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Chapter 1 Introduction

This PhD thesis is devoted to the study of some problems in noncommutative analysis. These problems originate from classical probability theory on compact groups, classical harmonic analysis and classical information theory. In this thesis we offer new ideas and new tools to overcome various difficulties when dealing with them in the noncommutative setting. More precisely, the thesis studies the following problems.

(1) Idempotent states on Sekine quantum groups. We give concrete formulas for all idempotent states on a family of finite quantum groups: Sekine quantum groups (A k , ∆ k ). We also investigate their order structure for k prime. This answers a question of Franz and Skalski [START_REF] Franz | On idempotent states on quantum groups[END_REF] stated in 2009. See [START_REF] Zhang | Idempotent states on Sekine quantum groups[END_REF].

(2) Infinitely divisible states on finite quantum groups. Infinite divisible states are states which have n-th root for all n ≥ 1. We show that any infinitely divisible state on a finite quantum group can be written as the exponential relative to some idempotent state. This generalizes the results of Böge [START_REF] Böge | Über die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen[END_REF] and Parthasarathy [START_REF] Parthasarathy | Infinitely divisible representations and positive definite functions on a compact group[END_REF]. See [START_REF] Zhang | Infinitely divisible states on finite quantum groups[END_REF].

(3) Fourier multipliers on discrete group von Neumann algebras. We give two sufficient conditions for boundedness of L p -Fourier multipliers on discrete group von Neumann algebras. The first one shows that for any discrete group G and any 1 < p < ∞, any function ϕ : G → C in p * ,∞ (G), where 1/p * = |1/2 -1/p|, yields a L p -Fourier multiplier on the group von Neumann algebra of G. The second one concerns the radial Fourier multipliers on free group F ∞ . It shows that if the symbol ϕ is a radial function on F ∞ such that sup n≥0 n αp |ϕ(n)| < ∞ for some α p > max{1 -1/p, 3/2 -3/p}, then the Fourier multiplier is L p -bounded.

(4) Monotonicity of α-z Rényi relative entropies. The α-z Rényi relative entropies D α,z form a large family of quantum analogues of classical α-Rényi relative entropy. It is a fundamental question in quantum information theory to ask when D α,z is monotone decreasing under completely positive trace preserving maps. We answer this question by considering the joint convexity/concavity of a family of trace functions Ψ p,q,s . This confirms a conjecture [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF] of Carlen, Frank and Lieb, and a weaker conjecture [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF] of Audenaert and Datta. See [START_REF] Zhang | Carlen-Frank-Lieb conjecture and monotonicity of α-z Rényi relative entropy[END_REF].

From groups to quantum groups

A topological group is a group G equipped with a topology relative to which the binary operation and the inverse operation are both continuous. It is called locally compact Chapter 1. Introduction (compact, discrete) if the topology is Hausdorff and locally compact (compact, discrete).

A locally compact group G always carries a Radon measure µ, unique up to a positive constant, which is left-invariant: µ(K) = µ(gK) for all g ∈ G and all Borel set K ⊂ G. We call the measure µ the left Haar measure on G. Similarly, there exists a Radon measure ν on G (unique up to a positive constant), which is right-invariant. We call the measure ν the right Haar measure on G. A locally compact group is called unimodular if its left Haar measures and right Haar measures coincide; in this case we call them Haar measures for short. A compact group is always unimodular and its Haar measure µ is finite, i.e., µ(G) < ∞. We shall always choose the normalized one, i.e., µ(G) = 1.

For a locally compact abelian group G, a character χ on G is a continuous group homomorphism from G to the circle group T = {z ∈ C : |z| = 1}. Denote by G the set of all characters on G, then one can also make G into a locally compact abelian group in the following way. Its group operation is given by pointwise multiplication and the unit is the trivial character which takes value one at all elements of G. Its topology is the compact-open topology. We can construct the dual of G, denoted by G, in the same way.

The Pontryagin duality theorem says that G is isomorphic to G canonically. Therefore we may recover a locally compact abelian group by taking its double dual. However, this does not work for nonabelian case. The dual of a locally compact nonabelian group is no longer a group anymore.

The theory of quantum groups was developed for a Pontryagin duality theorem for the nonabelian case. It turns out the dual of a general locally compact group G can be understood as its group von Neumann algebra, still denoted by G. With extra structure on this von Neumann algebra, we may encode the information of this "dual group", even if it might not exist. This is a naive way to understand the name of "quantum group". In other words, we shall always investigate the "quantum group" via studying the von Neumann algebra (or C*-algebra) and its extra structure.

What does this extra structure look like? It took a long time in the history to find it and the story is not finished yet. One easily expects the desirable extra structure is economic enough to recover the classical group when the von Neumann algebra is commutative. In particular, the existence of the Haar measure should be possible to be deduced from the structure, like in the classical case. This requirement is so harsh that a widely-accepted theory of compact quantum groups, due to Woronowicz [START_REF] Woronowicz | Compact quantum groups[END_REF], emerged only in the end of 1980s. The current widely-used theory of locally compact quantum groups was developed by Kustermans and Vaes [START_REF] Kustermans | Locally compact quantum groups[END_REF] appeared around 2000. As we mentioned, one of the main difficulties of quantum groups theory is to remove the existence of the Haar measure off the hypotheses of the definition. This was achieved on compact quantum groups in a very nice way by Woronowicz. Such a definition of locally compact quantum groups has not been born yet.

From this one can have a glance that the Haar measure is essential to the theory of locally compact groups. We close this subsection by giving two examples to illustrate the importance of the Haar measure, from algebraic and analytic points of view, respectively. Firstly, any probability measure µ on a locally compact group G gives a random walk on G. For simplicity, suppose that G is discrete. Then for each step, the probability of moving from g ∈ G to h ∈ G is P (g → h) = µ(g -1 h) = µ({g -1 h}). Under this rule, if we start at the unit e ∈ G and denote the position of the n-th step by X n , then we have P (X 0 = h) = δ e,h , P (X 1 = h) = P (e → h) = µ(h), 1.1. From groups to quantum groups 17

P (X 2 = h) = s∈G P (X 1 = s)P (s → h) = s∈G µ(s)µ(s -1 h) = µ µ(h), • • • P (X n = h) = µ n (h).
Here denotes the convolution product. Generally, any probability measure on a locally compact group gives a random walk. On a locally compact group the convolution product of two measures µ 1 and µ 2 is given by

µ 1 µ 2 (f ) := G G f (xy)µ 1 (x)µ 2 (y), f ∈ C 0 (G),
where C 0 (G) denotes the set of all continuous functions on G which vanish at infinity. An element µ in Prob(G) of all probability measures on a locally compact group G is called

idempotent if µ µ = µ.
Suppose that G is compact and the convolution powers of the probability measures {µ n } n≥1 converges with respect to the weak* topology, then the limit must be an idempotent probability measure. If one considers the sequence of Cesàro averages 1 n n k=1 µ k , n ≥ 1, then it always converges to an idempotent probability measure with respect to the weak* topology. Kawada and Itô [START_REF] Kawada | On the probability distribution on a compact group[END_REF] showed that idempotent probability measures on G are precisely Haar measures on compact subgroups of G. Then from the limit of the sequence of Cesàro averages relative to some suitable probability measure µ, one may construct the Haar measure on G. This is how Woronowicz constructed the Haar measure (state) on a compact quantum group. See the survey paper [START_REF] Salmi | Idempotent states on locally compact groups and quantum groups[END_REF] for more details.

So the study of idempotent probability measures on compact groups is of great importance and one easily expects similar results in the context of quantum groups. However, the theorem of Kawada and Itô fails even for finite quantum groups (compact quantum groups whose underlying C*-algebra is finite-dimensional). Pal [START_REF]A counterexample on idempotent states on a compact quantum group[END_REF] gave the first example on an eight-dimensional Kac-Paljutkin quantum group. This implies that, as a quantum analogue of idempotent probability measures on classical groups, idempotent states on the quantum groups do not necessarily correspond to quantum subgroups anymore. Then the study of idempotent states usually goes beyond the framework of quantum groups. This brings the difficulty of solving problems involving idempotent states. But on the other hand, it motivates the development of new theories, like quantum hypergroups [START_REF] Chapovsky | Compact quantum hypergroups[END_REF][START_REF] Delvaux | Algebraic quantum hypergroups[END_REF][START_REF] Delvaux | Algebraic quantum hypergroups II. Constructions and examples[END_REF][START_REF] Kalyuzhnyi | Conditional expectations on compact quantum groups and new examples of quantum hypergroups[END_REF].

Secondly, with the left Haar measure µ on a locally compact group G, one can define the L p -spaces L p (G, µ) and the Fourier transform. The latter is the cornerstone of abstract Fourier analysis. If G is abelian, then the Fourier transform of f ∈ L 1 (G, µ) takes the form:

F(f )(ξ) = f (ξ) = G f (s)ξ(s)dµ(s), ξ ∈ G,
where G is the dual of G consisting of all characters on G. By choosing the dual Haar measure µ on G suitably, the map

L 1 (G, µ) ∩ L 2 (G, µ) f → f ∈ L 2 ( G, µ) is isometric
and can be extended to a unitary between L 2 (G, µ) and L 2 ( G, µ). This defines the Fourier transform of f ∈ L 2 (G, µ). The definition of the Fourier transform of f ∈ L p (G, µ), 1 < p < 2 follows from the famous Hausdorff-Young inequality:

f L p ( G, µ) ≤ f Lp(G,µ) , f ∈ L p (G, µ). (1.1)
It is natural to ask what the Fourier transform looks like when G is nonabelian and whether we still have (1.1) or not. For this Kunze [START_REF] Kunze | L p Fourier transforms on locally compact unimodular groups[END_REF] made the following observation. Let G be Chapter 1. Introduction a locally compact abelian group as above. Let λ(f ) denote the left regular representation of f ∈ L 1 (G, µ) on L 2 (G, µ), which is an operator given by

(λ(f )g)(s) := f g(s) = G f (t)g(t -1 s)dµ(t), s ∈ G, g ∈ L 2 (G, µ).
Denote by L f the operator on L 2 (G, µ) given by the multiplying by f . Since F turns convolution into multiplication, we have

F(λ(f )g) = F(f )F(g) = L F (f ) F(g), f ∈ L 1 (G, µ), g ∈ L 2 (G, µ).
Recall that F is unitary on L 2 (G, µ), so λ(f ) is unitarily equivalent to the operator L F (f ) . This suggests us to use λ(f ) as a substitute of F(f ). From this Kunze defined the Fourier transform on the locally compact unimodular group (G, µ) and generalized (1.1) to this setting. The dual of G, still denoted by G, is no longer a group, but the von Neumann algebra generated by λ(L 1 (G, µ)) in B(L 2 (G, µ)). It turns out that there is a canonical trace µ on G, so the noncommutative L p -space L p ( G, µ) is constructed in the sense of Diximier [START_REF] Dixmier | Formes linéaires sur un anneau d'opérateurs[END_REF] and Segal [START_REF] Segal | A non-commutative extension of abstract integration[END_REF]. For the nonunimodular case, the dual G is not necessarily equipped with a trace. Terp solved this problem with the help of the Tomita-Takesaki theory and the noncommutative L p -spaces associated with a weight. In recent years Cooney [START_REF] Cooney | A Hausdorff-Young inequality for locally compact quantum groups. Internat[END_REF] and Caspers [START_REF] Caspers | The L p -Fourier transform on locally compact quantum groups[END_REF] generalized all these results to locally compact quantum groups.

From classical information theory to quantum information theory

Classical information theory emerged after the groundbreaking paper [START_REF] Shannon | A mathematical theory of communication[END_REF] of Shannon.

Quantum information theory intersects the quantum physics and information theory. Roughly speaking, quantum information theory is the study of information theory within the framework of quantum mechanics. It is also known as quantum Shannon theory in honour of Shannon.

We fix some notations in this part. We use H to denote a finite dimensional Hilbert space. We use P(H) to denote the set of all invertible positive operators over H, and D(H) to denote the set of all quantum states, or density operators over H, i.e., invertible positive operators over H with unit trace.

As a measurement of information content of a probability density function p on R, its Shannon entropy is defined as

S(p) := - R p(x) log p(x)dx.
Shannon entropy plays an essential role in classical information theory. It admits a natural quantum analogue, referred to as the von Neumann entropy:

D(ρ) := -Trρ log ρ, ρ ∈ D(H). (1.2)
We remark here that in quantum information theory we usually choose binary logarithm log 2 . But we will not specify this here, since it will not matter in this thesis.

There are many other entropy quantities which are important in classical information theory, for example, the Kullback-Leibler divergence, or the relative entropy of p with respect to q: S(p||q

) := R p(x) log p(x) q(x) dx,
1.2. From classical information theory to quantum information theory 19

where p and q are two density functions on R. It has an operational meaning as follows.

Suppose that Alice encodes her message into a sequence of 0 and 1's, and sends them to Bob. Bob will then decode from a sequence of 0 and 1's he received so as to read Alice's message correctly. Unfortunately, because of the noisy channel, what Bob will receive is a sequence of random variables with overlapping distributions. So Bob will encounter a problem of identifying which are 0's and which are 1's. Assume that 0 is sent to a random variable with a density p centered at 0, and 1 is sent to a random variable with a density q centred at 1. Suppose that the n-th signal arriving to Bob is a random variable X n and all X n 's are independent. Bob cannot tell that a single signal comes from 0 or 1 if p and q overlap. But the point is, if Alice sends the same message N times, Bob can extract the correct information as when N tends to infinity, and the error decays exponentially to 0. And the order of the exponential decay of the error is given in terms of the relative entropy S(p||q).

In fact, for each N > 0, Bob needs to choose A N ⊂ R N as a measurement, such that if (X 1 , . . . , X N ) ∈ A N , then he accepts p as the governing distribution, and otherwise he accepts q. Fix small > 0, if

A N p ⊗N > 1 -, then consider β ,N (p, q) := inf A N ⊂R N log A N q ⊗N : A N p ⊗N > 1 -.
Then we have [START_REF] Kullback | On information and sufficiency[END_REF][START_REF] Kullback | A lower bound for discrimination information in terms of variation (corresp.)[END_REF] lim sup

N →∞ 1 N β ,N (p, q) ≤ -S(p||q) and lim inf N →∞ 1 N β ,N (p, q) ≥ - 1 1 - S(p||q). ( 1.3) 
A result similar to (1.3) holds in quantum information theory. For this we pause briefly to speculate what the quantum analogue of relative entropy should look like. From (1.2) we know that one should replace the density functions p and q with the density operators ρ and σ, and the integral with the trace. And when ρ and σ commute, we should recover S(p||q), where p, q are constructed from the spectra of ρ and σ, respectively. There are, however, a lot of formulas verifying such conditions, for example, D(ρ||σ) := Trρ(log ρ -log σ), (1.4) and

D (ρ||σ) := Trρ log(σ -1 2 ρσ -1 2 ). (1.5)
The formula D defined in (1.4) is known as Umegaki relative entropy [START_REF] Umegaki | Conditional expectation in an operator algebra. IV. Entropy and information[END_REF], and it turns out to be the proper formula in the quantum setting with an operational meaning in the sense of (1.3) [START_REF] Hiai | The proper formula for relative entropy and its asymptotics in quantum probability[END_REF].

Except for the relative entropy S, there is a family of α-versions of relative entropies introduced by Rényi [START_REF] Rényi | On measures of entropy and information[END_REF], referred to as α-Rényi relative entropies:

S α (p||q) := 1 α -1 log p α q 1-α , α ∈ (0, 1) ∪ (1, ∞),
where p and q are density functions on R. Many error bounds can be given in terms of S α [START_REF] Csiszár | Generalized cutoff rates and Rényi's information measures[END_REF], so they also admit an operational meaning.

Looking for proper quantum analogues of S α and studying their properties has become a popular topic in recent years in quantum information theory. Two of the most important quantum versions of S α are the quantum α-Rényi relative entropy:

D α (ρ||σ) := 1 α -1 log Tr(ρ α σ 1-α ), 20 
Chapter 1. Introduction and the sandwiched α-Rényi relative entropy [START_REF] Müller-Lennert | On quantum Rényi entropies: a new generalization and some properties[END_REF][START_REF] Wilde | Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy[END_REF] 

D α (ρ||σ) := 1 α -1 log Tr(σ 1-α 2α ρσ 1-α 2α ) α .
They both admit operational meanings for certain values of α [START_REF] Mosonyi | On the quantum Rényi relative entropies and related capacity formulas[END_REF][START_REF] Mosonyi | Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies[END_REF].

It is then a natural question how to put D α and D α into one unifying framework. For this Audenaert and Datta [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF] introduced the α-z Rényi relative entropy

D α,z (ρ||σ) := 1 α -1 log Tr(σ 1-α 2z ρ α z σ 1-α 2z ) z , α ∈ (-∞, 1) ∪ (1, ∞), z > 0,
where ρ, σ ∈ D(H).

For proper quantum analogues of classical entropies, we expect them to verify certain properties in the classical cases. Things become much more difficult in the noncommutative setting. For example, the Strong Subaddivity of von Neumann entropy D was conjectured by Lanford and Robinson in 1968 and was proved by Lieb and Ruskai in 1973 using a concavity result of a certain trace function (which is nothing but Ψ p,q,1 we are going to discuss later). Here we are interested in the monotonicity of D α,z . That is,

D α,z (E(ρ)||E(σ)) ≤ D α,z (ρ||σ),
for all completely positive trace preserving (CPTP) maps E on B(H), all ρ, σ ∈ D(H) and all H. This inequality is known as the Data Processing Inequality (DPI). It is a fundamental inequality in quantum information theory, which indicates that the quantum states ρ and σ become harder to distinguish after the action of CPTP maps. We shall identify all (α, z) such that D α,z verifies DPI, and from the solution the readers will see how the noncommutative techniques are applied to simplify the problem.

Main results

Idempotent states on Sekine quantum groups

Even if the study of idempotent states is already very thorough [START_REF] Banica | Idempotent states and the inner linearity property[END_REF][START_REF] Franz | On idempotent states on quantum groups[END_REF][START_REF] Franz | A new characterisation of idempotent states on finite and compact quantum groups[END_REF][START_REF] Franz | Idempotent states on compact quantum groups and their classification on U q (2), SU q (2), and SO q (3)[END_REF][START_REF] Kalantar | Poisson boundaries over locally compact quantum groups[END_REF][START_REF] Kasprzak | The lattice of idempotent states on a locally compact quantum group[END_REF], few concrete examples on compact quantum groups which are neither commutative nor co-commutative, are known. The first contribution of this thesis is to determine all the idempotent states on a family of finite quantum groups, usually known as Sekine quantum groups. This answers a question of Franz and Skalski stated in 2009 [START_REF] Franz | On idempotent states on quantum groups[END_REF].

Recall that an idempotent state φ on a compact quantum group G is a state such that φ φ = φ. When G is a classical compact group, φ is the Haar measure of some compact subgroup of G [START_REF] Kawada | On the probability distribution on a compact group[END_REF]. However, it is well-known that this fails for general quantum groups. Even on finite quantum groups, an idempotent state does not necessarily correspond to a quantum subgroup [START_REF] Franz | On idempotent states on quantum groups[END_REF][START_REF]A counterexample on idempotent states on a compact quantum group[END_REF]; a quantum hypergroup serves as a substitute here [START_REF] Franz | On idempotent states on quantum groups[END_REF]. To this end, we introduce the notion of a Haar idempotent state, which is the idempotent state arising as the Haar state on some quantum subgroup of G. Otherwise it is called a non-Haar idempotent state.

Our main result is to determine all the idempotent states on Sekine quantum groups.

Definition 1.1. [START_REF] Franz | On idempotent states on quantum groups[END_REF][START_REF] Sekine | An example of finite-dimensional Kac algebras of Kac-Paljutkin type[END_REF] Fix k ≥ 2 an integer. Let η be a primitive k-th root of unity, say, η = e 2πi k , and let Z k := {0, 1, . . . , k -1} be the cyclic group with order k. Set

A k := i,j∈Z k Cd i,j ⊕ M k (C),
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where d i,j denotes the corresponding basis of C. Denote by {e i,j : i, j ∈ Z k } the matrix units of the k-by-k full matrix algebra M k (C). Define

∆ k (d i,j ) := m,n∈Z k d m,n ⊗ d i-m,j-n + 1 k m,n∈Z k η i(m-n) e m,n ⊗ e m+j,n+j , (1.6) ∆ k (e i,j ) := m,n∈Z k η m(i-j) d -m,-n ⊗ e i-n,j-n + m,n∈Z k η m(j-i) e i-n,j-n ⊗ d m,n , (1.7) 
for i, j ∈ Z k . Then the pair (A k , ∆ k ) forms a finite quantum group, called a Sekine quantum group.

Let { d i,j , e i,j : i, j ∈ Z k } be the dual basis of {d i,j , e i,j : i, j ∈ Z k }. Using this the idempotent states on A k are characterized through the following lemma:

Lemma 1.2. A functional µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s ∈ A k is an idempotent state if and only if α i,j ≥ 0 for all i, j ∈ Z k , K := [κ r,s ] r,
s∈Z k is positive semi-definite, and the following equations hold:

α i,j = r,s∈Z k α i-r,j-s α r,s + 1 k r,s∈Z k η i(r-s) κ r,s κ r+j,s+j , i, j ∈ Z k , (1.8) κ r,s = i,j∈Z k η i(s-r) α i,j (κ r+j,s+j + κ r-j,s-j ), r, s ∈ Z k , (1.9) µ(1 A k ) = i,j∈Z k α i,j + r∈Z k κ r,r = 1. (1.10)
By solving these equations, we can compute all the idempotent states on A k :

Theorem 1.3. [START_REF] Zhang | Idempotent states on Sekine quantum groups[END_REF]Theorem 2.12] Fix k ≥ 2 an integer. Then the family of idempotent states on Sekine quantum group A k , denoted by Idem(A k ), is given through

Idem(A k ) = {h A k } ∪ I 1 (A k ) ∪ I 2 (A k ) ∪ I 3 (A k ),
where (1) h A k is the Haar state;

(2) I 1 (A k ) is the set of idempotent states of the form

h Γ := 1 Γ (i,j)∈Γ d i,j , with Γ a subgroup of Z k × Z k . (3) I 2 (A k ) is the set of idempotent states of the form h Γ,l := 1 2 Γ (i,j)∈Γ d i,j + q 2k r≡l mod q e r,r ,
where Γ = Z k × qZ k with q|k, q > 1, and l ∈ Z q ; or Chapter 1. Introduction (4) I 3 (A k ) is the set of idempotent states of the form h Γ,l,τ := 1 2 Γ (i,j)∈Γ d i,j + q 2k r,s≡l mod q τ s-r e r,s , where Γ = pZ k × qZ k with p > 1 and pq = k, l ∈ Z q , and τ = (τ j ) j∈qZ k ∈ {±1} qZ k such that

j∈qZ k τ j η ij ≥ 0, i ∈ Z k/q . (1.11)
Moreover, the family of Haar idempotent states is given by {h A k } ∪ I 1 (A k ) and the family of non-Haar idempotent states is given by

I 2 (A k ) ∪ I 3 (A k ).
We may define a partial order ≺ on Idem(A k ) through

φ 1 ≺ φ 2 if φ 1 φ 2 = φ 2 .
For k prime, Z k × Z k has one subgroup of order 1: Γ 0 = {(0, 0)}, k + 1 subgroups of order k:

Γ + = Z k × kZ k , Γ -= kZ k × Z k , Γ i = {j(1, i) = (j, ij) : j ∈ Z k }, where i = 1, 2, • • • , k -1, and one subgroup of order k 2 : Γ k = Z k × Z k .
We remove Γ from the subscripts for convenience, for example h + := h Γ + , h -:= h Γ -, and h i := h Γ i . Then from Theorem 1.3 it follows that: 

I 1 (A k ) = {h + , h -, h i : i = 0, 1, • • • , k}, I 2 (A k ) = {h +,l : l ∈ Z k }, I 3 (A k ) = {h -,l,τ : l ∈ Z k , τ
h 0 h + h - h i h k h +,l h -,0,τ h A k
where i = 1, 2, . . . , k -1, l ∈ Z k , and τ satisfies (1.11). Note that h 0 is the counit on A k .

