‖2. Other generalization bounds relying on similar quantities
have been proposed for controlling complexity (Bartlett et al., 2017; Neyshabur et al.,
2018), suggesting that using them for regularization is relevant even beyond our kernel
perspective, as observed by Cisse et al. (2017); Sedghi et al. (2019); Yoshida and Miyato
(2017). Extensions to multiple classes are simple to obtain by simply considering spectral
norms up to the last layer.

Penalizing the spectral norms. One way to control the upper bound (3.9) when
learning a neural network fθ is to consider a regularization penalty based on spectral
norms

min
θ

1
n

n∑
i=1

`(yi, fθ(xi)) + λ
L∑
l=1
‖Wl‖2, (3.10)

where λ is a regularization parameter. To optimize this cost, one can obtain (sub)gradients
of the penalty by computing singular vectors associated to the largest singular value of
each Wl. We consider the method of Yoshida and Miyato (2017), which computes such
singular vectors approximately using one or two iterations of the power method, as well
as a more costly approach using the full SVD.

Constraining the spectral norms with a continuation approach. In the con-
strained setting, we want to optimize:

min
θ

1
n

n∑
i=1

`(yi, fθ(xi)) s.t. ‖Wl‖ ≤ τ ; l ∈ 1, . . . , L ,

where τ is a user-defined constraint. This objective may be optimized by projecting
each Wl in the spectral norm ball of radius τ after each gradient step. Such a projection
is achieved by truncating the singular values to be smaller than τ . We found that the

100

Chapter 3. Regularization and Robustness

loss was hardly optimized with this approach, and therefore introduce a continuation
approach with an exponentially decaying schedule for τ reaching a constant τ0 after a
few epochs, which we found to be important for good empirical performance. More
precisely, at epoch e we take

τ = τ0(1 + exp(−e/κ)),

and take κ to be 2 epochs for regularization, and 50 epochs for robustness. In the
context of convolutional networks, we simply consider the singular values of a reshaped
filter matrix, but we note that alternative approaches based on the singular values of
the full convolutional operation may also be used (Sedghi et al., 2019).

3.2.4 Combining upper and lower bounds

One advantage of lower bound penalties is that they are independent of the model
parameterization, making them flexible enough to use with more complex architectures.
In addition, the connection with robust optimization can provide a useful mechanism for
adaptive regularization. However, they do not provide a guaranteed control on the RKHS
norm, unlike the upper bound strategies. This is particularly true for robust optimization
approaches, which may favor small training loss and local stability over global stability
through ‖f‖H. Nevertheless, we observed that our new approaches based on separate
penalties sometimes do help in controlling upper bounds as well (see Section 3.4).

While these upper bound strategies are useful for limiting model complexity, we found
them empirically less effective for robustness (see Section 3.4.2). However, we observed
that combining with lower bound approaches can overcome this weakness, perhaps due to
a better control of local stability. In particular, such combined approaches often provide
the best generalization performance in small data scenarios, as well as better guarantees
on adversarially robust generalization thanks to a tighter control of the RKHS norm.

3.2.5 Deformation stability penalties

This section provides more details on the deformation stability penalties mentioned in
Section 3.2.2, and the practical versions we use in our experiments of Section 3.4 on the
Infinite MNIST dataset (Loosli et al., 2007).

Stability to deformations. We begin by providing some background on deformation
stability, recalling that these can provide new lower bound penalties as explained in
Section 3.2.2. Viewing an element x ∈ X as a signal x(u), where u denotes the location
(e.g. a two-dimensional vector for images), we denote by xτ a deformed version of x
given by xτ (u) = x(u − τ(u)), where τ is a diffeomorphism. The deformation stability
bounds derived in Chapter 2 take the form:

‖Φ(xτ)− Φ(x)‖H ≤ (C1‖τ‖∞ + C2‖∇τ‖∞)‖x‖, (3.11)

where ∇τ(u) is the Jacobian of τ at location u. Here, C1 controls translation invariance
and typically decreases with the total amount of pooling (i.e., translation invariance
more or less corresponds to the resolution at the final layer), while C2 controls stability
to deformations (note that ∇τ = 0 for translations) and is typically smaller when using

101

3.2. Regularization of Deep Neural Networks

small patches. We note that the bounds assume linear pooling layers with a certain spa-
tial decay, adapted to the resolution of the current layer; our experiments in Section 3.4
on Infinite MNIST with deformation stability penalties thus use average pooling layers
on 2x2 neighborhoods.

Adversarial deformation penalty. We can obtain lower bound penalties by ex-
ploiting the above stability bounds in a similar manner to the adversarial perturbation
penalty introduced in Section 3.2.2. In particular, assuming a scalar-valued convolutional
network f :

‖f‖2τ := sup
x∈X ,τ∈T

(f(xτ)− f(x))2 (3.12)

where T is a collection of diffeomorphisms. When the diffeomorphisms in T have
bounded norm ‖τ‖∞ and Jacobian norm ‖∇τ‖∞, and assuming X (or, in practice,
the training data) is bounded, the stability bound (3.11) ensures that the set UT =
{Φ(xτ) − Φ(x) : x ∈ X , τ ∈ T } is included in an RKHS ball with some radius r, so
that ‖f‖τ is a lower bound on r‖f‖H.

Tangent gradient penalty. We also consider the following gradient penalty along
tangent vectors, which provides an approximation of the above adversarial penalty when
considering small, parameterized deformations, and recovers the tangent propagation
strategy of Simard et al. (1998):

‖Dτf‖2 := sup
x∈X
‖∂αf(x+

∑
i

αitx,i)‖2, (3.13)

where {tx,i}i=1,...,q are tangent vectors at x obtained from a given set of deformations.
To see the link with the adversarial deformation penalty (3.12), consider for simplicity
a single deformation, T = {τ0}. For small α, we have

xατ0 ≈ x+ αtx, where tx(u) = τ0(u) · ∇x(u),

where tx denotes the tangent vector of the deformation manifold {ατ0 : α} at α =
0 (Simard et al., 1998). Then,

f(xατ0)− f(x) ≈ α∂αf(x+ αtx) = α〈∇f(x), tx〉.

In this case, denoting αT = {ατ0}, we have

sup
x∈X ,τ∈αT

(f(xτ)− f(x))2 ≈ α2 sup
x∈X
|∂αf(x+ αtx)|2,

so that when α is small, the adversarial penalty can be approximated by α‖Dτf‖ (note
that using αT instead of T in the adversarial penalty would also yield a scaling by α,
since the stability bounds imply α times smaller perturbations in the RKHS).

Practical implementations on Infinite MNIST. In our experiments on Infinite
MNIST in Section 3.4, we compute ‖f‖2τ by considering 32 random transformations of
each digit in a mini-batch of training examples, and taking the maximum over both the
example and the transformation. We do this separately for each class, as for the other
lower bound penalties ‖f‖2δ and ‖∇f‖2. For ‖Dτf‖2, we take {tx,i}i=1,...,q with q = 30
to be tangent vectors given by random diffeomorphisms from Infinite MNIST around
each example x.

102

Chapter 3. Regularization and Robustness

3.2.6 Extensions to Non-Euclidian Geometries

The kernel approach from previous sections is well-suited for input spaces X equipped
with the Euclidian distance, thanks to the non-expansiveness property (3.2) of the kernel
mapping. In the case of linear models, this kernel approach corresponds to using `2-
regularization by taking a linear kernel. However, other forms of regularization and
geometries can often be useful, for example to encourage sparsity with an `1 regularizer.
Such a regularization approach presents tight links with robustness to `∞ perturbations
on input data, thanks to the duality relation ‖w‖1 = sup‖u‖∞〈w, u〉 (see Xu et al., 2009a).

In the context of deep networks, we can leverage such insights to obtain new regu-
larizers, expressed in the same variational form as the lower bounds in Section 3.2.2, but
with different geometries on X . For `∞ perturbations, we obtain

sup
x,y∈X

f(x)− f(y)
‖x− y‖∞

≥ sup
x∈X
‖∇f(x)‖1. (3.14)

The Lipschitz regularizer (l.h.s.) can also be taken in an adversarial perturbation form,
with `∞-bounded perturbations ‖δ‖∞ ≤ ε. When considering the corresponding robust
optimization problem

min
θ

1
n

n∑
i=1

sup
‖δ‖∞≤ε

`(yi, fθ(xi + δ)), (3.15)

we may consider the PGD approach of Madry et al. (2018), or the associated gradient
penalty approach with the `1 norm, which is a good approximation when ε is small (Lyu
et al., 2015; Simon-Gabriel et al., 2019).

As most visible in the gradient `1-norm in (3.14), these penalties encourage some
sparsity in the gradients of f , which is a reasonable prior for regularization on images,
for instance, where we might only want predictions to change based on few salient pixel
regions. This can lead to gains in interpretability, as observed by Tsipras et al. (2019).

3.3 Theoretical Guarantees and Insights
In this section, we study how the kernel perspective allows us to extend standard margin-
based generalization bounds to an adversarial setting in order to provide theoretical guar-
antees on adversarially robust generalization. We then discuss how our kernel approach
provides novel interpretations for training generative adversarial networks.

3.3.1 Guarantees on adversarial generalization

While various methods have been introduced to empirically gain robustness to adver-
sarial perturbations, the ability to generalize with such perturbations, also known as
adversarial generalization (Schmidt et al., 2018), still lacks theoretical understanding.
Margin-based bounds have been useful to explain the generalization behavior of learning
algorithms that can fit the training data well, such as kernel methods, boosting and
neural networks (Koltchinskii and Panchenko, 2002; Boucheron et al., 2005; Bartlett
et al., 2017). Here, we show how such arguments can be adapted to obtain guarantees
on adversarial generalization, i.e., on the expected classification error in the presence of
an `2-bounded adversary, based on the RKHS norm of a learned model. For a binary

103

3.3. Theoretical Guarantees and Insights

classification task with labels in Y = {−1, 1} and data distribution D, we would like to
bound the expected adversarial error of a classifier f , given for some ε > 0 by

errD(f, ε) := P(x,y)∼D(∃‖δ‖2 ≤ ε : yf(x+ δ) < 0). (3.16)

Leveraging the fact that f is ‖f‖H-Lipschitz, we now show how to further bound this
quantity using empirical margins, following the usual approach to obtaining margin
bounds for kernel methods (e.g., Boucheron et al., 2005). Consider a training dataset
(x1, y1), . . . , (xn, yn) ∈ X × Y. Defining Lγn(f) := 1

n

∑n
i=1 1{yif(xi) < γ}, we have the

following bound:

Proposition 3.1 (Adversarially robust margin bound). With probability 1 − δ over a
dataset {(xi, yi)}i=1,...,n, we have, for all choices of γ > 0 and f ∈ H,

errD(f, ε) ≤ Lγ+2ε‖f‖H
n (f) + Õ

(
‖f‖HB̄
γ
√
n

)
, (3.17)

where B̄ =
√

1
n

∑n
i=1K(xi, xi) and Õ hides a term depending logarithmically on ‖f‖H, γ,

and δ.

Proof. Assume for now that γ is fixed in advance, and let Fλ := {f ∈ H : ‖f‖H ≤ λ}.
Note that for all f ∈ Fλ we have

errD(f, ε) = P (∃‖δ‖ ≤ ε : yf(x+ δ) < 0) ≤ P (yf(x) < λε) =: Lλε(f),

since ‖f‖H ≤ λ is an upper bound on the Lipschitz constant of f . Consider the function

φ(x) =

0, if x ≤ −γ − λε
1, if x ≥ −λε
1 + (x+ λε)/γ, otherwise.

Defining A(f) = Eφ(−yf(x)) ≥ Lλε(f) and An(f) = 1
n

∑n
i=1 φ(−yif(xi)) ≤ Lλε+γn (f),

and noting that φ is upper bounded by 1 and 1/γ Lipschitz, we can apply similar
arguments to (Boucheron et al., 2005, Theorem 4.1) to obtain, with probability 1− δ,

Lλε(f) ≤ Lλε+γn (f) +O

1
γ
Rn(Fλ) +

√
log 1/δ
n

 ,
where Rn(Fλ) denotes the empirical Rademacher complexity of Fλ on the dataset
{(xi, yi)}i=1,...,n. Standard upper bounds on empirical Rademacher complexity of kernel
classes with bounded RKHS norm yield the following bound

errD(f, ε) ≤ Lλε+γn (f) +O

 λ

γ
√
n

√√√√ 1
n

n∑
i=1

K(xi, xi) +

√
log 1/δ
n

 .
Note that the bound is still valid with γ′ ≥ γ instead of γ in the first term of the r.h.s.,
since Lγn(f) is non-decreasing as a function of γ.

104

Chapter 3. Regularization and Robustness

In order to establish the final bound, we instantiate the previous bound for values
λi = 2i and γj = 2−j . Defining δi,j = δ

(1+4i2)·(1+4j2) , we have that w.p. 1 − δi,j , for all
f ∈ Fλi and all γ ≥ γj ,

errD(f, ε) ≤ Lλiε+γn (f) +O

 λi
γj
√
n

√√√√ 1
n

n∑
i=1

K(xi, xi) +

√
log 1/δi,j

n

 . (3.18)

By a union bound, this event holds jointly for all integers i, j w.p. greater than 1 − δ,
since

∑
i,j δi,j ≤ δ. Now consider an arbitrary f ∈ H and γ > 0 and let i = dlog2 ‖f‖He

and j = dlog2(1/γ)e. We have

λi ≤ 2‖f‖H
1
γj
≤ 2
γ

log(1/δi,j) ≤ log(C(‖f‖H, γ)/δ),

with C(‖f‖H, γ) := (1 + 4(log2 ‖f‖H)2) · (1 + 4(log2(1/γ))2). Applying this to the bound
in (3.18) yields the desired result.

When ε = 0, we obtain the usual margin bound, while ε > 0 yields a bound on
adversarial error errD(f, ε), for some neural network f learned from data. Note that
other complexity measures based on products of spectral norms may be used instead
of ‖f‖H, as well as multi-class extensions, following Bartlett et al. (2017); Neyshabur
et al. (2018). In concurrent work, Khim and Loh (2018); Yin et al. (2019) derive similar
bounds in the context of fully-connected networks. In contrast to these works, which
bound complexity of a modified function class, our bound uses the complexity of the
original class and leverages smoothness properties of functions to derive the margin
bound.

One can then study the effectiveness of a regularization algorithm by inspecting
cumulative distribution (CDF) plots of the normalized margins γ̄i = yif(xi)/‖f‖H, for
different strengths of regularization (an example is given in Figure 3.2, Section 3.4.2).
According to the bound (3.17), one can assess expected adversarial error with ε-bounded
perturbations by looking at the part of the plot to the right of γ̄ = 2ε. In particular,
the value of the CDF at such a value of γ̄ is representative of the bound for large n
(since the second term is negligible), while for smaller n, the best bound is obtained for
a larger value of γ̄, which also suggests that the right side of the plots is indicative of
performance on small datasets.

When the RKHS norm can be well approximated, our bound provides a certificate
on test error in the presence of adversaries. While such an approximation is difficult
to obtain in general, the guarantee is most useful when lower and upper bounds of the
RKHS norm are controlled together.

We note that in the case of linear models, our robust margin bound can be adapted
to `∞-perturbations, by leveraging Rademacher complexity bounds for `1-constrained
models (Kakade et al., 2009). Extensions to deeper networks are possible (see Khim and
Loh, 2018; Yin et al., 2019).

105

3.4. Experiments

3.3.2 New insights on generative adversarial networks

Generative adversarial networks (GANs) attempt to learn a generator neural networkGφ :
Z → X , so that the distribution of Gφ(z) with z ∼ Dz a noise vector resembles a data
distribution Dx. In this section, we discuss connections between recent regularization
techniques for training GANs, and approaches to learning generative models based on a
MMD criterion (Gretton et al., 2012), in view of our RKHS framework. Our goal is to
provide a new insight on these methods, but not necessarily to provide a new one.

Various recent approaches have relied on regularization strategies on a discriminator
network in order to improve the stability of GAN training and the quality of the pro-
duced samples. Some of these resemble the approaches presented in Section 3.2 such as
gradient penalties (Gulrajani et al., 2017; Roth et al., 2017) and spectral norm regular-
ization (Miyato et al., 2018a). We provide an RKHS interpretation of these methods as
optimizing an MMD distance with the convolutional kernel introduced in Section 3.2:

min
φ

sup
‖f‖H≤1

Ex∼Dx [f(x)]− Ez∼Dz [f(Gφ(z))]. (3.19)

When learning from an empirical distribution over n samples, the MMD criterion is
known to have much better sample complexity than the Wasserstein-1 distance consid-
ered by Arjovsky et al. (2017) for high-dimensional data such as images (Sriperumbudur
et al., 2012). While the MMD approach has been used for training generative models,
it generally relies on a generic kernel function, such as a Gaussian kernel, that appears
explicitly in the objective (Dziugaite et al., 2015; Li et al., 2017; Bińkowski et al., 2018).
Although using a learned feature extractor can improve this, the Gaussian kernel might
be a poor choice when dealing with natural signals such as images, while the hierarchical
kernel we consider in this work is better suited for this type of data, by providing useful
invariance and stability properties. Leveraging the variational form of the MMD (3.19)
with this kernel suggests for instance using convolutional networks as the discrimina-
tor f , with constraints on the spectral norms in order to ensure ‖f‖H ≤ C for some C,
as done by Miyato et al. (2018a) through normalization.

3.4 Experiments
We tested the regularization strategies presented in Section 3.2 in the context of im-
proving generalization on small datasets and training robust models. Our goal is to use
common architectures used for large datasets and improve their performance in different
settings through regularization. Our Pytorch implementation of the various strategies
is available at https://github.com/albietz/kernel_reg.

For the adversarial training strategies, the inner maximization problems are solved
using 5 steps of projected gradient ascent with constant step-lengths. In the case of the
lower bound penalties ‖f‖2δ and ‖∇f‖2, we also maximize over examples in the mini-
batch, only considering the maximal element when computing gradients with respect to
parameters. For the robust optimization problem (3.7), we use PGD with `2 perturba-
tions, as well as the corresponding `2 (squared) gradient norm penalty on the loss. For
the upper bound approaches with spectral norms (SNs), we consider the SN projection
strategy with decaying τ , as well as the SN penalty (3.10), either using power iteration
(PI) or a full SVD for computing gradients.

106

https://github.com/albietz/kernel_reg

Chapter 3. Regularization and Robustness

Table 3.1: Regularization on CIFAR10 with 1 000 examples for VGG-11 and ResNet-18.
Each entry shows the test accuracy with/without data augmentation when all hyper-
parameters are optimized on a validation set. See also Section 3.A.1 in the appendix for
additional results and statistical testing.

Method 1k VGG-11 1k ResNet-18
No weight decay 50.70 / 43.75 45.23 / 37.12
Weight decay 51.32 / 43.95 44.85 / 37.09
SN penalty (PI) 54.64 / 45.06 47.01 / 39.63
SN projection 54.14 / 46.70 47.12 / 37.28
VAT 50.88 / 43.36 47.47 / 42.82
PGD-`2 51.25 / 44.40 45.80 / 41.87
grad-`2 55.19 / 43.88 49.30 / 44.65
‖f‖2

δ penalty 51.41 / 45.07 48.73 / 43.72
‖∇f‖2 penalty 54.80 / 46.37 48.99 / 44.97
PGD-`2 + SN proj 54.19 / 46.66 47.47 / 41.25
grad-`2 + SN proj 55.32 / 46.88 48.73 / 42.78
‖f‖2

δ + SN proj 54.02 / 46.72 48.12 / 43.56
‖∇f‖2 + SN proj 55.24 / 46.80 49.06 / 44.92

3.4.1 Improving generalization on small datasets

We consider the datasets CIFAR10 and MNIST when using a small number of training
examples, as well as 102 datasets of biological sequences that suffer from small sample
size.

CIFAR10. In this setting, we use 1 000 and 5 000 examples of the CIFAR10 dataset,
with or without data augmentation. We consider a VGG network (Simonyan and Zis-
serman, 2014) with 11 layers, as well as a residual network (He et al., 2016) with 18
layers, which achieve 91% and 93% test accuracy respectively when trained on the full
training set with standard data augmentation (horizontal flips + random crops). We
do not use batch normalization layers in order to prevent any interaction with spectral
norms. Each strategy derived in Section 3.2 is trained for 500 epochs using SGD with
momentum and batch size 128, halving the step-size every 40 epochs. In order to study
the potential effectiveness of each method, we assume that a reasonably large validation
set is available to select hyper-parameters; thus, we keep 10 000 annotated examples for
this purpose. We also show results using a smaller validation set in Appendix 3.A.1.

Table 3.1 shows the test accuracies on 1 000 examples for upper and lower bound ap-
proaches, as well as combined ones. We also include virtual adversarial training (VAT,
Miyato et al., 2018b). We provide extended tables in Appendix 3.A.1 with additional
methods, other geometries, results for 5 000 examples, as well as hypothesis tests for
comparing pairs of methods and assessing the significance of our findings. Overall, we
find that the combined lower bound + SN constraints approaches often yield better re-
sults than either method separately. For lower bound approaches alone, we found our
‖f‖2δ and ‖∇f‖2 penalties to often work best, particularly without data augmentation,
while robust optimization strategies can be preferable with data augmentation, perhaps
thanks to the adaptive regularization effect discussed earlier, which may be helpful in
this easier setting. Gradient penalties often outperform adversarial perturbation strate-

107

3.4. Experiments

Table 3.2: Regularization on 300 or 1 000 examples from MNIST, using deformations
from Infinite MNIST. (∗) indicates that random deformations were included as training
examples, while ‖f‖2τ and ‖Dτf‖2 use them as part of the regularization penalty. See
Section 3.A.2 in the appendix for more results and statistical testing.

Method 300 VGG 1k VGG
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
‖f‖2

δ penalty 94.17 96.99
‖∇f‖2 penalty 94.08 96.82
Weight decay (∗) 92.41 95.64
grad-`2 (∗) 95.05 97.48
‖Dτf‖2 penalty 94.18 96.98
‖f‖2

τ penalty 94.42 97.13
‖f‖2

τ + ‖∇f‖2 94.75 97.40
‖f‖2

τ + ‖f‖2
δ 95.23 97.66

‖f‖2
τ + ‖f‖2

δ (∗) 95.53 97.56
‖f‖2

τ + ‖f‖2
δ + SN proj 95.20 97.60

‖f‖2
τ + ‖f‖2

δ + SN proj (∗) 95.40 97.77

gies, possibly because of the closed form gradients which may improve optimization.
We also found that adversarial training strategies tend to poorly control SNs compared
to gradient penalties, particularly PGD (see also Section 3.4.2). SN constraints alone
can also work well in some cases, particularly for VGG architectures, and often outper-
form SN penalties. SN penalties can work well nevertheless and provide computational
benefits when using the power iteration variant.

Infinite MNIST. In order to assess the effectiveness of lower bound penalties based
on deformation stability, we consider the Infinite MNIST dataset (Loosli et al., 2007),
which provides an “infinite” number of transformed generated examples for each of the
60 000 MNIST training digits. Here, we use a 5-layer VGG-like network with average
pooling after each 3x3 convolution layer, in order to more closely match the architecture
assumptions of Chapter 2 for deformation stability. We consider two lower bound penal-
ties that leverage the digit transformations in Infinite MNIST: one based on “adversarial”
deformations around each digit, denoted ‖f‖2τ ; and a tangent propagation (Simard et al.,
1998) variant, denoted ‖Dτf‖2, which provides an approximation to ‖f‖2τ for small defor-
mations based on gradients along a few tangent vector directions given by deformations
(see Section 3.2.5 for details). Table 3.2 shows the obtained test accuracy for subsets of
MNIST of size 300 and 1 000. Overall, we find that combining both adversarial penalties
‖f‖2τ and ‖f‖2δ performs best, which suggests that it is helpful to obtain tighter lower
approximations of the RKHS norm by considering perturbations of different kinds. Ex-
plicitly controlling the spectral norms can further improve performance, as does training
on deformed digits, which may yield better margins by exploiting the additional knowl-
edge that small deformations preserve labels. Note that data augmentation alone (with
some weight decay) does quite poorly in this case, even compared to our lower bound
penalties which do not use deformations.

108

Chapter 3. Regularization and Robustness

Table 3.3: Regularization on protein homology detection tasks, with or without data aug-
mentation (DA). Fixed hyperparameters are selected using the first half of the datasets,
and we report the average auROC50 score on the second half. See Section 3.A.3 in the
appendix for more details and statistical testing.

Method No DA DA
No weight decay 0.421 0.541
Weight decay 0.432 0.544
SN proj 0.583 0.615
PGD-`2 0.488 0.554
grad-`2 0.551 0.570
‖f‖2

δ 0.577 0.611
‖∇f‖2 0.566 0.598
PGD-`2 + SN proj 0.615 0.622
grad-`2 + SN proj 0.581 0.634
‖f‖2

δ + SN proj 0.631 0.639
‖∇f‖2 + SN proj 0.576 0.617

Protein homology detection. Remote homology detection between protein sequences
is an important problem to understand protein structure. Given a protein sequence, the
goal is to predict whether it belongs to a superfamily of interest. We consider the Struc-
tural Classification Of Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995), which
we process as described in Appendix 3.A.3 in order to obtain 102 balanced binary clas-
sification tasks with 100 protein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Sequences are represented with a one-hot encoding strategy—that is, a sequence of
length l is represented as a binary matrix in {0, 1}20×l, where 20 is the number of different
amino acids (alphabet size of the sequences). Such a structure can then be processed
by convolutional neural networks (Alipanahi et al., 2015). In this section, we do not try
to optimize the structure of the network for the task, since our goal is only to evaluate
the effect of regularization strategies. Therefore, we use a simple convolutional network
with 3 convolutional layers followed by global max-pooling and a final fully-connected
layer (we use filters of size 5, and a max-pooling layer after the second convolutional
layer).

Training was done using Adam with a learning rate fixed to 0.01, and a weight
decay parameter tuned for each method. Since hyper-parameter selection per dataset is
difficult due to the low sample size, we use the same parameters across datasets. This
allows us to use the first 51 datasets as a validation set for hyper-parameter tuning, and
we report average performance with these fixed choices on the remaining 51 datasets.
The standard performance measure for this task is the auROC50 score (area under the
ROC curve up to 50% false positives). We note that the selection of hyper-parameters
has a transductive component, since some of the sequences in the test datasets may also
appear in the datasets used for validation (possibly with a different label).

The results are shown in Table 3.3. The procedure used for data augmentation (right
column) is described in Appendix 3.A.3. We found that the most effective approach
is the adversarial perturbation penalty, together with SN constraints. In particular,
we found it to outperform the gradient penalty ‖∇f‖2, perhaps because in this case

109

3.4. Experiments

0.75 0.80 0.85 0.90
standard accuracy

0.65

0.70

0.75

0.80

0.85
ad

ve
rs

ar
ia

l a
cc

ur
ac

y
ℓ2, εtest = 0.1

PGD-ℓ2
grad-ℓ2
|f|2δ
|∇f|2
PGD-ℓ2+
SN proj
SN proj
SN pen
(SVD)
clean

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

0.4

ℓ2, εtest = 1.0

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

ℓ2, εtest = 1.5

Figure 3.1: Robustness trade-off curves of different regularization methods for VGG11
on CIFAR10. Each plot shows test accuracy vs adversarial test accuracy for `2-bounded,
100-step PGD adversaries with a fixed εtest. Different points on a curve correspond to
training with different regularization strengths. The regularization increases monotoni-
cally along a given curve, and the leftmost points correspond to the strongest regular-
ization. For PGD-`2 + SN projection, we vary ε with a fixed τ = 0.8.

gradient penalties are only computed on a discrete set of possible points given by one-
hot encodings, while adversarial perturbations may increase stability to wider regions,
potentially covering different possible encoded sequences.

3.4.2 Training adversarially robust models

We consider the same VGG architecture as in Section 3.4.1, trained on CIFAR10 with
data augmentation, with different regularization strategies. Each method is trained for
300 epochs using SGD with momentum and batch size 128, dividing the step-size in half
every 30 epochs. This strategy was successful in reaching convergence for all methods.

Figure 3.1 shows the test accuracy of the different methods in the presence of `2-
bounded adversaries, plotted against standard accuracy. We can see that the robust
optimization approaches tend to work better in high-accuracy regimes, perhaps because
the local stability that they encourage is sufficient on this dataset, while the ‖f‖2δ penalty
can be useful in large-perturbation regimes. We find that upper bound approaches alone
do not provide robust models, but combining the SN constraint approach with a lower
bound strategy (in this case PGD-`2) helps improve robustness perhaps thanks to a more
explicit control of stability. We note that our best performing method (in this case, the
combined approach PGD-`2 with ε = 2.0 + SN constraint with τ = 0.8) achieves 47.04%
robust test accuracy for a 100-step PGD adversary with εtest = 1.0, which surpasses the
best reported accuracies for `2-bounded adversaries with such εtest, e.g., in Rony et al.
(2019); Salman et al. (2019), which are below 40% (though Salman et al. (2019) also
provides certification through randomized smoothing, while our method is not certified).
Hence, this provides state-of-the-art results for empirical robustness on this dataset,
though we note that there are differences in the experimental setup, including the choice
of model and attacks, which may also partially contribute to this gap.

