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Introduction

A straight, fit-in-one-line definition of Algebraic Geometry would say that it deals with the study of Algebraic Varieties. The latter could be defined as the zero loci of polynomial equations over some field of coefficients k. However, since Grothendieck's fundamental work, Algebraic Geometry has grown far beyond this first definition.

In particular, the theory of schemes and algebraic stacks has allowed algebraic geometers to have a much more general description of the geometric framework to their research. One of the greatest effort of algebraic geometers is to create and/or adapt new languages and theories to understand, explain, and define the geometrical objects under examination. The theory of motives is one of the examples that most fit these considerations.

One of the main tasks of Algebraic Geometry is classifying varieties. This amounts to ask questions whose nature is, roughly, "when are two such varieties equivalent?". The most natural equivalence relation is certainly isomorphism. However, the notion of isomorphism is a very strict equivalence relation. A weaker notion is based on the Zariski topology that one can consider on a variety. Roughly speaking, the closed subsets of this topology are (countable unions of) subvarieties of positive codimension; so that the open sets are very "large". Two varieties are said to be birational to each other if they are isomorphic along an open Zariski subset. The classification of birational classes of algebraic varieties is one of the main tasks of Algebraic Geometry since the beginning of last century. A great effort has been produced ever since to construct birational invariants, that is, algebraic structures (cohomologies, Hodge theory, Abelian varieties, Chow groups, just to cite a few) associated to a variety and which are isomorphic for two birationally equivalent varieties. One of the questions one could ask is to determine criteria for a given variety X to be rational, that is, birational to the projective space. In this cases, birational invariants could be used to describe an obstruction to rationality, that is, to exclude the possibility for X to be rational. In this report, we would like to focus on invariants which arise from the study of complexes of coherent sheaves on a given variety, using tools such as homological algebra and category theory. The main constructions considered are noncommutative schemes, their semiorthogonal decompositions, and noncommutative motives.

The theory of exceptional objects and semiorthogonal decompositions started with the Rudakov seminar in the late 80's in Moscow [hel90]. One of the main ideas was to use homological algebra, and hence the bounded derived category D b pXq of coherent sheaves on a variety X, to study the properties of vector and line bundles and their relation with the geometry of X. These considerations rapidly turned into a much more general theory.

Notice that, if X is defined over a field k, the category D b pXq has a triangulated k-linear 4 structure. In particular, there is an autoequivalence r1s which correspond to the right shift by one of all the cohomologies of a complex. Considering two line bundles L and M as complexes concentrated in degree 0, we have Hom D b pXq pL, M risq Ext i pL, M q. The latter is known to be isomorphic to the cohomology H i pX, L M q.

For example, consider X a smooth and projective variety. Given any line bundle L on X, we can consider the functor Φ : D b pkq Ñ D b pXq which associates to a bounded complex C of finite-dimensional k-vector spaces the bounded complex ΦpC q : C L of vector bundles on L. If we assume H 0 pX, O X q k and H i pX, O X q 0 for i $ 0, then we have that (1) Hom D b pXq pL, Lq k, and Hom D b pXq pL, Lrisq 0 for any i $ 0.

The latter properties ensure that the functor Φ has a right adjoint, namely the functor Ψ : D b pXq Ñ D b pkq defined by ΨpA q Hom D b pXq pL, A q for any bounded complex A of coherent sheaves. Similarly, there is a left adjoint to Φ. We denote by xLy the essential image of Φ in D b pXq and note that this is the smallest full triangulated thick subcategory of D b pXq containing L.

All the above considerations are purely of homological nature, and can be extended to any variety X. An exceptional object E on X is a bounded complex of coherent sheaves (that is, an object in D b pXq) satisfying the same homological properties (1) which were satisfied by the line bundle L in the previous example. Recalling that D b pSpecpkqq D b pkq, any exceptional object gives a fully faithful functor D b pSpecpkqq Ñ D b pXq admitting right and left adjoints. In general, given a full triangulated thick subcategory A of D b pXq, we say that A is admissible if the embedding functor A Ñ D b pXq admits right and left adjoints.

An ordered pair of admissible subcategories pA, Bq of D b pXq is said to be semiorthogonal if Hom D b pXq pB, Aq 0 for any object B of B and A of A. Similarly we define a semiorthogonal collection of admissible subcategories pA 1 , . . . , A r q. For example, consider X P n and the exceptional objects given by two line bundles Opiq and Opjq. The admissible subcategories xOpiqy and xOpjqy consist of complexes of the form C Opiq and C Opjq, respectively, where C is a bounded complex of finite dimensional k-vector spaces. An easy calculation in cohomology shows that pxOpiqy, xOpjqyq are semiorthogonal if and only if 0 j ¡ i n 1. It follows for example that pO, . . . , Opnqq is a semiorthogonal collection of subcategories, all equivalent to D b pSpecpkqq, where, by abuse of notations, we dropped the brackets.

Finally, a semiorthogonal collection pA 1 , . . . , A r q in D b pXq is a semiorthogonal decomposition, denoted by D b pXq xA 1 , . . . , A r y, if, roughly speaking, D b pXq is the smallest triangulated full thick subcategory of D b pXq containing all the A i 's. More precisely, we require for any object T of D b pXq the existence of a filtration of T by a complex 0 T 0 α 1 Ñ . . . αr Ñ T r T such that the cone of α i is in A i . A first example of a semiorthogonal decomposition is provided by the collection pO, . . . , Opnqq on the projective space P n . To show that this semiorthogonal collection is a semiorthogonal decomposition of D b pP n q one needs some more delicate calculations, based on a spectral sequence. This amounts to show that if an object A satisfies (right or left) orthogonality to the collection pO, . . . , Opnqq, then A 0. Indeed, in general, given an exceptional collection pE 1 , . . . , E r q on a smooth projective variety X, one has a semiorthogonal decomposition D b pXq xA, E 1 , . . . , E r y, where A is the full triangulated subcategory of all objects satisfying right orthogonality with respect to the E i 's. The previous semiorthogonal decomposition should be thought of as a "noncommutative splitting" of simple categories off X.

The interest on semiorthogonal decompositions grew thanks, among others, to the work of Bondal and Orlov, which is resumed in their 2002 ICM address [START_REF] Bondal | Derived categories of coherent sheaves[END_REF]. One of the striking features is that semiorthogonal decompositions tend to have a motivic behavior, under two points of view. First of all, if X and Y are smooth and projective and Φ : D b pXq Ñ D b pY q is full and faithful, we have that ΦpD b pXqq is admissible in D b pY q and that the functor Φ is represented by an object P in D b pX ¢ Y q. Such functor is defined indeed as Φp¡q Rp ¦ pq ¦ p¡q P q, where p and q are the projections from X ¢ Y to Y and X respectively; it deserves the name of Fourier-Mukai functor, since it was first introduced by Mukai [START_REF] Mukai | Duality between DpXq and Dp Xq and its application to Picard sheaves[END_REF]. One should think of Fourier-Mukai functors, and their composition thereof, as algebro-geometric correspondences between triangulated categories. Secondly, projective bundles and blow-ups have semiorthogonal decompositions which looks like their motivic analog: the derived category of a projective bundle of rank r is decomposed by r 1 copies of the derived category of the base, and the blow up of a variety along a codimension c subvariety is decomposed by one copy of the base and c¡1 copies of the blown-up locus. This behavior, together with a growing amount of examples of decompositions of Fano 3-folds, and the remarkable results of Kuznetsov, lead to think that semiorthogonal decompositions should detect birational properties of a given variety. More than ten years after Bondal and Orlov's ICM address, Kuznetsov's 2014 ICM address witnesses the remarkable growth and richness of this subject [START_REF]Semiorthogonal decompositions in algebraic geometry[END_REF].

Inspired by this guess, many surprising and interesting phenomena were discovered in the recent years: there exist functors between derived categories of smooth projective varieties which are not of Fourier-Mukai type [START_REF] Rizzardo | An example of a non-fourier-mukai functor between derived categories of coherent sheaves[END_REF], the Jordan-Hölder property does not hold in general for semiorthogonal decompositions [START_REF]On the jordan-hölder property for geometric derived categories[END_REF], and there exists nontrivial categories with trivial invariants [START_REF] Ch | Determinantal barlow surfaces and phantom categories[END_REF], so that we do not know whether semiorthogonal decomposition satisfy to any Noetherianity property. On the other hand, a growing amount of examples and constructions were carried over to study semiorthogonal decompositions. Above all, the theory of Homological Projective Duality developed by Kuznetsov [START_REF]Homological projective duality[END_REF] builds a striking and strong relation between semiorthogonal decompositions of (linear sections of) classically projective dual varieties, showing a very deep interconnection between the (projective) geometry of a variety X and the semiorthogonal decompositions of its derived category.

Inspired, among others, by Kontsevich's ideas [START_REF] Kontsevich | Noncommutative motives[END_REF], one should think of D b pXq as a noncommutative scheme associated to X. This justifies a theory of noncommutative motives, where semiorthogonal decompositions would play the role of motivic decompositions. However, thinking of D b pXq as a triangulated category rises many problems: above all, the fact that a general triangulated functor is not of Fourier-Mukai type. Instead of a k-linear triangulated category, one should consider D b pXq as a differential graded (dg) category over k, that is, a category whose morphisms form graded differential complexes of k-vector spaces.

In this optic, the k-linear structure of D b pXq is obtained by taking zeroth global sections of morphism complexes.

As shown by Lunts and Orlov [START_REF] Lunts | Uniqueness of enhancement for triangulated categories[END_REF], in the case where X is quasi separated and quasi compact there is a unique dg structure on the subcategory perfpXq D b pXq of perfect complexes, that is, the category of bounded complexes of vector bundles (which coincides with D b pXq if X is smooth and projective). This structure is obtained by giving a compact generator E of perfpXq, that is a perfect complex such that any complex right (or left) orthogonal to E is trivial, and taking the endomorphism complex R : EndpEq, endowed with a dg algebra structure by the choice of an enhancement (for example, by taking injective resolutions of complexes), so that perfpXq is equivalent to the dg category of perfect complexes perfpRq. Let us give a first example: suppose that X is smooth and projective and has a full exceptional sequence pE 1 , . . . , E r q, that is this exceptional sequence is a semiorthogonal decomposition of D b pXq. Then E : r i1 E i is a compact generator. It is then natural to define, as done by Orlov in [START_REF]Smooth and proper noncommutative schemes and gluing of dg categories[END_REF], a noncommutative scheme A to be a dg category of the form perfpRq for some cohomologically bounded dg algebra R over k. If X is a scheme (quasi compact and quasi separated) we then have a unique noncommutative scheme associated to it, that is the category perfpXq. Moreover, one can define regularity, smoothness and properness for a noncommutative scheme A, and these properties match those of X in the case A perfpXq. One can also define noncommutative resolution of singularities of any noncommutative scheme. If X is separated of finite type and k has characteristic zero, Kuznetsov and Lunts show that perfpXq always have such a resolution [START_REF] Kuznetsov | categorical resolution of irrational singularities[END_REF]. From this point of view, schemes and (birational) morphisms can be replaced by noncommutative schemes and dg-functors.

Moreover, a triangulated k-linear functor Φ : perfpXq Ñ perfpY q is of Fourier-Mukai type if and only if there exists a lifting of Φ into a dg functor, as shown by Toën [Toë07]. This means that working with noncommutative schemes and dg functors between them is the natural context to work with derived categories and Fourier-Mukai functors. Moreover, this fact has deep consequences on the construction of noncommutative motives, as expected by Kontsevich. Indeed, thanks to the work of Tabuada (see the recent book [START_REF]Noncommutative motives[END_REF]) one can define the category NChowpkq of noncommutative Chow motives over k. The objects of such category are the Morita-equivalence classes of smooth and proper dg categories and morphism from A to B are, roughly speaking, projections as correspondences in K 0 pAB op q.

Considering perfpXq gives a functor from smooth and projective k-varieties to noncommutative motives. The noncommutative motivic correspondences between two such varieties X and Y are then induced by Fourier-Mukai transforms and semiorthogonal decompositions. Better, one can think to the noncommutative motive to be the motive of the noncommutative scheme perfpXq in a very deep way: a semiorthogonal decomposition (i.e., a projector in the Grothendieck group) induces a splitting on the motivic level, and such a motive is universal with respect to any additive invariant. Notice that many of these additive invariants, defined in the world of dg categories, are a noncommutative version of well-known cohomological theories, such as Betti, Hodge or de Rham cohomology.

Finally, let us mention that noncommutative Chow motives are related to Grothendieck's Chow motives, at least when one considers rational coefficients, thanks to the Grothendieck-Riemann-Roch theorem. The main difference is that, under a noncommutative point of view, the Lefschetz motive is isomorphic to the unit motive. That is, noncommutative schemes "lose" information on the codimension. On the other hand, there are purely noncommutative construction that are invisible in the commutative world.

We can resume the above considerations on noncommutative schemes in three main points. We let X be a scheme and A X : perfpXq be the associated noncommutative scheme.

To any k-scheme X we associate A X in the category NSchpkq of noncommutative k-schemes. Morphisms from A X to A Y are exactly Fourier-Mukai functors, that is, noncommutative geometric correspondences between X and Y . There is a theory of resolution of singularities (which always exist if k has characteristic zero and X is separated of finite type), and we can work in a relative context, replacing the base field k by any noncommutative scheme B.

Under this point of view, K 0 pA X q plays the role of the (ungraded) Chow ring. There are noncommutative additive invariants which play the role of known cohomological theories, up to lose the information on the grading. For example, Z{2Z-graded deRham cohomology and vertically-graded Hodge cohomology of a smooth and projective X are isomorphic to period-cyclic homology and Hochschild homology of A X respectively.

Additive invariants behave well with respect to semiorthogonal decompositions.

These decomposition can provide geometric noncommutative schemes not of the form A X . Moreover, there is a theory of noncommutative Chow, smash-nilpotent, homological and numerical motives which play the noncommutative role of commutative Chow, smash-nilpotent, homological and numerical motives. Noncommutative motives are split by semiorthogonal decompositions.

The aim of this habilitation work is to detail results where the interplay between noncommutative and commutative motives, semiorthogonal decompositions and birational properties reveal some interesting and motivating research direction. This is done first on a purely conceptual level, by introducing some definition and giving some general statement, but, above all, working on explicit examples and questioning coming from Algebraic Geometry, such that the construction of semiorthogonal decompositions, the study of algebraic cycles and the quest for birational invariants.

Homological Projective Duality. As mentioned above, one of the most powerful tool to construct geometrically relevant semiorthogonal decompositions is Kuznetsov's Homological Projective Duality (HPD for short), developed in [START_REF]Homological projective duality[END_REF]. Roughly speaking, if f : X Ñ PpW q is a projective variety with a polarization Op1q : f ¦ O PpW q p1q, we have to consider semiorthogonal decompositions of X which are well-behaved with respect to taking hyperplane sections. This leads to the definition of a Lefschetz decomposition: D b pXq xA 0 , A 1 p1q, . . . , A i¡1 pi ¡ 1qy, where A i¡1 . . . A 0 is a sequence of admissible subcategories and A j pjq : A j Opjq. If X H is a hyperplane section of X, the Lefschetz decomposition restricts to a decomposition: D b pX H q xC H , A 1 p1q |X H , . . . , A i¡1 pi ¡ 1q |X H y, where A |X H denotes the pull-back of a subcategory A of D b pXq to D b pX H q via the embedding X H X. We then obtain a category C H for any hyperplane section of X.

These remarks work in a more general framework, which can be easily obtained by performing Kuznetsov's constructions in the language of noncommutative schemes. Indeed, if A is a noncommutative X-scheme (that is, a noncommutative k-scheme enriched over the dg category D b pXq), the invertible object Op1q in D b pXq induces a dg-autoequivalence Op1q : A Ñ A. Then we still can define a Lefschetz decomposition A xA 0 , A 1 p1q, . . . , A i¡1 pi ¡ 1qy, with respect to Op1q and the induced decomposition of A H : ι ¦ A, where ι : X H Ñ X is the immersion of the hyperplane section. Set X 1 X ¢ PpW q to be the universal hyperplane section, and A X 1 A b D b pPpW qq the base change of A to X 1 . There is a semiorthogonal decomposition:

A X 1 xB, A 1 p1q b D b pPpW qq, . . . , A i¡1 pi ¡ 1q b D b pPpW qqy.
The orthogonal complement B is a noncommutative PpW q-scheme, and has a dual Lefschetz decomposition B xB j¡1 pi ¡ jq, . . . , B 1 p¡1q, B 0 y, with respect to O PpW q p1q. This noncommutative scheme should be thought of as a homological Lefschetz theory of A (see Definition 2.9), in a sense that we are going to describe.

Denote by N : dim pWq and set 1 ¤ r ¤ N ¡ 1. Consider the universal codimension r linear section X r X ¢Grpr, W q, parameterizing pairs pX L , Lq, for L W of dimension r and X L X PpL u q. Denote by A Xr the noncommutative scheme obtained base changing A to X r . Using the Lefschetz decomposition of A, Kuznetsov's arguments can be used to prove that the family tB Grpr,W q u N ¡1 r1 of noncommutative schemes obtained by base change of B to Grpr, W q comes with dg functors Φ r : A Xr Ñ B Grpr,W q inducing semiorthogonal decompositions:

A Xr xC r , A r p1q b D b pGrpr, W qq, . . . , A i¡r pi ¡ rq b D b pGrpr, W qqy, B Grpr,W q xB j¡1 pN ¡ r ¡ jq b D b pGrpr, W qq, . . . , B N ¡r p¡1q b D b pGrpr, W qq, C r y,
that is, the functor Φ r realizes the equivalence between the two noncommutative schemes C r which arise as orthogonal complements to the restrictions of the Lefschetz decompositions.
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Base changing from the universal family to a point in the Grassmannian, that is to a linear subspace L W of codimension r, we obtain:

A L xC L , A r p1q, . . . , A i¡r pi ¡ rqy, B L xB j¡1 pN ¡ r ¡ jq, . . . , B N ¡r p¡1q, C L y,
where A L is the restriction of A to X L : X PpL u q and B L is the restriction of B to PpLq. It follows that we have a family of noncommutative schemes and functors tB Grpr,W q , Φ r u N ¡1 r1 which allow us to describe semiorthogonal decompositions of A L as a noncommutative X Lscheme. This is the reason why we call such a family a homological Lefschetz theory for the noncommutative X-scheme A with respect to the given Lefschetz decomposition.

Homological Projective Duality is the geometric realization of a homological Lefschetz theory: let g : Y Ñ PpW q be a projective scheme with a line bundle Op1q g ¦ O PpW q p1q. We set Y r Y ¢ Grpr, W q to be the universal codimension r linear section, and, for a noncommutative Y -scheme B, we denote by B Yr its base change to Y r .

Definition 1. A noncommutative Y -scheme B is the Homological Projective Dual to A with respect to the given Lefschetz decomposition, if there are functors Φ r : A Xr Ñ B Yr realizing tB Yr , Φ r u as the homological Lefschetz theory of A.

One of the most interesting cases from the point of view of Algebraic Geometry, is to consider a projective variety f : X Ñ PpW q and to take A to be its (crepant) noncommutative resolution of singularities. Kuznetsov shows in this case that the HP dual B is the (crepant) noncommutative resolution of singularities of a variety g : Y Ñ PpW q such that the critical locus of the map g coincide with the classical projective dual X of X. Hence, given an X such that the projective dual is known, and the resolution A (if X is smooth, just take D b pXq), the natural problem is to construct a Y and a B realizing the HPdual. Some geometrically interesting cases are described in Kuznetsov's 2014 ICM address [START_REF]Semiorthogonal decompositions in algebraic geometry[END_REF].

Let us sketch two examples of HP duality, that were constructed in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] and in [START_REF] Bernardara | Homological projective duality for determinantal varieties[END_REF] respectively.

First of all, consider a smooth projective variety S, and a rank n vector bundle E on S. We set X : PpEq Ñ S. Now consider a family of line bundle valued quadratic forms pE, q i , L i q (see Definition 2.18), and the projective bundle Y : PpS 2 pEq q Ñ S. The family of quadrics Q i PpEq, defined by the forms q i , gives a universal family of quadrics Q Ñ Y , to which we can associate a sheaf of Clifford algebras C 0 . Hence, we have the noncommutative Y -scheme D b pY, C 0 q. Recall that X PpEq, so that Q X ¢ Y . If we consider the Veronese embedding ver : X Ñ PpS 2 pEqq, we have that Q is the universal hyperplane section. Recall we denote by n the rank of E and set m : tpn ¡ 1q{2u. We have a semiorthogonal decomposition induced by the projective bundle structure p : X Ñ S, giving a Lefschetz decomposition with respect to Op2q : ver ¦ O PpS 2 pEqq p1q:

D b pXq xp ¦ D b pSq, p ¦ D b pSqp1q loooooooooooomoooooooooooon A 0 , p ¦ D b pSqp2q, p ¦ D b pSqp3q loooooooooooooomoooooooooooooon A 1 p2q , . . . , p ¦ D b pSqpn ¡ 2q loooooooomoooooooon Amp2mq y,
where A i consist of two copies of D b pSq for i 1, . . . , m ¡ 1 and A m of either one or two copies of D b pSq according to the parity of n. Theorem 1. The noncommutative Y -scheme D b pY, C 0 q is the HPdual of the noncommutative X-scheme D b pXq with respect to the Lefschetz decomposition above.

Theorem 1 was proved in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] and is a generalization of a result of Kuznetsov's [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF] where it was shown for S a point and k algebraically closed of characteristic zero. Alongside with the careful analysis of the Clifford algebras, it is proved that C 0 is Moritainvariant under hyperbolic splitting of the quadratic form defining it.

Theorem 1 gives interesting semiorthogonal decompositions for a large class of varieties.

Indeed, it says then that we obtain from D b pY, C 0 q a geometric description of the homological Lefschetz theory of X, relatively over S. In particular, fixing a subbundle L E, we have that X L Ñ PpLq is the intersection of the quadrics parametrized by L. It follows that we can describe a semiorthogonal decomposition of any variety with a fibration into intersection of quadrics. For example, fibrations in del Pezzo surfaces of degree 4 fit this setting. An application to the birational geometry of threefolds and fourfolds fibered over P 1 into intersections of two quadrics will be detailed later.

The second example involves determinantal varieties. Let U and V be C-vector spaces of dimension m and n respectively, and assume that m ¤ n. We set W : U V . Given an integer r with 1 ¤ r ¤ m, we define f : Z m,n r PpW q to be the locus in PpW q of m ¢ n matrices having rank at most r. Then there exist a noncommutative Z m,n r -scheme R r , with a Lefschetz decomposition R r xA 0 , . . . , A mr pmrqy, where A 0 A mr are all equivalent to D b pGrpU, rqq. Moreover, the noncommutative scheme R r is a categorical resolution of singularities of Z m,n r , which is crepant if m n.

Theorem 2. The noncommutative Z m,n m¡r -scheme R m¡r is the HP dual of R r with respect to the above Lefschetz decomposition.

Theorem 2 was proved in [START_REF] Bernardara | Homological projective duality for determinantal varieties[END_REF]. It allows to describe semiorthogonal decompositions of (resolution of singularities) of any determinantal variety obtained as a linear section of Z m,n r . On the other hand, notice that a determinantal variety is always locally a base change of a linear section of Z m,n r .

Noncommutative motives in Algebraic Geometry. One of the main interest in studying noncommutative motives in Algebraic Geometry is to try to extract informations about commutative motives and algebraic cycles. In general, the Grothendieck-Riemann-Roch theorem allows one to compare commutative and noncommutative motives, as remarked by Tabuada, see [START_REF]Chow motives versus noncommutative motives[END_REF] for the case of Chow motives, or [START_REF]Noncommutative motives[END_REF] for all the cases. Consider indeed the category Chowpkq R of Chow motives over a field k with coefficients in some ring R (we refer to [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes)[END_REF] for an introduction to motives). The Lefschetz motive L is an invertible object in the additive monoidal category Chowpkq R . One can hence consider the so-called orbit category Chowpkq R { ¡L , which has the same objects as Chowpkq R and morphisms from M to N are given by the sum of morphism from M to N L i over all integers i. Then there is a fully faithful, monoidal, additive functor R : Chowpkq Q { ¡L Ñ NChowpkq Q making the following diagram commute:

(2) Varpkq

D b pq / / M dgcatpkq U Chowpkq Q Chowpkq Q { ¡L R / / NChowpkq Q ,
where Varpkq is the category of smooth projective varieties. Roughly speaking, the above diagram says that noncommutative Chow motives contain Chow motives when we consider rational coefficients, and we forget the Tate twist. Similar statements are true for smash-nilpotent, homological and numerical motives. In particular, given a variety X, any decomposition of its Chow motive M pXq Q will induce a decomposition of its noncommuta- tive motive N CpXq Q : U pD b pXqq Q . On the other hand, semiorthogonal decompositions of D b pXq will give decompositions of N CpXq R for any ring R. It is then interesting to understand whether we can refine the coefficient ring in the above diagram and which are the differences between N CpXq R and M pXq R for those rings R for which the above diagram does not exist. In [START_REF] Bernardara | Relations between the chow motive and the noncommutative motive of a smooth projective variety[END_REF] these two questions are analyzed: working in dimension d, the above diagram hold replacing Q with Zr1{2d!s. Moreover, some examples of purely noncommutative decompositions of N CpXq are given for some particular variety X, as, for example, Brauer-Severi varieties.

One of the deepest realizations of the relation between noncommutative motives and algebraic cycles which will be treated in this report is the possibility to reconstruct the algebraic intermediate Jacobians of a smooth complex 1 variety X from noncommutative schemes which are components of D b pXq. Indeed, even if algebraic equivalence is not defined for noncommutative motives (at least, to the best of the author's knowledge), Marcolli and Tabuada [START_REF]Jacobians of noncommutative motives[END_REF] define the Jacobian JpN q of a noncommutative motive N , and hence of a noncommutative scheme, as follows: the category NNumpCq Q of noncommutative numerical motives is semisimple, and there is a fully faithful additive and monoidal functor NumpCq Q { ¡L Ñ NNumpCq, where NumpCq Q is the category of numerical motives with rational coefficients, which is also semisimple. Moreover, since any Abelian variety is isogenous to an Abelian subvariety of the Jacobian of a smooth projective curve, there is a fully faithful functor AbpCq Q Ñ NumpCq Q , where AbpCq Q is the category of Abelian varieties up 1 More generally, defined over an algebraically closed field k C. to isogeny. Composing all these functors, JpN q is defined as the part of the noncommutative numerical motive of N lying in the image of AbpCq Q , which is well defined thanks to semi-simplicity of NNumpCq Q . Hence JpN q is an Abelian variety well defined up to isogeny.

The most important fact to remark, which was proved by Marcolli and Tabuada [START_REF]Jacobians of noncommutative motives[END_REF] is that, if X is a smooth projective variety satisfying Grothendieck standard conjectures of Lefschetz type2 and JpXq : JpN CpXqq, there is an isogeny JpXq

± dim pXq¡1 i0 J i a pXq,
where J i a pXq is the i-th algebraic intermediate Jacobian of X, which is also well defined up to isogeny. Using the fact that semiorthogonal decompositions induce splittings of noncommutative motives, it is proved in [START_REF]From semi-orthogonal decompositions to polarized intermediate jacobians via jacobians of noncommutative motives[END_REF] that if D b pXq xA, By is a semiorthogonal decomposition 3 , such that JpU pBqq 0, then JpU pAqq contains all the information about the algebraic Jacobians of X. In particular, if Y is a smooth projective variety and D b pY q xA, Cy is a semiorthogonal decomposition, then it is possible to construct an isogeny between ± dim pXq¡1 i0 J i a pXq and an Abelian subvariety of ± dim pY q¡1 i0 J i a pY q, which is (isogenous to) the whole product in the case where JpU pCqq 0. Notice that it is not difficult to find examples of noncommutative schemes with trivial Jacobian, for example being generated by an exceptional collection is a sufficient condition for such vanishing.

In some particular cases, among which most Fano threefolds, conic bundles over rational surfaces, del Pezzo fibrations over P 1 , a variety X has a unique nontrivial intermediate Jacobian. By Poincaré duality, such an X has an odd dimension 2m 1, and JpXq : J m a pXq is such that JpXq ± 2m i1 J i a pXq JpXq. A geometrically relevant piece of datum with which JpXq can be endowed in this case is a principal polarization. That is, JpXq is not only well defined up to isogeny, but carries a natural principal polarization. We say that X is verepresentable if such a polarization has moreover a universal property with respect to m-cycles on X, which is called the incidence property. Examples of such varieties are smooth and projective curves, most Fano threefolds, conic bundles over rational surfaces, just to cite a few.

Theorem 3. Let X and Y be verepresentable varieties and assume that D b pXq xA, By and D b pY q xA, Cy. If JpU pBqq 0, there exists an injective morphism of principally polarized Abelian varieties τ : JpXq Ñ JpY q. If moreover JpCq 0, then τ is an isomorphism.

Theorem 3 was proved in [START_REF]From semi-orthogonal decompositions to polarized intermediate jacobians via jacobians of noncommutative motives[END_REF], and extends previous results for curves and threefolds [Ber07,BMMS12,BB13,BB12], which were obtained without using noncommutative motives. Its application to birational geometry, via the fact that the intermediate Jacobian of a threefold provides a birational invariant, will be extensively treated in Chapter 4. Moreover, if a Torelli-type Theorem holds for X, then Theorem 3 allows to prove a categorical Torelli-type Theorem, as follows.