Infinitely divisible states on finite quantum groups

By an infinitely divisible state on a compact quantum group G we mean a state ω on C(G) which admits n-th root ω n for all n ≥ 1, that is, ω n is a state on G such that ω = ω n n . Here denotes the convolution of bounded linear functionals on C(G): φ 1 φ 2 := (φ 1 ⊗ φ 2 )∆, where ∆ is the comultiplication. We denote by I(G) the set of all infinitely divisible states on G. The second main result of this thesis, is to characterize all the infinitely divisible states on finite quantum groups. This generalizes Böge's result [START_REF] Böge | Über die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen[END_REF] on infinitely divisible probability measures on finite groups and Parthasarathy's work [START_REF] Parthasarathy | Infinitely divisible representations and positive definite functions on a compact group[END_REF] on infinitely divisible normalized positive definite functions on finite groups.

There is a certain class of infinitely divisible states, states of Poisson type, or Poisson states. Given an idempotent state φ, a bounded linear functional u on C(G) is called φ-bi-invariant if u = u φ = φ u. And if u is φ-bi-invariant, we define its exponential with respect to φ as:

exp φ (u) := φ + n≥1 u n n! .
A state ω on G is of Poisson type if there exists an idempotent state φ such that one of the following equivalent conditions holds ([77, Theorem 4.4])

1. ω = ω 1 with {ω t } t≥0 a norm continuous convolution semigroup of states such that ω 0 = φ;

2. ω = exp φ (u), where u is a φ-bi-invariant bounded linear functional on C(G) such that u(1) = 0 and u(x * x) ≥ 0 for all x ∈ C(G) with φ(x * x) = 0;

3. ω = exp φ (u), where u = r(v -φ), with r > 0 and v a φ-bi-invariant state on C(G).

Denote by P(G) the set all states of Poisson type. Clearly, P(G) ⊂ I(G). Our main result asserts that, the converse inclusion holds for finite quantum groups.

Theorem 1.4. [START_REF] Zhang | Infinitely divisible states on finite quantum groups[END_REF]Theorem 4.11] Let G be a finite quantum group. Then I(G) = P(G).

When G is commutative, it is then a classical finite group G and a state is a probability measure on G. In this case we recover Böge's theorem concerning infinitely divisible probability measures on finite groups: Theorem 1.5. [START_REF] Böge | Über die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen[END_REF] Any infinitely divisible probability measure on a finite group is of Poisson type.

When G is co-commutative, it is then the dual of finite group Γ and a state is a normalized positive definite function on Γ. In this case we recover Parthasarathy's result on infinitely divisible normalized positive definite functions on finite groups: Theorem 1.6. [START_REF] Parthasarathy | Infinitely divisible representations and positive definite functions on a compact group[END_REF] Any infinitely divisible normalized positive definite function on a finite group is of Poisson type.

Fourier multipliers on discrete group von Neumann algebras

In recent years, the study of L p -Fourier multipliers on group von Neumann algebras has become one of the most important topics in noncommutative harmonic analysis. Little is known about L p -Fourier multipliers on group von Neumann algebra G even when the group G is discrete. One example people are particularly interested in is the free group F ∞ . It is a challenging problem to generalize classical Hörmander-Mikhlin multiplier theorem to group von Neumann algebras.

Here we offer a new idea regarding L p -Fourier multipliers, which works for discrete groups. Recall that for any discrete group G, the group von Neumann algebra G is the von Neumann algebra in B( 2 (G)) generated by all λ(g), g ∈ G, where λ is the left regular representation of G. G is equipped with a canonical tracial state τ . A function ϕ on G is a L p -Fourier multiplier if T ϕ : finite sum a g λ(g) → finite sum ϕ(g)a g λ(g) extends to a Chapter 1. Introduction bounded map on L p ( G, τ ). Here L p ( G, τ ) is defined as the completion of ( G, • p ) with x p := (τ |x| p ) 1/p . Since τ is finite, the L p -boundedness of T ϕ follows from its L p -L q boundedness, whenever p < q. This simplifies the problem because one can choose in particular q = 2 when p < 2 (consider L 2 -L p if p > 2). Our estimate of L p -L 2 (L 2 -L p ) was inspired by Hörmander's work [START_REF] Hörmander | Estimates for translation invariant operators in L p spaces[END_REF] on L p -L q Fourier multipliers and Ricard-Xu's work [START_REF] Ricard | A noncommutative martingale convexity inequality[END_REF] on hypercontractivity.

The first result concerns all discrete groups. Recall that for any r > 0, the space

r,∞ (G) consists of all functions f : G → C such that f r,∞ := sup t>0 t|{g ∈ G : |f (g)| ≥ t}| 1 r < ∞,
where |S| denotes the cardinal of S ⊂ G.

Here and in the following, A p B means A ≤ c p B for some constant c p > 0, and N denotes the family of natural numbers. Theorem 1.7. Let 1 < p < ∞ and 1/p * := |1/2 -1/p|. Let G be any discrete group. Then for any ϕ ∈ p * ,∞ (G), we have

T ϕ : L p ( G, τ ) → L p ( G, τ ) p ϕ p * ,∞ .
Our second result deals with the free group F ∞ . Thanks to duality, we only consider the case 2 < p < ∞.

Theorem 1.8. Let 2 < p < ∞. Suppose that ϕ is radial on F ∞ , i.e., ϕ(g) = φ(|g|), with | • | the length function on F ∞ , for some φ : N → C. Then we have T ϕ : L p ( F ∞ ) → L p ( F ∞ ) ≤   n≥0 (1 + n) αp |φ(n)| 2   1/2 , where α p = max{2 -6 p , 1 -2 p }.
As a corollary, we obtain the following criterion for radial Fourier multipliers on F ∞ .

Corollary 1.9. Suppose that T ϕ is a radial multiplier with

ϕ = φ(| • |). Then T ϕ is a L p -Fourier multiplier on F ∞ if there exists > 0 such that sup n≥0 n 1-1 p + |φ(n)| < ∞, 2 < p ≤ 4, or sup n≥0 n 3 2 -3 p + |φ(n)| < ∞, p ≥ 4.
From this we obtain radial L p -Fourier multipliers T ϕ with

ϕ(g) = 1 |g| 1-1 p + , 2 < p ≤ 4, and 
ϕ(g) = 1 |g| 3 2 -3 p + , p ≥ 4,
for any > 0.

1.3. Main results

Monotonicity of α-z Rényi relative entropies

The intersection of quantum information and noncommutative analysis has appeared in recent years. This gave birth to a series of significant results in both areas and is inaugurating a promising direction of research. The result we are going to talk about is such an example.

Throughout this part H always denotes a finite dimensional Hilbert space, B(H) denotes the set of all bounded linear operators over H, P(H) denotes the set of all positive linear operators over H, and D(H) denotes the subset of P(H) whose elements have unit trace (density operators). Moreover, we use B(H) × (reps. P(H) × and D(H) × ) to denote the family of invertible operators in B(H) (resp. P(H) and D(H)). We use I to denote the identity operator.

Classical entropy quantities including the Shannon entropy and the α-Rényi relative entropies play a crucial role in classical information theory, or Shannon theory. They admit various quantum analogues, see more details in [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF][START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF]. It is important, but difficult to decide, among the family of quantum relative entropies, which are right ones in the quantum world. One fundamental property that the right ones must satisfy is the monotonicity under completely positive trace preserving (CPTP) maps, or the Data Processing Inequality (DPI). We determine all the (α, z) such that α-z Rényi relative entropy D α,z satisfies DPI by proving a conjecture of Audenaert and Datta [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF]. Indeed, we shall establish a stronger conjecture of Carlen, Frank and Lieb [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF].

Conjecture 1.10. [10, Conjecture 4] If 1 ≤ p ≤ 2, -1 ≤ q < 0, (p, q) = (1, -1) and s ≥ 1/(p + q), then for any finite dimensional Hilbert space H and any K ∈ B(H) × , Ψ p,q,s (A, B) = Tr(B

q 2 K * A p KB q 2 ) s , A, B ∈ P(H) × , ( 1.12) 
is jointly convex.

On one hand, the study of the joint convexity/concavity of Ψ p,q,s has a long history in mathematical physics. The first important result on joint convexity/concavity Ψ p,q,s is the famous Lieb's concavity theorem [START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF]: Ψ p,q,1 is jointly concave for p, q ≥ 0 such that p + q ≤ 1. After that many methods have been developed and much progress has been made. More details in the history can be found in the survey paper [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF]. The last unsolved case is Conjecture 1.10, for which little has been known.

On the other hand, the joint convexity/concavity of Ψ p,q,s is closely related to the monotonicity of the α-z Rényi relative entropies:

D α,z (ρ||σ) := 1 α -1 log Tr(σ 1-α 2z ρ α z σ 1-α 2z ) z , α ∈ (-∞, 1) ∪ (1, ∞), z > 0,
where ρ, σ ∈ D(H) × . The α-z Rényi relative entropies were introduced and studied by Audenaert and Datta [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF] and serve as a unifying generalization of the quantum α-Rényi relative entropies:

D α (ρ||σ) := 1 α -1 log Tr(ρ α σ 1-α ), α ∈ (0, 1) ∪ (1, ∞),
and the sandwiched α-Rényi entropies [START_REF] Müller-Lennert | On quantum Rényi entropies: a new generalization and some properties[END_REF][START_REF] Wilde | Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy[END_REF]:

D α (ρ||σ) := 1 α -1 log Tr(σ 1-α 2α ρσ 1-α 2α ) α , α ∈ (0, 1) ∪ (1, ∞). Chapter 1. Introduction Note that D α,1 = D α and D α,α = D α .
Let us come back to the relation between the joint convexity/concavity of Ψ p,q,s and monotonicity of α-z Rényi relative entropy. Recall that D α,z is monotone under CPTP maps if

D α,z (E(ρ)||E(σ)) ≤ D α,z (ρ||σ), (1.13) 
for any CPTP map E on B(H) × , for all density operators ρ, σ ∈ D(H) × and for any finite dimensional Hilbert space H. This inequality is known as the Data Processing Inequality (DPI). It is known (cf. [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF]) that when K = I and s = 1/(p + q), the joint convexity (concavity when α < 1) of Ψ p,q,s is essentially equivalent to DPI for D α,z , under the following correspondence between the parameters:

p = 1 -α z and q = α z .
We confirmed Conjecture 1.10 using a variational method. The method turns out to be a very powerful tool which yields simpler proofs of many known results. Finally, we obtain the following statement.

Theorem 1.11. [START_REF] Zhang | Carlen-Frank-Lieb conjecture and monotonicity of α-z Rényi relative entropy[END_REF]Theorem 1.3] Suppose that s > 0. Then for any K ∈ B(H) × , Ψ p,q,s defined in (1.12) is (1) jointly concave if 0 ≤ p, q ≤ 1 and 0 < s ≤ 1/(p + q);

(2) jointly convex if -1 ≤ p, q ≤ 0 and s > 0;

(3) jointly convex if -1 ≤ min{p, q} ≤ 0, 1 ≤ max{p, q} ≤ 2, (min{p, q}, max{p, q}) = (-1, 1) and s ≥ 1/(p + q).

In other cases, there exist H and K ∈ B(H) × such that Ψ p,q,s is neither jointly convex nor jointly concave.

The figure 1.1 summarizes the joint convexity/concavity of Ψ p,q,s for all p, q, s. Note that (1, -1) and (-1, 1) do not belong to the area of convexity.

Thus from Theorem 1.11 it follows that Theorem 1.12. [START_REF] Zhang | Carlen-Frank-Lieb conjecture and monotonicity of α-z Rényi relative entropy[END_REF]Corollary 1.4] The α-z relative Rényi entropy D α,z is monotone under all CPTP maps on B(H) × for all H if and only if one of the following holds [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF] 

0 < α < 1 and z ≥ max{α, 1 -α}; (2) 1 < α ≤ 2 and α 2 ≤ z ≤ α; (3) 2 ≤ α < ∞ and α -1 ≤ z ≤ α. 1.3. Main results p q o concave for 0 ≤ s ≤ 1 p+q convex for s ≥ 1 p+q convex for s ≥ 0 convex for s ≥ 1 p+q -1 -1 1 2 1 2 q=p Figure 1.1: Joint convexity/concavity of Ψ p,q,s
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Idempotent states on Sekine quantum groups

The main result of this chapter is the computation of all the idempotent states on Sekine quantum groups, which answers a question of Franz and Skalski stated in 2009 [START_REF] Franz | On idempotent states on quantum groups[END_REF]. This is achieved by solving a complicated system of equations using linear algebra and elementary number theory.

We fix some notations for this chapter. For any k ≥ 1, M k (C) will denote the family of all k-by-k complex matrices. We shall use [•] to denote the greatest integer function, i.e., [x] denotes the greatest integer that is smaller than or equal to x. We denote by S the cardinal of the set S.

Preliminary: compact quantum groups

Let us recall the definition and properties of compact quantum groups. We refer to [START_REF] Maes | Notes on compact quantum groups[END_REF][START_REF] Woronowicz | Compact quantum groups[END_REF] for more details.

Definition 2.1. Let A be a unital C * -algebra. If there exists a unital *-homomorphism

∆ : A → A ⊗ A such that 1. (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆; 2. {∆(a)(1 A ⊗ b) : a, b ∈ A} and {∆(a)(b ⊗ 1 A ) : a, b ∈ A} are linearly dense in A ⊗ A; then (A, ∆) is called a compact quantum group and ∆ is called the comultiplication on A.
Here and in the following, ι always denotes the identity map. We denote G = (A, ∆) and A = C(G). For simplicity, we write

∆ (2) = (∆ ⊗ ι)∆.
Any compact quantum group G = (A, ∆) admits a unique Haar state, i.e., a state (positive linear functional) h on A such that

(h ⊗ ι)∆(a) = h(a)1 A = (ι ⊗ h)∆(a), a ∈ A. Consider an element u ∈ A ⊗ B(H) with dim H = n. By identifying A ⊗ B(H) with M n (A) we can write u = [u ij ] n i,j=1 , where u ij ∈ A. The matrix u is called an n-dimensional representation of G if we have ∆(u ij ) = n k=1 u ik ⊗ u kj , i, j = 1, . . . , n.
Chapter 2. Idempotent states on Sekine quantum groups A representation u is called unitary if u is unitary as an element in M n (A), and irreducible if the only matrices T ∈ M n (C) such that uT = T u are multiples of identity matrix. Two representations u, v ∈ M n (A) are said to be equivalent if there exists an invertible matrix T ∈ M n (C) such that T u = vT . Denote by Irr(G) the set of equivalence classes of irreducible unitary representations of G. For each α ∈ Irr(G), denote by u α ∈ A ⊗ B(H α ) a representative of the class α, where H α is the finite-dimensional Hilbert space on which u α acts. In the sequel we write

n α = dim H α . Denote Pol(G) = span u α ij : 1 ≤ i, j ≤ n α , α ∈ Irr(G)
. This is a dense subalgebra of A. On Pol(G) the Haar state h is faithful. It is well-known that (Pol(G), ∆) is equipped with the Hopf*-algebra structure. That is, there exist a linear antihomormophism S on Pol(G), called the antipode, and a unital *-homomorphism :

Pol(G) → C, called the counit, such that ( ⊗ ι)∆(a) = a = (ι ⊗ )∆(a), a ∈ Pol(G), m(S ⊗ ι)∆(a) = (a)1 A = m(ι ⊗ S)∆(a), a ∈ Pol(G).
Here m denotes the multiplication map m : Pol(G)

⊗ alg Pol(G) → Pol(G), a ⊗ b → ab.
Indeed, the antipode and the counit are uniquely determined by

S(u α ij ) = (u α ji ) * , 1 ≤ i, j ≤ n α , α ∈ Irr(G), (u α ij ) = δ ij , 1 ≤ i, j ≤ n α , α ∈ Irr(G). Remark here that * • S • * • S = ι. Also we have for all a, b ∈ Pol(G) that S ((ι ⊗ h)(∆(b)(1 ⊗ a))) = (ι ⊗ h) ((1 ⊗ b)∆(a)) , (2.1) S((h ⊗ ι)((b ⊗ 1)∆(a))) = (h ⊗ ι)(∆(b)(a ⊗ 1)). (2.2)
Now we add a remark on the C*-norms on Pol(G). We are interested in the following two C*-norms on Pol(G):

(1) the universal norm:

a u := sup{ π(a) : π : Pol(G) → B(H) is a unital *-homomorphism};
(2) the reduced norm:

a r := π h (a) ,
where π h is the GNS representation associated with the Haar state h.

We shall denote by C u (G) and C r (G) the completions of Pol(G) with respect to • u and • r , respectively. Then the comultiplication ∆ and the Haar state h on Pol(G) admit extensions to C u (G) (resp. C r (G)), denoted by ∆ u and h u (resp. ∆ r and h r ), respectively. Both (C u (G), ∆ u ) and (C r (G), ∆ r ) form compact quantum groups.

Note that the counit can be always extended to C u (G), since : Pol(G) → C is a unital *-homomorphism. This is not always the case for C r (G). If can be also extended to C r (G), then G is said to be coamenable. An equivalent definition is, G is coamenable iff • r = • u . Note that • r ≤ • u always holds. We refer to [START_REF] Bédos | Co-amenability of compact quantum groups[END_REF] for more information. Throughout this thesis, we shall always consider compact quantum group G on the universal level, so that the counit can always be extended to the C(G).

The Peter-Weyl theory for compact groups can be extended to the quantum case. In particular, it is known that for each α ∈ Irr(G) there exists a positive invertible operator

Q α ∈ B(H α ) such that Tr(Q α ) = Tr(Q -1
α ) := d α , which we call the quantum dimension of α, and the orthogonality relations hold:

h u α ij (u β kl ) * = δ αβ δ ik (Q α ) lj d α , h (u α ij ) * u β kl = δ αβ δ jl (Q -1 α ) ki d α , where α, β ∈ Irr(G), 1 ≤ i, j ≤ n α , 1 ≤ k, l ≤ n β .
We call G a finite quantum group if the underlying C * -algebra C(G) is finite-dimensional. Note that when G is finite, we have C(G) = Pol(G) and then G is coamenable. In this case each Q α is the identity and h is a trace, i.e., h(ab) = h(ba) for any a, b ∈ C(G). Then the orthogonality relation becomes

h u α ij (u β kl ) * = h (u α ij ) * u β kl = δ αβ δ ik δ jl n α , ( 2.3) 
where

α, β ∈ Irr(G), 1 ≤ i, j ≤ n α , 1 ≤ k, l ≤ n β . Moreover, the antipode S satisfies S 2 = ι. Together with * • S • * • S = ι, one obtains directly that S is *-preserving.
The Pontryagin duality can also be extended to compact quantum groups. We only explain it here for finite quantum groups. If G = (A, ∆) is a finite quantum group, then we may construct its dual Ĝ = ( Â, ∆) as follows. The underlying finite-dimensional C*-algebra  of Ĝ is defined as A , the set of all bounded linear functionals on A. For ϕ 1 , ϕ 2 ∈ Â, their convolution product is defined as ϕ 1 ϕ 2 := (ϕ 1 ⊗ ϕ 2 )∆. We may define the involution on  as:

ϕ * := ϕ(S(•) * ). Then ( Â, , * ) becomes a finite-dimensional C*- algebra. For each ϕ ∈ Â, set ∆(ϕ)(a⊗b) := ϕ(ab), a, b ∈ A. Then ∆(ϕ) ∈ (A⊗A) = A ⊗A
and it is easily seen that ∆ defines a comultiplication on Â. Hence Ĝ = ( Â, ∆) becomes a finite quantum group. Moreover, it is equipped with a Hopf*-algebra structure with the antipode Ŝ and the counit ˆ given by Ŝ(ϕ) := ϕS and ˆ (ϕ) := ϕ(1 A ), respectively. Starting from the finite quantum group Ĝ = ( Â, ∆), we may also construct its dual. Then in this way we recover the quantum group G = (A, ∆).

The Fourier transform F on a finite quantum group G = (A, ∆) is a map from A to  defined as F(a) = h(a•) = h(•a), where h is the Haar state on G. We shall use â to denote the its Fourier transform F(a) for simplicity. Then we have the following Parseval's identity:

ĥ(â 1 â * 2 ) = ch(a 1 a * 2 ), a 1 , a 2 ∈ A, (2.4)
where ĥ is the Haar state on Ĝ and c > 0 is a constant. If we consider the Fourier transform from  to A, then we obtain a similar equation to (2.4).

Sekine quantum groups

Sekine [START_REF] Sekine | An example of finite-dimensional Kac algebras of Kac-Paljutkin type[END_REF] introduced a family of finite quantum groups, referred to as Sekine quantum groups. We follow the notations in [START_REF] Franz | On idempotent states on quantum groups[END_REF] here.

Definition 2.2. Fix k ≥ 2 an integer. Let η be a primitive k-th root of 1, say, η = e 2πi k , and let Z k := {0, 1, . . . , k -1} be the cyclic group with order k. Set

A k := i,j∈Z k Cd i,j ⊕ M k (C),
where d i,j is the corresponding unit vector of the copy C. Denote by {e i,j : i, j ∈ Z k } the matrix units of M k (C). The comultiplication on A k is defined through:
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∆ k (d i,j ) := m,n∈Z k d m,n ⊗ d i-m,j-n + 1 k m,n∈Z k η i(m-n) e m,n ⊗ e m+j,n+j , (2.5) ∆ k (e i,j ) := m,n∈Z k η m(i-j) d -m,-n ⊗ e i-n,j-n + m,n∈Z k η m(j-i) e i-n,j-n ⊗ d m,n , (2.6) 
for i, j ∈ Z k . Then the pair (A k , ∆ k ) forms a finite quantum group, called a Sekine quantum group.

Representations of Sekine quantum groups

We refer to [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] for more discussions on the representation theory of Sekine quantum groups. Let p, q ∈ Z k . Then from (2.5) it follows that

i,j∈Z k η ip+jq ∆ k (d i,j ) = m,n∈Z k η mp+nq d m,n ⊗ i,j∈Z k η ip+jq d i,j + m∈Z k η -mq e m,m+p ⊗ j∈Z k
η jq e j,j+p , and from (2.6) it follows that

i∈Z k η iq ∆ k (e i,i+p ) = m,n∈Z k η mp-nq d m,n ⊗ i∈Z k η iq e i,i+p + i∈Z k η iq e i,i+p ⊗ m,n∈Z k η mp+nq d m,n .
Set ρ p,q := m,n∈Z k η mp+nq d m,n and σ p,q := i∈Z k η iq e i,i+p for all p, q ∈ Z k . Then the equations above can be rephrased as

∆ k (ρ p,q ) = ρ p,q ⊗ ρ p,q + σ p,-q ⊗ σ p,q , ∆ k (σ p,q ) = ρ p,-q ⊗ σ p,q + σ p,-q ⊗ ρ p,q ,
for all p, q ∈ Z k . This yields directly that for any p, q ∈ Z k , π p,q := ρ p,q σ p,-q σ p,q ρ p,-q is a representation of (A k , ∆ k ). Moreover, it is also unitary. To see this, note by definitions of ρ p,q and σ r,s that ρ * p,q = ρ -p,-q , σ * r,s = η rs σ -r,-s , ρ p,q ρ p ,q = ρ p+p ,q+q , ρ p,q σ r,s = σ r,s ρ p,q = 0, σ r,s σ r ,s = η rs σ r+r ,s+s , where p, q, p , q , r, s, r , s ∈ Z k . Then π * p,q π p,q = ρ -p,-q η pq σ -p,-q η -pq σ -p,q ρ -p,q ρ p,q σ p,-q σ p,q ρ p,-q = ρ 0,0 + σ 0,0 0 0 ρ 0,0 + σ 0,0 , while ρ 0,0 + σ 0,0 = p,q∈Z k d p,q + r∈Z k e r,r = 1 A k is the unit element. So π * p,q π p,q = id. Similarly, we have π p,q π * p,q = id.