The plots also confirm that gradient penalties on the loss may be preferable for small
regularization strengths (they achieve higher accuracy while improving robustness for
small εtest), while for stronger regularization, the gradient approximation no longer holds

110

Chapter 3. Regularization and Robustness

0 2 4 6
|f|

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

SN
 p

ro
du

ct
1e3 norm comparison

PGD- 2

|f|2

| f|2
grad- 2
PGD- 2+
SN proj
clean

0.0 2.5 5.0 7.5 10.0 12.5 15.0
 (= margin / |f|)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

| f|2 penalty

= 0
= 0.0001
= 0.001
= 0.01
= 0.1

Figure 3.2: (left) Comparison of lower and upper bound quantities (‖f‖δ vs the product
of spectral norms). (right) CDF plot of normalized empirical margins for the ‖∇f‖2
penalty with different regularization strengths, normalized by ‖f‖δ. We consider 1000
fixed training examples when computing ‖f‖δ.

and the multi-step robust optimization approaches such as PGD (and its combination
with SN constraints) are preferred. More experiments confirming these findings are
available in Section 3.A.4 of the appendix.

Norm comparison and adversarial generalization. Figure 3.2 (left) compares
lower and upper bound quantities for different regularization strengths. Note that for
PGD, in contrast to other methods, we can see that the product of spectral norms
(representative of an upper bound on ‖f‖H) increases when the lower bound ‖f‖δ de-
creases. This suggests that a network learned with PGD with large ε may have large
RKHS norm, possibly because the approach tries to separate ε-balls around the training
examples, which may require a more complex model than simply separating the train-
ing examples (see also Madry et al., 2018). This large discrepancy between upper and
lower bounds highlights the fact that such models may only be stable locally near train-
ing data, though this happens to be enough for robustness on many test examples on
CIFAR10.

In contrast, for other methods, and in particular the lower bound penalties ‖f‖2δ
and ‖∇f‖2, the upper and lower bounds appear more tightly controlled, suggesting a
more appropriate control of the RKHS norm. This makes our guarantees on adversarial
generalization more meaningful, and thus we may look at the empirical distributions
of normalized margins γ̄ obtained using ‖f‖δ for normalization (as an approximation
of ‖f‖H), shown in Figure 3.2 (right). The curves suggest that for small γ̄, and hence
small εtest, smaller values of λ are preferred, while stronger regularization helps for
larger γ̄, yielding lower test error guarantees in the presence of stronger adversaries
according to our bounds in Section 3.3.1. This qualitative behavior is indeed observed
in the results of Figure 3.1 on test data for the ‖∇f‖2 penalty.

111

Appendix

3.A Additional Experiment Results

3.A.1 CIFAR10

This section provides more extensive results for the experiments on CIFAR10 from Sec-
tion 3.4.1. In particular, Table 3.A.1 shows additional experiments on larger subsets of
size 50̇00, as well as more methods, including different geometries (see Section 3.2.6).
The table also reports results obtained when using a smaller validation set of size 1 000.
The full hyper-parameter grid is given in Table 3.A.3.

In order to assess the statistical significance of our results, we repeated the experi-
ments on 10 new random choices of subsets, using the hyperparameters selected on the
original subset from Table 3.A.1 (except for learning rate, which is selected according to
a different validation set for each subset). We then compared pairs of methods using a
paired t-test, with p-values shown in Table 3.A.2. In particular, the results strengthen
some of our findings, for instance, that ‖∇f‖2 should be preferred to the gradient penalty
on the loss when there is no data augmentation, and that combined upper+lower bound
approaches tend to outperform the individual upper or lower bound strategies.

3.A.2 Infinite MNIST

We provide more extensive results for the Infinite MNIST dataset in Table 3.A.4, in
particular showing more regularization strategies, as well as results with or without
data augmentation, marked with (∗). As in the case of CIFAR10, we use SGD with
momentum (fixed to 0.9) for 500 epochs, with initial learning rates in [0.005; 0.05; 0.5],
and divide the step-size by 2 every 40 epochs. The full hyper-parameter grid is given in
Table 3.A.6.

As in the case of CIFAR10, we report statistical significance tests in Table 3.A.5 com-
paring pairs of methods based on 10 different random choices of subsets. In particular,
the results confirm that weight decay with data augmentation alone tends to give weaker
results than separate penalties, and that the combined penalty ‖f‖2τ +‖f‖2δ , which com-
bines adversarial perturbations of two different types, outperforms each penalty taken
by itself on a single type of perturbation, which emphasizes the benefit of considering
perturbations of different natures, perhaps thanks to a tighter lower bound approxima-
tion of the RKHS norm. We note that grad-`2(∗) worked well on some subsets, but
poorly on others due to training instabilities, possibly because of the selected hyperpa-
rameters which are quite large (and thus likely violate the approximation to the robust
optimization objective).

112

Chapter 3. Regularization and Robustness

3.A.3 Protein homology detection

Dataset description. Our protein homology detection experiments consider the Struc-
tural Classification Of Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995), fil-
tered and split following the procedures of Håndstad et al. (2007). Specifically, positive
training samples are extracted from one superfamily from which one family is withheld
to serve as positive test set, while negative sequences are chosen from outside of the
target family’s hold and are randomly split into training and test samples in the same
ratio as positive samples. This yields 102 superfamily classification tasks, which are
generally very class-imbalanced. For each task, we sample 100 class-balanced training
samples to use as training set. The positive samples are extended to 50 with Uniref50
using PSI-BLAST (Altschul et al., 1997) if they are fewer.

Data augmentation procedure. We consider in our experiments a discrete way of
perturbing training samples to perform data augmentation. Specifically, for a given
sequence, a perturbed sequence can be obtained by randomly changing some of the
characters. Each character in the sequence is switched to a different one, randomly
chosen from the alphabet, with some probability p. We fixed this probability to 0.1
throughout the experiments.

Experimental details and significance tests. In our experiments, we use the
Adam optimization algorithm with a learning rate fixed to 0.01 (and β fixed to de-
faults (0.9, 0.999)), with a batch size of 100 for 300 epochs. The full hyper-parameter
grid is given in Table 3.A.8. In addition to the average auROC50 scores reported in
Table 3.3, we perform paired t-tests for comparing pairs of methods in Table 3.A.7 in
order to verify the significance of our findings. The results confirm that the adversar-
ial perturbation penalty and its combination with spectral norm constraints tends to
outperform the other approaches.

3.A.4 Robustness

Figure 3.A.1 extends Figure 3.1 from Section 3.4.2 to show more methods, adversary
strenghts, and different geometries. For combined (PGD-`2 + SN projection) approaches,
we can see that stronger constraints (i.e., smaller τ) tend to reduce standard accuracy,
likely because it prevents a good fit of the data, but can provide better robustness to
strong adversaries (εtest = 1). We can see that using the right metric in PGD indeed helps
against an `∞ adversary, nevertheless controlling global stability through the RKHS
norm as in the ‖f‖2δ and ‖∇f‖2 penalties can still provide some robustness against
such adversaries, even with large εtest. For gradient penalties, we find that the different
geometries behave quite similarly, which may suggest that more appropriate optimization
algorithms than SGD could be needed to better accommodate the non-smooth case of
`1/`∞, or perhaps that both algorithms are actually controlling the same notion of
complexity on this dataset.

113

3.A. Additional Experiment Results

0.75 0.80 0.85 0.90
standard accuracy

0.65

0.70

0.75

0.80

0.85

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

ℓ2, εtest = 0.1
PGD-ℓ2
PGD-ℓ∞
|f|2δ
|∇f|2
PGD-ℓ2+
SN proj
grad-ℓ2
SN proj
SN pen
(SVD)
clean

0.4 0.6 0.8
standard accuracy

0.2

0.3

0.4

0.5

0.6

ℓ2, εtest = 0.5

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

0.4

ℓ2, εtest = 1.0

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

ℓ2, εtest = 1.5

0.70 0.75 0.80 0.85 0.90
0.60

0.65

0.70

0.75

0.80

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

ℓ∞, εtest = 1/255
PGD-ℓ2
PGD-ℓ∞
|f|2δ
|∇f|2
PGD-ℓ2+
SN proj
grad-ℓ2
SN proj
SN pen
(SVD)
clean

0.6 0.7 0.8 0.9
0.45

0.50

0.55

0.60

0.65

0.70

ℓ∞, εtest = 2/255

0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

ℓ∞, εtest = 5/255

0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4
ℓ∞, εtest = 8/255

0.75 0.80 0.85 0.90
standard accuracy

0.65

0.70

0.75

0.80

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

ℓ2, εtest = 0.1
τ= 0.6
τ= 0.8
τ= 1.0
τ= 1.2
τ= 1.4
τ= ∞ (PGD-ℓ2)
clean

0.5 0.6 0.7 0.8 0.9
standard accuracy

0.2

0.3

0.4

0.5

0.6

ℓ2, εtest = 0.5

0.5 0.6 0.7 0.8 0.9
standard accuracy

0.0

0.1

0.2

0.3

0.4

ℓ2, εtest = 1.0

0.5 0.6 0.7 0.8 0.9
standard accuracy

0.0

0.1

0.2

0.3

ℓ2, εtest = 1.5

Figure 3.A.1: Robustness trade-off curves of different regularization methods for VGG11
on CIFAR10 (extended version of Figure 3.1). The plots show test accuracy vs adversar-
ial test accuracy for `2-bounded (top/bottom) or `∞-bounded (middle), 100-step PGD
adversaries with a fixed εtest. Different points on a curve correspond to training with dif-
ferent regularization strengths. The regularization increases monotonically along a given
curve, and the leftmost points correspond to the strongest regularization. The bottom
plots consider PGD-`2 + SN projection, with different fixed values of the constraint
radius τ , for varying ε in PGD.

114

Chapter 3. Regularization and Robustness

Table 3.A.1: Regularization on CIFAR10 with 1 000 or 5 000 examples for VGG-11
and ResNet-18. Extended version of Table 3.1. Each entry shows the test accuracy
with/without data augmentation when all hyper-parameters are optimized on a valida-
tion set of size 10 000 (a) or 1 000 (b), and for the epoch with highest validation accuracy,
evaluating every 10 epochs (similar to early stopping).

(a) 10k examples in validation set
Method 1k VGG-11 1k ResNet-18 5k VGG-11 5k ResNet-18
No weight decay 50.70 / 43.75 45.23 / 37.12 72.49 / 58.35 72.72 / 54.12
Weight decay 51.32 / 43.95 44.85 / 37.09 72.80 / 58.56 73.06 / 53.33
SN penalty (PI) 54.64 / 45.06 47.01 / 39.63 74.03 / 62.45 74.79 / 54.04
SN penalty (SVD) 53.44 / 46.06 47.26 / 37.94 74.53 / 62.93 75.59 / 54.98
SN projection 54.14 / 46.70 47.12 / 37.28 75.14 / 63.81 76.23 / 55.60
VAT 50.88 / 43.36 47.47 / 42.82 72.91 / 58.78 71.56 / 55.93
PGD-`2 51.25 / 44.40 45.80 / 41.87 73.18 / 58.98 72.53 / 55.92
PGD-`∞ 51.17 / 43.07 45.31 / 39.66 73.05 / 57.82 72.75 / 55.14
grad-`2 55.19 / 43.88 49.30 / 44.65 75.38 / 59.20 75.22 / 55.36
grad-`1 54.88 / 44.74 49.06 / 42.63 75.25 / 59.39 74.48 / 56.19
‖f‖2δ penalty 51.41 / 45.07 48.73 / 43.72 72.98 / 61.45 72.78 / 56.50
‖∇f‖2 penalty 54.80 / 46.37 48.99 / 44.97 73.90 / 60.17 73.83 / 57.92
PGD-`2 + SN proj 54.19 / 46.66 47.47 / 41.25 74.61 / 64.50 77.19 / 57.43
grad-`2 + SN proj 55.32 / 46.88 48.73 / 42.78 75.11 / 63.54 77.73 / 57.09
‖f‖2δ + SN proj 54.02 / 46.72 48.12 / 43.56 74.55 / 64.33 75.64 / 59.03
‖∇f‖2 + SN proj 55.24 / 46.80 49.06 / 44.92 72.31 / 63.74 72.24 / 57.56

(b) 1k examples in validation set
Method 1k VGG-11 1k ResNet-18 5k VGG-11 5k ResNet-18
No weight decay 51.32 / 43.42 45.00 / 37.00 72.64 / 57.88 72.71 / 53.80
Weight decay 51.04 / 43.42 44.66 / 36.77 72.68 / 57.59 72.25 / 54.16
SN penalty (PI) 54.60 / 44.20 46.39 / 38.86 72.99 / 62.49 74.72 / 53.65
SN penalty (SVD) 53.76 / 44.79 47.31 / 37.92 74.05 / 63.34 75.73 / 54.65
SN projection 52.86 / 46.49 47.05 / 37.28 74.18 / 63.70 75.91 / 54.43
VAT 50.90 / 43.99 47.35 / 42.91 72.95 / 57.64 71.91 / 55.22
PGD-`2 50.95 / 43.26 45.77 / 41.71 72.71 / 57.68 72.87 / 54.17
PGD-`∞ 51.16 / 43.16 45.67 / 39.77 73.64 / 58.02 72.99 / 53.95
grad-`2 55.40 / 43.57 47.86 / 44.65 75.44 / 58.33 74.83 / 55.43
grad-`1 54.53 / 43.04 48.75 / 42.21 75.28 / 58.19 74.28 / 54.02
‖f‖2M penalty 51.00 / 44.67 48.57 / 44.30 72.76 / 60.55 72.75 / 56.49
‖∇f‖2 penalty 54.68 / 46.10 48.53 / 45.21 73.83 / 60.36 73.30 / 57.46
PGD-`2 + SN proj 53.85 / 46.79 46.48 / 40.95 74.79 / 63.37 76.28 / 57.43
grad-`2 + SN proj 55.28 / 45.11 48.42 / 41.93 75.17 / 63.45 77.24 / 56.18
‖f‖2M + SN proj 54.00 / 45.14 47.12 / 41.86 74.54 / 63.94 75.25 / 57.94
‖∇f‖2 + SN proj 55.21 / 45.68 49.03 / 43.58 71.92 / 63.47 71.83 / 56.06

115

3.A. Additional Experiment Results

Table 3.A.2: Paired t-tests comparing pairs of methods, on 10 different random choices
of subsets of CIFAR10. Each cell shows the p-value of the corresponding test, both with
(left) and without (right) data augmentation. We only show p-values smaller than 0.05.
Hyperparameters are fixed to the ones obtained for the results in Table 3.1 (selected on
a different choice of subset), except for the learning rate which is tuned on a separate
validation set for each choice of subset.

Test 1k VGG-11 1k ResNet-18 5k VGG-11 5k ResNet-18
SN projection � Weight decay 1e-04 1e-03 - - 3e-06 1e-08 9e-07 4e-04

grad-`2 � Weight decay 4e-09 - 2e-04 5e-05 7e-08 1e-04 5e-06 -
‖∇f‖2 � Weight decay 1e-08 2e-07 1e-05 3e-07 3e-04 5e-07 7e-03 1e-06
‖∇f‖2 � grad-`2 - 3e-08 2e-02 2e-06 - 6e-05 - 4e-05
grad-`2 � ‖∇f‖2 2e-02 - - - 2e-05 - 7e-04 -

grad-`2 + SN proj � grad-`2 - 9e-03 - - - 5e-07 9e-06 2e-04
‖∇f‖2 + SN proj � ‖∇f‖2 - - - 1e-02 - 2e-06 - -

Table 3.A.3: List of hyper-parameters used for each method on CIFAR10. For each
method, we additionally consider a learning rate parameter in [0.003; 0.01; 0.03; 0.1]. For
combined penalties, the sets of hyperparameters are listed in the same order as in the
first column (i.e., the choices of constraint radius are given last).

Method Parameter grid
No weight decay -
Weight decay [0; 0.0001; 0.0002; 0.0004; 0.0008; 0.001; 0.002]
SN penalty (PI) [0.001; 0.003; 0.01; 0.03; 0.1; 0.3]
SN penalty (SVD) [0.001; 0.003; 0.01; 0.03; 0.1; 0.3]
SN projection [0.5; 0.6; 0.8; 1.0; 1.2; 1.4]
‖f‖2

δ penalty [0.001; 0.003; 0.01; 0.03; 0.1]
‖∇f‖2 penalty [0.00003; 0.0001; 0.0003; 0.001; 0.003; 0.01; 0.03]
VAT [0.1; 0.3; 1.0; 3.0]
PGD-`2 [0.003; 0.01; 0.03; 0.1; 0.3; 1.0]
PGD-`∞ [0.001; 0.003; 0.01; 0.03; 0.1; 0.3]
grad-`1 [0.0001; 0.0003; 0.001; 0.003; 0.01; 0.03]
grad-`2 [0.001; 0.003; 0.01; 0.03; 0.1; 0.3; 1.0; 3.0]
PGD-`2 + SN projection [0.003; 0.01; 0.03; 0.1]× [0.6; 1.0; 1.4]
grad-`2 + SN projection [0.003; 0.01; 0.03; 0.1]× [0.6; 1.0; 1.4]
‖f‖2

δ + SN projection [0.003; 0.01; 0.03]× [0.6; 1.0; 1.4]
‖∇f‖2 + SN projection [0.001; 0.01; 0.1]× [0.6; 1.0; 1.4]

116

Chapter 3. Regularization and Robustness

Table 3.A.4: Test accuracies on subsets of MNIST using deformations from Infinite
MNIST. Extended version of Table 3.2. (∗) indicates that random deformations were
included as training examples (i.e., data augmentation), while ‖f‖2τ and ‖Dτf‖2 use
them as part of the regularization penalty. As in Table 3.A.1, we show results obtained
using a validation set of size 10 000 (a) and 1 000 (b).

(a) 10k examples in validation set (b) 1k examples in validation set
Method 300 VGG 1k VGG
Weight decay 89.32 94.08
Weight decay (∗) 92.41 95.64
SN projection 90.69 95.01
SN projection (∗) 92.17 95.88
grad-`2 93.63 96.67
grad-`2 (∗) 95.05 97.48
‖f‖2

δ
penalty 94.17 96.99

‖f‖2
δ
penalty (∗) 94.86 97.40

‖∇f‖2 penalty 94.08 96.82
‖∇f‖2 penalty (∗) 94.80 97.29
‖Dτf‖2 penalty 94.18 96.98
‖Dτf‖2 penalty (∗) 94.91 97.29
‖f‖2

τ penalty 94.42 97.13
‖f‖2

τ penalty (∗) 94.83 97.25
‖f‖2

τ + ‖∇f‖2 94.75 97.40
‖f‖2

τ + ‖∇f‖2 (∗) 95.14 97.44
‖f‖2

τ + ‖f‖2
δ

95.23 97.66
‖f‖2

τ + ‖f‖2
δ
(∗) 95.53 97.56

grad-`2 + SN proj 93.89 96.85
grad-`2 + SN proj (∗) 95.15 97.80
‖f‖2

δ
+ SN proj 93.97 96.89

‖f‖2
δ
+ SN proj (∗) 94.78 97.38

‖f‖2
τ + ‖∇f‖2 + SN proj 95.09 97.42

‖f‖2
τ + ‖∇f‖2 + SN proj (∗) 95.03 97.27

‖f‖2
τ + ‖f‖2

δ
+ SN proj 95.20 97.60

‖f‖2
τ + ‖f‖2

δ
+ SN proj (∗) 95.40 97.77

Method 300 VGG 1k VGG
Weight decay 89.32 93.34
Weight decay (∗) 91.91 95.73
SN projection 90.60 94.83
SN projection (∗) 92.01 95.91
grad-`2 92.92 96.42
grad-`2 (∗) 94.69 97.48
‖f‖2

M penalty 93.44 96.98
‖f‖2

M penalty (∗) 94.57 97.14
‖∇f‖2 penalty 94.08 96.77
‖∇f‖2 penalty (∗) 94.50 97.15
‖Dτf‖2 penalty 94.03 97.16
‖Dτf‖2 penalty (∗) 94.15 96.64
‖f‖2

τ penalty 93.53 97.13
‖f‖2

τ penalty (∗) 94.79 97.26
‖f‖2

τ + ‖∇f‖2 94.75 97.21
‖f‖2

τ + ‖∇f‖2 (∗) 94.43 97.42
‖f‖2

τ + ‖f‖2
M 95.15 97.27

‖f‖2
τ + ‖f‖2

M (∗) 95.20 97.49
grad-`2 + SN proj 93.44 96.81
grad-`2 + SN proj (∗) 94.05 97.60
‖f‖2

M + SN proj 93.97 96.61
‖f‖2

M + SN proj (∗) 94.69 97.33
‖f‖2

τ + ‖∇f‖2 + SN proj 94.75 97.16
‖f‖2

τ + ‖∇f‖2 + SN proj (∗) 94.74 97.22
‖f‖2

τ + ‖f‖2
M + SN proj 94.78 97.49

‖f‖2
τ + ‖f‖2

M + SN proj (∗) 95.17 97.64

Table 3.A.5: Paired t-tests comparing pairs of methods, on 10 different random choices
of subsets of MNIST. Each cell shows the p-value of the corresponding test. We only
show p-values smaller than 0.05. Hyperparameters are fixed to the ones obtained for
the results in Table 3.2 (selected on a different choice of subset), except for the learning
rate which is tuned on a separate validation set for each choice of subset.

Test 300 VGG 1k VGG
grad-`2 (∗) � Weight decay (∗) - 3e-11
‖f‖2τ penalty � Weight decay (∗) 2e-08 2e-10
‖f‖2τ + ‖f‖2δ � Weight decay (∗) 1e-08 2e-10

‖f‖2τ + ‖f‖2δ + SN proj (∗) � grad-`2 (∗) - 1e-02
grad-`2 (∗) � ‖f‖2τ + ‖f‖2δ + SN proj (∗) - -

‖f‖2τ + ‖f‖2δ � ‖f‖2δ penalty 1e-07 6e-09
‖f‖2τ + ‖f‖2δ � ‖f‖2τ penalty 2e-06 6e-07
‖f‖2τ + ‖f‖2δ (∗) � ‖f‖2τ + ‖f‖2δ 2e-03 -

‖f‖2τ + ‖f‖2δ + SN proj (∗) � ‖f‖2τ + ‖f‖2δ 2e-03 2e-04

117

3.A. Additional Experiment Results

Table 3.A.6: List of hyper-parameters used for each method on Infinite MNIST. For
each method, we additionally consider a learning rate parameter in [0.005; 0.05; 0.5]. For
combined penalties, the sets of hyperparameters are listed in the same order as in the
first column (e.g., the choices of constraint radius are given last).

Method Grid
Weight decay [0; 0.00001; 0.00003; 0.0001; 0.0003; 0.001; 0.003; 0.01; 0.03; 0.1]
SN projection [1.0; 1.2; 1.4; 1.6; 1.8]
grad-`2 [0.1; 0.3; 1.0; 3.0; 10.0]
‖f‖2

δ penalty [0.1; 0.3; 1.0; 3.0]
‖∇f‖2 penalty [0.0003; 0.001; 0.003; 0.01; 0.03; 0.1; 0.3]
‖Dτf‖2 penalty [0.003; 0.01; 0.03; 0.1; 0.3]
‖f‖2

τ penalty [0.03; 0.1; 0.3; 1.0; 3.0]
‖f‖2

τ + ‖∇f‖2 [0.03; 0.1; 0.3; 1.0] × [0.003; 0.01; 0.03; 0.1]
‖f‖2

τ + ‖f‖2
δ [0.1; 0.3; 1.0] × [0.03; 0.1]

grad-`2 + SN proj [0.3; 1.0; 3.0; 10.0; 30.0] × [1.2; 1.6; 2.0]
‖f‖2

δ + SN proj [0.03; 0.1] × [1.2; 1.6; 2.0]
‖f‖2

τ + ‖∇f‖2 + SN proj [0.03; 0.1; 0.3] × [0.01; 0.03; 0.1] × [1.2; 1.6; 2.0]
‖f‖2

τ + ‖f‖2
δ + SN proj [0.1; 0.3; 1.0] × [0.03; 0.1] × [1.2; 1.6; 2.0]

Table 3.A.7: Paired t-tests comparing pairs of methods on the 51 test datasets from the
set of protein homology detection tasks. Each cell shows the p-value of the corresponding
test. We only show p-values smaller than 0.05. We use the same hyperparameters as
the ones obtained in the results of Table 3.3.

Test No DA DA
SN proj � Weight decay 1e-05 4e-05
grad-`2 � Weight decay 5e-05 5e-02
‖f‖2δ � Weight decay 5e-06 3e-05
‖∇f‖2 � Weight decay 9e-06 3e-03
‖f‖2δ � grad-`2 - 4e-03
‖∇f‖2 � grad-`2 - -
grad-`2 + SN proj � grad-`2 - 1e-03
‖f‖2δ + SN proj � ‖f‖2δ 3e-03 5e-02
‖∇f‖2 + SN proj � ‖∇f‖2 - -
‖f‖2δ + SN proj � ‖∇f‖2 + SN proj 8e-05 -

118

Chapter 3. Regularization and Robustness

Table 3.A.8: List of hyper-parameters used for each method on protein homology de-
tection datasets. For combined penalties, the hyperparameters are the cross-products of
each individual method.

Method Parameter grid
No weight decay −
Weight decay [0; 0.01; 0.001; 0.0001; 0.00001]

SN proj [10; 1.0; 0.1]
PGD-`2 [100.0; 10.0; 1.0; 0.1]
grad-`2 [100.0; 10.0; 1.0; 0.1; 0.01, 0.001]
‖f‖2

δ [10.0; 1.0; 0.1]
‖∇f‖2 [10.0; 1.0; 0.1; 0.01; 0.001; 0.0001]

119

Chapter 4

Links with Optimization:
Inductive Bias of Neural Tangent
Kernels

State-of-the-art neural networks are heavily over-parameterized, making the optimiza-
tion algorithm a crucial ingredient for learning predictive models with good generaliza-
tion properties. A recent line of work has shown that in a certain over-parameterized
regime, the learning dynamics of gradient descent are governed by a certain kernel ob-
tained at initialization, called the neural tangent kernel. We study the inductive bias of
learning in such a regime by analyzing this kernel and the corresponding function space
(RKHS). In particular, we study smoothness, approximation, and stability properties
of functions with finite norm, including stability to image deformations in the case of
convolutional networks.

This chapter is based on the following paper:
A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In

Advances in Neural Information Processing Systems (NeurIPS), 2019b

4.1 Introduction

The large number of parameters in state-of-the-art deep neural networks makes them
very expressive, with the ability to approximate large classes of functions (Hornik et al.,
1989; Pinkus, 1999). Since many networks can potentially fit a given dataset, the opti-
mization method, typically a variant of gradient descent, plays a crucial role in selecting
a model that generalizes well (Neyshabur et al., 2015b).

A recent line of work (Allen-Zhu et al., 2019b; Chizat et al., 2019; Du et al., 2019a,b;
Jacot et al., 2018) has shown that when training deep networks in a certain over-
parameterized regime, the dynamics of gradient descent behave like those of a linear
model on (non-linear) features determined at initialization. In the over-parameterization
limit, these features correspond to a kernel known as the neural tangent kernel. In partic-
ular, in the case of a regression loss, the obtained model behaves similarly to a minimum
norm kernel least squares solution, suggesting that this kernel may play a key role in
determining the inductive bias of the learning procedure and its generalization proper-

120

Chapter 4. Neural Tangent Kernels

ties. While it is still not clear if this regime is at play in state-of-the-art deep networks,
there is some evidence that this phenomenon of “lazy training” (Chizat et al., 2019),
where weights only move very slightly during training, may be relevant for early stages
of training and for the outmost layers of deep networks (Lee et al., 2019; Zhang et al.,
2019), motivating a better understanding of its properties.

In this paper, we study the inductive bias of this regime by studying properties of
functions in the space associated with the neural tangent kernel for a given architecture
(that is, the reproducing kernel Hilbert space, or RKHS). Such kernels can be defined
recursively using certain choices of dot-product kernels at each layer that depend on
the activation function. For the convolutional case with rectified linear unit (ReLU)
activations and arbitrary patches and linear pooling operations, we show that the NTK
can be expressed through kernel feature maps defined in a tree-structured hierarchy.

We study smoothness and stability properties of the kernel mapping for two-layer
networks and CNNs, which control the variations of functions in the RKHS. In particular,
a useful inductive bias when dealing with natural signals such as images is stability of
the output to deformations of the input, such as translations or small rotations. A
precise notion of stability to deformations was proposed by Mallat (2012), and we study
it in Chapter 2 in the context of CNN architectures, showing the benefits of different
architectural choices such as small patch sizes. In contrast to the kernels studied in
Chapter 2, which for instance cover the limiting kernels that arise from training only
the last layer of a ReLU CNN, we find that the obtained NTK kernel mappings for
the ReLU activation lack a desired Lipschitz property which is needed for stability to
deformations in the sense of Mallat (2012). Instead, we show that a weaker smoothness
property similar to Hölder smoothness holds, and this allows us to show that the kernel
mapping is stable to deformations, albeit with a different guarantee.

