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Abstract

This PhD thesis is devoted to the study of some problems in noncommutative analysis.
It consists of four parts, ranging from quantum groups and noncommutative harmonic
analysis to quantum information. Firstly, we decide all the idempotent states on Sekine
quantum groups, which is achieved by solving a system of equations using linear algebras
and elementary number theory. This answers a question of Franz and Skalski stated in
2009. Secondly, we study the infinitely divisible states on finite quantum groups, i.e., states
that admit n-th root for all n ≥ 1. We show that every infinitely divisible state on a finite
quantum group is of Poisson type, that is, it can be represented as an exponential relative
to some idempotent state. Thirdly, we give two sufficient conditions for boundedness of Lp-
Fourier multipliers on discrete group von Neumann algebras. Very few of such results were
known before. Our idea is the observation that in the discrete case it suffices to consider
Lp-Lq Fourier multipliers. Finally, in the area of quantum information, we confirm a
conjecture of Carlen, Frank and Lieb (and then a weaker conjecture of Audenaert and
Datta). As a consequence, we identify all the pairs (α, z) such that the α-z Rényi relative
entropy is monotone under completely positive trace preserving maps, or satisfies the
Data Processing Inequality. The key part of the proof is a modification of a widely-used
variational method. Its power yields simple proofs of many known results.

Keywords

Compact quantum groups, finite quantum groups, idempotent states, infinitely divisible
states, Poisson states, noncommutative Lp-spaces, noncommutative Lorentz spaces, group
von Neumann algebra, Fourier multipliers, α-z Rényi relative entropy, data processing
inequality, joint convexity/concavity.





Résumé

Cette thèse de doctorat est consacrée à l’étude de quelques problèmes d’analyse non com-
mutative. Elle comprend quatre parties, allant des groupes quantiques et de l’analyse
harmonique non commutative à l’information quantique. Tout d’abord, nous déterminons
tous les états idempotents sur les groupes quantiques de Sekine, ce qui est obtenu en ré-
solvant un système d’équations à l’aide de l’algèbre linéaire et de la théorie des nombres
élémentaire. Ceci répond à une question de Franz et Skalski énoncée en 2009. Deux-
ièmement, nous étudions les états infiniment divisibles sur des groupes quantiques finis,
c’est-à-dire les états qui admettent une racine n-ième pour tout n ≥ 1. Nous montrons
que tout état infiniment divisible sur un groupe quantique fini est de type Poisson, c’est-
à-dire qu’il peut être représenté sous la forme d’une exponentielle par rapport à un état
idempotent. Troisièmement, nous donnons deux conditions suffisantes pour que les mul-
tiplicateurs de Fourier de Lp sur les algèbres de von Neumann de groupes discrets soient
bornés. Très peu de ces résultats étaient connus auparavant. Notre idée est l’observation
que, dans le cas discret, il suffit de considérer les multiplicateurs de Fourier de Lp-Lq.
Enfin, dans le domaine de l’information quantique, nous confirmons une conjecture de
Carlen, Frank et Lieb (puis une conjecture plus faible d’Audenaert et Datta). En con-
séquence, nous identifions toutes les paires (α, z) telles que l’α-z entropie relative de Rényi
soit monotone sous l’action des applications complétement positives préservant la trace,
ou satisfait l’inégalité de traitement des données. La clé de la preuve est une modification
d’une méthode variationnelle largement utilisée, qui permet d’obtenir des preuves simples
de nombreux résultats connus.

Mots-clefs

Groupes quantiques compacts, groupes quantiques finis, états idempotents, états infini-
ment divisibles, états de Poisson, espaces Lp non commutatifs, espaces de Lorentz non
commutatifs, algèbre de von Neumann de groupe, multiplicateur de Fourier, α-z entropie
relative de Rényi, inégalité de traitement des données, convexité/concavité conjointe.





Streszczenie

Niniejsza rozprawa dotyczy pewnych zagadnień nieprzemiennej analizy. Składa siȩ z
czterech czȩści, omawiaja̧cych problemy siȩgaja̧ce od grup kwantowych i nieprzemiennej
analizy harmonicznej po teoriȩ kwantowej informacji. W pierwszej czȩści wyznaczamy
wszystkie stany idempotentne na grupach kwantowych Sekine, rozwia̧zuja̧c pewien układ
równań przy pomocy metod algebry liniowej i elementarnej teorii liczb. Udzielamy tym
samym odpowiedzi na pytanie zadane przez Franza i Skalskiego w 2009 roku.

W drugiej czȩści badamy stany nieskończenie podzielne na skończonych grupach kwan-
towych, czyli stany posiadaja̧ce n-te pierwiastki dla każdego n ≥ 1. Pokazujemy, że każdy
stan nieskończenie podzielny na skończonej grupie kwantowej jest typu Poissona, czyli
posiada przedstawienie jako eksponent wzglȩdem pewnego stanu idempotentnego.

Trzecia czȩść zawiera pewne dostateczne warunki na Lp-ograniczoność mnożników
Fouriera na algebrach von Neumanna grup dyskretnych. Wcześniej znano niewiele wyników
tego typu; nowy pomysł w rozprawie polega na tym, że w przypadku dyskretnym wystar-
czy rozważać mnożniki Lp − Lq.

Wreszcie w czwartej czȩści, dotycza̧cej teorii kwantowej informacji, dowodzimy hipotezy
Carlena, Franka i Lieba (implikuja̧cej słabsza̧ hipotezȩ Adenauerta i Datty). Innymi
słowy charakteryzujemy wszystkie pary (α, z) dla których α-z entropia Rényi zachowuje
siȩ monotoniczne wzglȩdem działania odwzorowań całkowicie dodatnich zachowuja̧cych
ślad, a wiȩc spełnia nierówność przetwarzania danych. Kluczowym elementem dowodu
jest modyfikacja szeroko stosowanej metody wariacyjnej. Pozwala ona również uzyskać
proste dowody wielu znanych wcześniej wyników.

Słowa kluczowe

Zwarte grupy kwantowe, skończone grupy kwantowe, stany idempotentne, stany nieskończe-
nie podzielne, stany Poissona, nieprzemienne przestrzenie Lp, nieprzemienne przestrzenie
Lorentza, algebry von Neumanna grup, mnożniki Fouriera, α-z entropia Rényi, nierówność
przetwarzania danych, ła̧czna wypukłość/wklȩsłość.
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Chapter 1

Introduction

This PhD thesis is devoted to the study of some problems in noncommutative analysis.
These problems originate from classical probability theory on compact groups, classical
harmonic analysis and classical information theory. In this thesis we offer new ideas and
new tools to overcome various difficulties when dealing with them in the noncommutative
setting. More precisely, the thesis studies the following problems.

(1) Idempotent states on Sekine quantum groups. We give concrete formulas for all
idempotent states on a family of finite quantum groups: Sekine quantum groups
(Ak,∆k). We also investigate their order structure for k prime. This answers a
question of Franz and Skalski [29] stated in 2009. See [76].

(2) Infinitely divisible states on finite quantum groups. Infinite divisible states are states
which have n-th root for all n ≥ 1. We show that any infinitely divisible state on a
finite quantum group can be written as the exponential relative to some idempotent
state. This generalizes the results of Böge [7] and Parthasarathy [60]. See [77].

(3) Fourier multipliers on discrete group von Neumann algebras. We give two sufficient
conditions for boundedness of Lp-Fourier multipliers on discrete group von Neumann
algebras. The first one shows that for any discrete group G and any 1 < p < ∞,
any function ϕ : G → C in `p∗,∞(G), where 1/p∗ = |1/2 − 1/p|, yields a Lp-Fourier
multiplier on the group von Neumann algebra of G. The second one concerns the
radial Fourier multipliers on free group F∞. It shows that if the symbol ϕ is a radial
function on F∞ such that supn≥0 n

αp |ϕ(n)| <∞ for some αp > max{1− 1/p, 3/2−
3/p}, then the Fourier multiplier is Lp-bounded.

(4) Monotonicity of α-z Rényi relative entropies. The α-z Rényi relative entropies Dα,z

form a large family of quantum analogues of classical α-Rényi relative entropy. It is a
fundamental question in quantum information theory to ask when Dα,z is monotone
decreasing under completely positive trace preserving maps. We answer this question
by considering the joint convexity/concavity of a family of trace functions Ψp,q,s. This
confirms a conjecture [10] of Carlen, Frank and Lieb, and a weaker conjecture [2] of
Audenaert and Datta. See [75].

1.1 From groups to quantum groups
A topological group is a group G equipped with a topology relative to which the binary
operation and the inverse operation are both continuous. It is called locally compact
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(compact, discrete) if the topology is Hausdorff and locally compact (compact, discrete).
A locally compact group G always carries a Radon measure µ, unique up to a positive
constant, which is left-invariant: µ(K) = µ(gK) for all g ∈ G and all Borel set K ⊂ G. We
call the measure µ the left Haar measure on G. Similarly, there exists a Radon measure
ν on G (unique up to a positive constant), which is right-invariant. We call the measure
ν the right Haar measure on G. A locally compact group is called unimodular if its left
Haar measures and right Haar measures coincide; in this case we call them Haar measures
for short. A compact group is always unimodular and its Haar measure µ is finite, i.e.,
µ(G) <∞. We shall always choose the normalized one, i.e., µ(G) = 1.

For a locally compact abelian group G, a character χ on G is a continuous group
homomorphism from G to the circle group T = {z ∈ C : |z| = 1}. Denote by Ĝ the set
of all characters on G, then one can also make Ĝ into a locally compact abelian group in
the following way. Its group operation is given by pointwise multiplication and the unit
is the trivial character which takes value one at all elements of G. Its topology is the
compact-open topology. We can construct the dual of Ĝ, denoted by ̂̂G, in the same way.
The Pontryagin duality theorem says that G is isomorphic to ̂̂

G canonically. Therefore
we may recover a locally compact abelian group by taking its double dual. However, this
does not work for nonabelian case. The dual of a locally compact nonabelian group is no
longer a group anymore.

The theory of quantum groups was developed for a Pontryagin duality theorem for
the nonabelian case. It turns out the dual of a general locally compact group G can be
understood as its group von Neumann algebra, still denoted by Ĝ. With extra structure
on this von Neumann algebra, we may encode the information of this “dual group”, even
if it might not exist. This is a naive way to understand the name of “quantum group”.
In other words, we shall always investigate the “quantum group” via studying the von
Neumann algebra (or C*-algebra) and its extra structure.

What does this extra structure look like? It took a long time in the history to find it and
the story is not finished yet. One easily expects the desirable extra structure is economic
enough to recover the classical group when the von Neumann algebra is commutative. In
particular, the existence of the Haar measure should be possible to be deduced from the
structure, like in the classical case. This requirement is so harsh that a widely-accepted
theory of compact quantum groups, due to Woronowicz [74], emerged only in the end of
1980s. The current widely-used theory of locally compact quantum groups was developed
by Kustermans and Vaes [48] appeared around 2000. As we mentioned, one of the main
difficulties of quantum groups theory is to remove the existence of the Haar measure off
the hypotheses of the definition. This was achieved on compact quantum groups in a very
nice way by Woronowicz. Such a definition of locally compact quantum groups has not
been born yet.

From this one can have a glance that the Haar measure is essential to the theory of
locally compact groups. We close this subsection by giving two examples to illustrate the
importance of the Haar measure, from algebraic and analytic points of view, respectively.

Firstly, any probability measure µ on a locally compact group G gives a random walk
on G. For simplicity, suppose that G is discrete. Then for each step, the probability of
moving from g ∈ G to h ∈ G is P (g → h) = µ(g−1h) = µ({g−1h}). Under this rule, if we
start at the unit e ∈ G and denote the position of the n-th step by Xn, then we have

P (X0 = h) = δe,h,

P (X1 = h) = P (e→ h) = µ(h),



1.1. From groups to quantum groups 17

P (X2 = h) =
∑
s∈G

P (X1 = s)P (s→ h) =
∑
s∈G

µ(s)µ(s−1h) = µ ? µ(h),

· · ·
P (Xn = h) = µ?n(h).

Here ? denotes the convolution product. Generally, any probability measure on a locally
compact group gives a random walk. On a locally compact group the convolution product
of two measures µ1 and µ2 is given by

µ1 ? µ2(f) :=
∫
G

∫
G
f(xy)µ1(x)µ2(y), f ∈ C0(G),

where C0(G) denotes the set of all continuous functions on G which vanish at infinity. An
element µ in Prob(G) of all probability measures on a locally compact group G is called
idempotent if µ ? µ = µ.

Suppose that G is compact and the convolution powers of the probability measures
{µ?n}n≥1 converges with respect to the weak* topology, then the limit must be an idempo-
tent probability measure. If one considers the sequence of Cesàro averages 1

n

∑n
k=1 µ

?k, n ≥
1, then it always converges to an idempotent probability measure with respect to the weak*
topology. Kawada and Itô [43] showed that idempotent probability measures on G are pre-
cisely Haar measures on compact subgroups of G. Then from the limit of the sequence of
Cesàro averages relative to some suitable probability measure µ, one may construct the
Haar measure on G. This is how Woronowicz constructed the Haar measure (state) on a
compact quantum group. See the survey paper [64] for more details.

So the study of idempotent probability measures on compact groups is of great impor-
tance and one easily expects similar results in the context of quantum groups. However,
the theorem of Kawada and Itô fails even for finite quantum groups (compact quantum
groups whose underlying C*-algebra is finite-dimensional). Pal [59] gave the first example
on an eight-dimensional Kac-Paljutkin quantum group. This implies that, as a quan-
tum analogue of idempotent probability measures on classical groups, idempotent states
on the quantum groups do not necessarily correspond to quantum subgroups anymore.
Then the study of idempotent states usually goes beyond the framework of quantum
groups. This brings the difficulty of solving problems involving idempotent states. But on
the other hand, it motivates the development of new theories, like quantum hypergroups
[16, 20, 21, 41].

Secondly, with the left Haar measure µ on a locally compact group G, one can define
the Lp-spaces Lp(G,µ) and the Fourier transform. The latter is the cornerstone of abstract
Fourier analysis. If G is abelian, then the Fourier transform of f ∈ L1(G,µ) takes the
form:

F(f)(ξ) = f̂(ξ) =
∫
G
f(s)ξ(s)dµ(s), ξ ∈ Ĝ,

where Ĝ is the dual of G consisting of all characters on G. By choosing the dual Haar
measure µ̂ on Ĝ suitably, the map L1(G,µ) ∩ L2(G,µ) 3 f 7→ f̂ ∈ L2(Ĝ, µ̂) is isometric
and can be extended to a unitary between L2(G,µ) and L2(Ĝ, µ̂). This defines the Fourier
transform of f ∈ L2(G,µ). The definition of the Fourier transform of f ∈ Lp(G,µ), 1 <
p < 2 follows from the famous Hausdorff-Young inequality:

‖f̂‖
Lp′ (Ĝ,µ̂) ≤ ‖f‖Lp(G,µ), f ∈ Lp(G,µ). (1.1)

It is natural to ask what the Fourier transform looks like when G is nonabelian and whether
we still have (1.1) or not. For this Kunze [47] made the following observation. Let G be
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a locally compact abelian group as above. Let λ(f) denote the left regular representation
of f ∈ L1(G,µ) on L2(G,µ), which is an operator given by

(λ(f)g)(s) := f ? g(s) =
∫
G
f(t)g(t−1s)dµ(t), s ∈ G, g ∈ L2(G,µ).

Denote by Lf the operator on L2(G,µ) given by the multiplying by f . Since F turns
convolution into multiplication, we have

F(λ(f)g) = F(f)F(g) = LF(f)F(g), f ∈ L1(G,µ), g ∈ L2(G,µ).

Recall that F is unitary on L2(G,µ), so λ(f) is unitarily equivalent to the operator LF(f).
This suggests us to use λ(f) as a substitute of F(f). From this Kunze defined the Fourier
transform on the locally compact unimodular group (G,µ) and generalized (1.1) to this
setting. The dual of G, still denoted by Ĝ, is no longer a group, but the von Neumann al-
gebra generated by λ(L1(G,µ)) in B(L2(G,µ)). It turns out that there is a canonical trace
µ̂ on Ĝ, so the noncommutative Lp-space Lp′(Ĝ, µ̂) is constructed in the sense of Diximier
[22] and Segal [66]. For the nonunimodular case, the dual Ĝ is not necessarily equipped
with a trace. Terp solved this problem with the help of the Tomita-Takesaki theory and
the noncommutative Lp-spaces associated with a weight. In recent years Cooney [17] and
Caspers [13] generalized all these results to locally compact quantum groups.

1.2 From classical information theory to quantum
information theory

Classical information theory emerged after the groundbreaking paper [68] of Shannon.
Quantum information theory intersects the quantum physics and information theory.
Roughly speaking, quantum information theory is the study of information theory within
the framework of quantum mechanics. It is also known as quantum Shannon theory in
honour of Shannon.

We fix some notations in this part. We use H to denote a finite dimensional Hilbert
space. We use P(H) to denote the set of all invertible positive operators over H, and
D(H) to denote the set of all quantum states, or density operators over H, i.e., invertible
positive operators over H with unit trace.

As a measurement of information content of a probability density function p on R, its
Shannon entropy is defined as

S(p) := −
∫
R
p(x) log p(x)dx.

Shannon entropy plays an essential role in classical information theory. It admits a natural
quantum analogue, referred to as the von Neumann entropy:

D(ρ) := −Trρ log ρ, ρ ∈ D(H). (1.2)

We remark here that in quantum information theory we usually choose binary logarithm
log2. But we will not specify this here, since it will not matter in this thesis.

There are many other entropy quantities which are important in classical information
theory, for example, the Kullback-Leibler divergence, or the relative entropy of p with
respect to q:

S(p||q) :=
∫
R
p(x) log p(x)

q(x)dx,
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where p and q are two density functions on R. It has an operational meaning as follows.
Suppose that Alice encodes her message into a sequence of 0 and 1’s, and sends them to
Bob. Bob will then decode from a sequence of 0 and 1’s he received so as to read Alice’s
message correctly. Unfortunately, because of the noisy channel, what Bob will receive is
a sequence of random variables with overlapping distributions. So Bob will encounter a
problem of identifying which are 0’s and which are 1’s. Assume that 0 is sent to a random
variable with a density p centered at 0, and 1 is sent to a random variable with a density
q centred at 1. Suppose that the n-th signal arriving to Bob is a random variable Xn and
all Xn’s are independent. Bob cannot tell that a single signal comes from 0 or 1 if p and
q overlap. But the point is, if Alice sends the same message N times, Bob can extract
the correct information as when N tends to infinity, and the error decays exponentially
to 0. And the order of the exponential decay of the error is given in terms of the relative
entropy S(p||q).

In fact, for each N > 0, Bob needs to choose AN ⊂ RN as a measurement, such that
if (X1, . . . , XN ) ∈ AN , then he accepts p as the governing distribution, and otherwise he
accepts q. Fix small ε > 0, if

∫
AN

p⊗N > 1− ε, then consider

βε,N (p, q) := inf
AN⊂RN

{
log

∫
AN

q⊗N :
∫
AN

p⊗N > 1− ε
}
.

Then we have [46, 45]

lim sup
N→∞

1
N
βε,N (p, q) ≤ −S(p||q) and lim inf

N→∞

1
N
βε,N (p, q) ≥ − 1

1− εS(p||q). (1.3)

A result similar to (1.3) holds in quantum information theory. For this we pause briefly
to speculate what the quantum analogue of relative entropy should look like. From (1.2)
we know that one should replace the density functions p and q with the density operators
ρ and σ, and the integral with the trace. And when ρ and σ commute, we should recover
S(p||q), where p, q are constructed from the spectra of ρ and σ, respectively. There are,
however, a lot of formulas verifying such conditions, for example,

D(ρ||σ) := Trρ(log ρ− log σ), (1.4)

and
D′(ρ||σ) := Trρ log(σ−

1
2 ρσ−

1
2 ). (1.5)

The formula D defined in (1.4) is known as Umegaki relative entropy [71], and it turns out
to be the proper formula in the quantum setting with an operational meaning in the sense
of (1.3) [35].

Except for the relative entropy S, there is a family of α-versions of relative entropies
introduced by Rényi [62], referred to as α-Rényi relative entropies:

Sα(p||q) := 1
α− 1 log

∫
pαq1−α, α ∈ (0, 1) ∪ (1,∞),

where p and q are density functions on R. Many error bounds can be given in terms of Sα
[18], so they also admit an operational meaning.

Looking for proper quantum analogues of Sα and studying their properties has become
a popular topic in recent years in quantum information theory. Two of the most important
quantum versions of Sα are the quantum α-Rényi relative entropy:

Dα(ρ||σ) := 1
α− 1 logTr(ρασ1−α),
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and the sandwiched α-Rényi relative entropy [56, 73]

D̃α(ρ||σ) := 1
α− 1 logTr(σ

1−α
2α ρσ

1−α
2α )α.

They both admit operational meanings for certain values of α [54, 55].
It is then a natural question how to put Dα and D̃α into one unifying framework. For

this Audenaert and Datta [2] introduced the α-z Rényi relative entropy

Dα,z(ρ||σ) := 1
α− 1 logTr(σ

1−α
2z ρ

α
z σ

1−α
2z )z, α ∈ (−∞, 1) ∪ (1,∞), z > 0,

where ρ, σ ∈ D(H).
For proper quantum analogues of classical entropies, we expect them to verify certain

properties in the classical cases. Things become much more difficult in the noncommutative
setting. For example, the Strong Subaddivity of von Neumann entropy D was conjectured
by Lanford and Robinson in 1968 and was proved by Lieb and Ruskai in 1973 using a
concavity result of a certain trace function (which is nothing but Ψp,q,1 we are going to
discuss later). Here we are interested in the monotonicity of Dα,z. That is,

Dα,z(E(ρ)||E(σ)) ≤ Dα,z(ρ||σ),
for all completely positive trace preserving (CPTP) maps E on B(H), all ρ, σ ∈ D(H)
and all H. This inequality is known as the Data Processing Inequality (DPI). It is a
fundamental inequality in quantum information theory, which indicates that the quantum
states ρ and σ become harder to distinguish after the action of CPTP maps. We shall
identify all (α, z) such that Dα,z verifies DPI, and from the solution the readers will see
how the noncommutative techniques are applied to simplify the problem.

1.3 Main results

1.3.1 Idempotent states on Sekine quantum groups

Even if the study of idempotent states is already very thorough [3, 29, 28, 30, 40, 42],
few concrete examples on compact quantum groups which are neither commutative nor
co-commutative, are known. The first contribution of this thesis is to determine all the
idempotent states on a family of finite quantum groups, usually known as Sekine quantum
groups. This answers a question of Franz and Skalski stated in 2009 [29].

Recall that an idempotent state φ on a compact quantum group G is a state such that
φ ? φ = φ. When G is a classical compact group, φ is the Haar measure of some compact
subgroup of G [43]. However, it is well-known that this fails for general quantum groups.
Even on finite quantum groups, an idempotent state does not necessarily correspond to
a quantum subgroup [29, 59]; a quantum hypergroup serves as a substitute here [29]. To
this end, we introduce the notion of a Haar idempotent state, which is the idempotent
state arising as the Haar state on some quantum subgroup of G. Otherwise it is called a
non-Haar idempotent state.

Our main result is to determine all the idempotent states on Sekine quantum groups.

Definition 1.1. [29, 67] Fix k ≥ 2 an integer. Let η be a primitive k-th root of unity,
say, η = e

2πi
k , and let Zk := {0, 1, . . . , k − 1} be the cyclic group with order k. Set

Ak :=
⊕
i,j∈Zk

Cdi,j ⊕Mk(C),
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where di,j denotes the corresponding basis of C. Denote by {ei,j : i, j ∈ Zk} the matrix
units of the k-by-k full matrix algebra Mk(C). Define

∆k(di,j) :=
∑

m,n∈Zk

dm,n ⊗ di−m,j−n + 1
k

∑
m,n∈Zk

ηi(m−n)em,n ⊗ em+j,n+j , (1.6)

∆k(ei,j) :=
∑

m,n∈Zk

ηm(i−j)d−m,−n ⊗ ei−n,j−n +
∑

m,n∈Zk

ηm(j−i)ei−n,j−n ⊗ dm,n, (1.7)

for i, j ∈ Zk. Then the pair (Ak,∆k) forms a finite quantum group, called a Sekine
quantum group.

Let {d̃i,j , ẽi,j : i, j ∈ Zk} be the dual basis of {di,j , ei,j : i, j ∈ Zk}. Using this the
idempotent states on Ak are characterized through the following lemma:

Lemma 1.2. A functional µ =
∑
i,j∈Zk αi,j d̃i,j +

∑
r,s∈Zk κr,sẽr,s ∈ A

′
k is an idempotent

state if and only if αi,j ≥ 0 for all i, j ∈ Zk, K := [κr,s]r,s∈Zk is positive semi-definite, and
the following equations hold:

αi,j =
∑
r,s∈Zk

αi−r,j−sαr,s + 1
k

∑
r,s∈Zk

ηi(r−s)κr,sκr+j,s+j , i, j ∈ Zk, (1.8)

κr,s =
∑
i,j∈Zk

ηi(s−r)αi,j(κr+j,s+j + κr−j,s−j), r, s ∈ Zk, (1.9)

µ(1Ak) =
∑
i,j∈Zk

αi,j +
∑
r∈Zk

κr,r = 1. (1.10)

By solving these equations, we can compute all the idempotent states on Ak:

Theorem 1.3. [76, Theorem 2.12] Fix k ≥ 2 an integer. Then the family of idempotent
states on Sekine quantum group Ak, denoted by Idem(Ak), is given through

Idem(Ak) = {hAk} ∪ I1(Ak) ∪ I2(Ak) ∪ I3(Ak),

where

(1) hAk is the Haar state;

(2) I1(Ak) is the set of idempotent states of the form

hΓ := 1
]Γ

∑
(i,j)∈Γ

d̃i,j ,

with Γ a subgroup of Zk × Zk.