When q = 0, π p,q is unitarily equivalent to

1 √ 2 1 √ 2 1 √ 2 -1 √ 2 ρ p,0 σ p,0 σ p,0 ρ p,0 1 √ 2 1 √ 2 1 √ 2 -1 √ 2 = ρ p,0 + σ p,0 0 0 ρ p,0 -σ p,0 .
For the same reason, if k is even, π p,k/2 is unitarily equivalent to

1 √ 2 1 √ 2 1 √ 2 -1 √ 2 ρ p,k/2 σ p,k/2 σ p,k/2 ρ p,k/2 1 √ 2 1 √ 2 1 √ 2 -1 √ 2 = ρ p,k/2 + σ p,k/2 0 0 ρ p,k/2 -σ p,k/2 .
In such cases π p,q can be decomposed into, up to equivalence, two one-dimensional unitary irreducible representations. So we have obtained 2k one-dimensional representations when k is odd and 4k one-dimensional representations when k is even. Moreover, π p,q is unitarily equivalent to π p,-q since 0 1 1 0 ρ p,q σ p,-q σ p,q ρ p,-q

0 1 1 0 = ρ p,-q σ p,q σ p,-q ρ p,q .
It is known [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] that {π p,q : 1 ≤ q ≤ [ k-1 2 ]k} are pairwise inequivalent two-dimensional irreducible representations. Note that although this was pointed out only for k odd in [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF], it also holds for k even, following a similar argument.

Hence, up to equivalence, (A k , ∆ k ) has 2k one-dimensional unitary irreducible representations and k(k-1) 2 two-dimensional irreducible representations when k is odd, 4k one dimensional unitary irreducible representations and k(k-2) 2 two-dimensional irreducible representations when k is even. These are the only irreducible representations. Indeed, one can check this by verifying the dimension.

We end this section by introducing the Fourier transform of linear functionals µ on A k , denoted by μ, at π p,q : μ(π p,q ) = µ(ρ p,q ) µ(σ p,-q ) µ(σ p,q ) µ(ρ p,-q ) , p, q ∈ Z k .

It is easy to see that for any functionals µ, ν on

A k µ ν(π p,q ) = μ(π p,q )ν(π p,q ), p, q ∈ Z k , ( 2.7) 
where µ ν := (µ ⊗ ν)∆ denotes the convolution of µ and ν.

Idempotent states on Sekine quantum groups

For a compact quantum group G = (A, ∆), denote by A the set of all bounded linear functionals on A. Then for µ, ν ∈ A we can define the convolution of µ and ν, which we have seen earlier, as a linear functional on A given by the formula

µ ν := (µ ⊗ ν)∆.
A state µ on A is called an idempotent state if µ µ = µ. Denote the class of all idempotent states on G = (A, ∆) by Idem(G), or Idem(A). Idempotent states on compact quantum groups have been characterized in different ways [START_REF] Franz | On idempotent states on quantum groups[END_REF][START_REF] Franz | A new characterisation of idempotent states on finite and compact quantum groups[END_REF].
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Example 2.3 (Commutative case). If A is commutative, then G is isomorphic to (C(G), ∆),
where C(G) denotes the set of continuous functions on a compact group G and ∆ is a comultiplication on C(G) given by

∆(f )(s, t) = f (st), s, t ∈ G.
In this case idempotent state on C(G) arises as idempotent probability measure on G, which, by Kawada and Itô's classical theorem, arises as the Haar measure on a compact subgroup of G.

Let us recall the notion of a quantum subgroup here.

Definition 2.4. If (A, ∆ A ), (B, ∆ B ) are compact quantum groups and π B : A → B is a surjective unital *-homomorphism such that ∆ B • π B = (π B ⊗ π B ) • ∆ A , then (B, ∆ B ) is called a quantum subgroup of (A, ∆ A ).
Let 

Example 2.5 (Co-commutative case). A finite quantum group G = (A, ∆

) is said to be co-commutative if Π∆ = ∆, where Π denotes the usual tensor flip on A ⊗ A. Then A is isomorphic to the group algebra C * (Γ) with Γ a finite discrete group. Then there is a oneone correspondence between idempotent states on A and subgroups of Γ. Moreover, there is a one-one correspondence between Haar idempotent states on A and normal subgroups of Γ. So from a non-normal subgroup of Γ one can construct a non-Haar idempotent.

More examples can be found on Sekine quantum groups [START_REF] Franz | On idempotent states on quantum groups[END_REF]. Indeed, a small class of non-Haar idempotent states on Sekine quantum groups A k was given in [START_REF] Franz | On idempotent states on quantum groups[END_REF]Proposition 6.6]. See (2.11) (2.12) below for details. Now we consider all the idempotent states on A k . Fix k ≥ 2. On A k there is a natural basis:

d i,j (d m,n ) := δ i m δ j n , d i,j (e r,s ) := 0, e i,j (d m,n ) := 0, e i,j (e r,s ) := δ i r δ j s ,
where i, j, m, n, r, s ∈ Z k . Using this basis, the explicit formula for the convolution of two linear functionals on A k is given through the following lemma (see the discussion before [29, Lemma 6.4]).

Lemma 2.6. 

For µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s , ν = i,j∈Z k β i,j d i,j + r,s∈Z k ω r,s e r,s ∈ A k , we have µ ν = i,j∈Z k γ i,j d i,j + r,s∈Z k θ r,s e r,s , with γ i,j = m,n∈Z k α m,n β i-m,j-n + 1 k r,s∈Z k η i(r-s) κ r,s ω r+j,s+j , i, j ∈ Z k , θ r,s = i,j∈Z k η i(s-r) (α i,j ω r+j,s+j + β i,j κ r-j,s-j ), r, s ∈ Z k . 2.
α i,j = r,s∈Z k α i-r,j-s α r,s + 1 k r,s∈Z k η i(r-s) κ r,s κ r+j,s+j , i, j ∈ Z k , (2.8) κ r,s = i,j∈Z k η i(s-r) α i,j (κ r+j,s+j + κ r-j,s-j ), r, s ∈ Z k , (2.9) µ(1 A k ) = i,j∈Z k α i,j + r∈Z k κ r,r = 1.
(2.10) 

Certainly the Haar state on A

k h A k := 1 2k 2 i,j∈Z k d i,j + 1 2k r∈Z k e r,
φ l = 1 2k i∈Z k d i,0 + 1 2 e l,l , l ∈ Z k . ( 2.11) 
There are certainly other non-Haar idempotents for special k's, as pointed out at the end of [START_REF] Franz | On idempotent states on quantum groups[END_REF] with the following examples:

1 4km i∈Z k m-1 l=0 d i,lp + 1 2m m-1 l=0
e lp,lp , (2.12) whenever k = pm and p, m ∈ N such that p, m ≥ 2.

With the help of some elementary number theoretic considerations, we solve the equations (2.8) (2.9) (2.10) in Lemma 2.7. We will see in the following that the set of idempotent states, other than the Haar state, can be divided into three disjoint classes, denoted by I 1 (A k ), I 2 (A k ) and I 3 (A k ). I 1 (A k ) consists of all Haar idempotents except the Haar state. I 2 (A k ) are non-Haar idempotents such that the corresponding matrix K = [κ r,s ] r,s∈Z k is diagonal, which include both (2.11) and (2.12) as subclasses. The third class I 3 (A k ), which are non-Haar idempotent states with K not diagonal, is an unexpected new discovery.

Note first that if µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s is an idempotent state, then from (2.9) it follows that

r∈Z k κ r,r = 2 i,j∈Z k α i,j • r∈Z k κ r,r .
(2.13)

Together with (2.10), we have either

i,j∈Z k α i,j = 1, r∈Z k κ r,r = 0, (2.14) or i,j∈Z k α i,j = r∈Z k κ r,r = 1 2 . (2.15)
The following proposition characterizes all the idempotents verifying (2.14). By [29, Theorem 6.5], such idempotent states, together with the Haar state h A k , form the family of Haar idempotents.

Chapter 2. Idempotent states on Sekine quantum groups Proposition 2.8. Let µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s ∈ A k . Then it is an idempotent state verifying i,j∈Z k α i,j = 1 and r∈Z k κ r,r = 0 if and only if (1) κ r,s = 0 for all r, s ∈ Z k ;

(2)

Γ := {(i, j) ∈ Z k × Z k : α i,j = 0} is a subgroup of Z k × Z k and α i,j = 1 Γ , (i, j) ∈ Γ.
Moreover, in this case, such an idempotent state is Haar idempotent. Conversely, any Haar idempotent is either equal to the Haar state h A k or of this form:

h Γ := 1 Γ (i,j)∈Γ d i,j , with Γ a subgroup of Z k × Z k .
Proof. Since K = [κ r,s ] r,s∈Z k ≥ 0 and Tr(K) = r∈Z k κ r,r = 0, we have κ r,s = 0 for all r, s ∈ Z k . Then (2.9) is trivial and (2.8) becomes

α i,j = r,s∈Z k α i-r,j-s α r,s , i, j ∈ Z k . (2.16) From i,j∈Z k α i,j = 1 it follows that α i ,j = 0 for some (i , j ) ∈ Z k × Z k . So Γ = ∅.
From (2.16) and the non-negativity of α i,j we have that (i 1 , j 1 ) ∈ Γ and (i 2 , j 2 ) ∈ Γ imply (i 1 +i 2 , j 1 +j 2 ) ∈ Γ. Thus Γ is closed under group operation. Moreover, (0, 0) = (ki , kj ) ∈ Γ, i.e., Γ contains the unit. Set M := max i,j∈Z k α i,j and suppose that it is attained by

α i 0 ,j 0 with (i 0 , j 0 ) ∈ Z k × Z k . Clearly M > 0. From M = r,s∈Z k α i 0 -r,j 0 -s α r,s ≤ M r,s∈Z k α r,s = M,
it follows that α i 0 -r,j 0 -s = M as long as α r,s = 0. So Γ ≤ {(i, j) : α i,j = M } ≤ Γ, that is to say, α i,j = 1 Γ for any (i, j) ∈ Γ. Now set (i 0 , j 0 ) equal (0, 0), we have α -r,-s = M as long as α r,s = 0, i.e., (-r, -s

) ∈ Γ if (r, s) ∈ Γ. So any (r, s) ∈ Γ has its inverse (-r, -s) in Γ. Hence Γ is a subgroup of Z k × Z k .
The remaining is a direct consequence of [29, Theorem 6.5].

Remark 2.9. Let µ be as above. If µ = h Γ , we have

μ(π i,j ) ∈ 1 0 0 1 , 1 0 0 0 , 0 0 0 1 , 0 0 0 0 , i, j ∈ Z k .
The following theorem contains the main result of this paper, characterizing the set of idempotent states verifying (2.15), which consists of the Haar state h A k and all the non-Haar idempotents.

Before this we need the following well-known Bézout's identity: Note that we can choose m > 0, n < 0 or m < 0, n > 0 freely. Indeed, we can replace the pair (m, n) with (m + lb, n -la) for any l ∈ Z.

Theorem 2.11. Let µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s ∈ A k . Then it is an idempotent state verifying i,j∈Z k α i,j = r∈Z k κ r,r = 1
2 if and only if µ is either:

(

1) the Haar state h

A k := 1 2k 2 i,j∈Z k d i,j + 1 2k r∈Z k e r,r ; or (2) h Γ,l := 1 2 Γ (i,j)∈Γ d i,j + q 2k r≡l mod q e r,r ,
where Γ = Z k × qZ k with q|k, q > 1, and l ∈ Z q ; or (3)

h Γ,l,τ := 1 2 Γ (i,j)∈Γ d i,j + q 2k r,s≡l mod q τ s-r e r,s ,
where

Γ = pZ k × qZ k with p > 1 and pq = k, l ∈ Z q , and τ = (τ j ) j∈qZ k ∈ {±1} qZ k such that j∈qZ k τ j η ij ≥ 0, i ∈ Z k/q .
(2.17)

Remark 2.12. The condition (2.17) is equivalent to positive semi-definiteness of [κ r,s ] r,s∈Z k . Such τ always exists as one can choose τ j = 1 for all j, which is kind of trivial. It is not difficult to construct non-trivial ones. For example, when k = 2, there is an another τ with τ 0 = 1 and τ 1 = -1 which satisfies (2.17).

Proof of Theorem 2.11. Observe first that for any

j ∈ Z k , K = [κ r,s ] r,s∈Z k ≥ 0 implies [κ r+j,s+j ] r,s∈Z k ≥ 0, thus their Hadamard product [κ r,s κ r+j,s+j ] r,s∈Z k ≥ 0. So we have for any i, j ∈ Z k r,s∈Z k η i(r-s) κ r,s κ r+j,s+j = r,s∈Z k η ir η is κ r,s κ r+j,s+j ≥ 0. (2.18) Recall that Γ = {(i, j) ∈ Z k × Z k : α i,j = 0}. Since i,j∈Z k α i,j = 1 2
, there exists (i , j ) ∈ Z k × Z k such that α i ,j = 0. This allows us to define p := min{i > 0 : (i, j) ∈ Γ for some j ∈ Z k }, q := min{j > 0 : (i, j) ∈ Γ for some i ∈ Z k }.

Claim 1:

We have p|k, q|k, and for any (i, j) ∈ Z k × Z k α i,j = 0 ⇒ p|i and q|j.

(

2.19)

To show this, recall that α i,j ≥ 0, so α i,j = 0 simply means α i,j > 0. From (2.8) and the previous observation (2.18), it follows that

(i 1 , j 1 ), (i 2 , j 2 ) ∈ Γ ⇒ (m 1 i 1 + m 2 i 2 , m 1 j 1 + m 2 j 2 ) ∈ Γ, m 1 , m 2 ∈ Z ≥0 , (2.20) and (i 1 , j 1 ) / ∈ Γ, (i 2 , j 2 ) ∈ Γ ⇒ (i 1 -mi 2 , j 1 -mj 2 ) / ∈ Γ, m ∈ Z ≥1 , (2.21)
From Lemma 2.10, there exist integers m, n > 0 such that mp -nk = gcd(p, k) ≤ p. Suppose that (p, j p ) ∈ Γ for some j p > 0, then (2.20) and Lemma 2.10 yield

(mp, mj p ) = (mp -nk, mj p ) = (gcd(p, k), mj p ) ∈ Γ.
From the definition of p we have gcd(p, k) = p, i.e., p|k.

Chapter 2. Idempotent states on Sekine quantum groups For any α i,j = 0, i.e., (i, j) ∈ Γ, there exist, by applying Lemma 2.10 two times, integers m, n, l > 0 such that 0 < mp + ni -lk = gcd(p, i, k) ≤ p. Thus (2.20) and Lemma 2.10 yield

(mp + ni, mj p + nj) = (mp + ni -lk, mj p + nj) = (gcd(p, i, k), mj p + nj) ∈ Γ.
So gcd(p, i, k) = p, i.e., p|i, which finishes the proof of Claim 1 for p. The proof for q is similar.

Claim 2: Fix t ∈ Z k . Suppose that |κ r 0 ,s 0 | = max{|κ r,s | : (r, s) ∈ Z k × Z k , r -s = t}.
Then for any (i, j) ∈ Γ, we have

κ r 0 ,s 0 = η -it κ r 0 +j,s 0 +j = η -it κ r 0 -j,s 0 -j .
(2.22)

Moreover, η 2pt = 1.
In fact, from (2.9) it follows that

|κ r 0 ,s 0 | ≤ i,j∈Z k α i,j |η -it (κ r 0 +j,s 0 +j + κ r 0 -j,s 0 -j )| ≤ 2|κ r 0 ,s 0 | i,j∈Z k α i,j = |κ r 0 ,s 0 |.
Thus α i,j = 0 implies (2.22). Consequently, we have |κ r 0 +j,s

0 +j | = |κ r 0 -j,s 0 -j | = |κ r 0 ,s 0 |.
Repeating this argument for κ r 0 +j,s 0 +j and κ r 0 -j,s 0 -j , we have finally

|κ r,s | = |κ r 0 ,s 0 | for any r, s such that j|r -r 0 = s -s 0 , (2.23) 
whenever α i,j = 0 for some i. Moreover, (2.22) implies κ r 0 ,s 0 = η -it κ r 0 +j,s 0 +j = η -2it κ r 0 ,s 0 , so we have κ r 0 ,s 0 = 0 only if η 2it = 1, which, by the definition of p, yields η 2pt = 1. So Claim 2 is proved.

Recall that κ r,r ≥ 0 for all r ∈ Z k , since K ≥ 0. From r∈Z k κ r,r = 1 2 , we have κ l,l = max r∈Z k κ r,r > 0 for some l. Suppose α iq,q = 0, then (2.23) implies κ r,r = κ l,l > 0, r ≡ l mod q.

(2.24)

For convenience, let 0 ≤ l < q. From (2.8) and (2.19), we have for any i ∈ Z k and any q j r,s∈Z k η i(r-s) κ r,s κ r+j,s+j = 0.

So for any q j 0 =

i∈Z k r,s∈Z k η i(r-s) κ r,s κ r+j,s+j = r,s∈Z k κ r,s κ r+j,s+j i∈Z k η i(r-s) = k r∈Z k κ r,r κ r+j,r+j .
Thus κ r,r κ r+j,r+j = 0 whenever r ∈ Z k and q j. Combining this with (2.24) we obtain κ r,r = q 2k r ≡ l mod q 0 otherwise .

(2.25)

From this and the positive semi-definitiveness of K we have κ r,s = 0, if either q r -l or q s -l.

(2.26)

So it remains to compute the submatrix [κ r,s ] r,s≡l mod q . For this set p := min{i > 0 : (i, 0) ∈ Γ}, q := min{j > 0 : (0, j) ∈ Γ}.

These are well-defined, since (k, 0) = (0, k) = (0, 0) ∈ Γ. Indeed, suppose (i , j ) ∈ Γ, then from (2.20) it follows (0, 0) = (ki , kj ) ∈ Γ.

We have also by (2.20) that p |i and q |j ⇒ (i, j) ∈ Γ.

(2.27)

So from (2.19) it follows that p|p and q|q .

Claim 3: p = p and q = q . As a consequence, we have (i, j) ∈ Γ if and only if p|i and q|j.

(2.28)

To prove this, note first that for any p|i, there exists j ∈ Z k such that (i, j) ∈ Γ. Otherwise, (i, j) / ∈ Γ for all j ∈ Z k . Since (p, j p ) / ∈ Γ for some j p ∈ Z k , we have by (2.21) that (i -p, j) / ∈ Γ for all j ∈ Z k . This argument gives finally (0, j) / ∈ Γ for all j ∈ Z k , which contradicts the fact that (0, 0) ∈ Γ. Similarly, for any q|j, there exists i ∈ Z k such that (i, j) ∈ Γ. This allows us to define for all p|i and q|j that p j := min{i > 0 : (i, j) ∈ Γ},

q i := min{j > 0 : (i, j) ∈ Γ}.
Then (2.19) implies p|p j and q|q i for all such i, j. Following a similar argument to that showing (2.19), we have by (2.20) and Lemma 2.10 that p j |p and q i |q . Moreover, note that (0, j) ∈ Γ iff q |j, and (i, 0) ∈ Γ iff p |i, which is a consequence of definitions of p , q and (2.20) together with Bézout's identity. Then (2.20) tells us that for any p|i

(i, q i + mq ) ∈ Γ, m ≥ 0; (2.29)
and (2.21) tells us that for any p|i

(i, j -mq i ) = (0 -(-i), j -mq i ) / ∈ Γ, q j, m ≥ 0. (2.30)
So we have for any p|i, (i, j) ∈ Γ iff j ≡ q i mod q .

Now we are ready to prove Claim 3. Suppose q = q , then for any p|i, we have (i, j(i)) / ∈ Γ for some q|j(i) (for example, take j(i) = q i + q). So α i,j(i) = 0, and thus from the nonnegativity of α m,n and (2.18) we have r,s∈Z k η i(r-s) κ r,s κ r+j(i),s+j(i) = 0. 

η i(r-s) κ r,s κ r+j(i),s+j(i) = r,s≡l mod q η i(r-s) κ r,s κ r+j(i),s+j(i) = 0.
Fix p|i and the associated j(i), then we have for any q|t κ r,s κ r+j(i),s+j(i) = d i κ 2 t+l,l , for all r, s ≡ l mod q and r -s = t, (2.31) where d i ∈ {±1} is independent of r, s. In fact, this is trivial when max r,s:r-s=t |κ r,s | = 0. Set d i ≡ 1 for example. If max r,s:r-s=t |κ r,s | > 0, recall that we have for such r, s κ r,s = η pq(s-r) κ r-q,s-q = η -pqt κ r-q,s-q and η 2pq(r-s) = η 2pqt = 1.

Clearly, η pqt = ±1. So (2.31) is also trivial if η pqt = 1: we can choose d i = 1. If η pqt = -1, then for r, s ≡ l mod q κ r,s κ r+j(i),s+j(i) = (-1) j(i)/q κ 2 r-s+l,l , and we can choose d i = (-1) j(i)/q . Thus (2.31) holds.

Now we have for any p|i

0 = r,s≡l mod q η i(r-s) κ r,s κ r+j(i),s+j(i) = r,s=tq+l,t∈Z k/q η i(r-s) d i κ 2 r-s+l,l = k q t∈Z k/q η itq d i κ 2 tq+l,l .
This clearly holds for any p i and any d i because of (2. [START_REF] Das | Invariant Markov semigroups on quantum homogeneous spaces[END_REF]) and (2.26). Set d i := 1 for all p i. Thus we have for each i ∈ Z k t∈Z k/q d i (η q ) it κ 2 tq+l,l = 0.

Then the system of linear equations

t∈Z k/q d i (η q ) it κ 2 tq+l,l = 0, i = 0, 1, . . . , k q -1.
can be represented as

DV X = 0, (2.32) 
where

D = diag(d 0 , d 1 . . . , d k q -1 ) is an invertible k q × k q diagonal matrix, V = V (1, η q , . . . , η k-q ) is an k q × k q Vandermonde matrix, and X = (κ 2 l,l , κ 2 q+l,l . . . , κ 2 k-q+l,l ) T is a k q -dimensional vector. Here V (a 1 , a 2 , . . . , a n ) denotes the n × n Vandermonde matrix [a j-1 i ] n i,j=1
. By the definition of η, V is invertible. So we have X = 0. But κ 2 l,l = q 2 4k 2 = 0, which leads to a contradiction! Hence q = q . Now p = p follows directly. Indeed, q = q implies q p = q, so we have (p, q) = (p, q p ) ∈ Γ. Thus (p, 0) = (p, q) + (0, -q) ∈ Γ. Hence p = p , which ends the proof of Claim 3.

Claim 4:

We have either p = 1 or p ≥ 2 and pq = k.

We will use a similar argument as above. Before this, let us update several conclusions, following Claim 3. Note first that κ r,s = κ r-s+l,l for all r, s ≡ l mod q, since (0, q) ∈ Γ. Moreover, κ r,s = 0 only if η p(r-s) = 1.

