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This thesis is devoted to study of analysis on compact quantum groups. It consists of two parts. The first part presents the classification of invariant quantum Markov semigroups on these quantum homogeneous spaces. The generators of these semigroups are viewed as Laplace operators on these spaces. The classical sphere S N -1 , the free sphere S N -1 + , and the half-liberated sphere S N -1 * are considered as examples and the generators of Markov semigroups on these spheres are classified. We compute spectral dimensions for the three families of spheres based on the asymptotic behavior of the eigenvalues of their Laplace operator. In the second part, we study the convergence of Fourier series for non-abelian groups and quantum groups. It is well-known that a number of approximation properties of groups can be interpreted as some summation methods and mean convergence of associated noncommutative Fourier series. Based on this framework, this work studies the refined counterpart of pointwise convergence of these Fourier series. We establish a general criterion of maximal inequalities for approximative identities of noncommutative Fourier multipliers. As a result, we prove that for any countable discrete amenable group, there exists a sequence of finitely supported positive definite functions, so that the associated Fourier multipliers on noncommutative L p -spaces satisfy the pointwise convergence. Our results also apply to the almost everywhere convergence of Fourier series of L p -functions on non-abelian compact groups. On the other hand, we obtain the dimension free bounds of noncommutative Hardy-Littlewood maximal inequalities associated with convex bodies.
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Résumé

Cette thèse a pour but d'étudier l'analyse sur les groupes quantiques compacts. Elle se compose de deux parties. La première partie porte sur la classification des semi-groupes de Markov invariants sur ces espaces homogènes quantiques. Les générateurs de ces semigroupes sont considérés comme des opérateurs de Laplace sur ces espaces. La sphère classique S N -1 , la sphère libre S N -1 + et la sphère semi-libérée S N -1 * sont considérées comme des exemples et les générateurs de semi-groupes de Markov sur ces sphères sont classifiés. Nous calculons aussi les dimensions spectrales des trois familles de sphères en fonction du comportement asymptotique des valeurs propres de leurs opérateurs de Laplace. Dans la deuxième partie, nous étudions la convergence des séries de Fourier pour les groupes non abéliens et les groupes quantiques. Il est bien connu qu'un certain nombre de propriétés d'approximation de groupes peuvent être interprétées comme des méthodes de sommation et de convergence en moyenne de séries de Fourier non commutatives associées. Nous établissons un critère général d'inégalités maximales pour les unités approchées de multiplicateurs non commutatifs de Fourier. En conséquence, nous prouvons que pour tout groupe dénombrable discret moyennable, il existe une suite de fonctions de type positif à support fini, telle que les multiplicateurs de Fourier associés sur les espaces L p non commutatifs satisfassent à la convergence ponctuelle (presque uniforme). Nos résultats s'appliquent également à la convergence presque partout des séries de Fourier de fonctions L p sur des groupes compacts non-abéliens. D'autre part, nous obtenons des bornes indépendantes de la dimension pour les inégalités maximales de Hardy-Littlewood non commutatives dans l'espace à valeurs opérateurs L p (R d , N ) associées à des corps convexes.

Introduction

This thesis investigates analysis on non-abelian groups and quantum groups. After Woronowicz's pioneering work [START_REF] Woronowicz | Compact quantum groups[END_REF], the theory of topological quantum groups has been fruitfully developed in recent decades. It provides a prominent framework for the study of quantum symmetries, noncommutative geometry and abstract harmonic analysis. Functional analytic and probabilistic methods play essential roles in these researches. The main interests in this thesis will be exactly at the intersection of these areas, and in particular we will focus on the study of Markov semigroups and Fourier multipliers, as well as related objects that appear in the geometry and analysis on quantum groups.

The main objective of this work can be explained in the following two aspects. On the one hand, in the classical setting, the study of analytic or differential structures on a manifold often requires interactions with its isometric group. As a fundamental model, viewing classical spheres as homogeneous spaces of special orthogonal groups, Fourier analysis of spherical functions relies heavily on the invariant Laplacians and the representation theory of special orthogonal groups. From a probabilistic viewpoint, this also leads to the study of invariant Markov semigroups such as the heat semigroups on spheres. For a quantized theory in a similar fashion, the quantum symmetry groups and their quantum homogeneous spaces naturally enter the picture. Based on a probabilistic approach, we aim to study the classification of invariant Markov semigroups on quantum homogeneous spaces; as an example, we will give a precise computation of the natural Laplace operators and spectral dimensions of noncommutative spheres.

On the other hand, it is worth mentioning that the theory of topological quantum groups was also motivated by noncommutative generalizations of Fourier analysis. More precisely, the functional analytic attempts have been made to generalize the Pontryagin duality of locally compact abelian groups. This topic of noncommutative Fourier analysis finds one of its origins in the investigation of approximation properties of operator algebras inaugurated by Haagerup's pioneering work [START_REF] Haagerup | An example of a nonnuclear C * -algebra, which has the metric approximation property[END_REF]. From a viewpoint of harmonic analysis, one can say that these approximation properties are interpretations of Fourier summation methods and mean convergences of Fourier series. Based on this framework, we aim to develop a refined study on the corresponding pointwise convergences of Fourier series. Again our methods will rely on the study of Markov semigroups, as well as tools from noncommutative L p -spaces and quantum probability.

In the following part of this introduction, we will give a detailed presentation on the background, motivations and main results related to the two aforementioned subjects. After the introduction, we will present our work in two parts. The first part deals with the invariant Markov semigroups on quantum homogeneous spaces, and this is principally based on the author's joint work with Biswarup Das and Uwe Franz [START_REF] Das | Invariant markov semigroups on quantum homogeneous spaces[END_REF]. The second part is devoted to the study of convergences of Fourier series, and this is based on the INTRODUCTION work joint with Guixiang Hong and Simeng Wang [START_REF] Hong | Pointwise convergence of noncommutative fourier series[END_REF].

I Invariant Markov semigroups on quantum homogeneous spaces

Symmetry plays an essential role in many places in mathematics and sciences. Many systems are naturally invariant under the action of some groups, like time or space translations, rotations, or reflections. It is therefore of great interest to characterize and classify all invariant equations for a given group action. See for example the recent books by Ming Liao [START_REF] Liao | Invariant Markov processes under Lie group actions[END_REF] and Vladimir Dobrev [START_REF] Dobrev | Invariant differential operators[END_REF], that study invariant Markov processes and invariant differential operators, respectively. Liao's book is motivated by probability theory, whereas Dobrev's book deals with applications to physics.

Quantum groups [START_REF] Woronowicz | Pseudospaces, pseudogroups and Pontriagin duality[END_REF][START_REF] Woronowicz | Compact matrix pseudogroups[END_REF] provide a generalisation of groups and can be considered as a mathematical model for quantum symmetries. Dobrev [START_REF] Dobrev | Invariant differential operators[END_REF] has also studied invariant differential operators for quantum groups. The quantum groups considered in [START_REF] Dobrev | Invariant differential operators[END_REF] are q-deformations of semi-simple Lie groups.

But there exist also interesting quantum groups that are not deformations, but rather "liberations" of classical groups, see, e.g., [START_REF] Van Daele | Universal quantum groups[END_REF][START_REF] Wang | Free products of compact quantum groups[END_REF][START_REF] Banica | Liberation of orthogonal Lie groups[END_REF]. These "liberated" quantum groups furthermore have actions on interesting "liberated" noncommutative spaces, see, e.g., [START_REF] Banica | Quantum isometries and noncommutative spheres[END_REF]. This provides an interesting class of examples for noncommutative geometry.

Banica and Goswami investigated how to define Dirac operators on two of these noncommutative spaces: the free sphere S N -1 + and the half-liberated sphere S N -1 × , cf. [START_REF] Banica | Quantum isometries and noncommutative spheres[END_REF]Theorem 6.4]. The action of the free or the half-liberated orthogonal group yields a natural choice for the eigenspaces, but it does not suggest how to choose the eigenvalues.

In this part we introduce an approach for classifying invariant Markov semigroups on noncommutative space equipped with an action of a compact quantum group. The generators of these semigroups can be considered as natural candidates for Laplace operators. Dirac operators could be obtained via Cipriani and Sauvageot's construction [START_REF] Cipriani | Derivations as square roots of Dirichlet forms[END_REF] of a derivation from a Dirichlet form, see also [START_REF] Cipriani | Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory[END_REF]. Our method generalizes the case of an action of a classical compact group on a homogeneous space presented in [START_REF] Liao | Lévy processes in Lie groups[END_REF]Chapter 3], [START_REF] Liao | Convolution of probability measures on Lie groups and homogenous spaces[END_REF], [75, Chapter 1]. Since here we are dealing only with compact quantum groups and actions on compact quantum spaces, everything can be done on the *-algebraic level.

As concrete examples we study the classical sphere S N -1 , the half-liberated sphere S N -1 * , and the free sphere S N -1 + . Our approach adds a positivity condition to the invariance condition in [START_REF] Banica | Quantum isometries and noncommutative spheres[END_REF], and leads to the formula for the eigenvalues of the Laplace operator on the three spheres S N -1 , S N -1

I. INVARIANT MARKOV SEMIGROUPS ON QUANTUM HOMOGENEOUS SPACES

h • E = h. In [START_REF] Franz | A new characterisation of idempotent states on finite and compact quantum groups[END_REF], the authors showed that the coidalgebra admits an idempotent state Φ, where idempotent state means (Φ ⊗ Φ)∆ = Φ. Let us first give some basic definitions about generator function and Markov semigroup.

Definition 0.1. (Definition 2.12) Let A be a unital *-algebra and φ : A → C be a state. A linear functional ψ : A → C is called a φ-generating functional, if (1) ψ is normalised, i.e., ψ(1) = 0;

(2) ψ is hermitian, i.e., ψ(a * ) = ψ(a), for all a ∈ A;

(3) ψ is φ-conditionally positive, i.e., ψ(a * a) ≥ 0 for all a ∈ A with φ(a * a) = 0.

Definition 0.2. (Definition 2.8) Let (T t ) t≥0 be a semigroup of operators on C.

(1) We call T : C → C a Markov operator, if T (1) = 1 and T is completely positive in the sense that (T t ⊗ id n )(x) ≥ 0 for all x ∈ M n (C) + where id n is the identity map on M n (C). We call (T t ) t≥0 a Markov semigroup if T t is a Markov operator for any t ≥ 0.

(2) We call (T t ) t≥0 a G-invariant semigroup, if (T t ⊗ id) • ∆| C = ∆| C • T t for any t ≥ 0.

(3) We call (T t ) t≥0 strongly continuous if for any fixed x ∈ C,

T t (x)
norm ---→ T 0 (x) as t → 0.

We get the following Schoenberg correspondence for invariant Markov semigroups on an expected coidalgebra C. Theorem 0.3. (Theorem 2.13) Consider an expected left coidalgebra C of a compact quantum group G. Let Φ be the idempotent state corresponding to C.

(1) Let (T t ) t≥0 be a strongly continuous G-invariant Markov semigroups on C. Then the generator L := d dt T t t=0 exists and there exists a ( •T 0 )-generating functional ψ, which is Φ invariant, such that L = (ψ ⊗ E ) • α.

(2) Let ψ be a ( | C )-generating functional which is Φ-invariant. Define L = (ψ⊗E )•α. Then we can construct a G-invariant Markov semigroups on C by

T t = ∞ k=0 t k k! L • k where L • k = L • L • • • • L(x)
is the k folds composition of L, and the sum is taking in the sense of pointwise norm convergence.

As examples, we consider some spheres: classical spheres S N -1 , half-liberated spheres S N -1

INTRODUCTION

Let (u (s) ) s∈N be a special sequence of representations (may not be irreducible) of O × N labeled by N (See Proposition 2.15 for the constuction of this sequence (u (s) ) s∈N ). The following lemma is the key to classify invariant Markov semigroups on spheres. Lemma 0.4. (Lemma 2.16) For any s ∈ N, there exists a basis for the Hilbert space K s where the representation u (s) acts on, such that Φ(s) := Φ(u ) as following ), there exists a pair (b, ν) where b is a positive number and ν is a finite measure on [-1, 1] such that the generator L of (T t ) t≥0 satisfying L(x s ) = λ s x s , x s ∈ D s , with λ s = -b(q s ) (1) +

H k = span{x i 1 • • • x ir : r ≤ k}; D k = H k ∩ H ⊥ k-1 ; d k = dim D k ,
1 -1 q × s (x) -1 x -1 dν(x) (1) 
where q s ∈ Pol[u 11 ] such that h(q n (u 11 )q m (u 11 )) = C n δ nm and q × s (1) = 1. The generators of these O × N -invariant semigroups can be considered as natural candidates for Laplace operators on S N -1 × . In fact, the arguments above also work for more general sphere

S N -1 R if there is a quantum subgroup O R N of O + N acting on S N -1 R such that the Podleś algebra O O R N (S N -1 R
) and the *-algebra generated by {u 1i : 1

≤ i ≤ N } in Pol(O R N ) are isomorphic.
To make this theorem more complete, we need to show what those polynomials q s look like. We give the answer case by case (Section 3.1).

• Classical sphere: q s = J α,β /J α,β (1) where J α,β is the Jacobi polynomial with α = β = (N -3)/2.

• Half-liberated sphere: q s is defined by

q 2k (x) = (-1) k N + k -2 k -1 2 F 1 -k, N + k -1 1 ; x 2 q 2k+1 (x) = x • (-1) k (k + 1) N + k -2 k -1 2 F 1 -k, N + k 2 ; x 2 .
• Free case: q s satisfy the following three-term recurrence relation:

a s+1 q s+2 (x) = U s+1 (N )q s+1 (x)x -a s q s (x) ∀s ≥ 0 where q 0 (x) = 1, q 1 (x) = x, a s = s k=0 (-1) s+k U k (N ) =    U m (N )(U m (N ) -U m-1 (N )) if s = 2m, U m (N )(U m+1 (N ) -U m (N )) if s = 2m + 1,
and where U s (N ) denotes the value of the s th Chebyshev polynomial of the second kind at the point N .

By Theorem 0.5, the generator L of an O × N -invariant Markov semigroup can be determined by a pair (b, ν). We find that if we set (b = 1, ν = 0) the associated generator L is indeed (N -1) -1 ∆ where ∆ is the Laplace operator on the classical sphere S N -1 . (N -1) -1 is a constant and multiplication by a constant will not make difference for differential structure. So the generator L associated to the special pair (b = 1, ν = 0) may be a good choice for the Laplace operator on the sphere. Then we can define the Dirac operator D from the Laplace operator such that D 2 = L. In other words, the eigenvalues of Dirac operator D are (± √ λ s ) s≥0 where (λ s ) s≥0 are eigenvalues of L given by equation [START_REF] Arano | The Fourier algebra of a rigid C * -tensor category[END_REF]. Therefore according to those polynomials q s described above, we can compute the spectral dimension d L of these spheres (Section 3.2):

• Classical sphere:

d L = N -1.
• Half-liberated sphere: d L = 2(N -1).

• Free sphere:

d L = 2 if N = 2, +∞ if N ≥ 3.
It should be noted that, for N = 2, the half-liberated sphere S 1 * and the free sphere S 1 + are isomorphic.

II Pointwise convergence of noncommutative Fourier series

The study of convergence of Fourier series goes back to the very beginning of the theory of harmonic analysis. Recall that for a p-integral function f on the unit circle T with 1 ≤ p ≤ ∞, we may define the Fejér means

(F N f )(z) = N k=-N 1 - |k| N f (k)z k , z ∈ T, N ∈ N,
where f denotes the Fourier transform. It is well-known that F N defines a positive and contractive operator on L p (T), and F N f converges almost everywhere to f for all 1 ≤ p ≤ ∞. Many other summation methods such as the Poisson means and Bochner-Riesz INTRODUCTION means have also been widely studied. These operators notably play prominent roles in classical harmonic analysis (see e.g. [START_REF] Grafakos | Classical Fourier analysis[END_REF]).

In recent decades, similar topics have been fruitfully discussed in the setting of operator algebras and geometric group theory. The study was initiated in the ground-breaking work of Haagerup [START_REF] Haagerup | An example of a nonnuclear C * -algebra, which has the metric approximation property[END_REF], motivated by the approximation property of group von Neumann algebras. Indeed, let Γ be a countable discrete group with left regular representation λ : Γ → B( 2 (Γ)) given by λ(g)δ h = δ gh , where the δ g 's form the unit vector basis of 2 (Γ). The corresponding group von Neumann algebra V N (Γ) is defined to be the weak operator closure of the linear span of λ(Γ). For f ∈ V N (Γ) we set τ (f ) = δ e , f δ e where e denotes the identity of Γ. Any such f admits a Fourier series

g∈Γ f (g)λ(g) with f (g) = τ (f λ(g -1 )
).

The convergence and summation methods of these Fourier series are deeply linked with the geometric and analytic properties of Γ, and in the noncommutative setting they are usually interpreted as various approximation properties for groups (see e.g. [START_REF] Brown | C * -algebras and finite-dimensional approximations[END_REF][START_REF] Cherix | Groups with the Haagerup property[END_REF]). More precisely, for a function m : Γ → C we may formally define the corresponding Fourier multiplier by

T m : g∈Γ f (g)λ(g) → g∈Γ m(g) f (g)λ(g).
Then the group Γ is amenable (resp., has the Haagerup property) if there exists a family of finitely supported functions (resp. c 0 -functions) m N on Γ so that T m N defines a unital completely positive map on V N (Γ) and T m N f converges to f in the w*-topology for all f ∈ V N (Γ) (equivalently, m N converges pointwise to 1); it has the Haagerup property if there exists a family of c 0 -functions m N on Γ so that m N converges pointwise to 1 and T m N defines a unital completely positive map on V N (Γ); it is weakly amenable if there exists a family of finitely supported functions m N on Γ so that T m N defines a completely bounded map on V N (Γ) with sup N T m N cb < ∞ and T m N f converges to f in the w*-topology for all f ∈ V N (Γ). If we take Γ = Z and m N (k) = (1 -|k|/N ) + , it is easy to check that V N (Z) is isomorphic to L ∞ (T) and T m N recovers the Fejér means F N , which means that the integer group Z enjoys the above properties. These approximation properties play essential roles in the modern theory of von Neumann algebras, as well as in geometric group theory. For example, the work of Cowling-Haagerup [START_REF] Cowling | Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one[END_REF] on the weak amenability solves the isomorphism problems of various group von Neumann algebras; the Haagerup property and its opposite Kazhdan property (T) are amongst the central tools in Popa's deformation/rigidity theory [START_REF] Popa | Deformation and rigidity for group actions and von Neumann algebras[END_REF]; also, the weak amenability is a key ingredient in the modern approach to the strong solidity and uniqueness of Cartan subalgebras [START_REF] Ozawa | On a class of II 1 factors with at most one Cartan subalgebra[END_REF][START_REF] Chifan | On the structural theory of II 1 factors of negatively curved groups[END_REF][START_REF] Popa | Unique Cartan decomposition for II 1 factors arising from arbitrary actions of free groups[END_REF]. However, despite the remarkable progress in this field, it is worthy mentioning that only the convergence of T m N f in the w*-topology was studied in the aforementioned works. A standard argument also yields the convergence in norm in the corresponding noncommutative L p -spaces for 1 ≤ p < ∞. Note that in classical harmonic analysis, T m N f converges almost everywhere to f for a number of regular multipliers m N . Also the analogue of almost everywhere convergence for the noncommutative setting was introduced by Lance in his study of noncommutative ergodic theory [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF]; this type of convergence is usually called the almost uniform convergence (abbreviated as a.u. convergence; see Section 4.2). Keeping in mind the classical theory and impressive results already obtained from the mean convergence, it is natural to develop a refined theory of pointwise convergence of noncommutative Fourier series, and to seek applications in geometric group theory, operator algebras and harmonic analysis. However, compared to the classical setting, the pointwise convergence remains very much unexplored, up to isolated contributions [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF][START_REF] Chen | Harmonic analysis on quantum tori[END_REF]. The reason for this lack of development might be explained by numerous difficulties one may encounter when dealing with maximal inequalities for noncommutative Fourier multipliers T m N ; in particular, the kernels of noncommutative Fourier multipliers are no longer classical functions, which cannot be pointwise comparable, and as a result the standard argument of classical Fejér and Bochner-Riesz means does not apply to the noncommutative setting any more.

In this thesis we would like to provide a new approach to the pointwise convergence theorems for noncommutative Fourier series. Our key technical result gives a criterion of maximal inequalities for noncommutative Fourier multipliers. The condition of this criterion only focus on the comparison of symbols of multipliers and those of Markov semigroups. Hence it is relatively easy to verify in the noncommutative setting. This approach is partially inspired by the works of Bourgain and Carbery [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF][START_REF] Bourgain | On the L p -bounds for maximal functions associated to convex bodies in R n[END_REF][START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF][START_REF] Carbery | An almost-orthogonality principle with applications to maximal functions associated to convex bodies[END_REF][START_REF] Deleaval | Dimension free bounds for the Hardy-Littlewood maximal operator associated to convex sets[END_REF] on the dimension free bounds of Hardy-Littlewood maximal operators. We refer to Section 4 for the notions of noncommutative L p -spaces L p (V N (Γ)) and noncommutative maximal norms sup + n x n p . Theorem 0.6. Let Γ be a discrete group as above. Assume that : Γ → R is a conditionally negative length function on Γ.

(1) Consider a family of self-adjoint Fourier multipliers

(T m N ) N ∈N on V N (Γ) with sup N T m N < ∞ (by self-adjointness we mean that (T m N x) * = T m N (x * ) for all x ∈ V N (Γ)).
If there exist α, β > 0 such that for all g ∈ Γ we have

|1 -m N (g)| ≤ β (g) α 2 N , |m N (g)| ≤ β 2 N (g) α ,
then for all 2 ≤ p < ∞ there exists a constant c > 0 such that all f ∈ L p (V N (Γ)),

sup

N ∈N + T m N f p ≤ c f p and T m N f → f a.u. as N → ∞.
If moreover (T m N ) N ∈N are positive, the property holds for all 1 < p < ∞ as well.

(2) Consider a family of self-adjoint Fourier multipliers

(T m N ) N ∈N on V N (Γ) with sup N T m N < ∞. If there exist α, β > 0 such that for all g ∈ Γ we have |1 -m N (g)| ≤ β (g) α N , |m N (g)| ≤ β N (g) α , |m N +1 (g) -m N (g)| ≤ β 1 N , then for all 2 ≤ p < ∞ there exists a constant c such that all f ∈ L p (V N (Γ)), sup N ∈N + T m N f p ≤ c f p and T m N f → f a.u. as N → ∞.
If moreover (T m N ) N ∈N are positive, the property holds for all 3/2 < p < ∞ as well.

(3) Consider a family of unital completely positive Fourier multipliers (T mt ) t∈R + on V N (Γ). If there exists α > 0 and η ∈ N + such that for all g ∈ Γ and 1 ≤ k ≤ η we have

|1 -m t (g)| ≤ β (g) α t , |m t (g)| ≤ β t (g) α , d k m t (g) dt k ≤ β 1 t k , INTRODUCTION then for all 1 + 1 2η < p < ∞ there exists a constant c such that all f ∈ L p (V N (Γ)), sup t∈R + + T mt f p ≤ c f p and T mt f → f a.u. as t → ∞.
The theorem can be extended to many other quantum structures with Fourier expansions, such as twisted crossed products, compact quantum groups and Voiculescu's free semicircular systems. Hence, we will prove the result in a quite general setting in Section 6.

Based on the above theorem, we may study the pointwise convergence problems for a large class of groups with suitable approximation properties. We refer to Section 7 for the notion of groups with the almost completely positive approximation property (AC-PAP), which form a large subclass of groups with the Haagerup property and the weak amenability.

Theorem 0.7. (1) Any countable discrete amenable group Γ admits a sequence of unital completely positive Fourier multipliers (T m N ) N ∈N on V N (Γ) so that m N are finitely supported and

T m N f converges to f a.u. for all f ∈ L p (V N (Γ)) with 1 < p ≤ ∞.
(2) Any countable discrete group Γ with the ACPAP admits a sequence of completely contractive Fourier multipliers (T m N ) N ∈N on V N (Γ) so that m N are finitely supported and

T m N f converges to f a.u. for all f ∈ L p (V N (Γ)) with 2 ≤ p ≤ ∞.
This result holds in the setting of locally compact amenable groups and quantum groups up to standard adaptation as well. Also, we may give more concrete examples as follows: i) In the classical Euclidean setting, our approach provides new types of approximate identities. Given any symmetric convex body B in R d with volume 1. Let Φ be the inverse Fourier transform of the convolution 1 B * 1 B , where 1 B denotes the characteristic function of B, and let Φ t = t -d Φ(t -1 •) for t > 0. Then Φ is a positive integrable function with integral one. We have

lim t→0 Φ t * f = f a.e., f ∈ L p (R d ) with 3/2 < p < ∞, and lim j→∞ Φ 2 -j * f = f a.e., f ∈ L p (R d ) with 1 < p < ∞.
Moreover we can get the almost uniform convergence for a function

f ∈ L p (R d ; L p (M)) with value in a noncommutative L p -space L p (M).
If B is the unit cube, the convergence of (Φ t * f ) t>0 also holds for 1 < p < ∞ and we recover the classical Fejér means.

ii) (Noncommutative Fejér means) Inspired by i), we may introduce the following analogue of Fejér means on non-abelian discrete amenable groups. Let (K N ) N ∈N be a Følner sequence, that is, K N ⊂ Γ are subsets so that

m N (g) := 1 K N * 1 K N (g) |K N | = |K N ∩ gK N | |K N | → 1, as N → ∞,
where |K N | denotes the cardinality of K N . Then the associated multipliers T m N are unital completely positive with m N finitely supported. And there is a subsequence

(N j ) j∈N such that T m N j f → f a.u. f ∈ L p (V N (Γ))
for all 1 < p < ∞. For instance if Γ is a group of polynomial growth with finite generating set S, we may take K N = S N . If moreover Γ is a 2-step nilpotent group and p > 3/2, we may take N j = j.

iii) (Noncommutative Bochner-Riesz means) Let Γ be a hyperbolic group so that the word length function | | is conditionally negative. For example we may take Γ to be a non-abelian free group or a hyperbolic Coxeter group. The following Bochner-Riesz means are studied in [START_REF] Mei | Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups[END_REF]: for a fixed δ > 1 we take

B δ N f = g∈Γ:|g|≤N 1 - |g| 2 N 2 δ f (g)λ(g), f ∈ L p (V N (Γ)).
We have B δ N f → f almost uniformly for all 2 ≤ p ≤ ∞. We remark that we will indeed establish Corollary 8.6 in the general setting of Woronowicz's compact quantum groups. As a particular case our result applies to Fourier series of non-abelian compact groups. Recall that for a compact group G, any function f ∈ L p (G) admits a Fourier series

f (x) ∼ π∈Irr(G) dim(π)Tr( f (π)π(x)), x ∈ G with f (π) = G f (x)π(x -1 )dx
where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations of G. The study of pointwise summability of above Fourier series is much more intricate than the abelian case. To our best knowledge, the pointwise convergence theorems in this setting were studied for differentiable or continuous functions in [START_REF] Harish-Chandra | Discrete series for semisimple Lie groups. II. Explicit determination of the characters[END_REF][START_REF] Sugiura | Fourier series of smooth functions on compact Lie groups[END_REF][START_REF] Huang | A generalized Fejér's theorem for locally compact groups[END_REF], and for some p-integrable functions on compact Lie groups for example in [START_REF] Clerc | Sommes de Riesz et multiplicateurs sur un groupe de Lie compact[END_REF][START_REF] Stanton | Polyhedral summability of Fourier series on compact Lie groups[END_REF]. However, from the viewpoint of amenable quantum groups, our approach easily establish the following pointwise convergence theorem for general p-integral functions. The summation method does not relies on the Lie algebraic structure, and hence it is novel compared to previous works; moreover it can be extended to the general setting of compact quantum groups.
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Moreover, there exists an increasing sequence of finite subsets K N ⊂ Irr(G) such that for all f ∈ L 2 (G) we have

f (x) = lim N →∞ π∈K N dim(π)Tr( f (π)π(x)), a.e. x ∈ G.
Before ending the introduction to main results, we remark that the main Theorem 0.6 also implies as a byproduct the dimension free bounds of noncommutative Hardy-Littlewood maximal operators. The noncommutative version of Hardy-Littlewood maximal inequalities was studied in [START_REF] Mei | Operator valued Hardy spaces[END_REF] for balls respecting to Euclidean metrics and in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] for general doubling metric spaces. The dimension free bounds in this noncommutative setting were only studied by the first author in [START_REF] Hong | Non-commutative ergodic averages of balls and spheres over euclidean spaces[END_REF] for Euclidean balls; because of various difficulties in noncommutative analysis as mentioned before, the general cases for convex bodies remained unexplored before our work. Our following result establishes the desired maximal inequalities for general convex bodies in R d with dimension free estimates. Corollary 0.9. Let B be a symmtric convex body in R d and N a semifinite von Neumman algebra. Define Φ r :

L p (R d ; L p (N )) → L p (R d ; L p (N )) by Φ r (f )(ξ) = 1 µ(B) B f (ξ -rη)dη.
Then there exists constant C p > 0 independent of d such that the following holds:

(1) For any 1 < p ≤ ∞,

sup j∈Z + Φ 2 j (f ) p ≤ C p f p , f ∈ L p (R d ; L p (N )).
(2) For any 3 2 < p ≤ ∞,

sup + r≥0 Φ r (f ) p ≤ C p f p , f ∈ L p (R d ; L p (N )). ( 3 
) If B is the q -ball {(x i ) d i=1 : d i=1 |x i | q ≤ 1} with q ∈ 2N, then for any 1 < p < ∞, sup + r≥0 Φ r (f ) p ≤ C p f p , f ∈ L p (R d ; L p (N )).
In the end we make some comments on the strategy of the proof. Our argument heavily relies on the theory of noncommutative square functions, noncommutative martingales and ergodic inequalities. Also, Theorem 0.7, Theorem 0.8 and the related examples are crucially based on abstract constructions of conditionally negative functions on (quantum) groups; in hindsight, these methods essentially originated in the study of probabilistic and analytic properties on (quantum) groups [START_REF] Jolissaint | Algèbres de von Neumann finies ayant la propriété de Haagerup et semi-groupes L 2 -compacts[END_REF][START_REF] Caspers | The Haagerup approximation property for von Neumann algebras via quantum Markov semigroups and Dirichlet forms[END_REF][START_REF] Daws | The Haagerup property for locally compact quantum groups[END_REF]. As to the key criterion in Theorem 0.6, the principle method is to estimate the noncommutative square functions via Fourier series. The part of p ≥ 2 is relatively accessible thanks to the Placherel formula. But the case of p < 2 is highly nontrivial, and our strategy is inspired by the interpolation methods developed by Bourgain in [START_REF] Bourgain | On the L p -bounds for maximal functions associated to convex bodies in R n[END_REF], as is mentioned previously. However, substantial difficulties arise if we want to transfer Bourgain's method to the noncommutative setting, since the operator space structure of Hilbert spaces is much more intricate.

II. POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES

We refer to Part II for the detailed proofs and exposition of the obove work. In particular, in Chapter 4, we will recall the background and prove some preliminary results on noncommutative vector valued L p -sapces and pointwise convergence. Chapter 5 is devoted to the calculation of the order of square function of subordinate Poisson semigroups. In Chapter 6, we will establish the key criterion for maximal inequalities for Fourier multipliers, i.e. Theorem 6.2 and Theorem 6.3. Last in Chapter 8, we will establish various maximal inequalities and pointwise convergence theorem of noncommutative Fourier multipliers.

Part I Invariant Markov semigroups on quantum homogeneous spaces

Chapter 1 Preliminaries

Compact quantum groups

Let us first recall the definition and some properties of compact quantum groups. We refer to [START_REF] Woronowicz | Compact quantum groups[END_REF] for more details. Any compact quantum group G admits a unique Haar state h on C(G) such that

(h ⊗ id) • ∆(x) = h(x)1 = (id ⊗h) • ∆(x) ∀x ∈ C(G). Let u ∈ C(G) ⊗ B(H)
, where H is a Hilbert space with a finite dimension n. If the basis of H was chosen, then we can write u = (u ij ) n i,j=1 . u is called an n-dimensional representation of G , if for any 1 ≤ i, j ≤ n we have

∆(u ij ) = n k=1 u ik ⊗ u kj .
Denote by Irr(G) the set of unitary equivalence classes of irreducible representations of G, which is called the dual of G. For each π ∈ Irr(G), we fix a representation u (π) ∈ B(H π ) ⊗ C(G) of the class π where H π is a Hilbert space with finite dimension n π . Denote Pol(G) = span{u

(π) ij : u (π) = (u (π) ij ) nπ i,j=1 , π ∈ Irr(G)}, which is a dense *-subalgebra of C(G).
For each π ∈ Irr(G), there exists a unique positive invertible operator

Q π ∈ B(H π ) with Tr(Q π ) = Tr(Q -1
π ) := d π such that the Haar state can be calculated as following:

h(u (π) ij (u (π ) lm ) * ) = δ ππ δ il (Q π ) mj d π , h((u (π) ij ) * u (π ) lm ) = δ ππ δ jm (Q -1 π ) mj d π (1.1) CHAPTER 1. PRELIMINARIES for any π, π ∈ Irr(G) and 1 ≤ i, j ≤ n α , 1 ≤ l, m ≤ n β .
The quantum group G is said to be of Kac type if Q π = id π for all π ∈ Irr(G). The number d π is called the quantum dimension of π. We have

d π = n π if G is of Kac type.
Let C u (G) be the universal C * -algebra generated by Pol(G). Let L 2 (G, h) (L 2 (G) for short) be the Hilbert space defined from the GNS representation of h. Let L ∞ (G) to be the von Neumann algebra generated by Pol(G) in B(L 2 (G)) and define C r (G) to be the reduced C*-algebra generated by Pol(G) in B(L 2 (G)). In this thesis, we will be interested in the case that G is of Kac type, in other words, the Haar state h is tracial.

Define the tensor product of representations 

u (α) u (β) = i,j,k,l u (α) ij u (β) kl ⊗ e (α) ij ⊗ e (β
(π) ij ) = δ ij and S(u (π) ij ) = (u (π) ji ) * .
Then, is called the counit of Pol(G) and S is called the antipode of Pol(G). The counit is a *-homomorphism such that

( ⊗ id)∆ = (id ⊗ )∆ = id .
The antipode is a anti-homomorphism such that S(S(x * ) * ) = x for all x ∈ Pol(G).

Actions of compact quantum groups

In this subsection, we introduce the actions of compact quantum groups on compact quantum spaces, where compact quantum spaces mean unital C*-algebras. We refer to [START_REF] Commer | Actions of compact quantum groups[END_REF] for a recent survey on actions of compact quantum groups. Definition 1.2. Let O(X) be a C and (A, ∆) be a Hopf*-algebra. A Hopf*-algebraic right action α is a *-homomorphism α :

C → C ⊗ A such that • (id C ⊗∆) • α = (α ⊗ id A ) • α, • (id C ⊗ε) • α = id C .
The following definition was first introduced in [START_REF] Podleś | Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups[END_REF].

Definition 1.3. A right action X α G of a compact quantum group G on a compact quantum space X is a unital *-homomorphism α : C(X) → C(X) ⊗ C(G) such that
• the action property holds:

(id X ⊗ ∆) • α = (α ⊗ id G ) • α, 1.3. QUANTUM HOMOGENEOUS SPACES
• the density condition (also called Podleś condition) holds:

α(C(X))(1 C(X) ⊗ C(G)) = C(X) ⊗ C(G).
Let π ∈ Irr(G) and u (π) ∈ C(G) ⊗ B(H π ) be the irreducible representation associated to π. The intertwiner space between π and an action α is defined by

Mor(π, α) = T : H π → C(X) : α(T ξ) = (T ⊗ id G ) u (π) (ξ ⊗ 1) .
We call the following subspace π-spectral subspace

C(X) π = span{T ξ : ξ ∈ H π , T ∈ Mor(π, α)} ⊂ C(X). The Podleś subalgebra of C(X) is defined by O G (X) = span{C(X) π : π ∈ Irr(G)}. (1.2) If we consider the action α = ∆ of G on G itself, then the Podleś subalgebra O G (G) = Pol(G).
If the restriction of α on the Podleś subalgebra satisfying

α H = α| O G (X) : O G (X) → O(X) ⊗ Pol(G), then α H is a Hopf*-algebraic action.
Assume O G (X) admits a universal completion, denoted by C u (X), then the Hopf*algebraic action α H can extend to a universal action

α u : C u (X) → C u (X) ⊗ C u (G) An action is called embeddable, if O G (X) is isomorphic to a *-subalgebra of Pol(G)
, such that the action corresponds to the restriction of the comultiplication, i.e., if there exists an injective unital *-homomorphism ϑ :

O G (X) → Pol(G) such that (ϑ ⊗ id) • α| O G (X) = ∆ • ϑ.

Quantum homogeneous spaces

Embeddable actions can give a unital *-subalgebras which are also coideals.

Definition 1.4. A left (right, resp.) coidalgebra of Pol(G) is unital *-subalgebra C of Pol(G) such that ∆(C) ⊆ C ⊗ Pol(G), (∆(C) ⊆ Pol(G) ⊗ C resp.).
We call C an expected left (right, resp.) coidalgebra, if there exists a surjective projection

E : Pol(G) → C such that E = 1, h • E = h and E(xyz) = xE(y)z for any x, z ∈ C, y ∈ Pol(G)
. We call this projection E the conditional expectation from Pol(G) onto C.

Definition 1.5. Let f, g are two functionals on C(G). The convolution is defined by

f * g = (f ⊗ g) • ∆. A state Φ on C(G) is called idempotent if Φ * Φ = Φ.
Remark 1.6. In [49, Section 3], authors showed that for any idempotent state φ,

φ • S = φ (1.3)
where S is the antipode.

CHAPTER 1. PRELIMINARIES Franz and Skalski showed that there is a one to one correspondence between expected coidalgebras and idempotent states. Theorem 1.7. ( [START_REF] Franz | A new characterisation of idempotent states on finite and compact quantum groups[END_REF]) Let G be a compact quantum group. There is a one-to-one correspondence between the following objects:

• idempotent states Φ on Pol(G);

• expected left (equivalently, right) coidalgebras C in Pol(G) (denote by E : Pol(G) → C the conditional expectation).

Given an idempotent state Φ, we get the expected left coidalgebra by C = (Φ ⊗ id) • ∆(Pol(G)). Given an expected coidalgebra Pol(G), we can recover the idempotent state as Φ = ε • E. Definition 1.8. Let K be a compact quantum group. We call K is a compact quantum subgroup of G, if there exists a surjective, unital *-homomorphism θ :

C u (G) -→ C u (K) such that (θ ⊗ θ) • ∆ u,G = ∆ u,K • θ
where ∆ u,G and ∆ u,K are the comultiplications of C u (G) and C u (K) respectively.

Definition 1.9. The *-algebra of the left quantum quotient of G by K, denoted Pol(K\G) is defined by

Pol(K\G) := {x ∈ Pol(G) : (θ ⊗ id)(∆ G (x)) = 1 K ⊗ x}.
Let C(K\G) be the norm closure of Pol(K\G) in C(G).

Note that ∆(Pol(K\G)) ⊂ Pol(K\G) ⊗ Pol(G). We define

α := ∆| Pol(K\G) : Pol(K\G) -→ Pol(K\G) ⊗ Pol(G).
We can extend this action to C(G) and denote it α again, which is a right action of G on K\G.

One can check that E := (h K ⊗ θ) • ∆ G is the h G -preserving conditional expectation from Pol(G) to Pol(K\G). Therefore, Pol(K\G) is an expected left coidalgebra.

It is worth to be mentioned here that if G is a classical group, an expected coidalgebra is always an algebra of the continuous functions of a quotient space. But in noncommutative C(G), there are a lot of examples (for instance, see Proposition 3.1) showing that coidalgebra may be NOT a quantum quotient space.

Chapter 2

Invariant Markov semigroups on quantum homogeneous spaces

Generator of invariant Markov semigroup

Let G be a compact quantum group and 1 ∈ C ⊂ Pol(G) be an expected left coidalgebra of Pol(G). Let α = ∆| C be the comultiplication restricted on C, which is a right action of G on C. Let E be the conditional expectation from Pol(G) onto C and Φ be the idempotent state associated to C by Theorem 1.7. Then

Φ = • E and E = (Φ ⊗ id) • ∆
where is the counit and ∆ is the comultiplication of G. Define a right conditional expectation associated to Φ by

E r := (id ⊗Φ) • ∆.
We start with a simple lemma which will be used in the following.

Lemma 2.1. On Pol(G) the following holds:

(1) (E ⊗ id) • ∆ = ∆ • E ; (id ⊗ E r ) • ∆ = ∆ • E r . ( 2 
) (E r ⊗ id) • ∆ = (id ⊗ E ) • ∆.
Proof. The identity in (1) is observed in [START_REF] Franz | Integration over the quantum diagonal subgroup and associated Fourier-like algebras[END_REF]. Indeed,

(E ⊗ id) • ∆ = (Φ ⊗ id ⊗ id) • (∆ ⊗ id) • ∆ = (Φ ⊗ ∆) • ∆ = ∆ • E .
Similarly, we get the second equation for E r . We prove [START_REF] Bakry | The Markov sequence problem for the Jacobi polynomials and on the simplex[END_REF]:

(E r ⊗ id) • ∆ = (id ⊗ Φ ⊗ id) • (∆ ⊗ id) • ∆ = (id ⊗ (Φ ⊗ id) • ∆) • ∆ = (id ⊗ E ) • ∆. CHAPTER 2. INVARIANT MARKOV SEMIGROUPS ON QUANTUM HOMOGENEOUS SPACES Definition 2.2. (1) We say that a functional f on C is Φ-invariant if (f ⊗ Φ) • α = f . (2) We say that a functional f on Pol(G) is bi-Φ-invariant if (f ⊗ Φ) • ∆ = f = (Φ ⊗ f ) • ∆ Definition 2.3.
Let f and g be two functionals on an expected left coidalgebra C. We define the convolution of f and g, denoted by f g, by the following functional on C:

f g := f ⊗ (g • E ) • α.
Remark 2.4. We should distinguish this convolution with the convolution for functionals on Pol(G). Recall that (see Definition 1.5) for two functionals µ and ν on Pol(G), the convolution is defined by

µ * ν := (µ ⊗ ν) • ∆. Proposition 2.5. Let f, g be Φ-invariant functionals on C. Then f g is Φ-invariant.
Proof. By the action property of α, Φ-invariance of g and Lemma 2.1, we have

((f g) ⊗ Φ) • α = (f ⊗ g ⊗ Φ) • (id ⊗E ⊗ id) • (id ⊗∆) • α = (f ⊗ g) • (id ⊗E ) • α = f g.
We call a family of linear functionals {f t : C → C} t≥0 a convolution semigroup on C if

f s f t = f s+t ∀ s, t ≥ 0.
Definition 2.6. Let (f t ) t≥0 be a semigroup of functionals on C (on Pol(G), resp.).

(1) We call (f t ) t≥0 a convolution semigroup of states, if for any t ≥ 0, the functionals f t are states, i.e. f t (1) = 1 and f t (x * x) ≥ 0 for any x ∈ C (x ∈ Pol(G), resp.).

(2) We call (f t ) t≥0 a Φ-invariant (bi-Φ-invariant, resp.) semigroup, if for any t ≥ 0, f t is Φ-invariant (bi-Φ-invariant, resp.).

(3) We call that (f t ) t≥0 is a continuous semigroup on C (on Pol(G) resp.) if for any fixed x ∈ C (x ∈ Pol(G), resp.),

lim t→0 f t (x) = f 0 (x).
Definition 2.7. We say that a linear map T :

C → C is G-invariant, if α • T = (T ⊗ id) • α.
Definition 2.8. Let (T t ) t≥0 be a semigroup of operators on C.

(1) We call T : C → C a Markov operator, if T (1) = 1 and T is completely positive in the sense that (T t ⊗ id n )(x) ≥ 0 for all x ∈ M n (C) + where id n is the identity map on M n (C). We call (T t ) t≥0 a Markov semigroup if T t is a Markov operator for any t ≥ 0.

(

) We call (T t ) t≥0 a G-invariant semigroup, if (T t ⊗ id) • ∆| C = ∆| C • T t for any t ≥ 0. ( 2 
) 3 
We call (T t ) t≥0 strongly continuous if for any fixed x ∈ C,

T t (x) norm ---→ T 0 (x) as t → 0.
Proposition 2.9. The following holds (1) Let (f t ) t≥0 be a Φ-invariant semigroup of states on C. Define µ t := f t • E , for all t ≥ 0. Then (µ t ) t≥0 is the unique bi-Φ-invariant semigroup of states on Pol(G), such that µ t | C = f t for any t ≥ 0.

(2) Let (µ t ) t≥0 be a bi-Φ-invariant semigroup of functionals on Pol(G). Then

f t := µ t | C is the unique Φ-invariant semigroup of states on C, such that f t • E = µ t .
Proof. We prove (1) first. By Lemma 2.1,

µ t * µ s = (f t ⊗ f s • E )(E ⊗ id)∆ = f s+t • E = µ t+s .
Since conditional expectation E is positive, and E (1) = 1, (µ t ) t≥0 is a semigroup of states on Pol(G).

We then prove the bi-Φ-invariance of µ t , by applying Lemma 2.1. Left Φ-invariance:

(Φ ⊗ µ t ) • ∆ = (Φ ⊗ f t • E ) • ∆ = (Φ ⊗ f t )((E r ⊗ id) • ∆ = (Φ * Φ ⊗ f t ) • ∆ = (Φ ⊗ f t ) • ∆ = f t • E = µ t .
Right Φ-invariance:

(µ t ⊗ Φ) • ∆ = (f t ⊗ Φ)(E ⊗ id) • ∆ = (f t ⊗ Φ)∆ • E = f t • E = µ t .
Let ν t be any bi-Φ-invariant functional on Pol(G) such that ν t | C = f t . Then using the right Φ-invariance of ν t we have

ν t (x) = (Φ ⊗ ν t )(∆(x)) = ν t (E (x)) = f t (E (x)) = µ t (x),
which proves the uniqueness. Now we prove (2): Since α = ∆| C , the Φ-invariance of f t follows from the bi-Φinvariance of µ t . The uniqueness can be seen easily.

In fact, the following proposition shows that the assumption of Φ-invariance for f t in Proposition 2.9 is not necessary. Proposition 2.10. Let {f t : C -→ C} t≥0 be a convolution semigroup of states on C. Then f t is Φ-invariant. HOMOGENEOUS SPACES Proof. Let µ t := f t • E . Proposition 2.9 implies that (µ t ) t≥0 is a convolution semigroup of functionals on Pol(G). Let us first show that µ t is bi-Φ-invariant.

By definition, for any t ≥ 0, (Φ ⊗ µ t ) • ∆ = µ t • E = µ t . Note that µ 0 is an idempotent state on Pol(G). By equation (1.3), we have

(µ 0 ⊗ Φ) • ∆ = ((Φ • S) ⊗ (µ 0 • S)) • ∆ op = (Φ ⊗ µ 0 ) • ∆ • S = µ 0 • S = µ 0 .
This implies that µ t * Φ = µ t * µ 0 * Φ = µ t . Hence (µ t ) t≥0 is a convolution semigroup of bi-Φ-invariant functionals on Pol(G). Proposition 2.9 now yields that f t = µ t | C must be Φ-invariant for each t ≥ 0. Proposition 2.11. (1) Let (f t ) t≥0 be a continuous semigroup of states on C.

Then T t := (f t ⊗ E ) • α is the continuous G-invariant Markov semigroup on C such that f t = • T t , for any t ≥ 0.
(2) Let (T t ) t≥0 be a continuous G-invariant Markov semigroup on C. Then f t := • T t is the continuous semigroup of states on C such that T t = (f t ⊗ E ) • α, for any t ≥ 0.

Proof. We prove [START_REF] Arano | The Fourier algebra of a rigid C * -tensor category[END_REF]. By action property (see in Definition 1.3) and Lemma 2.1, we have

(T t ⊗ id) • α = (f t ⊗ E ⊗ id)(α ⊗ id) • α = (f t ⊗ E ⊗ id)(id ⊗ ∆) • α = (f t ⊗ α • E ) • α = α • T t .
This implies that T t is a G-invariant operator for all t. Moreover,

T t • T s = (f t ⊗ f s ⊗ E )(id ⊗α • E )α = (f t ⊗ f s ⊗ id)(id ⊗E ⊗ E )(id ⊗∆)α = (f t f s ⊗ E )α = T t+s .
Since f t is a state, we get T t is completely positive and T t (1) = 1. Therefore (T t ) t≥0 is a Markov semigroup. By Proposition 2.10, we get f t is Φ-invariant on C for any t. Then f t = • T t follows from the Φ-invariance of f t immediately. By the definition of T t , T t (x) norm-converging to T 0 (x) as t → 0 is obvious, because of the continuity of (f t ) t . Now, Let us proof [START_REF] Bakry | The Markov sequence problem for the Jacobi polynomials and on the simplex[END_REF]. For any t ≥ 0, since T t is completely positive, T t (1) = 1 and | C is a *-homomorphism on C, we have that f t is a state. Moreover,

(f t f s )(x) = (f t ⊗ f s • E ) • α = (( • T t ) ⊗ ( • T s • E t )) • α = ( ⊗ ( • T s • E )) • (T t ⊗ id)α = [id ⊗( • T s • E )]( ⊗ id) • α • T t = • T s • T t = f t+s .
By G-invariance of T t , we have

(f t ⊗ E ) • α = ( ⊗ E ) • α • T t = T t ; 2.1. GENERATOR OF INVARIANT MARKOV SEMIGROUP f t (x) = • T t (x) t→0 --→ • T 0 (x) = f 0 (x),
for any x ∈ C. Definition 2.12. Let A be a unital *-algebra and φ : A → C be a state. A linear functional ψ :

A → C is called a φ-generating functional, if (1 
) ψ is normalised, i.e., ψ(1) = 0;

(2) ψ is hermitian, i.e., ψ(a * ) = ψ(a), for all a ∈ A;

(3) ψ is φ-conditionally positive, i.e., ψ(a * a) ≥ 0 for all a ∈ A with φ(a * a) = 0.

We have the following Schoenberg correspondence for invariant Markov semigroups on coidalgebras.

Theorem 2.13. Consider an expected left coidalgebra C of a compact quantum group G.

Let Φ be the idempotent state corresponding to C.

(1) Let (T t ) t≥0 be a strongly continuous G-invariant Markov semigroups on C. Then the generator L := d dt T t t=0 exists and there exists a 

( •T 0 )-generating functional ψ, which is Φ invariant, such that L = (ψ ⊗ E ) • α. (2) Let ψ be a ( | C )-generating functional which is Φ-invariant. Define L = (ψ⊗E )•α. Then we can construct a G-invariant Markov semigroups on C by T t = ∞ k=0 t k k! L • k where L • k = L • L • • • • L(x) is the k folds composition of L,
= d dt µ t | t=0 is a µ 0 -generating functional on Pol(G). Set ψ = ψ| C , then ψ is a • T 0 -generating functional on C. Denote f t = µ t | C = • T t . Then T t = (f t ⊗ E ) • α. Hence, we have d dt T t (x) t=0 = ( d dt f t t=0 ⊗ E ) • α(x) = (ψ ⊗ E ) • α(x).
Since f t is a semigroup of states, f t is Φ-invariant by Proposition 2.10, so is ψ. Now, let us prove the second assertion (2): Let us prove the G-invariance of L first.

(L ⊗ id) • α = (ψ ⊗ E ⊗ id)(α ⊗ id) • α = (ψ ⊗ E ⊗ id)(id ⊗ ∆) • α = (ψ ⊗ ∆ • E ) • α = α • L.
Since ψ is Φ-invariant, by the proof of Proposition 2.11, we have

ψ ψ = ε • L • L. This implies that (ψ k ⊗ E ) • α = (( • L • k ) ⊗ E ) • α = ( ⊗ E ) • α • L • k = L • k . CHAPTER 2. INVARIANT MARKOV SEMIGROUPS ON QUANTUM HOMOGENEOUS SPACES Let f t be the convolution exponential of ψ , i.e. f t (x) = ∞ k=0 t k k! ψ k (x).
By [START_REF] Franz | Lévy processes on quantum hypergroups[END_REF]Theorem 3.3] and Proposition 2.9, (f t ) t is a semigroup of states. Thus we can set

T t (x) = (f t ⊗ E ) • α = ∞ k=0 t k k! L • k (x). By Proposition 2.11, (T t ) t≥0 is a G-invariant Markov semigroup. Let x = u (π) ij ∈ C ⊂ Pol(G). Then T t (u (π) ij ) = nπ m=1 f t (u (π) im )E (u (π) mj ). Note that f t (u (π) im ) = ∞ k=0 t k k! ψ k (u (π)
im ) where the sum is taking in the sense of convergence in C. On the other hand, for any x ∈ C ⊂ Pol(G), x can be written as the linear combination of some u (π) ij . Therefore for any fixed x ∈ C, the sum in the definition of T t (x) is taking in the sense of pointwise norm convergence.

Classification of Markov semigroups on real easy quantum spheres

We know that the orthogonal group O N is the isometry group of the sphere S N -1 . There exist quantum versions, or "liberated" versions, of the orthogonal groups and the spheres. The free orthogonal quantum group O + N was first introduced by Wang in [START_REF] Wang | Free products of compact quantum groups[END_REF], and the free sphere S N -1 + was studied by Banica in [START_REF] Banica | Quantum isometries, noncommutative spheres and related integrals[END_REF]. There are given by their universal C * -algebras which are defined as follow:

C u (S N -1 + ) = C * x 1 , • • • , x N |x i = x * i , i x 2 i = 1 ; C u (O + N ) = C * (u ij ) i,j=1,...,N |u = ū, u t = u -1 .
Banica and Speicher studied easy orthogonal groups in [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF]. Weber classified them in [START_REF] Weber | On the classification of easy quantum groups[END_REF]. According to these works, we can define more spheres as follow.

C u (S N -1 R ) = C * x 1 , • • • , x N |x i = x * i , i x 2 i = 1, R
where R is a family of some relations between the generators (x i ) 1≤i≤N .

We call that S N -1 R is a real easy quantum sphere, if there is an easy compact quantum group O R N , which is a quantum subgroup of O + N , such that ϑ defined below is a unital *-isomorphism and α defined below is an Hopf*-algebraic action:

ϑ : Pol(S N -1 R ) → C R α : Pol(S N -1 R ) → Pol(S N -1 R ) ⊗ Pol(O R N ) x i → u 1i x i → N k=1
x k ⊗ u ki .

CLASSIFICATION OF MARKOV SEMIGROUPS ON REAL EASY QUANTUM SPHERES

where Pol(S N -1

R

) is the *-algebra generated by {x i :

1 ≤ i ≤ N } and C R is the *-algebra generated by {u 1i : 1 ≤ i ≤ N } in Pol(O R N ).
In other words, the action α above is embeddable.

Example 2.14. (1) Let R = ∅. The sphere is just the free sphere and the associated easy quanum group is O + N .

(2) Let R = {x i x j = x j x i : 1 ≤ i, j ≤ N }, we get the classical sphere S N -1 and classical orthogonal group O N .

(3) (see [START_REF] Banica | Quantum isometries and noncommutative spheres[END_REF][START_REF] Banica | Quantum isometries, noncommutative spheres and related integrals[END_REF]

) Let R = {x i x k x j = x j x k x i : 1 ≤ i, k, j ≤ N }.
We get the half-libeated sphere S N -1 * and the half-liberated quantum orthogonal group O * N : We define h = h • ϑ. One can easily check that

C u (S N -1 * ) = C u (S N -1 + )/ < abc = cba, ∀a, b, c ∈ x i >; C u (O * N ) = C u (O + N )/ < abc = cba, ∀a, b, c ∈ u ij > . ( 4 
( h ⊗ id) • α(x) = h(x)1 ∀ x ∈ Pol(S N -1 R ). Let C r (S N -1 R
) be the reduced C*-algebra associated to the h-GNS representation and let C r (O R N ) be the reduced C*-algebra associated to the h-GNS representation. Similar as the proof of [START_REF] Banica | Quantum isometries, noncommutative spheres and related integrals[END_REF]Proposition 5.8

], C r (S N -1 R ) is isometric isomorphism to the reduced C*-subalgebra C R . From now on, we regard Pol(S N -1 R ) as a subaglebra of Pol(O R N )
. Therefore, we will not distinguish h and h. Moreover, since (ϑ⊗id

)•α = ∆•ϑ, we can view the action α of Pol(O R N ) on Pol(S N -1 R ) as ∆| C R . Since O + N is of Kac type, so is O R N . We have a Haar state preserving conditional expectation E : Pol(O R N ) → C R O(S N -1 R ). So O(S N -1 R ) is an expected coidalgebra of Pol(O R N ). Let Φ be the corresponding idempotent state. Since O O R N (O R N ) = Pol(O R N ), the podleś subalgbra O O R N (S N -1 R ) E (Pol(O R N )) = C R Pol(S N -1 R
).

Now, we can define the associated right conditional expectations

E r = (id ⊗Φ) • ∆
and two-sided conditional expectations

E bi = (Φ ⊗ id ⊗Φ)(∆ ⊗ id)∆. CHAPTER 2. INVARIANT MARKOV SEMIGROUPS ON QUANTUM HOMOGENEOUS SPACES Then O(S N -1 R ) = E (Pol(O R N )) = *-alg{u 11 , . . . , u 1N }, S(O(S N -1 R )) = E r (Pol(O R N )) = *-alg{u 11 , . . . , u N 1 }, O(S N -1 R ) ∩ S(O(S N -1 R )) = E bi Pol(O R N ) = *-alg{u 11 },
where S denotes the antipode of Pol(O R N ). We want to compute the eigenvalues and eigenspaces of O R N -invariant Markov semigroups on O(S N -1

R

). First, we will give decompositions of the Hilbert spaces

L 2 (S N -1 R , h) and L 2 (O R N -1 , h), which are constructed by h-GNS representation. Set E k = span{u i 1 j 1 • • • u irjr : r ≤ k} ⊂ L 2 (S N -1 R , h); H k = span{x i 1 • • • x ir : r ≤ k} ⊂ L 2 (O R N -1 , h); V k = E k ∩ E ⊥ k-1 ; D k = H k ∩ H ⊥ k-1 ; d k = dim D k . Then L 2 (S N -1 R , h) = k∈N D k and L 2 (O R N , h) = k∈N V k . Furthermore H k = E (E k ), and thus D k = E (V k ).
Take a complete set {u π : π ∈ Irr(O R N )} of mutually inequivalent, irreducible unitary representations. We know that the generating matrix u = (u ij ) is an irreducible unitary representation of O R N . We can decompose its tensor powers u s = π∈Is n s π u π , where n s π denotes the multiplicity of u π , and we used the notation

I s := {π ∈ Irr(O R N ) : n s π ≥ 1} . Then, for any s ≥ 2 , we define u (s) := π∈Js u π , where J s = I s \ ∪ 0≤i≤s-1 I i .
In other words, u (s) is the direct sum of the "new" irreducible representations in the decomposition of u s , those which did not appear in the decompositions of u i , ∀i < s.

Since the linear space spanned by coefficients of {u i } 0≤i≤s is E s , by the choice of the set I s , we have E s = span{u (π) pq : π ∈ I i , 0 ≤ i ≤ s}. Thus by definition, the linear space spanned by coefficients of u (s) is V s .

For the free case, by the fusion rule of O + N , we know that I s = {s, s -2, s -4, . . .}. Therefore J s = {s}. So u (s) is exactly the s th irreducible unitary representation of O + N . For other cases, u (s) defined here may not be irreducible. But it is the direct sum of some mutually inequivalent irreducible unitary representations.

We state the argument above as a proposition:

Proposition 2.15. There exists a sequence of unitary representations (u (s) ) s∈N of O R N , such that all of non-zero coefficients of u (s) are linearly independent and span V s . In the free case, u (s) is irreducible. For any s ∈ N, there exists a basis for the Hilbert space K s where the representation u (s) acts on, such that

Define the degree of u 11 in O R N by deg(u 11 ) = max{s : 1, u 11 , u
Φ(s) := Φ(u (s) jk ) 1≤j,k≤ds = δ j1 δ k1 • 1 [0,deg(u 11 )] (s), if we write u (s) = (u (s)
jk ) 1≤j,k≤ds w.r.t. to this basis. In other words, when s ≤ deg(u 11 ), the representation u (s) is unitarily equivalent to one for which applying Φ to it coefficient-wise produces a matrix with entry 1 in the upper left corner and 0 everywhere else.