In order to balance our observations on smoothness, we also consider approximation
properties for the NTK of two-layer ReLU networks, by characterizing the RKHS using
a Mercer decomposition of the kernel in the basis of spherical harmonics (Bach, 2017a;
Schölkopf and Smola, 2001; Smola et al., 2001). In particular, we study the decay of
eigenvalues for this decomposition, which is then related to the regularity of functions in
the space, and provides rates of approximation for Lipschitz functions (Bach, 2017a). We
find that the full NTK has better approximation properties compared to other function
classes typically defined for ReLU activations (Bach, 2017a; Cho and Saul, 2009; Daniely
et al., 2016), which arise for instance when only training the weights in the last layer, or
when considering Gaussian process limits of ReLU networks (e.g., Garriga-Alonso et al.,
2019; Lee et al., 2018; Matthews et al., 2018; Novak et al., 2019).

Contributions. Our main contributions can be summarized as follows:

• We provide a derivation of the NTK for convolutional networks with generic linear op-
erators for patch extraction and pooling, and express the corresponding kernel feature
map hierarchically using these operators.
• We study smoothness properties of the kernel mapping for ReLU networks, showing
that it is not Lipschitz but satisfies a weaker Hölder smoothness property. For CNNs,
we then provide a guarantee on deformation stability.
• We characterize the RKHS of the NTK for two-layer ReLU networks by providing
a spectral decomposition of the kernel and studying its spectral decay. This leads

121

4.2. Neural Tangent Kernels

to improved approximation properties compared to other function classes based on
ReLU.

Related work. Neural tangent kernels were introduced by Jacot et al. (2018), and
similar ideas were used to obtain more quantitative guarantees on the global convergence
of gradient descent for over-parameterized neural networks (Allen-Zhu et al., 2019b;
Arora et al., 2019a; Chizat et al., 2019; Du et al., 2019a,b; Li and Liang, 2018; Zou
et al., 2019). Arora et al. (2019a); Du et al. (2019a); Yang (2019) also derive NTKs
for convolutional networks, but focus on simpler architectures. Kernel methods for deep
neural networks were studied for instance by Cho and Saul (2009); Daniely et al. (2016);
Mairal (2016). Stability to deformations was originally introduced in the context of the
scattering representation (Bruna and Mallat, 2013; Mallat, 2012), and this thesis later
extended such a study to neural networks through kernel methods, see Chapter 2. The
inductive bias of optimization in neural network learning was considered, e.g., by Allen-
Zhu et al. (2019a); Arora et al. (2019b); Cao and Gu (2019); Neyshabur et al. (2015b);
Soudry et al. (2018). Bach (2017a); Ghorbani et al. (2019); Savarese et al. (2019);
Williams et al. (2019) study function spaces corresponding to two-layer ReLU networks.
In particular, Ghorbani et al. (2019) also analyzes properties of the NTK, but studies a
specific high-dimensional limit for generic activations, while we focus on ReLU networks,
studying the corresponding eigenvalue decays in finite dimension. We note that Basri
et al. (2019); Xie et al. (2017); Yang and Salman (2019) also study spectral properties
of similar kernels in different contexts.

4.2 Neural Tangent Kernels
In this section, we provide some background on “lazy training” and neural tangent
kernels (NTKs), and introduce the kernels that we study in this paper. In particular, we
derive the NTK for generic convolutional architectures on `2 signals. For simplicity of
exposition, we consider scalar-valued functions, noting that the kernels may be extended
to the vector-valued case, as done, e.g., by Jacot et al. (2018).

4.2.1 Lazy training and neural tangent kernels

Multiple recent works studying global convergence of gradient descent in neural net-
works (e.g., Allen-Zhu et al., 2019b; Du et al., 2019a,b; Jacot et al., 2018; Li and Liang,
2018; Zou et al., 2019) show that when a network is sufficiently over-parameterized,
weights remain close to initialization during training. The model is then well approx-
imated by its linearization around initialization. For a neural network f(x; θ) with
parameters θ and initialization θ0, we then have:1

f(x; θ) ≈ f(x; θ0) + 〈θ − θ0,∇θf(x; θ0)〉. (4.1)

This regime where weights barely move has also been referred to as “lazy training” Chizat
et al. (2019), in contrast to other situations such as the “mean-field” regime (e.g., Chizat
and Bach (2018); Mei et al. (2018, 2019)), where weights move according to non-linear

1While we use gradients in our notations, we note that weak differentiability (e.g., with ReLU acti-
vations) is sufficient when studying the limiting NTK (Jacot et al., 2018).

122

Chapter 4. Neural Tangent Kernels

dynamics. Yet, with sufficient over-parameterization, the (non-linear) features x 7→
∇θf(x; θ0) of the linearized model (4.1) become expressive enough to be able to perfectly
fit the training data, by approximating a kernel method.

Neural Tangent Kernel (NTK). When the width of the network tends to infinity,
assuming an appropriate initialization on weights, the features of the linearized model
tend to a limiting kernel K, called neural tangent kernel (Jacot et al., 2018):

〈∇θf(x; θ0),∇θf(x′, θ0)〉 → K(x, x′). (4.2)

In this limit and under some assumptions, one can show that the weights move very
slightly and the kernel remains fixed during training, and that gradient descent will then
lead to the minimum norm kernel least-squares fit of the training set in the case of the `2
loss (Jacot et al., 2018). Similar interpolating solutions have been found to perform well
for generalization, both in practice (Belkin et al., 2018b) and in theory (Bartlett et al.,
2019; Liang and Rakhlin, 2019). When the number of neurons is large but finite, one can
often show that the kernel only deviates slightly from the limiting NTK, at initialization
and throughout training, thus allowing convergence as long as the initial kernel matrix
is non-degenerate (Arora et al., 2019a; Chizat et al., 2019; Du et al., 2019a,b).

NTK for two-layer ReLU networks. Consider a two layer network of the form
f(x; θ) =

√
2
m

∑m
j=1 vjσ(w>j x), where σ(u) = (u)+ = max(0, u) is the ReLU activation,

x ∈ Rp, and θ = (w>1 , . . . , w>m, v>) are parameters with values initialized as N (0, 1).
Practitioners often include the factor

√
2/m in the variance of the initialization of vj ,

but we treat it as a scaling factor following Du et al. (2019a,b); Jacot et al. (2018),
noting that this leads to the same predictions. The factor 2 is simply a normalization
constant specific to the ReLU activation and commonly used by practitioners, which
avoids vanishing or exploding behavior for deep networks. The corresponding NTK is
then given by (Chizat et al., 2019; Du et al., 2019b):

K(x, x′) = 2(x>x′)Ew∼N (0,I)[1{w>x ≥ 0}1{w>x′ ≥ 0}] + 2Ew∼N (0,I)[(w>x)+(w>x′)+]

= ‖x‖‖x′‖κ
(〈x, x′〉
‖x‖‖x′‖

)
, (4.3)

where

κ(u) := uκ0(u) + κ1(u) (4.4)

κ0(u) = 1
π

(π − arccos(u)) , κ1(u) = 1
π

(
u · (π − arccos(u)) +

√
1− u2

)
. (4.5)

The expressions for κ0 and κ1 follow from standard calculations for arc-cosine kernels of
degree 0 and 1 (see Cho and Saul, 2009). Note that in this two-layer case, the non-linear
features obtained for finite neurons correspond to a random features kernel (Rahimi and
Recht, 2007), which is known to approximate the full kernel relatively well even with a
moderate amount of neurons (Bach, 2017b; Rahimi and Recht, 2007; Rudi and Rosasco,
2017). One can also extend the derivation to other activation functions, which may lead
to explicit expressions for the kernel in some cases (Daniely et al., 2016).

123

4.2. Neural Tangent Kernels

NTK for fully-connected deep ReLU networks. We define a fully-connected neu-
ral network by f(x; θ) =

√
2
mn
〈wn+1, an〉, with a1 = σ(W 1x), and

ak = σ

(√
2

mk–1
W kak–1

)
, k = 2, . . . , n,

where W k ∈ Rmk×mk–1 and wn+1 ∈ Rmn are initialized with i.i.d. N (0, 1) entries,
and σ(u) = (u)+ is the ReLU activation and is applied element-wise. Following Ja-
cot et al. (2018), the corresponding NTK is defined recursively by K(x, x′) = Kn(x, x′)
with K0(x, x′) = Σ0(x, x′) = x>x′, and for k ≥ 1,

Σk(x, x′) = 2E(u,v)∼N (0,Bk)[σ(u)σ(v)]
Kk(x, x′) = Σk(x, x′) + 2Kk–1(x, x′)E(u,v)∼N (0,Bk)[σ′(u)σ′(v)],

where Bk =
(

Σk–1(x, x) Σk–1(x, x′)
Σk–1(x, x′) Σk–1(x′, x′)

)
. Using a change of variables and definitions of

arc-cosine kernels of degrees 0 and 1 (Cho and Saul, 2009), it is easy to show that

2E(u,v)∼N (0,Bk)[σ(u)σ(v)] =
√

Σk–1(x, x)Σk–1(x′, x′)κ1

(
Σk–1(x, x′)√

Σk–1(x, x)Σk–1(x′, x′)

)
(4.6)

2E(u,v)∼N (0,Bk)[σ′(u)σ′(v)] = κ0

(
Σk–1(x, x′)√

Σk–1(x, x)Σk–1(x′, x′)

)
, (4.7)

where κ0 and κ1 are defined in (4.5).

Feature maps construction. We now provide a reformulation of the previous kernel
in terms of explicit feature maps, which provides a representation of the data and makes
our study of stability in Section 2.3 more convenient. For a given input Hilbert space H,
we denote by ϕH,1 : H → H1 the kernel mapping into the RKHS H1 for the kernel
(z, z′) ∈ H2 7→ ‖z‖‖z′‖κ1(〈z, z′〉/‖z‖‖z′‖), and by ϕH,0 : H → H0 the kernel mapping
into the RKHS H0 for the kernel (z, z′) ∈ H2 7→ κ0(〈z, z′〉/‖z‖‖z′‖). We will abuse
notation and hide the input space, simply writing ϕ1 and ϕ0.

Lemma 4.1 (NTK feature map for fully-connected network). The NTK for the fully-
connected network can be defined as K(x, x′) = 〈Φn(x),Φn(x′)〉, with Φ0(x) = Ψ0(x) = x
and for k ≥ 1,

Ψk(x) = ϕ1(Ψk–1(x))

Φk(x) =
(
ϕ0(Ψk–1(x))⊗ Φk–1(x)

ϕ1(Ψk–1(x))

)
,

where ⊗ is the tensor product.

124

Chapter 4. Neural Tangent Kernels

4.2.2 Neural tangent kernel for convolutional networks

In this section we study NTKs for convolutional networks (CNNs) on signals, focusing on
the ReLU activation. We consider signals in `2(Zd,Rm0), that is, signals x[u] with u ∈
Zd denoting the location, x[u] ∈ Rm0 , and

∑
u∈Zd ‖x[u]‖2 < ∞ (for instance, d = 2

and m0 = 3 for RGB images). The infinite support allows us to avoid dealing with
boundary conditions when considering deformations and pooling. The precise study
of `2 membership is deferred to Section 2.3.

Patch extraction and pooling operators P k and Ak. Following Chapter 2, we
define two linear operators P k and Ak on `2(Zd) for extracting patches and performing
(linear) pooling at layer k, respectively. For an H-valued signal x[u], P k is defined by
P kx[u] = |Sk|−1/2(x[u + v])v∈Sk ∈ H|Sk|, where Sk is a finite subset of Zd defining the
patch shape (e.g., a 3x3 box). Pooling is defined as a convolution with a linear filter hk[u],
e.g., a Gaussian filter at scale σk as in Chapter 2, that is, Akx[u] =

∑
v∈Zd hk[u− v]x[v].

In this discrete setting, we can easily include a downsampling operation with factor sk by
changing the definition of Ak to Akx[u] =

∑
v∈Zd hk[sku− v]x[v] (in particular, if hk is a

Dirac at 0, we obtain a CNN with “strided convolutions”). In fact, our NTK derivation
supports general linear operators Ak : `2(Zd)→ `2(Zd) on scalar signals.

For defining the NTK feature map, we also introduce the following non-linear point-
wise operator M , given for two signals x, y, by

M(x, y)[u] =
(
ϕ0(x[u])⊗ y[u]

ϕ1(x[u])

)
, (4.8)

where ϕ0/1 are kernel mappings of arc-cosine 0/1 kernels, as defined in Section 4.2.1.

CNN definition and NTK. We consider a network f(x; θ) =
√

2
mn
〈wn+1, an〉`2 , with

ãk[u] =

W
1P 1x[u], if k = 1,√

2
mk–1

W kP kak–1[u], if k ∈ {2, . . . , n},

ak[u] = Akσ(ãk)[u], k = 1, . . . , n,

where W k ∈ Rmk×mk–1|Sk| and wn ∈ `2(Zd,Rmn) are initialized with N (0, 1) entries,
and σ(x̃k) denotes the signal with σ applied element-wise to x̃k. We are now ready to
state our result on the NTK for this model.

Proposition 4.2 (NTK feature map for CNN). The NTK for the above CNN, ob-
tained when the number of feature maps m1, . . . ,mn → ∞ (sequentially), is given by
K(x, x′) = 〈Φ(x),Φ(x′)〉`2(Zd), with Φ(x)[u] = AnM(xn, yn)[u], where yn and xn are
defined recursively for a given input x by y1[u] = x1[u] = P 1x[u], and for k ≥ 2,

xk[u] = P kAk–1ϕ1(xk–1)[u]
yk[u] = P kAk–1M(xk–1, yk–1)[u],

with the abuse of notation ϕ1(x)[u] = ϕ1(x[u]) for a signal x.

125

4.3. Two-Layer Networks

The proof is given in Appendix 4.B.2, where we also show that in the overpa-
rameterization limit, the pre-activations ãki [u] tend to a Gaussian process with covari-
ance Σk(x, u;x′, u′) = 〈xk[u], x′k[u′]〉 (this is related to recent papers by Garriga-Alonso
et al. (2019); Novak et al. (2019) studying Gaussian process limits of Bayesian convo-
lutional networks). The proof is by induction and relies on similar arguments to Jacot
et al. (2018) for fully-connected networks, in addition to exploiting linearity of the oper-
ators P k and Ak, as well as recursive feature maps for hierarchical kernels. The recent
papers by Arora et al. (2019a); Yang (2019) also study NTKs for certain convolutional
networks; in contrast to these works, our derivation considers general signals in `2(Zd),
supports intermediate pooling or downsampling by changing Ak, and provides a more
intuitive construction through kernel mappings and the operators P k and Ak. Note that
the feature maps xk are defined independently from the yk, and in fact correspond to
more standard multi-layer deep kernel machines as in Chapter 2 (see also Cho and Saul,
2009; Daniely et al., 2016; Mairal, 2016) or covariance functions of certain deep Bayesian
networks (Garriga-Alonso et al., 2019; Lee et al., 2018; Matthews et al., 2018; Novak
et al., 2019). They can also be seen as the feature maps of the limiting kernel that arises
when only training weights in the last layer and fixing other layers at initialization (see,
e.g., Daniely et al., 2016).

4.3 Two-Layer Networks

In this section, we study smoothness and approximation properties of the RKHS defined
by neural tangent kernels for two-layer networks. For ReLU activations, we show that
the NTK kernel mapping is not Lipschitz, but satisfies a weaker smoothness property.
In Section 4.3.2, we characterize the RKHS for ReLU activations and study its approx-
imation properties and benefits. Finally, we comment on the use of other activations in
Section 4.3.3.

4.3.1 Smoothness of two-layer ReLU networks

Here we study the RKHS H of the NTK for two-layer ReLU networks, defined in (4.3),
focusing on smoothness properties of the kernel mapping, denoted Φ(·). Recall that
smoothness of the kernel mapping guarantees smoothness of functions f ∈ H, through
the relation

|f(x)− f(y)| ≤ ‖f‖H‖Φ(x)− Φ(y)‖H. (4.9)

We begin by showing that the kernel mapping for the NTK is not Lipschitz. This is in
contrast to the kernel κ1 in (4.5), obtained by fixing the weights in the first layer and
training only the second layer weights (κ1 is 1-Lipschitz by Lemma 2.1 in Chapter 2).

Proposition 4.3 (Non-Lipschitzness). The kernel mapping Φ(·) of the two-layer NTK
is not Lipschitz:

sup
x,y

‖Φ(x)− Φ(y)‖H
‖x− y‖

→ +∞.

This is true even when looking only at points x, y on the sphere. It follows that the
RKHS H contains unit-norm functions with arbitrarily large Lipschitz constant.

126

Chapter 4. Neural Tangent Kernels

Note that the instability is due to ϕ0, which comes from gradients w.r.t. first layer
weigts. We now show that a weaker guarantee holds nevertheless, resembling 1/2-Hölder
smoothness.

Proposition 4.4 (Smoothness for ReLU NTK). We have the following smoothness
properties:
1. For x, y such that ‖x‖ = ‖y‖ = 1, the kernel mapping ϕ0 satisfies ‖ϕ0(x)− ϕ0(y)‖ ≤√

‖x− y‖.
2. For general non-zero x, y, we have ‖ϕ0(x)− ϕ0(y)‖ ≤

√
1

min(‖x‖,‖y‖)‖x− y‖.
3. The kernel mapping Φ of the NTK then satisfies

‖Φ(x)− Φ(y)‖ ≤
√

min(‖x‖, ‖y‖)‖x− y‖+ 2‖x− y‖.

We note that while such smoothness properties apply to the functions in the RKHS
of the studied limiting kernels, the neural network functions obtained at finite width
and their linearizations around initialization are not in the RKHS and thus may not
preserve such smoothness properties, despite preserving good generalization properties,
as in random feature models (Bach, 2017b; Rudi and Rosasco, 2017). This discrepancy
may be a source of instability to adversarial perturbations.

4.3.2 Approximation properties for the two-layer ReLU NTK

In the previous section, we found that the NTK for two-layer ReLU networks yields
weaker smoothness guarantees compared to the kernel κ1 obtained when the first layer is
fixed. We now show that the NTK has better approximation properties, by studying the
RKHS through a spectral decomposition of the kernel and the decay of the corresponding
eigenvalues. This highlights a tradeoff between smoothness and approximation.

Background on dot-product kernels and spherical harmonics. When restrict-
ing inputs to lie on the sphere in p dimensions, X = Sp–1 = {x ∈ Rp : ‖x‖ = 1}, the
kernels we study take the form of dot-product kernels K(x, y) = κ(〈x, y〉), for which it
is common to consider Mercer decompositions in the basis of spherical harmonics (e.g.,
Smola et al., 2001; Vert and Mairal, 2017). More precisely, we may consider the integral
operator T of κ defined on L2(Sp–1, dτ), where τ is the uniform measure on the sphere,
given for f ∈ L2(Sp–1, dτ) by

Tf(x) =
∫
Sp–1

κ(〈x, y〉)f(y)dτ(y).

This operator is then diagonalized in the basis of spherical harmonics, which consists
of homogeneous polynomials forming an orthonormal basis of L2(Sp–1, dτ). For each
degree k, which plays the role of an integer frequency as in Fourier, we have N(p, k) =
2k+p−2

k

(
k + p− 3
p− 2

)
spherical harmonics, denoted Yk,j(x) for j = 1, . . . , N(p, k). A use-

ful tool for computing Fourier coefficients in this basis is the set of Legendre polynomi-
als Pk, which form an orthogonal basis of L2([−1, 1], dν), with dν(t) = (1− t2)(p−3)/2dt.
We provide more background on spherical harmonics and Legendre polynomials in Ap-
pendix 4.A. Then, Mercer’s theorem yields the following kernel decomposition (Schölkopf

127

4.3. Two-Layer Networks

and Smola, 2001; Smola et al., 2001):

κ(〈x, y〉) =
∞∑
k=0

µk

N(p,k)∑
j=1

Yk,j(x)Yk,j(y) =
∞∑
k=0

µkN(p, k)Pk(〈x, y〉), (4.10)

where µk is obtained by computing Fourier coefficients of κ(〈x, ·〉) using the Funk-Hecke
formula (see (4.22) in Appendix 4.A, ωp−1 is the surface of Sp–1):

µk = ωp−2
ωp−1

∫ 1

−1
κ(t)Pk(t)(1− t2)(p−3)/2dt. (4.11)

Note that we must have µk ≥ 0 for all k, since positive definiteness of k would be violated
if this were not true. Then, the RKHS H consists of functions of the form

f(x) =
∞∑
k=0

N(p,k)∑
j=1

ak,jYk,j(x), (4.12)

s.t. ‖f‖2H =
∞∑
k=0

N(p,k)∑
j=1

a2
k,j

µk
<∞. (4.13)

In particular, this requires that ak,j = 0 for all j, for any k such that µk = 0.

Relationship with differentiability. As in the case of Fourier series, there is a tight
connection between regularity of function on the sphere, and decay of their Fourier
coefficients in the basis of spherical harmonics. In particular, the decay of the eigen-
values µk is related to the regularity of functions in the RKHS. Following Bach (2017a,
Appendix D.3), if f is s-times differentiable with derivatives bounded by η, then we have
‖(−∆)s/2f‖L2(Sp−1) ≤ η, where ∆ is the Laplace-Beltrami operator on the sphere (Atkin-
son and Han, 2012). Given a function f as in (4.12), we can use the fact that Yk,j is an
eigenfunction of −∆ with eigenvalue k(k+p−2) (see Atkinson and Han, 2012; Efthimiou
and Frye, 2014) and write ak,j = a′k,j/(k(k + p − 2))s/2 for k ≥ 1, where a′k,j are the
Fourier coefficients of (−∆)s/2f and satisfy

∑
k,j a

′2
k,j ≤ η2. We then have

Lemma 4.5. Assume f takes the form (4.12), with ak,j = 0 for all j when µk = 0, and
that f is s-times differentiable with derivatives up to s-th order bounded by η. Then, if
maxk≥1,µk 6=0 1/(k2sµk) < C, we have f ∈ H with ‖f‖2H ≤ C ′η2, with C ′ = 1/µ0 + C if
µ0 6= 0, or C ′ = C if µ0 = 0.

Indeed, under the stated conditions, we have

‖f‖2H =
∞∑
k=0

N(p,k)∑
j=1

a2
k,j

µk
≤
a2

0,1
µ0

+ max
k≥1,µk 6=0

1/(k2sµk)
∑
k,j

a′2k,j

≤ 1
µ0
η2 + C‖(−∆)s/2f‖2L2(S) ≤ C

′η2.

128

Chapter 4. Neural Tangent Kernels

Mercer decompositions for arc-cosine kernels. The values of µk for the arc-cosine
kernels of degree 0 and 1, κ0 and κ1, can be immediately obtained from the results of Bach
(2017a), and we provide them here. For any non-negative integer α ≥ 0, Bach (2017a)
considers the positively homogeneous activation σα(u) = (u)α+ and derives the following
quantities for k ≥ 0:

λα,k = ωp−2
ωp−1

∫ 1

−1
σα(t)Pk(t)(1− t2)(p−3)/2dt.

This can be used to derive the decompositions of the arc-cosine kernels introduced in
Section 4.2, which are defined using expectations on Gaussian variables, but can be
expressed using expectations on the sphere as follows:

κα(〈x, y〉) = 2Ew∼N (0,1)[σα(〈w, x〉)σα(〈w, y〉)]
= 2Ew∼N (0,1)[‖w‖2ασα(〈w/‖w‖, x〉)σα(〈w/‖w‖, y〉)]

= 2Ew∼N (0,1)[‖w‖2α]
∫
σα(〈w, x〉)σα(〈w, y〉)dτ(w),

where we used α-homogeneity of σα and the rotational symmetry of the normal distribu-
tion, which implies that w/‖w‖ is uniformly distributed on the sphere, and independent
from ‖w‖.

For a fixed w, we have the decomposition

σα(〈w, x〉) =
∞∑
k=0

λα,kN(p, k)Pk(〈w, y〉).

Then, using the orthogonality of Legendre polynomials (see (4.20) in Appendix 4.A), we
have

κα(〈x, y〉) = 2Ew∼N (0,1)[‖w‖2α]
∞∑
k=0

λ2
α,kN(p, k)Pk(〈x, y〉).

For α = 0, 1, this yields decompositions (4.10) of κ0, κ1 with µ0,k = 2λ2
0,k and µ1,k =

2pλ2
1,k. Bach (2017a) then shows the following result on the decomposition of σα, which

we translate to decompositions of kernel functions κα.

Lemma 4.6 (Decomposition of σα and κα (Bach, 2017a)). For the activation σα on the
p–1 sphere, we have

• λα,k 6= 0 if k ≤ α;

• λα,k = 0 if k > α if k = α mod 2;

• |λα,k| ∼ Cλ(p, α)k−p/2−α otherwise, for some constant Cλ(p, α) depending on p
and α.

For α ∈ {0, 1}, the eigenvalues for the corresponding kernel κα then satisfy

• µα,k > 0 if k ≤ α;

• µα,k = 0 if k > α if k = α mod 2;

129

4.3. Two-Layer Networks

• µα,k ∼ Cµ(p, α)k−p−2α otherwise, with Cµ(p, α) = 2pαCλ(p, α)2.

Note that the zero eigenvalues imply that a function f of the form (4.12) must
have ak,j = 0 for k > α and k = α mod 2 in order to be in the RKHS for κα (note
that adding a bias may prevent such zero eigenvalues, see, e.g., Basri et al., 2019). A
sufficient condition for this to hold is that f is even (resp. odd) when α is odd (resp.
even); see Bach (2017a).

Mercer decomposition for the NTK. The next proposition gives the Mercer de-
composition of the NTK in (4.4), which hereafter will be denoted κ(〈x, y〉) for x, y ∈ Sp–1,
where κ is given by

κ(u) = uκ0(u) + κ1(u).

Proposition 4.7 (Mercer decomposition of ReLU NTK). For any x, y ∈ Sp−1, we have
the following decomposition of the NTK κ:

κ(〈x, y〉) =
∞∑
k=0

µk

N(p,k)∑
j=1

Yk,j(x)Yk,j(y), (4.14)

where Yk,j , j = 1, . . . , N(p, k) are spherical harmonic polynomials of degree k, and the
non-negative eigenvalues µk satisfy µ0, µ1 > 0, µk = 0 if k = 2j + 1 with j ≥ 1, and
otherwise µk ∼ C(p)k−p as k → ∞, with C(p) a constant depending only on p. Then,
the RKHS is described by:

H =

f =
∑

k≥0,µk 6=0

N(p,k)∑
j=1

ak,jYk,j(·) s.t. ‖f‖2H :=
∑

k≥0,µk 6=0

N(p,k)∑
j=1

a2
k,j

µk
<∞

 .
(4.15)

Proof. Using (4.11) and the recurrence relation (4.21) in Appendix 4.A for Legendre
polynomials, as well as tP0(t) = P1(t), we have

µ0 = µ0,1 + µ1,0

µk = k

2k + p− 2µ0,k–1 + k + p− 2
2k + p− 2µ0,k+1 + µ1,k, for k ≥ 1.

By Lemma 4.6, we have the desired properties.

Note that for the arc-cosine 1 kernel κ1, we have a faster decay µk = O(k−p−2),
leading to a “smaller” RKHS (see Lemma 4.6 and Bach (2017a)). Moreover, the k−p
asymptotic equivalent comes from the term uκ0(u) in the definition (4.4) of κ, which
comes from gradients of first layer weights; the second layer gradients yield κ1, whose
contribution to µk becomes negligible for large k. We use an identity also used in the
recent paper by Ghorbani et al. (2019) which compares similar kernels in a specific
high-dimensional limit for generic activations; in contrast to Ghorbani et al. (2019), we
focus on ReLUs and study eigenvalue decays in finite dimension. We note that our
decomposition uses a uniform distribution on the sphere, which allows a precise study
of eigenvalues and approximation properties of the RKHS using spherical harmonics.
When the data distribution is also uniform on the sphere, or absolutely continuous

130

Chapter 4. Neural Tangent Kernels

w.r.t. the uniform distribution, our obtained eigenvalues are closely related to those of
integral operators for learning problems, which can determine, e.g., non-parametric rates
of convergence (e.g., Caponnetto and De Vito, 2007; Fischer and Steinwart, 2017) as well
as degrees-of-freedom quantities for kernel approximation (e.g., Bach, 2017b; Rudi and
Rosasco, 2017). Such quantities often depend on the eigenvalue decay of the integral
operator (see Section 1.3 in Chapter 1), which can be obtained from µk after taking
multiplicity into account. This is also related to the rate of convergence of gradient
descent in the lazy training regime, which depends on the minimum eigenvalue of the
empirical kernel matrix in (Chizat et al., 2019; Du et al., 2019a,b).

Regularity conditions and approximation of Lipschitz functions. We now pro-
vide sufficient conditions for a function f : Sp−1 → R to be in H, as well as rates of
approximation of Lipschitz functions on the sphere, adapting results of Bach (2017a,
specifically Proposition 2 and 3) to our NTK setting.

Corollary 4.8 (Sufficient condition for f ∈ H). Let f : Sp−1 → R be an even function
such that all i-th order derivatives exist and are bounded by η for 0 ≤ i ≤ s, with s ≥ p/2.
Then f ∈ H with ‖f‖H ≤ C(p)η, where C(p) is a constant that only depends on p.