(3) I2(Ak) is the set of idempotent states of the form

hΓ,l := 1
2]Γ

∑
(i,j)∈Γ

d̃i,j + q

2k
∑

r≡l mod q

ẽr,r,

where Γ = Zk × qZk with q|k, q > 1, and l ∈ Zq; or
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(4) I3(Ak) is the set of idempotent states of the form

hΓ,l,τ := 1
2]Γ

∑
(i,j)∈Γ

d̃i,j + q

2k
∑

r,s≡l mod q

τs−rẽr,s,

where Γ = pZk × qZk with p > 1 and pq = k, l ∈ Zq, and τ = (τj)j∈qZk ∈ {±1}qZk
such that ∑

j∈qZk

τjη
ij ≥ 0, i ∈ Zk/q. (1.11)

Moreover, the family of Haar idempotent states is given by {hAk}∪I1(Ak) and the family
of non-Haar idempotent states is given by I2(Ak) ∪ I3(Ak).

We may define a partial order ≺ on Idem(Ak) through

φ1 ≺ φ2 if φ1 ? φ2 = φ2.

For k prime, Zk ×Zk has one subgroup of order 1: Γ0 = {(0, 0)}, k+ 1 subgroups of order
k:

Γ+ = Zk × kZk, Γ− = kZk × Zk, Γi = {j(1, i) = (j, ij) : j ∈ Zk},

where i = 1, 2, · · · , k− 1, and one subgroup of order k2: Γk = Zk×Zk. We remove Γ from
the subscripts for convenience, for example h+ := hΓ+ , h− := hΓ− , and hi := hΓi . Then
from Theorem 1.3 it follows that:

I1(Ak) = {h+, h−, hi : i = 0, 1, · · · , k},

I2(Ak) = {h+,l : l ∈ Zk},

I3(Ak) = {h−,l,τ : l ∈ Zk, τ verifies (1.11)}.

Hence we can draw the Hasse diagram of the lattice (Idem(Ak),≺) for prime k as [76,
Example 3.3]:

h0

h+ h−hi

hkh+,l h−,0,τ

hAk

where i = 1, 2, . . . , k − 1, l ∈ Zk, and τ satisfies (1.11). Note that h0 is the counit on Ak.

1.3.2 Infinitely divisible states on finite quantum groups

By an infinitely divisible state on a compact quantum group G we mean a state ω on C(G)
which admits n-th root ωn for all n ≥ 1, that is, ωn is a state on G such that ω = ω?nn . Here
? denotes the convolution of bounded linear functionals on C(G): φ1 ? φ2 := (φ1 ⊗ φ2)∆,
where ∆ is the comultiplication. We denote by I(G) the set of all infinitely divisible states
on G. The second main result of this thesis, is to characterize all the infinitely divisible
states on finite quantum groups. This generalizes Böge’s result [7] on infinitely divisible
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probability measures on finite groups and Parthasarathy’s work [60] on infinitely divisible
normalized positive definite functions on finite groups.

There is a certain class of infinitely divisible states, states of Poisson type, or Poisson
states. Given an idempotent state φ, a bounded linear functional u on C(G) is called
φ-bi-invariant if u = u ? φ = φ ? u. And if u is φ-bi-invariant, we define its exponential
with respect to φ as:

expφ(u) := φ+
∑
n≥1

u?n

n! .

A state ω on G is of Poisson type if there exists an idempotent state φ such that one of
the following equivalent conditions holds ([77, Theorem 4.4])

1. ω = ω1 with {ωt}t≥0 a norm continuous convolution semigroup of states such that
ω0 = φ;

2. ω = expφ(u), where u is a φ-bi-invariant bounded linear functional on C(G) such
that u(1) = 0 and u(x∗x) ≥ 0 for all x ∈ C(G) with φ(x∗x) = 0;

3. ω = expφ(u), where u = r(v − φ), with r > 0 and v a φ-bi-invariant state on C(G).

Denote by P(G) the set all states of Poisson type. Clearly, P(G) ⊂ I(G). Our main result
asserts that, the converse inclusion holds for finite quantum groups.

Theorem 1.4. [77, Theorem 4.11] Let G be a finite quantum group. Then I(G) = P(G).

When G is commutative, it is then a classical finite group G and a state is a probability
measure on G. In this case we recover Böge’s theorem concerning infinitely divisible
probability measures on finite groups:

Theorem 1.5. [7] Any infinitely divisible probability measure on a finite group is of Pois-
son type.

When G is co-commutative, it is then the dual of finite group Γ and a state is a
normalized positive definite function on Γ. In this case we recover Parthasarathy’s result
on infinitely divisible normalized positive definite functions on finite groups:

Theorem 1.6. [60] Any infinitely divisible normalized positive definite function on a finite
group is of Poisson type.

1.3.3 Fourier multipliers on discrete group von Neumann algebras

In recent years, the study of Lp-Fourier multipliers on group von Neumann algebras has
become one of the most important topics in noncommutative harmonic analysis. Little
is known about Lp-Fourier multipliers on group von Neumann algebra Ĝ even when the
group G is discrete. One example people are particularly interested in is the free group F∞.
It is a challenging problem to generalize classical Hörmander-Mikhlin multiplier theorem
to group von Neumann algebras.

Here we offer a new idea regarding Lp-Fourier multipliers, which works for discrete
groups. Recall that for any discrete group G, the group von Neumann algebra Ĝ is the
von Neumann algebra in B(`2(G)) generated by all λ(g), g ∈ G, where λ is the left regular
representation of G. Ĝ is equipped with a canonical tracial state τ . A function ϕ on G
is a Lp-Fourier multiplier if Tϕ :

∑
finite sum agλ(g) 7→

∑
finite sum ϕ(g)agλ(g) extends to a
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bounded map on Lp(Ĝ, τ). Here Lp(Ĝ, τ) is defined as the completion of (Ĝ, ‖ · ‖p) with
‖x‖p := (τ |x|p)1/p. Since τ is finite, the Lp-boundedness of Tϕ follows from its Lp-Lq
boundedness, whenever p < q. This simplifies the problem because one can choose in
particular q = 2 when p < 2 (consider L2-Lp if p > 2). Our estimate of Lp-L2 (L2-Lp) was
inspired by Hörmander’s work [36] on Lp-Lq Fourier multipliers and Ricard-Xu’s work [63]
on hypercontractivity.

The first result concerns all discrete groups. Recall that for any r > 0, the space
`r,∞(G) consists of all functions f : G→ C such that

‖f‖r,∞ := sup
t>0

t|{g ∈ G : |f(g)| ≥ t}|
1
r <∞,

where |S| denotes the cardinal of S ⊂ G.
Here and in the following, A .p B means A ≤ cpB for some constant cp > 0, and N

denotes the family of natural numbers.

Theorem 1.7. Let 1 < p < ∞ and 1/p∗ := |1/2 − 1/p|. Let G be any discrete group.
Then for any ϕ ∈ `p∗,∞(G), we have

‖Tϕ : Lp(Ĝ, τ)→ Lp(Ĝ, τ)‖ .p ‖ϕ‖p∗,∞.

Our second result deals with the free group F∞. Thanks to duality, we only consider
the case 2 < p <∞.

Theorem 1.8. Let 2 < p <∞. Suppose that ϕ is radial on F∞, i.e., ϕ(g) = φ(|g|), with
| · | the length function on F∞, for some φ : N→ C. Then we have

‖Tϕ : Lp(F̂∞)→ Lp(F̂∞)‖ ≤

∑
n≥0

(1 + n)αp |φ(n)|2
1/2

,

where αp = max{2− 6
p , 1−

2
p}.

As a corollary, we obtain the following criterion for radial Fourier multipliers on F∞.

Corollary 1.9. Suppose that Tϕ is a radial multiplier with ϕ = φ(| · |). Then Tϕ is a
Lp-Fourier multiplier on F̂∞ if there exists ε > 0 such that

sup
n≥0

n
1− 1

p
+ε|φ(n)| <∞, 2 < p ≤ 4,

or
sup
n≥0

n
3
2−

3
p

+ε|φ(n)| <∞, p ≥ 4.

From this we obtain radial Lp-Fourier multipliers Tϕ with

ϕ(g) = 1
|g|1−

1
p

+ε
, 2 < p ≤ 4,

and
ϕ(g) = 1

|g|
3
2−

3
p

+ε
, p ≥ 4,

for any ε > 0.
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1.3.4 Monotonicity of α-z Rényi relative entropies

The intersection of quantum information and noncommutative analysis has appeared in
recent years. This gave birth to a series of significant results in both areas and is inaugu-
rating a promising direction of research. The result we are going to talk about is such an
example.

Throughout this part H always denotes a finite dimensional Hilbert space, B(H) de-
notes the set of all bounded linear operators over H, P(H) denotes the set of all positive
linear operators over H, and D(H) denotes the subset of P(H) whose elements have unit
trace (density operators). Moreover, we use B(H)× (reps. P(H)× and D(H)×) to denote
the family of invertible operators in B(H) (resp. P(H) and D(H)). We use I to denote
the identity operator.

Classical entropy quantities including the Shannon entropy and the α-Rényi relative
entropies play a crucial role in classical information theory, or Shannon theory. They
admit various quantum analogues, see more details in [2, 10]. It is important, but diffi-
cult to decide, among the family of quantum relative entropies, which are right ones in
the quantum world. One fundamental property that the right ones must satisfy is the
monotonicity under completely positive trace preserving (CPTP) maps, or the Data Pro-
cessing Inequality (DPI). We determine all the (α, z) such that α-z Rényi relative entropy
Dα,z satisfies DPI by proving a conjecture of Audenaert and Datta [2]. Indeed, we shall
establish a stronger conjecture of Carlen, Frank and Lieb [10].

Conjecture 1.10. [10, Conjecture 4] If 1 ≤ p ≤ 2, − 1 ≤ q < 0, (p, q) 6= (1,−1) and
s ≥ 1/(p+ q), then for any finite dimensional Hilbert space H and any K ∈ B(H)×,

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s, A,B ∈ P(H)×, (1.12)

is jointly convex.

On one hand, the study of the joint convexity/concavity of Ψp,q,s has a long history
in mathematical physics. The first important result on joint convexity/concavity Ψp,q,s is
the famous Lieb’s concavity theorem [49]: Ψp,q,1 is jointly concave for p, q ≥ 0 such that
p + q ≤ 1. After that many methods have been developed and much progress has been
made. More details in the history can be found in the survey paper [10]. The last unsolved
case is Conjecture 1.10, for which little has been known.

On the other hand, the joint convexity/concavity of Ψp,q,s is closely related to the
monotonicity of the α-z Rényi relative entropies:

Dα,z(ρ||σ) := 1
α− 1 logTr(σ

1−α
2z ρ

α
z σ

1−α
2z )z, α ∈ (−∞, 1) ∪ (1,∞), z > 0,

where ρ, σ ∈ D(H)×. The α-z Rényi relative entropies were introduced and studied by
Audenaert and Datta [2] and serve as a unifying generalization of the quantum α-Rényi
relative entropies:

Dα(ρ||σ) := 1
α− 1 logTr(ρασ1−α), α ∈ (0, 1) ∪ (1,∞),

and the sandwiched α-Rényi entropies [56, 73]:

D̃α(ρ||σ) := 1
α− 1 logTr(σ

1−α
2α ρσ

1−α
2α )α, α ∈ (0, 1) ∪ (1,∞).
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Note that Dα,1 = Dα and Dα,α = D̃α.
Let us come back to the relation between the joint convexity/concavity of Ψp,q,s and

monotonicity of α-z Rényi relative entropy. Recall that Dα,z is monotone under CPTP
maps if

Dα,z(E(ρ)||E(σ)) ≤ Dα,z(ρ||σ), (1.13)

for any CPTP map E on B(H)×, for all density operators ρ, σ ∈ D(H)× and for any finite
dimensional Hilbert space H. This inequality is known as the Data Processing Inequality
(DPI). It is known (cf. [10]) that when K = I and s = 1/(p + q), the joint convexity
(concavity when α < 1) of Ψp,q,s is essentially equivalent to DPI for Dα,z, under the
following correspondence between the parameters:

p = 1− α
z

and q = α

z
.

We confirmed Conjecture 1.10 using a variational method. The method turns out to
be a very powerful tool which yields simpler proofs of many known results. Finally, we
obtain the following statement.

Theorem 1.11. [75, Theorem 1.3] Suppose that s > 0. Then for any K ∈ B(H)×, Ψp,q,s

defined in (1.12) is

(1) jointly concave if 0 ≤ p, q ≤ 1 and 0 < s ≤ 1/(p+ q);

(2) jointly convex if −1 ≤ p, q ≤ 0 and s > 0;

(3) jointly convex if −1 ≤ min{p, q} ≤ 0, 1 ≤ max{p, q} ≤ 2, (min{p, q},max{p, q}) 6=
(−1, 1) and s ≥ 1/(p+ q).

In other cases, there exist H and K ∈ B(H)× such that Ψp,q,s is neither jointly convex nor
jointly concave.

The figure 1.1 summarizes the joint convexity/concavity of Ψp,q,s for all p, q, s. Note
that (1,−1) and (−1, 1) do not belong to the area of convexity.

Thus from Theorem 1.11 it follows that

Theorem 1.12. [75, Corollary 1.4] The α-z relative Rényi entropy Dα,z is monotone
under all CPTP maps on B(H)× for all H if and only if one of the following holds

(1) 0 < α < 1 and z ≥ max{α, 1− α};

(2) 1 < α ≤ 2 and α
2 ≤ z ≤ α;

(3) 2 ≤ α <∞ and α− 1 ≤ z ≤ α.
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Figure 1.1: Joint convexity/concavity of Ψp,q,s





Chapter 2

Idempotent states on Sekine
quantum groups

The main result of this chapter is the computation of all the idempotent states on Sekine
quantum groups, which answers a question of Franz and Skalski stated in 2009 [29]. This is
achieved by solving a complicated system of equations using linear algebra and elementary
number theory.

We fix some notations for this chapter. For any k ≥ 1, Mk(C) will denote the family
of all k-by-k complex matrices. We shall use [·] to denote the greatest integer function,
i.e., [x] denotes the greatest integer that is smaller than or equal to x. We denote by ]S
the cardinal of the set S.

2.1 Preliminary: compact quantum groups

Let us recall the definition and properties of compact quantum groups. We refer to [52, 74]
for more details.

Definition 2.1. Let A be a unital C∗-algebra. If there exists a unital *-homomorphism
∆ : A→ A⊗A such that

1. (∆⊗ ι)∆ = (ι⊗∆)∆;

2. {∆(a)(1A ⊗ b) : a, b ∈ A} and {∆(a)(b⊗ 1A) : a, b ∈ A} are linearly dense in A⊗A;

then (A,∆) is called a compact quantum group and ∆ is called the comultiplication on A.
Here and in the following, ι always denotes the identity map. We denote G = (A,∆) and
A = C(G). For simplicity, we write ∆(2) = (∆⊗ ι)∆.

Any compact quantum group G = (A,∆) admits a unique Haar state, i.e., a state
(positive linear functional) h on A such that

(h⊗ ι)∆(a) = h(a)1A = (ι⊗ h)∆(a), a ∈ A.

Consider an element u ∈ A ⊗ B(H) with dimH = n. By identifying A ⊗ B(H) with
Mn(A) we can write u = [uij ]ni,j=1, where uij ∈ A. The matrix u is called an n-dimensional
representation of G if we have

∆(uij) =
n∑
k=1

uik ⊗ ukj , i, j = 1, . . . , n.
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A representation u is called unitary if u is unitary as an element in Mn(A), and irreducible
if the only matrices T ∈ Mn(C) such that uT = Tu are multiples of identity matrix.
Two representations u, v ∈ Mn(A) are said to be equivalent if there exists an invertible
matrix T ∈Mn(C) such that Tu = vT . Denote by Irr(G) the set of equivalence classes of
irreducible unitary representations of G. For each α ∈ Irr(G), denote by uα ∈ A⊗B(Hα)
a representative of the class α, where Hα is the finite-dimensional Hilbert space on which
uα acts. In the sequel we write nα = dimHα.

Denote Pol(G) = span
{
uαij : 1 ≤ i, j ≤ nα, α ∈ Irr(G)

}
. This is a dense subalgebra of

A. On Pol(G) the Haar state h is faithful. It is well-known that (Pol(G),∆) is equipped
with the Hopf*-algebra structure. That is, there exist a linear antihomormophism S on
Pol(G), called the antipode, and a unital *-homomorphism ε : Pol(G) → C, called the
counit, such that

(ε⊗ ι)∆(a) = a = (ι⊗ ε)∆(a), a ∈ Pol(G),

m(S ⊗ ι)∆(a) = ε(a)1A = m(ι⊗ S)∆(a), a ∈ Pol(G).

Here m denotes the multiplication map m : Pol(G) ⊗alg Pol(G) → Pol(G), a ⊗ b 7→ ab.
Indeed, the antipode and the counit are uniquely determined by

S(uαij) = (uαji)∗, 1 ≤ i, j ≤ nα, α ∈ Irr(G),

ε(uαij) = δij , 1 ≤ i, j ≤ nα, α ∈ Irr(G).

Remark here that ∗ ◦ S ◦ ∗ ◦ S = ι. Also we have for all a, b ∈ Pol(G) that

S ((ι⊗ h)(∆(b)(1⊗ a))) = (ι⊗ h) ((1⊗ b)∆(a)) , (2.1)

S((h⊗ ι)((b⊗ 1)∆(a))) = (h⊗ ι)(∆(b)(a⊗ 1)). (2.2)

Now we add a remark on the C*-norms on Pol(G). We are interested in the following
two C*-norms on Pol(G):

(1) the universal norm:

‖a‖u := sup{‖π(a)‖ : π : Pol(G)→ B(H) is a unital *-homomorphism};

(2) the reduced norm:
‖a‖r := ‖πh(a)‖,

where πh is the GNS representation associated with the Haar state h.

We shall denote by Cu(G) and Cr(G) the completions of Pol(G) with respect to ‖ · ‖u and
‖ · ‖r, respectively. Then the comultiplication ∆ and the Haar state h on Pol(G) admit
extensions to Cu(G) (resp. Cr(G)), denoted by ∆u and hu (resp. ∆r and hr), respectively.
Both (Cu(G),∆u) and (Cr(G),∆r) form compact quantum groups.

Note that the counit ε can be always extended to Cu(G), since ε : Pol(G) → C is a
unital *-homomorphism. This is not always the case for Cr(G). If ε can be also extended
to Cr(G), then G is said to be coamenable. An equivalent definition is, G is coamenable
iff ‖ · ‖r = ‖ · ‖u. Note that ‖ · ‖r ≤ ‖ · ‖u always holds. We refer to [4] for more
information. Throughout this thesis, we shall always consider compact quantum group G
on the universal level, so that the counit can always be extended to the C(G).

The Peter-Weyl theory for compact groups can be extended to the quantum case. In
particular, it is known that for each α ∈ Irr(G) there exists a positive invertible operator
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Qα ∈ B(Hα) such that Tr(Qα) = Tr(Q−1
α ) := dα, which we call the quantum dimension of

α, and the orthogonality relations hold:

h
(
uαij(u

β
kl)
∗
)

= δαβδik(Qα)lj
dα

, h
(
(uαij)∗u

β
kl

)
= δαβδjl(Q−1

α )ki
dα

,

where α, β ∈ Irr(G), 1 ≤ i, j ≤ nα, 1 ≤ k, l ≤ nβ.
We callG a finite quantum group if the underlying C∗-algebra C(G) is finite-dimensional.

Note that when G is finite, we have C(G) = Pol(G) and then G is coamenable. In this
case each Qα is the identity and h is a trace, i.e., h(ab) = h(ba) for any a, b ∈ C(G). Then
the orthogonality relation becomes

h
(
uαij(u

β
kl)
∗
)

= h
(
(uαij)∗u

β
kl

)
= δαβδikδjl

nα
, (2.3)

where α, β ∈ Irr(G), 1 ≤ i, j ≤ nα, 1 ≤ k, l ≤ nβ. Moreover, the antipode S satisfies
S2 = ι. Together with ∗ ◦ S ◦ ∗ ◦ S = ι, one obtains directly that S is *-preserving.

The Pontryagin duality can also be extended to compact quantum groups. We only
explain it here for finite quantum groups. If G = (A,∆) is a finite quantum group,
then we may construct its dual Ĝ = (Â, ∆̂) as follows. The underlying finite-dimensional
C*-algebra Â of Ĝ is defined as A′, the set of all bounded linear functionals on A. For
ϕ1, ϕ2 ∈ Â, their convolution product is defined as ϕ1 ? ϕ2 := (ϕ1 ⊗ ϕ2)∆. We may define
the involution on Â as: ϕ∗ := ϕ(S(·)∗). Then (Â, ?, ∗) becomes a finite-dimensional C*-
algebra. For each ϕ ∈ Â, set ∆̂(ϕ)(a⊗b) := ϕ(ab), a, b ∈ A. Then ∆̂(ϕ) ∈ (A⊗A)′ = A′⊗A′
and it is easily seen that ∆̂ defines a comultiplication on Â. Hence Ĝ = (Â, ∆̂) becomes
a finite quantum group. Moreover, it is equipped with a Hopf*-algebra structure with
the antipode Ŝ and the counit ε̂ given by Ŝ(ϕ) := ϕS and ε̂(ϕ) := ϕ(1A), respectively.
Starting from the finite quantum group Ĝ = (Â, ∆̂), we may also construct its dual. Then
in this way we recover the quantum group G = (A,∆).

The Fourier transform F on a finite quantum group G = (A,∆) is a map from A to
Â defined as F(a) = h(a·) = h(·a), where h is the Haar state on G. We shall use â to
denote the its Fourier transform F(a) for simplicity. Then we have the following Parseval’s
identity:

ĥ(â1â
∗
2) = ch(a1a

∗
2), a1, a2 ∈ A, (2.4)

where ĥ is the Haar state on Ĝ and c > 0 is a constant. If we consider the Fourier transform
from Â to A, then we obtain a similar equation to (2.4).

2.2 Sekine quantum groups

Sekine [67] introduced a family of finite quantum groups, referred to as Sekine quantum
groups. We follow the notations in [29] here.

Definition 2.2. Fix k ≥ 2 an integer. Let η be a primitive k-th root of 1, say, η = e
2πi
k ,

and let Zk := {0, 1, . . . , k − 1} be the cyclic group with order k. Set

Ak :=
⊕
i,j∈Zk

Cdi,j ⊕Mk(C),

where di,j is the corresponding unit vector of the copy C. Denote by {ei,j : i, j ∈ Zk} the
matrix units of Mk(C). The comultiplication on Ak is defined through:
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∆k(di,j) :=
∑

m,n∈Zk

dm,n ⊗ di−m,j−n + 1
k

∑
m,n∈Zk

ηi(m−n)em,n ⊗ em+j,n+j , (2.5)

∆k(ei,j) :=
∑

m,n∈Zk

ηm(i−j)d−m,−n ⊗ ei−n,j−n +
∑

m,n∈Zk

ηm(j−i)ei−n,j−n ⊗ dm,n, (2.6)

for i, j ∈ Zk. Then the pair (Ak,∆k) forms a finite quantum group, called a Sekine
quantum group.

2.2.1 Representations of Sekine quantum groups

We refer to [53] for more discussions on the representation theory of Sekine quantum
groups. Let p, q ∈ Zk. Then from (2.5) it follows that∑

i,j∈Zk

ηip+jq∆k(di,j) =
∑

m,n∈Zk

ηmp+nqdm,n ⊗
∑
i,j∈Zk

ηip+jqdi,j

+
∑
m∈Zk

η−mqem,m+p ⊗
∑
j∈Zk

ηjqej,j+p,

and from (2.6) it follows that∑
i∈Zk

ηiq∆k(ei,i+p) =
∑

m,n∈Zk

ηmp−nqdm,n ⊗
∑
i∈Zk

ηiqei,i+p

+
∑
i∈Zk

ηiqei,i+p ⊗
∑

m,n∈Zk

ηmp+nqdm,n.

Set ρp,q :=
∑
m,n∈Zk η

mp+nqdm,n and σp,q :=
∑
i∈Zk η

iqei,i+p for all p, q ∈ Zk. Then the
equations above can be rephrased as

∆k(ρp,q) = ρp,q ⊗ ρp,q + σp,−q ⊗ σp,q,

∆k(σp,q) = ρp,−q ⊗ σp,q + σp,−q ⊗ ρp,q,

for all p, q ∈ Zk. This yields directly that for any p, q ∈ Zk,

πp,q :=
(
ρp,q σp,−q
σp,q ρp,−q

)

is a representation of (Ak,∆k). Moreover, it is also unitary. To see this, note by definitions
of ρp,q and σr,s that

ρ∗p,q = ρ−p,−q, σ∗r,s = ηrsσ−r,−s,

ρp,qρp′,q′ = ρp+p′,q+q′ , ρp,qσr,s = σr,sρp,q = 0, σr,sσr′,s′ = ηrs
′
σr+r′,s+s′ ,

where p, q, p′, q′, r, s, r′, s′ ∈ Zk. Then

π∗p,qπp,q =
(

ρ−p,−q ηpqσ−p,−q
η−pqσ−p,q ρ−p,q

)(
ρp,q σp,−q
σp,q ρp,−q

)
=
(
ρ0,0 + σ0,0 0

0 ρ0,0 + σ0,0

)
,

while ρ0,0 + σ0,0 =
∑
p,q∈Zk dp,q +

∑
r∈Zk er,r = 1Ak is the unit element. So π∗p,qπp,q = id.