Theorem 4. Suppose that either:

X and Y are cubic threefolds, or X and Y are quartic double solids, or X and Y are intersections of two even dimensional quadrics, or X and Y are intersections of three odd dimensional quadrics.

Set

A X : xO X , . . . , O X pi ¡ 1qy u , A Y : xO Y , . . . , O Y pi ¡ 1qy u .
where i ipXq ipY q is the index of X and Y . Then X is isomorphic to Y if and only if

A X is equivalent to A Y .
Theorem 4 is proved in [START_REF]From semi-orthogonal decompositions to polarized intermediate jacobians via jacobians of noncommutative motives[END_REF]. Another application of Theorem 3 provides a new proof of a Bloch-Beilinson type conjecture on the Chow groups of complete intersections of very small degree. Let X P n a smooth complete intersection of multidegree pd 1 , . . . , d r q, with the convention d 1 ¤ . . . ¤ d r . One has the numerical invariant

κ : r n ¡ °r j2 d j d 1 s ,
where r¡s denotes the integral part of a rational number. A careful analysis of the different Weil cohomology theories of X led to conjecture (explicitly stated by Paranjape in [Par94,

Conjecture 1.8]) that CH i pXq Q Q for every i κ.
Suppose that d i 2 for all i 1, . . . , r. Then a proof of the above conjecture was given by Otwinowska [START_REF] Otwinowska | Remarques sur les cycles de petite dimension de certaines intersections complètes[END_REF]. Based on the semiorthogonal decompositions of intersection of quadrics, it is possible to have an alternative proof of some occurrences of the conjecture, as done in [START_REF]Chow groups of intersections of quadrics via homological projective duality and (Jacobians of ) noncommutative motives[END_REF].

Theorem 5. Suppose that X is (i) either a complete intersection of two quadrics, or (ii) a complete intersection of three odd-dimensional quadrics.

Then CH i pXq Q Q for all i rdim pXq{2s.

We notice that κ rdim pXq{2s in the previous cases. The proof is based on Theorem 4 and on a dimensional counting for K 0 pXq.

Another application of the theory of noncommutative motives to Algebraic Geometry allows one to prove Voevodsky's nilpotence conjecture in some new cases, as done in [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF]. Indeed, smash-nilpotent and numerical noncommutative motives can be defined. From this, one can state a noncommutative version of nilpotence conjecture. Moreover, both for numerical and smash-nilpotent motives, diagrams like (2) hold. It follows that the noncommutative conjecture for D b pXq is equivalent to the classical one for any smooth projective variety X, see [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF]. In particular, using semiorthogonal decompositions, the noncommutative conjecture for X reduces to the noncommutative conjecture for its components. This gives new examples where nilpotence conjecture holds [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF]. Theorem 6. Suppose that X is either: A quadric fibration Q Ñ S of even dimension over a surface, or a curve; or A quadric fibration Q Ñ S of odd dimension over a rational surface of a curve; or A complete intersection of at most three quadrics.

Then nilpotence conjecture holds for X.

In other cases of sections of Grassmanians, or determinantal, or Pfaffian varieties, nilpotence conjecture can be proved with similar methods. For other cases of quadric fibrations over higher dimensional varieties or complete intersections of more than 3 quadrics, the noncommutative version allows to reduce nilpotence conjecture of X to nilpotence conjecture of smaller dimensional varieties.

Applications to birational geometry. One of the main aims of this report is to apply the theory of semiorthogonal decompositions, noncommutative schemes and motives to the study of birational property of projective varieties, following the road map started by Bondal and Orlov (see [START_REF] Bondal | Derived categories of coherent sheaves[END_REF]) and traced more and more clearly by Kuznetsov and many others (see [START_REF]Derived categories view on rationality problems[END_REF]). We focus on motivating, by abstract arguments and low-dimensional examples, the possibility to use semiorthogonal decompositions to detect obstructions to rationality of a given variety X. We introduce then the following definition (see [START_REF] Bernardara | Categorical representability and intermediate Jacobians of Fano threefolds, Derived Categories in Algebraic Geometry[END_REF]).

Definition 2. Let X be a k-scheme, and A a (crepant) noncommutative resolution of singularities of X. We say that X is categorically representable in dimension n (or in codimension dim pXq ¡ nq) if there is a semiorthogonal decomposition:

A xA 1 , . . . , A r y, and smooth and projective k-schemes tY i u r i1 , and fully faithful functors A i Ñ D b pY i q such that A i is admissible in D b pY i q and dim pY i q ¤ n for all i 1, . . . , r.

We will use the following notations: rdim cat pXq : mintn | X is categorical representable in dimension nu rcodim cat pXq : dim pXq ¡ rdim cat pXq, and notice that rdim cat pXq ¤ n if X is smooth of dimension n, and that rdim cat pP n q 0. The motivic behavior of semiorthogonal decompositions leads to formulate the following question:

Question 1. Suppose that X is a k-rational variety. Do we have rcodim cat pXq ¥ 2?

A positive answer to Question 1 would lead to a necessary criterion of rationality. This criterion is certainly not sufficient, since there are examples of non-rational threefolds having rdim cat pXq 1, as, e.g., X Ñ C a projective bundle over a curve of positive genus.

On the other hand, the interest (and the difficulty) of Question 1 rely also on it being independent on the base field and on the dimension of X. Secondly, if k has characteristic zero, so that weak factorization holds [START_REF] Abramovich | Torification and factorization of birational maps[END_REF], there is a well-defined motivic measure µ : K 0 pVarpkqq Ñ P T pkq, where P T pkq is the Grothendieck ring of noncommutative kschemes. Moreover, categorical representability induces a ring filtration P T 0 pkq P T 1 pkq . . . P T pkq, and we can show that if X is rational of dimension d then µprXsq lies in P T d¡2 pXq. This gives a motivic positive (but much weaker) answer to Question 1.

Many examples for low-dimensional varieties of Fano type or carrying a Mori fiber space structure suggest that Question 1 should have a positive answer, or at least be a good way to attack the understanding of the relation between semiorthogonal decompositions and rationality.

For example, let X be a minimal del Pezzo surface over any field k. Then a study of Question 1 provides not only a positive answer, but also a birational invariant, a noncommutative k-scheme GK X which we call the Griffiths-Kuznetsov component.

Theorem 7. Let X be a minimal del Pezzo surface of index i, and consider the noncommutative scheme A X : xO, . . . , Opiqy u . The following are equivalent: i) rdim cat pXq 0, ii) A X is decomposed by derived categories of étale k-algebras, iii) X is k-rational.

Moreover, we can define, eventually via a semiorthogonal decomposition of A X , a noncommutative scheme GK X such that, if X I

X is a birational map, then GK X I GK X .

Theorem 7 was proved in [START_REF] Auel | Semiorthogonal decompositions and birational invariants of geometrically rational surfaces[END_REF]. Its proof is based on the explicit description of vector bundles generating D b pXq and to their descent. In particular, it highlights a dichotomy between surfaces of degree smaller than 5 (where A X is indecomposable and a birational invariant) and surfaces of degree bigger or equal to 5 (where A X is always decomposable).

In particular, if degpXq ¥ 5, there exist two vector bundles V 1 and V 2 generating A X whose endomorphism algebras detect the birational class of X, and whose second Chern classes detect the existence of low degree points on X. As an example, if X is a Brauer-Severi surface X SBpAq associated to an Azumaya algebra A, then V i is the rank three vector bundle base-changing to Opiq 3 , and the endomorphism algebras of V 1 and V 2 are, respectively, A and A 2 . Under this point of view, in the case of high degree del Pezzo surfaces, Theorem 7 can be thought of as an extension of Amitsur's conjecture to other del Pezzo surfaces.

In the case where X is a complex threefold, a necessary condition for rationality is to have a single, principally polarized intermediate Jacobian JpXq. Example of such threefolds are Fano threefolds, conic bundles over rational surfaces and del Pezzo fibrations over the projective line. In this cases, Clemens and Griffiths define a natural principally polarized Abelian subvariety A X JpXq, the Griffiths component, which is a birational invariant. In particular, if X is rational, then A X 0. Theorem 8. Let X be a verepresentable threefold. If rcodim cat pXq ¥ 2, then the Griffiths component A X vanishes.

Theorem 8 was proved in [START_REF]Derived categories and rationality of conic bundles[END_REF] and [START_REF] Bernardara | Categorical representability and intermediate Jacobians of Fano threefolds, Derived Categories in Algebraic Geometry[END_REF], and can also be seen as a consequence Theorem 3. It shows that categorical representability in codimension 2 is a finer invariant than the Griffths invariant. In particular, it can be applied to conic bundles over minimal surfaces and to del Pezzo fibrations of degree 4 over the projective line.

Theorem 9. Let X be either a conic bundle over a minimal rational surface, or a del Pezzo fibration of degree 4 on the projective line. Then the following are equivalent:

i) rcodim cat pXq ¥ 2, ii) X is rational.
Theorem 9 is proved in [START_REF]Derived categories and rationality of conic bundles[END_REF] in the case of conic bundles, and in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] in the case of del Pezzo fibrations. The first case is obtained by using Theorem 8 and Beauville [START_REF] Beauville | Variétés de Prym et jacobiennes intermédiaires[END_REF] and Shokurov [START_REF] Shokurov | Prym varieties: theory and applications[END_REF] classification of rational conic bundles, and giving explicit semiorthogonal decompositions of D b pXq in the rational cases. The second case is a consequence of the first one and of Homological Projective Duality for relative complete intersections of quadrics, that is, Theorem 1. Indeed, a degree 4 del Pezzo fibration X is always the intersection of two quadric threefold fibrations. The linear span of these two can be reduced by hyperbolic splitting to a conic bundle over a Hirzebruch surface, birational to X. We finally notice that the birational information on X is always contained, in these cases, on the noncommutative k-scheme associated to the Clifford algebras defined by the quadratic forms defining X.

Finally, some examples are also known in dimension four. Let X Ñ P 1 be a fourfold with a fibration onto the projective line whose fibers are intersections of two quadrics. As above, using Homological Projective Duality for relative quadric fibrations, that is, Theorem 1, in a general case, we obtain a surface S Ñ P 1 with a hyperelliptic fibration, and a Brauer class α in BrpSq. Indeed, S is the discriminant double cover of a P 1 -bundle T Ñ P 1 , over which the linear span of the two quadrics define a four-dimensional quadric fibration. The genericity assumption ensures that the discriminant divisor is smooth (see §1.6 [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] for more details). Moreover, we have that the noncommutative scheme D b pS, αq is the orthogonal complement of an exceptional collection in D b pXq. Hence, if α 0, we have that rcodim cat pXq ¥ 2. In this case, Question 1 has a positive answer Theorem 10. Let X Ñ P 1 be a fibration in intersections of two quadrics, and S Ñ P 1 the associated hyperelliptic fibration with a Brauer class α in BrpSq. If α 0, we have that X is rational and rcodim cat pXq ¥ 2.

Theorem 10 was proved in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF]. In particular, it allows to formulate a conjecture on the rationality of X being equivalent to the category D b pS, αq being representable in dimension at most 2 (see Conjecture 4.31). A similar conjecture was previously formulated by Kuznetsov for cubic fourfolds [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF]. Indeed, if X P 5 is a cubic hypersurface, then one can consider the noncommutative scheme A X xO, Op1q, Op2qy u . Such a scheme is a noncommutative K3 surface, that is, its Serre functor is the shift by 2 in cohomology. Kuznetsov conjectures that X is rational if and only if there exists a K3 surface S and an equivalence D b pSq A X .

A particular case, similar to the one treated in Theorem 10, is the case where X contains a plane. Indeed, one can project off the plane to obtain a (rational) structure of quadric fibration X P 2 , degenerating along a sextic curve. This curve is smooth for the general such X and the associated double cover S Ñ P 2 is a degree 2 K3 surface coming with a Brauer class α in BrpSq obtained by the Clifford algebra of the quadric bundle. The case treated in Theorem 10 is similar, the surface S there is obtained as a double cover of the Hirzebruch surface parameterizing the family of quadric fibrations whose intersection is the fourfold X.

If X is a cubic fourfold with a plane, Kuznetsov shows that A X D b pS, αq. Moreover, the vanishing of α is a sufficient condition both for rationality and for categorical representability in codimension 2. On the other hand, it is natural to wonder whether there are cases where α is not trivial and X is rational and to understand if Kuznetsov conjecture still holds. The cases of cubic fourfolds containing a plane and a rational quintic del Pezzo surface were considered and (generically) completely classified in [START_REF] Auel | Cubic fourfolds containing a plane and a quintic del pezzo surface[END_REF], where the following statement was proved.

Theorem 11. There are five irreducible components of the moduli space of cubics containing a plane and a quintic del Pezzo surface, which are indexed by the discriminant As a corollary of Theorem 11, it can be shown that there exists rational cubic fourfolds containing a plane, such that α is nontrivial and such that Question 1 has a positive answer (as well as Kuznetsov's conjecture). Indeed, if d X 32, it can happen that X is Pfaffian, and an explicit example is constructed in [START_REF] Auel | Cubic fourfolds containing a plane and a quintic del pezzo surface[END_REF], so that X is rational and, thanks to Homological Projective Duality (see [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF]), there is a degree 14 K3 surface S I such that D b pS, αq A X D b pS I q. Notice that Bolognesi and Russo [START_REF] Bolognesi | Some loci of rational cubic fourfolds, with an appendix by G. Staglianò[END_REF] have recently shown that any special cubic with an associated K3 surface of degree 14 is rational (see §IV.1 for details), which allows one to extend the previous consideration to all the cases where d X is even.
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In this chapter, we introduce the algebraic and categorical objects which play a key role in this report. In particular, we will focus on the notions of triangulated categories, dg categories, and their semiorthogonal decompositions. We will also describe how dg categories define noncommutative schemes and Chow motives. Together with these constructions, many technical points (such as descent or scalar extension) as well as many geometric questions we will introduce in the next Chapters lead us to consider dg categories (in particular, dg enhanced triangulated categories) as the most suitable algebraic structure to work with. We work over an arbitrary field k, and with small categories.

I. Semiorthogonal decompositions and exceptional objects.

In this section, we consider k-linear triangulated categories. These objects were defined by Verdier in his Ph.D. thesis [START_REF] Verdier | Des catégories dérivées des catégories abéliennes[END_REF]. Detailed introductions to homological algebra can be found in the books of Gelfand and Manin [START_REF] Gelfand | Methods of homological algebra[END_REF] or Weibel [START_REF]An introduction to homological algebra[END_REF]. A more geometryoriented introduction can be found in Huybrecht's book [START_REF] Huybrechts | Fourier-Mukai transforms in Algebraic Geometry[END_REF].

I.1. Generators. Let A be a k-linear triangulated category. A natural question is whether that such a category A satisfies some finiteness conditions; in particular we would like to define a set of generators for A. There are several notions of generation (such as classical or compact, see, e.g., [START_REF] Bondal | Generators and representability of functors in commutative and non-commutative geometry[END_REF], [START_REF] Lunts | Uniqueness of enhancement for triangulated categories[END_REF]) for a triangulated category. Definition 1.1. Let A be a triangulated category. An object A in A is compact if Hom A pA, ¡q commutes with arbitrary direct sums. Definition 1.2. A set of (compact) objects tE i u iI in a k-linear triangulated category A (compactly) generates A if, for any object of A of A, the vanishing Hom A pE i , Arnsq 0 for all i I and all integer n implies A 0. Definition 1.3. A set of compact objects tE i u iI in a k-linear triangulated category A classically generates A if A is the smallest full thick triangulated subcategory of A containing the objects E i .

Suppose that E is a classical generator for a triangulated category A. One would like to "count" the number of steps which are needed to construct A from E. More precisely, given two full subcategories A 1 and A 2 , we define their product A 1 ¦A 2 to be the full subcategory of all the objects A of A fitting a triangle

A 1 Ñ A Ñ A 2 with A i in A i .
For a full subcategory B of A, denote by xBy the smallest full subcategory of A containing B and closed under shifts, directs sums and direct summands. Then we denote

B 1 B 2 : xB 1 ¦ B 2 y .
For an object A of A, set xAy 1 : xAy and xAy n : xAy 1 xAy n¡1 for any n ¡ 1.

Definition 1.4. Let E be a classical generator of a triangulated category A. We say that E is a strong generator if there exists n in N such that (3)

xEy n A.
Let us just mention that, if E is a strong generator, following Ballard-Favero-Katzarkov [START_REF] Ballard | Orlov spectra: bounds and gaps[END_REF], one can define the generation time of E to be the smallest integer satisfying (3). I.2. Semiorthogonal decompositions and their mutations. A full thick triangulated subcategory σ : A 1 ã Ñ A is called admissible if the embedding functor σ admits a left adjoint σ ¦ and a right adjoint σ ! .

Definition 1.5. A semiorthogonal decomposition of A is a totally ordered set of admissible subcategories A 1 , . . . , A n of A such that Hom A pA i , A j q 0 for all i ¡ j and any A i in A i and A j in A j ; for every object A of A, there is a chain of morphisms 0

A n Ñ A n¡1 Ñ . . . Ñ A 1 Ñ A 0 A such that the cone of A k Ñ A k¡1 is an object of A k for all k 1, . . . , n.

Such a decomposition will be written

A xA 1 , . . . , A n y.

This notation is justified by the fact that, even if any A i is not necessarily generated by a set of objects, the category A is generated by its subcategories A i .

For a subcategory B A, we define the full subcategories B u tA A | Hom A pB, Aq 0 for all B B u u B tA A | Hom A pA, Bq 0 for all B B u.

Assume that A has finite homological dimension ans is saturated (these properties are satisfied by bounded derived categories of coherent sheaves on a smooth scheme, see Thm.

[BK90]

). Then, if B is admissible, then both B u and u B are admissible and we have two semiorthogonal decompositions (see [BK90, §2])

A xB u , By xB, u By. Given an admissible subcategory B ã Ñ A, Bondal [Bon90, §3] defines left and right mutation functors with respect to B:

L B : A Ñ A, R B : A Ñ A.
Such functors satisfy

R B pBq L B pBq 0 R B B u u B L B p u Bq B u , Chapter 1.
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and R B|B u and L B| u B are equivalences.

In particular, whenever A xB, Cy is a semiorthogonal decomposition, there are semiorthogonal decompositions

A xL B pCq, By, A xC, R C pBqy, with L B pCq C and R C pBq B.
Definition 1.6. A triangulated category A is indecomposable if A is not the disjoint union of two nontrivial triangulated categories. It is semiorthogonally indecomposable if it does not admit any nontrivial semiorthogonal decomposition.

Remark 1.7. Notice that a category A is indecomposable if and only if it does not admit any nontrivial completely orthogonal decomposition, that is a semiorthogonal decomposition A xA 1 , A 2 y such that Hom A pA 1 , A 2 q 0 for all object A i in A i . Hence, indecomposability is much weaker than semiorthogonal indecomposability. For example, if X is a connected smooth projective variety, then its bounded derived category D b pXq is indecomposable (see [Bri99, Ex. 3.2]), while if X is a Fano variety then D b pXq is semiorthogonally decomposable (see [START_REF]Derived categories of Fano threefolds[END_REF]).

Example 1.8. There are examples of triangulated categories which are semiorthogonally indecomposable. For example, if X is a connected curve of positive genus (see Okawa [START_REF] Okawa | Semiorthogonal decomposability of the derived category of a curve[END_REF]) or if X is a connected variety with trivial canonical bundle, then the triangulated category D b pXq is semiorthogonally indecomposable.

We finally notice that, if B is a subcategory generated by a given set of compact objects tE i u iI of A then B is not in general admissible, as the following example shows.

Example 1.9. Let C be an elliptic curve. The subcategory generated by O C is a proper subcategory of the triangulated category D b pCq. Indeed, for any line bundle L on C, we have Hom On the other hand, if A xA 1 , A 2 y and B xB 1 , B 2 y, an equivalence Ψ : A 1 Ñ B 1 will give rise, by precomposition with projection A Ñ A 1 and composition with embedding B 1 Ñ B, to a splitting functor Φ : A Ñ B such that ker Φ A 2 , and im Φ B 1 . I.4. Exceptional objects, blocks, and mutations. Definition 1.11. Let A be a division (not necessarily central) k-algebra (e.g., A could be a field extension of k). A compact object E of A is called A-exceptional if Hom A pE, Eq A and Hom A pE, Errsq 0 for r $ 0.

D b pCq pO C , L rnsq Ext n pO C , L q H n pC, L q. Hence, if L is nontrivial of degree 0, then L is not in xO C y.
An exceptional object is an A-exceptional object for some algebra A.

Definition 1.12. Let tE i u i1...n be exceptional objects of A. The totally ordered set tE 1 , . . . , E n u is called an exceptional collection if Hom A pE j , E i rrsq 0 for all integers r whenever j ¡ i. An exceptional collection is full if it generates A. Equivalently, a collection is full if for any object T of A, the vanishing Hom A pT, E i rrsq 0 for all i and for all r integers implies T 0. An exceptional collection is strong if Hom A pE i , E j rrsq 0 whenever r $ 0.

Remark 1.13. If k is algebraically closed, any exceptional object is k-exceptional, so that the original definition (see, e.g., [START_REF] Bondal | Representations of associative algebras and coherent sheaves[END_REF]) matches Definition 1.11 in this case.

Bondal and Kapranov have shown that, for an exceptional collection tE 1 , . . . , E n u of A, the subcategory E xE 1 , . . . , E n y of A is admissible (see [BK90, Prop. 2.6 and Corollary page 530]). In particular, one can check that there is a semiorthogonal decomposition E xE 1 , . . . , E n y xxE 1 y, . . . , xE n yy.

Exceptional collections provide an algebraic description of admissible subcategories of A.

Indeed, if E is an A-exceptional object in A, the triangulated subcategory xEy A is equivalent to the category perfpAq of perfect k-linear complexes of A-modules of finite type. Furthermore, as shown by Bondal [Bon90], in many cases strong full exceptional collections give an algebraic description of a triangulated category.

Proposition 1.14 ( [Bon90, Thm. 6.2]). Suppose that A is the bounded derived category of either a smooth projective k-scheme or of a k-linear Abelian category with enough injective objects and is of finite global dimension. Let tE 1 , . . . , E n u be a full strong k-exceptional collection on A, and consider the object

E À n i1 E i and the k-algebra R End A pEq. Then RHom A pE, ¡q : A Ñ perfpRq is a k-linear equivalence.
Remark 1.15. The assumptions on the category A and on the strongness of the exceptional sequence may seem rather restrictive, and both find a natural solution when triangulated categories are enriched with a dg structure. The first assumption can be indeed replaced by considering a dg enhancement of A (see [BK91, Thm. 1]). When the exceptional collection is not strong, the endomorphisms of E form a dg algebra, see Thm. 1.26.

Example 1.16. The full strong k-exceptional collection tO, Op1q, . . . , Opnqu on the bounded derived category of the projective space D b pP n k q was described by Beilinson [START_REF] Beilinson | Coherent sheaves on π n and problems in linear algebra[END_REF], [Bei84] and Bernšteȋn-Gelfand-Gelfand [START_REF] Bernšteȋn | Algebraic vector bundles on P n and problems of linear algebra[END_REF]. In this case R End À n i0 Opiq ¨is isomorphic to the path algebra of the Beilinson quiver with n 1 vertices, see [START_REF] Bondal | Representations of associative algebras and coherent sheaves[END_REF]Ex. 6.4].
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Given an exceptional pair tE 1 , E 2 u with E i being A i -exceptional, consider the admissible subcategories xE i y, forming a semiorthogonal pair. We can hence perform right and left mutations, which provide equivalent admissible subcategories. It easily follows that

the object R E 2 pE 1 q is A 1 -exceptional, the object L E 1 pE 2 q is A 2 -exceptional, and the pairs tL E 1 pE 2 q, E 1 u and tE 2 , R E 2 pE 1 qu are exceptional. We call R E 2 pE 1 q the right mutation of E 1 through E 2 and L E 1 pE 2 q the left mutation of E 2 through E 1 .
A special case of an exceptional pair is a completely orthogonal pair tE 1 , E 2 u, i.e., an exceptional pair such that Hom A pE 1 , E 2 risq 0 for all i. Equivalently, we have that tE 2 , E 1 u is also exceptional. In this case,

R E 2 pE 1 q E 1 and L E 1 pE 2 q E 2 .
Definition 1.17 ( [KN98], 1.5). An exceptional block in a k-linear triangulated category A is an exceptional collection tE 1 , . . . , E n u such that Hom A pE i , E j rrsq 0 for every r whenever i $ j. Equivalently, every pair of objects in the collection is completely orthogonal. By abuse of notation, we denote by E the exceptional block as well as the subcategory that it generates.

If E is an exceptional block, then End

A p À n i1 E i q is isomorphic to the k-algebra A 1 ¢ ¤ ¤ ¤ ¢ A n , where E i is A i -exceptional. Proposition 1.14 then yields a k-equivalence E D b pA 1 ¢ ¤ ¤ ¤ ¢ A n q.
Moreover, given an exceptional block, any internal mutation acts by simply permuting the exceptional objects. Given an exceptional collection tE 1 , . . . , E n , F 1 , . . . , F m u consisting of two blocks E and F, the left mutation L E pFq and the right mutation R F pEq are obtained by mutating all the objects of one block to the other side of all the objects of the other block, or, equivalently, as mutations of semiorthogonal admissible subcategories. Serre functors were defined by Bondal and Kapranov [START_REF] Bondal | Representable functors, Serre functors and mutations[END_REF] in order to generalize Serre duality on a smooth projective variety X. Indeed, in this case, if dim pXq n, the functor S X : ¡ ω X rns is a Serre functor for the category D b pXq. The next proposition collects important properties of Serre functors (see [START_REF] Bondal | Representable functors, Serre functors and mutations[END_REF] or [Huy06, Ch. 1 and 2]).

Proposition 1.19. Suppose that A admits a Serre functor S. Then S is unique, and will be denoted by S A . Moreover, if A I also admits a Serre functor, and

F : A Ñ A I is a k-linear equivalence, then S A I ¥ F F ¥ S A . If F : A Ñ A I is a functor admitting a left (resp. right) adjoint G, then H : S A ¥ G ¥ S ¡1 A I (resp. H : S ¡1 A ¥ G ¥ S A I) is a right (resp. left) adjoint to F .
Definition 1.20. Let A be a triangulated category with a Serre functor S A . We say that A is a Calabi-Yau category if there exist positive integers r and d such that S r A rds. If r is the minimal such integer, we say that A has dimension d{r. Notice that d{r is not a rational number, but rather a quotient of two integer numbers (simplifications of common factors are not allowed).

II. dg categories and enhanced triangulated categories II.1. dg categories and Morita equivalence. Let Cpkq be the category of cochain complexes of k-vector spaces. A differential graded (=dg) category A is a category enriched over Cpkq. This means that morphism sets are complexes of k-vector spaces and that the composition law fulfills the Leibniz rule dpf ¥ gq dpf q ¥ g p¡1q degpf q f ¥ dpgq. A dg functor Φ : A Ñ B is a functor enriched over Cpkq. A dg algebra is a dg category with one object; a detailed account can be found in Keller's ICM address [START_REF]International Congress of Mathematicians[END_REF].

Let us denote by dgcatpkq the category of (small) dg categories and dg functors. Such a category has a monoidal structure given by the tensor product A B of two dg categories A and B, defined as follows: objects of A B are elements of the cartesian product of the sets of objects of A and B, and the complexes of morphisms are given by

Hom AB ppA 1 , B 1 q, pA 2 , B 2 qq : Hom A pA 2 , A 2 q Hom B pB 1 , B 2 q.
For a given dg category A, we define the opposite dg category A op to be the category having the same objects whose morphisms given by Hom A op pA, Bq : Hom A pB, Aq. Given dg categories A and B, an A-B-bimodule is a right pA op Bq-module, that is, a dg functor B : A B op Ñ C dg pkq.

For each object A of A, we have the right module represented by A, that is the functor Hom A p¡, Aq, which we denote by A . Another standard example of bimodule is the where Iso stands for the set of isomorphism classes. Moreover, under (5), the composition law in Hmopkq corresponds to the derived tensor product of bimodules. II.2. Pretriangulated dg categories and enhancements of triangulated categories. Our aim is to consider dg enhancements of a given triangulated category. To this aim, we introduce the notion of pretriangulated dg category. We follow Keller's presentation [Kel06, §4.5].

A-A- bimodule A A op ÝÑ C dg pkq pA, Bq Þ Ñ Hom A pB, Aq .
Let A be a small dg category. The category Z 0 pAq has the same objects as A and morphisms defined by Hom Z 0 pAq p¡, ¡q kerpHom 0 A p¡, ¡q d ÝÑ Hom 1 A p¡, ¡qq. The k-linear category H 0 pAq has the same objects as A and morphisms given by Hom H 0 pAq p¡, ¡q : H 0 pHom A p¡, ¡qq, where H 0 p¡q is the 0 th cohomology group functor.

Definition 1.23. We say that a dg category A is pretriangulated if the image of the Yoneda functor

Z 0 pAq ÝÑ CpAq, A Þ Ñ A
is stable under shifts in both directions and extensions. Equivalently, for all objects A and B of A and all integers n, and for any morphism f : B Ñ A, the object B rns is isomorphic to pBrnsq and the cone over a morphism f : B Ñ A is isomorphic to pConepfqq .

For an arbitrary dg category A, one has a unique pretriangulated dg category pretrpAq, called the pretriangulated hull of A, satisfying a universal property (see [Kel06, §4.5]).

