
























































































































































































Genome Sequences of Three Nocardia cyriacigeorgica Strains
and One Nocardia asteroides Strain
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ABSTRACT We report four draft genome sequences of Nocardia spp. The strains
are the Nocardia cyriacigeorgica DSM 44484 pathogenic type strain; two environmen-
tal isolates, Nocardia cyriacigeorgica EML446 and EML1456; and the Nocardia aster-
oides ATCC 19247 nonpathogenic type strain, with estimated genome sizes of 6.3 to
6.8 Mb. The study of these isolates will provide insight into physiology, evolution,
and pathogenicity of Nocardia spp.

Since Edmond Nocard first isolated Nocardia spp. in 1888 (1), 92 different species
have been described (2). Most of them are pathogenic for human or animal

infections worldwide. Nocardia spp. are Gram-positive, acid-fast actinobacteria and are
ubiquitous in nature (2). Pathogenic Nocardia cells can infect different organs in
humans, as well as disseminate from a primary infection site, such as the lungs, to
distant organs and other sites, including the central nervous system (3). Nocardia
cyriacigeorgica is one of the most often implicated species in human nocardiosis,
including strain GUH-2 (4). This species, which derives from the Nocardia asteroides
complex drug pattern type VI (5) and was described as N. cyriacigeorgica in 2001 (6),
seems to be composed of three genotypes (2, 7–9).

Currently, only a few genomes of N. cyriacigeorgica strains have been entirely
sequenced, and the genome of GUH-2, the model organism to study infections in
animals, is the only one that is annotated (10). A genomic comparison of these three
genotypes could untangle this clustering and maybe describe a new species within the
former N. asteroides complex. Four strains have been sequenced, as follows: Nocardia
asteroides type strain ATCC 19247, the type strain N. cyriacigeorgica DSM 44484,
and two N. cyriacigeorgica environmental strains, EML446 and EML1456, isolated
from infiltration basin urban sediments in France (coordinates 45°73=55.01�N,
4°95=74.65�E). Sediment suspensions were prepared according to Maldonado et al.
(11), and serial dilutions were inoculated on brain heart infusion (BHI) agar con-
taining cycloheximide.

Strains were grown in BHI medium according to Beaman and Maslan (12), and
genomic DNA was extracted from 50ml cell culture during the exponential-growth
phase. Cells were collected by centrifugation and pellet solubilized in 8 ml of 10 mM
Tris-HCl, 1 mM EDTA (pH 8.2), 5 mg/ml lysozyme, and 10 �g/ml RNase A. After a 1-h
period of cell lysis, 8 ml of 2% SDS and 2 mg/ml of proteinase K were added and
incubated at 55°C for 5 h. Protein and cellular debris were eliminated by adding 16 ml
phenol-chloroform-isoamyl alcohol, 25:24:1 (vol/vol/vol), at pH 8.2. After centrifugation,
genomic DNA was precipitated by adding 1.5 ml of 3 M sodium acetate (pH 5.2) and
absolute ethanol. Genomic DNA was collected by centrifugation, and the DNA pellet
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was washed in 70% ethanol, air dried, and solubilized in 200 �l of Tris-EDTA (TE) buffer
(pH 8).

The genomes were sequenced using Illumina MiSeq technology by GATC (Mul-
house, France) and Biofidal (Vaulx-en-Velin, France). Libraries with 2 � 300-bp and 2 �

125-bp reads were constructed for Biofidal and GATC, respectively. The reads were
processed using Unicycler v0.4.3 (13), quality controls were assessed with FastQC and
Trimmomatic, and contigs shorter than 200 bp were removed, resulting in genomes of
6.6 Mb for N. asteroides ATCC 19247T, 6.3 Mb for N. cyriacigeorgica DSM 44484T, 6.5 Mb
for N. cyriacigeorgica EML446, and 6.8 Mb for N. cyriacigeorgica EML1456. The genomes
were annotated on MicroScope (14). The characteristics of the draft genomes are
summarized in Table 1. These genome sequences provide valuable data to study the
ecology, evolution, pathogenicity, phylogeny, and physiology of Nocardia cyriacigeor-
gica complex species.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The versions
described in this paper are the first versions. Data for EML446 and EML1456 are
available at the CRB-EML (http://eml-brc.org/ and https://brclims.pasteur.fr/brcWeb/).
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CDSa
% coding

proteins

No. of

tRNAs

No. of

rRNAs

N. asteroides ATCC 19247T PRJNA542835 VBUS00000000 6.6 70.0 18 13,451,664 1.51 301 6,498 91.4 50 2
N. cyriacigeorgica EML1456 PRJNA542859 VBUU00000000 6.8 68.0 108 16,883,270 0.15 370 6,906 89.7 49 2
N. cyriacigeorgica EML446 PRJNA542857 VBUT00000000 6.5 68.2 41 18,841,320 0.61 433 6,531 89.91 51 3
N. cyriacigeorgica DSM 44484T PRJNA542831 VBUR00000000 6.3 58.2 64 10,182,338 0.19 487 6,072 89.8 48 3
a CDS, coding sequences.

Vautrin et al.

Volume 8 Issue 33 e00600-19 mra.asm.org 2

 on A
ugust 19, 2019 by guest

http://m
ra.asm

.org/
D

ow
nloaded from

 



11. Maldonado L, Hookey JV, Ward AC, Goodfellow M. 2000. The Nocardia
salmonicida clade, including descriptions of Nocardia cummidelens sp.
nov., Nocardia fluminea sp. nov. and Nocardia soli sp. nov. Antonie Van
Leeuwenhoek 78:367–377. https://doi.org/10.1023/A:1010230632040.

12. Beaman BL, Maslan S. 1978. Virulence of Nocardia asteroides during its
growth cycle. Infect Immun 20:290–295.

13. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving
bacterial genome assemblies from short and long sequencing reads.

PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi
.1005595.

14. Vallenet D, Calteau A, Cruveiller S, Gachet M, Lajus A, Josso A, Mercier J,
Renaux A, Rollin J, Rouy Z, Roche D, Scarpelli C, Médigue C. 2017.
MicroScope in 2017: an expanding and evolving integrated resource for
community expertise of microbial genomes. Nucleic Acids Res 45:
D517–D528. https://doi.org/10.1093/nar/gkw1101.

Microbiology Resource Announcement

Volume 8 Issue 33 e00600-19 mra.asm.org 3

 on A
ugust 19, 2019 by guest

http://m
ra.asm

.org/
D

ow
nloaded from

 









Manuscript Details

Manuscript number ENVINT_2019_4413

Title Health hazards associated with Nocardia cells colonizing urban infiltration
systems

Article type Research Paper

Abstract
Urban Infiltration Basins (UIBs) are used to manage urban runoff transfers, and feed aquifers. These UIBs can
accumulate urban pollutants, and favor the growth of undesirable biological agents. The Django-Reinhart UIB in
Chassieu (Lyon area, France) is a well characterized UIB in terms of chemical pollutants (HPA) used in this study in
which bacterial species belonging to Nocardia genus, that may represent a public health risk, have been found. Some
of these species can be highly detrimental to individuals who have undergone immunosuppressive therapies or suffer
from chronic inflammatory diseases. Objectives: i) To assess the spatio-temporal dynamics of pathogenic Nocardia in
UIBs, ii) to define the epidemiological associations between clinical and UIB N. cyriacigeorgica strains, iii) to assess
health hazards associated with environmental Nocardia using an animal model, and iv) to identify genetic elements
highlighting an on-going adaptation of environmental genotypes to the human host. Methods: A well characterized UIB
in terms of chemical pollutants from the Lyon area was used in this study. Cultural and Next-Generation-sequencing
methods were used for Nocardia detection and typing. A Multilocus-Sequence-Analysis was performed on clinical and
environmental isolates to infer phylogenetic relationships and identify clonal complexes. A murine model of transient
immunoparalysis was performed to assess the virulence traits, and comparative genomics was used to detect genes
involved in virulence. Results: Up to 1.0×103 CFU/g sediment of N. cyriacigeorgica and 6 OTUs were retrieved from
the studied UIB. Close phylogenetic relationships were found between environmental and clinical strains. One
environmental isolate (EML446) showed significant infectivity in mice with pulmonary damages similar to those
observed with a highly virulent clinical clone (GUH-2). The environmental strain harbored several virulence genes
implicated in well-described infectious processes. Conclusion: N. cyriacigeorgica strains phylogenetically close to
clinical strains were isolated from an UIB. The virulence of one of these isolated strains was as high as the one of the
well-known GUH-2 clinical strain. This finding indicates that ETM-polluted environments such as UIBs are reservoirs of
pathogenic Nocardia.

Keywords Nocardia; Opportunistic pathogen; Environment; Murine model; PAH urban
pollution; hsp65 metabarcoding

Taxonomy Microorganism Risk Assessment, Human Environmental Health Exposure,
Environmental Health Risk Assessment, Diversity of Bacteria

Corresponding Author Veronica Rodriguez Nava

Corresponding Author's
Institution

UMR CNRS 5557 Ecologie Microbienne - Equipe Bactéries Pathogènes
Opportunistes et Environnement

Order of Authors Florian Vautrin, Petar Pujic, Christian Paquet, Emmanuelle Bergeron, Delphine
Mouniée, Thierry Marchal, Hélène Salord, Jeanne-Marie Bonnet-Garin, Benoit
Cournoyer, Thierry Winiarski, Vanessa Louzier, Veronica Rodriguez Nava

Suggested reviewers Alain Hartman, david mccarthy, Alex VAN BELKUM

Submission Files Included in this PDF
File Name [File Type]
Vautrin_et_al_cover_letter.docx [Cover Letter]

Highlights_2019_11_26b.docx [Highlights]

Vautrin_et_al_2019_11_27.docx [Manuscript File]

declaration-of-competing-interests.docx [Conflict of Interest]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



Health hazards associated with Nocardia cells colonizing urban 

infiltration systems 

COVER LETTER

Dear Editor,

We would like to submit in your journal Environment International the paper entitled 

‘Health hazards associated with Nocardia cells colonizing urban infiltration systems’.

In this work, we show the bacterial hazard associated with a kind of stormwater infiltration 

system (SIS). More precisely, we show for the first time that the highly hydrocarbon-

polluted urban sediments from an urban infiltration basin (UIB) can host pathogenic 

species from Nocardia. This may represent a public health concern especially for 

immunocompromised people or persons affected by chronic pulmonary diseases. Nocardia 

biodiversity in this kind of environment has been described for the first time by using an 

innovative method (metabarcoding). In parallel, we studied their molecular epidemiology 

and we identified clonal lineages between clinical and environmental strains of highly 

pathogenic species N. cyriacigeorgica. Moreover, the whole genome sequencing of N. 

cyriacigeorgica from an UIB together with the physiopathological study on a murine 

model of transient immunoparalysis showed that the studied isolated from the SIS of N. 

cyriacigeorgica was significantly virulent.

The interest of studying UIBs is that, due to their heterogeneity (gradient of pollutants and 

moisture), they can mimic various environments that can be found in many other different 

locations, such as urban water areas (blue-zones), green spaces or puddles after a rainfall 

event.



We think that this paper studies the relationship between the environment and human health 

and deals with the disciplines ‘Human Environmental Health Exposure’, ‘Microorganism 

Risk Assessment’ and ‘Diversity of Bacteria’.

Best regards,

Verónica Rodríguez Nava

Professeur des Universités

UMR CNRS 5557 - Observatoire Français des Nocardioses (OFN),

Faculté de Pharmacie, Université Claude Bernard Lyon I,

8, Avenue Rockefeller, 69373 Lyon Cedex 08, France.

Phone : + 33 4 78 77 72 76

E-mail : veronica.rodriguez-nava@univ-lyon1.fr



Highlights

• Trace element metals are favoring development of pathogen Nocardia species
• High infraspecific variability within N. cyriacigeorgica, forming three phylogroups
• Immunosuppressive window may be enough to infect immunocompetent mice
• Better understand the ecology of Nocardia to explain the patients’ contamination
• First isolation of N. cyriacigeorgica in Europe in a polluted urban environment
• N. cyriacigeorgica is more virulent than P. aeruginosa in murine model
• Environmental N. cyriacigeorgica strains may be as virulent as clinical GUH-2 strain.
• hsp65 marker can be used by metabarcoding approach for assessment of 

environmental Nocardia biodiversity
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24 Abstract

25 Urban Infiltration Basins (UIBs) are used to manage urban runoff transfers, and feed aquifers. 

26 These UIBs can accumulate urban pollutants, and favor the growth of undesirable biological 

27 agents. The Django-Reinhart UIB in Chassieu (Lyon area, France) is a well characterized UIB 

28 in terms of chemical pollutants (HPA) used in this study in which bacterial species belonging 

29 to Nocardia genus, that may represent a public health risk, have been found. Some of these 

30 species can be highly detrimental to individuals who have undergone immunosuppressive 

31 therapies or suffer from chronic inflammatory diseases. 

32 Objectives: i) To assess the spatio-temporal dynamics of pathogenic Nocardia in UIBs, ii) to 

33 define the epidemiological associations between clinical and UIB N. cyriacigeorgica strains, 

34 iii) to assess health hazards associated with environmental Nocardia using an animal model, 

35 and iv) to identify genetic elements highlighting an on-going adaptation of environmental 

36 genotypes to the human host.

37 Methods: A well characterized UIB in terms of chemical pollutants from the Lyon area was 

38 used in this study. Cultural and Next-Generation-sequencing methods were used for Nocardia 

39 detection and typing. A Multilocus-Sequence-Analysis was performed on clinical and 

40 environmental isolates to infer phylogenetic relationships and identify clonal complexes. A 

41 murine model of transient immunoparalysis was performed to assess the virulence traits, and 

42 comparative genomics was used to detect genes involved in virulence.

43 Results: Up to 1.0×103 CFU/g sediment of N. cyriacigeorgica and 6 OTUs were retrieved from 

44 the studied UIB. Close phylogenetic relationships were found between environmental and 

45 clinical strains. One environmental isolate (EML446) showed significant infectivity in mice 

46 with pulmonary damages similar to those observed with a highly virulent clinical clone (GUH-

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



47 2). The environmental strain harbored several virulence genes implicated in well-described 

48 infectious processes.

49 Conclusion: N. cyriacigeorgica strains phylogenetically close to clinical strains were isolated 

50 from an UIB. The virulence of one of these isolated strains was as high as the one of the well-

51 known GUH-2 clinical strain. This finding indicates that ETM-polluted environments such as 

52 UIBs are reservoirs of pathogenic Nocardia.

53 Keywords: Nocardia; Opportunistic pathogen; Environment; Murine model; PAH urban 

54 pollution; hsp65 metabarcoding
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56 1. Introduction

57 Nocardia are Gram-positive facultative intracellular bacteria responsible for 

58 nocardiosis, a pulmonary infection, similar to pneumonia in 80% of cases, that can be fatal in 

59 patients who are immunocompromised or affected by chronic pulmonary diseases (Rodriguez-

60 Nava et al., 2019; Heise, 1982). Nocardia cells are ubiquitous in the environment but 

61 distribution biases per species are still poorly documented. Nocardiosis are caused by inhalation 

62 of these bacteria from aerosolized soils. Nocardia cells are metabolically versatile, and some 

63 species such as N. cyriacigeorgica can harbor genes involved in the degradation of petrol-

64 derivatives (Luo et al., 2014a, 2014b; Quatrini et al., 2008). This property likely explains the 

65 tropism of Nocardia cells for polluted environments (Nhi Cong et al., 2010). N. cyriacigeorgica 

66 is also known for its ability to propagate in alveolar macrophages, inducing pulmonary damage. 

67 Some more virulent strains are able to disseminate and reach the brain (Pujic et al., 2015). 

68 Prevalence of N. cyriacigeorgica in nocardiosis was estimated to be around 20% in the USA 

69 (Schlaberg et al., 2008), 25% in Spain (Valdezate et al., 2016) and 13% in France (Lebeaux et 

70 al., 2018). The environmental occurrence, persistence and enrichment of N. cyriacigeorgica 

71 remain to be defined. Here, the hypothesis of a tropism of Nocardia cells, and N. 

72 cyriacigeorgica, for biotopes found in a city, was tested because of their ability at using petrol-

73 derivatives as C-sources. Furthermore, we have tested the hypothesis of an on-going evolution 

74 in the virulence traits of these urban Nocardia cells. The hypothesis was that city strains should 

75 have a reduced but significant virulence in comparison with clinical isolates, when tested on 

76 mice as an alternative host system.

77 Nocardia cells together with other microorganisms such as Pseudomonas aeruginosa 

78 and Aeromonas caviae, fecal indicators, have recently been shown to be recurrent contaminants 

79 of the urban deposits of a detention basin of a Stormwater Infiltration System (SIS) located in 
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80 the Lyon area (France). Emissions of Nocardia cells at the outflow of this basin redirecting to 

81 an Urban Infiltration Basin (UIB) were also observed, but the transferred species remained to 

82 be defined (Bernardin-Souibgui et al., 2018). To decrease the environmental impacts of runoff 

83 flooding, SISs have been constructed all over the world to manage runoff transfers and favor 

84 the recharging of local aquifers. Today, more than 5000 SISs are monitored around the world 

85 (Rahmati et al., 2018). Runoff waters getting into SISs are loaded with organic and mineral 

86 particles such as PAHs (Polycyclic Aromatic Hydrocarbons), PCBs (Polychlorinated 

87 Biphenyls), heavy metals and microorganisms (Sébastian et al., 2014), which accumulate on 

88 the surface of the infiltration basins to generate the so-called “urban sediments” (Badin et al., 

89 2011).

90 The presence of pathogenic microorganisms in these sediments constitutes a public 

91 health risk because they can contribute in multiple ways at disseminating hazardous biological 

92 agents either through (i) a transfer into natural water systems such as an aquifer which can be 

93 used for gardening (Marti et al., 2017), (ii) a contamination of animals feeding in these systems 

94 that can come into contact with humans (dogs, cats, rats, birds), or (iii) through an aerosolization 

95 towards environments with environmental characteristics (moisture, pollutants, etc.) that may 

96 also favor their growth (moist urban zones, gas-stations, major road axes, petrochemical 

97 factories, etc.) and the consequent inhalation of these microbial cells by the local populations. 

98 It has to be noted that aerosolized bacterial cells can migrate over large distances as observed 

99 for P. aeruginosa, E. coli, and Klebsiella pneumoniae (Kaushik et al., 2012).

100 Moreover, the interest of studying UIBs is that, due to their heterogeneity (gradient of 

101 pollutants and moisture), they can mimic various environments that can be found in many other 

102 different locations, such as urban water areas (blue-zones), green areas or puddles after a 

103 rainfall event.
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104 The aims of this study were thus to determine the spatiotemporal distribution biases of 

105 Nocardia cells and pathogenic species such as N. cyriacigeorgica in an urban SIS, and to 

106 evaluate their hazards for local populations. Epidemiological molecular investigations were 

107 performed to define the phylogenetic relations between SIS N. cyriacigeorgica isolates and 

108 clinical strains. The virulence of these isolates was then compared using a double-hit murine 

109 model of transient immunoparalysis, but also through an analysis of genomic contents.