If p > 1, we have for any p i:

0 = r,s∈Z k η i(r-s) κ r,s κ r+j,s+j = r,s≡l mod q η i(r-s) κ r,s κ r+j,s+j = r,s=tq+l,t∈Z k/q η i(r-s) κ 2 r-s+l,l = k q t∈Z k/q η itq κ 2 tq+l,l .
So we have the following system of linear equations:

t∈Z k/q (η q ) it κ 2 tq+l,l = 0, i ∈ {0, 1, 2, . . . , k q -1} \ pZ k ,
which can be represented as

V X = 0,
where V is a m × k q submatrix of V , the Vandermonde matrix introduced earlier, with m = k q -[ k pq ] and X = X = (κ 2 l,l , κ 2 q+l,l . . . , κ 2 k-q+l,l ) T with n non-zero entries. Since κ 2 r-s+l,l = 0 only if q|r -s and k p |r -s (because η p(r-s) = 1), we have n ≤ k lcm( k p ,q) = p q gcd( k p , q), where lcm(a, b) denotes the least common multiple of a and b. The fact that κ 2 l,l = q 2 4k 2 = 0 requires m < n.

If gcd( k p , q) < k p , then gcd( k p , q) ≤ k 2p and for p ≥ 2,

m = k q -[ k pq ] ≥ k q - k pq ≥ k 2q = p q • k 2p ≥ p q gcd( k p , q) ≥ n,
which leads to a contradiction. So gcd( k p , q) = k p , i.e., k|pq.

Thus k q ≥ n > m = k q -[ k pq ] ≥ k q -1.
This happens only if k = pq, which ends the proof of the Claim 4.

Now we are ready to finish the proof of the theorem. (i) Suppose p = 1. In this case Γ = {(i, j) ∈ Z k × Z k : q|j}, and

κ r,s = 1 2p r = s ≡ l mod q 0 otherwise. Hence (2.8) becomes α i,j = (r,s)∈Γ α i-r,j-s α r,s + q 4k 2 , q|j.
Let M := max{α i,j : (i, j) ∈ Γ} and suppose that α i 0 ,j 0 = M . Then

M = α i 0 ,j 0 = (r,s)∈Γ α i 0 -r,j 0 -s α r,s + q 4k 2 ≤ M (r,s)∈Γ α r,s + q 4k 2 = M 2 + q 4k 2 , which implies M ≤ q 2k 2 . Moreover, M ≥ 1 2 Γ = q 2k 2 . So M = q 2k 2
, and thus α i,j = q 2k 2 , (i, j) ∈ Γ.

If q = 1, we have µ = h A k , which is nothing but [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF]. Otherwise, we obtain (2).

(ii) Suppose p > 1 and k = pq. In this case n

= k q = p, m = k q -[ k pq ] = p -1. Since κ 2 l,l = 1 4p 2 , the equation V X = 0 possesses exactly one solution: X = ( 1 4p 2 , . . . , 1 4p 2 ) T . That is to say, κ r,s =        κ 0,0 = 1 2p r = s, r, s ≡ l mod q κ 0,s-r = ± 1 2p r = s, r, s ≡ l mod q 0 otherwise.
So the fact that K ≥ 0 is equivalent to the positive semi-definiteness of the circulant matrix [κ r,s ] r,s≡l mod q . Since the set of all the eigenvalues of [κ r,s ] r,s≡l mod q is

{ j∈qZ k κ 0,j η ij , i ∈ Z k/q },
we have K ≥ 0 if and only if

j∈qZ k τ j η ij ≥ 0, i ∈ Z k/q ,
where τ j := κ 0,j ∈ {±1}, j ∈ qZ k . Now (2.8) is equivalent to

α i,j = (m,n)∈Γ α i-m,j-n α m,n + 1 4k , (i, j) ∈ Γ.
Following a similar argument as above, we have

α i,j = 1 2k , (i, j) ∈ Γ.
This gives (3), and the proof of the theorem is complete.

Remark 2.13. Let µ be as above. Then

1. µ = h Γ,l if and only if µ(ρ i,j ) = 1 2 i = 0, k q |j 0 otherwise and µ(σ i,j ) = 1 2 η jl i = 0, k q |j 0 otherwise , if and only if μ(π i,j ) =      1 2 1 2 η -jl 1 2 η jl 1 2 i = 0, k q |j ( 0 0 0 0 ) otherwise 2. µ = h Γ,l,τ if and only if µ(ρ i,j ) = 1 2
q|i, p|j

0 otherwise and µ(σ i,j ) = 1 2 τ j η jl q|i, p|j 0 otherwise , if and only if μ(π i,j ) =      1 2 1 2 τ -j η -jl 1 2 τ j η jl 1 2
q|i, p|j

( 0 0 0 0 ) otherwise Denote by I 1 (A k ), I 2 (A k ) and I 3 (A k
) the family of idempotent states of the forms h Γ , h Γ,l and h Γ,l,τ respectively. Then the discussions above can be rephrased as Theorem 2.14. Fix k ≥ 2 an integer. Then the family of idempotent states Idem(A k ) on Sekine quantum group A k is given through

Idem(A k ) = {h A k } ∪ I 1 (A k ) ∪ I 2 (A k ) ∪ I 3 (A k ).

The order structure on Idem(A k )

Franz and Skalski introduced in [START_REF] Franz | On idempotent states on quantum groups[END_REF] the order relation on the set of idempotent states of a finite quantum group. We recall this definition for Sekine quantum groups here.

Definition 2.15. Let φ 1 , φ 2 ∈ Idem(A k ). Denote by ≺ the partial order on Idem(A k ) given through φ 1 ≺ φ 2 if φ 1 φ 2 = φ 2 .
In this order the Haar state h A k and the counit are, respectively, the biggest and smallest idempotent state in Idem(A k ). Let µ, ν ∈ Idem(A k ). We use superscripts to label all the symbols which appeared before. For example,

µ := i,j∈Z k α (µ) i,j d i,j + r,s∈Z k κ (µ)
r,s e r,s , ν

:= i,j∈Z k α (ν) i,j d i,j + r,s∈Z k κ (ν)
r,s e r,s .

We introduce the partial order ≺ in the family of 2 by 2 idempotent matrices

J := {A ∈ M 2 (C) : A 2 = A}: A ≺ B if AB = B, A, B ∈ J ,
and the partial order ≺ in the family of subgroups of

Z k × Z k : Γ ≺ Λ if Γ ⊂ Λ, Λ, Γ ≤ Z k × Z k .
Then from (2.7), µ ≺ ν if and only if

μ(π i,j ) ≺ ν(π i,j ), i, j ∈ Z k , ( 2.33) 
Our main result in this section is the following theorem, characterizing the order structure in the lattice (Idem(A k ), ≺). Theorem 2.16. Let µ, ν be idempotent states, other than the Haar state, on A k as above. Then µ ≺ ν if and only if one of the following holds:

(1) µ = h Γ (µ) , ν = h Γ (ν) ∈ I 1 (A k ) and Γ (µ) ≺ Γ (ν) ;
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(2) µ = h Γ (µ) ∈ I 1 (A k ), ν = h Γ (ν) ,l (ν) ∈ I 2 (A k ) and Γ (µ) ≺ Γ (ν) ; (3) µ = h Γ (µ) ∈ I 1 (A k ), ν = h Γ (ν) ,l (ν) ,τ (ν) ∈ I 3 (A k ) and Γ (µ) ≺ Γ (ν) ; (4) µ = h Γ (µ) ,l (µ) , ν = h Γ (ν) ,l (ν) ∈ I 2 (A k ), Γ (µ) ≺ Γ (ν) and l (µ) ≡ l (ν) mod q (ν) ; (5) µ = h Γ (µ) ,l (µ) ,τ (µ) ∈ I 3 (A k ), ν = h Γ (ν) ,l (ν) ∈ I 2 (A k ), Γ (µ) ≺ Γ (ν) and τ (ν) j = η j(l (ν) -l (µ) ) for j such that k q (ν) = p (ν) |j; (6) µ = h Γ (µ) ,l (µ) ,τ (µ) , ν = h Γ (ν) ,l (ν) ,τ (ν) ∈ I 3 (A k ), Γ (µ) = Γ (ν) and τ (ν) j = τ (µ) j η j(l (ν) -l (µ) ) for j such that p (µ) = p (ν) |j.
Proof. By (2.33), if μ(π i,j ) ≺ ν(π i,j ), then μ(π i,j ) = 0 implies ν(π i,j ) = 0, and ν(π i,j ) = I implies μ(π i,j ) = I. That is to say,

{(i, j) ∈ Z k × Z k : μ(π i,j ) = 0} ⊂ {(i, j) ∈ Z k × Z k : ν(π i,j ) = 0}, (2.34) 
and

{(i, j) ∈ Z k × Z k : ν(π i,j ) = I} ⊂ {(i, j) ∈ Z k × Z k : μ(π i,j ) = I}. ( 2.35) 
So from Remark 2.9 and Remark 2.13 it follows that

1. if µ ∈ I 3 (A k ), then ν / ∈ I 2 (A k ); 2. if ν ∈ I 1 (A k ), then µ ∈ I 1 (A k ).
Hence we have only the following six cases:

(1) µ = h Γ (µ) , ν = h Γ (ν) ∈ I 1 (A k ). Then µ ≺ ν if and only if α (ν) i,j = r,s∈Z k α (µ) i-r,j-s α (ν) r,s , i, j ∈ Z k .
For (i, j) / ∈ Γ (ν) , we have α

(µ) i-r,j-s α (ν) r,s = 0, ∀r, s ∈ Z k . Choosing (r, s) = (0, 0), we have α (µ) i,j = 0, i.e., (i, j) / ∈ Γ (µ) . So Γ (µ) ≺ Γ (ν) .
(

) µ = h Γ (µ) ∈ I 1 (A k ), ν = h Γ (ν) ,l (ν) ∈ I 2 (A k ). Then µ ≺ ν if and only if α (ν) i,j = r,s∈Z k α (µ) i-r,j-s α (ν) r,s , i, j ∈ Z k , (2.36) and κ (ν) r,r = i,j∈Z k α (µ) i,j κ (ν) r+j,r+j , r, s ∈ Z k . (2.37) 2 
From a similar argument as in (1), we have that (2.36) implies Γ (µ) ≺ Γ (ν) . So Γ (µ) = Z k × q (µ) Z k with q (ν) |q (µ) . In this case (2.37) always holds.

(

) µ = h Γ (µ) ∈ I 1 (A k ), ν = h Γ (ν) ,l (ν) ,τ (ν) . Then µ ≺ ν if and only if α (ν) i,j = r,s∈Z k α (µ) i-r,j-s α (ν) r,s , i, j ∈ Z k , (2.38) and κ (ν) r,s = i,j∈Z k η i(s-r) α (µ) i,j κ (ν) r+j,s+j , r, s ∈ Z k . (2.39) 3 
From a similar argument as in (2), we have Γ

(µ) = p (µ) Z k × q (µ) Z k ≺ Γ (µ) = p (ν) Z k × q (ν) Z k .
Or equivalently, p (ν) |p (µ) and q (ν) |q (µ) . In this case (2.39) always holds.

(

) µ = h Γ (µ) ,l (µ) , ν = h Γ (ν) ,l (ν) ∈ I 2 (A k ). 4 
From Remark 2.13 and (2.34) it follows that q (ν) |q (µ) . So Γ (µ) ≺ Γ (ν) . Moreover, μ(π i,j ) ≺ ν(π i,j ) requires that for all k q (ν) |j

1 2 1 2 η -jl (ν) 1 2 η jl (ν) 1 2 = 1 2 1 2 η -jl (µ) 1 2 η jl (µ) 1 2 1 2 1 2 η -jl (ν) 1 2 η jl (ν) 1 2
, which is equivalent to

1 2 1 2 η -jl (ν) 1 2 η jl (ν) 1 2 = 1 4 + 1 4 η j(l (ν) -l (µ) ) 1 4 η -jl (ν) (1+η j(l (ν) -l (µ) ) ) 1 4 η jl (ν) (1+η j(l (µ) -l (ν) ) ) 1 4 + 1 4 η j(l (µ) -l (ν) )
.

That is to say,

η j(l (ν) -l (µ) ) = 1 for all k q (ν) |j.
So l (µ) ≡ l (ν) mod q (ν) .

(5) µ = h Γ (µ) ,l (µ) ,τ (µ) ∈ I 3 (A k ), ν = h Γ (ν) ,l (ν) ∈ I 2 (A k ). Following a similar argument as above, it follows that µ ≺ ν if and only if q (ν) |q (µ) and

1 2 1 2 τ (ν) j η -jl (ν) 1 2 τ (ν) j η jl (ν) 1 2 = 1 2 1 2 η -jl (µ) 1 2 η jl (µ) 1 2 1 2 1 2 τ (ν) j η -jl (ν) 1 2 τ (ν) j η jl (ν) 1 2
, if and only if Γ (µ) ≺ Γ (ν) and

τ (ν) j = η j(l (ν) -l (µ) ) for j such that k q (ν) = p (ν) |j. (6) µ = h Γ (µ) ,l (µ) ,τ (µ) , ν = h Γ (ν) ,l (ν) ,τ (ν) ∈ I 3 (A k ).
From Remark 2.13 and (2.34) it follows that p (ν) |p (µ) and q (ν) |q (µ) . Since p (µ) q (µ) = p (ν) q (ν) = k, we have p (µ) = p (ν) , q (µ) = q (ν) . Thus Γ (µ) = Γ (ν) . Moreover,

1 2 1 2 τ (ν) j η -jl (ν) 1 2 τ (ν) j η jl (ν) 1 2 = 1 2 1 2 τ (µ) j η -jl (µ) 1 2 τ (µ) j η jl (µ) 1 2 1 2 1 2 τ (ν) j η -jl (ν) 1 2 τ (ν) j η jl (ν) 1 2
, which is equivalent to

τ (ν) j = τ (µ) j η j(l (ν) -l (µ)
) for j such that p (µ) = p (ν) |j.

We present here the order structure on Idem(A k ) for k prime.

Chapter 2. Idempotent states on Sekine quantum groups Example 2.17. When k is a prime number, Z k × Z k has one subgroup of order 1: Γ 0 = {(0, 0)}, k + 1 subgroups of order k:

Γ + = Z k × kZ k , Γ -= kZ k × Z k , Γ i = {j(1, i) = (j, ij) : j ∈ Z k }, where i = 1, 2, • • • , k -1, and one subgroup of order k 2 : Γ k = Z k × Z k .
Then Proposition 2.8 gives k + 3 idempotent states:

h + := h Γ + , h -:= h Γ -, and 
h i := h Γ i , i = 0, 1, • • • , k, in which h 0 =
is the counit. The idempotent state in Theorem 2.11 (1) is the Haar state h = h A k . By Theorem 2.11 (2), the Haar idempotent states of the form h Γ,l are h +,l := h Γ + ,l with l ∈ Z k . And the Theorem 2.11 (3) tells us that h -,0,τ := h Γ -,0,τ are the only elements in I 3 (A k ), where τ verifies (2.17). From Theorem 2.16 we can draw the Hasse diagram of the lattice (Idem(A k ), ≺) as:

h 0 = h + h - h i h k h +,l h -,0,τ h = h A k where i = 1, 2, • • • , k -1, l ∈ Z k ,
and τ represents a family of parameters which satisfy (2.17). When k = 2, the Hasse diagram reads precisely as:

h 0 = h + h - h 1 h 2 h +,0 h +,1 h -,0,τ h -,0,τ h = h A 2
Here τ is the trivial one that satisfies (2.17), i.e., τ 0 = τ 1 = 1; and τ is given through τ 0 = 1 and τ 1 = -1, as we have mentioned in Remark 2.12. One should compare this diagram with the one in [START_REF] Franz | Random walks on finite quantum groups[END_REF] of eight-dimension Kac-Paljutkin quantum group. Note that the Hasse diagram for k = 2 coincides with that of the lattice of subgroups of the dihedral group D 4 (with the partial order reversed). Indeed, from discussions in Section 1, A 2 has 8 one-dimensional representations and no 2-dimensional ones. Hence it is co-commutative, and therefore equal to C * (Γ) for some classical group Γ. This group is nothing but D 4 . To see this, take x = ρ 11 + σ 11 and y = ρ 10 + σ 10 . It is not difficult to verify that y 2 = x 4 = 1 and yxy = x -1 . Moreover, x and y do not admit any other independent relations. So A 2 is the group algebra of D 4 , and thus the lattice of idempotent states on A 2 is nothing but the lattice of subgroups of D 4 .

Convergence of convolution powers of states on Sekine quantum groups

We end this chapter by saying a few words on the convergence of convolution powers of states on Sekine quantum groups. This is related to random walks on quantum groups [START_REF] Franz | Random walks on finite quantum groups[END_REF][START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF].

Convergence of convolution powers of states on Sekine quantum groups 47

Fix a state µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s on A k . Then clearly {µ n } n≥1 converges if and only if {μ(π p,q ) n } n≥1 converges for all p, q ∈ Z k . The following proposition gives a sufficient condition that guarantees the convergence. Proposition 2.18. Let µ be as above. Then {µ n } n≥1 converges if α 0,0 > 0.

Proof. Fix p, q ∈ Z k . Denote by λ 1 , λ 2 the eigenvalues of μ(π p,q ). Let λ ∈ {λ 1 , λ 2 }, then we have (λ -µ(ρ p,q )) (λ -µ(ρ p,-q )) = µ(σ p,q )µ(σ p,-q ).

Since π p,q is unitary, μ(π p,q ) = (id

M 2 (C) ⊗ µ)(π p,q ) ≤ 1. Thus |λ| ≤ 1. Note that |µ(ρ p,q )| = | i,j∈Z k α i,j η ip+jq | ≤ i,j∈Z k α i,j , (2.40 
)

and from K = [κ r,s ] r,s∈Z k ≥ 0 it follows that |µ(σ p,q )| = | l∈Z k κ l,l+p η ql | ≤ l∈Z k |κ l,l+p | ≤ 1 2 l∈Z k (κ l,l + κ l+p,l+p ) = r∈Z k κ r,r .
If |λ| = 1, then the equations above yield

(1 - i,j∈Z k α i,j ) 2 ≤ (|λ| -|µ(ρ p,q )|) (|λ| -|µ(ρ p,-q )|) ≤ | (λ -µ(ρ p,q )) (λ -µ(ρ p,-q )) | = |µ(σ p,q )µ(σ p,-q )| ≤ (1 - i,j∈Z k α i,j ) 2 . Hence (1 - i,j∈Z k α i,j ) 2 = (1 -|µ(ρ p,q )|) (1 -|µ(ρ p,-q )|) ,
which gives |µ(ρ p,q )| = |µ(ρ p,-q )| = i,j∈Z k α i,j . Since α 0,0 > 0, we have µ(ρ p,q ) = µ(ρ p,-q ) = i,j∈Z k α i,j > 0. So λ can be nothing but 1. That is to say, λ ∈ {z ∈ Z : |z| < 1} ∪ {1}. Hence {μ(π p,q ) n } n≥1 converges if μ(π p,q ) is not similar to the Jordan normal form (

1 1 0 1 ). If λ 1 = λ 2 = 1, then from 2 = λ 1 + λ 2 = µ(ρ p,q ) + µ(ρ p,-q ) ≤ 2 i,j∈Z k α i,j ≤ 2 it follows that µ(ρ p,q ) = µ(ρ p,-q ) = i,j∈Z k α i,j = 1.
Thus µ(σ p,q ) = µ(σ p,-q ) = r∈Z k κ r,r = 0. That is to say, μ(π p,q ) equals identity, not similar to the Jordan normal form as above, which finishes the proof.

Remark 2.19.

In the proof we only used α 0,0 > 0 to deduce µ(ρ p,q ) = µ(ρ p,-q ) = i,j∈Z k α i,j from |µ(ρ p,q )| = |µ(ρ p,-q )| = i,j∈Z k α i,j . Recalling (2.40), to make sure that {µ n } n≥1 converges when α 0,0 = 0, it suffices to assume {η ip+jq : α i,j = 0} ≥ 2 for all p, q ∈ Z k .

Chapter 3

Infinitely divisible states on finite quantum groups

In this chapter we study the states of Poisson type and infinitely divisible states on compact quantum groups. Each state of Poisson type is infinitely divisible, i.e., it admits n-th root for all n ≥ 1. The main result is that on finite quantum groups infinitely divisible states must be of Poisson type. This generalizes Böge's theorem concerning infinitely divisible measures (commutative case) and Parthasarathy's result on infinitely divisible positive definite functions (co-commutative case).

1. The space of bounded measures on a compact (semi)group is equipped with a natural convolution operation. The convolution of two probability measures is still a probability measure. Infinitely divisible probability measures are probability measures that admit n-th root for all n ≥ 1, where the root is also a probability measure. On finite groups such probability measures have been shown to be of Poisson type, see [START_REF] Böge | Über die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen[END_REF] and [START_REF] Schmetterer | On Poisson laws and related questions[END_REF].

A positive definite function on a compact group G is a continuous function

φ : G → C such that [φ(g -1 i g j )] n i,j=1
is a positive semi-definite matrix for all g 1 , . . . , g n ∈ G and for all n ≥ 1. It is normalized if φ(e) = 1, where e is the unit of G. The pointwise product of two normalized positive definite functions on G is again a normalized positive definite function. From this we can define infinitely divisible normalized positive definite functions on a compact group in a natural way. This is thoroughly studied by Parthasarathy [START_REF] Parthasarathy | Infinitely divisible representations and positive definite functions on a compact group[END_REF]. As a special case, he proved that every infinitely divisible normalized positive definite function on a finite group is of Poisson type, although the notion "Poisson type" was not explicitly defined in his paper.

We shall give two proofs of our main results. Let us explain the difficulty of this problem in the quantum group setting. Consider the infinitely divisible states on the dual of a finite group G, that is, we shall study positive definite functions ω : G → C with ω(e) = 1, such that for all n ≥ 1, there exists positive definite function ω n on G satisfying ω n (e) = 1 and ω = ω n n . Recall that a function f : G → C is positive definite if [f (st -1 )] s,t∈S is positive semi-definite for any finite subset S ⊂ G. We shall prove that such ω can be written as an exponential. A key observation of the proof is that, the support of ω (which is the same as that of ω n for each n) forms a subgroup of G. In fact, there exists a subsequence of {ω n } n≥1 which converges to an idempotent normalized positive definite function φ and one can easily show that the support of φ is necessarily a Chapter 3. Infinitely divisible states on finite quantum groups subgroup of G. So we may transfer the problem to the subgroup and always assume that ω (and all ω n ) is non-zero everywhere. However, on the one hand, it is difficult to capture the idempotent state (the substitute of idempotent normalized positive definite function in quantum setting) for which it has the same "support" as ω. On the other hand, in the quantum group case we can not always transfer the problem to a quantum subgroup, as the idempotent state might be non-Haar. For this we introduce the Plancherel triple and the first section gathers some properties of the Plancherel triple coming from an idempotent state on a finite quantum group.

Let us fix some notations for this chapter. For any C*-algebra A, we use A to denote the set of bounded linear functionals on A. We use M n (C) to denote the n-by-n full complex matrix algebra. We will follow the notations of compact quantum groups in the last chapter, but we will not recall them here in detail.