For our purpose, we record that if A is pretriangulated, then H 0 pAq has a canonical and functorial structure of k-linear triangulated category. Definition 1.24. Let A be a triangulated category. A dg enhancement of A is a pair pA, q, where A is a pretriangulated dg category and : H 0 pAq Ñ A is an equivalence of triangulated categories.

Let A be a triangulated category admitting a dg enhancement. Then A has a unique enhancement if for any two enhancements pA, q and pA I , I q of A there exists a dg functor Φ : A ÝÑ A I , inducing an equivalence H 0 pΦq : H 0 pAq ÝÑ H 0 pA I q. In this case the enhancements pA, q and pA I , I q are called equivalent.

II. dg categories and enhanced triangulated categories

Enhancements pA, q and pA I , I q of A are called strongly equivalent if there exists a dg functor Φ as above such that the functors I ¥ H 0 pΦq and are isomorphic.

A way to construct a unique enhancement for the derived category DpCq of a Grothendieck category C is to have a set of compact generators, as shown by Lunts and Orlov [LO10, Thm.

2.7].

Theorem 1.25 (Lunts-Orlov). Let C be a Grothendieck category and suppose that there is a small set of compact generators in the derived category DpCq. Then DpCq has a unique enhancement.

If A is a triangulated category with a full exceptional collection tE 1 , . . . , E n u, then it has a compact generator, namely E : n i1 E i . In this case, the dg enhancement A of A can be described as the derived category of a dg-algebra, as proved by Bondal and Kapranov [START_REF] Bondal | Representable functors, Serre functors and mutations[END_REF]. Notice that the dg algebra is given by a choice of an enhancement of A, for example by injective resolutions if A has enough injectives. The following result generalizes Prop. 1.14, that is the case where the exceptional collection is strong.

Theorem 1.26 (Bondal-Kapranov). Let A be a triangulated category, pA, q an enhancement of A, and tE 1 , . . . , E n u be a full exceptional collection on A. Consider the object E À n i1 E i and the dg-k-algebra A End A pEq, obtained via the enhancement . Then any dg enhancement A of A is equivalent to the dg category D b pAq.

Let X be a scheme over the field k, and DpQcohpXqq the derived category of quasicoherent sheaves on X. Thanks to the work of Bondal-Van den Bergh and Neeman [START_REF] Bondal | Generators and representability of functors in commutative and non-commutative geometry[END_REF][START_REF] Neeman | The grothendieck duality theorem via bousfields techniques and brown representability[END_REF], if X is quasi-compact and quasi-separated, the subcategory of compact objects of DpQcohpXqq coincides with the category perfpXq of perfect complexes on X, that is, the category of bounded complexes of vector bundles. Lunts and Orlov show that this category admits a unique enhancement (see [START_REF] Lunts | Uniqueness of enhancement for triangulated categories[END_REF]Thm. 7.9]).

Theorem 1.27 (Lunts-Orlov). Let X be a quasi-separated and quasi-compact scheme. The category perfpXq admits a unique enhancement.

Remark 1.28. Notice that for any given k-scheme (or even k-stack) X, one can construct enhancements for the categories perfpXq and D b pXq, see, e.g., [START_REF] Lunts | new enhancements of derived categories of coherent sheaves ans applications[END_REF]. The question we are considering here is whether perfpXq has a unique enhancement in the sense of definition 1.24. Notice that the existence of some dg enhancement of perfpXq (for example, by complexes of injectives) is necessary to give the endomorphism algebra of the generator a structure of dg algebra.

II.3. dg enhanced semiorthogonal decompositions.

We want now to consider semiorthogonal decompositions of pretriangulated dg categories.

Definition 1.29. Let A be pretriangulated dg-category. A semiorthogonal decomposition of A is a set of pretriangulated subcategories A 1 , . . . , A n such that H 0 pAq xH 0 pA 1 q, . . . , H 0 pA n qy is a semiorthogonal decomposition for the triangulated category H 0 pAq.
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Let A be a triangulated category, pA, q a dg enhancement of A, and let (6)

A xA 1 , . . . , A n y be a semiorthogonal decomposition. Then the categories A i admit enhancements pA i , q induced by pA, q in such a way that the semiorthogonal decomposition (6) gives a semiorthogonal decomposition of the pretriangulated dg category pA, q as defined in Definition 1.29. Remark 1.30. [Compare with Conjecture 2.3] Notice that if Φ : A Ñ B is a splitting functor, and A and B are enhancements of A and B respectively, there is in general no reason to have have a dg functor Φ dg : A Ñ B such that H 0 pΦ dg q Φ. In other words, given triangulated semiorthogonal decompositions A xA 1 , A 2 y and B xB 1 , B 2 y, an exact k-linear equivalence A 2 B 1 could not come from a dg equivalence.

III. Noncommutative schemes: resolutions of singularities, representability III.1. Noncommutative schemes. We concluded Section II.2 with the famous Theorem of Lunts and Orlov, stating that if X is a quasi-compact and quasi-separated scheme, then there is a unique enhancement of perfpXq, which is the subcategory of compact objects of DpQcohpXqq. We hence have a natural pretriangulated dg category with a strong generator E associated to such a scheme, so that we are lead to replace schemes by dg categories. Following Kontsevich's ideas [Kon05, Kon10, Kon09], some geometrical properties may be rephrased in noncommutative terms (see also Orlov [Orl14]). With these definitions in mind, we will detail Orlov's definition [START_REF]Smooth and proper noncommutative schemes and gluing of dg categories[END_REF] of a noncommutative k-scheme and compare smoothness, properness and regularity for noncommutative and commutative schemes. We record that smoothness is a stronger notion than regularity: if a small dg category A is smooth, then it is regular (see [START_REF] Lunts | Categorical resolution of singularities[END_REF]).

Definition 1.33. A noncommutative scheme over k is a pretriangulated dg category A of the form perfpEq for some cohomologically bounded dg k-algebra E. It is regular (resp. proper, resp. smooth) if A is regular (resp. proper, resp. smooth). If B is an admissible subcategory of A (that is, if there is a semiorthogonal decomposition A xB, Cy for some C), we will say that B is a component of the noncommutative scheme A (and that C is its complement). A noncommutative k-scheme A is geometric if there exists a smooth and projective scheme X and a fully faithful functor A Ñ perfpXq admitting right and left adjoints. That is, A is admissible in perfpXq.

For a given geometric noncommutative k-scheme A, we define noncommutative A-schemes as noncommutative k-schemes such that E is a dg-A-algebra. If A perfpXq for some smooth and projective X, a noncommutative X-scheme is a noncommutative A-scheme. Notice that noncommutative A-schemes carry both an A-linear and a k-linear structure. The category of noncommutative k-linear proper and smooth A-schemes will be denoted by NSch A pkq, and the category of noncommutative A-linear proper and smooth A-schemes will be denoted by NSchpAq.

If K{k is an extension, and E a dg k-algebra, then we can consider the base change

E K E k K.
For the noncommutative k-scheme A perfpEq, we define the noncommutative K-scheme A K : perfpE K q to be the base change of A to K.

Remark 1.34. Let Y be a quasi-compact and quasi-separated k-scheme, and L any invertible object for the monoidal structure of perfpY q, that is, L is a line bundle on Y . Let A be a noncommutative geometric Y -scheme: as defined above it is a noncommutative k-scheme enriched over perfpY q, and there exists a smooth and projective Y -variety X such that A is an admissible subcategory of perfpXq. Then L lifts to an invertible object on A, which we still denote by L.

Remark 1.35. In [START_REF] Gaitsgory | Sheaves of categories and the notion of 1-affineness[END_REF], Gaitsgory defines the notion of 1-affineness for a prestack Y by requiring that the functor of enhanced global sections of sheaves of categories is an equivalence between the V-categories of sheaves of categories ShvCatpYq over Y and quasicoherent dg modules QcohpYq over Y. The quasi-inverse to global sections is the localization functor in this case.

In particular, if X is a quasi-separated and quasi-compact k-scheme, then X (or, better, the prestack given by the functor of points of X) is 1-affine [Gai13, Thm. 2.1.1]. We could then have defined a noncommutative X-scheme A to be a section of the sheaf of categories ShvCatpXq over X. Indeed, having such an object is equivalent to giving a section of QcohpXq (where this latter category means dg modules over X, and not quasi-coherent "commutative" sheaves), that is A is a noncommutative k-scheme enriched over the category perfpXq.

Example 1.36. Thanks to Theorem 1.27, for any smooth and proper k-scheme X, there is a unique smooth and proper noncommutative k-scheme perfpXq. Notice that there exist non-isomorphic k-schemes whose associated noncommutative k-schemes are equivalent. The first such example is provided by an Abelian variety X of dimension dim X ¥ 2 and its dual X. Indeed, perfpXq perfp Xq, see Mukai [START_REF] Mukai | Duality between DpXq and Dp Xq and its application to Picard sheaves[END_REF].

In the geometric case, that is for a noncommutative scheme of the form perfpXq for X a quasi-compact and quasi-separated scheme, the previous properties of properness, regularity and smoothness recover properness, regularity and smoothness of X, as shown by Orlov [START_REF]Smooth and proper noncommutative schemes and gluing of dg categories[END_REF] (see also [START_REF] Lunts | new enhancements of derived categories of coherent sheaves ans applications[END_REF]).

Proposition 1.37 (Orlov). Let X be a separated regular Noetherian k-scheme. The noncommutative scheme perfpXq is regular. If moreover X is of finite type, then X is smooth and proper if and only if perfpXq is smooth and proper.

The notion of gluing of dg-categories A and B along a A ¡ B-bimodule S appeared in [Tab07, §0], under the name of "catégorie triangulaire supérieure", while the term "gluing" was established by Kuznetsov and Lunts in [START_REF] Kuznetsov | categorical resolution of irrational singularities[END_REF]. Such a dg-category is denoted by Chapter 1. dg categories, semiorthogonal decompositions and noncommutative motives 31 III.2. Resolutions of singularities. One of the interesting features of noncommutative schemes is the possibility to define categorical resolution of singularities. A particularly important question about resolution of singularities is to find the ones that enjoy some minimality property (see e.g. Bondal and Orlov [START_REF] Bondal | Derived categories of coherent sheaves[END_REF]§5]). The geometrical notion of crepant resolution can be described homologically, as done by Kuznetsov [START_REF]Lefschetz decompositions and categorical resolutions of singularities[END_REF]. We first recall Kuznetsov-Lunts definition in terms of dg categories [KL12, Def. 1.5] (A definition in the context of big categories was given by Lunts [Lun10, Def. 4.1]). In this report, we will use the following definition in the category of noncommutative schemes.

C A i S B in [Orl14],
Definition 1.38. Let A be a geometric noncommutative k-scheme. A noncommutative resolution of A is a smooth noncommutative k-scheme B with a functor Φ : A Ñ B inducing a fully faithful functor H 0 pAq Ñ H 0 pBq. If A perfpXq for some scheme X, we will say that B is a noncommutative resolution of X.

Let us recall other definitions in the literature and comment Definition 1.38. The next definition, involving only triangulated categories, was given by Kuznetsov [START_REF]Lefschetz decompositions and categorical resolutions of singularities[END_REF].

Definition 1.39. Let A be a triangulated category. A categorical resolution of A is a triangulated category B and a pair of triangulated functors π ¦ : A c Ñ B and π ¦ : B Ñ A such that 1) There exists a smooth projective variety Y and a fully faithful functor B Ñ perfpY q,

2) The functor π ¦ is left adjoint to π ¦ on A c ,

3) The natural transformation id Ac Ñ π ¦ π ¦ is the identity. A categorical resolution of a variety X is a categorical resolution of D b pXq.

A categorical resolution of singularities pB, π ¦ , π ¦ q of A is weakly crepant if π ¦ is right adjoint to π ¦ on A c . If A and B admit Serre functors, the resolution is called strongly crepant if the identity of B is the relative Serre functor of B over A.

Remark 1.40. Let pB, π ¦ , π ¦ q be a categorical resolution of A, and B and A dg enhancements of B and A respectively, and assume that the functors π ¦ and π ¦ lift to dg functors.

Then B is a noncommutative resolution of A. Using this, one can naturally extend the notion of weak crepancy to noncommutative resolutions. Kuznetsov and Lunts have shown that if X is a k-scheme, then a noncommutative resolution of D b pXq induces a categorical resolution of X [KL12, Prop. 3.13]. On the other hand, item 1) in Definition 1.39 tells us that B can be enhanced from the unique enhancement of perfpY q and the choice of a semiorthogonal decomposition perfpY q xB, B u y, but this enhancement may not be unique.

Kuznetsov and Lunts have shown that categorical resolution of singularities exist for any separated scheme of finite type over a field of characteristic 0 [KL12, Thm. 1.4]. On the other hand, Definition 1.38 may seem rather weak: for example, consider a scheme X with rational singularities, and f : Y Ñ X a (geometric) resolution. Then perfpY q and the functors f ¦ and f ¦ provide a categorical resolution of X. But notice that composing f the natural projection Y ¢ P n Ñ Y , one obtains g : Y ¢ P n Ñ X such that perfpY ¢ P n q and the functors g ¦ and g ¦ also provide a categorical resolution of X.

Remark 1.41. If π : Y Ñ X is a resolution of Gorenstein singularities, then the categorical resolution perfpY q of D b pXq is weakly (or strongly) crepant if π is crepant, that is π ¦ ω X ω Y . In particular, strong and weak crepancy are equivalent in this case. Notice however that there cases of weakly but not strongly crepant categorical resolutions. In particular, to define strongly crepant resolutions one needs B to have a module structure over A c (see Kuznetsov for more details [START_REF]Lefschetz decompositions and categorical resolutions of singularities[END_REF]). If B and A are their respective enhancements, this amounts to say that B is a noncommutative A-scheme.

Let us finally mention Van den Bergh's definition of noncommutative crepant resolution for a commutative k-scheme X [VdB04, Def. 4.1, Rmk. 4.5].

Definition 1.42. Let R be a normal Gorenstein domain. A noncommutative crepant resolution of R is a homologically homogeneous R-algebra of the form A End R pMq, where M is a reflexive R-module. If X is a scheme, a non-commutative crepant resolution of X is a stack of Abelian categories A which is, locally on any affine open subset SpecR of X, the category of finitely-generated modules over a non-commutative crepant resolution A of R.

Remark 1.43. If A is a non-commutative crepant resolution of a scheme X, then A is a noncommutative weakly crepant resolution of X in the sense of Definition 1.38. In particular, A is a smooth noncommutative X-scheme.

III.3. Representability for noncommutative schemes.

Let A be a smooth and proper noncommutative scheme. The following notion of representability was introduced in [START_REF] Bernardara | Categorical representability and intermediate Jacobians of Fano threefolds, Derived Categories in Algebraic Geometry[END_REF] for triangulated categories and is motivated by the theory of noncommutative motives which will be introduced in Section IV.

Definition 1.44. A noncommutative scheme A is representable in dimension n if there exists a semiorthogonal decomposition A xA 1 , . . . , A r y and smooth projective k-schemes Y 1 , . . . Y r such that, for all i 1, . . . , r we have dim pY i q ¤ n and a fully faithful functor A i Ñ perfpY i q admitting right and left adjoints.

If A is representable in some dimension m, we use the following notation rdim A : mintm| A is representable in dimension mu Remark 1.45. The categories A i in Definition 1.44 are geometric noncommutative schemes. It follows that if a noncommutative scheme A is representable in dimension n for some integer n then A is a geometric noncommutative scheme thanks to [START_REF]Smooth and proper noncommutative schemes and gluing of dg categories[END_REF]. On the other hand, any geometric noncommutative scheme is representable for some n by definition. Proof. Notice that this is straightforward from the definition: suppose that A 1 A is an admissible subcategory admitting a full and faithful embedding A 1 Ñ perfpY 1 q for some smooth and projective Y 1 of dimension ¤ n. Then dim pY 1 q ¤ m as well. l

Notice that, if A 1 is a noncommutative scheme with a fully faithful embedding A 1 Ñ perfpY 1 q for some smooth projective Y 1 of dimension exactly n, then, for any m ¡ n, we can easily construct a smooth projective variety Y of dimension exactly m and a full and faithful embedding A 1 Ñ perfpY q: it is enough to consider Y : Y 1 ¢ P m¡n . More generally, any variety π : Y Ñ Y 1 of dimension m and such that π satisfies Rπ ¦ O Y O Y 1 will admit A 1 as an admissible subcategory (see, e.g., Proposition 4.11).

Lemma 1.48. Let A and B be noncommutative schemes with rdim A n and rdim A m, and S a perfect A ¡ B-bimodule. Then the gluing C : A i S B is representable in dimension maxpm, nq. In particular, rdim C ¤ maxpm, nq.

Proof. This follows easily from the fact that C admits a semiorthogonal decomposition C : xA, By. l

Notice that we can classify noncommutative schemes with repA ¤ 1.

Proposition 1.49. Let A be a smooth and proper noncommutative semiorthogonally indecomposable k-scheme.

If repA 0, then there exist a finite field extension l of k and A perfpSpecplqq.

If repA 1, then either there exists a curve C of positive genus and A perfpCq, or there exists a class α in Brpkq of a non-k-rational conic such that A perfpAq for an Azumaya algebra A with class α.

If A is not semiorthogonally indecomposable, and repA ¤ 1, we have a semiorthogonal decomposition A xA 1 , . . . , A r y with A i as above.

The last statement of Proposition 1.49 is, by definition, just a consequence of the previous ones. The repA 0 case is treated in [START_REF] Auel | Semiorthogonal decompositions and birational invariants of geometrically rational surfaces[END_REF], via the simple observation that zero dimensional k-schemes are spectra of étale algebras. The second statement is a consequence of Okawa's study of indecomposability of derived categories of curves of positive genus [START_REF] Okawa | Semiorthogonal decomposability of the derived category of a curve[END_REF], and of the description of semiorthogonal decompositions for Brauer-Severi varieties [START_REF]A semiorthogonal decomposition for Brauer Severi schemes[END_REF] together with the observation that all semiorthogonal decompositions of a conic are mutated to that one.

We end this section by remarking that the definition of categorical representability relies on the existence of semiorthogonal decompositions of a noncommutative scheme. In general,
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Jordan-Hölder property does not hold for semiorthogonal decompositions; see [START_REF]On the jordan-hölder property for geometric derived categories[END_REF] or [START_REF] Kuznetsov | A simple counterexample to the jordan-hlder property for derived categories[END_REF] (we will recall details in Example 1.52). It follows that if A and B are noncommutative schemes such that rdim A n, and B is admissible in A, it is not known how to prove that repB ¤ n, and counterexamples exist, even in the case where n 0: Kuznetsov's example [START_REF] Kuznetsov | A simple counterexample to the jordan-hlder property for derived categories[END_REF] is a rational threefold X with a full exceptional collection, so that A : perfpXq has rdim A 0, but admits an admissible subcategory B such that repB ¡ 0.

III.4. The Grothendieck ring of noncommutative schemes and its filtration.

We sketch the Bondal-Larsen-Lunts construction of the Grothendieck ring of smooth and proper noncommutative schemes [START_REF] Bondal | Grothendieck ring of pretriangulated categories[END_REF]. Consider the free Z-module generated by smooth and proper noncommutative schemes in dgcatpkq, and introduce the following relation:

(7) A B C if, up to dg-equivalence, A xB, Cy.
We denote the quotient group by P T pkq (see [BLL04, §5.1]).

For any noncommutative scheme A we use either the notation IpAq or the lower case notation a to denote its class in P T pkq. More generally, elements of P T pkq will be denoted by a lower case letter. For a smooth projective variety X, we will often use the notation x for the class of perfpXq in P T pkq.

Lemma 1.50. Let a be any element of P T pkq. If a °r i1 m i IpA i q with m i ¡ 0 for all i i, . . . , r, then there exists a smooth and proper noncommutative scheme A such that a IpAq .

Proof. The noncommutative scheme A can be described as a recursive gluing of the A i along the trivial bimodules. Concretely, A Consider the quiver:

Q α 1 / / α 2 / / β 1 / / β 2 / / ,
with the relations β 1 α 2 β 2 α 1 0. Setting A : perfpQq, the perfect complexes on the representation algebra of Q, it is easy to describe a full exceptional sequence A xE 1 , E 2 , E 3 y by considering E i to be the projective module of the i-th vertex. On the other hand, one

Chapter 1. dg categories, semiorthogonal decompositions and noncommutative motives 35 can consider the exceptional object F give by the module:

F k 1 / / 0 / / k 1 / / 0 / / k,
and the semiorthogonal decomposition A xB, F y, so that one easily obtain B 2e. But there is no exceptional object in B. Notice that this also gives an example of a noncommutative schemes B and A, such that rdim B ¡ 0, rdim A 0 and B admissible in A. Kuznetsov describes moreover how to construct a rational threefold X, with a full exceptional collection, and a fully faithful functor A Ñ perfpXq.

Another geometrical example is due to Böhning, Graf von Bothmer and Sosna. For X the classical Godeaux surface, they have constructed two semiorthogonal decompositions perfpXq xE 1 , . . . , E 11 , B 1 y xF 1 , . . . , F 9 , B 2 y, where E i and F i are exceptional objects [START_REF] Böhning | On the derived category of the classical godeaux surface[END_REF][START_REF]On the jordan-hölder property for geometric derived categories[END_REF]. Considering the induced dg enhancements, this provides two noncommutative schemes B 1 and B 2 such that IpB 2 q IpB 1 q 2e. On the other hand, as proved in [START_REF]On the jordan-hölder property for geometric derived categories[END_REF], there is no exceptional object in B 2 . However, there is no exceptional object in B 1 either, and one can show that repB 1 repB 2 2 in this case.

The notion of categorical representability induces a ring filtration on P T pkq. Define the following Z-submodules of P T pkq: The set P T V pkq : iN P T i pkq is the set of elements in P T pkq generated by geometric noncommutative schemes. We denote by P T ¡i pkq the complement of P T i pkq in P T pkq. We can restate Question 1.46 as follows Question 1.53. Is P T ¡V pkq empty? Proposition 1.54. The subsets P T i pkq give a filtration on the ring P T pkq. More precisely, suppose that a is in P T i pkq and b is in P T j pkq. Then a b is in P T maxpi,jq pkq, a b is in P T i j pkq. In particular, P T i pkq is an additive subgroup for any i.

Proof. We can test these properties on generators of P T i pkq. First of all, P T i pkq P T i 1 pkq for any i ¥ 0 integer by definition. The second statement follows from Lemmas 1.50 and 1.48.

We are left to show the last statement. To this end, suppose that a IpAq and b IpBq such that A perfpXq and B perfpY q are admissible with X and Y of dimension i and j respectively. Consider the variety W : X ¢ Y . As shown by Bondal, Larsen and Lunts [START_REF] Bondal | Grothendieck ring of pretriangulated categories[END_REF], we have w xy. Using the ring structure, we get w ab a u b ab u a u b u . In particular, it follows that if rdim A ¤ i and rdim B ¤ j, then a b is in P T i j pkq, and we can conclude. l Finally notice that there exist noncommutative schemes B such that repB ¡ 0, but IpBq P T 0 pkq, as recalled in Example 1.52. It would be then natural to wonder whether the filtration P T i pkq is not trivial, that is whether there exist integers i such P T i pkq $ P T i 1 pkq.

Using the theory of Jacobians of noncommutative motives and Theorem 3.12, it is possible for example to show that, for k algebraically closed of characteristic zero, if X has a nontrivial intermediate Jacobian, or nontrivial Albanese variety, then IpD b pXqq cannot lie in P T 0 pkq. It follows that P T 0 pkq $ P T 1 pkq. III.5. Base change and descent of semiorthogonal decompositions. Let K{k be a field extension and A a noncommutative k-scheme, and A K the base change of A, as in Definition 1.33.

The first question one can address is to understand semiorthogonal decompositions of A under base change. This question was addressed by Kuznetsov in the setting of triangulated categories arising as bounded derived categories of schemes [START_REF] Kuznetsov | Base change for semiorthogonal decompositions[END_REF], so we restrict to geometric noncommutative schemes. Here we give a sample of results on base change for semiorthogonal decomposition, in the case where K{k is finite.

Proposition 1.55. If A xA 1 , . . . , A n y is a semiorthogonal decomposition of a geometric noncommutative k-scheme A, then A K xA 1K , . . . , A nK y is a semiorthogonal decomposition of the noncommutative K-scheme A K .
If tA 1 , . . . , A n u is a set of admissible components of noncommutative k-scheme A and A K xA 1K , . . . , A nK y is a semiorthogonal decomposition of the noncommutative K-scheme A K , then A xA 1 , . . . , A n y is a semiorthogonal decomposition of the noncommutative kscheme A.

Proof. We first notice that if B is a noncommutative k-scheme such that B K 0 in NSchpKq, then B 0 in Nschpkq. The proof of the two statements follows then by remarking that semiorthogonality is stable under base change1 . l A natural question to consider is to classify, given a noncommutative K-scheme, A, all the noncommutative k-schemes B such that B K A. We end this section by illustrating descent in the most simple cases. If A K is generated by a K-exceptional object, the descent question has been studied by Toën [Toë12, Cor. 2.15].

Theorem 1.56 (Toën). Let A be a noncommutative k-scheme, K{k a field extension and assume that A K perfpKq. Then there exists a central simple algebra A over k such that A perfpAq. In particular, A is generated by an A-exceptional object which is k-exceptional if and only if A is trivial in the Brauer group.

Let us denote by k s the separable closure of k. Recall that L is a finite étale k-algebra

if and only if L k k s k s ¢ ¤ ¤ ¤ ¢ k s . Equivalently, L l 1 ¢ ¤ ¤ ¤ ¢ l m
where each l i {k is a finite separable field extension. The k-dimension of L is called the degree of L over k. An Azumaya algebra A over L l 1 ¢¤ ¤ ¤¢l m is simply a product A A 1 ¢¤ ¤ ¤¢A m where each A i is a central simple l i -algebra. A separable algebra of dimension nr 2 over k is an Azumaya algebra of degree r over an étale algebra K over k of dimension n.

The following Proposition was proved in [START_REF] Auel | Semiorthogonal decompositions and birational invariants of geometrically rational surfaces[END_REF] and generalizes the result of Toën to the case of finite products of fields.

Proposition 1.57. Let A be a noncommutative k-scheme such that A k s is k s -equivalent to perfppk s q n q. Then there exists an étale algebra K of degree n over k, an Azumaya algebra A over K, and a k-linear equivalence A perfpAq. In this case, A is an indecomposable category if and only if K is a field extension of k.

The key idea in the proof of Proposition 1.57 is to extend Toën's construction to study sections over k of the stack F associated to the prestack of dg algebras étale locally Morita equivalent to k n , which is simply KpAut dg{k pk n q, 1q, as in [Toë12, Cor. 3.12]. The main ingredient is the description of the derived group stack of autoequivalences Aut dg{k pk n q of the étale k-algebra k n (thought of as a dg algebra over k), as the wreath product pZ ¢ KpG m , 1qq S n , thought of as n ¢ n generalized permutation matrices filled with shifts of invertible modules.

We conclude this section by remarking that, if A is a noncommutative k-scheme and repA m, and K{k is a field extension, one easily has repA K ¤ m, but the strict inequality can hold. For example if A is a nontrivial Azumaya k-algebra with splitting field K, then repA ¡ 0 while repA K 0, thanks to the classification in Proposition 1.49.

IV. Noncommutative Chow motives

IV.1. Definition and basic properties. In this section we recall the construction of the category of noncommutative Chow motives of smooth and proper dg categories. Such category is meant to give a motivic theory for noncommutative schemes which should be parallel to the theory of Chow motives for schemes: perfect bimodules will play the role of correspondences, while a universal property with respect to additive invariants will replace the universal property with respect to Weil cohomologies. For further details we invite the reader to consult the recent book [START_REF]Noncommutative motives[END_REF].

Recall from §II (see, in particular, (5)) that one has a well-defined functor

dgcatpkq ÝÑ Hmopkq A Þ Ñ A F Þ Ñ F . ( 10 
)
The additivization of Hmopkq is the additive category Hmo 0 pkq which has the same objects as Hmopkq and Abelian groups of morphisms given by Hom Hmo 0 pkq pA, Bq : K 0 reppA, Bq, where K 0 stands for the Grothendieck group of the triangulated category reppA, Bq. The composition law is induced by the tensor product of bimodules; consult [Tab05, §6] for further details. Note that we have a canonical functor

Hmopkq ÝÑ Hmo 0 pkq A Þ Ñ A B Þ Ñ rBs . (11) 
For a Z-module R, the R-linearization of Hmo 0 pkq is the R-linear additive category Hmo 0 pkq R obtained by tensoring each Abelian group of morphisms of Hmo 0 pkq with R. In particular Hmo 0 pkq Z Hmo 0 pkq. Note that one also has a canonical functor

Hmo 0 pkq ÝÑ Hmo 0 pkq R A Þ Ñ A rBs Þ Ñ rBs R . (12) 
Since the three functors (10)-( 12) are the identity on objects we will make no notational distinction between a dg category and its image in Hmo 0 pkq R .

Definition 1.58. The category NChowpkq R of noncommutative Chow motives (with coefficients in the ring R) is the pseudo-Abelian envelope of the full subcategory of Hmo 0 pkq R consisting of smooth and proper dg categories.

Let us describe two fundamental properties motivating the fact that such a category should be thought of as the category of motives of noncommutative schemes. Given a dg category A, we denote by T pAq : A i id A the gluing of A with itself along the identity bimodule. We have two natural inclusion dg functors i 1 : A Ñ T pAq i 2 : A Ñ T pAq. Definition 1.59. Let E : dgcatpkq Ñ C be a functor with values in an additive category C.

