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Introduction

A straight, fit-in-one-line definition of Algebraic Geometry would say that it deals with

the study of Algebraic Varieties. The latter could be defined as the zero loci of polynomial

equations over some field of coefficients k. However, since Grothendieck’s fundamental work,

Algebraic Geometry has grown far beyond this first definition.

In particular, the theory of schemes and algebraic stacks has allowed algebraic geometers

to have a much more general description of the geometric framework to their research. One

of the greatest effort of algebraic geometers is to create and/or adapt new languages and

theories to understand, explain, and define the geometrical objects under examination. The

theory of motives is one of the examples that most fit these considerations.

One of the main tasks of Algebraic Geometry is classifying varieties. This amounts to

ask questions whose nature is, roughly, “when are two such varieties equivalent?”. The most

natural equivalence relation is certainly isomorphism. However, the notion of isomorphism

is a very strict equivalence relation. A weaker notion is based on the Zariski topology that

one can consider on a variety. Roughly speaking, the closed subsets of this topology are

(countable unions of) subvarieties of positive codimension; so that the open sets are very

“large”. Two varieties are said to be birational to each other if they are isomorphic along

an open Zariski subset. The classification of birational classes of algebraic varieties is one

of the main tasks of Algebraic Geometry since the beginning of last century. A great effort

has been produced ever since to construct birational invariants, that is, algebraic structures

(cohomologies, Hodge theory, Abelian varieties, Chow groups, just to cite a few) associated

to a variety and which are isomorphic for two birationally equivalent varieties. One of the

questions one could ask is to determine criteria for a given variety X to be rational, that

is, birational to the projective space. In this cases, birational invariants could be used

to describe an obstruction to rationality, that is, to exclude the possibility for X to be

rational. In this report, we would like to focus on invariants which arise from the study of

complexes of coherent sheaves on a given variety, using tools such as homological algebra

and category theory. The main constructions considered are noncommutative schemes, their

semiorthogonal decompositions, and noncommutative motives.

The theory of exceptional objects and semiorthogonal decompositions started with the

Rudakov seminar in the late 80’s in Moscow [hel90]. One of the main ideas was to use

homological algebra, and hence the bounded derived category DbpXq of coherent sheaves

on a variety X, to study the properties of vector and line bundles and their relation with

the geometry of X. These considerations rapidly turned into a much more general theory.

Notice that, if X is defined over a field k, the category DbpXq has a triangulated k-linear
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structure. In particular, there is an autoequivalence r1s which correspond to the right shift

by one of all the cohomologies of a complex. Considering two line bundles L and M as

complexes concentrated in degree 0, we have HomDbpXqpL,M risq � ExtipL,Mq. The latter

is known to be isomorphic to the cohomology H ipX,LbM_q.

For example, consider X a smooth and projective variety. Given any line bundle L on

X, we can consider the functor Φ : Dbpkq Ñ DbpXq which associates to a bounded complex

C
 of finite-dimensional k-vector spaces the bounded complex ΦpC
q :� C
 b L of vector

bundles on L. If we assume H0pX,OXq � k and H ipX,OXq � 0 for i � 0, then we have

that

(1) HomDbpXqpL,Lq � k, and HomDbpXqpL,Lrisq � 0 for any i � 0.

The latter properties ensure that the functor Φ has a right adjoint, namely the functor

Ψ : DbpXq Ñ Dbpkq defined by ΨpA
q � HomDbpXqpL,A

q for any bounded complex A


of coherent sheaves. Similarly, there is a left adjoint to Φ. We denote by xLy the essential

image of Φ in DbpXq and note that this is the smallest full triangulated thick subcategory

of DbpXq containing L.

All the above considerations are purely of homological nature, and can be extended to

any variety X. An exceptional object E on X is a bounded complex of coherent sheaves

(that is, an object in DbpXq) satisfying the same homological properties (1) which were

satisfied by the line bundle L in the previous example. Recalling that DbpSpecpkqq � Dbpkq,

any exceptional object gives a fully faithful functor DbpSpecpkqq Ñ DbpXq admitting right

and left adjoints. In general, given a full triangulated thick subcategory A of DbpXq, we say

that A is admissible if the embedding functor A Ñ DbpXq admits right and left adjoints.

An ordered pair of admissible subcategories pA,Bq of DbpXq is said to be semiorthog-

onal if HomDbpXqpB,Aq � 0 for any object B of B and A of A. Similarly we define a

semiorthogonal collection of admissible subcategories pA1, . . . ,Arq. For example, consider

X � Pn and the exceptional objects given by two line bundles Opiq and Opjq. The ad-

missible subcategories xOpiqy and xOpjqy consist of complexes of the form C
 b Opiq and

C
bOpjq, respectively, where C
 is a bounded complex of finite dimensional k-vector spaces.

An easy calculation in cohomology shows that pxOpiqy, xOpjqyq are semiorthogonal if and only

if 0   j � i   n� 1. It follows for example that pO, . . . ,Opnqq is a semiorthogonal collection

of subcategories, all equivalent to DbpSpecpkqq, where, by abuse of notations, we dropped

the brackets.

Finally, a semiorthogonal collection pA1, . . . ,Arq in DbpXq is a semiorthogonal decom-

position, denoted by

DbpXq � xA1, . . . ,Ary,

if, roughly speaking, DbpXq is the smallest triangulated full thick subcategory of DbpXq

containing all the Ai’s. More precisely, we require for any object T of DbpXq the existence

of a filtration of T by a complex 0 � T0
α1Ñ . . .

αrÑ Tr � T such that the cone of αi is in Ai. A

first example of a semiorthogonal decomposition is provided by the collection pO, . . . ,Opnqq
on the projective space Pn. To show that this semiorthogonal collection is a semiorthogonal

decomposition of DbpPnq one needs some more delicate calculations, based on a spectral
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sequence. This amounts to show that if an object A satisfies (right or left) orthogonality to

the collection pO, . . . ,Opnqq, then A � 0. Indeed, in general, given an exceptional collection

pE1, . . . , Erq on a smooth projective variety X, one has a semiorthogonal decomposition

DbpXq � xA, E1, . . . , Ery,

where A is the full triangulated subcategory of all objects satisfying right orthogonality with

respect to the Ei’s. The previous semiorthogonal decomposition should be thought of as a

“noncommutative splitting” of simple categories off X.

The interest on semiorthogonal decompositions grew thanks, among others, to the work

of Bondal and Orlov, which is resumed in their 2002 ICM address [BO02]. One of the

striking features is that semiorthogonal decompositions tend to have a motivic behavior,

under two points of view. First of all, if X and Y are smooth and projective and Φ :

DbpXq Ñ DbpY q is full and faithful, we have that ΦpDbpXqq is admissible in DbpY q and

that the functor Φ is represented by an object P in DbpX � Y q. Such functor is defined

indeed as Φp�q � Rp�pq
�p�q b P q, where p and q are the projections from X � Y to Y and

X respectively; it deserves the name of Fourier–Mukai functor, since it was first introduced

by Mukai [Muk81]. One should think of Fourier–Mukai functors, and their composition

thereof, as algebro-geometric correspondences between triangulated categories. Secondly,

projective bundles and blow-ups have semiorthogonal decompositions which looks like their

motivic analog: the derived category of a projective bundle of rank r is decomposed by r�1

copies of the derived category of the base, and the blow up of a variety along a codimension c

subvariety is decomposed by one copy of the base and c�1 copies of the blown-up locus. This

behavior, together with a growing amount of examples of decompositions of Fano 3-folds,

and the remarkable results of Kuznetsov, lead to think that semiorthogonal decompositions

should detect birational properties of a given variety. More than ten years after Bondal and

Orlov’s ICM address, Kuznetsov’s 2014 ICM address witnesses the remarkable growth and

richness of this subject [Kuz14].

Inspired by this guess, many surprising and interesting phenomena were discovered in the

recent years: there exist functors between derived categories of smooth projective varieties

which are not of Fourier–Mukai type [RVdB14], the Jordan–Hölder property does not hold

in general for semiorthogonal decompositions [BGvBS14], and there exists nontrivial cate-

gories with trivial invariants [BGvBKS15], so that we do not know whether semiorthogonal

decomposition satisfy to any Noetherianity property. On the other hand, a growing amount

of examples and constructions were carried over to study semiorthogonal decompositions.

Above all, the theory of Homological Projective Duality developed by Kuznetsov [Kuz07a]

builds a striking and strong relation between semiorthogonal decompositions of (linear sec-

tions of) classically projective dual varieties, showing a very deep interconnection between

the (projective) geometry of a varietyX and the semiorthogonal decompositions of its derived

category.

Inspired, among others, by Kontsevich’s ideas [Kon05], one should think of DbpXq as

a noncommutative scheme associated to X. This justifies a theory of noncommutative mo-

tives, where semiorthogonal decompositions would play the role of motivic decompositions.
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However, thinking of DbpXq as a triangulated category rises many problems: above all, the

fact that a general triangulated functor is not of Fourier–Mukai type. Instead of a k-linear

triangulated category, one should consider DbpXq as a differential graded (dg) category over

k, that is, a category whose morphisms form graded differential complexes of k-vector spaces.

In this optic, the k-linear structure of DbpXq is obtained by taking zeroth global sections of

morphism complexes.

As shown by Lunts and Orlov [LO10], in the case where X is quasi separated and

quasi compact there is a unique dg structure on the subcategory perfpXq � DbpXq of

perfect complexes, that is, the category of bounded complexes of vector bundles (which

coincides with DbpXq if X is smooth and projective). This structure is obtained by giving

a compact generator E of perfpXq, that is a perfect complex such that any complex right

(or left) orthogonal to E is trivial, and taking the endomorphism complex R :� EndpEq,

endowed with a dg algebra structure by the choice of an enhancement (for example, by

taking injective resolutions of complexes), so that perfpXq is equivalent to the dg category

of perfect complexes perfpRq. Let us give a first example: suppose that X is smooth and

projective and has a full exceptional sequence pE1, . . . , Erq, that is this exceptional sequence

is a semiorthogonal decomposition of DbpXq. Then E :� `ri�1Ei is a compact generator.

It is then natural to define, as done by Orlov in [Orl14], a noncommutative scheme

A to be a dg category of the form perfpRq for some cohomologically bounded dg algebra

R over k. If X is a scheme (quasi compact and quasi separated) we then have a unique

noncommutative scheme associated to it, that is the category perfpXq. Moreover, one can

define regularity, smoothness and properness for a noncommutative scheme A, and these

properties match those of X in the case A � perfpXq. One can also define noncommutative

resolution of singularities of any noncommutative scheme. If X is separated of finite type

and k has characteristic zero, Kuznetsov and Lunts show that perfpXq always have such

a resolution [KL12]. From this point of view, schemes and (birational) morphisms can be

replaced by noncommutative schemes and dg-functors.

Moreover, a triangulated k-linear functor Φ : perfpXq Ñ perfpY q is of Fourier–Mukai

type if and only if there exists a lifting of Φ into a dg functor, as shown by Toën [Toë07].

This means that working with noncommutative schemes and dg functors between them is

the natural context to work with derived categories and Fourier–Mukai functors. Moreover,

this fact has deep consequences on the construction of noncommutative motives, as expected

by Kontsevich. Indeed, thanks to the work of Tabuada (see the recent book [Tab15]) one

can define the category NChowpkq of noncommutative Chow motives over k. The objects

of such category are the Morita-equivalence classes of smooth and proper dg categories and

morphism from A to B are, roughly speaking, projections as correspondences in K0pAbBopq.
Considering perfpXq gives a functor from smooth and projective k-varieties to noncommu-

tative motives. The noncommutative motivic correspondences between two such varieties X

and Y are then induced by Fourier–Mukai transforms and semiorthogonal decompositions.

Better, one can think to the noncommutative motive to be the motive of the noncommutative

scheme perfpXq in a very deep way: a semiorthogonal decomposition (i.e., a projector in the

Grothendieck group) induces a splitting on the motivic level, and such a motive is universal
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with respect to any additive invariant. Notice that many of these additive invariants, defined

in the world of dg categories, are a noncommutative version of well-known cohomological

theories, such as Betti, Hodge or de Rham cohomology.

Finally, let us mention that noncommutative Chow motives are related to Grothendieck’s

Chow motives, at least when one considers rational coefficients, thanks to the Grothendieck-

Riemann-Roch theorem. The main difference is that, under a noncommutative point of view,

the Lefschetz motive is isomorphic to the unit motive. That is, noncommutative schemes

“lose” information on the codimension. On the other hand, there are purely noncommutative

construction that are invisible in the commutative world.

We can resume the above considerations on noncommutative schemes in three main

points. We let X be a scheme and AX :� perfpXq be the associated noncommutative

scheme.


 To any k-scheme X we associate AX in the category NSchpkq of noncommutative

k-schemes. Morphisms from AX to AY are exactly Fourier–Mukai functors, that is,

noncommutative geometric correspondences between X and Y . There is a theory

of resolution of singularities (which always exist if k has characteristic zero and X

is separated of finite type), and we can work in a relative context, replacing the

base field k by any noncommutative scheme B.


 Under this point of view, K0pAXq plays the role of the (ungraded) Chow ring. There

are noncommutative additive invariants which play the role of known cohomological

theories, up to lose the information on the grading. For example, Z{2Z-graded

deRham cohomology and vertically-graded Hodge cohomology of a smooth and

projective X are isomorphic to period-cyclic homology and Hochschild homology of

AX respectively.


 Additive invariants behave well with respect to semiorthogonal decompositions.

These decomposition can provide geometric noncommutative schemes not of the

form AX . Moreover, there is a theory of noncommutative Chow, smash-nilpotent,

homological and numerical motives which play the noncommutative role of commu-

tative Chow, smash-nilpotent, homological and numerical motives. Noncommuta-

tive motives are split by semiorthogonal decompositions.

The aim of this habilitation work is to detail results where the interplay between noncom-

mutative and commutative motives, semiorthogonal decompositions and birational proper-

ties reveal some interesting and motivating research direction. This is done first on a purely

conceptual level, by introducing some definition and giving some general statement, but,

above all, working on explicit examples and questioning coming from Algebraic Geometry,

such that the construction of semiorthogonal decompositions, the study of algebraic cycles

and the quest for birational invariants.

Homological Projective Duality. As mentioned above, one of the most powerful tool

to construct geometrically relevant semiorthogonal decompositions is Kuznetsov’s Homo-

logical Projective Duality (HPD for short), developed in [Kuz07a]. Roughly speaking, if

f : X Ñ PpW q is a projective variety with a polarization Op1q :� f�OPpW qp1q, we have to
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consider semiorthogonal decompositions of X which are well-behaved with respect to taking

hyperplane sections. This leads to the definition of a Lefschetz decomposition:

DbpXq � xA0,A1p1q, . . . ,Ai�1pi� 1qy,

where Ai�1 � . . . � A0 is a sequence of admissible subcategories and Ajpjq :� AjbOpjq. If

XH is a hyperplane section of X, the Lefschetz decomposition restricts to a decomposition:

DbpXHq � xCH ,A1p1q|XH
, . . . ,Ai�1pi� 1q|XH

y,

where A|XH
denotes the pull-back of a subcategory A of DbpXq to DbpXHq via the embedding

XH � X. We then obtain a category CH for any hyperplane section of X.

These remarks work in a more general framework, which can be easily obtained by

performing Kuznetsov’s constructions in the language of noncommutative schemes. Indeed,

if A is a noncommutative X-scheme (that is, a noncommutative k-scheme enriched over

the dg category DbpXq), the invertible object Op1q in DbpXq induces a dg-autoequivalence

bOp1q : AÑ A. Then we still can define a Lefschetz decomposition

A � xA0,A1p1q, . . . ,Ai�1pi� 1qy,

with respect to Op1q and the induced decomposition of AH :� ι�A, where ι : XH Ñ X is the

immersion of the hyperplane section. Set X1 � X � PpW_q to be the universal hyperplane

section, and AX1 � AbDbpPpW_qq the base change of A to X1. There is a semiorthogonal

decomposition:

AX1 � xB,A1p1qb DbpPpW_qq, . . . ,Ai�1pi� 1qb DbpPpW_qqy.

The orthogonal complement B is a noncommutative PpW_q-scheme, and has a dual Lefschetz

decomposition

B � xBj�1pi� jq, . . . ,B1p�1q,B0y,

with respect to OPpW_qp1q. This noncommutative scheme should be thought of as a homo-

logical Lefschetz theory of A (see Definition 2.9), in a sense that we are going to describe.

Denote by N :� dim pW q and set 1 ¤ r ¤ N � 1. Consider the universal codimension r

linear section Xr � X�Grpr,W q, parameterizing pairs pXL, Lq, for L �W_ of dimension r

and XL � X X PpLKq. Denote by AXr the noncommutative scheme obtained base changing

A to Xr. Using the Lefschetz decomposition of A, Kuznetsov’s arguments can be used to

prove that the family tBGrpr,W qu
N�1
r�1 of noncommutative schemes obtained by base change

of B to Grpr,W q comes with dg functors Φr : AXr Ñ BGrpr,W q inducing semiorthogonal

decompositions:

AXr � xCr,Arp1qb DbpGrpr,W qq, . . . ,Ai�rpi� rqb DbpGrpr,W qqy,

BGrpr,W q � xBj�1pN � r � jqb DbpGrpr,W qq, . . . ,BN�rp�1qb DbpGrpr,W qq, Cry,

that is, the functor Φr realizes the equivalence between the two noncommutative schemes

Cr which arise as orthogonal complements to the restrictions of the Lefschetz decompositions.
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Base changing from the universal family to a point in the Grassmannian, that is to a linear

subspace L �W of codimension r, we obtain:

AL � xCL,Arp1q, . . . ,Ai�rpi� rqy,

BL � xBj�1pN � r � jq, . . . ,BN�rp�1q, CLy,

where AL is the restriction of A to XL :� X XPpLKq and BL is the restriction of B to PpLq.
It follows that we have a family of noncommutative schemes and functors tBGrpr,W q,Φru

N�1
r�1

which allow us to describe semiorthogonal decompositions of AL as a noncommutative XL-

scheme. This is the reason why we call such a family a homological Lefschetz theory for the

noncommutative X-scheme A with respect to the given Lefschetz decomposition.

Homological Projective Duality is the geometric realization of a homological Lefschetz

theory: let g : Y Ñ PpW_q be a projective scheme with a line bundle Op1q � g�OPpW_qp1q.

We set Yr � Y � Grpr,W q to be the universal codimension r linear section, and, for a

noncommutative Y -scheme B, we denote by BYr its base change to Yr.

Definition 1. A noncommutative Y -scheme B is the Homological Projective Dual to A with

respect to the given Lefschetz decomposition, if there are functors Φr : AXr Ñ BYr realizing

tBYr ,Φru as the homological Lefschetz theory of A.

One of the most interesting cases from the point of view of Algebraic Geometry, is to

consider a projective variety f : X Ñ PpW q and to take A to be its (crepant) noncommutative

resolution of singularities. Kuznetsov shows in this case that the HP dual B is the (crepant)

noncommutative resolution of singularities of a variety g : Y Ñ PpW_q such that the critical

locus of the map g coincide with the classical projective dual X_ of X. Hence, given an

X such that the projective dual is known, and the resolution A (if X is smooth, just take

DbpXq), the natural problem is to construct a Y and a B realizing the HPdual. Some

geometrically interesting cases are described in Kuznetsov’s 2014 ICM address [Kuz14].

Let us sketch two examples of HP duality, that were constructed in [ABB14] and in

[BBF16] respectively.

First of all, consider a smooth projective variety S, and a rank n vector bundle E on

S. We set X :� PpEq Ñ S. Now consider a family of line bundle valued quadratic forms

pE, qi, Liq (see Definition 2.18), and the projective bundle Y :� PpS2pEq
_q Ñ S. The

family of quadrics Qi � PpEq, defined by the forms qi, gives a universal family of quadrics

Q Ñ Y , to which we can associate a sheaf of Clifford algebras C0. Hence, we have the

noncommutative Y -scheme DbpY, C0q. Recall that X � PpEq, so that Q � X � Y . If we

consider the Veronese embedding ver : X Ñ PpS2pEqq, we have that Q is the universal

hyperplane section. Recall we denote by n the rank of E and set m :� tpn � 1q{2u. We

have a semiorthogonal decomposition induced by the projective bundle structure p : X Ñ S,

giving a Lefschetz decomposition with respect to Op2q :� ver�OPpS2pEqqp1q:
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DbpXq � xp�DbpSq, p�DbpSqp1qloooooooooooomoooooooooooon
A0

, p�DbpSqp2q, p�DbpSqp3qloooooooooooooomoooooooooooooon
A1p2q

, . . . , p�DbpSqpn� 2qloooooooomoooooooon
Amp2mq

y,

where Ai consist of two copies of DbpSq for i � 1, . . . ,m � 1 and Am of either one or two

copies of DbpSq according to the parity of n.

Theorem 1. The noncommutative Y -scheme DbpY, C0q is the HPdual of the noncommutative

X-scheme DbpXq with respect to the Lefschetz decomposition above.

Theorem 1 was proved in [ABB14] and is a generalization of a result of Kuznetsov’s

[Kuz08] where it was shown for S a point and k algebraically closed of characteristic zero.

Alongside with the careful analysis of the Clifford algebras, it is proved that C0 is Morita-

invariant under hyperbolic splitting of the quadratic form defining it.

Theorem 1 gives interesting semiorthogonal decompositions for a large class of varieties.

Indeed, it says then that we obtain from DbpY, C0q a geometric description of the homological

Lefschetz theory of X, relatively over S. In particular, fixing a subbundle L � E, we

have that XL Ñ PpLq is the intersection of the quadrics parametrized by L. It follows

that we can describe a semiorthogonal decomposition of any variety with a fibration into

intersection of quadrics. For example, fibrations in del Pezzo surfaces of degree 4 fit this

setting. An application to the birational geometry of threefolds and fourfolds fibered over

P1 into intersections of two quadrics will be detailed later.

The second example involves determinantal varieties. Let U and V be C-vector spaces

of dimension m and n respectively, and assume that m ¤ n. We set W_ :� U b V . Given

an integer r with 1 ¤ r ¤ m, we define f : Zm,nr � PpW q to be the locus in PpW q of m� n

matrices having rank at most r. Then there exist a noncommutative Zm,nr -scheme Rr, with

a Lefschetz decomposition

Rr � xA0, . . . ,Amrpmrqy,

where A0 � Amr are all equivalent to DbpGrpU, rqq. Moreover, the noncommutative

scheme Rr is a categorical resolution of singularities of Zm,nr , which is crepant if m � n.

Theorem 2. The noncommutative Zm,nm�r-scheme Rm�r is the HP dual of Rr with respect

to the above Lefschetz decomposition.

Theorem 2 was proved in [BBF16]. It allows to describe semiorthogonal decompositions

of (resolution of singularities) of any determinantal variety obtained as a linear section of

Zm,nr . On the other hand, notice that a determinantal variety is always locally a base change

of a linear section of Zm,nr .

Noncommutative motives in Algebraic Geometry. One of the main interest in

studying noncommutative motives in Algebraic Geometry is to try to extract informations

about commutative motives and algebraic cycles. In general, the Grothendieck–Riemann–

Roch theorem allows one to compare commutative and noncommutative motives, as re-

marked by Tabuada, see [Tab13] for the case of Chow motives, or [Tab15] for all the cases.
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Consider indeed the category ChowpkqR of Chow motives over a field k with coefficients in

some ring R (we refer to [And04] for an introduction to motives). The Lefschetz motive L is

an invertible object in the additive monoidal category ChowpkqR. One can hence consider the

so-called orbit category ChowpkqR{�bL, which has the same objects as ChowpkqR and mor-

phisms from M to N are given by the sum of morphism from M to NbLi over all integers i.

Then there is a fully faithful, monoidal, additive functor R : ChowpkqQ{�bL Ñ NChowpkqQ
making the following diagram commute:

(2) Varpkq
Dbpq

//

M
��

dgcatpkq

U

��

ChowpkqQ

��
ChowpkqQ{�bL

R // NChowpkqQ,

where Varpkq is the category of smooth projective varieties. Roughly speaking, the

above diagram says that noncommutative Chow motives contain Chow motives when we

consider rational coefficients, and we forget the Tate twist. Similar statements are true for

smash-nilpotent, homological and numerical motives. In particular, given a variety X, any

decomposition of its Chow motive MpXqQ will induce a decomposition of its noncommuta-

tive motive NCpXqQ :� UpDbpXqqQ. On the other hand, semiorthogonal decompositions

of DbpXq will give decompositions of NCpXqR for any ring R. It is then interesting to

understand whether we can refine the coefficient ring in the above diagram and which are

the differences between NCpXqR and MpXqR for those rings R for which the above diagram

does not exist. In [BT15] these two questions are analyzed: working in dimension d, the

above diagram hold replacing Q with Zr1{2d!s. Moreover, some examples of purely noncom-

mutative decompositions of NCpXq are given for some particular variety X, as, for example,

Brauer–Severi varieties.

One of the deepest realizations of the relation between noncommutative motives and

algebraic cycles which will be treated in this report is the possibility to reconstruct the

algebraic intermediate Jacobians of a smooth complex1 variety X from noncommutative

schemes which are components of DbpXq. Indeed, even if algebraic equivalence is not de-

fined for noncommutative motives (at least, to the best of the author’s knowledge), Marcolli

and Tabuada [MT14a] define the Jacobian JpNq of a noncommutative motive N , and hence

of a noncommutative scheme, as follows: the category NNumpCqQ of noncommutative nu-

merical motives is semisimple, and there is a fully faithful additive and monoidal functor

NumpCqQ{�bL Ñ NNumpCq, where NumpCqQ is the category of numerical motives with

rational coefficients, which is also semisimple. Moreover, since any Abelian variety is isoge-

nous to an Abelian subvariety of the Jacobian of a smooth projective curve, there is a fully

faithful functor AbpCqQ Ñ NumpCqQ, where AbpCqQ is the category of Abelian varieties up

1More generally, defined over an algebraically closed field k � C.
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to isogeny. Composing all these functors, JpNq is defined as the part of the noncommuta-

tive numerical motive of N lying in the image of AbpCqQ, which is well defined thanks to

semi-simplicity of NNumpCqQ. Hence JpNq is an Abelian variety well defined up to isogeny.

The most important fact to remark, which was proved by Marcolli and Tabuada [MT14a]

is that, if X is a smooth projective variety satisfying Grothendieck standard conjectures of

Lefschetz type2 and JpXq :� JpNCpXqq, there is an isogeny JpXq �
±dim pXq�1
i�0 J iapXq,

where J iapXq is the i-th algebraic intermediate Jacobian of X, which is also well defined

up to isogeny. Using the fact that semiorthogonal decompositions induce splittings of non-

commutative motives, it is proved in [BT16b] that if DbpXq � xA,By is a semiorthog-

onal decomposition3, such that JpUpBqq � 0, then JpUpAqq contains all the information

about the algebraic Jacobians of X. In particular, if Y is a smooth projective variety and

DbpY q � xA, Cy is a semiorthogonal decomposition, then it is possible to construct an isogeny

between
±dim pXq�1
i�0 J iapXq and an Abelian subvariety of

±dim pY q�1
i�0 J iapY q, which is (isoge-

nous to) the whole product in the case where JpUpCqq � 0. Notice that it is not difficult to

find examples of noncommutative schemes with trivial Jacobian, for example being generated

by an exceptional collection is a sufficient condition for such vanishing.

In some particular cases, among which most Fano threefolds, conic bundles over rational

surfaces, del Pezzo fibrations over P1, a variety X has a unique nontrivial intermediate

Jacobian. By Poincaré duality, such an X has an odd dimension 2m�1, and JpXq :� Jma pXq

is such that JpXq �
±2m
i�1 J

i
apXq � JpXq. A geometrically relevant piece of datum with

which JpXq can be endowed in this case is a principal polarization. That is, JpXq is not

only well defined up to isogeny, but carries a natural principal polarization. We say that X

is verepresentable if such a polarization has moreover a universal property with respect to

m-cycles on X, which is called the incidence property. Examples of such varieties are smooth

and projective curves, most Fano threefolds, conic bundles over rational surfaces, just to cite

a few.

Theorem 3. Let X and Y be verepresentable varieties and assume that DbpXq � xA,By and

DbpY q � xA, Cy. If JpUpBqq � 0, there exists an injective morphism of principally polarized

Abelian varieties τ : JpXq Ñ JpY q. If moreover JpCq � 0, then τ is an isomorphism.

