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Abstract 
  

Security threats have emerged in the past decades as a more and more critical issue for Air 

Transportation which has been one of the main ressource for globalization of economy. 

Reinforced control measures based on pluridisciplinary research and new technologies have 

been implemented at airports as a reaction to different terrorist attacks. From the scientific 

perspective, the efficient screening of passengers at airports remains a challenge and the main 

objective of this thesis is to open new lines of research in this field by developing advanced 

approaches using the resources of Computer Science. 

First this thesis introduces the main concepts and definitions of airport security and gives an 

overview of the passenger terminal control systems and, more specifically, the screening 

inspection positions are identified and described. A logical model of the departure control 

system for passengers at an airport is proposed. This model is transcribed into a graphical view 

(Controlled Satisfiability Graph-CSG) which allows to test the screening system with different 

attack scenarios. Then, a probabilistic approach for the evaluation of the control system of 

passenger flows at departure is developped leading to the introduction of Bayesian Colored 

Petri nets (BCPN). Finally, an optimization approach is adopted to organize the flow of 

passengers at departure as best as possible given the probabilistic performance of the elements 

composing the control system. After the establishment of a global evaluation model based on 

an undifferentiated serial processing of passengers, a two-stage control structure is analysed 

which highlights the interest of pre-filtering and organizing the passengers into separate groups. 

The conclusion of this study points out for the continuation of this theme. 

  

  

KEYWORDS: airport security, passenger control, graphs and networks, logical models, 

probabilistic models, optimization.  
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RÉSUMÉ 

  

Les menaces à la sécurité sont apparues au cours des dernières décennies comme un 

problème de plus en plus critique pour le transport aérien, qui est l'un des principaux levier de 

la mondialisation de l'Économie. Des mesures de contrôle renforcées reposant sur des 

recherches pluridisciplinaires et sur de nouvelles technologies ont été mises en œuvre dans les 

aéroports en réaction à différentes attaques terroristes. Du point de vue scientifique, le filtrage 

efficace des passagers dans les aéroports reste un défi et l’objectif principal de cette thèse est 

d’ouvrir de nouvelles pistes de recherche dans ce domaine en développant des approches 

avancées utilisant les ressources de la science informatique. 

Tout d’abord, cette thèse présente les principaux concepts et définitions de la sécurité dans les 

aéroports et donne un aperçu des systèmes de contrôle des terminaux de passagers, et plus 

précisément des postes d’inspection-filtrage qui sont identifiés et décrits. Un modèle logique 

du système de contrôle des départs des passagers d’un aéroport est proposé. Ce modèle est 

transcrit en graphiquement (Controlled Satisfiability Graph-CSG), ce qui permet de tester le 

système de filtrage sous différents scénarios d’attaque. Ensuite, une approche probabiliste pour 

l’évaluation du système de contrôle des flux de passagers au départ est développée, conduisant 

à l’introduction des réseaux de Petri colorés Bayésiens (BCPN). Enfin, une approche 

d'optimisation est adoptée pour organiser au mieux les flux de passagers au contrôle de départ 

compte tenu de la performance probabiliste des éléments composant le système de contrôle. 

Après la mise en place d'un modèle d'évaluation global basé sur un traitement en série 

indifférencié des passagers, une structure de contrôle en deux étapes est analysée, qui met en 

évidence l'intérêt du pré-filtrage et de l'organisation des passagers en groupes distincts. La 

conclusion de cette étude indique la poursuite de ce thème. 

  

  

MOTS-CLÉS: sûreté des aéroports, contrôle des passagers, graphes et réseaux, modèles 

logiques, modèles probabilistes, optimisation. 
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 Through the last decades, there has been a worldwide sustained growth of air transport 
industry, leading to saturation of airspace and airports, demanding for new investments in 
airports and technology. 
 
Security threats have emerged in the past years as a more and more critical issue since air 
transport has characteristics propense to violation of security of people and estate, being used 
as well by the most affluent social classes as middle class people as a mass transportation 
system. Having also an international dimension that makes it a researched target by terrorists 
and unbalanced of any kind. 
 
Airports face a whole range of security challenges, and large numbers of people are involved 
at every stage. Ensuring air transport security is a key issue for air transport activities, 
especially that, by 2030, the number of passengers is expected to reach 6 billion per year and 
the number of departures of aircraft, more than 50 million - about double that in 2011. 
Furthermore, the ICAO annual overview reports that there was a 5.8% growth of scheduled 
passenger air traffic observed in 2014, compared to the 5.5% growth in 2013. Such growth will 
gradually exert enormous pressure on all aviation systems, many of which are operating at full 
capacity. 
 
Although passengers acknowledge the need for increased security, delayed boarding, cancelled 
flights, long waiting time have created an environment of passenger dissatisfaction. Passengers 
noticed the negative impact of increased security requirements and they are increasingly 
dissatisfied with some of the inconveniences associated with air travel, which led them to seek 
alternatives such as high-speed rail. It is of great importance for travellers to secure the 
minimum possible time spent on the way. The less time the passenger spends in the security 
system, the higher the satisfaction. 
 
Thus, beyond the activities of verification of the tickets of the passengers, control measures 
aiming to improve the security of the air transport, each time reinforced after new attacks on 
it, have been implemented at the airports during the last decades. This has created a whole 
sector of activity within the airports using increasingly sophisticated control equipment and 
safety teams each time better trained. 
 
However, the introduction of new technologies for the detection of liquids, gels, explosives 
and weapons, screening both baggage and passengers, leads to an increase of operational cost, 
delays and inconvenience to a large majority of harmless passengers. 
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The problem of the optimization of airport security measures and the improvement of its 
efficiency by introducing the concept of A-CDM (Airport Collaborative Decision Making) is 
present today.  
 
From the scientific perspective, the efficient screening of passengers at airports remain a 
challenge and the main objective of this thesis is to open new lines of research in this field by 
developing advanced approaches using the resources of Computer Science. 
 
This thesis consists of five main chapters: 

- Chapter II first introduces the main concepts and definitions of airport security and the 
major challenges facing the world today, and then classifies the breaches of airport 
security before presenting various examples of breaches of this security. 
 

- Chapter III gives a brief overview of airport information flows with a view to CDM 
(Collaborative Decision Making). The passenger terminal control systems and more 
specifically the screening inspection positions are identified and described. 
 

- In Chapter IV, a logical model of the departure control system for passengers at an 
airport is proposed. This model is transcribed into a graphical view (Controlled 
Satisfiability Graph-CSG) which allows to test the screening system with different 
attack scenarios.  This enables the analysis of its behaviour under these conditions and 
to assess its vulnerability with respect to different types of attacks, by researching 
special minimum costs paths in the associated CSG. 
 

- The Chapter V focuses on the evaluation of the control system of passenger flows at 
departure through a probabilistic approach. After considering properties of Bayesian 
networks and Coloured Petri nets, Bayesian Coloured Petri nets (BCPN) are introduced 
to assess probability of success and failure of the passengers control system, allowing 
to take into account the sequence of events which characterize the control process. 
 

- In Chapter VI, an optimization approach is adopted to organize the flow of passengers 
at departure as best as possible given the probabilistic performance of the elements 
composing the control system. After the establishment of a global evaluation model 
based on an undifferentiated serial processing of passengers, a two-stage control 
structure is analysed which highlights the interest of pre-filtering and organizing the 
passengers into separate groups.  
 

- Chapter VII draws the conclusions of this study and presents different lines of study for 
the continuation of this theme. 
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II.1 Introduction 

Airport security refers to the techniques and methods used to protect large number of 

passengers passing through in addition to staff and planes from terrorism accidents, crimes 

and another threats. Airport security has heightened drastically after multiple severe crimes 

and terrorist attacks coupled with the increasing number of passengers traveling around the 

world. For several decades, the aviation sector has been monitoring the lowest gaps to secure 

flights, and in recent years it has become rare to link an accident to a technical failure, except 

for the latest B737 MAX jet accidents. 

 

Currently, the aviation industry has become one of the main targets of terrorist acts and many 

people have lost their lives in recent years because of its vulnerability, its economic 

importance and the involvement of the integrity of people and property. Thus most travellers 

are dreading the once enjoyable airport experience: long lines, intrusive officers, and grumpy 

flyers make the Airport Security Checkpoint a less than desirable aspect of air travel. We 

present in the following the main concepts associated with this issue that will better define 

the framework of our study. 

 

II.2 Security and Safety 

In transport in general, security and safety have traditionally been opposed. Safety concerns 

the prevention against accidental events of mechanical, structural, meteorological or other 

origin, whereas security aims to take measures against "acts of unlawful interference". 

 

The core business of civil aviation is historically the safety (ensure that aircraft fly safely). 

Unfortunately, the circumstances have led the civil aviation stakeholders to take more and 

more account of security. The evolution of threats has made aviation security a real priority 

for the ICAO (International Civil Aviation Organization) and the civil aviation authorities 

(ICAO 2002). 
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Aviation safety and aviation security tend to come closer to absolute reliability without ever 

reaching it. 

 

Safety refers to legislation and to emergency prevention against mechanical, structural or 

meteorological failures. It is expressed through strict regulations, which impose standards for 

the manufacture, use and maintenance of aircraft, as well as strict criteria for the training and 

qualification of technical crews (pilots, flight engineers) and commercial. The regulations do 

not forget the air traffic control services, which are responsible for flight safety at the same 

time, guaranteeing take-offs and landings in the best possible conditions. Also the 

infrastructure of the airports does not escape this concern. Safety depends also on accidental 

unintentional events. 

 

Security aims to prevention of any deliberate malicious act. The ICAO Annex 17 which is 

primarily concerned with administrative and co-ordination aspects, as well as with technical 

measures for the protection of the security of international air transport, defines the security 

as a "combination of measures and human, material resources to protect civil aviation against 

acts of unlawful interference”. It refers to legislation and measures for the prevention and the 

protection from the intentional acts, somehow it represents the part of safety related to 

malicious acts. 

Therefore, security measures include legal and/or regulatory arrangements for organizing, 

coordinating, implementing, assessing and controlling the human and material resources 

necessary to protect civil aviation against acts of unlawful interference. The acts of unlawful 

interference cover the capture or hijacking of an aircraft, sabotage or simply an attempt. 

Aviation security must be inter-ministerial, international and partnership-based: 

1. Inter-ministerial because civil aviation is not the only party to intervene in the security 

system. Major ministries, primarily the Ministry of Interior through the police and 

gendarmerie, are in charge of monitoring the implementation of security measures on 

the ground. We also see that we are in a field that sometimes imposes a number of 

acts that can affect privacy, such as the palpation of people or search of luggage. 

Screening operations are therefore carried out under the order and responsibility of the 

judicial police officers. In the ministries involved in the security process, there are 

other ones involved such as the Ministry of Foreign Affairs and Ministry of Defence. 
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2. International: The International Civil Aviation Organization (ICAO) brings together 

more than 180 countries and aims to ensure a minimum security standard for civil 

aviation, with the goal that no country lags behind in this area, the slogan being ''no 

country left behind''. It is therefore from ICAO that the major international impulses 

to be implemented come. The United Nations is also concerned about this matter: 

Security Council Resolution 2309, adopted in September 2016, underlines the 

importance of efforts in this area. This resolution has a very strong strategic and 

political significance. 

3. Partnership-based, in the sense that security is the fruit of work and cooperation 

between all partners: aircraft operators, aerodrome operators, airport security 

companies, freighters. An airport could be considered as a group of multi-background 

actors, and whose security could not be achieved without permanent coordination. 

This coordination is done through institutional meetings, but also through regular 

contacts with all partners. 

 

II.3 Major challenges facing air transport security today 

The public areas such as airports where there are large quantities of unchecked luggage 

around lots of people have proven to be vulnerable targets of terrorism in the last years. In 

fact, airports were repeatedly submitted to a series of high profile security incidents such as 

terrorist attacks, aviation workers involved in criminal activity, sabotage, threat to life and 

property, hostage-taking on board aircrafts or on aerodromes and any other acts of unlawful 

interference.  

The capabilities and systems in place to safeguard access to sensitive areas, the means by 

which passengers and airports’ employees are screened and the security standards, policies 

and procedures applied, are creating pressure to concerned parties to maintain the safety at its 

highest level with the number of air travellers projected to nearly double in the next 20 years. 

Terrorist attacks in major airports are becoming alarmingly common. Worse, the solutions 

proposed don’t work. There needs to be more deterrents and policies related to security issues 

addressing the present flaws.  Here below is a sample of terror attacks in international airports 

during the past years: 
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 1961:  Air France Flight 406, the aircraft was shattered into pieces when a bomb 

smuggled inside its cargo exploded on 10 May 1961, killing everyone on board. 

 

 1964: Pacific Air Lines Flight 773 crashed near San Ramon, California, on May 7, 

1964, after a passenger shot the flight crew and killed himself, causing the plane to 

crash and killing all 44 on board.  

 

 1994: Air France Flight 8969 was hijacked after take-off from Algiers and flown to 

France on 24 December 1994. 

 

 2000: CityFlyer Express Flight 8106, operated by a BAe 146, was subjected to an 

attempted hijack on an international scheduled passenger flight from Zürich, 

Switzerland to London Gatwick Airport. The aircraft landed at Gatwick where the 

hijacker was arrested. There were no injuries amongst the 98 people on board. 

 

 2001: American Airlines Flight 11 was hijacked after take-off from Boston during the 

September 11, 2001, terrorist attacks. The aircraft was subsequently crashed into the 

North Tower of the World Trade Center in Manhattan, New York, City. 

 

 2001: United Airlines Flight 175 was hijacked after take-off from Boston during the 

September 11, 2001, terrorist attacks. The aircraft was subsequently crashed into the 

South Tower of the World Trade Center in Manhattan, New York, City. 

 

 2001:   American Airlines Flight 77 was hijacked after take-off from Dulles on 

September 11, 2001. Terrorists crashed the aircraft into The Pentagon in Arlington 

County, Virginia.  

 

 2009: Northwest Airlines Flight 253 was the target of the attempted al-Qaida 

"Christmas Day bombing" on December 25, 2009. Nigerian-born Umar Farouk 

Abdulmutallab attempted to detonate plastic explosives concealed in his underwear, 

but was stopped by other passengers. 