110 2. Materials and Methods

111 2.1. Stormwater Infiltration System

112 The studied SIS (named Django-Reinhardt) is part of a long term monitoring site of 

113 OTHU (Field Observatory for Urban Water Management; http://www.graie.org/othu/) 

114 (Barraud et al., 2002). It is located in Chassieu, France (eastern part of Lyon). This system has 

115 been operational for approximately 30 years and consists of a detention basin receiving runoff 

116 water from the stormwater network, and discharging its waters into an Urban Infiltration Basin 

117 (UIB), hereafter named DRIB (Django-Reinhardt Infiltration Basin) (Figure 1). The DRIB has 

118 a 1 ha surface and a volume of 61,000 m3. The drained surfaces are in a stabilized industrial 

119 area, and the main pollutants found in the accumulated sediments are heavy metals, cyanides, 

120 inks, fats, hydrocarbons and solvents (Winiarski et al., 2015).

121 The DRIB has been extensively studied. Some of its sediments properties were 

122 characterized according to normalized procedures such as ISO10390 for pH and ISO13320 for 

123 granulometry. Soil moisture was determined by comparative weighing before and after 24 h at 

124 105°C. Additional DRIB data were also extracted from the Gessol report, and indicated a mean 

125 of 2-3.5 mg for each of the 16 well-defined PAHs (WHO)/kg dry sediment (Winiarski et al., 

126 2015). These values were found equivalent to those of industrial soils, e.g. 3.5 mg/kg according 
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127 to (Li et al., 2010), while PAHs in no polluted soils were monitored at 4 to 12 µg/kg (Muntean 

128 et al., 2015).

129 2.2. Sampling

130 Urban sediments of the DRIB were sampled during autumn (November), spring (April) 

131 and summer (July) 2015-2016 in three contrasted areas: near the detention basin discharging 

132 pipe (inflow zone), in the middle of the basin (bottom zone), and at the southern end of the 

133 basin (upper zone, five samples per area). These positions match different concentration of 

134 pollutants, distinct hydrological behaviors, soil moisture and vegetation, which might be 

135 explanatory variables for the Nocardia cells ecological trends (Figure 1).
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138 Figure 1. Aerial image of the Django-Reinhardt infiltration basin (DRIB) and position of the 

139 sampling points in the DRIB and placement of the three different sampling areas (inflow zone, 

140 bottom zone and upper zone). Px: DRIB sample point in which N. cyriacigeorgica was isolated 

141 and respective reference code.

142 2.3. hsp65 gene metabarcoding

143 Genomic DNA from environmental samples of the DRIB was extracted using the 

144 FastDNA SPIN Kit for Soil (MP Biomedicals, France) according to the manufacturer’s 

145 instructions. Amplifications were performed on the hsp65 gene (Table 1) and sequenced by 

146 Biofidal (https://www.biofidal.com/) using high-throughput Illumina MiSeq with 2x250 bp, 

147 paired-end chemistry to obtain 20,000 paired reads per sample. Bioinformatics analysis were 

148 performed using the MOTHUR pipeline (Schloss et al., 2009), and according to the frame 

149 previously defined by Marti et al., (2017).
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155 2.3. Statistical analyses

156 All datasets were analyzed with the R software (V.3.1.3) (Verzani et al., 2004). The 

157 distribution of the physical-chemical parameters (PAHs, trace metal elements (Cd, Cu, Hg, Pb 

158 and Zn), granulometry, water content) and amount of Nocardia (pathogen vs indigenous) was 

159 represented by a between-class analysis (BCA) allowing a longitudinal analysis. Packages ade4 

160 (Charif et al., 2005), mixOmics and RVAideMemoire (Lê Coa et al., 2011) were used. Trace 

161 metal elements were log transformed because they don’t reach a normal distribution. All the 

162 other parameters were normally distributed according to a Shapiro test. The diversity within 

163 each individual sample was estimated using the non-parametric Shannon and Simpson indexes. 

164 Statistical analyses were performed using ANOVA2 and normality of the residues was tested 

165 in order to establish the significance of the groupings. Only p-values lower to 0.05 were 

166 considered as statistically significant. The correlogram was drawn on R using the corrplot 

167 package (Friendly et al., 2002).

168 2.4. Isolation of environmental Nocardia and phylogenetic analyses

169 Diluted suspensions of the urban sediments from the DRIB were cultured on Bennett 

170 and Middlebrook semi-selective medium, and colonies with morphological features typical of 

171 Nocardia (presenting a white and powdery aspect and embedded in the agar) were purified, and 

172 then identified at the species level by sequencing and analysis of the 16S rRNA gene, according 

173 to Rodriguez-Nava et al., (2006) and following the CLSI guidelines of similarity percentages 

174 greater than or equal to 99.6% (CLSI, 2008). N. cyriacigeorgica isolates were obtained from 

175 2013, and 2015-2016 sampling campaigns. The list of isolates is presented in Table 2.

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622



17
6

T
ab

le
 2

. L
is

t o
f S

IS
 a

nd
 c

lin
ic

al
 st

ra
in

s u
se

d 
in

 th
is

 st
ud

y,
 a

nd
 th

ei
r o

rig
in

, m
ai

n 
fe

at
ur

es
 a

nd
 M

LS
A

 p
hy

lo
gr

ou
ps

.
17

7
Pa

tie
nt

 re
co

rd
Sa

m
pl

e 
da

te
N

at
ur

e 
of

 sa
m

pl
in

g
Im

m
un

os
up

pr
es

se
d

Tr
op

is
m

Ph
yl

og
ro

up
 M

LS
A

O
FN

.4
03

.2
01

5
Pu

s f
ro

m
 c

ut
an

eo
us

 a
bs

ce
ss

Y
es

C
ut

an
eo

us
PI

O
FN

.5
*

10
.2

01
7

B
ro

nc
hi

al
 a

sp
ira

tio
n

Y
es

Lu
ng

PI
O

FN
.6

06
.2

01
0

Pu
s f

ro
m

 c
er

eb
ra

l a
bs

ce
ss

Y
es

B
ra

in
PI

O
FN

.7
06

.2
01

5
B

ro
nc

hi
al

 a
sp

ira
tio

n
N

o
B

ra
in

d
PI

O
FN

.1
3

02
.2

01
5

Sk
in

 a
bs

ce
ss

Y
es

Lu
ng

d
PI

O
FN

.1
4

03
.2

01
5

C
er

vi
ca

l b
io

ps
y

Y
es

B
ra

in
PI

D
jR

m
.1

3
11

.2
01

5
U

IB
 h

sp
65

 m
et

ab
ar

co
di

ng
-

B
ot

to
m

PI
D

jR
m

.1
5

11
.2

01
5

U
IB

 h
sp

65
 m

et
ab

ar
co

di
ng

-
U

pp
er

PI
O

FN
.8

02
.2

01
6

C
er

vi
ca

l b
io

ps
y

N
A

B
ra

in
PI

I
O

FN
.9

11
.2

01
5

B
ro

nc
hi

al
 a

sp
ira

tio
n

Y
es

Lu
ng

PI
I

O
FN

.1
0

11
.2

01
5

B
ro

nc
hi

al
 a

sp
ira

tio
n

Y
es

Lu
ng

PI
I

O
FN

.1
1

07
.2

01
1

Pu
s f

ro
m

 c
ut

an
eo

us
 a

bs
ce

ss
N

o
C

ut
an

eo
us

PI
I

O
FN

.1
2

04
.2

01
4

B
lo

od
 c

ul
tu

re
Y

es
B

ra
in

d
PI

I
O

FN
.1

02
.2

01
3

B
lo

od
 c

ul
tu

re
N

o
Lu

ng
d

PI
II

O
FN

.2
03

.2
01

6
Pl

eu
ra

l p
un

ct
ur

e
Y

es
Lu

ng
PI

II
O

FN
.3

01
.2

01
6

Lu
ng

 b
io

ps
y

Y
es

Lu
ng

PI
II

EM
L4

46
04

.2
01

3
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

B
ot

to
m

PI
II

D
jR

.1
11

.2
01

5
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

B
ot

to
m

PI
II

D
jR

.2
11

.2
01

5
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

B
ot

to
m

PI
II

D
jR

.3
11

.2
01

5
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

B
ot

to
m

PI
II

D
jR

.4
07

.2
01

6
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

U
pp

er
PI

II
D

jR
.5

11
.2

01
5

U
IB

 p
ol

lu
te

d 
se

di
m

en
ts

-
B

ot
to

m
PI

II
D

jR
.6

07
.2

01
6

U
IB

 p
ol

lu
te

d 
se

di
m

en
ts

-
U

pp
er

PI
II

D
jR

.7
11

.2
01

5
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

B
ot

to
m

PI
II

D
jR

.8
07

.2
01

6
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

U
pp

er
PI

II
D

jR
.9

07
.2

01
6

U
IB

 p
ol

lu
te

d 
se

di
m

en
ts

-
B

ot
to

m
PI

II
D

jR
.1

0
07

.2
01

6
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

B
ot

to
m

PI
II

D
jR

.1
1

07
.2

01
6

U
IB

 p
ol

lu
te

d 
se

di
m

en
ts

-
B

ot
to

m
PI

II
D

jR
.1

2
04

.2
01

6
U

IB
 p

ol
lu

te
d 

se
di

m
en

ts
-

U
pp

er
PI

II

62
3

62
4

62
5

62
6

62
7

62
8

62
9

63
0

63
1

63
2

63
3

63
4

63
5

63
6

63
7

63
8

63
9

64
0

64
1

64
2

64
3

64
4

64
5

64
6

64
7

64
8

64
9

65
0

65
1

65
2

65
3

65
4

65
5

65
6

65
7

65
8

65
9

66
0

66
1

66
2

66
3



D
jR

m
.1

4
07

.2
01

6
U

IB
 h
sp
65

 m
et

ab
ar

co
di

ng
-

B
ot

to
m

PI
II

17
8

17
9

N
ot

e:
 d  i

nd
ic

at
es

 a
 d

is
se

m
in

at
ed

 c
as

e 
of

 n
oc

ar
di

os
is

18
0

* 
is

 fr
om

 a
 p

at
ie

nt
 o

f t
he

 L
yo

n 
ar

ea
 n

ea
r t

he
 in

fil
tra

tio
n 

ba
si

n

18
1

66
4

66
5

66
6

66
7

66
8

66
9

67
0

67
1

67
2

67
3

67
4

67
5

67
6

67
7

67
8

67
9

68
0

68
1

68
2

68
3

68
4

68
5

68
6

68
7

68
8

68
9

69
0

69
1

69
2

69
3

69
4

69
5

69
6

69
7

69
8

69
9

70
0

70
1

70
2

70
3

70
4



182 2.5. Phylogenetic analysis

183 DNA sequences were generated for the DRIB N. cyriacigeorgica isolates (n=13). These 

184 sequences were compared with those of clinical N. cyriacigeorgica (n=14), and of other 

185 Nocardia reference strains (n=10). The following strains were considered: N. abscessus 

186 DSM44432T, N. anaemiae DMS44821T, N. asteroides ATCC19247T, N. brasiliensis 

187 ATCC19296T, N. cyriacigeorgica DSM44484T, N. farcinica IFM10152T, N. nova DSM44481T, 

188 N. otitidiscaviarum ATCC14629T and N. vinacea JCM10988T and N. cyriacigeorgica GUH-2, 

189 the reference pathogenic strain isolated from a fatal case of nocardiosis after a renal transplant 

190 in the 1970s (Beaman and Maslan, 1978). These reference strains chosen in this study are 

191 phylogenetically closely related to N. cyriacigeorgica according to Yassin et al., (2001). 

192 Clinical N. cyriacigeorgica were obtained from OFN (French Observatory of Nocardiosis, 

193 http://ofn.univ-lyon1.fr/), and originated from French patients affected by nocardiosis 

194 (cutaneous, pulmonary, and cerebral infections). By selecting these strains, we obtained a good 

195 representation of the main clinical forms of this disease that encompassed the environmental 

196 sampling period of this study (2015-2016).

197 Bacterial DNAs of these strains were extracted by the boiling method using 

198 achromopeptidase (10 U.μL-1, Sigma-Aldrich). Amplifications of the following genes were 

199 performed: 16S rRNA (rrs), hsp65, sodA, secA1. PCR were performed using PuReTaqTM 

200 Ready-To-Go PCR Beads (GE Healthcare) in a final volume of 25 μL with 200 ng of DNA. 

201 Primers and PCR conditions are listed in Table 1. Size of the PCR fragments were respectively 

202 569 bp for rrs, 401 bp for hsp65, 406 bp for sodA and 469 bp for secA1. PCR products were 

203 sequenced by Biofidal (Vaulx-en-Velin, France). Multiple alignments were generated by 

204 ClustalW using Seaview version 4.4.2 (Gouy et al., 2010). Only for the phylogenetic analysis 

205 of N. cyriacigeorgica species based on hsp65-gene, we added to our sequences dataset i) some 
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206 sequences from the historically known hsp65-based genotypes (Schlaberg et al., 2008; 

207 McTaggart et al., 2010; Rudramurthy et al., 2015; Xiao et al., 2016) that are available on 

208 Genbank, and ii) some sequences coming from our metabarcoding analysis of strains isolated 

209 from the DRIB. For MLSA (multilocus sequence analysis), the rrs-hsp65-sodA-secA1 

210 sequences were concatenated (1845 bp). Phylogenetic relationships were resolved using the 

211 maximum-likelihood method through the MEGA software, version 7.0.16 (Kumar et al., 2016). 

212 Bootstrapping using 1,000 replicates was performed for each analysis (single locus or multiple 

213 ones).

214 2.6. Inventory of virulence genes among a SIS N. cyriacigeorgica isolate

215 The EML446 strain was selected to represent the SIS N. cyriacigeorgica isolates. It was 

216 grown on BHI agar medium (Difco BD), and its genomic DNA was extracted with the standard 

217 phenol-chloroform-isoamyl alcohol method (Gilbert et al., 2000). Genome sequencing was 

218 performed on a HiSeq2000 Illumina system by GATC (Mulhouse, France). Assemblage and 

219 annotation were performed on MicroScope (Vallenet et al., 2017). Contigs are available from 

220 the BioProject PRJNA542857 (Vautrin et al., 2019). Comparative analyses were performed 

221 against the GUH-2 genome reported by Zoropogui et al., (2013). In addition, genomic analysis 

222 was completed with the genomes of N. farcinica IFM10152T and Mycobacterium tuberculosis 

223 H37Rv already available on NCBI.

224 2.7. Virulence tests with a double-hit murine model of transient immunoparalysis

225 -

226 All experiments presented below were approved by the Institutional Animal Care and 

227 Use Committee at VetAgro Sup (proposal 1403) in accordance with the European Convention 

228 for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes.
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229 Male mice C57BL/6J (Charles River, L’Arbresle, France) of 7-9 weeks of age (20-25 

230 g) were housed for one week before beginning the experiments at the Veterinary school 

231 (VetAgro Sup, Marcy l’Etoile, France). A 12 hours’ dark/light cycle was applied over all 

232 experiments. Immunoparalysis of some mice was induced via a moderate cecal ligation and 

233 puncture (CLP 30%), and Nocardia cells (the SIS EML446 or GUH-2 clinical isolate) were 

234 then instilled in the pulmonary airways to test their virulence properties. The CLP procedure 

235 (externalization, puncture, antibiotic treatment and pain control) was performed as described in 

236 Restagno et al., (2016). Controls (Sham-operated mice) underwent laparotomy with exposition 

237 of the cecum but without CLP.

238 The starting mouse population was made of 144 individuals. Animals were randomly 

239 split into six groups: 1) Sham-NaCl mice which received a saline solution; 2) Sham-GUH-2 

240 mice instilled with GUH-2; 3) Sham-EML446 mice instilled with EML446; 4) CLP-NaCl mice 

241 which received a saline solution; 5) CLP-GUH-2 mice instilled with GUH-2; and 6) CLP-

242 EML446 mice instilled with EML446. Due to the unpredictable exact mortality rate induced by 

243 CLP, more mice were CLP-treated than Sham-treated to reach the right number of CLP 

244 subjects. The aim of the “Nocardia-free” groups (i.e., Sham-NaCl and CLP-NaCl) was to 

245 ensure that mortality was not CLP-dependent. The final experimental design is shown in 

246 Figures 2A & B.
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247

NaCl
n=10

S : n = 7

TCBD : n = 3

GUH-2
n=16

S :         n = 7

TCBD : n= 9 + 3*

EML446
n=17

S :         n=5

TCBD : n =12 + 5*

NaCl
n=14

S :         n=7

TCBD : n= 7

GUH-2
n=23

S :         n =9

TCBD : n= 14 + 4*

EML446
n=27

S :         n=11

TCBD : n= 16 + 7*

248 Figure 2A. Study design describing the experiment made with the immunosuppressed CLP 

249 (30%) murine model to compare the virulence of the SIS and clinical N. cyriacigeorgica 

250 representative strains. Sham = mice that underwent laparotomy with exposition of the cecum 

251 but without CLP. CLP = intestinal tract externalization and puncture performed as described in 

252 Restagno et al. (2016). S= Survival experiment. TCBD = Time Course Bacterial Detection 

253 experiment. n = number of individuals in each group. * = surviving mice at the end of the ‘S’ 

254 experiment retrieved for ‘TCBD’ one at D33 (GUH-2) or D41 (EML446).
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Group Day Mice number for TCBD

4 5

10 3Sham GUH-2

33 1 + 3*

4 5

10 5Sham EML446

33 2

41 5 *, a)

4 5

10 5CLP GUH-2

33 4 + 4*

4 7 b)

10 4

33 5
CLP EML446

41 7 *, c)

256 Figure 2B: Mice distribution for the Time Course Bacterial Detection experiment (TCBD). * 

257 = Surviving mice from the end of the Survival experiment retrieved at the end of the TCBD 

258 one. a) lungs of two mice will be reserved for histological analysis, b) lungs of one mouse will 

259 be reserved for histological analysis. c) lungs of three mice and brains of two mice will be 

260 reserved for histological analysis.