Theorem 3 was proved in [BT16b], and extends previous results for curves and three-

folds [Ber07,BMMS12,BB13,BB12], which were obtained without using noncommutative

motives. Its application to birational geometry, via the fact that the intermediate Jacobian

of a threefold provides a birational invariant, will be extensively treated in Chapter 4. More-

over, if a Torelli-type Theorem holds for X, then Theorem 3 allows to prove a categorical

Torelli-type Theorem, as follows.

Theorem 4. Suppose that either:


 X and Y are cubic threefolds, or


 X and Y are quartic double solids, or

2A weaker condition is sufficient to obtain such isogeny, we will have detailed treatment in Ch. 3, §II.
3Working with noncommutative motives, we have to consider the components as dg categories, with the dg
structure induced by projection
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 X and Y are intersections of two even dimensional quadrics, or


 X and Y are intersections of three odd dimensional quadrics.

Set

AX :� xOX , . . . ,OXpi� 1qyK, AY :� xOY , . . . ,OY pi� 1qyK.

where i � ipXq � ipY q is the index of X and Y . Then X is isomorphic to Y if and only if

AX is equivalent to AY .

Theorem 4 is proved in [BT16b]. Another application of Theorem 3 provides a new

proof of a Bloch–Beilinson type conjecture on the Chow groups of complete intersections of

very small degree. Let X � Pn a smooth complete intersection of multidegree pd1, . . . , drq,

with the convention d1 ¤ . . . ¤ dr. One has the numerical invariant

κ :� r
n�

°r
j�2 dj

d1
s ,

where r�s denotes the integral part of a rational number. A careful analysis of the different

Weil cohomology theories of X led to conjecture (explicitly stated by Paranjape in [Par94,

Conjecture 1.8]) that CHipXqQ � Q for every i   κ.

Suppose that di � 2 for all i � 1, . . . , r. Then a proof of the above conjecture was given

by Otwinowska [Otw99]. Based on the semiorthogonal decompositions of intersection of

quadrics, it is possible to have an alternative proof of some occurrences of the conjecture, as

done in [BT16a].

Theorem 5. Suppose that X is

(i) either a complete intersection of two quadrics, or

(ii) a complete intersection of three odd-dimensional quadrics.

Then CHipXqQ � Q for all i   rdim pXq{2s.

We notice that κ � rdim pXq{2s in the previous cases. The proof is based on Theorem 4

and on a dimensional counting for K0pXq.

Another application of the theory of noncommutative motives to Algebraic Geometry al-

lows one to prove Voevodsky’s nilpotence conjecture in some new cases, as done in [BMT14].

Indeed, smash-nilpotent and numerical noncommutative motives can be defined. From this,

one can state a noncommutative version of nilpotence conjecture. Moreover, both for numer-

ical and smash-nilpotent motives, diagrams like (2) hold. It follows that the noncommutative

conjecture for DbpXq is equivalent to the classical one for any smooth projective variety X,

see [BMT14]. In particular, using semiorthogonal decompositions, the noncommutative

conjecture for X reduces to the noncommutative conjecture for its components. This gives

new examples where nilpotence conjecture holds [BMT14].

Theorem 6. Suppose that X is either:


 A quadric fibration QÑ S of even dimension over a surface, or a curve; or


 A quadric fibration QÑ S of odd dimension over a rational surface of a curve; or


 A complete intersection of at most three quadrics.

Then nilpotence conjecture holds for X.
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In other cases of sections of Grassmanians, or determinantal, or Pfaffian varieties, nilpo-

tence conjecture can be proved with similar methods. For other cases of quadric fibrations

over higher dimensional varieties or complete intersections of more than 3 quadrics, the non-

commutative version allows to reduce nilpotence conjecture of X to nilpotence conjecture of

smaller dimensional varieties.

Applications to birational geometry. One of the main aims of this report is to

apply the theory of semiorthogonal decompositions, noncommutative schemes and motives

to the study of birational property of projective varieties, following the road map started by

Bondal and Orlov (see [BO02]) and traced more and more clearly by Kuznetsov and many

others (see [Kuz15]). We focus on motivating, by abstract arguments and low-dimensional

examples, the possibility to use semiorthogonal decompositions to detect obstructions to

rationality of a given variety X. We introduce then the following definition (see [BB12]).

Definition 2. Let X be a k-scheme, and A a (crepant) noncommutative resolution of singu-

larities of X. We say that X is categorically representable in dimension n (or in codimension

dim pXq � nq) if there is a semiorthogonal decomposition:

A � xA1, . . . ,Ary,

and smooth and projective k-schemes tYiu
r
i�1, and fully faithful functors Ai Ñ DbpYiq such

that Ai is admissible in DbpYiq and dim pYiq ¤ n for all i � 1, . . . , r.

We will use the following notations:

rdimcatpXq :� mintn | X is categorical representable in dimension nu

rcodimcatpXq :� dim pXq � rdimcatpXq,

and notice that rdimcatpXq ¤ n if X is smooth of dimension n, and that rdimcatpPnq � 0.

The motivic behavior of semiorthogonal decompositions leads to formulate the following

question:

Question 1. Suppose that X is a k-rational variety. Do we have rcodimcatpXq ¥ 2?

A positive answer to Question 1 would lead to a necessary criterion of rationality. This

criterion is certainly not sufficient, since there are examples of non-rational threefolds having

rdimcatpXq � 1, as, e.g., X Ñ C a projective bundle over a curve of positive genus.

On the other hand, the interest (and the difficulty) of Question 1 rely also on it being

independent on the base field and on the dimension of X. Secondly, if k has characteristic

zero, so that weak factorization holds [AKMW02], there is a well-defined motivic measure

µ : K0pVarpkqq Ñ PT pkq, where PT pkq is the Grothendieck ring of noncommutative k-

schemes. Moreover, categorical representability induces a ring filtration PT0pkq � PT1pkq �

. . . � PT pkq, and we can show that if X is rational of dimension d then µprXsq lies in

PTd�2pXq. This gives a motivic positive (but much weaker) answer to Question 1.

Many examples for low-dimensional varieties of Fano type or carrying a Mori fiber space

structure suggest that Question 1 should have a positive answer, or at least be a good way
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to attack the understanding of the relation between semiorthogonal decompositions and

rationality.

For example, let X be a minimal del Pezzo surface over any field k. Then a study of Ques-

tion 1 provides not only a positive answer, but also a birational invariant, a noncommutative

k-scheme GKX which we call the Griffiths–Kuznetsov component.

Theorem 7. Let X be a minimal del Pezzo surface of index i, and consider the noncom-

mutative scheme AX :� xO, . . . ,OpiqyK. The following are equivalent:

i) rdimcatpXq � 0,

ii) AX is decomposed by derived categories of étale k-algebras,

iii) X is k-rational.

Moreover, we can define, eventually via a semiorthogonal decomposition of AX , a noncom-

mutative scheme GKX such that, if X 1 99K X is a birational map, then GKX 1 � GKX .

Theorem 7 was proved in [AB15]. Its proof is based on the explicit description of vector

bundles generating DbpXq and to their descent. In particular, it highlights a dichotomy

between surfaces of degree smaller than 5 (where AX is indecomposable and a birational

invariant) and surfaces of degree bigger or equal to 5 (where AX is always decomposable).

In particular, if degpXq ¥ 5, there exist two vector bundles V1 and V2 generating AX

whose endomorphism algebras detect the birational class of X, and whose second Chern

classes detect the existence of low degree points on X. As an example, if X is a Brauer–

Severi surface X � SBpAq associated to an Azumaya algebra A, then Vi is the rank three

vector bundle base-changing to Opiq`3, and the endomorphism algebras of V1 and V2 are,

respectively, A and A2. Under this point of view, in the case of high degree del Pezzo

surfaces, Theorem 7 can be thought of as an extension of Amitsur’s conjecture to other del

Pezzo surfaces.

In the case where X is a complex threefold, a necessary condition for rationality is to

have a single, principally polarized intermediate Jacobian JpXq. Example of such threefolds

are Fano threefolds, conic bundles over rational surfaces and del Pezzo fibrations over the

projective line. In this cases, Clemens and Griffiths define a natural principally polarized

Abelian subvariety AX � JpXq, the Griffiths component, which is a birational invariant. In

particular, if X is rational, then AX � 0.

Theorem 8. Let X be a verepresentable threefold. If rcodimcatpXq ¥ 2, then the Griffiths

component AX vanishes.

Theorem 8 was proved in [BB13] and [BB12], and can also be seen as a consequence

Theorem 3. It shows that categorical representability in codimension 2 is a finer invariant

than the Griffths invariant. In particular, it can be applied to conic bundles over minimal

surfaces and to del Pezzo fibrations of degree 4 over the projective line.

Theorem 9. Let X be either a conic bundle over a minimal rational surface, or a del Pezzo

fibration of degree 4 on the projective line. Then the following are equivalent:

i) rcodimcatpXq ¥ 2,
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ii) X is rational.

Theorem 9 is proved in [BB13] in the case of conic bundles, and in [ABB14] in the case of

del Pezzo fibrations. The first case is obtained by using Theorem 8 and Beauville [Bea77] and

Shokurov [Sho84] classification of rational conic bundles, and giving explicit semiorthogonal

decompositions of DbpXq in the rational cases. The second case is a consequence of the first

one and of Homological Projective Duality for relative complete intersections of quadrics,

that is, Theorem 1. Indeed, a degree 4 del Pezzo fibration X is always the intersection of

two quadric threefold fibrations. The linear span of these two can be reduced by hyperbolic

splitting to a conic bundle over a Hirzebruch surface, birational to X. We finally notice that

the birational information on X is always contained, in these cases, on the noncommutative

k-scheme associated to the Clifford algebras defined by the quadratic forms defining X.

Finally, some examples are also known in dimension four. Let X Ñ P1 be a fourfold

with a fibration onto the projective line whose fibers are intersections of two quadrics. As

above, using Homological Projective Duality for relative quadric fibrations, that is, Theorem

1, in a general case, we obtain a surface S Ñ P1 with a hyperelliptic fibration, and a Brauer

class α in BrpSq. Indeed, S is the discriminant double cover of a P1-bundle T Ñ P1, over

which the linear span of the two quadrics define a four-dimensional quadric fibration. The

genericity assumption ensures that the discriminant divisor is smooth (see §1.6 [ABB14]

for more details). Moreover, we have that the noncommutative scheme DbpS, αq is the

orthogonal complement of an exceptional collection in DbpXq. Hence, if α � 0, we have that

rcodimcatpXq ¥ 2. In this case, Question 1 has a positive answer

Theorem 10. Let X Ñ P1 be a fibration in intersections of two quadrics, and S Ñ P1 the

associated hyperelliptic fibration with a Brauer class α in BrpSq. If α � 0, we have that X

is rational and rcodimcatpXq ¥ 2.

Theorem 10 was proved in [ABB14]. In particular, it allows to formulate a conjecture

on the rationality of X being equivalent to the category DbpS, αq being representable in

dimension at most 2 (see Conjecture 4.31). A similar conjecture was previously formulated

by Kuznetsov for cubic fourfolds [Kuz10]. Indeed, if X � P5 is a cubic hypersurface, then

one can consider the noncommutative scheme AX � xO,Op1q,Op2qyK. Such a scheme is

a noncommutative K3 surface, that is, its Serre functor is the shift by 2 in cohomology.

Kuznetsov conjectures that X is rational if and only if there exists a K3 surface S and an

equivalence DbpSq � AX .

A particular case, similar to the one treated in Theorem 10, is the case where X contains

a plane. Indeed, one can project off the plane to obtain a (rational) structure of quadric

fibration X 99K P2, degenerating along a sextic curve. This curve is smooth for the general

such X and the associated double cover S Ñ P2 is a degree 2 K3 surface coming with a

Brauer class α in BrpSq obtained by the Clifford algebra of the quadric bundle. The case

treated in Theorem 10 is similar, the surface S there is obtained as a double cover of the

Hirzebruch surface parameterizing the family of quadric fibrations whose intersection is the

fourfold X.
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IfX is a cubic fourfold with a plane, Kuznetsov shows that AX � DbpS, αq. Moreover, the

vanishing of α is a sufficient condition both for rationality and for categorical representability

in codimension 2. On the other hand, it is natural to wonder whether there are cases where

α is not trivial and X is rational and to understand if Kuznetsov conjecture still holds.

The cases of cubic fourfolds containing a plane and a rational quintic del Pezzo surface

were considered and (generically) completely classified in [ABBVA14], where the following

statement was proved.

Theorem 11. There are five irreducible components of the moduli space of cubics con-

taining a plane and a quintic del Pezzo surface, which are indexed by the discriminant

dX P t21, 29, 32, 36, 37u of the intersection form on the algebraic cohomology lattice ApXq �

H4pX,Zq. The Clifford invariant α in BrpSq of such a general cubic fourfold X is trivial

if and only if dX is odd. There is a Pfaffian cubic in the dX � 32 locus, and the group of

algebraic 2-cycles on this cubic has rank 3.

As a corollary of Theorem 11, it can be shown that there exists rational cubic fourfolds

containing a plane, such that α is nontrivial and such that Question 1 has a positive answer

(as well as Kuznetsov’s conjecture). Indeed, if dX � 32, it can happen that X is Pfaffian,

and an explicit example is constructed in [ABBVA14], so that X is rational and, thanks to

Homological Projective Duality (see [Kuz10]), there is a degree 14 K3 surface S1 such that

DbpS, αq � AX � DbpS1q. Notice that Bolognesi and Russo [BR16] have recently shown

that any special cubic with an associated K3 surface of degree 14 is rational (see §IV.1 for

details), which allows one to extend the previous consideration to all the cases where dX is

even.
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CHAPTER 1

dg categories, semiorthogonal decompositions and

noncommutative motives

In this chapter, we introduce the algebraic and categorical objects which play a key

role in this report. In particular, we will focus on the notions of triangulated categories, dg

categories, and their semiorthogonal decompositions. We will also describe how dg categories

define noncommutative schemes and Chow motives. Together with these constructions, many

technical points (such as descent or scalar extension) as well as many geometric questions

we will introduce in the next Chapters lead us to consider dg categories (in particular, dg

enhanced triangulated categories) as the most suitable algebraic structure to work with. We

work over an arbitrary field k, and with small categories.

I. Semiorthogonal decompositions and exceptional objects.

In this section, we consider k-linear triangulated categories. These objects were defined

by Verdier in his Ph.D. thesis [Ver96]. Detailed introductions to homological algebra can

be found in the books of Gelfand and Manin [GM96] or Weibel [Wei94]. A more geometry-

oriented introduction can be found in Huybrecht’s book [Huy06].

I.1. Generators. Let A be a k-linear triangulated category. A natural question is

whether that such a category A satisfies some finiteness conditions; in particular we would

like to define a set of generators for A. There are several notions of generation (such as

classical or compact, see, e.g., [BVdB03], [LO10]) for a triangulated category.

Definition 1.1. Let A be a triangulated category. An objectA in A is compact if HomApA,�q

commutes with arbitrary direct sums.

Definition 1.2. A set of (compact) objects tEiuiPI in a k-linear triangulated category A

(compactly) generates A if, for any object of A of A, the vanishing HomApEi, Arnsq � 0 for

all i P I and all integer n implies A � 0.

Definition 1.3. A set of compact objects tEiuiPI in a k-linear triangulated category A

classically generates A if A is the smallest full thick triangulated subcategory of A containing

the objects Ei.

Suppose that E is a classical generator for a triangulated category A. One would like to

“count” the number of steps which are needed to construct A from E. More precisely, given

two full subcategories A1 and A2, we define their product A1 �A2 to be the full subcategory

of all the objects A of A fitting a triangle A1 Ñ AÑ A2 with Ai in Ai.

21



22 I. Semiorthogonal decompositions and exceptional objects.

For a full subcategory B of A, denote by xBy` the smallest full subcategory of A

containing B and closed under shifts, directs sums and direct summands. Then we denote

B1 �B2 :� xB1 �B2y`.

For an object A of A, set xAy�1 :� xAy` and xAy�n :� xAy�1 � xAy�n�1 for any n ¡ 1.

Definition 1.4. Let E be a classical generator of a triangulated category A. We say that

E is a strong generator if there exists n in N such that

(3) xEy�n � A.

Let us just mention that, if E is a strong generator, following Ballard-Favero-Katzarkov

[BFK12], one can define the generation time of E to be the smallest integer satisfying (3).

I.2. Semiorthogonal decompositions and their mutations. A full thick triangu-

lated subcategory σ : A1 ãÑ A is called admissible if the embedding functor σ admits a left

adjoint σ� and a right adjoint σ!.

Definition 1.5. A semiorthogonal decomposition of A is a totally ordered set of admissible

subcategories A1, . . . ,An of A such that


 HomApAi, Ajq � 0 for all i ¡ j and any Ai in Ai and Aj in Aj ;


 for every object A of A, there is a chain of morphisms 0 � An Ñ An�1 Ñ . . . Ñ

A1 Ñ A0 � A such that the cone of Ak Ñ Ak�1 is an object of Ak for all k �

1, . . . , n.

Such a decomposition will be written

A � xA1, . . . ,Any.

This notation is justified by the fact that, even if any Ai is not necessarily generated by

a set of objects, the category A is generated by its subcategories Ai.

For a subcategory B � A, we define the full subcategories

BK � tA P A | HomApB,Aq � 0 for all B P B u
KB � tA P A | HomApA,Bq � 0 for all B P B u.

Assume that A has finite homological dimension ans is saturated (these properties are sat-

isfied by bounded derived categories of coherent sheaves on a smooth scheme, see Thm.

2.14 [BK90]). Then, if B is admissible, then both BK and KB are admissible and we have

two semiorthogonal decompositions (see [BK90, §2])

A � xBK,By � xB,K By.

Given an admissible subcategory B ãÑ A, Bondal [Bon90, §3] defines left and right

mutation functors with respect to B:

LB : A Ñ A, RB : A Ñ A.

Such functors satisfy

RBpBq � LBpBq � 0 RBBK �K B LBp
KBq � BK,
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and RB|BK and LB|KB are equivalences.

In particular, whenever A � xB,Cy is a semiorthogonal decomposition, there are semiorthog-

onal decompositions

A � xLBpCq,By, A � xC, RCpBqy,

with LBpCq � C and RCpBq � B.

Definition 1.6. A triangulated category A is indecomposable if A is not the disjoint union

of two nontrivial triangulated categories. It is semiorthogonally indecomposable if it does not

admit any nontrivial semiorthogonal decomposition.

Remark 1.7. Notice that a category A is indecomposable if and only if it does not admit

any nontrivial completely orthogonal decomposition, that is a semiorthogonal decomposition

A � xA1,A2y such that HomApA1, A2q � 0 for all object Ai in Ai. Hence, indecomposability

is much weaker than semiorthogonal indecomposability. For example, if X is a connected

smooth projective variety, then its bounded derived category DbpXq is indecomposable (see

[Bri99, Ex. 3.2]), while if X is a Fano variety then DbpXq is semiorthogonally decomposable

(see [Kuz09]).

Example 1.8. There are examples of triangulated categories which are semiorthogonally in-

decomposable. For example, if X is a connected curve of positive genus (see Okawa [Oka11])

or if X is a connected variety with trivial canonical bundle, then the triangulated category

DbpXq is semiorthogonally indecomposable.

We finally notice that, if B is a subcategory generated by a given set of compact objects

tEiuiPI of A then B is not in general admissible, as the following example shows.

Example 1.9. Let C be an elliptic curve. The subcategory generated by OC is a proper

subcategory of the triangulated category DbpCq. Indeed, for any line bundle L on C, we

have HomDbpCqpOC ,L rnsq � ExtnpOC ,L q � HnpC,L q. Hence, if L is nontrivial of degree

0, then L is not in xOCy. On the other hand, we remarked that DbpCq is semiorthogonally

indecomposable in Example 1.8.

I.3. Splitting functors. Given triangulated categories A and B and an exact functor

Φ : A Ñ B, one can define the kernel of Φ as the full triangulated category ker Φ � tA P

A|ΦpAq � 0u and the image of Φ as the full category im Φ � tB � ΦpAq|A P Au. The latter

is not necessarily a triangulated subcategory.

Definition 1.10. A splitting functor is an exact functor Φ : A Ñ B such that ker Φ and

im Φ are admissible in A and B respectively, and Φ restricted to ker ΦK is fully faithful.

Splitting functors are functors which identify admissible subcategories of triangulated

categories. By definition, a splitting functor Φ : A Ñ B gives a semiorthogonal decomposi-

tion of A � xker ΦK, ker Φy and of B � xim Φ,K im Φy.

On the other hand, if A � xA1,A2y and B � xB1,B2y, an equivalence Ψ : A1 Ñ B1

will give rise, by precomposition with projection A Ñ A1 and composition with embedding

B1 Ñ B, to a splitting functor Φ : A Ñ B such that ker Φ � A2, and im Φ � B1.
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I.4. Exceptional objects, blocks, and mutations.

Definition 1.11. Let A be a division (not necessarily central) k-algebra (e.g., A could be a

field extension of k). A compact object E of A is called A-exceptional if

HomApE,Eq � A and HomApE,Errsq � 0 for r � 0.

An exceptional object is an A-exceptional object for some algebra A.

Definition 1.12. Let tEiui�1...n be exceptional objects of A. The totally ordered set

tE1, . . . , Enu is called an exceptional collection if HomApEj , Eirrsq � 0 for all integers r

whenever j ¡ i. An exceptional collection is full if it generates A. Equivalently, a collection

is full if for any object T of A, the vanishing HomApT,Eirrsq � 0 for all i and for all r

integers implies T � 0. An exceptional collection is strong if HomApEi, Ejrrsq � 0 whenever

r � 0.

Remark 1.13. If k is algebraically closed, any exceptional object is k-exceptional, so that

the original definition (see, e.g., [Bon90]) matches Definition 1.11 in this case.

Bondal and Kapranov have shown that, for an exceptional collection tE1, . . . , Enu of A,

the subcategory E � xE1, . . . , Eny of A is admissible (see [BK90, Prop. 2.6 and Corollary

page 530]). In particular, one can check that there is a semiorthogonal decomposition

E � xE1, . . . , Eny � xxE1y, . . . , xEnyy.

Exceptional collections provide an algebraic description of admissible subcategories of A.

Indeed, if E is an A-exceptional object in A, the triangulated subcategory xEy � A is

equivalent to the category perfpAq of perfect k-linear complexes of A-modules of finite type.

Furthermore, as shown by Bondal [Bon90], in many cases strong full exceptional collections

give an algebraic description of a triangulated category.

Proposition 1.14 ( [Bon90, Thm. 6.2]). Suppose that A is the bounded derived category of

either a smooth projective k-scheme or of a k-linear Abelian category with enough injective

objects and is of finite global dimension. Let tE1, . . . , Enu be a full strong k-exceptional

collection on A, and consider the object E �
Àn

i�1Ei and the k-algebra R � EndApEq.

Then RHomApE,�q : A Ñ perfpRq is a k-linear equivalence.

Remark 1.15. The assumptions on the category A and on the strongness of the exceptional

sequence may seem rather restrictive, and both find a natural solution when triangulated

categories are enriched with a dg structure. The first assumption can be indeed replaced by

considering a dg enhancement of A (see [BK91, Thm. 1]). When the exceptional collection

is not strong, the endomorphisms of E form a dg algebra, see Thm. 1.26.

Example 1.16. The full strong k-exceptional collection tO,Op1q, . . . ,Opnqu on the bounded

derived category of the projective space DbpPnkq was described by Beilinson [Bei78], [Bei84]

and Bernštĕın-Gelfand-Gelfand [BGG78]. In this case R � End
�Àn

i�0 Opiq
�

is isomorphic

to the path algebra of the Beilinson quiver with n� 1 vertices, see [Bon90, Ex. 6.4].
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Given an exceptional pair tE1, E2u with Ei being Ai-exceptional, consider the admis-

sible subcategories xEiy, forming a semiorthogonal pair. We can hence perform right and

left mutations, which provide equivalent admissible subcategories. It easily follows that

the object RE2pE1q is A1-exceptional, the object LE1pE2q is A2-exceptional, and the pairs

tLE1pE2q, E1u and tE2, RE2pE1qu are exceptional. We call RE2pE1q the right mutation of

E1 through E2 and LE1pE2q the left mutation of E2 through E1.

A special case of an exceptional pair is a completely orthogonal pair tE1, E2u, i.e., an

exceptional pair such that HomApE1, E2risq � 0 for all i. Equivalently, we have that tE2, E1u

is also exceptional. In this case, RE2pE1q � E1 and LE1pE2q � E2.

Definition 1.17 ( [KN98], 1.5). An exceptional block in a k-linear triangulated category A

is an exceptional collection tE1, . . . , Enu such that HomApEi, Ejrrsq � 0 for every r whenever

i � j. Equivalently, every pair of objects in the collection is completely orthogonal. By abuse

of notation, we denote by E the exceptional block as well as the subcategory that it generates.

If E is an exceptional block, then EndAp
Àn

i�1Eiq is isomorphic to the k-algebra A1 �

� � � � An, where Ei is Ai-exceptional. Proposition 1.14 then yields a k-equivalence E �

DbpA1 � � � � �Anq.

Moreover, given an exceptional block, any internal mutation acts by simply permuting

the exceptional objects. Given an exceptional collection tE1, . . . , En, F1, . . . , Fmu consisting

of two blocks E and F, the left mutation LEpFq and the right mutation RFpEq are obtained

by mutating all the objects of one block to the other side of all the objects of the other block,

or, equivalently, as mutations of semiorthogonal admissible subcategories.

I.5. Serre functors.

Definition 1.18. Let A be a triangulated k-linear category with finite dimensional mor-

phism spaces. A functor S : A Ñ A is a Serre functor if it is a k-linear equivalence inducing

a functorial isomorphism

HomApA,Bq � HomApB,SpAqq
_

of k-vector spaces, for any object A and B of A.

Serre functors were defined by Bondal and Kapranov [BK90] in order to generalize Serre

duality on a smooth projective variety X. Indeed, in this case, if dim pXq � n, the functor

SX :� � b ωXrns is a Serre functor for the category DbpXq. The next proposition collects

important properties of Serre functors (see [BK90] or [Huy06, Ch. 1 and 2]).

Proposition 1.19. Suppose that A admits a Serre functor S. Then S is unique, and will

be denoted by SA.

Moreover, if A1 also admits a Serre functor, and F : A Ñ A1 is a k-linear equivalence,

then SA1 � F � F � SA. If F : A Ñ A1 is a functor admitting a left (resp. right) adjoint G,

then H :� SA �G � S�1
A1 (resp. H :� S�1

A �G � SA1) is a right (resp. left) adjoint to F .

Definition 1.20. Let A be a triangulated category with a Serre functor SA. We say that

A is a Calabi-Yau category if there exist positive integers r and d such that SrA � rds. If
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r is the minimal such integer, we say that A has dimension d{r. Notice that d{r is not a

rational number, but rather a quotient of two integer numbers (simplifications of common

factors are not allowed).

II. dg categories and enhanced triangulated categories

II.1. dg categories and Morita equivalence. Let Cpkq be the category of cochain

complexes of k-vector spaces. A differential graded (=dg) category A is a category enriched

over Cpkq. This means that morphism sets are complexes of k-vector spaces and that the

composition law fulfills the Leibniz rule dpf � gq � dpfq � g�p�1qdegpfqf �dpgq. A dg functor

Φ : AÑ B is a functor enriched over Cpkq. A dg algebra is a dg category with one object; a

detailed account can be found in Keller’s ICM address [Kel06].

Let us denote by dgcatpkq the category of (small) dg categories and dg functors. Such a

category has a monoidal structure given by the tensor product AbB of two dg categories A
and B, defined as follows: objects of AbB are elements of the cartesian product of the sets

of objects of A and B, and the complexes of morphisms are given by

HomAbBppA1, B1q, pA2, B2qq :� HomApA2, A2q bHomBpB1, B2q.

For a given dg category A, we define the opposite dg category Aop to be the category

having the same objects whose morphisms given by HomAoppA,Bq :� HomApB,Aq.