 

https://en.wikipedia.org/wiki/Air_France_Flight_406
https://en.wikipedia.org/wiki/Pacific_Air_Lines_Flight_773
https://en.wikipedia.org/wiki/San_Ramon,_California
https://en.wikipedia.org/wiki/Air_France_Flight_8969
https://en.wikipedia.org/wiki/Aircraft_hijacking
https://en.wikipedia.org/wiki/Algiers
https://en.wikipedia.org/wiki/CityFlyer_Express
https://en.wikipedia.org/w/index.php?title=CityFlyer_Express_Flight_8106&action=edit&redlink=1
https://en.wikipedia.org/wiki/British_Aerospace_146
https://en.wikipedia.org/wiki/Z%C3%BCrich_Airport
https://en.wikipedia.org/wiki/London_Gatwick_Airport
https://en.wikipedia.org/wiki/American_Airlines_Flight_11
https://en.wikipedia.org/wiki/September_11,_2001_attacks
https://en.wikipedia.org/wiki/World_Trade_Center_%281973%E2%80%932001%29
https://en.wikipedia.org/wiki/United_Airlines_Flight_175
https://en.wikipedia.org/wiki/September_11,_2001_attacks
https://en.wikipedia.org/wiki/American_Airlines_Flight_77
https://en.wikipedia.org/wiki/Washington_Dulles_International_Airport
https://en.wikipedia.org/wiki/September_11_Terrorist_Attacks
https://en.wikipedia.org/wiki/The_Pentagon
https://en.wikipedia.org/wiki/Arlington_County,_Virginia
https://en.wikipedia.org/wiki/Arlington_County,_Virginia
https://en.wikipedia.org/wiki/Northwest_Airlines_Flight_253
https://en.wikipedia.org/wiki/Al-Qaida
https://en.wikipedia.org/wiki/Nigeria
https://en.wikipedia.org/wiki/Umar_Farouk_Abdulmutallab
https://en.wikipedia.org/wiki/Umar_Farouk_Abdulmutallab
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 2014: Ethiopian Airlines Flight 702 was carrying 202 passengers and crews when it 

was hijacked by the co-pilot over Sudan and landed in Geneva International Airport. 

The co-pilot was arrested. 

 

 2014: A man carrying a backpack containing 16 firearms with ammunition flew 

aboard a Delta Air Lines passenger jet to Kennedy International Airport in New York 

from Hartsfield-Jackson Atlanta International Airport. The suspect was arrested in 

New York that day after a month’s long investigation into gun smuggling to New 

York from Atlanta. After passing through the regular airport security checkpoints, the 

suspect received the guns from an accomplice, a Delta baggage handler who had easy 

access to secure areas of the airport and was able to carry firearms into the terminal. 

 

 2014: An American who died fighting with ISIS had security clearance at the 

Minneapolis Airport. Abdirahmaan Muhumed, a Somali man, had a job cleaning 

planes for the airport — a position that gave him security clearance as well as access 

to the tarmac and airplanes. 

 

 2015: The Transportation Safety Administration failed to identify 73 people on 

terrorism-related watch lists who were hired in the aviation industry, the inspector 

general of the Department of Homeland Security has revealed it. In a document 

published following an audit by the DHS, which oversees the TSA, the agency was 

found to have missed 73 people with terrorism-related category codes being employed 

by “major airlines, airport vendors, and other employers”. 

 

 2016: Three suicide bombers opened fire on civilians before blowing themselves up at 

the entrance to one of the busiest airports in the world (i.e. Istanbul Ataturk Airport). 

At least 42 people were killed and hundreds wounded. 

 

 2016: Two jihadis blew themselves up at Brussels airport while a third man calmly 

walked out of terminal in 'planned exit'. Missing bomber's exit from airport was 

planned say officials, after footage showed him calmly walking out before explosions. 

 

II.4 Mitigating the Threats 

https://en.wikipedia.org/wiki/Ethiopian_Airlines_Flight_702
https://www.oig.dhs.gov/assets/Mgmt/2015/OIG_15-98_Jun15.pdf
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It goes without saying that the primary objective with regard to civil aviation security is to 

assure the protection and safety of passengers, crew, ground personnel, the general public, 

aircraft and facilities of an airport serving civil aviation, against acts of unlawful interference 

perpetrated on the ground or in flight.  

This is carried out through a combination of measures and the effort of various human and 

material resources as developed below.   

 

a- Passenger screening at aviation security checkpoints which is a critical component in 

protecting airports and aircraft from terrorist threats. Recent developments in screening 

device technology (i.e. Metal Detector, X-Ray, Biological Threat Detector, Chemical 

Threat Detector) have increased the ability to detect specific types of threats such as 

guns, knives, and explosives (Makkonen et al. 2015).   

 

b- Optimizing the allocation of equipment and work teams to control the flows of 

passengers by minimizing the possibility of dangerous situations inside the passenger 

terminal including suspect passenger being admitted on board of an aircraft, while 

insuring a minimum quality of service to passenger.  

 

c- Massively investing in new installations equipment and workforce to meet the new 

requirements of the security regulations.  

 

d- Proper identification of passengers by introducing biometric passports and ID cards.  

A biometric passport (also known as an e-passport, or a digital passport) is a passport 

that has an embedded electronic microprocessor chip which contains biometric 

information that can be used to authenticate the identity of passport holder. The 

passport's critical information is both printed on the data page of the passport and stored 

in the chip. Public Key Infrastructure (PKI) is used to authenticate the data stored 

electronically in the passport chip making it expensive and difficult to forge when all 

security mechanisms are fully and correctly implemented. 

 

e- Encouraging Airport operators and air carriers to educate aviation workers on their role 

in mitigating insider threats and securing access to sensitive areas of airports.  

 

https://en.wikipedia.org/wiki/Passport
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Biometrics
https://en.wikipedia.org/wiki/Public_Key_Infrastructure
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II.5 Inconsistent Solutions  

With the increasing demand for air transportation and new security policy, there are many 

operations that are influenced by limited resources and infrastructure. These constraints can 

create, among others, significant bottlenecks, long passenger queues, congestion and 

overall delays, customer dissatisfaction and rising financial costs (De Barros et al., 2007). 

 

a- A large percentage of passengers could be screened using specialized, costly, and time-

consuming devices. Yet, this resulting increase in security may carry the additional 

expense of longer processing times, increased screening device operational costs, and a 

larger taskforce of security personnel.  

 

b- Passenger screening may lead to two types of errors in threat detection: false alarms and 

false clears.  

 False alarms refer to preventing a non-threatening passenger from going 

through the system. These can cause unnecessary delays for passengers and 

may result in missed flights.  

 False clears refer to letting a threat go through the system. These may have 

more significant effects such as considerable passenger injury or destruction in 

the airport. 

 

c- The number of travellers per year is increasing along with their impatience and 

dissatisfaction with ever-changing airport security procedures and the useless time 

consumed.  

 

d- The new security measures taken have influenced negatively air transportation demand 

levels to airlines due to the increasing airport taxes to cover the cost of security actions 

implemented and the huge investment in baggage-screening equipment used.   

 

e- Screening and other airport security functions presumes that all air travelers are equally 

likely to be a threat, and mandates equal attention and spending on each, which is very 

wasteful of security resources.  
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f- Most of the times, the vast majority of passengers are screened solely for metallic 

objects. Yet a terrorist bent on either blowing up or taking over a plane could wear 

body-conformal plastique or carry a variety of non-metallic lethal weapons.   

 

g- The fact that infrastructure capacity and the available number of resources at some 

airports is still limited such as the number of common check-in counters kept available 

and number of personnel available.  

 

h- Security at airports is generally treated as an infrastructure issue (i.e. static picture of 

airport security). However, due to the complex operational airport activities that is 

evolving over time, the dynamics of airport security needs to be analyzed and studied.   

 

i- The merging of cyber and physical creates new vulnerabilities and the potential points 

of cyber vulnerability in aviation are many and growing. Many systems in civilian 

aviation are potentially hackable: reservation systems, flight traffic management 

systems, access control management systems, departure control systems, passport 

control systems, cloud-based airline data storage, and hazardous materials 

transportation management, cargo handling and shipping.  

 

II.6 Classification of breaches of aviation security 

In this section are displayed the different types and modalities of breaches of aviation security 

(ICAO, 2013). 

II.6.1 Typology of breaches of aviation security 

The breaches of aviation security can be broken down into several major groups: 

The unlawful capture or hijacking of aircraft in flight or on the ground of seizing an 

aircraft by violence or the threat of violence with a view to diverting it from its destination. 

Three main motives can be the basis of these acts, it is about flight, extortion and terrorism. 

The failing security of airports can encourage this type of violence. 

More specifically, unlawful capture is defined by Article 1 of the Hague Convention 

"commits a criminal offense (hereinafter referred to as" offense ") any person who, on board 

an aircraft in flight: 



Chapter II  ANALYSIS OF AIR TRANSPORTATION SECURITY THREATS  

15 
 

- unlawfully and by violence or threat of violence, seizes or controls that aircraft or 

attempts to commit any such act or 

- is an accomplice of a person who commits or attempts to commit any of these 

acts? 

Diversion is the act of diverting an aircraft from its route for security reasons and  with the 

concurrence of air traffic control. Diversion may occur in flight with or  without the threat 

of violence. 

Bombings that are carried out using explosive devices or using an aircraft as a flying bomb. 

They constitute 80% of terrorist acts; 

Hostage-taking on an aircraft or at the aerodrome; 

Force, intrusion on an aircraft, at an airport or within an aeronautical facility; 

Introduction of a weapon on board an aircraft or an airport, a dangerous device or a 

dangerous substance for criminal purposes; 

Communication of false information of a nature to compromise the safety of an aircraft in 

flight or on the ground, of passengers, navigators, ground personnel or the public, at an 

airport or in the enclosure of an installation of civil aviation. 

 

II.6.2 Modalities of breaches for aviation security 

Unlawful acts of intervention can be analyzed in different ways. For example, it can be 

discovered: 

 

 individuals acting on their own behalf and those acting on behalf of a third party 

(limited partner). 

 isolated authors of those belonging to a structured political organization (in the 

broad sense). 

 acts committed according to the motivation of the authors and their seriousness. 

 

What characterizes all the acts of unlawful interference directed against the security of the air 

transport of passengers, is this triangular relation: author-victim-target, common to the 

hostage/taking crimes and all the terrorist acts. It is indeed very rare in civil aviation, that the 

victim, itself is the target of the action. Isolated authors generally belong to the category 

described by psychiatrists as passionate idealists. These are subjects with strong paranoid 



Chapter II  ANALYSIS OF AIR TRANSPORTATION SECURITY THREATS  

16 
 

components, that is to say, proud, psychorigid, interpretants, maladjusted. In terms of groups, 

it was possible to observe that all conceivable combinations and alliances were possible, 

including outsourcing. This state of affairs has made for several years any logical analysis 

extremely difficult. 

In the case of victims, they may be natural persons or goods: aircraft, airport facilities and 

aviation facilities. Targets, in turn, are often legal persons of public law and sometimes legal 

persons of private law. 

Whether the perpetrators of the offenses act alone or in an organized group, there are two 

main categories of actions: those that target a legal person and those that are rarer, targeting a 

natural person. 

Actions against a corporation may be classified as follows: 

 Actions decided by certain States, executed directly by them or by terrorist 

groups in their service and intended to put pressure on another State; 

 Actions taken as a framework of a State, in order to settle accounts which are 

perfectly foreign to it; 

 Actions that seek to undermine the moral, political or economic credibility of 

a State or destabilize it; 

 Actions to test the ability of a state to react; 

 Actions targeting a legal person governed by private law and executed by 

common criminals (blackmail, extortion ...); 

 Personal actions of irresponsible or mentally ill people (revenge, solidarity 

towards a cause ...). 

Actions targeting a natural person may be of the following types: 

 Actions directed against individuals occupying a specific function or 

exercising a specific occupation, without an institution or a state being 

targeted (journalist, artist, writer, teacher ...); 

 Actions targeting an institution or a State and targeting individuals because of 

their ethnicity, religion political opinions or nationality and / or functions 

(embassy employee, activist ...); 

 Actions executed by common criminals; 

 Individual actions of irresponsible or mentally ill individuals. 
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Apart from one or two cases of no statistical value, it can be said that current safety measures 

are insufficient to discourage enthusiasts. Currently, the motivation of the authors follows, or 

sometimes precedes, with a slight shift, the curve of global political crises. The gravity of the 

acts follows, as for it, an increasing curve. In recent decades, unlawful acts of intervention 

have sought more to make a name for themselves, to raise awareness of their organization 

and determination, by numerous summary executions, than to obtain a real counterpart. 

Among the main reasons are the will to flee a country and its regime, the will to fight a 

country and its regime, the payment of a ransom or extortion. 

 

II.7 Conclusion 

In view of the diversity and complexity of threats that can be implemented at and through 

airports, the control of departing passengers at airports plays a central place in the security of 

air transportation. 

In the next chapter, airport passenger control will be presented. Its composition, national and 

international regulations and practice will be analyzed. 
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III.1 Introduction 

 

The study of the safety of a terminal requires not only a thorough knowledge of the various 

functions assigned to it but also a perfect mastery of its composition in order to be able to 

impair efficiently the mischievous, planned or not, behaviour of the terrorists. In this chapter, 

after analysing the different flows involved with airport security, the inspection function of 

passengers, agents and luggage, is described and different inspection systems are considered. 

The main objective of this chapter is to introduce the necessary knowledge about airport 

inspection systems so that effective models can be built to assess their performance. 

 

III.2 Flows in airports 

The dangerous person or object necessarily infiltrate into the flows of people and goods 

implemented in the airport. 

A flow is a movement of people or objects along a well-defined path to get from one point to 

another. There is a wide variety of flows in an airport: passenger flows, aircraft flows, 

baggage flows, personnel flows, service vehicle flows and others. They can interact with each 

other or not. The general safety rules impose constraints in terms of non-mixing of certain 

flows while maintaining some facilitation (processing capacity, system flexibility, passenger 

comfort). 

The main rules generally accepted in airport passenger flow management are (GAO 2005, 

HMSO 2005): 

 no mixing of flows at departure 

 no mixing of flows on arrival (tolerance if flows have the same regime) 

 no flow crossing 

 existence of alternative routes in case of degraded situation 

 minimizing distances to travel 

 signage corresponding to these rules 

 

III.2.1 Movement of airport staff, airlines and service companies 
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In order to avoid the intrusion of a dangerous person posing as an airport staff member, airline 

or Service Company, all personnel working at the airport must wear a security badge during 

the day when he/she is in a reserved area or in a security restricted area. The issuance of a 

security badge is subject to the applicant's attendance of a security awareness session and the 

approval of the application by the police services (criminal record check). The possession of a 

security badge does not mean the right to circulate throughout the reserved area of the airport 

which can be divided into several geographical areas. In France, for example, reserved area is 

divided into four geographical sectors (Russel et al., 2005): 

A (plane):  In zone A, near the plane, will circulate all those who take care of the device 

  during his/her call (refuellers, baggage handlers ...). 

B (luggage):   This zone corresponds to the baggage galleries; baggage handlers and security 

operators can circulate there. 

F (Freight):  This area is dedicated to freight activities. 

P (passengers): Zone P corresponds to the parts of the terminal where the passengers are 

  travelling. 

 

III.2.2 Circuits for passengers and hand luggage. 