The functor E is an additive invariant if: E sends Morita equivalences to isomorphisms; given any dg category A, the inclusion dg functors induce an isomorphism rEpi 1 q, Epi 2 qs : EpAq EpAq ÝÑ EpT pAqq.

Thanks to [Tab05, Thm 6.3], if A xB, Cy is a semiorthogonal decomposition of a dg-category, and E an additive invariant, then EpAq EpBq EpBq.

Example 1.60. Thanks to the work of Blumberg and Mandell, Keller, Schlichting, Tabuada, Thomason and Trobaugh, Waldhausen, and Weibel (see [BM12, Kel99, Kel98b, Kel98a, Sch06,Tab12,Tab10,Tho90,Wal85,Wei89]), examples of additive invariants include connective algebraic K-theory, nonconnective algebraic K-theory, homotopy algebraic K-theory, Hochschild homology, cyclic homology, periodic cyclic homology, negative cyclic homology, topological Hochschild homology, and topological cyclic homology.

The following two propositions were proved by Tabuada [START_REF] Tabuada | Iinvariants additifs de dg catégories[END_REF]. They show that noncommutative motives are the universal category for additive invariants and that any semiorthogonal decomposition of a dg category A splits the motive U pAq. Proposition 1.61 (Tabuada). Every additive invariant E : dgcatpkq Ñ C factors through the natural functor U : dgcatpkq Ñ Hmo 0 pkq. Proposition 1.62 (Tabuada). Let A be a smooth proper noncommutative k-scheme and A xB, Cy a semiorthogonal decomposition. Then U pAq U pBq U pCq. In particular, EpAq EpBq EpCq for any additive invariant E.

Let X be a smooth and projective k-scheme, and perfpXq the associated smooth and proper noncommutative scheme. One can define the noncommutative Chow motive of X (or of perfpXq) as:

N CpXq R : U pperfpXqq R ,
where U is the universal functor described above.

Chapter 1. dg categories, semiorthogonal decompositions and noncommutative motives 39 IV.2. Noncommutative Smash-nilpotent, Homological, and Numerical motives. As in the commutative case, one can consider categories of Smash-nilpotent, homological and numerical noncommutative motives over k.

Let F be a field. The category NChowpkq F is F -linear, additive, idempotent complete and rigid symmetric monoidal. For an F -linear, additive, rigid symmetric monoidal category C, one can define the nil -ideal by: (13) nil px, yq : tf Hom C px, yq | f n 0 for some n ¡ 0u, and check that is is a -ideal. Similarly to the commutative case, the category NVoevpkq F of -nilpotent noncommutative motives can be defined as the quotient of NChowpkq F by the ideal nil . One can check that the category NVoevpkq F is also F -linear, additive and idempotent complete since the quotient functor is F -linear, additive, conservative and idempotent can be lifted along nilpotent ideals [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF].

Periodic cyclic homology gives a functor HP : dgcatpkq Ñ Vect Z{2 pkq to the category of Z{2Z-graded k-vector spaces [START_REF] Ch | Cyclic homology, comodules, and mixed complexes[END_REF] (which coincides with odd and even de Rham cohomology for the dg category of perfect complexes over a smooth projective variety X, in the case where k has characteristic zero [START_REF] Feigin | Additive k-theory, K-theory, arithmetic and geometry[END_REF]). Let F be a field, such that either F is an extension of k or k is an extension of F . Set K to be the bigger field between k and F . Marcolli and Tabuada have proven that HP induces an F -linear symmetric monoidal functor

HP ¨: NChowpkq F Ñ Vect Z{2 pKq.
The category NHompkq F of homological commutative motives can be defined to be the idempotent completion of the quotient of NChowpkq F by the kernel of HP ¨. This category is F -linear, additive, rigid symmetric monoidal and idempotent complete, see [START_REF]Noncommutative numerical motives, Tannakian structures, and motivic Galois groups[END_REF].

Given a proper k-linear dg category A, one can define the bilinear Euler pairing χ on objects of A as the alternate sum of dimensions of morphism spaces. One can consider its left and right kernels, which coincide whenever A is smooth, due to the existence of a Serre functor (see [START_REF] Marcolli | Kontsevich's noncommutative numerical motives[END_REF]§4]). Moreover χ descends to a bilinear pairing on K 0 pAq, and Kontsevich [START_REF] Kontsevich | Noncommutative motives[END_REF] defines the category NNumpkq F of commutative numerical motives as the (idempotent completion of the) category whose objects are smooth and proper dg categories and morphisms spaces are (14)

Hom NNumpkq F pA, Bq K 0 pA B op q{kerpχq.
There is an alternative construction of NNumpkq F due to Marcolli and Tabuada [START_REF]Noncommutative motives, numerical equivalence, and semi-simplicity[END_REF] which coincides with the one above [START_REF] Marcolli | Kontsevich's noncommutative numerical motives[END_REF]. For an F -linear, additive, rigid symmetric monoidal category C, one can define the N -ideal by: N px, yq : tf Hom C px, yq | for any g Hom C py, xq, trpg ¥ f q 0u, and check that is a -ideal. The category NNumpkq F is equivalent to be the idempotent completion of the quotient of NChowpkq F by the ideal N . It is then additive, F -linear, symmetric rigid monoidal and idempotent complete. It is moreover semisimple, see [START_REF]Noncommutative motives, numerical equivalence, and semi-simplicity[END_REF].

IV.3. Comparison between commutative and noncommutative motives. Given a monoidal category C and a -invertible object L of C, the orbit category of C with respect to L is the category C{ ¡ L with the same objects as C and morphisms Hom C{¡L pA, Bq iZ Hom C pA, B L i q.

Let R be a Z-module and Chowpkq R denote the category of Chow motives of varieties over k with R-coefficients. Consult André's book for the construction and properties of motives [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes)[END_REF]. We denote by L the motive of the affine line in Chowpkq R . Recall that L is invertible in the monoidal category Chowpkq R . As an application of the Grothendieck-Riemann-Roch theorem, Tabuada [START_REF]Chow motives versus noncommutative motives[END_REF] shows that there is a full and faithful embedding

Chowpkq Q { ¡ L ÝÑ NChowpkq Q .
One can summarize this result by saying that, in rational coefficients, noncommutative Chow motives encode the same informations as Chow motives, up to codimension. This is no longer true over the integer coefficients, as we will point out in Section I of Chapter 3. As proved by Marcolli and Tabuada [START_REF]Jacobians of noncommutative motives[END_REF], similar comparison functors exist also for numerical and homological motives.

IV.4. A filtration by thick subcategories. Define NChow d pkq to be the thick subcategory generated by motives N CpXq for X of dimension dim pXq ¤ d. Then it is easy to see that NChow i pkq NChow i 1 pkq, and that if M is in NChow i pkq and N in NChow j pkq, then M N is in NChow maxpi,jq pkq and M N is in NChow i j pkq. 

Homological Projective Duality

The theory of Homological Projective Duality was developed by Kuznetsov [START_REF]Homological projective duality[END_REF]. The original motivation was to study how semiorthogonal decompositions behave under hyperplane sections (see also [START_REF]Hyperplane sections and derived categories[END_REF]). To this aim, the choice of a polarization is clearly relevant, and forces to consider semiorthogonal decompositions which are compatible with this choice (the so-called Lefschetz decompositions).

Homological Projective Duality is nowadays one of the most powerful tool to describe semiorthogonal decompositions of projective variety, in particular for those obtained as linear sections of a given variety.

Even if developed in the triangulated context, Homological Projective Duality can be adapted to the context of pretriangulated dg-categories, or, better, noncommutative schemes treated in the previous chapter. To this end, we will start recalling some basic properties on Fourier-Mukai functors.

I. Fourier-Mukai functors, splitting functors I.1. Fourier-Mukai functors and dg functors. Let X be a smooth projective kscheme. In the previous chapter, we considered the smooth and proper noncommutative scheme perfpXq, that is the canonically dg enhanced triangulated category of perfect complexes on X. In what follows we will consider the bounded derived category D b pXq, recalling that in this case the smoothness of X implies that the inclusion perfpXq D b pXq is actually an equivalence. Definition 2.1. Let X and Y be smooth and projective varieties and P an object of D b pX ¢ Y q. The Fourier-Mukai functor with kernel P is the functor Φ P : D b pXq Ñ D b pY q defined by Φ P p¡q : Rq ¦ pp ¦ p¡q Pq, where p and q are the projections from X ¢ Y onto X and Y respectively. Such functors are exact, and admit right and left adjoint which are also Fourier-Mukai functors. For more details, properties and a deep treatment, we refer to Huybrecht's book [START_REF] Huybrechts | Fourier-Mukai transforms in Algebraic Geometry[END_REF]. Notice that, given any object P in D b pX¢Y q, one has two Fourier-Mukai functors, the one defined in 2.1, and the one going in the opposite direction. It is in general clear from the context which are the source and target of the functor, so that no additional notation is required.

Given an exact functor Φ : D b pXq Ñ D b pY q, it is natural to wonder under which conditions Φ is of Fourier-Mukai type, that is, if there exists an object P in D b pX ¢ Y q such that Φ Φ P . Rizzardo and Van den Bergh have constructed an example of functor which does not satisfy this property [START_REF] Rizzardo | An example of a non-fourier-mukai functor between derived categories of coherent sheaves[END_REF]. However, in many cases an exact functor is of Fourier-Mukai type, for example if Φ is fully faithful [START_REF]Derived categories of coherent sheaves and equivalences between them[END_REF]. The interested reader should consult Canonaco and Stellari's survey [START_REF] Canonaco | Fourier-Mukai functors: a survey, Derived Categories in Algebraic Geometry[END_REF].

On the other hand, as recalled in the previous chapter, one can consider pD b pXq, X q and pD b pY q, Y q with their canonical dg enhancements as pretriangulated dg categories. In this case, given an exact functor Φ : D b pXq Ñ D b pY q, one can wonder whether Φ can be lifted to a dg functor Φ dg : pD b pXq, X q Ñ pD b pY q, Y q. This latter question is equivalent to the previous one: being of Fourier-Mukai type is equivalent to admitting a dg enhancement ( [Toë07], [START_REF] Lunts | new enhancements of derived categories of coherent sheaves ans applications[END_REF]).

Lemma 2.2. Let Φ : D b pXq Ñ D b pY q by an exact k-linear functor. The following are equivalent:

i) Φ is of Fourier-Mukai type.
ii) There exists a dg functor Φ dg : pD b pXq, X q Ñ pD b pY q, Y q such that H 0 pΦ dg q Φ. Recall the notion of splitting functor from definition 1.10. In Remark 1.30 we noticed how a splitting functor does not necessarily come with a natural enhancement. In the geometric context, this has been conjectured by Kuznetsov in terms of Fourier-Mukai functors. As we will see in this chapter, splitting functors are one of the main topics in Homological Projective Duality and are in this context always of Fourier-Mukai type, so that they all are dg enhanced.

II. Homological projective duality for noncommutative schemes

Homological Projective Duality is a duality theory between noncommutative schemes over projective varieties X Ñ PpW q and Y Ñ PpW q, that is X and Y are endowed with a line bundle, the pullback of the hyperplane section. Notice that here PpW q denotes the space of 1-dimensional linear subspaces through the origin in W . Kuznetsov's original motivation was to study how semiorthogonal decompositions of D b pXq behave under hyperplane sections [START_REF]Hyperplane sections and derived categories[END_REF]. The first step in the theory of Homological Projective Duality is indeed to provide what we will call here a Homological Lefschetz Theory: given X with a map X Ñ PpW q, identify decompositions of Lefschetz type of D b pXq, that are decompositions inducing a semiorthogonal sequence in D b pX H q, for X H the general hyperplane section of X. The orthogonal complement C H to the restricted semiorthogonal sequence is the main object of study of Homological Projective Duality. Varying H in PpW q, the family of these orthogonal complements form a dg category C H , endowed with a decomposition which can be fully recovered from the chosen decomposition of X, as proved by Kuznetsov [Kuz07a]. This category can be thought of as the Homological Lefschetz Theory of X with respect to the chosen decomposition, and its decomposition as a dual Lefschetz decomposition with respect to the hyperplane sections of PpW q.

Given Y Ñ PpW q, we will say that a noncommutative Y -scheme is Homological Projective Dual to X with respect to the chosen decomposition if it is dg equivalent to C H . It turns out then that the critical locus of Y Ñ PpW q is exactly the dual variety X and that D b pXq is the Homological Lefschetz Theory of its own dual. This motivates the terminology Homological Projective Duality. Notice that one can, and should, start by considering a more general noncommutative X-scheme instead of D b pXq only.

II.1. Homological Lefschetz Theory. We recall the basic notions of Homological Projective Duality from [START_REF]Homological projective duality[END_REF], but we consider the setting of noncommutative schemes instead of triangulated categories. Indeed, as pointed in the previous section, considering derived categories of k-schemes with Fourier-Mukai functors is equivalent to considering geometric noncommutative k-schemes, and all formal proofs from [START_REF]Homological projective duality[END_REF] will work in this framework. Notice however that, in order to obtain geometric results (that is, result on the structure of the derived category of some scheme), one should consider noncommutative k-schemes that arise as (crepant) noncommutative resolution of singularities of k-schemes.

Even if stated in the framework of noncommutative schemes, all the results and constructions of this section are a translation of Kuznetsov's results from [START_REF]Homological projective duality[END_REF].

Let X be a projective scheme together with a semi ample line bundle O X p1q. That is, we fix the hyperplane sections of X with respect to the map f : X Ñ PpW q, where W : H 0 pX, O X p1qq . We set N : dim pWq.

Let A be a noncommutative X-scheme. We use the notation Apiq : A O X piq. Notice that since O X piq is an invertible object in perfpXq, the functor O X piq is a dg autoequivalence of A, thanks to Remark 1.34. Definition 2.4. Let A be a noncommutative X-scheme. A Lefschetz decomposition of A with respect to O X p1q is a semiorthogonal decomposition (15)

A xA 0 , A 1 p1q, . . . , A i¡1 pi ¡ 1qy, with 0 A i¡1 . . . A 0 .
A Lefschetz decomposition is said to be rectangular if A 0 . . . A i¡1 .

A dual Lefschetz decomposition of A with respect to O X p1q is a semiorthogonal decomposition (16)

A xB j¡1 p1 ¡ jq, . . . , B 1 p¡1q, B 0 y, with 0 B j¡1 . . . B 0 . Similarly, one can define rectangular dual Lefschetz decompositions.

For any 0 ¤ l ¤ i¡1, the l-th primitive subcategory a l associated to the Lefschetz decomposition (15) is the right semiorthogonal complement of A l 1 in A l , that is A l xa l , A l 1 y.

We similarly define the primitive subcategories b l of a dual Lefschetz decomposition.

Remark 2.5. Notice that a i¡1 A i¡1 . For any 0 ¤ l ¤ i ¡ 1, we have a semiorthogonal decomposition A l xa l , a l 1 , . . . , a i¡1 y. A Lefschetz decomposition is rectangular if and only if a l 0 for 0 ¤ l ¤ i ¡ 2.

Let f : X Ñ PpW q be the projective map such f ¦ O PpW q p1q O X p1q and ι : X X ¢ PpW q the universal hyperplane section of X. We denote by A X the noncommutative X-scheme which is given by the base change of A via the map X Ñ X.

One can check that there is a semiorthogonal decomposition (17)

A X xB, A 1 p1q b D b pPpW qq, . . . , A i¡1 pi ¡ 1q b D b pPpW qqy,
obtained just by taking B to be the orthogonal complement of the semiorthogonal sequence pulled back from X and restricted to X , where we have omitted ι ¦ for a more readable notation. We set j : N ¡ 1 ¡ maxtl | A l A 0 u. The first main result in the theory of Homological Projective Duality is the description of a dual Lefschetz semiorthogonal decomposition of B with respect to the line bundle O PpW q p1q, which was originally proved in [Kuz07a, Prop. 5.10].

Theorem 2.6 (Kuznetsov). Let A be a noncommutative X-scheme, and

A xA 0 , . . . , A i¡1 pi ¡ 1qy a Lefschetz decomposition with respect to O X p1q, and let B and j be as above. There is a dual Lefschetz decomposition with respect to the line bundle O PpW q p1q: (

B xB j¡1 p1 ¡ jq, . . . , B 1 p¡1q, B 0 y with the same primitive subcategories as (18), namely B l xa 0 , . . . , a N ¡l¡2 y.

Moreover, one can consider any integer 1 ¤ r ¤ N ¡1 and the universal r-codimensional linear section: ι r : X r X ¢Grpr, W q, which is defined by the following cartesian diagram: X r ιr / / X ¢ Grpr, W q P Grpr,W q pW u r q πr / / PpW q ¢ Grpr, W q, where W r is the tautological rank r bundle on the Grassmannian of r-dimensional subspaces of W , and we denote by W u r : pW O Grpr,W q {W r q its orthogonal bundle, which is a subbundle of W O Grpr,W q , whence the map π r .

We denote by A Xr the noncommutative X-scheme which is given by the base change of A via the map X r Ñ X. We notice that A X A X 1 in these notations. There is a semiorthogonal decomposition (20)

A Xr xC r , A r p1q b D b pGrpr, W qq, . . . , A i¡r pi ¡ rq b D b pGrpr, W qqy,
obtained just by taking C r to be the orthogonal complement of the semiorthogonal sequence pulled back from X and restricted to X r , where we have omitted ι ¦ r for a more readable notation. Notice that C 1 B in this notation.

On the other hand, one can consider B as a smooth and proper noncommutative kscheme, and the map ρ r : P Grpr,W q pW r q Ñ PpW q ¢ Grpr, W q.

Denote by B Grpr,W q the dg category obtained by the base-change of B via ρ r . Notice that B, and hence C 1 , identify naturally with B Grp1,W q . Proposition 2.7. For any 1 ¤ r ¤ N ¡ 1, there is a dg splitting functor Φ r : A Xr Ñ B Grpr,W q , inducing a semiorthogonal decompositions To resume the results collected in this subsection, given a projective scheme X Ñ PpW q, a noncommutative X-scheme A with a Lefschetz decomposition with respect to O X p1q, we have two families of noncommutative PpW q-schemes C r B Grpr,W q , such that:

1. B B Grp1,W q admits a dual Lefschetz decomposition with respect to O PpW q p1q

with the same primitive subcategories as the Lefschetz decomposition of A. 2. A Xr admits a semiorthogonal decomposition obtained by "restricting" the Lefschetz decomposition of A X (obtained by dropping down the biggest component at each hyperplane section) and its orthogonal complement C r 3. B Grpr,W q admits a semiorthogonal decomposition obtained by "restricting" the Lefschetz decomposition of B (obtained by dropping down the biggest component at each hyperplane section) and its orthogonal complement C r .

4. There is a dg splitting (Grpr, W q-linear) functor Φ r : A Xr Ñ B Grpr,W q identifying the two orthogonal complements with C r .

This motivates the following definition.

Definition 2.9. Given a projective scheme X Ñ PpW q, a noncommutative X-scheme A and a Lefschetz decomposition of A with respect to O X p1q, the homological Lefschetz theory of A with respect to the Lefschetz decomposition is the family tB Grpr,W q , Φ r u N ¡1 r1 of dg categories with the given splitting functors. The categories C r are called the nonprimitive components of this homological Lefschetz theory.

II.2. Homological Projective Duality and its consequences. As before, let X Ñ PpW q be a projective variety with a fixed hyperplane class O X p1q. In the previous section, we recalled how Kuznetsov's construction allows one to associate to a smooth and proper noncommutative X-scheme A, with a Lefschetz decomposition with respect to O X p1q, a homological Lefschetz theory with its nonprimitive components. The second fundamental step in Homological Projective Duality is to have a geometric realization of such a theory. Given g : Y Ñ PpW q a projective scheme, and B a noncommutative Y -scheme, we will denote by Y r the universal dimension r section, that is the scheme fitting the Cartesian diagram Y r jr / / Y ¢ Grpr, W q P Grpr,W q pW r q ρr / / PpW q ¢ Grpr, W q, and by B Yr the base change of B to Y r . Definition 2.10. A noncommutative Y -scheme B is called the Homological Projective Dual (or the HP dual ) to A with respect to the given Lefschetz decomposition, if, for any 1 ¤ r ¤ N ¡ 1 there exists a Grpr, W q-linear dg splitting functor Φ r : B Yr Ñ A Xr such that tB Yr , Φ r u N ¡1 i1 is the homological Lefschetz theory of A.

We denote by Q PpW q¢PpW q the incidence quadric, that is the variety whose points are pairs px, Hq with x in H. Then we consider the incidence quadric of X and Y , that is:

QpX, Y q : pX ¢ Y q ¢ PpW q¢PpW q Q, and notice that QpX, Y q X 1 ¢ PpW q Y . More generally, consider the natural map π r : X r ¢ Grpr,W q Y r Ñ X ¢ Y . If L W is a vector subspace, one sees easily that PpL u q ¢ PpLq Q PpW q ¢ PpW q. It follows that π r factors through a map q r : X r ¢ Grpr,W q Y r Ñ QpX, Y q. One of the main insights of Kuznetsov's construction is that the splitting functors Φ r come from a complex supported on QpX, Y q. In terms of noncommutative schemes, there is a noncommutative QpX, Y q-scheme Q and a perfect module E on Q, such that, for any r, the module q ¦ r E is a A Xr B Yr -module representing the splitting functor Φ r .

The main result of Kuznetsov's paper, stated in these terms, is that it is enough to have such a functor for one single r in the range 1, . . . , N ¡ 1.

Theorem 2.11. A noncommutative Y -scheme B is HP dual to A with respect to the given Lefschetz decomposition if and only if there exists a noncommutative QpX, Y q-scheme Q, a Q-perfect complex E, and an integer r, with 1 ¤ r ¤ N ¡ 1, such that q ¦ r E is a A Xr B Yrmodule representing a Grpr, W q-linear splitting functor Φ r such that tB Yr , Φ r u is the r-th member of the homological Lefschetz theory of A.

Proof. Suppose that such a Q-module exists. Kuznetsov's original proof of HPD goes through an induction process, using base change diagrams and change of the value of r.

Indeed, once q ¦ r E gives the required kernel, the Homological Lefschetz theory is constructed using the kernels q ¦ i E for i 1, . . . , N ¡ 1, both for i r and for i ¡ r: see

[Kuz07a, §6],
where everything is explained in terms of derived categories and Fourier-Mukai functors.

On the other hand, suppose that B is HP-dual to A. Then, setting r 1, we are in the case considered by Kuznetsov, and the existence of all the Φ r is described in the proof of the main Theorem [Kuz07a, Thm. 6.3], see [START_REF]Homological projective duality[END_REF]§6]. l Remark 2.12. Recall that the original definition of Homological Projective Duality [Kuz07a, Def. 6.1] requires the existence of a full and faithful functor Φ : B Ñ A X such that ΦpBq C 1 , with the required kernel. Now, notice that B B Grp1,W q , and A X A X 1 in this case, so that Theorem 2.11 states that Definition 2.10 is equivalent to the original Kuznetsov's definition1 .

For a linear subspace L W , denote its orthogonal by L u W , and consider the following linear sections

X L X ¢ PpW q PpL u q, Y L Y ¢ PpW q PpLq.
of X and Y respectively. If A is a noncommutative X-scheme, then denote by A L its restriction to X L , and similarly for B.

Theorem 2.13 ( [Kuz07a, Thm. 1.1]). Let X Ñ PpW q be a projective variety with a semiample line bundle O X p1q and A a smooth and proper noncommutative X-scheme with a Lefschetz decomposition (15). If B is HP dual to A, then:

(i) B is smooth and proper and admits a dual Lefschetz decomposition

B xB j¡1 p1 ¡ jq, . . . , B 1 p¡1q, B 0 y, 0 B j¡1 ¤ ¤ ¤ B 1 B 0 (ii) for any linear subspace L W with dimpLq r such that dim X L dim X ¡ r, and dim Y L dim Y r ¡ N,
there exists a noncommutative k-scheme C L and semiorthogonal decompositions:

A L xC L , A r p1q, . . . , A i¡1 pi ¡ rqy, (22) 
B L xB j¡1 pN ¡ r ¡ jq, . . . , B N ¡r p¡1q, C L y.

(23) Remark 2.14. Suppose S is a k-scheme, X and Y are S-schemes, O X p1q and O Y p1q are ample relatively over S, so that O X p1q maps X Ñ P S pWq and O Y p1q maps Y Ñ P S pW q for a vector bundle W on S. In this relative context we can still define HP dual noncommutative schemes and Theorem 2.13 holds replacing k-linearity with S-linearity.

II.3. Homological Projective duality in Algebraic

Geometry. In the geometric case, that is in the case where X is smooth projective and A D b pXq (without smoothness assumptions, A D b pX, Rq is a noncommutative crepant resolution as in Definition 1.42), there is a strong relation between Homological Projective Duality and classical projective duality. Indeed, as Kuznetsov shows [Kuz07a, Thm. 7.9], the critical locus of the map Y Ñ PpW q is the classical dual projective variety X of X. In general, even in the case where X is smooth, it is well-known that X is singular, so it is natural to look for a HP dual B of A to be a noncommutative crepant resolution of singularities of X .

A detailed treatment of geometric examples and conjectures can be found in [START_REF]Semiorthogonal decompositions in algebraic geometry[END_REF]. Let us start by giving an example which will be useful later. Let S be a smooth projective 48 III. Homological Projective Duality for quadric fibrations and their intersections k-scheme, and E be a vector bundle of rank r over S. Let p : X : P S pEq Ñ S its projectivization. Orlov's results [START_REF]Projective bundles, monoidal transformations and derived categories of coherent sheaves[END_REF] provide a semiorthogonal decomposition:

(24)

D b pXq xp ¦ D b pSq, . . . , p ¦ D b pSq O X{S pr ¡ 1qy,
which should be thought of as a (rectangular) Lefschetz decomposition of X with respect to the line bundle O X{S p1q. Such line bundle gives the projective morphism f : X Ñ PpW q, where W : H 0 pX, O X{S p1qq H 0 pS, E q. Let E u : kerpW O S Ñ E q, and q : Y : P S pE u q Ñ S the natural projection. Notice that H 0 pY, O Y {S p1qq H 0 pS, pE u q q W , and let g : Y Ñ PpW q be the corresponding projective map. In this case, Kuznetsov shows that HPDuality holds [Kuz07a, Cor. 8.3].

Proposition 2.15 (Kuznetsov). If E is generated by global sections, D b pY q is the HP dual of D b pXq with respect to the Lefschetz decomposition (24) relatively over S.

The great relevance of Homological Projective Duality in Algebraic Geometry relies on the amount of relations between derived categories of (noncommutative crepant resolutions) of projective varieties obtained as dual linear sections of projective dual varieties. From the categorical point of view, we can distinguish two main cases: the case of Calabi-Yau varieties and the case of Fano varieties. In the latter case, Homological Projective Duality allows to construct semiorthogonal decompositions whose admissible components can be described geometrically via the (noncommutative crepant resolution) of a projective dual variety. These examples will be extensively treated in Chapter 4 due to their interaction with birational properties.

III. Homological Projective Duality for quadric fibrations and their intersections

III.1. Generic relative intersections of quadrics. In this Section, we present a generalization of Kuznetsov's Homological Projective dual of intersection of quadrics [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF] to the case of fibrations in intersections of quadrics over any field. All the results explained here are taken from [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF].

Let S be a k-scheme. A (line-bundle valued) quadratic form on S is a triple pE, q, Lq where E is a vector bundle on S, L a line bundle on S, and q a morphism of O S -modules L Ñ S 2 pE q. In particular, this is equivalent to the choice of a global section s q ΓpPpEq, O PpEq{S p2q p ¦ L q, where p : PpEq Ñ S is the natural projection. The rank of a quadratic form is defined to be the rank of the vector bundle E. For equivalent characterizations and the extension to this case of the definitions of basic notions for quadratic forms (such as primitivity, regularity, discriminant divisor etc.) we refer to [ABB14, §1.1]. The geometric objects which will be studied in this Section are quadric fibrations and their generic complete intersections.

Definition 2.16. The quadric fibration π : Q Ñ S associated to a nonzero quadratic form pE, q, Lq of rank n ¥ 2 is the restriction of the projection p : PpEq Ñ S via the closed embedding j : Q Ñ PpEq defined by the vanishing of the global section s q ΓpPpEq, O PpEq{S p2q p ¦ L q. We Write O Q{S p1q j ¦ O PpEq{S p1q.

Remark 2.17. The form pE, q, Lq is primitive if and only if π : Q Ñ S is flat of relative dimension n¡2, see [START_REF] Matsumura | Commutative ring theory[END_REF]8 Thm. 22.5]. The fiber Q y is a smooth projective quadric (resp. a quadric cone with isolated singularity) over any point y where pE, q, Lq is (semi)regular (resp. has simple degeneration).

Definition 2.18. We say that a finite set of generically (semi)regular primitive quadratic forms pE, q i , L i q (or quadric fibrations Q i Ñ S) for 1 ¤ i ¤ m is generic if the following properties hold:

(1) the images of L i Ñ S 2 pE q span an O S -submodule L S 2 pE q of rank m, (2) the associated linear span quadric fibration Q Ñ P S pL 1 . . . , L m q, has simple degeneration with regular discriminant divisor,

(3) the associated intersection X Ñ S of the quadric fibrations Q i P S pEq is a relative complete intersection.