261 Strains GUH-2 and EML446 were cultivated in BHI medium and adjusted to 2.0×107 

262 CFU/mL to provide an instillation of 1.0×106 bacteria in 50 μL of physiological saline. To 

263 determine this dose of bacteria, considered as the sublethal one, prior studies were performed 

264 with three different bacterial concentrations (data not shown).
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265 - 2.7.2. Mouse survival monitorings

266 After instillation, the mice were monitored and weighed every day until death or at the 

267 end of the experiment, i.e. 41 days. In agreement with the Remick laboratory report (Nemzek 

268 et al., 2004), mice were systematically euthanized when they reached the cutoff point, i.e. when 

269 they were found in a moribund state identified by the inability to maintain an upright position 

270 associated or not with labored breathing and cyanosis. Classical signs of distress, such as 

271 anorexia and weight loss (> 20%), hunching, prostration, impaired motility, labored breathing, 

272 ruffled haircoat, and dehydration, were assessed. Mice exhibiting at least four of these criteria 

273 were euthanized via isoflurane (5%) anesthesia followed by cervical dislocation. Mice 

274 exhibiting less than four of these criteria were re-inspected each 8 hours. Then, if the conditions 

275 of the mice worsened, they were euthanized. Surviving mice were used for detection of 

276 Nocardia cells at days 33 and 41. Survival curves (Kaplan–Meier plots) were compared by log 

277 rank test and performed on Prism8 software. P values < 0.005 were considered statistically 

278 significant.

279 - 2.7.3. Detection and visualization of Nocardia cells among mouse organs

280 Organ histologic examinations were performed on the dead or euthanized mice. The 

281 inflammatory response and tissue damages due to Nocardia were evaluated at 4, 10, 33 and 41 

282 days according to distribution of Figure 2B. Small pieces of kidneys, spleen and liver were 

283 removed and fixed in formalin. For brain analysis and lung, the organs were removed and fixed 

284 by intratracheal infusion of paraformaldehyde (4%). They were kept in 4% paraformaldehyde 

285 for at least 36 hours, dehydrated in successive baths with 30, 50 and 70% ethanol, embedded in 

286 paraffin, cut into 8 μm sections and stained with hematoxylin and eosin (Feldman and Wolfe, 

287 2014).
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288 Crushed organs (lung, kidneys, brain, spleen and liver) diluted in 4.5 mL of a saline 

289 physiological solution, and serially diluted (10-1 to 10-4) was used to estimate Nocardia plate 

290 count numbers. These plate counts were performed on BHI agar medium after a validation of 

291 the bacterial colonies using a Nocardia-specific PCR (NG1/NG2 primers (Table 1)). DNA 

292 extracts were produced from 200 μL of the above crushed organs using the NucleoSpin® Tissue 

293 kit (Macherey-Nagel, France). The Nocardia-specific PCR was then applied on these extracts 

294 to verify the presence of Nocardia cells in these organs.

295 3. Results

296 3.1. Spatio-temporal variability of Nocardia cells in soils from an infiltration basin

297 Prior comparing the distribution of Nocardia cells between areas of the SIS and sampling 

298 periods, a few parameters were monitored for each sampling point. Soil water content of the 

299 SIS was quite variable between the three sampled areas and campaigns, varying from 9% in the 

300 upper zone in summer to saturation (155%) in the inflow zone in spring (Figure 3). General 

301 trend was a higher moisture, at least 115%, in the inflow zone, and a lower water content, not 

302 higher than 56%, in the upper zone. Granulometry did not exhibit much variability between 

303 samples, with a relative mean sand content of 55-60% and a clay content of 40-45% (data not 

304 shown). Regarding metal trace elements, they have been shown to be constant over the time: 

305 Zn concentration remained around 0.5 mg/L and it was the highest concentration detected when 

306 comparing to other elements that respect the following relationship: Cd < Pb < Cu < Zn (data 

307 not shown). These pollutants were more abundant in the bottom zone than in the inflow and 

308 upper zones (p-value = 0.0195) (Figure 4 A). The PAHs, taken individually, harbored two 

309 behaviors for 12 out of 16. So they were clustered according to the zone (fluoranthene, pyrene, 

310 phenanthrene, benzo(a)anthracene, benzo(a)pyrene, hereafter “5 PAHs”) or the period of 

311 sampling (naphthalene, acenaphthene, fluorene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, 
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312 benzo(ghi)perylene, indeno(1,2,3-cd)pyrene, hereafter “7 PAHs”). The 4 remaining PAHs 

313 (acenaphthylene, anthracene, chrysene and benzo(k)fluoranthene) were not considered in this 

314 study because they don’t exhibit any variability. The 5 PAHs were significantly more abundant 

315 in the inflow zone (p-value = 0.0157), while the 7 PAHs were significantly more abundant 

316 during the summer (p-value = 6.97x10-6) (Figure 4 B & C).
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318 Figure 3. DNA metabarcoding analysis of Nocardia genetic diversity among SIS sediment 

319 samples using the hsp65 target. A total of 9,017 reads per sample was analyzed. The relative 

320 proportion of the detected Nocardia species is present in %. Species representing more than 1% 

321 over the total number of reads are indicated. The classification of most/intermediate/less 

322 frequent pathogens was based on the French epidemiology according to Lebeaux et al., (2018).
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324 Figure 4. Boxplots explicative of the between-class analysis (BCA). A. 5 trace element metals: 

325 Zn (Zinc), Cu (Copper), Hg (Mercury), Pb (Lead) and Cd (Cadmium). P-value a = 0.0195. B. 

326 7 PAHs: naphthalene, acenaphthene, fluorene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, 

327 benzo(ghi)perylene, indeno(1,2,3-cd)pyrene. P-value a = 6.97x10-6. C. 5 PAHs: fluoranthene, 

328 pyrene, phenanthrene, benzo(a)anthracene, benzo(a)pyrene. P-value a = 0.0157. D. Indigenous 

329 Nocardia species: N. cummidelens, N. globerula, N. harenae, N. iowensis, N. jejuensis, N. 

330 pseudovaccinii, N. salmonicida, N. soli. P-values a = 0.04055 and b = 0.02963. E. Pathogen 

331 Nocardia species: N. abscessus, N. abscessus/asiatica, N. anaemiae, N. asteroides, N. 

332 brasiliensis, N. carnea, N. cerradoensis, N. cyriacigeorgica, N. ninae, N. nova, N. 

333 otitidiscaviarum, N. shimofusensis, N. sienata, N. vinaceae. P-value a = 0.0294.

334 DNA sequencing of the hsp65 PCR products yielded about 16,000 reads per sediment sample 

335 (Table 3). Throughout the three sampling campaigns, the hsp65 metabarcoding analytical 

336 scheme revealed a high diversity through the actinobacteria community (Table 3) but a low 

337 variability within each studied zone according to Shannon indices. The Nocardia community 

338 is also significant and diverse in the DRIB (Figure 3). Between 50-75% of the hsp65 reads per 

339 sampling zone and campaign from the Nocardia genus could be allocated to a particular species. 

340 The other reads could only be allocated to the Nocardia genus, indicating an important diversity 

341 that still needs to be resolved. To confirm the accuracy of the Wang text-based Bayesian 

342 taxonomic classifications performed with MOTHUR (Wang et al., 2007), representative 

343 sequences of the hsp65 OTUs were analyzed by BLASTn searches using the GenBank 

344 database. These searches confirmed all taxonomic inferences and showed that the unclassified 

345 sequences did not share enough identities to be clearly allocated to a particular species. 

346 Hereafter, only reads allocated to well-defined species were analyzed and compared. A total of 

347 fourteen Nocardia species (abundance >1%) could be tracked using the hsp65 metabarcoding 

348 approach (Figure 3). Most of these are opportunistic pathogens which also belong to the species 
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349 the most frequently found in French epidemiology. In autumn, the most prevalent Nocardia 

350 species in the SIS (inflow, bottom, upper zones) were N. cyriacigeorgica and N. nova (very 

351 frequent human pathogens) together with N. asteroides and N. cummidelens. A segregation 

352 between zones was observed (Figure 3). N. cyriacigeorgica hsp65 reads were mainly observed 

353 in the driest parts of the DRIB, while N. nova reads were mainly in the water saturated samples. 

354 In spring, N. asteroides hsp65 reads were observed in the three zones, and this species appeared 

355 to be the most prevalent in this environment. Reads from nonpathogenic N. globerula and the 

356 complex N. abscessus/asiatica (human pathogens) were also obtained in high numbers in the 

357 inflow and upper zones. In summer, most of the detected species were non-pathogenic ones: N. 

358 globerula showed the highest number of reads over the DRIB, but N. salmonicida (a fish 

359 pathogen) reads were higher in the inflow zone (see Figure 3 for a summary of the taxonomic 

360 allocations).

361 Table 3. Diversity and richness indices of the metabarcoding analysis
362

Zone Sample Number of 
reads Shannon Simpson

NP1 14,852 6.769454 0.006069
NP2 11,416 4.599154 0.073997
NP3 16,725 6.372891 0.014592
NP4 17,855 6.451997 0.016543

Inflow

NP5 16,296 6.147986 0.016220
NP6 15,311 5.862727 0.017357
NP7 12,064 5.402151 0.027591
NP8 19,138 6.374864 0.019491
NP9 17,992 6.621081 0.014399

Bottom

NP10 19,628 6.360877 0.014470
NP11 19,100 6.597122 0.019514
NP12 12,797 6.013042 0.030568
NP13 17,783 6.879646 0.011622
NP14 17,387 6.405939 0.027690

Upper

NP15 17,664 6.636493 0.010833

363 Regarding the distribution of OTUs per species, some were repeatedly observed from one 
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364 campaign to another. Some OTUs were found in multiple areas of the DRIB. Regarding N. 

365 cyriacigeorgica which represents one of the species of most health concern for this genus, a 

366 total of 39 sequences was identified, representing 6 OTUs. Most of these sequences (n=36) 

367 were recovered from the bottom zone of the DRIB, but one sequence was recovered from the 

368 upper zone. Only one sequence of this species was recovered over two sampling campaigns.

369 Regarding the amount of Nocardia species, they were clustered according to their potential 

370 health hazard or not. The pathogen species are significantly less abundant in spring and in 

371 summer than in autumn and different between these two first seasons (p-values = 0.04066 for 

372 the spring and 0.02953 for the summer). The indigenous species, i.e. not recognized as 

373 implicated in human nocardiosis, are most present in the upper zone than in the two others (p-

374 value = 0.0294) (Figure 4 D & E).

375 When we compare both physical-chemical parameters and Nocardia amount, we can see that 

376 there exists a clusterization according to the sampling areas. Humidity and 5 PAHs are 

377 explaining the clusterization in the inflow zone, while only indigenous Nocardia species are 

378 explaining the clusterization in the upper zone. In the bottom zone, the explaining parameters 

379 are the pathogen Nocardia species, 7 PAHs, the soil granulometry and the heavy metals content 

380 (Figure 5 A&B).
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381

BA

382 Figure 5 A. Between-Class Analysis (BCA) performed on physical-chemical parameters and 

383 Nocardia quantification from sediments of the Django-Reinhardt infiltration basin (DRIB). B. 

384 Explicative factors of the BCA. 7 PAHs: naphthalene, acenaphthene, fluorene, 

385 benzo(b)fluoranthene, dibenzo(a,h)anthracene, benzo(ghi)perylene, indeno(1,2,3-cd)pyrene ; 5 

386 PAHs: fluoranthene, pyrene, phenanthrene, benzo(a)anthracene, benzo(a)pyrene; Pathogen 

387 Nocardia species: N. abscessus, N. abscessus/asiatica, N. anaemiae, N. asteroides, N. 

388 brasiliensis, N. carnea, N. cerradoensis, N. cyriacigeorgica, N. ninae, N. nova, N. 

389 otitidiscaviarum, N. shimofusensis, N. sienata, N. vinaceae ; Indigenous Nocardia species: N. 

390 cummidelens, N. globerula, N. harenae, N. iowensis, N. jejuensis, N. pseudovaccinii, N. 

391 salmonicida, N. soli.

392 The correlogram highlights the potential correlation between metal trace elements and the 

393 amount of indigenous and pathogen Nocardia species (Figure 6). Indeed, a negative correlation 

394 is observed between the presence of zinc, mercury, copper and the indigenous species while 

395 there is a positive correlation between mercury, lead, zinc and copper with pathogen species. 

396 The humidity is also negatively correlated with the presence of indigenous species.
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397

398 Figure 6. Correlogram of the physical-chemical parameters and Nocardia pathogen and 

399 indigenous species amount.

400 To support the inferences made by the hsp65 metabarcoding approach, attempts at isolating N. 

401 cyriacigeorgica strains from the DRIB sediment samples were performed. An averaged N. 

402 cyriacigeorgica plate count number of 1.0×103 CFU/g dry sediment was obtained. From these 

403 platings, some isolates were purified, and twelve were confirmed to be N. cyriacigeorgica 

404 strains (by rrs gene and hsp65 typings) (see below). These strains were named DjR1 to 12 

405 (2015-2016 isolates). Additional isolate named EML446 was obtained from bottom area 
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406 sediment sample collected in 2013. The DjRm13-15 are sequences identified according to the 

407 metabarcoding analysis on the sampled sediments of the DRIB (2015-2016). Location of these 

408 isolates and sequences over the DRIB is indicated on Figure 1. Deeper taxonomic allocations 

409 of these strains by phylogenetic analysis are shown below.

410 3.2. Phylogenetic relatedness of SIS and clinical isolates

411 The hsp65 metabarcoding approach gave a more general view of Nocardia diversity 

412 among a complex SIS isolates community allowing to go until the species (Figure 3) and for 

413 some cases to resolve the infra-specific allocations as it was the case for N. cyriacigeorgica 

414 species (Figure 7A: DjRm sequences only). However, an OTU detected via metabarcoding 

415 should to be considered as a complex of genotypes which can encompass several clonal 

416 complexes. For this reason, infra-specific epidemiological investigations require longer DNA 

417 sequences per genetic locus, and, often, several loci per genome in order to reduce the incidence 

418 of horizontal gene transfers on the observed classifications. To go deeper into the evaluation of 

419 health hazards that can be associated with SIS N. cyriacigeorgica isolates, we obtained the 

420 phylogenetic trees built from individual locus and concatenated genetic loci (rrs, hsp65, sodA, 

421 secA1) (Figure 7). The phylogenetic tree based on rrs gene grouped all the clinical and 

422 environmental N. cyriacigeorgica strains into a single phylogroup (data not shown). The 

423 phylogenetic tree obtained from hsp65 gene sequences of the analyzed strains in this work 

424 showed a distribution into three significant phylogroups (PI, PII and PIII) that matched previous 

425 groups defined by Schlaberg et al., (2008). Phylogroup I (PI) harbored the N. cyriacigeorgica 

426 type strain hsp65 sequence, environmental sequences obtained from the metabarcoding analysis 

427 and French clinical strains, including one belonging to a patient from Lyon, which was a 

428 resident in the geographic area of the DRIB. Phylogroup II (PII) harbored clinical strains 

429 including GUH-2. Phylogroup III (PIII) also harbored SIS N. cyriacigeorgica isolates and 
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430 clinical strains. Bootstrap values were >80 only for PI (85) and PIII (98) (Figure 7a).

431 For sodA and secA1, the phylogenetic tree structures were in agreement with the one 

432 derived from hsp65 gene (data not shown). The MLSA phylogenetic tree of concatenated genes 

433 increased the reliability of the groupings (Figure 7B). This tree better resolved the relatedness 

434 of the SIS isolates with the clinical strains. Low infra-specific divergences were observed 

435 within PI (similarity mean = 99.7%, min-max = 99.4-100%) and PII (similarity mean = 99.8%, 

436 min-max = 99.6-100%). In PIII, infra-specific divergences were higher (mean identities = 

437 99.5%, min-max = 99.2%-100%) (Table 4). The MLSA tree showed a clear differentiation of 

438 the SIS genotypes into at least three large clonal complexes, with two complexes grouping most 

439 of the clinical isolates from the French Observatory of Nocardiosis (PI and PII) and PIII 

440 grouping three clinical isolates involved in pulmonary infections and most of our environmental 

441 strains (PIII).
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442

443 Figure 7. Molecular phylogeny of Nocardia cyriacigeorgica SIS isolates. A) Unrooted 

444 phylogenetic tree based on the hsp65 sequences (401 bp) from USA (Schlaberg et al., 2008), 

445 Canada (MacTaggart et al., 2010), India (Rudramurthy et al., 2015) and China (Xiao et al., 

446 2016) isolates, and representative sequences of N. cyriacigeorgica sequences from the 

447 metabarcoding analysis, and the clinical and SIS strains reported in this study. OFN.5* 

448 corresponds to a patient from Lyon (France). DjR.1, DjR.9 and EML446 corresponding hsp65 

449 sequences were used to represent the environmental cluster. B) Unrooted phylogenetic tree 

450 based on the rrs-hsp65-sodA-secA1 concatenated sequences (1845 bp). The maximum 
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451 likelihood tree was constructed using MEGA software (version 7.0.16) after having aligned the 

452 sequences with ClustalW. The bootstrap values were calculated from 1,000 replicates, and those 

453 higher than 80% are given at the corresponding nodes. Clinical strains are colored in blue, and 

454 environmental strains are colored in orange.
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458 3.3. EML 446 and GUH-2 genome comparisons

459 The whole genome sequencing (WGS) of N. cyriacigeorgica EML446 resulted in the 

460 obtaining of 41 contigs that could be assembled into a circular chromosome of 6,530,670 bp 

461 with a G+C content of 68.21%. This genome encodes 51 tRNA, 3 rRNA and 6,230 CDSs 

462 (coding sequences). Analysis on the MicroScope platform with the Virulome tool highlighted 

463 the presence of 130 CDSs (i.e. 2.09% of the CDSs) that can be involved in virulence in EML446 

464 while 108 CDSs involved in virulence were found among GUH-2, the model strain to 

465 investigate virulence in Nocardia. Among these CDSs, 96 were found to be in common. A 

466 Venn diagram was drawn to highlight the number of shared CDSs between N. cyriacigeorgica 

467 EML446, GUH-2 and DSM44484T, and N. farcinica IFM10152T and M. tuberculosis H37Rv 

468 (Figure 8a). The EML446 genome shared 4,392 CDSs with GUH-2 and 4,883 with 

469 DSM44484T. GUH-2 and DSM44484T shared 4,408 CDSs, and the number of shared CDSs 

470 between any N. cyriacigeorgica strain and N. farcinica IFM10152T or M. tuberculosis H37Rv 

471 was lower. On the other hand, the MAUVE analysis highlights a decrease in CDSs content in 

472 the region of genomic plasticity (RGP) between the two genomes N. cyriacigeorgica EML446 

473 and GUH-2 (Figure 8b). Comparison of 11 gene families between these genomes did not show 

474 many differences except for polyketide synthase (27 compared to 7 for Nocardia), lipoproteins 

475 (62 compared to 7-16) and PE_PGRS (62 compared to 0-1). Only the NRPS CDSs were lower 

476 for Mycobacterium, having 3 compared to 14-17 for Nocardia (Table 5). According to these 

477 analyses, EML446 was considered as virulent as the N. cyriacigeorgica clinical isolates.
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478

479 Figure 8. Comparison of N. cyriacigeorgica EML446 genome with other actinomycetal 

480 reference genomes. (a) Venn Diagram representing the number of shared CDSs between whole 

481 genomes of Nocardia cyriacigeorgica DSM44484T, N. cyriacigeorgica EML446, N. 
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482 cyriacigeorgica GUH-2, N. farcinica IFM10152T and Mycobacterium tuberculosis H37Rv. (b) 

483 MAUVE comparison between EML446 and GUH-2 genomes showing the position of RGPs 

484 (regions of genomic plasticity).
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492 3.4. Physiopathology of N. cyriacigeorgica in a murine model of transient immunoparalysis

493 In the present study, 37% of the CLP-operated mice died prior to the instillation step 

494 (37/101) in accordance with the model of septic immunoparalysis established by Restagno et 

495 al., (2016). Five days after the first hit, Sham and CLP-operated mice were randomized as 

496 described in Figure 2.