Different stages compose the circuit of a passenger within an airport. The necessary steps are 

based on the passenger (depending on whether he is departing, connecting or arriving, 

according to his nationality, according to his destination ...) and their effective order depends 

on the configuration of the terminal. Nevertheless, here it is considered a simplified circuit 

including the steps and controls common to all airports (Kaffa-Jackou, 2011). A simplified 

diagram of the departure and arrival circuits is displayed in Figure 3.1. It shows the main 

controls which passengers and baggage are submitted to in order to ensure security in the 

terminal and in the aircraft. 
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Figure 3.1 Passengers flows inside an airport 

 

III.3 General Description of the Passenger Inspection Station 

 

The inspection is a preventive operation carried out for the purpose of detecting prohibited 

articles (ICAO 2008). The means used may be a search, one or more detection equipment 

(radioscopic or explosives), safety patches or a combination of them. It usually takes place 

at the entrance of the security restricted area (see Figure 3.2). 

 

III.3.1 Definitions  

 

Prohibited articles are "any substance or object that may constitute a threat to the security 

of air transport". A distinction may be made between: (i) firearms, (ii) knives and sharp 

instruments, (iii) blunt instruments, (iv) explosives, (v) ammunition, (vi) flammable 

liquids prohibited in bolsters, (vii) corrosive products, (viii) neutralizing or incapacitating 

items prohibited in the hold, (ix) articles that may be used as a weapon, (x) items that may 
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be deemed to be a lethal weapon, (xi) chemical and biological items and substances that 

may be used in the attacks, (xii) restricted carriage of liquids since 6/11/06 in Europe, in 

the United States of America and in some African countries. 

 If not properly managed, security measures at airports may have adverse effects on the 

movement of departing passengers. To improve the management of security measures, the 

various stakeholders at the airport have well-defined missions. These different missions 

have their origins in the Standards and Recommended Practices of ICAO Annex 17, Doc 

8973, National Security Plans or Airport Security Plans. 

 The people in charge of the screening inspection control can be state agents (police) or 

private security agents. They are required to: 

 - carry out the inspections in accordance with the regulations in force, 

 - follow initial and continuous training and periodic training, 

 - execute performance tests in operational situation, 

 - establish a safety program and a quality assurance program. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

                  

 

Figure 3.2 Layout of an inspection station 
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In the case of TSA (Transport Security Administration of USA), the inspection process is 

composed of four physical zones (see Figure 3.3): 

 Zone A, where after their entrance in the departure hall, pre-checked passengers and 

regular passengers wait in their respective lines. 

 Zone B, where, after check-in, pre-checked and regular passengers enter in lane and 

pass security scan. 

 Zone C, where, if they pass successful security scan, they collect their belongings. 

 Zone D, where passengers who fail security check, receive an additional inspection.  

 

 

 

 

Figure 3.3 Example of physical organization of passengers inspection station (TSA) 

 

The minimum equipment required today for the operation of a screening inspection station 

consists of: 

 A device that closes and blocks the door when the station is not in use 

 a magnetometer 

 a cabin + table for the search 

 a table to search the luggage 

 a phone 
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 an XR and calibration means 

 a silent alarm 

 a poster to inform passengers 

 a camera sometimes 

Many airports now have a trace detector or use body scanners. 

 

III.3.2 Human resources at inspection stations: 

 

Screening procedures require well-trained staff, sufficient equipment and enough time to 

complete the controls. 

The armament of the inspection station recommended by ICAO Doc 8973 is as follows: 

 an upstream agent to check travel documents, boarding pass, handle baggage handling, 

 electronic device management, electronic device management and small items; 

 a downstream agent for the management of alarms, palpation (a woman / a man) 

 a downstream agent to monitor images and interpret images 

 an agent for the search of baggage downstream 

 a trace detector 

 a supervisor who must not perform duties other than risk assessment and dispute 

management 

 

A rotation of security officers must be scheduled at least every twenty minutes. This will 

allow the officer that examines the X-ray images to rest his eyes. This activity should only be 

resumed after a period of 40 minutes. 

 

The armament of the BIP depends on the flows processed and the type of flights. Inspection 

station staffing needs to be strengthened in the following cases: 

 in special circumstances requiring increased security measures, 

 a high level of passenger flow, 

 Absence or unavailability of control equipment. 

 

III.4 Control Procedures at the Screening Inspection Station  
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All passengers and their cabin baggage, all personnel and their equipment must undergo the 

screening. All personnel and equipment passing through the screening station must be 

screened. 

 

III.4.1 Procedures for controlling persons 

 

Passengers are greeted by a security officer or police officer. The agent verifies the access 

permissions: 

 for the passenger, it is the travel document 

 for aircrew, it is the navigator card or other valid document 

 For the staff, it is an ad hoc title. 

Then, the person wishing to enter the reserved area must pass through the portico. 

 

There are the following steps: 

 The passenger arrives at the inspection station, removes anything that contains metal 

and passes his cabin luggage under the XR. 

 under the portico 

 if the gantry crashes, the passenger passes under the gantry 

 The portico does not ring. the passenger may experience random palpation or return to 

pick up his cabin baggage. 

 If the alarms persist, the passenger must be palpated and scanned with a magnetometer 

 If the security officer notices that the alarm has persisted, he/she calls on the OPJ or 

the person authorized to carry out a body search of the passenger. This search is done 

in cabin with the authorization of the passenger. 

 If doubt cannot be removed, the passenger does not embark. 

 If the passenger sounds the alarm, the passenger is palpated and can pick up his 

luggage 

 If the passage under the gantry does not generate an alarm, the passenger may 

experience a random palpation 

 The passengers wait to recover their cabin luggage. The cabin luggage is going under 

the XR. In case of doubt (opaque object or difficult to identify for example), the 

security agents may request the opening of the baggage which will be searched with 

the authorization of their owner. Objects prohibited in the cabin must be subject to 



Chapter III  AIRPORT PASSENGER INSPECTION 

27 
 

local instructions. Checks must continue even after discovery of prohibited articles or 

objects. Other items may be concealed. Cabin baggage may be randomly searched. 

 Then, the passengers go to the departure lounge. 

 

When a passenger refuses to submit to the check, it is planned to: 

 report the person to the police 

 warn the captain 

 refuse boarding to the passenger 

 Remove the passenger's hold baggage. 

 

A passenger appearing nervous or arrogant should always be searched. In the case of the 

United States: the TSA, the US agency responsible for protecting air transport, has come to 

the conclusion that "the worst danger to commercial aviation comes less from objects that can 

be transported by the evil people than these people themselves”. As a result, the TSA is 

setting up a new passenger screening system called SPOT (Screening of Passengers by 

Observation Techniques). As part of SPOT, TSA staff learn to recognize suspicious 

behaviour. "Awakening passengers with signs of anxiety will be reported to the local police, 

who will conduct face-to-face interviews with them to determine if they pose a threat." 

 

III.4.2 Inspection procedures for cabin baggage and other goods and products 

 

The security officers must apply the following rules to the handling of cabin baggage, when 

detection equipment is used: 

 to proceed in case of alarm of the equipment of detection or absence of validation of 

the operator, with the search of the luggage or the object 

 To carry out a random search of cabin baggage respecting the quantitative objectives 

by the authorities. 

 

The alert or call to the police must be made when: 

 the security agents discover a 1st or 4th category weapon, an improvised explosive 

device (IED), 

 a security officer is attacked 

 a passenger tries to pass in force at the inspection station 
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 When a passenger disturbs public order in the departure lounge. 

 

 

Figure 3.4 Passengers inspection tasks and paths 

 

III.5 The different filter inspection systems 

 

The experiences of different states in screening passengers and their carry-on baggage have 

led to the development of three main systems commonly referred to as: (i) door-to-gate 

screening systems, (ii) a waiting room and (iii) at the entrance of a hall (Kaffa-Jackou, 2011). 

 

III.5.1 General principles 

 

Whichever system is used, it must include the necessary elements to prevent the introduction 

of firearms or knives and dangerous goods on board aircraft and to discover a potential 

aggressor before he ascends. on board. One of its basic elements is to be able to benefit from 

the assistance of law enforcement officers at each screening post. These officers should be 

armed to respond immediately and effectively to criminal activities involving weapons. They 

should be assigned to a location from which they can monitor each screening station. If such 

arrangements cannot be made, an officer should be able to intervene quickly at each screening 

post if assistance is required. Some states have established response times considered 
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sufficient for all circumstances; given the volume of screening operations, the level of the 

threat, and the configuration of the airport and passenger terminal. 

 

It must be ensured that there is no possibility of mixing or contact at departure or arrival 

between passengers who have been subjected to a security check and persons not subject to 

such control, after the passage security screening points at airports; if there is mixing or 

contact, the passengers in question and their cabin baggage will be re-screened before 

boarding an aircraft. 

 

In addition to the personnel mentioned above, the injection / filtering system should also 

include specialized devices. The manual search of passengers and their hand luggage is 

certainly effective but it is relatively slow and requires well-trained and qualified personnel. 

The use of metal detectors and X-ray machines will, however, greatly improve the efficiency 

of screening and, therefore, the routing of passengers. It is important to manually search for 

items that do not pass the electronic examination in a satisfactory manner. 

The three main inspection systems and their respective advantages and disadvantages are 

described in sub-sections III.5.2, III.5.3 and III.5.4. Safety devices at a fixed location should 

always be between protected when not in use. 

 

III.5.2 Inspection / screening at the boarding gate. 

 

The screening is carried out immediately prior to boarding at a checkpoint located at the 

boarding gates that lead to the aircraft. The door can lead to a bridge that is directly connected 

to the aircraft or on an apron to access it. The screening takes place at the moment when the 

boarding of the passengers begins and when the door leading to the aircraft is opened. Staff 

and equipment are available on-site as quickly as possible (ie, so as not to unduly delay the 

flight). Security officers will only occupy the checkpoint when required, to perform the 

screening.  However, the screening station and access by this post must be protected outside 

of hours of use. 

 

III.5.3 Inspection / filtering at the entrance of a waiting room. 

 

The screening is done at the entrance to an area designed specifically to keep passengers 

waiting before they board. The area is protected (i.e. rendered sterile) by appropriate walls or 
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barriers and all these access points are controlled. The waiting room may also be a vehicle 

specifically designed to transport passengers to a distant aircraft. The door leading to the 

traffic area remains locked until the actual embarkation (all or most of the passengers and 

their hand luggage will have been inspected / filtered). The waiting room should be kept 

secure when not in use. If it is not, it must be searched before being used to ensure that 

weapons or dangerous devices have not been introduced by a potential aggressor or an 

accomplice for later use. It will not be necessary to implement so many personnel and devices 

because in this case the inspection/filtering can be done more slowly. Security officers will 

only occupy the checkpoint at the time of screening. 

 

III.5.4 Inspection / screening at the entrance of a hall. 

 

Screening is done at the entrance to a hall or satellite that has multiple gates. All access points 

must be controlled to maintain sterility. After a full inspection at the beginning of the day 

confirms that the hall is sterile, the hall must be locked or patrolled when not in use. However, 

since sterile halls are usually employed continuously, or at least as long as the passenger 

terminal are open and accessible to the public, inspections do not need to be frequent. The 

screening is done simultaneously for several flights at a time. More personnel and equipment 

may be required than single-door or waiting-room checkpoints because of the higher number 

of passengers to be routed. Nevertheless, since only one checkpoint is use for several 

boarding gates, this method allows better use of resources in personnel and equipment, with a 

considerable economic benefit. 

 

III.6 Evaluation 

 

States do not agree on the advantages and disadvantages of each of the systems discussed 

above. Each state and airport authority will have to evaluate them and decide on the system or 

combination of systems that they deem most appropriate for the airport configuration, taking 

into account all the factors involved. 

 

One of the benefits of the door-to-gate screening system is that it minimizes the possibility of 

firearms and other dangerous devices being surreptitiously handed over to passengers who 

have already been inspected / screened at the entrance. the waiting room would have the same 
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advantage, provided that it is checked carefully; before using this room, no weapons are 

hidden, and strictly maintain the sterility of this room each time it is used. 

 

Other states consider that it is advantageous to separate the aircraft as much as possible from 

the point where a potential aggressor has to report to the security screening and that the 

screening/screening systems at the entrance to a security room waiting and hall allow such a 

separation. This is defined in time or distance. Screening at the entrance to the waiting room 

allows time separation primarily, since the checkpoint is usually only a few meters from the 

boarding gate. However, it happens very often that the aircraft is not parked there at the time 

of the inspection. On the other hand, the door that opens onto the gangway or the apron is 

locked until the passengers embark permanently. The security services may be confronted 

with a malicious person before the intended aircraft becomes accessible. The inspection 

system at the entrance of a hall is generally even more efficient because it allows separation 

both in time and space. Most of the time, passengers do not know at what station the aircraft 

must park, and if it is already there. The increased separation over time and space helps to 

improve the response time of the security services. 

 

The two systems (waiting room and lobby) increase security by allowing screening officers to 

perform their duties at a slower pace, and therefore more carefully. They will more often 

decide not to control a suspicious or unidentifiable object if passenger inspections are to be 

accelerated due to the imminent departure of the aircraft. Moreover, it is likely that any 

difficulties will be more easily solved and that the agents of purity, less in a hurry, will kindly 

answer the questions of the passengers. They will be less likely to gather at the checkpoint to 

board an aircraft that is clearly ready to receive them as soon as possible. Flight disruption 

caused by delays can have a negative impact on the deployment of security personnel in this 

type of system. 

 

They have little effect on the deployment of screening staff at the entrance of a lobby. 

The police, gendarmerie and customs control the effective implementation of measures by all 

operators. They evaluate the performance of the security service or attend the tests in 

operational situation. They may also establish findings of breaches of the regulations. 

 

Placed under the responsibility of the aerodrome operators, the screening of passengers at the 

entrances to boarding lounges has been considerably strengthened in recent years. All sharp or 
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blunt objects have been added to the list of prohibited items in the cabin. The sensitivity of the 

gates for detecting metal masses has been increased. Besides, a very large percentage of 

passengers are now subject to further examination. 

 

Thoroughly, screening passengers and their baggage requires well-trained security personnel, 

adequate security equipment and enough time to complete the security process. If security 

controls are not carried out efficiently, compliance with air service schedules will be 

compromised. In addition, congestion at checkpoints can be exploited by people seeking to 

bypass the security system. 
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IV.1 Introduction  

 

This chapter develops a logical framework to access the vulnerability of passenger control process 

to different threats. The initial objective is to determine in which conditions a threat will be able to 

go undetected through a departure passengers control process. Chapter II has presented in detail 

the composition and operational procedures implemented in the screening inspection positions. 

Few models have been already proposed in the literature to represent and analyse the inspection 

process. Some early models are mere graphical representation of the different stages of the 

inspection process, others present a static logical framework where the involved resources and 

means are not formalized. 

 

In this chapter are not considered or estimated probabilities of occurrence of passenger control 

failures, but only their possibility and the conditions for that. 

Then, in this chapter, a pure logical framework is developed to establish the logical constraint each 

inspection station must satisfy to insure robustness to malicious behaviour. Considering the nature 

of the resulting logical satisfiability problem, an approach based on a graphical representation of 

the control process is adopted, leading to computing minimum length paths representative of 

optimal malicious behaviour.  