Proof. Since Φ is idempotent state, we can easily check that

Φ s ≤ 1 and Φ 2 s = Φ s ,
which means that Φ s is a projection in B(K s ). We know that every projection matrix can be written as a diagonal matrix with coefficients 1 and 0 by choosing some suitable basis. So

Φ s =             1 . . . 1        r s • • • 0 . . . 0 0 . . . 0            
.

Denote the rank of this matrix by r s . For all k, we take the basis of K k as above, so that for 0 ≤ i ≤ r k , Φ(u

(s) ii ) = 1; otherwise Φ(u (s) ij ) = 0. Then for any s ∈ N, E bi (u (s) ij ) = p,q Φ(u (s) ip )u (s) pq Φ(u (s) qj ) =    u (s) ij if 1 ≤ i, j ≤ r s 0 otherwise. For i ≤ r s , u (s) ii = 0 since Φ(u (s)
ii ) = 0, while u (s) ij may be 0, i = j. This implies that

r s ≤ dim(E bi (V s )) ≤ r 2 s . (2.2)
Moreover, the conditional expectation

E bi sends E s onto Pol s (u 11 ) := {1, u 11 , u 2 11 , • • • , u s 11 }. Thus, when s ≤ deg(u 11 ), dim(E bi s k=0 (V k ) ) = dim(E bi (E s )) = dim(Pol s (u 11 )) = s + 1. This implies dim(E bi (V s )) = dim(Pol s (u 11 )) -dim(Pol s-1 (u 11 )) = 1.
By Inequality (2.2), we get r s = 1 for any s ≤ deg(u 11 ). Similary, when s ≥ deg(u

11 )+1, dim(E bi (V s )) = dim(Pol s (u 11 ))-dim(Pol s-1 (u 11 )) = 0, therefore r s = 0. CHAPTER 2. INVARIANT MARKOV SEMIGROUPS ON QUANTUM HOMOGENEOUS SPACES This theorem tells us that u (s) 11 = E bi (u (s) 11 ) ∈ Pol s (u 11 ). If deg(u 11 ) < ∞, C r (S N -1 R
) is a finite C*-algebra, since E = (Φ ⊗ id)∆. Let us consider the more interesting case: deg(u 11 ) = ∞, i.e. (u s 11 ) s∈N is linearly independent. The algebra *-alg{u 11 } as a subalgebra of Pol(O R N ) can be identified with the algebra of polynomials on the interval [-1, 1]. Therefore, there exists q

R k ∈ Pol[-1, 1] such that q R k (u 11 ) = u (k) 11 . Since h O R N (q R n (u 11 )q R m (u 11 )) = h O R N (u (n) 11 u (m) 11 ) = C n δ nm , (q R s )
s∈N is a family of orthogonal polynomials. The measure for the orthogonality of these polynomials is the probability measure µ where µ is obtained by evaluating the spectral measure of u 11 in the Haar state. Since u 11 is hermitian and u 11 ≤ 1, we get that the measure µ is supported on [-1, 1] (which explains why we consider only the values of our polynomials on this interval).

The restriction of the counit to *-alg{u 11 } corresponds to evaluation of a polynomial in the boundary point 1, i. 

ψ(p) = -bp (1) + 1 -1 p(x) -p(1)
x -1 dν(x)

for any polynomial p. Conversely, every ψ of this form is conditionally positive.

Applying the above proposition, we can compute the eigenvalues of Markov semigroups. ), there exists a pair (b, ν), with b a positive number and ν a finite measure on [-1, 1], such that the generator L of (T t ) t≥0 is determined by,

L(x s ) = λ s x s , x s ∈ D s .
Here

λ s = -b(q R s ) (1) + 1 -1 q R s (x) -1 x -1 dν(x); where q R s ∈ Pol[u 11 ] such that h(q R n (u 11 )q R m (u 11 )) = C n δ nm and q s (1) = 1.
Proof. Theorem 2.13 guarantees that the the generator operator L exists and

L = (ψ ⊗ E ) • α where ψ is a ( • T 0 )-generating functional on Pol(S N -1 R
). By Lemma 2.16, we can compute E (u

(k) ij ) = δ 1i u (k) 1j , which implies D s = E (V k ) = span{u (s) 1j : 1 ≤ j ≤ d k }. Then for any u (s) 1j ∈ D s , L(u (s) 1j ) = k ψ(u (s) 1k )E (u (s) kj ) = ψ(u (s) 11 )u (s) 1j .
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Now, we just need to consider ψ| *-alg(u 11 ) which induces the pair (b, ν) by Proposition 2.17. By linearity of L, we can get the eigenvalues for D s ,

λ s = ψ(u (s) 11 ) = -b(q R s ) (1) + 1 -1 q R s (x) -1 x -1 dν(x), where q R s ∈ Pol[u 11 ], such that u (s) 11 = q R s (u 11 ), and q R s (1) = ε(u (s) 11 ) = 1.
Remark 2.19. We point out here that, in Theorem 2.18, we have different families of orthogonal polynomials {q R s (x)} associated to S N -1 R , since the Haar state h O R N depends on R. Unfortunataly, we did not find a general way to calculate these orthogonal polyomails. However, for some special case, we can compute them. We will show these polynomials for classical, half-liberated and free spheres in next chapter.

Chapter 3 Examples: classical, half-liberated and free spheres

In this Chapter, we consider the classical sphere S N -1 , Half-liberated sphere S N -1 * and Free sphere S N -1 + (see Example 2.14). We will use the notation S N -1 × to denote these three spheres associated to the three quantum orthogonal groups O × N , where × ∈ {∅, * , +} (here ∅ stands for no symbol).

We know that in the classical case

S N -1 ∼ = O N /O N -1 . Banica, Skalski, and Sołtan [7] have shown that S N -1 + is not equal to the quotient O + N /O + N -1 .
We will now show that the half-liberated and the free spheres can not be obtained as quotient spaces.

Proposition 3.1. There exists no quantum subgroup

K of O + N (or O * N , resp.) such that S N -1 + ∼ = O + N /K (or S N -1 * ∼ = O * N /K, resp.) as left coidalgebras.
Before to prove this proposition, we introduce the Weingarten formula (or Weingarten calculus) to calculate the Haar state h on O × N (see [START_REF] Banica | Quantum isometries, noncommutative spheres and related integrals[END_REF]Theorem 5.4]). Let P 2 (k), P + 2 (k) = N C 2 (k) denote pairing and noncrossing pairings among k points respectively. A pairing is called "balanced", if each pair connects a black leg to a while leg, when we label its legs alternately black and white:

• • • • • • • . Denote the set of balanced pairings of k elements by P * 2 (k). Then the Weingarten fomula is h O × N (u i 1 j 1 • • • u i k j k ) = π,σ∈P × 2 (k) δ π (i)δ σ(j) W kN (π, σ)
where Proof. We start with the free sphere.

W kN = G -1 kN with G kN (π, σ) = N |π∨σ| ,
If such a quantum subgroup existed, then it would be of Kac type, and therefore its Haar idempotent Φ K = h K • θ would be tracial. We will now show that the idempotent state associated to O(S N 

E bi (u 11 u 2 22 ) = u 11 E bi (u 2 22 ) = (N -2)u 11 + u 3 11 (N -1) 2 since h O + N (u 2 22 ) = 1 N and h O + N (u 2 11 u 2 22 ) = 1 N 2 -1 . If follows that Φ(u 11 u 2 22 ) = ε (N -2)u 11 + u 3 11 (N -1) 2 = 1 N -1 = 0 = Φ(u 22 u 11 u 22 ).
The case of the half-liberated sphere S N -1 * is similar. The Weingarten formula for O * N uses balanced pairings. The balanced pairings P * 2 (4) and the non-crossing pairings N C 2 (4) of four elements are the same. Thus, we get again the same values for Haar state in the half-liberated case,

h O * N (u k 11 u 22 u 11 u 22 ) = 0, k = 0, 1, . . . , h O * N (u 2 22 ) = 1 N and h O * N (u 2 11 u 2 22 ) = 1 N 2 -1 ,
and we get the same conclusion.

Orthogonal polynomials

We will desccribe these orthogonal polynomials for classical, half-liberated, free cases.

The classical sphere

Here, (q s (x)) s∈N means the family of the orthogonal polynomials associated to classial sphere. It is well known that the distribution of u 2 11 for the classical sphere is the beta distribution with parameters (1/2, (N -1)/2). In other words,

h S N -1 (φ(u 2 11 )) = C 1 0 φ(t) 1 √ t (1 -t) N -3 2 dt, where C = Γ( N 2 ) Γ( 1 2 )Γ( N - 1 
2 ) . The integral vanishes on the odd polynomials, i.e.

h S N -1 (u 2k+1 11 ) = 0. Therefore h S N -1 f (u 11 )+f (-u 11 ) 2 = h S N -1 (f (u 11 )). h S N -1 (f (u 11 )) = h S N -1 f (u 11 ) + f (-u 11 ) 2 = C 1 -1 f (t)(1 -t) N -3 2 (1 + t) N -3 2 dt 3.1. ORTHOGONAL POLYNOMIALS
The spectral measure of u 11 is the probability measure on the interval [-1, 1]:

µ(dt) = C(1 -t) N -3 2 (1 + t) N -3 2 dt,
whose family of orthogonal polynomials is well known. Namely, we get the Jacobi polynomials (or ultraspherical polynomials) with parameters α = β = (N -3)/2, which we will denote by (J s ) s∈N .

Recall that Jacobi polynomials are given by:

J s (x) = s r=0 s + (N -3)/2 r s + (N -3)/2 (N -3)/2 -r x -1 2 s-r x + 1 2 r .
Their orthogonality relation is given by

1 -1 J k (x)J m (x)µ(dt) = δ km • C 2 N -2 2k + N -2 Γ(k + (N -1)/2) 2 Γ(k + N -2)n! .
Moreover, they satisfy the differential equation

(1 -x 2 )J s (x) -x(N -1)J s (x) = -s(s + N -2)J s (x).
We need these polynomials in the form q s (x) = J s (x)/J s (1). Therefore,

q s (1) = s(s + N -2) N -1 .
We can relate our result to the Morkov sequence problem. For a given orthonormal basis {f 0 = 1, f 1 , f 2 , . . .} of the L 2 -space of some probability space, this problem of ask for the classification of all sequences (λ n ) n≥0 such that K(f n ) = λ n f n defines Markov operator cf. [START_REF] Bakry | The Markov sequence problem for the Jacobi polynomials and on the simplex[END_REF]. In [13, Theorem 2], Bochner answered this problem for the Jacobi polynomials. Since we found that the Jacobi polynomials are the eigevectors for any O N -invariant Markov semigroup on S N -1 , our Theorem 2.18 recovers [13, Theorem 3].

The half-liberated sphere

Next we consider the half-liberated sphere S N -1 * . Banica [4, Propsition 6.6] determined the law of

x i 1 • • • x i k with respect to the Haar state h S N -1 * = h O * N | C(S N -1 *
) (there is a small misprint in [4, Proposition 6.6], which we correct below).

Proposition 3.2. The half-liberated integral of x

i 1 • • • x i k vanishes,
unless each index a appears the same number of times at odd and even positions in i 1 , . . . , i k . We have

h S N -1 * (x i 1 • • • x i k ) = (N -1)! 1 ! • • • n ! (N + i -1)!
where i denotes this number of common occurrences of i in the k-tuple (i 1 , . . . , i k ).

This proposition allows to describe the spectral distribution of u 11 = x 1 w.r.t. the Haar state. CHAPTER 3. EXAMPLES: CLASSICAL, HALF-LIBERATED AND FREE SPHERES Corollary 3.3. The distribution of u 11 in the half-liberated case is given by:

h S N -1 * (f (u 11 )) = 1 -1 f (t)µ(dt), ∀f ∈ C([-1, 1]) where µ(dt) = (N -1)(1 -t 2 ) N -2 |t|dt.
Proof. This proof repeats the arguments of [4, Proposition 6.5 and Proposition 6

.6]. Let C = 2 N 2N π N • Γ(N + 1) = ( 2 π ) N (N -1)!, then h S N -1 * (x 2k ) = S N -1 C |z 1 | 2k dz = C S 2N -1 R (x 2 1 + y 2 1 ) k d(x, y) = C π/2 0 π/2 0 (cos 2 θ 1 + sin 2 θ 1 cos 2 θ 2 ) k sin 2N -2 θ 1 sin 2N -3 θ 2 dθ 1 dθ 2 • π/2 0 sin 2N -4 θ 3 dθ 3 • • • π/2 0 sin θ 2N -2 dθ 2N -2 • π/2 0 dθ 2N -1 .
First we can calculate that

C = C π/2 0 sin 2N -4 θ 3 dθ 3 • • • π/2 0 sin θ 2N -2 dθ 2N -2 • π/2 0 dθ 2N -1 = 2 π N (N -1)! • π 2 N -1 (2N -4)!! (2N -3)!! (2N -5)!! (2N -4)!! • • • 1!! 2!! = 4 π (N -1)
where

m!! = (m -1)(m -3) • • • 1. Let t = cos 2 θ 1 + sin 2 θ 1 cos 2 θ 2 , u = cos θ 1 , then h S N -1 * (x 2k ) = C 1 0 t 0 t 2k (1 -t 2 ) N -2 t √ t 2 -u 2 dudt = 2(N -1) 1 0 t 2k • (1 -t 2 ) N -2 tdt.
Since the odd moments of u 11 vanish, we have

h S N -1 * (f (u 11 )) = h S N -1 * f (u 11 )+f (-u 11 ) 2
. and

h S N -1 * (f (u 11 )) = 2(N -1) 1 0 f (u 11 ) + f (-u 11 ) 2 • (1 -t 2 ) N -2 tdt = (N -1) 1 -1 f (u 11 )(1 -t 2 ) N -2 |t|dt.
Now we determine the family of orthogonal polynomials associated to the probability measure µ defined in Corollary 3.3. For a general measure, it is difficult to find the orthogonal polynomials. However, in the case which we are considering now, we find that those orthogonal polynomials are very regular, so we can guess the formula and then to prove the orthogonality. That is what we will do in the following.

ORTHOGONAL POLYNOMIALS

The standard notation for hypergeometric functions is

r F s a 1 , • • • , a r b 1 , • • • , b s ; x = ∞ n=0 (a 1 ) n • • • (a r ) n (b 1 ) n • • • (b s ) n x n n!
where the shifted factorial (a) n is defined by

(a) n =    a(a + 1) • • • (a + n -1), n = 1, 2, • • • 1, n = 0.
They satisfy

d dx r F s a 1 , • • • , a r b 1 , • • • , b s ; x = r i=1 a i s j=1 b j r F s a 1 + 1, • • • , a r + 1 b 1 + 1, • • • , b s + 1 ; x . (3.1)
The following formula is the Chu-Vandermonde identity, which is obtained by Newton's generalized binomial theorem,

s r=0 α r β s -r = α + β s α, β ∈ C, s ∈ N.
Using the Chu-Vandermonde identity, we can compute the following value

2 F 1 -k, α m ; 1 = (m -α) k (m) k k, m ∈ N, α ∈ C. (3.2) 
Definition 3.4. We define the family half-liberated spherical polynomials (or "*-polynomials") by

P 2k (x) = (-1) k N + 2k -2 k -1 2 F 1 -k, N + k -1 1 ; x 2 = k r=0 (-1) k+r k r 2 N + 2k -2 k -r -1 x 2r , P 2k+1 (x) = x • (-1) k (k + 1) N + 2k -1 k -1 2 F 1 -k, N + k 2 ; x 2 = k r=0 (-1) k+r k r k + 1 r + 1 N + 2k -1 k -r -1
x 2r+1 .

Proposition 3.5. The family of "*-polynomials" satisfies the following three-term recurrence relation:

P s (x) = xP s-1 (x) -ω s-2 P s-2 (x) ∀s ≥ 2, where ω = [( +2)/2](N -1+[ /2]) (N + )(N + -1)
. Moreover, the "*-polynomials" are the orthogonal polynomials for the probability measure µ(dt)

= (N -1)(1 -t 2 ) N -2 |t|dt.
Proof. We can easily check that for any k ≥ 1,

xP 2k (x) - k(N + k -2) (N + 2k -2)(N + 2k -1) P 2k-1 (x) = P 2k+1 (x), CHAPTER 3. EXAMPLES: CLASSICAL, HALF-LIBERATED AND FREE SPHERES xP 2k-1 (x) - k(N + k -2) (N + 2k -2)(N + 2k -3) P 2k-2 (x) = P 2k (x).
Therefore the three-term recurrence relation holds.

By the Proposition 3.2 and equation (3.2), we can calculate

1 -1 P 2k (x)µ(dx) = k r=0 (-1) k+r k r 2 N + 2k -2 k -r -1 (N -1)!r! (N + r -1)! = (-1) k N + 2k -2 k -1 k r=0 (-1) r k!(N + k + r -2)!(N -1)! (k -r)!(N + k -2)!(N + r -1)!r! ; = (-1) k N + 2k -2 k -1 2 F 1 -k, N + k -1 N ; 1 = (-1) k N + 2k -2 k -1 (-k + 1) k (N ) k = δ 0k ;
and all of the odd moments vanish, i.e., 1 -1 P 2k+1 (x)µ(dx) = 0. Inspired by [80, Lemma 5.3], we are now going to prove the orthogonality by induction. Clearly, ∀n > 0, 1 -1 P n (x)P 0 (x)µ(dx) = 0. Assume that for any 0 ≤ k ≤ s, 1 -1 P n (x)P k (x)µ(dx) = 0 holds for all n > k. Then consider s + 1, and n > s + 1. Using the three-term recurrence relation, we get

1 -1 P n (x)P s+1 (x)µ(dx) = 1 -1 P n (x)(xP s (x) -ω s-1 P s-1 (x))µ(dx) = 1 -1 xP n (x)P s (x)µ(dx) + 0 = 1 -1 (P n+1 (x) + ω n-1 P n-1 )P s (x)µ(dx) = 0. Moreover, 1 -1 P 2 s (x)µ(dx) = 1 -1 P s (x)(xP s-1 -ω s-2 P s-2 )µ(dx) = 1 -1 (P s+1 (x) + ω s-1 P s-1 (x))P s-1 (x)µ(dx) = ω s-1 1 -1 P 2 s-1 (x)µ(dx) = ω 0 ω 1 • • • ω s-1 , so that 1 -1 P m (x)P n (x)µ(dx) = ω 0 ω 1 • • • ω n-1 • δ mn .
Remark 3.6. We change the normalisation of these polynomial to get the sequence q * s (x) = Ps(x) Ps [START_REF] Arano | The Fourier algebra of a rigid C * -tensor category[END_REF] which satisfies the conditions of Theorem 2.18.

ORTHOGONAL POLYNOMIALS

We have

P 2k (1) = (-1) k N + 2k -2 k -1 2 F 1 -k, N + k -1 1 ; 1 = (-1) k k!(N + k -2)! (N + 2k -2)! (2 -N -k) k (1) k = (N + k -2)!(N + k -2)! (N + 2k -2)!(N -2)! ; P 2k+1 (1) = (-1) k (k + 1) N + 2k -1 k -1 2 F 1 -k, N + k 2 ; 1 = (-1) k (k + 1) k!(N + k -1)! (N + 2k -1)! (2 -N -k) k (2) k = (N + k -1)!(N + k -2)! (N + 2k -1)!(N -2)! . Therefore q * 2k (x) = (-1) k N + k -2 k -1 2 F 1 -k, N + k -1 1 ; x 2 ; q * 2k+1 (x) = x • (-1) k (k + 1) N + k -2 k -1 2 F 1 -k, N + k 2 ; x 2 .
The following formula gives the eigenvalues of the generator of the O * N -invariant semigroup on the half-liberated sphere S N -1 * associated to the pair b = 1 and ν = 0. By analogy with the classical sphere, these values can be considered as the eigenvalues of the Laplace operator of the half-liberated sphere (up to a rescaling by N -1, see Remark 3.11).

Corollary 3.7. For any

k ≥ 0, (q * 2k ) (1) = 2k(N + k -1) N -1 ; (q * 2k+1 ) (1) = (2k + 1)N + 2k 2 -1 N -1 .
Proof. q 0 (1) = 0 is obvious. 

(q * 2k ) (1) = 2x d dx 2 2 F 1 -k,N +k-1 1 ; x 2 2 F 1 -k,N +k-1 1 ; 1 x=1 = -2k(N + k -1) 2 F 1 -k+1,N +k 2 ; 1 2 F 1 -k,N +k-1 1 ; 1 = -2k(N + k -1) (2 -N -k) k-1 (2) k-1 (1) k (2 -N -k) k = 2k(N + k -1) N -1 ; (q * 2k+1 ) (1) = d dx x • 2 F 1 -k,N +k 2 ; x 2 2 F 1 -k,N +k 2 ; 1 x=1 = 2 F 1 -k,N +k 2 ; x 2 + x • 2x d dx 2 2 F 1 -k,N +k 2 ; x 2 2 F 1 -k,N +k 2 ; 1 x=1 = 2 F 1 -k,N +k 2 ; 1 + 2 • -k(N +k) 2 2 F 1 -k+1,N +k+1 3 ; 1 2 F 1 -k,N +k 2 ; 1 = (2k + 1)N + 2k 2 -1 N -1 .

The free sphere

Finally, we consider about the free case. The family of Chebyshev polynomials of the second kind U s (x) is defined by

U 0 (x) = 1, U 1 (x) = x, U s+2 (x) = xU s+1 (x) -U s (x) ∀s ≥ 0.
In fact, due to the asymptotic semicircle law of

√ N + 2u 11 when N → ∞ [5], we expect that q + s (x) → U s ( √ N x)/ √ N s . Therefore, lim N →∞ q + s (x) = x s .
So for the special case where the generating functional ψ is associated to the pair b = 1, ν = 0, the eigenvalues for the subspace D s converge as N → ∞, lim N →∞ λ s = -(x s ) (1) = -s. We now derive relations between polynomials (q + s ) s≥0 for general finite N . Proposition 3.8. Let N ≥ 2. the orthogonal polynomials defined as above satisfy the following three-term recurrence relation:

a s+1 q + s+2 (x) = U s+1 (N )q + s+1 (x)x -a s q + s (x) ∀s ≥ 0 where q + 0 (x) = 1, q + 1 (x) = x, a s = s k=0 (-1) s+k U k (N ) =    U m (N )(U m (N ) -U m-1 (N )) if s = 2m, U m (N )(U m+1 (N ) -U m (N )) if s = 2m + 1,
and where U s (N ) denotes the value of the s th Chebyshev polynomial of the second kind at the point N .

ORTHOGONAL POLYNOMIALS

Proof. For free orthogonal quantum group, the irreducible corepresentations have the following fusion rule [START_REF] Banica | Théorie des représentations du groupe quantique compact libre O(n)[END_REF]:

u (s+1) ⊗ u = u (s+2) ⊕ u (s) .
This implies that u (s+1) 11

u 11 ∈ V s+2 ⊕ V s .
Applying the two-sided conditional expectation E bi to both sides, we see that u 11 . Let λ s be a number such that the coefficient of the highest degree of the polynomial λ s q + s (x) is 1. Since q + s (1) = 1, we have

λ s+2 q + s+2 (x) = λ s+1 q + s+1 (x)x -(λ s+1 -λ s+2 )q + s (x). (3.3)
Let d s be the dimension of U (s) . Note that d 0 = 1 and d 1 = N . By the Fusion rule, we get n s+2 = N n s+1 -n s = U s (N ). By the orthogonality of (q + s (u 11 )) s≥0 and

h S N -1 + ((q + s (u 11 )) 2 ) = h S N -1 + u (s) 11 2 = 1/U s (N ), we have 0 = h S N -1 + (λ s+2 q + s+2 (u 11 )q + s (u 11 )) = h S N -1 + (λ s+1 q + s+1 (u 11 )q + s (u 11 )u 11 ) -(λ s+1 -λ s+2 )h S N -1 + ((q + s (u 11 )) 2 ) = λ 2 s+1 λ s h S N -1 + ((q + s+1 (u 11 )) 2 ) + 0 -(λ s+1 -λ s+2 )h S N -1 + ((q + s (u 11 )) 2 ) = λ 2 s+1 λ s U s+1 (N ) - λ s+1 -λ s+2 U s (N ) . Therefore λ s+2 λ s+1 = 1 - λ s+1 λ s U s (N ) U s+1 (N ) . Set a s = λ s+1 λs • U s (N ). By multipling U s+1 (N ) λ s+1
to Equation (3.3), we get

a s+1 q + s+2 (x) = U s+1 (N )q + s+1 (x)x -a s q + s (x),
and

a s+1 = U s+1 (N ) -a s .
From the latter equation we can get

a s = s k=0 (-1) s+k U k (N ).
The following formula gives the eigenvalues of the generator of the O + N -invariant semigroup on the free sphere S N -1 + associated to the pair b = 1 and ν = 0. By analogy with the classical sphere, these values can be considered as the eigenvalues of the Laplace operator of the free sphere (up to a rescaling by N -1, see Remark 3.11). Corollary 3.9.

(q + s ) (1) = s-1 r=0 r k=0 U k (N ) r k=0 (-1) r+k U k (N )
∀s ≥ 1.

CHAPTER 3. EXAMPLES: CLASSICAL, HALF-LIBERATED AND FREE SPHERES

Proof. Appling Proposition 3.8 and taking derivatives on both sides, we get

a s+1 (q + s+2 ) (x) = U s+1 (N ) (q + s+1 ) (x)x + q + s+1 (x) -a s (q + s ) (x).
Since q + s (1) = 1, we have

a s+1 (q + s+2 ) (1) = U s+1 (N )(q + s+1 ) (1) + U s+1 (N ) -a s (q + s ) (1).
Rewrite this equation using U s+1 (N ) = a s+1 + a s ,

a s+1 (q + s+2 ) (1) -(q + s+1 ) (1) = U s+1 (N ) + a s (q + s+1 ) (1) -(q + s ) (1) .
Therefore,

a s (q + s+1 ) (1) -(q + s ) (1) = s k=0 U k (N ).
This implies

(q + s+1 ) (1) = s r=0 r k=0 U k (N ) a r .
We can get an estimate of these eigenvalues that grows linearly in s.

Corollary 3.10. For any N ≥ 2,

s ≤ (q + s ) (1) ≤ N + 2 N -2 s, ∀s ≥ 0,
(where the upper becomes +∞ for N = 2).

Proof. Using the relation

U s (N )N = U s+1 (N ) + U s-1 (N ), we have m k=0 U 2k (N ) = 1 2 (U 2m (N ) + U 0 (N )) + N 2 m k=1 U 2k-1 (N ) ,
and

m k=0 U 2k+1 (N ) = 1 2 (U 2m+1 (N ) + U 1 (N )) + U 0 (N ) + N 2 m k=1 U 2k (N ) . Therefore r k=0 U k (N ) r k=0 (-1) r+k U k (N ) ≤ N/2 + 1 N/2 -1 .
Remark 3.11. For the classical sphere, we know that the Laplace operator is the operator whose eigenvector are the Jacobi polynomials J s and whose eigenvalues are λ s = s(s + N -2) = -(N -1)q s (1). So the generator for classical spheres in Theorem 2.18, is induced from the generating functional ψ associated to the pair (b, ν) = (N -1, 0) is the Laplace operator. In the same manner, we may define the Laplace operator ∆ * on the half-liberated sphere and the Laplace operator ∆ + on free sphere.

Remark 3.12. Recall that we showed in Proposition 2.11 that central convolution semigroups of states on C u (G) also induce G-invariant Markov semigroups on any quantum space X equipped with a right G-action. The generating functionals of central convolution semigroups of states on C u (O + N ) were classified in [START_REF] Cipriani | Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory[END_REF]Corollary 10.3]. This gives the formula

λ s = -b U s (N ) U s (N ) + N -N U s (x) -U s (N ) U s (N )(N -x) ν(dx), s = 0, 1, . . . (3.4)
with b a positive real number, ν a finite positive measure on the interval [-N, N ] and (U s ) ∞ s=0 the Chebyshev polynomials of the second kind defined by

U 0 (x) = 1, U 1 (x) = x, U s+1 (x) = xU s (x) -U s-1 (x) for s ≥ 1.
Recall again that by [START_REF] Banica | Spectral analysis of the free orthogonal matrix[END_REF]Theorem 5.3] the distribution of √ N + 2 u 11 converges uniformally to the semicircle distribution, which is the measure of orthogonality of the Chebyshev polynomials. This suggests that the eigenvalues given by Theorem 2.18 and in Equation (3.4) for the free sphere S N -1 + should be close for large N .

Spectral dimensions

The Weyl formula for the eigenvalues of the Laplace-Beltrami operator ∆ M on a compact Riemannian C ∞ -manifold (M, g) of dimension N states that

N (λ) ∼ λ→+∞ λ N/2 |M| (4π) N/2 Γ N 2 + 1
cf. [START_REF] Minakshisundaram | Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds[END_REF], where |M| denotes the volume of (M, g), N (λ) denotes the number eigenvalues of the Laplace-Beltrami operator that are less then or equal to λ, and f ∼ λ→+∞ g stands for "asymptotically equivalent," i.e., for lim λ→∞ f (λ) g(λ) = 1. This implies that the zetafunction ζ M (z) = λ∈σ(∆ M ) m λ λ z , where m λ denotes the multiplicity of the eigenvalue λ, has a simple pole in N 2 , and that this value is also the abscissa of convergence of the series. For this reason, we define the "spectral dimension" d L of the spheres S N -1 * (w.r.t. a generator L) as the abscissa of convergence of the series ∞ s=0 m s λ -z/2 s , where (λ s ) s≥0 are the eigenvalues of L which we classified in Theorem 2.18. Note that this definition is equivalent to Connes' definition in [START_REF] Connes | Cyclic cohomology, noncommutative geometry and quantum group symmetries[END_REF][START_REF] Connes | Cyclic cohomology, quantum group symmetries and the local index formula for SU q (2)[END_REF], if we construct a Dirac operator D L from L as in [START_REF] Cipriani | Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory[END_REF], since the eigenvalues of D L will be (± √ λ s ) s≥0 . The spectral dimension d L is equal to the infimum of all d > 0 such that the sum

s m s (-λ s ) -d/2 is finite.
For simplicity, we will only consider the special case b = 1 and ν = 0 of the eigenvalues given in Theorem 2.18.