497 The survival results showed a survival rate of 100% after 41 days for Sham-NaCl and 

498 CLP-NaCl groups. For mice intratracheally instilled by a load of Nocardia at 1.0 1.0×106 

499 CFU/mouse, Sham-EML446 showed the same survival rate (Figure 9). In the Sham-GUH-2 

500 group, only one mouse died at D6 (survival rate = 86% (6/7 mice)). For both the CLP-GUH-2 

501 and CLP-EML446 groups, during the first 10 days following intratracheal bacterial challenges, 

502 the survival rates were similar: CLP-GUH-2, survival 67% (6/9 mice) and CLP-EML446, 

503 survival 64% (7/11 mice). A second episode of mortality occurred at 30 days for CLP-GUH-2, 

504 decreasing the survival rate at 44% (4/9 mice).
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506 Figure 9. Survival rate after N. cyriacigeorgica cells instillations of Sham and CLP mice. Five 

507 days post-CLP (i.e. D0), mice were challenged with an intratracheal administration of Nocardia 

508 GUH-2 or EML446 at 1.0×106 CFU/mouse. Either NaCl (physiological saline solution) (Sham 

509 n=7, CLP n=7), GUH-2 (Sham n=7, CLP n=9) or EML446 (Sham n=5, CLP n=11) were 

510 instilled. Results are expressed as Kaplan-Meier survival curves. * p < 0.005 was considered 

511 statistically significant compared to the respective control groups.

512 The TCBD experiment showed that in the Sham-operated group, soon after intratracheal 

513 instillation, the lung was the primary infection site of Nocardia, but other organs were also 

514 affected. At D4, 4/5 Sham-GUH-2 mice presented Nocardia in the lungs; in two of them, 

515 Nocardia was detected in all the studied organs (Figure 10). Only in one mouse, Nocardia could 

516 not be detected. At D10 and D33, the number of organs positive for Nocardia decreased except 

517 in the lungs (2/3 mice at D10 and 3/4 mice at D33) and kidneys (1/3 at D10 and 3/4 at D33). 

518 For the Sham-EML446 mice, the occurrence rate and dissemination were lower than for the 

519 Sham-GUH-2 mice. At D4, Nocardia was found in the lungs of 3/5 mice, but the incidence in 

520 other organs was lower (1/5) and even null in the brain and spleen. At D10, only 1/5 mice 

521 presented Nocardia in each organ, and nothing was detected at D33. However, Nocardia was 

522 found in all organs of one mouse at D41.
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523

524 Figure 10. Heatmap representing rates of contaminated mice by N. cyriacigeorgica and 

525 detected with specific Nocardia-genus PCR. Mice were sacrificed 4, 10 and 33 days after 

526 instillation for the GUH-2 strain and until 41 days for the EML446 strain. Lungs, brain, kidneys, 

527 spleen and liver were sampled for Nocardia detection. Clinical strain GUH-2 is colored in blue, 

528 and environmental EML446 is colored in orange. The deeper is the color, the more 

529 contaminated are the mice. The heatmap only reveals the presence or absence of Nocardia but 

530 is not quantitative. H some organs were used for histological analysis and were not available 

531 for bacterial detection since it is not technically possible to do both. n=x corresponds to the 

532 number of mice reserved for histological analysis.

533 In the CLP-operated group, at D4, the presence of Nocardia was observed in all of the 

534 inspected lungs for both strains (5/5 for CLP-GUH-2 and 6/6 for CLP-EML446), but it was 
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535 almost missing in the other organs (only in 3/5 CLP-GUH-2 and 2/7 CLP-EML446 in the 

536 kidneys). At D10, 100% of the inspected lungs were still positive for Nocardia, and all the other 

537 organs became progressively positive: 3/5 (CLP-GUH-2) and 4/4 (CLP-EML446) positive in 

538 the kidneys, 4/5 (CLP-GUH-2) and 3/4 (CLP-EML446) positive in the brains and spleens, 3/5 

539 (CLP-GUH-2) and 3/4 (CLP-EML446) positive in the livers. At D33, the presence of Nocardia 

540 in the lungs remained especially high for CLP-GUH-2 mice (7/8) but relatively low for CLP-

541 EML446 mice (2/5). Dissemination in other organs was almost similar for both strains 

542 excepting for the liver. At D41, almost all the organs of CLP-EML446 mice were positive at 

543 high rates (Figure 10). As expected, no NaCl-operated mice (controls) showed Nocardia cells 

544 in their organs.

545 In the lungs of CLP-EML446 mice (1/1), histological signs of pneumonia similar to 

546 nocardiosis were clearly observed, as histologic pictures showed multiple cavity lesions at D4 

547 (Figure 11A & B). A strong mononuclear infiltrate in the periphery of the microabscesses 

548 among the collagen fibers was also observed (Figure 11A1, A2 & B3). The presence of 

549 numerous filamentous bacteria in the caseous necrosis area suggests that these granulomatous 

550 lesions were infectious and that the mice developed nocardiosis (Figure 11B). At D41, 1/3 CLP-

551 EML446 mice exhibited mild pneumonia (Figure 11C). Nothing was observed at D41 in Sham-

552 EML446 mice (0/2) (Figure 11D). As expected, no histological lesions in any organ were 

553 observed for Sham-NaCl (n=2 at day 41) or CLP-NaCl (n=2-3 at D4, D10, D33 and n=6 at 

554 D41) mice. No lesions were found in the brains of CLP-EML446 mice at D41 (n=2). No specific 

555 nocardiosis lesions were found in other organs (kidney, spleen, liver) at D4, D10, D33 of either 

556 Sham-EML446 (n=2/organ) or CLP-EML446 (n=2/organ) mice. At D41, no specific 

557 nocardiosis lesions were found in kidney, spleen, liver of Sham-EML446 (n=5/organ) mice, but 

558 small granulomas were observed in the livers of 5 CLP-EML446 (n=7/organ) mice (Figure 

559 11E).
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561 Figure 11. Histological lung and liver sections of CLP-EML446 mouse at days 4 and 41 after 

562 intratracheal instillation. A, B: CLP-EML446 mouse lung at day 4. Light micrographs of 

563 mouse lung section with evidence of granulomatous process characterized by both 

564 inflammatory response (A) and necrosis usually present in nocardiosis (B). A: Two early 

565 pyogranulomas disseminated in the pulmonary parenchyma (arrows). Original magnification: 

566 obj. 4 X, lungs, postcaval lobe. A1: enlargement of the pyogranulomas (arrow 1). Multiple 

567 degenerated neutrophilic polymorphonuclear cells into a lung alveolus lumen admixed with 

568 few macrophages. Some inflammatory cells overflow in the lumen of a bronchus. Thin arrow: 

569 bronchus epithelium. Large arrow: neutrophilic polymorphonuclear cells. Star: macrophages. 

570 Original magnification: obj. 40 X. A2: enlargement of the pyogranulomas (arrow 2). Multiple 

571 degenerated neutrophilic polymorphonuclear cells into a lung alveolus lumen admixed with 

572 few macrophages. Thin arrows: alveolar wall. Large arrow: neutrophilic polymorphonuclear 

573 cells. Star: macrophages. original magnification: obj. 40 X. B: The lungs showed cavitary 

574 lesions constituted by central necrotic material surrounded by some polymorphonuclear and 

575 numerous macrophages. Macrophage alveolitis and interstitial lymphocytic infiltration are also 

576 observed. Light micrographs; hematoxylin–eosin staining; original magnification: obj. 40 X. 

577 B3: High power magnification showing histologic sections of the lesion characterized by 

578 caseous necrotic central area with filamentous bacteria inside. Light micrographs; 

579 hematoxylin–eosin staining; original magnification: obj. 100 X. C: CLP-EML446 mouse lung 

580 at day 41: C: At day 41, some lymphocyte aggregates are present in the interstitium (arrows). 

581 Original magnification: obj. 4 X, lungs, postcaval lobe. C4: enlargement of the aggregate 

582 (arrow 4). Some small lymphocytes (thin arrow) infiltrate the interstitium beneath the bronchial 

583 epithelium (large arrow). Original magnification: obj. 100 X. C5: enlargement of the aggregate 

584 (arrow 5). Some small lymphocytes infiltrate the interstitium of the interalveolar wall. Original 

585 magnification: obj. 100 X. D: Sham EML446 mouse lung at day 41. no lesions. Original 
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586 magnification obj. 4 X, lungs, postcaval lobe. E: CLP-EML446 mouse liver at day 41. Mature 

587 granuloma disseminated at random into liver lobules. Thin arrows: lymphocytes. Large arrows: 

588 macrophages. Original magnification obj. 100 X.

589 4. Discussion

590 The dissemination of hazardous biological agents in cities, outside hospital settings, remain 

591 largely under explored. Urban soils and waters can offer shelters for some pathogenic micro-

592 organisms such as the opportunistic ones. With their increasing contact with human 

593 populations, these pathogens might be undergoing selective processes that will make them 

594 better fit for a colonization of the human host. Furthermore, urban chemical pollutants seem to 

595 generate a “dangerous liaison” with these micro-organisms as demonstrated by (Cui et al., 

596 2017) who found the presence of 16 bacterial genera harboring pathogenic species such as 

597 Aeromonas and Mycobacterium in polluted lakes in an industrial area in China. Furthermore, 

598 (Chulan et al., 2019) showed a relation between concentrations of chemical pollutants and 

599 airborne pathogenic bacteria in air samples. Regarding Nocardia, also, some authors have 

600 already described a potential relationship between organic pollutants and presence of Nocardia. 

601 As explained by Arrache et al., (2018) this relationship could explain the infective source 

602 associated to a case of a cerebral nocardiosis of an immunocompetent individual exposed to the 

603 inhalation during a long period of time of dusts rich in hydrocarbons in a refinery which 

604 probably hosted the Nocardia species responsible of his pathology.

605 Nocardia are known to be widely spread among outdoor environments but several 

606 species represent a public health concern. This genus includes opportunistic pathogens that 

607 cause infection primarily following inhalation in the lungs (Garcia-Bellmunt et al., 2012; 

608 Steinbrink et al., 2018). These species can cause pulmonary nocardiosis in 

609 immunocompromised individuals associated with high-dose corticosteroids treatments 
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610 (Eshraghi et al., 2014; Steinbrink et al., 2018). Non-immunocompromised patients like cigarette 

611 smokers, or those affected by bronchiectasis and acute bronchitis, and other chronical 

612 pulmonary diseases, are also at risk of pulmonary nocardiosis. These clinical pictures affect 

613 about 60 million people around the world, according to the WHO, and are often related to high 

614 atmospheric pollution including high content in aerosolized dusts. These dusts can be generated 

615 by several urban components such as motor engines, chemical industries, garbage incinerators, 

616 stored garbage on sidewalks, plant and animal detritus, etc. They are accumulating on urban 

617 surfaces and washed away with the runoff waters during rain events or aerosolized. Polluted 

618 urban runoffs are nowadays transferred either to wastewater treatment plants (WWTP), SIS, or 

619 natural waterways. These washed urban sediments can thus create novel growth conditions for 

620 opportunistic human pathogens that are known to be well-adapted for a growth on chemical 

621 pollutants. Results obtained in this study supported this hypothesis as high numbers of N. 

622 cyriacigeorgica cells were observed among SIS sediments, and these cells were allocated to a 

623 phylogroup harboring confirmed clinical strains that had been involved in lung infections. 

624 Other pathogenic Nocardia species such as N. abscessus (associated mainly with cerebral and 

625 pulmonary infections), N. nova (related with pulmonary and cutaneous cases), and N. 

626 otitidiscaviarum (causing mainly cerebral infections and multidrug resistant) were also 

627 identified among SIS through the use of a novel metabarcoding approach based on the hsp65 

628 gene target. These species can thus also be disseminated through SIS and aerosolized deposits.

629 Sediments analyzed from the DRIB showed variable water contents, high hydrocarbon 

630 pollution and variable plant cover. The main pollution recorded in this urban environment is 

631 due to PAHs. The high amount of PAHs has a pyrogenic origin according to the 

632 phenanthrene/anthracene <10 and fluoranthene/pyrene >1 ratio for all the samples in 

633 accordance with Budzinski et al., (1995) and Yunker et al., (2002). This pyrogenic origin could 

634 be explained by the industrial activity in this area and the engine gasoline combustion. No 
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635 petrogenic origin could be identified in this study, contrary to Marti et al., (2017) that reported 

636 a petrogenic origin for most of the PAHs in the detention basin upstream the infiltration basin, 

637 indicating a good performance in removing oils from water and avoiding the plugging of the 

638 infiltration basin. Nadudvari & Fabianska (2015) reported a pyrogenic origin in sediments in a 

639 river in Poland arising from runoff water and city waste combustion. The same phenomenon 

640 was first described by Radke & Welte (1983) in oil wells in Canada. Five of the detected PAHs 

641 (phenanthrene, fluoranthene, pyrene, benzo(a)anthracene and benzo(a)pyrene) were already 

642 reported by Winiarski et al., 2015) in the same DRIB as being specially more abundant for the 

643 inflow zone which is confirmed by our study. On the other side, we observed a group of 7 PAHs 

644 (naphthalene, acenaphthene, fluorene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, 

645 benzo(ghi)perylene, indeno(1,2,3-cd)pyrene) that are more abundant in summer regardless the 

646 measured zone which agrees with the study of Belles et al., (2016) also in the same studied 

647 system. Regarding the correlation between pollutants and abundancy of Nocardia, this high 

648 amount of PAHs seems to inhibit the development of Nocardia species, while metal trace 

649 elements are an explicative factor of pathogen species presence in the bottom zone of this 

650 infiltration basin. Regarding the influence of PAHs in pathogenic Nocardia, the upper zone, 

651 considered as the less contaminated zone, was the one with lowest counts in N. cyriacigeorgica.

652 Based on the hsp65 metabarcoding analysis, water content was found to be explicative 

653 of some distribution patterns. Shannon indices highlighted a high diversity within the sampled 

654 sediments but similar values could indicate a low variability between the samples in a same 

655 area. The lower diversity within the NP2 sample (according to its Shannon index) could be 

656 explained by the low reads number, also explained by the high humidity rate of this sample 

657 (max humidity ≥115%). In addition, the low values of Simpson diversity indices have shown a 

658 not homogenous diversity revealing that some communities are much more abundant than 

659 others (Table 3). In this study, we observed that a high water content (≥112%) was related to 
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660 the higher number of N. abscessus and N. nova hsp65 reads, and intermediate conditions 

661 (around 72% sediment moisture) led to the higher number of N. cyriacigeorgica hsp65 reads.

662 These observations suggest N. cyriacigeorgica to be the most worrisome species as its 

663 environmental conditions for isolation are those present the most part of the year in the studied 

664 system and besides, according to Zoropogui et al., (2013) this species presents a likely ongoing 

665 evolution towards a higher tropism for the human host. This led us to further investigate the 

666 SIS N. cyriacigeorgica isolates. The phylogenetical analysis demonstrated close relationships 

667 between the clinical and SIS N. cyriacigeorgica of this study. SIS strains and sequences were 

668 distributed into two phylogroups, PI and PIII, showing a close relationship with some clinical 

669 strains (Figures 7a, 7b). Furthermore, a recent clinical strain from Lyon was also positioned in 

670 one of the phylogroups harboring SIS’s N. cyriacigeorgica strains. In fact, clinical strains and 

671 environmental ones could not be segregated into distinct clusters. This supports the idea that all 

672 strains of N. cyriacigeorgica represent a human health hazard. Direct exposures through 

673 inhalation could thus result in pulmonary nocardiosis. However, the frequency of the 

674 interactions with the human host could have generated a gradient of virulence potentialities 

675 going from mild to severe. This hypothesis was verified with the results of the genomic and ‘in 

676 vivo’ comparison of GUH-2 and EML446 strains.

677 Regarding the genomic analysis, the genome size of SIS N. cyriacigeorgica EML446 

678 (6,530,670 bp) was found to be larger than the one of clinical GUH-2 (6,194,645 bp). In general, 

679 opportunistic pathogens present in an environmental reservoir harbor a larger genome, 

680 conferring a greater versatility in the use of nutrients and in the ability to resist at certain 

681 environmental constraints (Moran, 2002). However, the differences in genome size between 

682 EML446 and clinical GUH-2 are low, and not in favor of a size reduction related to greater 

683 interactions with the human host. Furthermore, the content in virulence genes between these 
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684 strains did not differ significantly but its distribution is variable in both genomes. Indeed, 

685 Zoropogui et al., (2013) had already demonstrated that part of the virulence genes of clinical 

686 GUH-2 strain is contained in the RGPs (region of genomic plasticity) (Figure 8b). In fact, 

687 several CDSs found in N. cyriacigeorgica EML446 could play part in lung colonization. For 

688 example, mbt is involved in the development of slow-growing bacteria in tissues under iron 

689 limitations, e.g. in the lung (McMahon et al., 2012). In addition, the presence of CDSs coding 

690 for lipoproteins may contribute at the intracellular lifestyle of N. cyriacigeorgica. Actually, Li 

691 et al., (2018) demonstrated that a large amount of lipoproteins improves survival of another 

692 actinobacteria, Mycobacterium smegmatis, in macrophage cells and murine lungs. Finally, 

693 CDSs such as PE_PGRS30, PG_PGRS33 and PE_PGRS41, were shown to be essential for 

694 entry and intracellular survival in macrophages (Camassa et al., 2017; Chatrath et al., 2016; 

695 Deng et al., 2017). These virulence genes were also recorded in clinical N. cyriacigeorgica 

696 GUH-2 strain. This suggests that virulence of these two strains on a mouse model (or in human) 

697 should be similar. However, changes in regulatory pathways might have generated some 

698 changes in the fine-tuning of the expression of virulence genes, and modified the clinical 

699 outcomes. This is hardly detected by simple genomic comparisons, and would require gene 

700 expression profile analyses as performed by Cruz-Rabadán et al., (2017). Nevertheless, it must 

701 be noted that the GUH-2 phylogroup (PII) diverged early from the EML446 phylogroup (PIII), 

702 suggesting adaptations and selection for distinct growth conditions. An on-going adaptation of 

703 the GUH-2 lineage for the human thus remains possible, and this hypothesis thus needed to be 

704 tested by animal experimentations.