The proposed approach turns it possible to detect the minimum number of elementary control 

defects that turn a control failure possible. It also allows to generate different attack scenarios to 

the control system by a threat, to analyse the behaviour of the system under these conditions and 

to evaluate their permeability with respect to different types of attacks.  

 

IV.2 Theoretical background 

 
Here the main idea is to formulate the inspection failure analysis as a constrained Boolean problem. 

Many studies and researches have been developed in the last fifty years, boosted by the continuous 

improvement on computers’ performance. 

 

IV.2.1 Boolean representation of constrained systems 
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Boolean algebra (Almos 1963, Givant et al., 2009) is an algebra defined on the truth values, true 

(T) or false (F), of the considered variables.  

A logical or Boolean formula Σ is a string of symbols composed of Boolean variables, their literals 

organized in clauses and binary operators, such as negation (�̅� ), and (), or () and nor () 

leading to logical formulas. Π(Σ) denotes the set of variables occurring in Σ. 

Example, for the formula = (a�̅�c)(bc)(�̅�𝑐̅), the set of occurring variables is Π(Σ) = {a, b, 

c}, appearing as literals:  a, �̅�, b, �̅�, c, 𝑐̅, with clauses : (a�̅�c), (bc) and (�̅�𝑐̅). 

To each complete assignation V of truth values to Π(Σ), the truth value of the formula Σ can be 

computed by replacing the variables x by their values. If Σ is evaluated to be true, V is said to be a 

solution of Σ, or (V)=T. 

When a solution exists for formula Σ, Σ is said to be consistent or satisfiable. If no such solution 

exists, Σ is said to be inconsistent or unsatisfiable.  

For example = (a  �̅� c) (b c) ( �̅�𝑐̅) is satisfiable (take a=T, b=T and c=F). 

A logical constraint can be formulated as a formula Σ being evaluated as T (or F) for a given 

assignation V to its variables. 

 

Propositional calculus is a symbolic system of treating complex propositions and their logical 

relationships. In the case of Boolean logic, propositions are Boolean formulae and their 

relationships are defined by the different rules, such as the resolution rule. 

In order to have a set of rules on Boolean formulae, it is useful to adopt a normal form that every 

formula must have. The most common normal forms are the conjunctive normal form (CNF) and 

the disjunctive normal form (DNF).  Both forms use the concept of literal variable and its negation.  

For the disjunctive normal form, the main object is a disjunction of literals (x∧�̅�), or cube. A cube 

K is said unsatisfied when at least one literal is evaluated to be true. Disjunctive normal form 

formulæ are composed of a number n of conjunctions of cubes: K1 ∨...∨Kn. A disjunctive normal 

form formula Σ is unsatisfied if there exists at least one assignation such that every cube in Σ is 

unsatisfied.  

 

The main object in a conjunctive normal form is a clause which is a disjunction of literals (x∨�̅�). 

A clause C is said satisfied if there exists at least one assignation such that at least one of the literals 
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can be evaluated to be true.  Conjunctive normal form formulæ are composed of a conjunction of 

clauses: C1 ∧...∧Cn. A conjunctive normal form formula Σ is satisfied if there exist at least one 

assignation such that every clause in Σ is satisfied. 

It is possible to convert any general Boolean formula to a conjunctive normal form formula Σ, 

however the computational time to get this result may increase exponentially with the size of the 

problem. 

 

IV.2.2 The Satisfiability Problem 

 

A problem of satisfaction of Boolean constraints (Bunning et al., 1995), also called problem 

satisfiability, consists, given a set of constraints defined with Boolean variables, to decide whether 

there exists an assignment of logical values to the variables which allows to satisfy all the 

constraints, and if possible to determine such feasible assignment. When this assignment does not 

exist and, it can be of interest to search for an assignment satisfying a maximum number of 

constraints, or to search for an assignment not satisfying a minimum number of constraints.  

A Boolean constraint satisfaction problem is the problem known as SAT, of deciding whether a 

propositional formula (expressed as a conjunction of disjunctions) is satisfiable or not. The 2-SAT 

problem is the restriction of the SAT problem to conjunctive normal formulae with at most 2 literals 

per clause. The 3-SAT problem is the restriction of the SAT problem to conjunctive normal 

formulae with at most 3 literals per clause (Sais 2008). This problem as many other of the 

satisfiability family present computational problems when solving them effectively.  

The computational complexity theory (Brookshear, 1989) distinguishes a limited number of large 

classes of complexity for discrete computational problems but with many slightly differentiated 

subdivisions. The complexity class P is seen as the class of computational problems which admits 

an efficient algorithm, i.e. an algorithm which provides a solution in an acceptable polynomial time 

or memory space. The complexity class NP is composed of problems that people would like to 

solve efficiently, but for which no efficient algorithm is known. Thus the class of the NP-

complete problems contains the problems of NP which are the ones most likely not to be in P. 

While 2-SAT is of complexity class P, 3-SAT has been the first problem shown to be NP-complete 

by Cook in 1971 (Cook, 1971). Since it has remained a reference problem in the study of the NP-

difficulty of computational problems. The NP-completeness of SAT ensures that no algorithm for 

this problem can be computationally effective in its worst case instance. However, for many 

https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/NP-complete
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instances encountered in practical applications, this problem can be solved in an acceptable 

computing time. So, there are, in practice, many effective algorithms to solve instances of the SAT 

problem associated with real problems. 

One of the first methods used to cope with the SAT problem has been the generation of truth tables. 

The algorithm to generate the truth tables creates every possible instantiation and whenever an 

instantiation provides a solution, the formula is proven satisfiable. If no instantiation provides any 

model, the formula is proven unsatisfiable. 

A landmark is the algorithm developed has been the DDL (Davis et al., 1962) where the main idea 

is to remove variables until no variable can be removed or the empty clause is generated. This 

method needs a large memory to store all generated clauses. Its search scheme can be represented 

by a tree where each node of the tree represents the current state of the formula given at the root 

and simplified along the path between the node and the root.  

Compared to those two first algorithms which can be qualified as complete, there exists a large 

number of incomplete algorithms, most of which use a local search schema. These algorithms, 

contrarily to the complete ones, may be unable to prove the unsatisfiability of a formula. This area 

has been and still is under active research with news algorithms integrating parallelization and 

propagation processes and others (Vizel et al., 2015). 

 

IV.3 Logical modelling of nominal passenger control 

  

The herein considered passengers logical control models make use of Boolean algebra and results 

from: (i) the arrangement of the various constituent elements of the airport control system and (ii) 

the nominal or non-nominal operating procedures of the latter. The model must be completed by 

scenarios concerning: 

 The data available for a passenger posing a threat or not. 

 The operational state of the system (equipment and control procedures operating or 

failing on an ad hoc basis or not). 

 

The main purpose of the modelling specified in this sub-section is to evaluate the permeability of 

an airport terminal to boarding threats. It is considered that the passenger (staff members are not 

considered in this study, but should be in a complete threat study) are assigned with a data set 

whose components represent the real characteristics of the person: 
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 Does he/she hold one or more tickets? 

 Does he/she have an identity card or passport in accordance with this or these 

tickets?  

 Is he/she able to commit an act affecting the security of air transport? 

 Does he/she possess material means constituting a threat? 

  

All data can be represented by a set of Boolean variables and the transition from one area of the 

airport to another will correspond to the apparent satisfaction of certain logical constraints. As an 

example, consider the situation at the level of the constraints related to the registration bank, where 

the possession of a ticket and the possession of a piece of matching identity are validated. If the 

passenger has malicious intentions, they are modelled by logical conditions that check if they can 

be satisfied or not in a scenario. It is then a question of identifying the conditions of satisfaction of 

a breakthrough scenario. Then, taking into account its consequences for safety, possible 

adjustments of the control system and associated procedures should be proposed to turn it 

unfeasible. 

 

IV.3.1 Passenger logical data 

 

The information concerning a passenger is given by a data set whose Boolean components 

represent the information characterizing this person (either well or ill-intentioned).  

Several stages take place in the evolution of the data set associated to a passenger: 

 initial data; 

 acquired data: for example, the transition to the registration banks with a ticket and 

a corresponding identity recognized true alters the initial resources by providing the 

data component "boarding pass". 

 final data: they are obtained taking into account the possible contributions during 

the path of the target person (dangerous object obtained in the duty-free zone, 

accomplice handing  an object, ...). 

 

These components can be classified as:  

 Identification:  

o X1: possession of identity card,  
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o X2: authenticity of identity card,  

o X3: possession of passport, 

o X4: authenticity of passport. 

 Transport ticket: 

o  X5: possession of domestic title,  

o X6: authenticity of domestic title, 

o  X7: possession of international title, 

o  X8: authenticity of international title,  

 Boarding card: 

o  X9: Possession of a domestic boarding card,  

o X10: authenticity of domestic boarding card, 

o  X11: possession of international boarding card, 

o  X12: authenticity of international boarding cards,  

 Prohibited object:  

o X13: no metal object located in the hand luggage,  

o X14: no organic object located in the hand luggage,  

o X15: no inorganic object in the hand luggage,  

o X16:  no metal object under the clothes,  

o X17: no organic object located under clothing,  

o X18: no inorganic object under the clothes. 

 Dangerous object:  

o X19: no dangerous metal objet in hand luggage,  

o X20: no dangerous organic object in hand luggage,  

o X21: no dangerous inorganic object in hand luggage,  

o X22: no dangerous metal objet under clothes,  

o X23: no dangerous organic object under clothes,  

o X24: no dangerous inorganic object under clothes, 

o X25: no prohibited or dangerous object in hold luggage. 

 Concordance: 

o X26: Air ticket and identity document coincide, 

o X27: boarding card and identity document coincide. 
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IV.3.2 Control stages 

 

To each control element of the passenger control station it can be associated the test on one or more 

components of the vector X. 

The lists below display the components tested by the different passenger control stages: 

 

 Identity Document validation : X1, X2, X3, X4 

 Ticket reservation: X5, X6, X7, X8 

 Boarding card validation: X9, X10, X11, X12 

 Cross beam detector: X16, X22 

 Scanner: X13, X14, X15, X19, X20, X21 

 Manual detection: X16, X22 

 Passenger search: X16, X17, X18, X22, X23, X24 

 Aleatory search: X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24 

 Luggage search: X25 

 

Different clauses, or macro state variables in some cases, are introduced in order to define more 

clearly the constraints to satisfy. On one side they contribute to reduce the size of the logical 

expression describing the operations of the passenger control stations and on the other side they 

match the corresponding elementary control actions: 

 

Z1=(X1X2)                                                          (4.1-a) 

Z2=(X3  X4 )                                                        (4.1-b) 

Z3=(X5  X6 )                                              (4.1-c) 

Z4 = (X7X8 )                                                        (4.1-d)   

Z5=(X9X10)                                                          (4.1-e) 

Z6=(X11X12)                                                        (4.1-f) 

Z7=(X16X22 )                                                        (4.1-g) 

Z8 =X13  X14 X15 X19 X20 X21                                                (4.1-h)      
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Z9= (X16X22 )                                                                 (4.1-i) 

Z10= (X16X17X18X22X23X24)                                (4.1-j) 

Z11= X13 X14X15X16 X17X18X19X20X21X22X23X24             (4.1-k)  

Z12 =X26                                                              (4.1-l)  

Z13 = X27                                                                                        (4.1-m) 

Z14=X25                                                              (4.1-n) 

 

An additional variable to be taken into account is Z15 which is T if international flight, and F if 

domestic flight. The checks carried out in the passenger control system may depend on each other, 

for example, the non-random manual search of hand luggage takes place only in the event of an 

"alarm" of the scanner.  

 

IV.3.3 Passengers logical constraints 

 

Here the set of constraints is represented by logical conditions so that the transition from one area 

of the airport to another will correspond to a test on a number of components of the resource vector. 

For example, at the boarding gate, the possession of an authentic boarding pass and a valid identity 

document / passport will be tested. If these conditions are verified, it is possible to go beyond the 

"boarding gate" control stage and access the aircraft. It should be noted that the satisfaction of these 

constraints is related to the instantaneous state of operation of the system. 

In summary, at each step of the control system (passage of the control station, boarding, badge 

reader, ...) a sequence of values distribution to some logical variables must satisfy a set of 

constraints. The resource is then tested to validate access to the next zone. 

The conditions to pass without detection through the different controls are given by: 

 

Registration banks: 

Crb =( ((X1  X2)  (X5  X6)𝑍15
̅̅ ̅̅ )  ((X3 X4)(X7X8)Z15) ) X26         (4.2 ) 

or using the macro variables: 

Crb= ((Z1Z3𝑍15
̅̅ ̅̅ ) (Z2Z4Z15)) Z12                                                             (4.3) 

Control and filtering station: 

𝐶𝑐𝑠 = ((X9X10𝑍15
̅̅ ̅̅ )(X11X12Z15)) (X13X14 ⋯ X24)                     (4.4) 

or 
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 𝐶𝑐𝑠=((Z5𝑍15
̅̅ ̅̅ ) (Z6Z15))(Z7Z8Z9Z10Z11)                                (4.5) 

Immigration control: 

Here the condition Cic  = (X5  X6) (X11X12) =Z2  Z6  must be satisfied if the associated flight 

is an international one. It can be written as: 

Cic  = (Z15  (Z2  Z6  ))  �̅�15                                                               (4.6) 

where Z18 is F if the flight is a domestic one and Z18 is T if it is an international one.   

Boarding gate:  

Cbg = (((X1X2)(X9X10) 𝑍15
̅̅ ̅̅ ) ((X3 X4) (X11X12) Z15))  X27                              (4.7) 

then        

            Cbg = ((Z1 Z5𝑍15
̅̅ ̅̅ ) (Z2 Z6 Z15)) Z13                                    (4.8) 

Hold luggage control:     

                Chl = X25 = Z14                                                              (4.9) 

 

Once analysed the sequential operation of the passenger control station, one can establish the global 

constraint to be satisfied: 

 

C = Crb  Ccs  Cic  Cbg  Chl                                                      (4.10) 

or 

C = (((Z1Z3𝑍15
̅̅ ̅̅ ) (Z2Z4Z15))  Z12 )  (((Z5𝑍15

̅̅ ̅̅ ) (Z6Z15))(Z7Z8Z9Z10Z11)) 

 ( (Z15  (Z2  Z6  ))  �̅�15 ) 

 

 ( ((Z1 Z5𝑍15
̅̅ ̅̅ ) (Z2 Z6 Z15)) Z13)  Z14                                     (4.11) 

 

It should be noted that the test on the variable 𝑍11 (random manual search) can be carried out legally 

on at least 10% of the passengers regardless of the value of the other variables. In the case where 

this search takes place, the variable 𝑍11  must be set to T. 

The sequential passengers control process can be represented as in Figure 4.1: 
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Figure 4.1 The different logical stages during passengers control 

 

It is clear that: 

 if variables X1 to X27, are all T Then C = T and the corresponding satisfiability 

problem is trivially satisfied.  

 If some variables from X1 to X27 are F either for domestic or international 

passenger, then C = F. 