Definition 1.21. A right A-module M is a dg functor M : Aop Ñ Cdgpkq with values in the

dg category Cdgpkq of cochain complexes of k-vector spaces; see Keller [Kel06, §2.3]. We

will write CpAq for the category of right A-modules.

The derived category DpAq of A is defined as the localization of CpAq with respect

to the class of objectwise quasi-isomorphisms; see Keller [Kel06, §3.2]. This category is

triangulated. We denote by DcpAq the full subcategory of compact objects.

Given dg categories A and B, an A-B-bimodule is a right pAop b Bq-module, that is, a

dg functor B : Ab Bop Ñ Cdgpkq.

For each object A of A, we have the right module represented by A, that is the functor

HomAp�, Aq, which we denote by A^. Another standard example of bimodule is the A-A-

bimodule

AbAop ÝÑ Cdgpkq pA,Bq ÞÑ HomApB,Aq .(4)

Let us denote by reppA,Bq the full triangulated subcategory of DpAopbBq consisting of those

A-B-bimodules M such that for every object A P A the right B-module MpA,�q belongs to

DcpBq. Note that every dg functor Φ : AÑ B gives rise to an A-B-bimodule

pΦ : Ab Bop ÝÑ Cdgpkq pA,Bq ÞÑ BpB,ΦpAqq

which belongs to reppA,Bq.

Definition 1.22. A dg functor Φ : AÑ B is called a Morita equivalence if the restriction of

scalars functor DpBq Ñ DpAq is an equivalence of triangulated categories; see Keller [Kel06,

§4.6].
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As proved by Tabuada in [Tab05, Theorem 5.3], the category dgcatpkq carries a structure

of Quillen model category whose weak equivalences are the Morita equivalences. Let us

write Hmopkq for the homotopy category of this model structure. As proved in loc. cit., the

assignment Φ ÞÑ pΦ gives rise to a bijection

(5) HomHmopkqpA,Bq � Iso reppA,Bq,

where Iso stands for the set of isomorphism classes. Moreover, under (5), the composition

law in Hmopkq corresponds to the derived tensor product of bimodules.

II.2. Pretriangulated dg categories and enhancements of triangulated cate-

gories. Our aim is to consider dg enhancements of a given triangulated category. To this

aim, we introduce the notion of pretriangulated dg category. We follow Keller’s presenta-

tion [Kel06, §4.5].

Let A be a small dg category. The category Z0pAq has the same objects as A and

morphisms defined by

HomZ0pAqp�,�q � kerpHom0
Ap�,�q

d
ÝÑ Hom1

Ap�,�qq.

The k-linear category H0pAq has the same objects as A and morphisms given by

HomH0pAqp�,�q :� H0pHomAp�,�qq,

where H0p�q is the 0th cohomology group functor.

Definition 1.23. We say that a dg category A is pretriangulated if the image of the Yoneda

functor

Z0pAq ÝÑ CpAq, A ÞÑ A^

is stable under shifts in both directions and extensions. Equivalently, for all objects A and

B of A and all integers n, and for any morphism f : B Ñ A, the object B^rns is isomorphic

to pBrnsq^ and the cone over a morphism f^ : B^ Ñ A^ is isomorphic to pConepfqq^.

For an arbitrary dg category A, one has a unique pretriangulated dg category pretrpAq,
called the pretriangulated hull of A, satisfying a universal property (see [Kel06, §4.5]).

For our purpose, we record that if A is pretriangulated, then H0pAq has a canonical and

functorial structure of k-linear triangulated category.

Definition 1.24. Let A be a triangulated category. A dg enhancement of A is a pair

pA, εq, where A is a pretriangulated dg category and ε : H0pAq Ñ A is an equivalence of

triangulated categories.

Let A be a triangulated category admitting a dg enhancement. Then A has a unique

enhancement if for any two enhancements pA, εq and pA1, ε1q of A there exists a dg functor

Φ : A ÝÑ A1,

inducing an equivalence

H0pΦq : H0pAq �
ÝÑ H0pA1q.

In this case the enhancements pA, εq and pA1, ε1q are called equivalent.
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Enhancements pA, εq and pA1, ε1q of A are called strongly equivalent if there exists a dg

functor Φ as above such that the functors ε1 �H0pΦq and ε are isomorphic.

A way to construct a unique enhancement for the derived category DpCq of a Grothendieck

category C is to have a set of compact generators, as shown by Lunts and Orlov [LO10, Thm.

2.7].

Theorem 1.25 (Lunts-Orlov). Let C be a Grothendieck category and suppose that there is

a small set of compact generators in the derived category DpCq. Then DpCq has a unique

enhancement.

If A is a triangulated category with a full exceptional collection tE1, . . . , Enu, then

it has a compact generator, namely E :� `ni�1Ei. In this case, the dg enhancement A
of A can be described as the derived category of a dg-algebra, as proved by Bondal and

Kapranov [BK90]. Notice that the dg algebra is given by a choice of an enhancement of

A, for example by injective resolutions if A has enough injectives. The following result

generalizes Prop. 1.14, that is the case where the exceptional collection is strong.

Theorem 1.26 (Bondal-Kapranov). Let A be a triangulated category, pA, εq an enhance-

ment of A, and tE1, . . . , Enu be a full exceptional collection on A. Consider the object

E �
Àn

i�1Ei and the dg-k-algebra A � EndApEq, obtained via the enhancement ε. Then

any dg enhancement A of A is equivalent to the dg category DbpAq.

Let X be a scheme over the field k, and DpQcohpXqq the derived category of quasi-

coherent sheaves onX. Thanks to the work of Bondal-Van den Bergh and Neeman [BVdB03,

Nee96], if X is quasi-compact and quasi-separated, the subcategory of compact objects of

DpQcohpXqq coincides with the category perfpXq of perfect complexes on X, that is, the

category of bounded complexes of vector bundles. Lunts and Orlov show that this category

admits a unique enhancement (see [LO10, Thm. 7.9]).

Theorem 1.27 (Lunts-Orlov). Let X be a quasi-separated and quasi-compact scheme. The

category perfpXq admits a unique enhancement.

Remark 1.28. Notice that for any given k-scheme (or even k-stack) X, one can construct

enhancements for the categories perfpXq and DbpXq, see, e.g., [LS15]. The question we are

considering here is whether perfpXq has a unique enhancement in the sense of definition 1.24.

Notice that the existence of some dg enhancement of perfpXq (for example, by complexes of

injectives) is necessary to give the endomorphism algebra of the generator a structure of dg

algebra.

II.3. dg enhanced semiorthogonal decompositions. We want now to consider

semiorthogonal decompositions of pretriangulated dg categories.

Definition 1.29. Let A be pretriangulated dg-category. A semiorthogonal decomposition

of A is a set of pretriangulated subcategories A1, . . . ,An such that

H0pAq � xH0pA1q, . . . ,H
0pAnqy

is a semiorthogonal decomposition for the triangulated category H0pAq.
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Let A be a triangulated category, pA, εq a dg enhancement of A, and let

(6) A � xA1, . . . ,Any

be a semiorthogonal decomposition. Then the categories Ai admit enhancements pAi, εq in-

duced by pA, εq in such a way that the semiorthogonal decomposition (6) gives a semiorthog-

onal decomposition of the pretriangulated dg category pA, εq as defined in Definition 1.29.

Remark 1.30. [Compare with Conjecture 2.3] Notice that if Φ : A Ñ B is a splitting

functor, and A and B are enhancements of A and B respectively, there is in general no

reason to have have a dg functor Φdg : AÑ B such that H0pΦdgq � Φ. In other words, given

triangulated semiorthogonal decompositions A � xA1,A2y and B � xB1,B2y, an exact

k-linear equivalence A2 � B1 could not come from a dg equivalence.

III. Noncommutative schemes: resolutions of singularities, representability

III.1. Noncommutative schemes. We concluded Section II.2 with the famous The-

orem of Lunts and Orlov, stating that if X is a quasi-compact and quasi-separated scheme,

then there is a unique enhancement of perfpXq, which is the subcategory of compact objects

of DpQcohpXqq. We hence have a natural pretriangulated dg category with a strong gener-

ator E associated to such a scheme, so that we are lead to replace schemes by dg categories.

Following Kontsevich’s ideas [Kon05, Kon10, Kon09], some geometrical properties may

be rephrased in noncommutative terms (see also Orlov [Orl14]). With these definitions in

mind, we will detail Orlov’s definition [Orl14] of a noncommutative k-scheme and compare

smoothness, properness and regularity for noncommutative and commutative schemes.

Definition 1.31. A triangulated category A is proper if
À

iPZ HomApA,Brisq is finite-

dimensional for any pair of objects A and B in A. It is regular if it has a strong generator.

Definition 1.32. A dg category A is smooth if it is a compact object in DpAop bAq. It is

proper (resp. regular) if DcpAq is proper (resp. regular).

We record that smoothness is a stronger notion than regularity: if a small dg category

A is smooth, then it is regular (see [Lun10]).

Definition 1.33. A noncommutative scheme over k is a pretriangulated dg category A of the

form perfpEq for some cohomologically bounded dg k-algebra E . It is regular (resp. proper,

resp. smooth) if A is regular (resp. proper, resp. smooth). If B is an admissible subcategory

of A (that is, if there is a semiorthogonal decomposition A � xB, Cy for some C), we will say

that B is a component of the noncommutative scheme A (and that C is its complement). A

noncommutative k-scheme A is geometric if there exists a smooth and projective scheme X

and a fully faithful functor A Ñ perfpXq admitting right and left adjoints. That is, A is

admissible in perfpXq.

For a given geometric noncommutative k-scheme A, we define noncommutative A-schemes

as noncommutative k-schemes such that E is a dg-A-algebra. If A � perfpXq for some smooth

and projective X, a noncommutative X-scheme is a noncommutative A-scheme. Notice that

noncommutative A-schemes carry both an A-linear and a k-linear structure. The category
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of noncommutative k-linear proper and smooth A-schemes will be denoted by NSchApkq,

and the category of noncommutative A-linear proper and smooth A-schemes will be denoted

by NSchpAq.
If K{k is an extension, and E a dg k-algebra, then we can consider the base change

EK � EbkK. For the noncommutative k-scheme A � perfpEq, we define the noncommutative

K-scheme AK :� perfpEKq to be the base change of A to K.

Remark 1.34. Let Y be a quasi-compact and quasi-separated k-scheme, and L any invert-

ible object for the monoidal structure of perfpY q, that is, L is a line bundle on Y . Let A be

a noncommutative geometric Y -scheme: as defined above it is a noncommutative k-scheme

enriched over perfpY q, and there exists a smooth and projective Y -variety X such that A is

an admissible subcategory of perfpXq. Then L lifts to an invertible object on A, which we

still denote by L.

Remark 1.35. In [Gai13], Gaitsgory defines the notion of 1-affineness for a prestack Y
by requiring that the functor of enhanced global sections of sheaves of categories is an

equivalence between the 8-categories of sheaves of categories ShvCatpYq over Y and quasi-

coherent dg modules QcohpYq over Y. The quasi-inverse to global sections is the localization

functor in this case.

In particular, if X is a quasi-separated and quasi-compact k-scheme, then X (or, better,

the prestack given by the functor of points of X) is 1-affine [Gai13, Thm. 2.1.1]. We

could then have defined a noncommutative X-scheme A to be a section of the sheaf of

categories ShvCatpXq over X. Indeed, having such an object is equivalent to giving a section

of QcohpXq (where this latter category means dg modules over X, and not quasi-coherent

“commutative” sheaves), that is A is a noncommutative k-scheme enriched over the category

perfpXq.

Example 1.36. Thanks to Theorem 1.27, for any smooth and proper k-scheme X, there

is a unique smooth and proper noncommutative k-scheme perfpXq. Notice that there exist

non-isomorphic k-schemes whose associated noncommutative k-schemes are equivalent. The

first such example is provided by an Abelian variety X of dimension dimX ¥ 2 and its dual

X̂. Indeed, perfpXq � perfpX̂q, see Mukai [Muk81].

In the geometric case, that is for a noncommutative scheme of the form perfpXq for X a

quasi-compact and quasi-separated scheme, the previous properties of properness, regularity

and smoothness recover properness, regularity and smoothness of X, as shown by Orlov

[Orl14] (see also [LS15]).

Proposition 1.37 (Orlov). Let X be a separated regular Noetherian k-scheme. The non-

commutative scheme perfpXq is regular. If moreover X is of finite type, then X is smooth

and proper if and only if perfpXq is smooth and proper.

The notion of gluing of dg-categories A and B along a A � B-bimodule S appeared

in [Tab07, §0], under the name of “catégorie triangulaire supérieure”, while the term “gluing”

was established by Kuznetsov and Lunts in [KL12]. Such a dg-category is denoted by
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C � A iS B in [Orl14], and admits a semiorthogonal decomposition C � xA,By. It is

moreover proved in [Orl14, Prop. 3.22] that the gluing of regular and proper pretriangulated

dg-categories A and B via an A � B-bimodule S is itself regular and proper if and only if

H�pSpA,Bqq is finite dimensional for any A in A and B in B.

III.2. Resolutions of singularities. One of the interesting features of noncommuta-

tive schemes is the possibility to define categorical resolution of singularities. A particularly

important question about resolution of singularities is to find the ones that enjoy some min-

imality property (see e.g. Bondal and Orlov [BO02, §5]). The geometrical notion of crepant

resolution can be described homologically, as done by Kuznetsov [Kuz07b]. We first recall

Kuznetsov-Lunts definition in terms of dg categories [KL12, Def. 1.5] (A definition in the

context of big categories was given by Lunts [Lun10, Def. 4.1]). In this report, we will use

the following definition in the category of noncommutative schemes.

Definition 1.38. Let A be a geometric noncommutative k-scheme. A noncommutative

resolution of A is a smooth noncommutative k-scheme B with a functor Φ : AÑ B inducing

a fully faithful functor H0pAq Ñ H0pBq. If A � perfpXq for some scheme X, we will say

that B is a noncommutative resolution of X.

Let us recall other definitions in the literature and comment Definition 1.38. The next

definition, involving only triangulated categories, was given by Kuznetsov [Kuz07b].

Definition 1.39. Let A be a triangulated category. A categorical resolution of A is a

triangulated category B and a pair of triangulated functors π� : Ac Ñ B and π� : B Ñ A

such that

1) There exists a smooth projective variety Y and a fully faithful functor B Ñ perfpY q,

2) The functor π� is left adjoint to π� on Ac,

3) The natural transformation idAc Ñ π�π
� is the identity.

A categorical resolution of a variety X is a categorical resolution of DbpXq.

A categorical resolution of singularities pB, π�, π
�q of A is weakly crepant if π� is right

adjoint to π� on Ac. If A and B admit Serre functors, the resolution is called strongly

crepant if the identity of B is the relative Serre functor of B over A.

Remark 1.40. Let pB, π�, π�q be a categorical resolution of A, and B and A dg enhance-

ments of B and A respectively, and assume that the functors π� and π� lift to dg functors.

Then B is a noncommutative resolution of A. Using this, one can naturally extend the notion

of weak crepancy to noncommutative resolutions.

Kuznetsov and Lunts have shown that if X is a k-scheme, then a noncommutative resolu-

tion of DbpXq induces a categorical resolution of X [KL12, Prop. 3.13]. On the other hand,

item 1) in Definition 1.39 tells us that B can be enhanced from the unique enhancement

of perfpY q and the choice of a semiorthogonal decomposition perfpY q � xB,BKy, but this

enhancement may not be unique.

Kuznetsov and Lunts have shown that categorical resolution of singularities exist for

any separated scheme of finite type over a field of characteristic 0 [KL12, Thm. 1.4]. On
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the other hand, Definition 1.38 may seem rather weak: for example, consider a scheme X

with rational singularities, and f : Y Ñ X a (geometric) resolution. Then perfpY q and the

functors f� and f� provide a categorical resolution of X. But notice that composing f the

natural projection Y � Pn Ñ Y , one obtains g : Y � Pn Ñ X such that perfpY � Pnq and

the functors g� and g� also provide a categorical resolution of X.

Remark 1.41. If π : Y Ñ X is a resolution of Gorenstein singularities, then the categorical

resolution perfpY q of DbpXq is weakly (or strongly) crepant if π is crepant, that is π�ωX �

ωY . In particular, strong and weak crepancy are equivalent in this case. Notice however

that there cases of weakly but not strongly crepant categorical resolutions. In particular,

to define strongly crepant resolutions one needs B to have a module structure over Ac (see

Kuznetsov for more details [Kuz07b]). If B and A are their respective enhancements, this

amounts to say that B is a noncommutative A-scheme.

Let us finally mention Van den Bergh’s definition of noncommutative crepant resolution

for a commutative k-scheme X [VdB04, Def. 4.1, Rmk. 4.5].

Definition 1.42. Let R be a normal Gorenstein domain. A noncommutative crepant res-

olution of R is a homologically homogeneous R-algebra of the form A � EndRpMq, where

M is a reflexive R-module. If X is a scheme, a non-commutative crepant resolution of X is

a stack of Abelian categories A which is, locally on any affine open subset SpecR of X, the

category of finitely-generated modules over a non-commutative crepant resolution A of R.

Remark 1.43. If A is a non-commutative crepant resolution of a scheme X, then A is a

noncommutative weakly crepant resolution of X in the sense of Definition 1.38. In particular,

A is a smooth noncommutative X-scheme.

III.3. Representability for noncommutative schemes. Let A be a smooth and

proper noncommutative scheme. The following notion of representability was introduced

in [BB12] for triangulated categories and is motivated by the theory of noncommutative

motives which will be introduced in Section IV.

Definition 1.44. A noncommutative scheme A is representable in dimension n if there

exists a semiorthogonal decomposition

A � xA1, . . . ,Ary

and smooth projective k-schemes Y1, . . . Yr such that, for all i � 1, . . . , r we have dim pYiq ¤ n

and a fully faithful functor Ai Ñ perfpYiq admitting right and left adjoints.

If A is representable in some dimension m, we use the following notation

rdimA :� mintm|A is representable in dimension mu

Remark 1.45. The categories Ai in Definition 1.44 are geometric noncommutative schemes.

It follows that if a noncommutative scheme A is representable in dimension n for some integer

n then A is a geometric noncommutative scheme thanks to [Orl14]. On the other hand, any

geometric noncommutative scheme is representable for some n by definition.
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Question 1.46 ( [Orl14], Question 4.4). All the known examples of noncommutative

schemes are geometric, hence representable in some finite dimension n. Do there exists

non geometric noncommutative schemes?

Let us give some easy result about representability of noncommutative schemes.

Lemma 1.47. If a noncommutative scheme A is representable in dimension n, then it is

representable in dimension m for all m ¥ n.

Proof. Notice that this is straightforward from the definition: suppose that A1 � A is

an admissible subcategory admitting a full and faithful embedding A1 Ñ perfpY1q for some

smooth and projective Y1 of dimension ¤ n. Then dim pY1q ¤ m as well. l

Notice that, if A1 is a noncommutative scheme with a fully faithful embedding A1 Ñ

perfpY1q for some smooth projective Y1 of dimension exactly n, then, for any m ¡ n, we can

easily construct a smooth projective variety Y of dimension exactly m and a full and faithful

embedding A1 Ñ perfpY q: it is enough to consider Y :� Y1 � Pm�n. More generally, any

variety π : Y Ñ Y1 of dimension m and such that π satisfies Rπ�OY � OY1 will admit A1 as

an admissible subcategory (see, e.g., Proposition 4.11).

Lemma 1.48. Let A and B be noncommutative schemes with rdimA � n and rdimA � m,

and S a perfect A�B-bimodule. Then the gluing C :� AiS B is representable in dimension

maxpm,nq. In particular, rdim C ¤ maxpm,nq.

Proof. This follows easily from the fact that C admits a semiorthogonal decomposition

C :� xA,By. l

Notice that we can classify noncommutative schemes with repA ¤ 1.

Proposition 1.49. Let A be a smooth and proper noncommutative semiorthogonally inde-

composable k-scheme.

If repA � 0, then there exist a finite field extension l of k and A � perfpSpecplqq.

If repA � 1, then either there exists a curve C of positive genus and A � perfpCq,

or there exists a class α in Brpkq of a non-k-rational conic such that A � perfpAq for an

Azumaya algebra A with class α.

If A is not semiorthogonally indecomposable, and repA ¤ 1, we have a semiorthogonal

decomposition A � xA1, . . . ,Ary with Ai as above.

The last statement of Proposition 1.49 is, by definition, just a consequence of the pre-

vious ones. The repA � 0 case is treated in [AB15], via the simple observation that

zero dimensional k-schemes are spectra of étale algebras. The second statement is a con-

sequence of Okawa’s study of indecomposability of derived categories of curves of positive

genus [Oka11], and of the description of semiorthogonal decompositions for Brauer-Severi

varieties [Ber09] together with the observation that all semiorthogonal decompositions of a

conic are mutated to that one.

We end this section by remarking that the definition of categorical representability relies

on the existence of semiorthogonal decompositions of a noncommutative scheme. In general,
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Jordan-Hölder property does not hold for semiorthogonal decompositions; see [BGvBS14]

or [Kuz13] (we will recall details in Example 1.52). It follows that if A and B are non-

commutative schemes such that rdimA � n, and B is admissible in A, it is not known

how to prove that repB ¤ n, and counterexamples exist, even in the case where n � 0:

Kuznetsov’s example [Kuz13] is a rational threefold X with a full exceptional collection,

so that A :� perfpXq has rdimA � 0, but admits an admissible subcategory B such that

repB ¡ 0.

III.4. The Grothendieck ring of noncommutative schemes and its filtration.

We sketch the Bondal-Larsen-Lunts construction of the Grothendieck ring of smooth and

proper noncommutative schemes [BLL04]. Consider the free Z-module generated by smooth

and proper noncommutative schemes in dgcatpkq, and introduce the following relation:

(7) A � B � C if, up to dg-equivalence, A � xB, Cy.

We denote the quotient group by PT pkq (see [BLL04, §5.1]).

For any noncommutative scheme A we use either the notation IpAq or the lower case

notation a to denote its class in PT pkq. More generally, elements of PT pkq will be denoted

by a lower case letter. For a smooth projective variety X, we will often use the notation x

for the class of perfpXq in PT pkq.

Lemma 1.50. Let a be any element of PT pkq. If a �
°r
i�1miIpAiq with mi ¡ 0 for all

i � i, . . . , r, then there exists a smooth and proper noncommutative scheme A such that

a � IpAq .

Proof. The noncommutative scheme A can be described as a recursive gluing of the Ai

along the trivial bimodules. Concretely, A �
Àr

i�1 A
`mi
i . l

In the additive commutative group PT pkq, define the following associative product:

(8) IpAq 
 IpBq � IpAb Bq.

Proposition 1.51 ( [BLL04], Cor. 5.7). The group PT pkq endowed with the product 
 is

a commutative associative ring with unit e � IpperfpSpecpkqqq.

Example 1.52. Let A, B, and C be smooth and proper noncommutative schemes. A

relation IpAq � IpBq � IpCq in PT pkq does not necessarily imply that A � xB, Cy. The

simplest example is due to Bondal, and described by Kuznetsov in [Kuz13].

Consider the quiver:

Q � 

α1 //

α2

// 

β1 //

β2

// 
,

with the relations β1α2 � β2α1 � 0. Setting A :� perfpQq, the perfect complexes on the

representation algebra of Q, it is easy to describe a full exceptional sequence A � xE1, E2, E3y

by considering Ei to be the projective module of the i-th vertex. On the other hand, one
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can consider the exceptional object F give by the module:

F � k
1 //

0
// k

1 //

0
// k,

and the semiorthogonal decomposition A � xB, F y, so that one easily obtain B � 2e. But

there is no exceptional object in B. Notice that this also gives an example of a noncommuta-

tive schemes B and A, such that rdimB ¡ 0, rdimA � 0 and B admissible in A. Kuznetsov

describes moreover how to construct a rational threefold X, with a full exceptional collection,

and a fully faithful functor AÑ perfpXq.

Another geometrical example is due to Böhning, Graf von Bothmer and Sosna. For X

the classical Godeaux surface, they have constructed two semiorthogonal decompositions

perfpXq � xE1, . . . , E11,B1y � xF1, . . . , F9,B2y,

where Ei and Fi are exceptional objects [BGvBS13,BGvBS14]. Considering the induced

dg enhancements, this provides two noncommutative schemes B1 and B2 such that IpB2q �

IpB1q � 2e. On the other hand, as proved in [BGvBS14], there is no exceptional object in

B2. However, there is no exceptional object in B1 either, and one can show that repB1 �

repB2 � 2 in this case.

The notion of categorical representability induces a ring filtration on PT pkq. Define the

following Z-submodules of PT pkq:

(9)

PTdpkq :� ZxIpAq P PT pkq | there exists B such that rdimB ¤ d, AÑ B is admissibley.

The set PT8pkq :�
�
iPN PTipkq is the set of elements in PT pkq generated by geometric

noncommutative schemes. We denote by PT¡ipkq the complement of PTipkq in PT pkq. We

can restate Question 1.46 as follows

Question 1.53. Is PT¡8pkq empty?

Proposition 1.54. The subsets PTipkq give a filtration on the ring PT pkq. More precisely,

suppose that a is in PTipkq and b is in PTjpkq. Then

a� b is in PTmaxpi,jqpkq,

a 
 b is in PTi�jpkq.

In particular, PTipkq is an additive subgroup for any i.

Proof. We can test these properties on generators of PTipkq. First of all, PTipkq �

PTi�1pkq for any i ¥ 0 integer by definition. The second statement follows from Lemmas

1.50 and 1.48.

We are left to show the last statement. To this end, suppose that a � IpAq and b � IpBq
such that A � perfpXq and B � perfpY q are admissible with X and Y of dimension i and

j respectively. Consider the variety W :� X � Y . As shown by Bondal, Larsen and Lunts

[BLL04], we have w � x
y. Using the ring structure, we get w � a
b�aK
b�a
bK�aK
bK.

In particular, it follows that if rdimA ¤ i and rdimB ¤ j, then a 
 b is in PTi�jpkq, and we

can conclude. l
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Finally notice that there exist noncommutative schemes B such that repB ¡ 0, but

IpBq P PT0pkq, as recalled in Example 1.52. It would be then natural to wonder whether the

filtration PTipkq is not trivial, that is whether there exist integers i such PTipkq � PTi�1pkq.

Using the theory of Jacobians of noncommutative motives and Theorem 3.12, it is possible

for example to show that, for k algebraically closed of characteristic zero, if X has a nontrivial

intermediate Jacobian, or nontrivial Albanese variety, then IpDbpXqq cannot lie in PT0pkq.

It follows that PT0pkq � PT1pkq.

III.5. Base change and descent of semiorthogonal decompositions. Let K{k be

a field extension and A a noncommutative k-scheme, and AK the base change of A, as in

Definition 1.33.

The first question one can address is to understand semiorthogonal decompositions of

A under base change. This question was addressed by Kuznetsov in the setting of triangu-

lated categories arising as bounded derived categories of schemes [Kuz11], so we restrict to

geometric noncommutative schemes. Here we give a sample of results on base change for

semiorthogonal decomposition, in the case where K{k is finite.

Proposition 1.55. If A � xA1, . . . ,Any is a semiorthogonal decomposition of a geometric

noncommutative k-scheme A, then AK � xA1K , . . . ,AnKy is a semiorthogonal decomposition

of the noncommutative K-scheme AK .

If tA1, . . . ,Anu is a set of admissible components of noncommutative k-scheme A and

AK � xA1K , . . . ,AnKy is a semiorthogonal decomposition of the noncommutative K-scheme

AK , then A � xA1, . . . ,Any is a semiorthogonal decomposition of the noncommutative k-

scheme A.

Proof. We first notice that if B is a noncommutative k-scheme such that BK � 0 in

NSchpKq, then B � 0 in Nschpkq. The proof of the two statements follows then by remarking

that semiorthogonality is stable under base change1. l

A natural question to consider is to classify, given a noncommutative K-scheme, A, all

the noncommutative k-schemes B such that BK � A. We end this section by illustrating

descent in the most simple cases. If AK is generated by a K-exceptional object, the descent

question has been studied by Toën [Toë12, Cor. 2.15].

Theorem 1.56 (Toën). Let A be a noncommutative k-scheme, K{k a field extension and

assume that AK � perfpKq. Then there exists a central simple algebra A over k such that

A � perfpAq. In particular, A is generated by an A-exceptional object which is k-exceptional

if and only if A is trivial in the Brauer group.