Corollary 4.9 (Approximation of Lipschitz functions). Let f : Sp−1 → R be an even
function such that f(x) ≤ η and |f(x)− f(y)| ≤ η‖x− y‖, for all x, y ∈ Sp−1. There is
a function g ∈ H with ‖g‖H ≤ δ, where δ is larger than a constant depending only on p,
such that

sup
x∈Sp−1

|f(x)− g(x)| ≤ C(p)η
(
δ

η

)−1/(p/2−1)
log

(
δ

η

)
.

Proof sketch. Bach (2017a, Appendix D) defines candidate functions g : Sp−1 from func-
tions p ∈ L2(Sp−1) as g(x) = Tp(x) :=

∫
p(w)σα(w>x)dτ(w), with RKHS norm (de-

noted γ2(g) in (Bach, 2017a)) given by the smallest ‖p‖L2 for p such that g = Tp. In
our case with the NTK, we may simply consider the operator Σ1/2 instead (the self-
adjoint square root of the integral operator Σ of κ, using notations from Bach (2017b);
see also Cucker and Smale (2002)), which simply multiplies each fourier coefficient ak,j
in decomposition (4.12) by √µk, and obeys the required properties (in fact, T and Σ1/2

are two different square roots of Σ (Bach, 2017b)).
The proofs can then be adapted directly, by noticing that √µk has the same decay

properties as λα,k with α = 0. For Corollary 4.8, the key proof ingredients are also
provided in Lemma 4.5 above in our framework.

For both results, there is an improvement over κ1, for which Corollary 4.8 re-
quires s ≥ p/2 + 1 bounded derivatives, and Corollary 4.9 leads to a weaker rate
in (δ/η)−1/(p/2) (see Bach, 2017a, Propositions 2 and 3, with α = 1). These results show
that in the over-parameterized regime of the NTK, training multiple layers leads to bet-
ter approximation properties compared to only training the last layer, which corresponds
to using κ1 instead of κ. In the different regime of “convex neural networks” (e.g., Bach,
2017a; Savarese et al., 2019) where neurons can be selected with a sparsity-promoting
penalty, the approximation rates shown by Bach (2017a) for ReLU networks are also
weaker than for the NTK in the worst case (though the regime presents benefits in
terms of adaptivity), suggesting that perhaps in some situations the “lazy” regime of the
NTK could be preferred over the regime where neurons are selected using sparsity.

131

4.3. Two-Layer Networks

Homogeneous case. When inputs do not lie on the sphere Sp−1 but in Rp, the NTK
for two-layer ReLU networks takes the form of a homogeneous dot-product kernel (4.3),
which defines a different RKHS H̄ that we characterize below in terms of the RKHS H
of the NTK on the sphere.

Proposition 4.10 (RKHS of the homogeneous NTK). The RKHS H̄ of the kernel
K(x, x′) = ‖x‖‖x′‖κ(〈x, x′〉/‖x‖‖x′‖) on Rp consists of functions of the form f(x) =
‖x‖g(x/‖x‖) with g ∈ H, where H is the RKHS on the sphere, and we have ‖f‖H̄ =
‖g‖H.

Proof of Proposition 4.10. The kernel K can be written as

K(x, x′) = 〈‖x‖Φ
(
x

‖x‖

)
, ‖x′‖Φ

(
x′

‖x′‖

)
〉H,

where Φ(·) is the kernel mapping of the kernel κ on the sphere. Then the RKHS H̄ can
be characterized by the following classical result—see, e.g., Theorem 1.3 in Chapter 1:

H̄ = {x 7→ 〈g, ‖x‖Φ
(
x

‖x‖

)
〉H︸ ︷︷ ︸

=:fg

: g ∈ H}

‖fg‖H̄ = inf{‖g′‖H : g′ ∈ H s.t. fg = fg′}.

Note that the condition fg = fg′ implies in particular that fg and fg′ are equal on the
sphere, and thus that g = g′, so that the infimum is simply equal to ‖g‖H. This concludes
the proof.

Note that while such a restriction to homogeneous functions may be limiting, one
may easily obtain non-homogeneous functions by considering an augmented variable z =
(x>, R)> and defining f(x) = ‖z‖g(z/‖z‖), where g is now defined on the p-sphere Sp.
When inputs are in a ball of radius R, this reformulation preserves regularity proper-
ties (see Bach, 2017a, Section 3).

4.3.3 Smoothness with other activations

In this section, we look at smoothness of two-layer networks with different activation
functions. Following the derivation for the ReLU in Section 4.2.1, the NTK for a general
activation σ is given by

Kσ(x, x′) = 〈x, x′〉Ew∼N (0,1)[σ′(〈w, x〉)σ′(〈w, x′〉)] + Ew∼N (0,1)[σ(〈w, x〉)σ(〈w, x′〉)].

We then have the following the following result.

Proposition 4.11 (Lipschitzness for smooth activations). Assume that σ is twice dif-
ferentiable and that the quantities γj := Eu∼N (0,1)[(σ(j)(u))2] for j = 0, 1, 2 are bounded,
with γ0 > 0. Then, for x, y on the unit sphere, the kernel mapping Φσ of Kσ satisfies

‖Φσ(x)− Φσ(y)‖ ≤
√

(γ0 + γ1) max
(

1, 2γ1 + γ2
γ0 + γ1

)
· ‖x− y‖.

132

Chapter 4. Neural Tangent Kernels

The proof uses results by Daniely et al. (2016) on relationships between activations
and the corresponding kernels, as well as smoothness results for dot-product kernels in
Chapter 2.3 (the proof is given in Appendix 4.C.3). If, for instance, we consider the
exponential activation σ(u) = eu−2, we have γj = 1 for all j (using results of Daniely
et al. (2016)), so that the kernel mapping is Lipschitz with constant

√
3. For the soft-

plus activation σ(u) = log(1 + eu), we may evaluate the integrals numerically, obtaining
(γ0, γ1, γ2) ≈ (2.31, 0.74, 0.11), so that the kernel mapping is Lipschitz with constant
≈ 1.75.

4.4 Deep Convolutional Networks

In this section, we study smoothness and stability properties of the NTK kernel map-
ping for convolutional networks with ReLU activations. In order to properly define
deformations, we consider continuous signals x(u) in L2(Rd) instead of `2(Zd) (i.e., we
have ‖x‖2 :=

∫
‖x(u)‖2du <∞), following Chapter 2 and Mallat (2012). The goal of de-

formation stability guarantees is to ensure that the data representation (in this case, the
kernel mapping Φ) does not change too much when the input signal is slightly deformed,
for instance with a small translation or rotation of an image—a useful inductive bias for
natural signals. For a C1-diffeomorphism τ : Rd → Rd, denoting Lτx(u) = x(u − τ(u))
the action operator of the diffeomorphism, we will show a guarantee of the form

‖Φ(Lτx)− Φ(x)‖ ≤ (ω(‖∇τ‖∞) + C‖τ‖∞)‖x‖,

where ‖∇τ‖∞ is the maximum operator norm of the Jacobian ∇τ(u) over Rd, ‖τ‖∞ =
supu |τ(u)|, ω is an increasing function and C a positive constant. The second term
controls translation invariance, and C typically decreases with the scale of the last pool-
ing layer (σn below), while the first term controls deformation stability, since ‖∇τ‖∞
measures the “size” of deformations. The function ω(t) is typically a linear function of t
in other settings, as discussed in Section 1.5.2 of Chapter 1, but here we will obtain a
faster growth of order

√
t for small t, due to the weaker smoothness that arises from the

arc-cosine 0 kernel mappings.

Properties of the operators. In this continuous setup, P k is now given for a sig-
nal x ∈ L2 by P kx(u) = λ(Sk)−1/2(x(u+ v))v∈Sk , where λ is the Lebesgue measure. We
then have ‖P kx‖ = ‖x‖, and considering normalized Gaussian pooling filters, we have
‖Akx‖ ≤ ‖x‖ by Young’s inequality, as in Chapter 2. The non-linear operator M is
defined point-wise analogously to (4.8), and satisfies ‖M(x, y)‖2 = ‖x‖2 +‖y‖2. We thus
have that the feature maps in the continuous analog of the NTK construction in Propo-
sition 4.2 are in L2 as long as x is in L2. Note that this does not hold for some smooth
activations, where ‖M(x, y)(u)‖ may be a positive constant even when x(u) = y(u) = 0,
leading to unbounded L2 norm for M(x, y). The next lemma studies the smoothness
of M , extending results from Section 4.3.1 to signals in L2.

Lemma 4.12 (Smoothness of operator M). For two signals x, y ∈ L2(Rd), we have

‖M(x, y)−M(x′, y′)‖ ≤
√

min(‖y‖, ‖y′‖)‖x− x′‖+ ‖x− x′‖+ ‖y − y′‖. (4.16)

133

4.4. Deep Convolutional Networks

Assumptions on architecture. Following Chapter 2, we introduce an initial pooling
layer A0, corresponding to an anti-aliasing filter, which is necessary to allow stability
and is a reasonable assumption given that in practice the inputs are discrete signals, for
which high frequencies have typically been filtered by an acquisition device. Thus, we
consider the kernel representation Φn(x) := Φ(A0x), with Φ as in Proposition 4.2. We
also assume that patch sizes are controlled by the scale of pooling filters, that is

sup
v∈Sk
|v| ≤ βσk–1, (4.17)

for some constant β, where σk–1 is the scale of the pooling operation Ak–1, which typically
increases exponentially with depth, corresponding to a fixed downsampling factor at each
layer in the discrete case. By a simple induction, we can show the following.

Lemma 4.13 (Norm and smoothness of Φn). We have ‖Φn(x)‖ ≤
√
n+ 1‖x‖, and

‖Φn(x)− Φn(x′)‖ ≤ (n+ 1)‖x− x′‖+O(n5/4)
√
‖x‖‖x− x′‖.

Deformation stability bound. We now present our main guarantee on deformation
stability for the NTK kernel mapping.

Proposition 4.14 (Stability of NTK). Let Φn(x) = Φ(A0x), and assume ‖∇τ‖∞ ≤ 1/2.
We have the following stability bound:

‖Φn(Lτx)− Φn(x)‖

≤
(
C(β)1/2Cn7/4‖∇τ‖1/2∞ + C(β)C ′n2‖∇τ‖∞ +

√
n+ 1C

′′

σn
‖τ‖∞

)
‖x‖,

where C,C ′, C ′′ are constants depending only on d, and C(β) also depends on β defined
in (4.17).

The proof is given in Appendix 4.C. Compared to the bound in Chapter 2, the first
term shows weaker stability due to faster growth with ‖∇τ‖∞, which comes from (4.16).
The dependence in n is also poorer (n2 instead of n), however note that in contrast to
Chapter 2, the norm and smoothness constants of Φn(x) in Lemma 4.13 grow with n
here, partially explaining this gap. We also note that as in Chapter 2.3, choosing small β
(i.e., small patches in a discrete setting) is more helpful to improve stability than a small
number of layers n, given that C(β) increases with β as βd+1, while n typically decreases
with β as 1/ log(β) when one seeks a fixed target level of translation invariance (see
Section 2.3.2 in Chapter 2).

By fixing weights of all layers but the last, we would instead obtain feature maps of
the form Anxn (using notation from Proposition 4.2), which satisfy the improved stability
guarantee of Chapter 2. The question of approximation for the deep convolutional case
is more involved and left for future work, but it is reasonable to expect that the RKHS
for the NTK is at least as large as that of the simpler kernel with fixed layers before the
last, given that the latter appears as one of the terms in the NTK. This again hints at a
tradeoff between stability and approximation, suggesting that one may be able to learn
less stable but more discriminative functions in the NTK regime by training all layers.

134

Chapter 4. Neural Tangent Kernels

0 1 2 3
deformation

0.0

0.1

0.2
m

ea
n

re
la

tiv
e

di
st

an
ce

deformations
deformations + translation
same label
all labels

(a) CKN with arc-cosine 1 kernels

0 1 2 3
deformation

0.0

0.1

0.2

0.3

m
ea

n
re

la
tiv

e
di

st
an

ce

(b) NTK

Figure 4.1: Average relative representation distance for CKN and NTK convolutional
kernels, on the same MNIST digit data considered in Section 2.3.4, similar to Figure 2.3;
see Chapter 2 for details on the experimental setup. The figures consider deformations
of varying size α ∈ {0.01, 0.03, 0.1, 0.3, 1, 3}.

Numerical experiments. We now study numerically the stability of (exact) kernel
mapping representations for convolutional networks with 2 hidden convolutional layers
on the same images of digits as considered in Section 2.3.4 of Chapter 2, that is, MNIST
digits along with their deformations from the infinite MNIST dataset of Loosli et al.
(2007). We consider both the convolutional kernel of Chapter 2 with arc-cosine kernels
of degree 1 on patches (corresponding to the kernel obtained when only training the
last layer and keeping previous layers fixed), denoted CKN, to the NTK. The kernel
evaluations are computed in C++ using dynamic programming; our implementation is
available at https://github.com/albietz/ckn_kernel.

Figure 4.1 shows the resulting average distances, when considering collections of
digits and deformations thereof. In particular, we find that for small deformations
(small α), the distance to the original image tends to grow more quickly for the NTK
compared to the CKN, as the theory suggests (a square-root growth rate rather than a
linear one). Note also that the relative distances are generally larger for the NTK than
for the CKN, suggesting the CKN may be smoother.

4.5 Discussion

In this chapter, we have studied the inductive bias of the “lazy training” regime for
over-parameterized neural networks, by considering the neural tangent kernel of different
architectures, and analyzing properties of the corresponding RKHS, which characterizes
the functions that can be learned efficiently in this regime. We find that the NTK for
ReLU networks has better approximation properties compared to other neural network
kernels, but weaker smoothness properties, although these can still guarantee a form of
stability to deformations for CNN architectures, providing an important inductive bias
for natural signals. While these properties may help obtain better performance when
large amounts of data are available, they can also lead to a poorer estimation error when
data is scarce, a setting in which smoother kernels or better regularization strategies
may be helpful.

It should be noted that while our study of functions in the RKHS may determine what
target functions can be learned by over-parameterized networks, the obtained networks

135

https://github.com/albietz/ckn_kernel

4.5. Discussion

with finite neurons do not belong to the same RKHS, and hence may be less stable than
such target functions, at least outside of the training data, due to approximations both
in the linearization (4.1) and between the finite neuron and limiting kernels. Finally, we
note that while this “lazy” regime is interesting and could partly explain the success of
deep learning methods, it does not explain, for instance, the common behavior in early
layers where neurons move to select useful features in the data, such as Gabor filters,
as pointed out by Chizat et al. (2019). In particular, such a behavior might provide
better statistical efficiency by adapting to simple structures in the data (see, e.g., Bach,
2017a), something which is not captured in a kernel regime like the NTK. It would be
interesting to study inductive biases in a regime somewhere in between, where neurons
may move at least in the first few layers.

136

Appendix

4.A Background on spherical harmonics
In this section, we provide some background on spherical harmonic analysis needed
for our study of the RKHS and its approximation properties. See Efthimiou and Frye
(2014); Atkinson and Han (2012) for references, as well as Bach (2017a, Appendix D).
We consider inputs on the p− 1 sphere Sp–1 = {x ∈ Rp, ‖x‖ = 1}.

We denote by Yk,j(x), j = 1, . . . , N(p, k), the spherical harmonics of degree k on Sp–1,

where N(p, k) = 2k+p−2
k

(
k + p− 3
p− 2

)
. They form an orthonormal basis of L2(Sp−1, dτ),

where τ is the uniform measure on the sphere. The index k plays the role of an integer
frequency, as in Fourier. We have the addition formula

N(p,k)∑
j=1

Yk,j(x)Yk,j(y) = N(p, k)Pk(〈x, y〉), (4.18)

where Pk is the k-th Legendre polynomial in dimension p (also known as Gegenbauer
polynomials), given by the Rodrigues formula:

Pk(t) = (−1/2)k
Γ(p−1

2)
Γ(k + p−1

2)
(1− t2)(3−p)/2

(
d

dt

)k
(1− t2)k+(d−3)/2.

The polynomials Pk are orthogonal in L2([−1, 1], dν) where the measure dν is given
by dν(t) = (1− t2)(p−3)/2dt, and we have∫ 1

−1
P 2
k (t)(1− t2)(p−3)/2dt = ωp−1

ωp−2

1
N(p, k) , (4.19)

where ωd−1 = 2πd/2
Γ(d/2) denotes the surface of the sphere Sd−1 in d dimensions. Using the

addition formula (4.18) and orthogonality of spherical harmonics, we can show∫
Pj(〈w, x〉)Pk(〈w, y〉)dτ(w) = δjk

N(p, k)Pk(〈x, y〉) (4.20)

Further, we have the recurrence relation (Efthimiou and Frye, 2014, Eq. 4.36)

tPk(t) = k

2k + p− 2Pk–1(t) + k + p− 2
2k + p− 2Pk+1(t), (4.21)

for k ≥ 1, and for k = 0 we simply have tP0(t) = P1(t).

137

4.B. Proofs of NTK derivations

The Funk-Hecke formula is helpful for computing Fourier coefficients in the basis of
spherical harmonics in terms of Legendre polynomials: for any j = 1, . . . , N(p, k), we
have ∫

f(〈x, y〉)Yk,j(y)dτ(y) = ωp−2
ωp−1

Yk,j(x)
∫ 1

−1
f(t)Pk(t)(1− t2)(p−3)/2dt. (4.22)

4.B Proofs of NTK derivations

4.B.1 Proof of Lemma 4.1

Proof of Lemma 4.1. By induction, using (4.6) and (4.7) and the corresponding defini-
tions of ϕ1, ϕ0, we can write

2E(u,v)∼N (0,Bk)[σ(u)σ(v)] = 〈ϕ1(Ψk–1(x)), ϕ1(Ψk–1(x′))〉
2E(u,v)∼N (0,Bk)[σ′(u)σ′(v)] = 〈ϕ0(Ψk–1(x)), ϕ0(Ψk–1(x′))〉.

The result follows by using the following relation, given three pairs of vectors (x, x′),
(y, y′) and (z, z′) in arbitrary Hilbert spaces:

〈x, x′〉+ 〈y, y′〉〈z, z′〉 = 〈
(
y ⊗ z
x

)
,

(
y′ ⊗ z′
x′

)
〉

4.B.2 Proof of Proposition 4.2 (NTK for CNNs)

In this section, we will denote by xk, yk (resp x′k, y
′
k) the feature maps associated to

an input x (resp x′), as defined in Proposition 4.2. We follow the proofs of Jacot et
al. (Jacot et al., 2018, Proposition 1 and Theorem 1).

We begin by proving the following lemma, which characterizes the Gaussian pro-
cess behavior of the pre-activations ãki [u], seen as a function of x and u, in the over-
parameterization limit.

Lemma 4.15. As m1, . . . ,mn–1 → ∞, the pre-activations ãki [u] for k = 1, . . . , n tend
(in law) to i.i.d. centered Gaussian processes with covariance

Σk(x, u;x′, u′) = 〈xk[u], x′k[u′]〉. (4.23)

Proof. We show this by induction. For k = 1, ã1
i [u] is clearly Gaussian, and we have

Σ1(x, u;x′, u′) = E[ã1
i [u]ã′1i [u′]]

= E[(W 1P 1x[u])i(W 1P 1x′[u′])i].

Writing W k
ij ∈ R|Sk| the vector of weights for the filter associated to the input feature

map j and output feature map i, we have (W 1P 1x[u])i =
∑m1
j=1W

1>
ij P

1xj [u]. Then we

138

Chapter 4. Neural Tangent Kernels

have

Σk(x, u;x′, u′) =
∑
j,j′

E[W 1>
ij P

1xj [u]P 1x′j′ [u′]>W 1
ij′]

=
∑
j,j′

Tr(E[W 1
ij′W

1>
ij]P 1xj [u]P 1x′j′ [u′]>)

=
∑
j

Tr(P 1xj [u]P 1x′j [u′]>) = 〈P 1x[u], P 1x′[u′]〉 = 〈P 1x0[u], P 1x′0[u′]〉,

by noticing that E[W 1
ij′W

1>
ij] = δj,j′I|S1|.

Now, for k ≥ 2, we have by similar arguments that conditioned on ak–1, ãki [u] is
Gaussian, with covariance

E[ãki [u]ã′ki [u′]|ak–1, a′k–1] = 2
mk–1

∑
j

〈P kak–1
j [u], P ka′k–1

j [u′]〉.

By the inductive hypothesis, ãk–1
j [u] as a function of x and u tend to Gaussian processes

in the limit m1, . . . ,mk−2 →∞. By the law of large numbers, we have, as mk–1 →∞,

E[ãki [u]ã′ki [u′]|ak–1, a′k–1]
→ Σk(x, u;x′, u′) := 2Ef∼GP (0,Σk–1)[〈P kAk–1σ(f(x))[u], P kAk–1σ(f(x′))[u′]〉].

Since this covariance is deterministic, the pre-activations ãki [u] are also unconditionally
a Gaussian process in the limit, with covariance Σk.

Now it remains to show that

2Ef∼GP (0,Σk–1)[〈P kAk–1σ(f(x))[u], P kAk–1σ(f(x′))[u′]〉]
= 〈P kAk–1ϕ1(xk–1)[u], P kAk–1ϕ1(x′k–1)[u′]〉.

Notice that by linearity of P k and Ak–1, it suffices to show

2Ef∼GP (0,Σk–1)[σ(f(x))[v]σ(f(x′))[v′]] = 〈ϕ1(xk–1)[v], ϕ1(x′k–1)[v′]〉

= ‖xk–1[v]‖‖x′k–1[v′]‖κ1

(
〈xk–1[v], xk–1[v′]〉
‖xk–1[v]‖‖x′k–1[v′]‖

)
,

for any v, v′ (the last equality follows from the definition of ϕ1). Noting that the tuple
(σ(f(x))[v], σ(f(x′))[v′]) = (σ(f(x)[v]), σ(f(x′)[v′])) when f ∼ GP (0,Σk–1) has Gaus-

sian distribution with zero mean and covariance
(

Σk–1(x, v;x, v) Σk–1(x, v;x′, v′)
Σk–1(x′, v′;x′, v′) Σk–1(x′, v′;x′, v′)

)
,

the results follow from (4.6) and (4.23) for k–1 by the inductive hypothesis.

We now state and prove a lemma which covers the recursion in the NTK for convo-
lutional layers (i.e., up to the last fully-connected layer).

Lemma 4.16. As m1, . . . ,mn–1 →∞, the gradients of the pre-activations, ∇θãki [u], for
k = 1, . . . , n satisfy

〈∇θãki [u],∇θã′ki′ [u′]〉 → δi,i′Γ̃k∞(x, u;x′, u′) = δi,i′〈yk[u], y′k[u′]〉.

139

4.B. Proofs of NTK derivations

Proof. We prove this by induction. For k = 1, denoting by W 1
i the ith row of W 1, we

have

〈∇θã1
i [u],∇θã′1i′ [u′]〉 = 〈∇W 1(W 1P 1x[u])i,∇W 1(W 1P 1x′[u′])i′〉

=
∑
s

〈∇W 1
s
W 1
i P

1x[u],∇W 1
s
W 1
i′P

1x′[u′]〉

= δi,i′〈P 1x[u], P 1x′[u′]〉.

For k ≥ 2, assume the result holds up to k–1. We have

〈∇θãki [u],∇θã′ki′ [u′]〉 = 〈∇Wk ãki [u],∇Wk ã′ki′ [u′]〉+ 〈∇W 1:k–1 ãki [u],∇W 1:k–1 ã′ki′ [u′]〉.

For the first term, we have, as in the k = 1 case,

〈∇Wk ãki [u],∇Wk ã′ki′ [u′]〉 = 2δi,i′
mk–1

〈P kak–1[u], P ka′k–1[u′]〉

= 2δi,i′
mk–1

∑
j

〈P kak–1
j [u], P ka′k–1

j [u′]〉

= 2δi,i′
mk–1

∑
j

〈P kAk–1σ(ãk–1
j)[u], P kAk–1σ(ã′k–1

j)[u′]〉.

When m1, . . . ,mk−2 →∞, ãk–1
j [u] tends to a Gaussian process with covariance Σk–1 by

Lemma 4.15, and when mk–1 →∞, the quantity above converges to its expectation:

〈∇Wk ãki [u],∇Wk ã′ki′ [u′]〉 → 2δi,i′ Ef∼GP (0,Σk–1)[〈P kAk–1σ(f(x))[u], P kAk–1σ(f(x))[u′]〉]
= δi,i′〈P kAk–1ϕ1(xk–1)[u], P kAk–1ϕ1(x′k–1)[u′]〉,

by using similar arguments to the proof of Lemma 4.15.
For the second term, identifying all parameters W 1:k–1 with a vector θ̂ ∈ Rq, we have

by linearity and the chain rule:
√
mk–1∇θ̂ã

k
i [u] =

∑
j

∇θ̂(W
k>
ij P kAk–1ãk–1

j [u])

=
∑
j

P kAk–1yk–1
j [u]> ·W k

ij ∈ Rq,

where yk–1
j [u] :=

√
2σ′(ãk–1

j [u])∇θ̂ã
k–1
j [u] ∈ Rq. Here we have identified P kAk–1yk–1

j [u]>

with a matrix in Rq×|Sk|, where columns are given by |Sk|−1/2Ak–1yk–1
j [u + v] ∈ Rq,

indexed by v ∈ Sk. We thus have

〈∇W 1:k–1 ãki [u],∇W 1:k–1 ã′ki′ [u′]〉 = 1
mk–1

∑
j,j′

W k>
i,j (P kAk–1yk–1

j [u] · P kAk–1y′k–1
j′ [u′]>)︸ ︷︷ ︸

=:Πj,j′∈R|Sk|×|Sk|

W k
i′,j′ .

For v, v′ ∈ Sk, when m1, . . . ,mk−2 →∞ and using the inductive hypothesis, we have

Πj,j′

v,v′ = 1
|Sk|

Ak–1yk–1
j [u+ v]>Ak–1y′k–1

j′ [u′ + v′]

→ δj,j′Π̄j
v,v′ := δj,j′

|Sk|
〈Ak–1γk–1

j [u+ v], Ak–1γ′k–1
j [u′ + v′]〉,

140

Chapter 4. Neural Tangent Kernels

where γk–1
j [u] :=

√
2σ′(ãk–1

j [u])yk–1[u]. Indeed, by linearity it suffices to check that
yk–1
j [u]>yk–1

j′ [u′] = 2δj,j′σ′(ãk–1
j [u])σ′(ã′k–1

j′ [u′])〈yk–1[u], y′k–1[u′]〉 for any j, j′, u, u′, which
is true by the inductive hypothesis. In this same limit (with mk–1 fixed), we then have

〈∇W 1:k–1 ãki [u],∇W 1:k–1 ã′ki′ [u′]〉 →
1

mk–1

∑
j

W k>
i,j Π̄jW k

i′,j .

Whenmk–1 →∞, by the law of large numbers, this quantity converges to its expectation:

〈∇W 1:k–1 ãki [u],∇W 1:k–1 ã′ki′ [u′]〉 → Tr(E[W k
i′,1W

k>
i,1]Π∞) = δi,i′ Tr(Π∞),

where Π∞ is given by

Π∞v,v′ = 1
|Sk|
〈Ak–1γk–1

∞ [u+ v], Ak–1γ′k–1
∞ [u′ + v′]〉,

with γk–1
∞ [u] = ϕ0(xk–1[u])⊗ yk–1[u]. Indeed, using Lemma 4.15 and linearity of Ak–1, it

is enough to check that

2Ef∼GP (0,Σk–1)[σ′(f(x)[u])σ′(f(x′)[u′])〈yk–1[u], y′k–1[u′]〉] = 〈γk–1
∞ [u], γ′k–1

∞ [u′]〉,

which holds by definition of ϕ0 and Σk–1.
Finally, notice that

Tr(Π∞) = 1
|Sk|

∑
v∈Sk

〈Ak–1γk–1
∞ [u+ v], Ak–1γ′k–1

∞ [u′ + v]〉

= 〈P kAk–1γk–1
∞ [u], P kAk–1γ′k–1

∞ [u′]〉.

Thus we have

Γ̃∞(x, u, x′, u′) = 〈P kAk–1ϕ1(xk–1)[u], P kAk–1ϕ1(x′k–1)[u′]〉
+ 〈P kAk–1γk–1

∞ [u], P kAk–1γ′k–1
∞ [u′]〉

= 〈P kAk–1M(xk–1, yk–1)[u], P kAk–1M(x′k–1, y
′
k–1)[u′]〉

= 〈yk[u], y′k[u′]〉,

which concludes the proof.

Armed with the two above lemmas, we can now prove Proposition 4.2 by studying
the gradient of the prediction layer.