 

However, in practice, passengers lacking some documentation or carrying forbidden objects may 

succeed in going through departure controls as the result of some control failure.  So, it appears 

that this logical model must be enhanced to take into account the occurrence of control failures. 

 

IV.4 Logical modelling of control failures 

 

In this paragraph it is introduced the occurrence of failure at elementary controls, which can impair 

the detection of a threat associated with a passenger (inadequate documents, dangerous object, 

etc.). This can make such a passenger to go through the whole control process without being 

arrested. The preceding logical constraints must be complemented to include the instant effect of 

the failure of an elementary control caused either by equipment failure or staff mis-operation. 

 

IV.4.1 Operational state of inspection station 

 

Crb =T? Ccs =T? Cic =T? Cbg =T? Chl =T? 
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The state of operation of the system at a given moment details which elements of the control system 

operate nominally and which ones are defective at this time. Each element i of the control system 

can be associated with a probability of good operation at the considered instant (or a probability of 

failure of the control element. Adverse events are expressed as logical conditions. Depending on 

the nature of the adverse event and the status of the controlled person, the list of these logical 

conditions may vary. 

 

Each of the following control elements may behave correctly or not when the potentially dangerous 

passenger passes: 

 check-in:  

Y1: Identity control,  

Y2: Ticket control, 

Y3: coincidence air ticket and identity document.  

 screening inspection station:  

 Y4: boarding card control, 

 Y5: cross-beam,  

 Y6: scanner,  

 Y7: manual detector,  

 Y8: manual search,  

 Y9: aleatory manual control 

 to immigration:  

 Y10: passport and visa control. 

 upon boarding: 

 Y11: boarding card,  

 Y12: identity control,  

 Y13: concordance boarding card and identity document. 

 check of hold baggage: It is considered here a global operating condition for the 

screening inspection station, let Y14 be the corresponding logic variable. In fact, 

check of hold baggage and boarding are performed partially in parallel and there is 

no precedence constraint between them. 
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These checks can be seen as the minimum checks for a departing passenger, other means of control 

could be included: private passenger control units, face recognition, doors, anti-lift doors, badge 

readers, etc. 

 

 IV.4.2 Passenger control with malfunctions 

 

The logical consequences of elementary failure of control equipment or staff are to change the 

logical values of some variables. Here false alarms are not considered since they are in general 

corrected and the result in that case remains unchanged. The matching between controls and macro 

state variables is made at this stage, such as: 

At registration: 

 

                  𝑌1 → 𝑍1 Z2, 𝑌2 → 𝑍3 Z4,  𝑌3 → 𝑍12                                     (4.12-a) 

 

At the level of the inspection station: 

 

Y4Z5Z6, 𝑌5 →Z7,  𝑌6 → 𝑍8, 𝑌7 → 𝑍9, 𝑌8 → 𝑍10, 𝑌9 → 𝑍11                             (4.12-b) 

 

At immigration control:            

                                                 𝑌10 → 𝑍2  Z6                                                               (4.12-c) 

 

At boarding: 

                                       𝑌11 → 𝑍5Z6 , 𝑌12 → 𝑍1Z2, 𝑌13 → 𝑍12                                        (4.12-d)                                            

 

 

At luggage inspection station: 

 

                                         𝑌14 →Z14                                                                 (4.12-e) 
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Here have been considered six different cases of causes and effects represented in Table 4.1. 

 

 Single effect Multiple effect Multiple causes 

 

Zj, Zk =T  

nominal 

 

 
  

 

Zj, Zk=F 

nominal 

 

 
  

 

Table 4.1 Considered cause-effect cases 

 

In the case of a single effect with T reference value, a failure of Yi will declare Zj to be T when it is 

F and T if it is T, Zj should be replaced in any logical constraint by the logical expression (𝑍𝑗Yi)�̅�i 

which has the logical table : 

Zj            Yi T F 

 T T T 

 F F T 

 

                                 Table 4.2 Truth table for (𝑍𝑗Yi)�̅�i 

which is T when  𝑍𝑗  is F and Yi is F.  

In the case of a multiple effect with T reference value, a failure of Yi will declare Zj and Zk to be T 

when both are F and T if both are T, Zj should be replaced in any logical constraint by the logical 

expression (𝑍𝑗Yi)�̅�i, Zk should be replaced in any logical constraint by the logical 

expression (𝑍𝑘Yi)�̅�i,  and the logical expression (𝑍𝑗Zk )will be replaced by (𝑍𝑗Yi)(𝑍𝑘Yi)�̅�i, 

while the logical expression(𝑍𝑗Zk) will be replaced by (𝑍𝑗Yi )(𝑍𝑘Yi)�̅�i. 

In the case of multiple causes with T reference value, when Yi and Yj imply the failure of Zk, Zk 

should be replaced by  (Zk (YiYj)(�̅�i�̅�j)), when Yi or Yj imply the failure of Zk, Zk should be 

replaced by (Zk (YiYj)(�̅�i�̅�j)). 

 



Chapter IV         ASSESSMENT OF VULNERABILITY OF INSPECTION STATIONS: A SATISFIABILITY APPROACH 

47 

 

In the case of a single effect with F reference value, a failure of Yi will declare 𝑍�̅� to be T when it 

is F and T if it is T, 𝑍�̅� should be replaced in any logical constraint by the logical expression  (𝑍�̅� 

Yi) �̅�i which is T when 𝑍�̅� is F and Yi is F. 

 

In the case of a multiple effect with F reference value, a failure of Yi will declare 𝑍�̅� and 𝑍𝑘
̅̅ ̅ to be T 

when they are F and T if they are T, 𝑍�̅� should be replaced in any logical constraint by the logical 

expression (𝑍�̅� Yi) �̅�i , 𝑍𝑘
̅̅ ̅ should be replaced in any logical constraint by the logical 

expression (𝑍𝑘
̅̅ ̅ Yi) �̅�i. Here the logical expression (𝑍�̅�𝑍𝑘

̅̅ ̅ ) should be replaced by (𝑍�̅�Yi )( 𝑍𝑘
̅̅ ̅ 

Yi)�̅�i , while the logical expression (𝑍�̅� 𝑍𝑘
̅̅ ̅ ) should be replaced by (𝑍�̅�Yi )( 𝑍𝑘

̅̅ ̅Yi)�̅�i.   

In the case of multiple causes with F reference value, when Yi and Yj imply the failure of 𝑍𝑘
̅̅ ̅, 𝑍𝑘

̅̅ ̅  

should be replaced by  (𝑍𝑘
̅̅ ̅ (YiYj)(�̅�i�̅�j)), when Yi or Yj imply the failure of 𝑍𝑘

̅̅ ̅ , 𝑍𝑘
̅̅ ̅ should 

be replaced by (𝑍𝑘
̅̅ ̅ (YiYj)(�̅�i�̅�j)). 

 

Following these conversion rules, the updated logical constraint to be satisfied to pass through the 

passengers’ departure control and board an aircraft is given by: 

(((Z1Y1)𝑌1̅)((Z3Y2)𝑌2̅) 𝑍15
̅̅ ̅̅ )(((Z2Y1)𝑌1̅)((Z4Y2)𝑌2̅) Z15 ) (Z12Y13)𝑌13

̅̅ ̅̅ ) 

 

(((Z5Y4) 𝑍15
̅̅ ̅̅ )( Z6Y4)Z15)𝑌4̅)((Z7Y5)𝑌5̅) ((Z8Y6)𝑌6̅) ((Z9Y7)𝑌7̅) 

((Z10Y8)𝑌8̅)((Z11Y9)𝑌9̅) 

   

( (Z15 ( (Z2  Z6 Y11 )𝑌11
̅̅ ̅̅ )) �̅�15 ) 

 

((((Z1Y1)𝑌1̅)((Z5Y4)𝑌4̅)𝑍15
̅̅ ̅̅ ) ((Z2Y1)𝑌1̅)(((Z6Y4)𝑌4̅)Z15) Z13) 

 

((Z14Y14)𝑌14
̅̅ ̅̅ ) 

 (4.13) 

Figure 4.2 displays the influence of each control action on the different stages of the passenger 

control process. 
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                 Y1, Y2, Y3           Y4,Y5,Y6,Y7,Y8               Y9                     Y10,Y11,Y12 Y13 

 

 

 

X 

 

 

 

Figure 4.2 The different logical stages to be checked 

 

Equation 4.12 involves 18 macro variables and equation 4.13 control failure variables, so a very 

large set of different scenarios could be analysed with this model, some leading to the possibility 

of a go through for unauthorized or dangerous passengers. 

 

IV.5 Building a vulnerability analysis framework 

 

Here the idea is to develop a tool, based on the logical constraint displayed in the previous 

paragraph, to check, once the personal data of a passenger has been provided, which minimum 

number of elementary controls should fail to allow this passenger to go undetected through the 

passenger control system. The proposed tool is a graph which is built to check the existence of a 

possible path for any passenger, from a no threat passenger to a multi threat passenger. In recent 

years and decades, many different graphical representations have been introduced to analyse 

logical constraints as pure mathematical objects. However, here, the structure of the considered 

logical constraint is based on a particular physical system, the passengers control system, and that 

makes a difference when searching for characteristically logical configurations. 

 

IV.5.1 Controlled satisfiability graph 

 

Here it is introduced a graphical representation of the global logical constraint given by expression 

4.12, which is composed of a series of conjunctions of clauses (not necessarily in normal form). 

Crb =T? Ccs =T? Cic =T? Cbg =T? Chl =T? 
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Here the clauses are ordered according to the structure of the passengers control system. The rules 

of construction of the controlled satisfiability graph (CSG) are the following: 

 a first node is created; it is node m = a. 

 to each logical variable present in a clause is associated an orientated arc,  

 to each control complex  such as (𝑍𝑗Yi)�̅�i , (𝑍𝑘
̅̅ ̅ Yi) �̅�i or (𝑍𝑘

̅̅ ̅ 

(YiYj)(�̅�i�̅�j)) is attached a cycle, 

  to each control complex such as (𝑍𝑗Yi )(𝑍𝑘Yi)�̅�i are attached two cycles.  

 each  operator outside a control complex and linking two clauses, generates a new 

node, node m+1, and the arcs linking the previous node to this new one are 

according to the following clause.  

 Clauses are treated according to their original ordering. 

 

 

Figures 4.3 displays basic configurations for a CSG. 
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Variables without control: 

 

 

  

 

Variables with control: 

 

   (𝑍𝑗Yi)�̅�i 

  

     

    

  (Zk (YiYj)(�̅�i�̅�j))  

 

  

 

 

  (𝑍𝑗Yi )(𝑍𝑘Yi)�̅�i 

 

 

Figure 4.3 Basic configurations for a CSG 

 

IV.5.2 The CSG associated to a passengers control system 

 

The above rules are applied considering the following ordering: Crb / Ccs / Cic / Cbg / Chl in 

expression 4.12. Then to each clause, it is associated the corresponding subgraph. Orange arrows 

represent possible entry points, blue arrows are resource logical variables, red arrows are control 

effective logical variables, black arrows are control uneffective logical variables, orange arrows 

are dummy arcs between the same nodes, green arrows are possible output points. Nodes are named 

with a letter in increasing lexicographical order according to their rank in the graph. 

 

 

 

𝑍𝑗  
𝑌𝑖  

𝑌𝑖  
𝑌𝑗 

𝑌𝑖  

𝑍𝑗  𝑍𝑘  

𝑍𝑗  
𝑍𝑗  

𝑍𝑘
̅̅ ̅ 

𝑍𝑘
̅̅ ̅ 

�̅�𝑖  

𝑍𝑘  
�̅�𝑖  

�̅�𝑗 

𝑌𝑖  

�̅�𝑖  
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                                                  Domestic control channels 

 

 International control channels  

                    

  

   

 

                                        

 

 

Figure 4.4 The CSG associated to a passengers control system 

             without           Hold luggage 

with        

boarding 

card 

without 

boarding card 

𝑍15
̅̅ ̅̅  

𝑍15
̅̅ ̅̅  

𝑍15 𝑍15 

with 
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In the case considered, the structure of the control system and overall satisfiability constraint is 

mainly sequential with some parallelism when multiple differentiated control lines are available. 

More complex structures could be found when considering other types of control processes.  

 

IV.5.3 Accessing vulnerability 

 

To each arc of the CSG it is associated a weight: 

 the weight of an arc associated to a control logical variable Yj, j J , is : 

o ε if Yj =T, 

o ∞ if Yj = F, then 𝑌�̅� = 𝑇. 

 the weight of an arc associated to a control logical variable 𝑌�̅�, j J , is : 

o a strictly positive number j< ∞, if 𝑌�̅� =T, 

o ∞ if 𝑌�̅� = 𝐹. 

 The weights of the arcs associated with controlled logical variables Zi, i I , are 

such that : 

o if the variable is T, the weight is ε, 

o if the variable is F, the weight is ∞. 

 The weights of the arcs associated with non-controlled logical variables Zi, i I , 

are such that : 

o if the variable is T, the weight is 2 ε, 

o if the variable is F, the weight is 2 ∞. 

 

Here ε and ∞ are real numbers such as :  0 < 𝑁 ∙ 𝜀 ≪ 𝛼𝑗    and  𝛼𝑗 ∙ 𝑁 ≪ ∞   ∀𝑗𝐽  where N is the 

number of literals in the global logical constraint. N is at the same time a size parameter for the 

global logical constraint and an upper bound of the number of arcs in the corresponding CSG. 

 For example for a logical constraint such as : (a  �̅� c) (b c) ( �̅�𝑐̅), N= 7. In the case of 

formula 4.12, N = 63. 

Let WCSG be the Weighted Controlled Satisfiability Graph. 

With this choice of the weigh, whatever the scenario adopted for the Zs and the Ys, the structure 

of the WCSG remains unchanged. 
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Once a passenger scenario has been built (Xs and then Zs), a new weighting is produced to the 

CSG. Then the vulnerability assessment is performed by searching the shortest path between the 

corresponding entry point and exit point in the CSG. 

Entry points are either the entry node of the check-in subgraph or the entry node of the screening 

inspection station subgraph. The exit point for departure passengers is the exit node of the boarding 

subgraph (no hold luggage) or the exit node of the hold luggage check (passenger with hold 

luggage). 

 The length L* of the shortest path min can be written as : 

 

𝐿∗  = 𝑛 + 2 ∙ 𝐾 ∙ 𝜀 + 2 ∙ 𝐻 ∙ ∞                                               (4.14) 

 

Here n is related with the failed controls, K is the sum of the number of times controls are successful 

and of the number of times compliant no controlled variables are crossed. Finally, H is the number 

of times an uncontrolled variable is forced. 

 

Different measures of vulnerability (and, contrarily, of robustness) can be considered: 

 When j =1 ∀𝑗 ∈ 𝐽, n is the number of times a control is failed along the chosen 

path. The pair (n, H) is a vulnerability measure of the control system with respect 

to the current passenger scenario. When H is different from 0, it means that H 

uncontrolled variables are in fact critical and should be controlled. Once this 

correction is implemented, the WCSG must be updated. 