Preliminary: Plancherel triple

In this section we introduce the notion of Plancherel triple, which is slightly different from the same notion in [START_REF] Evdokimov | Algebras in Plancherel duality and algebraic combinatorics[END_REF]. Moreover, one can compare it with the so-called D-pairs discussed in [START_REF] Kerov | Duality of finite-dimensional * -algebras[END_REF]. Let A, B be two finite-dimensional C*-algebras. Suppose that 

•, • : A × B → C,
p A = p * A = p 2 A , ap A = p A a = A (a)p A , a ∈ A, p B = p * B = p 2 B , bp B = p B b = B (b)p B , b ∈ B;
(4) the Fourier transforms 

F A : A → B, a → â and F B : B → A, b → b satisfy: h B (â 1 â * 2 ) = ch A (a 1 a * 2 ), (3.1) h A ( b1 b * 2 ) = c h B (b 1 b * 2 ), ( 3 
ij : 1 ≤ i, j ≤ n α , 1 ≤ α ≤ m}. Let { e α ij : 1 ≤ i, j ≤ n α , 1 ≤ α ≤ m} be the dual basis of {e α ij : 1 ≤ i, j ≤ n α , 1 ≤ α ≤ m}.
(1) We have F A (e α ij ) = c α e α ji for some positive number c α .

(2) Suppose that e α 0 = p A . Then e α 0 = A = 1 B . Consequently, h B (1 B ) = 1 and then h B is a state.

(3) We have the orthogonality relation:

h B e α ij ( e β kl ) * = δ αβ δ ik δ jl cc α ,
for all α, β, i, j, k, l, where c is the constant appearing in (3.1).

(4) We have

h B e α ij = δ α 0 α , ( 3.3) 
and

B e α ij = δ ij , ( 3.4) 
for all α, i, j.

Proof. [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF] For any a = m α=1 nα i,j=1 a α ij e α ij ∈ A, we have by definition

a, F A (e α ij ) = h A (ae α ij ) = a α ji h A (e α jj ) = h A (e α jj ) e α ji (a). Since h A is tracial, h A (e α jj ) is independent of j. So a, F A (e α ij ) = c α e α ji (a), a ∈ A, with c α = h A (e α jj ) > 0. Thus F A (e α ij ) = c α e α ji , since , is non-degenerate.
(2) For any a = m α=1 nα i,j=1 a α ij e α ij ∈ A, we have by definition

a α 0 e α 0 = ap A = A (a)p A = a, 1 B e α 0 . Then e α 0 (a) = a α 0 = a, 1 B , a ∈ A.
Hence e α 0 = A = 1 B .

(3) This is a direct consequence of (3.1) and ( 1).

(4) By ( 2) and (3) we have

h B e α ij = h B e α ij ( e α 0 ) * = δ α 0 α cc α 0 .
In particular, we have

1 = h B (1 B ) = h B e α 0 ( e α 0 ) * = 1 cc α 0 .
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This proves (3.3). To show (3.4), recall that by definition,

B e α ij = 1 A , e α ij = e α ij (1 A ) = δ ij .
Example 3.3. Let (A, ∆) be a finite quantum group with dual ( Â, ∆). Then (A, Â, , ) forms a Plancherel triple. Here the bilinear form , is given by a, ϕ := ϕ(a). The comultiplications, counits, Haar states, and Fourier transforms are the usual comultiplications, counits, Haar states, and Fourier transforms on A and Â, respectively.

Plancherel triple induced from an idempotent state

In this section we will construct a Plancherel triple from an idempotent state on a finite quantum group G = (A, ∆). Recall that an idempotent state on G is a state φ such that φ φ = φ. It is well-known that (see for example [START_REF] Franz | On idempotent states on quantum groups[END_REF]) when considered as an element in Â, p = φ is a group-like projection in Â. By a group-like projection of the finite quantum group Ĝ = ( Â, ∆) we mean a non-zero element p ∈ Â such that p = p * = p 2 and

∆(p)(1 ⊗ p) = p ⊗ p = ∆(p)(p ⊗ 1), Ŝ(p) = p. (3.5)
Our aim in this section is to show that (A φ , Âp , , ) forms a Plancherel triple, where

A φ = (φ ⊗ ι ⊗ φ)∆ (2) (A) is a C*-subalgebra of A, Âp := p Âp is a C*-subalgebra of  and
the bilinear form is inherited from the one on the pair (A, Â). In the following we shall explain the constructions of A φ and Âp in detail. Before this we remark here that these constructions have already been studied by many people [START_REF] Delvaux | Algebraic quantum hypergroups[END_REF][START_REF] Franz | On idempotent states on quantum groups[END_REF][START_REF] Chapovsky | Compact quantum hypergroups[END_REF][START_REF] Franz | A new characterisation of idempotent states on finite and compact quantum groups[END_REF]. Many results are well-known and their proofs are omitted here.

C*-subalgebra A φ

In this subsection we construct and study the C*-subalgebra A φ . Denote by Idem(G) the set of all idempotent states on a compact quantum group G. Recall that if φ ∈ Idem(G), we have φ = φS on Pol(G), where S is the antipode on Pol(G) [START_REF] Franz | On idempotent states on quantum groups[END_REF].

The first lemma is a special case of [START_REF] Franz | On idempotent states on quantum groups[END_REF]Lemma 3.1], and also a variation of [52, Lemma (

1) E φ (a * ) = E φ (a) * , E r φ (a * ) = E r φ (a) * , a ∈ A. (2) ∆E φ = (E φ ⊗ ι)∆, ∆E r φ = (ι ⊗ E r φ )∆. (3) (ι ⊗ E φ )∆ = (E r φ ⊗ ι)∆. (4) E φ E r φ = E r φ E φ .
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(5) For any a, b ∈ A,

E φ (a)E φ (b) = E φ (aE φ (b)) = E φ (E φ (a)b), (3.6) E r φ (a)E r φ (b) = E r φ (aE r φ (b)) = E r φ (E r φ (a)b). (3.7)
Consequently, we have

E φ E φ = E φ and E r φ E r φ = E r φ .
Proof. (1)-( 4) are just straightforward computations. For (5) we prove (3.6) first. For this note that it suffices to show the first equation for any a, b the coefficients of unitary representation of G. The case for general a, b follows from the linearity and density. Let u α ij , 1 ≤ i, j ≤ n α be the coefficients of the irreducible unitary representations u α , α ∈ Irr (G). On the one hand, for any u α ij and u β kl we have

E φ (u α ij )E φ (u β kl ) = nα s=1 n β t=1 φ(u α is )φ(u β kt )u α sj u β tl .
On the other hand,

E φ (E φ (u α ij )u β kl ) = nα r,s=1 n β t=1 φ(u α ir )φ(u α rs u β kt )u α sj u β tl .

Now by using Lemma 3.4 we have for any

b ∈ A φ (b) φ (u α is ) = nα r=1 φ (u α ir ) φ(u α rs b), 1 ≤ i, s ≤ n α , α ∈ Irr (G) .
Choosing b as u β kt , we have

E φ (E φ (u α ij )u β kl ) = nα r=1 n β t=1 nα s=1 φ(u α ir )φ(u α rs u β kt ) u α sj u β tl = nα s=1 n β t=1 φ(u α is )φ(u β kt )u α sj u β tl = E φ (u α ij )E φ (u β kl ). So E φ (a)E φ (b) = E φ (E φ (a)b).
In the same way one can show that

E φ (a)E φ (b) = E φ (aE φ (b)), then (3.6) is proved. Note that by choosing b = 1 A in (3.6), we obtain E φ E φ = E φ . The proof of (3.7) and E r φ E r φ = E r φ is similar. Now we define E φ := E φ E r φ = E r φ E φ .
The map E φ shares the similar properties of E φ and E r φ , see the following lemma (1)-( 4). Moreover, E φ commutes with the antipode S, as the following lemma [START_REF] Bekjan | On joint convexity of trace functions[END_REF] shows. This enables the algebra E φ (A) to possess nicer properties than E φ (A) and E r φ (A). We shall choose E φ (A) to be our A φ .

Lemma 3.6. Let G = (A, ∆) be a compact quantum group. Then

(1) E φ (a * ) = E φ (a) * , a ∈ A. (2) ∆E φ = (E φ ⊗ E r φ )∆. (3) (E φ ⊗ E φ )∆ = (ι ⊗ E φ )∆E φ = (E r φ ⊗ ι)∆E φ . (4) E φ (a)E φ (b) = E φ (aE φ (b)) = E φ (E φ (a)b), a, b ∈ A. Consequently, E φ E φ = E φ . So p  ∈ Âp . Moreover, bp  = p Âb = ˆ (b)p  = ˆ p (b)p Â, b ∈ Âp .
Therefore the support projection of ˆ p is p Âp = p Â. Thus the Haar functional on A φ is

h φ := h A φ = •, p Âp = •, p  | A φ = h| A φ .
On the other hand, by Lemma 3.6,

E φ (p A )E φ (a) = E φ (p A E φ (a)) = (E φ (a))E φ (p A ) = φ (E φ (a))E φ (p A ), a ∈ A.
Similarly,

E φ (p A )E φ (a) = φ (E φ (a))E φ (p A ), a ∈ A. By choosing a = p A , we obtain that E φ (p A ) 2 = φ(p A )E φ (p A ). So q := 1 φ(p A ) E φ (p A ) is a self-adjoint projection in A φ such that qa = aq = φ (a)q, a ∈ A φ .
That is, p A φ = q is the support projection of φ . So the Haar functional on Âp is

ĥp := h Âp = p A φ , • = 1 φ(p A ) E φ (p A ), • = 1 φ(p A ) p A , • | Âp = 1 φ(p A ) ĥ| Âp .
Hence the Haar functionals h φ and ĥp are faithful, positive and tracial.

(4) For any a ∈ A φ , we claim that F A (a) = h(•a) ∈ Âp , i.e., F A (a) is φ-bi-invariant. Indeed, by (2.1),

(φ ⊗ h(•a))∆(x) = (φ ⊗ h)(∆(x)(1 ⊗ a)) = (φ • S ⊗ h)((1 ⊗ x)∆(a)), a ∈ A φ , x ∈ A.
Since φ = φS and E φ (a) = a, we have

(φ ⊗ h(•a))∆(x) = (φ ⊗ h)((1 ⊗ x)∆(a)) = h(xE φ (a)) = h(xa), a ∈ A φ , x ∈ A. Hence φ h(•a) = h(•a), for all a ∈ A φ . From (2.2) and E r φ (a) = a one can deduce in a similar way that h(•a) φ = h(•a). Thus F A (a) = h(•a) is φ-bi-invariant
for all a ∈ A φ . This proves our claim. Now for any a ∈ A φ we have

x, F A φ (a) = h φ (xa) = h(xa) = x, F A (a) , x ∈ A φ . Since F A (a) ∈ Âp , F A (a) is the image of F A φ (a) under the natural inclusion Âp → Â.
Hence the Parseval's identity (2.4) on the pair (A, Â) yields

ĥp (F A φ (a 1 )F A φ (a 2 ) * ) = ĥ(F A (a 1 )F A (a 2 ) * ) = ch(a 1 a * 2 ) = ch φ (a 1 a * 2 ), a 1 , a 2 ∈ A φ .
Similarly, one can show that

h φ (F Âp (b 1 )F Âp (b 2 ) * ) = c ĥp (b 1 b * 2 ), b 1 , b 2 ∈ Âp ,
for some constant c > 0.

Poisson states on compact quantum groups Chapter 3. Infinitely divisible states on finite quantum groups

Now we are ready to prove Theorem 3.9. The idea is to restrict the problem to A φ , and then transfer the decomposition from A φ to A.

Proof of Theorem 3.9. The direction (2) ⇒ (1) is clear. To prove (1) ⇒ (2), suppose u = 0 and write u = u| A φ E φ by Lemma 3.7. Note that | A φ is a character on the unital C * -algebra A φ . From the definition of u, we have u| A φ (1 A φ ) = 0. Moreover, for any x ∈ A such that | A φ (E φ (x) * E φ (x)) = 0, we have by Lemma 3.5 and Lemma 3.7 that

0 = | A φ (E φ (x) * E φ (x)) = | A φ E φ (E φ (x) * E φ (x)) = φ (E φ (x) * E φ (x)) .
Again, by Lemma 3.5 and Lemma 3.7, the conditionally positive definiteness of u with respect to φ implies

u| A φ (E φ (x) * E φ (x)) = u| A φ E φ (E φ (x) * E φ (x)) = u (E φ (x) * E φ (x)) ≥ 0.
So we have by Proposition 3.10 that u| A φ = r(w -| A φ ) with r > 0 and w a state on A φ . Set v := wE φ , then v is, by Lemma 3.7, a φ-bi-invariant state on A such that

u = u| A φ E φ = r wE φ -| A φ E φ = r(v -φ), as desired.
Let G = (A, ∆) be a compact quantum group. Let φ ∈ Idem(G). We denote by N φ (G) the class of functionals u ∈ A that satisfy the conditions (2) in Theorem 3.9. Then for each u ∈ N φ (G), ω := exp φ (u) is a state. In fact, since u = r(v -φ) for some r > 0 and φ-bi-invariant state v, we have by Lemma 3.18 that exp φ (u) = exp φ (r(v -φ)) = exp φ (rv) exp φ (-rφ) = e -r exp φ (rv).

The fact that it is a positive functional follows from the definition of exp φ and the fact that rv is a positive functional. Moreover, since u(1 A ) = 0, we get

exp φ (u)(1 A ) = φ(1 A ) = 1. Definition 3.11. Let G be a compact quantum group. Let φ ∈ Idem(G). Set P φ (G) := {exp(u) : u ∈ N φ (G)},

and denote P(G) := φ∈Idem(G) P φ (G). Then any ω ∈ P(G) is said to be of Poisson type, or a Poisson state on G.

Recall that any norm continuous convolution semigroup of states {ω t } t≥0 on a compact quantum group G = (A, ∆) can be recovered by exponentiation with a bounded generator u := lim t→0 + 1 t (ω t -ω 0 ). It is not difficult to see that u(1 A ) = 0 and u is conditionally positive definite with respect to ω 0 , since these hold for each 1 t (ω t -ω 0 ), t > 0. Then together with Theorem 3.9 we have the following result. Theorem 3.12. Let φ be an idempotent state on a compact quantum group G = (A, ∆). For any non-zero bounded linear functional ω on A such that ωφ = φω = ω, the following are equivalent (1) ω = ω 1 with {ω t } t≥0 a norm continuous convolution semigroup of states such that ω 0 = φ;
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(2) ω = exp φ (u), where u ∈ A is φ-bi-invariant, u(1 A ) = 0, and u(x * x) ≥ 0 for all x ∈ A such that φ(x * x) = 0;

(3) ω = exp φ (u), where u = r(v -φ), with r > 0 and v a φ-bi-invariant state on A.

Remark 3.13. The convolution semigroup of states {ω t } t≥0 on a compact quantum group G is said to be weakly continuous if ω t (a) → ω 0 (a), t → 0 + for any a ∈ C(G). Clearly norm continuous convolution semigroup of states is weakly continuous. When G is a finite quantum group, the converse also holds. But for general compact quantum group G, there exists weakly continuous convolution semigroup of states which is not norm continuous. In this case, the generator is unbounded.

Infinitely divisible states on finite quantum groups

In this section we prove the main result.

Definition 3.14. Let G = (A, ∆) be a compact quantum group. A state ω ∈ S(A) is said to be infinitely divisible if ω = ω n n for some ω n ∈ S(A) and for all n ≥ 1. We use I(G) to denote the set of all infinitely divisible states on G.

Clearly Poisson states are infinitely divisible. In fact, for any ω ∈ P(G), we have ω ∈ P φ (G) for some φ ∈ Idem(G). Then we may write ω as ω = exp φ (u) with u ∈ N φ (G). Note that for any n ≥ 1, u n ∈ N φ (G), so ω n := exp φ ( u n ) is also a state. Moreover, by Lemma 3.18, we have ω = ω n n . So ω is infinitely divisible. Our main result in this section is that any infinitely divisible state on a finite quantum group is a Poisson state. From now on, unless stated otherwise, G = (A, ∆) always denotes a finite quantum group.

The following lemma is well-known, and the proof follows from standard arguments.

Lemma 3.15. Let

A = ⊕ m k=1 M n k (C) with matrix units {e k ij : 1 ≤ i, j ≤ n k , 1 ≤ k ≤ m}.

Denote the dual basis by {ω

k ij }. Then for any ω = m k=1 n k i,j=1 a (k) ij ω k ij , ω is a positive linear functional if and only if [a (k) ij ] n k i,j=1 is positive semi-definite for each k. In this case, ω = m k=1 n k i=1 a (k)
ii .

As a direct consequence, we have the following decomposition, which is quite easy but very helpful.

Corollary 3.16. Let

A = ⊕ m k=1 M n k (C) with matrix units {e k ij : 1 ≤ i, j ≤ n k , 1 ≤ k ≤ m}. Denote the dual basis by {ω k ij }. Let ω = m k=1 n k i,j=1 a (k) ij ω k ij such that for each k either [a (k) ij ] n k i,j=1 ≥ 0 or [a (k) ij ] n k i,j=1 ≤ 0. Then ω + := k∈Λ n k i,j=1 a (k) ij ω k ij and ω -:= k / ∈Λ n k i,j=1 a (k) ij ω k ij are positive functionals on A such that ω = ω + -ω -and ω = ω + + ω -,
where Λ is the set of all the k's such that [a

(k) ij ] n k i,j=1 ≥ 0.
Another important corollary is as follows.

Corollary 3.17. Let (A, B, , ) be a Plancherel triple. Then for any positive linear functional u ∈ A , we have

h B (u) ≤ B (u). 3.15, u φ = m k=1 n k i,j=1 b (k) ij ω k ij with [b (k) ij ] n k i,j=1 ≥ 0 and u φ = m k=1 n k i=1 b (k) ii = 1. Since φ is a character on A φ , there exists k 0 such that n k 0 = 1 and ω k 0 = φ . Thus u φ -φ = (b (k 0 ) -1) φ + k =k 0 n k i,j=1 b (k) ij ω k
ij verifies the condition of Corollary 3.16 and it follows that

u φ -φ = 1 -b (k 0 ) + k =k 0 n k i=1 b (k) ii = 2 -2b (k 0 ) = -2(u φ -φ )(e k 0 ). So for v 1 := u -φ we have v 1 = w 1 = -2w 1 (e k 0 ), where w 1 = v 1 | A φ . Similarly for v j := u j -φ and w j := v j | A φ we have v j = w j = -2w j (e k 0 ), j ≥ 1. (3.8) 
Now we show (5) by the induction argument. Clearly it holds for n = 1. Suppose for now that it holds for n. Set r

:= v 1 , s := v n and t := v n+1 . From (v 1 + φ)(v n + φ) = v n+1 + φ it follows that v n+1 = v 1 + v n + v 1 v
n and thus by Lemma 3.7 (4) that w n+1 = w 1 + w n + w 1 w n . This, together with (3.8) and Lemma 3.7 (1), yields that

t = r + s -2(w 1 w n )(e k 0 ) ≥ r + s -2 w 1 w n = r + s -2 v 1 v n ≥ r + s -2rs. Then (1 -2r)(1 -2s) = 4rs -2r -2s + 1 ≥ 1 -2t.
By assumption, 1 -2r, 1 -2t > 0, so 1 -2s > 0. Hence u and u n verify the conditions in (4), and we obtain

log φ (u n+1 ) = log φ (u) + log φ (u n ) = log φ (u) + n log φ (u) = (n + 1) log φ (u),
where in the second equality we have used the induction for n. This finishes the proof for n + 1 and then shows [START_REF] Bekjan | On joint convexity of trace functions[END_REF].

Remark 3.19. In fact, to prove [START_REF] Bekjan | On joint convexity of trace functions[END_REF] we have used the fact that u

+ v = u + v for all u, v ∈ N φ (G).
Proposition 3.20. Let ω be an infinitely divisible state on a finite quantum group G = (A, ∆). Let φ be an idempotent state on A. Assume that there exists a sequence {ω m j } j≥0 of roots of states of ω, with ω = ω m j m j , for all j, such that (1) {m j } j≥0 is strictly increasing;

(2) ω m j = ω m j φ = φω m j for all j;

(3) ω m j = ω n j m j+1 for some positive integer n j , j ≥ 0;

(4) ω m j → φ, as j → ∞.

Then ω ∈ P φ (G).

Proof. Assume that {ω m j } contains infinitely many different elements, otherwise ω = φ ∈ P φ (G). By (4), we can choose j 0 > 0 such that ω m j -φ < 1/2 for all j ≥ j 0 . This inequality, together with (2), allows us to define v 0 := log φ (ω m j 0 ), and v := m j 0 v 0 .

Then by the definition of ω j 0 and Lemma 3.18 (1) [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF],

ω = ω m j 0 m j 0 = exp φ (log φ (ω m j 0 )) m j 0 = exp φ (m j 0 v 0 ) = exp φ (v).
Then all the eigenvalues of A * r A r must be 1 and thus A * r A r = I r . Hence B r = A * r and thus A * A = AA * = P .

The remaining part follows from the facts that p = φ is a self-adjoint projection in  and 

u  ≤ u = 1, v  ≤ v = 1. Lemma 3.22. Let (A, B, , ) be a Plancherel triple. Suppose that u ∈ B is a state on A such that uu * = u * u = A , where A is the counit of A. Then u is an n-th root of A for some n ≤ dim B. Proof. Suppose that A = ⊕ m α=1 M nα (C) with the matrix units {e α ij : 1 ≤ i, j ≤ n α , 1 ≤ α ≤ m}. Let { e α ij }
a α ij e α ij ,
where p α ≥ 0, m α=1 p α = 1 and [a α ij ] nα i,j=1 positive semi-definite with trace one. Let α 0 be such that e α 0 = 1 B . Then we can write u = p α 0 e α 0 +v with

v = α =α 0 p α nα i,j=1 a α ij e α ij such that v = α =α 0 p α = 1-p α 0 . Note that uu * = p 2 α 0 e α 0 +p α 0 (v +v * )+vv * . Then by (3.3), h B (v) = h B (v * ) = 0. Since v and v * are both positive functionals, vv * (•) = ∆ A (•), v ⊗ v *
is also a positive functional on A. Hence we have by Corollary 3.17 that

h B (vv * ) ≤ B (vv * ) = | B (v)| 2 = (1 -p α 0 ) 2 .

So we have

1 = h B (1 B ) = h B (uu * ) = p 2 α 0 + h B (vv * ) ≤ p 2 α 0 + (1 -p α 0 ) 2 = 1 -2p α 0 + 2p 2 α 0 ,
which yields p α 0 (p α 0 -1) ≥ 0. Recall that 0 ≤ p α 0 ≤ 1, hence either p α 0 = 0 or p α 0 = 1. That is to say, either h B (u) = 0 or u = A . Since for any n ≥ 1, u n is again a state such that u n u * n = A , we obtain, by a similar argument, that either h B (u n ) = 0 or u n = A . If u is not an n-th root of A for all 1 ≤ n ≤ dim B, then we have

h B (u n ) = 0, n = 1, 2, . . . , dim B. ( 3.9) 
Note that we may choose m ≤ dim B such that u is unitary in M m (C). Set P (λ) := det(λI m -u) = m i=0 a i λ i , then Cayley-Hamilton Theorem implies that P (u) = 0, where I m denotes the identity matrix in M m (C). Since u is unitary in M m (C), we have a 0 = (-1) m det(u) = 0. But by (3.9)

a 0 h B (I m ) = a 0 h B (I m ) + m i=1 a i h B (u i ) = h B (P (u)) = 0.
Thus a 0 = 0, which leads to a contradiction. So we must have

u m = A for some 1 ≤ m ≤ dim B.
The following proposition, gathering the main ingredients of preceding lemmas, will be used to prove Theorem 3.24. Proposition 3.23. Let G = (A, ∆) be a finite quantum group with dual Ĝ = ( Â, ∆). Suppose that u, v ∈ S(A) and φ ∈ Idem(G) are such that u = uφ = φu and uv = φ. Then there exists a positive integer m ≤ dim  such that u m = φ.