Proof of Proposition 4.2. We have

〈∇θf(x; θ),∇θf(x′; θ)〉 = 〈∇wn+1f(x; θ),∇wn+1f(x′; θ)〉+ 〈∇W 1:nf(x; θ),∇W 1:nf(x′; θ)〉

The first term writes

〈∇wn+1f(x; θ),∇wn+1f(x′; θ)〉 = 2
mn

∑
j

〈anj , a′nj 〉

= 2
mn

∑
j

∑
u

〈Anσ(ãnj)[u], Anσ(ã′nj)[u]〉

141

4.C. Proofs for Smoothness and Stability to Deformations

Using similar arguments as in the above proofs and using Lemma 4.15, as m1, . . . ,mn →
∞, we have

〈∇wn+1f(x; θ),∇wn+1f(x′; θ)〉 →
∑
u

〈Anϕ1(xn)[u], Anϕ1(x′n)[u]〉 = 〈Anϕ1(xn), Anϕ1(x′n)〉.

For the second term, we have

〈∇W 1:nf(x; θ),∇W 1:nf(x′; θ) = 2
mn

∑
u,u′

∑
j,j′

wn+1
j [u]wn+1

j′ [u′]〈∇W 1:nanj [u],∇W 1:na′nj′ [u′]〉.

We can use similar arguments to the proof of Lemma 4.16 to show that whenm1, . . . ,mn →
∞, we have

〈∇W 1:nf(x; θ),∇W 1:nf(x′; θ)→
∑
u,u′

E[wn+1
1 [u]wn+1

1 [u′]]〈Anγn[u], Anγ′n[u′]〉 = 〈Anγn, Anγ′n〉,

where γn[u] := ϕ0(xn[u])⊗ yn[u].
The final result follows by combining both terms.

4.C Proofs for Smoothness and Stability to Deformations

4.C.1 Proof of Proposition 4.3

Proof. Using notations from Section 4.2.1, we can write

κ(u) = uκ0(u) + κ1(u) = u

π
(π − arccos(u)) + 1

π
(u(π − arccos(u)) +

√
1− u2).

For ‖x‖ = ‖y‖ = 1, and denoting u = 〈x, y〉, we have

‖Φ(x)− Φ(y)‖2

‖x− y‖2
= 2κ(1)− 2κ(u)

2− 2u

= κ0(1)− uκ0(u)
1− u + κ1(1)− κ1(u)

1− u
∼u→1− uκ

′
0(u) + κ0(u) + κ′1(u) u→1−−−−−→ +∞,

where the equivalent follows from l’Hôpital’s rule, and we have κ′0(u) = 1/π
√

1− u2 →
+∞, while κ0(1) = κ1(1) = κ′1(1) = 1. It follows that the supremum over x, y is
unbounded.

For the second part, fix an arbitrary L > 0. We can find x, y such that ‖Φ(x) −
Φ(y)‖H > L‖x− y‖. Take

f = Φ(x)− Φ(y)
‖Φ(x)− Φ(y)‖H

∈ H.

We have ‖f‖H = 1 and f(x)− f(y) = ‖Φ(x)−Φ(y)‖H > L‖x− y‖, so that the Lipschitz
constant of f is larger than L.

142

Chapter 4. Neural Tangent Kernels

4.C.2 Proof of Proposition 4.4 (smoothness of 2-layer ReLU NTK)

Proof. Denoting u = 〈x, y〉, we have

‖ϕ0(x)− ϕ0(y)‖2

‖x− y‖
= 2κ0(1)− 2κ0(u)√

2− 2u
.

As a function of u ∈ [−1, 1], this quantity decreases from 1 to 1/2π, and is thus upper
bounded by 1, proving the first part.

Note that if u, v are on the sphere and α ≥ 1, then ‖u− αv‖ ≥ ‖u− v‖. This yields

‖x− y‖ ≥ min(‖x‖, ‖y‖)‖x̄− ȳ‖,

where x̄, ȳ denote the normalized vectors. Then, noting that ϕ0 is 0-homogeneous, we
have

‖ϕ0(x)− ϕ0(y)‖2

‖x− y‖
= ‖ϕ0(x̄)− ϕ0(ȳ)‖2

‖x− y‖

≤ ‖ϕ0(x̄)− ϕ0(ȳ)‖2

min(‖x‖, ‖y‖)‖x̄− ȳ‖

≤ 1
min(‖x‖, ‖y‖) ,

by using the previous result on the sphere, and the result for the second part follows.
For the last part, assume x has smaller norm than y. We have

‖Φ(x)− Φ(y)‖ =
∥∥∥∥∥
(
ϕ0(x)⊗ x
ϕ1(x)

)
−
(
ϕ0(y)⊗ y
ϕ1(y)

)∥∥∥∥∥
≤
∥∥∥∥∥
(
ϕ0(x)⊗ x
ϕ1(x)

)
−
(
ϕ0(y)⊗ x
ϕ1(y)

)∥∥∥∥∥+
∥∥∥∥∥
(
ϕ0(y)⊗ x
ϕ1(y)

)
−
(
ϕ0(y)⊗ y
ϕ1(y)

)∥∥∥∥∥
=
√
‖x‖2‖ϕ0(x)− ϕ0(y)‖2 + ‖ϕ1(x)− ϕ1(y)‖2 + ‖ϕ0(y)‖‖x− y‖

≤
√
‖x‖‖x− y‖+ ‖x− y‖2 + ‖x− y‖ ≤

√
‖x‖‖x− y‖+ 2‖x− y‖,

where in the last line we used ‖ϕ0(y)‖ = 1, ‖ϕ0(x)− ϕ0(y)‖2 ≤ ‖x− y‖/‖x‖, as well as
‖ϕ1(x) − ϕ1(y)‖ ≤ ‖x − y‖, which follows from Lemma 2.1 in Chapter 2. We conclude
by symmetry.

4.C.3 Proof of Proposition 4.11 (smooth activations)

Proof. We introduce the following kernels defined on the sphere:

κj(〈x, x′〉) = Ew∼N (0,I)[σ(j)(〈w, x〉)σ(j)(〈w, x′〉)].

Note that these are indeed dot-product kernels, defined as polynomial expansions in
terms of the squared Hermite expansion coefficients of σ(j), as shown by Daniely et al.
(2016) (called “dual activations”). In fact, Daniely et al. (2016, Lemma 11) also shows
that the mapping from activation to dual activation commutes with differentiation, so

143

4.C. Proofs for Smoothness and Stability to Deformations

that κj(u) = κ
(j)
0 (u), for u ∈ (−1, 1). The assumption made in this proposition implies

that the j-th order derivatives of κ0 as u→ 1 exist, with κ(j)
0 (1) = κj(1) = γj < +∞.

Then, the NTK on the sphere takes the form Kσ(x, x′) = κσ(〈x, x′〉), where κσ(u) =
uκ1(u) + κ0(u). Then, if we consider the kernel κ̂σ(u) = κσ(u)

κσ(1) = κσ(u)
γ0+γ1

, we have

κ̂σ(1) = 1 and κ̂′σ(1) = κ1(1) + κ′1(1) + κ′0(1)
γ0 + γ1

= γ2 + 2γ1
γ0 + γ1

.

Applying Lemma 2.1 to this kernel, and re-multiplying by γ0 + γ1 yields the final result.

4.C.4 Proof of Lemma 4.12 (smoothness of operator M in L2(Rd))

Proof. Using similar arguments as in the proof of Proposition 4.4, we can show that for
any u ∈ Rd

‖M(x, y)(u)−M(x′, y′)(u)‖ ≤
√

min(‖y(u)‖, ‖y′(u)‖)‖x(u)− x′(u)‖
+ ‖x(u)− x′(u)‖+ ‖y(u)− y′(u)‖

Now assume that min(‖y‖, ‖y′‖) = ‖y‖. By the triangle inequality in L2(Rd), we then
have

‖M(x, y)−M(x′, y′)‖ ≤
√∫

min(‖y(u)‖, ‖y′(u)‖)‖x(u)− x′(u)‖du+ ‖x− x′‖+ ‖y − y′‖

≤
√∫
‖y(u)‖‖x(u)− x′(u)‖du+ ‖x− x′‖+ ‖y − y′‖

≤
√
‖y‖‖x− x′‖+ ‖x− x′‖+ ‖y − y′‖,

where the last inequality follows from Cauchy-Schwarz. We obtain the final result by
symmetry.

4.C.5 Proof of Proposition 4.14 (stability to deformations)

We first recall the following results from Chapter 2.

Lemma 4.17 (Chapter 2, Section 2.3.1). Assume ‖∇τ‖∞ ≤ 1/2, and supv∈Sk |v| ≤
βσk–1 for all k. We have

‖[P kAk–1, Lτ]‖ ≤ C(β)‖∇τ‖∞

‖LτAn −An‖ ≤
C2
σn
‖τ‖∞,

where C(β) grows with β as βd+1.

We are now ready to prove Proposition 4.14.

144

Chapter 4. Neural Tangent Kernels

Proof. In order to compare Φn(Lτx) and Φn(x), we introduce intermediate sequences
of feature maps, denoted x

(k0)
k and y

(k0)
k , where the deformation operator Lτ acts at

layer k0. In particular, we denote by x(0)
k , y(0)

k the feature maps obtained for the input
Lτx, and if k0 ≥ 1, we define x(k0)

k = xk, y
(k0)
k = yk for k ≤ k0,

x
(k0)
k0+1 = P k0+1Ak0Lτϕ1(xk0)

y
(k0)
k0+1 = P k0+1Ak0LτM(xk0 , yk0),

and for k ≥ k0 + 2,

x
(k0)
k = P kAk–1Lτϕ1(xk0

k–1)

y
(k0)
k = P kAk–1LτM(xk0

k–1, y
k0
k–1).

Then, we have the following

‖Φn(Lτx)− Φn(x)‖ = ‖AnM(x(0)
n , y(0)

n)−AnM(xn, yn)‖
≤ ‖AnM(x(0)

n , y(0)
n)−AnLτM(xn, yn)‖

+ ‖AnLτM(xn, yn)−AnM(xn, yn)‖
≤ ‖AnM(x(0)

n , y(0)
n)−AnLτM(xn, yn)‖

+ ‖AnLτ −An‖‖M(xn, yn)‖.

Using Lemma 4.17, we have

‖AnLτ −An‖ ≤ ‖[An, Lτ]‖+ ‖LτAn −An‖

≤ C(β)‖∇τ‖∞ + C2
σn
‖τ‖∞.

Separately, we have ‖M(xn, yn)‖2 = ‖xn‖2 + ‖yn‖2 ≤ (n+ 1)‖x‖2, so that

‖Φn(Lτx)− Φn(x)‖ ≤ ‖AnM(x(0)
n , y(0)

n)−AnLτM(xn, yn)‖

+
√
n+ 1

(
C(β)‖∇τ‖∞ + C2

σn
‖τ‖∞

)
‖x‖.

We now bound the first term above by induction. For n = 1, we have

‖A1M(x(0)
1 , y

(0)
1)−A1LτM(x1, y1)‖ ≤ ‖A1M(x(0)

1 , y
(0)
1)−A1LτM(x1, y1)‖

≤ ‖M(x(0)
1 , y

(0)
1)− LτM(x1, y1)‖

= ‖M(Lτx, Lτx)− LτM(x, y)‖ = 0,

by noting thatM is a point-wise operator, and thus commutes with Lτ . We now assume
n ≥ 2. We have

‖AnM(x(0)
n , y(0)

n)−AnLτM(xn, yn)‖ ≤ ‖M(x(0)
n , y(0)

n)− LτM(xn, yn)‖
= ‖M(x(0)

n , y(0)
n)−M(Lτxn, Lτyn)‖

≤
√
‖Lτyn‖‖x(0)

n − Lτxn‖
+ ‖x(0)

n − Lτxn‖+ ‖y(0)
n − Lτyn‖,

145

4.C. Proofs for Smoothness and Stability to Deformations

where we used Lemma 4.12 and the fact that M commutes with Lτ .
Now note that since ‖∇τ‖∞ ≤ 1/2, for any signal x we have

‖Lτx‖2 =
∫
‖x(u− τ(u))‖2du =

∫
‖x(u)‖2| det(I −∇τ(u))|−1du

≤ 1
(1− ‖∇τ‖∞)d ‖x‖

2 ≤ 2d‖x‖2. (4.24)

Thus, we have ‖Lτyn‖ ≤ 2d/2‖yn‖ ≤
√

2dn‖x‖. Separately, using the non-expansivity
of ϕ1, we have

‖x(0)
n − Lτxn‖ ≤

n–1∑
k=1
‖x(k–1)

n − x(k)
n ‖+ ‖x(n−1)

n − Lτxn‖

≤
n∑
k=1
‖x(k–1)

k − Lτxk‖

= ‖P 1A0Lτx− LτP 1A0x‖

+
n∑
k=2
‖P kAk–1Lτϕ1(xk–1)− LτP kAk–1ϕ1(xk–1)‖

≤
n∑
k=1
‖[P kAk–1, Lτ]‖‖x‖

≤ C(β)n‖∇τ‖∞‖x‖,

by Lemma 4.17. We also have

‖y(0)
n − Lτyn‖ = ‖PnAn–1M(x(0)

n–1, y
(0)
n–1)− LτPnAn–1M(xn–1, yn–1)‖

≤ ‖PnAn–1M(x(0)
n–1, y

(0)
n–1)− PnAn–1LτM(xn–1, yn–1)‖

+ ‖[PnAn–1, Lτ]‖‖M(xn–1, yn–1)‖

≤ ‖An–1M(x(0)
n–1, y

(0)
n–1)−An–1LτM(xn–1, yn–1)‖+ C(β)

√
n‖∇τ‖∞‖x‖.

We have thus shown:

‖AnM(x(0)
n , y(0)

n)−AnLτM(xn, yn)‖

≤
(
2d/4C(β)1/2n3/4‖∇τ‖1/2∞ + C(β)(n+

√
n)‖∇τ‖∞

)
‖x‖

+ ‖An–1M(x(0)
n–1, y

(0)
n–1)−An–1LτM(xn–1, yn–1)‖.

Unrolling the recurrence relation yields

‖AnM(x(0)
n , y(0)

n)−AnLτM(xn, yn)‖

≤
n∑
k=2

(
2d/4C(β)1/2k3/4‖∇τ‖1/2∞ + C(β)(k +

√
k)‖∇τ‖∞

)
‖x‖

≤
(
C(β)1/2Cn7/4‖∇τ‖1/2∞ + C(β)C ′n2‖∇τ‖∞

)
‖x‖,

146

Chapter 4. Neural Tangent Kernels

where C,C ′ are absolute constants depending only on d.
The final bound becomes

‖Φn(Lτx)− Φn(x)‖

≤
(
C(β)1/2Cn7/4‖∇τ‖1/2∞ + C(β)C ′n2‖∇τ‖∞ +

√
n+ 1C2

σn
‖τ‖∞

)
‖x‖,

with a different constant C ′.

147

Chapter 5

Invariance and Stability through
Regularization: A Stochastic
Optimization Algorithm for Data
Augmentation

Stochastic optimization algorithms with variance reduction have proven successful for
minimizing large finite sums of functions. Unfortunately, these techniques are unable to
deal with stochastic perturbations of input data, induced for example by data augmen-
tation. In such cases, the objective is no longer a finite sum, and the main candidate
for optimization is the stochastic gradient descent method (SGD). In this chapter, we
introduce a variance reduction approach for these settings when the objective is compos-
ite and strongly convex. The convergence rate outperforms SGD with a typically much
smaller constant factor, which depends on the variance of gradient estimates only due
to perturbations on a single example.

This chapter is based on the following paper:
A. Bietti and J. Mairal. Stochastic optimization with variance reduction for

infinite datasets with finite sum structure. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2017b

5.1 Introduction

Many supervised machine learning problems can be cast as the minimization of an ex-
pected loss over a data distribution with respect to a vector x in Rp of model parameters.
When an infinite amount of data is available, stochastic optimization methods such as
SGD or stochastic mirror descent algorithms, or their variants, are typically used (see
Bottou et al., 2018; Duchi and Singer, 2009; Nemirovski et al., 2009; Xiao, 2010). Nev-
ertheless, when the dataset is finite, incremental methods based on variance reduction
techniques (e.g., Allen-Zhu, 2017; Defazio et al., 2014a; Johnson and Zhang, 2013; Lan
and Zhou, 2017; Lin et al., 2015; Schmidt et al., 2017; Shalev-Shwartz and Zhang, 2013)

148

Chapter 5. Optimization with data augmentation

have proven to be significantly faster at solving the finite-sum problem

min
x∈Rp

{
F (x) := f(x) + h(x) = 1

n

n∑
i=1

fi(x) + h(x)
}
, (5.1)

where the functions fi are smooth and convex, and h is a simple convex penalty that
need not be differentiable such as the `1 norm. A classical setting is fi(x) = `(yi, x>ξi)+
(µ/2)‖x‖2, where (ξi, yi) is an example-label pair, ` is a convex loss function, and µ is a
regularization parameter.

In this chapter, we are interested in a variant of (5.1) where random perturbations
of data are introduced, which is a common scenario in machine learning. Then, the
functions fi involve an expectation over a random perturbation ρ, leading to the problem

min
x∈Rp

{
F (x) := 1

n

n∑
i=1

fi(x) + h(x)
}
. with fi(x) = Eρ[f̃i(x, ρ)]. (5.2)

Unfortunately, variance reduction methods are not compatible with the setting (5.2),
since evaluating a single gradient∇fi(x) requires computing a full expectation. Yet, deal-
ing with random perturbations is of utmost interest; for instance, this is a key to achieve
stable feature selection (Meinshausen and Bühlmann, 2010), improving the generaliza-
tion error both in theory (Wager et al., 2014) and in practice (Loosli et al., 2007; van der
Maaten et al., 2013), obtaining stable and robust predictors (Zheng et al., 2016), or us-
ing complex a priori knowledge about data to generate virtually larger datasets (Loosli
et al., 2007; Paulin et al., 2014; Simard et al., 1998). Injecting noise in data is also useful
to hide gradient information for privacy-aware learning (Duchi et al., 2012).

Despite its importance, the optimization problem (5.2) has been littled studied and
to the best of our knowledge, no dedicated optimization method that is able to exploit
the problem structure has been developed so far. A natural way to optimize this objec-
tive when h= 0 is indeed SGD, but ignoring the finite-sum structure leads to gradient
estimates with high variance and slow convergence. The goal of this chapter is to intro-
duce an algorithm for strongly convex objectives, called stochastic MISO, which exploits
the underlying finite sum using variance reduction. Our method achieves a faster con-
vergence rate than SGD, by removing the dependence on the gradient variance due to
sampling the data points i in {1, . . . , n}; the dependence remains only for the variance
due to random perturbations ρ.

To the best of our knowledge, our method is the first algorithm that interpolates
naturally between incremental methods for finite sums (when there are no perturbations)
and the stochastic approximation setting (when n= 1), while being able to efficiently
tackle the hybrid case.

Related work. Many optimization methods dedicated to the finite-sum problem (e.g.,
Johnson and Zhang, 2013; Shalev-Shwartz and Zhang, 2013) have been motivated by
the fact that their updates can be interpreted as SGD steps with unbiased estimates of
the full gradient, but with a variance that decreases as the algorithm approaches the
optimum (Johnson and Zhang, 2013); on the other hand, vanilla SGD requires decreasing
step-sizes to achieve this reduction of variance, thereby slowing down convergence. Our
work aims at extending these techniques to the case where each function in the finite
sum can only be accessed via a first-order stochastic oracle.

149

5.2. Stochastic MISO Algorithm for Smooth Objectives

Table 5.1: Iteration complexity of different methods for solving the objective (5.2) in
terms of number of iterations required to find x such that E[f(x) − f(x∗)] ≤ ε. The
complexity of N-SAGA (Hofmann et al., 2015) matches the first term of S-MISO but
is asymptotically biased. Note that we always have the perturbation noise variance σ2

p

smaller than the total variance σ2
tot and thus S-MISO improves on SGD both in the

first term (linear convergence to a smaller ε̄) and in the second (smaller constant in the
asymptotic rate). In many application cases, we also have σ2

p � σ2
tot (see main text and

Table 5.2).

Method Asymptotic error Iteration complexity

SGD 0 O

(
L

µ
log 1

ε̄
+ σ2

tot
µε

)
with ε̄ = O

(
σ2
tot
µ

)

N-SAGA ε0 = O

(
σ2
p

µ

)
O

((
n+ L

µ

)
log 1

ε

)
with ε > ε0

S-MISO 0 O

((
n+ L

µ

)
log 1

ε̄
+

σ2
p

µε

)
with ε̄ = O

(
σ2
p

µ

)

Most related to our work, recent methods that use data clustering to accelerate
variance reduction techniques (Allen-Zhu et al., 2016; Hofmann et al., 2015) can be seen
as tackling a special case of (5.2), where the expectations in fi are replaced by empirical
averages over points in a cluster. While N-SAGA (Hofmann et al., 2015) was originally
not designed for the stochastic context we consider, we remark that their method can
be applied to (5.2). Their algorithm is however asymptotically biased and does not
converge to the optimum. On the other hand, ClusterSVRG (Allen-Zhu et al., 2016) is
not biased, but does not support infinite datasets. The method proposed by Achab et al.
(2015) uses variance reduction in a setting where gradients are computed approximately,
but the algorithm computes a full gradient at every pass, which is not available in our
stochastic setting.

Chapter organization. In Section 5.2, we present our algorithm for smooth objec-
tives, and we analyze its convergence in Section 5.3. We present an extension to com-
posite objectives and non-uniform sampling in Section 5.4. Section 5.5 is devoted to
empirical results.

5.2 Stochastic MISO Algorithm for Smooth Objectives

In this section, we introduce the stochastic MISO approach for smooth objectives (h = 0),
which relies on the following assumptions:
(A1) global strong convexity: f is µ-strongly convex;
(A2) smoothness: f̃i(·, ρ) is L-smooth for all i and ρ (i.e., with L-Lipschitz gradients).

Note that these assumptions are relaxed in Appendix 5.4 by supporting composite ob-
jectives and by exploiting different smoothness parameters Li on each example, a setting

150

Chapter 5. Optimization with data augmentation

Table 5.2: Estimated ratio σ2
tot/σ

2
p, which corresponds to the expected acceleration of

S-MISO over SGD. These numbers are based on feature vectors variance, which is closely
related to the gradient variance when learning a linear model. ResNet-50 denotes a 50
layer network (He et al., 2016) pre-trained on the ImageNet dataset. For image trans-
formations, the numbers are empirically evaluated from 100 different images, with 100
random perturbations for each image. R2

tot (respectively, R2
cluster) denotes the average

squared distance between pairs of points in the dataset (respectively, in a given cluster),
following Hofmann et al. (2015). The settings for unsupervised CKN (Mairal, 2016) and
Scattering (Bruna and Mallat, 2013) are described in Section 5.5. More details are given
in the main text.

Perturbation type Application case Estimated ratio σ2
tot/σ

2
p

Direct
perturbation of
linear model
features

Data clustering ≈ R2
tot/R

2
cluster

Additive Gaussian noise N (0, α2I) ≈ 1 + 1/α2

Dropout with probability δ ≈ 1 + 1/δ
Feature rescaling by s in U(1− w, 1 + w) ≈ 1 + 3/w2

Random image
transformations

ResNet-50, color perturbation 21.9
ResNet-50, rescaling + crop 13.6
Unsupervised CKN, rescaling + crop 9.6
Scattering, gamma correction 9.8

where non-uniform sampling of the training points is typically helpful to accelerate con-
vergence (e.g., Xiao and Zhang, 2014).

Complexity results. We now introduce the following quantity, which is essential in
our analysis:

σ2
p := 1

n

n∑
i=1

σ2
i , with σ2

i := Eρ
[
‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

]
,

where x∗ is the (unique) minimizer of f . The quantity σ2
p represents the part of the

variance of the gradients at the optimum that is due to the perturbations ρ. In contrast,
another quantity of interest is the total variance σ2

tot, which also includes the randomness
in the choice of the index i, defined as

σ2
tot = Ei,ρ[‖∇f̃i(x∗, ρ)‖2] = σ2

p + Ei[‖∇fi(x∗)‖2] (note that ∇f(x∗) = 0).

The relation between σ2
tot and σ2

p is obtained by simple algebraic manipulations.
The goal of our work is to exploit the potential imbalance σ2

p � σ2
tot, occurring when

perturbations on input data are small compared to the sampling noise. The assumption
is reasonable: given a data point, selecting a different one should lead to larger variation
than a simple perturbation. From a theoretical point of view, the approach we propose
achieves the iteration complexity presented in Table 5.1, see also Appendix 5.C and Bach
and Moulines (2011); Bottou et al. (2018); Nemirovski et al. (2009) for the complexity
analysis of SGD. The gain over SGD is of order σ2

tot/σ
2
p, which is also observed in

our experiments in Section 5.5. We also compare against the method N-SAGA; its
convergence rate is similar to ours but suffers from a non-zero asymptotic error.

151

5.2. Stochastic MISO Algorithm for Smooth Objectives

Algorithm 1 S-MISO for smooth objectives
Input: step-size sequence (αt)t≥1;
initialize x0 = 1

n

∑
i z

0
i for some (z0

i)i=1,...,n;
for t = 1, . . . do
Sample an index it uniformly at random, a perturbation ρt, and update

zti =
{

(1− αt)zt−1
i + αt(xt−1 − 1

µ∇f̃it(xt−1, ρt)), if i = it

zt−1
i , otherwise.

(5.3)

xt = 1
n

n∑
i=1

zti = xt−1 + 1
n

(ztit − z
t−1
it

). (5.4)

end for

Motivation from application cases. One clear framework of application is the data
clustering scenario already investigated by Allen-Zhu et al. (2016); Hofmann et al. (2015).
Nevertheless, we will focus on less-studied data augmentation settings that lead instead
to true stochastic formulations such as (5.2). First, we consider learning a linear model
when adding simple direct manipulations of feature vectors, via rescaling (multiplying
each entry vector by a random scalar), Dropout, or additive Gaussian noise, in order
to improve the generalization error (Wager et al., 2014) or to get more stable estima-
tors (Meinshausen and Bühlmann, 2010). In Table 5.2, we present the potential gain
over SGD in these scenarios. To do that, we study the variance of perturbations applied
to a feature vector ξ. Indeed, the gradient of the loss is proportional to ξ, which allows
us to obtain good estimates of the ratio σ2

tot/σ
2
p, as we observed in our empirical study

of Dropout presented in Section 5.5. Whereas some perturbations are friendly for our
method such as feature rescaling (a rescaling window of [0.9, 1.1] yields for instance a
huge gain factor of 300), a large Dropout rate would lead to less impressive acceleration
(e.g., a Dropout with δ = 0.5 simply yields a factor 2).

Second, we also consider more interesting domain-driven data perturbations such
as classical image transformations considered in computer vision (Paulin et al., 2014;
Zheng et al., 2016) including image cropping, rescaling, brightness, contrast, hue, and
saturation changes. These transformations may be used to train a linear classifier on top
of an unsupervised multilayer image model such as unsupervised CKNs (Mairal, 2016)
or the scattering transform (Bruna and Mallat, 2013). It may also be used for retraining
the last layer of a pre-trained deep neural network: given a new task unseen during the
full network training and given limited amount of training data, data augmentation may
be indeed crucial to obtain good prediction and S-MISO can help accelerate learning in
this setting. These scenarios are also studied in Table 5.2, where the experiment with
ResNet-50 involving random cropping and rescaling produces 224 × 224 images from
256×256 ones. For these scenarios with realistic perturbations, the potential gain varies
from 10 to 20.

Description of stochastic MISO. We are now in shape to present our method,
described in Algorithm 1. Without perturbations and with a constant step-size, the
algorithm resembles the MISO/Finito algorithms (Defazio et al., 2014b; Lin et al., 2015;

152

Chapter 5. Optimization with data augmentation

Mairal, 2015), which may be seen as primal variants of SDCA (Shalev-Shwartz, 2016;
Shalev-Shwartz and Zhang, 2013). Specifically, MISO is not able to deal with our
stochastic objective (5.2), but it may address the deterministic finite-sum problem (5.1).
It is part of a larger body of optimization methods that iteratively build a model of the
objective function, typically a lower or upper bound on the objective that is easier to
optimize; for instance, this strategy is commonly adopted in bundle methods (Hiriart-
Urruty and Lemaréchal, 1993; Nesterov, 2004).

More precisely, MISO assumes that each fi is strongly convex and builds a model
using lower bounds Dt(x) = 1

n

∑n
i=1 d

t
i(x), where each dti is a quadratic lower bound

on fi of the form

dti(x) = cti,1 + µ

2 ‖x− z
t
i‖2 = cti,2 − µ〈x, zti〉+ µ

2 ‖x‖
2. (5.5)

These lower bounds are updated during the algorithm using strong convexity lower
bounds at xt−1 of the form lti(x) = fi(xt−1)+〈∇fi(xt−1), x−xt−1〉+ µ

2‖x−xt−1‖2 ≤ fi(x):

dti(x) =
{

(1− αt)dt−1
i (x) + αtl

t
i(x), if i = it

dt−1
i (x), otherwise,

(5.6)

which corresponds to an update of the quantity zti :

zti =
{

(1− αt)zt−1
i + αt(xt−1 − 1

µ∇fit(xt−1)), if i = it

zt−1
i , otherwise.