 The j  ∀𝑗 could also be chosen to represent on a limited scale, say from 1 to 10, 

the difficulty to deceive control j. In that case ∑ 𝛼𝑗𝑗∈𝜋𝑚𝑖𝑛
 is an additive measure of 

the difficulty to coerce satisfaction of the downgraded logical expression. 

 If the probabilities pj of deceiving the j controls, 𝑗 ∈ 𝐽 , are available, choosing                  

j = - log 𝑝𝑗  : 

1 − ∏ 𝑒𝛼𝑗
𝑗∈𝜋𝑚𝑖𝑛

 = = 1 − 𝑒𝑛∗
                                       (4.14) 

is the probability of not being able to go undetected through the whole control system 

when these probabilities are independent from one control to another? 
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 In the case of aleatory control, the probability of performing it must be taken into 

account in the weighting of the control variable. 

 

IV.5.4 Solution algorithms 

 

Here the WCSG is a directed acyclical graph (DAG) = [V,U] where V is the set of nodes {u ∈

𝑉}  and U is the set of arcs {(u,v)∈ 𝑈, u∈ 𝑉, 𝑣 ∈ 𝑉}. Let w(u,v) be the weight of arc (u,v) in the 

considered WCSG. 

To solve this problem in the real domain, variations of shortest paths algorithms such as Moore-

Dijkstra (Bondy et al., 2008), can be adapted by considering all the nodes of the acyclic graph 

ordered by increasing rank. A one sweep numerical algorithm is as follows: 

1. Rank all the nodes in V; 

2. Set the distance L (1) of the source node (node 1) to 0; 

3. Set the distances to all other nodes to +∞ and set all predecessors of u ∈ 𝑉, to node 1:  P(u)=1; 

4. For each node u ∈ 𝑉: 

5.    - Walk through all immediate successors v of u; 

6.     - If L(v) > L(u) + w (u, v)  

7.     - Set L(v)                     L(u) + w (u, v) and P(v)=u; 

where w(u,v) is the assigned weight to arc (u,v). 

A symbolic version of this algorithm can be developed where the comparison of lengths at step 6 

is done according to the following scheme: 

Let L = n + 2∙K∙  + H∙ M  and L’ = n’ + K′ ∙  + H′ ∙ M  be two path lengths, then: 

- if H > 𝐻′ ≥ 0   then 𝐿 > 𝐿′ 

- if H= 𝐻′   and n > 𝑛′ ≥ 0   then 𝐿 > 𝐿′ 

- if H= 𝐻′ ,  n= 𝑛′   and K > 𝐾′ ≥ 0   then 𝐿 > 𝐿′ 

and of course, if H= 𝐻′ ,  n = 𝑛′   and K= 𝐾′   then 𝐿 = 𝐿′ 

Both versions of this algorithm present a polynomial time complexity as being special cases of 

know class P algorithm. So, this algorithm can be applied to very large CSGs. 

 

IV.6 Generating scenarios 
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IV.6.1 Composition of scenarios 

 

The scenarios consist of the initial resources of the target passenger and the assumed operational 

state of the system. The initial resources can be modified by the initialization conditions: for 

example, at the registration bank, the possession of a true {(𝑋5 = 𝑇 and 𝑋6 = 𝑇), or (X7=T and X8=T)} 

transport ticket and a true identity / passport document {(𝑋1 = 𝑇and 𝑋2 = 𝑇) or (𝑋3 = 𝑇 and 𝑋4 = 𝑇)} 

concordant (𝑋25 = 𝑇) are checked and, if these conditions are verified, at the exit of the registration 

bank, the target passenger obtains a valid boarding pass. The resources then obtained are the so-

called acquired resources. 

It should be noted that additional resources (not shown in the resource vector) can change the initial 

operating state. This would be the case, for example, with the existence of an accomplice, a member 

of the scanner detection staff: this complicity is then comparable to a failure of the "scanner control" 

component (𝑌6= F  in the vector Y).  

Note that, here, the registration is not a strictly mandatory crossing point, a person with a false 

boarding pass or a stolen embarkation card, can come directly to the inspection post, as shown in 

Figure 4.4. 

From the 227 possible scenarios for the elementary variable Xi s, 217 scenarios can be constructed 

for the macro state variables while 213 scenarios can be constructed for the sequence of controls for 

a target passenger. Among all these scenarios, only a few will be relevant for security analysis. 

 

IV.6.2 Examples of application  

 

First example: prohibited metal object under clothes 

Here it is supposed that the target passenger performs an international flight (X15 = T), has a 

boarding card to collect and a hold luggage to deliver. It is supposed that he has everything in order 

except a prohibited metal object under his clothes (X16 =T) in that case, this implies that Z7 = Z9 = 

Z10 = Z11 = F. Also, X25 = T since in this scenario no dangerous object is supposed to be in hold 

luggage.  

The passenger control station is composed of two lines with unequal performance. The probability 

in both lines of performing aleatory control is taken equal to 0.10. The weights of the critical control 

variables are given in table 4.3 on a scale from 0 to 10. 
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Control 

variable 

Y5 𝑌5̅ Y7 𝑌7̅ Y8 𝑌8̅ Y9 𝑌9̅ 

Line 1 ∞ 8 ∞ 7 ∞ 7 ∞ 1 

Line 2 ∞ 9 ∞ 8 ∞ 6 ∞ 1 

 

Table 4.3 Adopted difficulty levels for critical controls 

 

The weight of 𝑌9̅   in both control lines is 1 as the result of the product of the probability of 

aleatory manual control (0.10) by the highest level of difficulty (10). 

In that case, the length of the shortest path is : 22+  22 𝜀 which means that 11 controls are passed 

with legitimate success while the difficulty of skirting the four critical controls is assessed to a 

scale of 22. 

 

Second example: False passport with dangerous object in hold luggage. 

Here it is supposed that the target passenger performs an international flight (X15 = T), has a 

boarding card to collect and a hold luggage to deliver. It is supposed that he has everything in order 

except a false passport (X4 =F). In that case, this implies that Z2 = = F. Also, X25 = F since in this 

scenario a dangerous object is supposed to be in his hold luggage, then Z14=F. 

The control of passport is performed different times during the control process: when getting the 

boarding card (Y1), when passing immigration (Y12) and again at boarding (Y1). Passport control 

at boarding card desk and at boarding gate are not searching directly for authenticity of passport, 

but with existence and concordance with travel documents, while immigration control is directly 

concerned with passport authenticity. The weights of the critical control variables are given in table 

4.4. In this case probabilities of control failure have been adopted. 

 

Control variable Y1 at boarding desk Y12 at immigration Y1 at boarding gate Y14 hold luggage 

-log(p) -log(0.75)=0.125 -log(0.02)=0.699 -log(0.80)=0.097 -log(0.05)=1.301 

 

Table 4.4 Adopted probabilities (-log(p)) for critical controls 
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In that case, the length of the shortest path is : 3.221+  22 𝜀 which means that 11 controls are passed 

with legitimate success while the probability of skirting the four critical controls is assessed to be 

exp(-3.221)=0.0006. 

 

IV. 7 Conclusion 

 

In this chapter, a pure logical framework has been developed to establish the logical constraint each 

inspection station must satisfy to ensure security in face of malicious behaviour. Considering the 

nature of the resulting logical satisfiability problem, an approach based on a graphical 

representation of the control process has been adopted where the Controlled Satisfiability Graph 

appears to be a powerful tool to analyse the vulnerability of a control scheme. This vulnerability is 

assessed here by considering minimum length paths pointing out the weakest sequences of control 

for each threat scenario. The proposed approach turns it possible to detect the minimum number of 

elementary control defects that may result in a control failure.  It also allows to generate different 

scenarios of attack to the control system by a threat, to analyse the behaviour of the system under 

these conditions and to evaluate their permeability with respect to different types of attacks.  

It appears that the proposed approach is of interest for a wide area of applications beyond 

theoretical satisfiability problems: diagnostics, reliability assessment and catastrophe scenarios 

generation, among many others. 
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V.1 Introduction 

 

The objective of this chapter is to develop a tool to analyse in a systematic way the performance, 

in terms of probability of achievements, of an inspection station when faced to a departing 

passenger. The adopted approach is microscopic since it concentrates on the processing of a single 

passenger at a time. 

An inspection station can be seen as a dynamic process where a succession of tasks is performed, 

successfully or not, according to some distributions of probability on each controlled passenger. 

The probability of success or failure at the output of this process depends in a complex way of the 

succession of probability of success or failure of the anterior elementary control tasks. Then, the 

probabilistic interactions between the considered set of random variables characterizing the 

inspection process may be represented by joint probability distributions.  

In general, when analysing these probabilistic interactions, even considering only the case where 

random variables are binary, it has appeared that the size of the joint probability distributions grows 

exponentially with the number of variables. Indeed, the joint distributions must contain one 

probability for each configuration of the random variables. Then compact representations for 

reasoning about the state of large and complex systems involving a large number of variables, have 

been studied and the concept of Bayesian networks has been introduced by Judea Pearl in 1985. 

It uses a graphical representation to encode dependence and independence relations among the 

random variables. The dependence and independence relations lead to a compact representation of 

the joint probability distributions. 

In practice, cause-effect relations between entities of a problem domain can be represented by a 

Bayesian network using a graph of nodes representing random variables and links representing 

cause-effect relations between the entities (Jensen, 1996). So, there is an interest to associate, for 

the performance assessment of the operation of an inspection station, a Bayesian network. 

However, the operations that an inspection station performs over a passenger depend on 

intermediate results and this process can be seen as a set of conditioned sequences, which are 

performed in a dynamical context. In order to account for that latter aspect of the model, another 

tool also appears of interest: Petri nets. 

https://en.wikipedia.org/wiki/Judea_Pearl
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The doctoral dissertation of C. A. Petri in 1962 (Petri, 1962) discussed the basis for a theory of 

communication between synchronous processors of a computer, being mainly interested in 

describing the causal relationships between events. His work began the development of Petri nets 

which have become today a large body of research and development. Initially, many researchers 

studied Petri nets with respect to theories and applications. Along the decades, the use and study 

of Petri nets have spread and have expanded to depth in theory and width in application. Many 

authors who have entered the research of Petri nets have provided suitable platforms in the areas 

of: 

 Modelling and design of concurrent systems, such as information systems and 

manufacturing systems. 

 Performance analysis of complex parallel/sequential systems.  

 Already some authors have initiated the work of introducing Petri nets to develop analysis of 

efficiency, safety and security operations issues at airports.  

In this chapter, an original approach is developed where Binary Bayesian Networks and a special 

class of Petri Nets, the Coloured Petri Nets, are merged to produce an efficient tool to assess the 

expected performance of a passenger inspection station: Bayesian Coloured Petri Nets (BCPNs). 

 

V.2 Discrete Bayesian Networks 

 

V.2.1 Definitions 

 

A Discrete Bayesian network (Charniak, 1991), N = (X, G, P), over variables, X, consists of an 

acyclic, directed graph G = (V, E) and a set of conditional probability distributions P. Each node v 

of the set of nodes V in G corresponds to a single discrete random variable Xv ∈ X with a finite set 

of mutually exclusive states (two for a binary random variable). The directed links of the set of 

links E ⊆ V × V of G specify assumptions of conditional dependence and independence between 

random variables. There is a conditional probability distribution, P(Xv |𝑋𝑣

−1 ) ∈ P, for each variable 

Xv ∈ X. The set of variables represented by the parents, 𝑋𝑣

−1, of v ∈ V in G = (V, E) are sometimes 

called the conditioning variables of Xv. 
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A Bayesian network is fully specified by the combination of its graph structure and the probability 

table P(Xv |𝑋𝑣

−1 ) ∈ P, for each variable Xv ∈ X, i.e. a Bayesian network encodes a joint probability 

distribution over a set of random variables, X, of a problem domain.  

V.2.2 Example of Bayesian network 

A small example of medical diagnostic based on a Bayesian network structure is shown below. 

This structure is designed to allow to diagnose whether a patient is suffering from a common cold 

(CC) and/or a dangerous Flu (DF), based on the following patients' symptoms: runny nose (RN) 

yes or no, headache (HA), yes or no and bursts of dry cough (BC), as well as a relevant background 

information: has he visited recently a tropical country (TC), yes or no. Here the adopted graph 

structure is given by: 

 

 

 

 

 

 

 

Figure 5.1 Diagnostic Graph 

 

Assuming all six variables are binary, with T representing ``true'' and F ``false'', the probability 

tables for the network can be given as follows:  

 

TC 

CC DF 

RN HA BC 
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                                                               P(TC) 

                                      P(CC)                           P(DFTC) 

                     

                        P(RNCC,DF)                       P(HACC,DF)                               P(BCDF) 

Figure 5.2  Available probability and conditional distributions 

V.2.3 Building a Bayesian network 

Once the Bayesian network has been defined, it can be used to compute any conditional probability 

one wishes to compute:  For example, given that a person has recently visited a tropical country 

(TC=T) and has a runny nose (RN = T), the network above could be used to compute the 

probability  that the person has the common cold (CC=T) but not the Dangerous Flu (DF=F): 

P(CC=T,DF=FTC=T, RN=T). 

The set of conditional probability distributions, P, specifies a multiplicative factorization of the 

joint probability distribution over X as represented by the chain rule of Bayesian networks: 

𝑃(𝑋) = ∏ 𝑃(𝑋𝑣𝑋𝑋𝑣
−1 )𝑣∈𝑉                                                       (5.1) 

 

Even though the joint probability distribution specified by a Bayesian network is defined in terms 

of conditional independence, a Bayesian network is most often constructed using the notion of 
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cause-effect relations. Often, the construction of a Bayesian network proceeds according to an 

iterative procedure where the set of nodes and their states, and the set of links are updated iteratively 

as the model becomes more and more refined. Basic structures in Bayesian networks are 

represented in Figure 5.3: 

 

 

                                     (1)       (2)              (3)              (4)                 

 

Figure 5.3 Basic structures in Bayesian networks 

 

Here (1) and (2) are “cascade” structures, (3) is a “common parent” structure and (4) is a “common 

son” structure.  

The set of all probabilistic independencies that hold for a joint distribution P is written I(P). That 

means that: 

 if  P(X,Y)=P(X)∙ P(Y), then it is written as: X⊥Y∈ I(P)                                     (5.2) 

 

In the case of a cascade structure X→Z→Y where Z is observed, then, X⊥Y∣Z. If Z is unobserved, 

then X and Y are not independent. Here Z holds all the information that determines the outcome 

of Y, whatever the value X takes. 

In the case of the common parent structure Common parent. If the structure is of the 

form X←Z→Y, and Z is observed, then X⊥Y∣Z. However, if Z is unobserved, then X and Y are 

not independent, Z contains all the information that determines the outcomes of X and Y. Once it 

is observed, there is nothing else that affects the outcome of X and Y.  

In the case of the common son structure X→Z←Y, then knowing Z Couples X and Y. In other 

words, X⊥Y if Z is unobserved, but X and Y are independent if Z is observed. 