Proof. From Lemma 3.21 it follows u * u = uu * = φ. Let u φ and φ be the restrictions of u and the counit of A to A φ , respectively. From Proposition 3.8 (A φ , Âp , , ) forms a Plancherel triple. By Lemma 3.7, u φ is a state on The first proof. P(G) ⊂ I(G) is clear. Let ω ∈ I(G). We claim that for any positive integer N ≥ 2, there exists a sequence

A φ such that u φ u * φ = φ . So Lemma 3.22 implies u m φ = φ for some m ≤ dim A φ ≤ dim Â. Hence Lemma 3.7 gives u m = u m φ E φ = φ E φ = φ.
{b n } n≥0 of roots of ω such that b 0 = ω, b n-1 = b N n , n ≥ 1.
Indeed, since A is finite dimensional, the set of states Z = S(A) is compact with respect to the norm topology. Thus j≥0 Z j , where Z j = Z for all j, is compact with respect to the product topology. Let a n ∈ Z be any n-th root of ω for all n ≥ 0. Then the sequence of non-empty closed sets

W k := j≥k {a N j N j } × {a N j-1 N j } × • • • × {a N j } × i≥j Z i , k ≥ 1, is decreasing: W 1 ⊃ W 2 ⊃ • • • , and thus any finite intersection of {W k } k≥1 is non-empty. By compactness of j≥0 Z j , k≥1 W k = ∅. Hence one can choose (b 0 , b 1 , . . . ) ∈ k≥1 W k such that b 0 = ω, b n-1 = b N n , n ≥ 1.
This proves the claim.

Choose N = (dim Â)! ≥ 2 and let {b n } n≥0 be as above. Since Z is compact, there exists a subsequence {c j } j≥0 of {b i } i≥0 such that c j converges to some c ∈ Z. If we fix a non-negative integer i, we have b i = c r j j for sufficient large j and some integer

r j ≥ N ≥ 2. That is, b i = c j c r j -1 j = c r j -1 j c j . ( 3.10) 
We can assume that c r j -1 j converges to some d i ∈ Z, otherwise consider some subsequence, since {c

r j -1 j } j≥0 ⊂ Z. Thus letting j → ∞ in (3.10), we have b i = cd i = d i c, i ≥ 0. (3.11) 
This implies b i ∈ cZ ∩ Zc for all i ≥ 0. From the choice of c j we have c j ∈ cZ ∩ Zc for all j ≥ 0. Then for any i the corresponding c r j -1 j

∈ cZ ∩ Zc for all j, which implies that d i ∈ cZ ∩ Zc by the compactness of cZ ∩ Zc. Now consider (3.10) for {c j } j≥0 , instead of {b i } i≥0 , we obtain an updated version of (3.11):

c j = cd j = d j c, j ≥ 0, (3.12) 
where d j ∈ cZ ∩ Zc. Letting j → ∞, consider the subsequence of {d j } j≥0 if necessary, one obtains c = cd = dc, (

where d ∈ cZ ∩ Zc by the compactness of cZ ∩ Zc. Suppose d = ce for some e ∈ Z, then d 2 = dce = ce = d, i.e., d is an idempotent state. By Proposition 3.23, we obtain c m = d for some m ≤ dim Â. Since our choice of N satisfies m|N , we have

c N j → c N = (c m ) N m = d, as j → ∞.
Denote by φ the idempotent state d. Set ω 0 := ω and ω n := c N n for all n ≥ 1. Then ω n → φ as n tends to ∞. By definition, {ω n } n≥0 is a subsequence of {b j } j≥0 , thus ω n-1 = ω sn n with N |s n for all n ≥ 1. Moreover, from (3.12) we have

ω n = c N n = (cd n ) N = c N d N n = φd N n = φ(φd N n ) = φω n , n ≥ 0.
Similarly, ω n = ω n φ, n ≥ 0. Hence {ω n } n≥0 verifies the conditions of Proposition 3.20, and consequently ω ∈ P φ (G).

Before giving the second proof, we introduce the following proposition, which could be formulated and proved for a general Banach algebra. Proposition 3.25. Let G = (A, ∆) be a compact quantum group, with A separable. Let ω be an infinitely divisible state on G. Suppose that there exist an idempotent state φ and a sequence of φ-bi-invariant roots {ω n k } k≥1 of ω, where {n k } k≥0 is an increasing sequence of positive integers, such that ω n k n k = ω for all k ≥ 1, and

sup k≥1 n k ω n k -φ = M < ∞, (3.14) 
then ω ∈ P φ (G). 

u n k := m≥2 (ω n k -φ) m m! , k ≥ 1.
It is well-defined, since sup k≥1 ω n k -φ < ∞. Moreover, from (3.14) it follows that

u n k ≤ m≥2 1 m! M n k m ≤ 1 n 2 k m≥2 M m m! , whence lim k→∞ n k u n k = 0,
and lim

k→∞ (1 + u n k ) n k = lim k→∞ (1 + u n k ) 1 un k •n k un k = 1. Hence ω -exp φ (n k (ω n k -φ)) = ω n k n k -(ω n k + u n k ) n k ≤ n k m=1 n k m ω n k -m n k u m n k ≤ n k m=1 n k m u n k m = (1 + u n k ) n k -1,
which tends to 0 as k → ∞. This shows ω = exp φ (u) and finishes the proof.

Combining this with (3.15), we have

n k u n k -φ = 2n k (1 -p α 0 ,k ) ≤ 2n k (1 -ĥp (|u| 1 n k )) = 2n k ĥp (1 Âp -|u| 1 n k ) for all k ≥ K. Since u is invertible in Âp , n(1 Âp -|u| 1 n ) converges to -log |u| in norm as n → ∞. Then there exists a constant M < ∞ such that sup n≥1 n ĥp (1 Âp -|u| 1 n ) ≤ M.
Thus from Lemma 3.7 it follows that

sup k≥0 n k ω n k -φ = sup k≥0 n k u n k -φ ≤ sup k≥0 2n k ĥp (1 Âp -|u| 1 n k ) < ∞.
Hence ω ∈ P φ (G) by Proposition 3.25.

Remark 3.26. Both proofs rely on the capture of idempotent state which the infinitely divisible state is "supported on" and the sequence of roots converging to this idempotent state. After this the first proof aims to show that this sequence of roots can chosen to form a submonogeneous convolution semigroup (Proposition 3.20 ( 3)), while the idea of the second proof is derived from a general result, Proposition 3.25, concerning the decay property (3.14) of this sequence of roots. The inequality (3.17) also allows us to simplify the proof of the main theorem in [START_REF] Parthasarathy | Infinitely divisible representations and positive definite functions on a compact group[END_REF] for the finite group case.

Chapter 4

Fourier multipliers on discrete group von Neumann algebras

The study of the L p -boundedness of Fourier multipliers on locally compact groups has become one of the most important subjects in noncommutative analysis in recent years [START_REF] Caspers | Schur and Fourier multipliers of an amenable group acting on non-commutative L p -spaces[END_REF][START_REF] Caspers | Noncommutative de Leeuw theorems[END_REF][START_REF] González-Pérez | Smooth Fourier multipliers in group algebras via Sobolev dimension[END_REF][START_REF] Junge | Smooth Fourier multipliers on group von Neumann algebras[END_REF][START_REF] Junge | Noncommutative Riesz transforms-dimension free bounds and Fourier multipliers[END_REF][START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF]. However, few examples of L p -Fourier multipliers are known for 1 < p = 2 < ∞ even in the discrete group case. In particular, the radial Fourier multipliers on free groups are of interest, but lack concrete examples. In this chapter, for general p, we give one sufficient condition on the L p -boundedness of Fourier multipliers on general discrete groups, and one sufficient condition on the L p -boundedness of radial Fourier multipliers on free groups. This provides us with some concrete examples of L p -Fourier multipliers. In particular, our results will put forward the recent attempts to generalize Hörmander-Mikhlin type multiplier theorem on the free group von Neumann algebras.

We shall use a basic fact that L p ( G) ⊂ L q ( G) whenever q ≤ p for any discrete group G, since the canonical trace τ on G is a state. Based on this fact the problem of L pboundedness of Fourier multiplier can be turned into the study of L p -L 2 (L 2 -L p if p > 2) boundedness of Fourier multiplier. Our main ideas then come from the study of L p -L q Fourier multipliers originally from Hörmander [START_REF] Hörmander | Estimates for translation invariant operators in L p spaces[END_REF] and results on hypercontractivity of Ricard and Xu [START_REF] Ricard | A noncommutative martingale convexity inequality[END_REF]. This conversion simplifies the problem in the discrete case.

We fix some notations for this chapter. Here and in the following, A p B means A ≤ c p B for some constant c p > 0. The notations p,q and p,q,r should be understood in a similar way. We use S to denote the cardinal of a set S.

Preliminary: noncommutative L p -spaces

In this section we collect some necessary preliminaries on noncommutative L p -spaces and noncommutative Lorentz spaces.

Noncommutative L p -spaces and Lorentz spaces associated with a semifinite von Neumann algebra

We concentrate ourselves on noncommutative L p -spaces associated with semifinite von Neumann algebras, which were first laid out in the early 1950s by Segal [START_REF] Segal | A non-commutative extension of abstract integration[END_REF] and Dixmier [START_REF] Dixmier | Formes linéaires sur un anneau d'opérateurs[END_REF]. The noncommutative Lorentz spaces will be treated at the same time. We refer to [START_REF] Pisier | Non-commutative L p -spaces[END_REF] for more discussions. Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful (n.s.f.) trace τ . Denote by M + the positive cone of M. Let S + = S + (M) denote the set of all x ∈ M + such that τ (supp(x)) < ∞, where supp(x) denotes the support projection of x. Let S = S(M) be the linear span of S + . Then S is a weak*-dense *-subalgebra of M. Given 0 < p < ∞, we define

x p := [τ (|x| p )] 1 p , x ∈ S,
where |x| = (x * x) 1 2 is the modulus of x. Then (S, • p ) is a normed (or quasi-normed for p < 1) space. Its completion is called noncommutative L p -space associated with (M, τ ), denoted by L p (M, τ ), or simply by L p (M). As usual, we set L ∞ (M, τ ) = M equipped with the operator norm.

For 1 ≤ p < ∞, the dual space of L p (M) is L p (M) (1/p + 1/p = 1) with respect to the duality

x, y := τ (xy), x ∈ L p (M), y ∈ L p (M).

In particular, L 1 (M) is identified with M * , the predual of M, via the map j(x)

:= τ (x•), x ∈ L 1 (M).
The elements in L p (M) can be viewed as closed densely defined operators on H (H being the Hilbert space on which M acts). A linear closed operator x is said to be affiliated with M if it commutes with all unitary elements in M , the commutant of M, i.e., xu = ux for any unitary u ∈ M . Note that x can be unbounded on H. An operator x affiliated with M is said to be measurable with respect to (M, τ ), or simply measurable if for any ε > 0, there exists a projection e ∈ M such that e(H) ⊂ D(x) and τ (e ⊥ ) ≤ ε, where e ⊥ = 1 -e and D(x) denotes the domain of x. We denote by L 0 (M, τ ), or simply L 0 (M) the family of measurable operators. For x ∈ L 0 (M, τ ), we define the distribution function of x as λ s (x) := τ (1 (s,∞) (|x|)), s > 0, where 1 (s,∞) (|x|) is the spectral projection of |x| corresponding to the interval (s, ∞), and define the generalized singular numbers of x as

µ t (x) := inf{s > 0 : λ s (x) < t}, t > 0.
Similar to the classical case, for 0 < p, q < ∞, the noncommutative Lorentz space L p,q (M) is defined as the collection of all measurable operators x such that

x p,q := ∞ 0 (t 1 p µ t (x)) q dt t 1 q < ∞.
Clearly, L p,p (M) = L p (M) with • p,p = • p . We may also define the weak L p -space L p,∞ (M), 0 < p < ∞, which consists of all measurable operators x such that

x p,∞ := sup t>0 t 1 p µ t (x) < ∞.
Like the classical L p -spaces, noncommutative L p -spaces behave well with respect to interpolation. Our reference for interpolation theory is [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]. Let 1 Therefore

≤ p 0 ≤ p 1 ≤ ∞, 1 ≤ q ≤ ∞ and 0 < θ < 1. Then (L p 0 (M), L p 1 (M)) θ = L p θ (M) (with equal norms)
α p * {g ∈ G : |ϕ(g)| ≥ α} ≤ α p * a -p * log a α C ≤ C p * < ∞, α > 0,
and we have ϕ ∈ p * ,∞ (G), whence T ϕ is a L p -multiplier on L p ( G). For free group of N generators F N , we may choose S as the set consisting of N generators with their inverses and let a = 2N .

If moreover, G is of polynomial growth, i.e., the right hand side of (4.6) can be replaced by some polynomial p(n), or equivalently, n k for some k > 0, then a similar argument yields that for any ϕ : G → C such that |ϕ(g)| ≤ C|g| -k p * , we have ϕ ∈ p * ,∞ (G), and then T ϕ is a L p -multiplier on L p ( G).

Our second result concerns the free group F ∞ . Theorem 4.8. Let 2 < p < ∞. Suppose that ϕ is radial on F ∞ , i.e., ϕ(g) = φ(|g|) for some φ : N → C. Then we have

T ϕ : L p ( F ∞ ) → L p ( F ∞ ) ≤   n≥0 (1 + n) αp |φ(n)| 2   1/2 , ( 4.7) 
where α p = max{2 -6/p, 1 -2/p}. Corollary 4.9. As a direct consequence, T ϕ is a L p -Fourier multiplier on F ∞ if there exists > 0 such that sup

n≥0 n 1-1 p + |φ(n)| < ∞, 2 < p ≤ 4, (4.8 
)

or sup n≥0 n 3 2 -3 p + |φ(n)| < ∞, p ≥ 4. (4.9)
The inequalities (4.8) and (4.9) suggest that, if one aims to develop a Hörmander-Mikhlin type multiplier theorem on free group F ∞ , the constant α (which is independent of p) appearing in sup Indeed, it is a consequence of the complex interpolation of the following two inequalities:

λ(x) ∞ ≤ x 1 and λ(x) 2 = x 2 .
If we apply the real interpolation instead of the complex interpolation, one obtains λ(x) p ,p p x p .

(4.11)

The dual of (4.11) takes the form:

x p ,p p λ(x) p . (4.12)

Now we are ready to prove (4.4). One can use a similar argument to show (4.5), which is simpler than the proof of the boundedness of L p -L q Fourier multipliers on R in [START_REF] Hörmander | Estimates for translation invariant operators in L p spaces[END_REF].

Proof of Theorem 4.5. We only prove the case 1 < p < 2, since the proof for p > 2 is similar. Note that 1/2 = 1/p * + 1/p , then by (4.2), (4.3) and (4.12) we have

λ(ϕf ) p ≤ λ(ϕf ) 2 = ϕf 2 p ϕ p * ,∞ f p ,2 p ϕ p * ,∞ f p ,p p ϕ p * ,∞ λ(f ) p .
To prove Theorem 4.8, we need Haagerup's inequality. For this, denote by S n the set of all elements in F ∞ with length n, i.e., S n = {g ∈ F ∞ : |g| = n}. We say that x is supported on S n if x = g∈Sn x g λ(g). The Haagerup's inequality states that: Lemma 4.10. [START_REF] Haagerup | An example of a non nuclear c*-algebra, which has the metric approximation property[END_REF]Lemma 1.4] For any x supported on S n , we have

x ∞ ≤ (n + 1) x 2 .
(4.13)

The following lemma can be found in [START_REF] Ricard | A noncommutative martingale convexity inequality[END_REF].

Lemma 4.11. [63, Lemma 7] For any x supported on S n , we have

x 4 ≤ (n + 1) 1 4 x 2 . (4.14)
For any x supported on S n , using (4.13), (4.14) and the trivial equality x 2 = x 2 , we obtain by complex interpolation that 

x p ≤ (n + 1) 1 2 -1 p x 2 , 2 < p ≤ 4, ( 4 
T ϕ (x) p = n≥0 φ(n)x n p ≤ n≥0 |φ(n)| x n p ≤ n≥0 |φ(n)|(n + 1) 1 2 -1 p x n 2 .
From Cauchy-Schwarz inequality and (4.17), it follows that

T ϕ (x) 2 p ≤ n≥0 |φ(n)| 2 (n + 1) 1-2 p n≥0 x n 2 2 ≤ n≥0 |φ(n)| 2 (n + 1) 1-2 p • x 2 p ,
which finishes the proof for 2 < p ≤ 4. The proof for p ≥ 4 follows similarly with (4.15) replaced by (4.16).

Chapter 5

Monotonicity of α-z Rényi relative entropies

In this chapter we study the joint convexity/concavity of the trace function

Ψ p,q,s (A, B) = Tr(B q 2 K * A p KB q 2 ) s ,
where p, q, s ∈ R, A and B are positive definite matrices and K is any fixed invertible matrix. We will give full range of (p, q, s) for Ψ p,q,s to be jointly convex/concave for all K. As a consequence, we confirm a conjecture of Carlen, Frank and Lieb [10, Conjecture 4]. In particular, we confirm a weaker conjecture of Audenaert and Datta [2, Conjecture 1] and obtain the full range of (α, z) for α-z Rényi relative entropies to be monotone under completely positive trace preserving maps. We also give simpler proofs of many known results, including the concavity of Ψ p,0,1/p for 0 < p < 1 which was firstly proved by Epstein [START_REF] Epstein | Remarks on two theorems of E. Lieb[END_REF] using complex analysis. The key is to reduce the problem to the joint convexity/concavity of trace function

Ψ p,1-p,1 (A, B) = TrK * A p KB 1-p ,
for -1 < p < 1 using a variational method.

Introduction

The joint convexity/concavity of trace function

Ψ p,q,s (A, B) = Tr(B q 2 K * A p KB q 2 ) s ,
has played an important role in mathematical physics and quantum information. Its study can be traced back to the celebrated Lieb's Concavity Theorem [START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF], which states that Ψ p,q,1 is jointly concave for all 0 ≤ p, q ≤ 1, p + q ≤ 1 and for all K. Using this, Lieb confirmed the Wigner-Yanase-Dyson Conjecture [START_REF] Wigner | Information contents of distributions[END_REF][START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF]: for 0 < p < 1 and any self-adjoint K, the function

S p (ρ, K) := 1 2 Tr[ρ p , K][ρ 1-p , K] = -TrρK 2 + Trρ p Kρ 1-p K,
is concave in ρ, where [A, B] = AB -BA. We refer to [START_REF] Wigner | Information contents of distributions[END_REF][START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF] for more details about the skew information -S p (ρ, K).

Since then, a lot of work around the joint convexity/concavity of Ψ p,q,s has emerged [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF][START_REF] Bekjan | On joint convexity of trace functions[END_REF][START_REF] Carlen | Some operator and trace function convexity theorems[END_REF][START_REF] Carlen | A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity[END_REF][START_REF] Carlen | A Minkowski type trace inequality and strong subadditivity of quantum entropy[END_REF][START_REF] Epstein | Remarks on two theorems of E. Lieb[END_REF][START_REF] Frank | Monotonicity of a relative Rényi entropy[END_REF][START_REF] Hiai | Concavity of certain matrix trace and norm functions[END_REF][START_REF] Hiai | Concavity of certain matrix trace and norm functions[END_REF], following [START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF]. Through this line of research many methods have been developed. Two main methods are the "analytic method" and the "variational method". We refer to a very nice survey paper [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF] for more historical information and the explanation of these two methods.

Another motivation to study the joint convexity/concavity of Ψ p,q,s comes from quantum information. Indeed, the joint convexity/concavity of Ψ p,q,1/(p+q) is closely related to the monotonicity of the α-z Rényi relative entropies, which has become a frontier topic recently. We shall recall this connection in Section 5.2. This is the motivation of the conjecture of Audenaert and Datta:

Conjecture 5.1. [2, Conjecture 1] If 1 ≤ p ≤ 2, - 1 
≤ q < 0 and (p, q) = (1, -1), then for any matrix K, the function

Ψ p,q,1/(p+q) (A, B) = Tr(B q 2 K * A p KB q 2 ) 1 p+q , is jointly convex in (A, B).
In this chapter we confirm a stronger conjecture of Carlen, Frank and Lieb:

Conjecture 5.2. [10, Conjecture 4] If 1 ≤ p ≤ 2, -1 ≤ q < 0, (p, q) = (1, -1) and s ≥ 1
p+q , then for any matrix K, the function

Ψ p,q,s (A, B) = Tr(B q 2 K * A p KB q 2 ) s , is jointly convex in (A, B).
As we mentioned earlier, in the history two main methods have been developed to study the convexity/concavity of trace functions Ψ p,q,s : the analytic method and the variational method. The analytic method, which is the methodology employing the theory of Herglotz functions, was introduced firstly by Epstein [START_REF] Epstein | Remarks on two theorems of E. Lieb[END_REF]. The variational method was firstly introduced by Carlen and Lieb in [START_REF] Carlen | A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity[END_REF]. Both of them have their own advantages, as in [10, Page 8] the authors wrote: "It appears that the analyticity method is especially useful for proving concavity and the variational method is more useful for proving convexity, but this is not meant to be an absolute distinction." In this chapter we confirm Carlen-Frank-Lieb Conjecture by developing only the variational method.

The main value of this chapter is twofold. Firstly, we develop the variational method in a very simple way such that it is useful to prove both convexity and concavity, and it reduces the convexity/concavity of Ψ p,q,s to three very particular cases (see Remark 5.14). In this way we obtain the full range of (p, q, s) such that Ψ p,q,s is jointly convex/concave and confirm the Carlen-Frank-Lieb Conjecture. Secondly, such three very particular cases can be furthermore reduced to Lieb's concavity result [START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF] of Ψ p,1-p,1 for 0 < p ≤ 1 and Ando's concavity result [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF] of Ψ p,1-p,1 for -1 ≤ p < 0 in 1970s. In other words, from Lieb's and Ando's results (which admit many simple proofs) on Ψ p,1-p,1 (A, B) = TrK * A p KB 1-p , the subsequent results on joint convexity/concavity of Ψ p,q,s can be derived easily via our variational method. In this way the analytic method can be avoided.

We fix some notations in this chapter. We shall use H to denote a finite-dimensional Hilbert space. We use B(H) to denote the family of bounded linear operators on H, P(H) to denote the family of positive linear operators on H (or n-by-n positive semi-definite matrices with dim H = n), and D(H) to denote the family of density operators, i.e., positive linear operators on H with unit trace (or n-by-n positive semi-definite matrices having unit trace with dim H = n). Moreover, we use B(H) × (reps. P(H) × and D(H) × ) to denote the family of invertible operators in B(H) (resp. P(H) and D(H)). We use Tr to denote the usual trace on matrix algebra and we use I to denote the identity matrix. For any matrix A we use |A| to denote its modulus (A * A) 

Background and main results

Given two probability density functions p and q on R, the relative entropy, or the Kullback-Leibler divergence of p with respect to q is given by S(p||q) := R p(x)(log p(x) -log q(x))dx.

(5.1)

For α ∈ (0, 1) ∪ (1, ∞), the α-Rényi relative entropy of p with respect to q is defined as [START_REF] Rényi | On measures of entropy and information[END_REF] S α (p||q

) := 1 α -1 log R p(x) α q(x) 1-α dx. ( 5.2) 
Both relative entropies have been generalized to quantum case, where the density functions are replaced by the density operators, and the integral is replaced by the trace, respectively. Now for ρ, σ ∈ D(H) × , a natural quantum analogue of (5.1), is the so-called Umegaki relative entropy [START_REF] Umegaki | Conditional expectation in an operator algebra. IV. Entropy and information[END_REF] D(ρ||σ) := Trρ(log ρ -log σ).

(5.