By a generic relative intersection of quadrics we mean any intersection X Ñ S of a generic set of quadric fibrations. III.2. The Clifford algebra and the HP dual. In this section, we recall the tensorial construction of the even Clifford algebra of a line bundle-valued quadratic form from [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF]. In loc.cit., we show that it extends to any field the one in [Kuz08, §3.3].

Let pE, q, Lq be a (line bundle-valued) quadratic form of rank n on a scheme S. We define ideals J 1 and J 2 of the tensor algebra T pE E Lq, generated by v v f ¡ f pqpvqq, and u v f v w g ¡ f pqpvqq u w g, respectively, for sections u, v, w of E and f, g of L. We define the even Clifford algebra of pE, q, Lq as the quotient algebra

C 0 pE, q, Lq T pE E Lq{pJ 1 J 2 q.
It is not difficult to see that if the quadratic form q is nondegenerate, the noncommutative S-scheme perfpC 0 q is smooth and proper. Now, let S be a smooth scheme and E be a vector bundle of rank n on S. Consider D b pXq xA 0 , A 1 p2q, . . . , A m p2mqy, with respect to the relative double Veronese embedding f : X PpEq Ñ PpS 2 Eq : PpV q, as f ¦ O PpS 2 Eq{S p1q O PpEq{S p2q. We set Y : PppS 2 Eq q.

Definition 2.19. Let Q PpEq ¢ S PppS 2 Eq q X ¢Y be the universal hyperplane section with respect to f , then we will refer to the projection

π : Q Ñ Y,
as the universal relative quadric fibration in PpEq.

Let C 0 be the even Clifford algebra of the universal relative quadric fibration. The following Theorem is one of the main results of [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF].

Theorem 2.20. The noncommutative Y -scheme D b pY, C 0 q is the HP dual of D b pXq over S with respect to the Lefschetz decomposition (26).

The proof of Theorem 2.20 is based on the description of a semiorthogonal decomposition of the universal quadric. This was described in [ABB14] extending Kuznetsov's [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF] original result to a more general context.

Applying Theorem 2.13 to the HP dual pair D b pXq, D b pY, C 0 q we obtain semiorthogonal decompositions of generic relative intersections of quadrics over S (obtained as linear sections of X) which can be described via the restriction of the Clifford algebra C 0 to the orthogonal section of Y . Now we describe some consequences of Theorem 2.13 in the case of flat quadric fibrations.

Let pE i , q i , L i q be a finite set of primitive generically (semi)regular quadratic forms. Denote by L Ñ S 2 E the O Y -submodule generated by the line subbundles L i . Then the linear section X L is a relative intersection of the quadric fibrations Q i Ñ S in PpEq. Indeed, the projection map π : X Ñ S has fibers the intersection of the fibers of Q i Ñ S in the projective space given by the fibers of PpEq. On the other hand, the linear section Y L is precisely

PpLq PpS 2 E q. Then the restriction C 0 | PpLq C 0 b O PpS 2 E q O PpLq (which we shamelessly
denote by C 0 ) to PpLq is then isomorphic to the even Clifford algebra of the corresponding linear span quadric fibration Q Ñ PpLq associated to the Q i Ñ S. We assume that L i L i and that this relative intersection is complete. Here is a sample of consequences of HPD, which will be applied to explicit geometric cases in Chapter 4.

Theorem 2.21. Let S be a smooth scheme, Q Ñ S a linear span of m quadric fibrations of relative dimension n ¡ 2 over S, and X L Ñ S their relative complete intersection. Let C 0 be the even Clifford algebra of Q Ñ PpLq Y L .

(1) If 2m n, then the fibers of X L Ñ S are Fano and relative homological projective duality yields

D b pX L q xD b pY L , C 0 q, π ¦ D b pSqp1q . . . π ¦ D b pSqpn ¡ 2mqy.
(2) If 2m n then the fibers of X L Ñ S are generically Calabi-Yau and relative homological projective duality yields

D b pX L q D b pY L , C 0 q. (3) If 2m ¡ n,
then the fibers of X L Ñ S are generically of general type and there exists a fully faithful functor D b pX L q Ñ D b pY L , C 0 q with explicitly describable orthogonal complement.

III.3. Hyperbolic splitting.

Let us end this Section with a result from [ABB14] which is not directly related to Homological Projective Duality, but which gives a useful tool to study sheaves of even parts of Clifford algebras under Morita equivalence.

Let Q Ñ S be the quadric fibration associated to a quadratic form pE, q, Lq. A section s : S Ñ Q of Q Ñ S is called smooth if the image of s only consists of smooth points of the fibers of Q Ñ S. An isotropic line subbundle N E of pE, q, Lq is called smooth if the associated section of its quadric fibration is smooth. We notice that in particular, if Q and S are smooth schemes over a field k, then any section of π is smooth, see

[ABB14, Lemma 1.3.2].
If N Ñ E be a smooth isotropic subbundle, then Then q| N u : N u Ñ L vanishes on N , hence defines a quadratic form q I : N u {N Ñ L on E I N u {N. We call pE I , q I , Lq the reduced quadratic form associated to N . Notice that rkE I rkE ¡ 2. If Q I Ñ S is the associated quadric fibration, then dim pQ I q dim pQq ¡ 2.

A careful analysis of the quadratic forms pE, q, Lq and pE I , q I , Lq show that the form q splits, over an open Zariski subset of S, as q I u u, for pu, N , Lq a hyperbolic quadratic form. We hence say that Q I Ñ S is obtained from Q Ñ S by hyperbolic splitting along a (smooth) section. The Morita-invariance of the sheaf of even parts of the Clifford algebra under hyperbolic splitting was proved in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF].

Theorem 2.22. Let pE, q, Lq be a quadratic form over a regular integral scheme S, with simple degeneration along a regular divisor D. In the case of odd rank, assume that 2 is invertible on S. Let pE I , q I , L I q be the reduced quadratic form associated to a smooth isotropic subbundle N Ñ E. Then the even Clifford algebras C 0 pE, q, Lq and C 0 pE I , q I , Lq are Morita S-equivalent.

IV. Homological Projective Duality for determinantal varieties

In this Section, we present another example of HP dual varieties, which was considered in [START_REF] Bernardara | Homological projective duality for determinantal varieties[END_REF]. In this case X and Y are the so-called generalized determinantal varieties, that is, varieties that are defined by vanishing of r-minors of a n ¢ m matrix with linear entries. Both varieties X Ñ PpW q and Y Ñ PpW q are singular and hence we have to deal with noncommutative resolution of singularities in order to work with smooth and proper noncommutative schemes.

IV.1. Desingularizations of the space of matrices of bounded ranks. Let U , V be k-vector spaces, with dim U m, dim V n, and assume n ¥ m. Let r be an integer in the range 1 ¤ r ¤ m ¡ 1. We define Z r m,n to be the variety of m ¢ n matrices M : V Ñ U IV. Homological Projective Duality for determinantal varieties having rank at most r, i.e. the locus in PW PpU V q cut by the minors of size r 1 of the matrix of indeterminates:

ψ ¤ ¦ ¥ x 1,1 . . . x m,1 . . . . . . . . . x 1,n . . . x m,n
Consider the Grassmann variety GrpU, rq of r-dimensional quotient spaces of U , the tautological subbundle and the quotient bundle over GrpU, rq are denoted respectively by U and Q and have respectively rank m ¡ r and r. The tautological (or Euler) exact sequence reads:

(27) 0 Ñ U Ñ U O GrpU,rq Ñ Q Ñ 0.
We will use the following notation:

p : X r m,n PpV Q q Ñ GrpU, rq,
and O X r m,n pHq for the relatively ample tautological line bundle. The manifold X r m,n has dimension rpn m ¡ rq ¡ 1. It is the resolution of singularities of the variety of m ¢ n matrices of rank at most r, as follows. The space H 0 pGrpU, rq, Qq is naturally identified with U . Hence we get natural isomorphisms:

H 0 pGrpU, rq, V Qq H 0 pX r m,n , O X r m,n pHqq W U V.
Setting W : U V , the map f associated to the linear system O X r m,n pHq maps X r m,n to PpW q.

A rank-1 quotient of W U V corresponds to the choice of a linear map M : V Ñ U , so an element of PpW q can be considered as (the proportionality class of) the linear map M . On the other hand, f sends a rank-1 quotient of V Q over a point λ GrpU, rq to the quotient of U V obtained by composition with the obvious quotient U Ñ Q λ .

The matrix M lies in the image of f if and only if M factors through V Ñ Q λ , for some λ GrpU, rq, i.e., if and only if rkpM q ¤ r. The map f : X r m,n Ñ Z r m,n is a desingularization, called the Springer resolution, of Z r m,n . It is an isomorphism above the locus of matrices of rank exactly r.

Consider now the projective bundle:

q : Y r m,n PpV Uq Ñ GrpU, rq,
and denote O Y r m,n pHq the tautological ample line bundle on Y r m,n . The linear system associated to O Y r m,n pHq sends Y r m,n to PpW q PpV U q via a map that we call g. By the same argument as above, g is a desingularization of the variety Z m¡r m,n of matrices of corank at least r.

On the other hand, one can consider the following rectangular Lefschetz decomposition for D b pX r m,n q with respect to O X r m,n pHq: Proposition 2.23. The smooth projective variety Y r m,n is the HP dual of X r m,n with respect to the Lefschetz decomposition (28).

IV.2. Noncommutative resolutions and HP duality. Consider X r m,n as a projective bundle over GrpU, rq. Kapranov shows that GrpU, rq has a full strong exceptional collection consisting of vector bundles [START_REF] Kapranov | Derived category of coherent sheaves on grassmann manifolds[END_REF]. From the semiorthogonal decomposition (28), we then have a strong exceptional collection on X r m,n consisting of vector bundles. Set E to be the direct sum of the bundles from this full exceptional collection. Let us consider M : Rf ¦ E, and let S r m,n : EndpEq and R r m,n : EndpM q (where End denotes the sheaf of endomorphisms). To simplify notations, we will drop the indexes from S and R if their choice is clear. The following result from [START_REF] Bernardara | Homological projective duality for determinantal varieties[END_REF] describes a noncommutative resolution of singularities of Z r m,n and can be thought of as the projective version of Buchweitz, Leuschke and Van den Bergh's results in the affine case [START_REF] Buchweitz | Non-commutative desingularization of determinantal varieties I[END_REF][START_REF]Non-commutative desingularization of determinantal varieties ii: arbitrary minors[END_REF]. The main tool in the proof of Proposition 2.24 is calculating the higher direct images R i f ¦ pE i q for the E i the exceptional vector bundles which are direct summands of E, and to show that R r m,n is maximally Cohen-Macaulay basing on a similar result for the affine case proved in [START_REF] Buchweitz | Non-commutative desingularization of determinantal varieties I[END_REF].

Combining Proposition 2.23 and Proposition 2.24, one gets HP duality for the noncommutative resolution of singularities of determinantal varieties.

Corollary 2.25. The noncommutative Z m¡r m,n -scheme R m¡r m,n is HP dual to the noncommutative Z r m,n -scheme R r m,n relatively over GrpU, rq, with respect to the Lefschetz decomposition (28).

CHAPTER 3

Noncommutative motives and algebraic cycles

Recall from Chapter 1 the definitions of noncommutative k-schemes and noncommutative motives. In this Chapter, we describe some application of the theory of noncommutative motives to Algebraic Geometry. First of all, we compare the theory of noncommutative and commutative Chow motives of smooth projective k-varieties, with a particular attention to motivic decompositions. The main applications to geometry, in the case where k C is algebraically closed, will be given by the notion of Jacobian of (the noncommutative motive of) a noncommutative k-scheme, introduced by Marcolli and Tabuada [START_REF]Jacobians of noncommutative motives[END_REF]. This is a functor which assigns to any noncommutative k-scheme A (via its noncommutative motive) an Abelian variety JpAq well-defined up to isogeny.

In the case where X is a smooth projective k-scheme with a unique principally polarized intermediate Jacobian, we will show that the noncommutative Jacobian also carries a principal polarization, and that this allows to prove categorical Torelli-type theorems, which state which noncommutative subschemes of X identify the isomorphism class of X. These results have some geometrical applications, in particular they provide a way to describe the Chow groups of intersections of quadrics of very low degree and any dimension, giving a noncommutative proof to a motivic Beilinson-Bloch type conjecture (a "commutative" proof was given by Otwinowska [START_REF] Otwinowska | Remarques sur les cycles de petite dimension de certaines intersections complètes[END_REF]).

Finally, one can define smash-nilpotence and numerical equivalence for noncommutative motives and formulate a noncommutative version of Voevodsky's smash-nilpotence conjecture. If X is a smooth projective variety over an algebraically closed field of characteristic zero, then such a conjecture is equivalent to the commutative smash-nilpotence conjecture. This allows one to use semiorthogonal decompositions to prove new cases of the commutative smash-nilpotence conjecture.

We will assume the reader to be familiar with the theory of (commutative) motives. An exhaustive treatment can be found in Andre's book [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes)[END_REF].

I. Comparing commutative and noncommutative Chow motives

In this section, we mainly recall results from [START_REF] Bernardara | Relations between the chow motive and the noncommutative motive of a smooth projective variety[END_REF] where the relation between the Chow and the noncommutative motive of a smooth projective k-scheme are studied. The most important tool is the Grothendieck-Riemann-Roch Theorem and the analysis of its denominators, which will allow to describe the rings where these motives have similar decompositions. On the other hand, looking to integer coefficients, interesting phenomena arise, such as purely noncommutative motivic decompositions, probably related to the arithmetic properties of the variety.

I. Comparing commutative and noncommutative Chow motives

I.1. motives of Lefschetz and trivial type. Let R be a Z-module and Chowpkq R denote the category of Chow motives of varieties over k with R-coefficients. We denote by L R (or simply by L if no confusion on the coefficient ring is possible) the Lefschetz motive, that is the motive of the affine line in Chowpkq R . Recall moreover from Chapter 1, Section IV, the universal functor U : dgcatpkq Ñ Hmo 0 pkq, associating to any noncommutative k-scheme its noncommutative motive. Consider the noncommutative scheme k : perfpSpecpkqq, that is the dg category of bounded complexes of k-vector spaces. We denote by 1 R : U pkq R (also denoted by 1 if no confusion on the coefficient ring is possible) its noncommutative motive, which is the -unit of Hmo 0 pkq R . Following Gorchinskiy-Orlov [START_REF] Gorchinskiy | Geometric phantom categories[END_REF], a Chow motive is called of Lefschetz type if it is isomorphic to L l 1 ¤ ¤ ¤ L lm for some non-negative integers l 1 , . . . , l m . In the same vein, a noncommutative motive is called of trivial type if it is isomorphic to m i1 1 for some integer m. The following implication was established by Gorchinskiy-Orlov in [GO13, §4] (assuming that Z R):

(29) M pXq R Lefschetz type ñ N CpXq R trivial type .
In the particular case where R Q, (29) becomes an equivalence (see [START_REF]From exceptional collection to motivic decompositions via noncommutative motives[END_REF]§1]):

(30) M pXq Q Lefschetz type ô N CpXq Q trivial type .
The following result was proved in [START_REF] Bernardara | Relations between the chow motive and the noncommutative motive of a smooth projective variety[END_REF] as an application of Grothendieck-Riemann-Roch theorem and establishes a partial converse of the above implication (29): Theorem 3.1. Let X be an irreducible smooth projective k-scheme of dimension d. Assume that Z R and that every finitely generated projective Rr1{p2dq!s-module is free (e.g. R a principal ideal domain). Assume also that N CpXq R m i1 1 for some integer m. Under these assumptions, there is a choice of integers (up to permutation) l 1 , . . . , l m t0, . . . , du giving rise to an isomorphism

(31) M pXq Rr1{p2dq!s L l 1 ¤ ¤ ¤ L lm .
Intuitively speaking, Theorem 3.1 shows that the converse of the above implication (29) holds as soon as one inverts the integer p2dq! (or equivalently its prime factors). By combining this result with (29), one obtains a refinement of (30): Corollary 3.2. Given X and R as in Theorem 3.1, we have the equivalence M pXq Rr1{p2dq!s Lefschetz type ô N CpXq Rr1{p2dq!s trivial type .

However the (strict) converse of implication (29) is false in general, as in the following example from [START_REF] Bernardara | Relations between the chow motive and the noncommutative motive of a smooth projective variety[END_REF].

Proposition 3.3. Let q be a non-singular quadratic form and Q q the associated smooth projective quadric. Assume that q is even dimensional, anisotropic, and has trivial discriminant and trivial Clifford invariant (see Lam [Lam, §V.2]).

(i) The noncommutative motive N CpQ q q Z is of trivial type. (ii) The Chow motive M pQ q q Z is not of Lefschetz type.

The proof of proposition 3.3 relies on Rost's description of the motive of quadrics [Ros] (point (i)) and on Kapranov and Kuznetsov's description of the derived category (see [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] for a description over any field) of a quadric together with the fact that the discriminant extension of such a quadric splits and the even Clifford algebra is trivial (point (ii)).

As an application of Theorem 3.1, we obtain the following sharpening of the main result of [START_REF]From exceptional collection to motivic decompositions via noncommutative motives[END_REF] (which was obtained only with rational coefficients).

Corollary 3.4. Let X be an irreducible smooth projective k-scheme of dimension d. Assume that D b pXq admits a full exceptional collection pE 1 , . . . , E m q of length m. Under these assumptions, there is a choice of integers (up to permutation) l 1 , . . . , l m t0, . . . , du giving rise to an isomorphism

(32) M pXq Zr1{p2dq!s L l 1 ¤ ¤ ¤ L lm .
Notice that in the case where X is a surface, Ch. Vial has shown a stronger version of the previous result, that is, that M pXq Z is of Lefschetz type [START_REF]Exceptional collections, and the neron-severi lattice for surfaces[END_REF]. I.2. Decomposability. More in general, decomposability of the commutative Chow motive holds decomposability of the noncommutative Chow motive, up to inverting enough coefficients.

Theorem 3.5. Let X be an irreducible smooth projective k-scheme of dimension d. Under the assumption Z R, the following implication holds:

(33) M pXq Rr1{p2dq!s decomposable ñ N CpXq Rr1{p2dq!s decomposable .

One can fairly say then that, inverting enough coefficients, noncommutative motives contain both strictly noncommutative decompositions (coming from semiorthogonal decompositions) and strictly commutative ones (coming from algebraic correspondences). As the following proposition shows, if one does not invert the dimension of X, the converse of implication (33) is false. (i) For every commutative ring R one has the following motivic decomposition

(34) N CpXq R 1 U pAq R U pAq 2 R ¤ ¤ ¤ U pAq d¡1 R .
In particular, the noncommutative motive N CpXq R is decomposable.

(ii) When A is a division algebra and d p s some prime power, the Chow motive M pXq Z (and also M pXq Z{pZ ) is indecomposable. Remark 3.7. Item (ii) holds also for M pXq Zp ; see De Clercq [DC10, Rmq. 2.3].

Roughly speaking, Proposition 3.6 shows that the decomposition (34) is "truly noncommutative". The proof of proposition 3.6 relies on Karpenko's incompressibility results [START_REF] Karpenko | Grothendieck chow motives of severi-brauer varieties[END_REF] and on the description of the derived category of a Brauer-Severi variety [START_REF]A semiorthogonal decomposition for Brauer Severi schemes[END_REF].

Finally, we can lift motivic isomorphisms from Chow motive to noncommutative motives, up to inverting enough coefficients.

Theorem 3.8. Let tX i u 1¤i¤n (resp. tY j u 1¤j¤m ) be irreducible smooth projective k-schemes of dimension d X i (resp. d Y j ), d : maxtd X i , d Y j | i, ju, and tl i u 1¤i¤n (resp. tl j u 1¤j¤m ) arbitrary integers. Assume that Z R and 1{p2dq! R. Under these assumptions, we have the following implication

i M pX i q R L l i j M pY j q R L l j ñ i N CpX i q R j N CpY j q R .
As the following example shows, if one does not inverts the maximum of the dimensions, the converse of the implication of Theorem 3.8 is false.

Example 3.9. The Chow motives M pXq Z and M p p Xq Z of an Abelian variety X and of its dual p X are in general not isomorphic. However, thanks to the work of Mukai [START_REF] Mukai | Duality between DpXq and Dp Xq and its application to Picard sheaves[END_REF], we have N CpXq R N Cp p Xq R for every commutative ring R.

II. From semiorthogonal decompositions to intermediate Jacobians

Let k be an algebraically closed of characteristic zero. In this Section, we recall the definition of the Jacobian of a noncommutative motive as an Abelian variety, well defined up to isogeny. In the case where X is a smooth projective variety, the noncommutative Jacobian of D b pXq is isomorphic to the product of all the algebraic Jacobians of X, as defined by Griffiths. If X has only such a Jacobian (the intermediate one) JpXq with a natural principal polarization, one can identify noncommutative schemes A X components of D b pXq whose dg-equivalence class identifies the Abelian variety JpXq with its principal polarization. This result gives also a noncommutative analog to the famous Torelli theorem: if the the isomorphism class of JpXq as principally polarized Abelian variety identifies the isomorphism class of X, then so does the equivalence class of A X as a noncommutative k-scheme. II.1. (Polarized) intermediate Jacobians. Given an irreducible smooth projective k-scheme X of dimension d X , Griffiths introduced in [Gri69] the associated Jacobians

J i pXq, 0 ¤ i ¤ d X ¡ 1.
In contrast with the Picard J 0 pXq Pic 0 pXq and the Albanese J d X ¡1 pXq AlbpXq varieties, the intermediate Jacobians are in general not algebraic, see [Voi02, §12] for a detailed treatment. Nevertheless, they contain an algebraic torus J i a pXq J i pXq defined by the image of the Abel-Jacobi map

AJ i : A i 1 Z pXq Ñ J i pXq 0 ¤ i ¤ d X ¡ 1 , (35) 
where A i 1 Z pXq stands for the group of algebraically trivial cycles of codimension i 1; consult, e.g., Vial [Via13, §2.3] for further details.

In general, the Abelian varieties J i a pXq are only well-defined up to isogeny. However, in the case of curves, Fano threefolds, even dimensional quadric fibrations over P 1 , odd dimensional quadric fibrations over rational surfaces, and also in the case of the intersection of two (resp. three) quadrics of odd (resp. even) dimension, there is a single non-trivial algebraic Jacobian JpXq : J pd X ¡1q{2 a pXq which carries moreover a canonical principal polarization;

see Clemens and Griffiths [START_REF] Griffiths | The intermediate Jacobian of the cubic threefold[END_REF]. This extra piece of structure is of major importance. For example, in the case of a Fano threefold X the Abelian variety JpXq endowed with its canonical principal polarization contains all the information about the birational class of X.

We distinguish these particular cases by the following definition.

Definition 3.10. An irreducible smooth projective k-scheme X of odd dimension d X 2n 1 is called verepresentable1 if:

(i) the group of algebraically trivial cycles A i 1 Z pXq is trivial for i $ n;

(ii) the group A n 1 Z pXq admits an algebraic representative carrying an incidence polarization; see [Bea77, §3.4].

(iii) the Abel-Jacobi map AJ n pXq : A n 1 Z pXq J n a pXq gives rise to an isomorphism

A n 1 Q pXq J n a pXq Q . Apart of
trivial examples of schemes with J i pXq 0 (such as projective spaces, smooth quadrics, Grassmannians and other homogeneous spaces), examples of verepresentable schemes include smooth projective curves of any genus and a large amount of Fano threefolds, and complete intersection of two even (resp. three odd) dimensional quadrics, see [START_REF]From semi-orthogonal decompositions to polarized intermediate jacobians via jacobians of noncommutative motives[END_REF] for an exhaustive list. II.2. Jacobians of noncommutative schemes. Given a smooth projective k-scheme X of dimension d X , one can then consider the Q-vector spaces

N H 2i 1 dR pXq : Ç,γ i Im H 1 dR pCq H 1 dR pγ i q ÝÑ H 2i 1 dR pXq ¨0 ¤ i ¤ d X ¡ 1 , (36) 
where C is a smooth projective curve and γ i :

M Q pCq Ñ M Q pXqpiq a morphism in Chowpkq Q .
Intuitively speaking, (36) are the odd pieces of de Rham cohomology that are generated by curves. By restricting the classical intersection bilinear pairings on de Rham cohomology (see [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes)[END_REF]§3.3]) to these pieces one obtains x¡, ¡y

: N H 2d X ¡2i¡1 dR pXq ¢ N H 2i 1 dR pXq ÝÑ k 0 ¤ i ¤ d X ¡ 1 . (37) 
Marcolli and Tabuada [START_REF]Jacobians of noncommutative motives[END_REF] constructed the Jacobian functor

Jp¡q : NChowpkq Q ÝÑ Abpkq Q
with values in the category of Abelian k-varieties up to isogeny. Given a noncommutative Chow motive N , the Abelian variety JpN q is constructed as follows:

(i) firstly, the category of Abelian varieties up to isogeny Abpkq Q can be identified with an Abelian semi-simple full subcategory of NNumpkq Q , via fully faithful functors Abpkq Q Ñ Numpkq Q and Numpkq Q { ¡Qp1q Ñ NNumpkq Q , checking that passing to the orbit category does preserve the fully faithfulness. (ii) secondly, the semi-simplicity of NNumpkq Q implies that the noncommutative numerical motive N admits a unique finite direct sum decomposition S 1 ¤ ¤ ¤ S n into simple objects;

(iii) finally, one defines JpN q as the smallest piece of the noncommutative numerical motive N S 1 ¤ ¤ ¤ S n which contains all the simple objects belonging to the Abelian semi-simple full subcategory Abpkq Q .

By abuse of notations, if A is a smooth and proper noncommutative k-scheme, then we will denote by JpAq : JpU pAqq, and call this Abelian variety the Jacobian of the noncommutative scheme A. Even more abusive, but justified by the next results, if X is a smooth and proper k-scheme, we will denote by JpXq : JpD b pXqq.

As proved in [MT14a, Theorem 1.7], whenever the above pairings (37) are non-degenerate for all i, one has an isomorphism JpXq ± i0 J i a pXq in Abpkq Q . As explained in loc. cit., (37) is always non-degenerate for i 0 and i d ¡ 1. Moreover, if Grothendieck's standard conjecture of Lefschetz type is true for X, then (37) is non-degenerate for all i; see Vial [Via13, Lemma 2.1]. This latter conjecture holds for curves, surfaces, Abelian varieties, complete intersections, uniruled threefolds, rationally connected fourfolds, and for any smooth hypersurface section, product, or finite quotient thereof. In particular, it holds for all known examples of verepresentable varieties.

Example 3.11. Suppose that A is a noncommutative k-scheme with a full exceptional sequence. Then JpAq 0. As recalled in Lemma 2.2, the assumption of Φ being a dg equivalence is equivalent to the assumption of Φ being a Fourier-Mukai functor.

Theorem 3.12 ( [BT16b]). Let X and Y be two k-schemes as above. Assume also that the above bilinear pairings (37) (associated to X and Y ) are non-degenerate. Under these assumptions, the following holds:

(i) There is a well-defined morphism τ :

± d X ¡1 i0 J i a pXq Ñ ± d Y ¡1 i0 J i a pY q in Abpkq Q .
(ii) Assume moreover that JpA u X q 0. Under this extra assumption, the morphism τ is split injective.

(iii) Assume furthermore that JpA u Y q 0. Under this extra assumption, the morphism τ becomes an isomorphism.

Theorem 3.12 states how one can find noncommutative schemes inside D b pXq, from which it is possible to reconstruct the algebraic intermediate Jacobians of X. From Definition 3.10(i), one observes that whenever X is verepresentable, J i a pXq 0 for i $ n. Consequently, there is a single non-trivial algebraic Jacobian JpXq : J n a pXq which, thanks to Definition 3.10(ii), carries a canonical principal polarization. Moreover, Definition 3.10(iii) implies that this principally polarized Abelian variety is isomorphic, up to isogeny, to A n 1 Z pXq. In these cases, Theorem 3.12 can be strengthened as follows.

Theorem 3.13. Let X and Y be two irreducible smooth projective k-schemes as in Theorem 3.1(i)-(ii). Assume that X and Y are verepresentable. Under these assumptions, the split injective morphism τ : JpXq Ñ JpY q preserves the principal polarization. When

JpA u Y q 0 the morphism τ becomes an isomorphism.

Notice that if X is a curve, A X D b pXq, and Y is a verepresentable threefold, an analog of Theorem 3.13 was proved in [BB13,BB12], without using the theory of noncommutative motives but rather Fourier-Mukai functors and Chow motives. The basic case where Y is also curve and A Y D b pY q was treated in [Ber07] still via Fourier-Mukai functors.