The classical sphere

By definition of D s , dim D s = dim H s -dim H s-1 ,
where

H s = span{x k 1 1 • • • x k N N : k 1 + • • • + k N ≤ s}. Since x 2 1 = 1 -N i=2
x 2 i , we only need consider k 1 = 0 or k 1 = 1 in above formula.
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Recall that the cardinality measure

|{(k 1 , k 2 , • • • , k n ) ∈ N n : k 1 + k 2 + • • • k n = M }| = M +n-1 n-1 . For k 1 = 0, dim span{x k 2 2 • • • x k N N : k 2 + • • • + k N = s} = s + N -2 N -2 ;
and for

k 1 = 1, dim span{x 1 x k 2 2 • • • x k N N : k 2 + • • • + k N = s -1} = s + N -3 N -2 .
Therefore,

m s = dim D s = s + N -2 N -2 + s + N -3 N -2 s N -2 .
where the notation a s b s for two sequences of strictly positive numbers means that they are of the same order of magnitude. More precisely, a s b s means that there exist constants c, C > 0 such that for all s ∈ N, ca s ≤ b s ≤ Ca s .

For the eigenvalues we have -λ s = s(s+N -2)

N -1
s 2 , and therefore we find d L = N -1, as expected.

The half-liberated sphere

Again, dim D s = dim H s -dim H s-1 . Consider first the even case, i.e. s = 2m.

Let X = x 1 x 2 • • • x 2m-1 x 2m ∈ D 2m
. Use black dots "•" for odd positions and white dots "•" for even positions, i.e., associate the diagram

• • • • • • • • •.
to the monomial X. Since we have the relation x 1 x 2 x 3 = x 3 x 2 x 1 for the generators, we can freely permute the generators x 2k-1 that are placed on black dots "•" (i.e., in odd positions) among each other. Similarly, generators x 2k sitting on white dots "•" (i.e., in even positions) can be permuted among each other.. Write x 2k-1 = a i k and x 2k = b j k , respectively, for the generators on black and white dots, then

X = a i 1 b j 1 • • • a im b jm .
Since

a i k is commute among each other, we set a i 1 a i 2 • • • a im = x p 1 1 x p 2 2 • • • x p N N with p 1 + p 2 + • • • p N = m. Similary, set b i 1 b i 2 • • • b im = x q 1 1 x q 2 2 • • • x q N N with q 1 + q 2 + • • • q N = m. Since x 2 1 = 1 -N i=2 x 2 i , we can assume p 1 = 0 or q 1 = 0. Indeed, if both monomials a i 1 a i 2 • • • a im and b i 1 b i 2 • • • b im contain the generator x 1 ,
then we can we could move x 1 to the first position in both the subwords

a i 1 a i 2 • • • a im and b i 1 b i 2 • • • b im ,
and replace the resulting x 2 1 by 1 -N i=2 x 2 i . In this way get one monomial that is in H s-2 , and in the remaining terms the powers of x 1 in both subwords are reduced by 1. Iterating this procedure we can express X as a linear combination of monomials which have p 1 = 0 or q 1 = 0.

3.2. SPECTRAL DIMENSIONS Therefore, dim D s = dim span x p 2 2 • • • x p N N : N k=2 p k = m • dim span x q 2 2 • • • x q N N : N k=2 q k = m + dim span x p 2 2 • • • x p N N : N k=2 p k = m • dim span x q 1 1 x q 2 2 • • • x q N N : q 1 > 0, N k=1 q k = m + dim span x p 1 1 x p 2 2 • • • x p N N : p 1 > 0, N k=1 p k = m • dim span x q 2 2 • • • x q N N : N k=2 q k = m = m + N -2 N -2 2 + 2 m + N -2 N -2 m + N -2 N -1 m 2N -3 s 2N -3 . Similary, when s = 2m + 1, dim D s = m + N -2 N -2 m + N -1 N -2 + m + N -1 N -2 m + N -1 N -1 + m + N N -1 m + N -2 N -2 s 2N -3 .
On the other hand, by Corollary 3.7, -λ s s 2 . Hence,

d L = 2(N -1).
Banica showed in [START_REF] Banica | Quantum isometries, noncommutative spheres and related integrals[END_REF]Theorem 1.14]. that C(S N -1 *

) can be embedded into the C *algebra M 2 C(S N -1

C

) of continuous functions with values in 2×2-matrices on the complex sphere S N -1

C = {z = (z 1 , . . . , z N ) ∈ C N : N i=1 |z i | 2 = 1}
. This embedding sends the generators x i , i = 1, . . . , N , to the functions π(x i ) :

S N -1 C z = (z 1 , . . . , z N ) → 0 z i z i 0 .
Evaluating these functions in a point z ∈ S N -1

C defines a unique 2-dimensional repre- sentation π z : C(S N -1 C ) → M 2 (C). Two of these 2-dimensional representations π z and π w , z, w ∈ S N -1 C
, are unitarily equivalent if and only if there exists a complex number λ with |λ| = 1 such that z = λw. This means that the embedding passes to the projective complex sphere P N -1 [START_REF] Bichon | Half-liberated real-spheres and their subspaces[END_REF]Theorem 3.5]), where ∼ is the equivalence relation on S N -1 C defined by

C = S N -1 C / ∼ (see also
z 1 ∼ z 2 ⇔ ∃λ ∈ C, z 1 = λz 2 .
Since the dimension of P N -1 C as a real manifold is 2(N -1), this provides a heuristic explanation for the value of the spectral dimension d L for the half-liberated sphere S N -1 * .

The free sphere

For the free case, D s = span{u . By Corollary 7.14, we have

-λ 2k+1 = (q + 2k+1 ) (1) = 2k 2 + 4k + 1, -λ 2k = (q + 2k ) (1) = 2k 2 + 2k.
Therefore, -λ s s 2 , m s s.

This implies d L = 2 for N = 2. For N = 2, the defining relation of the free sphere S 2 + can be written as

x 2 2 = 1 -x 2 1 , which implies x 1 x 2 2 = x 2 2
x 1 , as well as the other halfcommutation relations

x i x j x k = x k x j x i , i, j, k ∈ {1, 2}. So we have C u (S 2 + ) ∼ = C u (S 2 
* ), i.e., the free and the half-liberated two-dimensional spheres coincide.

By Corollary 3.10, λ s s for N ≥ 3. Furthermore, in this case m s = U s (N ) N s . Hence,

d L = 2 if N = 2, +∞ if N ≥ 3.
This resembles the computation in [START_REF] Cipriani | Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory[END_REF]Remark 10.4], where we found

d D = 3 if N = 2, +∞ if N ≥ 3.
for the spectral dimension of a spectral triple constructed from a central generating functional on the free orthogonal quantum group O + N .

Chapter 4 Preliminaries Notation:

In all what follows, we write X Y if X ≤ CY for an absolute constant C > 0, and

X α,β,••• Y if X ≤ CY for a constant C > 0 depending only on the parameters indicated. Also, we write X Y if C -1 Y ≤ X ≤ CY for an absolute constant C > 0.
Throughout this part of thesis, M will always denote a semifinite von Neumann algebra equipped with a normal semifinite faithful trace τ . Let S M+ denote the set of all x ∈ M + such that τ (supp x) < ∞, where supp x denotes the support projection of x. Let S M be the linear span of S M+ . Then S is a w*-dense * -subalgebra of M. Given 1 ≤ p < ∞, we define

x p = [τ (|x|) p ] 1/p , x ∈ S M ,
where |x| = (x * x) 1/2 is the modulus of x. Then (S M , • p ) is a normed space, whose completion is the noncommutative L p -space associated with (M, τ ), denoted by L p (M, τ ) or simply by L p (M). As usual, we set L ∞ (M, τ ) = M equipped with the operator norm. Let L 0 (M) denote the space of all closed densely defined operators on H measurable with respect to (M, τ ), where H is the Hilbert space on which M acts. Then L p (M) can be view as closed densely defined operators on H. We refer to [START_REF] Pisier | Non-commutative L p -spaces[END_REF] for more information on noncommutative L p -spaces.

Noncommutative ∞ -valued L p -spaces

In the classical analysis, the pointwise properties of measurable functions are often studied by estimating the norms of maximal functions of the form sup n |f n | p . However, these maximal norms in the noncommutative setting require a specific definition, since sup n |x n | does not make sense for a sequence (x n ) n of operators. This difficulty is overcome by considering the spaces L p (M; ∞ ), which are the noncommutative analogs of the usual Bochner spaces L p (X; ∞ ). These spaces were first introduced by Pisier [START_REF] Pisier | Non-commutative vector valued L p -spaces and completely p-summing maps[END_REF] for injective von Neumann algebras and then extended to general von Neumann algebras by Junge [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF]. See also [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]Section 2] for more details.

Given 1 ≤ p ≤ ∞, we define L p (M; ∞ ) to be the space of all sequences x = (x n ) n≥0 in L p (M) which admit a factorization of the following form: there exist a, b ∈ L 2p (M) and a bounded sequence y = (y n ) ⊂ M such that

x n = ay n b, n ≥ 0. CHAPTER 4. PRELIMINARIES The norm of x in L p (M; ∞ ) is given by x Lp(M; ∞) = inf a 2p sup n≥0 y ∞ b 2p
where the infimum runs over all factorizations of x as above. We will adpot the convention that the norm x Lp(M; ∞) is denoted by sup + n x n p . As an intuitive description, it is worth remarking that a self-adjoint sequence (x n ) n≥0 of L p (M) belongs to L p (M; ∞ ) if and only if there exists a positive element a ∈ L p (M) such that -a ≤ x n ≤ a for any n ≥ 0. In this case, we have sup n≥0 It is easy to check that L p (M, c 0 ) is a closed subspace of L p (M; ∞ ). It is indeed the closure of the subspace of all finitely supported sequences.

+ x n p = inf{ a p : a ∈ L p (M) + , -a ≤ x n ≤ a, ∀n ≥ 0}. The subpace L p (M, c 0 ) of L p (M; ∞ ) is
On the other hand, we may also define the space

L p (M; c ∞ ) for 2 ≤ p ≤ ∞. The space L p (M; c ∞ ) is defined to be the family of all sequences (x n ) n≥0 ⊂ L p (M) which admits a ∈ L p (M) and (y n ) ⊂ L ∞ (M) such that x n = y n a and sup n≥0 y n ∞ < ∞. (x n ) Lp(M; c ∞ )
is then defined to be the infimum {sup n≥0 y n ∞ a p } over all factorization of (x n ) as above. It is easy to check that Lp(M; c ∞ ) is a norm, which makes L p (M; c ∞ ) a Banach space. We define similarly the subspace L p (M; c c 0 ) of L p (M; c ∞ ). Another Banach space L p (M; 1 ) is also defined in [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF]. Given 1 ≤ p ≤ ∞, a sequence x = (x n ) belongs to L p (M; 1 ) if there are u kn , v kn ∈ L 2p (M) such that

x n = k≥0 u * kn v kn , n ≥ 0 and (x) n Lp(M; 1 ) := inf      k,n≥0 u * kn u kn 1/2 p k,n≥0 v * kn v kn 1/2 p      < ∞.
Specially, for a positive sequence x = (x n ), we have

x Lp(M; 1 ) = n≥0 x n p .
The following Proposition will be used in the sequel.

Proposition 4.1 ([69]

). Let 1 ≤ p, p ≤ ∞ and 1/p + 1/p = 1.

(1) L p (M; ∞ ) is the dual space of L p (M; 1 ). The duality bracket is given by

x, y = n≥0 τ (x n y n ) x ∈ L p (M; ∞ ), y ∈ L p (M; ∞ ). 4.1. NONCOMMUTATIVE ∞ -VALUED L P -SPACES
In particular for any positive sequence (x n ) n in L p (M; ∞ ), we have

sup n + x n p = sup{ n τ (x n y n ) : y n ∈ L + p (M) and n y n p ≤ 1}.
(2) Each element in the unit ball of L p (M; ∞ ) (resp. L p (M; 1 )) is a sum of sixteen (resp. eight) positive elements in the same ball.

(3) Let 1 ≤ p 0 < p < p 1 ≤ ∞ and 0 < θ < 1, such that 1 p = 1-θ p 0 + θ p 1 . Then the following complex interpolation holds: we have isometrically

L p (M; ∞ ) = (L p 0 (M; ∞ ), L p 1 (M; ∞ )) θ .
Similar complex interpolations also hold for L p (M; c ∞ ).

We remark that we may define the spaces L p (M; ∞ (I)), L p (M; c 0 (I)) and L p (M; c ∞ (I)), L p (M; c c 0 (I)) for an uncountable index set I in the same way. The above properties still hold for these spaces. We will simply denote the spaces by the same notation L p (M; ∞ ), L p (M; c 0 ) and so on if no confusion can occur. Similar observations hold for L p (M; c ∞ ). As a result, for any 1 ≤ p < ∞ and any

(x t ) t∈R + ∈ L p (M; ∞ ) such that the map t → x t from R + to L p (M) is continuous, (x t ) t∈R + Lp(M; ∞) = lim a→1 + (x a j ) j∈Z Lp(M; ∞) .
Indeed, as mentioned above, it suffices to show that (x t k ) 1≤k≤n Lp(M; ∞) is dominated by lim a→1 + (x a j ) j∈Z Lp(M; ∞) for any (finitely many) elements t 1 , . . . , t n . This is obvious since for any ε > 0, by continuity we may find an a sufficiently close to 1 such that x t k -x a j k p < ε/n for some j k ∈ Z and for all 1 ≤ k ≤ n, which implies

(x t k ) 1≤k≤n Lp(M; ∞) ≤ (x a j k ) 1≤k≤n Lp(M; ∞) + 1≤k≤n x t k -x a j k p ≤ (x a j ) j∈Z Lp(M; ∞) + ε.
Similarly, for 2 ≤ p < ∞, we have

(x t ) t∈R + Lp(M; c ∞ ) = lim a→1 + (x a j ) j∈Z Lp(M; c ∞ ) .

Maximal inequalities and pointwise convergence

The standard tool in the study of pointwise convergences is the following type of maximal inequalities. (

) We say (Φ n ) n≥0 is of strong type (p, p) with constant C if sup + n≥0 Φ n (x) p ≤ C x p , x ∈ L p (M). 1 
(2) We say (Φ n ) n≥0 is of weak type (p, p) (p < ∞) with constant C if for any x ∈ L p (M) and any α > 0 there is a projection e ∈ M such that

eΦ n (x)e ∞ ≤ α, n ≥ 0 and τ (e ⊥ ) ≤ C x p α p .
(3) We say (Φ n ) n≥0 is of restricted weak type (p, p) (p < ∞) with constant C if for any projection f ∈ M and any α > 0, there is a projection e ∈ M such that

eΦ n (f )e ∞ ≤ α n ≥ 0 and τ (e ⊥ ) ≤ C α p τ (f ). We say (Φ n ) n≥0 is of restricted weak type (∞, ∞) with constant C if sup n Φ n (f ) ∞ ≤ C for any projection f ∈ M.
It is easy to know that for any 1 < p < ∞, strong type (p, p) ⇒ weak type (p, p) ⇒ restricted weak type (p, p).

The Marcinkiewicz interpolation theorem plays an important role in studying the maximal inequalities. The noncommutative version was first established by Junge and Xu in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], and then was generalized in [START_REF] Bekjan | Noncommutative maximal inequalities associated with convex functions[END_REF] and [START_REF] Dirksen | Weak-type interpolation for noncommutative maximal operators[END_REF]. We present Dirksen's version here.

Theorem 4.4 ([43, Corollary 5.3])

. Let 1 ≤ p < r < q ≤ ∞. Let (Φ n ) n≥0 be a family of positive linear maps from L p (M) + L q (M) into L 0 (M). If (Φ n ) n≥0 is of restricted weak type (p, p) and (q, q) with constants C p and C q , then it is of strong type (r, r) with constant

C r max{C p , C q }( rp r -p + rq q -r ) 2 .
We need an appropriate analogue for the noncommutative setting of the usual almost everywhere convergence. This is the notion of almost uniform convergence introduced by Lance [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF]. 

MAXIMAL INEQUALITIES AND POINTWISE CONVERGENCE

It is obvious that the a.u. convergence implies the b.a.u. convergence, so we will be mainly interested in the former. Note that in the commutative case, both notions are equivalent to the usual almost everywhere convergence in terms of Egorov's Theorem.

It is nowadays a standard method to deduce the pointwise convergence from maximal inequalities. We will use the following facts. (2) If a family (x n ) n∈N belongs to L p (M, c c 0 ) with 2 ≤ p < ∞, then x n conveges a.u. to 0. Proposition 4.7. (1) Let 1 ≤ p < ∞ and let (Φ n ) n≥0 be a sequence of positive linear maps on L p (M). Assume that (Φ n ) n≥0 is of weak type (p, p). If (Φ n x) n≥0 converges a.u. for all elements x in a dense subspace of L p (M), then (Φ n x) n≥0 converges a.u. for all x ∈ L p (M).

(2) Fix 2 ≤ p < ∞. Let Φ and (Φ n ) n≥0 be linear maps on L p (M) and C p be positive constants such that

(Φ n x) n Lp(M; c ∞ ) ≤ C p x p , x ∈ L p (M). Assume that there exists a dense subspace B ⊂ L p (M) such that lim m→∞ n≥m Φ n x -Φx p p = 0, x ∈ B.
Then Φ n x converges to Φx a.u. for all x ∈ L p (M).

Proof. The assertion (1) is given by [28, Theorem 3.1]. The assertion (2) is implicitly proved in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF], for which we provide a brief argument for the convenience of the reader. We first show that (Φ n (y) -Φ(y) n ∈ L p (M; c ∞ ) for any y ∈ B. Indeed, as m tends to ∞,

(Φ n (y) -Φ(y)) n≥m Lp(M; c ∞ ) ≤ (|Φ n (y) -Φ(y)| 2 ) n≥m 1/2 L p/2 (M; ∞) ≤ n≥m |Φ n (y) -Φ(y)| p 2 p 1/2 p/2 ≤   n≥m Φ n (y) -Φ(y) p p   1 p → 0.
As a result (Φ n (y) -Φ(y)) t≥0 ∈ L p (M; c c 0 ), as desired. For any x ∈ L p (M) and ε > 0, take y ∈ B such that x -y p < ε, then by the maximal inequality in our assumption, we have ((

Φ n -Φ)(x -y)) n Lp(M; c ∞ ) ≤ C p ε. Thus ((Φ n -Φ)(x)) n ∈ L p (M; c c 0 )
. By Lemma 4.6 we obtain that Φ n x converges to Φx almost uniformly. Remark 4.8. If we replace the index set n ∈ N by t ∈ R + , Proposition 4.7 still holds up to standard adaptations. Indeed, for the assertion (1), it suffices to note that (Φ t (x)) t∈R + converges a.u. if and only if (Φ t k (x)) k∈N converges a.u. for an arbitrary subsequence (t k ) k . This can be easily seen from an argument by contradiction. For the assertion (2), it suffices to consider the integral t≥t 0 Φ t x -Φx p p dt instead of the discrete sum over n ≥ m.

Noncommutative Hilbert valued L p -spaces

The noncommutative Hilbert valued L p -spaces provide a suitable framework for studying square functions in the noncommutative setting. In this thesis we will only use the following concrete representations of these spaces; for a more general description we refer to the seminal paper [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF].

First, for a sequence (x n ) n ⊂ L p (M), we define

(x n ) Lp(M; c 2 ) = n x * n x n 1/2 p , (x n ) Lp(M; r 2 ) = n x n x * n 1/2 p .
We alert the reader that the two norms above are not comparable at all if p = 2. Let L p (M; c 2 ) (resp. L p (M; r 2 ) ) be the the completion of the family of all finite sequence in L p (M) with respect to

• Lp(M; c 2 ) (resp. • Lp(M; r 2 )
). The space L p (M; cr 2 ) is defined in the following way. If 2 ≤ p ≤ ∞, we set

L p (M; cr 2 ) = L p (M; c 2 ) ∩ L p (M; r 2 )
equipped with the norm

(x n ) Lp(M; cr 2 ) = max{ (x n ) Lp(M; c 2 ) , (x n ) Lp(M; r 2 ) }. If 1 ≤ p ≤ 2, we set L p (M; cr 2 ) = L p (M; c 2 ) + L p (M; r 2 ) equipped with the norm (x n ) Lp(M; cr 2 ) = inf{ (y n ) Lp(M; c 2 ) + (z n ) Lp(M; r 2 ) }
where the infimun runs over all decompositions x n = y n + z n in L p (M). Second, for the Borel measure space Ω 0 = (R + \ {0}, dt t ), we may consider the norms

(x t ) t Lp(M;L c 2 (Ω 0 )) = ∞ 0 x * t x t dt t 1/2 p , (x t ) t Lp(M;L r 2 (Ω 0 )) = ∞ 0 x t x * t dt t 1/2 p .
We refer to [66, Section 6.A] for the rigorous meaning of the integral in the above norm.

Then we may define the spaces L p (M; L c 2 (Ω 0 )), L p (M; L r 2 (Ω 0 )) and L p (M; L cr 2 (Ω 0 )) in a similar way.

We recall the following basic properties. The duality bracket is given by

(x n ) n , (y n ) n = n τ (x n y n ), (x n ) n ∈ L p (M; cr 2 ), (y n ) n ∈ L p (M; cr 2 ).

NONCOMMUTATIVE HILBERT VALUED L P -SPACES

(2) (Hölder inequality) Let 1 ≤ p, r, q ≤ ∞ with 1/r = 1/p + 1/q. For all (x n ) n ∈ L p (M; cr 2 ) and (y n ) n ∈ L q (M; cr 2 ) we have

(x n y n ) n Lr(M; cr 2 ) ≤ (x n ) n Lp(M; cr 2 ) (y n ) n Lq(M; cr 2 ) . (3) (Complex interpolation) Let 1 ≤ p, q ≤ ∞ and 0 < θ < 1. Let 1 r = 1-θ p + θ q .
Then we have isometrically

(L p (M; cr 2 ), L q (M; cr 2 )) θ = L r (M; cr 2 ).
Similar complex interpolations also hold for L p (M; c 2 ) and L p (M; r 2 ). The following noncommutative Khintchine inequalities are well-known.

Proposition 4.10 ([76]

). Let (ε n ) be a sequence of independent Rademarcher variables on a probability space (Ω, P ). Let 1 ≤ p < ∞ and (x n ) be a sequence in L p (M; cr 2 ). ( 1) If 1 ≤ p ≤ 2, then there exists an absolute constant c > 0 such that

c (x n ) n Lp(M; cr 2 ) ≤ n ε n x n Lp(X;Lp(M)) ≤ (x n ) n Lp(M; cr 2 ) .
(2) If 2 ≤ p < ∞, then there exists an absolute constant c > 0 such that

1 √ 2 (x n ) n Lp(M; cr 2 ) ≤ n ε n x n Lp(X;Lp(M)) ≤ c √ p (x n ) n Lp(M; cr 2 ) .
The following proposition will be useful for our further studies.

Proposition 4.11. Let (x n ) n∈N ∈ L p (M; ∞ ). Then there exists an absolute constant c > 0 such that for any 1 ≤ p ≤ ∞,

(x n ) n Lp(M; ∞) ≤ c (x n ) n Lp(M; cr 2 )
; and for any 2 ≤ p ≤ ∞,

(x n ) n Lp(M; c ∞ ) ≤ c (x n ) n Lp(M; cr 2 )
. Proof. We first assume that x n ≥ 0 for each n and set a sequence of independent Rademacher variables (ε n ) on the probability space n≥0 (Ω n ; P n ). Here Ω n = {±1} and P n ({1}

) = P n ({-1}) = 1/2. Let (x n ) n ∈ L p (M; 1 ) + . Then we have n x n ε n p Lp(Ω;Lp(M)) = Ω n ε n (ω)x n p p dP (ω) ≤ Ω   {n:εn(ω)=1}
x n p + {n:εn(ω)=-1}

x n p   p dP (ω) ≤ 2 p ∞ n=0 x n p p • Ω dP (ω) = 2 p (x n ) p Lp(M; 1 )
.

By the noncommutative Khintchine inequalities in the previous proposition, we have for

1 ≤ p < ∞, (x n ) Lp(M; cr 2 ) ≤ c (x n ) Lp(M; 1 ) , ( 4.1) 
where c is an absolute constant independent of p. Note that it is folklore that (

x n ) L∞(M; cr 2 )
is dominated by n x n ε n L∞(Ω;Lp(M)) , so the above inequality still holds for p = ∞. If x n is not positive, by Proposition 4.1, we can decompose (x n ) n ∈ L p (M; 1 ) into 8 elements (x (i) n ) n ∈ L p (M; 1 ), such that for each 1 ≤ i ≤ 8, (x (i) n ) n Lp(M; 1 ) ≤ (x n ) n Lp(M; 1 ) . Therefore, the inequality (4.1) holds for all (x n ) n ∈ L p (M; 1 ). Now let (y n ) n ∈ L p (M; ∞ ). By duality and the above inequality we have

(y n ) n Lp(M; ∞) = sup n τ (x n y n ) (x n ) L p (M, 1 ) : (x n ) ∈ L p (M, 1 ) ≤ sup 8c n τ (x n y n ) (x n ) L p (M; cr 2 ) : (x n ) ∈ L p (M; cr 2 ) ≤ 8c (y n ) Lp(M; cr 2 )
. This proves the first inequality in the lemma. For the sencond inequality, it suffices to note that together with the Hölder inequality,

(x n ) Lp(M; c ∞ ) = x * n x n 1/2 L p/2 (M; ∞) ≤ x * n x n 1/2 L p/2 (M; cr 2 ) ≤ x * n 1/2 Lp(M; cr 2 ) x n 1/2 Lp(M; cr Chapter 5

Square functions of subordinate Poisson semigroups

The square function estimates of noncommutative diffusion semigroups has been established in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]. In this chapter we will slightly adapt the arguments of [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF] so as to obtain a refined version of their result for our further purpose. Throughout this chapter, (S t ) t>0 always denotes a semigroup of unital completely positive trace preserving and symmetric maps on M with the infinitesimal generator A, where a map T is said symmetric if τ (T (x)y) = τ (yT (x)) for any x, y ∈ S M . Let (P t ) denote the subordinate Poisson semigroup of (S t ), i.e. the generator of P t is -(-A) To state our theorem, we recall the dilation property. Let (M, τ ), (N , τ ) be two von Neumann algebra where τ and τ are normal faithful semifinite traces. If π : (M, τ ) → (N , τ ) is a normal unital faithful trace preserving * -representation, then it (uniquely) extends to an isometry from L p (M) into L p (N ) for any 1 ≤ p < ∞. We call the adjoint E : N → M of the embedding L 1 (M) → L 1 (N ) induced by π the conditional expectation associated with π. Moreover E : N → M is unital and completely positive. 

T m = Ê • E m • π, m ≥ 1, (5.1) 
where E m : N → N m ⊂ N is the canonical conditional expectation onto N m , and where Ê : N → M is the conditional expectation associated with π.

We We aim to prove the following square function estimates, which is enough for our further purpose according to Lemma 5.2. The following inequality is essentially established in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF][START_REF] Jiao | Noncommutative harmonic analysis on semigroups[END_REF], without specifying the order (p -1) -6 . However, we will see that the method in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF] is enough to obtain this order. The outline of our proof is slightly different from that of [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF], but all the ingredients are already available in the latter. Proposition 5.3. Assume that for all t > 0, the operator S t satisfies Rota's dilation property. For all 1 < p < 2 and x ∈ L p (M) we have

inf    ( ∞ 0 |t∂P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂P t (x r )) * | 2 dt t ) 1 2 p    ≤ c(p -1) -6 x p (5.2)
where the infimum runs over all x c , x r ∈ L p (M) such that x = x c + x r , and c > 0 is an absolute constant.

Remark 5.4. When the underlying von Neumann algebra is commutative, it is known from Stein [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF] that the optimal order here is (p -1) -1 . In the noncommutative case, we believe that the oder (p -1) -6 is not optimal. However, this is sufficient for our purpose of proving the main results in the sequel.

Our study on the semigroup (P t ) t is based on the analysis of the ergodic averages. Recall that the ergodic averages associated to the semigroup (S t ) t is defined as follows:

M t = 1 t t 0 S u du.
We will need the following claim. Proof. This claim is well-known to experts. We only give a sketch of its arguments. Set

ϕ(s) = 1 2 √ π e -1/4s
s 3/2 . Using integration by parts we have

P t = 1 t 2 ∞ 0 ϕ( s t 2 )(∂(sM s ))ds = - ∞ 0 sϕ (s)M t 2 s ds.
Therefore

t∂P t = -2 ∞ 0 t 2 s 2 ϕ (s)∂M t 2 s ds = -2 ∞ 0 sϕ (s)(t 2 s∂M t 2 s )ds (5.3)
which yields the claim by noting that • Lp(L c 2 (dt/t)) is a norm and sϕ (s) is absolutely integrable.

Before starting the proof we recall a few facts about noncommutative martingales. Let (E n ) n≥0 be an increasing sequence of canonical conditional expectations defined on (M, τ ). A sequence x = x n ⊂ L 1 (M) is called a martingale if E n (x n+1 ) = x n for all n ≥ 0; it is called a L p -martingale for some p ≥ 1 if (x n ) n ⊂ L p (M) and we set

x p := sup n x n p < ∞.
We denote dx n = x n -x n-1 for n ≥ 0 (with the convention that x -1 = 0) and call them the martingale differences of x. We refer to [START_REF] Pisier | Non-commutative martingale inequalities[END_REF][START_REF] Pisier | Non-commutative L p -spaces[END_REF] and the references therein for more information on noncommutative martingales and related square functions. We will need the optimal orders for the best constants in several noncommutative martingale inequalities when p → 1.

Lemma 5.6. Let (E n ) n be an arbitrary monotone sequence of canonical conditional expectations defined on (M, τ ). Let 1 < p < 2.