705 The physiopathology of N. cyriacigeorgica has been extensively studied in 

706 immunocompetent murine models (Schlaberg et al., 2008). However, nocardiosis has a higher 

707 occurrence in immunocompromised patients, and this led us to use a transient immunoparalysis 

708 (induced by mild CLP) mouse model to compare the virulence potentialities of GUH-2 and 
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709 EML446. This is the first report describing the use of this model system with Nocardia cells, 

710 but previous validations had been performed with P. aeruginosa cells (Restagno et al., 2016). 

711 Compared on this latter study, our Nocardia cell instillations at 1.0×106 CFU/ CLP mouse led 

712 to a lower survival at D8 (CLP-EML446 = 64%, CLP-GUH2 = 67%) than the one obtained 

713 with P. aeruginosa at the same concentration after the same period of time (CLP=93%) 

714 (Restagno et al., 2016). Furthermore, in our study, thirty days after GUH-2 instillations, a 

715 second mortality wave decreased considerably this survival rate (CLP-GUH-2=44%), which 

716 remained much lower than the one obtained with P. aeruginosa. When extrapolated to humans, 

717 these differences in behavior become of high importance in diseases in which both N. 

718 cyriacigeorgica and P. aeruginosa may cohabit. This has been the case in some patients with 

719 cystic fibrosis, as reported by Rodriguez-Nava et al., (2015). Traditionally, in these cases, 

720 primary antibiotic treatments will target P. aeruginosa because it is considered the main 

721 pathogen associated with lung deteriorations. Our study shows that the infective process of N. 

722 cyriacigeorgica must not be underestimated and that a treatment targeting both pathogens 

723 should be performed. This strategy has already been applied, and improved the clinical 

724 outcomes (Rodriguez-Nava et al., 2015).

725 It is to be noted that based on this study, a small window of immunoparalysis due to 

726 CLP in mice was found sufficient to promote the colonization, persistence and dissemination 

727 of N. cyriacigeorgica. This observation could also be extrapolated to humans for which during 

728 a period of illness, the immune system of the patients is weak (diabetes, cancer, etc.) allowing 

729 the colonization of Nocardia in the infected organ during this “immunosuppressive window”. 

730 Indeed, some patients considered immunocompetent may have had a history of disease (Singh 

731 et al., 2015). So, according to our observations, we can state that locations presenting 

732 environmental conditions similar to the studied UIB in terms of humidity, metallic trace 

733 elements and PAH pollution, may suppose an infective risk for weak populations.
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734 Our study presents some limitations. For example, we studied a single UIB with its own 

735 geological, hydrological, chemical and vegetative characteristics. We must then be prudent in 

736 extrapolating the obtained results to any other UIBs. In this work, we compared the virulence 

737 of clinical and environmental strains of N. cyriacigeorgica, however just a single representative 

738 of each has been chosen. So, obtained conclusions should be carefully extrapolated to all N. 

739 cyriacigeorgica clinical and environmental strains.

740 However, our work has several strengths. For the first time, an urban, humid and 

741 polluted environment (an UIB) was used to study the spatiotemporal distribution of pathogens 

742 such as N. cyriacigeorgica. Moreover, we used the MLSA approach with precise gene 

743 concatenation (rrs-hsp65-sodA-secA1) to identify clonal lineages between clinical and 

744 environmental strains of N. cyriacigeorgica. In addition, according to the results obtained in 

745 this approach, we suggest that N. cyriacigeorgica should be referred to as a complex and no 

746 longer as a species, taking into account the presence of three well-defined phylogroups for 

747 which taxonomy has yet to be reviewed. We used, for the first time, the hsp65 marker for the 

748 metabarcoding approach, allowing us to evaluate Nocardia biodiversity and to directly detect 

749 N. cyriacigeorgica in the urban sediments of an UIB. This new marker could also be used to 

750 track Nocardia in other environments. For the first time, the hazardousness of an environmental 

751 strain of N. cyriacigeorgica isolated from an UIB was studied by complete genome sequencing 

752 and by a murine model of transient immunoparalysis, which better mimics the population most 

753 frequently targeted by this pathogen.

754 5. Conclusion

755 This study presents, for the first time, a complete inventory of Nocardia pathogenic 

756 species found in a HAP-polluted urban infiltration system. This study was made possible by 

757 the development of an innovative metabarcoding hsp65-based approach. This led to the 
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758 detection of the highly frequent species found in nocardiosis worldwide such as N. 

759 cyriacigeorgica, N. nova, and N. abscessus. The number of reads per species were found related 

760 with the field conditions. Up to 39 sequences representing 6 OTUs were found for N. 

761 cyriacigeorgica which makes this species the most worrisome in this kind of environments 

762 taking into account its epidemiologic characteristics. This led us to perform rounds of isolation 

763 of this bacterial species, and investigate more deeply their molecular epidemiology. A MLSA 

764 approach demonstrated a close proximity between the SIS N. cyriacigeorgica isolates and the 

765 clinical ones. However, these strains were mostly distributed in phylogroup III, and not 

766 recorded in the phylogroup II harboring the most virulent isolate recorded so far i.e. GUH-2. 

767 This suggested a significant diversification between these strains that could be indicative of a 

768 distinct tropism for the human host. This led us to compare the full genome of one SIS isolate 

769 with the one of GUH-2. No distinction in their virulence gene contents could be made, 

770 suggesting similar virulence potentialities. Experimentations were performed to test the 

771 virulence differences among these strains (and phylogroups). GUH-2 strain was shown to be 

772 the most virulent isolate in an immunoparalysis CLP mice model but EML446, the SIS isolate, 

773 was also confirmed to be significantly virulent. This fact further supports the idea that all strains 

774 of this species can be pathogenic but with variable clinical outcomes. The GUH-2 lineage seems 

775 to be on-going an adaptation for animal hosts including humans. These differentiations linking 

776 phylogroups and virulence will now need to be tested on a larger number of strains. The 

777 presence of pathogenic Nocardia is strongly correlated to metallic trace elements and they can 

778 be suggested to be indicators of their presence. On the other hand, we have observed a negative 

779 correlation between PAHs and pathogenic Nocardia, so these pollutants cannot be used as 

780 indicators of these bacteria. Overall, this study shows that humid and polluted environments 

781 such as UIBs may represent a health hazard for adjacent populations through either direct 

782 exposure or through an aerosolization of dusts harboring N. cyriacigeorgica cells. These 
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783 Nocardia cells could be used as a worst case scenario bacterial models for evaluating the 

784 microbiological safety of urban areas.

785
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Abstract
We assessed the performance of the VITEK® MS IVD V3.0 matrix-assisted laser desorption ionization - time of flight mass
spectrometry (MALDI-ToFMS) V3.0 database for the identification of Nocardia spp. as compared with targeted DNA sequenc-
ing. A collection of 222 DNA sequence-defined Nocardia spp. strains encompassing 18 different species present or not in the
database was tested. Bromocresol purple agar (BCP) and Columbia agar +5% sheep’s blood (COS) culture media were used
together with two different preparation steps: direct smear and a “3 attempts” procedure that covered (1) spotting of an extract, (2)
new spotting of the same extract, and (3) spotting of a new extract. The direct smear protocol yielded low correct identification
rates (≤ 15% for both media) whereas protein extraction yielded correct identification results (> 67% regardless of the media
used.). The use of 2 additional attempts using repeat or new extracts increased correct identification rates to 87% and 91% for
BCP and COS, respectively. When using the 3 attempts procedure, the best identification results, independent of media types,
were obtained for N. farcinica and N. cyriacigeorgica (100%). Identification attempts 2 and 3 allowed to increase the number of
correct identifications (BCP, +20%; COS, +13%). The enhancement in performance during attempts 2 and 3 was remarkable for
N. abscessus (81% for both media) and low prevalence species (BCP, 70%; COS, 85%). Up to 3.4% and 2.4% of the strains
belonging to species present in the database were misidentified with BCP and COS media, respectively. In 1.9% of the cases for
BCP and 1.4% for COS, these misidentifications concerned a species belonging to the same phylogenetic complex. Concerning
strains that are not claimed in the V3.0 database, N. puris and N. goodfellowi generated “No identification” results and 100% of
the strains belonging to N. arthritidis, N. cerradoensis, and N. altamirensis yielded a misidentification within the same phylo-
genetic complex. Vitek® MS IVD V3.0 is an accurate and useful tool for identification of Nocardia spp.

Keywords Nocardia spp. . MALDI-ToF . BCP . COS . DNA sequencing

Introduction

Nocardia species are filamentous, Gram-positive bacteria be-
longing to the order Corynebacteriales. More than 100

Nocardia species have been characterized, among which ap-
proximately half are of medical importance [1]. Members of
this genus are cosmopolitan and ubiquitous in the environ-
ment. Nocardiosis is primarily opportunistic and affects im-
munocompromised patients mostly [2, 3], although immuno-
competent patients can also be affected [4]. Although cutane-
ous and soft tissue infections predominate, the most common
presentation is pulmonary nocardiosis [5–7]. The mortality
associated with these infections remains high [8], which un-
derlines the need for rapid and effective treatment. Intrinsic
antimicrobial susceptibility patterns differ between species [9]
and render rapid identification of the species essential.
Currently, Nocardia spp. identification is based on 16S
rRNA, hsp65, secA1, rpoB, and gyrB gene sequencing
[10–12]. Although these techniques are specific and sensitive,
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their drawbacks include costs, duration, and limited availabil-
ity. Thus, samples must often be transported, delaying the
identification of the pathogen. Matrix-assisted laser desorp-
tion ionization-time of flight mass spectrometry (MALDI-
ToF MS), a tool that is now widely used to identify common
bacterial and yeast species, is a promising technology for
Nocardia spp. identification. It is easy to use, fast, and cost-
effective and, hence, an interesting alternative to molecular
methods. The Bruker BioTyper system has been evaluated
for clinical Nocardia spp. identification [11, 13–15] as was
the VITEK® MS IVD system [16–18].

Our objective was to evaluate the performance of the
VITEK® MS IVD V3.0 database for the identification of
Nocardia spp. strains and different strategies for the specimen
preparation step were assessed. In parallel, the performance of
bromocresol purple agar (BCP) was compared with those ob-
tained on Columbia agar +5% sheep’s blood (COS).

Materials and methods

Bacterial strains

The collection of isolates used in this study was from the
Observatoire Français des Nocardioses (OFN), Lyon,
France. This collection is composed of 222 strains with 131
isolates specifically collected in 2014 from the OFN, Institut
des Agents Infectieux (French epidemiology, [19]). In addi-
tion, for each species tested, we have included the correspond-
ing type strain (Table 1). All isolates were previously identi-
fied at species level by sequencing the 16S rRNA gene [20],
and DNA sequencing was performed by Biofidal (Vaulx-en-
Velin, France). When identification was not possible, a 441-bp
fragment of the hsp65 genewas amplified and sequenced [20].
The sequences were analyzed by BLAST (http://www.blast.
ncbi.nlm.nih.gov/Blast.cgi) following the identification
criteria of the Clinical and Laboratory Standards Institute
(CLSI, [21]). Isolates were stored at − 80 °C and were sub-
cultured on two different media (bromocresol purple agar
(BCP, bioMérieux Ref. 43021) and Columbia agar +5%
sheep’s blood (COS, bioMérieux Ref. 43041) at 37 °C for
72 h. BCP is a poor culture medium not used to build the
MS database but successfully used in OFN as it shows rapid
growth for all Nocardia spp. In contrast, COS is a rich culture
medium which has been used to build MS database and is
recommended by the manufacturer.

Protein extraction

All isolates were extracted according to the bioMérieux rec-
ommendations using the VITEK® MS IVD Mycobacterium/
Nocardia kit (bioMérieux Ref. 415659). A 1 μL loop full of
organisms was transferred into a 1.5mL Eppendorf tube

containing 500 μL of 70% ethanol and approximately 200
μL of 0.5-mm glass beads. The mixture was vortexed for
15 min with a Genie 2 Vortex with a 13000-V1-24 Vortex
adaptor (MoBio, Qiagen) and then was incubated at room
temperature for 10 min. The suspension was briefly vortexed
and then transferred into an empty 1.5mL Eppendorf tube
(avoiding the transfer of any glass beads) and centrifuged for
2 min at 14,000 rpm. The ethanol supernatant was removed,
and the pellet was re-suspended in 10 μL of 70% formic acid.
The tube was briefly vortexed, 10 μL of acetonitrile was
added, and the tube was vortexed again and then centrifuged
for 2 min at 14,000 rpm. The resulting supernatant was used
for analysis by MALDI-ToF MS.

Sample deposits

For the two media types, the isolates were deposited in two
different ways: (i) a direct smear by which a loop full of
bacteria was directly applied as a thin film on a spot of a target
slide (disposable 48 well stainless steel target slides,
bioMérieux Vitek MS), (ii) an extract deposit by which 1 μL
of supernatant was deposited on a spot of a target slide as
described above. In either case, the deposit was allowed to
dry. Next, the deposit was overlaid with 1 μL of α-cyano-4-
hydroxycinnamic acid (CHCA) matrix solution and was
allowed to dry again. The Escherichia coli reference strain
ATCC 8739 was used on each plate for instrument calibration
according to the manufacturer’s instructions. Positive-control
organism N. farcinica type strain (DSM 43665T) was spotted
on the slide using the protocols described in this study. Finally,
the slide was loaded into the VITEK® MS instrument.

Sample analysis

All isolates were analyzed using the manufacturer’s recom-
mended settings, and the mass spectra obtained were com-
pared with the V3.0 database. An identification associated
with a confidence level was produced by the Myla software.

Identification procedures

As seen above, two different preparation steps were tested.
The results of each method were compared and the one yield-
ing to better correct identification rates underwent a several
attempts procedure in order to succeed in identifying strains
for which a “no identification” result was obtained. In the case
direct smear yielded the best results, 2 new deposits were
foreseen. For preparation steps based on protein extraction,
two new attempts were planned as follows: (i) new spotting
of the same extract previously defrosted, and (ii) spotting of a
new extract (Fig. 1).
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Identification criteria

The result was considered correct at the species level if a
single species identification associated with a confidence level
> 99% was obtained and matched the identification obtained
by the reference method (16S rRNA/hsp65 sequencing). The
identification was considered correct at complex level if the
system yielded a slash line result (i.e. Species 1/Species 2)
suggesting two Nocardia species, one matching with the one
obtained by the reference method and if the other one
belonged to the same phylogenetic complex according to
McTaggart et al. [12] .

Results

Performance for species present in the VITEK MS V3.0
database

Out of 222 tested strains, 203 belonged to species present in
the VITEK MS V3.0 database and were first submitted to a
standard smear based identification process. The system
yielded poor identification rates of 15% and 11% for BCP
and COS media, respectively. The protein extraction proce-
dure allowed better results as the system yielded correct

identification for 67% of isolates from the BCP medium and
78% from the COSmedium. Taking into account these results,
the preparation step based on protein extraction was the one
that underwent two more attempts (herein, “attempt 2” and
“attempt 3”) in order to increase correct identification rates.

Spotting of the same extract after defrosting (attempt 2) for
previously unidentified isolates (68 for BCP and 45 for COS
media) allowed to increase correct identification rates, 24/68
(35%) for BCP medium and 15/45 (33%) for COS medium
(Table 2). Spotting of a new extract (attempt 3) for unidentified
isolates in attempt 2 (44 strains for BCP and 30 for COS media)
further helped to increase correct identification rates, 18/44 strains
(41%) for BCP medium and 11/30 strains (37%) for COS medi-
um. So, thanks to the second and third attempts, more than a half
of the strains not identified in the first attempt were identified as
follows: 42/68 (62%) with BCP medium and 26/45 (58%) with
COS.Overall, we reached correct identification at species or com-
plex level at 87% (an increment of 20%) for theBCPmedium and
at 91% (an increment of 13%) for the COS medium (Table 2).

For the most prevalent species (N. farcinica, N. nova,
N. abscessus, N. cyriacigeorgica), which account for 54% of
all tested strains, high identification rates were obtained: up to
93% (101/109) and 94% (102/109) for BCP and COS agar,
respectively. Again, attempts 2 and 3 lead to a considerable
increase of correct identification rates regarding those of

Table 1 Species and number of
strains for each one, used in this
study. Prevalence classification is
done according to Lebeaux et al.
(19)

Species Number of strains including type strain Type strain code

High prevalence 110

N. farcinica 43 DSM 43665 T

N. nova 26 DSM 43256 T

N. abscessus 21 DSM 44432 T

N. cyriacigeorgica 19 DSM 44484 T

Intermediate prevalence 55

N. wallacei 16 DSM 45136 T

N. veterana 14 DSM 44445 T

N. otitidiscaviarum 13 DSM 43242 T

N. brasiliensis 11 DSM 43758 T

Low prevalence 40

N. beijingensis 12 DSM 44636 T

N. paucivorans 11 DSM 44386 T

N. pseudobrasiliensis 10 DSM 44290 T

N. neocaledoniensis 3 DSM 44717 T

N. asteroides 4 DSM 43757 T

Sub-total 203

N. cerradoensis* 3 DSM 44546 T

N. altamirensis* 2 DSM 44997 T

N. puris* 6 DSM 44599 T

N. goodfellowi* 3 DSM 45516 T

N. arthritidis* 5 DSM 44731 T

Total 222

*Low prevalence species that are not present in the V3.0 database
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attempt 1 (+21% for BCP and +10% for COS). N. farcinica
andN. cyriacigeorgicawere 100% correctly identified, mostly
in the first attempt. Regarding N. nova, more than 80% of the
strains were identified at complex level and displayed as a
slash line “N. nova 50%/N. africana 50%”. For this species
and particularly on BCP medium, the last two attempts in-
creased the number of correct identifications by 23% and for
COSmedium almost all the correct identifications (85%) were
obtained upon first spotting. Regarding the N. abscessus
strains, Vitek® MS IVD V3.0 yielded a correct identification
from the first spot in half of the cases. Attempts 2 and 3
allowed to increase the overall correct identification rates
(BCP +29%, COS +24%).

Concerning the species with intermediate prevalence
(N . w a l l a c e i , N . b r a s i l i e n s i s , N . v e t e r a n a ,
N. otitidiscaviarum), attempts 2 and 3, allowed to increase
the correct identification rates (+15% for both media) for
reaching a high cumulative identification rate of 89% (48/
54) of isolates for both media. However, there were slightly
lower correct identification rates for N. veterana compared
with the 3 other species of this group (Table 2).