3)

The quantum analogues of (5.2) might take various forms. One of the most important generalizations of (5.2) are the quantum α-Rényi relative entropies

D α (ρ||σ) := 1 α -1 log Tr(ρ α σ 1-α ), α ∈ (0, 1) ∪ (1, ∞).
It admits the Umegaki relative entropy D(ρ||σ) as a limit case when α → 1. Another generalization of (5.2), introduced by Müller-Lennert, Dupuis, Szehr, Fehr, Tomamichel [START_REF] Müller-Lennert | On quantum Rényi entropies: a new generalization and some properties[END_REF] and Wilde, Winter, Yang [START_REF] Wilde | Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy[END_REF], are the sandwiched α-Rényi entropies:

D α (ρ||σ) := 1 α -1 log Tr(σ 1-α 2α ρσ 1-α 2α ) α , α ∈ (0, 1) ∪ (1, ∞).
In recent years, Audenaert and Datta [START_REF] Audenaert | α-z-Rényi relative entropies[END_REF] introduced a new family of quantum Rényi relative entropies, unifying the α-Rényi relative entropy D α and the sandwiched α-Rényi relative entropy D α by using two parameters, called the α-z Rényi relative entropies:

D α,z (ρ||σ) := 1 α -1 log Tr(σ 1-α 2z ρ α z σ 1-α 2z ) z , α ∈ (-∞, 1) ∪ (1, ∞), z > 0. (5.4)
Note that by taking z = 1 and α = z, one recovers D α and D α , respectively. We comment here that the α-z Rényi relative entropies have appeared earlier in a paper by Jaksic, Ogata, Pautrat and Pillet [START_REF] Jaksic | Entropic fluctuations in quantum statistical mechanics. an introduction[END_REF]. Now we come back to the α-z Rényi relative entropies D α,z . They have the operational meaning only if they are monotone under completely positive trace preserving (CPTP) maps. That is,

D α,z (E(ρ)||E(σ)) ≤ D α,z (ρ||σ), (5.5) 
The proofs of (1)(2) for full range are due to Hiai [START_REF] Hiai | Concavity of certain matrix trace and norm functions[END_REF]Theorem 2.1]. The proofs of (3) are due to Frank and Lieb [26, Proposition 3], and Carlen, Frank and Lieb [START_REF] Carlen | Some operator and trace function convexity theorems[END_REF]. For more details of history on these results, see the discussions after [10, Theorem 2]. We only comment here that the case for s = 1, which was firstly studied in the history, is due to Lieb [START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF] for 0 ≤ q ≤ p ≤ 1 with p + q ≤ 1, as well as for -1 ≤ q ≤ 0, and due to Ando [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF] for -1 ≤ q ≤ 0, 1 ≤ p < 2, with p + q ≥ 1. Their work played an important role in the development of matrix analysis.

The following proposition gives necessary conditions for Ψ p,q,s to be jointly convex or jointly concave. Proposition 5.6. Let p ≥ q and s > 0. Suppose that (p, q) = (0, 0).

(1) If Ψ p,q,s is jointly concave for H = C 2 and K = I, then 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1 p+q .

(2) If Ψ p,q,s is jointly convex for H = C 4 and K = I, then either -1 ≤ q ≤ p ≤ 0 and s > 0 or -1 ≤ q ≤ 0, 1 ≤ p ≤ 2, (p, q) = (1, -1) and s ≥ 1 p+q . From the above two propositions, Carlen, Frank and Lieb conjectured [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF] that:

Conjecture 5.7. [10, Conjecture 4] If 1 ≤ p ≤ 2, -1 ≤ q < 0, (p, q) = (1, -1) and s ≥ 1 p+q , then for any K ∈ B(H) × and any H Ψ p,q,s (A, B) = Tr(B q 2 K * A p KB q 2 ) s , A, B ∈ P(H) × , is jointly convex.
Partial results of Conjecture 5.7 have been known, as pointed out in Proposition 5.5 [START_REF] Banica | Idempotent states and the inner linearity property[END_REF]. The main result of this chapter is to prove Conjecture 5.7, which, together with Proposition 5.5 (1)(2) and Proposition 5.6, will give the full range of (p, q, s) for Ψ p,q,s to be jointly convex or jointly concave: Theorem 5.8. Fix K ∈ B(H) × . Suppose that p ≥ q and s > 0. Then Ψ p,q,s is (1) jointly concave if 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1 p+q ;

(2) jointly convex if -1 ≤ q ≤ p ≤ 0 and s > 0;

(3) jointly convex if -1 ≤ q ≤ 0, 1 ≤ p ≤ 2, (p, q) = (-1, 1) and s ≥ 1 p+q . The Figure 5.1 summarizes the joint convexity/concavity of Ψ p,q,s for all (p, q, s). Note that (1, -1) and (-1, 1) donot belong to the area of convexity.

As a corollary of Proposition 5.6 and Theorem 5.8 we have Corollary 5.9. The α-z Rényi relative entropy D α,z is monotone under CPTP maps on B(H) × for all H if and only if one of the following holds (1) 0 < α < 1 and z ≥ max{α, 1 -α};

(2) 1 < α ≤ 2 and α 2 ≤ z ≤ α;

(3) 2 ≤ α < ∞ and α -1 ≤ z ≤ α. Now we close this section with the proof of Proposition 5.3. It comes from [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF], which follows from a well-known argument of Lindblad [START_REF] Lindblad | Expectations and entropy inequalities for finite quantum systems[END_REF] and Ulhmann [START_REF] Uhlmann | Endlich-dimensionale Dichtematrizen[END_REF]. Proof of Proposition 5.3. We use Ψ to denote Ψ p,q,1/(p+q) with K = I. We only prove here that when α > This finishes the proof of the joint convexity of Ψ.

The proofs

This section is devoted to the proof of Theorem 5.8. The following classical results will serve as building blocks to achieve the joint convexity/concavity of Ψ p,q,s . The concavity result is due to Lieb [START_REF] Lieb | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF] and the convexity is due to Ando [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF]. They have been extensively studied and have many simple proofs, see for example [START_REF] Nikoufar | The simplest proof of Lieb concavity theorem[END_REF].

Lemma 5.10. For any K ∈ B(H) × , the function Ψ p,1-p,1 (A, B) = TrK * A p B 1-p is (1) jointly concave if 0 < p < 1;

(2) jointly convex if -1 < p < 0.

Theorem 5.8 will be reduced to Lemma 5.10 in three steps, based on the following variational method. This method is the key of the proof and originates in [START_REF] Carlen | A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity[END_REF]. One can compare it with the other known variational methods in [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF]. Hence Tr|XY | r 1 = r 1 r 0 Tr|XZ| r 0 -r 1 r 2 Tr|Y -1 Z| r 2 . This proves (5.8).

Remark 5.12. It is possible to generalize this variational method to the infinite dimensional case or to more general norm functions, which is beyond the aim of this chapter. It is also possible to apply this variational method to the trace functions with n ≥ 3 variables. Indeed, let r j > 0, j = 0, 1, . . . , n such that 1 r 0 = n j=1 1 r j . Then we have for X 1 , . . . , X n ∈ B(H) × that

Tr|X 1 • • • X n | r 0 = min    r 0 r 1 Tr|X 1 Z 1 | r 1 + n-1 j=2 r 0 r j Tr|Z -1 j-1 X j Z j | r j + r 0 r n Tr|Z -1 n-1 X n | rn    , ( 5.11) 
and

Tr|X 1 • • • X n | r 1 = max    r 1 r 0 Tr|X 1 Z 1 | r 0 - n-1 j=2 r 1 r j Tr|Z -1 j X -1 j Z j-1 | r j - r 1 r n Tr|X -1 n Z n-1 | rn    , ( 5.12) 
where max and min run over all Z 1 , . . . , Z n-1 ∈ B(H) × . The proof is similar to the two variables case. We only explain here when min is achieved for (5.11).

Let X * n • • • X * 1 = U |X * n • • • X * 1 | be the polar decomposition of X * n • • • X * 1 .
Then set

Z j := X j+1 • • • X n U |X * n • • • X * 1 | α j , α j = j k=1 r 0 r k -1 for 1 ≤ j ≤ n -1. One can check that Tr|X 1 • • • X n | r 0 = r 0 r 1 Tr|X 1 Z 1 | r 1 + n-1 j=2 r 0 r j Tr|Z -1 j-1 X j Z j | r j + r 0 r n Tr|Z -1 n-1 X n | rn .
Now we are ready to prove Theorem 5.8 with three steps of reductions. Note that the Step 1 already suffices to finish the proof of Theorem 5.8 and confirm Conjectures 5.4 and 5.7.

Step 1: In the first step we reduce the joint convexity/concavity of Ψ p,q,s to the convexity/concavity of Υ p,s (A) := Tr(K * A p K) s , A ∈ P(H) × , for all K ∈ B(H) × , which has already been thoroughly studied. Theorem 5.13. For any K ∈ B(H) × , the function Υ p,s (A) = Tr(K * A p K) s is (1) concave if 0 < p ≤ 1 and 0 < s ≤ 1 p ;

(2) convex if -1 ≤ p ≤ 0 and s > 0;

(3) convex if 1 ≤ p ≤ 2 and s ≥ 1 p .

The proofs of ( 1) and ( 2) are due to Hiai [START_REF] Hiai | Concavity of certain matrix trace and norm functions[END_REF]Theorem 4.1]. The proof of ( 3) is due to Carlen and Lieb [START_REF] Carlen | A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity[END_REF]Theorem 1.1]. Again, see the discussions after Proposition 5 in [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF] for more historical information. We only comment here that the proof of concavity for 0 < p ≤ 1 with s = 1 p is due to Epstein [START_REF] Epstein | Remarks on two theorems of E. Lieb[END_REF]. His analytic method is nowadays developed as an important tool in matrix analysis, in particular to deal with concavity (rather than convexity) of trace functions. We will give a simpler proof of this theorem later, without using Epstein's analytic approach.

Proof of Theorem 5.8 given Theorem 5.13. Before proceeding with the proof note first that Ψ p,q,s (A, B) = Tr(B

q 2 K * A p KB q 2 ) s = Tr|A p 2 KB q 2 | 2s .
We shall use an easy fact that the joint convexity (resp. joint concavity) is stable under taking sup/max (resp. inf/min).
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(1) If q = 0, then the claim reduces to Theorem 5.13 [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF]. To show the case 0 < q ≤ p ≤ 1 and 0 ≤ s ≤ 1 p+q , set λ := s(p + q) ∈ (0, 1] and we apply (5.7) to (r 0 , r 1 , r 2 ) = (2s, 2λ p , 2λ q ) and (X, Y ) = (A p 2 K, B q 2 ): Ψ p,q,s (A, B) = min (5.13) Since 0 < λ p ≤ 1 p and 0 < λ q ≤ 1 q , from Theorem 5.13 (1) it follows that the maps

A → p p + q Tr|A p 2 KZ| 2λ p = p p + q
Tr(Z * K * A p KZ) λ p and B → q p + q Tr|Z -1 B q 2 | 2λ q = q p + q Tr(Z -1 B q (Z -1 ) * ) λ q are both concave. Hence they are both jointly concave in (A, B) and so is Ψ p,q,s by (5.13).

(2) If p = 0, then the claim reduces to Theorem 5.13 (2). Suppose -1 ≤ q ≤ p < 0 and s > 0, then we apply (5.8) to (r 0 , r 1 , r 2 ) = (2t, 2s, 2 -q ) with 1 t = 1 s -q and (X, Y ) = (A p 2 K, B q 2 ):

Ψ p,q,s (A, B) = max Z∈B(H) × s t Tr|A p 2 KZ| 2t + sqTr|B -q 2 Z| 2 -q . ( 5.14) 
Note that t > 0, sq < 0 and 0 < -q ≤ 1. By Theorem 5.13 (1) and ( 2), the maps

A → s t Tr|A p 2 KZ| 2t = s t
Tr(Z * K * A p KZ) t and B → sqTr|B -q 2 Z| 2 -q = sqTr(Z * B -q Z) 1 -q are both convex. Hence they are both jointly convex in (A, B) and so is Ψ p,q,s by (5.14).

(3) If q = 0, then the claim reduces to Theorem 5.13 (3). Suppose -1 ≤ q < 0, 1 ≤ p ≤ 2, (p, q) = (1, -1) and s ≥ 1 p+q , then we apply (5.8) to (r 0 , r 1 , r 2 ) = (2t, 2s, 2 -q ) with 1 t = 1 s -q and (X, Y ) = (A p 2 K, B q 2 ):

Ψ p,q,s (A, B) = max

Z∈B(H) × s t Tr|A p 2 KZ| 2t + sqTr|B -q 2 Z| 2 -q
.

(5.15)

Since sq < 0, 0 < -q ≤ 1 and t = 1 s -1 -q ≥ 1 p , we have by Theorem 5.13 [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF] 

2

-q = sqTr(Z * B -q Z) 1 -q are both convex. Hence they are both jointly convex in (A, B) and so is Ψ p,q,s by (5.15).

Step 2: In our second step we reduce Theorem 5.13 to three particular cases.

Remark 5.14. To prove Theorem 5.8 we may require fewer conditions on the convexity/concavity of Υ p,s . Namely, we only need that (1) Υ p,1/p is concave when 0 < p ≤ 1(Epstein [START_REF] Epstein | Remarks on two theorems of E. Lieb[END_REF]);
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(2) Υ p,s is convex when -1 ≤ p < 0 and 0 < s ≤ 1 (Hiai [START_REF] Hiai | Concavity of certain matrix trace and norm functions[END_REF]);

(3) Υ p,1/p is convex when 1 ≤ p ≤ 2 (Carlen and Lieb [START_REF] Carlen | A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity[END_REF]).

Indeed, from the variational formula (5.7) it follows that when 0 < p ≤ 1, 0 < s < 

) * K -1 Z) t .
Then the convexity of Υ p,1/p implies the convexity of Υ p,s .

Before the last step of reduction, we need the following well-known lemma.

Lemma 5.15. Let X, Y be two convex subsets of vector spaces and let f : X × Y → R a function. If f is jointly convex on X × Y , then x → inf y∈Y f (x, y) is convex. Similarly, if f is jointly concave on X × Y , then x → sup y∈Y f (x, y) is concave.

Proof. We only prove the convexity here. The proof of the concavity case is similar. For any x 1 , x 2 ∈ X and any 0 < λ < 1, set x := λx 1 + (1 -λ)x 2 . Then for any > 0 and i = 1, 2, there exists y i ∈ Y such that f (x i , y i ) ≤ inf y∈Y f (x i , y) + . By the joint convexity of f , we have .

Lemma 2 . 10 (

 210 Bézout's identity). For any integers a, b ≥ 1, there exist integers m, n such that ma + nb = gcd(a, b), where gcd(a, b) denotes the greatest common divisor of a and b.

Definition 3 . 1 .

 31 is a non-degenerate bilinear form. Then through , , B can be identified with A . Indeed, the mapB → A , b → •, b is injective, since , is non-degenerate. So B canbe viewed as a subspace of A and then dim B ≤ dim A = dim A. Similarly, A can be viewed as a subspace of B and dim A ≤ dim B = dim B. Hence dim A = dim B and B = A (also A = B ). Let the triple (A, B, , ) be as above. Then it is called a Plancherel triple if (1) the comultiplications ∆ A : A → A ⊗ A and ∆ B : B → B ⊗ B are positive, where ∆ A is the adjoint of the map given by B ⊗ B → B, b 1 ⊗ b 2 → b 1 b 2 and ∆ B is the adjoint of the map defined through A ⊗ A → A, a 1 ⊗ a 2 → a 1 a 2 ; (2) the counits A := •, 1 B : A → C and B := 1 A , • : B → C are *-homomorphisms; (3) the Haar functionals h A := •, p B and h B := p A , • are faithful, positive and tracial, where p A ∈ A and p B ∈ B are support projections of A and B , respectively, i.e.,

. 2 )

 2 for all a 1 , a 2 ∈ A, b 1 , b 2 ∈ B and some c, c > 0, where â and b are defined through:x, â := h A (xa), b, y := h B (by), x ∈ A, y ∈ B.

3. 1 .Proposition 3 . 2 .

 132 Preliminary: Plancherel triple 51 Note that the above definition is self-dual, that is, (B, A, (, )) forms a Plancherel triple if (A, B, , ) is a Plancherel triple, where (b, a) := a, b , a ∈ A, b ∈ B. We have the following properties of a Plancherel triple. Let (A, B, , ) be a Plancherel triple. Suppose that A = ⊕ m α=1 M nα (C) with the matrix units {e α

Lemma 3 . 4 .

 34 Let φ be an idempotent state on a compact quantum group G. For b ∈ A define φ b (a) := φ (ab) for all a ∈ A. Then we have φ φ b = φ (b) φ.

For φ ∈

 ∈ Idem (G) set E φ := (φ ⊗ ι) ∆ and E r φ := (ι ⊗ φ) ∆. The next lemma lists some useful properties of E φ and E r φ . Lemma 3.5. Let G = (A, ∆) be a compact quantum group.

  be the dual basis. Then by Lemma 3.15 we can write u as u =

Theorem 3 . 24 .

 324 Now we are ready to prove the main result. Let G = (A, ∆) be a finite quantum group. Then P(G) = I(G).

Proof.

  Recall that {ϕ ∈ A : ϕ ≤ M } is compact with respect to weak* topology for each M > 0. Then from (3.14) we have for some subsequence of {n k } k≥1 , still denoted by {n k } k≥1 , that n k (ω n k -φ) converges to an element u ∈ A with respect to the weak * topology. Then u = lim k→∞ n k (ω n k -φ) ∈ N φ (G) and exp φ (u) is a Poisson state. It suffices to show that ω = exp φ (u). Set

70Chapter 4 .

 4 Fourier multipliers on discrete group von Neumann algebras

4. 1 .

 1 Preliminary: noncommutative L p -spaces for some a > 1, where d is the word metric on G with respect to S and denotes the counting measure on G. Indeed, one can always choose a to be S. Then for any ϕ : G → C such that |ϕ(g)| ≤ Ca -|g| p * , where |g| := d(g, e) and C > 0 is a constant, |ϕ(g)| ≥ α implies |g| ≤ -p * log a α C , α > 0.

n≥0n

  α |φ(n)| < ∞,should not be larger than 3/2 (observe (4.9) when p → ∞). It covers the above result completely only if α ≤ 1/2 (observe (4.8) when p → 2 + ). Since |φ(n)| ≤ |φ(0)|+ n m=1 |φ(m)φ(m-1)|, the Hörmander-Mikhlin type multiplier theorem should be related to the condition sup n≥1 n β |φ(n) -φ(n -1)| < ∞, with β ≤ 5/2, and it covers (4.8) and (4.9) completely only if β ≤ 3/2.

74Chapter 4 .

 4 Fourier multipliers on discrete group von Neumann algebras 4.3 The proofs Suppose 1 < p < 2 and 1/p + 1/p = 1. Recall that the Hausdorff-Young inequality says that λ(x) p ≤ x p . (4.10)

Chapter 5 .Figure 5 . 1 :

 551 Figure 5.1: Joint convexity/concavity of Ψ p,q,s

From the joint convexity

  of Ψ and(5.6) it follows thatΨ(E(ρ), E(σ)) ≤ Ψ((I H ⊗ u)U (ρ ⊗ δ)U * (I H ⊗ u * ), (I H ⊗ u)U (σ ⊗ δ)U * (I H ⊗ u * ))du.By the unitary invariance and tensor property of Ψ we obtain thatΨ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),as desired.To show the "only if" part, for any ρ 1 , ρ 2 , σ 1 , σ 2 ∈ P(H) × and any 0 < λ < 1-λ)σ 2 , in P(H ⊕ H) × . Since the map map on B(H ⊕ H) × , we obtain from the monotonicity of Ψ thatΨ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),which is nothing butΨ(λρ 1 + (1 -λ)ρ 2 , λσ 1 + (1 -λ)σ 2 )≤ λΨ(ρ 1 , σ 1 ) + (1 -λ)Ψ(ρ 2 , σ 2 ).

Theorem 5 . 11 .r 2 8 ) 5 . 0 r 1 [Tr|Z - 1 Y | r 2 ] r 0 r 2 . 0 r 1 [Tr|Z - 1 Y | r 2 ] r 0 r 2 ≤ r 0 r 1 Tr|XZ| r 1 + r 0 r 2 Tr|Z - 1 Y | r 2 . ( 5 . 9 )Tr|XY | r 1 ≥ r 1 r 0 Tr|XZ| r 0 - r 1 r 2 Tr|Y - 1 1 r 1 1 r 1 +r 2 = 2 r 1 1 r 1 r 1 r 2 r 1 +r 2 = Tr|XY | r 1 r 2 r 1 +r 2 =r 1 r 2 r 1 +r 2 = Tr|XY | r 1 r 2 r 1 +r 2 = Tr|XY | r 0 .r 0 r 1 1 r 2 1 r 2 =r 1 +r 2 r 2 1 r 2 .r 1 +r 2 r 0 r 2 =

 511285011201121212592111122111222222011212221222 For r i > 0, i = 0, 1, 2 such that 1 r 0 = 1 r 1 + 1 r 2 , we have for any X, Y ∈ B(H) × thatTr|XY | r 0 = min Z∈B(H) × r 0 r 1 Tr|XZ| r 1 + r 0 r 2 Tr|Z -1 Y | r 2 , (5.7)and Tr|XY | r 1 = max Z∈B(H) × r 1 r 0 Tr|XZ| r 0 -r 1 Tr|Y -1 Z| r 2 .(5.Chapter Monotonicity of α-z Rényi relative entropiesProof. For 0 < p < ∞ define • p as A p p := Tr|A| p for any matrix A. For any Z ∈ B(H) × , we have by Hölder's inequality thatTr|XY | r 0 ≤ XZ r 0 r 1 Z -1 Y r 0 r 2 = [Tr|XZ| r 1 ] rThen from the Young's inequality for numbers (or AM-GM inequality): x α y β ≤ αx + βy for positive x, y and positive α, β such that α + β = 1, it follows thatTr|XY | r 0 ≤ [Tr|XZ| r 1 ] rExchanging Y and Z, we have Z| r 2 .(5.10)To prove (5.7), letY * X * = U |Y * X * | be the polar decomposition of Y * X * , then XY U = |Y * X * |. Set Z := Y U |Y * X * | -r +r 2 , then we have XZ = XY U |Y * X * | -r |Y * X * | r +r 2 , Z -1 Y = |Y * X * | r +r 2 U * .Using the facts that • p is unitarily invariant and A p = A * p for all A, we have Tr|XZ| r 1 = Tr|Y * X * | Tr|XY | r 0 , and Tr|Z -1 Y | r 2 = Tr|Y * X * | Hence Tr|XZ| r 1 + r 0 r 2 Tr|Z -1 Y | r 2 = Tr|XY | r 0 , which proves (5.7). Now we prove (5.8) in a similar way. Let U be as above and choose Z to be Y U |Y * X * | r , then XZ = XY U |Y * X * | r |Y * X * | , Y -1 Z = U |Y * X * | r It follows that Tr|XZ| r 0 = Tr|Y * X * | Tr|Y * X * | r 1 = Tr|XY | r 1 , and Tr|Y -1 Z| r 2 = Tr|Y * X * | r 1 = Tr|XY | r 1 .