(1) (Noncommutative Stein inequality [START_REF] Junge | On the best constants in some non-commutative martingale inequalities[END_REF]Theorem 8]) For any finite sequence (x n ) n≥0 ⊂ L p (M), we have

(E n x n ) n≥0 Lp( cr 2 ) ≤ c(p -1) -1 (x n ) n≥0 Lp( cr 2 )
, where c > 0 is an absolute constant. The inequality remains true if we replace the norm of L p ( cr 2 ) by L p ( c 2 ) or L p ( r 2 ). ( 2) (Noncommutative martingale transforms [START_REF] Randrianantoanina | Non-commutative martingale transforms[END_REF]Theorem 4.3]) For any L p -martingale x = (x n ) n≥0 and for any signs

(ε n ) n≥0 ⊂ {-1, 1}, we have n≥0 ε n dx n p ≤ c(p -1) -1 x p ,
where c > 0 is an absolute constant.

We need the following auxiliary results. Proposition 5.7. Assume that for all t > 0, the operator S t satisfies Rota's dialtion property. Then for 1 < p < 2 and x ∈ L p (M), we have

(t∂P t (x)) t>0 Lp(L cr 2 (dt/t)) ≤ c(p -1) -2 x p , ( 5.4) 
where c > 0 is an absolute constant.

Proof. This result has been essentially obtained in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF], together with the optimal estimates in Lemma 5.6. Indeed, let (E n ) n≥0 be a monotone sequence of conditional expectations on M and x n = E n+1 (x) -E n (x) be a sequence of martingale differences with x ∈ L p (M). By Lemma 5.6(2) and the Khintchine inequality in Lemma 4.10 we have

(x n ) n≥0 Lp( cr 2 ) ≤ c p -1 x p ,
and by Lemma 5.6(1) we have for any sequence (y n ) n≥0 ⊂ L p (M), we have

(E n y n ) n≥0 Lp( cr 2 ) ≤ c p -1 (y n ) n≥0 Lp( cr 2 ) 1 < p < 2,
where c > 0 is an absolute constant. Then tracing the order in the proof of [66, Corollary 10.9], we obtain that for all ε > 0,

( √ mD ε m (x)) m≥1 Lp( cr 2 ) ≤ c (p -1) 2 x p ,
where c > 0 is an absolute constant.

D ε m = ρ ε m -ρ ε m-1 and ρ ε m = 1 m + 1 m k=0 S kε .
By a standard discretization argument, see for instance [ 

   ( ∞ 0 |t∂P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂P t (x r )) * | 2 dt t ) 1 2 p    (p -1) -4 (t∂P t (x)) t>0 Lp(L cr 2 (dt/t)) . (5.5)
This inequality is essentially proved in [66, Theorem 7.8]; the order (p -1) -4 is not stated there, but it follows immediately after a careful computation on all related constants appeared in the argument therein. For the convenience of the reader, we will recall some part of the proof and clarify all the constants in the proof which are concerned with the precise order.

For any θ ∈ (0, π), we let

Σ θ = {z ∈ C * : |Arg(z)| < θ}.
We say that a set F ⊂ B(L p (M)) is Col-bounded (resp. Row-bounded ) if there is a constant C such that for any sequence (T k ) k ⊂ F and (x k ) k in L p (M), we have

(T k x k ) k Lp(M; c 2 ) ≤ C (x k ) Lp(M; c 2 ) (5.6) resp. (T k x k ) k Lp(M; r 2 ) ≤ C (x k ) Lp(M; r 2 ) .
(5.7)

The least constant C satisfying inequality (5.6) (resp. inequality (5.7)) will be denoted by Col(F) (resp. Row(F)). We quote a useful results from [START_REF] Clément | Schauder decomposition and multiplier theorems[END_REF]Lemma 3.2], see also [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]Lemma 4.2]. The following result was proved in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]Theorem 5.6] without the estimation of the constant. Lemma 5.9. Let 1 < p < 2. Let (S t ) t be a semigroup of unital completely positive trace preserving and symmetric maps. Let A be the infinitesimal generator of (S t ) t . Then the set

F p = {A(z -A) -1 : z ∈ C\Σ ν } ⊂ B(L p (M)) with ν = (p+1)π 4p
is Col-bouned and Row-bounded with constants

Col(F p ) ≤ c(p -1) -2 and Row(F p ) ≤ c(p -1) -2 ,
where c is an absolute constant.

Proof. Let t 1 , • • • , t n be any nonnegative real numbers, x 1 , • • • , x n in L q (M). For any 2 < q < ∞, by the Kadison-Schwarz inequality, we have

n k=1 S t k (x k ) * S t k (x k ) 1 2 q = n k=1 S t k (x k ) * S t k (x k ) q 2 ≤ n k=1 S t k (x * k x k ) q 2 .
Let r = (q/2) = q q-2 . By duality and the maximal inequalities for unital completely positive semigroups (see [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]Corollary 5.11 and Theorem 4.1]), we have

k S t k (x * k x k ) 1/2 2 q = (S t k (x * k x k )) k L q/2 (M; 1 )
= sup

(y k )∈Lr(M; ∞) n k=1 τ (S t k (x * k x k )y k ) sup + k y k r = sup (y k )∈Lr(M; ∞) n k=1 τ ((x * k x k )S t k (y k )) sup + k y k r ≤ (x * k x k ) L q/2 (M; 1 ) sup + S t k (y k ) r sup + y k r ≤ cr 2 (r -1) -2 n k=1 x * k x k 1/2 2 q .
Therefore, I q = {S t : t ≥ 0} ⊂ B(L q (M)) is Col-bounded with the constant Col(I q ) ≤ cq. Let p = p p-1 be the conjugate number of p. We fix some 0 < β < π p . Let q = p ( π-2β π-p β ) and α = 2β π . These numbers satisfy 1-α q + α 2 = 1 p . By complex interpolation, we know that

L p (M; c 2 ) = [L q (M; c 2 ), L 2 (M; c 2 )] α . Let s 1 , • • • , s n be some nonnegative real numbers. For any z ∈ {z ∈ C * : 0 ≤ Arg(z) ≤ π 2 }, we define a map U (z) with U (z) : L 2 (M; c 2 (n)) ∩ L q (M; c 2 (n)) → L 2 (M; c 2 (n)) + L q (M; c 2 (n)) (x k ) k → (S zs k (x k )) k .
This U (z) is well defined, since S z (x) is well-defined for all z in the right-half complex plain and x ∈ L 2 (M). On the one hand, we have

U (te i π 2 ) : L 2 (M; c 2 ) → L 2 (M; c 2 ) ≤ 1, t > 0. since 0 < (p-1)π 4p < Arg(z) -θ < π 2 -π 2p < π 2 .
Hence, the equation (5.9) holds for any z ∈ C\Σ ν . By lemma 5.8 and (5.8), we get

Row(F p ) ≤ 2 Γ + η ze uz du • Row(G p (η)) Row(G p (η)) ν -θ p(p -1) -2 .
A similar proof shows that Col(F p ) p(p -1) -2 .

Now let us prove the desired proposition.

Proof of Proposition 5.3.

Set F (z) = ze -z , G(z) = 4F (z) and G(z) = G(z). Let B = -(-A) 1/2
be the infinitesimal generator of (P t ) t . We have

F (tB)x = tBe -tB x = -t ∂ ∂t (P t (x)).
Let

ω p = π p -π 2 , ν = (p+1)π 4p
and ξ = (3p+1)π 8p

. These numbers satisfy ω p < ν < ξ < π 2 . Note that (P t ) t>0 is again a semigroup of unital completely positive trace preserving and symmetric maps. By Lemma 5.2, P t satisfies Rota's dilation property. By [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]Corollary 11 (5.10) where C = max{ T c , T r }. Here T c and T r are defined by

.2], B : L p (M) → L p (M) admits a bounded H ∞ (Σ ξ ) functional calculus. Note that F, G ∈ H ∞ 0 (Σ ξ ) and ∞ 0 G(t)F (t) dt t =
T c : L p (L c 2 (dt/t)) →: L p (L c 2 (dt/t)) T r : L p (L r 2 (dt/t)) →: L p (L r 2 (dt/t)) (x t ) t → ( ∞ 0 F (sB)G(tB)x t dt t ) s (x t ) t → ( ∞ 0 F (sB)G(tB)x t dt t ) s . Let γ ∈ (ν, ξ). Define Γ γ (t) =    -te iγ , t ∈ R -; te -iγ , t ∈ R + .
Define 

T Φ : L p (L c 2 (R, |dt/t|)) → L p (L c 2 (R, |dt/t|)) (x t ) t∈R → Γ γ (t)(Γ γ (t) -B) -1 x t 2πi t∈R . Set K 1 = Γγ |F (z)|
T Φ ≤ Col(O)
where

O = 1 µ(I) I Γ γ (t)(Γ γ (t) -B) -1 dµ(t) : I ⊂ R, 0 < µ(I) < ∞ . Moreover, by Lemma 5.8, Col(O) ≤ 2 Col({z(z -B) -1 : z ∈ Γ γ }).
Since γ > ν, by Lemma 5.9,

Col({z(z -B) -1 : z ∈ Γ γ }) c(p -1) -2 .
On the other hand,

K 1 = Γγ |F (z)| dz z = 2 ∞ 0 |te -iγ e -t(cos(γ)-i sin(γ)) | dt t = 2 ∞ 0 e -t cos(γ) dt 1 cos(γ) ,
and

K 2 = 4K 1 . Note that γ < ξ = (3p+1)π 8p and 0 < π 2 -ξ < π 16 . We have 1 cos(γ) ≤ 1 sin( π 2 -ξ) p(p -1) -1 . Therefore, T c (p -1) -4 .
Similarly, T r (p -1) -4 .

Thus, by (5.10), inf

   ( ∞ 0 |t∂P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂P t (x r )) * | 2 dt t ) 1 2 p    ≤ c(p-1) -4 (t∂P t (x)) t>0 Lp(L cr 2 (dt/t))
where c is an absolute constant not depending on p. Then Proposition 5.3 follows from Proposition 5.7.

Chapter 6

Maximal inequalities of multipliers on L p (M)

This chapter is devoted to the study of general criteria for maximal inequalities and pointwise convergences given by Theorem 0.6. Our argument does not essentially rely on the group theoretic structure. Note that there are a number of typical structures with Fourier-like expansions in noncommutative analysis, which are not given by group algebras. Hence instead of the framework in Theorem 0.6, we would like to state and prove the results in a quite general setting.

For proceeding the study, we will only require the following simple framework. Throughout this chapter, we fix a von Neumann algebra M equpped with a normal semifinite faithful trace τ , and an isometric isomorphism of Hilbert spaces U : L 2 (M) → L 2 (Ω, µ; H) for some distinguished regular Borel measure space (Ω, µ) and Hilbert space H. Assume additionally that U -1 (C c (Ω; H)) is a dense subspace in L p (M) for all 1 ≤ p ≤ ∞ (for p = ∞ we refer to the w*-density), where C c (Ω; H) denotes the space of H-valued continuous functions with compact supports. Given a measurable function m ∈ L ∞ (Ω; C), we denote by T m the linear operator on L 2 (M) determined by

T m : L 2 (M) → L 2 (M), U (T m x) = mU (x), x ∈ L 2 (M). (6.1)
We call m the symbol of the operator T m . The operator T m is obviously a generalization of the classical Fourier multiplier. Moreover, for a discrete group Γ, taking

M = V N (Γ), (Ω, µ) = (Γ, counting measure), H = C, U : λ(g) → δ g ,
the above framework coincides with that considered in Theorem 0.6.

Example 6.1. Apart from group von Neumann algebras, this framework applies to various typical models in the study of noncommutative analysis. As an illustration we recall briefly some of them.

(1) (Twisted crossed product [START_REF] Bédos | On twisted Fourier analysis and convergence of Fourier series on discrete groups[END_REF][START_REF] Bédos | On discrete twisted C * -dynamical systems, Hilbert C *modules and regularity[END_REF]) Let G be a discrete group with a twisted dynamical system Σ on a von Neumann algebra N ⊂ B(L 2 (N )). Then we may consider the von Neumann algebra M generated by the associated regular covariant representations of G and the natural representation of N on 2 (G; L 2 (N )). Each x ∈ M admits a Fourier series g∈G x(g)λ Σ (g) with x(g) ∈ N . Take Ω = G, H = L 2 (N ) and U : x → x. It is CHAPTER 6. MAXIMAL INEQUALITIES OF MULTIPLIERS ON L P (M) easy to see that for any m ∈ ∞ (G), the multiplier in (6.1) is given by

T m : g∈G x(g)λ Σ (g) → g∈G m(g)x(g)λ Σ (g),
which is the usual Fourier multiplier considered in [START_REF] Bédos | On twisted Fourier analysis and convergence of Fourier series on discrete groups[END_REF]. As a particular case, this also coincides with the Fourier multipliers on quantum tori studied by [START_REF] Chen | Harmonic analysis on quantum tori[END_REF].

( (3) (Clifford algebras, free semicircular systems and q-deformations) Let M = Γ q (H) be q-deformed von Neumann algebra in the sense of Bożejko and Speicher [START_REF] Bożejko | An example of a generalized Brownian motion[END_REF][START_REF] Bożejko | Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces[END_REF]. The case q = 0 corresponds to Voiculescu's free semicircular systems and the case q = -1 corresponds to the usual Clifford algebras. We choose the canonical orthonormal basis of L 2 (M) with index set Ω according to the Fock representation ⊕ n H ⊗n , and denote by U the corresponding isomorphism. We view m : N → C naturally as a function on Ω by setting the value m(n) on indexes of basis in H ⊗n . Then for any such m, the operator T m is given by T m (x n ) = m(n)x n for x n ∈ H ⊗n , which corresponds to the radial Fourier multiplier studied in [66, Section 9].

(3) (Quantum Euclidean spaces [START_REF] González-Pérez | Singular integrals in quantum Euclidean spaces[END_REF]) Let M = R Θ be the quantum Euclidean space associated with an antisymmetric n×n-matrix Θ. We take Ω = R n and let U : L 2 (R Θ ) → L 2 (R n ) be the canonical isomorphism. Then the operator T m coincides with the usual quantum Fourier multipliers on R Θ .

(4) The framework also applies to non-abelian compact groups, compact quantum groups and von Neumann algebras of locally compact groups. We will discuss them in more details in the next chapters.

Our criterion is based on comparisons with symbols of a symmetric Markov group. To state our results, we fix a semigroup (S t ) t>0 of unital completely positive trace preserving and symmetric maps on M of the form

S t = T e -t : L 2 (M) → L 2 (M), U (S t x) = e -t (•) (U x), x ∈ L 2 (M),
for a distinguished continuous function : Ω → R + . We will also consider the subordinate Poisson semigroup (P t ) t of (S t ) t , that is,

P t = T e -t √ : L 2 (M) → L 2 (M), U (P t x) = e -t √ (•) (U x), x ∈ L 2 (M).
Recall that we are interested in the following types of conditions for a family (m N ) N ∈N (resp. (m t ) t∈R + ) of measurable functions on Ω in Theorem 0.6: (A1) There exist α > 0 and β > 0 such that for almost all ω ∈ Ω we have

|1 -m N (ω)| ≤ β (ω) α 2 N , |m N (ω)| ≤ β 2 N (ω) α . ( 6 

.2)

(A2) There exist α > 0 and β > 0 such that for almost all ω ∈ Ω we have

|1 -m N (ω)| ≤ β (ω) α N , |m N (ω)| ≤ β N (ω) α , |m N +1 (ω) -m N (ω)| ≤ β 1 N . ( 6 

.3)

(A3) There exist α > 0, β > 0 and η ∈ N + such that t → m t (ω) is piecewise ηdifferentiable for almost all ω ∈ Ω, and for all 1 ≤ k ≤ η and almost all ω ∈ Ω we have

|1 -m t (ω)| ≤ β (ω) α t , |m t (ω)| ≤ β t (ω) α , d k m t (ω) dt k ≤ β 1 t k . (6.4)
We split our main theorem into the following two parts for p ≥ 2 and p < 2 respectively. Theorem 6.2. Let 2 ≤ p < ∞.

(1) If (T m N ) N ∈N extends to bounded self-adjoint maps on M with γ := sup N T m N < ∞ and if (m N ) N satisfies one of the assumptions (A1) or (A2), then there exists a constant c > 0 depending only on p, α, β and γ, such that for all x ∈ L p (M), we have

(T m N x) N Lp(M; ∞) ≤ c x p ,
and

T m N x → x a.u. as N → ∞.
(2) If (T mt ) t∈R + extends to bounded self-adjoint maps on M with γ := sup t T mt < ∞ and if (m t ) t satisfies (A3), then there exists a constant c > 0 depending only on p, α, β and γ, such that for all x ∈ L p (M), we have

(T mt x) t Lp(M; ∞) ≤ c x p ,
and

T mt x → x a.u. as t → ∞. Theorem 6.3. Assume that (T m N ) N ∈N (resp. (T mt ) t≥0
) extends to positive contractions on L p (M) for all 1 ≤ p ≤ ∞. Assume additionally that for all t > 0, the operator S t satisfies Rota's dialtion property. There are constants c 1 , c 2 > 0 depending only on p, α, β, and c 3 > 0 on p, α, β, η satisfying the following assertions:

(1) If (m N ) N satisfies the assumptions (A1), then for all 1 < p < ∞ and all x ∈ L p (M),

(T m N x) N Lp(M; ∞) ≤ c 1 x p and T m N x → x a.u. as N → ∞.
(2) If (m N ) N satisfies the assumption (A2), then for all 3/2 < p < ∞ and all x ∈ L p (M),

(T m N x) N Lp(M; ∞) ≤ c 2 x p and T m N x → x a.u. as N → ∞.
(3) If (m t ) t satisfies the assumption (A3), then for all 1 + 1 2η < p < ∞ and all x ∈ L p (M),

(T mt x) t Lp(M; ∞) ≤ c 3 x p and T mt x → x a.u. as t → ∞.
The above theorems recover Theorem 0.6. Indeed, note that if M is a finite von Neumann algebra, the additional assumption on Rota's dilation property is fulfilled by Lemma 5.2 [START_REF] Arano | The Fourier algebra of a rigid C * -tensor category[END_REF]. Also, for any conditionally negative function : Γ → C, the associated maps λ(g) → e t (g) forms a semigroup of unital completely positive trace preserving and symmetric maps. On the other hand, for a function m : Γ → C, the map T m is τpreserving; if T m is unital positive on V N (Γ), then it extends to positive contractions to L p (V N (Γ)) for all 1 ≤ p ≤ ∞ (see e.g. [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]Lemma 1.1]). So the assumption of Theorem 0.6 coincides with that of the above theorems. Remark 6.4. The completely bounded version of the above two theorems holds true as well. In other words, if N is another semifinite von Neumann algebra and if we replace T m N by T m N ⊗Id N , T mt by T mt ⊗Id N and M by M = M⊗N , then the above two theorems still hold true. Indeed, it suffices to consider a larger Hilbert space H = H ⊗ L 2 (N ) and apply the above theorems to M and H.

Before the proof we recall the following well-known fact, which is of essential use for our arguments. The following maximal inequalities and the a.u. convergence on dense subspaces are given in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], and the a.u. convergence on L p -spaces then follows from Proposition 4.7(1). Proposition 6.5. We have

(S t (x)) t Lp(M; ∞) ≤ c p x p , x ∈ L p (M), 1 < p < ∞,
where c p ≤ C • p(p -1) -2 with C an absolute constant. Moreover, (S t (x)) t converges a.u. to x as t → 0 for all x ∈ L p (M) with 1 < p < ∞.

The following result on mean convergences is an easy consequence of our assumptions.

Proposition 6.6. Let (T m N ) N , (T mt ) t and 1 < p < ∞ be given as in Theorem 6.2 or Theorem 6.3 which satisfy the assumptions (A1), (A2) or (A3) correspondingly.

(1) The family (T mt ) t is strongly continuous on L p (M), i.e., for any x ∈ L p (M) the function t → T mt x is continuous from R + to L p (M).

(2) We have

lim N →∞ T m N x -x p = 0, lim t→∞ T mt x -x p = 0, x ∈ L p (M).
Proof. Let x ∈ U -1 (C c (Ω; H)) and E = supp(U (x)) ⊂ Ω. By the Hölder inequality, for any t 0 ≥ 0 and 2 ≤ p < ∞,

T mt x -T mt 0 x p ≤ T mt x -T mt 0 x 2/p 2 T mt x -T mt 0 x 1-2/p ∞ (m t -m t 0 )1 E 2/p ∞ x 2/p 2 x 1-2/p ∞ .
By the continuity of m t and the compactness of E, the above quantity tends to 0 as t → t 0 . Similar arguments work for p < 2 by using the Hölder inequality with endpoints p = 1, 2. Similarly, by the continuity of and the compactness of E, we have

lim t→0 T mt x -x p → 0, lim N →∞ T m N x -x p → 0.
For general elements x ∈ L p (M), it suffices to note that (T m N ) N and (T mt ) t extend to bounded operators on L p (M). Thus the desired results follow from a standard density argument. Now we are ready to proceed the proof of the previous theorems. 

|m N (ω)| ≤ β a N f (ω) (a N + f (ω)) 2 (6.5)
Then,

(T m N x) N ∈Z L 2 (M; cr 2 ) ≤ β a 2 a 2 -1 x 2 .
Proof. Note that we have L 2 (M; cr 2 ) = L 2 (M⊗ ∞ ) by the traciality of τ . Then we see that

(T m N x) N 2 L 2 (M; cr 2 ) =τ   N ∈Z |T m N x| 2   = N ∈Z T m N x 2 L 2 (M) = N ∈Z m N U (x) 2 L 2 (Ω;H) = Ω N ∈Z |m N (ω)(U x)(ω)| 2 dµ(ω) ≤ N ∈Z |m N | 2 L∞(Ω) U x 2 L 2 (Ω;H) = N ∈Z |m N | 2 L∞(Ω) x 2 L 2 (M) .
However, by (6.5) we see that for all ω ∈ Ω,

N ∈Z |m N (ω)| 2 ≤ N <log a f (ω) β 2 a 2N f (ω) 2 + N ≥log a f (ω) β f (ω) 2 a 2N β 2 a 2 a 2 -1 .
Thus we obtain the desired inequality.

Reduction to lacunary sequences

Lemma 6.8. Assume that (m t ) t≥0 satisfies the assumption (A3) for η = 1. Choose an arbitrary function f : Ω → R + . Define for j ∈ Z,

a j = sup t    sup 2 j-2 < f (ω) t ≤2 j |m t (ω)|    , b j = sup t    sup 2 j-2 < f (ω) t ≤2 j t • ∂m t ∂t (ω)    . Assume K = j∈N a 1/2 j (a 1/2 j + b 1/2 j ) < ∞.
Then for x ∈ L 2 (M), we have the following maximal inequality

(T mt x) t L 2 (M; ∞) K x 2 and (T mt x) t L 2 (M; ∞ c ) K x 2 . CHAPTER 6. MAXIMAL INEQUALITIES OF MULTIPLIERS ON L P (M)
Proof. Let {η j } j∈Z be a partition of unity of R + satisfying

j η j = 1, supp η j ⊂ [2 j-2 , 2 j ], 0 ≤ η j ≤ 1 and |η j | < C2 -j . Define m t,j (ω) = m t (ω)η j ( f (ω) t ) ∈ ∞ (Ω).
For notational simplicity, denote by T t,j the operators with symbols m t,j ; that is,

U (T t,j x) = m t,j U (x), x ∈ L 2 (M).
Then we have sup t

+ T mt x 2 = sup t +   j∈Z T t,j x   2 ≤ j∈Z sup t + T t,j x 2 . ( 6.6) 
From now on we fix an arbitrary j ∈ Z and A j > 0. In the sequel of this proof we denote

G k (ω) = U (x)(ω) • 1 [2 k-2 ,2 k+2 ] (f (ω)), ω ∈ Ω and x k = U * (G k ), x ∈ L 2 (M). Since supp η j ⊂ [2 j-2 , 2 j ], for v ∈ Z and t ∈ [2 v , 2 v+1 ) we have m t,j (ω)U (x)(ω) = m t (ω)η j ( f (ω) t )U (x)(ω) = m t (ω)η j ( f (ω) t )G v+j (ω).
We may rewrite the above equality as

T t,j x = T t,j x v+j , t ∈ [2 v , 2 v+1 ).
We divide the interval [2 v , 2 v+1 ] into A j parts:

2 v = γ 0 < γ 1 < γ 2 • • • < γ A j = 2 v+1 with γ k+1 -γ k = 2 v • A -1 j . For any t ∈ [2 v , 2 v+1 ), there exists 0 ≤ k(t) ≤ A j such that t ∈ [γ k(t) , γ k(t)+1
). By Kadison's Cauchy-Schwarz inequality, we have

|T t,j x v+j | 2 = |U * (m t,j G v+j )| 2 = U * t γ k(t) ∂m s,j ∂s G v+j ds + m γ k(t) ,j • G v+j 2 ≤ 2(t -γ k(t) ) t γ k(t) ∂T s,j ∂s (x v+j ) 2 ds + 2|T γ k(t) ,j (x v+j )| 2 ≤ 2   2 v A j γ k(t)+1 γ k(t)
∂T s,j ∂s (x v+j )

2 ds + |T γ k(t) ,j (x v+j )| 2   ≤ 2 A j -1 k=0   2 v A j γ k+1 γ k ∂T s,j ∂s (x v+j ) 2 ds + |T γ k ,j (x v+j )| 2   .
We denote

y v = 2 A j -1 k=0 
2 v A j γ k+1 γ k ∂T s,j ∂s (x w+j ) 2 ds + |T γ k ,j (x w+j )| 2 . Then |T t,j x v+j | 2 ≤ y v . ( 6.7) 6.2 

. REDUCTION TO LACUNARY SEQUENCES

Let us estimate the quantity y v 1 . We have

y v 1 = τ (y v ) = 2 A j -1 k=0   2 v A j γ k+1 γ k ∂T s,j ∂s (x v+j ) 2 2 ds + T γ k ,j (x v+j ) 2 2   .
Note that

γ k+1 γ k ∂ s m s (ω)η j ( f (ω) s ) 2 ds = γ k+1 γ k ∂m s (ω) ∂s • η j f (ω) s -η j f (ω) s f (ω) s 2 • m s (ω) 2 ds ≤ γ k+1 γ k b j s + a j s 2 ds (since supp η j ⊂ [2 j-2 , 2 j ]) ≤ 1 2 v A j (b j + a j ) 2 .
By Fubini's theorem, we have

A j -1 k=0 2 v A j γ k+1 γ k ∂T s,j ∂s (x v+j ) 2 2 ds = A j -1 k=0 2 v A j γ k+1 γ k ∂m s,j ∂s G v+j 2 L 2 (Ω;H) ds = A j -1 k=0 2 v A j Ω   γ k+1 γ k ∂m s,j ∂s (ω) 2 ds   |G v+j (ω)| 2 dµ(ω) ≤ (b j + a j ) 2 A j x v+j 2 2 ,
and

A j -1 k=0 T γ k ,j (x v+j ) 2 2 = A j -1 k=0 ω∈Ω |m γ k (ω)| 2 η j f (ω) γ k 2 |G v+j (ω)| 2 dµ(ω) ≤ A j a 2 j x v+j 2 2 .
Therefore,

y v 1 ≤ 2 (b j + a j ) 2 A j + A j a 2 j x v+j 2 2 .
Recall that the inequality (6.7) asserts that |T t,j x v+j | 2 ≤ y v ≤ u∈Z y u . Since T t,j x is self-adjoint and T t,j x = T t,j x v+j , the above estimate gives

sup t + T t,j x 2 ≤ sup t + |T t,j x v+j | 2 ≤   u∈Z y u   1 2 2 ≤   u∈Z y u 1   1 2 (6.8) ≤   u∈Z 2 (b j + a j ) 2 A j + A j a 2 j x u+j 2 2   1 2 . Note that [2 j+u-2 , 2 j+u+2 ] = ∪ 3 l=0 [2 j+u+l-2 , 2 j+u+l-1 ]. CHAPTER 6. MAXIMAL INEQUALITIES OF MULTIPLIERS ON L P (M) We have u∈Z x u+j 2 2 = u∈Z Ω U (x)(ω) • 1 [2 j+u-2 ,2 j+u-2 ] (f (ω)) 2 dµ(ω) ≤ 3 l=0 Ω U (x)(ω) • u∈Z 1 [2 j+u+l-2 ,2 j+u+l-1 ] (f (ω)) 2 dµ(ω) = 3 l=0 U (x) 2 2
where the last equality holds since

u∈Z 1 [2 j+u+l-2 ,2 j+u+l-1 ] (f (ω)) = 1.
Thus,

u∈Z x u+j 2 2 ≤ 4 x 2 2 .
Choose A j = a j +b j a j . Together with the inequalities (6.8), we have

sup n + T t,j x 2 a 1/2 j (a j + b j ) 1/2   u∈Z x u+j 2 2   1/2 a 1/2 j (a j + b j ) 1/2 x 2 .
By (6.6), the proof is complete for the first maximal inequality. Note that we have the analogue for the space L 2 (M; c ∞ ) of (6.8). In fact,

(T t,j x) t L 2 (M; c ∞ ) = (|T t,j x v+j | 2 ) t 1/2 L 1 (M; ∞) ≤   u∈Z y u   1/2 1 ≤   u∈Z y u 1   1/2 ≤   u∈Z 2 (b j + a j ) 2 A j + A j a 2 j x u+j 2 2   1 2
.

Repeating the arguments as the proof of the first inequality, we get the desired maximal inequality for L 2 (M; c ∞ ). Proposition 6.9. Assume that (m t ) t≥0 satisfies the assumption (A3). Then for any 1 ≤ q < 2, q + q(2-q) q-1+2η ≤ p < 2, we have

(T mt ) t∈R + : L p (M) → L p (M; ∞ ) β,η,p,q sup 1≤δ≤2 η (T m 2 j δ ) j∈Z : L q (M) → L q (M; ∞ )
provided the right hand side is finite.

Proof. By Proposition 6.6, (T mt (x)) t is strongly continuous on L p (M) for all 1 < p < ∞. By Remark 4.2, we have for x ∈ L p (M),

sup + t∈R + T mt x p = lim r→∞ sup j∈Z + T m 2 j/r x p ≤ sup j∈Z + T m 2 j x p + ∞ s=0 sup j∈Z + T m 2 j/2 s+1 x p -sup j∈Z + T m 2 j/2 s x p .