Let us denote by ks the separable closure of k. Recall that L is a finite étale k-algebra

if and only if L bk k
s � ks � � � � � ks . Equivalently, L � l1 � � � � � lm where each li{k is a

finite separable field extension. The k-dimension of L is called the degree of L over k. An

Azumaya algebra A over L � l1�� � �� lm is simply a product A � A1�� � ��Am where each

1Here we could refer to Sosna’s work [Sos14] for a different notion of scalar base change of a triangulated
category. But, as remarked by the same author, [Sos14, page 15], the two definitions coincide.
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Ai is a central simple li-algebra. A separable algebra of dimension nr2 over k is an Azumaya

algebra of degree r over an étale algebra K over k of dimension n.

The following Proposition was proved in [AB15] and generalizes the result of Toën to

the case of finite products of fields.

Proposition 1.57. Let A be a noncommutative k-scheme such that Aks is ks-equivalent to

perfppksqnq. Then there exists an étale algebra K of degree n over k, an Azumaya algebra

A over K, and a k-linear equivalence A � perfpAq. In this case, A is an indecomposable

category if and only if K is a field extension of k.

The key idea in the proof of Proposition 1.57 is to extend Toën’s construction to study

sections over k of the stack F associated to the prestack of dg algebras étale locally Morita

equivalent to kn, which is simply KpAutdg{kpk
nq, 1q, as in [Toë12, Cor. 3.12]. The main

ingredient is the description of the derived group stack of autoequivalences Autdg{kpk
nq of

the étale k-algebra kn (thought of as a dg algebra over k), as the wreath product pZ �

KpGm, 1qq o Sn, thought of as n � n generalized permutation matrices filled with shifts of

invertible modules.

We conclude this section by remarking that, if A is a noncommutative k-scheme and

repA � m, and K{k is a field extension, one easily has repAK ¤ m, but the strict inequality

can hold. For example if A is a nontrivial Azumaya k-algebra with splitting field K, then

repA ¡ 0 while repAK � 0, thanks to the classification in Proposition 1.49.

IV. Noncommutative Chow motives

IV.1. Definition and basic properties. In this section we recall the construction of

the category of noncommutative Chow motives of smooth and proper dg categories. Such

category is meant to give a motivic theory for noncommutative schemes which should be

parallel to the theory of Chow motives for schemes: perfect bimodules will play the role of

correspondences, while a universal property with respect to additive invariants will replace

the universal property with respect to Weil cohomologies. For further details we invite the

reader to consult the recent book [Tab15].

Recall from §II (see, in particular, (5)) that one has a well-defined functor

dgcatpkq ÝÑ Hmopkq A ÞÑ A F ÞÑ F̂ .(10)

The additivization of Hmopkq is the additive category Hmo0pkq which has the same objects

as Hmopkq and Abelian groups of morphisms given by HomHmo0pkqpA,Bq :� K0 reppA,Bq,
where K0 stands for the Grothendieck group of the triangulated category reppA,Bq. The

composition law is induced by the tensor product of bimodules; consult [Tab05, §6] for

further details. Note that we have a canonical functor

Hmopkq ÝÑ Hmo0pkq A ÞÑ A B ÞÑ rBs .(11)

For a Z-module R, the R-linearization of Hmo0pkq is the R-linear additive category Hmo0pkqR
obtained by tensoring each Abelian group of morphisms of Hmo0pkq with R. In particular
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Hmo0pkqZ � Hmo0pkq. Note that one also has a canonical functor

Hmo0pkq ÝÑ Hmo0pkqR A ÞÑ A rBs ÞÑ rBsR .(12)

Since the three functors (10)-(12) are the identity on objects we will make no notational

distinction between a dg category and its image in Hmo0pkqR.

Definition 1.58. The category NChowpkqR of noncommutative Chow motives (with coef-

ficients in the ring R) is the pseudo-Abelian envelope of the full subcategory of Hmo0pkqR
consisting of smooth and proper dg categories.

Let us describe two fundamental properties motivating the fact that such a category

should be thought of as the category of motives of noncommutative schemes. Given a dg

category A, we denote by T pAq :� A iid A the gluing of A with itself along the identity

bimodule. We have two natural inclusion dg functors i1 : AÑ T pAq i2 : AÑ T pAq.

Definition 1.59. Let E : dgcatpkq Ñ C be a functor with values in an additive category C.

The functor E is an additive invariant if:


 E sends Morita equivalences to isomorphisms;


 given any dg category A, the inclusion dg functors induce an isomorphism

rEpi1q, Epi2qs : EpAq ` EpAq ÝÑ EpT pAqq.

Thanks to [Tab05, Thm 6.3], if A � xB, Cy is a semiorthogonal decomposition of a

dg-category, and E an additive invariant, then EpAq � EpBq ` EpBq.

Example 1.60. Thanks to the work of Blumberg and Mandell, Keller, Schlichting, Tabuada,

Thomason and Trobaugh, Waldhausen, and Weibel (see [BM12, Kel99, Kel98b, Kel98a,

Sch06,Tab12,Tab10,Tho90,Wal85,Wei89]), examples of additive invariants include con-

nective algebraic K-theory, nonconnective algebraic K-theory, homotopy algebraic K-theory,

Hochschild homology, cyclic homology, periodic cyclic homology, negative cyclic homology,

topological Hochschild homology, and topological cyclic homology.

The following two propositions were proved by Tabuada [Tab05]. They show that

noncommutative motives are the universal category for additive invariants and that any

semiorthogonal decomposition of a dg category A splits the motive UpAq.

Proposition 1.61 (Tabuada). Every additive invariant E : dgcatpkq Ñ C factors through

the natural functor U : dgcatpkq Ñ Hmo0pkq.

Proposition 1.62 (Tabuada). Let A be a smooth proper noncommutative k-scheme and

A � xB, Cy a semiorthogonal decomposition. Then UpAq � UpBq ` UpCq. In particular,

EpAq � EpBq ` EpCq for any additive invariant E.

Let X be a smooth and projective k-scheme, and perfpXq the associated smooth and

proper noncommutative scheme. One can define the noncommutative Chow motive of X (or

of perfpXq) as:

NCpXqR :� UpperfpXqqR,

where U is the universal functor described above.
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IV.2. Noncommutative Smash-nilpotent, Homological, and Numerical mo-

tives. As in the commutative case, one can consider categories of Smash-nilpotent, homo-

logical and numerical noncommutative motives over k.

Let F be a field. The category NChowpkqF is F -linear, additive, idempotent complete

and rigid symmetric monoidal. For an F -linear, additive, rigid symmetric monoidal category

C, one can define the bnil-ideal by:

(13) bnil px, yq :� tf P HomCpx, yq | f
bn � 0 for some n ¡ 0u,

and check that is is a b-ideal. Similarly to the commutative case, the category NVoevpkqF
of b-nilpotent noncommutative motives can be defined as the quotient of NChowpkqF by the

ideal bnil. One can check that the category NVoevpkqF is also F -linear, additive and idem-

potent complete since the quotient functor is F -linear, additive, conservative and idempotent

can be lifted along nilpotent ideals [BMT14].

Periodic cyclic homology gives a functor HP : dgcatpkq Ñ VectZ{2pkq to the category

of Z{2Z-graded k-vector spaces [Kas87] (which coincides with odd and even de Rham co-

homology for the dg category of perfect complexes over a smooth projective variety X, in

the case where k has characteristic zero [FT87]). Let F be a field, such that either F is

an extension of k or k is an extension of F . Set K to be the bigger field between k and

F . Marcolli and Tabuada have proven that HP induces an F -linear symmetric monoidal

functor

HP� : NChowpkqF Ñ VectZ{2pKq.

The category NHompkqF of homological commutative motives can be defined to be the idem-

potent completion of the quotient of NChowpkqF by the kernel of HP�. This category is

F -linear, additive, rigid symmetric monoidal and idempotent complete, see [MT16].

Given a proper k-linear dg category A, one can define the bilinear Euler pairing χ on

objects of A as the alternate sum of dimensions of morphism spaces. One can consider

its left and right kernels, which coincide whenever A is smooth, due to the existence of

a Serre functor (see [MT12, §4]). Moreover χ descends to a bilinear pairing on K0pAq,
and Kontsevich [Kon05] defines the category NNumpkqF of commutative numerical motives

as the (idempotent completion of the) category whose objects are smooth and proper dg

categories and morphisms spaces are

(14) HomNNumpkqF pA,Bq � K0pAb Bopq{kerpχq.

There is an alternative construction of NNumpkqF due to Marcolli and Tabuada [MT14b]

which coincides with the one above [MT12]. For an F -linear, additive, rigid symmetric

monoidal category C, one can define the N -ideal by:

N px, yq :� tf P HomCpx, yq | for any g P HomCpy, xq, trpg � fq � 0u,

and check that is a b-ideal. The category NNumpkqF is equivalent to be the idempotent

completion of the quotient of NChowpkqF by the ideal N . It is then additive, F -linear, sym-

metric rigid monoidal and idempotent complete. It is moreover semisimple, see [MT14b].
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IV.3. Comparison between commutative and noncommutative motives. Given

a monoidal category C and a b-invertible object L of C, the orbit category of C with respect

to L is the category C{ � bL with the same objects as C and morphisms

HomC{�bLpA,Bq � `iPZHomCpA,B b Liq.

Let R be a Z-module and ChowpkqR denote the category of Chow motives of varieties over

k with R-coefficients. Consult André’s book for the construction and properties of motives

[And04]. We denote by L the motive of the affine line in ChowpkqR. Recall that L is

invertible in the monoidal category ChowpkqR. As an application of the Grothendieck-

Riemann-Roch theorem, Tabuada [Tab13] shows that there is a full and faithful embedding

ChowpkqQ{ � bL ÝÑ NChowpkqQ.

One can summarize this result by saying that, in rational coefficients, noncommutative Chow

motives encode the same informations as Chow motives, up to codimension. This is no longer

true over the integer coefficients, as we will point out in Section I of Chapter 3.

As proved by Marcolli and Tabuada [MT14a], similar comparison functors exist also for

numerical and homological motives.

IV.4. A filtration by thick subcategories. Define NChowdpkq to be the thick sub-

category generated by motives NCpXq for X of dimension dim pXq ¤ d. Then it is easy to

see that NChowipkq � NChowi�1pkq, and that if M is in NChowipkq and N in NChowjpkq,

then M `N is in NChowmaxpi,jqpkq and M bN is in NChowi�jpkq. Similar filtrations hold

for NHompkq, NVoevpkq, and NNumpkq.

Let A be a noncommutative scheme. If A is representable in dimension d, then it is easy

to check that its noncommutative motive UpAq lies in NChowdpkq. This observation justify

the terminology of representability inspired by various notions of representability of Chow

motives (see Chapter 3 for more details).

We have remarked that if A is a smooth and proper noncommutative k-scheme such that

rdimA � d, then UpAq lies in NChowdpkq. The converse implication is, of course, highly

nontrivial.
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Homological Projective Duality

The theory of Homological Projective Duality was developed by Kuznetsov [Kuz07a].

The original motivation was to study how semiorthogonal decompositions behave under

hyperplane sections (see also [Kuz05b]). To this aim, the choice of a polarization is clearly

relevant, and forces to consider semiorthogonal decompositions which are compatible with

this choice (the so-called Lefschetz decompositions).

Homological Projective Duality is nowadays one of the most powerful tool to describe

semiorthogonal decompositions of projective variety, in particular for those obtained as linear

sections of a given variety.

Even if developed in the triangulated context, Homological Projective Duality can be

adapted to the context of pretriangulated dg-categories, or, better, noncommutative schemes

treated in the previous chapter. To this end, we will start recalling some basic properties on

Fourier-Mukai functors.

I. Fourier-Mukai functors, splitting functors

I.1. Fourier-Mukai functors and dg functors. Let X be a smooth projective k-

scheme. In the previous chapter, we considered the smooth and proper noncommutative

scheme perfpXq, that is the canonically dg enhanced triangulated category of perfect com-

plexes on X. In what follows we will consider the bounded derived category DbpXq, recalling

that in this case the smoothness of X implies that the inclusion perfpXq � DbpXq is actually

an equivalence.

Definition 2.1. Let X and Y be smooth and projective varieties and P an object of DbpX�

Y q. The Fourier-Mukai functor with kernel P is the functor ΦP : DbpXq Ñ DbpY q defined

by

ΦPp�q :� Rq�pp
�p�q b Pq,

where p and q are the projections from X � Y onto X and Y respectively.

Such functors are exact, and admit right and left adjoint which are also Fourier-Mukai

functors. For more details, properties and a deep treatment, we refer to Huybrecht’s book

[Huy06]. Notice that, given any object P in DbpX�Y q, one has two Fourier-Mukai functors,

the one defined in 2.1, and the one going in the opposite direction. It is in general clear from

the context which are the source and target of the functor, so that no additional notation is

required.

Given an exact functor Φ : DbpXq Ñ DbpY q, it is natural to wonder under which

conditions Φ is of Fourier-Mukai type, that is, if there exists an object P in DbpX �Y q such

that Φ � ΦP . Rizzardo and Van den Bergh have constructed an example of functor which

41
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does not satisfy this property [RVdB14]. However, in many cases an exact functor is of

Fourier-Mukai type, for example if Φ is fully faithful [Orl03]. The interested reader should

consult Canonaco and Stellari’s survey [CS13].

On the other hand, as recalled in the previous chapter, one can consider pDbpXq, εXq

and pDbpY q, εY q with their canonical dg enhancements as pretriangulated dg categories. In

this case, given an exact functor Φ : DbpXq Ñ DbpY q, one can wonder whether Φ can be

lifted to a dg functor Φdg : pDbpXq, εXq Ñ pDbpY q, εY q. This latter question is equivalent to

the previous one: being of Fourier-Mukai type is equivalent to admitting a dg enhancement

( [Toë07], [LS15]).

Lemma 2.2. Let Φ : DbpXq Ñ DbpY q by an exact k-linear functor. The following are

equivalent:

i) Φ is of Fourier-Mukai type.

ii) There exists a dg functor Φdg : pDbpXq, εXq Ñ pDbpY q, εY q such that H0pΦdgq � Φ.

Recall the notion of splitting functor from definition 1.10. In Remark 1.30 we noticed how

a splitting functor does not necessarily come with a natural enhancement. In the geometric

context, this has been conjectured by Kuznetsov in terms of Fourier-Mukai functors.

Conjecture 2.3 (Kuznetsov, [Kuz07a] Conj. 3.7). Any splitting functor Φ : DbpXq Ñ

DbpY q is of Fourier-Mukai type.

As we will see in this chapter, splitting functors are one of the main topics in Homological

Projective Duality and are in this context always of Fourier-Mukai type, so that they all are

dg enhanced.

II. Homological projective duality for noncommutative schemes

Homological Projective Duality is a duality theory between noncommutative schemes

over projective varieties X Ñ PpW q and Y Ñ PpW_q, that is X and Y are endowed with a

line bundle, the pullback of the hyperplane section. Notice that here PpW q denotes the space

of 1-dimensional linear subspaces through the origin in W . Kuznetsov’s original motivation

was to study how semiorthogonal decompositions of DbpXq behave under hyperplane sections

[Kuz05b]. The first step in the theory of Homological Projective Duality is indeed to provide

what we will call here a Homological Lefschetz Theory : given X with a map X Ñ PpW q,

identify decompositions of Lefschetz type of DbpXq, that are decompositions inducing a

semiorthogonal sequence in DbpXHq, for XH the general hyperplane section of X. The

orthogonal complement CH to the restricted semiorthogonal sequence is the main object of

study of Homological Projective Duality. VaryingH in PpW_q, the family of these orthogonal

complements form a dg category CH , endowed with a decomposition which can be fully

recovered from the chosen decomposition of X, as proved by Kuznetsov [Kuz07a]. This

category can be thought of as the Homological Lefschetz Theory of X with respect to the

chosen decomposition, and its decomposition as a dual Lefschetz decomposition with respect

to the hyperplane sections of PpW_q.
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Given Y Ñ PpW_q, we will say that a noncommutative Y -scheme is Homological Pro-

jective Dual to X with respect to the chosen decomposition if it is dg equivalent to CH . It

turns out then that the critical locus of Y Ñ PpW_q is exactly the dual variety X_ and that

DbpXq is the Homological Lefschetz Theory of its own dual. This motivates the terminology

Homological Projective Duality. Notice that one can, and should, start by considering a

more general noncommutative X-scheme instead of DbpXq only.

II.1. Homological Lefschetz Theory. We recall the basic notions of Homological

Projective Duality from [Kuz07a], but we consider the setting of noncommutative schemes

instead of triangulated categories. Indeed, as pointed in the previous section, considering

derived categories of k-schemes with Fourier-Mukai functors is equivalent to considering

geometric noncommutative k-schemes, and all formal proofs from [Kuz07a] will work in

this framework. Notice however that, in order to obtain geometric results (that is, result on

the structure of the derived category of some scheme), one should consider noncommutative

k-schemes that arise as (crepant) noncommutative resolution of singularities of k-schemes.

Even if stated in the framework of noncommutative schemes, all the results and con-

structions of this section are a translation of Kuznetsov’s results from [Kuz07a].

Let X be a projective scheme together with a semi ample line bundle OXp1q. That

is, we fix the hyperplane sections of X with respect to the map f : X Ñ PpW q, where

W :� H0pX,OXp1qq
_. We set N :� dim pW q.

Let A be a noncommutative X-scheme. We use the notation Apiq :� AbOXpiq. Notice

that since OXpiq is an invertible object in perfpXq, the functor bOXpiq is a dg autoequiva-

lence of A, thanks to Remark 1.34.

Definition 2.4. Let A be a noncommutative X-scheme. A Lefschetz decomposition of A
with respect to OXp1q is a semiorthogonal decomposition

(15) A � xA0,A1p1q, . . . ,Ai�1pi� 1qy,

with 0 � Ai�1 � . . . � A0.

A Lefschetz decomposition is said to be rectangular if A0 � . . . � Ai�1.

A dual Lefschetz decomposition of A with respect to OXp1q is a semiorthogonal decom-

position

(16) A � xBj�1p1� jq, . . . ,B1p�1q,B0y,

with 0 � Bj�1 � . . . � B0. Similarly, one can define rectangular dual Lefschetz decomposi-

tions.

For any 0 ¤ l ¤ i�1, the l-th primitive subcategory al associated to the Lefschetz decom-

position (15) is the right semiorthogonal complement of Al�1 in Al, that is Al � xal,Al�1y.

We similarly define the primitive subcategories bl of a dual Lefschetz decomposition.

Remark 2.5. Notice that ai�1 � Ai�1. For any 0 ¤ l ¤ i � 1, we have a semiorthogonal

decomposition

Al � xal, al�1, . . . , ai�1y.

A Lefschetz decomposition is rectangular if and only if al � 0 for 0 ¤ l ¤ i� 2.
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Let f : X Ñ PpW q be the projective map such f�OPpW qp1q � OXp1q and ι : X �

X � PpW_q the universal hyperplane section of X. We denote by AX the noncommutative

X-scheme which is given by the base change of A via the map X Ñ X.

One can check that there is a semiorthogonal decomposition

(17) AX � xB,A1p1qb DbpPpW_qq, . . . ,Ai�1pi� 1qb DbpPpW_qqy,

obtained just by taking B to be the orthogonal complement of the semiorthogonal se-

quence pulled back from X and restricted to X , where we have omitted ι� for a more

readable notation. We set j :� N � 1�maxtl |Al � A0u. The first main result in the the-

ory of Homological Projective Duality is the description of a dual Lefschetz semiorthogonal

decomposition of B with respect to the line bundle OPpW_qp1q, which was originally proved

in [Kuz07a, Prop. 5.10].

Theorem 2.6 (Kuznetsov). Let A be a noncommutative X-scheme, and

(18) A � xA0, . . . ,Ai�1pi� 1qy

a Lefschetz decomposition with respect to OXp1q, and let B and j be as above. There is a

dual Lefschetz decomposition with respect to the line bundle OPpW_qp1q:

(19) B � xBj�1p1� jq, . . . ,B1p�1q,B0y

with the same primitive subcategories as (18), namely Bl � xa0, . . . , aN�l�2y.

Moreover, one can consider any integer 1 ¤ r ¤ N �1 and the universal r-codimensional

linear section: ιr : Xr � X�Grpr,W_q, which is defined by the following cartesian diagram:

Xr
ιr //

��

X �Grpr,W_q

��
PGrpr,W_qpWK

r q
πr // PpW q �Grpr,W_q,

where Wr is the tautological rank r bundle on the Grassmannian of r-dimensional subspaces

of W_, and we denote by WK
r :� pW_ bOGrpr,W_q{Wrq

_ its orthogonal bundle, which is a

subbundle of W bOGrpr,W_q, whence the map πr.

We denote by AXr the noncommutative X-scheme which is given by the base change

of A via the map Xr Ñ X. We notice that AX � AX1 in these notations. There is a

semiorthogonal decomposition

(20) AXr � xCr,Arp1qb DbpGrpr,W_qq, . . . ,Ai�rpi� rqb DbpGrpr,W_qqy,

obtained just by taking Cr to be the orthogonal complement of the semiorthogonal sequence

pulled back from X and restricted to Xr, where we have omitted ι�r for a more readable

notation. Notice that C1 � B in this notation.

On the other hand, one can consider B as a smooth and proper noncommutative k-

scheme, and the map

ρr : PGrpr,W_qpWrq Ñ PpW_q �Grpr,W_q.
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Denote by BGrpr,W_q the dg category obtained by the base-change of B via ρr. Notice that

B, and hence C1, identify naturally with BGrp1,W_q.

Proposition 2.7. For any 1 ¤ r ¤ N � 1, there is a dg splitting functor Φr : AXr Ñ

BGrpr,W q, inducing a semiorthogonal decompositions

(21) BGrpr,W_q � xBj�1pN � r � jqb DbpGrpr,W_qq, . . . ,BN�rp�1qb DbpGrpr,W_qq, Cry

Proof. The proof of this Proposition is provided in [Kuz07a, §6] in geometrical terms.

As noticed above, all formal proofs remain valid in the context of dg-categories. l

Remark 2.8. Saying that the functor Φr induces the semiorthogonal decomposition (21)

amounts to say that

ker Φr � xArp1qb DbpGrpr,W_qq, . . . ,Ai�rpi� rqb DbpGrpr,W_qqy

and that

im Φr � xBj�1pN � r � jqb DbpGrpr,W_qq, . . . ,BN�rp�1qb DbpGrpr,W_qqyK

To resume the results collected in this subsection, given a projective scheme X Ñ PpW q,

a noncommutative X-scheme A with a Lefschetz decomposition with respect to OXp1q, we

have two families of noncommutative PpW_q-schemes Cr � BGrpr,W_q, such that:

1. B � BGrp1,W_q admits a dual Lefschetz decomposition with respect to OPpW_qp1q

with the same primitive subcategories as the Lefschetz decomposition of A.

2. AXr admits a semiorthogonal decomposition obtained by “restricting” the Lefschetz

decomposition of AX (obtained by dropping down the biggest component at each

hyperplane section) and its orthogonal complement Cr
3. BGrpr,W_q admits a semiorthogonal decomposition obtained by “restricting” the

Lefschetz decomposition of B (obtained by dropping down the biggest component

at each hyperplane section) and its orthogonal complement Cr.
4. There is a dg splitting (Grpr,W_q-linear) functor Φr : AXr Ñ BGrpr,W_q identifying

the two orthogonal complements with Cr.
This motivates the following definition.

Definition 2.9. Given a projective scheme X Ñ PpW q, a noncommutative X-scheme A
and a Lefschetz decomposition of A with respect to OXp1q, the homological Lefschetz theory

of A with respect to the Lefschetz decomposition is the family

tBGrpr,W_q, Φru
N�1
r�1

of dg categories with the given splitting functors. The categories Cr are called the nonprim-

itive components of this homological Lefschetz theory.

II.2. Homological Projective Duality and its consequences. As before, let X Ñ

PpW q be a projective variety with a fixed hyperplane class OXp1q. In the previous section,

we recalled how Kuznetsov’s construction allows one to associate to a smooth and proper

noncommutative X-scheme A, with a Lefschetz decomposition with respect to OXp1q, a
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homological Lefschetz theory with its nonprimitive components. The second fundamental

step in Homological Projective Duality is to have a geometric realization of such a theory.

Given g : Y Ñ PpW_q a projective scheme, and B a noncommutative Y -scheme, we

will denote by Yr the universal dimension r section, that is the scheme fitting the Cartesian

diagram

Yr
jr //

��

Y �Grpr,W_q

��
PGrpr,W_qpWrq

ρr // PpW_q �Grpr,W_q,

and by BYr the base change of B to Yr.

Definition 2.10. A noncommutative Y -scheme B is called the Homological Projective Dual

(or the HP dual) to A with respect to the given Lefschetz decomposition, if, for any 1 ¤

r ¤ N � 1 there exists a Grpr,W_q-linear dg splitting functor Φr : BYr Ñ AXr such that

tBYr ,Φru
N�1
i�1 is the homological Lefschetz theory of A.

We denote by Q � PpW q�PpW_q the incidence quadric, that is the variety whose points

are pairs px,Hq with x in H. Then we consider the incidence quadric of X and Y , that is:

QpX,Y q :� pX � Y q �PpW q�PpW_q Q,

and notice that QpX,Y q � X1 �PpW_q Y .

More generally, consider the natural map πr : Xr �Grpr,W_q Yr Ñ X � Y . If L � W_

is a vector subspace, one sees easily that PpLKq � PpLq � Q � PpW q � PpW_q. It follows

that πr factors through a map qr : Xr �Grpr,W_q Yr Ñ QpX,Y q. One of the main insights of

Kuznetsov’s construction is that the splitting functors Φr come from a complex supported on

QpX,Y q. In terms of noncommutative schemes, there is a noncommutative QpX,Y q-scheme

Q and a perfect module E on Q, such that, for any r, the module q�r E is a AXr bBYr -module

representing the splitting functor Φr.

The main result of Kuznetsov’s paper, stated in these terms, is that it is enough to have

such a functor for one single r in the range 1, . . . , N � 1.

Theorem 2.11. A noncommutative Y -scheme B is HP dual to A with respect to the given

Lefschetz decomposition if and only if there exists a noncommutative QpX,Y q-scheme Q, a

Q-perfect complex E, and an integer r, with 1 ¤ r ¤ N � 1, such that q�r E is a AXr b BYr -

module representing a Grpr,W_q-linear splitting functor Φr such that tBYr ,Φru is the r-th

member of the homological Lefschetz theory of A.

Proof. Suppose that such a Q-module exists. Kuznetsov’s original proof of HPD goes

through an induction process, using base change diagrams and change of the value of r.

Indeed, once q�r E gives the required kernel, the Homological Lefschetz theory is constructed

using the kernels q�i E for i � 1, . . . , N � 1, both for i   r and for i ¡ r: see [Kuz07a, §6],

where everything is explained in terms of derived categories and Fourier-Mukai functors.

On the other hand, suppose that B is HP-dual to A. Then, setting r � 1, we are in the

case considered by Kuznetsov, and the existence of all the Φr is described in the proof of the

main Theorem [Kuz07a, Thm. 6.3], see [Kuz07a, §6]. l
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Remark 2.12. Recall that the original definition of Homological Projective Duality [Kuz07a,

Def. 6.1] requires the existence of a full and faithful functor Φ : B Ñ AX such that

ΦpBq � C1, with the required kernel. Now, notice that B � BGrp1,W_q, and AX � AX1

in this case, so that Theorem 2.11 states that Definition 2.10 is equivalent to the original

Kuznetsov’s definition1.

For a linear subspace L � W_, denote its orthogonal by LK � W , and consider the

following linear sections

XL � X �PpW q PpLKq, YL � Y �PpW_q PpLq.

of X and Y respectively. If A is a noncommutative X-scheme, then denote by AL its

restriction to XL, and similarly for B.