Similarly, we have πp,qπ∗p,q = id.
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When q = 0, πp,q is unitarily equivalent to( 1√
2

1√
2

1√
2 − 1√

2

)(
ρp,0 σp,0
σp,0 ρp,0

)( 1√
2

1√
2

1√
2 − 1√

2

)
=
(
ρp,0 + σp,0 0

0 ρp,0 − σp,0

)
.

For the same reason, if k is even, πp,k/2 is unitarily equivalent to( 1√
2

1√
2

1√
2 − 1√

2

)(
ρp,k/2 σp,k/2
σp,k/2 ρp,k/2

)( 1√
2

1√
2

1√
2 − 1√

2

)
=
(
ρp,k/2 + σp,k/2 0

0 ρp,k/2 − σp,k/2

)
.

In such cases πp,q can be decomposed into, up to equivalence, two one-dimensional unitary
irreducible representations. So we have obtained 2k one-dimensional representations when
k is odd and 4k one-dimensional representations when k is even.

Moreover, πp,q is unitarily equivalent to πp,−q since(
0 1
1 0

)(
ρp,q σp,−q
σp,q ρp,−q

)(
0 1
1 0

)
=
(
ρp,−q σp,q
σp,−q ρp,q

)
.

It is known [53] that {πp,q : 1 ≤ q ≤ [k−1
2 ]k} are pairwise inequivalent two-dimensional

irreducible representations. Note that although this was pointed out only for k odd in
[53], it also holds for k even, following a similar argument.

Hence, up to equivalence, (Ak,∆k) has 2k one-dimensional unitary irreducible repre-
sentations and k(k−1)

2 two-dimensional irreducible representations when k is odd, 4k one
dimensional unitary irreducible representations and k(k−2)

2 two-dimensional irreducible
representations when k is even. These are the only irreducible representations. Indeed,
one can check this by verifying the dimension.

We end this section by introducing the Fourier transform of linear functionals µ on
Ak, denoted by µ̂, at πp,q:

µ̂(πp,q) =
(
µ(ρp,q) µ(σp,−q)
µ(σp,q) µ(ρp,−q)

)
, p, q ∈ Zk.

It is easy to see that for any functionals µ, ν on Ak

µ̂ ? ν(πp,q) = µ̂(πp,q)ν̂(πp,q), p, q ∈ Zk, (2.7)

where µ ? ν := (µ⊗ ν)∆ denotes the convolution of µ and ν.

2.3 Idempotent states on Sekine quantum groups

For a compact quantum group G = (A,∆), denote by A′ the set of all bounded linear
functionals on A. Then for µ, ν ∈ A′ we can define the convolution of µ and ν, which we
have seen earlier, as a linear functional on A given by the formula

µ ? ν := (µ⊗ ν)∆.

A state µ on A is called an idempotent state if µ?µ = µ. Denote the class of all idempotent
states on G = (A,∆) by Idem(G), or Idem(A). Idempotent states on compact quantum
groups have been characterized in different ways [29, 28].
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Example 2.3 (Commutative case). IfA is commutative, thenG is isomorphic to (C(G),∆),
where C(G) denotes the set of continuous functions on a compact group G and ∆ is a
comultiplication on C(G) given by

∆(f)(s, t) = f(st), s, t ∈ G.

In this case idempotent state on C(G) arises as idempotent probability measure on G,
which, by Kawada and Itô’s classical theorem, arises as the Haar measure on a compact
subgroup of G.

Let us recall the notion of a quantum subgroup here.

Definition 2.4. If (A,∆A), (B,∆B) are compact quantum groups and πB : A → B is a
surjective unital *-homomorphism such that ∆B ◦ πB = (πB ⊗ πB) ◦∆A, then (B,∆B) is
called a quantum subgroup of (A,∆A).

Let hB be the Haar state on B, then hB ◦ πB is an idempotent state on A. If an
idempotent state φ on A arises in this way, say, φ = hB ◦ πB for some quantum subgroup
(B,∆B) with Haar measure hB of A, then it is called a Haar idempotent state. Otherwise,
it is called a non-Haar idempotent state. So Kawada and Itô’s theorem tells us that in the
commutative case, all idempotent states are Haar idempotent states.

The existence of non-Haar idempotent state was first proved by Pal [59] on a 8-
dimensional Kac-Paljutkin quantum group. Even simpler examples come from co-commutative
finite quantum groups [29].

Example 2.5 (Co-commutative case). A finite quantum group G = (A,∆) is said to be
co-commutative if Π∆ = ∆, where Π denotes the usual tensor flip on A ⊗ A. Then A is
isomorphic to the group algebra C∗(Γ) with Γ a finite discrete group. Then there is a one-
one correspondence between idempotent states on A and subgroups of Γ. Moreover, there
is a one-one correspondence between Haar idempotent states on A and normal subgroups
of Γ. So from a non-normal subgroup of Γ one can construct a non-Haar idempotent.

More examples can be found on Sekine quantum groups [29]. Indeed, a small class of
non-Haar idempotent states on Sekine quantum groups Ak was given in [29, Proposition
6.6]. See (2.11) (2.12) below for details.

Now we consider all the idempotent states on Ak. Fix k ≥ 2. On A′k there is a natural
basis:

d̃i,j(dm,n) := δimδ
j
n, d̃i,j(er,s) := 0, ẽi,j(dm,n) := 0, ẽi,j(er,s) := δirδ

j
s,

where i, j,m, n, r, s ∈ Zk. Using this basis, the explicit formula for the convolution of two
linear functionals on Ak is given through the following lemma (see the discussion before
[29, Lemma 6.4]).

Lemma 2.6. For µ =
∑
i,j∈Zk αi,j d̃i,j+

∑
r,s∈Zk κr,sẽr,s, ν =

∑
i,j∈Zk βi,j d̃i,j+

∑
r,s∈Zk ωr,sẽr,s ∈

A′k, we have
µ ? ν =

∑
i,j∈Zk

γi,j d̃i,j +
∑
r,s∈Zk

θr,sẽr,s,

with
γi,j =

∑
m,n∈Zk

αm,nβi−m,j−n + 1
k

∑
r,s∈Zk

ηi(r−s)κr,sωr+j,s+j , i, j ∈ Zk,

θr,s =
∑
i,j∈Zk

ηi(s−r)(αi,jωr+j,s+j + βi,jκr−j,s−j), r, s ∈ Zk.
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This gives a characterization of Idem(Ak):
Lemma 2.7 ([67, 29]). A functional µ =

∑
i,j∈Zk αi,j d̃i,j +

∑
r,s∈Zk κr,sẽr,s ∈ A

′
k is an

idempotent state if and only if αi,j ≥ 0 for all i, j ∈ Zk, K := [κr,s]r,s∈Zk is positive
semi-definite, and the following equations hold:

αi,j =
∑
r,s∈Zk

αi−r,j−sαr,s + 1
k

∑
r,s∈Zk

ηi(r−s)κr,sκr+j,s+j , i, j ∈ Zk, (2.8)

κr,s =
∑
i,j∈Zk

ηi(s−r)αi,j(κr+j,s+j + κr−j,s−j), r, s ∈ Zk, (2.9)

µ(1Ak) =
∑
i,j∈Zk

αi,j +
∑
r∈Zk

κr,r = 1. (2.10)

Certainly the Haar state on Ak

hAk := 1
2k2

∑
i,j∈Zk

d̃i,j + 1
2k

∑
r∈Zk

ẽr,r,

is a Haar idempotent. Franz and Skalski have determined all the Haar idempotents [29,
Theorem 6.5] on Ak. See also Proposition 2.8 below. They have also given some examples
of non-Haar idempotents [29, Proposition 6.6]:

φl = 1
2k

∑
i∈Zk

d̃i,0 + 1
2 ẽl,l, l ∈ Zk. (2.11)

There are certainly other non-Haar idempotents for special k’s, as pointed out at the end
of [29] with the following examples:

1
4km

∑
i∈Zk

m−1∑
l=0

d̃i,lp + 1
2m

m−1∑
l=0

ẽlp,lp, (2.12)

whenever k = pm and p,m ∈ N such that p,m ≥ 2.
With the help of some elementary number theoretic considerations, we solve the equa-

tions (2.8) (2.9) (2.10) in Lemma 2.7. We will see in the following that the set of idempotent
states, other than the Haar state, can be divided into three disjoint classes, denoted by
I1(Ak), I2(Ak) and I3(Ak). I1(Ak) consists of all Haar idempotents except the Haar state.
I2(Ak) are non-Haar idempotents such that the corresponding matrix K = [κr,s]r,s∈Zk is
diagonal, which include both (2.11) and (2.12) as subclasses. The third class I3(Ak), which
are non-Haar idempotent states with K not diagonal, is an unexpected new discovery.

Note first that if µ =
∑
i,j∈Zk αi,j d̃i,j +

∑
r,s∈Zk κr,sẽr,s is an idempotent state, then

from (2.9) it follows that ∑
r∈Zk

κr,r = 2
∑
i,j∈Zk

αi,j ·
∑
r∈Zk

κr,r. (2.13)

Together with (2.10), we have either∑
i,j∈Zk

αi,j = 1,
∑
r∈Zk

κr,r = 0, (2.14)

or ∑
i,j∈Zk

αi,j =
∑
r∈Zk

κr,r = 1
2 . (2.15)

The following proposition characterizes all the idempotents verifying (2.14). By [29,
Theorem 6.5], such idempotent states, together with the Haar state hAk , form the family
of Haar idempotents.
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Proposition 2.8. Let µ =
∑
i,j∈Zk αi,j d̃i,j +

∑
r,s∈Zk κr,sẽr,s ∈ A

′
k. Then it is an idempo-

tent state verifying
∑
i,j∈Zk αi,j = 1 and

∑
r∈Zk κr,r = 0 if and only if

(1) κr,s = 0 for all r, s ∈ Zk;

(2) Γ := {(i, j) ∈ Zk × Zk : αi,j 6= 0} is a subgroup of Zk × Zk and αi,j = 1
]Γ , (i, j) ∈ Γ.

Moreover, in this case, such an idempotent state is Haar idempotent. Conversely, any
Haar idempotent is either equal to the Haar state hAk or of this form:

hΓ := 1
]Γ

∑
(i,j)∈Γ

d̃i,j ,

with Γ a subgroup of Zk × Zk.

Proof. Since K = [κr,s]r,s∈Zk ≥ 0 and Tr(K) =
∑
r∈Zk κr,r = 0, we have κr,s = 0 for all

r, s ∈ Zk. Then (2.9) is trivial and (2.8) becomes

αi,j =
∑
r,s∈Zk

αi−r,j−sαr,s, i, j ∈ Zk. (2.16)

From
∑
i,j∈Zk αi,j = 1 it follows that αi′,j′ 6= 0 for some (i′, j′) ∈ Zk × Zk. So Γ 6= ∅.

From (2.16) and the non-negativity of αi,j we have that (i1, j1) ∈ Γ and (i2, j2) ∈ Γ imply
(i1+i2, j1+j2) ∈ Γ. Thus Γ is closed under group operation. Moreover, (0, 0) = (ki′, kj′) ∈
Γ, i.e., Γ contains the unit. Set M := maxi,j∈Zk αi,j and suppose that it is attained by
αi0,j0 with (i0, j0) ∈ Zk × Zk. Clearly M > 0. From

M =
∑
r,s∈Zk

αi0−r,j0−sαr,s ≤M
∑
r,s∈Zk

αr,s = M,

it follows that αi0−r,j0−s = M as long as αr,s 6= 0. So ]Γ ≤ ]{(i, j) : αi,j = M} ≤ ]Γ, that
is to say, αi,j = 1

]Γ for any (i, j) ∈ Γ. Now set (i0, j0) equal (0, 0), we have α−r,−s = M as
long as αr,s 6= 0, i.e., (−r,−s) ∈ Γ if (r, s) ∈ Γ. So any (r, s) ∈ Γ has its inverse (−r,−s)
in Γ. Hence Γ is a subgroup of Zk × Zk.

The remaining is a direct consequence of [29, Theorem 6.5].

Remark 2.9. Let µ be as above. If µ = hΓ, we have

µ̂(πi,j) ∈
{(

1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)}
, i, j ∈ Zk.

The following theorem contains the main result of this paper, characterizing the set
of idempotent states verifying (2.15), which consists of the Haar state hAk and all the
non-Haar idempotents.

Before this we need the following well-known Bézout’s identity:

Lemma 2.10 (Bézout’s identity). For any integers a, b ≥ 1, there exist integers m,n such
that ma+ nb = gcd(a, b), where gcd(a, b) denotes the greatest common divisor of a and b.

Note that we can choose m > 0, n < 0 or m < 0, n > 0 freely. Indeed, we can replace
the pair (m,n) with (m+ lb, n− la) for any l ∈ Z.

Theorem 2.11. Let µ =
∑
i,j∈Zk αi,j d̃i,j +

∑
r,s∈Zk κr,sẽr,s ∈ A

′
k. Then it is an idempotent

state verifying
∑
i,j∈Zk αi,j =

∑
r∈Zk κr,r = 1

2 if and only if µ is either:
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(1) the Haar state hAk := 1
2k2

∑
i,j∈Zk d̃i,j + 1

2k
∑
r∈Zk ẽr,r; or

(2)

hΓ,l := 1
2]Γ

∑
(i,j)∈Γ

d̃i,j + q

2k
∑

r≡l mod q

ẽr,r,

where Γ = Zk × qZk with q|k, q > 1, and l ∈ Zq; or

(3)

hΓ,l,τ := 1
2]Γ

∑
(i,j)∈Γ

d̃i,j + q

2k
∑

r,s≡l mod q

τs−rẽr,s,

where Γ = pZk × qZk with p > 1 and pq = k, l ∈ Zq, and τ = (τj)j∈qZk ∈ {±1}qZk
such that ∑

j∈qZk

τjη
ij ≥ 0, i ∈ Zk/q. (2.17)

Remark 2.12. The condition (2.17) is equivalent to positive semi-definiteness of [κr,s]r,s∈Zk .
Such τ always exists as one can choose τj = 1 for all j, which is kind of trivial. It is not
difficult to construct non-trivial ones. For example, when k = 2, there is an another τ ′
with τ ′0 = 1 and τ ′1 = −1 which satisfies (2.17).

Proof of Theorem 2.11. Observe first that for any j ∈ Zk, K = [κr,s]r,s∈Zk ≥ 0 implies
[κr+j,s+j ]r,s∈Zk ≥ 0, thus their Hadamard product [κr,sκr+j,s+j ]r,s∈Zk ≥ 0. So we have for
any i, j ∈ Zk ∑

r,s∈Zk

ηi(r−s)κr,sκr+j,s+j =
∑
r,s∈Zk

ηirηisκr,sκr+j,s+j ≥ 0. (2.18)

Recall that Γ = {(i, j) ∈ Zk × Zk : αi,j 6= 0}. Since
∑
i,j∈Zk αi,j = 1

2 , there exists
(i′, j′) ∈ Zk × Zk such that αi′,j′ 6= 0. This allows us to define

p := min{i > 0 : (i, j) ∈ Γ for some j ∈ Zk},

q := min{j > 0 : (i, j) ∈ Γ for some i ∈ Zk}.

Claim 1: We have p|k, q|k, and for any (i, j) ∈ Zk × Zk

αi,j 6= 0⇒ p|i and q|j. (2.19)

To show this, recall that αi,j ≥ 0, so αi,j 6= 0 simply means αi,j > 0. From (2.8) and
the previous observation (2.18), it follows that

(i1, j1), (i2, j2) ∈ Γ⇒ (m1i1 +m2i2,m1j1 +m2j2) ∈ Γ, m1,m2 ∈ Z≥0, (2.20)

and
(i1, j1) /∈ Γ, (i2, j2) ∈ Γ⇒ (i1 −mi2, j1 −mj2) /∈ Γ, m ∈ Z≥1, (2.21)

From Lemma 2.10, there exist integers m,n > 0 such that mp − nk = gcd(p, k) ≤ p.
Suppose that (p, jp) ∈ Γ for some jp > 0, then (2.20) and Lemma 2.10 yield

(mp,mjp) = (mp− nk,mjp) = (gcd(p, k),mjp) ∈ Γ.

From the definition of p we have gcd(p, k) = p, i.e., p|k.
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For any αi,j 6= 0, i.e., (i, j) ∈ Γ, there exist, by applying Lemma 2.10 two times,
integers m,n, l > 0 such that 0 < mp+ni− lk = gcd(p, i, k) ≤ p. Thus (2.20) and Lemma
2.10 yield

(mp+ ni,mjp + nj) = (mp+ ni− lk,mjp + nj) = (gcd(p, i, k),mjp + nj) ∈ Γ.

So gcd(p, i, k) = p, i.e., p|i, which finishes the proof of Claim 1 for p. The proof for q is
similar.

Claim 2: Fix t ∈ Zk. Suppose that |κr0,s0 | = max{|κr,s| : (r, s) ∈ Zk × Zk, r − s = t}.
Then for any (i, j) ∈ Γ, we have

κr0,s0 = η−itκr0+j,s0+j = η−itκr0−j,s0−j . (2.22)

Moreover, η2pt = 1.

In fact, from (2.9) it follows that

|κr0,s0 | ≤
∑
i,j∈Zk

αi,j |η−it(κr0+j,s0+j + κr0−j,s0−j)| ≤ 2|κr0,s0 |
∑
i,j∈Zk

αi,j = |κr0,s0 |.

Thus αi,j 6= 0 implies (2.22). Consequently, we have |κr0+j,s0+j | = |κr0−j,s0−j | = |κr0,s0 |.
Repeating this argument for κr0+j,s0+j and κr0−j,s0−j , we have finally

|κr,s| = |κr0,s0 | for any r, s such that j|r − r0 = s− s0, (2.23)

whenever αi,j 6= 0 for some i. Moreover, (2.22) implies κr0,s0 = η−itκr0+j,s0+j = η−2itκr0,s0 ,
so we have κr0,s0 6= 0 only if η2it = 1, which, by the definition of p, yields η2pt = 1. So
Claim 2 is proved.

Recall that κr,r ≥ 0 for all r ∈ Zk, since K ≥ 0. From
∑
r∈Zk κr,r = 1

2 , we have
κl,l = maxr∈Zk κr,r > 0 for some l. Suppose αiq ,q 6= 0, then (2.23) implies

κr,r = κl,l > 0, r ≡ l mod q. (2.24)

For convenience, let 0 ≤ l < q. From (2.8) and (2.19), we have for any i ∈ Zk and any q - j∑
r,s∈Zk

ηi(r−s)κr,sκr+j,s+j = 0.

So for any q - j

0 =
∑
i∈Zk

∑
r,s∈Zk

ηi(r−s)κr,sκr+j,s+j

=
∑
r,s∈Zk

κr,sκr+j,s+j
∑
i∈Zk

ηi(r−s)

= k
∑
r∈Zk

κr,rκr+j,r+j .

Thus κr,rκr+j,r+j = 0 whenever r ∈ Zk and q - j. Combining this with (2.24) we obtain

κr,r =
{

q
2k r ≡ l mod q

0 otherwise
. (2.25)



2.3. Idempotent states on Sekine quantum groups 39

From this and the positive semi-definitiveness of K we have

κr,s = 0, if either q - r − l or q - s− l. (2.26)

So it remains to compute the submatrix [κr,s]r,s≡l mod q. For this set

p′ := min{i > 0 : (i, 0) ∈ Γ},

q′ := min{j > 0 : (0, j) ∈ Γ}.

These are well-defined, since (k, 0) = (0, k) = (0, 0) ∈ Γ. Indeed, suppose (i′, j′) ∈ Γ, then
from (2.20) it follows (0, 0) = (ki′, kj′) ∈ Γ.

We have also by (2.20) that

p′|i and q′|j ⇒ (i, j) ∈ Γ. (2.27)

So from (2.19) it follows that p|p′ and q|q′.

Claim 3: p = p′ and q = q′. As a consequence, we have

(i, j) ∈ Γ if and only if p|i and q|j. (2.28)

To prove this, note first that for any p|i, there exists j ∈ Zk such that (i, j) ∈ Γ.
Otherwise, (i, j) /∈ Γ for all j ∈ Zk. Since (p, jp) /∈ Γ for some jp ∈ Zk, we have by (2.21)
that (i − p, j) /∈ Γ for all j ∈ Zk. This argument gives finally (0, j) /∈ Γ for all j ∈ Zk,
which contradicts the fact that (0, 0) ∈ Γ. Similarly, for any q|j, there exists i ∈ Zk such
that (i, j) ∈ Γ. This allows us to define for all p|i and q|j that

pj := min{i > 0 : (i, j) ∈ Γ},

qi := min{j > 0 : (i, j) ∈ Γ}.

Then (2.19) implies p|pj and q|qi for all such i, j. Following a similar argument to that
showing (2.19), we have by (2.20) and Lemma 2.10 that pj |p′ and qi|q′. Moreover, note
that

(0, j) ∈ Γ iff q′|j, and (i, 0) ∈ Γ iff p′|i,

which is a consequence of definitions of p′, q′ and (2.20) together with Bézout’s identity.
Then (2.20) tells us that for any p|i

(i, qi +mq′) ∈ Γ, m ≥ 0; (2.29)

and (2.21) tells us that for any p|i

(i, j −mqi) = (0− (−i), j −mqi) /∈ Γ, q′ - j,m ≥ 0. (2.30)

So we have for any p|i,
(i, j) ∈ Γ iff j ≡ qi mod q′.

Now we are ready to prove Claim 3. Suppose q 6= q′, then for any p|i, we have (i, j(i)) /∈ Γ
for some q|j(i) (for example, take j(i) = qi + q). So αi,j(i) = 0, and thus from the non-
negativity of αm,n and (2.18) we have∑

r,s∈Zk

ηi(r−s)κr,sκr+j(i),s+j(i) = 0.
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By (2.26), it becomes∑
r,s∈Zk

ηi(r−s)κr,sκr+j(i),s+j(i) =
∑

r,s≡l mod q

ηi(r−s)κr,sκr+j(i),s+j(i) = 0.

Fix p|i and the associated j(i), then we have for any q|t

κr,sκr+j(i),s+j(i) = diκ
2
t+l,l, for all r, s ≡ l mod q and r − s = t, (2.31)

where di ∈ {±1} is independent of r, s. In fact, this is trivial when maxr,s:r−s=t |κr,s| = 0.
Set di ≡ 1 for example. If maxr,s:r−s=t |κr,s| > 0, recall that we have for such r, s

κr,s = ηpq(s−r)κr−q,s−q = η−pqtκr−q,s−q and η2pq(r−s) = η2pqt = 1.

Clearly, ηpqt = ±1. So (2.31) is also trivial if ηpqt = 1: we can choose di = 1. If ηpqt = −1,
then for r, s ≡ l mod q

κr,sκr+j(i),s+j(i) = (−1)j(i)/qκ2
r−s+l,l,

and we can choose di = (−1)j(i)/q. Thus (2.31) holds.

Now we have for any p|i

0 =
∑

r,s≡l mod q

ηi(r−s)κr,sκr+j(i),s+j(i)

=
∑

r,s=tq+l,t∈Zk/q

ηi(r−s)diκ
2
r−s+l,l

= k

q

∑
t∈Zk/q

ηitqdiκ
2
tq+l,l.

This clearly holds for any p - i and any di because of (2.19) and (2.26). Set di := 1 for all
p - i. Thus we have for each i ∈ Zk∑

t∈Zk/q

di(ηq)itκ2
tq+l,l = 0.

Then the system of linear equations∑
t∈Zk/q

di(ηq)itκ2
tq+l,l = 0, i = 0, 1, . . . , k

q
− 1.

can be represented as
DVX = 0, (2.32)

whereD = diag(d0, d1 . . . , d k
q
−1) is an invertible k

q×
k
q diagonal matrix, V = V (1, ηq, . . . , ηk−q)

is an k
q ×

k
q Vandermonde matrix, and X = (κ2

l,l, κ
2
q+l,l . . . , κ

2
k−q+l,l)T is a k

q -dimensional
vector. Here V (a1, a2, . . . , an) denotes the n× n Vandermonde matrix [aj−1

i ]ni,j=1. By the
definition of η, V is invertible. So we have X = 0. But κ2

l,l = q2

4k2 6= 0, which leads to a
contradiction! Hence q = q′.

Now p = p′ follows directly. Indeed, q = q′ implies qp = q, so we have (p, q) = (p, qp) ∈
Γ. Thus (p, 0) = (p, q) + (0,−q) ∈ Γ. Hence p = p′, which ends the proof of Claim 3.
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Claim 4: We have either p = 1 or p ≥ 2 and pq = k.

We will use a similar argument as above. Before this, let us update several conclusions,
following Claim 3. Note first that κr,s = κr−s+l,l for all r, s ≡ l mod q, since (0, q) ∈ Γ.
Moreover, κr,s 6= 0 only if ηp(r−s) = 1.

If p > 1, we have for any p - i:

0 =
∑
r,s∈Zk

ηi(r−s)κr,sκr+j,s+j

=
∑

r,s≡l mod q

ηi(r−s)κr,sκr+j,s+j

=
∑

r,s=tq+l,t∈Zk/q

ηi(r−s)κ2
r−s+l,l

= k

q

∑
t∈Zk/q

ηitqκ2
tq+l,l.