These structures describing the independencies of a three variable Bayesian network can be 

extended by applying them recursively over any larger graph.  
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V.2.4 Solving a Bayesian network 

 

Solving a Bayesian network N = (X, G, P) consists in computing all posterior marginal probabilities 

given a set of evidence e, i.e., P(X|ε) for all Xv ∈ X. If the evidence set is empty, i.e., e = ∅, then 

the task is to compute all prior marginal, i.e., P(Xv) for all Xv ∈ X. 

The quantitative representation of a Bayesian network is the set of conditional probability 

distributions, P, defined by the structure of G. Note that all distributions specify the probability of 

a variable being in a specific state depending on the configuration of its parent variables. The 

Bayesian network can be used to compute all prior marginal and the posterior distribution of each 

non-evidence variable given evidence in the form of observations on a subset of the variables in 

the model. 

The specification of a conditional probability distribution P(Xv |𝑋𝑣

−1 ) can be a very intensive 

knowledge acquisition task as the number of parameters grows exponentially with the size of 

dom(Xfa(v)), where fa(v) = 𝑋𝑣

−1 ∪ {v}.  

Different techniques can be used to simplify the knowledge acquisition task, assumptions can be 

made, or the parameters can be estimated from data. The complexity of a Bayesian network is 

defined in terms of the family fa(v) with the largest state space size ‖𝑓𝑎(𝑣) ‖=|dom(Xfa(v))|.  

As the state space size of a family of variables grows exponentially with the size of the family, it 

is intended to reduce the size of the parent sets to a minimum. Another useful measure of the 

complexity of a Bayesian network is the number of cycles and the length of cycles in its graph. 

In 1990, Cooper (Cooper, 1990) proved that exact inference in Bayesian networks is NP-hard. This 

result boosted research on approximation algorithms to probabilistic inference.  

In 1993, Dagum and Luby (Dagum et al., 1993) proved that no tractable deterministic 

algorithm can approximate probabilistic inference to within an absolute error ɛ< 1/2. They also 

proved that no tractable randomized algorithm can approximate probabilistic inference within an 

absolute error ɛ < 1/2 with confidence probability greater than 1/2. 

In practical terms, these complexity results suggest that while Bayesian networks are interesting 

representations for Artificial Intelligence and machine learning applications, their use in large real-

world applications must be tackled with caution. Their applicability can be eased by introducing 

structural constraints or by restrictions on the conditional probabilities.  

https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Michael_Luby
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Absolute_error
https://en.wikipedia.org/wiki/Randomized_algorithm
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The bounded variance algorithm of Dagum and Luby in 1997 (Dagum et al., 1997) was the first 

provable fast approximation algorithm to efficiently approximate probabilistic inference in 

Bayesian networks with guarantees on the error approximation. This powerful algorithm required 

the minor restriction on the conditional probabilities of the Bayesian network to be bounded away 

from zero and one by 1/p(n) where p(n) was any polynomial on the number of nodes in the 

network n. However, in the application considered, the size of the resulting problems should remain 

rather small and then no dimensional difficulty is to be expected. So, in this case, complexity is not 

at stake. 

 

V.3 Modelling with Petri Nets 

 

V.3.1 Definition: Ordinary Petri Nets  

 

A Petri net (PN) (Murata , 1989) can be defined as a four-tuple, PN = (P, T, I, O), where P = { p1, 

p2,…, pn} is a set of places, T = { t1,t2,…, tm } is a set of transitions, I is an input function, and O is 

an output function. The set of places P and the set of transitions T are disjoint sets : PT =  

 I {PT }, and O { T  P } are sets of directed arcs.  

A place pi is an input place of a transition tj if pi I(tj) and pi is an output place if pi  O(tj). The 

structure of a Petri net is defined by its sets of places P, transitions T, input functions I, and 

output functions O. 

Theoretical studies on Petri nets, viewed as mathematical entities, are based on the above formal 

definition of Petri net structures. However, a graphical representation of Petri net structures appears 

more useful for illustrating the concepts related with the operation of the Petri nets.  

A Petri net graph uses in general circles to represent places (states) and bars to represent transitions 

(processes). Input-output relationships are represented by directed arcs between places and 

transitions. An arc directed from a place pj to a transition tj defines the place to be an input of the 

transition. Multiple inputs to a transition are indicated by multiple arcs from the input places to the 

transition.  

An output place is indicated by an arc from the transition to the place and multiple outputs are 

represented by multiple arcs. A Petri net is then a multigraph since it allows multiple arcs from one 

node of the graph to another. In addition, since the arcs are directed, the Petri net is a directed 
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multigraph. Since the nodes of the graph can be partitioned into two sets (places and transitions), 

such that each arc is directed from an element of one set (place or transition) to an element of the   

 other set (transition or place), the Petri net is a bipartite directed multigraph. It is referred here 

simply as a Petri net graph. Figure 5.4 gives an example of Petri net graph. 

 

 

                                             

 Figure 5.4 Example of Petri net graph 

 

V.3.2 Marking of Petri nets  

 

A Petri net M containing a marking is a marked Petri net (P,T,I,O,M). The marking of a Petri net 

is a function from the set P to the set of non-negative integers N: 

 

M : P N  with M(pi)=Mi N                                        (5.3) 

 

Mi gives the number of tokens at place pi. An initial marking is given to each place; tokens reside 

at a place when it is active. Tokens flow through the net depending on the present marking of the 

net. The marking of a Petri net can be represented by a vector M of dimension n, where n is the  

number of places and each value of the vector corresponds to the number of tokens in the 

corresponding place. 

 

To each arc to or from a place is associated a weight w which is a positive integer, 1 being the 

default value. 

In figure 5.5 the marked Petri net is such as M’= (2,1,0,1,0,0)’. 
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 Figure 5.5 Example of marked Petri net  

 

V.3 .3 Dynamic behaviour  

 

When there is a token in each of the input places of a transition, that transition is enabled to fire. If 

the weights on each of the arcs between places and transitions are equal to one, then the transition 

fires by removing a token from each of its input places and by placing a token in each of its output 

places. When weights are different from unity, the corresponding number of tokens is retrieved  

from input places and added to output places. A transition will be only fireable when the number 

of tokens in its input places is superior to the weight in the corresponding input arc. 

In Figure 5.5 only transition T1 is fireable, the result of activating this transition is given in Figure 

5.6 with a new marking M = (1, 0, 1, 1, 0, 0)’. 

 

 

                                             

 Figure 5.6 Firing transition T1  

 

A first representation of a passenger control unit at boarding could be as follows: 
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Figure 5.7 An initial Petri net representation of a passenger control unit 

 

Here P1 represents the presence of a passenger with his baggage, P2 is the passenger and baggage 

at entrance of ray controls, P3 is a passenger controlled by ray control, P4 is a passenger manually 

controlled, P5 is a baggage after ray control, P6 is the baggage after manual control and p7 is the 

passenger with his baggage inside the departure terminal. Here T1 represents the boarding pass 

control, T2 is the ray passenger control, T3 is the passenger manual control, T4 is a baggage ray 

control, T5 is a baggage manual control, T6 is the collection of the cleared baggage by the 

controlled passenger.  

The execution of a Petri net is driven by the distribution of tokens in the Petri net. By changing the 

distribution of tokens in the places, this affect the sequences of firing transitions. This can be a way 

to study the dynamic behaviour of the modelled system.  

 Enabling Rule: A transition T is said to be enabled if each input place P of 𝑇
−1contains 

at  least a number of tokens M(P) equal to the weight I(T, P) of the directed arc 

connecting place P to transition T : 

M(P) ≥ I(T, P) for any P ∈ 𝑇
−1                                            (5.4) 

 Firing Rule: Only enabled transition can fire. The firing of an enabled transition T 

removes from each input place P of  𝑇
−1, the number of tokens equal to the weight of 

the directed arc connecting P to T and it also provide for each output place P ∈ 𝑇 ,   the 
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number of tokens equal to the weight O(T, P) of the directed arc connecting T to P. 

After firing transition T, the new marking of place P ∈ 𝑇  is given by :  

M ′ (P) = M(P) − I(T, P) + O(T, P)     ∀P ∈ 𝑇
−1                 (5.5) 

 

Notice that since only enabled transitions can fire, the number of tokens in each place always 

remains non-negative when a transition is fired. Firing transition can never try to remove a token 

that is not there 

 

Figure 5.8 displays the main elementary characteristic configurations modelled with PNs. 

 

 

Figure 5.8 PN representation of elementary process structures 

 

It happens that in many applications, basic Petri nets are unable to represent adequately the process 

under analysis and many extensions of Petri nets have been developed. In Section V.4 some of the 

main classes of extended Petri nets are briefly introduced.     

 

V.4 Petri net extensions 

 

Among the many extensions of Petri Nets to cope with specific classes of applications, Timed 

Petri Nets, Stochastic Timed Petri Nets and Coloured Petri Nets are briefly discussed here. 
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V.4.1 Timed Petri Nets (TPNs) 

 

Petri net formalism provides a set of simple constructs that can allow to model a large variety of 

systems. However, a major weakness of ordinary Petri nets is that they provide no way to represent 

the passage of time. In general, information regarding the amount of time it takes to complete the 

different processes, is available. Tokens move from one place to another according to the transition 

firings, which have a given processing time.  

Ramchandani (Ramchandani, 1974) and Sifakis (1977) introduced the main notions concerning 

timed Petri net (TPN).  Ramchandani described a timed Petri net as a pair (PN, ), where PN is a 

Petri net and  is a vector of processing time functions that assigns a positive real number to each 

transition of the net. In a timed Petri net each transition Ti, once enabled, has a time delay i before 

firing. When the firing times are chosen to be rational, the processing times can be discretized in 

units of time so that the state of the process can be determined at each instant of time. The rule of 

operation of a TPN is similar to an ordinary PN and, once a transition is enabled, the tokens are 

removed from the input places and are held for a time i, after which the tokens are sent to all the 

output places. Transitions in TPN can be viewed as a list of events where multiple sets of tokens 

can be at different stages of the time delay. The firing and termination occur during the processing 

time and at the end of the execution, respectively. 

The TPN studied by Ramchandani have deterministic processing times associated to the transitions. 

Sifakis considered associating delays to places and showed that the distinction between associating 

processing times with transitions or with places is not fundamental since TPN of one class can be 

converted into the other.  

It appears that TPNs are of interest to perform throughput analysis of automated systems where the 

durations of the different successive or parallel elementary tasks are perfectly known. In the case 

of inspection stations, where the place of the human operator is essential, these durations evolve 

according to complex phenomena and have a stochastic character. Then STPNs have been 

considered. 

 

V.4.2 Stochastic Timed Petri Nets (STPNs) 

 

Some of the works discussed above can be extended to analyse TPN with random processing times 

by replacing these times by their expected values. However, the results obtained in this way provide 
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only very loose approximations to the average firing rate. Several researchers have tried to remedy 

this situation by converting the TPN into an equivalent Markov chain and then analysing the 

resulting Markov chain. Zuberek (Zuberek, 1980) was the first researcher to perform this 

transformation and was able to analyse a Stochastic Timed Petri Net (STPN), which only allowed 

very simple decision rules based on independent probabilities. Razouk and Phelps (1984) extended 

Zuberek's work to STPNs that can tackle time-out situations where the completion of one activity 

may disable others.  

The decision rules are still based on independent probabilities. However, none of these articles 

show that the resulting Markov chain has a well-defined steady state probability distribution, and 

their procedures are applicable to only very small problems.  

Molly (Molly 1983) solved somewhat larger problems by associating exponential processing times 

with transitions and by specifying a decision rule that stated that the transition whose processing 

time terminates first would fire first. Marson (Marson, 1985) extended Molly's results to manage 

also some transitions with zero processing times. The main weakness of all the works mentioned 

above is that they need to construct an equivalent Markov chain to model the evolution of the 

marking of the net to find the performance measures of interest.  

In the case of an inspection station, adopting a simulation approach of the resulting STPN, the 

Markov assumption is not necessary. Then, the performance of the inspection station, seen as a 

network of processes linked by queues, can be assessed even in transient situations.  This should 

allow to assess the dynamic workload of the different human operators and, eventually, tune their 

expected control performance. 

 

V.4.3 Coloured Petri Nets 

 

Coloured Petri net (CPN) is an extension to ordinary Petri nets in which « colours » are associated 

with tokens, and transitions fire according to a set of rules that match the appropriate colours. A 

coloured token is analogous to a subscripted variable. The advantage of coloured Petri nets is that 

they provide compact models of large systems, they maintain many useful properties of Petri nets 

and extend initial formalism to allow the distinction between tokens. 

Jensen (Jensen, 1996) has introduced and defined the CPNs, whose main ideas are the relation 

between an occurrence colour and token colours (which were involved in the occurrence of the 

transition). The relation is defined by functions attached to the arcs. In addition, the CPN attaches 
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a set of possible token colours to each place and a set of possible occurrence colours to each 

transition.  

 

Definition: A CPN can be defined as a tuple (P, T, A, Σ, C, N, E, G, I )  

Where: 

  P is a set of places, 

  T is a set of transitions,  

 A is a set of arcs with P ∩ T=P ∩ A=T ∩ A=∅,  

 Σ is a set of colour sets,  

 C is a colour function which maps places in P into colours in Σ,  

 N is a node function which maps A into (P × T)∪(T × P),  

 E is an arc expression function which maps each arc a∈A into the expression e.  

 

 The input and output types of the arc expressions must correspond to the type of the nodes 

 the arc is connected to. The use of node functions and arc expression functions allows 

 multiple arcs to connect the same pair of nodes with different arc expressions.  

 

 G is a guard function which maps each transition t∈T to a guard expression g. The 

output of the guard expression is a Boolean value: true or false.  

 I is an initialization function which maps each place p into an initialization expression 

i. The initialization expression must evaluate to multiset of tokens with a colour 

corresponding to the colour of the place C(p).  

 

Each place and each transition has attached a set of colours. A transition can fire with respect to 

each of its colours, then tokens are removed from the input places and added to the output places 

in the same way as that in a classical Petri nets. A functional dependency is specified between the 
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colour of the transition firing and the colours of the involved tokens and the colour attached to a 

token may be changed by firing a transition.  

To illustrate briefly the above object, Figure 5.9 provides an example of firing a transition (here 

T1) in a Coloured Petri Net with two colours (blue and red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Example of firing a transition in a Coloured Petri Net 

 

The CPN allows the modeller of systems with repetitive processes to view a smaller network in 

which tokens have changed colour to indicate process steps, assign attributes, or differentiate 

between tokens. It can be considered that the primary function of CPN is data management. CPNs 

lead to compact net models by using of the concept of colours.  