Theorem 2.13 ( [Kuz07a, Thm. 1.1]). Let X Ñ PpW q be a projective variety with a

semiample line bundle OXp1q and A a smooth and proper noncommutative X-scheme with

a Lefschetz decomposition (15). If B is HP dual to A, then:

(i) B is smooth and proper and admits a dual Lefschetz decomposition

B � xBj�1p1� jq, . . . ,B1p�1q,B0y, 0 � Bj�1 � � � � � B1 � B0

(ii) for any linear subspace L �W_ with dimpLq � r such that

dimXL � dimX � r, and dimYL � dimY � r �N,

there exists a noncommutative k-scheme CL and semiorthogonal decompositions:

AL � xCL,Arp1q, . . . ,Ai�1pi� rqy,(22)

BL � xBj�1pN � r � jq, . . . ,BN�rp�1q, CLy.(23)

Remark 2.14. Suppose S is a k-scheme, X and Y are S-schemes, OXp1q and OY p1q are

ample relatively over S, so that OXp1q maps X Ñ PSpW q and OY p1q maps Y Ñ PSpW_q for

a vector bundle W on S. In this relative context we can still define HP dual noncommutative

schemes and Theorem 2.13 holds replacing k-linearity with S-linearity.

II.3. Homological Projective duality in Algebraic Geometry. In the geometric

case, that is in the case where X is smooth projective and A � DbpXq (without smoothness

assumptions, A � DbpX,Rq is a noncommutative crepant resolution as in Definition 1.42),

there is a strong relation between Homological Projective Duality and classical projective

duality. Indeed, as Kuznetsov shows [Kuz07a, Thm. 7.9], the critical locus of the map

Y Ñ PpW_q is the classical dual projective variety X_ of X. In general, even in the case

where X is smooth, it is well-known that X_ is singular, so it is natural to look for a HP

dual B of A to be a noncommutative crepant resolution of singularities of X_.

A detailed treatment of geometric examples and conjectures can be found in [Kuz14].

Let us start by giving an example which will be useful later. Let S be a smooth projective

1I am grateful to A. Kuznetsov who explained me this equivalence.
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k-scheme, and E be a vector bundle of rank r over S. Let p : X :� PSpEq Ñ S its

projectivization. Orlov’s results [Orl93] provide a semiorthogonal decomposition:

(24) DbpXq � xp�DbpSq, . . . , p�DbpSq bOX{Spr � 1qy,

which should be thought of as a (rectangular) Lefschetz decomposition of X with respect

to the line bundle OX{Sp1q. Such line bundle gives the projective morphism f : X Ñ PpW q,

where W_ :� H0pX,OX{Sp1qq � H0pS,E_q. Let EK :� kerpW_bOS Ñ E_q, and q : Y :�

PSpEKq Ñ S the natural projection. Notice that H0pY,OY {Sp1qq � H0pS, pEKq_q � W ,

and let g : Y Ñ PpW_q be the corresponding projective map. In this case, Kuznetsov shows

that HPDuality holds [Kuz07a, Cor. 8.3].

Proposition 2.15 (Kuznetsov). If E is generated by global sections, DbpY q is the HP dual

of DbpXq with respect to the Lefschetz decomposition (24) relatively over S.

The great relevance of Homological Projective Duality in Algebraic Geometry relies on

the amount of relations between derived categories of (noncommutative crepant resolutions)

of projective varieties obtained as dual linear sections of projective dual varieties. From

the categorical point of view, we can distinguish two main cases: the case of Calabi-Yau

varieties and the case of Fano varieties. In the latter case, Homological Projective Duality

allows to construct semiorthogonal decompositions whose admissible components can be

described geometrically via the (noncommutative crepant resolution) of a projective dual

variety. These examples will be extensively treated in Chapter 4 due to their interaction

with birational properties.

III. Homological Projective Duality for quadric fibrations and their

intersections

III.1. Generic relative intersections of quadrics. In this Section, we present a gen-

eralization of Kuznetsov’s Homological Projective dual of intersection of quadrics [Kuz08]

to the case of fibrations in intersections of quadrics over any field. All the results explained

here are taken from [ABB14].

Let S be a k-scheme. A (line-bundle valued) quadratic form on S is a triple pE, q, Lq

where E is a vector bundle on S, L a line bundle on S, and q a morphism of OS-modules

L Ñ S2pE_q. In particular, this is equivalent to the choice of a global section sq P

ΓpPpEq,OPpEq{Sp2q b p�L_q, where p : PpEq Ñ S is the natural projection. The rank of

a quadratic form is defined to be the rank of the vector bundle E. For equivalent charac-

terizations and the extension to this case of the definitions of basic notions for quadratic

forms (such as primitivity, regularity, discriminant divisor etc.) we refer to [ABB14, §1.1].

The geometric objects which will be studied in this Section are quadric fibrations and their

generic complete intersections.

Definition 2.16. The quadric fibration π : Q Ñ S associated to a nonzero quadratic

form pE, q, Lq of rank n ¥ 2 is the restriction of the projection p : PpEq Ñ S via the
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closed embedding j : Q Ñ PpEq defined by the vanishing of the global section sq P

ΓpPpEq,OPpEq{Sp2q b p�L_q. We Write OQ{Sp1q � j�OPpEq{Sp1q.

Remark 2.17. The form pE, q, Lq is primitive if and only if π : Q Ñ S is flat of relative

dimension n�2, see [Mat86, 8 Thm. 22.5]. The fiber Qy is a smooth projective quadric (resp.

a quadric cone with isolated singularity) over any point y where pE, q, Lq is (semi)regular

(resp. has simple degeneration).

Definition 2.18. We say that a finite set of generically (semi)regular primitive quadratic

forms pE, qi, Liq (or quadric fibrations Qi Ñ S) for 1 ¤ i ¤ m is generic if the following

properties hold:

(1) the images of Li Ñ S2pE_q span an OS-submodule L � S2pE_q of rank m,

(2) the associated linear span quadric fibration Q Ñ PSpL1 ` . . . ,`Lmq, has simple

degeneration with regular discriminant divisor,

(3) the associated intersection X Ñ S of the quadric fibrations Qi � PSpEq is a relative

complete intersection.

By a generic relative intersection of quadrics we mean any intersection X Ñ S of a generic

set of quadric fibrations.

III.2. The Clifford algebra and the HP dual. In this section, we recall the ten-

sorial construction of the even Clifford algebra of a line bundle-valued quadratic form from

[ABB14]. In loc.cit., we show that it extends to any field the one in [Kuz08, §3.3].

Let pE, q, Lq be a (line bundle-valued) quadratic form of rank n on a scheme S. We

define ideals J1 and J2 of the tensor algebra T pE b E b Lq, generated by

v b v b f � fpqpvqq, and ub v b f b v b w b g � fpqpvqqub w b g,

respectively, for sections u, v, w of E and f, g of L. We define the even Clifford algebra of

pE, q, Lq as the quotient algebra

C0pE, q, Lq � T pE b E b Lq{pJ1 � J2q.

It is not difficult to see that if the quadratic form q is nondegenerate, the noncommutative

S-scheme perfpC0q is smooth and proper.

Now, let S be a smooth scheme and E be a vector bundle of rank n on S. Consider

the projective bundle p : X :� PpEq Ñ S, the relative ample line bundle OX{Sp1q, and the

semiorthogonal decomposition (see [Orl93, Thm. 2.6])

(25) DbpXq � xp�DbpSqp�1q, p�DbpSq, . . . , p�DbpSqpn� 2qy.

Let us denote by m � tpn� 1q{2u and put

A0 � A1 � . . . � Am�1 � xp�DbpSqp�1q, p�DbpSqy,

Am �

$&
%
xp�DbpSqp�1q, p�DbpSqy if n is even

xp�DbpSqp�1qy if n is odd.
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Then the decomposition (25) is a Lefschetz decomposition

(26) DbpXq � xA0,A1p2q, . . . ,Amp2mqy,

with respect to the relative double Veronese embedding f : X � PpEq Ñ PpS2Eq �: PpV q,
as f�OPpS2Eq{Sp1q � OPpEq{Sp2q. We set Y :� PppS2Eq_q.

Definition 2.19. Let Q � PpEq�S PppS2Eq
_q � X�Y be the universal hyperplane section

with respect to f , then we will refer to the projection

π : Q Ñ Y,

as the universal relative quadric fibration in PpEq.

Let C0 be the even Clifford algebra of the universal relative quadric fibration. The

following Theorem is one of the main results of [ABB14].

Theorem 2.20. The noncommutative Y -scheme DbpY, C0q is the HP dual of DbpXq over S

with respect to the Lefschetz decomposition (26).

The proof of Theorem 2.20 is based on the description of a semiorthogonal decomposition

of the universal quadric. This was described in [ABB14] extending Kuznetsov’s [Kuz08]

original result to a more general context.

Applying Theorem 2.13 to the HP dual pair DbpXq, DbpY, C0q we obtain semiorthogonal

decompositions of generic relative intersections of quadrics over S (obtained as linear sections

of X) which can be described via the restriction of the Clifford algebra C0 to the orthogonal

section of Y .

Now we describe some consequences of Theorem 2.13 in the case of flat quadric fibrations.

Let pEi, qi, Liq be a finite set of primitive generically (semi)regular quadratic forms. Denote

by L Ñ S2E_ the OY -submodule generated by the line subbundles Li. Then the linear

section XL is a relative intersection of the quadric fibrations Qi Ñ S in PpEq. Indeed, the

projection map π : X Ñ S has fibers the intersection of the fibers of Qi Ñ S in the projective

space given by the fibers of PpEq. On the other hand, the linear section YL is precisely

PpLq � PpS2E_q. Then the restriction C0|PpLq � C0 bOPpS2E_q
OPpLq (which we shamelessly

denote by C0) to PpLq is then isomorphic to the even Clifford algebra of the corresponding

linear span quadric fibration QÑ PpLq associated to the Qi Ñ S. We assume that L � `iLi
and that this relative intersection is complete. Here is a sample of consequences of HPD,

which will be applied to explicit geometric cases in Chapter 4.

Theorem 2.21. Let S be a smooth scheme, QÑ S a linear span of m quadric fibrations of

relative dimension n� 2 over S, and XL Ñ S their relative complete intersection. Let C0 be

the even Clifford algebra of QÑ PpLq � YL.

(1) If 2m   n, then the fibers of XL Ñ S are Fano and relative homological projective

duality yields

DbpXLq � xDbpYL, C0q, π
�DbpSqp1q . . . π�DbpSqpn� 2mqy.
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(2) If 2m � n then the fibers of XL Ñ S are generically Calabi-Yau and relative

homological projective duality yields

DbpXLq � DbpYL, C0q.

(3) If 2m ¡ n, then the fibers of XL Ñ S are generically of general type and there exists

a fully faithful functor DbpXLq Ñ DbpYL, C0q with explicitly describable orthogonal

complement.

III.3. Hyperbolic splitting. Let us end this Section with a result from [ABB14]

which is not directly related to Homological Projective Duality, but which gives a useful tool

to study sheaves of even parts of Clifford algebras under Morita equivalence.

Let Q Ñ S be the quadric fibration associated to a quadratic form pE, q, Lq. A section

s : S Ñ Q of Q Ñ S is called smooth if the image of s only consists of smooth points of

the fibers of QÑ S. An isotropic line subbundle N � E of pE, q, Lq is called smooth if the

associated section of its quadric fibration is smooth. We notice that in particular, if Q and

S are smooth schemes over a field k, then any section of π is smooth, see [ABB14, Lemma

1.3.2].

If N Ñ E be a smooth isotropic subbundle, then Then q|NK : NK Ñ L_ vanishes on

N , hence defines a quadratic form q1 : NK{N Ñ L_ on E1 � NK{N . We call pE1, q1, Lq

the reduced quadratic form associated to N . Notice that rkE1 � rkE � 2. If Q1 Ñ S is the

associated quadric fibration, then dim pQ1q � dim pQq � 2.

A careful analysis of the quadratic forms pE, q, Lq and pE1, q1, Lq show that the form q

splits, over an open Zariski subset of S, as q1 K u, for pu,N_, Lq a hyperbolic quadratic

form. We hence say that Q1 Ñ S is obtained from Q Ñ S by hyperbolic splitting along a

(smooth) section. The Morita-invariance of the sheaf of even parts of the Clifford algebra

under hyperbolic splitting was proved in [ABB14].

Theorem 2.22. Let pE, q, Lq be a quadratic form over a regular integral scheme S, with

simple degeneration along a regular divisor D. In the case of odd rank, assume that 2 is

invertible on S. Let pE1, q1, L1q be the reduced quadratic form associated to a smooth isotropic

subbundle N Ñ E. Then the even Clifford algebras C0pE, q, Lq and C0pE
1, q1, Lq are Morita

S-equivalent.

IV. Homological Projective Duality for determinantal varieties

In this Section, we present another example of HP dual varieties, which was considered

in [BBF16]. In this case X and Y are the so-called generalized determinantal varieties,

that is, varieties that are defined by vanishing of r-minors of a n � m matrix with linear

entries. Both varieties X Ñ PpW q and Y Ñ PpW_q are singular and hence we have to deal

with noncommutative resolution of singularities in order to work with smooth and proper

noncommutative schemes.

IV.1. Desingularizations of the space of matrices of bounded ranks. Let U , V

be k-vector spaces, with dimU � m, dimV � n, and assume n ¥ m. Let r be an integer in

the range 1 ¤ r ¤ m� 1. We define Zrm,n to be the variety of m� n matrices M : V Ñ U_
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having rank at most r, i.e. the locus in PW � PpU_ b V _q cut by the minors of size r � 1

of the matrix of indeterminates:

ψ �

�
��
x1,1 . . . xm,1

...
. . .

...

x1,n . . . xm,n

�
�


Consider the Grassmann variety GrpU, rq of r-dimensional quotient spaces of U , the

tautological subbundle and the quotient bundle over GrpU, rq are denoted respectively by U
and Q and have respectively rank m� r and r. The tautological (or Euler) exact sequence

reads:

(27) 0 Ñ U Ñ U bOGrpU,rq Ñ QÑ 0.

We will use the following notation:

p : Xr
m,n � PpV _ bQ_q Ñ GrpU, rq,

and OXr
m,n

pHq for the relatively ample tautological line bundle. The manifold Xr
m,n has

dimension rpn � m � rq � 1. It is the resolution of singularities of the variety of m � n

matrices of rank at most r, as follows. The space H0pGrpU, rq,Qq_ is naturally identified

with U . Hence we get natural isomorphisms:

H0pGrpU, rq, V bQq � H0pXr
m,n,OXr

m,n
pHqq �W � U b V.

Setting W :� U_b V _, the map f associated to the linear system OXr
m,n

pHq maps Xr
m,n to

PpW q.

A rank-1 quotient of W_ � UbV corresponds to the choice of a linear map M : V Ñ U_,

so an element of PpW q can be considered as (the proportionality class of) the linear map

M . On the other hand, f sends a rank-1 quotient of V _ b Q_ over a point λ P GrpU, rq

to the quotient of U_ b V _ obtained by composition with the obvious quotient U_ Ñ Q_
λ .

The matrix M lies in the image of f if and only if M factors through V _ Ñ Qλ, for some

λ P GrpU, rq, i.e., if and only if rkpMq ¤ r. The map f : Xr
m,n Ñ Zrm,n is a desingularization,

called the Springer resolution, of Zrm,n. It is an isomorphism above the locus of matrices of

rank exactly r.

Consider now the projective bundle:

q : Y r
m,n � PpV b Uq Ñ GrpU, rq,

and denote OY r
m,n

pHq the tautological ample line bundle on Y r
m,n. The linear system asso-

ciated to OY r
m,n

pHq sends Y r
m,n to PpW_q � PpV b Uq via a map that we call g. By the

same argument as above, g is a desingularization of the variety Zm�rm,n of matrices of corank

at least r.

On the other hand, one can consider the following rectangular Lefschetz decomposition

for DbpXr
m,nq with respect to OXr

m,n
pHq:

(28) DbpXr
m,nq � xp�DbpGrpU, rqq, . . . , p�DbpGrpU, rqqpmrqy,
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and similarly for DbpY r
m,nq. Using the Euler exact sequence on GrpU, rq and Proposition 2.15

one can show that Xr
m,n and Y r

m,n are HP dual relatively over GrpU, rq.

Proposition 2.23. The smooth projective variety Y r
m,n is the HP dual of Xr

m,n with respect

to the Lefschetz decomposition (28).

IV.2. Noncommutative resolutions and HP duality. Consider Xr
m,n as a pro-

jective bundle over GrpU, rq. Kapranov shows that GrpU, rq has a full strong exceptional

collection consisting of vector bundles [Kap85]. From the semiorthogonal decomposition

(28), we then have a strong exceptional collection on Xr
m,n consisting of vector bundles. Set

E to be the direct sum of the bundles from this full exceptional collection. Let us consider

M :� Rf�E, and let Srm,n :� EndpEq and Rr
m,n :� EndpMq (where End denotes the sheaf

of endomorphisms). To simplify notations, we will drop the indexes from S and R if their

choice is clear. The following result from [BBF16] describes a noncommutative resolution of

singularities of Zrm,n and can be thought of as the projective version of Buchweitz, Leuschke

and Van den Bergh’s results in the affine case [BLVdB10,BLVdB11].

Proposition 2.24. The endomorphism algebra R is a coherent OZr
m,n

-algebra Morita-equivalent

to S, so that DbpZrm,n,Rq � DbpXr
m,nq. The noncommutative Zrm,n-scheme R is a noncom-

mutative resolution of singularities, which is crepant if m � n, in the sense of Definition

1.42.

The main tool in the proof of Proposition 2.24 is calculating the higher direct images

Rif�pEiq for the Ei the exceptional vector bundles which are direct summands of E, and to

show that Rr
m,n is maximally Cohen-Macaulay basing on a similar result for the affine case

proved in [BLVdB10].

Combining Proposition 2.23 and Proposition 2.24, one gets HP duality for the noncom-

mutative resolution of singularities of determinantal varieties.

Corollary 2.25. The noncommutative Zm�rm,n -scheme Rm�r
m,n is HP dual to the noncommuta-

tive Zrm,n-scheme Rr
m,n relatively over GrpU, rq, with respect to the Lefschetz decomposition

(28).





CHAPTER 3

Noncommutative motives and algebraic cycles

Recall from Chapter 1 the definitions of noncommutative k-schemes and noncommutative

motives. In this Chapter, we describe some application of the theory of noncommutative

motives to Algebraic Geometry. First of all, we compare the theory of noncommutative and

commutative Chow motives of smooth projective k-varieties, with a particular attention to

motivic decompositions. The main applications to geometry, in the case where k � C is

algebraically closed, will be given by the notion of Jacobian of (the noncommutative motive

of) a noncommutative k-scheme, introduced by Marcolli and Tabuada [MT14a]. This is a

functor which assigns to any noncommutative k-scheme A (via its noncommutative motive)

an Abelian variety JpAq well-defined up to isogeny.

In the case where X is a smooth projective k-scheme with a unique principally polar-

ized intermediate Jacobian, we will show that the noncommutative Jacobian also carries a

principal polarization, and that this allows to prove categorical Torelli-type theorems, which

state which noncommutative subschemes of X identify the isomorphism class of X. These

results have some geometrical applications, in particular they provide a way to describe the

Chow groups of intersections of quadrics of very low degree and any dimension, giving a

noncommutative proof to a motivic Beilinson-Bloch type conjecture (a “commutative” proof

was given by Otwinowska [Otw99]).

Finally, one can define smash-nilpotence and numerical equivalence for noncommutative

motives and formulate a noncommutative version of Voevodsky’s smash-nilpotence conjec-

ture. If X is a smooth projective variety over an algebraically closed field of characteristic

zero, then such a conjecture is equivalent to the commutative smash-nilpotence conjecture.

This allows one to use semiorthogonal decompositions to prove new cases of the commutative

smash-nilpotence conjecture.

We will assume the reader to be familiar with the theory of (commutative) motives. An

exhaustive treatment can be found in Andre’s book [And04].

I. Comparing commutative and noncommutative Chow motives

In this section, we mainly recall results from [BT15] where the relation between the

Chow and the noncommutative motive of a smooth projective k-scheme are studied. The

most important tool is the Grothendieck-Riemann-Roch Theorem and the analysis of its

denominators, which will allow to describe the rings where these motives have similar de-

compositions. On the other hand, looking to integer coefficients, interesting phenomena arise,

such as purely noncommutative motivic decompositions, probably related to the arithmetic

properties of the variety.
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I.1. motives of Lefschetz and trivial type. Let R be a Z-module and ChowpkqR
denote the category of Chow motives of varieties over k with R-coefficients. We denote by LR
(or simply by L if no confusion on the coefficient ring is possible) the Lefschetz motive, that

is the motive of the affine line in ChowpkqR. Recall moreover from Chapter 1, Section IV,

the universal functor U : dgcatpkq Ñ Hmo0pkq, associating to any noncommutative k-scheme

its noncommutative motive. Consider the noncommutative scheme k :� perfpSpecpkqq, that

is the dg category of bounded complexes of k-vector spaces. We denote by 1R :� UpkqR
(also denoted by 1 if no confusion on the coefficient ring is possible) its noncommutative

motive, which is the b-unit of Hmo0pkqR.

Following Gorchinskiy-Orlov [GO13], a Chow motive is called of Lefschetz type if it is

isomorphic to Lbl1 ` � � � `Lblm for some non-negative integers l1, . . . , lm. In the same vein,

a noncommutative motive is called of trivial type if it is isomorphic to `mi�11 for some integer

m. The following implication was established by Gorchinskiy-Orlov in [GO13, §4] (assuming

that Z � R):

(29) MpXqR Lefschetz type ñ NCpXqR trivial type .

In the particular case where R � Q, (29) becomes an equivalence (see [MT15, §1]):

(30) MpXqQ Lefschetz type ô NCpXqQ trivial type .

The following result was proved in [BT15] as an application of Grothendieck-Riemann-Roch

theorem and establishes a partial converse of the above implication (29):

Theorem 3.1. Let X be an irreducible smooth projective k-scheme of dimension d. Assume

that Z � R and that every finitely generated projective Rr1{p2dq!s-module is free (e.g. R a

principal ideal domain). Assume also that NCpXqR � `mi�11 for some integer m. Under

these assumptions, there is a choice of integers (up to permutation) l1, . . . , lm P t0, . . . , du

giving rise to an isomorphism

(31) MpXqRr1{p2dq!s � Lbl1 ` � � � ` Lblm .

Intuitively speaking, Theorem 3.1 shows that the converse of the above implication (29)

holds as soon as one inverts the integer p2dq! (or equivalently its prime factors). By combining

this result with (29), one obtains a refinement of (30):

Corollary 3.2. Given X and R as in Theorem 3.1, we have the equivalence

MpXqRr1{p2dq!s Lefschetz type ô NCpXqRr1{p2dq!s trivial type .

However the (strict) converse of implication (29) is false in general, as in the following

example from [BT15].

Proposition 3.3. Let q be a non-singular quadratic form and Qq the associated smooth pro-

jective quadric. Assume that q is even dimensional, anisotropic, and has trivial discriminant

and trivial Clifford invariant (see Lam [Lam, §V.2]).

(i) The noncommutative motive NCpQqqZ is of trivial type.

(ii) The Chow motive MpQqqZ is not of Lefschetz type.
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The proof of proposition 3.3 relies on Rost’s description of the motive of quadrics

[Ros] (point (i)) and on Kapranov and Kuznetsov’s description of the derived category

(see [ABB14] for a description over any field) of a quadric together with the fact that the

discriminant extension of such a quadric splits and the even Clifford algebra is trivial (point

(ii)).

As an application of Theorem 3.1, we obtain the following sharpening of the main result

of [MT15] (which was obtained only with rational coefficients).

Corollary 3.4. Let X be an irreducible smooth projective k-scheme of dimension d. As-

sume that DbpXq admits a full exceptional collection pE1, . . . , Emq of length m. Under these

assumptions, there is a choice of integers (up to permutation) l1, . . . , lm P t0, . . . , du giving

rise to an isomorphism

(32) MpXqZr1{p2dq!s � Lbl1 ` � � � ` Lblm .

Notice that in the case where X is a surface, Ch. Vial has shown a stronger version of

the previous result, that is, that MpXqZ is of Lefschetz type [Via15].

I.2. Decomposability. More in general, decomposability of the commutative Chow

motive holds decomposability of the noncommutative Chow motive, up to inverting enough

coefficients.

Theorem 3.5. Let X be an irreducible smooth projective k-scheme of dimension d. Under

the assumption Z � R, the following implication holds:

(33) MpXqRr1{p2dq!s decomposable ñ NCpXqRr1{p2dq!s decomposable .

One can fairly say then that, inverting enough coefficients, noncommutative motives

contain both strictly noncommutative decompositions (coming from semiorthogonal decom-

positions) and strictly commutative ones (coming from algebraic correspondences). As the

following proposition shows, if one does not invert the dimension of X, the converse of

implication (33) is false.

Proposition 3.6. (Cf. [BT15]) Let A be a central simple k-algebra of degree
a

dimpAq � d

and X � SBpAq the associated Severi-Brauer variety.

(i) For every commutative ring R one has the following motivic decomposition

(34) NCpXqR � 1` UpAqR ` UpAqb2
R ` � � � ` UpAqbd�1

R .

In particular, the noncommutative motive NCpXqR is decomposable.

(ii) When A is a division algebra and d � ps some prime power, the Chow motive

MpXqZ (and also MpXqZ{pZ) is indecomposable.

Remark 3.7. Item (ii) holds also for MpXqZp ; see De Clercq [DC10, Rmq. 2.3].

Roughly speaking, Proposition 3.6 shows that the decomposition (34) is “truly non-

commutative”. The proof of proposition 3.6 relies on Karpenko’s incompressibility results

[Kar95] and on the description of the derived category of a Brauer-Severi variety [Ber09].
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Finally, we can lift motivic isomorphisms from Chow motive to noncommutative motives,

up to inverting enough coefficients.

Theorem 3.8. Let tXiu1¤i¤n (resp. tYju1¤j¤m) be irreducible smooth projective k-schemes

of dimension dXi (resp. dYj ), d :� maxtdXi , dYj | i, ju, and tliu1¤i¤n (resp. tlju1¤j¤m)

arbitrary integers. Assume that Z � R and 1{p2dq! P R. Under these assumptions, we have

the following implication

`iMpXiqR b Lbli � `jMpYjqR b Lblj ñ `iNCpXiqR � `jNCpYjqR .

As the following example shows, if one does not inverts the maximum of the dimensions,

the converse of the implication of Theorem 3.8 is false.

Example 3.9. The Chow motives MpXqZ and Mp pXqZ of an Abelian variety X and of its

dual pX are in general not isomorphic. However, thanks to the work of Mukai [Muk81], we

have NCpXqR � NCp pXqR for every commutative ring R.

II. From semiorthogonal decompositions to intermediate Jacobians

Let k be an algebraically closed of characteristic zero. In this Section, we recall the

definition of the Jacobian of a noncommutative motive as an Abelian variety, well defined

up to isogeny. In the case where X is a smooth projective variety, the noncommutative

Jacobian of DbpXq is isomorphic to the product of all the algebraic Jacobians of X, as

defined by Griffiths. If X has only such a Jacobian (the intermediate one) JpXq with a

natural principal polarization, one can identify noncommutative schemes AX components

of DbpXq whose dg-equivalence class identifies the Abelian variety JpXq with its principal

polarization. This result gives also a noncommutative analog to the famous Torelli theorem:

if the the isomorphism class of JpXq as principally polarized Abelian variety identifies the

isomorphism class of X, then so does the equivalence class of AX as a noncommutative

k-scheme.

II.1. (Polarized) intermediate Jacobians. Given an irreducible smooth projective

k-scheme X of dimension dX , Griffiths introduced in [Gri69] the associated Jacobians

J ipXq, 0 ¤ i ¤ dX � 1. In contrast with the Picard J0pXq � Pic0pXq and the Albanese

JdX�1pXq � AlbpXq varieties, the intermediate Jacobians are in general not algebraic,

see [Voi02, §12] for a detailed treatment. Nevertheless, they contain an algebraic torus

J iapXq � J ipXq defined by the image of the Abel-Jacobi map

AJ i : Ai�1
Z pXq Ñ J ipXq 0 ¤ i ¤ dX � 1 ,(35)

where Ai�1
Z pXq stands for the group of algebraically trivial cycles of codimension i � 1;

consult, e.g., Vial [Via13, §2.3] for further details.