The next iterate is then computed as xt = arg minxDt(x), which is equivalent to (5.4).
The original MISO/Finito algorithms use αt = 1 under a “big data” condition on the
sample size n (Defazio et al., 2014b; Mairal, 2015), while the theory was later extended
by Lin et al. (2015) to relax this condition by supporting smaller constant steps αt = α,
leading to an algorithm that may be interpreted as a primal variant of SDCA (see
Shalev-Shwartz, 2016).

Note that when fi is an expectation, it is hard to obtain such lower bounds since the
gradient ∇fi(xt−1) is not available in general. For this reason, we have introduced S-
MISO, which can exploit approximate lower bounds to each fi using gradient estimates,
by letting the step-sizes αt decrease appropriately as commonly done in stochastic ap-
proximation. This leads to update (5.3).

Separately, SDCA (Shalev-Shwartz and Zhang, 2013) considers the Fenchel conju-
gates of fi, defined by f∗i (y) = supx x>y − fi(x). When fi is an expectation, f∗i is not
available in closed form in general, nor are its gradients, and in fact exploiting stochas-
tic gradient estimates is difficult in the duality framework. In contrast, Shalev-Shwartz
(2016) gives an analysis of SDCA in the primal, aka. “without duality”, for smooth
finite sums, and our work extends this line of reasoning to the stochastic approximation
and composite settings.

Relationship with SGD in the smooth case. The link between S-MISO in the
non-composite setting and SGD can be seen by rewriting the update (5.4) as

xt = xt−1 + 1
n

(ztit − z
t−1
it

) = xt−1 + αt
n
vt,

153

5.2. Stochastic MISO Algorithm for Smooth Objectives

where
vt := xt−1 −

1
µ
∇f̃it(xt−1, ρt)− zt−1

it
. (5.7)

Note that E[vt|Ft−1] = − 1
µ∇f(xt−1), where Ft−1 contains all information up to itera-

tion t; hence, the algorithm can be seen as an instance of the stochastic gradient method
with unbiased gradients, which was a key motivation in SVRG Johnson and Zhang (2013)
and later in other variance reduction algorithms Defazio et al. (2014a); Shalev-Shwartz
(2016). It is also worth noting that in the absence of a finite-sum structure (n= 1), we
have zt−1

it
= xt−1; hence our method becomes identical to SGD, up to a redefinition of

step-sizes. In the composite case (see Section 5.4), our approach yields a new algorithm
that resembles regularized dual averaging (Xiao, 2010).

Memory requirements and handling of sparse datasets. The algorithm requires
storing the vectors (zti)i=1,...,n, which takes the same amount of memory as the original
dataset and which is therefore a reasonable requirement in many practical cases. In
the case of sparse datasets, it is fair to assume that random perturbations applied to
input data preserve the sparsity patterns of the original vectors, as is the case, e.g., when
applying Dropout to text documents described with bag-of-words representations (Wager
et al., 2014). If we further assume the typical setting where the µ-strong convexity
comes from an `2 regularizer: f̃i(x, ρ) = φi(x>ξρi) + (µ/2)‖x‖2, where ξρi is the (sparse)
perturbed example and φi encodes the loss, then the update (5.3) can be written as

zti =
{

(1− αt)zt−1
i − αt

µ φ
′
i(x>t−1ξ

ρt
i)ξρti , if i = it

zt−1
i , otherwise,

which shows that for every index i, the vector zti preserves the same sparsity pattern as
the examples ξρi throughout the algorithm (assuming the initialization z0

i = 0), making
the update (5.3) efficient. The update (5.4) has the same cost since vt = ztit − z

t−1
it

is
also sparse.

Limitations and subsequent work. Since our algorithm is uniformly better than
SGD in terms of iteration complexity, its main limitation is in terms of memory storage
when the dataset cannot fit into memory (remember that the memory cost of S-MISO is
the same as the input dataset). In these huge-scale settings, SGD should be preferred;
this holds true in fact for all incremental methods when one cannot afford to perform
more than one (or very few) passes over the data. Our work focuses instead on non-huge
datasets, which are those benefiting most from data augmentation.

We note that a different approach to variance reduction like SVRG (Johnson and
Zhang, 2013) is able to trade off storage requirements for additional full gradient com-
putations, which would be desirable in some situations. In particular, previous papers
considered constant step-size approaches based for similar settings with improved stor-
age requirements by relying on an gradient estimator similar to SVRG (Achab et al.,
2015; Hofmann et al., 2015), however these either maintain a non-zero asymptotic error,
or require dynamically reducing the variance of gradient estimates. After our work was
published, other papers tackled a similar setting to ours, with improved storage require-
ments (Zheng and Kwok, 2018; Kulunchakov and Mairal, 2019). The method of Zheng

154

Chapter 5. Optimization with data augmentation

and Kwok (2018) considers a variant of SAGA for a setting with stochastic perturba-
tions, as in our case, but where the average perturbed data is known (e.g., for Dropout
noise, the average perturbed example is just the original example), which enables storing
scalars instead of vectors. Kulunchakov and Mairal (2019) present a method similar to
SVRG that works in a setting like ours, but overcomes storage requirements by trading
off storage for computation as in SVRG.

5.3 Convergence Analysis of S-MISO

We now study the convergence properties of the S-MISO algorithm. For space limitation
reasons, all proofs are provided in Appendix 5.A. We start by defining the problem-
dependent quantities z∗i := x∗ − 1

µ∇fi(x
∗), and then introduce the Lyapunov function

Ct = 1
2‖xt − x

∗‖2 + αt
n2

n∑
i=1
‖zti − z∗i ‖2. (5.8)

Proposition 5.1 gives a recursion on Ct, obtained by upper-bounding separately its two
terms, and finding coefficients to cancel out other appearing quantities when relating Ct
to Ct−1. To this end, we borrow elements of the convergence proof of SDCA without
duality (Shalev-Shwartz, 2016); our technical contribution is to extend their result to
the stochastic approximation and composite (see Section 5.4) cases.

Proposition 5.1 (Recursion on Ct). If (αt)t≥1 is a positive and non-increasing sequence
satisfying

α1 ≤ min
{1

2 ,
n

2(2κ− 1)

}
, (5.9)

with κ = L/µ, then Ct obeys the recursion

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] + 2

(
αt
n

)2 σ2
p

µ2 . (5.10)

We now state the main convergence result, which provides the expected rate O(1/t)
on Ct based on decreasing step-sizes, similar to Bottou et al. (2018) for SGD. Note
that convergence of objective function values is directly related to that of the Lyapunov
function Ct via smoothness:

E[f(xt)− f(x∗)] ≤ L

2 E
[
‖xt − x∗‖2

]
≤ LE[Ct]. (5.11)

Theorem 5.2 (Convergence of Lyapunov function). Let the sequence of step-sizes (αt)t≥1
be defined by αt = 2n

γ+t with γ ≥ 0 such that α1 satisfies (5.9). For all t ≥ 0, it holds
that

E[Ct] ≤
ν

γ + t+ 1 where ν := max
{

8σ2
p

µ2 , (γ + 1)C0

}
. (5.12)

155

5.3. Convergence Analysis of S-MISO

Choice of step-sizes in practice. Naturally, we would like ν to be small, in particular
independent of the initial condition C0 and equal to the first term in the definition (5.12).
We would like the dependence on C0 to vanish at a faster rate than O(1/t), as it is the
case in variance reduction algorithms on finite sums. As advised by Bottou et al. (2018)
in the context of SGD, we can initially run the algorithm with a constant step-size ᾱ and
exploit this linear convergence regime until we reach the level of noise given by σp, and
then start decaying the step-size. It is easy to see that by using a constant step-size ᾱ,
Ct converges near a value C̄ := 2ᾱσ2

p/nµ
2. Indeed, Eq. (5.10) with αt = ᾱ yields

E[Ct − C̄] ≤
(

1− ᾱ

n

)
E[Ct−1 − C̄].

Thus, we can reach a precision C ′0 with E[C ′0] ≤ ε̄ := 2C̄ in O(nᾱ logC0/ε̄) iterations.
Then, if we start decaying step-sizes as in Theorem 5.2 with γ large enough so that
α1 = ᾱ, we have

(γ + 1)E[C ′0] ≤ (γ + 1)ε̄ = 8σ2
p/µ

2,

making both terms in (5.12) smaller than or equal to ν = 8σ2
p/µ

2. Considering these two
phases, with an initial step-size ᾱ given by (5.9), the final work complexity for reaching
E[‖xt − x∗‖2] ≤ ε is

O

((
n+ L

µ

)
log C0

ε̄

)
+O

(
σ2
p

µ2ε

)
. (5.13)

We can then use (5.11) in order to obtain the complexity for reaching E[f(xt)−f(x∗)] ≤ ε.
Note that following this step-size strategy was found to be very effective in practice (see
Section 5.5).

Acceleration by iterate averaging. When one is interested in the convergence in
function values, the complexity (5.13) combined with (5.11) yields O(Lσ2

p/µ
2ε), which

can be problematic for ill-conditioned problems (large condition number L/µ). The
following theorem presents an iterate averaging scheme which brings the complexity
term down to O(σ2

p/µε), which appeared in Table 5.1.

Theorem 5.3 (Convergence under iterate averaging). Let the step-size sequence (αt)t≥1
be defined by

αt = 2n
γ + t

for γ ≥ 1 s.t. α1 ≤ min
{1

2 ,
n

4(2κ− 1)

}
.

We have
E[f(x̄T)− f(x∗)] ≤ 2µγ(γ − 1)C0

T (2γ + T − 1) +
16σ2

p

µ(2γ + T − 1) ,

where

x̄T := 2
T (2γ + T − 1)

T−1∑
t=0

(γ + t)xt.

The proof uses a similar telescoping sum technique to Lacoste-Julien et al. (2012).
Note that if T � γ, the first term, which depends on the initial condition C0, decays
as 1/T 2 and is thus dominated by the second term. Moreover, if we start averaging

156

Chapter 5. Optimization with data augmentation

after an initial phase with constant step-size ᾱ, we can consider C0 ≈ 4ᾱσ2
p/nµ

2. In
the ill-conditioned regime, taking ᾱ = α1 = 2n/(γ + 1) as large as allowed by (5.9), we
have γ of the order of κ = L/µ� 1. The full convergence rate then becomes

E[f(x̄T)− f(x∗)] ≤ O
(

σ2
p

µ(γ + T)

(
1 + γ

T

))
.

When T is large enough compared to γ, this becomes O(σ2
p/µT), leading to a complexity

O(σ2
p/µε).

Comparison with subsequent work. We note that in subsequent work, Kulun-
chakov and Mairal (2019) obtained similar or improved convergence rates for more gen-
eral algorithms, including accelerated algorithms which obtain faster convergence in the
initial constant step-size phase, without compromising the dependence of complexity on
noise. The S-SAGA method of Zheng and Kwok (2018), which requires knowledge of
expected feature vectors under perturbations, obtains similar convergence rates to ours,
but with a dependence on a different noise quantity which may be smaller than σp in
machine learning problems when datapoints and their perturbations have small loss.

5.4 Extension to Composite Objectives and Non-Uniform
Sampling

In this section, we study extensions of S-MISO to different situations where our previous
smoothness assumption (A2) is not suitable, either because of a non-smooth term h in
the objective or because it ignores additional useful knowledge about each fi such as the
norm of each example.

In the presence of non-smooth regularizers such as the `1-norm, the objective is no
longer smooth, but we can leverage its composite structure by using proximal operators.
To this end, we assume that one can easily compute the proximal operator of h, defined by

proxh(z) := arg min
x∈Rp

{1
2‖x− z‖

2 + h(x)
}
.

When the smoothness constants Li vary significantly across different examples (typ-
ically through the norm of the feature vectors), the uniform upper bound L = Lmax =
maxi Li can be restrictive. It has been noticed (see, e.g., Schmidt et al., 2017; Xiao
and Zhang, 2014) that when the Li are known, one can achieve better convergence
rates—typically depending on the average smoothness constant L̄ = 1

n

∑
i Li rather than

Lmax—by sampling examples in a non-uniform way. For that purpose, we now make the
following assumptions:
• (A3) strong convexity: f̃i(·, ρ) is µ-strongly convex for all i, ρ;
• (A4) smoothness: f̃i(·, ρ) is Li-smooth for all i, ρ;
Note that our proof relies on a slightly stronger assumption (A3) than the global strong
convexity assumption (A1) made above, which holds in the situation where strong con-
vexity comes from an `2 regularization term. In order to exploit the different smoothness
constants, we allow the algorithm to sample indices i non-uniformly, from any distribu-
tion q such that qi ≥ 0 for all i and

∑
i qi = 1.

157

5.4. Extension to Composite Objectives and Non-Uniform Sampling

Algorithm 2 S-MISO for composite objectives, with non-uniform sampling.
Input: step-sizes (αt)t≥1, sampling distribution q;
Initialize x0 = proxh/µ(z̄0) with z̄0 = 1

n

∑
i z

0
i for some (z0

i)i=1,...,n that safisfies (5.16);
for t = 1, . . . do
Sample an index it ∼ q, a perturbation ρt, and update (with αit = αt

qin
):

zti =
{

(1− αit)zt−1
i + αit(xt−1 − 1

µ∇f̃it(xt−1, ρt)), if i = it

zt−1
i , otherwise

(5.14)

z̄t = 1
n

n∑
i=1

zti = z̄t−1 + 1
n

(ztit − z
t−1
it

)

xt = proxh/µ(z̄t). (5.15)

end for

The extension of S-MISO to this setting is given in Algorithm 2. Note that the step-
sizes vary depending on the example, with larger steps for examples that are sampled
less frequently (typically “easier” examples with smaller Li). Note that when h = 0, the
update directions are unbiased estimates of the gradient: we have E[xt − xt−1|Ft−1] =
− αt
nµ∇f(xt−1) as in the uniform case. However, in the composite case, the algorithm

cannot be written in a proximal stochastic gradient form like Prox-SVRG (Xiao and
Zhang, 2014) or SAGA (Defazio et al., 2014a).

Relationship with RDA. When n = 1, our algorithm performs similar updates
to Regularized Dual Averaging (RDA, Xiao, 2010) with strongly convex regularizers.
In particular, if f̃1(x, ρ) = φ(x>ξ(ρ)) + (µ/2)‖x‖2, the updates are the same when
taking αt = 1/t, since

proxh/µ(z̄t) = arg min
x

{
〈−µz̄t, x〉+ µ

2 ‖x‖
2 + h(x)

}
,

and −µz̄t is equal to the average of the gradients of the loss term up to t, which appears
in the same way in the RDA updates (Xiao, 2010, Section 2.2). However, unlike RDA,
our method supports arbitrary decreasing step-sizes, in particular keeping the step-size
constant, which can lead to faster convergence in the initial iterations (see Section 5.3).

Lower-bound model and convergence analysis. Again, we can view the algorithm
as iteratively updating approximate lower bounds on the objective F of the formDt(x) =
1
n

∑
i d
t
i(x) + h(x) analogously to (5.6), and minimizing the new Dt in (5.15). Similar

to MISO-Prox, we require that d0
i is initialized with a µ-strongly convex quadratic such

that f̃i(x, ρ̃i) ≥ d0
i (x) with the random perturbation ρ̃i. Given the form of dti in (5.5), it

suffices to choose z0
i that satisfies

f̃i(x, ρ̃i) ≥
µ

2 ‖x− z
0
i ‖+ c, (5.16)

for some constant c. In the common case of an `2 regularizer with a non-negative loss,
one can simply choose z0

i = 0 for all i, otherwise, z0
i can be obtained by considering

158

Chapter 5. Optimization with data augmentation

a strong convexity lower bound on f̃i(·, ρ̃i). Our new analysis relies on the minimum
Dt(xt) of the lower bounds Dt through the following Lyapunov function:

Cqt = F (x∗)−Dt(xt) + µαt
n2

n∑
i=1

1
qin
‖zti − z∗i ‖2. (5.17)

The convergence of the iterates xt is controlled by the convergence in Cqt thanks to the
next lemma:
Lemma 5.4 (Bound on the iterates). For all t, we have

µ

2 E[‖xt − x∗‖2] ≤ E[F (x∗)−Dt(xt)]. (5.18)

The following proposition gives a recursion on Cqt similar to Proposition 5.1.
Proposition 5.5 (Recursion on Cqt). If (αt)t≥1 is a positive and non-increasing sequence
of step-sizes satisfying

α1 ≤ min
{
nqmin

2 ,
nµ

4Lq

}
, (5.19)

with qmin = mini qi and Lq = maxi Li−µqin
, then Cqt obeys the recursion

E[Cqt] ≤
(

1− αt
n

)
E[Cqt−1] + 2

(
αt
n

)2 σ2
q

µ
, (5.20)

with σ2
q = 1

n

∑
i
σ2
i

qin
.

Note that if we consider the quantity E[Cqt /µ], which is an upper bound on 1
2 E[‖xt−

x∗‖2] by Lemma 5.4, we have the same recursion as (5.10), and thus can apply Theo-
rem 5.2 with the new condition (5.19). If we choose

qi = 1
2n + Li − µ

2
∑
i(Li − µ) , (5.21)

we have qmin ≥ 1/2n and Lq ≤ 2(L̄ − µ), where L̄ = 1
n

∑
i Li. Then, taking α1 =

min(1/4, nµ/8(L̄ − µ)) satisfies (5.19), and using similar arguments to Section 5.3, the
complexity for reaching E[‖xt − x∗‖2] ≤ ε is

O

((
n+ L̄

µ

)
log C

q
0
ε̄

)
+O

(
σ2
q

µ2ε

)
,

where ε̄ = 4ᾱσ2
q/nµ, and ᾱ is the initial constant step-size. For the complexity in function

suboptimality, the second term becomes O(σ2
q/µε) by using the same averaging scheme

presented in Theorem 5.3 and adapting the proof. Note that with our choice of q, we have
σ2
q ≤ 2

n

∑
i σ

2
i = 2σ̄p2, for general perturbations, where σ̄p2 = 1

n

∑
i σ

2
i is the variance in

the uniform case. Additionally, it is often reasonable to assume that the variance from
perturbations increases with the norm of examples, for instance Dropout perturbations
get larger when coordinates have larger magnitudes. Based on this observation, if we
make the assumption that σ2

i ∝ Li − µ, that is σ2
i = σ̄p

2Li−µ
L̄−µ , then for both qi = 1/n

(uniform case) and qi = (Li−µ)/n(L̄−µ), we have σ2
q = σ̄p

2, and thus we have σ2
q ≤ σ̄p2

for the choice of q given in (5.21), since σ2
q is convex in q. Thus, we can expect that

the O(1/t) convergence phase behaves similarly or better than for uniform sampling,
which is confirmed by our experiments (see Section 5.5).

159

5.5. Experiments

0 50 100150200250300350400450
epochs

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

STL-10 ckn, µ= 10−3

S-MISO η= 0. 1

S-MISO η= 1. 0

N-SAGA η= 0. 1

SGD η= 0. 1

SGD η= 1. 0

0 50 100150200250300350400450
epochs

10-4

10-3

10-2

10-1

100

f
-

f*

STL-10 ckn, µ= 10−4

0 50 100 150 200 250 300 350 400
epochs

10-3

10-2

10-1

100

f
-

f*

STL-10 ckn, µ= 10−5

0 50 100 150 200 250 300 350 400
epochs

10-5

10-4

10-3

10-2

10-1

100

F
-

F*

STL-10 scattering, µ= 10−3

0 50 100 150 200 250 300 350 400
epochs

10-5

10-4

10-3

10-2

10-1

100

101

F
-

F*

STL-10 scattering, µ= 10−4

0 50 100 150 200 250 300 350 400
epochs

10-4

10-3

10-2

10-1

100

101

F
-

F*

STL-10 scattering, µ= 10−5

Figure 5.1: Impact of conditioning for data augmentation on STL-10 (controlled by µ,
where µ=10−4 gives the best accuracy). Values of the loss are shown on a logarithmic
scale (1 unit = factor 10). η = 0.1 satisfies the theory for all methods, and we include
curves for larger step-sizes η = 1. We omit N-SAGA for η = 1 because it remains far from
the optimum. For the scattering representation, the problem we study is `1-regularized,
and we use the composite algorithm of Appendix 5.4.

0 50 100 150 200 250 300 350 400
epochs

10-6

10-5

10-4

10-3

10-2

f
-

f*

ResNet50, µ= 10−2

S-MISO η= 0. 1

S-MISO η= 1. 0

N-SAGA η= 0. 1

SGD η= 0. 1

SGD η= 1. 0

0 50 100 150 200 250 300 350 400
epochs

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

ResNet50, µ= 10−3

0 50 100 150 200 250 300 350 400
epochs

10-5

10-4

10-3

10-2

10-1

100
f

-
f*

ResNet50, µ= 10−4

Figure 5.2: Re-training of the last layer of a pre-trained ResNet 50 model, on a small
dataset with random color perturbations (for different values of µ).

5.5 Experiments

We present experiments comparing S-MISO with SGD and N-SAGA (Hofmann et al.,
2015) on four different scenarios, in order to demonstrate the wide applicability of our
method: we consider an image classification dataset with two different image represen-
tations and random transformations, and two classification tasks with Dropout regular-
ization, one on genetic data, and one on (sparse) text data. Figures 5.1 and 5.3 show
the curves for an estimate of the training objective using 5 sampled perturbations per
example. The plots are shown on a logarithmic scale, and the values are compared to
the best value obtained among the different methods in 500 epochs. The strong convex-
ity constant µ is the regularization parameter. For all methods, we consider step-sizes
supported by the theory as well as larger step-sizes that may work better in practice.
Our C++/Cython implementation of all methods considered in this section is available
at https://github.com/albietz/stochs.

160

https://github.com/albietz/stochs

Chapter 5. Optimization with data augmentation

0 50 100 150 200 250 300 350 400
epochs

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.30
S-MISO η= 0. 1

S-MISO η= 1. 0

SGD η= 0. 1

SGD η= 1. 0

N-SAGA η= 0. 1

N-SAGA η= 1. 0

0 50 100 150 200 250 300 350 400
epochs

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.10

0 50 100 150 200 250 300 350 400
epochs

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.01

0 50 100 150 200 250 300 350 400
epochs

10-4

10-3

10-2

10-1

100

f
-

f*

imdb dropout, δ = 0.30
S-MISO-NU η= 1. 0

S-MISO η= 10. 0

SGD-NU η= 1. 0

SGD η= 10. 0

N-SAGA η= 10. 0

0 50 100 150 200 250 300 350 400
epochs

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

imdb dropout, δ = 0.10

0 50 100 150 200 250 300 350 400
epochs

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

imdb dropout, δ = 0.01

Figure 5.3: Impact of perturbations controlled by the Dropout rate δ. The gene data is
`2-normalized; hence, we consider similar step-sizes as Figure 5.1. The IMDB dataset is
highly heterogeneous; thus, we also include non-uniform (NU) sampling variants of Ap-
pendix 5.4. For uniform sampling, theoretical step-sizes perform poorly for all methods;
thus, we show a larger tuned step-size η = 10.

Choices of step-sizes. For both S-MISO and SGD, we use the step-size strategy
mentioned in Section 5.3 and advised by Bottou et al. (2018), which we have found to
be most effective among many heuristics we have tried: we initially keep the step-size
constant (controlled by a factor η ≤ 1 in the figures) for 2 epochs, and then start decaying
as αt = C/(γ + t), where C = 2n for S-MISO, C = 2/µ for SGD, and γ is chosen large
enough to match the previous constant step-size. For N-SAGA, we maintain a constant
step-size throughout the optimization, as suggested in the original paper (Hofmann et al.,
2015). The factor η shown in the figures is such that η = 1 corresponds to an initial
step-size nµ/(L − µ) for S-MISO (from (5.19) in the uniform case) and 1/L for SGD
and N-SAGA (with L̄ instead of L in the non-uniform case when using the variant of
Appendix 5.4).

Image classification with “data augmentation”. The success of deep neural net-
works is often limited by the availability of large amounts of labeled images. When there
are many unlabeled images but few labeled ones, a common approach is to train a linear
classifier on top of a deep network learned in an unsupervised manner, or pre-trained on
a different task (e.g., on the ImageNet dataset). We follow this approach on the STL-
10 dataset Coates et al. (2011), which contains 5K training images from 10 classes and
100K unlabeled images, using a 2-layer unsupervised convolutional kernel network Mairal
(2016), giving representations of dimension 9 216. The perturbation consists of randomly
cropping and scaling the input images. We use the squared hinge loss in a one-versus-all
setting. The vector representations are `2-normalized such that we may use the upper
bound L = 1 + µ for the smoothness constant. We also present results on the same
dataset using a scattering representation (Bruna and Mallat, 2013) of dimension 21 696,
with random gamma corrections (raising all pixels to the power γ, where γ is chosen
randomly around 1). For this representation, we add an `1 regularization term and use
the composite variant of S-MISO presented in Appendix 5.4.

161

5.5. Experiments

Figure 5.1 shows convergence results on one training fold (500 images), for different
values of µ, allowing us to study the behavior of the algorithms for different condition
numbers. The low variance induced by data transformations allows S-MISO to reach
suboptimality that is orders of magnitude smaller than SGD after the same number of
epochs. Note that one unit on these plots corresponds to one order of magnitude in
the logarithmic scale. N-SAGA initially reaches a smaller suboptimality than SGD, but
quickly gets stuck due to the bias in the algorithm, as predicted by the theory Hofmann
et al. (2015), while S-MISO and SGD continue to converge to the optimum thanks to the
decreasing step-sizes. The best validation accuracy for both representations is obtained
for µ ≈ 10−4 (middle column), and we observed relative gains of up to 1% from using
data augmentation. We computed empirical variances of the image representations for
these two strategies, which are closely related to the variance in gradient estimates, and
observed these transformations to account for about 10% of the total variance.

Figure 5.2 shows convergence results when training the last layer of a 50-layer Resid-
ual network (He et al., 2016) that has been pre-trained on ImageNet. Here, we consider
the common scenario of leveraging a deep model trained on a large dataset as a feature
extractor in order to learn a new classifier on a different small dataset, where it would
be difficult to train such a model from scratch. To simulate this setting, we consider a
binary classification task on a small dataset of 100 images of size 256x256 taken from
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, which we crop
to 224x224 before performing random adjustments to brightness, saturation, hue and
contrast. As in the STL-10 experiments, the gains of S-MISO over other methods are of
about one order of magnitude in suboptimality, as predicted by Table 5.2.

Dropout on gene expression data. We trained a binary logistic regression model on
the breast cancer dataset of van de Vijver et al. (2002), with different Dropout rates δ,
i.e., where at every iteration, each coordinate ξj of a feature vector ξ is set to zero
independently with probability δ and to ξj/(1 − δ) otherwise. The dataset consists of
295 vectors of dimension 8 141 of gene expression data, which we normalize in `2 norm.
Figure 5.3 (top) compares S-MISO with SGD and N-SAGA for three values of δ, as a
way to control the variance of the perturbations. We include a Dropout rate of 0.01 to
illustrate the impact of δ on the algorithms and study the influence of the perturbation
variance σ2

p, even though this value of δ is less relevant for the task. The plots show very
clearly how the variance induced by the perturbations affects the convergence of S-MISO,
giving suboptimality values that may be orders of magnitude smaller than SGD. This
behavior is consistent with the theoretical convergence rate established in Section 5.3
and shows that the practice matches the theory.

Dropout on movie review sentiment analysis data. We trained a binary classi-
fier with a squared hinge loss on the IMDB dataset (Maas et al., 2011) with different
Dropout rates δ. We use the labeled part of the IMDB dataset, which consists of 25K
training and 250K testing movie reviews, represented as 89 527-dimensional sparse bag-
of-words vectors. In contrast to the previous experiments, we do not normalize the
representations, which have great variability in their norms, in particular, the maximum
Lipschitz constant across training points is roughly 100 times larger than the average
one. Figure 5.3 (bottom) compares non-uniform sampling versions of S-MISO (see Ap-

162

Chapter 5. Optimization with data augmentation

0 100 200 300 400 500 600 700 800
epochs

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.30
S-MISO η= 1. 0

S-MISO-AVG η= 1. 0

SGD η= 1. 0

SGD-AVG η= 1. 0

0 100 200 300 400 500 600 700 800
epochs

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.10

0 100 200 300 400 500 600 700 800
epochs

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.01

µ = 3 · 10−3

0 200 400 600 800 1000 1200
epochs

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.30
S-MISO η= 1. 0

S-MISO-AVG η= 1. 0

SGD η= 1. 0

SGD-AVG η= 1. 0

0 200 400 600 800 1000 1200
epochs

10-6

10-5

10-4

10-3

10-2

10-1

100
f

-
f*

gene dropout, δ = 0.10

0 200 400 600 800 1000 1200
epochs

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f
-

f*

gene dropout, δ = 0.01

µ = 3 · 10−4

Figure 5.4: Comparison of S-MISO and SGD with averaging, for different condition
numbers (controlled by µ) and different Dropout rates δ. We begin step-size decay and
averaging at epoch 3 (top) and 30 (bottom).

pendix 5.4) and SGD (see Appendix 5.C) with their uniform sampling counterparts as
well as N-SAGA. Note that we use a large step-size η = 10 for the uniform sampling
algorithms, since η = 1 was significantly slower for all methods, likely due to outliers in
the dataset. In contrast, the non-uniform sampling algorithms required no tuning and
just use η = 1. The curves clearly show that S-MISO-NU has a much faster convergence
in the initial phase, thanks to the larger step-size allowed by non-uniform sampling, and
later converges similarly to S-MISO, i.e., at a much faster rate than SGD when the
perturbations are small. The value of µ used in the experiments was chosen by cross-
validation, and the use of Dropout gave improvements in test accuracy from 88.51% with
no dropout to 88.68± 0.03% with δ = 0.1 and 88.86± 0.11% with δ = 0.3 (based on 10
different runs of S-MISO-NU after 400 epochs).