REDUCTION TO LACUNARY SEQUENCES

For s ∈ N 0 , we denote

I s = {2 j 2 s : j ∈ Z}. Set ψ [s] t (ω) = m 2 1 2 s+1 t
(ω)-m t (ω) and denote by

Ψ [s] t = T ψ [s]
t the associated multipliers with symbols ψ

[s]

t . Note that we have the bijection J : I s → I s+1 \I s , 2 j/2 s → 2 (2j+1)/2 s+1 = 2 1 2 s+1 2 j/2 s and I s+1 = I s ∪ J(I s ). Hence for

y t =    T mt t ∈ I s T m J -1 (t) t ∈ J(I s ) ,
we have sup t∈I s+1 y t = sup t∈Is T mt . Then applying the triangle inequality, we get

sup + t∈I s+1 T mt x p -sup + t∈Is T mt x p ≤ sup + t∈Is Ψ [s] t (x) p .
Moreover, for any s 1 ≥ 0 we write

sup + t∈Is 1 Ψ [s 1 ] t (x) p = s 1 -1 s 2 =0 sup + t∈I s 2 +1 Ψ [s 1 ] t (x) p -sup + t∈Is 2 Ψ [s 1 ] t (x) p + sup + t∈I 0 Ψ [s 1 ] t (x) p .
Applying the triangle inequality again, we have

sup + t∈I s 2 +1 Ψ [s 1 ] t (x) p -sup + t∈Is 2 Ψ [s 1 ] t (x) p ≤ sup + t∈Is 2 Ψ [s 1 ,s 2 ] t (x) p
where the symbol asssociated to Ψ

[s 1 ,s 2 ] t is defined by ψ [s 1 ,s 2 ] t (ω) = ψ [s 1 ] 2 2 -s 2 -1 t (ω) -ψ [s 1 ] t (ω).
Hence,

sup + t∈R + T mt x p ≤ sup j∈Z + T m 2 j x p + ∞ s 1 =0 sup + t∈I 0 Ψ [s 1 ] t (x) p + ∞ s 1 =0 s 1 -1 s 2 =0 sup + t∈Is 2 Ψ [s 1 ,s 2 ] t (x) p .
Repeating this process for η times, we get

sup + t∈R + T mt x p ≤ sup j∈Z + T m 2 j x p + ∞ s 1 =0 sup + t∈I 0 Ψ [s 1 ] t (x) p + ∞ s 1 =0 s 1 -1 s 2 =0 sup + t∈I 0 Ψ [s 1 ,s 2 ] t (x) p + • • • + s 1 >s 2 >•••>s η-1 sup + t∈I 0 Ψ [s 1 ,s 2 ,...s η-1 ] t (x) p + s 1 >s 2 >•••>sη sup + t∈Is η Ψ [s 1 ,s 2 ,...,sη] t (x) p , (6.9) 
where for any 1 ≤ v ≤ η we define the multipliers Ψ

[s 1 ,s 2 ,...,sv] t = T ψ [s 1 ,s 2 ,...,sv ] t with symbols ψ [s 1 ,s 2 ,...,sv] t = ψ [s 1 ,s 2 ,••• ,s v-1 ] δvt -ψ [s 1 ,s 2 ,••• ,s v-1 ] t
where we set

δ v = 2 2 -sv -1 . Note that 1 < δ v < 2.
We will show that for any ω ∈ Ω, Let us prove this inequality by induction. Consider first v = 0 , i.e. ψ t = m t . The inequality (6.10) holds by assumption. Assume that (6.10) holds for some 0 < v < η and consider the case of v + 1. For any 0 ≤ k ≤ η -(v + 1), we have

∂ (k) t ψ [s 1 ,s 2 ,...,sv] t (ω) β 2 -(s 1 +s 2 •••+sv) (2k + 2v) v t k 0 ≤ k ≤ η -v. ( 6 
|∂ (k) t ψ [s 1 ,s 2 ,••• ,s v+1 ] t (ω)| = |∂ (k) t (ψ [s 1 ,s 2 ,••• ,sv] δ v+1 t (ω)) -∂ (k) t (ψ [s 1 ,s 2 ,••• ,sv] t (ω))| = |δ k v+1 ∂ (k) γ (ψ [s 1 ,s 2 ,••• ,sv] γ (ω))| γ=δ v+1 t -∂ (k) t (ψ [s 1 ,s 2 ,••• ,sv] t (ω))| β,η (δ k v+1 -1)2 -(s 1 +s 2 •••+sv) (2k + 2v) v (δ v+1 t) k + (δ v+1 t -t) sup t≤t≤δ v+1 t |∂ (k+1) t (ψ [s 1 ,s 2 ,••• ,sv] t (ω))| β,η k2 -sv 2 -(s 1 +s 2 •••+sv) (2k + 2v) v t k + (δ v+1 t -t)β2 -(s 1 +s 2 •••+sv) (2k + 2 + 2v) v t k+1 β,η 2 -(s 1 +s 2 •••+s v+1 ) (2(k + 1 + v)) v+1 t k .
So (6.10) is proved. In particular, setting k = 0 and k = 1 respectively, we get for any

1 ≤ v ≤ η ψ [s 1 ,s 2 ,••• ,sv] t (ω) η,β 2 -(s 1 +s 2 •••+sv) ,
and for any 1

≤ v ≤ η -1, ∂ t ψ [s 1 ,s 2 ,••• ,sv] t (ω) η,β 2 -(s 1 +s 2 •••+sv) 1 t .
This also yields

∂ t ψ [s 1 ,s 2 ,••• ,sη] t (ω) ≤ ∂ t ψ [s 1 ,s 2 ,••• ,s η-1 ] δηt (ω) + ∂ t ψ [s 1 ,s 2 ,••• ,s η-1 ] t (ω) η,β 2 -(s 1 +s 2 +•••+s η-1 ) 1 t .
On the other hand, by definition

ψ [s 1 ,s 2 ,••• ,sv] t (ω) = ε∈{0,1} v (-1) (v+ v i=1 ε i) m δ ε t (ω) (6.11) 
where

ε = (ε 1 , • • • , ε v ) ∈ {0, 1} v and δ ε = δ ε 1 1 δ ε 2 2 • • • δ εv v < 2 v . By the assumption (A3), ψ [s 1 ,s 2 ,••• ,sv] t (ω) ≤ ε∈{0,1} v |m δ ε t (ω)| ≤ ε∈{0,1} v β δ ε t (ω) α ≤ β2 2v t (ω) α , ψ [s 1 ,s 2 ,••• ,sv] t (ω) ≤ ε∈{0,1} v |1 -m δ ε t (ω)| ≤ ε∈{0,1} v β (ω) α δ ε t ≤ 2 v β (ω) α t .
Thus, setting

a [s 1 ,s 2 ,••• ,sv] j := sup t   sup 2 -j-2 < (ω) α t ≤2 -j ψ [s 1 ,s 2 ,••• ,sv] t (ω)   , 6.2. REDUCTION TO LACUNARY SEQUENCES and b [s 1 ,s 2 ,••• ,sv] j := sup t   sup 2 j-2 < (ω) α t ≤2 j t ∂ t ψ [s 1 ,s 2 ,••• ,sv] t (ω)   , we have for 1 ≤ v ≤ η -1, a [s 1 ,s 2 ,••• ,sv] j η,β min{2 -(s 1 +s 2 +•••+sv) , 2 -|j| }, b [s 1 ,s 2 ,••• ,sv] j η,β 2 -(s 1 +s 2 +•••+sv) . Then by Lemma 6.8, for 1 ≤ v ≤ η -1, we have sup t∈R + + Ψ [s 1 ,s 2 ,••• ,sv] t x 2 K [s 1 ,s 2 ,•••sv] x 2 , ( 6.12) 
with

K [s 1 ,s 2 ,••• ,sv] = j≥Z (a [s 1 ,s 2 ,••• ,sv] j ) 1/2 (a [s 1 ,s 2 ,••• ,sv] j + b [s 1 ,s 2 ,••• ,sv] j ) 1/2 η,β   |j|≤s 1 +s 2 +•••+sv 2 -(s 1 +s 2 +•••+sv) + |j|>s 1 +s 2 •••+sv 2 -j   η,β s 1 + s 2 + • • • + s v 2 (s 1 +s 2 +•••+sv) .
Similarly, for v = η, sup

t∈R + + Ψ [s 1 ,s 2 ,••• ,sη] t x 2 K [s 1 ,s 2 ,••• ,sη] x 2 , (6.13) 
with

K [s 1 ,s 2 ,•••sη] η,β s 1 + s 2 + • • • + s η 2 (s 1 +s 2 •••+s η-1 )+ sη 2 .
In the following we consider the case 1 ≤ q < 2. Denote

A q = sup 1≤δ≤2 η (T m δ2 j ) j∈N : L q (M) → L q (M; ∞ ) .
For 1 ≤ v < η, by (6.11) we have

sup + t∈I 0 Ψ [s 1 ,s 2 ,••• ,sv] t x q ≤ ε∈{0,1} v sup + t∈I 0 T m δ ε t x q ≤ 2 v A q x q . ( 6.14) 
For v = η, we decompose

I sη = {2 j/2 sη : j ∈ Z} = ∪ 2 sη α=1 {2 (2 sη )j+α 2 sη : j ∈ Z} = ∪ 2 sη α=1 2 α 2 sη I 0 .
By (6.11) and the triangle inequality, we have

sup + t∈Is η Ψ [s 1 ,s 2 ,...,sη] t (x) q ≤ ε∈{0,1} η sup + t∈Is η T m δ ε t x q (6.15) ≤ ε∈{0,1} η 2 sη α=1 sup + t∈2 α 2 sη I 0 T m δ ε t x q ≤ ε∈{0,1} η 2 sη α=1 sup + t∈I 0 T m 2 α 2 sη δ ε t x q η A q 2 sη x q .
Now the conclusion follows easily from the complex interpolation. Let 1 < p < 2, 0 < θ < 1 with 1 p = 1-θ q + θ 2 . By (6.12), (6.14) and interpolation, we see that for v < η,

sup + t∈I 0 Ψ [s 1 ,s 2 ,••• ,sv] t x p η,β A 1-θ q (s 1 + s 2 • • • + s v ) θ 2 -θ(s 1 +s 2 •••+sv) x p .
By (6.13), (6.15) and interpolation, for v = η,

sup + t∈Is η Ψ [s 1 ,s 2 ,...,sη] t (x) p η,β A q 2 (1-θ)sη (s 1 + s 2 • • • + s η ) θ 2 -θ(s 1 +s 2 •••+ sη 2 ) x p .
We apply the above estimate to (6.9). Note that when v < η,

s 1 >s 2 >•••>sv (s 1 + s 2 • • • + s v ) θ 2 -θ(s 1 +s 2 •••+sv) θ 1. When v = η, s 1 >s 2 >•••>sη 2 (1-θ)sη (s 1 + s 2 • • • + s η ) θ 2 -θ(s 1 +s 2 •••+ sη 2 ) θ sη≥0 2 (1-θ)sη s θ η 2 -(η-1 2 )θsη .
Thus the above quantity is finite if

(1 -θ)s η < (η -1/2)θs η , i.e. θ > 2 2η+1 . Therefore by (6.9), if θ > 2 2η+1 , sup + t∈R + T mt x p β,η,θ A 1-θ q x p β,η,θ A q x p .
One can verify that for any q + q(2-q) q-1+2η < p ≤ 2, we can find a θ ∈ ( 2 2η+1 , 1) such that

1 p = 1 -θ q + θ 2 .
Since the pair θ is determined by p and q, the constant of maximal inequality depends only on β, η, p and q. The proof is complete.

Proof of Theorem 6.2

We first remark that the assumption (A2) leads to a special case of assumption (A3). Lemma 6.10. Assume that (m N ) N ∈N satisfies the assumption (A2). Then there is a family of symbols

( m t ) t∈R + such that ( m t ) t∈R + satisfies the assumption (A3) with η = 1 and m N = m N . Proof. Set m t = m 0 = 0 if 0 ≤ t < 1. For t ≥ 1, we write t = N t + r t , with N t ∈ N and 0 ≤ r t < 1. Define m t = (1 -r t )m Nt + r t m Nt+1 .
It is obvious that (m t ) t∈R + satisfies the assumption (A3) with η = 1. Now we are ready to conclude Theorem 6.2.

6.3. PROOF OF THEOREM 6.2

Proof of Theorem 6.2. First assume that (m N ) N ∈N satisfies the assumption (A1). Set

T φ N = T m N -S 2 -N/α with the symbol φ N = m N -e - (•)
2 N/α . By the assumption (A1), we can easily see that

|φ N (ω)| α,β 2 N (ω) α (2 N + (ω) α ) 2 .
By Proposition 4.11, Proposition 6.7 and the interpolation theorem, we get for any 2 ≤ p < ∞

(T φ N (x)) N Lp(M; ∞) α,β,γ,p x p , and (T φ N (x)) N Lp(M; c ∞ )
α,β,γ,p c x p . Applying Proposition 6.5, we also get the strong type (p, p) estimate of T m N with a constant c depending only on α, β, γ, p.

If (m t ) t∈R + satisfies the assumption (A3). Again set T φt = T mt -S t -1/α . Then we have the following estimates for almost all ω ∈ Ω

|φ t (ω)| ≤ |1 -m t (ω)| + |1 -e - (ω) t 1/α | α,β (ω) α t , |φ t (ω)| ≤ |m t (ω)| + |e - (ω) t 1/α | α,β t (ω) α , | ∂φ t (ω) ∂t | ≤ β 1 t + 1 t • ( (ω) αt 1/α e (ω) t 1/α ) α,β 1 t .
Applying Lemma 6.8, we get

sup t + T φt x 2 K x 2 , where K α,β j∈Z (2 -|j| (2 -|j| + 1)) 1/2 α,β 1.
By the interpolation theorem, for any 2 ≤ p < ∞, (T φt ) t∈R is of strong type (p, p) with constant c depending only on α, β, γ, p. Similarly, for any 2 ≤ p < ∞, we have

(T φt (x)) t≥0 Lp(M; c ∞ )
α,β,γ,p x p . Therefore, we conclude the strong type (p, p) estimate of (T mt ) t thanks to Proposition 6.5. Now the desired a.u. convergence follows immediately from the above maximal inequalities. For instance, we consider the symbols (m t ) t∈R + satisfying (A3). Let x ∈ U -1 (C c (Ω; H)) and set E = supp U (x). Note that E is a compact set. As the proof of Proposition 6.6, by the assumption (A3), we have

T φt x p ≤ 2γ 1-(2/p) (m t -1)1 E L∞(E) + (e (ω) t 1/α -1)1 E L∞(E) 2/p x 2/p 2 x 1-2/p ∞ α,γ α 1 E 2/p L∞(E) t 2/p x 2/p 2 x 1-2/p ∞ .
By the continuity of and the compactnesss of E, we have lim

M →∞ ∞ M T mt x -x p p dt α,γ lim M →∞ ∞ M α 1 E 2 L∞(E) t 2 x 2 2 x p-2 ∞ dt α,γ lim M →∞ α 1 E 2 L∞(E) x 2 2 x p-2 ∞ M = 0.
By Proposition 4.7 (2), we obtain that T mt (x) -S t -1/α x converges a.u. to 0 as t → ∞.

On the other hand, Proposition 6.5 asserts that S t -1/α x converges a.u. to x as t → ∞.

We see that T mt (x) converges a.u. to x as t → ∞. The case of (A1) can be dealt with similarly.

The assertions for (A2) follow from those for (A3) immediately according to Lemma 6.10. 

Proof of

x 2 ≤ 2 -s c 2 x 2 .
Then (Φ j ) j≥0 is of restricted weak type (q, q) for any q > p with constant

C q γ c 2 2 c 1 (q -p) -1 .
Proof we have,

eΦ j (x)e ∞ ≤ 2λ, j ≥ 0, and 
τ (e ⊥ ) ≤ τ (e ⊥ 1 + e ⊥ 2 ) ≤ c 1 s x p λ p + 2 -s c 2 x 2 λ 2 .
We consider x ⊥ λ = x1 (λ,∞) (x) and x λ = x1 [0,λ] (x). Applying the above arguments to x ⊥ λ , we can find a projection e ∈ M such that

eΦ j (x ⊥ λ )e ∞ ≤ λ, j ∈ Z.
and 

τ (e ⊥ ) c 1 s x ⊥ λ p λ p + 2 -s c 2 x ⊥ λ 2 λ 2 . ( 6 
|t1 (λ,∞) (t)| p = |t1 (λ,∞) (t)| 2 t 2-p ≤ |t1 (λ,∞) (t)| 2 λ 2-p . Therefore we have |x ⊥ λ | p ≤ |x ⊥ λ | 2 λ 2-p . and x ⊥ λ p p λ p ≤ x ⊥ λ 2 2 λ 2 . Choosing s = [log 2 2 λ p x ⊥ λ 2 2 λ 2 x ⊥ λ p p
] ≥ 1, by (6.16) we have

τ (e ⊥ ) c 1 log 2 2 λ p x ⊥ λ 2 2 λ 2 x ⊥ λ p p x ⊥ λ p λ p + c 2 2 x ⊥ λ p p λ p c 2 2 c p 1 log 2 2 λ p x ⊥ λ 2 2 λ 2 x ⊥ λ p p p x ⊥ λ p p λ p .
(6.17)

From the inequality log 2 t t δ δ , we get

τ (e ⊥ ) c 2 2 c p 1 δ -p λ -(2pδ+p-p 2 δ) x ⊥ λ 2pδ 2 x ⊥ λ p-p 2 δ p .
Consider q > p and set δ = q-p p(2-p) > 0. Since 0 ≤ x ⊥ λ ≤ x, the above inequality yields

τ (e ⊥ ) c 2 2 c p 1 (q -p) -p • λ -q x 2(q-p) 2-p 2 x p(1-q-p 2-p ) p . ( 6.18) 
Let f ∈ S M+ be an arbitrary projection. Consider

x = τ (f ) -1/q f and λ = τ (f ) -1/q (γ + 1) -1 λ.

Then by the above argument, we can find a projection e ∈ M such that (6.18) holds for λ and e(Φ j x)e ∞ ≤ (γ + 1) λ, j ≥ 0, which means e(Φ j f )e ∞ ≤ λ, j ≥ 0.

Note that

x 2(q-p) 2-p 2 x p(1-q-p 2-p ) p = 1.
By (6.18), we have

τ (e ⊥ ) c 2 2 c p 1 (γ + 1) q (q -p) -p λ q τ (f ).
This implies that (Φ j ) j≥0 is of restricted weak type (q, q) with constant

C q γ c 2/q 2 c
p/q 1 (q -p) -p/q γ c 2 2 c 1 (q -p) -1 . Lemma 6.12. Let 1 < p < 2 and (Φ j ) j be a sequence of unital positive maps on L p (M). Denote Φ : (x j ) j∈Z → (Φ j x j ) j∈Z . Then

Φ : L p (M; cr 2 ) → L p (M; cr 2 ) ≤ Φ : L p 2-p (M; ∞ ) → L p 2-p (M; ∞ ) 1/2 .
Proof. Since Φ j are unital positive maps, by Kadison's Cauchy-Schwarz inequality [START_REF] Kadison | A generalized Schwarz inequality and algebraic invariants for operator algebras[END_REF], for any self-adjoint element x j ∈ L p (M), we have

Φ j (x j ) 2 ≤ Φ j (x 2 j ).
Assume 1 < p ≤ 2 and (x j ) j ∈ L p (M; cr 2 ) is a sequence of self-adjoint elements. Then the conjugate index p ≥ 2 and

(Φ j x j ) j L p (M; cr 2 ) =   j≥0 Φ j x 2 j   1/2 p ≤   j≥0 Φ j (x 2 j )   1/2 p = Φ j (x 2 j ) j 1/2 L p /2 (M; 1 )
≤ Φ : L p /2 (M; 1 ) → L p /2 (M; 1 ) 1/2 (x j ) j L p /2 (M; cr 2 ) . For general (x j ) j ∈ L p (M; cr 2 ), we may decompose it into two sequence of self-adjoint elements. Note that (x j ) j L p (M; cr 2 ) = (x * j ) j L p (M; cr 2 ) for p ≥ 2. Therefore,

Φ : L p (M; cr 2 ) → L p (M; cr 2 ) ≤ Φ : L p /2 (M; 1 ) → L p /2 (M; 1 ) 1/2 .
By duality we obtain Φ : L p (M; cr 2 ) → L p (M; cr 2 ) ≤ Φ : L p 2-p (M; ∞ ) → L p 2-p (M; ∞ ) 1/2 , as desired. Lemma 6.13. Assume that for all t > 0, the operator S t satisfies Rota's dialtion property. Let s ∈ N and define ∆ α,j = P 2 -(j+2s)/α -P 2 -(j-2s)/α for any α > 0, j ∈ Z. Then for any

1 < p < 2, (∆ α,j x) j Lp(M; cr 2 ) α s(p -1) -6 x p , x ∈ L p (M).
Proof. We may write

∆ α,j x = 2 -(j-2s)/α 2 -(j+2s)/α - ∂ ∂t P t (x) dt, x ∈ L p (M). Let x = x 1 + x 2 for x 1 , x 2 ∈ L p (M). Applying Kadison's Cauchy-Schwarz inequality, |∆ α,j x 1 | 2 = 2 -(j-2s)/α 2 -(j+2s)/α 1 √ t - √ t ∂ ∂t P t (x 1 ) dt 2 ≤   2 -(j-2s)/α 2 -(j+2s)/α t ∂ ∂t P t (x 1 ) 2 dt   2 -(j+2s)/α 2 -(j-2s)/α dt t α s   α-j+2s α-j-2s t ∂ ∂t P t (x 1 ) 2 dt   ,
where α = 2 1/α . Therefore,

(∆ α,j x 1 ) j Lp(M; c 2 ) α √ s   ∞ j=-∞ α-j+2s α-j-2s t ∂ ∂t P t (x 1 ) 2 dt   1/2 p α √ s   ∞ j=-∞ 2s-1 k=-2s α-j+k+1 α-j+k t ∂ ∂t P t (x 1 ) 2 dt   1/2 p α s   ∞ 0 t ∂ ∂t P t (x 1 ) 2 dt   1/2 p Similarly, (∆ α,j x 2 ) j Lp(M; r 2 ) α s   ∞ 0 t ∂ ∂t P t (x 2 ) * 2 dt   1/2 p .
On the other hand,

(∆ α,j x) j Lp(M; cr 2 ) ≤ inf{ (∆ α,j x 1 ) j Lp(M; c 2 ) + (∆ α,j x 2 ) j Lp(M; r 2 ) }
where the infimum runs over all x 1 , x 2 ∈ L p (M) such that x = x 1 + x 2 . Then the conclusion follows from Proposition 5.3. Now, let us prove Theorem 6.3.

Proof of Theorem 6.3. By Lemma 6.10, it is enough to prove the assertions (1) and (3) of Theorem 6.3. The case p ≥ 2 has been already treated by Theorem 6.2. In this proof, we focus on the case 1 < p < 2.

(1) Fix a finite index set J ⊂ Z. Denote

A(p, ∞) = (T m j ) j∈J : L p (M; ∞ ) → L p (M; ∞ ) , A(p, 1) = (T m j ) j∈J : L p (M; 1 ) → L p (M; 1 ) , A(p, 2) = (T m j ) j∈J : L p (M; cr 2 ) → L p (M; cr 2 ) .
Since (T m j ) j∈J are positive maps, one can easily check that Let ω ∈ Ω and let δ j (ω) = exp -

(T m j ) j∈J : L p (M) → L p (M; ∞ (J)) = A(p, ∞). Let 1 < p ≤ 2.
√ (ω) 2 (j+2s)/2α -exp - √ (ω) 2 (j-2s)/2α
be the symbol of ∆ j . When 2 j ≥ (ω) α , we have

|φ j (ω)| ≤ β (ω) α 2 j and |1 -δ j (ω)| ≤ 1 -exp   - (ω) 2 (j+2s)/2α   + exp   - (ω) 2 (j-2s)/2α   α   (ω) 2 (j+2s)/2α   α +   2 (j-2s)/2α
(ω)

  α α 2 -s 2 j (ω) α 1/2
, in particular,

|φ j (ω)(1 -δ j (ω))| α,β 2 -s (ω) α 2 j 1/2 α,β 2 -s 2 j (ω) α (2 j + (ω) α ) 2 1/2 .
Similarly, when 2 j < (ω) α , we have

|φ j (ω)(1 -δ j (ω))| α,β 2 -s 2 j (ω) α 1/2 α,β 2 -s 2 j (ω) α (2 j + (ω) α ) 2 1/2
. By Proposition 6.7, we have

sup j∈J + T φ j (1 -∆ j )x 2 α,β 2 -s x 2 (6.20)
Thus by (6.19) (6.20) and Lemma 6.11, we have that (T φ j ) j∈J is of restrict weak type (q, q) for any q > p with constant

C q α,β A(p, 2)(p -1) -8 (q -p) -1 . Set D = sup 1<p≤2 (p -1) 22 A(p, ∞) < ∞. Choose a 1 < r ≤ 2 such that (r -1) 22 A(r, ∞) > D 2 .
Set p = 1 2 (r + 1) and q = p + (r -p)/2. Note that 1 < p < q < r ≤ 2. By Proposition 6.5, the semigroup (S t ) t is of strong type (q, q) with constant c(q -1) -2 . Recall that T m j = T φ j + S 2 -j/α , thus (T m j ) j∈J is of restricted weak type (q, q) with constant

C q α,β A(p, 2)(p -1) -8 (q -p) -1 + (q -1) -2 α,β A( p 2 -p , ∞) 1/2 (r -1) -9 .
The last inequality above follows from Lemma 6.12 and the values of p and q. Because (T m j ) j is of strong type (∞, ∞) and of restricted weak type of (q, q), applying Theorem 4.4 we have sup j∈J + T m j x r ≤ max{C q , 1}( rq r -q + r) 2 x r . (6.21)

Note that (T m j ) j are positive maps. We have A(r, ∞) C q (r -1) -2 . Therefore, (r -1) 

-22 D 2 < A(r, ∞) α,β A( p 2 -p , ∞)
D   1/2 (r -1) -11 α,β D 1/2 (p -1) -11 (r -1) -11 .
Recall that p = 1 2 (r + 1). We have D α,β 1.

In other word, (p -1) 22 A(p, ∞) α,β 1 for any 1 < p ≤ 2. In particular, this estimate is independent of the finite index set J. So we obtain the desired property. Note that T m j x converges a.u. to x as j → ∞ for x ∈ L 2 (M) by Theorem 6.2 and that L 2 (M) ∩ L p (M) is dense in L p (M). Applying Proposition 4.7 (1), we get the a.u. convergence on L p (M).

(3) For any 1 ≤ δ ≤ 2 η , for the subsequence t j = 2 j δ, we have

|1 -m t j (ω)| ≤ β (ω) α 2 j δ ≤ β (ω) α 2 j and |m t j | ≤ 2 η β 2 j (ω) α .
By (1), for any 1 < q ≤ 2, we have sup 1≤δ≤2 η sup j∈N + T mt j x q α,β,q,η x q .

Note that q + q(2-q) q-1+2η tends to 1 + 1 2η as q → 1. Hence, by Proposition 6.9, for any 1 + 1 2η < p ≤ 2, we get sup

+ t∈R + T mt x p α,β,p,η x p .
The a.u. convergence is proved similarly as in [START_REF] Arano | The Fourier algebra of a rigid C * -tensor category[END_REF]. QUANTUM GROUPS state h is tracial. We denote by L p (G) the noncommutative L p -spaces L p (L ∞ (G), h). In particular we have an orthogonal decomposition

L 2 (G) = 2 -⊕ π∈Irr(G) V π .
Denote by p π the orthogonal projection from L 2 (G) onto V π .

To be consistant with our framework in Section 6, for each π ∈ Irr(G) we may formally take an isometric isomorphism U π : V π → 2 (I π ) for some index set I π and we set Ω = ∪ π∈Irr(G) I π and U = ⊕ π U π . In fact, this unitary isomorphism can be chosen to be the Fourier transform on L 2 (G). Note that U * (C c (Ω)) is nothing but the w*-dense subalgebra Pol(G). Therefore, this unitary map U satisfies the desription at the beginning of Section 6. Each m : Irr(G) → C can be naturally viewed as a function on Ω by evaluating m(π) at each point in I π . Then for all x ∈ L 2 (G), the operator T m in (6.1) is given by

T m x = π∈Irr(G) m(π)p π (x).
Example 7.1. Let Γ be a discrete group. We may define a comultiplication ∆ on the group von Neumann V N (Γ) by

∆(λ(g)) = λ(g) ⊗ λ(g), g ∈ Γ.
The triple (V N (Γ), ∆, τ ) carries a compact quantum group structure G satisfying the aformentioned properties, where we take L ∞ (G) = V N (Γ) and h = τ . In this case we usually denote G = Γ. The set of unitrary equivalence classes of irreducible representations Irr(G) can be indexed by Γ, so that for every g ∈ Γ the associated representation is of dimension 1 and is given by u (g) = λ(g) ∈ V N (Γ). Therefore, the set Ω defined above becomes Γ, and U is the Fourier transform F : x → x sending λ(g) to δ g . Hence, for any m ∈ ∞ (Γ), the associated multiplier is

T m : x → g∈Γ m(g)x(g)λ(g), x ∈ Pol( Γ).
This comes back to usual Fourier multipliers on groups mentioned in the introduction.

In accordance with the classical notation, we adopt the terminology of the dual discrete quantum group G, which is an object determined by the representation theory of G (see e.g. [START_REF] Van Daele | An algebraic framework for group duality[END_REF]). This is only for our notational use and we will not involve the detailed structure of G. We remark that if G = Γ is the quantum group given in Example 7.1 for a discrete group Γ, then the dual G coincides with Γ. In this language we recall the following approximation properties of quantum groups introduced by De Commer, Freslon and Yamashita in [START_REF] Commer | CCAP for universal discrete quantum groups[END_REF]. For simplicity of exposition we always assume in this thesis that Irr(G) is countable. The general cases can be dealt with by considering the collection of all finitely generated quantum subgroups of G. (2) For any π ∈ Irr(G), lim s→∞ ϕ s (π) = 1 and lim k→∞ ψ k (π) = 1.

(3) For any k ∈ N, ψ k is finitely supported and T ψ k is completely bounded on L ∞ (G). For any s ∈ N and ε > 0, there is a k = k(s, ε) such that T ψ k -T ϕs cb ≤ ε.