For species with low prevalence (N. paucivorans,
N. pseudobrasiliensis, N. asteroides sensu stricto,
N. beijingensis, N. neocaledoniensis), the cumulative

identification rates were satisfactory. Up to 70% (28/40) of iso-
lates were identified using the BCP medium and 85% (34/40)
with the COSmedium. For reaching these values, attempts 2 and
3 were helpful (BCP +27%, COS +20%). The full identification
procedure for N. paucivorans and N. pseudobrasiliensis allowed
to identify 82% (9/11) and 70% (7/10) of the strains for BCP
medium and 100% of the strains for COS medium. For
N. beijingensis, only 67% (8/12) with the “3 attempts” procedure
of isolates were correctly identified with both media. The 3 iso-
lates of N. neocaledoniensis were correctly identified regardless
of the medium. Regarding the 4 strains of N. asteroides stricto
sensu, only one of them was correctly identified at species level
using both media. In addition, a correct identification at complex
level under the form “N. asteroides/N. neocaledoniensis” was
obtained only for one strain for COS medium.

Regarding misidentification of strains belonging to species
present in the manufacturer’s database, 3.4% of the isolates
were misidentified with BCP (7/203) and 2.4% with COS
(5/203) media types (Table 3). One strain of N. nova was
identified as N. veterana with both media. One strain of
N. abscessus was identified as N. veterana and another one
was identified as N. beijingensis with both media. One strain
of N. veterana was identified as N. cyriacigeorgica with both
media, too. One strain of N. pseudobrasiliensis was identified

Identification with 
1st extraction / 1st spotting

Vitek® V3 yields 
identification. 

YES 

Identification with 
1st extraction / 2nd spotting

Vitek V3® yields 
identification. 

YES 

Identification with 
2nd extraction

NO 

NO 

Identification matches with 
reference method

Vitek® V3 yields 
identification. 

NO IDENTIFICATION IDENTIFICATION ACCEPTED MISIDENTIFICATION

YES 

NO 

YES 

NO 

Fig. 1 Decision algorithm
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as Pseudomonas oryzihabitans with BCP medium but a cor-
rect identification with COS medium was obtained. A re-
extraction of the strain yielded the correct identification, so
contamination is plausible, which in the end was not possible
to verify. One strain of N. asteroides sensu stricto was identi-
fied as N. neocaledoniensis with BCP medium. However, a
correct identification at complex level was obtained with COS
medium and a second strain of N. asteroides sensu strictowas
identified as N. neocaledoniensis with both media.

Performance for species absent from the VITEK MS
V3.0 database

Regarding the 19 strains belonging to 5 species absent from
the V3.0 database (N. altamirensis, N. arthritidis,
N. cerradoensis, N. goodfellowi, N. puris), they were either
not identified or misidentified. All the strains of
N. goodfellowi and N. puris (including their type strains)
yielded no identification. For the remaining 10 strains, mis-
identifications were obtained. Up to 4/5 isolates of
N. arthritidis were identified as N. abscessus. One isolate
was identified as N. beijingensis with BCP but no identifica-
tion could be obtained with COS. The 3 isolates of
N. cerradoensis were identified as N. nova 50%/N. africana
50%, and both strains of N. altamirensis were identified as
N. brasiliensis.

Discussion

In this study, the direct smear preparation step was evaluated
for the first time with the Vitek® MS IVD and was found not
satisfactory. We demonstrated in this study that for VITEK®
MS IVD V3.0, an extraction is needed to obtain good identi-
fication rates for Nocardia spp. New attempts were needed as
67% and 78% of the strains were identified during the first
spotting of the first extract with BCP and COS media, respec-
tively. The necessity of repeating identification procedure by
different means with this system has also been observed by
Body et al. [18] who needed to repeat identification proce-
dures for 33% of theirNocardia spp. strains. This study shows
that the “3 attempts” procedure with both media lead to final
identification rates (BCP 87%, COS 91%) which match with
those of Body et al (90%) [18].

Different preparation steps are referred in the literature for
other MALDI-ToFMS-based systems that may be worth test-
ing with VITEK®MS IVD V3.0. For example, for Microflex
LT, some recent studies suggest a halfway technique between
direct smear and extraction: the direct on-target extraction
[22]. Further studies should be done for VITEK® MS IVD
V3.0 to assess identification accuracy when using this kind of
a more rapid preparation step.

The impact of the culture medium and incubation time on
the quality of the spectra has already been discussed [18, 23,
24, 25]; however, conclusions are contradictory. Khot et al.
[24] and McTaggart et al. [25] show that the incubation time
impacts the quality of the spectra since better results were
obtained with a short incubation time. Moreover, McTaggart
et al. [25] concluded that the type of culture medium used has
an indirect impact since rich media, such as COS, allow faster
and more abundant growth which can result in spectra of
better quality. However, according to Body et al. [18], identi-
fication results can be identical independently of the culture
medium but their study was limited to media used for the
building of the database.

Our results agree withMcTaggart et al. [25] as we observed
slightly better correct identification rates with a rich medium
like COS (91%) compared with a poor one like BCP (87%)
which nevertheless gave good results. However, we demon-
strate the possibility to use a medium like BCP for identifica-
tion purpose even if it has not been used to build the database.
Cumulative results are indeed comparable with those of COS
medium and especially for highly and intermediate prevalence
species.

For N. nova strains for which VITEK® MS IVD V3.0
yielded a correct identification (85% BCP; 88% COS), only
a complex level result displayed as “N. nova 50% /N. africana
50%” could be obtained. As explained by Girard et al. [16],
the N. nova and N. africana species are currently indistin-
guishable by the VITEK® MS IVD V3.0 and are therefore
only identified at the complex level. In fact, the taxonomy of
the genus Nocardia spp. has evolved considerably in recent
years and in addition to N. nova and N. africana, more species
have been added to the N. nova complex including
N. veterana, N. cerradoensis, N. kruczakiae, N. aobensis,
N. mikamii, and N. elegans [12, 26]. Hence, some of the ob-
served misidentifications (1 out of the 26 tested strains of
N. nova was identified as N. veterana and all the 3 strains of
N. cerradoensis as N. nova/N. africana) remain understand-
able. In a similar way, the N. abscessus is very close to other
species such as N. beijingensis, N. arthritidis, and N. asiatica
forming a phylogenetic clade [1, 12, 26]. On the 7 misidenti-
fications obtained for those species, 6 of them were obtained
within the complex. For example, N. arthritidis strains were
misidentified as N. abscessus or N. beijingensis. Even if
N. arthritidis is not present in the database, the result yielded
by VITEK® MS IVD V.3.0 remained inside the correct phy-
logenetic complex. Body et al. [18] observed several similar
misidentifications.

Some other misidentifications yielded by the system are
also understandable. For example, N. altamirensis is
misidentified as N. brasiliensis. These two species belong to
the same phylogenetic clade which also encompasses
N. boironii andN. vulneris [27]. In the same way, we observed
a mis ident i f ica t ion of a N. asteroides s t ra in as
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N. neocaledoniensis, which is clustered in the same phyloge-
netic complex. This misidentification was also observed by
Body et al. [18] for 3/19 of their N. asteroides isolates.
Misidentifications regarding low prevalence species can be
related to the availability of low numbers of spectra for these
species [17].

Nowadays, MALDI ToF MS seems not to have sufficient
discriminatory power to distinguish all species belonging to
the different phylogenetic clades. Some species misidentifica-
tions are problematic as such species do not always present the
same antibiotic profiles, potentially leading to inappropriate
patient handling. This is especially true for the N. abscessus
complex, since N. beijingensis and N. asiatica are usually
susceptible to imipenem ([28] and personal data) in contrast
to N. abscessus and N. arthritidis ([29] and personal data)
which are generally resistant. This divergence of antibiotic
profiles can also be observed inside the N. brasiliensis com-
plex. For the N. nova complex, misidentifications have a

lesser clinical impact as the species in this complex show
similar antibiotic profiles but the prevalence of these species
are different and this can lead to wrongly inferred epidemio-
logical scenarios. In the case of N. asteroides and
N. neocaledoniensis, an accurate identification at species level
is not essential, as they are species rarely found in clinical
specimens and their susceptibility patterns are not clearly
defined.

We suggest that when a species belonging to N. nova,
N. abscessus, N. brasiliensis, or N. asteroides complexes is
detected, VITEK® MS IVD V3.0 results in identification at
the complex level only. In order to avoid therapeutic errors,
this kind of result should lead to thorough antibiotic suscepti-
bility testing to help choose appropriate treatment.

Some limitations must be taken into account. Regarding
the methodology, new spotting of the same extract was not
done immediately after the first spotting as the extract was
meanwhile frozen. This can be considered a deviation in

Table 3 Misidentifications
obtained with Vitek® MS IVD
V3.0 and two different media for
tested Nocardia strains compared
with the identification at species
level obtained with the reference
method. BCP, bromocresol purple
agar; COS, Columbia agar +5%
sheep’s blood

Identification by the Vitek® MS IVD

Medium

Species1 Initial number of
strains for this
species

BCP COS

N. nova 26 N. veterana N. veterana

N. abscessus 21 N. veterana N. veterana

N. abscessus N. beijingensis N. beijingensis

N. veterana 14 N. cyriacigeorgica N. cyriacigeorgica

N. pseudobrasiliensis 10 Pseudomonas
oryzihabitans

Correct Id

N. asteroides 4 N. neocaledoniensis Correct Id

(complex: N.
asteroides/N.
neocaledoniensis)

N. asteroides N. neocaledoniensis N. neocaledoniensis

N. arthritidis* 5 N. abscessus N. abscessus

N. arthritidis* N. abscessus N. abscessus

N. arthritidis* N. abscessus N. abscessus

N. arthritidis* N. beijingensis No Id

N. arthritidis T* N. abscessus N. abscessus

N. cerradoensis* 3 N. nova 50%/N. africana
50%

N. nova 50%/N.
africana 50%

N. cerradoensis* N. nova 50%/N. africana
50%

N. nova 50%/N.
africana 50%

N. cerradoensis T * N. nova 50%/N. africana
50%

N. nova 50%/N.
africana 50%

N. altamirensis* 2 N. brasiliensis N. brasiliensis

N. altamirensis T* N. brasiliensis N. brasiliensis

1 Species identification based in reference method

*Species that are not present in the V3.0 database
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routine laboratory procedure. It is possible that freezing may
cause weakening of the bacterial cell walls. Also, the repro-
ducibility of the method was not evaluated. Additional tests
are necessary in order to have a better appreciation of the
accuracy of these techniques.

VITEK® MS IVD V3.0 yielded good identification rates
for Nocardia spp. at the species and complex level. Regarding
routine processing of Nocardia specimens in routine labora-
tories, extraction gives results above 67% in terms of correct
identification rates. In case of “no identification,” additional
deposit of the same extract or deposit of a new extract can help
in obtaining identification rates above 87%. BCP culture me-
dium, which was not used during database development,
yields similar identifications as compared with the medium
that was used for database development. The best way of
avoiding misidentification of low prevalence species is to sup-
plement the database with more strains for these species. Our
data show that the VITEK®MS IVD V3.0 can be considered
as a useful tool in routine laboratories working with Nocardia
spp.
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Abstract. The invasion of aquifer microbial communities by aboveground micro-organisms, a phenomenon 18 
known as community coalescence, is likely to be exacerbated in groundwaters fed by stormwater infiltration 19 
systems (SIS). Here, the incidence of this increased connectivity with upslope soils and impermeabilized surfaces 20 
was assessed through a meta-analysis of 16S rRNA gene libraries. Specifically, free-living and attached aquifer 21 
bacteria (i.e., water and biofilm samples) were characterized upstream and downstream a SIS, and compared with 22 
bacterial communities from watershed runoffs, detention and infiltration basins. A significant bacterial transfer 23 
was observed, with aquifer bacterial biofilms being largely made up of taxa occurring in aboveground sediments 24 
and urban runoffs (44 to 67% of the total reads). This coalesced biofilm community was rich in hydrocarbon 25 
degraders such as Sphingobium and Nocardia. The bacterial community of the downstream SIS aquifer waters 26 
showed similar coalescence with aboveground taxa (26.7-66.5%) but a higher number of taxa involved in the N- 27 
and S-cycles was observed. A DNA marker named tpm enabled a tracking of bacterial species from 24 genera 28 
including the Pseudomonas, Aeromonas and Xanthomonas among these communities. Reads related to the 29 
Pseudomonas were allocated to 50 species, of which 16 were found in the aquifer samples. P. umsongensis and P. 30 
chengduensis were inferred to be in higher proportions among the tpm-harboring bacteria, respectively, of the 31 
aquifer biofilms, and waters. Several of these aquifer species were found involved in denitrification but also 32 
hydrocarbon degradation (P. aeruginosa, P. putida, and P. fluorescens). Reads related to Aeromonas were 33 
allocated to 11 species but only those from A. caviae were recovered in the aquifer samples. DNA imprints 34 
allocated to the X. axonopodis phytopathogen were recorded in higher proportions among the tpm-harboring 35 
bacteria of the aquifer waters than aboveground samples. A coalescence of microbial communities from an urban 36 
watershed with those of an aquifer was thus observed, and recent aquifer biofilms were found dominated by runoff 37 
opportunistic taxa able to use urban C-sources from aboveground compartments. 38 
  39 
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1   Introduction 40 

Urbanization exerts multiple pressures on natural habitats and particularly on aquatic environments (Konrad and 41 
Booth, 2005; McGrane, 2016; Mejía and Moglen, 2009). The densification of urban areas, combined with the 42 
conversion of agricultural and natural lands into urban land-use, led to the replacement of vegetation and open 43 
fields by impervious urban structures (i.e. roads, rooftops, side-walks and parking lots) (Barnes et al., 2001). These 44 
impervious structures reduce the infiltration capacity of soils. They also exacerbate the speed and volume of 45 
stormwater runoff that favor soil erosion, flooding events, and affect adversely natural groundwater recharge 46 
processes (Booth, 1991; Shuster et al., 2005). Due to these consequences, stormwater infiltration systems (SIS) or 47 
managed aquifer recharged systems (MAR) have been developed during the last decades, and are gaining more 48 
interest in developed countries (Pitt et al., 1999). Such practices reduce direct stormwater discharges to surface 49 
waters and alleviate water shortages (Barba et al., 2019; Dillon et al., 2008; Marsalek and Chocat, 2002). However, 50 
stormwater represents a major source of nonpoint pollution, and its infiltration into the ground may have adverse 51 
ecological and sanitary impacts (Chong et al., 2013; Pitt et al., 1999; Vezzaro and Mikkelsen, 2012).  52 

The vadose zone of a SIS can act as a natural filter towards pollutants (hydrocarbons and heavy metals), and 53 
micro-organisms washed-off by runoffs (e. g. Murphy and Ginn, 2000; Tedoldi et al., 2016). Nevertheless, the 54 
effectiveness of SIS in preventing the migration of contaminants towards aquifers is not always optimal (Borchardt 55 
et al., 2007; Lapworth et al., 2012; Arnaud et al., 2015; Voisin et al., 2018). The filtering properties of SIS are 56 
influenced by various abiotic factors such as the nature of the media (rocks, sand and other soil elements), the 57 
physical properties (e. g. granulometry, hydrophobicity index, organization), and the runoff water flow velocity 58 
(Lassabatere et al., 2006; Winiarski et al., 2013). These constraints will impact water transit time from the top 59 
layers to the aquifer, but also the biology of these systems including the plant cover and root systems, worms and 60 
microbiota (Barba et al., 2019; Bedell et al., 2013; Crites, 1985; Pigneret et al., 2016). The thickness of the vadose 61 
zone was found to be one of the key parameters explaining chemical transfers such as phosphate and organic-62 
carbon sources (Voisin et al., 2018). The situation is much less clear regarding the microbiological communities 63 
that flow through these systems (e. g. Barba et al., 2019; Voisin et al., 2018).  64 

According to the microbial community coalescence concept conceptualized by Tikhonov, (2016) and adapted 65 
to riverine networks by Mansour et al. (2018), urban aquifers fed by SIS should harbor microbiota reflecting the 66 
coalescence (community assemblages and selective sorting) of aboveground microbial communities with those of 67 
the aquifer. Indeed, during rain events, microbial communities will be re-suspended through runoff-driven surface 68 
erosion processes, favoring detachment of micro-organisms from plant litter, wastes, soil, and other particles. 69 
These re-suspended communities will merge and generate novel assemblages. The resulting community will 70 
initially match the relative contributions of the various sub-watersheds to the overall microbiological complexity 71 
of the assemblages. The prevailing ecological constraints among the downward systems will then gradually drive 72 
this coalescence towards the most fit community structures. These resulting communities might be highly efficient 73 
at degrading urban pollutants trapped among a SIS but could also disturb the ecological equilibria of the connected 74 
and more sensitive systems like those of deep aquifers.  75 

Here, the study explored the impact of a SIS, with a thick vadose zone (> 10 m), on the coalescence of urban 76 
runoff microbial communities in a connected aquifer. The tested hypotheses were that (1) highly specialized taxa 77 
(often termed K-strategists e. g. Vadstein et al., 2018) of an aquifer should outcompete the intrusive community 78 
members of aboveground taxa but (2) nutrient inputs from runoffs and pollutants could also drive changes among 79 
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these communities and favour environmental opportunists (often termed r-strategists e. g. Vadstein et al., 2018). 80 
The targeted SIS is part of a long-term experimental site 81 
(http://www.graie.org/portail/dispositifsderecherche/othu/) for which physico-chemical and biological 82 
monitorings have been implemented. It is connected to the eastern aquifer of Lyon (France) which is fed by three 83 
low hydraulic conductivity corridors (10−5–10−8 m s−1) separated by moraine hills (Foulquier et al., 2010). It has 84 
an average vadose zone thickness of 15 m, and the delay between a rainfall event and the impact on the aquifer 85 
waters was estimated at 86±11h (Voisin et al., 2018). A large DNA meta-barcoding dataset was built for this site, 86 
in order to investigate bacterial community coalescence from top compartments among the connected aquifer 87 
waters but also biofilm communities developing on inert surfaces. This investigation was built on the hypothesis 88 
that a less significant microbial community coalescence was likely to be observed among aquifer water samples 89 
than biofilms. This is supported by previous reports which suggested the occurrence of transient free-living 90 
bacteria among aquifers acting as a traveling seed bank (Griebler et al., 2014). More precisely, water grab samples 91 
were found to give access to snapshots of the diversity found among an aquifer (Voisin et al., 2018) while aquifer 92 
biofilms developing on artificial surfaces (clay beads) have been shown to be more integrative and informative of 93 
the groundwater microbiological quality (Mermillod-Blondin et al., 2019). Clay bead biofilms were found to 94 
capture the most abundant aquifer taxa, and taxa that could not be detected from grab samples. A field based 95 
investigation was thus performed to further explore the relative contributions of a set of sources such as runoffs 96 
and urban soils on the observed biofilm assemblages recovered from an aquifer. A Bayesian methodology, named 97 
SourceTracker (Knights et al., 2011), was used to investigate community coalescence from 16S rRNA gene – 98 
based DNA meta-barcoding datasets. To go deeper into these inferences, complementary datasets were built from 99 
an additional DNA marker named tpm (encoding EC:2.1.1.67 which catalyzes the methylation of thiopurine drugs) 100 
(Favre‐Bonté et al., 2005). This genetic marker enables finer taxonomic allocations down to the species level, and 101 
allowed gaining further insights on the coalescence of a set of waterborne bacterial species and sub-species, 102 
including plant and human pathogens, with the aquifer microbial community. 103 