Recall that Clemens and Griffiths [START_REF] Griffiths | The intermediate Jacobian of the cubic threefold[END_REF] have shown that the intermediate Jacobian of a Fano threefold is a birational invariant in the following sense: if X is a smooth projective rational threefold then there exist a finite number of smooth projective curves C i such that JpXq JpC i q as a principally polarized Abelian variety. We can see then how Theorem 3.13 provides an evidence to the fact that there should be a noncommutative scheme inside D b pXq which contains informations on the birational equivalence class of X. This is indeed true in the case of conic bundles, which will be treated in Chapter 4. II.4. Categorical Torelli Theorems. One of the most striking applications of Theorem 3.13 is the possibility to establish categorical Torelli-type Theorems for verepresentable varieties. Namely, to establish whether a given noncommutative scheme, component of D b pXq, identifies the isomorphism class of X. These theorems occur indeed whenever the classical Torelli theorem holds, and are based on the possibility to reconstruct the intermediate Jacobian with its principal incidence polarization. Notice that Bondal and Orlov have shown that if X is smooth and projective with ample or antiample canonical bundle, then the dg equivalence class of D b pXq determines its isomorphism class, namely if D b pXq D b pY q, then Y is isomorphic to X. Hence, categorical Torelli theorems are interesting whenever they provide a noncommutative scheme A X D b pXq identifying the isomorphism class of X. The following Theorem is based on Theorem 3.13. Theorem 3.14. Suppose that either:

X and Y are cubic threefolds, or X and Y are quartic double solids, or X and Y are intersections of two even dimensional quadrics, or X and Y are intersections of three odd dimensional quadrics.

Set

A X : xO X , . . . , O X pi ¡ 1qy u , A Y : xO Y , . . . , O Y pi ¡ 1qy u . where i ipXq ipY q is the index of X and Y . Then X is isomorphic to Y if and only if

A X is equivalent to A Y .
In the case of cubic threefolds, Theorem 3.14 was proved in [START_REF] Bernardara | A categorical invariant for cubic threefolds[END_REF] using stability conditions, and showing also that any splitting triangulated functor Φ of that type is a Fourier-Mukai functor. II.5. Chow groups of intersections of quadrics. Another application of Theorem 3.12 is a description of Chow groups of intersections of quadrics of very low degree. As explained in [START_REF]Chow groups of intersections of quadrics via homological projective duality and (Jacobians of ) noncommutative motives[END_REF], this gives an alternative proof of a Bloch-Beilinson type conjecture for such varieties, for which a proof was already provided by Otwinowska [START_REF] Otwinowska | Remarques sur les cycles de petite dimension de certaines intersections complètes[END_REF].

In general, let k be a field and X a complete intersection of multidegree pd 1 , . If one further assumes that κ rd X {2s, and that k C is algebraically closed, then Conjecture 3.15 admits an alternative proof, based on Theorem 3.12. The interest of such proof is the clear interplay between semiorthogonal decompositions and algebraic cycles via the theory of noncommutative motives.

Theorem 3.16. Conjecture 3.15 holds when:

(i) X is a complete intersection of two quadrics;

(ii) X is a complete intersection of three odd-dimensional quadrics.

The proof Theorem 3.16 is mainly based on Theorem 3.12 and on the semiorthogonal decomposition of D b pXq described by Kuznetsov as a consequence of Homological Projective Duality [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF] (see also Theorem 2.21). In the cases of Theorem 3.16 we have that D b pXq xD b pP r , C 0 q, O X , . . . , O X pi ¡ 1qy, where r 1 in case (i) and r 2 in case (ii), we denote by i is the index of X, and C 0 is the sheaf of even parts of the Clifford algebra associated to the span of the quadrics defining X. We notice moreover that all involved functors are of Fourier-Mukai type, so we can consider D b pP 2 , C 0 q as a noncommutative scheme (i.e. it comes with a natural dg enhancement).

Theorem 3.12 implies then that JpD b pP r , C 0 qq JpXq ± d X i0 J i a pXq are isogenous

Abelian varieties. Then one can proceed by a case by case analysis (see [START_REF]Chow groups of intersections of quadrics via homological projective duality and (Jacobians of ) noncommutative motives[END_REF]).

If X is the complete intersection of two quadrics and d X is even, then D b pP 1 , C 0 q is generated by exceptional objects, so that CH ¦ pXq Q is a finite Q-vector space by Grothendieck-Riemann-Roch. A dimension count and a comparison with cohomologies described in [START_REF] Reid | The complete intersection of two or more quadrics[END_REF] gives the proof.

If X is the complete intersection of two quadrics and d X 2n 1 is odd, then D b pP 1 , C 0 q D b pCq, where C Ñ P 1 is the hyperelliptic curve ramified along the degeneration divisor. In particular, J n pXq JpCq is the only nontrivial Jacobian of X, and this isomorphism is recovered via Theorem 3.12. Then A ¦ pXq Q JpXq JpCq and CH ¦ pXq Q {A ¦ pXq Q is a finite vector space. The proof follows then from a dimension count.

If X is the complete intersection of three quadrics and d X 2n 1 is odd, then consider the associated quadric fibration Q Ñ P 2 with even Clifford algebra C 0 and degeneration divisor C with its double cover r C Ñ C. Beauville describes of the intermediate Jacobian of X [Bea77], as J n pXq Prymp r C{Cq, where the latter denotes the Prym variety associated to the discriminant double cover, as the only nontrivial Jacobian. From Theorem 3.12 we then get JpD b pP 2 , C 0 qq Prymp r C{Cq. To complete the proof, it is enough to calculate K 0 pP 2 , C 0 q Q and count the dimension of CH ¦ pXq Q {A ¦ pXq Q using the semiorthogonal decomposition and Grothendieck-Riemann-Roch.

III. A noncommutative version of smash nilpotence conjecture

Let k be a base field and F a field of coefficients of characteristic zero. In a foundational work [START_REF] Voevodsky | A nilpotence theorem for cycles algebraically equivalent to zero[END_REF], Voevodsky introduced the smash-nilpotence equivalence relation nil on algebraic cycles and conjectured its agreement with the classical numerical equivalence relation num . Concretely, given a smooth projective k-scheme X, he stated the following:

Conjecture V pXq: Z ¦ pXq F { nil Z ¦ pXq F { num .
Thanks to the work of Kahn-Sebastian, Matsusaka, Voevodsky, and Voisin (see [START_REF] Kahn | Smash-nilpotent cycles on abelian 3-folds[END_REF][START_REF] Matsusaka | The criteria for algebraic equivalence and the torsion group[END_REF][START_REF] Voevodsky | A nilpotence theorem for cycles algebraically equivalent to zero[END_REF][START_REF]Remarks on zero-cycles of self-products of varieties, Moduli of vector bundles[END_REF] and also [And04, §11.5.2.3]), the above conjecture holds in the case of curves, surfaces, and Abelian 3-folds (when k is of characteristic zero).

III.1. Noncommutative nilpotence conjecture. Recall from IV.2 the construction of Noncommutative Numerical and smash-nilpotent motives. For a smooth and proper kscheme A, one can identify Homp1, Aq in each of the categories NNumpkq F and NVoevpkq F with a quotient of K 0 pAq by an appropriate equivalence relation. Indeed, the ideals defined by ( 13) and ( 14) respectively endow the Grothendieck group K 0 pAq with a -nilpotence equivalence relation nil and with a numerical equivalence relation num . Motivated by Conjecture V pXq, we stated in [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF] the following conjecture:

Conjecture V N C pAq: K 0 pAq F { nil K 0 pAq F { num .
If A D b pXq for some smooth projective k-scheme X, we will abuse by notation by setting V N C pXq : V N C pD b pXqq. In [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF] it is proved that V pXq and V N C pXq coincide.

Theorem 3.17. Conjecture V pXq is equivalent to conjecture V N C pXq.

The proof of Theorem 3.17 relies on the existence of the following diagram:

(38) Chowpkq F π / / Chowpkq F { ¡Fp1q R / / NChowpkq F Voevpkq F π / / Voevpkq F { ¡Fp1q R nil / / NVoevpkq F Numpkq F π / / Numpkq F { ¡Fp1q Rnum / / NNumpkq F ,
where π are the natural functors and R, R nil and R num are fully faithful (see [BMT14, Prop. 4.2]), and the fact that:

Hom Voevpkq F { ¡Fp1q pSpecpkq, Xq Z ¦ pXq F { nil Hom Numpkq F { ¡Fp1q pSpecpkq, Xq Z ¦ pXq F { num .
The identification of V pXq and V N C pXq is then obtain via the fully faithful functors R nil and R num . III.2. From semiorthogonal decomposition to a proof of Voevodsky's conjecture. Theorem 3.17 can be applied to give new examples of varieties X such that V pXq holds. The general idea is to consider varieties X with a semiorthogonal decomposition D b pXq xA 1 , . . . , A n y and check V N C pA i q for the noncommutative schemes A i . Indeed, if V N C pA i q holds for all i 1, . . . , n, then V N C pXq holds, so that V pXq holds by Theorem 3.17. Here is a list of applications (see [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF]).

Quadric fibrations. Let S be a smooth projective k-scheme and q : Q Ñ S a flat quadric fibration of relative dimension n with Q smooth. Let C 0 be the associated sheaf of even parts of the Clifford algebra. Then we have the following semiorthogonal decomposition [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF]: D b pXq xD b pS, C 0 q, D b pSq 1 . . . , D b pSq n¡1 y, where D b pSq i D b pSq and all the involved functors are Fourier-Mukai and hence naturally dg enhanced (compare with Lemma 2.2). The noncommutative scheme D b pS, C 0 q has a geometrical description in the case where the discriminant divisor ∆ is smooth: if n is odd, we denote by p S the root stack of S with Z{2Z-structure along ∆. If n is even, we denote r S Ñ S the discriminant double cover ramified along ∆. In both cases, there is an Azumaya algebra B 0 and an equivalence of noncommutative schemes D b pS, C 0 q D b p r S, B 0 q (resp. D b p p S, B 0 q), see [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF] for more details.

Theorem 3.18. The following holds:

(i) We have V pQq ô V N C pD b pS, C 0 qq V pSq.
(ii) When the discriminant divisor of q is smooth and n is even, we have V pQq ô V p r Sq V pSq. As a consequence, V pQq holds when dimpSq ¤ 2, and becomes equivalent to V p r Sq when S is an Abelian 3-fold and k is of characteristic zero.

(iii) When the discriminant divisor of q is smooth and n is odd, we have V pQq ô V N C pD b p p S, B 0 qq V pSq. As a consequence, V pQq becomes equivalent to V N C pD b p p S, B 0 qq when dim pSq ¤ 2. This latter conjecture holds when S is a curve or a rational surface and k is algebraically closed.

We notice that the difference between the even and the odd dimensional case is due to the fact that in the even dimensional case r S is a smooth and proper scheme, so that U pD b p r S, B 0 qq F N CpSq F for any field F of characteristic zero, as a consequence of Tabuada and Van den Bergh's result [START_REF] Tabuada | Noncommutative motives of azumaya algebras[END_REF]. On the other hand, if S is a curve or a rational surface, then an explicit description of p p S, B 0 q allows to conclude (see [START_REF] Bernardara | Some remarks concerning voevodsky's nilpotence conjecture[END_REF] for more details).

Intersection of quadrics. Let X be a smooth complete intersection of r quadric hypersurfaces in P m . The linear span of these r quadrics gives rise to a hypersurface Q P r¡1 ¢P m , and the projection into the first factor to a flat quadric fibration q : Q Ñ P r¡1 of relative dimension m ¡ 1. The decompositions described in Theorem 2.21 give the following result.

Theorem 3.19. The following holds:

(i) We have V pXq ô V N C pD b pP r¡1 , C 0 qq. (ii)
When the discriminant divisor of q is smooth and m is odd, we have V pXq ô V p P r¡1 q. As a consequence, V pXq holds when r ¤ 3. (iii) When the discriminant divisor of q is smooth and m is even, we have V pXq ô

V N C pD b p z P r¡1 , B 0 qq. This latter conjecture holds when r ¤ 3 and k is algebraically closed.

Remark 3.20. (Relative version) As Theorem 2.21 is stated for relative complete intersections, Theorem 3.19 has a relative analogue with X replaced by a generic relative complete intersection X Ñ S of r quadric fibrations Q i Ñ S of relative dimension m ¡ 1. Items (i), (ii), and (iii), hold similarly with P r¡1 replaced by a P r¡1 -bundle T Ñ S, with V p P r¡1 q replaced by V p r T q V pSq, and with V N C pD b p z P r¡1 , B 0 qq replaced by V N C pD b p p T , B 0 qq V pSq, respectively. Note that thanks to the relative item (ii), conjecture V pXq holds when r 2 and S is a curve.

Linear sections of Grassmannians, determinantal varieties. Following Kuznetsov [START_REF]Homological projective duality for grassmannians of lines[END_REF], consider the following two classes of schemes:

(i) Let X be a generic linear section of codimension r of the Grassmannian Grp2, W q (with W k 6 ) under the Plücker embedding, and Y the corresponding dual linear section of the cubic Pfaffian Pfp4, W ¦ q in PpΛ 2 W ¦ q. For example when r 3, X is a Fano 5-fold; when r 4, X is a Fano 4-fold; and when r 6, X is a K3 surface of degree 14 and Y a Pfaffian cubic 4-fold. Moreover, X and Y are smooth whenever r ¤ 6.

(ii) Let X be a generic linear section of codimension r of the Grassmannian Grp2, W q (with W k 7 ) under the Plücker embedding, and Y the corresponding dual linear section of the cubic Pfaffian Pfp4, W ¦ q in PpΛ 2 W ¦ q.

For example when r 5, X is a Fano 5-fold; when r 4, X is a Fano 4-fold; when r 8, Y is a Fano 4-fold; and when r 9, Y is a Fano 5-fold. Moreover, X and Y are smooth whenever r ¤ 10. Homological Projective Duality between Grp2, W q and Pfp4, W ¦ q was proved by Kuznetsov and gives in these cases a noncommutative k-scheme A as a component both of D b pXq and D b pY q and in such a way that the orthogonal complements are both generated by exceptional objects, see [START_REF]Homological projective duality for grassmannians of lines[END_REF]. Theorem 3.17 gives then another family of examples of varieties satisfying V .

Theorem 3.21. Let X and Y be as in the above classes (i)-(ii). Under the assumption that X and Y are smooth, we have V pXq ô V pY q. This conjecture holds when r ¤ 6 (class (i)), and when r ¤ 6 and 8 ¤ r ¤ 10 (class (ii)).

Other similar examples can be obtained via Homological Projective Duality, let us just cite another example. Let Z r m,n be as in Section IV. Set X and Y to be (geometric) resolutions of singularities of dual linear sections of Z r m,n and Z m¡r m,n respectively. As above, Theorem 3.17 can be applied to have a family of examples of varieties satisfying V . Indeed, there is a noncommutative scheme C, component of both D b pXq and D b pY q whose orthogonal complements, if not empty, are generated by exceptional objects.

Theorem 3.22. Let X and Y be (geometric) resolutions of singularities of dual linear sections of dual determinantal varieties. Then V pXq ô V pY q. In particular V pXq and V pY q both hold whenever dim pY q ¤ 2 or dim pXq ¤ 2.

Moishezon manifolds. A Moishezon manifold X is a compact complex manifold such that the field of meromorphic functions on each component of X has transcendence degree equal to the dimension of the component. As proved by Moishezon [Moi], X is a smooth projective C-scheme if and only if it admits a Kähler metric. In the remaining cases, Artin [START_REF] Artin | Algebraization of formal moduli, ii. existence of modification[END_REF] showed that X is a proper algebraic space over C.

Let Y Ñ P 2 be one of the non-rational conic bundles described by Artin and Mumford in [START_REF] Artin | Some elementary examples of unirational varieties which are not rational[END_REF], and X Ñ Y a small resolution. In this case, X is a smooth (non necessarily projective) Moishezon manifold, and we consider the noncommutative scheme perf dg pXq.

Ingalls and Kuznetsov construct in [START_REF] Ingalls | On nodal Enriques surfaces and quartic double solids[END_REF] a semiorthogonal decomposition: perf dg pXq xA, E 1 , E 2 y, where E i are exceptional and A is a noncommutative scheme, component of D b pSq for S the Enriques surface associated to Y (see [START_REF] Ingalls | On nodal Enriques surfaces and quartic double solids[END_REF] for details). Since V pSq holds, V N C pSq holds and so does V N C pAq. We obtain then the following result. Theorem 3.23. Conjecture V N C pperf dg pXqq holds for the above resolutions.

CHAPTER 4

Semiorthogonal decompositions in birational geometry

This Chapter is devoted to study how semiorthogonal decompositions and noncommutative schemes can detect birational properties of a given projective k-variety X. The idea of studying birational geometry, especially for Fano varieties, using semiorthogonal decompositions goes back to the Moscow school, and in particular to Bondal and Orlov, as they point out in their 2002 ICM address [START_REF] Bondal | Derived categories of coherent sheaves[END_REF].

Later, Kuznetsov sketched in [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF] the definition of a Griffiths component of the noncommutative scheme D b pXq (or some of its resolution of singularities). Roughly speaking, it would be the noncommutative scheme that one gets as the orthogonal complement to all the noncommutative subschemes of D b pXq which are representable in dimension dim pXq ¡ 2. Having such a component well defined would give a birational invariant, as explained in [START_REF]Derived categories view on rationality problems[END_REF], but requires for example the Jordan-Hölder property for semiorthogonal decompositions, which does not hold in general (see Example 1.52).

It is then a very difficult task to know whether such an invariant exists, but it does in the case of Del Pezzo surfaces over a general field [START_REF] Auel | Semiorthogonal decompositions and birational invariants of geometrically rational surfaces[END_REF], as we will see in Section II. However, let us trace the motivating inspiration behind the idea of Kuznetsov, by recalling Clemens-Griffiths' construction of a birational invariant for complex threefolds with principally polarized intermediate Jacobian [START_REF] Griffiths | The intermediate Jacobian of the cubic threefold[END_REF].

If X is a smooth complex threefold with H 1,0 pXq H 3,0 pXq 0, then JpXq : J 3 pXq is a principally polarized Abelian variety (indeed, this is a case of a verepresentable threefold, as defined in Def. 3.10). Suppose that X I is also smooth and projective and that ρ : X X I is a birational map. In particular H 1,0 pX I q H 3,0 pX I q 0 as well. Hironaka's resolution of singularities provides a commutative diagram

(39) r X σ A A A A A A A A X ρ / / _ _ _ X I ,
where : r X Ñ X is a composition of a finite number of smooth blow-ups, and σ : r X Ñ X I is a birational morphism. Clemens and Griffths show that then JpX I q Jp r Xq and that Jp r Xq JpXq JpC 1 q . . . JpC r q for some smooth curve C i (the centers of the blow-ups composing ) as principally polarized Abelian varieties. They key of Clemens and Griffiths' idea is that the category of principally polarized Abelian varieties is semisimple, so that the maximal component A X JpXq which is not split by Jacobian of curves is well defined and a birational invariant, see [START_REF] Griffiths | The intermediate Jacobian of the cubic threefold[END_REF] for more details.

I. Categorical representability and motivic measures

On the other hand, for k any field with resolution of singularities, X of any dimension, and ρ : X X I birational with X I smooth, one can consider the diagram (39). We have

that σ ¦ D b pX I q D b p r
Xq is admissible, and D b p r Xq x ¦ D b pXq, D b pZ 1 q, . . . , D b pZ s qy where Z i are the centers of the blow-ups composing (repetitions must be allowed). Based on these arguments, on motivic constructions in the case where weak factorization holds, and inspired by Kuznetsov's original idea, we define categorical representability and ask about it providing criteria of nonrationality. Moreover, we can construct a noncommutative motivic rational defect, a quite weak invariant, which anyway gives some evidence to categorical representability to be an interesting notion to explore. This, together with some more detailed analysis of the Mori fiber space case, is the content of the first Section.

In the rest of the Chapter, we describe how this approach is fruitful in the case of geometrically rational surfaces, complex threefolds such as conic bundles, and some complex fourfolds.

I. Categorical representability and motivic measures

I.1. Categorical representability for schemes. In this section, we provide some general argument to motivate the idea that representability, as defined in 1.44, should play a role in studying birational geometry. Let X be a projective k-scheme. Recall from 1.38 the notion of noncommutative resolution of singularities for X. First of all, we define the notion of categorical representability of schemes.

Definition 4.1 ( [BB12]

). Let X be a projective k-variety. We say that X is categorically representable in dimension m (or equivalently in codimension dim pXq ¡ m) if there is a noncommutative resolution of singularities B of X which is representable in dimension m.

We will use the following notations: If X is smooth and such that D b pXq has no nontrivial semiorthogonal decomposition, then rdim cat pXq dim pXq if we assume that there is no fully faithful functor D b pXq Ñ D b pY q for any Y with dim pY q dim pXq. These two conditions hold for example if X is a curve of positive genus, see [START_REF] Okawa | Semiorthogonal decomposability of the derived category of a curve[END_REF] for indecomposability, and use Theorem 3.12 to prove the second property. Other examples of semiorthogonally indecomposable derived categories include some complex surfaces [START_REF] Kawatani | Nonexistence of semiorthogonal decompositions and sections of the canonical bundle[END_REF], and connected varieties with trivial canonical bundle [Bri99, Ex. 3.2]. The second property is more subtle in this case, but can still be shown in some cases using deeper geometrical cycle-theoretic arguments, as for example the infinite dimension of the Griffths group of a Calabi-Yau threefold.

Proof. If Z X is the center of the blow-up and has codimension c in X, then D b pY q xD b pXq, D b pZq 1 , . . . , D b pZq c¡1 y, where D b pZq i D b pZq for any i 1, . . . , c ¡1, see [START_REF]Projective bundles, monoidal transformations and derived categories of coherent sheaves[END_REF].

The proof follows by definition of categorical representability. l Corollary 4.7. Suppose that : Y Ñ P n is a composition of blow-ups along smooth centers, and n ¥ 2. Then rcodim cat pY q ¥ 2.

Proof. This follows straightforward from Lemma 4.6 and rdim cat pP n q 0. l Now, let ρ : P n X be a birational map. Resolving the singularities of ρ give a diagram like (39), with a smooth and projective Y obtained by iterated smooth blow-ups of P n and a birational morphism σ : Y Ñ X. Using Lemma 4.5 and Corollary 4.7, we get that D b pXq is admissible inside D b pY q and that rcodim cat pY q ¥ 2.

Notice anyway that the converse implication of Lemma 4.6 is highly nontrivial and not known in general. Even more general, as remarked in §III.3, if a noncommutative scheme A is such that rdim A n, it is not known whether any noncommutative scheme B, admissible in A, satisfies rdim B ¤ n. Hence, the fact that rcodim cat pY q ¥ 2 does not give any information neither on rcodim cat pXq nor on any other admissible subcategory of D b pY q. I.2. Motivic measures and a rational defect. We consider here the Grothendieck ring of varieties K 0 pVarpkqq, which is defined by taking the free Z-module generated by varieties over k, and taking the quotient by the so-called scissor relation, that is: rXs rZs rUs whenever Z X is a closed subvariety with open complement U , and r¡s denotes the class of a given variety in K 0 pVarpkqq. The sum of classes corresponds to the disjoint union, rXs rY s rX bY s and the product to the product of varieties rXs¢rY s rX ¢Y s. The unit 1 of K 0 pVarpkqq is the class of Specpkq, while we denote by L rA 1 k s the class of the affine line. Notice that rP 1 k s 1 L. A motivic measure is a ring homomorphism µ : K 0 pVarpkqq Ñ R to some commutative ring R. There are many natural examples of motivic measures, but we are here mainly interested in the one defined by Larsen and Lunts in [START_REF] Larsen | Motivic measures and stable birational geometry[END_REF] in the case where weak factorization holds, for example if k has characteristic zero [START_REF] Abramovich | Torification and factorization of birational maps[END_REF]. We assume working over such a k in this subsection.

Using weak factorization, Bittner [START_REF] Bittner | The universal euler characteristic for varieties of characteristic zero[END_REF] has provided another presentation of K 0 pVarpkqq as the Z-module generated by isomorphism classes of smooth proper varieties with the relations rXs¡rZs rY s¡rEs whenever Y Ñ X is the blow-up along the smooth center Z with exceptional divisor E, see [START_REF] Bittner | The universal euler characteristic for varieties of characteristic zero[END_REF]. Larsen and Lunts [START_REF] Larsen | Motivic measures and stable birational geometry[END_REF] have then shown that there is a motivic measure µ LL : K 0 pVarpkqq Ñ ZrSBs to the free Z-module generated by stable birationality classes. Moreover, kerµ LL xLy is the ideal generated by the class L of the affine line. It follows that (as remarked in [START_REF] Galkin | The fano variety of lines and rationality problem for a cubic hypersurface[END_REF]), if X is rational of dimension n, then:

(40) rXs rP n s LM X in K 0 pVarpkqq, where M X is a Z-linear combination of classes of varieties of dimension bounded above by n ¡ 2. Galkin and Shinder define then prXs ¡ rP n sq{L K 0 pVarpkqqrL ¡1 s as the rational defect of X [START_REF] Galkin | The fano variety of lines and rationality problem for a cubic hypersurface[END_REF]. I.3. The case of Mori fiber spaces. Question 4.10 is certainly intriguing but probably too challenging, at least in whole generality. In this last subsection, we explain a possible approach via Mori fiber spaces. Again, we start by assuming X to be smooth and projective, even if we could consider noncommutative resolution of singularities. However, this first assumption makes the explanations much easier and we will come back to more general case at the end of this subsection.

By a Mori fiber space we mean a flat morphism π : X Ñ Y between projective varieties of relative dimension m ¡ 0 and such that the relative Picard group PicpX{Y q Z is free of rank one, and the relative canonical bundle ω X{Y is antiample. In particular, if O X{Y p1q is an ample generator of PicpX{Y q, then ω X{Y O X{Y p¡iq and we call i the index of X over Y . Notice that if Y Specpkq, a Mori fiber space X is a Fano variety of Picard rank one and index i. Notice that for any integer r, the sequence xD b pY qprq, . . . , D b pY qpi r¡1qy is semiorthogonal, and its complement is a noncommutative scheme, dg-equivalent to A X{Y . A simple application Proposition 4.8 indicates that in the case of Mori fiber spaces the noncommutative scheme A X{Y is the one which could obstruct nonrationality.

Corollary 4.12. Let X Ñ Y be a Mori fiber space of relative dimension m, and let n dim pXq. Assuming that either Y is rational or m ¡ 1, we have that x is in P T n¡2 pkq if and only if IpA X{Y q is in P T n¡2 pkq.

Proof. By the assumptions on Y , there exists d ¤ n ¡ 2 such that the class y is in P T d pkq P T n¡2 pkq. Using the semiorthogonal decomposition from Proposition 4.11, we get that x IpA X{Y q modulo elements in P T n¡2 pkq, and the proof follows.

l

Notice that we can extend our analysis to any rational map ρ : X Y , which can be resolved into a Mori fiber space r X Ñ Y . For example, if X is a cubic threefold, and X P 2 is a projection off a line contained in X, then r X Ñ P 2 is a conic bundle. We 

X ρ / / _ _ _ Y,
(2) X P 3 k is a smooth quadric and PicpXq Z, generated by the hyperplane section Op1q;

(3) X is a del Pezzo surface with PicpXq Z, generated by the canonical class ω X ;

(4) X is a conic bundle f : X Ñ C over a geometrically rational curve, with PicpXq Z Z. Examples of del Pezzo surfaces with PicpXq Z generated by ω X include non-k-rational Severi-Brauer surfaces, that is non-k-rational surfaces X over k such that X P 2 k. The set of isomorphism classes of Severi-Brauer surface is in bijection with the set of k-isomorphism classes of central simple algebras A of degree 3 over k, and we will write X SBpAq accordingly. By a theorem of Châtelet, a Severi-Brauer surface X is k-rational if and only if X is k-isomorphic to projective space if and only if Xpkq $ ∅, cf. [GS06, Thm. 5.1.3]. In this case, we say that X splits and remark that X always splits after a finite separable field extension. As intersection numbers do not change under scalar extension, X has degree 9.

We finally notice that SBpAq SBpBq if and only if A B are Brauer-equivalent, while SBpAq and SBpBq are birationally equivalent if and only if A and B generate the same subgroup of the Brauer group Brpkq. This latter fact is conjectured by Amitsur (cf. [START_REF] Amitsur | Generic splitting fields of central simple algebras[END_REF]) to hold in any dimension. In particular, SBpAq and SBpA 2 q are birational but not isomorphic k-varieties.

Denote by ρpXq the Picard rank of X. Minimal surfaces in cases (1), ( 2) and (3) are Fano varieties of Picard rank one and index 2 3, 2 and 1 respectively. Minimal surfaces in cases (4) have a structure of Mori fiber space X Ñ C. Notice that a necessary condition for the rationality of X is the rationality of C, that is C P 1 . This isomorphism is equivalent rdim cat pCq 0.

Manin has proved [Man74, Thm. 29.4] that, given a (non necessarily minimal) del Pezzo surface of degree d ¥ 2, the existence of a k-rational point (not lying on any exceptional curve if d ¤ 4) implies the existence of a unirational parametrization, i.e., a map P 2 k X of finite degree. In particular, if degpXq ¥ 5, this map has degree one. It follows that if X is a del Pezzo surface of degree d ¥ 5, Xpkq is nonempty if and only if X is k-rational. II.2. Categorical representability and the Griffiths-Kuznetsov component for del Pezzo surfaces. Let X be a minimal del Pezzo surface, so that the structure map X Ñ Specpkq is a Mori fiber space of index i ¤ 3. We consider the noncommutative scheme A X A X{k , and notice that rkK 0 pA X q 3 ¡ i and

A X 0 if i 3, that is if X P 2 k and D b pXq xO, Op1q, Op2qy A X D b pk, C 0 q if i 2, that is if X P 3
k is a quadric, where C 0 is the even Clifford algebra associated to X (see [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF][START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF]), and D b pXq xD b pk, C 0 q, O, Op1qy

2 By index, we mean here the index of X as a Fano variety. Another notion of index for such surfaces is given by the greatest common divisor of degrees of closed points. Later, we will consider this notion and name it point-index just to mark the difference.