So we have the following system of linear equations:∑
t∈Zk/q

(ηq)itκ2
tq+l,l = 0, i ∈ {0, 1, 2, . . . , k

q
− 1} \ pZk,

which can be represented as
V ′X ′ = 0,

where V ′ is a m × k
q submatrix of V , the Vandermonde matrix introduced earlier, with

m = k
q − [ kpq ] and X ′ = X = (κ2

l,l, κ
2
q+l,l . . . , κ

2
k−q+l,l)T with n non-zero entries. Since

κ2
r−s+l,l 6= 0 only if q|r − s and k

p |r − s (because ηp(r−s) = 1), we have n ≤ k
lcm( k

p
,q) =

p
q gcd(kp , q), where lcm(a, b) denotes the least common multiple of a and b. The fact that
κ2
l,l = q2

4k2 6= 0 requires m < n.

If gcd(kp , q) <
k
p , then gcd(kp , q) ≤

k
2p and for p ≥ 2,

m = k

q
− [ k

pq
] ≥ k

q
− k

pq
≥ k

2q = p

q
· k2p ≥

p

q
gcd(k

p
, q) ≥ n,

which leads to a contradiction. So gcd(kp , q) = k
p , i.e., k|pq. Thus

k
q ≥ n > m = k

q − [ kpq ] ≥
k
q − 1. This happens only if k = pq, which ends the proof of the Claim 4.

Now we are ready to finish the proof of the theorem.
(i) Suppose p = 1. In this case Γ = {(i, j) ∈ Zk × Zk : q|j}, and

κr,s =
{ 1

2p r = s ≡ l mod q

0 otherwise.

Hence (2.8) becomes
αi,j =

∑
(r,s)∈Γ

αi−r,j−sαr,s + q

4k2 , q|j.

Let M := max{αi,j : (i, j) ∈ Γ} and suppose that αi0,j0 = M . Then

M = αi0,j0 =
∑

(r,s)∈Γ
αi0−r,j0−sαr,s + q

4k2 ≤M
∑

(r,s)∈Γ
αr,s + q

4k2 = M

2 + q

4k2 ,
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which implies M ≤ q
2k2 . Moreover, M ≥ 1

2]Γ = q
2k2 . So M = q

2k2 , and thus

αi,j = q

2k2 , (i, j) ∈ Γ.

If q = 1, we have µ = hAk , which is nothing but (1). Otherwise, we obtain (2).

(ii) Suppose p > 1 and k = pq. In this case n = k
q = p,m = k

q − [ kpq ] = p − 1. Since
κ2
l,l = 1

4p2 , the equation V ′X ′ = 0 possesses exactly one solution: X ′ = ( 1
4p2 , . . . ,

1
4p2 )T .

That is to say,

κr,s =


κ0,0 = 1

2p r = s, r, s ≡ l mod q

κ0,s−r = ± 1
2p r 6= s, r, s ≡ l mod q

0 otherwise.

So the fact that K ≥ 0 is equivalent to the positive semi-definiteness of the circulant
matrix [κr,s]r,s≡l mod q. Since the set of all the eigenvalues of [κr,s]r,s≡l mod q is

{
∑
j∈qZk

κ0,jη
ij , i ∈ Zk/q},

we have K ≥ 0 if and only if ∑
j∈qZk

τjη
ij ≥ 0, i ∈ Zk/q,

where τj := κ0,j ∈ {±1}, j ∈ qZk.

Now (2.8) is equivalent to

αi,j =
∑

(m,n)∈Γ
αi−m,j−nαm,n + 1

4k , (i, j) ∈ Γ.

Following a similar argument as above, we have

αi,j = 1
2k , (i, j) ∈ Γ.

This gives (3), and the proof of the theorem is complete.

Remark 2.13. Let µ be as above. Then

1. µ = hΓ,l if and only if

µ(ρi,j) =
{1

2 i = 0, kq |j
0 otherwise

and µ(σi,j) =
{1

2η
jl i = 0, kq |j

0 otherwise
,

if and only if

µ̂(πi,j) =


(

1
2

1
2η
−jl

1
2η
jl 1

2

)
i = 0, kq |j

( 0 0
0 0 ) otherwise
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2. µ = hΓ,l,τ if and only if

µ(ρi,j) =
{1

2 q|i, p|j
0 otherwise

and µ(σi,j) =
{1

2τjη
jl q|i, p|j

0 otherwise
,

if and only if

µ̂(πi,j) =


(

1
2

1
2 τ−jη

−jl

1
2 τjη

jl 1
2

)
q|i, p|j

( 0 0
0 0 ) otherwise

Denote by I1(Ak), I2(Ak) and I3(Ak) the family of idempotent states of the forms hΓ,
hΓ,l and hΓ,l,τ respectively. Then the discussions above can be rephrased as

Theorem 2.14. Fix k ≥ 2 an integer. Then the family of idempotent states Idem(Ak) on
Sekine quantum group Ak is given through

Idem(Ak) = {hAk} ∪ I1(Ak) ∪ I2(Ak) ∪ I3(Ak).

2.4 The order structure on Idem(Ak)

Franz and Skalski introduced in [29] the order relation on the set of idempotent states of
a finite quantum group. We recall this definition for Sekine quantum groups here.

Definition 2.15. Let φ1, φ2 ∈ Idem(Ak). Denote by ≺ the partial order on Idem(Ak)
given through

φ1 ≺ φ2 if φ1 ? φ2 = φ2.

In this order the Haar state hAk and the counit ε are, respectively, the biggest and
smallest idempotent state in Idem(Ak). Let µ, ν ∈ Idem(Ak). We use superscripts to label
all the symbols which appeared before. For example,

µ :=
∑
i,j∈Zk

α
(µ)
i,j d̃i,j +

∑
r,s∈Zk

κ(µ)
r,s ẽr,s, ν :=

∑
i,j∈Zk

α
(ν)
i,j d̃i,j +

∑
r,s∈Zk

κ(ν)
r,s ẽr,s.

We introduce the partial order ≺ in the family of 2 by 2 idempotent matrices J := {A ∈
M2(C) : A2 = A}:

A ≺ B if AB = B, A,B ∈ J ,

and the partial order ≺ in the family of subgroups of Zk × Zk:

Γ ≺ Λ if Γ ⊂ Λ, Λ, Γ ≤ Zk × Zk.

Then from (2.7), µ ≺ ν if and only if

µ̂(πi,j) ≺ ν̂(πi,j), i, j ∈ Zk, (2.33)

Our main result in this section is the following theorem, characterizing the order struc-
ture in the lattice (Idem(Ak),≺).

Theorem 2.16. Let µ, ν be idempotent states, other than the Haar state, on Ak as above.
Then µ ≺ ν if and only if one of the following holds:

(1) µ = hΓ(µ) , ν = hΓ(ν) ∈ I1(Ak) and Γ(µ) ≺ Γ(ν);
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(2) µ = hΓ(µ) ∈ I1(Ak), ν = hΓ(ν),l(ν) ∈ I2(Ak) and Γ(µ) ≺ Γ(ν);

(3) µ = hΓ(µ) ∈ I1(Ak), ν = hΓ(ν),l(ν),τ (ν) ∈ I3(Ak) and Γ(µ) ≺ Γ(ν);

(4) µ = hΓ(µ),l(µ) , ν = hΓ(ν),l(ν) ∈ I2(Ak), Γ(µ) ≺ Γ(ν) and l(µ) ≡ l(ν) mod q(ν);

(5) µ = hΓ(µ),l(µ),τ (µ) ∈ I3(Ak), ν = hΓ(ν),l(ν) ∈ I2(Ak), Γ(µ) ≺ Γ(ν) and

τ
(ν)
j = ηj(l

(ν)−l(µ)) for j such that k

q(ν) = p(ν)|j;

(6) µ = hΓ(µ),l(µ),τ (µ) , ν = hΓ(ν),l(ν),τ (ν) ∈ I3(Ak), Γ(µ) = Γ(ν) and

τ
(ν)
j = τ

(µ)
j ηj(l

(ν)−l(µ)) for j such that p(µ) = p(ν)|j.

Proof. By (2.33), if µ̂(πi,j) ≺ ν̂(πi,j), then µ̂(πi,j) = 0 implies ν̂(πi,j) = 0, and ν̂(πi,j) = I
implies µ̂(πi,j) = I. That is to say,

{(i, j) ∈ Zk × Zk : µ̂(πi,j) = 0} ⊂ {(i, j) ∈ Zk × Zk : ν̂(πi,j) = 0}, (2.34)

and
{(i, j) ∈ Zk × Zk : ν̂(πi,j) = I} ⊂ {(i, j) ∈ Zk × Zk : µ̂(πi,j) = I}. (2.35)

So from Remark 2.9 and Remark 2.13 it follows that

1. if µ ∈ I3(Ak), then ν /∈ I2(Ak);

2. if ν ∈ I1(Ak), then µ ∈ I1(Ak).

Hence we have only the following six cases:

(1) µ = hΓ(µ) , ν = hΓ(ν) ∈ I1(Ak). Then µ ≺ ν if and only if

α
(ν)
i,j =

∑
r,s∈Zk

α
(µ)
i−r,j−sα

(ν)
r,s , i, j ∈ Zk.

For (i, j) /∈ Γ(ν), we have α(µ)
i−r,j−sα

(ν)
r,s = 0, ∀r, s ∈ Zk. Choosing (r, s) = (0, 0), we

have α(µ)
i,j = 0, i.e., (i, j) /∈ Γ(µ). So Γ(µ) ≺ Γ(ν).

(2) µ = hΓ(µ) ∈ I1(Ak), ν = hΓ(ν),l(ν) ∈ I2(Ak). Then µ ≺ ν if and only if

α
(ν)
i,j =

∑
r,s∈Zk

α
(µ)
i−r,j−sα

(ν)
r,s , i, j ∈ Zk, (2.36)

and
κ(ν)
r,r =

∑
i,j∈Zk

α
(µ)
i,j κ

(ν)
r+j,r+j , r, s ∈ Zk. (2.37)

From a similar argument as in (1), we have that (2.36) implies Γ(µ) ≺ Γ(ν). So
Γ(µ) = Zk × q(µ)Zk with q(ν)|q(µ). In this case (2.37) always holds.
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(3) µ = hΓ(µ) ∈ I1(Ak), ν = hΓ(ν),l(ν),τ (ν) . Then µ ≺ ν if and only if

α
(ν)
i,j =

∑
r,s∈Zk

α
(µ)
i−r,j−sα

(ν)
r,s , i, j ∈ Zk, (2.38)

and
κ(ν)
r,s =

∑
i,j∈Zk

ηi(s−r)α
(µ)
i,j κ

(ν)
r+j,s+j , r, s ∈ Zk. (2.39)

From a similar argument as in (2), we have Γ(µ) = p(µ)Zk×q(µ)Zk ≺ Γ(µ) = p(ν)Zk×
q(ν)Zk. Or equivalently, p(ν)|p(µ) and q(ν)|q(µ). In this case (2.39) always holds.

(4) µ = hΓ(µ),l(µ) , ν = hΓ(ν),l(ν) ∈ I2(Ak). From Remark 2.13 and (2.34) it follows that
q(ν)|q(µ). So Γ(µ) ≺ Γ(ν). Moreover, µ̂(πi,j) ≺ ν̂(πi,j) requires that for all k

q(ν) |j(
1
2

1
2η
−jl(ν)

1
2η
jl(ν) 1

2

)
=
(

1
2

1
2η
−jl(µ)

1
2η
jl(µ) 1

2

)(
1
2

1
2η
−jl(ν)

1
2η
jl(ν) 1

2

)
,

which is equivalent to(
1
2

1
2η
−jl(ν)

1
2η
jl(ν) 1

2

)
=
(

1
4 + 1

4η
j(l(ν)−l(µ)) 1

4η
−jl(ν) (1+ηj(l(ν)−l(µ)))

1
4η
jl(ν) (1+ηj(l(µ)−l(ν))) 1

4 + 1
4η
j(l(µ)−l(ν))

)
.

That is to say,
ηj(l

(ν)−l(µ)) = 1 for all k

q(ν) |j.

So l(µ) ≡ l(ν) mod q(ν).

(5) µ = hΓ(µ),l(µ),τ (µ) ∈ I3(Ak), ν = hΓ(ν),l(ν) ∈ I2(Ak). Following a similar argument as
above, it follows that µ ≺ ν if and only if q(ν)|q(µ) and(

1
2

1
2 τ

(ν)
j η−jl

(ν)

1
2 τ

(ν)
j ηjl

(ν) 1
2

)
=
(

1
2

1
2η
−jl(µ)

1
2η
jl(µ) 1

2

)(
1
2

1
2 τ

(ν)
j η−jl

(ν)

1
2 τ

(ν)
j ηjl

(ν) 1
2

)
,

if and only if Γ(µ) ≺ Γ(ν) and

τ
(ν)
j = ηj(l

(ν)−l(µ)) for j such that k

q(ν) = p(ν)|j.

(6) µ = hΓ(µ),l(µ),τ (µ) , ν = hΓ(ν),l(ν),τ (ν) ∈ I3(Ak). From Remark 2.13 and (2.34) it follows
that p(ν)|p(µ) and q(ν)|q(µ). Since p(µ)q(µ) = p(ν)q(ν) = k, we have p(µ) = p(ν), q(µ) =
q(ν). Thus Γ(µ) = Γ(ν). Moreover,(

1
2

1
2 τ

(ν)
j η−jl

(ν)

1
2 τ

(ν)
j ηjl

(ν) 1
2

)
=
(

1
2

1
2 τ

(µ)
j η−jl

(µ)

1
2 τ

(µ)
j ηjl

(µ) 1
2

)(
1
2

1
2 τ

(ν)
j η−jl

(ν)

1
2 τ

(ν)
j ηjl

(ν) 1
2

)
,

which is equivalent to

τ
(ν)
j = τ

(µ)
j ηj(l

(ν)−l(µ)) for j such that p(µ) = p(ν)|j.

We present here the order structure on Idem(Ak) for k prime.
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Example 2.17. When k is a prime number, Zk × Zk has one subgroup of order 1: Γ0 =
{(0, 0)}, k + 1 subgroups of order k:

Γ+ = Zk × kZk, Γ− = kZk × Zk, Γi = {j(1, i) = (j, ij) : j ∈ Zk},

where i = 1, 2, · · · , k − 1, and one subgroup of order k2: Γk = Zk × Zk.
Then Proposition 2.8 gives k + 3 idempotent states: h+ := hΓ+ , h− := hΓ− , and

hi := hΓi , i = 0, 1, · · · , k, in which h0 = ε is the counit. The idempotent state in Theorem
2.11 (1) is the Haar state h = hAk . By Theorem 2.11 (2), the Haar idempotent states
of the form hΓ,l are h+,l := hΓ+,l with l ∈ Zk. And the Theorem 2.11 (3) tells us that
h−,0,τ := hΓ−,0,τ are the only elements in I3(Ak), where τ verifies (2.17). From Theorem
2.16 we can draw the Hasse diagram of the lattice (Idem(Ak),≺) as:

h0 = ε

h+ h−hi

hkh+,l h−,0,τ

h = hAk

where i = 1, 2, · · · , k − 1, l ∈ Zk, and τ represents a family of parameters which satisfy
(2.17). When k = 2, the Hasse diagram reads precisely as:

h0 = ε

h+ h−h1

h2h+,0 h+,1 h−,0,τ h−,0,τ ′

h = hA2

Here τ is the trivial one that satisfies (2.17), i.e., τ0 = τ1 = 1; and τ ′ is given through
τ ′0 = 1 and τ ′1 = −1, as we have mentioned in Remark 2.12. One should compare this
diagram with the one in [27] of eight-dimension Kac-Paljutkin quantum group.

Note that the Hasse diagram for k = 2 coincides with that of the lattice of subgroups
of the dihedral group D4 (with the partial order reversed). Indeed, from discussions in
Section 1, A2 has 8 one-dimensional representations and no 2-dimensional ones. Hence it
is co-commutative, and therefore equal to C∗(Γ) for some classical group Γ. This group
is nothing but D4. To see this, take x = ρ11 + σ11 and y = ρ10 + σ10. It is not difficult
to verify that y2 = x4 = 1 and yxy = x−1. Moreover, x and y do not admit any other
independent relations. So A2 is the group algebra of D4, and thus the lattice of idempotent
states on A2 is nothing but the lattice of subgroups of D4.

2.5 Convergence of convolution powers of states on Sekine
quantum groups

We end this chapter by saying a few words on the convergence of convolution powers of
states on Sekine quantum groups. This is related to random walks on quantum groups
[27, 53].
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Fix a state µ =
∑
i,j∈Zk αi,j d̃i,j +

∑
r,s∈Zk κr,sẽr,s on Ak. Then clearly {µ?n}n≥1 con-

verges if and only if {µ̂(πp,q)n}n≥1 converges for all p, q ∈ Zk. The following proposition
gives a sufficient condition that guarantees the convergence.

Proposition 2.18. Let µ be as above. Then {µ?n}n≥1 converges if α0,0 > 0.

Proof. Fix p, q ∈ Zk. Denote by λ1, λ2 the eigenvalues of µ̂(πp,q). Let λ ∈ {λ1, λ2}, then
we have

(λ− µ(ρp,q)) (λ− µ(ρp,−q)) = µ(σp,q)µ(σp,−q).

Since πp,q is unitary, ‖µ̂(πp,q)‖ = ‖(idM2(C) ⊗ µ)(πp,q)‖ ≤ 1. Thus |λ| ≤ 1. Note that

|µ(ρp,q)| = |
∑
i,j∈Zk

αi,jη
ip+jq| ≤

∑
i,j∈Zk

αi,j , (2.40)

and from K = [κr,s]r,s∈Zk ≥ 0 it follows that

|µ(σp,q)| = |
∑
l∈Zk

κl,l+pη
ql| ≤

∑
l∈Zk

|κl,l+p| ≤
1
2
∑
l∈Zk

(κl,l + κl+p,l+p) =
∑
r∈Zk

κr,r.

If |λ| = 1, then the equations above yield

(1−
∑
i,j∈Zk

αi,j)2 ≤ (|λ| − |µ(ρp,q)|) (|λ| − |µ(ρp,−q)|)

≤ | (λ− µ(ρp,q)) (λ− µ(ρp,−q)) |
= |µ(σp,q)µ(σp,−q)|
≤ (1−

∑
i,j∈Zk

αi,j)2.

Hence
(1−

∑
i,j∈Zk

αi,j)2 = (1− |µ(ρp,q)|) (1− |µ(ρp,−q)|) ,

which gives |µ(ρp,q)| = |µ(ρp,−q)| =
∑
i,j∈Zk αi,j . Since α0,0 > 0, we have µ(ρp,q) =

µ(ρp,−q) =
∑
i,j∈Zk αi,j > 0. So λ can be nothing but 1. That is to say, λ ∈ {z ∈ Z : |z| <

1} ∪ {1}. Hence {µ̂(πp,q)n}n≥1 converges if µ̂(πp,q) is not similar to the Jordan normal
form ( 1 1

0 1 ).
If λ1 = λ2 = 1, then from

2 = λ1 + λ2 = µ(ρp,q) + µ(ρp,−q) ≤ 2
∑
i,j∈Zk

αi,j ≤ 2

it follows that µ(ρp,q) = µ(ρp,−q) =
∑
i,j∈Zk αi,j = 1. Thus µ(σp,q) = µ(σp,−q) =∑

r∈Zk κr,r = 0. That is to say, µ̂(πp,q) equals identity, not similar to the Jordan nor-
mal form as above, which finishes the proof.

Remark 2.19. In the proof we only used α0,0 > 0 to deduce µ(ρp,q) = µ(ρp,−q) =∑
i,j∈Zk αi,j from |µ(ρp,q)| = |µ(ρp,−q)| =

∑
i,j∈Zk αi,j. Recalling (2.40), to make sure

that {µ?n}n≥1 converges when α0,0 = 0, it suffices to assume ]{ηip+jq : αi,j 6= 0} ≥ 2 for
all p, q ∈ Zk.





Chapter 3

Infinitely divisible states on finite
quantum groups

In this chapter we study the states of Poisson type and infinitely divisible states on compact
quantum groups. Each state of Poisson type is infinitely divisible, i.e., it admits n-th root
for all n ≥ 1. The main result is that on finite quantum groups infinitely divisible states
must be of Poisson type. This generalizes Böge’s theorem concerning infinitely divisible
measures (commutative case) and Parthasarathy’s result on infinitely divisible positive
definite functions (co-commutative case).

1. The space of bounded measures on a compact (semi)group is equipped with a natural
convolution operation. The convolution of two probability measures is still a proba-
bility measure. Infinitely divisible probability measures are probability measures that
admit n-th root for all n ≥ 1, where the root is also a probability measure. On finite
groups such probability measures have been shown to be of Poisson type, see [7] and
[65].

2. A positive definite function on a compact group G is a continuous function φ : G→ C
such that [φ(g−1

i gj)]ni,j=1 is a positive semi-definite matrix for all g1, . . . , gn ∈ G and
for all n ≥ 1. It is normalized if φ(e) = 1, where e is the unit of G. The pointwise
product of two normalized positive definite functions on G is again a normalized
positive definite function. From this we can define infinitely divisible normalized
positive definite functions on a compact group in a natural way. This is thoroughly
studied by Parthasarathy [60]. As a special case, he proved that every infinitely
divisible normalized positive definite function on a finite group is of Poisson type,
although the notion “Poisson type” was not explicitly defined in his paper.

We shall give two proofs of our main results. Let us explain the difficulty of this
problem in the quantum group setting. Consider the infinitely divisible states on the
dual of a finite group G, that is, we shall study positive definite functions ω : G → C
with ω(e) = 1, such that for all n ≥ 1, there exists positive definite function ωn on G
satisfying ωn(e) = 1 and ω = ωnn. Recall that a function f : G → C is positive definite
if [f(st−1)]s,t∈S is positive semi-definite for any finite subset S ⊂ G. We shall prove that
such ω can be written as an exponential. A key observation of the proof is that, the
support of ω (which is the same as that of ωn for each n) forms a subgroup of G. In
fact, there exists a subsequence of {ωn}n≥1 which converges to an idempotent normalized
positive definite function φ and one can easily show that the support of φ is necessarily a
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subgroup of G. So we may transfer the problem to the subgroup and always assume that
ω (and all ωn) is non-zero everywhere. However, on the one hand, it is difficult to capture
the idempotent state (the substitute of idempotent normalized positive definite function
in quantum setting) for which it has the same “support” as ω. On the other hand, in the
quantum group case we can not always transfer the problem to a quantum subgroup, as the
idempotent state might be non-Haar. For this we introduce the Plancherel triple and the
first section gathers some properties of the Plancherel triple coming from an idempotent
state on a finite quantum group.

Let us fix some notations for this chapter. For any C*-algebra A, we use A′ to denote
the set of bounded linear functionals on A. We use Mn(C) to denote the n-by-n full
complex matrix algebra. We will follow the notations of compact quantum groups in the
last chapter, but we will not recall them here in detail.

3.1 Preliminary: Plancherel triple

In this section we introduce the notion of Plancherel triple, which is slightly different from
the same notion in [24]. Moreover, one can compare it with the so-called D-pairs discussed
in [44]. Let A,B be two finite-dimensional C*-algebras. Suppose that

〈·, ·〉 : A×B → C,

is a non-degenerate bilinear form. Then through 〈, 〉, B can be identified with A′. Indeed,
the map B → A′, b 7→ 〈·, b〉 is injective, since 〈, 〉 is non-degenerate. So B can be viewed
as a subspace of A′ and then dimB ≤ dimA′ = dimA. Similarly, A can be viewed as a
subspace of B′ and dimA ≤ dimB′ = dimB. Hence dimA = dimB and B = A′ (also
A = B′).

Definition 3.1. Let the triple (A,B, 〈, 〉) be as above. Then it is called a Plancherel triple
if

(1) the comultiplications ∆A : A→ A⊗A and ∆B : B → B ⊗B are positive, where ∆A

is the adjoint of the map given by B ⊗B → B, b1⊗ b2 7→ b1b2 and ∆B is the adjoint
of the map defined through A⊗A→ A, a1 ⊗ a2 7→ a1a2;

(2) the counits εA := 〈·, 1B〉 : A→ C and εB := 〈1A, ·〉 : B → C are *-homomorphisms;

(3) the Haar functionals hA := 〈·, pB〉 and hB := 〈pA, ·〉 are faithful, positive and tracial,
where pA ∈ A and pB ∈ B are support projections of εA and εB, respectively, i.e.,

pA = p∗A = p2
A, apA = pAa = εA(a)pA, a ∈ A,

pB = p∗B = p2
B, bpB = pBb = εB(b)pB, b ∈ B;

(4) the Fourier transforms FA : A→ B, a 7→ â and FB : B → A, b 7→ b̌ satisfy:

hB(â1â
∗
2) = chA(a1a

∗
2), (3.1)

hA(b̌1b̌∗2) = c′hB(b1b∗2), (3.2)

for all a1, a2 ∈ A, b1, b2 ∈ B and some c, c′ > 0, where â and b̌ are defined through:

〈x, â〉 := hA(xa), 〈b̌, y〉 := hB(by), x ∈ A, y ∈ B.
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Note that the above definition is self-dual, that is, (B,A, (, )) forms a Plancherel triple
if (A,B, 〈, 〉) is a Plancherel triple, where (b, a) := 〈a, b〉, a ∈ A, b ∈ B. We have the
following properties of a Plancherel triple.