Moreover, if for any k ∈ N we may choose T ψ k to be unital completely positive, then G is said to be centrally amenable (or to have the central completely positive approximation property). Remark 7.3. In the above definition we may always choose T ψ k to be self-adjoint. In fact, take ψk (π) = ψ k (π), then T ψk has the same cb-norm as

T ψ k since T ψk = T ψ k • κ, where κ : u (π) ij → (u (π)
ji ) * is well-known to be a complete isometry on L ∞ (G). Obviously the map T (ψ k + ψk )/2 is self-adjoint. Lemma 7.4. Let (ϕ s ) s≥0 be a sequence of functions on a set Λ. Let (E s ) s≥1 be any sequence of increasing finite subsets of Λ. If ϕ n → 1 pointwise, then there is a subsequence

(s N ) N ≥1 of N, such that |1 -ϕ s N +1 (ρ)| ≤ 2 J(ρ)-N , ρ ∈ E s N where J(ρ) = min{j ∈ N : ρ ∈ E s j }.
Proof. We will construct a sequence (s N ) N ∈N by induction so that

|1 -ϕ s N +1 (ρ)| < 2 J N (ρ)-N , ρ ∈ E s N .
where

J N : E s N → N is defined by J N (ρ) = min{j ≤ N : ρ ∈ E s j }. First we let s 0 = 1.
Assume that (s j ) N j=0 has already been defined. Since (E s ) s is increasing, we can define V j = E s j \E s j-1 . Then for any ρ ∈ V j , we can find an s N +1 (ρ) > s N large enough, such that any s ≥ s N +1 (ρ),

|1 -ϕ s (ρ)| < 2 j-N .
Since E s N is a finite set, we can set s N +1 = max{s N +1 (ρ) : ρ ∈ E s N }. Note that, J N (ρ) = k if and only if ρ ∈ V j ⊂ E s N . Thus inductively we obtain a sequence s N such that

|1 -ϕ s N +1 (ρ)| < 2 J N (ρ)-N , ρ ∈ E s N .
E s N is increasing with respect to N , so J N (ρ) = J(ρ). Therefore we complete the proof.

From this subsequence, we can construct a semigroup of unital completely positive maps. The construction is based on the following well-known fact. Moreover, we have the following a.u. convergence of Fourier series of Dirichlet type on L 2 (G). Proposition 7.8. Let G be a discrete quantum group having the central ACPAP. Then there exists a sequence of increasing subsets (K N ) N ⊂ Irr(G) such that the maps x → π∈K N p π (x) is of strong type [START_REF] Bakry | The Markov sequence problem for the Jacobi polynomials and on the simplex[END_REF][START_REF] Bakry | The Markov sequence problem for the Jacobi polynomials and on the simplex[END_REF]. Moreover, for all x ∈ L 2 (G),

π∈K N p π (x) → x a.u. as N → ∞.
Proof. Let , (k s ) s , (s N ) N , (E s ) s be given by Theorem 7.6. We show that K N = E s N satisfies this proposition. Let D N = T 1 K N be the multiplier associated to the characteristic function

1 K N . Define φ N (π) = 1 K N (π) -e - (π) √ 2 N .
Let N ≥ 0. For any π ∈ K N , i.e. J(π) ≤ N , we have

|φ N (π)| (π) √ 2 N (π)2 N (2 N + (π)) 2 ,
where the last inequality follows from the fact that (π) √ 2 N 1. Also, for any π / ∈ K N , i.e. J(π) > N , we have

|φ N (π)| √ 2 N (π) (π)2 N (2 N + (π)) 2 .
Therefore, applying Proposition 6.7, Proposition 4.11 and Proposition 6.5, we get

(D N (x)) N L 2 (G; ∞)
x 2 , and

(D N (x)) N L 2 (G; c ∞ ) x 2 , x ∈ L 2 (G).
Recall that by the choice of (E s ) s , for any finite subset F ⊂ Irr(G) there exists M ≥ 1 with F ⊂ K N for all N ≥ M . Hence for any x ∈ Pol(G), there is an index M large enough such that for any N ≥ M , we have D N (x) = x. In particular

N ≥M D N (x) -x 2 2 = 0.
By Proposition 4.7, we see that D N x converges a.u. to x as N → ∞.

Chapter 8

More concrete examples 

N →∞ |K N ∩ gK N | |K N | = 0, g ∈ Γ.
For convenience we set K 0 = {e}. We define a sequence of multipliers (m N ) N ∈N by

m N (g) = |K N ∩ gK N | |K N | . ( 8.1) 
We remark that if Γ = Z d and K

N = [-N, N ] d ∩ Z d , then m N (k 1 , k 2 , • • • , k d ) = d i=1 (1 - k i 2N + 1 )1 [-2N,2N ] (k i ),
which gives the usual Fejér means on d-dimensional tori. As a result, we regard the multipliers (T m N ) N as a noncommutative analogue of Fejér means.

It is easy to see that m N is finitely supported, indeed supp m N = K 2 N . By the Følner condition, we have m N → 1 pointwise. For any g ∈ Γ, we have

m N (g) = λ(g) 1 K N |K N | 1/2 , 1 K N |K N | 1/2 2 (Γ) .
Then it is a well-known argument to see that m N is positive definite and therefore T m N is unital completely positive on V N (Γ) for any N ∈ N (see e.g. [START_REF] Brown | C * -algebras and finite-dimensional approximations[END_REF]Theorem 2.5.11]). Note that T m N is also τ -preserving. In particular, by Theorem 7.6, there exists a subsequence (N j ) j∈N , such that for all 1 < p ≤ ∞ and all x ∈ L p (V N (Γ)), sup j∈N + T m N j x p p x p and T m N j x → x a.u. as j → ∞

In the following, we would like to give a refined study in the case of nilpotent groups. First we consider a 2-step (or 1-step) nilpotent group Γ generated by a finite set S. We assume that e ∈ S and S = S -1 . Due to [START_REF] Stoll | On the asymptotics of the growth of 2-step nilpotent groups[END_REF], we have the following estimates:

β -1 N d ≤ |S N | ≤ βN d and β -1 N d-1 ≤ |S N \S N -1 | ≤ βN d-1 , ( 8.2) 
where d ≥ 1 is called the degree of Γ, β < ∞ is a positive constant depending only on Γ and S.

For an element g ∈ Γ, denote by |g| the word length of g with respect to the generator set S, i.e. |g| = min{k : g ∈ S k }. Let (m N ) N be a sequence of symbols given by (8.1) with K N = S N . By the inequalities (8.2), we have

1 -m N (g) = |gS N \S N | |S N | ≤ |S N +|g| \S N | |S N | ≤ β N +|g| i=N +1 i d-1 N d ≤ β |g| N , g ∈ Γ. ( 8.3) 
In particular, this shows that (S N ) N is a Følner sequence. On the other hand,

|m N (g)| ≤ 1 [0,2N ] (|g|) ≤ 2 N |g| , g ∈ Γ. ( 8.4) 
Set J(g) = min{j ∈ N : g ∈ S 2 j+1 }, i.e. J(g) is the unique integer such that 2 J(g) < |g| ≤ 2 J(g)+1 . We have

|1 -m 2 j (g)| ≤ β |g| 2 j ≤ 2β2 J(g)-j
. This shows that the subsequence (2 j ) j∈N satisfies the Theorem 7.4. Define

(g) = j≥0 √ 2 j |1 -m 2 j (g)|.
By Lemma 7.6, (g) √ 2

J(g) |g|,
and (S t ) t≥0 : λ(g) → e -t (g) λ(g) is a semigroup of unital completely positive trace preserving and symmetric maps. Moreover, for any t ≥ 0, S t satisfies Rota's dialtion property according to Lemma 5.2. The inequalities (8.3) and (8.4) can be written as

|1 -m N (g)| β (g) 2 N and |m N (g)| β N (g) 2 .
Moreover, m N (g) = ϕ N * ϕ N (g). by (8.2), we obtain

m N +1 (g) -m N (g) = Γ 1 S N +1 (γ)1 S N +1 (g -1 γ)dγ |S N +1 | -Γ 1 S N (γ)1 S N (g -1 γ)dγ |S N | ≤ Γ 1 S N (γ)[1 S N +1 (g -1 γ) -1 S N (g -1 γ)]dγ |S N | + Γ [1 S N +1 (γ) -1 S N (γ)]1 S N +1 (g -1 γ)dγ |S N | ≤2 |S N +1 \S N | |S N | β 2 1 N + 1 .
Therefore m N satisfies the assumption (A2). Applying Theorem 6.3, we have the following corollary. 

(g) = |S N ∩gS N | |S N |
. Then (1) (T m 2 j ) j∈N is of strong type (p, p) for all 1 < p ≤ ∞. Moreover, for any x ∈ L p (V N (Γ)) with 1 < p < ∞, T m 2 j (x) converges a.u. to x as j → ∞.

(

) (T m N ) N ∈N is of strong type (p, p) for all 3 2 < p ≤ ∞. Moreover, for any x ∈ L p (V N (Γ)) with 3/2 < p < ∞, T m N (x) converges a.u. to x as N → ∞. 2 
Let us give some remarks on the case of general groups with polynomial growth. Indeed, it is conjectured in [START_REF] Breuillard | Geometry of locally compact groups of polynomial growth and shape of large balls[END_REF] that (8.2) remains true for general groups with polynomial growth. If the conjecture has a positive answer, then the above corollary still holds in this general setting by the same arguments. Moreover a partial result was given in [START_REF] Breuillard | On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry[END_REF] about general r-step nilpotent group Γ generated by a finite set S. It asserts that

β -1 N d-1 ≤ |S N \S N -1 | ≤ βN d-2 3r , ( 8.5) 
where β is a constant depending only on Γ and S. Therefore, as the arguments for 2-step case, we have

1 -m N (g) ≤ |S N +|g| \S N | |S N | β |g| N 2 3r
.

Let k = k(r) be the minimum integer with k ≥ 3r 2 . Then N j = 2 k+k 2 +•••k j satisfies Lemma 7.4. Indeed, let J(g) = min{j ∈ N : g ∈ E N j }, i.e. 2N J(g)-1 < |g| ≤ 2N J(g) . Then for any g ∈ E N j , i.e. J(g) ≤ j. |1 -m N j+1 (g)| β |g| N 2 3r j+1 β 2 k+k 2 +•••k J(g) 2 2 3r (k+k 2 +•••k j+1 ) β2 -(k J(g)+1 +•••k j+1 ) β2 J(g)-j .
Therefore, by Theorem 7.6, we get a function such that

|1 -m N j+1 (g)| β (g) 2 2 j and |m N j+1 (g)| β 2 j (g) 2 .
By Theorem 6. 

(V N (Γ)) with 1 < p < ∞, T m N j (x) converges a.u. to x as j → ∞.

Case of Euclidean spaces

Let B be a symmetric convex body in R d such that the interior contains 0. We define the functions ϕ t associated to B as

ϕ t (ξ) = µ(B t ∩ (ξ + B t )) µ(B t ) ,
where B t = {ξ ∈ R d : ξ/t ∈ B} and µ is the Lebesgue measure. By similar arguments as the case of nilpotent groups, we have the following corollary.

Corollary 8.3. Let B and (ϕ t ) t be as above.

(1) (T ϕ 2 j ) j≥0 is of strong type (p, p), for any 1 < p ≤ ∞ and for any f ∈ L p (R) with 1 < p < ∞, T ϕ 2 j (f ) converges a.e. to f as j → ∞.

(2) (T ϕt ) t≥1 is of strong type (p, p), for all 3 2 < p ≤ ∞, and for any f ∈ L p (R) with 3/2 < p < ∞, T ϕt (f ) converges a.e. to f as t → ∞.

Proof. For any non-zero vector ξ ∈ R, there is a unique positive number |ξ| B such that ξ/|ξ| B ∈ ∂B since B is convex and its interior contains 0. We make the convention that |0| B = 0. Note that µ(B t ) = t d µ(B). We have

1 -ϕ t (ξ) ≤ µ(B t+|ξ| B \B t ) µ(B t ) ≤ (t + |ξ| B ) d -t d t d d |ξ| B t .
Also, we have

∂ϕ t ∂t = lim h→0 1 h 1 B t+h * 1 B t+h (ξ) µ(B t+h ) - 1 Bt * 1 Bt (ξ) µ(B t ) lim h→0 1 h µ(B t+h ) -µ(B t ) µ(B t ) d 1 t .
Then the remaining arguments are similar as the case of nilpotent groups. We skip it here. So we may consider the noncommutative maximal inequalities and the a.u. convergence for the maps T ϕt ⊗ id Lp(N ) . These properties indeed follow from Remark 6.4, and the above corollary still holds for (T ϕt ⊗ id Lp(N ) ) t in this noncommutative setting.

Case of centrally amenable discrete quantum groups

Let G be a compact quantum group of Kac type. As before, we assume that Irr(G) is countable for convenience. We keep the notation introduced in Chapter 7. We may study the Følner sequences and the corresponding multipliers in this quantum setting as follows.

Recall that for any α, β ∈ Irr(G) we have the decomposition

u (α) u (β) = γ∈Irr(G) N γ αβ u (γ) ,
where u (α) u (β) refers to the tensor product representation of the form (u

(α) ij u (β)
kl ) i,j,k,l and N γ αβ ∈ N. We have the following Frobenius reciprocity law ( [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF]) 

N γ αβ = N α γβ = N β αγ ( 8 
(π) = ((u (π) ij ) * ) ij . The weighted cardinality of a finite subset F ⊂ Irr(G) is defined to be |F | w = α∈F d 2 α ,
where we recall that d α denotes the dimension of the representation α. On the other hand, for a finite subset F ⊂ Irr(G) and a representation π ∈ Irr(G), the boundary of F related to π is defined by

∂ S F = {α ∈ F : ∃β ∈ F c such that β ⊂ απ} ∪ {β ∈ F c : ∃α ∈ F such that α ⊂ βπ}.
Kyed ( [START_REF] Kyed | L 2 -Betti numbers of coamenable quantum groups[END_REF]) proved that there exists a sequence of finite subsets (K n ) n∈B ⊂ Irr(G) such that for any π ∈ Irr(G),

|∂ π K n | w |K n | w → 0 as n → ∞, (8.7) 
as soon as G is coamenable. Note that the coamenability of G is nothing but a property equivalent to the central amenability of Ĝ (see e.g. [START_REF] Brannan | Approximation properties for locally compact quantum groups[END_REF]). The above sequence (K n ) n∈B is called a Følner sequence. We associate a sequence of multipliers

ϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ) , π ∈ Irr(G). (8.8) 
It is easy to see that if Ĝ = Γ for a discrete group Γ, then the above function coincides with the symbol introduced in (8.1).

Lemma 8.5. (1)

The maps T ϕn are unital completely positive on L ∞ (G) for all n ∈ N.

(2) The functions ϕ n converges to 1 pointwise.

Proof. (1) It is obvious that ϕ n (1) = 1 and therefore T ϕn is unital. Denote by χ(π) = i u π ii ∈ Pol(G) the character of π. We have for any α, β ∈ Irr(G),

h(χ( β)χ(α)) = δ αβ 1, χ(α) * = χ(ᾱ) and χ(α)χ(β) = γ∈Irr(G) N γ αβ χ(γ).
We write Pol 0 (G) = span{χ(π) : π ∈ Irr(G)} and let A 0 be the w*-closure of Pol 0 (G) in L ∞ (G). Let E : L ∞ (G) → A 0 be the canonical conditional expectation preserving the Haar state h. Recall that we have assumed that G is of Kac type. So the conditional expectation can be given by the following explicit formula (see e.g. [99, Lemma 6.3])

E(u (π) ij ) = δ ij d π χ(π), π ∈ Irr(G). Set χ(K n ) = 1 |K n | 1/2 w α∈Kn d α χ(α) ∈ Pol(G) 0 . CHAPTER 8. MORE CONCRETE EXAMPLES Then, we have T ϕn (x) = (h ⊗ id) [(χ(K n ) * ⊗ 1) • [(E ⊗ id) • ∆(x)] • ((χ(K n ) ⊗ 1))] , x ∈ L ∞ (G).
Indeed, by linearity and normality, we only need to check the case where x = u (π) ij . In this case we see that

(h ⊗ id) (χ(K n ) ⊗ 1) • [(E ⊗ id) • ∆(u (π) ij )] • ((χ(K n ) * ⊗ 1)) = α,β∈Kn d α d β • h χ(α)χ(π)χ( β) d π |K n | w u (π) ij = α,β∈Kn d α d β N β απ d π |K n | w u (π) ij =T ϕn (u (π) ij ).
Since E and ∆ are completely positive, so is T ϕn .

(2) The support of ϕ n is given by

Λ n = {π ∈ Irr(G) : ∃α, β ∈ K n , such that π ⊂ ᾱβ}. (8.9) We denote Θ π (K n ) = {α ∈ K n : ∀ β ∈ K c n , N β απ = 0} ⊂ K n . Note that N β απ = N π ᾱβ and that α ∈ Θ π (K n ) implies β∈Kn N β απ d β = d α d π by the choice of N β απ . Then ϕ n (π) ≥ α∈Θπ(Kn) d α β∈Kn N β απ d β d π ( ξ∈Kn d 2 ξ ) = α∈Θπ(Kn) d 2 α ξ∈Kn d 2 ξ = |Θ π (K n )| w |K n | w . Therefore, 1 -ϕ n (π) ≤ |{α ∈ K n : ∃β ∈ K c n , such that β ⊂ απ}| w |K n | w ≤ |∂ π (K n )| w |K n | w .
By the Følner condition (8.7), ϕ n → 1 pointwise.

Therefore, by Theorem 7.6 we get the following result.

Corollary 8.6. Assume that Ĝ is centrally amenable and let (K n ) n∈N ⊂ Irr(G) be a Følner sequence. Let ϕ n be the symbols given by (8.8). Then there is a subsequence (n j ) j∈N such that (T ϕn j ) j is of strong type (p, p) for any 1 < p ≤ ∞. Moreover for all x ∈ L p (G) with 1 < p < ∞, T ϕn j (x) converges a.u. to x as j → ∞.

Convergence of Fourier series of L p -functions on compact groups

We would like to emphasize in this section that our work indeed brings new ideas to the analysis on classical compact groups. Recall that for a compact second countable group G, any function f ∈ L p (G) admits a Fourier series

f (x) ∼ π∈Irr(G) d π Tr( f (π)π(x)), x ∈ G with f (π) = G f (x)π(x -1 )dx 8.2.

CONVERGENCE OF FOURIER SERIES OF L P -FUNCTIONS ON COMPACT GROUPS

where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations of G, and d π denotes the dimension of π. The pointwise analysis on these Fourier series is much more subtle than the abelian case. A particular difficulty is the lack of obvious order and summation methods on Irr(G) which is suitable for the study of Fourier series. However, from the viewpoint of quantum group theory, the set Irr(G) is nothing but the underlying object of a centrally amenable discrete quantum group. So the difficulty can be overcome by transferring the method on discrete amenable groups and its quantum counterpart. The spirit is also partially inspired by the recent work [START_REF] Huang | Mean ergodic theorem for amenable discrete quantum groups and a Wiener-type theorem for compact metrizable groups[END_REF]. More precisely, the compact group G trivially gives rise to a compact quantum group. Indeed, it suffices to take the triple (L ∞ (G), ∆ G , ) where we define for all f ∈ L ∞ (G),

∆ G (f )(g, h) = f (gh), g, h ∈ G.
Then Ĝ is centrally amenable since L ∞ (G) is a commutative von Neumann algebra (see e.g. [START_REF] Brannan | Approximation properties for locally compact quantum groups[END_REF]). As a result, all arguments in Section 8.1.3 work on G. In particular, there always exists an increasing sequence (K n ) n ⊂ Irr(G) determined by the representation theory of G, such that the following finitely supported symbols

ϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ) , π ∈ Irr(G)
converge to 1 pointwise, where N π ᾱβ is the unique number in the decomposition of the tensor product representation ᾱ β = ⊕ π∈Irr(G) N π ᾱβ π. Moreover

T ϕn f = π∈Irr(G) d π ϕ n (π)Tr( f (π)π(x)), x ∈ G, f ∈ L p (G)
defines a unital completely positive map on L p (G). We may choose a subsequence (n j ) k inductively by the algorithm in Lemma 7.4. Set m j = ϕ n j . We may rewrite Corollary 7.7 and Proposition 7.8 in this setting as follows.

Corollary 8.7.

(1) Let 1 < p < ∞. There exists a constant c > 0 such that

sup j |T m j f | p ≤ c f p , f ∈ L p (G). For all f ∈ L p (G), f (g) = lim j→∞ π∈Irr(G) d π m j (π)Tr( f (π)π(g)),
a.e. g ∈ G.

(

) For all f ∈ L 2 (G), f (g) = lim j→∞ π∈Kn j d π Tr( f (π)π(g)), 2 
a.e. g ∈ G.

As an illustration, we consider a concrete example. Let N ≥ 2 and denote by SU (N ) the N × N special unitary group. Its irreducible representations of SU (N ) can be labeled by N -1 non-negative integers, and we write set-theoretically Irr(SU (N )) = N N -1 . The representation theory of SU (N ) can be computed in terms of operations on Young diagrams, which yields the following fact.

Proposition 8.8 (Appendix). Let

K n = {0, 1, 2, • • • , n} N -1 ⊂ N N -1 . Set ϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ) , π = (t 1 , • • • , t N -1 ) ∈ N N -1 . Then 1 -ϕ n (π) N |π| n + 1 and ϕ n+1 (π) -ϕ n (π) N 1 n + 1 , where |π| = π ∞(N -1) = max{t i : 1 ≤ i ≤ N -1}.
As the arguments in the section 8.1.1, applying Theorem 7.6 to the subsequence (ϕ 2 j ) j we obtain a function on N N -1 such that (T e t ) t is a semigroup of unital completely positive trace-preserving and symmetric maps, and

(π) √ 2 J(π)
|π| where J(π) = min{j ∈ N : π ∈ Λ 2 j } (Λ n is given by (8.9)). Then combined with Theorem 6.3 and the proof of Proposition 7.8, the above proposition yields the following corollary.

Corollary 8.9.

Let K n = {0, 1, 2, • • • , n} N -1 ⊂ N N -1 . Define ϕ n (π) = α,β∈Kn N π α β d α d β d π ( ξ∈Kn d 2 ξ ) , π ∈ N N -1 .
(1) Let 1 < p < ∞. There exists a constant c > 0 such that

sup j |T ϕ 2 j f | p ≤ c f p , f ∈ L p (G). For all f ∈ L p (G), f (g) = lim j→∞ π∈Irr(G) d π ϕ 2 j (π)Tr( f (π)π(g)), a.e. g ∈ G. For all f ∈ L 2 (G), f (g) = lim j→∞ π∈K 2 j d π Tr( f (π)π(g)),
a.e. g ∈ G.

(2) Let 3/2 < p < ∞. There exists a constant c > 0 such that

sup n |T ϕn f | p ≤ c f p , f ∈ L p (G).
For all f ∈ L p (G), 

f (g) = lim

Bochner-Riesz means on some hyperbolic groups

In this section we briefly discuss a noncommutative analogue of Bochner-Riesz means in the setting of hyperbolic groups. We refer to [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF][START_REF] Gromov | Hyperbolic groups[END_REF] for a complete description of hyperbolic groups. We merely remind that all hyperbolic groups are weakly amenable and the completely bounded radial Fourier multipliers have been characterized in [START_REF] Ozawa | Weak amenability of hyperbolic groups[END_REF][START_REF] Mei | Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups[END_REF]. In particular, we denote by | | the usual word length function on a hyperbolic group Γ, then the Fourier multipliers and for any x ∈ L p (V N (Γ)), B δ N (x) converges a.u. to x as N → ∞. The pointwise convergence of the above multipliers for 1 < p < 2 seems to be more delicate. However, we can still construct some finitely supported multipliers satisfying the pointwise convergence in this case. For any n ∈ N, we define a multiplier p n on V N (Γ) by p n (x) = |g|=n x(g)λ(g), x ∈ V N (Γ), which is the projection onto the subspace span{λ(g) : |g| = n}. Ozawa [START_REF] Ozawa | Weak amenability of hyperbolic groups[END_REF] showed that these operators have the following estimate The following corollary shows that (T m N ) N is the sequence of multipliers we desired. Proof. For any t ≥ 0, denote S t : λ(g) → e -t|g| λ(g). By assumption (S t ) t≥0 is a semigroups of unital completely positive trace preserving and symmetric maps. We write

e -|g| N -m N (g) = 1 [N 2 +1,∞) (|g|)e -|g| N = ∞ r=N 2 +1
e -r N 1 r (|g|).

Hence, by the estimate (8.10), we have

S 1/N -T m N ≤ ∞ r=N 2 +1 e -r N p r β ∞ r=N 2 +1
N 6 r 6 (r + 1) β

1 (N + 1) 2 .
By duality and interpolation, for any 1 ≤ p ≤ ∞, we have

S 1/N -T m N : L p (V N (Γ)) → L p (V N (Γ)) β 1 N 2 .
By Proposition 6. Remark 8.12. The above arguments in this proposition can be extended in a quite general setting. Indeed, note that only the estimate (8.10) and the conditionally negative definite property of | | was needed in the proof. Thus it is easy to see that the similar results hold for groups with the rapid decay property with respect to a conditionally negative definite length function. 

Dimension free bounds of noncommutative Hardy-Littlewood maximal operators

Our results in particular applies to the problem of dimension free estimates of Hardy-Littlewood maximal operators. Let B be a symmetric convex body in R d . We consider the associated averages

Φ t (f )(x) = 1 µ(B) B f (x - y t )dy, f ∈ L p (R d ), t > 0.
Bourgain studied the dimension free bounds of the associated maximal operators, see [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF][START_REF] Bourgain | On the L p -bounds for maximal functions associated to convex bodies in R n[END_REF][START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF]. Based on our previous arguments, we may extend his results for the corresponding maximal operators on noncommutative L p -spaces L p (R d ; L p (N )). Indeed, let m t = t d µ(B) -1 1 t -1 B be the Fourier transform of the kernel of the above operator Φ t . Then we may view Φ t as the Fourier multiplier so that Φ t f = m t f . The following estimates of m t are given in [START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF]: there exist constants c and c k independent of d such that for all k ≥ 1 and all ξ ∈ R d ,

|1 -m t (ξ)| ≤ c |ξ| t , |m t (ξ)| ≤ c t |ξ| , d k m t (ξ) dt k ≤ c k 1 t k .
Therefore, applying Theorem 6.3 and Remark 6.4 to the heat semigroup on R d , we immediately get the desired result in Corollary 0.9.

(b) Boxes with the same label, e.g. Q 1 , must not appear in the same column.

(c) At any given box position, define n 1 to be the number of Q 1 's above and to the right of it. Define n 2 for Q 2 in the similar way, etc. Then we must have n 1 ≥ n 2 ≥ n 3 etc.

(R3) If two diagrams of the same shape are produced by this process they are counted as different only if the labels are differently distributed.

(R4) Cancel columns with N boxes.

For each π ∈ Irr(SU (N )), we denote by X π its corresponding Young diagram. If in the decomposition of X α X β there are at most N different operations of the above form yielding X π , then the multiplicity N π αβ equals to N . Moreover, for an irreducible representation u (t 1 ,t 2 ,••• ,t N -1 ) , the dimension is given by the following formula

d(t 1 , t 2 , • • • , t N -1 ) = (t 1 + 1)(t 2 + 1) • • • (t N -1 + 1) • 1 + t 1 + t 2 2 1 + t 2 + t 3 2 • • • 1 + t N -2 + t N -1 2 • 1 + t 1 + t 2 + t 3 3 1 + t 2 + t 3 + t 4 3 • • • 1 + t N -3 + t N -2 + t N -1 3 . . . • (1 + t 1 + t 2 + • • • + t N -1 N -1
).

(1)

We have the following fact. (2) For any t, n ∈ N and any α ∈ K n , π ∈ K t , all the irreducible subrepresentations of α π are contained in the finite set K n+(N -1)t , i.e. N β απ = 0 if β / ∈ K n+(N -1)t . Then we may write

d π = l∈J C l (t 1 + 1) l 1 (t 2 + 1) l 2 • • • (t N -1 + 1) l N -1 ,
for some constants C l depending only on N , and

d 2 π = l∈J C l (t 1 + 1) l 1 (t 2 + 1) l 2 • • • (t N -1 + 1) l N -1
with some constants C l depending only on N and

J =    (l 1 , l 2 , • • • , l N -1 ) ∈ N N -1 : ∀ 2 ≤ l j ≤ 2j(N -j), N -1 j=0 l j = N (N -1)    . Denote E j n+1 = {(k 1 , k 2 , • • • , k N -1 ) ∈ K n+1 : k j = n + 1} . By definition, E n+1 ⊂ ∪ N -1 j=1 E j n+1 . Therefore, |E j n+1 | w = k∈E i n+1 d 2 k = k∈E i n+1 l∈J C l (k 1 + 1) l 1 (k 2 + 1) l 2 • • • (n + 2) l i • • • (k N -1 + 1) l N -1 l∈J C l (n + 2) l i (n + 2) l 1 +1 (n + 2) l 2 +1 • • • (n + 2) l i-1 +1 (n + 2) l i+1 +1 • • • (n + 2) l N -1 +1 = ( l∈J C l )(n + 2) N 2 -2 = d 2 0 (n + 2) N 2 -2 ,
where 0 = (0, 0, • • • , 0). Note that d 2 0 is a constant depending only on N . Thus,

(n + 2) N 2 -2 N |E j n+1 | w ≤ |E n | w ≤ N -1 j=1 |E j n+1 | w N (n + 2) N 2 -2 .
(2) This follows directly from the rules of decomposition of tensor product of Young diagrams.

(3) Fix π = (t 1 , t 2 , • • • , t N -1 ) ∈ N N -1 . We will show that for any pair (α, β) ∈ K n × E n+1 there exists a unique pair (ξ, η) ∈ E n+1 × K c n+1 such that N π ᾱβ ≤ N π ξη . This immediately leads to the desired conclusion, since d α d β < d ξ d η .