2   Material and Methods 104 

2.1   Experimental site  105 

The Chassieu urban catchment is located in the suburbs of Lyon (France). It has a surface of 185 ha and hosts 106 
mainly industrial and commercial activities (i.e. wholesaling, recovery and waste management, metal surface 107 
treatment, car wash and repair services). The imperviousness coefficient of the catchment area is about 75 %. 108 
Stormwater and dry weather flows from industrial activities are drained by a network separated from the sewer. 109 
This network transfers waters into the Django-R SIS, which is part of the OTHU long term experimental 110 
observatory dedicated to urban waters (http://www.graie.org/othu/). This SIS contains an open and dry detention 111 
basin (DB) (32,000 m3), built on a concrete slab, with edges impermeabilized by a thick plastic lining. This DB 112 
allows a settling of coarse and medium size particles, resulting in sedimentary deposits which favor development 113 
of a plant cover. The DB water content is delivered within 24h into an infiltration basin (IB) (61,000 m3), which 114 
favors the recharge of the connected aquifer (AQ). This infiltration basin had a vadose zone of about 11 m during 115 
the experiments, and its geology, hydrology, ecology and pollution levels have been deeply investigated e. g. 116 
Barraud et al. (2002); Le Coustumer and Barraud (2007). 117 
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The Chassieu watershed, the Django-R SIS, and the Lyon aquifer were considered for this study (Figure 1, 118 
Table S1). Watershed runoff waters (hereafter WS) have been collected from sampling points spread over the 119 
catchment (21 sub-watersheds over three sampling periods, n=64 samples). Sediments from the detention basin 120 
(hereafter DB) have been recovered from 50 cm2 area covering the full sediment column down to the concrete slab 121 
of the DB (n=20 samples). These sediments (or urban soils) often had an herbaceous plant cover, and were sampled 122 
in four areas defined according to the hydrological forces prevailing in the basin (e. g. Marti et al., 2017; Sébastian 123 
et al., 2014). Infiltration basin soil samples (hereafter IB) had been collected from 3 main zones (the area receiving 124 
the inflow waters, the bottom area of the basin, and an upper zone of the basin exposed to inflow waters only 125 
during strong rain events) (n=5 samples per zone), at a 0-10 cm depth covering a surface of 50 cm2. The aquifer 126 
samples have been recovered from piezometers located upstream (up, in a zone of the aquifer not influenced by 127 
water recharge) and downstream (dw, in a zone of the aquifer influenced by water recharge) of the SIS of the 128 
Django-R site at a depth of 2 m below the water table (e. g. Barraud et al., 2002; Voisin et al., 2018) (Fig. 1). 129 
Groundwater samplings (n=6; named AQ_wat) had been performed with an immerged pump, used at a pumping 130 
rate of 6–8 L/min (PP36 inox, SDEC, Reignac-sur-Indre, France), and previously cleaned with 70% ethanol. The 131 
first 50 L were used to rinse the sampling equipment and discarded. The following 6 L were used for the 132 
microbiological analyses. The biofilm samples (AQ_bio) from the aquifer were recovered using clay beads 133 
incubated in the aquifer over 10 days using the same piezometers as those used for the aquifer water samplings 134 
(n=6 samples). Clay beads were used as physical matrix to sample groundwater biofilms according to Voisin et al. 135 
(2016).  136 

2.2   PCR products DNA sequencings 137 

Sequencing of the V5-V6 16S rRNA gene (rrs) PCR products were performed by the MrDNA company 138 
(Shallowater, TX, USA) with Illumina MiSeq technology and using the primers set 799F-1193R. The tpm DNA 139 
libraries were generated using the following mix of degenerated primers: ILMN-PTCF2 140 
(GTGCCGYTRTGYGGCAAGA), ILMN-PTCR2 (ATCAKYGCGGCGCGGTCRTA), ILMN-PTCF2m 141 
(GTGCCCYTRTGYGGCAAGT), and ILMN-PTCR2m (ATGAGBGCTGCCCTGTCRTA) as suggested by 142 
Favre‐Bonté et al. (2005). PCR reactions were performed under the following conditions: (1) a hot start at 94°C 143 
for 3 min, (2) 35 cycles consisting of 94°C for 30 s, 55°C for 30 s and 72°C for 30 s, and (3) a final extension of 5 144 
min at 72°C. The PCR products were sequenced by Biofidal (Vaulx-en-Velin, France) using the Illumina MiSeq 145 
technology. The 16S rRNA and tpm gene sequences are available at the European Nucleotide Archive 146 
(https://www.ebi.ac.uk/ena).  147 

2.3   Bioinformatic analyses 148 

All MiSeq sequences were processed using Mothur (v.1.40.4) (Schloss et al., 2009) following the standard 149 
operating procedure developed by Kozich et al.(2013). For the 16S rRNA (rrs) gene sequences, reads were filtered 150 
for length (>300bp), quality score (mean, ≥25), number of ambiguous bases (=0), and length of homopolymer runs 151 
(<8) using the trim.seqs script in Mothur, and singletons were discarded. The 16S rRNA gene sequences passing 152 
these quality criteria were aligned to the SILVA reference alignment template (release 128) and an 80% bootstrap 153 
P-value threshold was used for taxonomic assignments. Chimeric sequences were identified using the 154 
chimera.uchime command and removed. To avoid any biases related to sequencing depth, a subsampling-based 155 
normalization was applied (20,624 sequences per sample) and the normalized dataset was used for all downstream 156 
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analyses. Operational Taxonomic Units (OTUs) were defined using a 97% identity cut-off. FAPROTAX (Louca 157 
et al., 2016) functional inferences were performed on the MACADAM Explore web site 158 
(http://macadam.toulouse.inra.fr/) according to Le Boulch et al. (2019). For the tpm gene sequences, chimeric 159 
sequences, primers, barcodes were removed, and the dataset was limited to sequences of a minimum length of 210 160 
bp (average length=215 bp). The number of sequences was then normalized between the samples (4,636 sequences 161 
per sample) and Operational Taxonomic Units (OTUs) were defined with a 100% identity cut-off. The 162 
“BD_TPM_Mar18_v1.unique_770seq” database (http://www.graie.org/othu/donnees) was used to classify the 163 
sequences using the “Wang” text-based Bayesian classifier (Wang et al., 2007) and a P-bootstrap value above 164 
80%. Local Blast analyses were performed on the “BD_TPM_Mar18_v1.unique_770seq” database using the 165 
NCBI BLASTX program in order to check the quality of the taxonomic affiliations. 166 

2.4   Statistical analyses 167 

All statistical analyses were carried out in R (v.3.5.1). For the 16S rRNA gene sequences, alpha-diversity estimates 168 
were computed using the function “rarefy” from the ‘Vegan’ package (Oksanen et al., 2015). Richness (Sobs) was 169 
computed as the number of observed OTUs in each sample. The diversity within each individual sample was 170 
estimated using the non-parametric Shannon index. To estimate whether the origin of the samples influenced the 171 
alpha-diversity, an ANOVA with Tukey’s post-hoc tests was performed for each index. Shared and unique OTUs 172 
were depicted in Venn-diagrams with the “limma” package (Ritchie et al., 2015). Concerning the beta-diversity 173 
between samples, a neighbor-joining tree was constructed with a maximum-likelihood approximation method 174 
using FastTree (Price et al., 2009). Weighted UniFrac distances were calculated for all pairwise OTU patterns 175 
according to Lozupone et al. (2011). Based on the distance matrices, Principal Coordinates Analysis (PCoA) 176 
(Anderson and Willis, 2003) were used to determine changes in the bacterial community structure from the 177 
watershed down to the aquifer. Permutation tests of distances (PERMANOVA) (Anderson, 2001) were performed 178 
using the “vegan” package (Oksanen et al., 2015), in order to establish the significance of the observed groupings.  179 

2.5   Bacterial community coalescence analyses 180 

The SourceTracker computer package (Knights et al., 2011) was used to investigate community coalescence. 181 
SourceTracker is a Bayesian approach built to estimate the most probable proportion of user-defined “source” 182 
OTU in a given “sink” community. In the present analysis, various scenarios of community coalescence were 183 
investigated such as the coalescence of bacterial taxa from the watershed runoff waters and sediments from the 184 
detention and infiltration basins, with those of the downstream SIS aquifer water samples or of recent biofilms 185 
developing on clay beads incubated in the aquifer. SourceTracker was run with the default parameters (rarefaction 186 
depth 1000, burn-in 100, restart 10) to identify sources explaining the OTU patterns observed among the aquifer 187 
samples (waters and clay bead biofilms, n=12). Alpha values were tuned using cross-validation (alpha 1= 0.001 188 
and alpha 2= 1). The relative standard deviation (RSD) based on three runs was used as a gauge to evaluate 189 
confidence on the computed values (Henry et al., 2016; McCarthy et al., 2017). 190 

3.   Results 191 

3.1   16S rRNA V5-V6 gene sequences distribution biases and profilings 192 

The analysis of the 16S rRNA V5-V6 gene libraries yielded 2,124,272 high-quality sequences distributed across 193 
103 samples. Subsampling-based normalization was applied (20,624 reads per sample) and sequences were 194 
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distributed into 10,231 16S rRNA gene OTUs at a 97 % threshold. The rarefaction curves indicated that the 195 
sequencing depth was sufficient to cover bacterial diversity (Figure S1). At all sampling sites, bacterial 196 
communities were dominated by Proteobacteria, Bacteroidetes and Actinobacteria (WS=95.1% of total reads, 197 
DB=84.3%; IB=71.4%; AQ_bio=98.8% and AQ_wat=58.6%), but 10 other phyla with relative abundances 198 
superior to 0.5% were also detected (Figure 2A and Table S2). Alpha-diversity estimates showed that aquifer 199 
samples harbored a microbiome with a significantly lower richness (AQ_bio: Sobs=278 OTUs ± 106 and AQ_wat: 200 
Sobs=490 OTUs ± 333) and a less diverse bacterial community (AQ_bio: H’=2.9 ± 0.3 and AQ_wat: H’=4.3 ± 0.7) 201 
than the ones of the upper compartments (Sobs-WS=1,288 OTUs ± 232; Sobs-DB=1,566 OTUs ± 245, Sobs-IB=1,503 202 
OTUs ± 177 and H’WS=5.0 ± 0.5; H’DB=5.4 ± 0.5, H’IB=5.7 ± 0.4) (ANOVA, p<0.001) (Figure 2B and Table S3). 203 
Among the surface samples, a greater diversity was observed among the soil samples from the infiltration basin 204 
than from samples of watershed runoff waters and sediments of detention basin (ANOVA, p<0.05). In the aquifer, 205 
water grab samples were more diverse and showed higher 16S rRNA gene OTU contents than biofilms recovered 206 
from clay beads incubated for a 10-day period (ANOVA, p<0.05) (Figure 2B and Table S3). 207 

The structure of bacterial communities inferred from V5-V6 16S rRNA gene sequences changed markedly 208 
along the watershed down the aquifer. A PCoA ordination of the OTU profiles based on weighted Unifrac distances 209 
revealed that samples clustered according to their compartment of origin (i.e. WS, DB, IB, AQ_bio and AQ_wat) 210 
(Figure 3). These changes in community structures between compartments were supported by PERMANOVA 211 
statistical tests (F=20.7, P<0.001). Bacterial communities per compartment were found to be made of core and 212 
flexible (defined as not conserved between all sampling periods) bacterial taxa. Within a same compartment, 213 
similarities between bacterial community profiles ranged from 64.9% (AQ_wat) to 82.0% (IB), while similarities 214 
across compartments ranged from 47.8% (DB vs AQ_bio) to 65.9% (DB vs IB) (Figure S2). Bacterial community 215 
profiles of the aquifer waters were found closer to the ones of the detention basin deposits (57.5%) and soils of the 216 
infiltration basin (61.4%) than those of the aquifer biofilms (47.8 and 49.2%, respectively). However, more than 217 
89% of the 16S rRNA gene OTUs (n=8,284) identified above the aquifer (WS, DB and IB) were not detected in 218 
groundwater samples (AQ_bio and AQ_wat) (Figure S3). This large group of OTUs was made of minor taxa which 219 
accounted for 37.1%, 44.3% and 47.3% of the total reads recovered from the WS, DB and IB samples, respectively.  220 

3.2   Coalescence of surface and aquifer bacterial communities 221 

A SourceTracker analysis was performed to estimate the coalescence of V5-V6 16S rRNA gene OTUs from the 222 
watershed and SIS down into the aquifer waters and biofilm bacterial communities. This analysis indicated 223 
significant coalescence between the bacterial communities of the runoffs, the soils of the SIS, and the aquifer 224 
samples. The aquifer water microbial community upstream the SIS was found to explain between 0.02%-12.6% 225 
of the downstream water microbial community (Table 2), while OTUs from the runoff waters were found to 226 
explain 23 to 59% of the observed patterns (Table 2). OTUs from the infiltration basin explained 0.8-3.8% of the 227 
observed diversity among the SIS impacted aquifer community, and, those of the detention basin, between 0.02 228 
and 9% of the community. The aquifer biofilm bacterial communities were also found to be assemblages of 229 
communities from the surface environments. The origin of more than 90% of the SIS impacted aquifer biofilms 230 
could be explained. Main sources were the runoff waters (33%), the sediments of the detention basin (20%), and 231 
the upstream aquifer waters (39%) (Table 2). Soils from the infiltration basin did not appear to have contributed 232 
much to taxa recovered from these aquifer biofilms (<4%) (Table 2). Content of the aquifer biofilms recovered 233 
upstream the SIS showed similar origins with a high proportion related to those observed among the runoff waters 234 
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(64%) and the aquifer waters (30%). This was not considered surprising because runoff infiltration can occur in 235 
several sites upstream of the SIS (even though no direct relation with other SIS were made).  236 

3.3.   16S rRNA gene inferred bacterial taxa undergoing coalescence in the aquifer 237 

In order to identify the bacterial taxa involved in the coalescence process, OTUs of the 16S rRNA gene dataset 238 
were allocated to taxonomic groups using the SILVA reference alignment template. These taxonomic allocations 239 
indicated that (1) 14 genera were only recorded in the aquifer samples, (2) 421 genera were only recorded in the 240 
upper surface compartments of the watershed, and (3) 219 were recorded among aboveground and aquifer 241 
compartments (Table S4). The following bacterial genera were exclusively associated to the aquifer bacterial 242 
communities: Turicella, Fritschea, Metachlamydia, Macrococcus, Anaerococcus, Finegoldia, Abiotrophia, 243 
Dialister, Leptospirillum, Omnitrophus, Campylobacter, Sulfurimonas, Haemophilus, Nitratireductor. These 244 
bacterial genera were recovered from all water samples while 5 were also detected in biofilms (Table S4). These 245 
genera were associated to 926 16S rRNA gene OTUs that accounted for 48.0% and 1.8% of total reads recovered 246 
from aquifer waters and aquifer biofilms developing on clay beads, respectively. FAPROTAX functional 247 
inferences indicated some of these genera to be host-associated such as Fritschea, Metachlamydia, Finegoldia, 248 
Campylobacter and Haemophilus, with the latter two being well-known to contain potential pathogens. 249 
Campylobacter and Sulfurimonas cells have also been associated with nitrogen and sulfur respiration processes, 250 
and Leptospirillum with nitrification.  251 

Regarding the bacterial taxa of the aboveground communities matching those of the aquifer samples, a total of 252 
1,021 16S rRNA gene OTUs was found to be shared between these compartments (Table 1 and Figure S3). These 253 
OTUs consisted of abundant taxa as they accounted for 9.7-39.4% of the total reads for the samples recovered 254 
from the surface compartments, and for 33.6-83.4% and 95.0-99.4% of the total reads of the water and biofilm 255 
aquifer samples, respectively. The β- and γ-proteobacteria dominated this group. It is noteworthy that aquifer 256 
samples collected upstream of the SIS shared less OTUs with the surface compartments (125 OTUs ± 41) than 257 
samples under the influence of the infiltration system (332 OTUs ± 85) (Table 1). The shared OTUs between 258 
aquifer samples and the upper compartments represented a higher fraction of bacterial communities in samples 259 
recovered downstream the SIS (81.3% ± 22.8 of total reads) compared to those collected upstream (68.9% ± 30.9 260 
of total reads) (Table 1). Reads from Pseudomonas, Nitrospira, Neisseria, Streptococcus, Flavobacterium were 261 
the most abundant (>1%) of the shared OTUs recovered in the aquifer water samples, while those allocated to 262 
Pseudomonas, Duganella, Massilia, Nocardia, Flavobacterium, Aquabacterium, Novosphingobium, 263 
Sphingobium, Perlucidibaca, Meganema were the most abundant (>1%) among the aquifer biofilms (Table S4). 264 
Most of these aquifer water taxa (except Streptococcus) were found involved in denitrification or nitrification as 265 
inferred from FAPROTAX. The biofilm taxa were more often associated with hydrocarbon degradation 266 
(Novosphingobium, Sphingobium, and Nocardia) by FAPROTAX. Several of these biofilm bacterial genera were 267 
also found to be likely containing potential human pathogens (Duganella, Massilia, Nocardia, and Aquabacterium) 268 
by FAPROTAX (and published clinical records). A set of 14 potentially hazardous bacterial genera was selected 269 
from Table S4, and used to illustrate the coalescence of bacterial taxa among the aquifer samples on Fig. 4. The 270 
16S rRNA gene reads from Flavobacterium prevailed in all upper compartments (WS=6.9% of total reads, 271 
DB=13.4% and IB=8.3%) and were in significant numbers among the connected aquifer (AQ_wat = 1.1% and 272 
AQ_bio = 3.1%) (Figure 4B and Table S4C). Pseudomonas 16S rRNA gene reads were in relatively lower numbers 273 
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in the upper compartments (WS = 0.4% of total reads, DB = 0.4% and IB < 0.05%) but increased in the aquifer 274 
samples (AQ_wat = 8.4% and AQ_bio = 35.5%) (Figure 4B and Table S4). Similar trends were observed for 275 
Nocardia and Neisseria OTUs (Figure 4B). It is to be noted that OTUs exclusively recovered from the upper 276 
compartments were mainly part of the Gemmatimonas (0.2-1.6% of total reads), Geodermatophilus (0.1-1.8%) 277 
and Roseomonas (0.1-1.0%) (Table S4). 278 