Proposition 3.2. Let (A,B, 〈, 〉) be a Plancherel triple. Suppose that A = ⊕mα=1Mnα(C)
with the matrix units {eαij : 1 ≤ i, j ≤ nα, 1 ≤ α ≤ m}. Let {ẽαij : 1 ≤ i, j ≤ nα, 1 ≤ α ≤ m}
be the dual basis of {eαij : 1 ≤ i, j ≤ nα, 1 ≤ α ≤ m}.

(1) We have FA(eαij) = cαẽαji for some positive number cα.

(2) Suppose that eα0 = pA. Then ẽα0 = εA = 1B. Consequently, hB(1B) = 1 and then
hB is a state.

(3) We have the orthogonality relation:

hB

(
ẽαij(ẽ

β
kl)
∗
)

= δαβδikδjl
ccα

,

for all α, β, i, j, k, l, where c is the constant appearing in (3.1).

(4) We have
hB
(
ẽαij

)
= δα0α, (3.3)

and
εB
(
ẽαij

)
= δij , (3.4)

for all α, i, j.

Proof. (1) For any a =
∑m
α=1

∑nα
i,j=1 a

α
ije

α
ij ∈ A, we have by definition

〈a,FA(eαij)〉 = hA(aeαij) = aαjihA(eαjj) = hA(eαjj)ẽαji(a).

Since hA is tracial, hA(eαjj) is independent of j. So

〈a,FA(eαij)〉 = cαẽαji(a), a ∈ A,

with cα = hA(eαjj) > 0. Thus FA(eαij) = cαẽαji, since 〈, 〉 is non-degenerate.

(2) For any a =
∑m
α=1

∑nα
i,j=1 a

α
ije

α
ij ∈ A, we have by definition

aα0eα0 = apA = εA(a)pA = 〈a, 1B〉eα0 .

Then
ẽα0(a) = aα0 = 〈a, 1B〉, a ∈ A.

Hence ẽα0 = εA = 1B.

(3) This is a direct consequence of (3.1) and (1).

(4) By (2) and (3) we have

hB
(
ẽαij

)
= hB

(
ẽαij(ẽα0)∗

)
= δα0α

ccα0
.

In particular, we have

1 = hB(1B) = hB
(
ẽα0(ẽα0)∗

)
= 1
ccα0

.
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This proves (3.3). To show (3.4), recall that by definition,

εB
(
ẽαij

)
= 〈1A, ẽαij〉 = ẽαij(1A) = δij .

Example 3.3. Let (A,∆) be a finite quantum group with dual (Â, ∆̂). Then (A, Â, 〈, 〉)
forms a Plancherel triple. Here the bilinear form 〈, 〉 is given by 〈a, ϕ〉 := ϕ(a). The comul-
tiplications, counits, Haar states, and Fourier transforms are the usual comultiplications,
counits, Haar states, and Fourier transforms on A and Â, respectively.

3.2 Plancherel triple induced from an idempotent state
In this section we will construct a Plancherel triple from an idempotent state on a finite
quantum group G = (A,∆). Recall that an idempotent state on G is a state φ such that
φ ? φ = φ. It is well-known that (see for example [29]) when considered as an element in
Â, p = φ is a group-like projection in Â. By a group-like projection of the finite quantum
group Ĝ = (Â, ∆̂) we mean a non-zero element p ∈ Â such that p = p∗ = p2 and

∆̂(p)(1⊗ p) = p⊗ p = ∆̂(p)(p⊗ 1), Ŝ(p) = p. (3.5)

Our aim in this section is to show that (Aφ, Âp, 〈, 〉) forms a Plancherel triple, where
Aφ = (φ⊗ ι⊗ φ)∆(2)(A) is a C*-subalgebra of A, Âp := pÂp is a C*-subalgebra of Â and
the bilinear form is inherited from the one on the pair (A, Â). In the following we shall
explain the constructions of Aφ and Âp in detail.

Before this we remark here that these constructions have already been studied by many
people [20, 29, 16, 28]. Many results are well-known and their proofs are omitted here.

3.2.1 C*-subalgebra Aφ
In this subsection we construct and study the C*-subalgebra Aφ. Denote by Idem(G) the
set of all idempotent states on a compact quantum group G. Recall that if φ ∈ Idem(G),
we have φ = φS on Pol(G), where S is the antipode on Pol(G) [29].

The first lemma is a special case of [29, Lemma 3.1], and also a variation of [52, Lemma
4.3].

Lemma 3.4. Let φ be an idempotent state on a compact quantum group G. For b ∈ A
define φb (a) := φ (ab) for all a ∈ A. Then we have

φ ? φb = φ (b)φ.

For φ ∈ Idem (G) set E`φ := (φ⊗ ι) ∆ and Erφ := (ι⊗ φ) ∆. The next lemma lists some
useful properties of E`φ and Erφ.

Lemma 3.5. Let G = (A,∆) be a compact quantum group.

(1) E`φ (a∗) = E`φ (a)∗ ,Erφ (a∗) = Erφ (a)∗ , a ∈ A.

(2) ∆E`φ = (E`φ ⊗ ι)∆,∆Erφ = (ι⊗ Erφ)∆.

(3) (ι⊗ E`φ)∆ = (Erφ ⊗ ι)∆.

(4) E`φErφ = ErφE`φ.
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(5) For any a, b ∈ A,

E`φ(a)E`φ(b) = E`φ(aE`φ(b)) = E`φ(E`φ(a)b), (3.6)

Erφ(a)Erφ(b) = Erφ(aErφ(b)) = Erφ(Erφ(a)b). (3.7)

Consequently, we have E`φE`φ = E`φ and ErφErφ = Erφ.

Proof. (1)-(4) are just straightforward computations. For (5) we prove (3.6) first. For
this note that it suffices to show the first equation for any a, b the coefficients of unitary
representation of G. The case for general a, b follows from the linearity and density. Let{
uαij , 1 ≤ i, j ≤ nα

}
be the coefficients of the irreducible unitary representations uα, α ∈

Irr (G). On the one hand, for any uαij and u
β
kl we have

E`φ(uαij)E`φ(uβkl) =
nα∑
s=1

nβ∑
t=1

φ(uαis)φ(uβkt)u
α
sju

β
tl.

On the other hand,

E`φ(E`φ(uαij)u
β
kl) =

nα∑
r,s=1

nβ∑
t=1

φ(uαir)φ(uαrsu
β
kt)u

α
sju

β
tl.

Now by using Lemma 3.4 we have for any b ∈ A

φ (b)φ (uαis) =
nα∑
r=1

φ (uαir)φ(uαrsb), 1 ≤ i, s ≤ nα, α ∈ Irr (G) .

Choosing b as uβkt, we have

E`φ(E`φ(uαij)u
β
kl) =

nα∑
r=1

nβ∑
t=1

(
nα∑
s=1

φ(uαir)φ(uαrsu
β
kt)
)
uαsju

β
tl

=
nα∑
s=1

nβ∑
t=1

φ(uαis)φ(uβkt)u
α
sju

β
tl = E`φ(uαij)E`φ(uβkl).

So E`φ(a)E`φ(b) = E`φ(E`φ(a)b). In the same way one can show that E`φ(a)E`φ(b) = E`φ(aE`φ(b)),
then (3.6) is proved. Note that by choosing b = 1A in (3.6), we obtain E`φE`φ = E`φ. The
proof of (3.7) and ErφErφ = Erφ is similar.

Now we define Eφ := E`φErφ = ErφE`φ. The map Eφ shares the similar properties of E`φ
and Erφ, see the following lemma (1)-(4). Moreover, Eφ commutes with the antipode S, as
the following lemma (5) shows. This enables the algebra Eφ(A) to possess nicer properties
than E`φ(A) and Erφ(A). We shall choose Eφ(A) to be our Aφ.

Lemma 3.6. Let G = (A,∆) be a compact quantum group. Then

(1) Eφ (a∗) = Eφ (a)∗ , a ∈ A.

(2) ∆Eφ = (E`φ ⊗ Erφ)∆.

(3) (Eφ ⊗ Eφ)∆ = (ι⊗ E`φ)∆Eφ = (Erφ ⊗ ι)∆Eφ.

(4) Eφ(a)Eφ(b) = Eφ(aEφ(b)) = Eφ(Eφ(a)b), a, b ∈ A. Consequently, EφEφ = Eφ.
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Hence Aφ := Eφ(A) is a unital C∗-subalgebra of A. Moreover,
(5) SEφ = EφS on Pol(G).

Proof. Again we omit the proof of (1)-(4) here. The fact that Aφ is a unital C∗-subalgebra
follows directly from these properties. To prove (5), it suffices to check the equality for
uαij , 1 ≤ i, j ≤ nα, α ∈ Irr(G), the coefficients of unitary representation of G. And that is
a consequence of

SEφ(uαij) = S(φ⊗ ι⊗ φ)∆(2)(uαij)

=
nα∑
k,l=1

φ(uαik)φ(uαlj)S(uαkl)

=
nα∑
k,l=1

φ(uαik)φ(uαlj)(uαlk)∗,

and

EφS(uαij) = (φ⊗ ι⊗ φ)∆(2)((uαji)∗)

=
nα∑
k,l=1

φ((uαki)∗)φ((uαjl)∗)(uαlk)∗

=
nα∑
k,l=1

φ(uαik)φ(uαlj)(uαlk)∗,

where the last equality follows from the facts that φ = φS on Pol(G) and S(uαlj) =
(uαjl)∗.

3.2.2 φ-bi-invariant functionals

Let φ be an idempotent state on a compact quantum group G = (A,∆). A functional
u ∈ A′ is called φ-bi-invariant if uφ = φu = u. In this subsection we characterize the φ-
bi-invariant functionals. It turns out that one can transfer each φ-bi-invariant functional
on A to its restriction to Aφ, preserving the norm and the *-algebra structure. See [19]
for related work.

For linear functionals ϕ1, ϕ2 on Aφ, one can also define their convolution product within
(Aφ)′: ϕ1 ? ϕ2 is defined as (ϕ1 ⊗ ϕ2)∆φ. And for any linear functional ϕ on Eφ(Pol(G))
one can also define its involution within (Aφ)′: ϕ∗ := ϕ(S(·)∗). Still, we write ϕ1ϕ2 for
short to denote ϕ1 ? ϕ2. Note here that ϕ∗ is well-defined because SEφ = EφS.

We formulate the results of φ-bi-invariant functionals here without the proof. Note
that in the sequel we shall use ‖u‖ to denote the norm of u ∈ A′ as a functional on A.
Moreover, we suppose that A = Cu(G).
Lemma 3.7. Let φ ∈ Idem(G) and u ∈ A′. Then u is φ-bi-invariant if and only if
u = u|AφEφ. In this case, the following hold:
(1) ‖u‖ = ‖u|Aφ‖;

(2) u is a positive linear functional (resp. a state) on A if and only if u|Aφ is a positive
linear functional (resp. a state) on Aφ;

(3) u∗|Aφ = (u|Aφ)∗ on Eφ(Pol(G));

(4) if u and v in A′ are both φ-bi-invariant, then (uv)|Aφ = u|Aφv|Aφ;

(5) φ = εEφ = ε|AφEφ.
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3.2.3 The Plancherel triple (Aφ, Âp, 〈, 〉)

Let G = (A,∆) be a finite quantum group. Let φ be an idempotent state on G, then
p = φ is a group-like projection in Â. By Lemma 3.6, Aφ = Eφ(A) is a finite dimensional
C*-algebra. Clearly Âp = pÂp is also a finite dimensional C*-algebra. Moreover, we have
(Aφ)′ = Âp. In fact, the bilinear form on Aφ × Âp is non-degenerate. On the one hand, if
x ∈ Aφ such that u(x) = 0 for all u ∈ Âp, then x = 0. To see this, for any u ∈ Â, since
x = Eφ(x) and uEφ ∈ Âp, we have

u(x) = u(Eφ(x)) = (uEφ)(x) = 0.

This gives x = 0. On the other hand, if u ∈ Âp such that u(x) = 0 for all x ∈ Aφ, then
u = 0. For this, take any x ∈ A. Recall that Eφ(x) ∈ Aφ and u = u|AφEφ by Lemma 3.6,
then

u(x) = u|AφEφ(x) = u(Eφ(x)) = 0,

which yields u = 0. The main result of this subsection is the following proposition.

Proposition 3.8. Let Aφ and Âp be as above. Then (Aφ, Âp, 〈, 〉) forms a Plancherel
triple, where the bilinear form is inherited from the one on the pair (A, Â).

Proof. Since (Aφ)′ = Âp, the bilinear form 〈, 〉 on the pair (Aφ, Âp) is non-degenerate.
Now we check that the triple (Aφ, Âp, 〈, 〉) verifies the conditions (1)-(4) of Definition
3.1. For simplicity, in the sequel we shall use 〈, 〉 to denote the bilinear forms on the
different pairs (A, Â), (Aφ, Âp) and their corresponding tensor products (A ⊗ A, Â ⊗ Â)
and (Aφ ⊗ Aφ, Âp ⊗ Âp). The readers can distinguish them easily. We shall use h := hA
and ĥ := hB to denote the Haar states on G and Ĝ, respectively.

(1) In this case, we claim that the comultiplications on Aφ and Âp are respectively
∆φ := (Eφ⊗Eφ)∆|Aφ and ∆̂p := (p⊗ p)∆̂|Âp(·)(p⊗ p). Then automatically they are
positive. Indeed, by definition,

〈∆Aφ(a), x⊗ y〉 = 〈a, xy〉 = (x⊗ y)∆(a), a ∈ Aφ, x, y ∈ Âp.

By Lemma 3.7, we have x = xEφ and y = yEφ. Thus (x ⊗ y)∆(a) = (x ⊗ y)∆φ(a)
and

〈∆Aφ(a), x⊗ y〉 = 〈∆φ(a), x⊗ y〉, a ∈ Aφ, x, y ∈ Âp.

Since 〈, 〉 is non-degenerate, we have ∆Aφ = ∆φ. This proves the claim. Similarly,
one can show ∆Âp

= ∆̂p.

(2) The counits on Aφ and Âp are respectively εφ := ε|Aφ and ε̂p := ε̂|Âp . Here ε and ε̂
are respectively the counits on A and Â. In fact, by definition,

εAφ = 〈·, 1Âp〉 = 〈·, 1Â〉|Aφ = εφ, εÂp = 〈1Aφ , ·〉 = 〈1A, ·〉|Âp = ε̂p.

Then it is easy to check that εφ : Aφ → C and ε̂p : Âp → C are both *-homomorphisms.

(3) On the one hand, the support projection pÂ of ε̂ = εÂ verifies

pÂp = ppÂ = ε̂(p)pÂ = φ(1A)pÂ = pÂ.
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So pÂ ∈ Âp. Moreover,

bpÂ = pÂb = ε̂(b)pÂ = ε̂p(b)pÂ, b ∈ Âp.

Therefore the support projection of ε̂p is pÂp = pÂ. Thus the Haar functional on Aφ
is

hφ := hAφ = 〈·, pÂp〉 = 〈·, pÂ〉|Aφ = h|Aφ .

On the other hand, by Lemma 3.6,

Eφ(pA)Eφ(a) = Eφ(pAEφ(a)) = ε(Eφ(a))Eφ(pA) = εφ(Eφ(a))Eφ(pA), a ∈ A.

Similarly, Eφ(pA)Eφ(a) = εφ(Eφ(a))Eφ(pA), a ∈ A. By choosing a = pA, we obtain
that Eφ(pA)2 = φ(pA)Eφ(pA). So q := 1

φ(pA)Eφ(pA) is a self-adjoint projection in Aφ
such that

qa = aq = εφ(a)q, a ∈ Aφ.

That is, pAφ = q is the support projection of εφ. So the Haar functional on Âp is

ĥp := hÂp = 〈pAφ , ·〉 = 1
φ(pA)〈Eφ(pA), ·〉 = 1

φ(pA)〈pA, ·〉|Âp = 1
φ(pA) ĥ|Âp .

Hence the Haar functionals hφ and ĥp are faithful, positive and tracial.

(4) For any a ∈ Aφ, we claim that FA(a) = h(·a) ∈ Âp, i.e., FA(a) is φ-bi-invariant.
Indeed, by (2.1),

(φ⊗ h(·a))∆(x) = (φ⊗ h)(∆(x)(1⊗ a)) = (φ ◦ S ⊗ h)((1⊗ x)∆(a)), a ∈ Aφ, x ∈ A.

Since φ = φS and Eφ(a) = a, we have

(φ⊗ h(·a))∆(x) = (φ⊗ h)((1⊗ x)∆(a)) = h(xE`φ(a)) = h(xa), a ∈ Aφ, x ∈ A.

Hence φ ? h(·a) = h(·a), for all a ∈ Aφ. From (2.2) and Erφ(a) = a one can deduce
in a similar way that h(·a) ? φ = h(·a). Thus FA(a) = h(·a) is φ-bi-invariant for all
a ∈ Aφ. This proves our claim. Now for any a ∈ Aφ we have

〈x,FAφ(a)〉 = hφ(xa) = h(xa) = 〈x,FA(a)〉, x ∈ Aφ.

Since FA(a) ∈ Âp, FA(a) is the image of FAφ(a) under the natural inclusion Âp → Â.
Hence the Parseval’s identity (2.4) on the pair (A, Â) yields

ĥp(FAφ(a1)FAφ(a2)∗) = ĥ(FA(a1)FA(a2)∗) = ch(a1a
∗
2) = chφ(a1a

∗
2), a1, a2 ∈ Aφ.

Similarly, one can show that

hφ(FÂp(b1)FÂp(b2)∗) = c′ĥp(b1b∗2), b1, b2 ∈ Âp,

for some constant c′ > 0.
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3.3 Poisson states on compact quantum groups

Let G = (A,∆) be a compact quantum group. Recall that A is always viewed as Cu(G).
Denote by S(A) the set of all states on A. For each φ ∈ Idem(G), we say that {ωt}t≥0 is
a convolution semigroup of functionals on A starting from φ if

(1) ωt ∈ A′ for each t ≥ 0.

(2) ωs+t = ωsωt for all s, t ≥ 0.

(3) ω0 = φ.

If moreover, each ωt ∈ S(A), we call {ωt}t≥0 a convolution semigroup of states starting
from φ. We say that the convolution semigroup of states {ωt}t≥0 is norm continuous if

lim
t→0+

‖ωt − φ‖ = 0.

Recall here that ‖u‖ denotes the norm of u ∈ A′ as a functional on A. Moreover, it is a
Banach norm, since

‖uv‖ = ‖(u⊗ v)∆‖ ≤ ‖u‖‖v‖, u, v ∈ A′.

For a φ-bi-invariant functional u ∈ A′ define

expφ(u) := φ+
∑
n≥1

un

n! .

Then it is easy to check that {expφ(tu)}t≥0 form a norm continuous convolution semi-
group of functionals. We aim to find sufficient and necessary conditions on u such that
{expφ(tu)}t≥0 is a convolution semigroup of states. For this we make some notations. A
functional u ∈ A′ is called Hermitian if u (x∗) = u (x) for all x; it is further called condi-
tionally positive definite with respect to φ if u (x∗x) ≥ 0 for all x such that φ (x∗x) = 0.
The main theorem in this section is as follows.

Theorem 3.9. Suppose that G = (A,∆) is a compact quantum group. Let φ ∈ Idem (G).
Then for u ∈ A′, the following statements are equivalent.

(1) u(1A) = 0, u is φ-bi-invariant and conditionally positive definite w.r.t. φ.

(2) u = r(v − φ), where r ≥ 0 and v is a φ-bi-invariant state.

The following proposition proves Theorem 3.9 on the level of unital C∗-algebras. It
can be considered as a special case of Theorem 3.9 when φ = ε is the counit. In this case
each u ∈ A′ is ε-bi-invariant and φ = ε is a character.

Proposition 3.10. Let A be a unital C∗-algebra with ε a character. Then for any non-
zero bounded linear functional u on A such that u(1A) = 0 and u(x∗x) ≥ 0 for all x ∈ A
such that ε(x∗x) = 0, we have u = r(v − ε), where r > 0 and v is a state.

Proof. Note first that ε(x∗x) = |ε(x)|2. So ε(x∗x) = 0 if and only if x ∈ ker ε = {x : ε(x) =
0}. Let u0 := u|ker ε be the restriction of u to ker ε. By assumption, u0 is a bounded linear
positive functional on the ideal ker ε. So it admits a unique positive linear extension ũ0 to
A such that ũ0|ker ε = u0 and ‖ũ0‖ = ‖u0‖. Hence for any x ∈ A, we have x−ε(x)1A ∈ ker ε
and thus

u(x) = u (x− ε(x)1A) = u0 (x− ε(x)1A) = ũ0 (x− ε(x)1A) = r(v − ε)(x),

where r := ‖ũ0‖ = ‖u0‖ > 0 and v := 1
r ũ0 is a state.
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Now we are ready to prove Theorem 3.9. The idea is to restrict the problem to Aφ,
and then transfer the decomposition from Aφ to A.

Proof of Theorem 3.9. The direction (2) ⇒ (1) is clear. To prove (1) ⇒ (2), suppose
u 6= 0 and write u = u|AφEφ by Lemma 3.7. Note that ε|Aφ is a character on the unital
C∗-algebra Aφ. From the definition of u, we have u|Aφ(1Aφ) = 0. Moreover, for any x ∈ A
such that ε|Aφ (Eφ (x)∗ Eφ (x)) = 0, we have by Lemma 3.5 and Lemma 3.7 that

0 = ε|Aφ (Eφ (x)∗ Eφ (x)) = ε|AφEφ (Eφ (x)∗ Eφ (x)) = φ (Eφ (x)∗ Eφ (x)) .

Again, by Lemma 3.5 and Lemma 3.7, the conditionally positive definiteness of u with
respect to φ implies

u|Aφ (Eφ (x)∗ Eφ (x)) = u|AφEφ (Eφ (x)∗ Eφ (x)) = u (Eφ (x)∗ Eφ (x)) ≥ 0.

So we have by Proposition 3.10 that u|Aφ = r(w − ε|Aφ) with r > 0 and w a state on Aφ.
Set v := wEφ, then v is, by Lemma 3.7, a φ-bi-invariant state on A such that

u = u|AφEφ = r
(
wEφ − ε|AφEφ

)
= r(v − φ),

as desired.

Let G = (A,∆) be a compact quantum group. Let φ ∈ Idem(G). We denote by Nφ(G)
the class of functionals u ∈ A′ that satisfy the conditions (2) in Theorem 3.9. Then for
each u ∈ Nφ(G), ω := expφ(u) is a state. In fact, since u = r(v − φ) for some r > 0 and
φ-bi-invariant state v, we have by Lemma 3.18 that

expφ(u) = expφ(r(v − φ)) = expφ(rv) expφ(−rφ) = e−r expφ(rv).

The fact that it is a positive functional follows from the definition of expφ and the fact
that rv is a positive functional. Moreover, since u(1A) = 0, we get

expφ(u)(1A) = φ(1A) = 1.

Definition 3.11. Let G be a compact quantum group. Let φ ∈ Idem(G). Set

Pφ(G) := {exp(u) : u ∈ Nφ(G)},

and denote P(G) :=
⋃
φ∈Idem(G) Pφ(G). Then any ω ∈ P(G) is said to be of Poisson type,

or a Poisson state on G.

Recall that any norm continuous convolution semigroup of states {ωt}t≥0 on a compact
quantum group G = (A,∆) can be recovered by exponentiation with a bounded generator
u := limt→0+

1
t (ωt − ω0). It is not difficult to see that u(1A) = 0 and u is conditionally

positive definite with respect to ω0, since these hold for each 1
t (ωt − ω0), t > 0. Then

together with Theorem 3.9 we have the following result.

Theorem 3.12. Let φ be an idempotent state on a compact quantum group G = (A,∆).
For any non-zero bounded linear functional ω on A such that ωφ = φω = ω, the following
are equivalent

(1) ω = ω1 with {ωt}t≥0 a norm continuous convolution semigroup of states such that
ω0 = φ;
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(2) ω = expφ(u), where u ∈ A′ is φ-bi-invariant, u(1A) = 0, and u(x∗x) ≥ 0 for all
x ∈ A such that φ(x∗x) = 0;

(3) ω = expφ(u), where u = r(v − φ), with r > 0 and v a φ-bi-invariant state on A.

Remark 3.13. The convolution semigroup of states {ωt}t≥0 on a compact quantum group
G is said to be weakly continuous if ωt(a) → ω0(a), t → 0+ for any a ∈ C(G). Clearly
norm continuous convolution semigroup of states is weakly continuous. When G is a finite
quantum group, the converse also holds. But for general compact quantum group G, there
exists weakly continuous convolution semigroup of states which is not norm continuous.
In this case, the generator is unbounded.

3.4 Infinitely divisible states on finite quantum groups
In this section we prove the main result.

Definition 3.14. Let G = (A,∆) be a compact quantum group. A state ω ∈ S(A) is said
to be infinitely divisible if ω = ωnn for some ωn ∈ S(A) and for all n ≥ 1. We use I(G) to
denote the set of all infinitely divisible states on G.

Clearly Poisson states are infinitely divisible. In fact, for any ω ∈ P(G), we have
ω ∈ Pφ(G) for some φ ∈ Idem(G). Then we may write ω as ω = expφ(u) with u ∈ Nφ(G).
Note that for any n ≥ 1, u

n ∈ Nφ(G), so ωn := expφ(un) is also a state. Moreover, by
Lemma 3.18, we have ω = ωnn. So ω is infinitely divisible.

Our main result in this section is that any infinitely divisible state on a finite quantum
group is a Poisson state. From now on, unless stated otherwise, G = (A,∆) always denotes
a finite quantum group.

The following lemma is well-known, and the proof follows from standard arguments.