In general, the Abelian varieties J iapXq are only well-defined up to isogeny. However,

in the case of curves, Fano threefolds, even dimensional quadric fibrations over P1, odd

dimensional quadric fibrations over rational surfaces, and also in the case of the intersection of

two (resp. three) quadrics of odd (resp. even) dimension, there is a single non-trivial algebraic

Jacobian JpXq :� J
pdX�1q{2
a pXq which carries moreover a canonical principal polarization;
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see Clemens and Griffiths [CG72]. This extra piece of structure is of major importance.

For example, in the case of a Fano threefold X the Abelian variety JpXq endowed with its

canonical principal polarization contains all the information about the birational class of X.

We distinguish these particular cases by the following definition.

Definition 3.10. An irreducible smooth projective k-scheme X of odd dimension dX �

2n� 1 is called verepresentable1 if:

(i) the group of algebraically trivial cycles Ai�1
Z pXq is trivial for i � n;

(ii) the group An�1
Z pXq admits an algebraic representative carrying an incidence polar-

ization; see [Bea77, §3.4].

(iii) the Abel-Jacobi map AJnpXq : An�1
Z pXq � Jna pXq gives rise to an isomorphism

An�1
Q pXq � Jna pXqQ.

Apart of trivial examples of schemes with J ipXq � 0 (such as projective spaces, smooth

quadrics, Grassmannians and other homogeneous spaces), examples of verepresentable schemes

include smooth projective curves of any genus and a large amount of Fano threefolds, and

complete intersection of two even (resp. three odd) dimensional quadrics, see [BT16b] for

an exhaustive list.

II.2. Jacobians of noncommutative schemes. Given a smooth projective k-scheme

X of dimension dX , one can then consider the Q-vector spaces

NH2i�1
dR pXq :�

¸
C,γi

Im
�
H1
dRpCq

H1
dRpγiqÝÑ H2i�1

dR pXq
�

0 ¤ i ¤ dX � 1 ,(36)

where C is a smooth projective curve and γi : MQpCq ÑMQpXqpiq a morphism in ChowpkqQ.

Intuitively speaking, (36) are the odd pieces of de Rham cohomology that are generated by

curves. By restricting the classical intersection bilinear pairings on de Rham cohomology

(see [And04, §3.3]) to these pieces one obtains

x�,�y : NH2dX�2i�1
dR pXq �NH2i�1

dR pXq ÝÑ k 0 ¤ i ¤ dX � 1 .(37)

Marcolli and Tabuada [MT14a] constructed the Jacobian functor

Jp�q : NChowpkqQ ÝÑ AbpkqQ

with values in the category of Abelian k-varieties up to isogeny. Given a noncommutative

Chow motive N , the Abelian variety JpNq is constructed as follows:

(i) firstly, the category of Abelian varieties up to isogeny AbpkqQ can be identified with

an Abelian semi-simple full subcategory of NNumpkqQ, via fully faithful functors

AbpkqQ Ñ NumpkqQ and NumpkqQ{�bQp1q Ñ NNumpkqQ, checking that passing to

the orbit category does preserve the fully faithfulness.

(ii) secondly, the semi-simplicity of NNumpkqQ implies that the noncommutative nu-

merical motive N admits a unique finite direct sum decomposition S1 ` � � � ` Sn

into simple objects;

1The fusion of the words “very” and “representable”.
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(iii) finally, one defines JpNq as the smallest piece of the noncommutative numerical

motive N � S1 ` � � � ` Sn which contains all the simple objects belonging to the

Abelian semi-simple full subcategory AbpkqQ.

By abuse of notations, if A is a smooth and proper noncommutative k-scheme, then we will

denote by JpAq :� JpUpAqq, and call this Abelian variety the Jacobian of the noncommuta-

tive scheme A. Even more abusive, but justified by the next results, if X is a smooth and

proper k-scheme, we will denote by JpXq :� JpDbpXqq.

As proved in [MT14a, Theorem 1.7], whenever the above pairings (37) are non-degenerate

for all i, one has an isomorphism JpXq �
±d�1
i�0 J

i
apXq in AbpkqQ. As explained in loc. cit.,

(37) is always non-degenerate for i � 0 and i � d � 1. Moreover, if Grothendieck’s stan-

dard conjecture of Lefschetz type is true for X, then (37) is non-degenerate for all i; see

Vial [Via13, Lemma 2.1]. This latter conjecture holds for curves, surfaces, Abelian vari-

eties, complete intersections, uniruled threefolds, rationally connected fourfolds, and for any

smooth hypersurface section, product, or finite quotient thereof. In particular, it holds for

all known examples of verepresentable varieties.

Example 3.11. Suppose that A is a noncommutative k-scheme with a full exceptional

sequence. Then JpAq � 0.

II.3. From semiorthogonal decompositions to intermediate Jacobians. Let X

and Y be two irreducible smooth projective k-schemes of dimensions dX and dY . Assume

that X and Y are related by the following categorical data:

There exist dg enhanced semi-orthogonal decompositions DbpXq � xAX ,AK
Xy and DbpY q �

xAY ,AK
Y y and an equivalence φ : AX � AY of noncommutative k-schemes.

In what follows, Φ denotes the splitting functor DbpXq Ñ AX
φ
� AY ãÑ DbpY q. As

recalled in Lemma 2.2, the assumption of Φ being a dg equivalence is equivalent to the

assumption of Φ being a Fourier-Mukai functor.

Theorem 3.12 ( [BT16b]). Let X and Y be two k-schemes as above. Assume also that

the above bilinear pairings (37) (associated to X and Y ) are non-degenerate. Under these

assumptions, the following holds:

(i) There is a well-defined morphism τ :
±dX�1
i�0 J iapXq Ñ

±dY �1
i�0 J iapY q in AbpkqQ.

(ii) Assume moreover that JpAK
Xq � 0. Under this extra assumption, the morphism τ

is split injective.

(iii) Assume furthermore that JpAK
Y q � 0. Under this extra assumption, the morphism

τ becomes an isomorphism.

Theorem 3.12 states how one can find noncommutative schemes inside DbpXq, from

which it is possible to reconstruct the algebraic intermediate Jacobians of X.

From Definition 3.10(i), one observes that whenever X is verepresentable, J iapXq � 0

for i � n. Consequently, there is a single non-trivial algebraic Jacobian JpXq :� Jna pXq

which, thanks to Definition 3.10(ii), carries a canonical principal polarization. Moreover,

Definition 3.10(iii) implies that this principally polarized Abelian variety is isomorphic, up

to isogeny, to An�1
Z pXq. In these cases, Theorem 3.12 can be strengthened as follows.
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Theorem 3.13. Let X and Y be two irreducible smooth projective k-schemes as in The-

orem 3.1(i)-(ii). Assume that X and Y are verepresentable. Under these assumptions,

the split injective morphism τ : JpXq Ñ JpY q preserves the principal polarization. When

JpAK
Y q � 0 the morphism τ becomes an isomorphism.

Notice that if X is a curve, AX � DbpXq, and Y is a verepresentable threefold, an analog

of Theorem 3.13 was proved in [BB13,BB12], without using the theory of noncommutative

motives but rather Fourier-Mukai functors and Chow motives. The basic case where Y is

also curve and AY � DbpY q was treated in [Ber07] still via Fourier-Mukai functors.

Recall that Clemens and Griffiths [CG72] have shown that the intermediate Jacobian of

a Fano threefold is a birational invariant in the following sense: if X is a smooth projective

rational threefold then there exist a finite number of smooth projective curves Ci such that

JpXq � `JpCiq as a principally polarized Abelian variety. We can see then how Theorem

3.13 provides an evidence to the fact that there should be a noncommutative scheme inside

DbpXq which contains informations on the birational equivalence class of X. This is indeed

true in the case of conic bundles, which will be treated in Chapter 4.

II.4. Categorical Torelli Theorems. One of the most striking applications of Theo-

rem 3.13 is the possibility to establish categorical Torelli-type Theorems for verepresentable

varieties. Namely, to establish whether a given noncommutative scheme, component of

DbpXq, identifies the isomorphism class of X. These theorems occur indeed whenever the

classical Torelli theorem holds, and are based on the possibility to reconstruct the interme-

diate Jacobian with its principal incidence polarization. Notice that Bondal and Orlov have

shown that if X is smooth and projective with ample or antiample canonical bundle, then the

dg equivalence class of DbpXq determines its isomorphism class, namely if DbpXq � DbpY q,

then Y is isomorphic to X. Hence, categorical Torelli theorems are interesting whenever

they provide a noncommutative scheme AX � DbpXq identifying the isomorphism class of

X. The following Theorem is based on Theorem 3.13.

Theorem 3.14. Suppose that either:


 X and Y are cubic threefolds, or


 X and Y are quartic double solids, or


 X and Y are intersections of two even dimensional quadrics, or


 X and Y are intersections of three odd dimensional quadrics.

Set

AX :� xOX , . . . ,OXpi� 1qyK, AY :� xOY , . . . ,OY pi� 1qyK.

where i � ipXq � ipY q is the index of X and Y . Then X is isomorphic to Y if and only if

AX is equivalent to AY .

In the case of cubic threefolds, Theorem 3.14 was proved in [BMMS12] using stability

conditions, and showing also that any splitting triangulated functor Φ of that type is a

Fourier-Mukai functor.
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II.5. Chow groups of intersections of quadrics. Another application of Theorem

3.12 is a description of Chow groups of intersections of quadrics of very low degree. As

explained in [BT16a], this gives an alternative proof of a Bloch-Beilinson type conjecture

for such varieties, for which a proof was already provided by Otwinowska [Otw99].

In general, let k be a field and X a complete intersection of multidegree pd1, . . . , drq in

Pn, with d1 ¤ . . . ¤ dr. One has the numerical invariant

κ :� r
n�

°r
j�2 dj

d1
s ,

where r�s denotes the integral part of a rational number. A careful analysis of the differ-

ent Weil cohomology theories of X led to the following conjecture of Beilinson-Bloch type

(explicitly stated by Paranjape in [Par94, Conjecture 1.8]):

Conjecture 3.15. There is an isomorphism CHipXqQ � Q for every i   κ.

Otwinowska proved Conjecture 3.15 in the case where X is a complete intersection of

quadrics, i.e., when d1 � � � � � dr � 2; see [Otw99, Cor. 1]. Otwinowska’s proof is based on

a geometric recursive argument. First, one establishes the induction step: if Conjecture 3.15

holds for complete intersections of multidegree pd1, . . . , drq, then it also holds for complete

intersections of multidegree pd1, . . . , dr, drq; see [Otw99, Theorem 1]. Then, one uses the

fact that Conjecture 3.15 is known in the case of quadric hypersurfaces. One should also

mention the work of Esnault-Levine-Viehweg [ELV97]. In loc. cit., a geometric proof of

Conjecture 3.15 for very small values of i was obtained via a generalization of Roitman’s

techniques.

If one further assumes that κ � rdX{2s, and that k � C is algebraically closed, then

Conjecture 3.15 admits an alternative proof, based on Theorem 3.12. The interest of such

proof is the clear interplay between semiorthogonal decompositions and algebraic cycles via

the theory of noncommutative motives.

Theorem 3.16. Conjecture 3.15 holds when:

(i) X is a complete intersection of two quadrics;

(ii) X is a complete intersection of three odd-dimensional quadrics.

The proof Theorem 3.16 is mainly based on Theorem 3.12 and on the semiorthogonal

decomposition of DbpXq described by Kuznetsov as a consequence of Homological Projective

Duality [Kuz08] (see also Theorem 2.21). In the cases of Theorem 3.16 we have that

DbpXq � xDbpPr, C0q,OX , . . . ,OXpi� 1qy,

where r � 1 in case (i) and r � 2 in case (ii), we denote by i is the index of X, and C0 is the

sheaf of even parts of the Clifford algebra associated to the span of the quadrics defining X.

We notice moreover that all involved functors are of Fourier-Mukai type, so we can consider

DbpP2, C0q as a noncommutative scheme (i.e. it comes with a natural dg enhancement).

Theorem 3.12 implies then that JpDbpPr, C0qq � JpXq �
±dX
i�0 J

i
apXq are isogenous

Abelian varieties. Then one can proceed by a case by case analysis (see [BT16a]).



Chapter 3. Noncommutative motives and algebraic cycles 63

If X is the complete intersection of two quadrics and dX is even, then DbpP1, C0q is gen-

erated by exceptional objects, so that CH�pXqQ is a finite Q-vector space by Grothendieck-

Riemann-Roch. A dimension count and a comparison with cohomologies described in [Rei72]

gives the proof.

IfX is the complete intersection of two quadrics and dX � 2n�1 is odd, then DbpP1, C0q �

DbpCq, where C Ñ P1 is the hyperelliptic curve ramified along the degeneration divisor. In

particular, JnpXq � JpCq is the only nontrivial Jacobian of X, and this isomorphism is

recovered via Theorem 3.12. Then A�pXqQ � JpXq � JpCq and CH�pXqQ{A
�pXqQ is a

finite vector space. The proof follows then from a dimension count.

If X is the complete intersection of three quadrics and dX � 2n�1 is odd, then consider

the associated quadric fibration Q Ñ P2 with even Clifford algebra C0 and degeneration

divisor C with its double cover rC Ñ C. Beauville describes of the intermediate Jacobian of

X [Bea77], as JnpXq � Prymp rC{Cq, where the latter denotes the Prym variety associated to

the discriminant double cover, as the only nontrivial Jacobian. From Theorem 3.12 we then

get JpDbpP2, C0qq � Prymp rC{Cq. To complete the proof, it is enough to calculateK0pP2, C0qQ
and count the dimension of CH�pXqQ{A

�pXqQ using the semiorthogonal decomposition and

Grothendieck-Riemann-Roch.

III. A noncommutative version of smash nilpotence conjecture

Let k be a base field and F a field of coefficients of characteristic zero. In a founda-

tional work [Voe95], Voevodsky introduced the smash-nilpotence equivalence relation �bnil

on algebraic cycles and conjectured its agreement with the classical numerical equivalence

relation �num. Concretely, given a smooth projective k-scheme X, he stated the following:

Conjecture V pXq: Z�pXqF {�bnil� Z�pXqF {�num.

Thanks to the work of Kahn-Sebastian, Matsusaka, Voevodsky, and Voisin (see [KS09,

Mat57,Voe95,Voi96] and also [And04, §11.5.2.3]), the above conjecture holds in the case

of curves, surfaces, and Abelian 3-folds (when k is of characteristic zero).

III.1. Noncommutative nilpotence conjecture. Recall from IV.2 the construction

of Noncommutative Numerical and smash-nilpotent motives. For a smooth and proper k-

scheme A, one can identify Homp1,Aq in each of the categories NNumpkqF and NVoevpkqF
with a quotient of K0pAq by an appropriate equivalence relation. Indeed, the ideals defined

by (13) and (14) respectively endow the Grothendieck group K0pAq with a b-nilpotence

equivalence relation �bnil and with a numerical equivalence relation �num. Motivated by

Conjecture V pXq, we stated in [BMT14] the following conjecture:

Conjecture VNCpAq: K0pAqF {�bnil� K0pAqF {�num.

If A � DbpXq for some smooth projective k-scheme X, we will abuse by notation by

setting VNCpXq :� VNCpD
bpXqq. In [BMT14] it is proved that V pXq and VNCpXq coincide.

Theorem 3.17. Conjecture V pXq is equivalent to conjecture VNCpXq.
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The proof of Theorem 3.17 relies on the existence of the following diagram:

(38) ChowpkqF

��

π // ChowpkqF { �bF p1q

��

R // NChowpkqF

��
VoevpkqF

��

π // VoevpkqF { �bF p1q

��

Rbnil // NVoevpkqF

��
NumpkqF

π // NumpkqF{�bF p1q
Rnum

// NNumpkqF ,

where π are the natural functors andR, Rbnil andRnum are fully faithful (see [BMT14, Prop.

4.2]), and the fact that:

HomVoevpkqF{�bF p1q
pSpecpkq, Xq � Z�pXqF {�bnil

HomNumpkqF{�bF p1q
pSpecpkq, Xq � Z�pXqF {�num .

The identification of V pXq and VNCpXq is then obtain via the fully faithful functors Rbnil

and Rnum.

III.2. From semiorthogonal decomposition to a proof of Voevodsky’s conjec-

ture. Theorem 3.17 can be applied to give new examples of varieties X such that V pXq

holds. The general idea is to consider varieties X with a semiorthogonal decomposition

DbpXq � xA1, . . . ,Any and check VNCpAiq for the noncommutative schemes Ai. Indeed, if

VNCpAiq holds for all i � 1, . . . , n, then VNCpXq holds, so that V pXq holds by Theorem

3.17. Here is a list of applications (see [BMT14]).

Quadric fibrations. Let S be a smooth projective k-scheme and q : Q Ñ S a flat

quadric fibration of relative dimension n with Q smooth. Let C0 be the associated sheaf of

even parts of the Clifford algebra. Then we have the following semiorthogonal decomposition

[Kuz08]:

DbpXq � xDbpS, C0q,D
bpSq1 . . . ,D

bpSqn�1y,

where DbpSqi � DbpSq and all the involved functors are Fourier-Mukai and hence naturally

dg enhanced (compare with Lemma 2.2). The noncommutative scheme DbpS, C0q has a

geometrical description in the case where the discriminant divisor ∆ is smooth: if n is odd,

we denote by pS the root stack of S with Z{2Z-structure along ∆. If n is even, we denoterS Ñ S the discriminant double cover ramified along ∆. In both cases, there is an Azumaya

algebra B0 and an equivalence of noncommutative schemes DbpS, C0q � DbprS,B0q (resp.

DbppS,B0q), see [Kuz08] for more details.

Theorem 3.18. The following holds:

(i) We have V pQq ô VNCpD
bpS, C0qq � V pSq.

(ii) When the discriminant divisor of q is smooth and n is even, we have V pQq ô V prSq�
V pSq. As a consequence, V pQq holds when dimpSq ¤ 2, and becomes equivalent to

V prSq when S is an Abelian 3-fold and k is of characteristic zero.
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(iii) When the discriminant divisor of q is smooth and n is odd, we have V pQq ô

VNCpD
bppS,B0qq�V pSq. As a consequence, V pQq becomes equivalent to VNCpD

bppS,B0qq

when dim pSq ¤ 2. This latter conjecture holds when S is a curve or a rational sur-

face and k is algebraically closed.

We notice that the difference between the even and the odd dimensional case is due

to the fact that in the even dimensional case rS is a smooth and proper scheme, so that

UpDbprS,B0qqF � NCpSqF for any field F of characteristic zero, as a consequence of Tabuada

and Van den Bergh’s result [TVdB15]. On the other hand, if S is a curve or a rational

surface, then an explicit description of ppS,B0q allows to conclude (see [BMT14] for more

details).

Intersection of quadrics. Let X be a smooth complete intersection of r quadric hyper-

surfaces in Pm. The linear span of these r quadrics gives rise to a hypersurface Q � Pr�1�Pm,

and the projection into the first factor to a flat quadric fibration q : Q Ñ Pr�1 of relative

dimension m� 1. The decompositions described in Theorem 2.21 give the following result.

Theorem 3.19. The following holds:

(i) We have V pXq ô VNCpD
bpPr�1, C0qq.

(ii) When the discriminant divisor of q is smooth and m is odd, we have V pXq ô

V p�Pr�1q. As a consequence, V pXq holds when r ¤ 3.

(iii) When the discriminant divisor of q is smooth and m is even, we have V pXq ô

VNCpD
bpzPr�1,B0qq. This latter conjecture holds when r ¤ 3 and k is algebraically

closed.

Remark 3.20. (Relative version) As Theorem 2.21 is stated for relative complete intersec-

tions, Theorem 3.19 has a relative analogue with X replaced by a generic relative complete

intersection X Ñ S of r quadric fibrations Qi Ñ S of relative dimension m � 1. Items (i),

(ii), and (iii), hold similarly with Pr�1 replaced by a Pr�1-bundle T Ñ S, with V p�Pr�1q re-

placed by V p rT q � V pSq, and with VNCpD
bpzPr�1,B0qq replaced by VNCpD

bp pT ,B0qq � V pSq,

respectively. Note that thanks to the relative item (ii), conjecture V pXq holds when r � 2

and S is a curve.

Linear sections of Grassmannians, determinantal varieties. Following Kuznetsov

[Kuz06], consider the following two classes of schemes:

(i) Let X be a generic linear section of codimension r of the Grassmannian Grp2,W q

(with W � k`6) under the Plücker embedding, and Y the corresponding dual linear

section of the cubic Pfaffian Pfp4,W �q in PpΛ2W �q.

For example when r � 3, X is a Fano 5-fold; when r � 4, X is a Fano 4-fold; and when

r � 6, X is a K3 surface of degree 14 and Y a Pfaffian cubic 4-fold. Moreover, X and Y are

smooth whenever r ¤ 6.

(ii) Let X be a generic linear section of codimension r of the Grassmannian Grp2,W q

(with W � k`7) under the Plücker embedding, and Y the corresponding dual linear

section of the cubic Pfaffian Pfp4,W �q in PpΛ2W �q.
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For example when r � 5, X is a Fano 5-fold; when r � 4, X is a Fano 4-fold; when r � 8,

Y is a Fano 4-fold; and when r � 9, Y is a Fano 5-fold. Moreover, X and Y are smooth

whenever r ¤ 10.

Homological Projective Duality between Grp2,W q and Pfp4,W �q was proved by Kuznetsov

and gives in these cases a noncommutative k-scheme A as a component both of DbpXq and

DbpY q and in such a way that the orthogonal complements are both generated by excep-

tional objects, see [Kuz06]. Theorem 3.17 gives then another family of examples of varieties

satisfying V .

Theorem 3.21. Let X and Y be as in the above classes (i)-(ii). Under the assumption that

X and Y are smooth, we have V pXq ô V pY q. This conjecture holds when r ¤ 6 (class (i)),

and when r ¤ 6 and 8 ¤ r ¤ 10 (class (ii)).

Other similar examples can be obtained via Homological Projective Duality, let us just

cite another example. Let Zrm,n be as in Section IV. SetX and Y to be (geometric) resolutions

of singularities of dual linear sections of Zrm,n and Zm�rm,n respectively. As above, Theorem

3.17 can be applied to have a family of examples of varieties satisfying V . Indeed, there

is a noncommutative scheme C, component of both DbpXq and DbpY q whose orthogonal

complements, if not empty, are generated by exceptional objects.

Theorem 3.22. Let X and Y be (geometric) resolutions of singularities of dual linear sec-

tions of dual determinantal varieties. Then V pXq ô V pY q. In particular V pXq and V pY q

both hold whenever dim pY q ¤ 2 or dim pXq ¤ 2.

Moishezon manifolds. A Moishezon manifold X is a compact complex manifold such

that the field of meromorphic functions on each component of X has transcendence degree

equal to the dimension of the component. As proved by Moishezon [Moi], X is a smooth

projective C-scheme if and only if it admits a Kähler metric. In the remaining cases, Artin

[Art70] showed that X is a proper algebraic space over C.

Let Y Ñ P2 be one of the non-rational conic bundles described by Artin and Mumford

in [AM72], and X Ñ Y a small resolution. In this case, X is a smooth (non necessarily

projective) Moishezon manifold, and we consider the noncommutative scheme perfdgpXq.

Ingalls and Kuznetsov construct in [IK15] a semiorthogonal decomposition:

perfdgpXq � xA, E1, E2y,

where Ei are exceptional and A is a noncommutative scheme, component of DbpSq for S the

Enriques surface associated to Y (see [IK15] for details). Since V pSq holds, VNCpSq holds

and so does VNCpAq. We obtain then the following result.

Theorem 3.23. Conjecture VNCpperfdgpXqq holds for the above resolutions.



CHAPTER 4

Semiorthogonal decompositions in birational geometry

This Chapter is devoted to study how semiorthogonal decompositions and noncommu-

tative schemes can detect birational properties of a given projective k-variety X. The idea

of studying birational geometry, especially for Fano varieties, using semiorthogonal decom-

positions goes back to the Moscow school, and in particular to Bondal and Orlov, as they

point out in their 2002 ICM address [BO02].

Later, Kuznetsov sketched in [Kuz10] the definition of a Griffiths component of the

noncommutative scheme DbpXq (or some of its resolution of singularities). Roughly speak-

ing, it would be the noncommutative scheme that one gets as the orthogonal complement

to all the noncommutative subschemes of DbpXq which are representable in dimension

dim pXq� 2. Having such a component well defined would give a birational invariant, as ex-

plained in [Kuz15], but requires for example the Jordan-Hölder property for semiorthogonal

decompositions, which does not hold in general (see Example 1.52).

It is then a very difficult task to know whether such an invariant exists, but it does

in the case of Del Pezzo surfaces over a general field [AB15], as we will see in Section

II. However, let us trace the motivating inspiration behind the idea of Kuznetsov, by re-

calling Clemens-Griffiths’ construction of a birational invariant for complex threefolds with

principally polarized intermediate Jacobian [CG72].

If X is a smooth complex threefold with H1,0pXq � H3,0pXq � 0, then JpXq :� J3pXq is

a principally polarized Abelian variety (indeed, this is a case of a verepresentable threefold,

as defined in Def. 3.10). Suppose that X 1 is also smooth and projective and that ρ : X 99K X 1

is a birational map. In particular H1,0pX 1q � H3,0pX 1q � 0 as well. Hironaka’s resolution of

singularities provides a commutative diagram

(39) rX
σ

  A
AA

AA
AA

A

ε

��
X

ρ //___ X 1,

where ε : rX Ñ X is a composition of a finite number of smooth blow-ups, and σ : rX Ñ X 1

is a birational morphism. Clemens and Griffths show that then JpX 1q � Jp rXq and that

Jp rXq � JpXq ` JpC1q ` . . .` JpCrq for some smooth curve Ci (the centers of the blow-ups

composing ε) as principally polarized Abelian varieties. They key of Clemens and Griffiths’

idea is that the category of principally polarized Abelian varieties is semisimple, so that the

maximal component AX � JpXq which is not split by Jacobian of curves is well defined and

a birational invariant, see [CG72] for more details.
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On the other hand, for k any field with resolution of singularities, X of any dimension,

and ρ : X 99K X 1 birational with X 1 smooth, one can consider the diagram (39). We have

that σ�DbpX 1q � Dbp rXq is admissible, and Dbp rXq � xε�DbpXq,DbpZ1q, . . . ,D
bpZsqy where

Zi are the centers of the blow-ups composing ε (repetitions must be allowed). Based on

these arguments, on motivic constructions in the case where weak factorization holds, and

inspired by Kuznetsov’s original idea, we define categorical representability and ask about it

providing criteria of nonrationality. Moreover, we can construct a noncommutative motivic

rational defect, a quite weak invariant, which anyway gives some evidence to categorical

representability to be an interesting notion to explore. This, together with some more

detailed analysis of the Mori fiber space case, is the content of the first Section.

In the rest of the Chapter, we describe how this approach is fruitful in the case of

geometrically rational surfaces, complex threefolds such as conic bundles, and some complex

fourfolds.

I. Categorical representability and motivic measures

I.1. Categorical representability for schemes. In this section, we provide some

general argument to motivate the idea that representability, as defined in 1.44, should play

a role in studying birational geometry. Let X be a projective k-scheme. Recall from 1.38

the notion of noncommutative resolution of singularities for X. First of all, we define the

notion of categorical representability of schemes.

Definition 4.1 ( [BB12]). Let X be a projective k-variety. We say that X is categorically

representable in dimension m (or equivalently in codimension dim pXq � m) if there is a

noncommutative resolution of singularities B of X which is representable in dimension m.

We will use the following notations:

rdimcatpXq :� mintrdimB | B is a nc resolution of singularities of Xu

rcodimcatpXq :� dim pXq � rdimcatpXq,

whenever at least one such a representable B exists1.

Example 4.2. If X � Pn is a projective space, then rdimcatpXq � 0. Indeed, DbpXq is

generated by the full exceptional sequence xOX , . . . ,OXpnqy, see [Bei78].

If X is smooth and such that DbpXq has no nontrivial semiorthogonal decomposition,

then rdimcatpXq � dim pXq if we assume that there is no fully faithful functor DbpXq Ñ

DbpY q for any Y with dim pY q   dim pXq. These two conditions hold for example if X is a

curve of positive genus, see [Oka11] for indecomposability, and use Theorem 3.12 to prove

the second property. Other examples of semiorthogonally indecomposable derived categories

include some complex surfaces [KO15], and connected varieties with trivial canonical bundle

[Bri99, Ex. 3.2]. The second property is more subtle in this case, but can still be shown in

some cases using deeper geometrical cycle-theoretic arguments, as for example the infinite

dimension of the Griffths group of a Calabi–Yau threefold.