3.4 Coalescence of Pseudomonas and other tpm-harboring bacterial species  279 

DNA sequences from tpm PCR products generated according to Favre-Bonté et al. (2005) allowed a deeper 280 
analysis of the bacterial species undergoing a coalescence with the aquifer microbiome. A total of 19,129 tpm 281 
OTUs was identified among the samples (from datasets re-sampled to reach 4,636 reads per sample). As expected, 282 
these tpm reads were mainly assigned to the Proteobacteria (WS = 91.7% of total reads, DB = 86.5% ; IB = 76.3% 283 
; AQ_wat = 82.9% and AQ_wat = 85.0%), but some reads could also be attributed to the Bacteroidetes, Nitrospirae 284 
and Cyanobacteria (Table S5). These taxonomic allocations allowed the identification of 24 bacterial genera and 285 
91 species whose distributions are summarized in Tables S6 and S7. The tpm sequences were mainly allocated to 286 
the Pseudomonas (WS = 35.5% of total reads, DB = 27.2% ; IB = 7.3% ; AQ_wat = 51.4% and AQ_bio = 47.6%), 287 
Aeromonas (WS = 0.8% of total reads, DB = 2.7%; IB <0.05%; AQ_wat = 0.07% and AQ_bio < 0.05%), 288 
Xanthomonas (WS = 4.4% of total reads, DB <0.05%; IB =1.3%; AQ_wat = 8.3% and AQ_bio < 0.05%), 289 
Herbaspirillum (WS = 10.74% of total reads) and Nitrosomonas (DB = 4.4% of total reads; IB = 0.23%) (Table 290 
S6). Reads related to Pseudomonas were allocated to 50 species, including pollutant-degraders (P. 291 
pseudoalcaligenes, P. aeruginosa, P. fragi, P. alcaligenes, P. putida and P. fluorescens), phytopathogens (P. 292 
syringae, P. viridiflava, P. stutzeri, and P. marginalis) and human opportunistic pathogens (P. aeruginosa, P. 293 
putida, P. stutzeri, P. mendocina, S. acidaminiphila) (Table S7). Reads related to the Aeromonas were attributed 294 
to 11 species but only reads allocated to A. caviae could be recovered from the aquifer and aboveground 295 
compartments (Table S7). Reads related to the Xanthomonas were allocated to 9 species but only those allocated 296 
to the X. axonopodis/campestris complex and X. cannabis species were recovered from the aquifer and upper 297 
compartments (Table S7). Regarding the Pseudomonas, tpm reads allocated to P. jessenii, P. chlororaphis, and P. 298 
resinovorans were restricted to the aquifer samples. Reads allocated to P. aeruginosa, P. anguilliseptica, P. 299 
chengduensis, P. extremaustralis, P. fluorescens, P. fragi, P. gessardii, P. koreensis, P. pseudoalcaligenes, P. 300 
putida, P. stutzeri, P. umsongensis, and P. viridiflava, were recovered from the aquifer and upper compartments 301 
(Table S7). FAPROTAX analysis indicated that a significant number of the species detected in the aquifer can be 302 
involved in denitrification (P. aeruginosa, P. fluorescens, P. putida, P. stutzeri, S. acidaminiphila, X. 303 
autotrophicus, P. chlororaphis) or nitrification (Nitrospira defluvii, Nitrosomonas oligotropha) but also in 304 
hydrocarbon degradation (P. aeruginosa, P. fluorescens, P. putida). Some were also suggested by FAPROTAX to 305 
be human pathogens or invertebrate parasites (e. g. P. chlororaphis). These functional inferences were in line with 306 
those obtained with the 16S rRNA gene dataset.  307 

The tpm OTUs (representative of infra-specific complexes) shared between the upper compartments and the 308 
aquifer (Table 3 and Table S8) were allocated to 14 species and 5 genera (Table 3). Four of these OTUs led to 309 
higher relative numbers of reads in the aquifer samples, in the following decreasing order: P. umsongensis 310 
(Otu00005) > P. chengduensis (Otu00024) > X. axonopodis/campestris (Otu00019 & Otu00878) > P. stutzeri 311 
(Otu00119 & Otu10066). These co-occurrences of OTUs between aboveground and aquifer samples support the 312 
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hypothesis of significant coalescence between these bacterial communities. The other OTUs showed higher 313 
number of reads among the top compartments. The OTU allocated to X. cannabis showed the highest relative 314 
number of reads of this group among runoff waters. The distribution pattern of this OTU suggested a relative 315 
decline while moving down the aquifer. The P. aeruginosa Otu00066 was recovered in the runoff waters, and 316 
biofilms developing on clay beads incubated in the aquifer. 317 

4. Discussion 318 

Urban microbial communities mobilized by runoffs will merge, after migration through a vadose zone, with aquifer 319 
communities. This coalescence will lead to novel microbial assemblages through selective species sorting. SIS are 320 
significantly contributing at the recharge of aquifers by runoff waters. They can receive large volumes of runoff 321 
waters that will contain significant amount of chemical pollutants but also microbial assemblages representative 322 
of the connected urban biomes. Here, the incidence of a SIS on the microbial assemblages observed among an 323 
aquifer was investigated. The structure and fate of such assemblages remain poorly investigated but must be better 324 
understood to assess the environmental and health risks related to stormwater infiltration practices (Abu-Ashour 325 
et al., 1994; Powelson et al., 1993; Redman et al., 2001). The tested hypotheses were that (1) highly specialized 326 
K-strategists of an aquifer should outcompete the intrusive community members of aboveground systems but (2) 327 
nutrient inputs from runoffs and pollutants could also drive changes among these communities and favour some 328 
environmental opportunists or r-strategists which are growing fast when significant energy sources are available. 329 
The genetic structure of coalesced aquifer communities should be representative of these trade-offs. Here, DNA 330 
meta-barcoding datasets were thus used to estimate the proportion of communities from sediments of a detention 331 
basin, soils of an infiltration basin, and runoff waters from a watershed that have merged with communities of an 332 
aquifer. Furthermore, taxonomic and functional inferences were performed in order to assess changes among the 333 
aquifer bacterial functional groups. A genetic marker named tpm was used to track species and particular sequence 334 
types of the Pseudomonas, Aeromonas, Xanthomonas, and a few other genera, from runoffs down into the SIS 335 
impacted aquifer. These trackings demonstrated the successful coalescence of some species like P. umsongensis, 336 
P. chengduensis, X. axonopodis/campestris and P. stutzeri. 337 

Estimation of alpha-diversity indices from the 16S rRNA bacterial community profilings indicated that 338 
groundwater samples (i.e. waters and biofilms) harbored a less diverse microbiome than those of the top 339 
compartments (i.e. WS, DB, IB). A 2 to 5-fold reduction in bacterial richness was observed from the surface 340 
compartments down into the aquifer. This result suggests that a large proportion of bacterial taxa carried by 341 
stormwater runoffs or thriving in the detention/infiltration basins were retained and/or eliminated by the vadose 342 
zone filtration process. In fact, more than 89% of the 16S rRNA gene OTUs in the top compartments were not 343 
detected in the underground samples. This is in agreement with previous works which have shown that 344 
immobilization of micro-organisms through porous media are high in the top soil layers, and triggered by 345 
mechanical straining, sedimentation and adsorption (Kristian Stevik et al., 2004; Krone et al., 1958). Moreover, 346 
particles that accumulate as water passes through the soil can form a mat that can also enhance this straining 347 
process (Krone et al., 1958). Nevertheless, despite this filtering effect, infiltration has induced significant changes 348 
in the diversity of groundwater bacterial communities. Both water and biofilm aquifer samples recovered 349 
downstream the SIS had higher bacterial richness that those collected upstream. These diversity changes were 350 
found related to a coalescence of bacterial taxa from the top compartments with the aquifer microbial communities. 351 
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Indeed, downstream the SIS, aquifer water samples shared more OTUs (up to 47%) with those of the runoff waters 352 
than those upstream the SIS. Furthermore, aquifer biofilms downstream the SIS were heavily colonized by OTUs 353 
(90% of the datasets) from the top compartments.  354 

The SourceTracker Bayesian probabilistic approach based on 16S rRNA gene meta-barcoding datasets 355 
(Knights et al., 2011) was applied to refine our understanding of the coalescence of microbial communities from 356 
aboveground environments down into an aquifer. These inferences revealed variable levels of coalescence in the 357 
SIS recharged aquifer depending upon the investigated sink i.e. waters or biofilms developing on clay beads 358 
incubated in the aquifer. Bacterial community structures of the groundwater samples (upstream and downstream 359 
the SIS) were significantly built from aboveground communities (e. g. those from runoff waters). However, the 360 
origin of a high proportion of the diversity observed among the aquifer waters downstream the SIS remained 361 
undefined. This is likely related to the emergence of novel biomes among the vadose zone of a SIS fed with urban 362 
waters and pollutants. These biomes would have emerged from the build-up of novel biotopes during the 363 
construction and functioning of the SIS. The prevailing environmental constraints and pollutants would then have 364 
favored minor taxa (not detectable by meta-DNA barcoding approaches) from the aboveground compartments. It 365 
is to be noted that functional inferences from the knowledge on bacterial genera suggested an occurrence of several 366 
aquifer taxa involved in the nitrogen and sulfur cycles. Campylobacter, Flavobacterium, Pseudomonas, 367 
Sulfurimonas cells have been associated with nitrogen and sulfur respiration processes, and Nitrospira and 368 
Leptospirillum with nitrification. The oligotrophic nature of the aquifer waters (concentrations of biodegradable 369 
dissolved organic carbon < 0.5 mg/L, Mermillod-Blondin et al., 2015) is thus likely to have induced a significant 370 
selective sorting of microbial taxa among the merged community. Most abundant above ground taxa often require 371 
high energy (organic carbon) and nutrient levels to proliferate (Cho and Kim, 2000; Griebler and Lueders, 2009).  372 

Similarly, a large part of the bacterial taxa identified from aquifer biofilms was attributed to aboveground 373 
sources by the SourceTracker approach. Indeed, watershed runoff waters and detention basin deposits were found 374 
to have significantly contributed to the build-up of the observed biofilm community structures. Aquifer waters 375 
collected upstream the SIS were also major contributors (11-46%) of taxa for these biofilm assemblages. These 376 
biofilms showed a high content of 16S rRNA gene sequences belonging to the β- and γ-proteobacteria. According 377 
to the ecological concept of r/K selection, these proteobacteria are often considered as r-strategists, able to respond 378 
quickly to environmental fluctuations, and colonize more efficiently newly exposed surfaces than other groups of 379 
bacteria (Araya et al., 2003; Fierer et al., 2007; Lladó and Baldrian, 2017; Manz et al., 1999; Pohlon et al., 2010). 380 
Moreover, because they tend to concentrate nutrients (Flemming et al., 2016), biofilms are likely to favor the 381 
survival of opportunistic bacterial cells capable of exploiting spatially and temporally variable carbon and nutrient 382 
sources. Here, taxa recovered from aquifer biofilms were previously recorded to have the ability to use 383 
hydrocarbons as carbon- and energy sources e. g. Nocardia, Pseudomonas, Sphingobium, and Novosphingobium. 384 
SIS and urban runoffs are well known to be highly polluted by such molecules (e. g., Marti et al., 2017) and 385 
significant organic matter enrichments were detected in aquifers downstream to SISs (e. g. Mermillod-Blondin et 386 
al., 2015). The r/K selection ecological concept thus seems to apply to the community assemblages observed in 387 
this work. K-strategists would be the specialists described above which can perform well at densities close to the 388 
carrying capacity of the system, while the r-strategists would be environmental opportunists taking advantage of 389 
the newly available surfaces offered by the clay beads and the co-occurrence of aboveground C-sources. 390 
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Taxonomic allocations of the 16S rRNA OTUs suggested the aquifer waters and biofilms to likely harbor 391 
opportunistic human, plant and animal pathogens of the genus Finegoldia, Campylobacter, Haemophilus, 392 
Duganella, Massilia, Nocardia, Aquabacterium, Flavobacterium, Pseudomonas, Streptococcus, and Aeromonas. 393 
Among these, the most striking results were the observed enrichment of 16S rRNA gene reads allocated to the 394 
Nocardia (about 4% of total reads) and Pseudomonas (about 35% of total reads) in the biofilms recovered from 395 
clay beads incubated downstream the SIS. Nocardia and Pseudomonas 16S rRNA gene sequences were in much 396 
lower relative proportions in the aboveground compartments. The genus Pseudomonas was previously found to 397 
be abundant under low flow conditions, and was often associated with biofilm formation (Douterelo et al., 2013). 398 
Moreover, pseudomonads are well-known for their ability at using hydrocarbons as energy and C-sources. 399 
Regarding the Nocardia cells, there is a poor knowledge of their ecology but a few reports indicated a tropism for 400 
hydrocarbon polluted urban soils and sediments (e. g., Bernardin-Souibgui et al., 2018; Sébastian et al., 2014). 401 
There was no additional approach to further investigate the molecular ecology of Nocardia cells found among the 402 
investigated urban watershed. However, a tpm meta-barcoding analytical scheme could be applied on DNA 403 
extracts investigated in this study in order to go deeper into the taxonomic allocations of the pseudomonads and 404 
some other tpm-harboring genera. The applied tpm meta-barcoding approach allowed an investigation of the 405 
coalescence of about 90 species among the investigated watershed including 50 species of Pseudomonas, 11 406 
species allocated to the Aeromonas, and some additional species allocated to the Nitrospira, Nitrosomonas, 407 
Stenotrophomonas, Xanthobacter, and Xanthomonas. A single Aeromonas species, A. caviae, was recorded among 408 
the above- and under-ground environments. More than 10 Pseudomonas species thriving in the recharged aquifer 409 
were detected among the aboveground compartments. P. umsongensis and P. chengduensis tpm OTUs were 410 
detected aboveground, and represented a significant fraction of the tpm-harboring bacteria retrieved from the 411 
aquifer samples. These two species were initially isolated from farm soil and landfill leachates (Kwon et al., 2003; 412 
Tao et al., 2014), further supporting the hypothesis that such soil-associated bacteria can be transferred from 413 
runoffs down to natural hydrosystems, and can merge with aquifer communities. Regarding the Pseudomonas 414 
species that may pose health threats to humans, a tpm OTU affiliated to P. aeruginosa was found to be shared 415 
between the surface compartments and the biofilm tpm community developing on clay beads incubated 416 
downstream the SIS. P. aeruginosa thus had the properties allowing an opportunistic development among the 417 
aquifer. This species is known for its metabolic versatility and ability to thrive on hydrocarbons. It would thus be 418 
part of the r-strategists that could get opportunistically established in aquifer biofilm communities impacted by 419 
urban pollutants. Apart from P. aeruginosa, the species P. putida and P. stutzeri, frequently detected in soils and 420 
wastewater treatment plants (e.g. Igbinosa et al., 2012; Luczkiewicz et al., 2015; Miyahara et al., 2010), were also 421 
recovered along the watershed and aquifer. However, although these two species were identified in human 422 
infections (Fernández et al., 2015; Noble and Overman, 1994), information about their virulence remains scarce. 423 
These species are therefore considered to be of less concern than P. aeruginosa and A. caviae, another 424 
opportunistic infectious agent (Antonelli et al., 2016). P. putida isolates have been shown involved in hydrocarbon 425 
degradation, and P. stutzeri to play part in the N-cycle either through denitrification or nitrogen-fixation.  426 

5   Conclusions 427 

The knowledge gained from the present study demonstrated that coalescence of microbial communities from an 428 
urban watershed with those of an aquifer can occur, and yield novel assemblages. Specialized bacterial 429 
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communities of aquifer waters were slightly re-shuffled by aboveground communities. However, the assemblages 430 
observed among recent aquifer biofilms were found dominated by opportunistic r-strategists coming from 431 
aboveground compartments, and often associated with the ability at degrading hydrocarbons e. g. the 432 
pseudomonads, Nocardia and Novosphingobium cells. The aquifer of the investigated site was found, for the first 433 
time, to be specifically colonized by species like P. jessenii, P. chlororaphis, and P. resinovorans but also 434 
undesirable human opportunistic pathogens such as P. aeruginosa and A. caviae. Artificial clay beads incubated 435 
in the aquifer through piezometers appeared highly efficient germcatchers to evaluate the ability of a SIS at 436 
preventing transfer of undesirable r-strategists down to an aquifer. The long term incidence of allochthonous 437 
bacteria on the integrity of aquifer microbiota remains to be investigated. Free-living communities are not likely 438 
to be much impaired but those developing as biofilms on inert surfaces might be. Microbial biofilms are key 439 
structures in the transformation processes of several elements and nutrients. They often display much higher cell 440 
densities than free-living populations (Crump and Baross, 1996; Crump et al., 1998; van Loosdrecht et al., 1990). 441 
Here, we have demonstrated that runoff and SIS bacterial taxa can colonize solid matrices of a deep aquifer. The 442 
next step is now to investigate whether native aquifer biofilm communities can resist to these repeated invasions 443 
by opportunistic r-strategists. 444 
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Figure captions 682 

Figure 1. Scheme illustrating the stormwater runoff path from the industrial watershed (WS) towards the 683 
stormwater infiltration system (SIS) used in this study. The urban watershed is located in Chassieu (France). The 684 
SIS is made of a detention basin (DB) and an infiltration basin (IB), and is connected to the Lyon 200 km2 east 685 

Figure 2. General features of the V5-V6 16S rRNA gene meta-barcoding DNA sequences obtained from runoffs, 687 
SIS, and aquifer samples. See Fig. 1 for a description of the experimental design. The main bacterial phyla (A), 688 
and alpha diversity indices (B), are shown per sampled compartment. Bacterial diversity was estimated using the 689 
Shannon index. One-way ANOVA with multiple Tukey post hoc tests were performed to investigate the 690 
differences between compartments. Different letter codes indicate significant differences (p<0.05). WS, runoff 691 
waters from the watershed; DB: sediments from the detention basin; IB: soils from the infiltration basin; 692 
AQ_water: Aquifer waters; AQ_bio: Aquifer clay beads biofilms. 693 

Figure 3. PCoA analysis of weighted UniFrac dissimilarities between the V5-V6 16S rRNA gene OTU profiles 694 
of the watershed runoff waters (WS), urban sediments and soils from the connected detention (DB) and infiltration 695 
(IB) basins receiving the runoffs, and waters (AQ_water) and biofilms (AQ_bio) from the connected aquifer. See 696 
Fig. 1 for a description of the experimental site. Ellipses are representative of the variance observed (standard 697 
error) between the ordinations of a group of samples. PERMANOVA tests confirmed the significance (p < 0.001) 698 
of the groupings. 699 

Figure 4. Relative numbers of potentially pathogenic bacterial genera along the watershed down the aquifer. The 700 
abundance (rel. abund.) of bacterial genera exclusively detected in upper compartments (A) or both in upper 701 
compartments and aquifer (B) are presented. Size of bubbles is proportional to the relative abundance (in %) of 702 
each bacterial genus per sampled compartment. WS, runoff waters from the watershed; DB: sediments from the 703 
detention basin; IB: sediments from the infiltration basin; AQ_water: Aquifer waters; AQ_bio: Aquifer clay beads 704 
biofilms. 705 
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