Lemma 3.15. Let A = ⊕mk=1Mnk(C) with matrix units {ekij : 1 ≤ i, j ≤ nk, 1 ≤ k ≤ m}.
Denote the dual basis by {ωkij}. Then for any ω =

∑m
k=1

∑nk
i,j=1 a

(k)
ij ω

k
ij, ω is a positive

linear functional if and only if [a(k)
ij ]nki,j=1 is positive semi-definite for each k. In this case,

‖ω‖ =
∑m
k=1

∑nk
i=1 a

(k)
ii .

As a direct consequence, we have the following decomposition, which is quite easy but
very helpful.

Corollary 3.16. Let A = ⊕mk=1Mnk(C) with matrix units {ekij : 1 ≤ i, j ≤ nk, 1 ≤
k ≤ m}. Denote the dual basis by {ωkij}. Let ω =

∑m
k=1

∑nk
i,j=1 a

(k)
ij ω

k
ij such that for

each k either [a(k)
ij ]nki,j=1 ≥ 0 or [a(k)

ij ]nki,j=1 ≤ 0. Then ω+ :=
∑
k∈Λ

∑nk
i,j=1 a

(k)
ij ω

k
ij and

ω− :=
∑
k/∈Λ

∑nk
i,j=1 a

(k)
ij ω

k
ij are positive functionals on A such that

ω = ω+ − ω− and ‖ω‖ = ‖ω+‖+ ‖ω−‖,

where Λ is the set of all the k’s such that [a(k)
ij ]nki,j=1 ≥ 0.

Another important corollary is as follows.

Corollary 3.17. Let (A,B, 〈, 〉) be a Plancherel triple. Then for any positive linear func-
tional u ∈ A′, we have

hB(u) ≤ εB(u).
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Proof. Suppose that A = ⊕mα=1Mnα(C) with the matrix units {eαij : 1 ≤ i, j ≤ nα, 1 ≤ α ≤
m}. By Lemma 3.15 we may write u as u =

∑m
α=1

∑nα
i,j=1 a

α
ij ẽ

α
ij , where each [aαij ]

nα
i,j=1 is

positive semi-definite and {ẽαij} is the dual basis of {eαij}. Suppose that ẽα0 = 1B. Then
by (3.3) and (3.4), we have

hB(u) = aα0 ≤
m∑
α=1

nα∑
i=1

aαii = εB(u).

Let G = (A,∆) be a finite quantum group. Then for any u ∈ A′ = Â we denote by
‖u‖Â the C*-norm of u as an element in C*-algebra Â. Recall that ‖u‖ is the norm of u
as a functional. Moreover, we have ‖u‖Â ≤ ‖u‖.

Let φ be an idempotent state on finite quantum group G = (A,∆). For any u ∈ A′
such that u = uφ = φu and ‖u− φ‖ < 1, define the logarithm of u with respect to φ as

logφ(u) := −
∑
k≥1

(φ− u)k

k
.

Then we have the following properties of logarithm and exponential.

Lemma 3.18. Suppose that G = (A,∆) is a finite quantum group. Let φ be an idempotent
state on A, then for any bounded linear functionals u, v on A such that u = uφ = φu and
v = vφ = φv, we have

(1) expφ(logφ(u)) = u, if ‖u− φ‖ < 1.

(2) logφ(expφ(u)) = u, if ‖u‖ < log 2.

(3) expφ(u+ v) = expφ(u) expφ(v) if uv = vu.

(4) logφ(uv) = logφ(u) + logφ(v), if uv = vu and the following holds:

‖u− φ‖ < 1, ‖v − φ‖ < 1, and ‖uv − φ‖ < 1.

(5) If moreover, u is a state such that

‖u− φ‖ < 1
2 and ‖un − φ‖ < 1

2

for some n ≥ 1, then
‖uk − φ‖ < 1

2 for all 1 ≤ k ≤ n.

Consequently, in such a case we have

logφ(uk) = k logφ(u) for all 1 ≤ k ≤ n.

Proof. (1)-(4) are direct and hold for all Banach algebras. To show (5), let uφ be the
restriction of u to Aφ. Then by Lemma 3.7, uφ is a state on a finite-dimensional C∗-
algebra Aφ. Moreover,

‖u− φ‖ = ‖(uφ − εφ)Eφ‖ = ‖uφ − εφ‖,

where εφ denotes the restriction of counit ε of A to Aφ. Write Aφ = ⊕mk=1Mnk(C) with
matrix units {ekij : 1 ≤ i, j ≤ nk, 1 ≤ k ≤ m}. Let {ωkij} be the dual basis. By Lemma
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3.15, uφ =
∑m
k=1

∑nk
i,j=1 b

(k)
ij ω

k
ij with [b(k)

ij ]nki,j=1 ≥ 0 and ‖uφ‖ =
∑m
k=1

∑nk
i=1 b

(k)
ii = 1. Since

εφ is a character on Aφ, there exists k0 such that nk0 = 1 and ωk0 = εφ. Thus uφ − εφ =
(b(k0) − 1)εφ +

∑
k 6=k0

∑nk
i,j=1 b

(k)
ij ω

k
ij verifies the condition of Corollary 3.16 and it follows

that
‖uφ − εφ‖ = 1− b(k0) +

∑
k 6=k0

nk∑
i=1

b
(k)
ii = 2− 2b(k0) = −2(uφ − εφ)(ek0).

So for v1 := u − φ we have ‖v1‖ = ‖w1‖ = −2w1(ek0), where w1 = v1|Aφ . Similarly for
vj := uj − φ and wj := vj |Aφ we have

‖vj‖ = ‖wj‖ = −2wj(ek0), j ≥ 1. (3.8)

Now we show (5) by the induction argument. Clearly it holds for n = 1. Suppose for
now that it holds for n. Set r := ‖v1‖, s := ‖vn‖ and t := ‖vn+1‖. From (v1 + φ)(vn +
φ) = vn+1 + φ it follows that vn+1 = v1 + vn + v1vn and thus by Lemma 3.7 (4) that
wn+1 = w1 + wn + w1wn. This, together with (3.8) and Lemma 3.7 (1), yields that

t = r + s− 2(w1wn)(ek0) ≥ r + s− 2‖w1wn‖ = r + s− 2‖v1vn‖ ≥ r + s− 2rs.

Then
(1− 2r)(1− 2s) = 4rs− 2r − 2s+ 1 ≥ 1− 2t.

By assumption, 1− 2r, 1− 2t > 0, so 1− 2s > 0. Hence u and un verify the conditions in
(4), and we obtain

logφ(un+1) = logφ(u) + logφ(un) = logφ(u) + n logφ(u) = (n+ 1) logφ(u),

where in the second equality we have used the induction for n. This finishes the proof for
n+ 1 and then shows (5).

Remark 3.19. In fact, to prove (5) we have used the fact that ‖u + v‖ = ‖u‖ + ‖v‖ for
all u, v ∈ Nφ(G).

Proposition 3.20. Let ω be an infinitely divisible state on a finite quantum group G =
(A,∆). Let φ be an idempotent state on A. Assume that there exists a sequence {ωmj}j≥0
of roots of states of ω, with ω = ω

mj
mj , for all j, such that

(1) {mj}j≥0 is strictly increasing;

(2) ωmj = ωmjφ = φωmj for all j;

(3) ωmj = ω
nj
mj+1 for some positive integer nj, j ≥ 0;

(4) ωmj → φ, as j →∞.

Then ω ∈ Pφ(G).

Proof. Assume that {ωmj} contains infinitely many different elements, otherwise ω = φ ∈
Pφ(G). By (4), we can choose j0 > 0 such that ‖ωmj − φ‖ < 1/2 for all j ≥ j0. This
inequality, together with (2), allows us to define

v0 := logφ(ωmj0 ), and v := mj0v0.

Then by the definition of ωj0 and Lemma 3.18 (1)(2),

ω = ω
mj0
mj0

=
(
expφ(logφ(ωmj0 ))

)mj0 = expφ(mj0v0) = expφ(v).
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To prove ω ∈ Pφ(G), it suffices to show that v ∈ Nφ(G). For this we check that v verifies
Theorem 3.9 (1). Clearly, v(1A) = 0, since ωj0 is a state. By the definition of logarithm,
v = vφ = φv. It remains to show that for any x ∈ A such that φ(x∗x) = 0, we have
v0(x∗x) ≥ 0. By (3) we have

ωmj0 = ω
Nj
mj , j ≥ j0,

where Nj := nj0 · · ·nj−1. Recall that for all j ≥ j0, ‖ωmj − φ‖ < 1/2. Thus by Lemma
3.18 (5) we have

logφ(ωmj ) = 1
Nj

logφ(ωmj0 ) = v0
Nj

,

and by Lemma 3.18 (1)

ωmj = expφ

(
v0
Nj

)
, j ≥ j0.

The condition (1) implies that Nj → ∞ as j → ∞. Now for any x ∈ A such that
φ(x∗x) = 0, we have

0 ≤ ωmj (x∗x) = φ(x∗x) + v0(x∗x)
Nj

+
∑
m≥2

vm0 (x∗x)
Nm
j ·m! = v0(x∗x)

Nj
+O( 1

N2
j

),

for all j ≥ j0. Hence
v0(x∗x) +O( 1

Nj
) ≥ 0, j ≥ j0.

Letting j →∞, we have v0(x∗x) ≥ 0, which ends the proof.

As this proposition suggests, to show that an infinitely divisible state is of Poisson
type, it is important to capture the idempotent state which the infinitely divisible state
is “supported on”. For this we need two lemmas. The first one is an easy fact in matrix
theory.

Lemma 3.21. Let P ∈ Mn(C) be a self-adjoint projection. Let A,B ∈ Mn(C) be such
that A = AP = PA,AB = P and ‖A‖ ≤ 1, ‖B‖ ≤ 1. Here ‖ · ‖ denote the C*-norm in
matrix algebra. Then A∗A = AA∗ = P . Consequently, if u and v are states on a finite
quantum group G = (A,∆) such that u = uφ = φu and uv = φ, where φ is an idempotent
state on G, then u∗u = uu∗ = φ.

Proof. Since P is a self-adjoint projection, we may assume without loss of generality that

P =
(
Ir 0
0 0

)
,

where Ir is the identity in Mr(C) with r = rank(P ). From A = AP = PA and AB = P it
follows

A =
(
Ar 0
0 0

)
, B =

(
Br ∗
∗ ∗

)
,

with ArBr = Ir. Note that

1 = ‖Ir‖ = ‖ArBr‖ ≤ ‖Ar‖‖Br‖ ≤ ‖A‖‖B‖ ≤ 1.

So ‖Ar‖ = ‖Br‖ = 1. This is to say,

‖A∗rAr‖ = 1 = ‖BrB∗r‖ = ‖(A∗rAr)−1‖.
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Then all the eigenvalues of A∗rAr must be 1 and thus A∗rAr = Ir. Hence Br = A∗r and thus
A∗A = AA∗ = P .

The remaining part follows from the facts that p = φ is a self-adjoint projection in Â
and

‖u‖Â ≤ ‖u‖ = 1, ‖v‖Â ≤ ‖v‖ = 1.

Lemma 3.22. Let (A,B, 〈, 〉) be a Plancherel triple. Suppose that u ∈ B is a state on A
such that uu∗ = u∗u = εA, where εA is the counit of A. Then u is an n-th root of εA for
some n ≤ dimB.

Proof. Suppose that A = ⊕mα=1Mnα(C) with the matrix units {eαij : 1 ≤ i, j ≤ nα, 1 ≤ α ≤
m}. Let {ẽαij} be the dual basis. Then by Lemma 3.15 we can write u as

u =
m∑
α=1

pα

nα∑
i,j=1

aαij ẽ
α
ij ,

where pα ≥ 0,
∑m
α=1 pα = 1 and [aαij ]

nα
i,j=1 positive semi-definite with trace one. Let α0 be

such that ẽα0 = 1B. Then we can write u = pα0 ẽ
α0 +v with v =

∑
α 6=α0 pα

∑nα
i,j=1 a

α
ij ẽ

α
ij such

that ‖v‖ =
∑
α 6=α0 pα = 1−pα0 . Note that uu∗ = p2

α0 ẽ
α0 +pα0(v+v∗)+vv∗. Then by (3.3),

hB(v) = hB(v∗) = 0. Since v and v∗ are both positive functionals, vv∗(·) = 〈∆A(·), v⊗ v∗〉
is also a positive functional on A. Hence we have by Corollary 3.17 that

hB(vv∗) ≤ εB(vv∗) = |εB(v)|2 = (1− pα0)2.

So we have

1 = hB(1B) = hB(uu∗) = p2
α0 + hB(vv∗) ≤ p2

α0 + (1− pα0)2 = 1− 2pα0 + 2p2
α0 ,

which yields pα0(pα0 − 1) ≥ 0. Recall that 0 ≤ pα0 ≤ 1, hence either pα0 = 0 or pα0 = 1.
That is to say, either hB(u) = 0 or u = εA. Since for any n ≥ 1, un is again a state such
that unu∗n = εA, we obtain, by a similar argument, that either hB(un) = 0 or un = εA.

If u is not an n-th root of εA for all 1 ≤ n ≤ dimB, then we have

hB(un) = 0, n = 1, 2, . . . ,dimB. (3.9)

Note that we may choose m ≤ dimB such that u is unitary in Mm(C). Set P (λ) :=
det(λIm − u) =

∑m
i=0 aiλ

i, then Cayley-Hamilton Theorem implies that P (u) = 0, where
Im denotes the identity matrix in Mm(C). Since u is unitary in Mm(C), we have a0 =
(−1)m det(u) 6= 0. But by (3.9)

a0hB(Im) = a0hB(Im) +
m∑
i=1

aihB(ui) = hB(P (u)) = 0.

Thus a0 = 0, which leads to a contradiction. So we must have um = εA for some 1 ≤ m ≤
dimB.

The following proposition, gathering the main ingredients of preceding lemmas, will be
used to prove Theorem 3.24.

Proposition 3.23. Let G = (A,∆) be a finite quantum group with dual Ĝ = (Â, ∆̂).
Suppose that u, v ∈ S(A) and φ ∈ Idem(G) are such that u = uφ = φu and uv = φ. Then
there exists a positive integer m ≤ dim Â such that um = φ.
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Proof. From Lemma 3.21 it follows u∗u = uu∗ = φ. Let uφ and εφ be the restrictions of
u and the counit ε of A to Aφ, respectively. From Proposition 3.8 (Aφ, Âp, 〈, 〉) forms a
Plancherel triple. By Lemma 3.7, uφ is a state on Aφ such that uφu∗φ = εφ. So Lemma 3.22
implies umφ = εφ for some m ≤ dim Âφ ≤ dim Â. Hence Lemma 3.7 gives um = umφ Eφ =
εφEφ = φ.

Now we are ready to prove the main result.

Theorem 3.24. Let G = (A,∆) be a finite quantum group. Then P(G) = I(G).

The first proof. P(G) ⊂ I(G) is clear. Let ω ∈ I(G). We claim that for any positive
integer N ≥ 2, there exists a sequence {bn}n≥0 of roots of ω such that b0 = ω, bn−1 =
bNn , n ≥ 1. Indeed, since A is finite dimensional, the set of states Z = S(A) is compact
with respect to the norm topology. Thus

∏
j≥0 Zj , where Zj = Z for all j, is compact with

respect to the product topology. Let an ∈ Z be any n-th root of ω for all n ≥ 0. Then the
sequence of non-empty closed sets

Wk :=
⋃
j≥k
{aNj

Nj} × {aN
j−1

Nj } × · · · × {aNj} ×
∏
i≥j

Zi, k ≥ 1,

is decreasing: W1 ⊃ W2 ⊃ · · · , and thus any finite intersection of {Wk}k≥1 is non-empty.
By compactness of

∏
j≥0 Zj ,

⋂
k≥1Wk 6= ∅. Hence one can choose (b0, b1, . . . ) ∈

⋂
k≥1Wk

such that
b0 = ω, bn−1 = bNn , n ≥ 1.

This proves the claim.
Choose N = (dim Â)! ≥ 2 and let {bn}n≥0 be as above. Since Z is compact, there

exists a subsequence {cj}j≥0 of {bi}i≥0 such that cj converges to some c ∈ Z. If we fix a
non-negative integer i, we have bi = c

rj
j for sufficient large j and some integer rj ≥ N ≥ 2.

That is,
bi = cjc

rj−1
j = c

rj−1
j cj . (3.10)

We can assume that crj−1
j converges to some di ∈ Z, otherwise consider some subsequence,

since {crj−1
j }j≥0 ⊂ Z. Thus letting j →∞ in (3.10), we have

bi = cdi = dic, i ≥ 0. (3.11)

This implies bi ∈ cZ ∩ Zc for all i ≥ 0. From the choice of cj we have cj ∈ cZ ∩ Zc for
all j ≥ 0. Then for any i the corresponding crj−1

j ∈ cZ ∩ Zc for all j, which implies that
di ∈ cZ ∩ Zc by the compactness of cZ ∩ Zc. Now consider (3.10) for {cj}j≥0, instead of
{bi}i≥0, we obtain an updated version of (3.11):

cj = cd′j = d′jc, j ≥ 0, (3.12)

where d′j ∈ cZ ∩Zc. Letting j →∞, consider the subsequence of {d′j}j≥0 if necessary, one
obtains

c = cd = dc, (3.13)

where d ∈ cZ ∩ Zc by the compactness of cZ ∩ Zc. Suppose d = ce for some e ∈ Z, then
d2 = dce = ce = d, i.e., d is an idempotent state. By Proposition 3.23, we obtain cm = d
for some m ≤ dim Â. Since our choice of N satisfies m|N , we have

cNj → cN = (cm)
N
m = d, as j →∞.
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Denote by φ the idempotent state d. Set ω0 := ω and ωn := cNn for all n ≥ 1. Then ωn → φ
as n tends to ∞. By definition, {ωn}n≥0 is a subsequence of {bj}j≥0, thus ωn−1 = ωsnn
with N |sn for all n ≥ 1. Moreover, from (3.12) we have

ωn = cNn = (cd′n)N = cNd
′N
n = φd

′N
n = φ(φd′Nn ) = φωn, n ≥ 0.

Similarly, ωn = ωnφ, n ≥ 0. Hence {ωn}n≥0 verifies the conditions of Proposition 3.20, and
consequently ω ∈ Pφ(G).

Before giving the second proof, we introduce the following proposition, which could be
formulated and proved for a general Banach algebra.

Proposition 3.25. Let G = (A,∆) be a compact quantum group, with A separable. Let
ω be an infinitely divisible state on G. Suppose that there exist an idempotent state φ and
a sequence of φ-bi-invariant roots {ωnk}k≥1 of ω, where {nk}k≥0 is an increasing sequence
of positive integers, such that ωnknk = ω for all k ≥ 1, and

sup
k≥1

nk‖ωnk − φ‖ = M <∞, (3.14)

then ω ∈ Pφ(G).

Proof. Recall that {ϕ ∈ A′ : ‖ϕ‖ ≤ M} is compact with respect to weak* topology for
each M > 0. Then from (3.14) we have for some subsequence of {nk}k≥1, still denoted
by {nk}k≥1, that nk(ωnk − φ) converges to an element u ∈ A′ with respect to the weak∗
topology. Then u = lim

k→∞
nk(ωnk − φ) ∈ Nφ(G) and expφ(u) is a Poisson state. It suffices

to show that ω = expφ(u). Set

unk :=
∑
m≥2

(ωnk − φ)m

m! , k ≥ 1.

It is well-defined, since supk≥1 ‖ωnk − φ‖ <∞. Moreover, from (3.14) it follows that

‖unk‖ ≤
∑
m≥2

1
m!

(
M

nk

)m
≤ 1
n2
k

∑
m≥2

Mm

m! ,

whence
lim
k→∞

nk‖unk‖ = 0,

and
lim
k→∞

(1 + ‖unk‖)
nk = lim

k→∞
(1 + ‖unk‖)

1
‖unk‖

·nk‖unk‖ = 1.

Hence

‖ω − expφ(nk(ωnk − φ))‖ = ‖ωnknk − (ωnk + unk)nk‖

≤
nk∑
m=1

(
nk
m

)
‖ωnk−mnk

umnk‖

≤
nk∑
m=1

(
nk
m

)
‖unk‖

m = (1 + ‖unk‖)
nk − 1,

which tends to 0 as k →∞. This shows ω = expφ(u) and finishes the proof.
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The second proof of Theorem 3.24. Again, P(G) ⊂ I(G) is clear. Let ω ∈ I(G). From
the first proof we know that there exist an idempotent state φ ∈ Idem(G) and a sequence
of roots {ωnk}k≥0 ⊂ S(A) with {nk}k≥0 an increasing sequence of positive integers such
that

ωnknk = ω, ωnk = ωnkφ = φωnk , k ≥ 0,

and ωnk → φ as k → ∞. Let u and unk be the restrictions of ω and ωnk to Aφ for all
k ≥ 0, respectively. Then from Lemma 3.7 u is a state on Aφ such that {unk}k≥0 is a
sequence of roots of u in S(Aφ) verifying

unknk = u and unk → εφ, k →∞,

where εφ is the counit of Aφ. Now we repeat a calculation in Lemma 3.22. Suppose that
A = ⊕mα=1Mnα(C) with the matrix units {eαij : 1 ≤ i, j ≤ nα, 1 ≤ α ≤ m}. Let {ẽαij} be
the dual basis. Then by Lemma 3.15 we can write u as

unk =
m∑
α=1

pα,k

nα∑
i,j=1

aα,kij ẽ
α
ij

with pα,k ≥ 0,
∑m
α=1 pα,k = 1 and [aα,kij ]nαi,j=1 is positive semi-definite with trace one for

each k. Let α0 be such that ẽα0 = εφ = 1Âp . By Corollary 3.16 and the assumption,

‖unk − εφ‖ = 2(1− pα0,k)→ 0, k →∞. (3.15)

So pα0,k → 1 as k →∞.
Now for each q > 0 we introduce the Lq-norm (quasi-norm when q < 1) induced by

ĥp. Recall that ĥp = 1
φ(pA) ĥ|Âp is a tracial state on Âp. Namely, we define

‖x‖q := [ĥp(|x|q)]
1
q , x ∈ Âp,

where |x| = (x∗x)
1
2 . Then Hölder’s inequality still holds and we have

‖u‖ 2
nk

= ‖unknk‖ 2
nk

≤ ‖unk‖
nk
2 , k ≥ 0. (3.16)

Note that u is invertible in Âp. Indeed, for large k there holds

‖unk − εφ‖Âp ≤ ‖unk − εφ‖ < 1,

then we have that unk is invertible for large k. So u = unknk is also invertible in Âp.
Following a similar calculation to that in Lemma 3.22, we obtain

ĥp(unku
∗
nk

) ≤ p2
α0,k + (1− pα0,k)2.

This, together with (3.16), yields

ĥp(|u|
1
nk ) = ‖u‖

2
nk
2
nk

≤ ‖unk‖
2
2 = ĥp(unku

∗
nk

) ≤ p2
α0,k + (1− pα0,k)2,

for all k. Since pα0,k → 1 as k → ∞, there exists K > 0 such that for all k ≥ K,
1
2 ≤ pα0,k ≤ 1. Thus for all k ≥ K, 1− pα0,k ≤ pα0,k and then

ĥp(|u|
1
nk ) ≤ p2

α0,k + (1− pα0,k)2 ≤ p2
α0,k + pα0,k(1− pα0,k) = pα0,k. (3.17)
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Combining this with (3.15), we have

nk‖unk − εφ‖ = 2nk(1− pα0,k) ≤ 2nk(1− ĥp(|u|
1
nk )) = 2nkĥp(1Âp − |u|

1
nk )

for all k ≥ K. Since u is invertible in Âp, n(1Âp − |u|
1
n ) converges to − log |u| in norm as

n→∞. Then there exists a constant M <∞ such that

sup
n≥1

nĥp(1Âp − |u|
1
n ) ≤M.

Thus from Lemma 3.7 it follows that

sup
k≥0

nk‖ωnk − φ‖ = sup
k≥0

nk‖unk − εφ‖ ≤ sup
k≥0

2nkĥp(1Âp − |u|
1
nk ) <∞.

Hence ω ∈ Pφ(G) by Proposition 3.25.

Remark 3.26. Both proofs rely on the capture of idempotent state which the infinitely
divisible state is “supported on” and the sequence of roots converging to this idempotent
state. After this the first proof aims to show that this sequence of roots can chosen to
form a submonogeneous convolution semigroup (Proposition 3.20 (3)), while the idea of
the second proof is derived from a general result, Proposition 3.25, concerning the decay
property (3.14) of this sequence of roots. The inequality (3.17) also allows us to simplify
the proof of the main theorem in [60] for the finite group case.





Chapter 4

Fourier multipliers on discrete
group von Neumann algebras

The study of the Lp-boundedness of Fourier multipliers on locally compact groups has
become one of the most important subjects in noncommutative analysis in recent years [14,
15, 31, 38, 39, 57]. However, few examples of Lp-Fourier multipliers are known for 1 < p 6=
2 <∞ even in the discrete group case. In particular, the radial Fourier multipliers on free
groups are of interest, but lack concrete examples. In this chapter, for general p, we give
one sufficient condition on the Lp-boundedness of Fourier multipliers on general discrete
groups, and one sufficient condition on the Lp-boundedness of radial Fourier multipliers
on free groups. This provides us with some concrete examples of Lp-Fourier multipliers.
In particular, our results will put forward the recent attempts to generalize Hörmander-
Mikhlin type multiplier theorem on the free group von Neumann algebras.