Step 3 :

 3 inf y∈Y f (x, y) ≤ f (x, λy 1 + (1 -λ)y 2 ) ≤ λf (x 1 , y 1 ) + (1 -λ)f (x 2 , y 2 ) ≤ λ inf y∈Y f (x 1 , y) + (1 -λ) inf y∈Y f (x 2 , y) + .Then the proof finishes by letting → 0 + . In the last step, we reduce Theorem 5.8 to Lemma 5.10.Proof of Theorem 5.13 given Lemma 5.10. It suffices to prove (1)-(3) in Remark 5.14. The proof is inspired by the proof of (2) in[START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF]. Let us recall it first. If s = 1, the convexity of Υ p,1 follows from the operator convexity of A → A p . If s < 1, by (5.7) we haveTr(K * A p K) s = min Z∈B(H) × sTr|A p 2 KZ| 2 + (1 -s)Tr|Z -1 | 2s 1-s = min Z∈P(H) × sTrK * A p KZ + (1 -s)TrZs s-1 = min Z∈P(H) × sTrK * A p KZ 1-p + (1 -s)TrZ s(1-p) s-1

  h B be the Haar state on B, then h B • π B is an idempotent state on A. If an idempotent state φ on A arises in this way, say, φ = h B • π B for some quantum subgroup (B, ∆ B ) with Haar measure h B of A, then it is called a Haar idempotent state. Otherwise, it is called a non-Haar idempotent state. So Kawada and Itô's theorem tells us that in the commutative case, all idempotent states are Haar idempotent states.The existence of non-Haar idempotent state was first proved by Pal[START_REF]A counterexample on idempotent states on a compact quantum group[END_REF] on a 8dimensional Kac-Paljutkin quantum group. Even simpler examples come from co-commutative finite quantum groups[START_REF] Franz | On idempotent states on quantum groups[END_REF].

  3. Idempotent states on Sekine quantum groups 35 This gives a characterization of Idem(A k ): Lemma 2.7([67, 29]). A functional µ = i,j∈Z k α i,j d i,j + r,s∈Z k κ r,s e r,s ∈ A k is an idempotent state if and only if α i,j ≥ 0 for all i, j ∈ Z k , K := [κ r,s ] r,s∈Z k is positive semi-definite, and the following equations hold:

40

  Chapter 2. Idempotent states on Sekine quantum groups

	By (2.26), it becomes
	r,s∈Z k

  It will give (4.7) with α p = 2 -4/p for all 2 < p < ∞. So (4.13) is essential, while (4.14) improves the result slightly.Proof of Theorem 4.8. It suffices to prove the estimate for all x ∈ span{λ(g) : g ∈ F ∞ }. For any such x, we can write it as x = n≥0 x n with x n supported on S n . Note that for m = n, x m and x n are orthogonal with respect to the inner product induced by the canonical tracial state τ on F ∞ , so that we have

		x n	2 2 = x 2 2 ≤ x 2 p , p > 2.	(4.17)
		n≥0		
		By the triangle inequality and (4.15) we have for all 2 < p ≤ 4 that
					.15)
	and	x p ≤ (n + 1)	1-3 p x 2 , p ≥ 4.	(4.16)
	From (4.13) and x 2 = x 2 one can obtain the estimate
		x p ≤ (n + 1)	1-2

p x 2 , 2 < p < ∞.

  U is unitary on H ⊗ H , and H is a Hilbert space such that N := dim H ≤ (dim H) 2 . Tr 2 denotes the usual partial trace over H . For a proof, see for example[START_REF] Lindblad | Completely positive maps and entropy inequalities[END_REF] Lemma 5]. It origins in Stinespring's Theorem[START_REF] Stinespring | Positive functions on C * -algebras[END_REF]. Let du denote the normalized Haar measure on the group of all unitaries on H , then

	E(γ) ⊗	I H N	= (I

1, D α,z is monotone under CPTP maps on B(H) × for all H if and only if Ψ is jointly convex, since the proof for α < 1 is similar. Note that when α > 1, D α,z is monotone under CPTP maps if and only if

Ψ(E(ρ)||E(σ)) ≤ Ψ(ρ||σ),

for all CPTP maps E : B(H) × → B(H) × and density operators ρ, σ ∈ D(H) × , with H being any finite dimensional Hilbert space.

To show the "if" part, take any CPTP map E : B(H) × → B(H) × . We can write it as

E(γ) = Tr 2 U (γ ⊗ δ)U * , where δ ∈ B(H ), H ⊗ u)U (γ ⊗ δ)U * (I H ⊗ u * )du. (

5

.6) By the tensor property of Ψ, we have Ψ(E(ρ), E(σ)) = Ψ E(ρ) ⊗ I H N , E(σ) ⊗ I H N .

.

  Then the concavity of Υ p,1/p gives the concavity of Υ p,s .When -1 ≤ p < 0 and s > 1, by the variational formula (5.8) we haveTr(K * A p K) s = max Z∈B(H) × sTrZ * A p Z -(s -1)Tr(Z * (K -1 ) * K -1 Z)Then the convexity of Υ p,1 implies the convexity of Υ p,s . When 1 ≤ p ≤ 2, s < 1 p and p = 1 s + 1 t , we have by the variational formula(5.8) 

					1 p and
	1 s = p + 1 t :				
	Tr(K * A p K) s = min Z∈B(H) ×	spTr(Z * A p Z)	1 p +	s t	Tr(K s
					s-1
	Tr(K 1 p -	s t	Tr(Z

* (Z -1 ) * Z -1 K) t . * A p K) s = max Z∈B(H) × spTr(Z * A p Z) * (K -1
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Chapter 3. Infinitely divisible states on finite quantum groups

Hence A φ := E φ (A) is a unital C * -subalgebra of A. Moreover, [START_REF] Bekjan | On joint convexity of trace functions[END_REF] 

Proof. Again we omit the proof of ( 1)-( 4) here. The fact that A φ is a unital C * -subalgebra follows directly from these properties. To prove [START_REF] Bekjan | On joint convexity of trace functions[END_REF], it suffices to check the equality for u α ij , 1 ≤ i, j ≤ n α , α ∈ Irr(G), the coefficients of unitary representation of G. And that is a consequence of

and

where the last equality follows from the facts that φ = φS on Pol(G) and S(u α lj ) = (u α jl ) * .

φ-bi-invariant functionals

Let φ be an idempotent state on a compact quantum group G = (A, ∆). A functional u ∈ A is called φ-bi-invariant if uφ = φu = u. In this subsection we characterize the φbi-invariant functionals. It turns out that one can transfer each φ-bi-invariant functional on A to its restriction to A φ , preserving the norm and the *-algebra structure. See [START_REF] Das | Invariant Markov semigroups on quantum homogeneous spaces[END_REF] for related work.

For linear functionals ϕ 1 , ϕ 2 on A φ , one can also define their convolution product within (A φ ) : ϕ 1 ϕ 2 is defined as (ϕ 1 ⊗ ϕ 2 )∆ φ . And for any linear functional ϕ on E φ (Pol(G)) one can also define its involution within (A φ ) : ϕ * := ϕ(S(•) * ). Still, we write ϕ 1 ϕ 2 for short to denote ϕ 1 ϕ 2 . Note here that ϕ * is well-defined because SE φ = E φ S.

We formulate the results of φ-bi-invariant functionals here without the proof. Note that in the sequel we shall use u to denote the norm of u ∈ A as a functional on A. Moreover, we suppose that A = C u (G). Lemma 3.7. Let φ ∈ Idem(G) and u ∈ A . Then u is φ-bi-invariant if and only if u = u| A φ E φ . In this case, the following hold:

(1) u = u| A φ ;

(2) u is a positive linear functional (resp. a state) on A if and only if u| A φ is a positive linear functional (resp. a state) on A φ ;

(3)

3.2. Plancherel triple induced from an idempotent state 55

The Plancherel triple (A φ , Âp , , )

Let G = (A, ∆) be a finite quantum group. Let φ be an idempotent state on G, then p = φ is a group-like projection in Â. By Lemma 3.6, A φ = E φ (A) is a finite dimensional C*-algebra. Clearly Âp = p Âp is also a finite dimensional C*-algebra. Moreover, we have (A φ ) = Âp . In fact, the bilinear form on A φ × Âp is non-degenerate. On the one hand, if x ∈ A φ such that u(x) = 0 for all u ∈ Âp , then x = 0. To see this, for any u ∈ Â, since x = E φ (x) and uE φ ∈ Âp , we have

This gives x = 0. On the other hand, if u ∈ Âp such that u(x) = 0 for all x ∈ A φ , then u = 0. For this, take any

which yields u = 0. The main result of this subsection is the following proposition.

Proposition 3.8. Let A φ and Âp be as above. Then (A φ , Âp , , ) forms a Plancherel triple, where the bilinear form is inherited from the one on the pair (A, Â).

Proof. Since (A φ ) = Âp , the bilinear form , on the pair (A φ , Âp ) is non-degenerate. Now we check that the triple (A φ , Âp , , ) verifies the conditions ( 1)-( 4) of Definition 3.1. For simplicity, in the sequel we shall use , to denote the bilinear forms on the different pairs (A, Â), (A φ , Âp ) and their corresponding tensor products (A ⊗ A, Â ⊗ Â) and (A φ ⊗ A φ , Âp ⊗ Âp ). The readers can distinguish them easily. We shall use h := h A and ĥ := h B to denote the Haar states on G and Ĝ, respectively.

(1) In this case, we claim that the comultiplications on A φ and Âp are respectively ∆ φ := (E φ ⊗ E φ )∆| A φ and ∆p := (p ⊗ p) ∆| Âp (•)(p ⊗ p). Then automatically they are positive. Indeed, by definition,

By Lemma 3.7, we have x = xE φ and y = yE φ . Thus (x ⊗ y)∆(a) = (x ⊗ y)∆ φ (a) and

Since , is non-degenerate, we have ∆ A φ = ∆ φ . This proves the claim. Similarly, one can show ∆ Âp = ∆p .

(2) The counits on A φ and Âp are respectively φ := | A φ and ˆ p := ˆ | Âp . Here and ˆ are respectively the counits on A and Â. In fact, by definition,

Then it is easy to check that φ : A φ → C and ˆ p : Âp → C are both *-homomorphisms.

(3) On the one hand, the support projection p  of ˆ =  verifies

Poisson states on compact quantum groups

Let G = (A, ∆) be a compact quantum group. Recall that A is always viewed as C u (G). Denote by S(A) the set of all states on A. For each φ ∈ Idem(G), we say that {ω t } t≥0 is a convolution semigroup of functionals on A starting from φ if

(1) ω t ∈ A for each t ≥ 0.

(2) ω s+t = ω s ω t for all s, t ≥ 0.

(

If moreover, each ω t ∈ S(A), we call {ω t } t≥0 a convolution semigroup of states starting from φ. We say that the convolution semigroup of states

Recall here that u denotes the norm of u ∈ A as a functional on A. Moreover, it is a Banach norm, since

Then it is easy to check that {exp φ (tu)} t≥0 form a norm continuous convolution semigroup of functionals. We aim to find sufficient and necessary conditions on u such that {exp φ (tu)} t≥0 is a convolution semigroup of states. For this we make some notations. A functional u ∈ A is called Hermitian if u (x * ) = u (x) for all x; it is further called conditionally positive definite with respect to φ if u (x * x) ≥ 0 for all x such that φ (x * x) = 0. The main theorem in this section is as follows.

Theorem 3.9. Suppose that G = (A, ∆) is a compact quantum group. Let φ ∈ Idem (G).

Then for u ∈ A , the following statements are equivalent.

(1) u(1 A ) = 0, u is φ-bi-invariant and conditionally positive definite w.r.t. φ.

(2) u = r(v -φ), where r ≥ 0 and v is a φ-bi-invariant state.

The following proposition proves Theorem 3.9 on the level of unital C * -algebras. It can be considered as a special case of Theorem 3.9 when φ = is the counit. In this case each u ∈ A is -bi-invariant and φ = is a character.

Proposition 3.10. Let A be a unital C * -algebra with a character. Then for any nonzero bounded linear functional u on

Let u 0 := u| ker be the restriction of u to ker . By assumption, u 0 is a bounded linear positive functional on the ideal ker . So it admits a unique positive linear extension u 0 to A such that u 0 | ker = u 0 and u 0 = u 0 . Hence for any x ∈ A, we have x-(x)1 A ∈ ker and thus

where r := u 0 = u 0 > 0 and v := 1 r u 0 is a state.
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Proof. Suppose that A = ⊕ m α=1 M nα (C) with the matrix units {e α ij : 1 ≤ i, j ≤ n α , 1 ≤ α ≤ m}. By Lemma 3.15 we may write u as u = m α=1 nα i,j=1 a α ij e α ij , where each [a α ij ] nα i,j=1 is positive semi-definite and { e α ij } is the dual basis of {e α ij }. Suppose that e α 0 = 1 B . Then by (3.3) and (3.4), we have

Let G = (A, ∆) be a finite quantum group. Then for any u ∈ A =  we denote by u  the C*-norm of u as an element in C*-algebra Â. Recall that u is the norm of u as a functional. Moreover, we have u  ≤ u .

Let φ be an idempotent state on finite quantum group G = (A, ∆). For any u ∈ A such that u = uφ = φu and u -φ < 1, define the logarithm of u with respect to φ as

Then we have the following properties of logarithm and exponential.

Lemma 3.18. Suppose that G = (A, ∆) is a finite quantum group. Let φ be an idempotent state on A, then for any bounded linear functionals u, v on A such that u = uφ = φu and v = vφ = φv, we have

(2) log φ (exp φ (u)) = u, if u < log 2.

(3

(4) log φ (uv) = log φ (u) + log φ (v), if uv = vu and the following holds:

for some n ≥ 1, then

Consequently, in such a case we have

Proof. (1)-( 4) are direct and hold for all Banach algebras. To show [START_REF] Bekjan | On joint convexity of trace functions[END_REF], let u φ be the restriction of u to A φ . Then by Lemma 3.7, u φ is a state on a finite-dimensional C *algebra A φ . Moreover,

where φ denotes the restriction of counit of

Infinitely divisible states on finite quantum groups

To prove ω ∈ P φ (G), it suffices to show that v ∈ N φ (G). For this we check that v verifies Theorem 3.9 (1). Clearly, v(1 A ) = 0, since ω j 0 is a state. By the definition of logarithm, v = vφ = φv. It remains to show that for any x ∈ A such that φ(x * x) = 0, we have v 0 (x * x) ≥ 0. By (3) we have

where

Recall that for all j ≥ j 0 , ω m j -φ < 1/2. Thus by Lemma 3.18 [START_REF] Bekjan | On joint convexity of trace functions[END_REF] we have

and by Lemma 3.18 ( 1)

The condition (1) implies that N j → ∞ as j → ∞. Now for any x ∈ A such that φ(x * x) = 0, we have

for all j ≥ j 0 . Hence

Letting j → ∞, we have v 0 (x * x) ≥ 0, which ends the proof.

As this proposition suggests, to show that an infinitely divisible state is of Poisson type, it is important to capture the idempotent state which the infinitely divisible state is "supported on". For this we need two lemmas. The first one is an easy fact in matrix theory. Proof. Since P is a self-adjoint projection, we may assume without loss of generality that

where I r is the identity in M r (C) with r = rank(P ). From A = AP = P A and AB = P it follows

So A r = B r = 1. This is to say,
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The second proof of Theorem 3.24. Again, P(G) ⊂ I(G) is clear. Let ω ∈ I(G). From the first proof we know that there exist an idempotent state φ ∈ Idem(G) and a sequence of roots {ω n k } k≥0 ⊂ S(A) with {n k } k≥0 an increasing sequence of positive integers such that

Let u and u n k be the restrictions of ω and ω n k to A φ for all k ≥ 0, respectively. Then from Lemma 3.7 u is a state on A φ such that {u n k } k≥0 is a sequence of roots of u in S(A φ ) verifying

where φ is the counit of A φ . Now we repeat a calculation in Lemma 3.22. Suppose that

Let { e α ij } be the dual basis. Then by Lemma 3.15 we can write u as

is positive semi-definite with trace one for each k. Let α 0 be such that e α 0 = φ = 1 Âp . By Corollary 3.16 and the assumption,

So p α 0 ,k → 1 as k → ∞. Now for each q > 0 we introduce the L q -norm (quasi-norm when q < 1) induced by ĥp . Recall that ĥp = 1 φ(p A ) ĥ| Âp is a tracial state on Âp . Namely, we define

. Then Hölder's inequality still holds and we have

Note that u is invertible in Âp . Indeed, for large k there holds

then we have that u n k is invertible for large k. So u = u n k n k is also invertible in Âp . Following a similar calculation to that in Lemma 3.22, we obtain

This, together with (3.16), yields ĥp (|u|

for all k. Since p α 0 ,k → 1 as k → ∞, there exists K > 0 such that for all k ≥ K,

and (L p 0 (M), L p 1 (M)) θ,q = L p θ ,q (M) (with equal norms), (4.1)

where 1/p θ = (1 -θ)/p 0 + θ/p 1 , (•, •) θ and (•, •) θ,q denote respectively the complex and real interpolation methods.

We formulate here some properties that we will use in this thesis. For the proofs we refer to [START_REF] Fack | Generalized s-numbers of τ -measurable operators[END_REF][START_REF] Pisier | Non-commutative L p -spaces[END_REF]. Lemma 4.1. Let 1 < p, q < ∞ and 1/p + 1/p = 1, 1/q + 1/q = 1. Then we have [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF] µ s+t (xy) ≤ µ s (x)µ t (y) for all s, t > 0 and x, y ∈ L 0 (M);

(2) for any q < r ≤ ∞ and any x ∈ L p,q (M),

x p,r p,q,r x p,q , (4.2)

where the constant is c p,q,r = (q/p)

The next lemma is Hölder's inequality on noncommutative Lorentz space. We give a proof here for the convenience of the readers. Lemma 4.2. Let 0 < p 0 , q 0 < ∞, 0 < p 1 , q 1 ≤ ∞. Let p, q be such that 1/p = 1/p 0 + 1/p 1 and 1/q = 1/q 0 + 1/q 1 . Let M be a von Neumann algebra equipped with a n.s.f. trace τ . Then we have for any x ∈ L p 0 ,q 0 (M, τ ) and y ∈ L p 1 ,q 1 (M, τ ) xy p,q p x p 0 ,q 0 y p 1 ,q 1 , (4.3)

where the constant is c p = 2 1 p .

Proof. From Hölder's inequality on L p -spaces of (R + , dt t ) and Lemma 4.1(1) it follows that

for all x ∈ L p 0 ,q 0 (M, τ ) and y ∈ L p 1 ,q 1 (M, τ ).

We end this subsection with two examples.

Example 4.3. The usual (commutative) L p -spaces are noncommutative L p -spaces. Let (Ω, F, µ) be a σ-finite measure space. The family of essentially bounded functions on Ω, L ∞ (Ω), can be considered as the von Neumann algebra acting on the Hilbert space L 2 (Ω) by identifying each f ∈ L ∞ (Ω) with M f . Here
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In the von Neumann algebra L ∞ (Ω), M f is positive iff f is a non-negative function. It is equipped with a n.s.f. trace given by

Then for (L ∞ (Ω), ), the set S = S(L ∞ (Ω)) consists of all functions f with finite-measure support. The noncommutative L p -space L p (L ∞ (Ω), ) coincides with the usual L p -space L p (Ω, dµ). However, we remark here is a minor difference between measurable operators with respect to (L ∞ (Ω), ) and measurable functions on Ω. In fact, any measurable function f on Ω belongs to L 0 (L ∞ (Ω), ) iff it is bounded outside a set of finite measure.

Example 4.4. Let G be a discrete group with unit e. Denote by (δ g ) g∈G the canonical basis of the Hilbert space 2 (G), i.e., δ g is the indicator function on g. Let λ : G → B( 2 (G)) be the left regular representation. That is,

The group von Neumann algebra G is defined as the von Neumann subalgebra of

In this chapter we use F n to denote the free group on n generators with n ∈ N ∪ {∞}, and

Main results

Let G be a discrete group with λ the left regular representation. For any function ϕ : G → C, we say that ϕ (or T ϕ ) is a L p -Fourier multiplier if the map T ϕ : a g λ(g) → ϕ(g)a g λ(g) (or λ(f ) → λ(ϕf )) extends to a bounded map from L p ( G) to itself.

Our first result concerns the general discrete groups. 

Remark 4.6. In fact, one can show that for 1 < p ≤ 2 ≤ q < ∞ and 1/r = 1/p -1/q, we have for some range of (α, z) or not. It is well-known that DPI is essentially equivalent to the joint convexity/concavity of the trace functions inside the definition of D α,z . Proposition 5.3. Let α, z > 0 and α = 1. Set p = α z and q = 1-α z . Then D α,z is monotone under all CPTP maps on B(H) × if and only if one of the following holds (1) α < 1 and Ψ p,q,1/(p+q) with K = I is jointly concave;

(2) α > 1 and Ψ p,q,1/(p+q) with K = I is jointly convex.

We will go back to its proof in the end of this section.

Then from some known results on joint convexity and joint concavity of Ψ p,q,1/(p+q) with K = I, Audenaert and Datta obtained DPI for D α,z for some-but not full-range of (α, z) [2, Theorem 1]. By saying full we mean necessary and sufficient conditions on (α, z). It is then natural to ask whether DPI holds for the remaining range of (α, z). This motived Audenaert and Datta to raise the following conjecture:

and (p, q) = (1, -1), then for any K ∈ B(H) × and any H,

We cheat a little bit here, since their original form of conjecture concerns the convexity of P(H)

1 p+q . However, by doubling dimension, a standard argument shows that they are equivalent. See the discussions after [10, Conjecture 1] for example.

More generally, consider the joint convexity/concavity of trace functions

for A, B ∈ P(H) × , K ∈ B(H) × and p, q, s ∈ R. Note that Ψ q,p,s (B, A) = Ψ p,q,s (A, B) with K replaced by K * , and Ψ -p,-q,-s (A, B) = Ψ p,q,s (A, B) with K replaced by (K -1 ) * . So in the sequel, we may assume that p ≥ q and s > 0.

The knowledge of joint convexity/concavity of Ψ p,q,s before the survey paper [START_REF] Carlen | Inequalities for quantum divergences and the Audenaert-Datta conjecture[END_REF] is summarized in the following proposition: Proposition 5.5. Fix K ∈ B(H) × .

(1) If 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1 p+q , then Ψ p,q,s is jointly concave.

(2) If -1 ≤ q ≤ p ≤ 0 and s > 0, then Ψ p,q,s is jointly convex.

(3) If -1 ≤ q ≤ 0, 1 ≤ p < 2, (p, q) = (1, -1) and s ≥ min{ 1 p-1 , 1 q+1 }, then Ψ p,q,s is jointly convex. If p = 2, -1 ≤ q ≤ 0 and s ≥ 1 q+2 , then Ψ p,q,s is jointly convex.
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Since

is convex (see for example [START_REF] Carlen | Trace inequalities and quantum entropy: an introductory course[END_REF]Theorem 2.10]). This, together with Ando's convexity result (Lemma 5.10 (2)) and Lemma 5.15, yields the convexity of Υ p,s . Now we prove [START_REF] Ando | Concavity of certain maps on positive definite matrices and applications to Hadamard products[END_REF]. There is nothing to prove when p = 1. For 0 < p < 1, by (5.8), we have Then by Lieb's concavity result (Lemma 5.10 (1)) and Lemma 5.15, Υ p,1/p is concave.

(3) can be shown similarly. Indeed, the case p = 1 is trivial. For 1 < p ≤ 2, we have by (5.7) Tr(K * A p K) 

can not be derived directly from Theorem 5.13 because of the appearance of the term Tr|Z -1 j-1 X j Z j | r j . For example, we have

(5.16) To obtain the joint concavity of P(H) × × P(H) × × P(H) × (A 1 , A 2 , A 3 ) → Tr(A

3 ) s , via the variational method (5.16), the concavity of the function of the form

is required. Unfortunately, little is known for general Y * 1 Y 1 . Indeed, Carlen, Frank and Lieb proved that [START_REF] Carlen | Some operator and trace function convexity theorems[END_REF]Corollary 3.3] for p, q, r ∈ R \ {0}, the function

is never concave, and it is convex if and only if q = 2, p, r < 0 and -1 ≤ p + r < 0.
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