Effect of iterate averaging. Figure 5.4 shows a comparison of S-MISO and SGD
with the averaging scheme proposed in Theorem 5.3 (see Appendix 5.C for comments
on how it applies to SGD), on the breast cancer dataset presented in Section 5.5, for
different values of the regularization µ (and thus of the condition number κ = L/µ), and
Dropout rates δ. We can see that the averaging scheme gives some small improvements
for both methods, and that the improvements are more significant when the problem
is more ill-conditioned (Figure 5.4, bottom). We note that the time at which we start
averaging can have significant impact on the convergence, in particular, starting too early
can significantly slow down the initial convergence, as commonly noticed for stochastic
gradient methods (see, e.g., Nemirovski et al., 2009).

163

Appendix

5.A Proofs for the Smooth Case (Section 5.3)

5.A.1 Proof of Proposition 5.1 (Recursion on Lyapunov function Ct)

We begin by stating the following lemma, which extends a key result of variance reduction
methods (see, e.g., Johnson and Zhang, 2013) to the situation considered in this chapter,
where one only has access to noisy estimates of the gradients of each fi.

Lemma 5.A.1. Let i be uniformly distributed in {1, . . . , n} and ρ according to a per-
turbation distribution Γ. Under assumption (A2) on the functions f̃1, . . . , f̃n and their
expectations f1, . . . , fn, we have, for all x ∈ Rp,

Ei,ρ[‖∇f̃i(x, ρ)−∇fi(x∗)‖2] ≤ 4L(f(x)− f(x∗)) + 2σ2
p.

Proof. We have

‖∇f̃i(x, ρ)−∇fi(x∗)‖2

≤ 2‖∇f̃i(x, ρ)−∇f̃i(x∗, ρ)‖2 + 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

≤ 4L(f̃i(x, ρ)− f̃i(x∗, ρ)− 〈∇f̃i(x∗, ρ), x− x∗〉) + 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2.

The first inequality comes from the simple relation ‖u+ v‖2 +‖u− v‖2 = 2‖u‖2 + 2‖v‖2.
The second inequality follows from the smoothness of f̃i(·, ρ), in particular we used the
classical relation

g(y) ≥ g(x) + 〈∇g(x), y − x〉+ 1
2L‖∇g(y)−∇g(x)‖2,

which is known to hold for any convex and L-smooth function g (see, e.g., Nesterov,
2004, Theorem 2.1.5). The result follows by taking expectations on i and ρ and noting
that Ei,ρ[∇f̃i(x∗, ρ)] = ∇f(x∗) = 0, as well as the definition of σ2

p.

We now proceed with the proof of Proposition 5.1.

Proof. Define the quantities

At = 1
n

n∑
i=1
‖zti − z∗i ‖2

and Bt = 1
2‖xt − x

∗‖2.

The proof successively describes recursions on At, Bt, and eventually Ct.

164

Chapter 5. Optimization with data augmentation

Recursion on At. We have

At−At−1 = 1
n

(‖ztit − z
∗
it‖

2 − ‖zt−1
it
− z∗it‖

2)

= 1
n

(∥∥∥∥(1− αt)(zt−1
it
− z∗it) + αt

(
xt−1−

1
µ
∇f̃it(xt−1, ρt)−z∗it

)∥∥∥∥2
−‖zt−1

it
−z∗it‖

2
)

= 1
n

(
−αt‖zt−1

it
− z∗it‖

2 + αt

∥∥∥∥xt−1 −
1
µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2
− αt(1− αt)‖vt‖2

)
,

(5.22)

where we first use the definition of zti in (5.3), then the relation ‖(1 − λ)u + λv‖2 =
(1−λ)‖u‖2 +λ‖v‖2−λ(1−λ)‖u− v‖2, and the definition of vt given in (5.7). A similar
relation is derived in the proof of SDCA without duality (Shalev-Shwartz, 2016). Using
the definition of z∗i , the second term can be expanded as

∥∥∥∥xt−1 −
1
µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2
=
∥∥∥∥xt−1 − x∗ −

1
µ

(∇f̃it(xt−1, ρt)−∇fit(x∗))
∥∥∥∥2

= ‖xt−1 − x∗‖2 −
2
µ
〈xt−1 − x∗,∇f̃it(xt−1, ρt)−∇fit(x∗)〉

+ 1
µ2

∥∥∥∇f̃it(xt−1, ρt)−∇fit(x∗))
∥∥∥2
. (5.23)

We then take conditional expectations with respect to Ft−1, defined in Section 5.2. Un-
less otherwise specified, we will simply write E[·] instead of E[·|Ft−1] for these conditional
expectations in the rest of the proof.

E
[∥∥∥∥xt−1 −

1
µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2
]
≤ ‖xt−1 − x∗‖2 −

2
µ
〈xt−1 − x∗,∇f(xt−1)〉

+ 4L
µ2 (f(xt−1)− f(x∗)) +

2σ2
p

µ2

≤ ‖xt−1 − x∗‖2 −
2
µ

(f(xt−1)− f(x∗)+µ

2 ‖xt−1−x∗‖2)

+ 4L
µ2 (f(xt−1)− f(x∗)) +

2σ2
p

µ2

= 2(2κ− 1)
µ

(f(xt−1)− f(x∗)) +
2σ2

p

µ2 ,

where we used E[∇fit(x∗)] = ∇f(x∗) = 0, Lemma 5.A.1, and the µ-strong convexity of
f . Taking expectations on the previous relation on At yields

E[At −At−1] = −αt
n
At−1 + αt

n
E
[∥∥∥∥xt−1 −

1
µ
∇f̃it(xt−1, ρt)− z∗it

∥∥∥∥2
]
− αt(1− αt)

n
E[‖vt‖2]

≤ −αt
n
At−1 + 2αt(2κ− 1)

nµ
(f(xt−1)− f(x∗))− αt(1− αt)

n
E[‖vt‖2] +

2αtσ2
p

nµ2 .

(5.24)

165

5.A. Proofs for the Smooth Case

Recursion on Bt. Separately, we have

‖xt − x∗‖2 =
∥∥∥∥xt−1 − x∗ + αt

n
vt

∥∥∥∥2

= ‖xt−1 − x∗‖2 + 2αt
n
〈xt−1 − x∗, vt〉+

(
αt
n

)2
‖vt‖2

E[‖xt − x∗‖2] = ‖xt−1 − x∗‖2 −
2αt
nµ
〈xt−1 − x∗,∇f(xt−1)〉+

(
αt
n

)2
E[‖vt‖2]

≤ ‖xt−1 − x∗‖2 −
2αt
nµ

(f(xt−1)− f(x∗) + µ

2 ‖xt−1 − x∗‖2) +
(
αt
n

)2
E[‖vt‖2],

using that E[vt] = − 1
µ∇f(xt−1) and the strong convexity of f . This gives

E[Bt −Bt−1] ≤ −αt
n
Bt−1 −

αt
nµ

(f(xt−1)− f(x∗)) + 1
2

(
αt
n

)2
E[‖vt‖2]. (5.25)

Recursion on Ct. If we consider Ct = ptAt + Bt and C ′t−1 = ptAt−1 + Bt−1,
combining (5.24) and (5.25) yields

E[Ct − C ′t−1] ≤

−αt
n
C ′t−1+2αt

nµ
(pt(2κ−1)−1

2)(f(xt−1)−f(x∗))+αt
n

(
αt
2n − pt(1− αt)

)
E[‖vt‖2]+

2αtptσ2
p

nµ2 .

If we take pt = αt
n , and if (αt)t≥1 is a decreasing sequence satisfying (5.9), then the

factors in front of f(xt−1)− f(x∗) and E[‖vt‖2] are non-positive and we get

E[Ct] ≤
(

1− αt
n

)
C ′t−1 + 2

(
αt
n

)2 σ2
p

µ2 .

Finally, since αt ≤ αt−1, we have C ′t−1 ≤ Ct−1. After taking total expectations on Ft−1,
we are left with the desired recursion.

5.A.2 Proof of Theorem 5.2 (Convergence of Ct under decreasing step-
sizes)

We prove the theorem with more general step-sizes:

Theorem 5.A.1 (Convergence of Lyapunov function). Let the sequence of step-sizes
(αt)t≥1 be defined by αt = βn

γ+t with β > 1 and γ ≥ 0 such that α1 satisfies (5.9). For all
t ≥ 0, it holds that

E[Ct] ≤
ν

γ + t+ 1 where ν := max
{

2β2σ2
p

µ2(β − 1) , (γ + 1)C0

}
. (5.26)

In particular, taking β = 2 as in Theorem 5.2 can only improve the constant ν in
the convergence rate.

166

Chapter 5. Optimization with data augmentation

Proof. Let us proceed by induction. We have C0 ≤ ν/(γ + 1) by definition of ν. For
t ≥ 1,

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] + 2

(
αt
n

)2 σ2
p

µ2

≤
(

1− β

t̂

)
ν

t̂
+

2β2σ2
p

t̂2µ2 (with t̂ := γ + t)

=
(
t̂− β
t̂2

)
ν +

2β2σ2
p

t̂2µ2

=
(
t̂− 1
t̂2

)
ν −

(
β − 1
t̂2

)
ν +

2β2σ2
p

t̂2µ2

≤
(
t̂− 1
t̂2

)
ν ≤ ν

t̂+ 1
,

where the last two inequalities follow from the definition of ν and from t̂2 ≥ (t̂+ 1)(t̂−
1).

5.A.3 Proof of Theorem 5.3 (Convergence in function values under
iterate averaging)

Proof. From the proof of Proposition 5.1, we have

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] + 2αt

nµ

(
αt
n

(2κ− 1)− 1
2

)
E[f(xt−1)− f(x∗)] + 2

(
αt
n

)2 σ2
p

µ2 .

The result holds because the choice of step-sizes (αt)t≥1 safisfies the assumptions of
Proposition 5.1. With our new choice of step-sizes, we have the stronger bound

αt
n

(2κ− 1)− 1
2 ≤ −

1
4 .

After rearranging, we obtain

αt
2nµ E[f(xt−1)− f(x∗)] ≤

(
1− αt

n

)
E[Ct−1]− E[Ct] + 2

(
αt
n

)2 σ2
p

µ2 . (5.27)

Dividing by αt
2nµ gives

E[f(xt−1)− f(x∗)] ≤ 2µ
[(

n

αt
− 1

)
E[Ct−1]− n

αt
E[Ct]

]
+ 4αt

n

σ2
p

µ

= µ ((γ + t− 2)E[Ct−1]− (γ + t)E[Ct]) + 8
γ + t

σ2
p

µ
.

Multiplying by (γ + t− 1) yields

(γ + t− 1)E[f(xt−1)− f(x∗)]

≤ µ ((γ + t− 1)(γ + t− 2)E[Ct−1]− (γ + t)(γ + t− 1)E[Ct]) + 8(γ + t− 1)
γ + t

σ2
p

µ

≤ µ ((γ + t− 1)(γ + t− 2)E[Ct−1]− (γ + t)(γ + t− 1)E[Ct]) +
8σ2

p

µ
.

167

5.B. Proofs for Composite Objectives and Non-Uniform Sampling

By summing the above inequality from t = 1 to t = T , we have a telescoping sum that
simplifies as follows:

E
[
T∑
t=1

(γ + t− 1)(f(xt−1)− f(x∗))
]
≤ µ (γ(γ − 1)C0 − (γ + T)(γ + T − 1)E[CT]) +

8Tσ2
p

µ

≤ µγ(γ − 1)C0 +
8Tσ2

p

µ
.

Dividing by
∑T
t=1(γ+t−1) = (2Tγ+T (T−1))/2 and using Jensen’s inequality on f(x̄T)

gives the desired result.

5.B Proofs for Composite Objectives and Non-Uniform
Sampling (Section 5.4)

We recall here the updates to the lower bounds dti in the setting of this section, which
are analogous to (5.6) but with non-uniform weights and stochastic perturbations,: for
i = it, we have

dti(x) =
(
1− αt

qin

)
dt−1
i (x) + αt

qin

(
f̃i(xt−1, ρt) + 〈∇f̃i(xt−1, ρt), x−xt−1〉+

µ

2 ‖x−xt−1‖2
)
,

(5.28)
and dti(x) = dt−1

i (x) otherwise.

5.B.1 Proof of Lemma 5.4 (Bound on the iterates)

Proof. Let Ft(x) := 1
n

∑n
i=1 f

t
i (x) + h(x), where f0

i (x) = f̃i(x, ρ̃i) (where ρ̃i is used
in (5.16)), and f ti is updated analogously to dti as follows:

f ti (x) =
{

(1− αt
qin

)f t−1
i (x) + αt

qin
f̃i(x, ρt), if i = it

f t−1
i (x), otherwise.

By induction, we have

Ft(x∗) ≥ Dt(x∗) ≥ Dt(xt) + µ

2 ‖xt − x
∗‖2, (5.29)

where the last inequality follows from the µ-strong convexity of Dt and the fact that xt
is its minimizer.

Again by induction, we now show that E[Ft(x∗)] = F (x∗). Indeed, we have E[F0(x∗)] =
F (x∗) by construction, then

Ft(x∗) = Ft−1(x∗) + αt
qin2 (f̃it(x∗, ρt)− f t−1

it
(x∗))

E[Ft(x∗)|Ft−1] = Ft−1(x∗) + αt
n

(f(x∗)− 1
n

n∑
i=1

f t−1
i (x∗))

= Ft−1(x∗) + αt
n

(F (x∗)− Ft−1(x∗)),

After taking total expectations and using the induction hypothesis, we obtain E[Ft(x∗)] =
F (x∗), and the result follows from (5.29).

168

Chapter 5. Optimization with data augmentation

5.B.2 Proof of Proposition 5.5 (Recursion on Lyapunov function Cq
t)

We begin by presenting a lemma that plays a similar role to Lemma 5.A.1 in our proof,
but considers the composite objective and takes into account the new strong convexity
and non-uniformity assumptions.

Lemma 5.B.1. Let i ∼ q, where q is the sampling distribution, and ρ be a random per-
turbation. Under assumptions (A4-5) on the functions f̃1, . . . , f̃n and their expectations
f1, . . . , fn, we have, for all x ∈ Rp,

Ei,ρ
[1

(qin)2 ‖∇f̃i(x, ρ)− µx− (∇fi(x∗)− µx∗)‖2
]
≤ 4Lq(F (x)− F (x∗)) + 2σ2

q ,

with Lq = maxi Li−µqin
and σ2

q = 1
n

∑
i
σ2
i

qin
.

Proof. Since f̃i(·, ρ) is µ-strongly convex and Li-smooth, we have that f̃i(·, ρ) − µ
2‖ · ‖

2

is convex and (Li − µ)-smooth (this is a straightforward consequence of Nesterov, 2004,
Eq. 2.1.9 and 2.1.22). Then, by denoting by Fi the quantity 2‖∇f̃i(x∗, ρ) −∇fi(x∗)‖2,
we have

‖∇f̃i(x, ρ)− µx− (∇fi(x∗)− µx∗)‖2

≤ 2‖∇f̃i(x, ρ)− µx− (∇f̃i(x∗, ρ)− µx∗)‖2 + 2‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

≤ 4(Li − µ)
(
f̃i(x, ρ)− µ

2 ‖x‖
2 − f̃i(x∗, ρ) + µ

2 ‖x
∗‖2 − 〈∇f̃i(x∗, ρ)− µx∗, x− x∗〉

)
+ Fi

= 4(Li − µ)
(
f̃i(x, ρ)− f̃i(x∗, ρ)− 〈∇f̃i(x∗, ρ), x− x∗〉 − µ

2 ‖x− x
∗‖2
)

+ Fi

≤ 4(Li − µ)
(
f̃i(x, ρ)− f̃i(x∗, ρ)− 〈∇f̃i(x∗, ρ), x− x∗〉

)
+ Fi.

The first inequality comes from the classical relation ‖u+v‖2 +‖u−v‖2 = 2‖u‖2 +2‖v‖2.
The second inequality follows from the convexity and (Li − µ)-smoothness of f̃i(·, ρ) −
µ
2‖ · ‖

2. Dividing by (qin)2 and taking expectations yields

Ei,ρ
[1

(qin)2 ‖∇f̃i(x, ρ)− µx− (∇fi(x∗)− µx∗)‖2
]

≤ 4
n∑
i=1

qi(Li − µ)
(qin)2 (fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉) + 2

n∑
i=1

qi
(qin)2σ

2
i

= 4 1
n

n∑
i=1

Li − µ
qin

(fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉) + 2 1
n

n∑
i=1

σ2
i

qin

≤ 4Lq(f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉) + 2σ2
q

≤ 4Lq(f(x)− f(x∗) + h(x)− h(x∗)) + 2σ2
q = 4Lq(F (x)− F (x∗)) + 2σ2

q ,

where the last inequality follows from the optimality of x∗, which implies that −∇f(x∗) ∈
∂h(x∗), and in turn implies 〈−∇f(x∗), x− x∗〉 ≤ h(x)− h(x∗) by convexity of h.

We can now proceed with the proof of Proposition 5.5.

169

5.B. Proofs for Composite Objectives and Non-Uniform Sampling

Proof. Define the quantities

At = 1
n

n∑
i=1

1
qin
‖zti − z∗i ‖2

and Bt = F (x∗)−Dt(xt).

The proof successively describes recursions on At, Bt, and eventually Ct (we drop the
superscript in Cqt for simplicity), using the same approach as for the proof of Proposi-
tion 5.1.

Recursion on At. Using similar techniques as in the proof of Proposition 5.1, we
have

At −At−1

= 1
n

(1
qitn
‖ztit − z

∗
it‖

2 − 1
qitn
‖zt−1
it
− z∗it‖

2
)

= 1
n

(
1
qitn

∥∥∥∥(1− αt
qitn

)
(zt−1
it
−z∗it) + αt

qitn

(
xt−1−

1
µ
∇f̃it(xt−1, ρt)−z∗it

)∥∥∥∥2
− 1
qitn
‖zt−1
it
−z∗it‖

2
)

= 1
n

(
− αt

(qitn)2 ‖z
t−1
it
−z∗it‖

2+ αt
(qitn)2

∥∥∥∥xt−1−
1
µ
∇f̃it(xt−1, ρt)−z∗it

∥∥∥∥2
− αt

(qitn)2

(
1− αt

qitn

)
‖vtit‖

2
)
,

where vti := xt−1 − 1
µ∇f̃i(xt−1, ρt) − zt−1

i . Taking conditional expectations w.r.t. Ft−1
and using Lemma 5.B.1 to bound the second term yields

E[At −At−1] ≤

− αt
n
At−1 + 4αtLq

nµ2 (F (xt−1)− F (x∗)) +
2αtσ2

q

nµ2 −
1
n

n∑
i=1

(
αt
n

1
qin

(
1− αt

qin

)
‖vti‖2

)
(5.30)

Recursion on Bt. We start by using a lemma from the proof of MISO-Prox (Lin
et al., 2015, Lemma D.4), which only relies on the form of Dt and the fact that xt
minimizes it, and thus holds in our setting:

Dt(xt) ≥ Dt(xt−1)− µ

2 ‖z̄t − z̄t−1‖2

= Dt(xt−1)− µ

2(qitn)2

(
αt
n

)2
‖vtit‖

2 (5.31)

We then expand Dt(xt−1) using (5.28) as follows:

Dt(xt−1) = Dt−1(xt−1) + αt
n

1
qitn

(
f̃it(xt−1, ρt)− dt−1

it
(xt−1)

)
= Dt−1(xt−1) + αt

n

1
qitn

(
f̃it(xt−1, ρt) + h(xt−1)− dt−1

it
(xt−1)− h(xt−1)

)
.

After taking conditional expections w.r.t. Ft−1, (5.31) becomes

E[Dt(xt)] ≥ Dt−1(xt−1) + αt
n

(F (xt−1)−Dt−1(xt−1))− µ

2n

n∑
i=1

(
αt
n

)2 1
qin
‖vti‖2.

170

Chapter 5. Optimization with data augmentation

Subtracting F (x∗) and rearranging yields

E[Bt −Bt−1] ≤ −αt
n
Bt−1 −

αt
n

(F (xt−1)− F (x∗)) + µ

2n

n∑
i=1

(
αt
n

)2 1
qin
‖vti‖2. (5.32)

Recursion on Ct. If we consider Ct = µptAt + Bt and C ′t−1 = µptAt−1 + Bt−1,
combining (5.30) and (5.32) yields

E[Ct−C ′t−1] ≤ −αt
n
C ′t−1+2αt

n

(2ptLq
µ
−1

2
)
(F (xt−1)−F (x∗))+µαt

n2

n∑
i=1

δti
qin
‖vti‖2+

2αtptσ2
q

nµ
,

(5.33)
with

δti = αt
2n − pt

(
1− αt

qin

)
.

If we take pt = αt
n , and if (αt)t≥1 is a decreasing sequence satisfying (5.19), then we obtain

the desired recursion after noticing that C ′t−1 ≤ Ct−1 and taking total expectations
on Ft−1.

Note that if we take

α1 ≤ min
{
nqmin

2 ,
nµ

8Lq

}
,

then (5.33) yields

E
[
Cqt
µ

]
≤
(

1− αt
n

)
E
[
Cqt−1
µ

]
− αt

2nµ(F (xt−1)− F (x∗)) + 2
(
αt
n

)2 σ2
q

µ2 .

This relation takes the same form as Eq. (5.27), hence it is straightforward to adapt the
proof of Theorem 5.3 to this setting, and the same iterate averaging scheme applies.

5.C Complexity Analysis of SGD

In this section, we provide a proof of a simple result for SGD in the smooth case, giving
a recursion that depends on a variance condition at the optimum (in contrast to Bottou
et al., 2018; Nemirovski et al., 2009, where this condition needs to hold everywhere), for
a more natural comparison with S-MISO.

Proposition 5.C.1 (Simple SGD recursion with variance at optimum). Under assump-
tions (A1) and (A2), if ηt ≤ 1/2L, then the SGD recursion xt := xt−1− ηt∇f̃it(xt−1, ρt)
satisfies

Bt ≤ (1− µηt)Bt−1 + η2
t σ

2
tot,

where Bt := 1
2 E[‖xt − x∗‖2] and σtot is such that

Ei,ρ
[
‖∇f̃i(x∗, ρ)‖2

]
≤ σ2

tot.

171

5.C. Complexity Analysis of SGD

Proof. We have

‖xt − x∗‖2 = ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt), xt−1 − x∗〉+ η2
t ‖∇f̃it(xt−1, ρt)‖2

≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt), xt−1 − x∗〉
+ 2η2

t ‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2 + 2η2
t ‖∇f̃it(x∗, ρt)‖2

E
[
‖xt − x∗‖2

]
≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f(xt−1), xt−1 − x∗〉

+ 2η2
t Eit,ρt

[
‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2

]
+ 2η2

t Eit,ρt
[
‖∇f̃it(x∗, ρt)‖2

]
(∗) ≤ ‖xt−1 − x∗‖2 − 2ηt

(
f(xt−1)− f(x∗) + µ

2 ‖xt−1 − x∗‖2
)

+ 4Lη2
t (f(xt−1)− f(x∗)) + 2η2

t σ
2
tot

= (1− µηt)‖xt−1 − x∗‖2 − 2ηt(1− 2Lηt)(f(xt−1)− f(x∗)) + 2η2
t σ

2
tot,

where the expectation is taken with respect to the filtration Ft−1 and the inequality (∗)
follows from the strong convexity of f and Ei,ρ[‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2] is bounded
by 2L(f(xt−1) − f(x∗)) as in the proof of Lemma 5.A.1. When ηt ≤ 1/2L, the second
term is non-positive and we obtain the desired result after taking total expectations.

Note that when ηt ≤ 1/4L, we have

E
[
‖xt − x∗‖2

]
≤ (1− µηt)E

[
‖xt−1 − x∗‖2

]
− ηt(f(xt−1)− f(x∗)) + 2η2

t σ
2
tot.

This takes a similar form to Eq. (5.27), and one can use the same iterate averaging
scheme as Theorem 5.3 with step-sizes ηt = 2/µ(γ + t) by adapting the proof.

We now give a similar recursion for the proximal SGD algorithm (see, e.g., Duchi
and Singer, 2009). This allows us to apply the results of Theorem 5.2 and the step-size
strategy mentioned in Section 5.3.

Proposition 5.C.2 (Simple recursion for proximal SGD with variance at optimum).
Under assumptions (A1) and (A2), if ηt ≤ 1/2L, then the proximal SGD recursion

xt := proxηth(xt−1 − ηt∇f̃it(xt−1, ρt))

satisfies
Bt ≤ (1− µηt)Bt−1 + η2

t σ
2
tot,

where Bt := 1
2 E[‖xt − x∗‖2] and σtot is such that

Ei,ρ
[
‖∇f̃i(x∗, ρ)−∇f(x∗)‖2

]
≤ σ2

tot.

Proof. We have

‖xt − x∗‖2

= ‖ proxηth(xt−1 − ηt∇f̃it(xt−1, ρt))− proxηth(x∗ − ηt∇f(x∗))‖2

≤ ‖xt−1 − ηt∇f̃it(xt−1, ρt)− x∗ + ηt∇f(x∗)‖2

= ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt)−∇f(x∗), xt−1 − x∗〉+ η2
t ‖∇f̃it(xt−1, ρt)−∇f(x∗)‖2

≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f̃it(xt−1, ρt)−∇f(x∗), xt−1 − x∗〉
+ 2η2

t ‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2 + 2η2
t ‖∇f̃it(x∗, ρt)−∇f(x∗)‖2,

172

Chapter 5. Optimization with data augmentation

where the first equality follows from the optimality of x∗ and the following inequality fol-
lows from the non-expansiveness of proximal operators. Taking conditional expectations
on Ft−1 yields

E
[
‖xt − x∗‖2|Ft−1

]
≤ ‖xt−1 − x∗‖2 − 2ηt〈∇f(xt−1)−∇f(x∗), xt−1 − x∗〉

+ 2η2
t Eit,ρt

[
‖∇f̃it(xt−1, ρt)−∇f̃it(x∗, ρt)‖2

]
+ 2η2

t Eit,ρt
[
‖∇f̃it(x∗, ρt)−∇f(x∗)‖2

]
(∗) ≤ ‖xt−1 − x∗‖2 − 2ηt

(
f(xt−1)− f(x∗) + µ

2 ‖xt−1 − x∗‖2 − 〈∇f(x∗), xt−1 − x∗〉
)

+ 4Lη2
t (f(xt−1)− f(x∗)− 〈∇f(x∗), xt−1 − x∗〉) + 2η2

t σ
2
tot

= (1−µηt)‖xt−1−x∗‖2 − 2ηt(1−2Lηt)(f(xt−1)−f(x∗)−〈∇f(x∗), xt−1 − x∗〉) + 2η2
t σ

2
tot,

where inequality (∗) follows from the µ-strong convexity of f and Ei,ρ[‖∇f̃it(xt−1, ρt)−
∇f̃it(x∗, ρt)‖2] is bounded by 2L(f(xt−1)− f(x∗)− 〈∇f(x∗), xt−1 − x∗〉) as in the proof
of Lemma 5.B.1. By convexity of f , we have f(xt−1)− f(x∗)− 〈∇f(x∗), xt−1− x∗〉 ≥ 0,
hence the second term is non-positive when ηt ≤ 1/2L. We conclude by taking total
expectations.

We note that Propositions 5.C.1 and 5.C.2 can be easily adapted to non-uniform sam-
pling with sampling distribution q and step-sizes ηt/qitn, leading to step-size conditions
ηt ≤ 1/2Lq, with Lq = maxi Liqin and variance σ2

q,tot = Ei,ρ[1
(qin)2 ‖∇f̃i(x∗, ρ)−∇f(x∗)‖2].

173

Chapter 6

Conclusion and Perspectives

In this thesis, we presented various contributions on theoretical and practical foundations
of deep learning, particularly convolutional networks, through the lens of kernel methods.

Our first contribution introduces of a functional space for studying convolutional
architectures, by defining an appropriate multi-layer convolutional kernel on signals.
This allows us to study theoretical guarantees on smoothness, invariance, stability to
deformations, and signal preservation for the obtained signal representation. It also
provides a way to measure complexity of certain CNNs with smooth activations, which
are shown to be in the RKHS of the constructed kernels, through a study of their RKHS
norm.

Our second contribution presents new practical regularization strategies for deep
neural networks which are obtained through approximations of the RKHS norm for the
multi-layer kernels introduced above. Our newly obtained methods lead to improved
empirical generalization performance on small datasets from computer vision and com-
putational biology, as well as state-of-the-art robustness to additive `2 perturbations on
CIFAR10. Theoretical insights and guarantees are also provided for generative modeling
and robust generalization, when the RKHS norm is appropriately controlled.