We shall use a basic fact that Lp(Ĝ) ⊂ Lq(Ĝ) whenever q ≤ p for any discrete group
G, since the canonical trace τ on Ĝ is a state. Based on this fact the problem of Lp-
boundedness of Fourier multiplier can be turned into the study of Lp-L2 (L2-Lp if p > 2)
boundedness of Fourier multiplier. Our main ideas then come from the study of Lp-Lq
Fourier multipliers originally from Hörmander [36] and results on hypercontractivity of
Ricard and Xu [63]. This conversion simplifies the problem in the discrete case.

We fix some notations for this chapter. Here and in the following, A .p B means
A ≤ cpB for some constant cp > 0. The notations .p,q and .p,q,r should be understood
in a similar way. We use ]S to denote the cardinal of a set S.

4.1 Preliminary: noncommutative Lp-spaces

In this section we collect some necessary preliminaries on noncommutative Lp-spaces and
noncommutative Lorentz spaces.

4.1.1 Noncommutative Lp-spaces and Lorentz spaces associated with a
semifinite von Neumann algebra

We concentrate ourselves on noncommutative Lp-spaces associated with semifinite von
Neumann algebras, which were first laid out in the early 1950s by Segal [66] and Dixmier[22].
The noncommutative Lorentz spaces will be treated at the same time. We refer to [61] for
more discussions.
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LetM be a semifinite von Neumann algebra equipped with a normal semifinite faithful
(n.s.f.) trace τ . Denote byM+ the positive cone ofM. Let S+ = S+(M) denote the set
of all x ∈ M+ such that τ(supp(x)) < ∞, where supp(x) denotes the support projection
of x. Let S = S(M) be the linear span of S+. Then S is a weak*-dense *-subalgebra of
M. Given 0 < p <∞, we define

‖x‖p := [τ(|x|p)]
1
p , x ∈ S,

where |x| = (x∗x)
1
2 is the modulus of x. Then (S, ‖ · ‖p) is a normed (or quasi-normed for

p < 1) space. Its completion is called noncommutative Lp-space associated with (M, τ),
denoted by Lp(M, τ), or simply by Lp(M). As usual, we set L∞(M, τ) = M equipped
with the operator norm.

For 1 ≤ p < ∞, the dual space of Lp(M) is Lp′(M) (1/p + 1/p′ = 1) with respect to
the duality

〈x, y〉 := τ(xy), x ∈ Lp(M), y ∈ Lp′(M).

In particular, L1(M) is identified with M∗, the predual of M, via the map j(x) :=
τ(x·), x ∈ L1(M).

The elements in Lp(M) can be viewed as closed densely defined operators on H (H
being the Hilbert space on whichM acts). A linear closed operator x is said to be affiliated
withM if it commutes with all unitary elements inM′, the commutant ofM, i.e., xu = ux
for any unitary u ∈ M′. Note that x can be unbounded on H. An operator x affiliated
with M is said to be measurable with respect to (M, τ), or simply measurable if for any
ε > 0, there exists a projection e ∈M such that

e(H) ⊂ D(x) and τ(e⊥) ≤ ε,

where e⊥ = 1− e and D(x) denotes the domain of x. We denote by L0(M, τ), or simply
L0(M) the family of measurable operators. For x ∈ L0(M, τ), we define the distribution
function of x as

λs(x) := τ(1(s,∞)(|x|)), s > 0,

where 1(s,∞)(|x|) is the spectral projection of |x| corresponding to the interval (s,∞), and
define the generalized singular numbers of x as

µt(x) := inf{s > 0 : λs(x) < t}, t > 0.

Similar to the classical case, for 0 < p, q <∞, the noncommutative Lorentz space Lp,q(M)
is defined as the collection of all measurable operators x such that

‖x‖p,q :=
(∫ ∞

0
(t

1
pµt(x))q dt

t

) 1
q

<∞.

Clearly, Lp,p(M) = Lp(M) with ‖ · ‖p,p = ‖ · ‖p. We may also define the weak Lp-space
Lp,∞(M), 0 < p <∞, which consists of all measurable operators x such that

‖x‖p,∞ := sup
t>0

t
1
pµt(x) <∞.

Like the classical Lp-spaces, noncommutative Lp-spaces behave well with respect to inter-
polation. Our reference for interpolation theory is [6]. Let 1 ≤ p0 ≤ p1 ≤ ∞, 1 ≤ q ≤ ∞
and 0 < θ < 1. Then

(Lp0(M), Lp1(M))θ = Lpθ(M) (with equal norms)
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and
(Lp0(M), Lp1(M))θ,q = Lpθ,q(M) (with equal norms), (4.1)

where 1/pθ = (1−θ)/p0 +θ/p1, (·, ·)θ and (·, ·)θ,q denote respectively the complex and real
interpolation methods.

We formulate here some properties that we will use in this thesis. For the proofs we
refer to [25, 61].

Lemma 4.1. Let 1 < p, q <∞ and 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1. Then we have

(1) µs+t(xy) ≤ µs(x)µt(y) for all s, t > 0 and x, y ∈ L0(M);

(2) for any q < r ≤ ∞ and any x ∈ Lp,q(M),

‖x‖p,r .p,q,r ‖x‖p,q, (4.2)

where the constant is cp,q,r = (q/p)
1
q
− 1
r .

The next lemma is Hölder’s inequality on noncommutative Lorentz space. We give a
proof here for the convenience of the readers.

Lemma 4.2. Let 0 < p0, q0 <∞, 0 < p1, q1 ≤ ∞. Let p, q be such that 1/p = 1/p0 + 1/p1
and 1/q = 1/q0 + 1/q1. Let M be a von Neumann algebra equipped with a n.s.f. trace τ .
Then we have for any x ∈ Lp0,q0(M, τ) and y ∈ Lp1,q1(M, τ)

‖xy‖p,q .p ‖x‖p0,q0‖y‖p1,q1 , (4.3)

where the constant is cp = 2
1
p .

Proof. From Hölder’s inequality on Lp-spaces of (R+, dtt ) and Lemma 4.1(1) it follows that

‖xy‖p,q =
(∫ ∞

0
(t

1
pµt(xy))q dt

t

) 1
q

= 2
1
p

(∫ ∞
0

(t
1
pµ2t(xy))q dt

t

) 1
q

≤ 2
1
p

(∫ ∞
0

(t
1
p0 µt(x) · t

1
p1 µt(y))q dt

t

) 1
q

≤ 2
1
p

(∫ ∞
0

(t
1
p0 µt(x))q0 dt

t

) 1
q0
(∫ ∞

0
(t

1
p1 µt(y))q1 dt

t

) 1
q1

= 2
1
p ‖x‖p0,q0‖y‖p1,q1 ,

for all x ∈ Lp0,q0(M, τ) and y ∈ Lp1,q1(M, τ).

We end this subsection with two examples.

Example 4.3. The usual (commutative) Lp-spaces are noncommutative Lp-spaces. Let
(Ω,F , µ) be a σ-finite measure space. The family of essentially bounded functions on Ω,
L∞(Ω), can be considered as the von Neumann algebra acting on the Hilbert space L2(Ω)
by identifying each f ∈ L∞(Ω) with Mf . Here Mf : L2(Ω)→ L2(Ω) is the multiplication
operator given by Mf (g) = fg. The map f 7→ Mf is an isometric *-homomorphism from
L∞(Ω) into B(L2(Ω)).
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In the von Neumann algebra L∞(Ω), Mf is positive iff f is a non-negative function. It
is equipped with a n.s.f. trace

∫
given by∫
f :=

∫
Ω
fdµ, f ∈ L∞(Ω)+.

Then for (L∞(Ω),
∫

), the set S = S(L∞(Ω)) consists of all functions f with finite-measure
support. The noncommutative Lp-space Lp(L∞(Ω),

∫
) coincides with the usual Lp-space

Lp(Ω, dµ). However, we remark here is a minor difference between measurable operators
with respect to (L∞(Ω),

∫
) and measurable functions on Ω. In fact, any measurable

function f on Ω belongs to L0(L∞(Ω),
∫

) iff it is bounded outside a set of finite measure.

Example 4.4. Let G be a discrete group with unit e. Denote by (δg)g∈G the canonical
basis of the Hilbert space `2(G), i.e., δg is the indicator function on g. Let λ : G →
B(`2(G)) be the left regular representation. That is,

λ(g)f(h) := f(g−1h), g, h ∈ G, f ∈ `2(G).

The group von Neumann algebra Ĝ is defined as the von Neumann subalgebra of B(`2(G))
generated by all λ(g), g ∈ G. The *-subalgebra C[G] := {x =

∑
finite sum xgλ(g) : xg ∈ C}

is weak*-dense in Ĝ. Note that λ(g)∗ = λ(g−1). There is a canonical normal faithful
trace τ = τG on Ĝ: τ(x) = 〈δe, xδe〉, x ∈ Ĝ, where 〈, 〉 is the inner product in `2(G)
which is linear in second argument. Moreover, τ(1) = 1. On (Ĝ, τ) one can construct the
noncommutative Lp-spaces Lp(Ĝ) = Lp(Ĝ, τ), 0 < p ≤ ∞.

In this chapter we use Fn to denote the free group on n generators with n ∈ N∪ {∞},
and | · | : Fn → N is its natural length function. A function ϕ : Fn → C is said to be radial
if ϕ = φ(| · |) for some φ : N→ C.

4.2 Main results
Let G be a discrete group with λ the left regular representation. For any function
ϕ : G → C, we say that ϕ (or Tϕ) is a Lp-Fourier multiplier if the map Tϕ :

∑
agλ(g) 7→∑

ϕ(g)agλ(g) (or λ(f) 7→ λ(ϕf)) extends to a bounded map from Lp(Ĝ) to itself.

Our first result concerns the general discrete groups.

Theorem 4.5. Let 1 < p <∞ and 1/p∗ := |1/2− 1/p|. Let G be any discrete group with
the dual Ĝ. Then for any ϕ ∈ `p∗,∞(G), we have

‖Tϕ : Lp(Ĝ)→ Lp(Ĝ)‖ .p ‖ϕ‖p∗,∞. (4.4)

Remark 4.6. In fact, one can show that for 1 < p ≤ 2 ≤ q < ∞ and 1/r = 1/p − 1/q,
we have

‖Tϕ : Lp(Ĝ)→ Lq(Ĝ)‖ .p,q ‖ϕ‖r,∞. (4.5)

Example 4.7. Let G be a finitely generated group with the unit e and a symmetric set
S of generators. By saying symmetric we mean x−1 ∈ S whenever x ∈ S. Then it has an
exponential growth, i.e.,

]{x ∈ G : d(x, e) ≤ n} ≤ an, n ≥ 1, (4.6)
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for some a > 1, where d is the word metric on G with respect to S and ] denotes the
counting measure on G. Indeed, one can always choose a to be ]S. Then for any ϕ : G→ C
such that |ϕ(g)| ≤ Ca−

|g|
p∗ , where |g| := d(g, e) and C > 0 is a constant,

|ϕ(g)| ≥ α implies |g| ≤ −p∗ loga
α

C
, α > 0.

Therefore

αp
∗
]{g ∈ G : |ϕ(g)| ≥ α} ≤ αp∗a−p∗ loga α

C ≤ Cp∗ <∞, α > 0,

and we have ϕ ∈ `p∗,∞(G), whence Tϕ is a Lp-multiplier on Lp(Ĝ). For free group of N
generators FN , we may choose S as the set consisting of N generators with their inverses
and let a = 2N .

If moreover, G is of polynomial growth, i.e., the right hand side of (4.6) can be replaced
by some polynomial p(n), or equivalently, nk for some k > 0, then a similar argument
yields that for any ϕ : G→ C such that |ϕ(g)| ≤ C|g|−

k
p∗ , we have ϕ ∈ `p∗,∞(G), and then

Tϕ is a Lp-multiplier on Lp(Ĝ).

Our second result concerns the free group F∞.

Theorem 4.8. Let 2 < p < ∞. Suppose that ϕ is radial on F∞, i.e., ϕ(g) = φ(|g|) for
some φ : N→ C. Then we have

‖Tϕ : Lp(F̂∞)→ Lp(F̂∞)‖ ≤

∑
n≥0

(1 + n)αp |φ(n)|2
1/2

, (4.7)

where αp = max{2− 6/p, 1− 2/p}.

Corollary 4.9. As a direct consequence, Tϕ is a Lp-Fourier multiplier on F̂∞ if there
exists ε > 0 such that

sup
n≥0

n
1− 1

p
+ε|φ(n)| <∞, 2 < p ≤ 4, (4.8)

or
sup
n≥0

n
3
2−

3
p

+ε|φ(n)| <∞, p ≥ 4. (4.9)

The inequalities (4.8) and (4.9) suggest that, if one aims to develop a Hörmander-Mikhlin
type multiplier theorem on free group F∞, the constant α (which is independent of p)
appearing in

sup
n≥0

nα|φ(n)| <∞,

should not be larger than 3/2 (observe (4.9) when p→∞). It covers the above result com-
pletely only if α ≤ 1/2 (observe (4.8) when p→ 2+). Since |φ(n)| ≤ |φ(0)|+

∑n
m=1 |φ(m)−

φ(m−1)|, the Hörmander-Mikhlin type multiplier theorem should be related to the condition

sup
n≥1

nβ|φ(n)− φ(n− 1)| <∞,

with β ≤ 5/2, and it covers (4.8) and (4.9) completely only if β ≤ 3/2.
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4.3 The proofs

Suppose 1 < p < 2 and 1/p + 1/p′ = 1. Recall that the Hausdorff-Young inequality says
that

‖λ(x)‖p′ ≤ ‖x‖p. (4.10)

Indeed, it is a consequence of the complex interpolation of the following two inequalities:

‖λ(x)‖∞ ≤ ‖x‖1 and ‖λ(x)‖2 = ‖x‖2.

If we apply the real interpolation instead of the complex interpolation, one obtains

‖λ(x)‖p′,p .p ‖x‖p. (4.11)

The dual of (4.11) takes the form:

‖x‖p′,p .p ‖λ(x)‖p. (4.12)

Now we are ready to prove (4.4). One can use a similar argument to show (4.5), which is
simpler than the proof of the boundedness of Lp-Lq Fourier multipliers on R in [36].

Proof of Theorem 4.5. We only prove the case 1 < p < 2, since the proof for p > 2 is
similar. Note that 1/2 = 1/p∗ + 1/p′, then by (4.2), (4.3) and (4.12) we have

‖λ(ϕf)‖p ≤ ‖λ(ϕf)‖2 = ‖ϕf‖2 .p ‖ϕ‖p∗,∞‖f‖p′,2 .p ‖ϕ‖p∗,∞‖f‖p′,p .p ‖ϕ‖p∗,∞‖λ(f)‖p.

To prove Theorem 4.8, we need Haagerup’s inequality. For this, denote by Sn the set
of all elements in F∞ with length n, i.e., Sn = {g ∈ F∞ : |g| = n}. We say that x is
supported on Sn if x =

∑
g∈Sn xgλ(g). The Haagerup’s inequality states that:

Lemma 4.10. [32, Lemma 1.4] For any x supported on Sn, we have

‖x‖∞ ≤ (n+ 1)‖x‖2. (4.13)

The following lemma can be found in [63].

Lemma 4.11. [63, Lemma 7] For any x supported on Sn, we have

‖x‖4 ≤ (n+ 1)
1
4 ‖x‖2. (4.14)

For any x supported on Sn, using (4.13), (4.14) and the trivial equality ‖x‖2 = ‖x‖2,
we obtain by complex interpolation that

‖x‖p ≤ (n+ 1)
1
2−

1
p ‖x‖2, 2 < p ≤ 4, (4.15)

and
‖x‖p ≤ (n+ 1)1− 3

p ‖x‖2, p ≥ 4. (4.16)

From (4.13) and ‖x‖2 = ‖x‖2 one can obtain the estimate

‖x‖p ≤ (n+ 1)1− 2
p ‖x‖2, 2 < p <∞.

It will give (4.7) with αp = 2− 4/p for all 2 < p <∞. So (4.13) is essential, while (4.14)
improves the result slightly.
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Proof of Theorem 4.8. It suffices to prove the estimate for all x ∈ span{λ(g) : g ∈ F∞}.
For any such x, we can write it as x =

∑
n≥0 xn with xn supported on Sn. Note that

for m 6= n, xm and xn are orthogonal with respect to the inner product induced by the
canonical tracial state τ on F∞, so that we have∑

n≥0
‖xn‖22 = ‖x‖22 ≤ ‖x‖2p, p > 2. (4.17)

By the triangle inequality and (4.15) we have for all 2 < p ≤ 4 that

‖Tϕ(x)‖p = ‖
∑
n≥0

φ(n)xn‖p ≤
∑
n≥0
|φ(n)|‖xn‖p ≤

∑
n≥0
|φ(n)|(n+ 1)

1
2−

1
p ‖xn‖2.

From Cauchy-Schwarz inequality and (4.17), it follows that

‖Tϕ(x)‖2p ≤
∑
n≥0
|φ(n)|2(n+ 1)1− 2

p
∑
n≥0
‖xn‖22 ≤

∑
n≥0
|φ(n)|2(n+ 1)1− 2

p · ‖x‖2p,

which finishes the proof for 2 < p ≤ 4. The proof for p ≥ 4 follows similarly with (4.15)
replaced by (4.16).





Chapter 5

Monotonicity of α-z Rényi relative
entropies

In this chapter we study the joint convexity/concavity of the trace function

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s,

where p, q, s ∈ R, A and B are positive definite matrices and K is any fixed invertible
matrix. We will give full range of (p, q, s) for Ψp,q,s to be jointly convex/concave for all
K. As a consequence, we confirm a conjecture of Carlen, Frank and Lieb [10, Conjecture
4]. In particular, we confirm a weaker conjecture of Audenaert and Datta [2, Conjecture
1] and obtain the full range of (α, z) for α-z Rényi relative entropies to be monotone
under completely positive trace preserving maps. We also give simpler proofs of many
known results, including the concavity of Ψp,0,1/p for 0 < p < 1 which was firstly proved
by Epstein [23] using complex analysis. The key is to reduce the problem to the joint
convexity/concavity of trace function

Ψp,1−p,1(A,B) = TrK∗ApKB1−p,

for −1 < p < 1 using a variational method.

5.1 Introduction

The joint convexity/concavity of trace function

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s,

has played an important role in mathematical physics and quantum information. Its
study can be traced back to the celebrated Lieb’s Concavity Theorem [49], which states
that Ψp,q,1 is jointly concave for all 0 ≤ p, q ≤ 1, p + q ≤ 1 and for all K. Using this,
Lieb confirmed the Wigner-Yanase-Dyson Conjecture [72, 49]: for 0 < p < 1 and any
self-adjoint K, the function

Sp(ρ,K) := 1
2Tr[ρ

p,K][ρ1−p,K] = −TrρK2 + TrρpKρ1−pK,

is concave in ρ, where [A,B] = AB −BA. We refer to [72, 49] for more details about the
skew information −Sp(ρ,K).
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Since then, a lot of work around the joint convexity/concavity of Ψp,q,s has emerged
[1, 5, 9, 12, 11, 23, 26, 33, 34], following [49]. Through this line of research many methods
have been developed. Two main methods are the “analytic method” and the “variational
method”. We refer to a very nice survey paper [10] for more historical information and the
explanation of these two methods.

Another motivation to study the joint convexity/concavity of Ψp,q,s comes from quan-
tum information. Indeed, the joint convexity/concavity of Ψp,q,1/(p+q) is closely related to
the monotonicity of the α-z Rényi relative entropies, which has become a frontier topic
recently. We shall recall this connection in Section 5.2. This is the motivation of the
conjecture of Audenaert and Datta:

Conjecture 5.1. [2, Conjecture 1] If 1 ≤ p ≤ 2, − 1 ≤ q < 0 and (p, q) 6= (1,−1), then
for any matrix K, the function

Ψp,q,1/(p+q)(A,B) = Tr(B
q
2K∗ApKB

q
2 )

1
p+q ,

is jointly convex in (A,B).

In this chapter we confirm a stronger conjecture of Carlen, Frank and Lieb:

Conjecture 5.2. [10, Conjecture 4] If 1 ≤ p ≤ 2, − 1 ≤ q < 0, (p, q) 6= (1,−1) and
s ≥ 1

p+q , then for any matrix K, the function

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s,

is jointly convex in (A,B).

As we mentioned earlier, in the history two main methods have been developed to
study the convexity/concavity of trace functions Ψp,q,s: the analytic method and the
variational method. The analytic method, which is the methodology employing the theory
of Herglotz functions, was introduced firstly by Epstein [23]. The variational method was
firstly introduced by Carlen and Lieb in [12]. Both of them have their own advantages, as in
[10, Page 8] the authors wrote: “It appears that the analyticity method is especially useful
for proving concavity and the variational method is more useful for proving convexity, but
this is not meant to be an absolute distinction.” In this chapter we confirm Carlen-Frank-
Lieb Conjecture by developing only the variational method.

The main value of this chapter is twofold. Firstly, we develop the variational method
in a very simple way such that it is useful to prove both convexity and concavity, and it
reduces the convexity/concavity of Ψp,q,s to three very particular cases (see Remark 5.14).
In this way we obtain the full range of (p, q, s) such that Ψp,q,s is jointly convex/concave
and confirm the Carlen-Frank-Lieb Conjecture. Secondly, such three very particular cases
can be furthermore reduced to Lieb’s concavity result [49] of Ψp,1−p,1 for 0 < p ≤ 1 and
Ando’s concavity result [1] of Ψp,1−p,1 for −1 ≤ p < 0 in 1970s. In other words, from
Lieb’s and Ando’s results (which admit many simple proofs) on

Ψp,1−p,1(A,B) = TrK∗ApKB1−p,

the subsequent results on joint convexity/concavity of Ψp,q,s can be derived easily via our
variational method. In this way the analytic method can be avoided.

We fix some notations in this chapter. We shall use H to denote a finite-dimensional
Hilbert space. We use B(H) to denote the family of bounded linear operators on H, P(H)
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to denote the family of positive linear operators on H (or n-by-n positive semi-definite
matrices with dimH = n), and D(H) to denote the family of density operators, i.e.,
positive linear operators on H with unit trace (or n-by-n positive semi-definite matrices
having unit trace with dimH = n). Moreover, we use B(H)× (reps. P(H)× and D(H)×)
to denote the family of invertible operators in B(H) (resp. P(H) and D(H)). We use Tr
to denote the usual trace on matrix algebra and we use I to denote the identity matrix.
For any matrix A we use |A| to denote its modulus (A∗A)

1
2 .

5.2 Background and main results
Given two probability density functions p and q on R, the relative entropy, or the Kullback-
Leibler divergence of p with respect to q is given by

S(p||q) :=
∫
R
p(x)(log p(x)− log q(x))dx. (5.1)

For α ∈ (0, 1) ∪ (1,∞), the α-Rényi relative entropy of p with respect to q is defined as
[62]

Sα(p||q) := 1
α− 1 log

∫
R
p(x)αq(x)1−αdx. (5.2)

Both relative entropies have been generalized to quantum case, where the density
functions are replaced by the density operators, and the integral is replaced by the trace,
respectively.

Now for ρ, σ ∈ D(H)×, a natural quantum analogue of (5.1), is the so-called Umegaki
relative entropy [71]

D(ρ||σ) := Trρ(log ρ− log σ). (5.3)
The quantum analogues of (5.2) might take various forms. One of the most important

generalizations of (5.2) are the quantum α-Rényi relative entropies

Dα(ρ||σ) := 1
α− 1 logTr(ρασ1−α), α ∈ (0, 1) ∪ (1,∞).

It admits the Umegaki relative entropy D(ρ||σ) as a limit case when α→ 1.
Another generalization of (5.2), introduced by Müller-Lennert, Dupuis, Szehr, Fehr,

Tomamichel [56] and Wilde, Winter, Yang [73], are the sandwiched α-Rényi entropies:

D̃α(ρ||σ) := 1
α− 1 logTr(σ

1−α
2α ρσ

1−α
2α )α, α ∈ (0, 1) ∪ (1,∞).

In recent years, Audenaert and Datta [2] introduced a new family of quantum Rényi
relative entropies, unifying the α-Rényi relative entropy Dα and the sandwiched α-Rényi
relative entropy D̃α by using two parameters, called the α-z Rényi relative entropies:

Dα,z(ρ||σ) := 1
α− 1 logTr(σ

1−α
2z ρ

α
z σ

1−α
2z )z, α ∈ (−∞, 1) ∪ (1,∞), z > 0. (5.4)

Note that by taking z = 1 and α = z, one recovers Dα and D̃α, respectively. We comment
here that the α-z Rényi relative entropies have appeared earlier in a paper by Jaksic,
Ogata, Pautrat and Pillet [37].

Now we come back to the α-z Rényi relative entropies Dα,z. They have the operational
meaning only if they are monotone under completely positive trace preserving (CPTP)
maps. That is,

Dα,z(E(ρ)||E(σ)) ≤ Dα,z(ρ||σ), (5.5)
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for any CPTP map E : B(H)× → B(H)×, for all ρ, σ ∈ D(H)× and for any H.
The inequality (5.5) is known as the Data Processing Inequality (DPI). Although DPI

is thoroughly studied for Dα and D̃α, it remained open that whether DPI holds for Dα,z

for some range of (α, z) or not. It is well-known that DPI is essentially equivalent to the
joint convexity/concavity of the trace functions inside the definition of Dα,z.

Proposition 5.3. Let α, z > 0 and α 6= 1. Set p = α
z and q = 1−α

z . Then Dα,z is
monotone under all CPTP maps on B(H)× if and only if one of the following holds

(1) α < 1 and Ψp,q,1/(p+q) with K = I is jointly concave;

(2) α > 1 and Ψp,q,1/(p+q) with K = I is jointly convex.