A X xω X y u if i 1, and D b pXq xA X , Oy.

In order to understand the structure of A X in the third case, we rely on the description of all possible full exceptional collections for del Pezzo surfaces over algebraically closed fields which was obtained by Rudakov, Gorodentsev-Rudakov, Kuleshov-Orlov and Karpov-Nogin (see, e.g., [START_REF] Gorodentsev | Exceptional vector bundles on the projective spaces[END_REF], [START_REF] Rudakov | Exceptional bundles on a quadric[END_REF], [START_REF] Kuleshov | Exceptional sheaves on del pezzo surfaces[END_REF], [START_REF] Karpov | Three-block exceptional sets on del pezzo surfaces[END_REF]). While these authors restrict to working over algebraically closed fields of characteristic zero, their proofs are based on properties of vector bundles and on the description of a del Pezzo surface as a blow-up of P 2 (or of a quadric surface as P 1 ¢ P 1 ), hence they actually hold for any totally split del Pezzo surface, in particular, they hold over any separably closed field.

Let us describe what is known for k k s . Kuleshov-Orlov show that any exceptional object in D b pXq is (a shift of) a vector bundle [START_REF] Kuleshov | Exceptional sheaves on del pezzo surfaces[END_REF]. Recall the definition of exceptional block from §I.4. A 3-block exceptional collection is a full exceptional collection on X whose exceptional objects form three exceptional blocks. Thanks to Rudakov [Rud89], Gorodentsev-Rudakov [START_REF] Gorodentsev | Exceptional vector bundles on the projective spaces[END_REF] and Karpov-Nogin [START_REF] Karpov | Three-block exceptional sets on del pezzo surfaces[END_REF], there is a finite set (actually maxt5 ¡d, 1u if d degpXq) of 3-block exceptional collections from which any other 3-block exceptional collection can be obtained by mutations and tensoring the whole category by line bundles; this holds unless X is the blow-up of one or two points in P 2 , in which case there is no 3-block exceptional collection. We notice however that in the latter cases X is never minimal. Moreover, these 3-block collections are completely classified, that is, we know the minimal ones (where a collection is minimal if the bundles have minimal possible rank in the set of all the collections that one obtain via mutations).

If k is general, and X is minimal, we have K 0 pXq Z 3 . In the cases where X P 2 , or X is a quadric, we already have either A X 0 or an algebraic description of A X . We notice moreover that the decomposition D b pP 2 q xO, Op1q, Op2qy is already the unique minimal 3-block decomposition. Moreover, if X is a quadric, the three components of the decomposition D b pXq xD b pk, C 0 q, O, Op1qy base-change to the three blocks of the unique minimal 3-block decomposition of X k s .

We then restrict to the cases of index 1, and X minimal. In order to produce semiorthogonal decompositions of D b pXq, we consider the minimal 3-block decompositions of X k s and recall Proposition 1.57: if such a decomposition descend to the base field k, then we would have a semiorthogonal decomposition (41)

D b pXq xD b pl 1 , A 1 q, D b pl 2 , A 2 q, D b pl 3 , A 3 
qy, for l i {k étale algebras and A i Brpl i q central simple algebras. We also notice that X minimal is equivalent to ρpXq 1 which is in turn equivalent to K 0 pXq Z 3 . The latter is then equivalent to have that l i {k is a field extension. An analysis of all the possible minimal 3-block decompositions gives the following result [START_REF] Auel | Semiorthogonal decompositions and birational invariants of geometrically rational surfaces[END_REF].

Theorem 4.16. Let X be a del Pezzo surface over a general field k of degree d. If d ¥ 5, then there is always a decomposition of the form (41), base changing to the unique 3-block decomposition of D b pX k s q. Moreover, D b pl 1 , A 1 q xOy, so that l 1 k and A 1 is trivial. The k-algebras A 2 and A 3 arise as endomorphism algebras of vector bundles V 2 and V 3 respectively. If X is minimal, then A X xD b pl 2 , A 2 q, D b pl 3 , A 2 qy and l i are field extensions of k.

The statement of Theorem 4.16 gives a clear separation between high degree and low degree surfaces. This separation should reflect the fact that low degree surfaces have a much more complicated arithmetic than the high degree ones. Moreover, surfaces of high degree are always either toric (for d ¥ 6) or rational (any degree 5 del Pezzo is rational, [START_REF] Swinnerton-Dyer | Rational points on del pezzo surfaces of degree 5, Algebraic geometry[END_REF]). Moreover, any minimal rational surface has degree d ¥ 5.

Let us first comment the low degree case. The proof of the statement is a verification that the descent of any 3-block decomposition would contradict the minimality of X, because it would imply that some exceptional divisor is defined on X. A minimal surface X with d ¤ 4 is never rational. Moreover, unless d 4 and Xpkq $ ∅, such an X is birationally rigid, that is, if X I X, then X I Ñ X is a birational morphism. It follows that A X is a birational invariant. If d 4 and x is a k-rational point, then the blow-up r X Ñ X of x has a structure of conic bundle X Ñ P 1 , and A X A X{P 1 D b pP 1 , B 0 q, where B 0 is the sheaf of even parts of the Clifford algebra associated to the conic bundle.

If d ¥ 5, then Theorem 4.16 recovers some decompositions which were already known in the case of Brauer-Severi surfaces [START_REF]A semiorthogonal decomposition for Brauer Severi schemes[END_REF], involution surfaces [START_REF]A derived equivalence for some twisted projective homogeneous varieties[END_REF] and degree 6 del Pezzo surfaces [START_REF] Blunk | A derived equivalence for a degree 6 del pezzo surface over an arbitrary field[END_REF]. Besides, Theorem 4.16 gives a general criterion to construct semiorthogonal decompositions of the form (41): given an exceptional block E tE 1 , . . . , E r u in D b pX k s q, generated by vector bundles, consider the vector bundle W : À r i1 E i . Then W is a generator for E. If there is a vector bundle V on X such that V k s W s for some s, then the category xV y base changes to E, and we are in the setup of Proposition 1.57. This is the way we produce the vector bundles V 2 and V 3 in Theorem 4.16, by considering the explicit description of the minimal 3-block decompositions. Definition 4.17. Let X be a minimal del Pezzo surface over a general field k of degree d. We define the Griffiths-Kuznetsov component GK X as the following noncommutative scheme:

if d ¤ 4, set GK X : A X , if d ¥ 5, set GK X : ² A i nontrivial D b pl i , A i q,
where A i are the algebras appearing in Theorem 4.16, and A i nontrivial means that the class of A i is nontrivial in the Brauer group Brpl i q.

Notice that A i nontrivial is equivalent to repD b pl i , A i q $ 0. Indeed, one can show (see, e.g., [AB15, Thm. 1.4.6], or the more general [START_REF] Antieau | A reconstruction theorem for abelian categories of twisted sheaves[END_REF]), that, given two fields K 1 and K 2 and two Azumaya algebras A 1 and A 2 over K 1 and K 2 respectively, then D b pK 1 , A 1 q D b pK 2 , A 2 q if and only if K 1 K 2 and A 1 is Brauer equivalent to A 2 . The results from Theorem 4.16 tell then that GK X encodes the information on the noncommutative schemes, admissible in D b pXq, which are not representable in dimension 0.

Theorem 4.18. Let X be a del Pezzo surface of degree d over an arbitrary field k, and assume that Xpkq $ ∅ if d 4, and that there is either a rational point or no point of degree 2 if X has degree 8. Then GK X is well defined and is a birational invariant.

In particular, X is rational if and only if GK X 0, and the latter is equivalent to rdim cat pXq 0.

In the case where d ¤ 4, the proof relies on the fact that such surfaces are birationally rigid. Notice moreover that we are excluding exactly those two cases where blowing a point of minimal degree would give a conic bundle r X Ñ C, where C is a conic, and A X D b pC, B 0 q for B 0 the Clifford algebra of the conic bundle. Hence these two del Pezzo surfaces can be considered, both from a birational and a categorical point of view, as conic bundles.

II.3. Del Pezzo surfaces of degree d ¥ 5. Let X be a del Pezzo surface of degree d ¥ 5. In this case, the semiorthogonal decomposition from Theorem 4.16 not only gives the birational invariant GK X , but also a way to obtain information on the degree of closed points on X from three vector bundles, and an answer to Question 4.15. Let us give some more detail on the algebras A i in all the cases.

Severi-Brauer surfaces. As recalled, if d 9, then X k s P 2 k s , and there is an Azumaya algebra A identifying the isomorphism class of X. The Brauer class of A has order 3, so that the subgroup xAy Brpkq is just xAy t1, A, A 2 u. In this case, we have A 2 A and A 3 A 2 , so that the statements of Theorem 4.16 are a consequence of Amitsur's results.

However, one can explicitly show that GK X is a birational invariant by checking all the possible Sarkisov links of such a surface (see [AB15, App. A]).

Involution surfaces. If d 8, either X is the blow-up of P 2 k in one point, and there is nothing to show, or X is an involution variety, that is X k s is a quadric in P 3 k s . In this case, there is an Azumaya algebra A with an involution, such that SBpAq is a Severi-Brauer threefold containing X. The involution gives a semisimple algebra B which is central over a degree 2 extension l{k. In this case, A 2 A and A 3 B. First of all X is rational if and only if A and B are trivial in Brpkq and Brplq respectively. The fact that GK X is a birational invariant can be proved by checking all the possible Sarkisov links of such a surface. Degree 7. If d 7, then X is the blow-up of P 2 k in either one point of degree 2 or in two rational points. Anyway, there is nothing to show here. Degree 6. If d 6, then Colliot-Thélène, Karpenko and Merkurjev have constructed two algebras B and Q associated to X [START_REF] Colliot-Thélène | Rational surfaces and the canonical dimension of the group PGL6[END_REF]. We have that B is a degree 3 Azumaya algebra over a quadratic extension of k, and Q is a degree 2 Azumaya algebra over a cubic extension of k. We refer to [START_REF] Colliot-Thélène | Rational surfaces and the canonical dimension of the group PGL6[END_REF] for more details, we just mention that these algebras are related to toric presentations of X (see also [START_REF] Blunk | Del pezzo surfaces of degree 6 over an arbitrary field[END_REF]). In this case, A 2 B and A 3 Q.

The fact that rationality is equivalent to Brauer triviality of these two algebras goes back to X. The following result from [START_REF]Derived categories and rationality of conic bundles[END_REF] completely resolves the question on relating rationality questions and intermediate Jacobians to A X{Y for conic bundles over minimal surfaces. Theorem 4.24. Let π : X Ñ Y be a standard conic bundle over a minimal rational surface. Then X is rational if and only if rcodim cat pXq ¥ 2 if and only if rdim A X{Y ¤ 1. In particular, this is the case if and only if there are smooth projective curves C i and exceptional objects E j such that A X{Y xD b pC 1 q, . . . , D b pC r q, E 1 , . . . , E r y, which is in turn equivalent to JpXq JpC 1 q . . . JpC r q as principally polarized Abelian varieties.

The proof of Theorem 4.24 relies on the classification of rational conic bundles π : X Ñ Y over minimal surfaces achieved by Beauville [START_REF] Beauville | Variétés de Prym et jacobiennes intermédiaires[END_REF] and Shokurov [Sho84]. This classification is based on the fact that JpXq is identified, as a principally polarized Abelian variety, to the Prym variety Prymp r ∆{∆q of the discriminant double cover of ∆. There are only five cases where such a Prym variety is split by curves, and they all correspond to a rational X. In all of these five cases, explicit constructions and calculations of mutations allow to construct the required semiorthogonal decomposition of A X{Y .

Suppose on the other hand that A X{Y has the required decomposition. The reconstruction Theorem 3.13 for the intermediate Jacobian was proved in [START_REF]Derived categories and rationality of conic bundles[END_REF] in this case, hence showing that the decomposition of A X{Y gives the splitting of JpXq. Then Beauville-Shokurov classification applies.

If π : X Ñ Y is a Mori fiber space of relative dimension 2, then we consider Y P 1 , and π : X Ñ P 1 is a del Pezzo fibration, i.e. the fibers are del Pezzo surfaces. In this case, less is known, there is no particular algebraic description of A X{P 1 in general5 . An algebraic description is known in the case where X Ñ P 1 is a del Pezzo fibration of degree 4. Indeed, in this case, X is the relative complete intersection of two quadric fibrations Q i Ñ P 1 of relative dimension 3. In this case we have a Hirzebruch surface S Ñ P 1 and a Clifford algebra C 0 on S corresponding to the linear span Q Ñ P 1 of the two quadric fibrations, see Definition 2.18. Homological Projective Duality, see Theorem 2.21 gives then A X{P 1 D b pS, C 0 q.

To study the Clifford algebra C 0 , notice that the linear span Q Ñ P 1 has a section, thanks to the existence of a Section of X Ñ P 1 (guaranteed by Campana-Peternell-Pukhlikov [START_REF] Campana | The generalized Tsen theorem and rationally connected Fano fibrations[END_REF] and Graber-Harris-Starr [START_REF] Graber | Families of rationally connected varieties[END_REF], or simply constructed explicitly by Alexeev [START_REF] Alekseev | Rationality conditions for three-dimensional varieties with sheaf of del pezzo surfaces of degree 4[END_REF]) and the Amer-Brumer Theorem (see, e.g., [EKM08, Thm. 17.14] or [ABB14, Thm. 1.9.1]). Along this section, we can perform reduction by hyperbolic splitting to get a conic bundle Q Ñ S, as recalled in §III.3.

On the other hand, Alexeev [START_REF] Alekseev | Rationality conditions for three-dimensional varieties with sheaf of del pezzo surfaces of degree 4[END_REF] shows that X is birational to a conic bundle Q I Ñ S I , for a Hirzebruch surface S I . The following result was established in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] and is an analog of Theorem 4.24 in the case of del Pezzo fibrations of degree 4.

The discriminant of a labeled special cubic fourfold pX, Kq is defined to be the determinant of the intersection matrix of K.

Let C be the moduli space of cubic fourfolds. It is a 20-dimensional moduli space. The expectation is that Hodge theoretical information contained in the labeling should witness the vanishing of some obstruction to rationality. Indeed, it is expected that the general (hence, nonspecial) cubic fourfold is not rational. On the other hand, there are two classes of smooth cubics which are known to be rational: the first one is the one of Pfaffian cubics [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF] and the second one is given by a particular case of cubic fourfolds containing a plane [START_REF] Hassett | Some rational cubic fourfolds[END_REF], as explained in Example 4.26. Finally, both nodal and determinantal cubics are rational.

Example 4.26 ( [Has00], [START_REF] Hassett | Some rational cubic fourfolds[END_REF]). Let X P 5 be a smooth cubic containing a plane P X, and consider the projection P 5 P 2 along the plane P . Restricting this projection to X give rise to a rational map X P 2 which can be resolved, by blowing up P , into a quadric surface bundle π : r X Ñ P 2 , ramified along a sextic curve (generically smooth) C P 2 . If π has an odd section, then r X and, a fortiori, X are rational. Cubic fourfolds with a plane and an odd section form a countable union of divisors in the moduli space C 8 . Notice moreover that the discriminant double cover S Ñ P 2 , ramified along the sextic curve C, is a (generically smooth) K3 surface of degree 2.

Example 4.27 ( [BD85]

). Let V be a six-dimensional complex vector space and consider Grp2, V q Pp 2 V q via the Plücker embedding. The variety Pfp4, 2 V q Pp 2 V q is defined as (the projectivization of) the set of skew symmetric six by six matrices with rank bounded above by 4. It is a (nonsmooth) cubic hypersurface of Pp 2 V q. Let L Pp 2 V q be a linear subspace of dimension 8, and denote by L u Pp 2 V q its orthogonal subspace, which has dimension 5. If we take L general enough, then X : L u Pfp4, 2 V q and S : L Grp2, V q are a smooth cubic in P 5 and a smooth degree 14 K3 surface in P 8 respectively. Cubic fourfolds arising from this construction are called Pfaffian cubics with associated K3 surface S.

The interplay between K3 surfaces and special cubic fourfolds goes beyond the Examples 4.26 and 4.27 and abstract lattices. A given labeled special cubic fourfold pX, K d q of discriminant d, is defined to have an associated K3 surface if there exists a polarized K3 surface pS, lq and a lattice isomorphism H 2 0 pS, Zqp¡1q K u d H 4 pr pX, Zq, where H 2 0 pS, Zq : l u is the primitive cohomology lattice of pS, lq. It is expected that having an associated K3 surface should be a necessary condition to rationality.

the Clifford invariant associated to the quadric fibration, or, equivalently to X. Moreover, α 0 if and only if the quadric bundle has an odd section [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF].

Kuznetsov shows moreover that, in the general case, that is if S has Picard number one, then the Clifford invariant is not trivial and there exists no smooth K3 surface S I such that D b pS, αq D b pS I q, see [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF]. It follows that one should expect such cubic fourfolds to be nonrational, or to provide a counterexample to Kuznetsov's Conjecture 4.28.

On the other hand, suppose that X contains a plane and has associated nontrivial Clifford invariant. This is equivalent to the quadric fibration r X Ñ P 2 not having a section. However, this is condition is not sufficient to have X not rational. A natural question is to wonder whether there exist such rational fourfolds, and find the K3 surface S I realizing D b pS I q D b pS, αq A X . As recalled, we should have S of Picard rank at least 2.

Examples of such fourfolds are achieved by completely describing the locus of those cubics containing a plane and a rational quartic scroll, that is, by describing the intersection C 8 C 14 . Notice that such fourfolds contain at least three non homologous algebraic cycles, so that the K3 surface S has Picard rank at least 2. The following description of cubics in C 8 C 14 was provided in [START_REF] Auel | Cubic fourfolds containing a plane and a quintic del pezzo surface[END_REF].

Theorem 4.29. There are five irreducible components of C 8 C 14 , indexed by the discriminant d X t21, 29, 32, 36, 37u of the intersection form on the algebraic cohomology lattice ApXq H 4 pX, Zq. The Clifford invariant of a general cubic fourfold X in C 8 C 14 is trivial if and only if d X is odd. The Pfaffian locus is dense in the d X 32 component.

Notice that if d X is odd, then X is rational and Kuznetsov's Conjecture 4.28 holds since the Clifford invariant is trivial. On the other hand, if d X is even, since ApXq has rank at least 3, we have that the degree 2 K3 surface S has Picard rank at least 2. Hence, it is not known whether there could be a K3 surface S I with D b pS I q D b pS, αq A X . As a consequence of Theorem 4.29, we get that for d X 32, there in general such a surface S I , which is the degree 14 K3 surface associated to X as a Pfaffian cubic. In particular, (it is known that) X is rational and Kuznetsov's Conjecture 4.28 holds.

We finally notice that in [START_REF] Auel | Cubic fourfolds containing a plane and a quintic del pezzo surface[END_REF] is provided an explicit (i.e. via Pfaffian equations) example of a cubic fourfold X which is Pfaffian, contains a plane, has rank 3 algebraic cohomology and nontrivial Clifford invariant.

IV.2. Fibrations in intersections of quadrics. Another example of a Mori fiber space π : X Ñ Y with X of dimension 4 and such that A X{Y can be explicitly described via a surface S and a Brauer class α BrpSq was considered in [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF].

Recall from Definition 2.18 the notion of generic relative intersection of quadrics. We consider π : X Ñ P 1 to be such intersection of two quadric fibrations Q i Ñ P 1 of relative dimension 4, defined by line-bundle valued quadratic forms pq 1 , L 1 , Eq and pq 2 , L 2 , Eq, where E has rank 6, X PpEq, and L i are line bundles on P 1 . Then π : X Ñ P 1 is a Mori fiber space of relative dimension 3 and index 2. Moreover, we have a Hirzebruch surface F : PpL 1 L 2 q, and 4-dimensional quadric fibration Q Ñ F with smooth degeneration divisor ∆ S.

The first direct application of Homological Projective Duality, see Theorem 2.20 is that, denoting by C 0 the sheaf of even parts of the Clifford algebra of Q Ñ F , we have that A X{P 1 D b pF, C 0 q. Moreover, since the relative dimension of Q is even, we can consider the double cover S Ñ F , ramified along ∆, and C 0 lifts to an Azumaya algebra A on S with Brauer class α BrpSq. Notice that the composition map S Ñ F Ñ P 1 endow S with a hyperelliptic fibration over P 1 , the fibers being double covers of the fibers of F Ñ P 1 , ramified along the 6 points where ∆ meets a fiber. The following result from [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] gives a positive answer to Question 4.10, at least in the case where α 0. Theorem 4.30. Let X Ñ P 1 be a generic relative intersection of two 4-dimensional quadrics, and S and α the surface and the class in BrpSq as above, respectively. Then A X{P 1 D b pS, αq. If α 0, then X is rational and rcodim cat pXq ¥ 2. In particular, this is the case if X contains a surface which is generically ruled over P 1 by the restriction of π.

The proof of the previous Theorem is based on the existence of a section for the quadric fibration Q Ñ F . This section comes, via Amer-Brumer Theorem (see, e.g., [EKM08, Thm. 17.14] or [ABB14, Thm. 1.9.1]), from a smooth section of π : X Ñ P 1 , which exists thanks to Campana-Peternell-Pukhlikov [START_REF] Campana | The generalized Tsen theorem and rationally connected Fano fibrations[END_REF] and Graber-Harris-Starr [GHS03] results on fibrations over curves with rationally connected fibers. It follows that we can perform hyperbolic splitting along this section to get a quadric surface bundle Q I Ñ F whose sheaf of even parts of the Clifford algebra is Morita equivalent to the one of Q Ñ S, see Theorem 2.22. Now we have that X and Q I are birational to each other, see [ABB14, §5] -this can be seen as a higher dimensional analog of Alexeev's (see [START_REF] Alekseev | Rationality conditions for three-dimensional varieties with sheaf of del pezzo surfaces of degree 4[END_REF]) birational map between a del Pezzo fibration of degree 4 and a conic bundle over a Hirzebruch surface we considered in Theorem 4.25. Having a regular section of Q I Ñ F is now equivalent to the vanishing of the class α in BrpSq, and is a sufficient condition for rationality. If X contains a surface generically ruled over P 1 by the restriction of π, then the section of Q I Ñ F is constructed explicitly. In [START_REF] Auel | Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems[END_REF] we can then state a Conjecture which is inspired both by Question 4.10 and by Kuznetsov's Conjecture 4.28.

Conjecture 4.31. Let X Ñ P 1 be a fibration in complete intersections of two four-dimensional quadrics over an algebraically closed field of characteristic zero.

Weak version. The fourfold X is rational if and only if it rcodim cat pXq ¥ 2. Strong version. The fourfold X is rational if and only if rdim A X{P 1 ¤ 2.

  On the other hand, we remarked that D b pCq is semiorthogonally indecomposable in Example 1.8. I.3. Splitting functors. Given triangulated categories A and B and an exact functor Φ : A Ñ B, one can define the kernel of Φ as the full triangulated category ker Φ tA A|ΦpAq 0u and the image of Φ as the full category im Φ tB ΦpAq|A Au. The latter is not necessarily a triangulated subcategory. Definition 1.10. A splitting functor is an exact functor Φ : A Ñ B such that ker Φ and im Φ are admissible in A and B respectively, and Φ restricted to ker Φ u is fully faithful. Splitting functors are functors which identify admissible subcategories of triangulated categories. By definition, a splitting functor Φ : A Ñ B gives a semiorthogonal decomposition of A xker Φ u , ker Φy and of B xim Φ, u im Φy.

I. 5 .

 5 Serre functors. Definition 1.18. Let A be a triangulated k-linear category with finite dimensional morphism spaces. A functor S : A Ñ A is a Serre functor if it is a k-linear equivalence inducing a functorial isomorphism Hom A pA, Bq Hom A pB, SpAqq of k-vector spaces, for any object A and B of A.

  Definition 1.21. A right A-module M is a dg functor M : A op Ñ C dg pkq with values in the dg category C dg pkq of cochain complexes of k-vector spaces; see Keller [Kel06, §2.3]. We will write CpAq for the category of right A-modules.The derived category DpAq of A is defined as the localization of CpAq with respect to the class of objectwise quasi-isomorphisms; seeKeller [Kel06, §3.2]. This category is triangulated. We denote by D c pAq the full subcategory of compact objects.

  by reppA, Bq the full triangulated subcategory of DpA op Bq consisting of those A-B-bimodules M such that for every object A A the right B-module M pA, ¡q belongs to D c pBq. Note that every dg functor Φ : A Ñ B gives rise to an A-B-bimodule p Φ : A B op ÝÑ C dg pkq pA, Bq Þ Ñ BpB, ΦpAqq which belongs to reppA, Bq. Definition 1.22. A dg functor Φ : A Ñ B is called a Morita equivalence if the restriction of scalars functor DpBq Ñ DpAq is an equivalence of triangulated categories; see Keller [Kel06, §4.6].Chapter 1. dg categories, semiorthogonal decompositions and noncommutative motives 27As proved by Tabuada in [Tab05, Theorem 5.3], the category dgcatpkq carries a structure of Quillen model category whose weak equivalences are the Morita equivalences. Let us write Hmopkq for the homotopy category of this model structure. As proved in loc. cit., the assignment Φ Þ Ñ p Φ gives rise to a bijection (5) Hom Hmopkq pA, Bq Iso reppA, Bq,

l

  In the additive commutative group P T pkq, define the following associative product: (8) IpAq IpBq IpA Bq. Proposition 1.51 ( [BLL04], Cor. 5.7). The group P T pkq endowed with the product is a commutative associative ring with unit e IpperfpSpecpkqqq. Example 1.52. Let A, B, and C be smooth and proper noncommutative schemes. A relation IpAq IpBq IpCq in P T pkq does not necessarily imply that A xB, Cy. The simplest example is due to Bondal, and described by Kuznetsov in [Kuz13].

  pkq : ZxIpAq P T pkq | there exists B such that rdim B ¤ d, A Ñ B is admissibley.

  Conjecture 2.3 (Kuznetsov, [Kuz07a] Conj. 3.7). Any splitting functor Φ : D b pXq Ñ D b pY q is of Fourier-Mukai type.

( 21 )

 21 B Grpr,W q xB j¡1 pN ¡ r ¡ jq b D b pGrpr, W qq, . . . , B N ¡r p¡1q b D b pGrpr, W qq, C r y Proof. The proof of this Proposition is provided in [Kuz07a, §6] in geometrical terms. As noticed above, all formal proofs remain valid in the context of dg-categories. l Remark 2.8. Saying that the functor Φ r induces the semiorthogonal decomposition (21) amounts to say that ker Φ r xA r p1q b D b pGrpr, W qq, . . . , A i¡r pi ¡ rq b D b pGrpr, W qqy and that im Φ r xB j¡1 pN ¡ r ¡ jq b D b pGrpr, W qq, . . . , B N ¡r p¡1q b D b pGrpr, W qqy u

  the projective bundle p : X : PpEq Ñ S, the relative ample line bundle O X{S p1q, and the semiorthogonal decomposition (see [Orl93, Thm. 2.6]) (25) D b pXq xp ¦ D b pSqp¡1q, p ¦ D b pSq, . . . , p ¦ D b pSqpn ¡ 2qy. Let us denote by m tpn ¡ 1q{2u and put A 0 A 1 . . . A m¡1 xp ¦ D b pSqp¡1q, p ¦ D b pSqy, D b pSqp¡1q, p ¦ D b pSqy if n is even xp ¦ D b pSqp¡1qy if n is odd. intersections Then the decomposition (25) is a Lefschetz decomposition (26)

D

  b pX r m,n q xp ¦ D b pGrpU, rqq, . . . , p ¦ D b pGrpU, rqqpmrqy, and similarly for D b pY r m,n q. Using the Euler exact sequence on GrpU, rq and Proposition 2.15 one can show that X r m,n and Y r m,n are HP dual relatively over GrpU, rq.

  Proposition 2.24. The endomorphism algebra R is a coherent O Z r m,n -algebra Morita-equivalent to S, so that D b pZ r m,n , Rq D b pX r m,n q. The noncommutative Z r m,n -scheme R is a noncommutative resolution of singularities, which is crepant if m n, in the sense of Definition 1.42.

  Proposition 3.6. (Cf.[START_REF] Bernardara | Relations between the chow motive and the noncommutative motive of a smooth projective variety[END_REF]) Let A be a central simple k-algebra of degree dimpAq d and X SBpAq the associated Severi-Brauer variety.

II. 3 .

 3 From semiorthogonal decompositions to intermediate Jacobians. Let X and Y be two irreducible smooth projective k-schemes of dimensions d X and d Y . Assume that X and Y are related by the following categorical data: There exist dg enhanced semi-orthogonal decompositions D b pXq xA X , A u X y and D b pY q xA Y , A u Y y and an equivalence φ : A X A Y of noncommutative k-schemes. In what follows, Φ denotes the splitting functor D b pXq Ñ A X φ A Y ã Ñ D b pY q.

  Lemma 4.5 gives that π ¦ D b pY q is an admissible subcategory of D b pXq. Moreover, let us denote by D b pY qpjq : π ¦ D b pY q O X{Y pjq. Then D b pY qpjq is also admissible in D b pXq and equivalent to D b pY q. A relative Kawamata-Viehweg vanishing gives the following result. Proposition 4.11. Let π : X Ñ Y be a Mori fiber space of relative index i. Then there is a semiorthogonal decomposition D b pXq xA X{Y , D b pY q, . . . , D b pY qpi ¡ 1qy, for a noncommutative scheme A X{Y .