1Notice that, thanks to Kuznetsov-Lunts’ result [KL12, Thm. 1.4], such a B exists whenever X is separated
of finite type and k is of characteristic zero.



Chapter 4. Semiorthogonal decompositions in birational geometry 69

Let us restrict for some paragraph to the smooth and projective case. In this case

categorical representability has a geometric interpretation.

Proposition 4.3. Let X be a smooth projective k-variety. We have that rdimcatpXq ¤ m

if and only if there exist smooth projective varieties Y1, . . . , Yr and objects Ei in DbpYi�Xq,

such that, for any i � 1, . . . , r, we have dim pYiq ¤ m, and ΦEi are splitting functors whose

images form a semiorthogonal set and generate DbpXq.

Proof. First of all, suppose that such Yi and Ei exist. Let us denote by Ai :� ImΦEi
the admissible subcategories of DbpXq. The noncommutative schemes Ai are components of

DbpYiq, so that repAi ¤ m for any i � 1, . . . , r. Since DbpXq � xA1, . . . ,Ary, we get that

rdimcatpXq ¤ m.

On the other hand, suppose that rdimcatpXq ¤ m. Then there is a semiorthogonal de-

composition DbpXq � xA1, . . . ,Ary with rdimAi ¤ m for all i � 1, . . . , r. Up to refining the

semiorthogonal decomposition, we have, by Definition 1.44 of representability of a noncom-

mutative scheme, that Ai is admissible in some DbpYiq with dim pYiq ¤ m. We obtain then

splitting functors Φi : DbpYiq Ñ DbpXq of dg enhanced triangulated categories, which are

Fourier-Mukai by Lemma 2.2. l

Remark 4.4. Suppose that X is a projective, nonsmooth k-scheme. We would like to extend

Proposition 4.3 to this case, where DbpXq is replaced by some resolution of singularities B,

which satisfies the minimality defining rdimcatpXq. The resolution that most fit this aim is

probably the one given in Definition 1.42, in which case B is, locally over X, described as

an OX -algebra B. In this case we can extend Proposition 4.3 by asking that the objects Ei
are, locally over X, sheaves of B-algebras.

Proposition 4.3 also explains the choice of the terminology, since the categorical repre-

sentability of a variety X gives in particular that the noncommutative motive NCpXq is

a submotive of NCpY1q ` . . . ` NCpYrq which is in turn equal to NCpY1 > . . . > Yrq, the

noncommutative motive of a (disconnected) variety of dimension bounded by m.

We start investigating the motivations that led us to define categorical representability

as a useful tool in birational geometry with the following simple observation.

Lemma 4.5. Let X and Y be smooth and projective k-schemes and σ : Y Ñ X a morphism

such that σ�OY � OX and Riσ�OY � 0 for i � 0. For example, σ is a divisorial contraction,

or a Mori fiber space. Then Lσ� : DbpXq Ñ DbpY q is fully faithful.

Proof. For any A and B objects in DbpXq, we have

HomY pLσ
�A,Lσ�Bq � HomXpA,Rσ�Lσ

�Bq � HomXpA,B bRσ�OY q � HomXpA,Bq,

by adjunction, projection formula and by our assumption respectively. l

Thanks to the work of Orlov [Orl93], we have a description of the derived category of a

blow-up. This implies that this operation preserves representability in codimension 2.

Lemma 4.6. Let Y Ñ X be a blow-up of smooth projective varieties along a smooth center.

If we assume rcodimcatpXq ¥ 2, then rcodimcatpY q ¥ 2.
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Proof. If Z � X is the center of the blow-up and has codimension c in X, then DbpY q �

xDbpXq,DbpZq1, . . . ,D
bpZqc�1y, where DbpZqi � DbpZq for any i � 1, . . . , c�1, see [Orl93].

The proof follows by definition of categorical representability. l

Corollary 4.7. Suppose that ε : Y Ñ Pn is a composition of blow-ups along smooth centers,

and n ¥ 2. Then rcodimcatpY q ¥ 2.

Proof. This follows straightforward from Lemma 4.6 and rdimcatpPnq � 0. l

Now, let ρ : Pn 99K X be a birational map. Resolving the singularities of ρ give a diagram

like (39), with a smooth and projective Y obtained by iterated smooth blow-ups of Pn and

a birational morphism σ : Y Ñ X. Using Lemma 4.5 and Corollary 4.7, we get that DbpXq

is admissible inside DbpY q and that rcodimcatpY q ¥ 2.

Notice anyway that the converse implication of Lemma 4.6 is highly nontrivial and not

known in general. Even more general, as remarked in §III.3, if a noncommutative scheme A is

such that rdimA � n, it is not known whether any noncommutative scheme B, admissible in

A, satisfies rdimB ¤ n. Hence, the fact that rcodimcatpY q ¥ 2 does not give any information

neither on rcodimcatpXq nor on any other admissible subcategory of DbpY q.

I.2. Motivic measures and a rational defect. We consider here the Grothendieck

ring of varieties K0pVarpkqq, which is defined by taking the free Z-module generated by

varieties over k, and taking the quotient by the so-called scissor relation, that is: rXs �

rZs� rU s whenever Z � X is a closed subvariety with open complement U , and r�s denotes

the class of a given variety in K0pVarpkqq. The sum of classes corresponds to the disjoint

union, rXs�rY s � rX >Y s and the product to the product of varieties rXs�rY s � rX�Y s.

The unit 1 of K0pVarpkqq is the class of Specpkq, while we denote by L � rA1
ks the class of

the affine line. Notice that rP1
ks � 1� L.

A motivic measure is a ring homomorphism µ : K0pVarpkqq Ñ R to some commutative

ring R. There are many natural examples of motivic measures, but we are here mainly inter-

ested in the one defined by Larsen and Lunts in [LL03] in the case where weak factorization

holds, for example if k has characteristic zero [AKMW02]. We assume working over such

a k in this subsection.

Using weak factorization, Bittner [Bit04] has provided another presentation ofK0pVarpkqq

as the Z-module generated by isomorphism classes of smooth proper varieties with the rela-

tions rXs�rZs � rY s�rEs whenever Y Ñ X is the blow-up along the smooth center Z with

exceptional divisor E, see [Bit04]. Larsen and Lunts [LL03] have then shown that there

is a motivic measure µLL : K0pVarpkqq Ñ ZrSBs to the free Z-module generated by stable

birationality classes. Moreover, kerµLL � xLy is the ideal generated by the class L of the

affine line. It follows that (as remarked in [GS14]), if X is rational of dimension n, then:

(40) rXs � rPns � LMX

in K0pVarpkqq, where MX is a Z-linear combination of classes of varieties of dimension

bounded above by n� 2. Galkin and Shinder define then prXs � rPnsq{L P K0pVarpkqqrL�1s

as the rational defect of X [GS14].
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The second motivic measure we want to consider was defined by Bondal, Larsen, and

Lunts [BLL04], still in the case where weak factorization holds. Recall the definition of

the Grothendieck ring of noncommutative k-schemes from §III.4. Then there is a measure

defined by

µBLL : K0pVarpkqq ÝÑ PT pkq

rXs ÞÝÑ x :� IpDbpXqq.

We notice that we have a natural filtration by the dimension on the ring K0pVarpkqq and that

we have µBLLpK0pVarpkqqdq � PTdpkq. However, for any d, we have µBLLpPdq � pd � 1qe,

which is in PT0pkq, while rPds is not in K0pVarpkqqi for any i   d.

Recall again that IpDbpP1qq � 2e and that rP1s � 1 � L in K0pVarpkqq. It follows that

µBLLpLq � e in PT pkq. Applying µBLL to (40), we obtain that if X is rational of dimension

n, then x is in PTn�2pkq. This give a proof to the following Proposition.

Proposition 4.8. If X is a smooth and projective variety of dimension n such that x is not

in PTn�2pkq, then X is not rational.

Definition 4.9. If X is a smooth and projective variety of dimension n, the class of the

element x in the group PT pkq{PTn�2pkq is called the noncommutative motivic rational defect

of X.

We end by commenting the fact that Proposition 4.8 is a very weak result. Indeed, as

remarked above, we have an implication rdimcatpXq ¤ i ñ x P PTipkq, but the converse

implication is not known, even for i � 0. For example, it is not known that PTnpkq �

PTn�2pkq in full generality (though, this is true for n ¤ 4). Anyway, this let us conclude the

speculations of these two subsections by the following question.

Question 4.10. Is categorical representability in codimension 2 a necessary condition for

rationality? That is, if X is rational, do we have rcodimcatpXq ¥ 2?

Before getting into more details about Question 4.10 for Mori fiber spaces, let us briefly

remark how noncommutative motives could play a role in this context as well. Recall the

definition of the category NChowpkq from IV, and the filtration by thick subcategories

NChowdpkq � NChowpkq. As remarked previously, we have that if A has rdimA � d,

then UpAq is in NChowdpkq.

Moreover, one can also consider the Grothendieck ring K0pNChowpkqq of the additive

category NChowpkq, and the motivic measure µnc defined by Tabuada (see [Tab15, 4.2.1]):

µnc : K0pVarpkqq ÝÑ K0pNChowpkqq

rXs ÞÝÑ rNCpXqs,

where r�s also denotes the class of a noncommutative Chow motive in the Grothendieck

ring. As noticed by Tabuada, the map µnc factors through the map µBLL, via the natural

map PT pkq Ñ K0pNChowpkqq [Tab15, Prop. 4.8]. This would let us give an analog (and,

in general, weaker) statement of Proposition 4.8, and also to ask whether X being rational

of dimension n implies NCpXq being in NChown�2pkq.
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I.3. The case of Mori fiber spaces. Question 4.10 is certainly intriguing but probably

too challenging, at least in whole generality. In this last subsection, we explain a possible

approach via Mori fiber spaces. Again, we start by assuming X to be smooth and projective,

even if we could consider noncommutative resolution of singularities. However, this first

assumption makes the explanations much easier and we will come back to more general case

at the end of this subsection.

By a Mori fiber space we mean a flat morphism π : X Ñ Y between projective varieties

of relative dimension m ¡ 0 and such that the relative Picard group PicpX{Y q � Z is free of

rank one, and the relative canonical bundle ωX{Y is antiample. In particular, if OX{Y p1q is

an ample generator of PicpX{Y q, then ωX{Y � OX{Y p�iq and we call i the index of X over

Y . Notice that if Y � Specpkq, a Mori fiber space X is a Fano variety of Picard rank one and

index i. Lemma 4.5 gives that π�DbpY q is an admissible subcategory of DbpXq. Moreover, let

us denote by DbpY qpjq :� π�DbpY q bOX{Y pjq. Then DbpY qpjq is also admissible in DbpXq

and equivalent to DbpY q. A relative Kawamata-Viehweg vanishing gives the following result.

Proposition 4.11. Let π : X Ñ Y be a Mori fiber space of relative index i. Then there is

a semiorthogonal decomposition

DbpXq � xAX{Y ,D
bpY q, . . . ,DbpY qpi� 1qy,

for a noncommutative scheme AX{Y .

Notice that for any integer r, the sequence xDbpY qprq, . . . ,DbpY qpi�r�1qy is semiorthog-

onal, and its complement is a noncommutative scheme, dg-equivalent to AX{Y . A simple

application Proposition 4.8 indicates that in the case of Mori fiber spaces the noncommuta-

tive scheme AX{Y is the one which could obstruct nonrationality.

Corollary 4.12. Let X Ñ Y be a Mori fiber space of relative dimension m, and let n �

dim pXq. Assuming that either Y is rational or m ¡ 1, we have that x is in PTn�2pkq if and

only if IpAX{Y q is in PTn�2pkq.

Proof. By the assumptions on Y , there exists d ¤ n � 2 such that the class y is in

PTdpkq � PTn�2pkq. Using the semiorthogonal decomposition from Proposition 4.11, we get

that x � IpAX{Y q modulo elements in PTn�2pkq, and the proof follows. l

Notice that we can extend our analysis to any rational map ρ : X 99K Y , which can

be resolved into a Mori fiber space rX Ñ Y . For example, if X is a cubic threefold, and

X 99K P2 is a projection off a line contained in X, then rX Ñ P2 is a conic bundle. We

denote AX{Y,ρ :� A
rX{Y

Corollary 4.13. Suppose that there is a rational map ρ : X 99K Y and a commutative

diagram:

rX
π

��?
??

??
??

ε

��
X

ρ //___ Y,
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where π : rX Ñ Y is a Mori fiber space of relative dimension m and ε : rX Ñ X is a blow up

along a smooth center. Assuming that either Y is rational or m ¡ 1, we have that x is in

PTn�2pkq if and only if IpAX{Y,ρq is in PTn�2pkq.

Proof. We notice that Dbp rXq has two decompositions, one given by the Mori fiber

space map rX Ñ Y as in Proposition 4.11 and the other given by the blow-up of X, hence

containing a copy of DbpXq and a finite number of copies of the blown-up loci. A proof similar

to the one of Corollary 4.12 applies then again: once we write the two decompositions of rx,

we deduce that x � IpAX{Y,ρq modulo PTn�2pkq. l

Remark 4.14. The previous arguments are explained in the cases where all the involved

varieties are smooth. However, this is just a comfortable but not necessary assumption, since

we can replace DbpXq by a noncommutative resolution of singularities whenever it exists.

II. Birational geometry of geometrically rational surfaces

Let k be a field, ks a separable closure, and k̄ an algebraic closure. A smooth projective

geometrically integral surface X over k such that X � X �k k̄ is k̄-rational is called a

geometrically rational surface. Recall that X is a del Pezzo surface if ω_X is ample. The

degree of a geometrically rational surface is the self-intersection number d � ωX � ωX .

When the base field k is not algebraically closed, the existence of k-rational points on a

variety X (being a necessary condition for rationality) is a major open question in arithmetic

geometry. We consider, in the case where X is a del Pezzo surface, as a natural extension of

Question 4.10, the following question formulated by H. Esnault.

Question 4.15. Let X be a smooth projective variety over a field k. Can the bounded

derived category DbpXq of coherent sheaves detect the existence of a k-rational point on X?

In this section, we describe how to get a positive answer to Question 4.10 for del Pezzo

surfaces over any field, and we moreover construct a noncommutative scheme GKX (the

Griffiths-Kuznetsov component), which is a birational invariant for such surfaces. Moreover,

we show how semiorthogonal decompositions naturally provide vector bundles whose second

Chern classes are related to the existence of closed point of given degree, giving a positive

answer to Question 4.15. All the material is taken from [AB15].

II.1. Generalities on geometrically rational surfaces. We say that a field exten-

sion l of k is a splitting field for X if X �k l is birational to P2
l via a sequence of monoidal

transformations centered at closed l-points. An important fact is that geometrically rational

surfaces are separably split, see [Coo88, Thm. 1], [VA13, Thm. 1.6].

A surface X is minimal over k, or k-minimal, if any birational morphism f : X Ñ Y ,

defined over k, is an isomorphism. Over a separably closed field, the only minimal rational

surfaces are the projective plane and projective bundles over the projective line. Over a

general field, this is no longer true. Minimal geometrically rational surfaces have been

completely classified, and we have the following list (see [Man74], and the recent survey

[Has09]):

(1) X � P2
k is a projective plane, so PicpXq � Z, generated by the hyperplane Op1q;
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(2) X � P3
k is a smooth quadric and PicpXq � Z, generated by the hyperplane section

Op1q;
(3) X is a del Pezzo surface with PicpXq � Z, generated by the canonical class ωX ;

(4) X is a conic bundle f : X Ñ C over a geometrically rational curve, with PicpXq �

Z` Z.

Examples of del Pezzo surfaces with PicpXq � Z generated by ωX include non-k-rational

Severi-Brauer surfaces, that is non-k-rational surfaces X over k such that X � P2
k̄
. The set

of isomorphism classes of Severi-Brauer surface is in bijection with the set of k-isomorphism

classes of central simple algebras A of degree 3 over k, and we will write X � SBpAq

accordingly. By a theorem of Châtelet, a Severi-Brauer surface X is k-rational if and only

if X is k-isomorphic to projective space if and only if Xpkq � ∅, cf. [GS06, Thm. 5.1.3]. In

this case, we say that X splits and remark that X always splits after a finite separable field

extension. As intersection numbers do not change under scalar extension, X has degree 9.

We finally notice that SBpAq � SBpBq if and only if A � B are Brauer-equivalent,

while SBpAq and SBpBq are birationally equivalent if and only if A and B generate the same

subgroup of the Brauer group Brpkq. This latter fact is conjectured by Amitsur (cf. [Ami55])

to hold in any dimension. In particular, SBpAq and SBpA2q are birational but not isomorphic

k-varieties.

Denote by ρpXq the Picard rank of X. Minimal surfaces in cases (1), (2) and (3) are

Fano varieties of Picard rank one and index2 3, 2 and 1 respectively. Minimal surfaces in

cases (4) have a structure of Mori fiber space X Ñ C. Notice that a necessary condition for

the rationality of X is the rationality of C, that is C � P1. This isomorphism is equivalent

rdimcatpCq � 0.

Manin has proved [Man74, Thm. 29.4] that, given a (non necessarily minimal) del Pezzo

surface of degree d ¥ 2, the existence of a k-rational point (not lying on any exceptional

curve if d ¤ 4) implies the existence of a unirational parametrization, i.e., a map P2
k 99K X

of finite degree. In particular, if degpXq ¥ 5, this map has degree one. It follows that if X

is a del Pezzo surface of degree d ¥ 5, Xpkq is nonempty if and only if X is k-rational.

II.2. Categorical representability and the Griffiths-Kuznetsov component for

del Pezzo surfaces. Let X be a minimal del Pezzo surface, so that the structure map

X Ñ Specpkq is a Mori fiber space of index i ¤ 3. We consider the noncommutative scheme

AX � AX{k, and notice that rkK0pAXq � 3� i and


 AX � 0 if i � 3, that is if X � P2
k and

DbpXq � xO,Op1q,Op2qy


 AX � Dbpk, C0q if i � 2, that is if X � P3
k is a quadric, where C0 is the even Clifford

algebra associated to X (see [ABB14,Kuz08]), and

DbpXq � xDbpk, C0q,O,Op1qy

2By index, we mean here the index of X as a Fano variety. Another notion of index for such surfaces is given
by the greatest common divisor of degrees of closed points. Later, we will consider this notion and name it
point-index just to mark the difference.
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 AX � xωXy
K if i � 1, and

DbpXq � xAX ,Oy.

In order to understand the structure of AX in the third case, we rely on the description of

all possible full exceptional collections for del Pezzo surfaces over algebraically closed fields

which was obtained by Rudakov, Gorodentsev-Rudakov, Kuleshov-Orlov and Karpov-Nogin

(see, e.g., [GR87], [Rud89], [KO94], [KN98]). While these authors restrict to working

over algebraically closed fields of characteristic zero, their proofs are based on properties of

vector bundles and on the description of a del Pezzo surface as a blow-up of P2 (or of a

quadric surface as P1 � P1), hence they actually hold for any totally split del Pezzo surface,

in particular, they hold over any separably closed field.

Let us describe what is known for k � ks . Kuleshov-Orlov show that any exceptional

object in DbpXq is (a shift of) a vector bundle [KO94]. Recall the definition of excep-

tional block from §I.4. A 3-block exceptional collection is a full exceptional collection on

X whose exceptional objects form three exceptional blocks. Thanks to Rudakov [Rud89],

Gorodentsev-Rudakov [GR87] and Karpov-Nogin [KN98], there is a finite set (actually

maxt5�d, 1u if d � degpXq) of 3-block exceptional collections from which any other 3-block

exceptional collection can be obtained by mutations and tensoring the whole category by line

bundles; this holds unless X is the blow-up of one or two points in P2, in which case there

is no 3-block exceptional collection. We notice however that in the latter cases X is never

minimal. Moreover, these 3-block collections are completely classified, that is, we know the

minimal ones (where a collection is minimal if the bundles have minimal possible rank in the

set of all the collections that one obtain via mutations).

If k is general, and X is minimal, we have K0pXq � Z3. In the cases where X � P2,

or X is a quadric, we already have either AX � 0 or an algebraic description of AX . We

notice moreover that the decomposition DbpP2q � xO,Op1q,Op2qy is already the unique

minimal 3-block decomposition. Moreover, if X is a quadric, the three components of the

decomposition DbpXq � xDbpk, C0q,O,Op1qy base-change to the three blocks of the unique

minimal 3-block decomposition of Xks .

We then restrict to the cases of index 1, and X minimal. In order to produce semiorthog-

onal decompositions of DbpXq, we consider the minimal 3-block decompositions of Xks and

recall Proposition 1.57: if such a decomposition descend to the base field k, then we would

have a semiorthogonal decomposition

(41) DbpXq � xDbpl1, A1q,D
bpl2, A2q,D

bpl3, A3qy,

for li{k étale algebras and Ai P Brpliq central simple algebras. We also notice that X minimal

is equivalent to ρpXq � 1 which is in turn equivalent to K0pXq � Z3. The latter is then

equivalent to have that li{k is a field extension. An analysis of all the possible minimal

3-block decompositions gives the following result [AB15].

Theorem 4.16. Let X be a del Pezzo surface over a general field k of degree d.
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If d ¤ 4, and X is minimal then there is no decomposition of the form (41), and the

decomposition

DbpXq � xAX ,Oy
does not base-change to any 3-block decomposition of DbpXks q.

If d ¥ 5, then there is always a decomposition of the form (41), base changing to the

unique 3-block decomposition of DbpXks q. Moreover, Dbpl1, A1q � xOy, so that l1 � k and

A1 is trivial. The k-algebras A2 and A3 arise as endomorphism algebras of vector bundles

V2 and V3 respectively. If X is minimal, then AX � xDbpl2, A2q,D
bpl3, A2qy and li are field

extensions of k.

The statement of Theorem 4.16 gives a clear separation between high degree and low

degree surfaces. This separation should reflect the fact that low degree surfaces have a much

more complicated arithmetic than the high degree ones. Moreover, surfaces of high degree

are always either toric (for d ¥ 6) or rational (any degree 5 del Pezzo is rational, [SD72]).

Moreover, any minimal rational surface has degree d ¥ 5.

Let us first comment the low degree case. The proof of the statement is a verification

that the descent of any 3-block decomposition would contradict the minimality of X, because

it would imply that some exceptional divisor is defined on X. A minimal surface X with

d ¤ 4 is never rational. Moreover, unless d � 4 and Xpkq � ∅, such an X is birationally

rigid, that is, if X 1 99K X, then X 1 Ñ X is a birational morphism. It follows that AX is a

birational invariant. If d � 4 and x is a k-rational point, then the blow-up rX Ñ X of x has

a structure of conic bundle X Ñ P1, and AX � AX{P1 � DbpP1,B0q, where B0 is the sheaf

of even parts of the Clifford algebra associated to the conic bundle.

If d ¥ 5, then Theorem 4.16 recovers some decompositions which were already known in

the case of Brauer-Severi surfaces [Ber09], involution surfaces [Blu12] and degree 6 del Pezzo

surfaces [BSS11]. Besides, Theorem 4.16 gives a general criterion to construct semiorthogo-

nal decompositions of the form (41): given an exceptional block E � tE1, . . . , Eru in DbpXks q,

generated by vector bundles, consider the vector bundle W :�
Àr

i�1Ei. Then W is a gen-

erator for E. If there is a vector bundle V on X such that Vks � W`s for some s, then the

category xV y base changes to E, and we are in the setup of Proposition 1.57. This is the

way we produce the vector bundles V2 and V3 in Theorem 4.16, by considering the explicit

description of the minimal 3-block decompositions.

Definition 4.17. Let X be a minimal del Pezzo surface over a general field k of degree d.

We define the Griffiths-Kuznetsov component GKX as the following noncommutative scheme:


 if d ¤ 4, set GKX :� AX ,


 if d ¥ 5, set GKX :�
²
Ai nontrivial Dbpli, Aiq,

where Ai are the algebras appearing in Theorem 4.16, and Ai nontrivial means that the class

of Ai is nontrivial in the Brauer group Brpliq.

Notice that Ai nontrivial is equivalent to repDbpli, Aiq � 0. Indeed, one can show (see,

e.g., [AB15, Thm. 1.4.6], or the more general [Ant14]), that, given two fields K1 and K2

and two Azumaya algebras A1 and A2 over K1 and K2 respectively, then DbpK1, A1q �
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DbpK2, A2q if and only if K1 � K2 and A1 is Brauer equivalent to A2. The results from

Theorem 4.16 tell then that GKX encodes the information on the noncommutative schemes,

admissible in DbpXq, which are not representable in dimension 0.

Theorem 4.18. Let X be a del Pezzo surface of degree d over an arbitrary field k, and

assume that Xpkq � ∅ if d � 4, and that there is either a rational point or no point of degree

2 if X has degree 8. Then GKX is well defined and is a birational invariant.

In particular, X is rational if and only if GKX � 0, and the latter is equivalent to

rdimcatpXq � 0.

In the case where d ¤ 4, the proof relies on the fact that such surfaces are birationally

rigid. Notice moreover that we are excluding exactly those two cases where blowing a point of

minimal degree would give a conic bundle rX Ñ C, where C is a conic, and AX � DbpC,B0q

for B0 the Clifford algebra of the conic bundle. Hence these two del Pezzo surfaces can be

considered, both from a birational and a categorical point of view, as conic bundles.

II.3. Del Pezzo surfaces of degree d ¥ 5. Let X be a del Pezzo surface of degree

d ¥ 5. In this case, the semiorthogonal decomposition from Theorem 4.16 not only gives

the birational invariant GKX , but also a way to obtain information on the degree of closed

points on X from three vector bundles, and an answer to Question 4.15. Let us give some

more detail on the algebras Ai in all the cases.

Severi-Brauer surfaces. As recalled, if d � 9, then Xks � P2
ks , and there is an Azumaya

algebra A identifying the isomorphism class of X. The Brauer class of A has order 3, so

that the subgroup xAy � Brpkq is just xAy � t1, A,A2u. In this case, we have A2 � A and

A3 � A2, so that the statements of Theorem 4.16 are a consequence of Amitsur’s results.

However, one can explicitly show that GKX is a birational invariant by checking all the

possible Sarkisov links of such a surface (see [AB15, App. A]).

Involution surfaces. If d � 8, either X is the blow-up of P2
k in one point, and there

is nothing to show, or X is an involution variety, that is Xks is a quadric in P3
ks . In this

case, there is an Azumaya algebra A with an involution, such that SBpAq is a Severi-Brauer

threefold containing X. The involution gives a semisimple algebra B which is central over a

degree 2 extension l{k. In this case, A2 � A and A3 � B. First of all X is rational if and

only if A and B are trivial in Brpkq and Brplq respectively. The fact that GKX is a birational

invariant can be proved by checking all the possible Sarkisov links of such a surface.

Degree 7. If d � 7, then X is the blow-up of P2
k in either one point of degree 2 or in two

rational points. Anyway, there is nothing to show here.

Degree 6. If d � 6, then Colliot-Thélène, Karpenko and Merkurjev have constructed two

algebras B and Q associated to X [CTKM07]. We have that B is a degree 3 Azumaya

algebra over a quadratic extension of k, and Q is a degree 2 Azumaya algebra over a cubic

extension of k. We refer to [CTKM07] for more details, we just mention that these algebras

are related to toric presentations of X (see also [Blu10]). In this case, A2 � B and A3 � Q.

The fact that rationality is equivalent to Brauer triviality of these two algebras goes back to
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Colliot-Thélène, Karpenko and Merkurjev [CTKM07]. The fact that GKX is a birational

invariant can be proved by checking all the possible Sarkisov links of such a surface.

Degree 5. If d � 5, we have that Xpkq � ∅ and X is rational (see [SD72]). In this case,

we resolve the birational transformation X 99K P2
k by blowing-up a rational point. Explicit

calculations on the blow-up allow to show that A2 � k is the endomorphism algebra of a

simple rank 2 vector bundle, and A3 � l is a degree 5 extension arising as the endomorphism

algebra of a rank 5 vector bundle.

We turn now to Question 4.15. If d ¥ 5, we have that Xpkq � ∅ if and only if X

is k-rational (see [Man74, Thm. 29.4]). We have then the following simple Corollary of

Theorem 4.18.