We will go back to its proof in the end of this section.

Then from some known results on joint convexity and joint concavity of Ψp,q,1/(p+q)
with K = I, Audenaert and Datta obtained DPI for Dα,z for some—but not full—range
of (α, z) [2, Theorem 1]. By saying full we mean necessary and sufficient conditions on
(α, z). It is then natural to ask whether DPI holds for the remaining range of (α, z). This
motived Audenaert and Datta to raise the following conjecture:

Conjecture 5.4. [2, Conjecture 1] If 1 ≤ p ≤ 2, − 1 ≤ q < 0 and (p, q) 6= (1,−1), then
for any K ∈ B(H)× and any H,

Ψp,q,1/(p+q)(A,B) = Tr(B
q
2K∗ApKB

q
2 )

1
p+q , A,B ∈ P(H)×,

is jointly convex.

We cheat a little bit here, since their original form of conjecture concerns the convexity
of P(H) 3 A 7→ Tr(A

q
2K∗ApKA

q
2 )

1
p+q . However, by doubling dimension, a standard

argument shows that they are equivalent. See the discussions after [10, Conjecture 1] for
example.

More generally, consider the joint convexity/concavity of trace functions

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s,

for A,B ∈ P(H)×, K ∈ B(H)× and p, q, s ∈ R. Note that Ψq,p,s(B,A) = Ψp,q,s(A,B) with
K replaced by K∗, and Ψ−p,−q,−s(A,B) = Ψp,q,s(A,B) with K replaced by (K−1)∗. So in
the sequel, we may assume that p ≥ q and s > 0.

The knowledge of joint convexity/concavity of Ψp,q,s before the survey paper [10] is
summarized in the following proposition:

Proposition 5.5. Fix K ∈ B(H)×.

(1) If 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1
p+q , then Ψp,q,s is jointly concave.

(2) If −1 ≤ q ≤ p ≤ 0 and s > 0, then Ψp,q,s is jointly convex.

(3) If −1 ≤ q ≤ 0, 1 ≤ p < 2, (p, q) 6= (1,−1) and s ≥ min{ 1
p−1 ,

1
q+1}, then Ψp,q,s is

jointly convex. If p = 2, − 1 ≤ q ≤ 0 and s ≥ 1
q+2 , then Ψp,q,s is jointly convex.
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The proofs of (1)(2) for full range are due to Hiai [34, Theorem 2.1]. The proofs of
(3) are due to Frank and Lieb [26, Proposition 3], and Carlen, Frank and Lieb [9]. For
more details of history on these results, see the discussions after [10, Theorem 2]. We only
comment here that the case for s = 1, which was firstly studied in the history, is due to
Lieb [49] for 0 ≤ q ≤ p ≤ 1 with p+ q ≤ 1, as well as for −1 ≤ q ≤ 0, and due to Ando [1]
for −1 ≤ q ≤ 0, 1 ≤ p < 2, with p + q ≥ 1. Their work played an important role in the
development of matrix analysis.

The following proposition gives necessary conditions for Ψp,q,s to be jointly convex or
jointly concave.

Proposition 5.6. Let p ≥ q and s > 0. Suppose that (p, q) 6= (0, 0).

(1) If Ψp,q,s is jointly concave for H = C2 and K = I, then 0 ≤ q ≤ p ≤ 1 and
0 < s ≤ 1

p+q .

(2) If Ψp,q,s is jointly convex for H = C4 and K = I, then either −1 ≤ q ≤ p ≤ 0 and
s > 0 or −1 ≤ q ≤ 0, 1 ≤ p ≤ 2, (p, q) 6= (1,−1) and s ≥ 1

p+q .

From the above two propositions, Carlen, Frank and Lieb conjectured [10] that:

Conjecture 5.7. [10, Conjecture 4] If 1 ≤ p ≤ 2, − 1 ≤ q < 0, (p, q) 6= (1,−1) and
s ≥ 1

p+q , then for any K ∈ B(H)× and any H

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s, A,B ∈ P(H)×,

is jointly convex.

Partial results of Conjecture 5.7 have been known, as pointed out in Proposition 5.5
(3). The main result of this chapter is to prove Conjecture 5.7, which, together with
Proposition 5.5 (1)(2) and Proposition 5.6, will give the full range of (p, q, s) for Ψp,q,s to
be jointly convex or jointly concave:

Theorem 5.8. Fix K ∈ B(H)×. Suppose that p ≥ q and s > 0. Then Ψp,q,s is

(1) jointly concave if 0 ≤ q ≤ p ≤ 1 and 0 < s ≤ 1
p+q ;

(2) jointly convex if −1 ≤ q ≤ p ≤ 0 and s > 0;

(3) jointly convex if −1 ≤ q ≤ 0, 1 ≤ p ≤ 2, (p, q) 6= (−1, 1) and s ≥ 1
p+q .

The Figure 5.1 summarizes the joint convexity/concavity of Ψp,q,s for all (p, q, s). Note
that (1,−1) and (−1, 1) donot belong to the area of convexity.

As a corollary of Proposition 5.6 and Theorem 5.8 we have

Corollary 5.9. The α-z Rényi relative entropy Dα,z is monotone under CPTP maps on
B(H)× for all H if and only if one of the following holds

(1) 0 < α < 1 and z ≥ max{α, 1− α};

(2) 1 < α ≤ 2 and α
2 ≤ z ≤ α;

(3) 2 ≤ α <∞ and α− 1 ≤ z ≤ α.

Now we close this section with the proof of Proposition 5.3. It comes from [10], which
follows from a well-known argument of Lindblad [50] and Ulhmann [70].
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Figure 5.1: Joint convexity/concavity of Ψp,q,s

Proof of Proposition 5.3. We use Ψ to denote Ψp,q,1/(p+q) with K = I. We only prove here
that when α > 1, Dα,z is monotone under CPTP maps on B(H)× for all H if and only if
Ψ is jointly convex, since the proof for α < 1 is similar. Note that when α > 1, Dα,z is
monotone under CPTP maps if and only if

Ψ(E(ρ)||E(σ)) ≤ Ψ(ρ||σ),

for all CPTP maps E : B(H)× → B(H)× and density operators ρ, σ ∈ D(H)×, with H
being any finite dimensional Hilbert space.

To show the “if” part, take any CPTP map E : B(H)× → B(H)×. We can write it as

E(γ) = Tr2U(γ ⊗ δ)U∗,

where δ ∈ B(H′), U is unitary on H ⊗ H′, and H′ is a Hilbert space such that N ′ :=
dimH′ ≤ (dimH)2. Tr2 denotes the usual partial trace over H′. For a proof, see for
example [51, Lemma 5]. It origins in Stinespring’s Theorem [69]. Let du denote the
normalized Haar measure on the group of all unitaries on H′, then

E(γ)⊗ IH′

N ′
=
∫

(IH ⊗ u)U(γ ⊗ δ)U∗(IH ⊗ u∗)du. (5.6)

By the tensor property of Ψ, we have

Ψ(E(ρ), E(σ)) = Ψ
(
E(ρ)⊗ IH′

N ′
, E(σ)⊗ IH′

N ′

)
.
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From the joint convexity of Ψ and (5.6) it follows that

Ψ(E(ρ), E(σ)) ≤
∫

Ψ((IH ⊗ u)U(ρ⊗ δ)U∗(IH ⊗ u∗), (IH ⊗ u)U(σ ⊗ δ)U∗(IH ⊗ u∗))du.

By the unitary invariance and tensor property of Ψ we obtain that

Ψ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),

as desired.

To show the “only if” part, for any ρ1, ρ2, σ1, σ2 ∈ P(H)× and any 0 < λ < 1, define

ρ =
(
λρ1 0
0 (1− λ)ρ2

)
and σ =

(
λσ1 0
0 (1− λ)σ2

)
,

in P(H⊕H)×. Since the map

E
(
a b
c d

)
= 1

2

(
a+ d 0

0 a+ d

)
,

defines a CPTP map on B(H⊕H)×, we obtain from the monotonicity of Ψ that

Ψ(E(ρ), E(σ)) ≤ Ψ(ρ, σ),

which is nothing but

Ψ(λρ1 + (1− λ)ρ2, λσ1 + (1− λ)σ2) ≤ λΨ(ρ1, σ1) + (1− λ)Ψ(ρ2, σ2).

This finishes the proof of the joint convexity of Ψ.

5.3 The proofs
This section is devoted to the proof of Theorem 5.8. The following classical results will
serve as building blocks to achieve the joint convexity/concavity of Ψp,q,s. The concavity
result is due to Lieb [49] and the convexity is due to Ando [1]. They have been extensively
studied and have many simple proofs, see for example [58].

Lemma 5.10. For any K ∈ B(H)×, the function Ψp,1−p,1(A,B) = TrK∗ApB1−p is

(1) jointly concave if 0 < p < 1;

(2) jointly convex if −1 < p < 0.

Theorem 5.8 will be reduced to Lemma 5.10 in three steps, based on the following
variational method. This method is the key of the proof and originates in [12]. One can
compare it with the other known variational methods in [10].

Theorem 5.11. For ri > 0, i = 0, 1, 2 such that 1
r0

= 1
r1

+ 1
r2
, we have for any X,Y ∈

B(H)× that
Tr|XY |r0 = min

Z∈B(H)×

{
r0
r1
Tr|XZ|r1 + r0

r2
Tr|Z−1Y |r2

}
, (5.7)

and
Tr|XY |r1 = max

Z∈B(H)×

{
r1
r0
Tr|XZ|r0 − r1

r2
Tr|Y −1Z|r2

}
. (5.8)
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Proof. For 0 < p <∞ define ‖·‖p as ‖A‖pp := Tr|A|p for any matrix A. For any Z ∈ B(H)×,
we have by Hölder’s inequality that

Tr|XY |r0 ≤ ‖XZ‖r0
r1‖Z

−1Y ‖r0
r2 = [Tr|XZ|r1 ]

r0
r1 [Tr|Z−1Y |r2 ]

r0
r2 .

Then from the Young’s inequality for numbers (or AM-GM inequality): xαyβ ≤ αx+ βy
for positive x, y and positive α, β such that α+ β = 1, it follows that

Tr|XY |r0 ≤ [Tr|XZ|r1 ]
r0
r1 [Tr|Z−1Y |r2 ]

r0
r2 ≤ r0

r1
Tr|XZ|r1 + r0

r2
Tr|Z−1Y |r2 . (5.9)

Exchanging Y and Z, we have

Tr|XY |r1 ≥ r1
r0
Tr|XZ|r0 − r1

r2
Tr|Y −1Z|r2 . (5.10)

To prove (5.7), let Y ∗X∗ = U |Y ∗X∗| be the polar decomposition of Y ∗X∗, then
XY U = |Y ∗X∗|. Set Z := Y U |Y ∗X∗|−

r1
r1+r2 , then we have

XZ = XY U |Y ∗X∗|−
r1

r1+r2 = |Y ∗X∗|
r2

r1+r2 , Z−1Y = |Y ∗X∗|
r1

r1+r2U∗.

Using the facts that ‖ · ‖p is unitarily invariant and ‖A‖p = ‖A∗‖p for all A, we have

Tr|XZ|r1 = Tr|Y ∗X∗|
r1r2
r1+r2 = Tr|XY |

r1r2
r1+r2 = Tr|XY |r0 ,

and
Tr|Z−1Y |r2 = Tr|Y ∗X∗|

r1r2
r1+r2 = Tr|XY |

r1r2
r1+r2 = Tr|XY |r0 .

Hence r0
r1
Tr|XZ|r1 + r0

r2
Tr|Z−1Y |r2 = Tr|XY |r0 , which proves (5.7).

Now we prove (5.8) in a similar way. Let U be as above and choose Z to be Y U |Y ∗X∗|
r1
r2 ,

then
XZ = XY U |Y ∗X∗|

r1
r2 = |Y ∗X∗|

r1+r2
r2 , Y −1Z = U |Y ∗X∗|

r1
r2 .

It follows that

Tr|XZ|r0 = Tr|Y ∗X∗|
r1+r2
r0r2 = Tr|Y ∗X∗|r1 = Tr|XY |r1 ,

and
Tr|Y −1Z|r2 = Tr|Y ∗X∗|r1 = Tr|XY |r1 .

Hence Tr|XY |r1 = r1
r0
Tr|XZ|r0 − r1

r2
Tr|Y −1Z|r2 . This proves (5.8).

Remark 5.12. It is possible to generalize this variational method to the infinite dimen-
sional case or to more general norm functions, which is beyond the aim of this chapter.
It is also possible to apply this variational method to the trace functions with n ≥ 3 vari-
ables. Indeed, let rj > 0, j = 0, 1, . . . , n such that 1

r0
=
∑n
j=1

1
rj
. Then we have for

X1, . . . , Xn ∈ B(H)× that

Tr|X1 · · ·Xn|r0

= min

r0
r1
Tr|X1Z1|r1 +

n−1∑
j=2

r0
rj
Tr|Z−1

j−1XjZj |rj + r0
rn

Tr|Z−1
n−1Xn|rn

 , (5.11)
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and

Tr|X1 · · ·Xn|r1

= max

r1
r0
Tr|X1Z1|r0 −

n−1∑
j=2

r1
rj
Tr|Z−1

j X−1
j Zj−1|rj −

r1
rn

Tr|X−1
n Zn−1|rn

 , (5.12)

where max and min run over all Z1, . . . , Zn−1 ∈ B(H)×. The proof is similar to the two
variables case. We only explain here when min is achieved for (5.11). Let X∗n · · ·X∗1 =
U |X∗n · · ·X∗1 | be the polar decomposition of X∗n · · ·X∗1 . Then set

Zj := Xj+1 · · ·XnU |X∗n · · ·X∗1 |αj , αj =
j∑

k=1

r0
rk
− 1

for 1 ≤ j ≤ n− 1. One can check that

Tr|X1 · · ·Xn|r0 = r0
r1
Tr|X1Z1|r1 +

n−1∑
j=2

r0
rj
Tr|Z−1

j−1XjZj |rj + r0
rn

Tr|Z−1
n−1Xn|rn .

Now we are ready to prove Theorem 5.8 with three steps of reductions. Note that the
Step 1 already suffices to finish the proof of Theorem 5.8 and confirm Conjectures 5.4
and 5.7.

Step 1: In the first step we reduce the joint convexity/concavity of Ψp,q,s to the
convexity/concavity of

Υp,s(A) := Tr(K∗ApK)s, A ∈ P(H)×,

for all K ∈ B(H)×, which has already been thoroughly studied.

Theorem 5.13. For any K ∈ B(H)×, the function Υp,s(A) = Tr(K∗ApK)s is

(1) concave if 0 < p ≤ 1 and 0 < s ≤ 1
p ;

(2) convex if −1 ≤ p ≤ 0 and s > 0;

(3) convex if 1 ≤ p ≤ 2 and s ≥ 1
p .

The proofs of (1) and (2) are due to Hiai [33, Theorem 4.1]. The proof of (3) is due to
Carlen and Lieb [12, Theorem 1.1]. Again, see the discussions after Proposition 5 in [10]
for more historical information. We only comment here that the proof of concavity for
0 < p ≤ 1 with s = 1

p is due to Epstein [23]. His analytic method is nowadays developed
as an important tool in matrix analysis, in particular to deal with concavity (rather than
convexity) of trace functions. We will give a simpler proof of this theorem later, without
using Epstein’s analytic approach.

Proof of Theorem 5.8 given Theorem 5.13. Before proceeding with the proof note first
that

Ψp,q,s(A,B) = Tr(B
q
2K∗ApKB

q
2 )s = Tr|A

p
2KB

q
2 |2s.

We shall use an easy fact that the joint convexity (resp. joint concavity) is stable under
taking sup/max (resp. inf/min).
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(1) If q = 0, then the claim reduces to Theorem 5.13 (1). To show the case 0 < q ≤ p ≤
1 and 0 ≤ s ≤ 1

p+q , set λ := s(p+q) ∈ (0, 1] and we apply (5.7) to (r0, r1, r2) = (2s, 2λ
p ,

2λ
q )

and (X,Y ) = (A
p
2K,B

q
2 ):

Ψp,q,s(A,B) = min
Z∈B(H)×

{
p

p+ q
Tr|A

p
2KZ|

2λ
p + q

p+ q
Tr|Z−1B

q
2 |

2λ
q

}
(5.13)

Since 0 < λ
p ≤

1
p and 0 < λ

q ≤
1
q , from Theorem 5.13 (1) it follows that the maps

A 7→ p

p+ q
Tr|A

p
2KZ|

2λ
p = p

p+ q
Tr(Z∗K∗ApKZ)

λ
p

and
B 7→ q

p+ q
Tr|Z−1B

q
2 |

2λ
q = q

p+ q
Tr(Z−1Bq(Z−1)∗)

λ
q

are both concave. Hence they are both jointly concave in (A,B) and so is Ψp,q,s by (5.13).

(2) If p = 0, then the claim reduces to Theorem 5.13 (2). Suppose −1 ≤ q ≤ p < 0
and s > 0, then we apply (5.8) to (r0, r1, r2) = (2t, 2s, 2

−q ) with 1
t = 1

s − q and (X,Y ) =
(A

p
2K,B

q
2 ):

Ψp,q,s(A,B) = max
Z∈B(H)×

{
s

t
Tr|A

p
2KZ|2t + sqTr|B−

q
2Z|

2
−q

}
. (5.14)

Note that t > 0, sq < 0 and 0 < −q ≤ 1. By Theorem 5.13 (1) and (2), the maps

A 7→ s

t
Tr|A

p
2KZ|2t = s

t
Tr(Z∗K∗ApKZ)t

and
B 7→ sqTr|B−

q
2Z|

2
−q = sqTr(Z∗B−qZ)

1
−q

are both convex. Hence they are both jointly convex in (A,B) and so is Ψp,q,s by (5.14).

(3) If q = 0, then the claim reduces to Theorem 5.13 (3). Suppose −1 ≤ q < 0, 1 ≤
p ≤ 2, (p, q) 6= (1,−1) and s ≥ 1

p+q , then we apply (5.8) to (r0, r1, r2) = (2t, 2s, 2
−q ) with

1
t = 1

s − q and (X,Y ) = (A
p
2K,B

q
2 ):

Ψp,q,s(A,B) = max
Z∈B(H)×

{
s

t
Tr|A

p
2KZ|2t + sqTr|B−

q
2Z|

2
−q

}
. (5.15)

Since sq < 0, 0 < −q ≤ 1 and t = 1
s−1−q ≥

1
p , we have by Theorem 5.13 (1) and (3) that

the maps
A 7→ s

t
Tr|A

p
2KZ|2t = s

t
Tr(Z∗K∗ApKZ)t

and
B 7→ sqTr|B−

q
2Z|

2
−q = sqTr(Z∗B−qZ)

1
−q

are both convex. Hence they are both jointly convex in (A,B) and so is Ψp,q,s by (5.15).

Step 2: In our second step we reduce Theorem 5.13 to three particular cases.

Remark 5.14. To prove Theorem 5.8 we may require fewer conditions on the convex-
ity/concavity of Υp,s. Namely, we only need that

(1) Υp,1/p is concave when 0 < p ≤ 1(Epstein [23]);
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(2) Υp,s is convex when −1 ≤ p < 0 and 0 < s ≤ 1 (Hiai [33]);

(3) Υp,1/p is convex when 1 ≤ p ≤ 2 (Carlen and Lieb [12]).

Indeed, from the variational formula (5.7) it follows that when 0 < p ≤ 1, 0 < s < 1
p and

1
s = p+ 1

t :

Tr(K∗ApK)s = min
Z∈B(H)×

{
spTr(Z∗ApZ)

1
p + s

t
Tr(K∗(Z−1)∗Z−1K)t

}
.

Then the concavity of Υp,1/p gives the concavity of Υp,s.

When −1 ≤ p < 0 and s > 1, by the variational formula (5.8) we have

Tr(K∗ApK)s = max
Z∈B(H)×

{
sTrZ∗ApZ − (s− 1)Tr(Z∗(K−1)∗K−1Z)

s
s−1
}
.

Then the convexity of Υp,1 implies the convexity of Υp,s.

When 1 ≤ p ≤ 2, s < 1
p and p = 1

s + 1
t , we have by the variational formula (5.8)

Tr(K∗ApK)s = max
Z∈B(H)×

{
spTr(Z∗ApZ)

1
p − s

t
Tr(Z∗(K−1)∗K−1Z)t

}
.

Then the convexity of Υp,1/p implies the convexity of Υp,s.

Before the last step of reduction, we need the following well-known lemma.

Lemma 5.15. Let X,Y be two convex subsets of vector spaces and let f : X × Y → R a
function. If f is jointly convex on X × Y , then x 7→ infy∈Y f(x, y) is convex. Similarly, if
f is jointly concave on X × Y , then x 7→ supy∈Y f(x, y) is concave.

Proof. We only prove the convexity here. The proof of the concavity case is similar. For
any x1, x2 ∈ X and any 0 < λ < 1, set x := λx1 + (1 − λ)x2. Then for any ε > 0 and
i = 1, 2, there exists yi ∈ Y such that f(xi, yi) ≤ infy∈Y f(xi, y)+ε. By the joint convexity
of f , we have

inf
y∈Y

f(x, y) ≤ f(x, λy1 + (1− λ)y2)

≤ λf(x1, y1) + (1− λ)f(x2, y2)
≤ λ inf

y∈Y
f(x1, y) + (1− λ) inf

y∈Y
f(x2, y) + ε.

Then the proof finishes by letting ε→ 0+.

Step 3: In the last step, we reduce Theorem 5.8 to Lemma 5.10.

Proof of Theorem 5.13 given Lemma 5.10. It suffices to prove (1)-(3) in Remark 5.14. The
proof is inspired by the proof of (2) in [10]. Let us recall it first. If s = 1, the convexity of
Υp,1 follows from the operator convexity of A 7→ Ap. If s < 1, by (5.7) we have

Tr(K∗ApK)s = min
Z∈B(H)×

{
sTr|A

p
2KZ|2 + (1− s)Tr|Z−1|

2s
1−s
}

= min
Z∈P(H)×

{
sTrK∗ApKZ + (1− s)TrZ

s
s−1
}

= min
Z∈P(H)×

{
sTrK∗ApKZ1−p + (1− s)TrZ

s(1−p)
s−1

}
.
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Since s(1−p)
s−1 < 0, the function t 7→ t

s(1−p)
s−1 is convex. Thus it is well-known that Z 7→

TrZ
s(1−p)
s−1 is convex (see for example [8, Theorem 2.10]). This, together with Ando’s

convexity result (Lemma 5.10 (2)) and Lemma 5.15, yields the convexity of Υp,s.

Now we prove (1). There is nothing to prove when p = 1. For 0 < p < 1, by (5.8), we
have

Tr(K∗ApK)
1
p = max

Z∈B(H)×

{1
p
Tr|A

p
2KZ|2 − 1− p

p
Tr|Z|

2
1−p

}
= max

Z∈P(H)×

{1
p
TrK∗ApKZ − 1− p

p
TrZ

1
1−p

}
= max

Z∈P(H)×

{1
p
TrK∗ApKZ1−p − 1− p

p
TrZ

}
.

Then by Lieb’s concavity result (Lemma 5.10 (1)) and Lemma 5.15, Υp,1/p is concave.

(3) can be shown similarly. Indeed, the case p = 1 is trivial. For 1 < p ≤ 2, we have
by (5.7)

Tr(K∗ApK)
1
p = min

Z∈B(H)×

{1
p
Tr|A

p
2KZ|2 + p− 1

p
Tr|Z−1|

1
1−p

}
= min

Z∈P(H)×

{1
p
TrK∗ApKZ + p− 1

p
TrZ

1
1−p

}
= min

Z∈P(H)×

{1
p
TrK∗ApKZ1−p + p− 1

p
TrZ

}
.

Then by Ando’s convexity result (Lemma 5.10 (2)) and Lemma 5.15, Υp,1/p is convex.

Remark 5.16. Although the variational methods of (5.7) and (5.8) admit analogues (5.11)
and (5.12) of n(≥ 3) variables, the joint convexity/concavity of

P(H)× × · · · × P(H)× 3 (A1, . . . , An) 7→ Tr(A
pn
2
n K∗n−1 · · ·K∗1A

p1
1 K1 · · ·Kn−1A

pn
2
n )s

can not be derived directly from Theorem 5.13 because of the appearance of the term
Tr|Z−1

j−1XjZj |rj . For example, we have

Tr|X1X2X3|r0 = min
Z1,Z2∈B(H)×

{
r0
r1
Tr|X1Z1|r1 + r0

r2
Tr|Z−1

1 X2Z2|r2 + r0
r3
Tr|Z−1

2 X3|r3

}
.

(5.16)
To obtain the joint concavity of

P(H)× × P(H)× × P(H)× 3 (A1, A2, A3) 7→ Tr(A
p3
2

3 K∗2A
p2
2

2 K∗1A
p1
1 K1A

p2
2

2 K2A
p3
2

3 )s,

via the variational method (5.16), the concavity of the function of the form

P(H)× 3 A2 7→ Tr|Y1A
p2
2

2 Y2|r2 = Tr(Y ∗2 A
p2
2

2 Y ∗1 Y1A
p2
2

2 Y2)
r2
2

is required. Unfortunately, little is known for general Y ∗1 Y1. Indeed, Carlen, Frank and
Lieb proved that [9, Corollary 3.3] for p, q, r ∈ R \ {0}, the function

(A,B,C) 7→ TrC
r
2B

q
2ApB

q
2C

r
2

is never concave, and it is convex if and only if q = 2, p, r < 0 and −1 ≤ p+ r < 0.
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