  If d ¤ 4, and X is minimal then there is no decomposition of the form (41), and the decomposition D b pXq xA X , Oy does not base-change to any 3-block decomposition of D b pX k s q.

  Hassett shows that the moduli space C d of special cubic fourfolds of discriminant d is a (possibly empty) irreducible algebraic divisor of C. Other numerical constraints are described in [Has00, §4]. Low discriminant examples are cubic fourfolds containing a plane (d 8), cubic fourfolds containing a cubic scroll (d 12) and cubic fourfolds containing a quartic scroll (d 14). Pfaffian cubics (see Example 4.27 for their definition) always contain a quartic scroll, and hence belong to C 14 (actually, they are dense in C 14 ). Nonsmooth cases can be also considered: cubic fourfolds with a double point have d 6, while determinantal cubic fourfolds have d 2.

  , 29, 32, 36, 37u of the intersection form on the algebraic cohomology lattice ApXq H 4 pX, Zq. The Clifford invariant α in BrpSq of such a general cubic fourfold X is trivial if and only if d X is odd. There is a Pfaffian cubic in the d X 32 locus, and the group of algebraic 2-cycles on this cubic has rank 3.

  Definition 1.31. A triangulated category A is proper if À iZ Hom A pA, Brisq is finitedimensional for any pair of objects A and B in A. It is regular if it has a strong generator. Definition 1.32. A dg category A is smooth if it is a compact object in DpA op Aq. It is proper (resp. regular) if D c pAq is proper (resp. regular).

  and admits a semiorthogonal decomposition C xA, By. It is moreover proved in [Orl14, Prop. 3.22] that the gluing of regular and proper pretriangulated dg-categories A and B via an A ¡ B-bimodule S is itself regular and proper if and only if H ¦ pSpA, Bqq is finite dimensional for any A in A and B in B.

  Chapter 1. dg categories, semiorthogonal decompositions and noncommutative motives 33 Question 1.46 ( [Orl14], Question 4.4). All the known examples of noncommutative schemes are geometric, hence representable in some finite dimension n. Do there exists non geometric noncommutative schemes? Let us give some easy result about representability of noncommutative schemes. Lemma 1.47. If a noncommutative scheme A is representable in dimension n, then it is representable in dimension m for all m ¥ n.

  . . , d r q in P n , with d 1 ¤ . . . ¤ d r . One has the numerical invariant κ : r n ¡ °r j2 d j Conjecture 3.15. There is an isomorphism CH i pXq Q Q for every i κ. Otwinowska proved Conjecture 3.15 in the case where X is a complete intersection of quadrics, i.e., when d 1 ¤ ¤ ¤ d r 2; see [Otw99, Cor. 1]. Otwinowska's proof is based on a geometric recursive argument. First, one establishes the induction step: if Conjecture 3.15 holds for complete intersections of multidegree pd 1 , . . . , d r q, then it also holds for complete intersections of multidegree pd 1 , . . . , d r , d r q; see [Otw99, Theorem 1]. Then, one uses the fact that Conjecture 3.15 is known in the case of quadric hypersurfaces. One should also mention the work of Esnault-Levine-Viehweg [ELV97]. In loc. cit., a geometric proof of Conjecture 3.15 for very small values of i was obtained via a generalization of Roitman's techniques.

	d 1	s ,
	where r¡s denotes the integral part of a rational number. A careful analysis of the differ-
	ent Weil cohomology theories of X led to the following conjecture of Beilinson-Bloch type
	(explicitly stated by Paranjape in [Par94, Conjecture 1.8]):

  Example 4.2. If X P n is a projective space, then rdim cat pXq 0. Indeed, D b pXq is generated by the full exceptional sequence xO X , . . . , O X pnqy, see[START_REF] Beilinson | Coherent sheaves on π n and problems in linear algebra[END_REF].

rdim cat pXq : mintrdim B | B is a nc resolution of singularities of Xu rcodim cat pXq : dim pXq ¡ rdim cat pXq, whenever at least one such a representable B exists 1 .

A weaker condition is sufficient to obtain such isogeny, we will have detailed treatment in Ch.

3, §II.3 Working with noncommutative motives, we have to consider the components as dg categories, with the dg structure induced by projection

Here we could refer to Sosna's work[START_REF] Sosna | Scalar extensions of triangulated categories[END_REF] for a different notion of scalar base change of a triangulated category. But, as remarked by the same author, [Sos14, page 15], the two definitions coincide.

I am grateful to A. Kuznetsov who explained me this equivalence.

The fusion of the words "very" and "representable".

Notice that, thanks to Kuznetsov-Lunts' result [KL12, Thm. 1.4], such a B exists whenever X is separated of finite type and k is of characteristic zero.

Notice however that the results of Section II apply to the generic fiber of X as a variety over the function field of P 1 .

Voisin [Voi86] shows that one can identify K u d with an index 2 sublattice of H 2
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Let us restrict for some paragraph to the smooth and projective case. In this case categorical representability has a geometric interpretation.

Proposition 4.3. Let X be a smooth projective k-variety. We have that rdim cat pXq ¤ m if and only if there exist smooth projective varieties Y 1 , . . . , Y r and objects E i in D b pY i ¢ Xq, such that, for any i 1, . . . , r, we have dim pY i q ¤ m, and Φ E i are splitting functors whose images form a semiorthogonal set and generate D b pXq.

Proof. First of all, suppose that such Y i and E i exist. Let us denote by A i : ImΦ E i the admissible subcategories of D b pXq. The noncommutative schemes A i are components of D b pY i q, so that repA i ¤ m for any i 1, . . . , r. Since D b pXq xA 1 , . . . , A r y, we get that rdim cat pXq ¤ m.

On the other hand, suppose that rdim cat pXq ¤ m. Then there is a semiorthogonal decomposition D b pXq xA 1 , . . . , A r y with rdim A i ¤ m for all i 1, . . . , r. Up to refining the semiorthogonal decomposition, we have, by Definition 1.44 of representability of a noncommutative scheme, that A i is admissible in some D b pY i q with dim pY i q ¤ m. We obtain then splitting functors Φ i : D b pY i q Ñ D b pXq of dg enhanced triangulated categories, which are Fourier-Mukai by Lemma 2.2. l Remark 4.4. Suppose that X is a projective, nonsmooth k-scheme. We would like to extend Proposition 4.3 to this case, where D b pXq is replaced by some resolution of singularities B, which satisfies the minimality defining rdim cat pXq. The resolution that most fit this aim is probably the one given in Definition 1.42, in which case B is, locally over X, described as an O X -algebra B. In this case we can extend Proposition 4.3 by asking that the objects E i are, locally over X, sheaves of B-algebras.

Proposition 4.3 also explains the choice of the terminology, since the categorical representability of a variety X gives in particular that the noncommutative motive N CpXq is a submotive of N CpY 1 q . . . N CpY r q which is in turn equal to N CpY 1 b . . . b Y r q, the noncommutative motive of a (disconnected) variety of dimension bounded by m.

We start investigating the motivations that led us to define categorical representability as a useful tool in birational geometry with the following simple observation. Lemma 4.5. Let X and Y be smooth and projective k-schemes and σ :

For example, σ is a divisorial contraction, or a Mori fiber space. Then Lσ ¦ : D b pXq Ñ D b pY q is fully faithful.

Proof. For any A and B objects in D b pXq, we have

by adjunction, projection formula and by our assumption respectively. l Thanks to the work of Orlov [START_REF]Projective bundles, monoidal transformations and derived categories of coherent sheaves[END_REF], we have a description of the derived category of a blow-up. This implies that this operation preserves representability in codimension 2. Lemma 4.6. Let Y Ñ X be a blow-up of smooth projective varieties along a smooth center. If we assume rcodim cat pXq ¥ 2, then rcodim cat pY q ¥ 2.

The second motivic measure we want to consider was defined by Bondal, Larsen, and Lunts [START_REF] Bondal | Grothendieck ring of pretriangulated categories[END_REF], still in the case where weak factorization holds. Recall the definition of the Grothendieck ring of noncommutative k-schemes from §III.4. Then there is a measure defined by µ BLL : K 0 pVarpkqq ÝÑ P T pkq rXs Þ ÝÑ x : IpD b pXqq. We notice that we have a natural filtration by the dimension on the ring K 0 pVarpkqq and that we have µ BLL pK 0 pVarpkqq d q P T d pkq. However, for any d, we have µ BLL pP d q pd 1qe, which is in P T 0 pkq, while rP d s is not in K 0 pVarpkqq i for any i d.

Recall again that IpD b pP 1 qq 2e and that rP 1 s 1 L in K 0 pVarpkqq. It follows that µ BLL pLq e in P T pkq. Applying µ BLL to (40), we obtain that if X is rational of dimension n, then x is in P T n¡2 pkq. This give a proof to the following Proposition.

Proposition 4.8. If X is a smooth and projective variety of dimension n such that x is not in P T n¡2 pkq, then X is not rational. Definition 4.9. If X is a smooth and projective variety of dimension n, the class of the element x in the group P T pkq{PT n¡2 pkq is called the noncommutative motivic rational defect of X.

We end by commenting the fact that Proposition 4.8 is a very weak result. Indeed, as remarked above, we have an implication rdim cat pXq ¤ i ñ x P T i pkq, but the converse implication is not known, even for i 0. For example, it is not known that P T n pkq $ P T n¡2 pkq in full generality (though, this is true for n ¤ 4). Anyway, this let us conclude the speculations of these two subsections by the following question.

Question 4.10. Is categorical representability in codimension 2 a necessary condition for rationality? That is, if X is rational, do we have rcodim cat pXq ¥ 2? Before getting into more details about Question 4.10 for Mori fiber spaces, let us briefly remark how noncommutative motives could play a role in this context as well. Recall the definition of the category NChowpkq from IV, and the filtration by thick subcategories NChow d pkq NChowpkq. As remarked previously, we have that if A has rdim A d, then U pAq is in NChow d pkq.

Moreover, one can also consider the Grothendieck ring K 0 pNChowpkqq of the additive category NChowpkq, and the motivic measure µ nc defined by Tabuada (see [Tab15, 4.2.1]):

µ nc : K 0 pVarpkqq ÝÑ K 0 pNChowpkqq rXs Þ ÝÑ rNCpXqs, where r¡s also denotes the class of a noncommutative Chow motive in the Grothendieck ring. As noticed by Tabuada, the map µ nc factors through the map µ BLL , via the natural map P T pkq Ñ K 0 pNChowpkqq [START_REF]Noncommutative motives[END_REF]Prop. 4.8]. This would let us give an analog (and, in general, weaker) statement of Proposition 4.8, and also to ask whether X being rational of dimension n implies N CpXq being in NChow n¡2 pkq.

where π : r X Ñ Y is a Mori fiber space of relative dimension m and : r X Ñ X is a blow up along a smooth center. Assuming that either Y is rational or m ¡ 1, we have that x is in P T n¡2 pkq if and only if IpA X{Y,ρ q is in P T n¡2 pkq.

Proof. We notice that D b p r Xq has two decompositions, one given by the Mori fiber space map r X Ñ Y as in Proposition 4.11 and the other given by the blow-up of X, hence containing a copy of D b pXq and a finite number of copies of the blown-up loci. A proof similar to the one of Corollary 4.12 applies then again: once we write the two decompositions of r

x,

we deduce that x IpA X{Y,ρ q modulo P T n¡2 pkq. l

Remark 4.14. The previous arguments are explained in the cases where all the involved varieties are smooth. However, this is just a comfortable but not necessary assumption, since we can replace D b pXq by a noncommutative resolution of singularities whenever it exists.

II. Birational geometry of geometrically rational surfaces

Let k be a field, k s a separable closure, and k an algebraic closure. A smooth projective

When the base field k is not algebraically closed, the existence of k-rational points on a variety X (being a necessary condition for rationality) is a major open question in arithmetic geometry. We consider, in the case where X is a del Pezzo surface, as a natural extension of Question 4.10, the following question formulated by H. Esnault.

Question 4.15. Let X be a smooth projective variety over a field k. Can the bounded derived category D b pXq of coherent sheaves detect the existence of a k-rational point on X?

In this section, we describe how to get a positive answer to Question 4.10 for del Pezzo surfaces over any field, and we moreover construct a noncommutative scheme GK X (the Griffiths-Kuznetsov component), which is a birational invariant for such surfaces. Moreover, we show how semiorthogonal decompositions naturally provide vector bundles whose second Chern classes are related to the existence of closed point of given degree, giving a positive answer to Question 4.15. All the material is taken from [START_REF] Auel | Semiorthogonal decompositions and birational invariants of geometrically rational surfaces[END_REF].

II.1. Generalities on geometrically rational surfaces. We say that a field extension l of k is a splitting field for X if X ¢ k l is birational to P 2 l via a sequence of monoidal transformations centered at closed l-points. An important fact is that geometrically rational surfaces are separably split, see [Coo88, Thm. 1], [VA13, Thm. 1.6].

A surface X is minimal over k, or k-minimal, if any birational morphism f : X Ñ Y , defined over k, is an isomorphism. Over a separably closed field, the only minimal rational surfaces are the projective plane and projective bundles over the projective line. Over a general field, this is no longer true. Minimal geometrically rational surfaces have been completely classified, and we have the following list (see [START_REF] Yu | Cubic forms: algebra, geometry, arithmetic[END_REF], and the recent survey [START_REF]Rational surfaces over nonclosed fields, Arithmetic geometry[END_REF]):

(1) X P 2 k is a projective plane, so PicpXq Z, generated by the hyperplane Op1q;

Colliot-Thélène, Karpenko and Merkurjev [START_REF] Colliot-Thélène | Rational surfaces and the canonical dimension of the group PGL6[END_REF]. The fact that GK X is a birational invariant can be proved by checking all the possible Sarkisov links of such a surface.

Degree 5. If d 5, we have that Xpkq $ ∅ and X is rational (see [START_REF] Swinnerton-Dyer | Rational points on del pezzo surfaces of degree 5, Algebraic geometry[END_REF]). In this case, we resolve the birational transformation X P 2 k by blowing-up a rational point. Explicit calculations on the blow-up allow to show that A 2 k is the endomorphism algebra of a simple rank 2 vector bundle, and A 3 l is a degree 5 extension arising as the endomorphism algebra of a rank 5 vector bundle.

We Lemma 8] prove that the point-index of X can be recovered from D b pXq as the greatest common divisor of the second Chern classes of objects. Here, the point-index 3 ind 0 pXq of a variety X over k is the greatest common divisor of the degrees of closed points of X.

Let X be a del Pezzo surface of degree d ¥ 5. The semiorthogonal decompositions from Theorem 4.16 provide, via the vector bundles generating each component, a way to calculate the point-index ind 0 pXq. Indeed, any such X has a semiorthogonal decomposition (42) D b pXq xD b pl 1 , A 1 q, D b pl 2 , A 2 q, D b pl 3 , A 3 qy, where each D b pl i , A i q can be generated by a vector bundle (notice that D b pl 1 , A 1 q xOy xω X y, but we could pick-up higher rank vector bundles, such as ω 2 X to have nontrivial second Chern classes).

Theorem 4.20. Let X be a del Pezzo surface of degree d ¥ 5. Then there are vector bundles V 1 , V 2 , V 3 generating the components of (42), such that ind 0 pXq gcdtc 2 pV i qu.

III. Rationality criteria for complex threefolds

Let k C (or an algebraically closed field of characteristic zero). In this Section we consider the approach outlined in Section I to threefolds. We denote hence by π : X Ñ Y a Mori fiber space with dim pXq 3 and Y rational. In particular, since dim pY q ¤ 2 and k is algebraically closed, we have that Y is rational and rdim cat pY q 0. III.1. Intermediate Jacobians vs representability. Suppose that X is verepresentable 4 . Using the theory of noncommutative motives, we have shown then that JpXq 3 this number is generally called index in the literature, but we don't want to confuse it with the index of X as a Fano variety, and we apologize for this unusual terminology. The 0 in the notation is meant to recall that we consider degree of 0-dimensional subschemes. 4 this is the case for almost all X as above: they all have a single principally polarized intermediate Jacobian JpXq, but there are cases where the polarization is not known to be an incidence polarization.

Chapter 4. Semiorthogonal decompositions in birational geometry 79 JpA X{Y q are isogenous Abelian varieties, see Theorem 3.12. If we moreover assume that rdim A X{Y ¤ 1, that is (43)

A X{Y xD b pC 1 q, . . . , D b pC r q, E 1 , . . . , E s y, for smooth and projective curves C i and exceptional objects E j , Theorem 3.13 gives us that JpXq JpC 1 q . . . JpC r q as a principally polarized Abelian variety, so that the Clemens-Griffiths component is trivial. This latter particular case of Theorem 3.12 was shown without using noncommutative motives (but Fourier-Mukai functors instead, which actually amounts to consider the same case in a different language) in [BB13, BB12]. Proposition 4.21. Let X Ñ Y be a verepresentable threefold Mori fiber space, with Y rational. If repA X{Y ¤ 1, then rcodim cat pXq ¥ 2 and the Griffiths component A X JpXq is trivial.

More precisely, if A X{Y is decomposed as in (43), then JpXq JpC 1 q . . . JpC r q as principally polarized Abelian varieties.

Corollary 4.22. Let X be a threefold with nontrivial Griffiths component A X JpXq. Then rcodim cat pXq ¤ 1, for any Mori fiber space X Ñ Y , we have rdim A X{Y ¥ 2 and X is not rational. Proposition 4.21 can be considered as an evidence to Question 4.10: if rcodim cat pXq ¥ 2, then one of the "classical" obstructions to rationality, that is, the Griffths component, vanishes. The converse implication is not true in general, as we will see at the end of this section. However, for many examples of rational Fano threefolds of Picard number one, for which JpXq is split by curves, the corresponding semiorthogonal decomposition of A X can be obtained by explicit constructions.

Trivial Jacobian. If X P 3 , or a quadric in P 4 , or a Fano of index 2 and degree 5, or a Fano index 1 and degree 22, then JpXq 0 and X is rational. In all these cases repA X 0, so that rcodim cat pXq 3, see [START_REF] Beilinson | Coherent sheaves on π n and problems in linear algebra[END_REF], [START_REF] Kapranov | On the derived categories of coherent sheaves on some homogeneous spaces[END_REF], [START_REF] Orlov | Exceptional set of vector bundles on the variety v5[END_REF] and [START_REF] Kuznetsov | An exceptional collection of vector bundles on v22 Fano threefolds[END_REF] respectively. Jacobian of a curve. If X is the intersection of two quadrics and C a genus 2 curve, if X has index one and degree 18 and C a genus 2 curve, if X has index 1 and degree 16 and C is a plane quartic, if X has index 1 and degree 12 and C a genus 7 curve, then JpXq JpCq and X is rational. In all these cases, repA X 1 and D b pCq A X is admissible and its orthogonal complement is generated by a finite number (possibly, none) of exceptional vector bundles; whence rcodim cat pXq 2, see [START_REF] Bondal | Semiorthogonal decomposition for algebraic varieties[END_REF], [START_REF]Hyperplane sections and derived categories[END_REF], [START_REF]Hyperplane sections and derived categories[END_REF], and [START_REF]Derived category of V12 Fano threefold[END_REF] respectively. By a classification argument we are not far from saying that there are very few examples which could contradict that a smooth Fano threefold X of Picard rank one being rational implies rcodim cat pXq ¥ 2.

On the other hand, Corollary 4.22 is certainly very nice, but we notice that there nonrational threefolds with trivial Griffiths invariant, as, for example the Artin and Mumford example [START_REF] Artin | Some elementary examples of unirational varieties which are not rational[END_REF]. In this case, X is singular but can be resolved by blowing-up its ten double points r X Ñ X. Proposition 4.23. Let X be the Artin-Mumford quartic double solid and r X Ñ X be the blow-up of its ten double points. In particular Jp r Xq 0 and r X is not rational. Then D b p r Xq is a noncommutative resolution of singularities of X and rcodim cat p r Xq 1.

Proof. The fact that r X is nonrational and has trivial Jacobian goes back to Artin and Mumford original paper [START_REF] Artin | Some elementary examples of unirational varieties which are not rational[END_REF]: indeed, X has these properties, so does r X. Hosono and Takagi [START_REF] Hosono | Derived categories of artin-mumford double solids[END_REF] consider the Enriques surface S associated to X (the so-called Reye congruence), and show that there is a semiorthogonal decomposition

Xq xD b pSq, E 1 , . . . , E 12 y, where E i are exceptional objects. This is implies first that rcodim cat p r Xq ¥ 1. To prove the converse inequality, notice that we have K 0 p r Xq Z 12 K 0 pSq. Moreover, the 2-torsion subgroup K 0 pSq 2 of K 0 pSq is nontrivial: we have K 0 pSq 2 Z{2Z. Indeed, if S is an Enriques surface, the Chern character is integral and gives an isomorphism between K 0 pSq and the singular cohomology of S (similarly, one can argue by using the Bloch conjecture, which is true for S, and the topological filtration of the Grothendieck group of S). In particular, K 0 pSq Z PicpSq Z and PicpSq Z 10 Z{2Z (see, e.g., [BHPVdV04, VIII Prop. 15.2]). We conclude that K 0 p r Xq 2 K 0 pSq 2 Z{2Z.

Now, since Jp r

Xq 0, if rdim cat p r Xq ¤ 1, then r X has a full exceptional collection. But this latter fact would imply that K 0 p r Xq is a free Z-module of finite rank.

l Proposition 4.23, could be seen as an evidence to the fact that noncommutative schemes and their representability should provide a finer invariant than the intermediate Jacobian. We finally notice that there could be other noncommutative resolution of singularities B of X, such as the Moishezon manifold X Ñ X giving a small resolution, which we already considered in 3.23. Anyway, similar arguments show that D b pX q is not representable in dimension one either. III.2. Conic bundles and del Pezzo fibrations of degree 4. We now turn our attention to the case where Y is a rational (minimal) surface, so that π : X Ñ Y is a conic bundle. Moreover, we denote by ∆ Y the discriminant divisor, that is the curve parameterizing singular fibers. We assume that ∆ has at most double points and that the smooth points of ∆ correspond to simply degenerate fibers, while double points correspond to double lines. We say that X is standard if, moreover, it is relatively minimal. Finally notice that ∆ comes with a double cover r ∆ Ñ ∆ which is ramified along the double points.

In the case of standard conic bundles, we have a full understanding of the relationship between intermediate Jacobians, semiorthogonal decompositions of A X{Y and of D b pXq, categorical representability and rationality. Notice moreover that the case of cubic threefolds is covered by these conic bundles: if Z is a cubic threefold, the projection Z P 2 along any line in Z can be resolved by blowing up Z along the line to get a standard conic bundle X Ñ P 2 . Moreover, it can be shown that A X{P 2 xA Z , Ey for an exceptional object E (see [START_REF] Bernardara | A categorical invariant for cubic threefolds[END_REF]).

Finally, let us notice that, for a conic bundle π : X Ñ Y , we have an equivalence D b pY, B 0 q A X{Y , where B 0 is the sheaf of the even parts of the Clifford algebra associated to IV. Some complex fourfolds Theorem 4.25. Let π : X Ñ P 1 be a del Pezzo fibration of degree 4 and Q Ñ S and Q I Ñ S I the two conic bundles described above. There are equivalences

Moreover, X is rational if and only if rcodim cat pXq ¥ 2, which is equivalent to rdim A X{P 1 ¤ 1. These facts are also equivalent to JpXq JpC 1 q. . .JpC r q for smooth projective curves C i . Finally, this hold if and only if there is a semiorthogonal decomposition A X{P 1 xD b pC 1 q, . . . , D b pC r q, E 1 , . . . , E s y, with E i exceptional objects.

The proof of the above Theorem uses the fact that Clifford algebras are Morita invariant under hyperbolic splitting, recalled in Theorem 2.22. It follows then that A X{P 1 D b pS, C 0 q A Q{S via Homological Projective Duality. The equivalence A Q{S A Q I {S I is obtained via an explicit geometric comparison between Alexeev's construction and the hyperbolic splitting, which actually gives S S I . The second part of the statement is based on Theorem 4.24 and on the isomorphism JpXq JpZq as principally polarized Abelian varieties given by Alexeev [START_REF] Alekseev | Rationality conditions for three-dimensional varieties with sheaf of del pezzo surfaces of degree 4[END_REF].

IV. Some complex fourfolds

Let k C (or an algebraically closed field of characteristic zero). In this Section we consider the approach outlined in Section I to fourfolds. In this case, since the dimension is even, there is no intermediate Jacobian carrying a principal polarization. However, the noncommutative and motivic consideration carried on in Section I are still valid. We will explain in detail two examples of fourfolds where one can conjecture the existence of a noncommutative criterion of rationality, based on categorical representability.

IV.1. Cubic Fourfolds. Cubic fourfolds are certainly the most famous character in birational geometry in the last 30 years. Let X P 5 be a smooth cubic fourfold. Such X is a Fano variety of Picard rank 1 and index 3. The most interesting part of the cohomology of X is the integral primitive cohomology lattice H 4 pr pX, Zq, that is, the sublattice of H 4 pX, Zq, orthogonal to the double hyperplane section h 2 . The quadratic form considered here is the intersection pairing. The deepest feature of the lattice H 4 pr pX, Zq, which can be described by Hodge theory and by the study of the scheme of lines F pXq on X, is that it "looks almost like" a K3 lattice H 2 pS, Zqp¡1q, up to a Tate twist; indeed, H 4 pr pX, Zq and H 2 pS, Zqp¡1q could share a corank 1 primitive sublattice.

Based on the seminal work of Beauville and Donagi [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF] on Pfaffian cubic fourfolds, Hassett the defined a special cubic fourfold to be a cubic fourfold X containing an algebraic 2-cycle T which is not homologous to h 2 . The generic cubic is not special, since the only algebraic 2-cycle is h 2 (see [Has00, Thm. 3.1.2]). A special cubic fourfold is identified by a positive definite rank 2 saturated sublattice K of H 4 pX, Zq containing h 2 . Indeed, given an abstract rank 2 positive definite lattice K with a distinguished element h 2 of selfintersection 3, a labeling of a special cubic fourfold is the choice of a primitive embedding K ã Ñ H 4 pX, Zq identifying the distinguished element with the double hyperplane section h 2 . Let now semiorthogonal decompositions come into play. The interplay between cubic fourfolds and K3 surfaces extend to the noncommutative context. Indeed, if X is a cubic fourfold, Kuznetsov shows that the Serre functor of A X is S A X r2s. As defined in Definition 1.20, we say that A X is a Calabi-Yau noncommutative scheme of dimension 2. Even better, we say that A X is a noncommutative K3 surface. Notice that Question 4.10 asks whether rdim A X ¥ 3 is an obstruction to rationality. Kuznetsov actually conjectures a stronger fact, which could be interpreted as a noncommutative analog of the Hodge theoretical expectation.

Conjecture 4.28 (Kuznetsov,[START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF]). Let X P 5 be a cubic fourfold. Then X is rational if and only if there is a K3 surface S such that A X D b pSq (if X is not smooth, replace A X by a crepant noncommutative resolution of singularities).

Recently, Addington and Thomas have shown that Kuznetsov's conjecture is equivalent to the Hodge-theoretical expectation, that is that A X D b pSq for some K3 surface S if and only if X has an associated K3 surface [START_REF] Addington | Hodge theory and derived categories of cubic fourfolds[END_REF], confirming that noncommutative methods match commutative ones in this case as well.

However, the proof of Addington and Thomas relies, to show the existence of S, on a deformation argument. In all the known examples of rational cubics, the description of S can be made very explicit, and could give hints and evidences to Kuznetsov's conjecture.

Pfaffian cubics (d 14). If X is a Pfaffian and S the associated K3 as in example 4.27, then A X D b pSq is a consequence of Homological Projective Duality between Grp2, V q and Pfp4, 2 V ¦ q, which was established by Kuznetsov [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF].

Nodal cubics (d 6). If X is nodal, then there is birational map X P 4 induced by the projection P 5 P 4 along the singular point of X. The resolution of this map is given by the blow up of the singular point on X on one side and the blow-up of a complete intersection of type p2, 3q in P 4 , i.e. a degree 6 K3 surface S, on the other side. Then there is noncommutative resolution of singularities B of A X such that B D b pSq, [START_REF]Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems[END_REF]. Determinantal cubics (d 2). If X is determinantal, Homological Projective Duality established in IV shows that there is a noncommutative resolution of singularities B of A X generated by 6 exceptional objects [START_REF] Bernardara | Homological projective duality for determinantal varieties[END_REF]. One should expect B to be the resolution of singularities of a degenerate K3 surface S of degree 2 into two cubic scrolls joining along an elliptic sextic (see [START_REF] Laza | Moduli space of cubic fourfolds via the period map[END_REF] for the geometric construction).

Cubics with a plane (d 8). This is probably the most intriguing case. As recalled in Example 4.26, if P X is a plane, the blow-up of X along P is a quadric surface bundle r X Ñ P 2 with discriminant curve C P 2 of degree 6. We suppose that C is smooth (this is the general case). Let S Ñ P 2 be the degree 2 K3 surface given by the discriminant double cover. Notice that, since X is in C 8 , the surface S is not a K3 surface associated to X 6 , and such X has in general no associated K3 surface.

If C 0 is the sheaf of even parts of the Clifford algebra of the quadric bundle, then C 0 lifts to an Azumaya algebra A on S with Brauer class α BrpSq. The description of the derived category of a quadric fibration [START_REF]Derived categories of quadric fibrations and intersections of quadrics[END_REF] gives then A X D b pS, αq. We call such α