Corollary 4.19. Let X be a del Pezzo surface of degree d ¥ 5. Then X has a k-rational

point if and only if rdimcatpXq � 0.

Let us recall that if X is a smooth projective surface, Hassett and Tschinkel [HT14,

Lemma 8] prove that the point-index of X can be recovered from DbpXq as the greatest

common divisor of the second Chern classes of objects. Here, the point-index 3 ind0pXq of a

variety X over k is the greatest common divisor of the degrees of closed points of X.

Let X be a del Pezzo surface of degree d ¥ 5. The semiorthogonal decompositions from

Theorem 4.16 provide, via the vector bundles generating each component, a way to calculate

the point-index ind0pXq. Indeed, any such X has a semiorthogonal decomposition

(42) DbpXq � xDbpl1, A1q,D
bpl2, A2q,D

bpl3, A3qy,

where each Dbpli, Aiq can be generated by a vector bundle (notice that Dbpl1, A1q � xOy �
xωXy, but we could pick-up higher rank vector bundles, such as ω`2

X to have nontrivial second

Chern classes).

Theorem 4.20. Let X be a del Pezzo surface of degree d ¥ 5. Then there are vector bundles

V1, V2, V3 generating the components of (42), such that ind0pXq � gcdtc2pViqu.

III. Rationality criteria for complex threefolds

Let k � C (or an algebraically closed field of characteristic zero). In this Section we

consider the approach outlined in Section I to threefolds. We denote hence by π : X Ñ Y a

Mori fiber space with dim pXq � 3 and Y rational. In particular, since dim pY q ¤ 2 and k is

algebraically closed, we have that Y is rational and rdimcatpY q � 0.

III.1. Intermediate Jacobians vs representability. Suppose that X is verepre-

sentable4. Using the theory of noncommutative motives, we have shown then that JpXq �

3this number is generally called index in the literature, but we don’t want to confuse it with the index of X
as a Fano variety, and we apologize for this unusual terminology. The 0 in the notation is meant to recall
that we consider degree of 0-dimensional subschemes.
4this is the case for almost all X as above: they all have a single principally polarized intermediate Jacobian
JpXq, but there are cases where the polarization is not known to be an incidence polarization.
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JpAX{Y q are isogenous Abelian varieties, see Theorem 3.12. If we moreover assume that

rdimAX{Y ¤ 1, that is

(43) AX{Y � xDbpC1q, . . . ,D
bpCrq, E1, . . . , Esy,

for smooth and projective curves Ci and exceptional objects Ej , Theorem 3.13 gives us that

JpXq � JpC1q` . . .` JpCrq as a principally polarized Abelian variety, so that the Clemens-

Griffiths component is trivial. This latter particular case of Theorem 3.12 was shown without

using noncommutative motives (but Fourier-Mukai functors instead, which actually amounts

to consider the same case in a different language) in [BB13,BB12].

Proposition 4.21. Let X Ñ Y be a verepresentable threefold Mori fiber space, with Y

rational. If repAX{Y ¤ 1, then rcodimcatpXq ¥ 2 and the Griffiths component AX � JpXq

is trivial.

More precisely, if AX{Y is decomposed as in (43), then JpXq � JpC1q ` . . . ` JpCrq as

principally polarized Abelian varieties.

Corollary 4.22. Let X be a threefold with nontrivial Griffiths component AX � JpXq.

Then rcodimcatpXq ¤ 1, for any Mori fiber space X Ñ Y , we have rdimAX{Y ¥ 2 and X is

not rational.

Proposition 4.21 can be considered as an evidence to Question 4.10: if rcodimcatpXq ¥

2, then one of the “classical” obstructions to rationality, that is, the Griffths component,

vanishes. The converse implication is not true in general, as we will see at the end of this

section. However, for many examples of rational Fano threefolds of Picard number one, for

which JpXq is split by curves, the corresponding semiorthogonal decomposition of AX can

be obtained by explicit constructions.

Trivial Jacobian. If X � P3, or a quadric in P4, or a Fano of index 2 and degree 5, or a

Fano index 1 and degree 22, then JpXq � 0 and X is rational. In all these cases repAX � 0,

so that rcodimcatpXq � 3, see [Bei78], [Kap88], [Orl91] and [Kuz96] respectively.

Jacobian of a curve. If X is the intersection of two quadrics and C a genus 2 curve, if X

has index one and degree 18 and C a genus 2 curve, if X has index 1 and degree 16 and C is a

plane quartic, if X has index 1 and degree 12 and C a genus 7 curve, then JpXq � JpCq and

X is rational. In all these cases, repAX � 1 and DbpCq � AX is admissible and its orthogonal

complement is generated by a finite number (possibly, none) of exceptional vector bundles;

whence rcodimcatpXq � 2, see [BO95], [Kuz05b], [Kuz05b], and [Kuz05a] respectively.

By a classification argument we are not far from saying that there are very few examples

which could contradict that a smooth Fano threefold X of Picard rank one being rational

implies rcodimcatpXq ¥ 2.

On the other hand, Corollary 4.22 is certainly very nice, but we notice that there non-

rational threefolds with trivial Griffiths invariant, as, for example the Artin and Mumford

example [AM72]. In this case, X is singular but can be resolved by blowing-up its ten

double points rX Ñ X.
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Proposition 4.23. Let X be the Artin-Mumford quartic double solid and rX Ñ X be the

blow-up of its ten double points. In particular Jp rXq � 0 and rX is not rational. Then Dbp rXq
is a noncommutative resolution of singularities of X and rcodimcatp rXq � 1.

Proof. The fact that rX is nonrational and has trivial Jacobian goes back to Artin and

Mumford original paper [AM72]: indeed, X has these properties, so does rX.

Hosono and Takagi [HT15] consider the Enriques surface S associated to X (the so-called

Reye congruence), and show that there is a semiorthogonal decomposition

Dbp rXq � xDbpSq, E1, . . . , E12y,

where Ei are exceptional objects. This is implies first that rcodimcatp rXq ¥ 1.

To prove the converse inequality, notice that we have K0p rXq � Z12 `K0pSq. Moreover,

the 2-torsion subgroup K0pSq2 of K0pSq is nontrivial: we have K0pSq2 � Z{2Z. Indeed, if S is

an Enriques surface, the Chern character is integral and gives an isomorphism between K0pSq

and the singular cohomology of S (similarly, one can argue by using the Bloch conjecture,

which is true for S, and the topological filtration of the Grothendieck group of S). In

particular, K0pSq � Z`PicpSq`Z and PicpSq � Z10`Z{2Z (see, e.g., [BHPVdV04, VIII

Prop. 15.2]). We conclude that K0p rXq2 � K0pSq2 � Z{2Z.

Now, since Jp rXq � 0, if rdimcatp rXq ¤ 1, then rX has a full exceptional collection. But

this latter fact would imply that K0p rXq is a free Z-module of finite rank. l

Proposition 4.23, could be seen as an evidence to the fact that noncommutative schemes

and their representability should provide a finer invariant than the intermediate Jacobian.

We finally notice that there could be other noncommutative resolution of singularities B of

X, such as the Moishezon manifold X� Ñ X giving a small resolution, which we already

considered in 3.23. Anyway, similar arguments show that DbpX�q is not representable in

dimension one either.

III.2. Conic bundles and del Pezzo fibrations of degree 4. We now turn our

attention to the case where Y is a rational (minimal) surface, so that π : X Ñ Y is a

conic bundle. Moreover, we denote by ∆ � Y the discriminant divisor, that is the curve

parameterizing singular fibers. We assume that ∆ has at most double points and that the

smooth points of ∆ correspond to simply degenerate fibers, while double points correspond

to double lines. We say that X is standard if, moreover, it is relatively minimal. Finally

notice that ∆ comes with a double cover r∆ Ñ ∆ which is ramified along the double points.

In the case of standard conic bundles, we have a full understanding of the relationship

between intermediate Jacobians, semiorthogonal decompositions of AX{Y and of DbpXq,

categorical representability and rationality. Notice moreover that the case of cubic threefolds

is covered by these conic bundles: if Z is a cubic threefold, the projection Z 99K P2 along

any line in Z can be resolved by blowing up Z along the line to get a standard conic bundle

X Ñ P2. Moreover, it can be shown that AX{P2 � xAZ , Ey for an exceptional object E

(see [BMMS12]).

Finally, let us notice that, for a conic bundle π : X Ñ Y , we have an equivalence

DbpY,B0q � AX{Y , where B0 is the sheaf of the even parts of the Clifford algebra associated to
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X. The following result from [BB13] completely resolves the question on relating rationality

questions and intermediate Jacobians to AX{Y for conic bundles over minimal surfaces.

Theorem 4.24. Let π : X Ñ Y be a standard conic bundle over a minimal rational surface.

Then X is rational if and only if rcodimcatpXq ¥ 2 if and only if rdimAX{Y ¤ 1. In

particular, this is the case if and only if there are smooth projective curves Ci and exceptional

objects Ej such that

AX{Y � xDbpC1q, . . . ,D
bpCrq, E1, . . . , Ery,

which is in turn equivalent to JpXq � JpC1q ` . . . ` JpCrq as principally polarized Abelian

varieties.

The proof of Theorem 4.24 relies on the classification of rational conic bundles π : X Ñ Y

over minimal surfaces achieved by Beauville [Bea77] and Shokurov [Sho84]. This classifi-

cation is based on the fact that JpXq is identified, as a principally polarized Abelian variety,

to the Prym variety Prympr∆{∆q of the discriminant double cover of ∆. There are only five

cases where such a Prym variety is split by curves, and they all correspond to a rational

X. In all of these five cases, explicit constructions and calculations of mutations allow to

construct the required semiorthogonal decomposition of AX{Y .

Suppose on the other hand that AX{Y has the required decomposition. The recon-

struction Theorem 3.13 for the intermediate Jacobian was proved in [BB13] in this case,

hence showing that the decomposition of AX{Y gives the splitting of JpXq. Then Beauville–

Shokurov classification applies.

If π : X Ñ Y is a Mori fiber space of relative dimension 2, then we consider Y � P1, and

π : X Ñ P1 is a del Pezzo fibration, i.e. the fibers are del Pezzo surfaces. In this case, less

is known, there is no particular algebraic description of AX{P1 in general5.

An algebraic description is known in the case where X Ñ P1 is a del Pezzo fibration of

degree 4. Indeed, in this case, X is the relative complete intersection of two quadric fibrations

Qi Ñ P1 of relative dimension 3. In this case we have a Hirzebruch surface S Ñ P1 and

a Clifford algebra C0 on S corresponding to the linear span Q Ñ P1 of the two quadric

fibrations, see Definition 2.18. Homological Projective Duality, see Theorem 2.21 gives then

AX{P1 � DbpS, C0q.

To study the Clifford algebra C0, notice that the linear span Q Ñ P1 has a section,

thanks to the existence of a Section of X Ñ P1 (guaranteed by Campana-Peternell-Pukhlikov

[CPP02] and Graber-Harris-Starr [GHS03], or simply constructed explicitly by Alexeev

[Ale87]) and the Amer-Brumer Theorem (see, e.g., [EKM08, Thm. 17.14] or [ABB14,

Thm. 1.9.1]). Along this section, we can perform reduction by hyperbolic splitting to get a

conic bundle QÑ S, as recalled in §III.3.

On the other hand, Alexeev [Ale87] shows that X is birational to a conic bundle Q1 Ñ S1,

for a Hirzebruch surface S1. The following result was established in [ABB14] and is an analog

of Theorem 4.24 in the case of del Pezzo fibrations of degree 4.

5Notice however that the results of Section II apply to the generic fiber of X as a variety over the function
field of P1.



82 IV. Some complex fourfolds

Theorem 4.25. Let π : X Ñ P1 be a del Pezzo fibration of degree 4 and QÑ S and Q1 Ñ S1

the two conic bundles described above. There are equivalences AX{P1 � AQ{S � AQ1{S1.

Moreover, X is rational if and only if rcodimcatpXq ¥ 2, which is equivalent to rdimAX{P1 ¤

1. These facts are also equivalent to JpXq � JpC1q` . . .`JpCrq for smooth projective curves

Ci. Finally, this hold if and only if there is a semiorthogonal decomposition

AX{P1 � xDbpC1q, . . . ,D
bpCrq, E1, . . . , Esy,

with Ei exceptional objects.

The proof of the above Theorem uses the fact that Clifford algebras are Morita invari-

ant under hyperbolic splitting, recalled in Theorem 2.22. It follows then that AX{P1 �

DbpS, C0q � AQ{S via Homological Projective Duality. The equivalence AQ{S � AQ1{S1 is

obtained via an explicit geometric comparison between Alexeev’s construction and the hy-

perbolic splitting, which actually gives S � S1. The second part of the statement is based

on Theorem 4.24 and on the isomorphism JpXq � JpZq as principally polarized Abelian

varieties given by Alexeev [Ale87].

IV. Some complex fourfolds

Let k � C (or an algebraically closed field of characteristic zero). In this Section we

consider the approach outlined in Section I to fourfolds. In this case, since the dimension

is even, there is no intermediate Jacobian carrying a principal polarization. However, the

noncommutative and motivic consideration carried on in Section I are still valid. We will

explain in detail two examples of fourfolds where one can conjecture the existence of a

noncommutative criterion of rationality, based on categorical representability.

IV.1. Cubic Fourfolds. Cubic fourfolds are certainly the most famous character in

birational geometry in the last 30 years. Let X � P5 be a smooth cubic fourfold. Such X is

a Fano variety of Picard rank 1 and index 3. The most interesting part of the cohomology of

X is the integral primitive cohomology lattice H4
prpX,Zq, that is, the sublattice of H4pX,Zq,

orthogonal to the double hyperplane section h2. The quadratic form considered here is the

intersection pairing. The deepest feature of the lattice H4
prpX,Zq, which can be described by

Hodge theory and by the study of the scheme of lines F pXq on X, is that it “looks almost

like” a K3 lattice H2pS,Zqp�1q, up to a Tate twist; indeed, H4
prpX,Zq and H2pS,Zqp�1q

could share a corank 1 primitive sublattice.

Based on the seminal work of Beauville and Donagi [BD85] on Pfaffian cubic fourfolds,

Hassett the defined a special cubic fourfold to be a cubic fourfold X containing an algebraic

2-cycle T which is not homologous to h2. The generic cubic is not special, since the only

algebraic 2-cycle is h2 (see [Has00, Thm. 3.1.2]). A special cubic fourfold is identified

by a positive definite rank 2 saturated sublattice K of H4pX,Zq containing h2. Indeed,

given an abstract rank 2 positive definite lattice K with a distinguished element h2 of self-

intersection 3, a labeling of a special cubic fourfold is the choice of a primitive embedding

K ãÑ H4pX,Zq identifying the distinguished element with the double hyperplane section h2.



Chapter 4. Semiorthogonal decompositions in birational geometry 83

The discriminant of a labeled special cubic fourfold pX,Kq is defined to be the determinant

of the intersection matrix of K.

Let C be the moduli space of cubic fourfolds. It is a 20-dimensional moduli space.

Hassett shows that the moduli space Cd of special cubic fourfolds of discriminant d is a

(possibly empty) irreducible algebraic divisor of C. Other numerical constraints are described

in [Has00, §4]. Low discriminant examples are cubic fourfolds containing a plane (d � 8),

cubic fourfolds containing a cubic scroll (d � 12) and cubic fourfolds containing a quartic

scroll (d � 14). Pfaffian cubics (see Example 4.27 for their definition) always contain a

quartic scroll, and hence belong to C14 (actually, they are dense in C14). Nonsmooth cases

can be also considered: cubic fourfolds with a double point have d � 6, while determinantal

cubic fourfolds have d � 2.

The expectation is that Hodge theoretical information contained in the labeling should

witness the vanishing of some obstruction to rationality. Indeed, it is expected that the

general (hence, nonspecial) cubic fourfold is not rational. On the other hand, there are two

classes of smooth cubics which are known to be rational: the first one is the one of Pfaffian

cubics [BD85] and the second one is given by a particular case of cubic fourfolds containing a

plane [Has99], as explained in Example 4.26. Finally, both nodal and determinantal cubics

are rational.

Example 4.26 ( [Has00], [Has99]). Let X � P5 be a smooth cubic containing a plane

P � X, and consider the projection P5 99K P2 along the plane P . Restricting this projection

to X give rise to a rational map X 99K P2 which can be resolved, by blowing up P , into

a quadric surface bundle π : rX Ñ P2, ramified along a sextic curve (generically smooth)

C � P2. If π has an odd section, then rX and, a fortiori, X are rational. Cubic fourfolds

with a plane and an odd section form a countable union of divisors in the moduli space C8.

Notice moreover that the discriminant double cover S Ñ P2, ramified along the sextic

curve C, is a (generically smooth) K3 surface of degree 2.

Example 4.27 ( [BD85]). Let V be a six-dimensional complex vector space and consider

Grp2, V q � Pp^2V q via the Plücker embedding. The variety Pfp4,^2V _q � Pp^2V _q is

defined as (the projectivization of) the set of skew symmetric six by six matrices with rank

bounded above by 4. It is a (nonsmooth) cubic hypersurface of Pp^2V _q. Let L � Pp^2V q

be a linear subspace of dimension 8, and denote by LK � Pp^2V q its orthogonal subspace,

which has dimension 5. If we take L general enough, then X :� LK X Pfp4,
�2 V _q and

S :� L X Grp2, V q are a smooth cubic in P5 and a smooth degree 14 K3 surface in P8

respectively. Cubic fourfolds arising from this construction are called Pfaffian cubics with

associated K3 surface S.

The interplay between K3 surfaces and special cubic fourfolds goes beyond the Examples

4.26 and 4.27 and abstract lattices. A given labeled special cubic fourfold pX,Kdq of dis-

criminant d, is defined to have an associated K3 surface if there exists a polarized K3 surface

pS, lq and a lattice isomorphism H2
0 pS,Zqp�1q � KK

d � H4
prpX,Zq, where H2

0 pS,Zq :� lK

is the primitive cohomology lattice of pS, lq. It is expected that having an associated K3

surface should be a necessary condition to rationality.
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Let now semiorthogonal decompositions come into play. The interplay between cubic

fourfolds and K3 surfaces extend to the noncommutative context. Indeed, if X is a cubic

fourfold, Kuznetsov shows that the Serre functor of AX is SAX
� r2s. As defined in Definition

1.20, we say that AX is a Calabi-Yau noncommutative scheme of dimension 2. Even better,

we say that AX is a noncommutative K3 surface. Notice that Question 4.10 asks whether

rdimAX ¥ 3 is an obstruction to rationality. Kuznetsov actually conjectures a stronger fact,

which could be interpreted as a noncommutative analog of the Hodge theoretical expectation.

Conjecture 4.28 (Kuznetsov, [Kuz10]). Let X � P5 be a cubic fourfold. Then X is

rational if and only if there is a K3 surface S such that AX � DbpSq (if X is not smooth,

replace AX by a crepant noncommutative resolution of singularities).

Recently, Addington and Thomas have shown that Kuznetsov’s conjecture is equivalent

to the Hodge-theoretical expectation, that is that AX � DbpSq for some K3 surface S if and

only if X has an associated K3 surface [AT14], confirming that noncommutative methods

match commutative ones in this case as well.

However, the proof of Addington and Thomas relies, to show the existence of S, on a

deformation argument. In all the known examples of rational cubics, the description of S

can be made very explicit, and could give hints and evidences to Kuznetsov’s conjecture.

Pfaffian cubics (d � 14). If X is a Pfaffian and S the associated K3 as in example 4.27,

then AX � DbpSq is a consequence of Homological Projective Duality between Grp2, V q and

Pfp4,
�2 V �q, which was established by Kuznetsov [Kuz10].

Nodal cubics (d � 6). If X is nodal, then there is birational map X 99K P4 induced

by the projection P5 99K P4 along the singular point of X. The resolution of this map is

given by the blow up of the singular point on X on one side and the blow-up of a complete

intersection of type p2, 3q in P4, i.e. a degree 6 K3 surface S, on the other side. Then there

is noncommutative resolution of singularities B of AX such that B � DbpSq, [Kuz10].

Determinantal cubics (d � 2). If X is determinantal, Homological Projective Duality

established in IV shows that there is a noncommutative resolution of singularities B of AX

generated by 6 exceptional objects [BBF16]. One should expect B to be the resolution of

singularities of a degenerate K3 surface S of degree 2 into two cubic scrolls joining along an

elliptic sextic (see [Laz10] for the geometric construction).

Cubics with a plane (d � 8). This is probably the most intriguing case. As recalled in

Example 4.26, if P � X is a plane, the blow-up of X along P is a quadric surface bundlerX Ñ P2 with discriminant curve C � P2 of degree 6. We suppose that C is smooth (this is

the general case). Let S Ñ P2 be the degree 2 K3 surface given by the discriminant double

cover. Notice that, since X is in C8, the surface S is not a K3 surface associated to X6, and

such X has in general no associated K3 surface.

If C0 is the sheaf of even parts of the Clifford algebra of the quadric bundle, then C0

lifts to an Azumaya algebra A on S with Brauer class α P BrpSq. The description of the

derived category of a quadric fibration [Kuz08] gives then AX � DbpS, αq. We call such α

6Voisin [Voi86] shows that one can identify KK
d with an index 2 sublattice of H2

0 pS,Zq.



Chapter 4. Semiorthogonal decompositions in birational geometry 85

the Clifford invariant associated to the quadric fibration, or, equivalently to X. Moreover,

α � 0 if and only if the quadric bundle has an odd section [Kuz10].

Kuznetsov shows moreover that, in the general case, that is if S has Picard number one,

then the Clifford invariant is not trivial and there exists no smooth K3 surface S1 such that

DbpS, αq � DbpS1q, see [Kuz10]. It follows that one should expect such cubic fourfolds to

be nonrational, or to provide a counterexample to Kuznetsov’s Conjecture 4.28.

On the other hand, suppose that X contains a plane and has associated nontrivial Clifford

invariant. This is equivalent to the quadric fibration rX Ñ P2 not having a section. However,

this is condition is not sufficient to have X not rational. A natural question is to wonder

whether there exist such rational fourfolds, and find the K3 surface S1 realizing DbpS1q �

DbpS, αq � AX . As recalled, we should have S of Picard rank at least 2.

Examples of such fourfolds are achieved by completely describing the locus of those

cubics containing a plane and a rational quartic scroll, that is, by describing the intersection

C8 X C14. Notice that such fourfolds contain at least three non homologous algebraic cycles,

so that the K3 surface S has Picard rank at least 2. The following description of cubics in

C8 X C14 was provided in [ABBVA14].

Theorem 4.29. There are five irreducible components of C8 X C14, indexed by the discrim-

inant dX P t21, 29, 32, 36, 37u of the intersection form on the algebraic cohomology lattice

ApXq � H4pX,Zq. The Clifford invariant of a general cubic fourfold X in C8X C14 is trivial

if and only if dX is odd. The Pfaffian locus is dense in the dX � 32 component.

Notice that if dX is odd, then X is rational and Kuznetsov’s Conjecture 4.28 holds since

the Clifford invariant is trivial. On the other hand, if dX is even, since ApXq has rank at

least 3, we have that the degree 2 K3 surface S has Picard rank at least 2. Hence, it is

not known whether there could be a K3 surface S1 with DbpS1q � DbpS, αq � AX . As a

consequence of Theorem 4.29, we get that for dX � 32, there in general such a surface S1,

which is the degree 14 K3 surface associated to X as a Pfaffian cubic. In particular, (it is

known that) X is rational and Kuznetsov’s Conjecture 4.28 holds.

We finally notice that in [ABBVA14] is provided an explicit (i.e. via Pfaffian equations)

example of a cubic fourfold X which is Pfaffian, contains a plane, has rank 3 algebraic

cohomology and nontrivial Clifford invariant.

IV.2. Fibrations in intersections of quadrics. Another example of a Mori fiber

space π : X Ñ Y with X of dimension 4 and such that AX{Y can be explicitly described via

a surface S and a Brauer class α P BrpSq was considered in [ABB14].

Recall from Definition 2.18 the notion of generic relative intersection of quadrics. We

consider π : X Ñ P1 to be such intersection of two quadric fibrations Qi Ñ P1 of relative

dimension 4, defined by line-bundle valued quadratic forms pq1, L1, Eq and pq2, L2, Eq, where

E has rank 6, X � PpEq, and Li are line bundles on P1. Then π : X Ñ P1 is a Mori

fiber space of relative dimension 3 and index 2. Moreover, we have a Hirzebruch surface

F :� PpL1 ` L2q, and 4-dimensional quadric fibration Q Ñ F with smooth degeneration

divisor ∆ � S.
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The first direct application of Homological Projective Duality, see Theorem 2.20 is that,

denoting by C0 the sheaf of even parts of the Clifford algebra of Q Ñ F , we have that

AX{P1 � DbpF, C0q. Moreover, since the relative dimension of Q is even, we can consider

the double cover S Ñ F , ramified along ∆, and C0 lifts to an Azumaya algebra A on S

with Brauer class α P BrpSq. Notice that the composition map S Ñ F Ñ P1 endow S with

a hyperelliptic fibration over P1, the fibers being double covers of the fibers of F Ñ P1,

ramified along the 6 points where ∆ meets a fiber. The following result from [ABB14] gives

a positive answer to Question 4.10, at least in the case where α � 0.

Theorem 4.30. Let X Ñ P1 be a generic relative intersection of two 4-dimensional quadrics,

and S and α the surface and the class in BrpSq as above, respectively. Then AX{P1 �

DbpS, αq. If α � 0, then X is rational and rcodimcatpXq ¥ 2. In particular, this is the case

if X contains a surface which is generically ruled over P1 by the restriction of π.

The proof of the previous Theorem is based on the existence of a section for the quadric

fibration Q Ñ F . This section comes, via Amer-Brumer Theorem (see, e.g., [EKM08,

Thm. 17.14] or [ABB14, Thm. 1.9.1]), from a smooth section of π : X Ñ P1, which exists

thanks to Campana-Peternell-Pukhlikov [CPP02] and Graber-Harris-Starr [GHS03] results

on fibrations over curves with rationally connected fibers. It follows that we can perform

hyperbolic splitting along this section to get a quadric surface bundle Q1 Ñ F whose sheaf

of even parts of the Clifford algebra is Morita equivalent to the one of QÑ S, see Theorem

2.22.

Now we have that X and Q1 are birational to each other, see [ABB14, §5] - this can

be seen as a higher dimensional analog of Alexeev’s (see [Ale87]) birational map between a

del Pezzo fibration of degree 4 and a conic bundle over a Hirzebruch surface we considered

in Theorem 4.25. Having a regular section of Q1 Ñ F is now equivalent to the vanishing

of the class α in BrpSq, and is a sufficient condition for rationality. If X contains a surface

generically ruled over P1 by the restriction of π, then the section of Q1 Ñ F is constructed

explicitly. In [ABB14] we can then state a Conjecture which is inspired both by Question

4.10 and by Kuznetsov’s Conjecture 4.28.

Conjecture 4.31. Let X Ñ P1 be a fibration in complete intersections of two four-dimensional

quadrics over an algebraically closed field of characteristic zero.


 Weak version. The fourfold X is rational if and only if it rcodimcatpXq ¥ 2.


 Strong version. The fourfold X is rational if and only if rdimAX{P1 ¤ 2.
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[BGvBKS15] Ch. Böhning, H.-Ch. Graf von Bothmer, L. Katzarkov, and P. Sosna, Determinantal barlow

surfaces and phantom categories, J. Eur. Math. Soc. 17 (2015), no. 7, 1569–1592.
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Mathématique de France, 1996.

[Via13] Ch. Vial, Projectors on the intermediate algebraic jacobians, New York J. Math 19 (2013),

793–822.

[Via15] , Exceptional collections, and the neron-severi lattice for surfaces, arXiv:1504.01776,

2015.

[Voe95] V. Voevodsky, A nilpotence theorem for cycles algebraically equivalent to zero, Int. Math. Res.

Notices (1995), no. 4, 187–198.

[Voi86] C. Voisin, Thorme de Torelli pour les cubiques de P 5, Invent. Math. 86 (1986), 577–601.

[Voi96] , Remarks on zero-cycles of self-products of varieties, Moduli of vector bundles (Sanda,

1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, 1996, pp. 265–

285.
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