We consider

α = (a 1 , a 2 , • • • , a N -1 ) ∈ K n , β = (b 1 , • • • , b k-1 , n + 1, b k+1 , • • • , b N -1 ) ∈ E n+1 . Choose ξ = (a 1 , • • • , a k-1 , n + 1, a k+1 • • • , a N -1 ) ∈ E n+1 , η = (b 1 , • • • , b k-1 , 2n + 2 -a k , b k+1 , • • • , b N -1 ) ∈ K c n+1 .
Let O be an operation satisfying (R1)-(R4) in the decomposition of X α X π . The operation O yields a resulting diagram corresponding to β if and only if

b j = a j + N -1 i=1 r Q i j - N -1 i=1 r Q i j+1 , (2) 
where r Q i j is the number of Q i added at the j th row. See the following figure:

a N -1 1 2 a N -2 • • • a k a k-1 • • • a 2 a 1 Q 1 Q 2 Q 1 . . . . . . . . . k k+1 • • • Q 1 Q 1 Q 2 Q 3 • • • Q k-1 Q k-1 Q k . . . . . .
In other words, the multiplicity of β is 

Résumé :

Cette thèse a pour but d'étudier l'analyse sur les groupes quantiques compacts. Elle se compose de deux parties. La première partie porte sur la classification des semi-groupes de Markov invariants sur ces espaces homogènes quantiques. Les générateurs de ces semi-groupes sont considérés comme des opérateurs de Laplace sur ces espaces. La sphère classique S N -1 , la sphère libre S N -1 + et la sphère semi-libérée S N -1 * sont considérées comme des exemples et les générateurs de semi-groupes de Markov sur ces sphères sont classifiés. Nous calculons aussi les dimensions spectrales des trois familles de sphères en fonction du comportement asymptotique des valeurs propres de leurs opérateurs de Laplace. Dans la deuxième partie, nous étudions la convergence des séries de Fourier pour les groupes non abéliens et les groupes quantiques. Il est bien connu qu'un certain nombre de propriétés d'approximation de groupes peuvent être interprétées comme des méthodes de sommation et de convergence en moyenne de séries de Fourier non commutatives associées. Nous établissons un critère général d'inégalités maximales pour les unités approchées de multiplicateurs non commutatifs de Fourier. En conséquence, nous prouvons que pour tout groupe dénombrable discret moyennable, il existe une suite de fonctions de type positif à support fini, telle que les multiplicateurs de Fourier associés sur les espaces L p non commutatifs satisfassent à la convergence ponctuelle (presque uniforme). Nos résultats s'appliquent également à la convergence presque partout des séries de Fourier de fonctions L p sur des groupes compacts non-abéliens. D'autre part, nous obtenons des bornes indépendantes de la dimension pour les inégalités maximales de Hardy-Littlewood non commutatives dans l'espace à valeurs opérateurs L p (R d , N ) associées à des corps convexes.

Mots-clés : Espaces L p non commutatifs, groupes quantiques compacts, actions quantiques, sphères non commutatives, semi-groupes de Markov, multiplicateur de Fourier, convergence ponctuelle

Abstract:

This thesis is devoted to study of analysis on compact quantum groups. It consists of two parts. The first part presents the classification of invariant quantum Markov semigroups on these quantum homogeneous spaces. The generators of these semigroups are viewed as Laplace operators on these spaces. The classical sphere S N -1 , the free sphere S N -1 + , and the halfliberated sphere S N -1 * are considered as examples and the generators of Markov semigroups on these spheres are classified. We compute spectral dimensions for the three families of spheres based on the asymptotic behavior of the eigenvalues of their Laplace operator. In the second part, we study the convergence of Fourier series for non-abelian groups and quantum groups. It is well-known that a number of approximation properties of groups can be interpreted as some summation methods and mean convergence of associated noncommutative Fourier series. Based on this framework, this work studies the refined counterpart of pointwise convergence of these Fourier series. We establish a general criterion of maximal inequalities for approximative identities of noncommutative Fourier multipliers. As a result, we prove that for any countable discrete amenable group, there exists a sequence of finitely supported positive definite functions, so that the associated Fourier multipliers on noncommutative L p -spaces satisfy the pointwise convergence. Our results also apply to the almost everywhere convergence of Fourier series of L p -functions on non-abelian compact groups. On the other hand, we obtain the dimension free bounds of noncommutative Hardy-Littlewood maximal inequalities associated with convex bodies.

Keywords : Noncommutative L p -spaces, compact quantum groups, quantum actions, noncommutative spheres, Markov semigroups, Fourier multipliers, maximal inequalities, pointwise convergence.
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  = δ j1 δ k1 , if we write u (s) = (u (s) jk ) 1≤j,k≤ds w.r.t. to this basis. This lemma shows that u (s) 11 ∈ Pol[u 11 ], i.e. there exists a polynomial q s ∈ Pol[u 11 ] with degree s such that u (s) 11 = q s (u 11 ). Decompose the Podleś *-algebra O O × N (S N -1 ×

  where the orthogonal ⊥ is defined by the Haar state h. Then we have the next theorem which classifies G-invariant Markov semigroups. Theorem 0.5. (Theorem 2.18) For any O × N -invariant strongly continuous Markov semigroup (T t ) t≥0 on O O × N (S N -1 ×

Definition 1 . 1 .

 11 Let A be a unital C*-algebra. If there exisits a unital *-homomorphism ∆ :A → A ⊗ A such that (∆ ⊗ id) • ∆ = (id ⊗∆) • ∆ and{∆(a)(1 ⊗ b) : a, b ∈ A} and {∆(a)(b ⊗ 1) : a, b ∈ A} are linearly dense in A ⊗ A, then (A, ∆) is called a compact quantum group and ∆ is called the comultiplication on A. We denote G = (A, ∆) and A = C(G).

  ) Let R = {R Sp p : p ∈ Π} where Π is a set of partitions and R Sp p is a relation defined by the partition p. The precise definition can be found in [64, Definition 3.8, Definition3.9, Definition 4.3, Definition 4.4]. These spheres are denoted by S N -1 (Π), while the associated quantum groups are denoted by G N (Π). By [64, Theorem 4.7 and Theorem 5.1], we get that ϑ defined above is a *-isomorphism and α defined above is an action.

  e. (p(u 11 )) = p(1), for any polynomial p ∈ Pol[-1, 1]. Therefore we obtain the following result, in the same manner as in [29, Proposition 10.1]. Proposition 2.17. [29, Proposition 10.1]. Let ψ be a conditionally positive functional on Pol[u 11 ]. Then there exist a unique pair (b, ν) consisting of a real number b ≥ 0 and a finite measure ν on [-1, 1] such that

Theorem 2 . 18 .

 218 Assume deg(u 11 ) = ∞. For any O R N -invariant strongly continuous Markov semigroup (T t ) t≥0 on Pol(S N -1 R

  δ are Koronecker type symbols. Now let us prove Proposition 3.1 by Weingarten calculus.

- 1 +

 1 ) by Theorem 1.7 is not a trace. Let E bi denote the conditional expectation in O(O + N ) onto the *-subalgebra of O(O + N ) generated by u 11 , then we have Φ = ε • E l = ε • E bi . E bi is the orthogonal projection onto *-subalgebra generated by u 11 for the inner product a, b = h(a * b), and since we can compute the values of the Haar state on products CHAPTER 3. EXAMPLES: CLASSICAL, HALF-LIBERATED AND FREE SPHERES of the algebraic generators u 11 , . . . , u N N using the Weingarten calculus, we can compute E bi and then Φ. We find E bi (u 22 u 11 u 22 ) = 0 since h O + N (u k 11 u 22 u 11 u 22 ) = 0 for all k ∈ N (there are no matching non-crossing pairings) and

CHAPTER 3 .

 3 EXAMPLES: CLASSICAL, HALF-LIBERATED AND FREE SPHERES For k ≥ 1, by the equation (3.1) and (3.2), we have

11 u

 11 [START_REF] Bekjan | Noncommutative maximal inequalities associated with convex functions[END_REF] can be written as the linear combination of u

  (s) 1i : 1 ≤ i ≤ d s } where u (s) ij are the cofficients of the s th irreducible corepresentation u (s) , which has dimension d s = U s (N ). CHAPTER 3. EXAMPLES: CLASSICAL, HALF-LIBERATED AND FREE SPHERES Let us first consider the case N = 2. Since U s (2) = s + 1, we get a s = [s/2] + 1 and r k=0 = (r+1)(r+2) 2

  defined as the space of all family (x n ) n≥0 ⊂ L p (M) such that there are a, b ∈ L 2p (M) and (y n ) ⊂ M verifying x n = ay n b and lim n→∞ y n ∞ = 0.

Remark 4 . 2 .

 42 It is known that a family (x i ) i∈I ⊂ L p (M) belongs to L p (M; ∞ ) if and only

Definition 4 . 3 .

 43 Let 1 ≤ p ≤ ∞. Consider a family of maps Φ n : L p (M) → L 0 (M) for n ∈ N.

Definition 4 . 5 .

 45 Let x n , x ∈ L 0 (M). (x n ) n≥0 is said to converge almost uniformly (a.u. in short) to x if for any ε > 0 there is a projection e ∈ M such that τ (e ⊥ ) < ε and lim n→∞ (x n -x)e ∞ = 0. (x n ) n≥0 is said to converge bilaterally almost uniformly (b.a.u. in short) to x if for any ε > 0 there is a projection e ∈ M such that τ (e ⊥ ) < ε and lim n→∞ e(x n -x)e ∞ = 0.

Lemma 4 . 6 (

 46 [START_REF] Defant | Maximal theorems of Menchoff-Rademacher type in noncommutative L q -spaces[END_REF]). (1) If a family (x n ) n∈N belongs to L p (M, c 0 ) with 1 ≤ p < ∞, then x n conveges b.a.u. to 0.

Proposition 4 . 9 .

 49 (1) (Duality) Let 1 ≤ p ≤ ∞ and let 1/p + 1/p = 1. Then (L p (M; cr 2 )) * = L p (M; cr 2 ).

Definition 5 . 1 .

 51 Let T : M → M be a bounded operator. We say that T satisfies Rota's dilation property if there exist a von Neumann algebra N equipped with a normal semifinite faithful trace, a normal unital faithful * -representation π : M → N which preserves traces, and a decreasing sequence (N m ) m≥1 of von Neumann subalgebras of N such that

Lemma 5 . 8 .

 58 Let F ⊂ B(L p (M)) be a Col-bounded (resp. Row-bounded) collection with Col(F) = M (resp. Row(F) = M ). Then the closure of the absolute convex hull of F in the strong operator topology is also Col-bounded (resp. Row-bounded) with the constant Col(F) ≤ 2M (resp. Row(F) ≤ 2M ).

  ) (Rigid C*-tensor category [89, 1]) Let C be a rigid C*-tensor category, A(C) be its Fourier algebra and M be the von Neumann algebra generated by the image of the left regular representation of C[C]. Set (Ω, µ) = (Irr(C), d) where d denotes the intrinsic dimension, and set U : L 2 (M) → 2 (Ω) by U (α) = δ α for α ∈ Irr(C). Then for any m ∈ ∞ (Ω), it is easy to check that T m is the dual map of the multiplication operator θ → mθ for θ ∈ A(C), which gives the Fourier multiplier studied in [89, 1].

6. 1 . 6 . 7 .

 167 L 2 -ESTIMATES UNDER LACUNARY CONDITIONS6.1 L 2 -estimates under lacunary conditionsProposition Let (m N ) N ∈Z ⊂ ∞ (Ω). Assume that there exist a function f : Ω → R + and a positive number a > 1 such that

. 10 )

 10 CHAPTER 6. MAXIMAL INEQUALITIES OF MULTIPLIERS ON L P (M)

Definition 7 . 2 .

 72 Let G be a compact quantum group. G is said to have the central almost completely positive approximation property (central ACPAP for short), if there are two sequences of functions (ϕ s ) s∈N , (ψ k ) k∈N from Irr(G) to C such that (1) For any s ∈ N, T ϕs is a unital completely positive map on Pol(G).

Lemma 7 . 5 ([ 24 , 2 )

 75242 Lemma 6.4]). Let H be a Hilbert space, C ⊂ H be a closed convex set and L ∈ B(H) be self-adjoint contractions such that L(C) ⊂ C. Put A = id H -L and let S t = e -tA , t ≥ 0. Then we have S t (C) ⊂ C.Then we may construct the semigroups and multipliers with the desired property. Theorem 7.6. Assume G has the central ACPAP and let (ψ k ) k∈N be the sequence of finitely supported functions on Irr(G) satisfying the conditions of Definition 7.2. Then there are increasing subsequence (k s ) s∈N , (s N ) N ∈N of N and a function : Irr(G) → R + satisfying the following conditions: QUANTUM GROUPS (Assume that G is centrally amenable. Then G admits a sequence of unital completely positive Fourier multipliers (T m N ) N ∈N on L ∞ (G) so that m N are finitely supported and for any1 < p ≤ ∞ sup N ∈N + T m N x p p x p , x ∈ L p (G),and T m N x converges to x a.u. as N → ∞ for all f ∈ L p (G) with 1 < p ≤ ∞.

Remark 8 . 4 .

 84 Let N be a semifinite von Neumann algebra equipped with a normal semifinite trace ν and L p (R d ; L p (N )) be the Bochner L p (N )-valued L p -spaces. We may consider the sequence of multipliers T ϕt ⊗id Lp(N ) on L p (R d ; L p (N )) with symbols ϕ t . Note that we may view L p (R d ; L p (N )) as a noncommutative L p -space associated to the von Neumann algebra L ∞ (R d )⊗N : for any 1 ≤ p < ∞, L p (L ∞ (R d )⊗N , ⊗ν) ∼ = L p (R d ; L p (N )).

  n→∞ π∈Irr(G)d π ϕ n (π)Tr( f (π)π(g)),a.e. g ∈ G.

Corollary 8 . 10 .

 810 )λ(g), x ∈ V N (Γ) defines a family of completely bounded maps on V N (Γ) with sup N B δ N cb < ∞ as soon as δ > 1 (see[START_REF] Mei | Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups[END_REF] Example 3.4]). Letb δ N (g) = (1 -|g| 2 N 2 ) δ χ [0,N ] (|g|)be the corresponding symbols of the maps B δ N . It is easy to check that|1 -b δ N (g)| ≤ c |g| N , |b δ N (g)| ≤ c N |g| , |b δ N +1 (g) -b δ N (g)| ≤ c 1 N , g ∈ Γfor some constant c > 0. We are interested in the case where the word length function | | is conditionally negative definite. This is the case if Γ is a non-abelian free group or a hyperbolic Coxeter group. Applying Theorem 6.2, we obtain the following corollary. Let Γ and B δ N be as above. Assume additionally that the word length function | | is conditionally negative definite. Let 2 ≤ p ≤ ∞. Then there exists a constant c such that supN ∈N + B δ N x p ≤ c x p , x ∈ L p (V N (Γ)),

p

  n : V N (Γ) → V N (Γ) ≤ β(n + 1) (8.10)where β is a positive constant. For any N ∈ N, we setm N (g) = 1 [0,N 2 ] (|g|)e -|g| N , g ∈ Γ.

Proposition 8 . 11 .

 811 Let Γ be a hyperbolic group whose word length function | | is conditionally negative definite and (m N ) N be defined as above. Let 1 < p ≤ ∞. There exists a constant c such thatsup N ∈N + T m N x p ≤ c x p , x ∈ L p (V N (Γ)).For any x ∈ L p (M) with 2 ≤ p < ∞, T m N x converges a.u. to x as N → ∞. For any x ∈ L p (M) with 1 < p < 2, T m N x converges b.a.u. to x as N → ∞.

5 ,

 5 S 1/N is of strong type (p, p) for any 1 < p ≤ ∞. Hence for any self-adjoint element x ∈ L p (M), supN ∈N + T m N (x) p ≤ sup N ∈N + S 1/N (x) p + sup N ∈N + (S 1/N -T m N )(x) p β,p x p + N ≥0 1 (N + 1) 2 x p β,p x p .Similarly, for any 2 ≤ p < ∞, we have(T m N (x)) N Lp(M; c ∞ ) β,p x p .Then it is easy to check the a.u. convergence for p ≥ 2 by Proposition 4.7. The b.a.u convergence for 1 < p < 2 follows similarly by a standard adaptation of Proposition 4.7 in the bilateral setting.

8. 4 .

 4 DIMENSION FREE BOUNDS OF NONCOMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATORS

Lemma B. 1 .

 1 Let N ≥ 2. Set K n = {0, 1, 2, • • • , n} N -1 ⊂ Irr(SU (N )). Then (K n ) n∈Nsatisfies the following conditions.(1) We have(n + 1) N 2 -2 N |E n+1 | w N (n + 1) N 2 -2 where E n+1 = K n+1 \K n .

( 3 )

 3 For any n ∈ N, π ∈ Irr(SU (N )), we haveα∈Kn β∈E n+1 N β απ d α d β < α∈E n+1 β∈K c n+1 N β απ d α d β . Proof. We write π = (t 1 , t 2 , • • • , t N -1 ) ∈ N N -1 . The conjugate representation is given by π = (t N -1 , t N -2 , • • • , t 1 )(1)DenoteJ :=    l = (l 1 , l 2 , • • • , l N -1 ) ∈ N N -1 : ∀ 1 ≤ j ≤ N -1, 1 ≤ l j ≤ j(N -j),

Proposition B. 2 (Then 1 -+ 1 ,

 211 N β απ = # {O : O satisfies (2)} .Similar observations hold for N η ξπ . Note that a k ≤ n + 1. If an operation O adding r Q i j boxes Q i at the j th row to the diagram X α satisfies (R1)-(R4), then so does the operation O adding r Q i j boxes Q i at the j th row to the diagram X ξ . This tells usN α+(β-α) απ ≤ N ξ+(β-α) ξπ. By the Frobenius reciprocity law (8.6), we get N π ᾱβ ≤ N π ξη . Proposition 8.8). Let (K n ) n and π = (t 1 , • • • , t N -1 ) be as above. Setϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ) . ϕ n (π) N |π| n + 1 and ϕ n+1 (π) -ϕ n (π) N 1 n where |π| = max{t i : 1 ≤ i ≤ N -1}. Proof. Let E k = E k \E k-1 for all k ≥ 1. Denote t = |π|, i.e. π ∈ E t . Let n ≥ 1. Define ∂ 1 π K n = {α ∈ K n : ∃β ∈ K c n , such that β ⊂ απ}, ∂ 2 π K n = {β ∈ K c n : ∃α ∈ K n , such that α ⊂ βπ}. Assume first n -(N -1)t ≥ 0. By Lemma B.1 (2), we know that if α ∈ K n-(N -1)t ,all the irreducible subrepresentations of α π should belong to the set K n , which implies ∂ 1 π K n ∩ K n-(N -1)t = ∅. Therefore |∂ 1 π K n | w ≤ | ∪ n k=n-(N -1)t+1 E k | w N n k=n-(N -1)t+1

  recall the following typical examples of operators with Rota's dilation property.

Lemma 5.2. (1) (

[START_REF] Junge | Noncommutative diffusion semigroups and free probability[END_REF][START_REF] Dabrowski | Unbounded derivations, free dilations, and indecomposability results for II 1 factors[END_REF]

) If M is a finite von Neumann algebra and τ is a normal faithful state on M, then for all t > 0, the operator S t satisfies Rota's dilation property.

(2) (

[START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF]

) If M is a commutative von Neumann algebra and L is another semifinite von Neumann algebra, then for all t > 0, the operator S t ⊗ Id L on M⊗L satisfies Rota's dialtion property.

Theorem 6.3 Lemma 6.11.

  Let (Φ j ) j∈Z be a sequence of linear maps on M with sup j Φ j < γ. Let 1 < p < 2. Assume that for any s ∈ Z, there is a decomposition Φ j = Φ

				(s,1) j	+ Φ (s,2) j	and
	constants d ∈ Z, c 1 , c 2 ≥ 1, such that		
	sup j∈Z + Φ (s,1) j	x p ≤ sc 1 x p and	sup j∈Z	(s,2) + Φ j

  . Let 1 < p < 2 and x ∈ S M+ . Consider a positive integer s ∈ N + . Since the strong type (p, p) estimate implies the weak one, we can find two projections e 1 , e 2 ∈ M, such that

	sup j	e 1 Φ	(s,1) j	(x)e 1 ∞ ≤ λ and τ (e ⊥ 1 ) ≤ c 1 s	x p λ	p	,
	sup j	e 2 Φ	(s,2) j	(x)e 2 ∞ ≤ λ	and	τ (e ⊥ 2 ) ≤ c 2 2 -s x 2 λ	2	.
	Set e = e 1 ∧ e 2 . Since Φ j = Φ (s,1) j	+ Φ	(s,2) j

  -α/j (∆ j x) p (p -1) -2 (∆ j x) j∈Z Lp(M; cr

	It is sufficient to show that A(p, ∞) is dominated by a positive constant in-dependent of J. Let s ∈ N and ∆ j = ∆ 2α,j = P 2 -(j+2s)/2α -P 2 -(j-2s)/2α . By Proposition 4.11 and Lemma 6.13, we have sup sup j∈J + S 2 2 ) α s(p -1) -8 x p . Hence, + T m By Proposition 6.5 and Lemma 6.13 , we have sup j∈J + T φ j (∆ j x) p α A(p, 2)(p -1) -8 s x p . (6.19)
	j∈J

j (∆ j x) p ≤A(p, 2) (∆ j x) j Lp(M; cr 2 ) α A(p, 2)s(p -1) -6 x p .

8.1 Generalized Fejér means on non-abelian groups and quantum groups 8.1.1 Case of nilpotent groups and amenable groups

  

Let Γ be a discrete amenable group. Let (K N ) N ∈N be a Følner sequence of Γ, that is lim

  Let Γ be a 2-step (or 1-step) nilpotent group generated by a finite symmetric set of elements S. Define m N

	8.1. GENERALIZED FEJÉR MEANS ON NON-ABELIAN GROUPS AND
	QUANTUM GROUPS
	Corollary 8.1.

  Irr(G). We write γ ⊂ αβ if N γ αβ > 0. Denote by π the equivalent class of the representation u

	8.1. GENERALIZED FEJÉR MEANS ON NON-ABELIAN GROUPS AND
	QUANTUM GROUPS
	for all α, β, γ ∈
	.6)

π

  On the other hand, if n -(N -1)t < 0, then|∂ 1 π K n | w ≤ |K n | w N (n + 1) N 2 -1 N t(n + 1) N 2 -1 .Also by Lemma B.1 (2), we have∂ 2 π K n ⊂ K n+(N -1)t \K n . Therefore, Moreover, we have |K n | w = n i=1 |E i | w N (n + 1) N 2 -1 and by Lemma B.1 (1) we have n N 2 -1 N |K n | w N n N 2 -1 .Therefore we obtain|∂ π K n | w |K n | w For any α ∈ K n \∂ 1 π K n , we have α π = ⊕ β∈Kn N β απ β.In particular, we see thatβ∈Kn N π ᾱβ d β = d π d α and 1 -ϕ n (π) = α∈Kn d α (d α d π -β∈Kn N π ᾱβ d β ) d π |K n | w Kn d α (d α d π -β∈Kn N π ᾱβ d β ) d π |K n | w |K n | w |K n+1 | w |K n+1 | w ≤ |E n+1 | w ( α∈Kn d α d α d π ) d π |K n | w |K n+1 | w

			8.4. DIMENSION FREE BOUNDS OF NONCOMMUTATIVE
						HARDY-LITTLEWOOD MAXIMAL OPERATORS
						n+(N -1)t
	|∂ 2 π K n | w ≤ | ∪ n+(N -1)t k=n+1		E i | w N	(k + 1) N 2 -1	N t(n + 1) N 2 -2 .
						k=n+1
						N	t(n + 1) N 2 -2 (n + 1) N 2 -1 N	t n + 1	.
			=		α∈∂ 1	+ 0
			≤	|∂ 1 π K n | w |K n | w	N	t n + 1	.
	=		α∈Kn d α	β∈K c n+1 N β απ d β d π |K n | w	-	α∈K n+1 d α d π |K n+1 | w β∈K c n+1 N β απ d β
	=	|E n+1 | w α∈Kn d α α∈Kn d α β∈K c n N β β∈K c n+1 N β απ d β απ d β -α∈K n+1 d α d π + α∈Kn d α β∈E n+1 N β απ d β -α∈E n+1 d α d π + d π |K n+1 | w	β∈K c n+1 N β απ d β β∈K c n+1 N β απ d β
		N	1 n + 1	.	
						(3)

(k + 1) N 2 -1 N t(n + 1) N 2 -2 .

For the second inequality, by Lemma B.1 (3) we have

ϕ n+1 (π) -ϕ n (π) = (1 -ϕ n (π)) -(1 -ϕ n+1 (π))

) = x n Lp(M; cr 2 ) .

Part II

Pointwise convergence of noncommutative Fourier series

On the other hand, by the arguments above, we have

By the 'sectorial' form of Stein's interpolation principle (see for instance [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]Lemma 5.3]), we have U (e iβ ) : L p (M; c 2 ) → L p (M; c 2 ) ≤ (cq) 1-α ≤ cq. Thus, (S s k e iβ (x k )) k L p (M; c 2 ) ≤ cq (x k ) L p (M; c 2 ) . Similarly, we have

. Namely, (S z ) z∈∂Σ β is Col-bounded. By [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]Lemma 4.8], we get that the set

is Col-bounded. Indeed, by some standard arguments (see for instance [101, Proposition 2.8]), we can see that any S z with z ∈ Σ β can be written as the convex combination of

By duality, we have Row (G p (η)) ≤ 2c(p -1) -1 .

(5.8)

Set w p = π p -π 2 and ν = (p+1)π 4p . Then 0 < π 2 -ν < η < π p = π 2 -ω p . By the Laplace formula, we have that for any z

By [66, Proposition 5.4 and Lemma 3.1], u → ze uz S u is analytic on the area Σ ωp for any z ∈ C\Σ π/2 . Then by Cauchy's theorem, we have that for any z

(5.9)

Note that for any z ∈ {z = re iArg(z) : r ≥ 0, ν ≤ Arg(z) ≤ π/2}, we have Re(uz) = rt cos(Arg(z) + η) = -rt sin(Arg(z) -θ).

Therefore, for any z ∈ {z : ν ≤ Arg(z) ≤ π/2},

Application to Fourier multipliers on compact quantum groups

This chapter will be devoted to the proof of Theorem 0.7. In other words, we will construct Fourier multipliers satisfying the pointwise convergence for groups with suitable approximation properties. As in the previous chapter, only the framework of the form (6.1) is involved in the essential part of our arguments. Since the approximation properties of discrete quantum groups have drawn wide interests in recent years, we would like present the work in a more general setting, that is, Woronowicz's compact quantum groups.

We refer to [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF][START_REF] Woronowicz | Compact quantum groups[END_REF][START_REF] Timmermann | An invitation to quantum groups and duality[END_REF] for a complete description of compact quantum groups. In this thesis, it suffices to recall that each compact quantum group G is an object corresponding to a distinguished von Neumann algebra denoted by

usually called the comultiplication), and a normal faithful state h : L ∞ (G) → C (usually called the Haar state) with the following properties. First, the Haar state h is invariant in the sense that

We denote by Irr(G) the collection of unitary equivalence classes of irreducible representations of G, and we fix a representative u (π) for each class π ∈ Irr(G) and denote by d π its dimension. Then the space

Last, for each π ∈ Irr(G), we set

Then for distinct π, π , the spaces V π and V π are orthogonal with respect to h. In this thesis, we will be interested in the case that G is of Kac type, in other words, the Haar CHAPTER 7. APPLICATION TO FOURIER MULTIPLIERS ON COMPACT QUANTUM GROUPS

(1) S t : u

ij is a semigroup of unital completely positive trace preserving symmetric maps on L ∞ (G);

(2) Set E s = ∪ s i=0 supp ψ i , then

where

In particular, for any 2 ≤ p ≤ ∞,

Moreover, if G is centrally amenable and the maps T ψ k are completely positive, then the above results hold for any 1 < p < ∞.

Proof. Let (ϕ s ) s be the sequence of functions on Irr(G) satisfying Definition 7.2. Take k s ∈ N such that

By the definition of J, we have π

On the other hand, π /

Hence is well defined and the condition (2) is verified. Now let us show the completely positivity of S t . For any n ∈ N + , let M n (C) be the space of n × n matrices. Denote by id n the identity operator on M n (C). Note that

Since T ϕs j is unital completely positive for each j ≥ 0, we have (T ϕs j ⊗ id n )(C) ⊂ C. Set A j = 1 -T ϕs j and S n,t,j = e -t(A j ⊗idn) = e -tA j ⊗ id n , t ≥ 0. By Lemma 7.5, S n,t,j (C) ⊂ C. On the other hand, e -t (π) = Π j≥0 e -t √ 2 j (1-ϕs j (π)) , so for each x ∈ C,

Note that C is closed. Thus (S t ⊗ id n )(x) ∈ C. Therefore S t is completely positive. Denote by 1 ∈ Irr(G) the trivial representation. Recall that for any N , T ϕs N is unital and in particular ϕ s N (1) = 1. As a consequence we get (1) = 0. Therefore S t (1) = e -t (1) 1 = 1 and

We take m N = ψ ks N . Note that s N ≥ N , so we can easily check that

and

Note also that the maps T m N are h-preserving and extend to positive contractions on L p (G) for all 1 ≤ p ≤ ∞ if they are unital completely positive on L ∞ (G) (see e.g. [69, Lemma 1.1]). Applying Theorem 6.2 and Theorem 6.3, we obtain the desired maximal inequalities and a.u. convergences.

In particular, we obtain Theorem 0.8 in the general setting of quantum groups. Appendix: Følner sequences in the dual of SU (N )

We will prove Proposition 8.8 in this chapter. Firstly, we recall briefly the representations theory of SU (N ). For more details, we refer to [START_REF] Jones | Groups, representations and physics[END_REF]. The irreducible representations of SU (N ) can be labeled by N -1 nonnegative integers, and we write set-theoretically Irr(SU (N )) = N N -1 . And moreover, the decomposition of tensor products into irreducible representations can be described by Young diagrams. Young diagrams consist of boxes: we stick some boxes together so that the number of boxes in each consecutive row (from top to bottom) and each consecutive column (from left to right) does not increase.

Each irreducible representation u (t 1 ,t 2 ,••• ,t N -1 ) corresponds to a Young diagrams of the following form:

). The family of irreducible subrepresentations of the tensor product α β corresponds to all the Young diagrams which will appear after the following operations. We denote by X α and X β the corresponding Young diagrams of α and β. We are going to decompose the tensor product of Young diagrams X α X β :

The prescription goes like this:

(R1) Start by filling the boxes in the top row of X β with labels 'Q 1 ' and the boxes in the second row with labels 'Q 2 ' and etc (see the above figure).

(R2) Add boxes