Our third contribution studies the inductive bias of gradient-based optimization in
deep networks, focusing on a specific over-parameterized regime where a “lazy training”
phenomenon occurs, with weights remaining very close to initialization. For regression
problems, this regime leads to certain minimum-norm solutions in the RKHS of the
so-called neural tangent kernel. We study the inductive bias in such a learning regime
by analyzing smoothness, stability and approximation properties for this kernel, and
comparing it to other deep kernels obtained, for instance, when only training the last
layer of a deep network. We also observe that when the number of neurons is finite
in this regime, smoothness and stability properties may only hold approximately for
the neural network predictions, since it does not belong to the RKHS of the limiting
(infinite-width) kernel. This may lead to some local instabilities, and might be a cause
of adversarial examples.

Our fourth contribution considers stability and regularization more explicitly through
data augmentation, and develops a stochastic optimization algorithm for the resulting
objective function, in the strongly convex setting. This algorithm outperforms SGD
by exploiting the finite-sum structure of the objective with variance reduction. More
precisely, the convergence rate depends on the gradient variance induced by data aug-

174

Chapter 6. Conclusion and Perspectives

mentation on a single example (which is unavoidable), which may be much smaller than
the full gradient variance across all examples.

Perspectives. The contributions in this thesis raise several questions that would be
interesting to tackle in future work, which we discuss below.

While Chapter 4 investigates approximation properties of the RKHS for kernels based
on two-layer fully-connected networks following Bach (2017a), it would be interesting
to obtain similar characterizations for multi-layer kernels, as well as for convolutional
kernels. For the convolutional case, this raises the question of which functions can be
approximated, and may require appropriate assumptions on the data distribution. While
for the fully connected kernel there is a poor dependence on the dimensionality of the
input data, what are appropriate assumptions on the target functions and on the data
distribution which may avoid this curse in the convolutional case?

Other questions arise regarding deformation stability and approximation: we found
that deep convolutional networks with small patches are near-translation invariant and
stable to deformations; conversely, can all functions that are stable to deformations be
approximated by a convolutional network? If so, can such networks be learned efficiently,
perhaps using a kernel method with a convolutional kernel, or a form of optimization with
over-parameterization? It has been observed that deep networks trained on standard
image recognition datasets tend to focus on low-level details such as texture, rather than
higher-level features such as shape; can such biases be controlled more explicitly through
regularization, perhaps with suitable kernel design?

Finally, while kernels provide a useful tool for studying theoretical foundations of
deep learning, including optimization of over-parameterized networks in a certain regime,
it has been observed that such results might only provide a limited explanation for the
success of deep networks. For instance, the lazy training regime where weights remain
very close to initialization does not explain the common “feature selection” behavior
of the first layers of CNNs which learn Gabor-like filters, as pointed out by Chizat
et al. (2019). Recent papers have shown that optimization algorithms on certain over-
parameterized models may achieve better sample complexity than kernel methods (e.g.,
Allen-Zhu and Li, 2019; Wei et al., 2019). An interesting question for future work is to
study generalization properties in a regime in which different layers may be optimized
differently, some of which may be more “lazy” than others, as observed by Zhang et al.
(2019), suggesting that a kernel-like behavior may still be partially present.

175

Appendix A

Software

Accompanying the contributions described in the chapters of this thesis, the following
software packages were developed over the course of the PhD:

• stochs - https://github.com/albietz/stochs

This package provides implementations of various stochastic optimization algo-
rithms, including variance reduction methods and hybrid stochastic/finite sum
methods including the stochastic MISO algorithm introduced in our contribu-
tion (Bietti and Mairal, 2017b). It is implemented in C++ using the Eigen library
for linear algebra, and is mainly used in Python through a Cython interface.

• https://github.com/albietz/kernel_reg

This package provides a PyTorch implementation of the regularizers introduced
in (Bietti et al., 2019) for deep networks, and provides code for reproducing the
results of the paper for learning on small datasets or with adversarial perturbations.
The main project page above also provides updated results on robustness which use
stronger attacks at test time, and show state-of-the-art performance on Cifar10.

• https://github.com/albietz/ckn_kernel

This package implements exact computations for convolutional kernels such as
those of Chapter 2 and the neural tangent kernels for convolutional networks de-
scribed in Chapter 4. This was used for empirical studies of deformation stability.
The main algorithm is implemented in C++ using dynamic programming, and can
be accessed in Python through a Cython interface.

• For the empirical study of contextual bandits in (Bietti et al., 2018), several con-
tributions were made to the open-source online learning library Vowpal Wabbit
(VW),1 specifically an implementation of the RegCB algorithm for contextual ban-
dits, along with various improvements of other algorithms including Cover, Bag-
ging, and ε-Greedy, as well as various contributions to the core parts of VW related
to Contextual Bandits. The scripts used for evaluation are available at https:
//github.com/albietz/cb_bakeoff.

1See https://github.com/VowpalWabbit/vowpal_wabbit and https://vowpalwabbit.org.

176

https://github.com/albietz/stochs
https://github.com/albietz/kernel_reg
https://github.com/albietz/ckn_kernel
https://github.com/albietz/cb_bakeoff
https://github.com/albietz/cb_bakeoff
https://github.com/VowpalWabbit/vowpal_wabbit
https://vowpalwabbit.org

Bibliography

M. Achab, A. Guilloux, S. Gaïffas, and E. Bacry. SGD with Variance Reduction beyond
Empirical Risk Minimization. arXiv preprint arXiv:1510.04822, 2015.

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence
specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology,
33(8):831, 2015.

S. Allassonnière, Y. Amit, and A. Trouvé. Towards a coherent statistical framework for
dense deformable template estimation. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 69(1):3–29, 2007.

Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
Journal of Machine Learning Research (JMLR), 18(1):8194–8244, 2017.

Z. Allen-Zhu and Y. Li. What can resnet learn efficiently, going beyond kernels? In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Z. Allen-Zhu, Y. Yuan, and K. Sridharan. Exploiting the Structure: Stochastic Gradient
Methods Using Raw Clusters. In Advances in Neural Information Processing Systems
(NIPS), 2016.

Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019a.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. In Proceedings of the International Conference on Machine Learning
(ICML), 2019b.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic acids research, 25(17):3389–3402, 1997.

J. Andén and S. Mallat. Deep scattering spectrum. IEEE Transactions on Signal
Processing, 62(16):4114–4128, 2014.

F. Anselmi, L. Rosasco, C. Tan, and T. Poggio. Deep convolutional networks are hier-
archical kernel machines. preprint arXiv:1508.01084, 2015.

F. Anselmi, L. Rosasco, and T. Poggio. On invariance and selectivity in representation
learning. Information and Inference, 5(2):134–158, 2016.

177

Bibliography

M. Anthony and P. Bartlett. Neural network learning: Theoretical foundations. Cam-
bridge University Press, 2009.

M. Arbel, D. J. Sutherland, M. Bińkowski, and A. Gretton. On gradient regularizers
for MMD GANs. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. In Proceedings of the
International Conference on Machine Learning (ICML), 2017.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American mathemat-
ical society, 68(3):337–404, 1950.

S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep
nets via a compression approach. In Proceedings of the International Conference on
Machine Learning (ICML), 2018.

S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation
with an infinitely wide neural net. In Advances in Neural Information Processing
Systems (NeurIPS), 2019a.

S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In Proceedings of
the International Conference on Machine Learning (ICML), 2019b.

K. Atkinson and W. Han. Spherical harmonics and approximations on the unit sphere:
an introduction, volume 2044. Springer Science & Business Media, 2012.

F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on
Learning Theory (COLT), 2013.

F. Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research (JMLR), 18(19):1–53, 2017a.

F. Bach. On the equivalence between kernel quadrature rules and random feature ex-
pansions. Journal of Machine Learning Research (JMLR), 18(21):1–38, 2017b.

F. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine
Learning Research (JMLR), 3(Jul):1–48, 2002.

F. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In
Proceedings of the International Conference on Machine Learning (ICML), 2005.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. In Advances in Neural Information Processing Systems
(NIPS), 2011.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate o (1/n). In Advances in Neural Information Processing Systems
(NIPS), 2013.

178

Bibliography

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research (JMLR), 3(Nov):463–
482, 2002.

P. L. Bartlett, O. Bousquet, S. Mendelson, et al. Local rademacher complexities. The
Annals of Statistics, 33(4):1497–1537, 2005.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

P. L. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems (NIPS),
2017.

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear
regression. arXiv preprint arXiv:1906.11300, 2019.

R. Basri, D. Jacobs, Y. Kasten, and S. Kritchman. The convergence rate of neural net-
works for learned functions of different frequencies. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

M. Belkin, D. Hsu, and P. Mitra. Overfitting or perfect fitting? risk bounds for clas-
sification and regression rules that interpolate. In Advances in Neural Information
Processing Systems (NeurIPS), 2018a.

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand
kernel learning. In Proceedings of the International Conference on Machine Learning
(ICML), 2018b.

M. Belkin, A. Rakhlin, and A. B. Tsybakov. Does data interpolation contradict statistical
optimality? In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), 2019.

Y. Bengio, N. L. Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural
networks. In Advances in Neural Information Processing Systems (NIPS), 2006.

A. Berlinet and C. Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and
statistics. Springer, 2004.

A. Bietti and J. Mairal. Invariance and stability of deep convolutional representations.
In Advances in Neural Information Processing Systems (NIPS), 2017a.

A. Bietti and J. Mairal. Stochastic optimization with variance reduction for infinite
datasets with finite sum structure. In Advances in Neural Information Processing
Systems (NIPS), 2017b.

A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of
deep convolutional representations. Journal of Machine Learning Research (JMLR),
20(25):1–49, 2019a.

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in
Neural Information Processing Systems (NeurIPS), 2019b.

179

Bibliography

A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off. arXiv preprint
arXiv:1802.04064, 2018.

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep
neural networks. In Proceedings of the International Conference on Machine Learning
(ICML), 2019.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD GANs.
In Proceedings of the International Conference on Learning Representations (ICLR),
2018.

L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In Advances in
Neural Information Processing Systems (NIPS), 2010.

L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel de-
scriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

L. Bottou and O. Bousquet. The Tradeoffs of Large Scale Learning. In Advances in
Neural Information Processing Systems (NIPS), 2008.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of some
recent advances. ESAIM: probability and statistics, 9:323–375, 2005.

J. Bouvrie, L. Rosasco, and T. Poggio. On invariance in hierarchical models. In Advances
in Neural Information Processing Systems (NIPS), 2009.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 35(8):1872–1886, 2013.

J. Bruna, A. Szlam, and Y. LeCun. Learning stable group invariant representations with
convolutional networks. preprint arXiv:1301.3537, 2013.

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R©
in Machine Learning, 8(3-4), 2015.

Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368, 2007.

180

Bibliography

T. Ching et al. Opportunities and obstacles for deep learning in biology and medicine.
Journal of The Royal Society Interface, 15(141), 2018.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems (NIPS), 2009.

M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Im-
proving robustness to adversarial examples. In International Conference on Machine
Learning (ICML), 2017.

A. Coates, H. Lee, and A. Y. Ng. An Analysis of Single-Layer Networks in Unsuper-
vised Feature Learning. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via random-
ized smoothing. In Proceedings of the International Conference on Machine Learning
(ICML), 2019.

T. Cohen and M. Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning (ICML), 2016.

T. Cohen, M. Geiger, J. Koehler, and M. Welling. Spherical CNNs. In Proceedings of
the International Conference on Learning Representations (ICLR), 2018.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the
American mathematical society, 39(1):1–49, 2002.

A. Daniely. Sgd learns the conjugate kernel class of the network. In Advances in Neural
Information Processing Systems (NIPS), 2017.

A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances in Neural
Information Processing Systems (NIPS), 2016.

A. Daniely, R. Frostig, V. Gupta, and Y. Singer. Random features for compositional
kernels. preprint arXiv:1703.07872, 2017.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems (NIPS), 2014a.

A. Defazio, J. Domke, and T. S. Caetano. Finito: A faster, permutable incremental
gradient method for big data problems. In Proceedings of the International Conference
on Machine Learning (ICML), 2014b.

181

Bibliography

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition.
Springer, 1996.

J. Diestel and J. J. Uhl. Vector Measures. American Mathematical Society, 1977.

A. Dieuleveut, F. Bach, et al. Nonparametric stochastic approximation with large step-
sizes. The Annals of Statistics, 44(4):1363–1399, 2016.

A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence
rates for least-squares regression. Journal of Machine Learning Research (JMLR), 18
(1):3520–3570, 2017.

H. Drucker and Y. Le Cun. Double backpropagation increasing generalization perfor-
mance. In International Joint Conference on Neural Networks (IJCNN), 1991.

S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima
of deep neural networks. In Proceedings of the International Conference on Machine
Learning (ICML), 2019a.

S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2019b.

J. C. Duchi and Y. Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research (JMLR), 10:2899–2934, 2009.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Privacy aware learning. In Advances
in Neural Information Processing Systems (NIPS), 2012.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via
maximum mean discrepancy optimization. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2015.

C. Efthimiou and C. Frye. Spherical harmonics in p dimensions. World Scientific, 2014.

A. El Alaoui and M. Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In Advances in Neural Information Processing Systems (NIPS), 2015.

L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry. Exploring the landscape
of spatial robustness. In Proceedings of the International Conference on Machine
Learning (ICML), 2019.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research (JMLR), 2:243–264, 2001.

S. Fischer and I. Steinwart. Sobolev norm learning rates for regularized least-squares
algorithm. arXiv preprint arXiv:1702.07254, 2017.

G. B. Folland. A course in abstract harmonic analysis. Chapman and Hall/CRC, 2016.

A. Garriga-Alonso, L. Aitchison, and C. E. Rasmussen. Deep convolutional networks as
shallow gaussian processes. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

182

Bibliography

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Linearized two-layers neural
networks in high dimension. arXiv preprint arXiv:1904.12191, 2019.

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
networks. In Conference on Learning Theory (COLT), 2018.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel
two-sample test. Journal of Machine Learning Research (JMLR), 13(Mar):723–773,
2012.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of Wasserstein GANs. In Advances in Neural Information Processing Systems
(NIPS), 2017.

S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit
regularization in matrix factorization. In Advances in Neural Information Processing
Systems (NIPS), 2017.

S. Gunasekar, J. D. Lee, D. Soudry, and N. Srebro. Implicit bias of gradient descent on
linear convolutional networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free theory of nonpara-
metric regression. Springer, 2006.

B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and
machine learning. Machine learning, 68(1):35–61, 2007.

T. Håndstad, A. J. Hestnes, and P. Sætrom. Motif kernel generated by genetic pro-
gramming improves remote homology and fold detection. BMC bioinformatics, 8(1):
23, 2007.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer,
2009.

T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the lasso
and generalizations. Chapman and Hall/CRC, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms
I: Fundamentals. Springer science & business media, 1993.

T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance Reduced
Stochastic Gradient Descent with Neighbors. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2015.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

183

Bibliography

D. Hsu, S. Kakade, and T. Zhang. Random design analysis of ridge regression. Founda-
tions of Computational Mathematics, 14(3), 2014.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems (NIPS),
2013.

S. M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. In Advances in Neural Information
Processing Systems (NIPS), 2009.

J. Khim and P.-L. Loh. Adversarial risk bounds via function transformation. arXiv
preprint arXiv:1810.09519, 2018.

G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. Journal
of mathematical analysis and applications, 33(1):82–95, 1971.

V. Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimiza-
tion. The Annals of Statistics, 34(6):2593–2656, 2006.

V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the
generalization error of combined classifiers. The Annals of Statistics, 30(1):1–50, 2002.

R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In Proceedings of the International
Conference on Machine Learning (ICML), 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems
(NIPS), 2012.

A. Kulunchakov and J. Mairal. Estimate sequences for stochastic composite opti-
mization: Variance reduction, acceleration, and robustness to noise. arXiv preprint
arXiv:1901.08788, 2019.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an O(1/t)
convergence rate for the projected stochastic subgradient method. arXiv preprint
arXiv:1212.2002, 2012.

G. Lan and Y. Zhou. An optimal randomized incremental gradient method. Mathemat-
ical Programming, 2017.

L. Landweber. An iteration formula for fredholm integral equations of the first kind.
American journal of mathematics, 73(3):615–624, 1951.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

184

Bibliography

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to
adversarial examples with differential privacy. In IEEE Symposium on Security and
Privacy (SP), 2019.

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep
neural networks as gaussian processes. In Proceedings of the International Conference
on Learning Representations (ICLR), 2018.

J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, J. Sohl-Dickstein, and J. Pennington. Wide
neural networks of any depth evolve as linear models under gradient descent. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. Mmd gan: Towards deeper
understanding of moment matching network. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations. In Conference on Learning
Theory (COLT), 2018.

T. Liang and A. Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize.
Annals of Statistics, 2019.

T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-Rao metric, geometry, and
complexity of neural networks. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2018.

H. Lin, J. Mairal, and Z. Harchaoui. A Universal Catalyst for First-Order Optimization.
In Advances in Neural Information Processing Systems (NIPS), 2015.

J. Lin, A. Rudi, L. Rosasco, and V. Cevher. Optimal rates for spectral algorithms with
least-squares regression over hilbert spaces. Applied and Computational Harmonic
Analysis, 2018.

G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines us-
ing selective sampling. In Large Scale Kernel Machines, pages 301–320. MIT Press,
Cambridge, MA., 2007.

C. Lyu, K. Huang, and H.-N. Liang. A unified gradient regularization family for adver-
sarial examples. In IEEE International Conference on Data Mining (ICDM), 2015.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. In The 49th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 142–150. Association for Computational
Linguistics, 2011.

185

Bibliography

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In Proceedings of the International Conference
on Learning Representations (ICLR), 2018.

J. Mairal. Incremental Majorization-Minimization Optimization with Application to
Large-Scale Machine Learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks.
In Advances in Neural Information Processing Systems (NIPS), 2016.

J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In
Advances in Neural Information Processing Systems (NIPS), 2014.

S. Mallat. Group invariant scattering. Communications on Pure and Applied Mathe-
matics, 65(10):1331–1398, 2012.

E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. The Annals of
Statistics, 27(6):1808–1829, 1999.

P. Massart and É. Nédélec. Risk bounds for statistical learning. The Annals of Statistics,
34(5):2326–2366, 2006.

A. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaussian process
behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018.

S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory
(COLT), 2019.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for genera-
tive adversarial networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018a.

T. Miyato, S.-i. Maeda, S. Ishii, and M. Koyama. Virtual adversarial training: a reg-
ularization method for supervised and semi-supervised learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 2018b.

G. Montavon, M. L. Braun, and K.-R. Müller. Kernel analysis of deep networks. Journal
of Machine Learning Research (JMLR), 12:2563–2581, 2011.

Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A
kernel perspective. In Advances in Neural Information Processing Systems (NIPS),
2015.

186

Bibliography

K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al. Kernel mean em-
bedding of distributions: A review and beyond. Foundations and Trends in Machine
Learning, 10(1-2):1–141, 2017.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a structural classifi-
cation of proteins database for the investigation of sequences and structures. Journal
of molecular biology, 247(4):536–540, 1995.

R. M. Neal. Bayesian learning for neural networks. Springer, 1996.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust Stochastic Approximation
Approach to Stochastic Programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2004.

G. Neu and L. Rosasco. Iterate averaging as regularization for stochastic gradient de-
scent. In Conference on Learning Theory (COLT), 2018.

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory (COLT), 2015a.

B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015b.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization
in deep learning. In Advances in Neural Information Processing Systems (NIPS), 2017.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. A PAC-Bayesian approach
to spectrally-normalized margin bounds for neural networks. In Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro. The role of over-
parametrization in generalization of neural networks. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2019.

R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington,
and J. Sohl-Dickstein. Bayesian deep convolutional networks with many channels
are gaussian processes. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

E. Oyallon and S. Mallat. Deep roto-translation scattering for object classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

E. Oyallon, E. Belilovsky, and S. Zagoruyko. Scaling the scattering transform: Deep
hybrid networks. In International Conference on Computer Vision (ICCV), 2017.

M. Paulin, J. Revaud, Z. Harchaoui, F. Perronnin, and C. Schmid. Transformation
pursuit for image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

187

Bibliography

A. Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195, 1999.

A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses against adversarial
examples. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems (NIPS), 2007.

A. Raj, A. Kumar, Y. Mroueh, T. Fletcher, and B. Schoelkopf. Local group invari-
ant representations via orbit embeddings. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2017.

G. Raskutti, M. J. Wainwright, and B. Yu. Early stopping and non-parametric regres-
sion: an optimal data-dependent stopping rule. Journal of Machine Learning Research
(JMLR), 15(1):335–366, 2014.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathe-
matical statistics, pages 400–407, 1951.

J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger.
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and
defenses. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss functions all
the same? Neural Computation, 16(5):1063–1076, 2004.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386, 1958.

S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. `1 regularization in infinite dimensional
feature spaces. In Conference on Learning Theory (COLT), 2007.

K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Stabilizing training of generative
adversarial networks through regularization. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2017.

K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Adversarially robust training through
structured gradient regularization. arXiv preprint arXiv:1805.08736, 2018.

A. Rudi and L. Rosasco. Generalization properties of learning with random features. In
Advances in Neural Information Processing Systems, pages 3215–3225, 2017.

A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regular-
ization. In Advances in Neural Information Processing Systems (NIPS), 2015.

S. Saitoh. Integral transforms, reproducing kernels and their applications, volume 369.
CRC Press, 1997.

188

Bibliography

H. Salman, G. Yang, J. Li, P. Zhang, H. Zhang, I. Razenshteyn, and S. Bubeck. Provably
robust deep learning via adversarially trained smoothed classifiers. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

P. Savarese, I. Evron, D. Soudry, and N. Srebro. How do infinite width bounded norm
networks look in function space? In Conference on Learning Theory (COLT), 2019.

R. E. Schapire and Y. Freund. Boosting: Foundations and algorithms. MIT Press, 2012.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. The annals of statistics, 26(5):
1651–1686, 1998.

L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Mądry. Adversarially robust
generalization requires more data. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, 2017.

I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9
(1):96–108, 1942.

B. Schölkopf. Support Vector Learning. PhD thesis, Technischen Universität Berlin,
1997.

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regular-
ization, optimization, and beyond. 2001.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional layers.
In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

S. Shalev-Shwartz. SDCA without Duality, Regularization, and Individual Convexity.
In International Conference on Machine Learning (ICML), 2016.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research (JMLR), 14:567–599,
2013.

S. Shalev-Shwartz, O. Shamir, and K. Sridharan. Learning kernel-based halfspaces with
the 0-1 loss. SIAM Journal on Computing, 40(6):1623–1646, 2011.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

189

Bibliography

L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2013.

P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in
pattern recognition–tangent distance and tangent propagation. In Neural networks:
tricks of the trade, pages 239–274. Springer, 1998.

C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, and D. Lopez-Paz. First-order
adversarial vulnerability of neural networks and input dimension. In Proceedings of
the International Conference on Machine Learning (ICML), 2019.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2014.

A. Sinha, H. Namkoong, and J. Duchi. Certifying some distributional robustness with
principled adversarial training. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory. Anal-
ysis and Applications, 1(01):17–41, 2003.

S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, and T. Poggio. Mathematics of the
neural response. Foundations of Computational Mathematics, 10(1):67–91, 2010.

A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning.
In Proceedings of the International Conference on Machine Learning (ICML), 2000.

A. J. Smola, Z. L. Ovari, and R. C. Williamson. Regularization with dot-product kernels.
In Advances in Neural Information Processing Systems (NIPS), 2001.

M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimiza-
tion landscape of over-parameterized shallow neural networks. IEEE Transactions on
Information Theory, 65(2):742–769, 2018.

D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of
gradient descent on separable data. Journal of Machine Learning Research (JMLR),
19(1):2822–2878, 2018.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, G. R. Lanckriet, et al.
On the empirical estimation of integral probability metrics. Electronic Journal of
Statistics, 6:1550–1599, 2012.

E. M. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory
Integrals. Princeton University Press, 1993.

I. Steinwart and A. Christmann. Support vector machines. Springer, 2008.

I. Steinwart, P. Thomann, and N. Schmid. Learning with hierarchical gaussian kernels.
preprint arXiv:1612.00824, 2016.

190

Bibliography

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. In International Conference on Learning
Representations (ICLR), 2014.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

M. Telgarsky. Margins, shrinkage and boosting. In Proceedings of the International
Conference on Machine Learning (ICML), 2013.

A. Torralba and A. Oliva. Statistics of natural image categories. Network: computation
in neural systems, 14(3):391–412, 2003.

A. Trouvé and L. Younes. Local geometry of deformable templates. SIAM journal on
mathematical analysis, 37(1):17–59, 2005.

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be
at odds with accuracy. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008.

L. G. Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 436–445. ACM, 1984.

M. J. van de Vijver et al. A Gene-Expression Signature as a Predictor of Survival in
Breast Cancer. New England Journal of Medicine, 347(25):1999–2009, Dec. 2002.

L. van der Maaten, M. Chen, S. Tyree, and K. Q. Weinberger. Learning with marginal-
ized corrupted features. In International Conference on Machine Learning (ICML),
2013.

V. Vapnik. The nature of statistical learning theory. Springer, 2000.

V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264,
1971.

J.-P. Vert and J. Mairal. Machine learning with kernel methods. Course in the
“Mathématiques, Vision, Apprentissage” Master. ENS Cachan, 2017. URL
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/
master2017/master2017.pdf.

U. von Luxburg and O. Bousquet. Distance-based classification with lipschitz functions.
Journal of Machine Learning Research (JMLR), 5(Jun):669–695, 2004.

S. Wager, W. Fithian, S. Wang, and P. Liang. Altitude Training: Strong Bounds for
Single-layer Dropout. In Advances in Neural Information Processing Systems (NIPS),
2014.

G. Wahba. Spline models for observational data, volume 59. Siam, 1990.

191

http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/master2017.pdf

Bibliography

M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

C. Wei, J. D. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization and opti-
mization of neural nets v.s. their induced kernel. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

T. Wiatowski and H. Bölcskei. A mathematical theory of deep convolutional neural
networks for feature extraction. IEEE Transactions on Information Theory, 64(3):
1845–1866, 2018.

C. K. Williams. Computing with infinite networks. In Advances in Neural Information
Processing Systems (NIPS), 1997.

C. K. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.
In Advances in Neural Information Processing Systems (NIPS), 2001.

F. Williams, M. Trager, C. Silva, D. Panozzo, D. Zorin, and J. Bruna. Gradient dy-
namics of shallow low-dimensional relu networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of
adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems (NIPS), 2017.

E. Wong and J. Z. Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In Proceedings of the International Conference on Machine
Learning (ICML), 2018.

L. Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. Journal of Machine Learning Research (JMLR), 11:2543–2596, 2010.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions. In
Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2017.

H. Xu, C. Caramanis, and S. Mannor. Robust regression and lasso. In Advances in
Neural Information Processing Systems (NIPS), 2009a.

H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector
machines. Journal of Machine Learning Research (JMLR), 10(Jul):1485–1510, 2009b.

G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

G. Yang and H. Salman. A fine-grained spectral perspective on neural networks. arXiv
preprint arXiv:1907.10599, 2019.

192

Bibliography

Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

D. Yin, K. Ramchandran, and P. Bartlett. Rademacher complexity for adversarially
robust generalization. In Proceedings of the International Conference on Machine
Learning (ICML), 2019.

Y. Yoshida and T. Miyato. Spectral norm regularization for improving the generaliz-
ability of deep learning. arXiv preprint arXiv:1705.10941, 2017.

S. Zagoruyko and N. Komodakis. Wide residual networks. 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. In Proceedings of the International Conference on
Learning Representations (ICLR), 2017a.

C. Zhang, S. Bengio, and Y. Singer. Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

K. Zhang, I. W. Tsang, and J. T. Kwok. Improved nyström low-rank approximation and
error analysis. In Proceedings of the International Conference on Machine Learning
(ICML), 2008.

T. Zhang, B. Yu, et al. Boosting with early stopping: Convergence and consistency. The
Annals of Statistics, 33(4):1538–1579, 2005.

Y. Zhang, J. D. Lee, and M. I. Jordan. `1-regularized neural networks are improp-
erly learnable in polynomial time. In International Conference on Machine Learning
(ICML), 2016.

Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks.
In International Conference on Machine Learning (ICML), 2017b.

S. Zheng and J. T.-Y. Kwok. Lightweight stochastic optimization for minimizing finite
sums with infinite data. In Proceedings of the International Conference on Machine
Learning (ICML), 2018.

S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving the robustness of deep neural
networks via stability training. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

D. Zou, Y. Cao, D. Zhou, and Q. Gu. Stochastic gradient descent optimizes over-
parameterized deep relu networks. Machine Learning, 2019.

193

	Introduction
	Invariance, Deformation Stability, and Complexity
	Appendices
	Regularization and Robustness
	Appendices
	Neural Tangent Kernels
	Appendices
	Optimization with data augmentation
	Appendices
	Conclusion and Perspectives
	Software