For example, a simple manufacturing system with two machines M1 and M2, which process three 

different types of materials. Each type of material undergoes one stage of processing performed 
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either with M1 or with M2. Once processing is completed, the material is taken out and a new 

material is loaded. Figure 5.10 displays an uncoloured PN representation of the whole process 

involving 11 places and 12 transitions: 

 

 

 Figure 5.10 Uncoloured PN representation of a manufacturing process 

 

 The places and transitions in the model have the following meanings: 

p1 (p2): machine M1 (M2) is available;  p3 (p4, p5): a raw material of type 1 (type 2, type 3) is 

available; p6 (p7, p8): M1 is processing a material of type 1 (type 2, type 3); p9 (p10, p11): M2 is 

processing a material of type 1 (type 2, type 3); t1 (t2, t3): M1 begins processing a material of type 

1 (type 2, type 3);  t4 (t5, t6): M2 begins processing a material of type 1 (type 2, type 3); t7 (t8, t9): 
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M1 ends processing a material of type 1 (type 2, type 3); t10 (t11, t12): M2 ends processing a material 

of type 1 (type 2, type 3). 

Now let us take a look at the CPN model of this manufacturing system, which is shown in Figure 

5.11. As we can see, there are only 3 places and 2 transitions.   

 

 

Figure 5.11 CPN reduced representation of the manufacturing process 

 

Now, p1 means that machines are available, p2 means that material is available, p3 means that 

processing is in progress, t1 means that processing starts and t2 means that processing ends. There 

are 3 colour sets: SM, SP and SM × SP, where SM = {M1, M2}, SP = {J1, J2, J3}. The colour of 

each node is as follows: C(p1) = {M1, M2}, C(p2) = {J1, J2, J3}, C(p3) = SM × SP, C(t1) = C(t2) = 

SM × SP. 

 

CPN models can be analysed as for ordinary Petri nets, through reachability analysis by building a 

reachability graph. Even for small CPNs that graph can become very large, but tools exist to 
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construct it and analyse it automatically. Other techniques work on condensed occurrence graphs 

without losing analytic power. 

CPN have been applied in many engineering fields and in particular to verify security protocols in 

communication systems. 

 

V.5 Bayesian Coloured Petri Nets (BCPNs) 

 

In this section it is proposed a new modelling tool which tries to take advantage of properties of 

both Discrete Bayesian Networks and Coloured Petri Nets in order to get a powerful modelling 

tool for multistep processes with uncertainty as is the process under investigation in this thesis. 

 

V.5.1 Formal definition  

 

A BCPN can be defined as a tuple (P, T, PT, TP, Σ, C, NA, NT, E,  , G, I)  

where: 

  P is a set of places, 

  T is a set of transitions,  

 PT and TP are sets of arcs with PT ∩ T=PT ∩ A= TP∩ T=TP ∩ A =T ∩ A=∅, (𝑃 ∪

𝑇, 𝑃𝑇 ∪ 𝑇𝑃) is an acyclic directed graph with the set of nodes 𝑃 ∪ 𝑇  and the set of arcs 

𝑃𝑇 ∪ 𝑇𝑃. 

 Σ is a set of colour sets,  

 C is a colour function which maps places in P into colours in Σ,  

 NA is a node function which maps PT into (P × T) and NT is a node function which 

maps PT into (T × P),  

 E is an arc expression function which maps each arc a ∈ PT ∪ TP into the expression e.  
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The input and output types of the arc expressions must correspond to the type of the nodes the arc 

is connected to. The use of node functions and arc expression functions allows multiple arcs to 

connect the same pair of nodes with different arc expressions. 

  

   is a probability function which assigns to the arcs leading to the places successor 

{𝑝𝑗 ∈ 𝑡𝑖
} of each transition ti a discrete distribution of probability {ij}, with : 

∀𝑡𝑖 ∈ 𝑇:  ∑ 𝜋𝑖𝑗  = 1
𝑗,𝑝𝑗∈𝑡𝑖

     ∀𝑗, 𝑝𝑗 ∈ 𝑡𝑖
 : 𝜋𝑖𝑗 ≥ 0               (5.6) 

 G is a guard function which maps each transition t∈T to a guard expression g. The output 

of the guard expression is a Boolean value: true or false.  

 I is an initialization function which maps each place p into an initialization expression i. 

and may provide initial distributions of tokens and colours.  

 

Figure 5.12 displays an example of BCPN with 9 places and 4 transitions. 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.12 Example of BCPN 

Here it is supposed that any place can have at most 2 tokens with three different 

colours  (C(p)={R,B,V} ∀𝑝 ∈ {𝑃1, ⋯ , 𝑃9}), the weighting matrices are given by tables 5.1 and 5.2: 
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 T1 T2 T3 T4 

P1 R - - - 

P2 B V - - 

P3 - B - - 

P4 - - R - 

P5 - - B V 

P6 - - - V 

 

Table 5.1 Incidence Places X Transitions 

 

 P4 P5 P6 P7 P8 P9 

T1 0.5  0.5  - - - - 

T2 0.2  0.4  0.4  - - - 

T3 - - - 0.2  0.8  - 

T4 - - - - 0.4  0.6  

 

Table 5.2 Incidence Transitions X Places 

 

Place initialization can be given by the table 5.3: 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 

R,V B,V B, R - R - - - - 

 

Table 5.3 Initialization of tokens in the places of the BCPN 

 

V.5.2 Firing transitions and computing probabilistic distributions  

 

BCPNs have a dual nature, being at the same time a dynamic object and a stochastic model. 

Transitions of BCPNs are enabled in the same conditions of CPNs, however, contrarily to CPNs, 

the outcome of a transition is not deterministic and follows in the mean a probabilistic distribution. 

When a transition T is fired the places of 𝑇 receive concurrently colored tokens according to the 
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probabilistic distribution of the outcome of the transition. In that case reachability trees acquire a 

probabilistic nature where probabilistic branching may be generated at the possibly enabled 

transitions. 

In a BCPN, the tokens represent variables characterized by their colour. When a string of tokens 

arrives at a place, they form an ordered string of variables, ordered according to their order of 

arrival. 

As for Discrete Bayesian networks, the BCPN is an acyclic, directed graph, so it presents initial 

nodes or source places and final nodes or sink places. It can be observed that among the 8 

elementary configurations of PNs in Figure 5.7, only one presents cycles. Given the probability 

distribution of the colours of the flows of tokens arriving at the source places of a BCPN, it is 

possible to compute the distribution of probability of the flows of token arriving at the sink places 

of this BCPN.  

Let 𝑇𝑗

−1 be the set of predecessor places of transition Tj in a BCPN, let cqj be the enabling colour 

between place q and transition Tj, then the enabling probability 𝜇𝑞𝑗of place q for transition Tj is 

given by: 

𝜇𝑞𝑗 = 𝑃(𝑋𝑞1 = 𝑐𝑞𝑗 )                                                           (5.7) 

where q1 is the first token in place q. If place q has no token, 𝜇𝑞𝑗 = 0.  Then the enabling probability 

𝑟𝑗of the uphill places of transition Tj is given by: 

𝑟𝑗 = ∏ 𝜇𝑞𝑗𝑞∈𝑇𝑗
−1                                                                  (5.8) 

Consider: 

 𝛹𝑗  be the set of transitions which are in concurrence with transition j with respect to some 

uphill places (for example in Figure 5.8, 𝛹1 = {𝑇2}), 

 𝑇𝑗
 be the set of successor places of transition Tj in a BCPN, 

 cjp be the resulting colour between transition Tj and place p,  

 

then the last token that arrives at place p has the probability of being of colour k given by: 
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𝑃(𝑋𝑝 = 𝐶𝑘) = ∑ 𝑟𝑗 ∙ 𝜋𝑗𝑝/(𝑟𝑗 +𝑗∈𝑝
−1

𝐶𝑗𝑝=𝐶𝑘

∑ 𝑟𝑘)𝑘∈𝛹𝑗
                                          (5.9) 

or  

𝑃(𝑋𝑝 = 𝐶𝑘) = ∑ (𝑟𝑗/(𝑟𝑗 + ∑ 𝑟𝑘)𝑘∈𝛹𝑗
) ∙ (∏ 𝑃(𝑋𝑞1 = 𝐶𝑞𝑗 )𝑞∈𝑇𝑗

−1 )𝑗∈𝑝
−1

𝐶𝑗𝑝=𝐶𝑘

               (5.10) 

This formula is the equivalent to the propagation formula (5.1) of Bayesian networks. Then, 

starting from probabilities of colours at entry places, it will be possible to compute from a layer to 

the next of the BCPN the probabilities of the colours of any place in the network and particularly 

those of the exit places. 

 

V.6 Application to the Modelling of Inspection Stations 
 

Here it is considered that an inspection station is composed of a succession of elementary control 

processes, or cells, organized in sequence and that a complementary control will not be realized by 

the same equipment or operator.  

V.6.1 Characteristics of a BCPN associated to an inspection station 

The BCPN associated to an inspection station has the following characteristics, defining a sub-

class of BCPNs: 

 It is assumed that items to be controlled are either good (G) or wrong (W), G and W are 

then the considered colours.  

 It is considered that the performances of controlling with success a good item or a bad 

item by any device/operator are different: 

To an elementary control unit can be attached four probabilities: PGG, PGW, PWG and PWW, 

where PGG and PWW are probabilities attached to a successful control. In general  PGG PWW, 

where PGG (declaring good a good item) and PWW (declaring wrong a wrong item) are 

probabilities of successful control and   PWG PGW , where PWG (declaring good a wrong item) 

and PGW (declaring wrong a good item) are probabilities of unsuccessful control.  Also in 

general: 

PWG ≪ PWW    and    PGW ≪ PGG                                               (5.11 )    
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Then it appears of interest, when considering the modelling of the process with BCPNs, to 

duplicate the transitions representing a single elementary control unit.  Then these pairs of 

transitions are not allowed to fire simultaneously. 

 Each transition has a unique predecessor place and two successor places. 

 Coloration in arcs is limited to arcs leading to a transition. 

 Colour of the tokens remain unchanged during progression inside the network. 

 

V.6.2 BCPN Modelling an elementary control cell 

 

An elementary control cell must declare a submitted item either Good or Wrong. As happens in 

many real inspection stations, a first check leading to a Wrong result is doubled checked before 

final decision. This lead to propose the following simple BCPN structure to represent it: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 BCPN for an elementary control cell 

 

Here E is the entry place, R is the recheck place, F is the fail declared place and S is the success 

declared place. A token with colour G or W is introduced at place E and the control process begins, 

it ends either by declaring the item represented by the token, good (place S) or wrong (place F).  
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The reachability tree of this BCPN will be the superposition of the following 6 paths to which are 

attached probabilities: 

 

 

Figure 5.14 The different paths of the reachability tree of BCPN of Figure 5.13 

 

V.6.3 Performance evaluation of an elementary control station 

Probabilities of success 

Here the success situations are: 

In the case of a “good” entry: 𝑃(𝑆 = 𝐺𝐸 = 𝐺) 

This probability, as the others, is computed following backward the graph associated to the BCPN: 

𝑃(𝑆 = 𝐺) = 𝑃𝐵𝐵
1 ∙ 𝑃(𝐸 = 𝐺) + 𝑃(𝑅 = 𝐺) ∙ 𝑃𝐺𝐺

2                      (5.12) 

                      with                        𝑃(𝑅 = 𝐺) = 𝑃𝐺𝑊
1 ∙ 𝑃(𝐸 = 𝐺)                                    (5.13) 

or  

𝑃(𝑆 = 𝐺) = (𝑃𝐺𝐺
1 + 𝑃𝐺𝐺

2 ∙ 𝑃𝐺𝑊
1 ) ∙ 𝑃(𝐸 = 𝐺)                          (5.14) 
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Then: 

𝑃(𝑆 = 𝐺𝐸 = 𝐺) = 𝑃𝐺𝐺
1 + 𝑃𝐺𝐺

2 ∙ 𝑃𝐺𝑊
1                                 (5.15) 

and in the case of a “wrong” entry: 𝑃(𝐹 = 𝑊𝐸 = 𝑊) 

                𝑃(𝐹 = 𝑊) = 𝑃𝑊𝑊
2 ∙ 𝑃(𝑅 = 𝑊)      with      𝑃(𝑅 = 𝑊) = 𝑃𝑊𝑊

1 ∙ 𝑃(𝐸 = 𝑊)     (5.16) 

or  

𝑃(𝐹 = 𝑊) = 𝑃𝑊𝑊
2 ∙ 𝑃𝑊𝑊

1 ∙ 𝑃(𝐸 = 𝑊)                             (5.17) 

Then:  

𝑃(𝐹 = 𝑊𝐸 = 𝑊) = 𝑃𝑊𝑊
2 ∙ 𝑃𝑊𝑊

1                                 (5.18) 

The overall probability of success of the control process is then given by: 

P(success) = (𝑃𝐺𝐺
1 + 𝑃𝐺𝐺

2 ∙ 𝑃𝐺𝑊
1 ) ∙ 𝑃(𝐸 = 𝐺) + 𝑃𝑊𝑊

2 ∙ 𝑃𝑊𝑊
1 ∙ 𝑃(𝐸 = 𝑊)        (5.19) 

or also 

P(success) = (𝑃𝐺𝐺
1 + 𝑃𝐺𝐺

2 ∙ 𝑃𝐺𝑊
1 − 𝑃𝑊𝑊

2 ∙ 𝑃𝑊𝑊
1 ) ∙ 𝑃(𝐸 = 𝐺) +  𝑃𝑊𝑊

2 ∙ 𝑃𝑊𝑊
1        (5.20) 

 

Probabilities of failure 

The control process failure situations are: 

𝑃(𝑆 = 𝑊) = 𝑃𝑊𝐺
1 ∙ 𝑃(𝐸 = 𝑊) + 𝑃(𝑅 = 𝑊) ∙ 𝑃𝑊𝐺

2                        (5.21) 

with          𝑃(𝑅 = 𝑊) = 𝑃𝑊𝑊
1 ∙ 𝑃(𝐸 = 𝑊)                                  (5.22) 

or  

𝑃(𝑆 = 𝑊) = (𝑃𝑊𝐺
1 + 𝑃𝑊𝑊

1 ∙ 𝑃𝑊𝐺
2 ) ∙ 𝑃(𝐸 = 𝑊)                            (5.23) 

Then:  

𝑃(𝑆 = 𝑊𝐸 = 𝑊) = 𝑃𝑊𝐺
1 + 𝑃𝑊𝑊

1 ∙ 𝑃𝑊𝐺
2                              (5.24) 

and  

𝑃(𝐹 = 𝐺) = 𝑃𝐺𝑊
2 ∙ 𝑃(𝑅 = 𝐺)     with          𝑃(𝑅 = 𝐺) = 𝑃𝐺𝑊

1 ∙ 𝑃(𝐸 = 𝐺)      (5.25) 
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or  

𝑃(𝐹 = 𝐺) = (𝑃𝐺𝑊
1 ∙ 𝑃𝐺𝑊

2 ) ∙ 𝑃(𝐸 = 𝐺)                              (5.26) 

Then:  

𝑃(𝐹 = 𝐺𝐸 = 𝐺) = 𝑃𝐺𝑊
1 ∙ 𝑃𝐺𝑊

2                                    (5.27) 

 

The overall probability of failure of the control process is then given by: 

P(failure) = (𝑃𝑊𝐺
1 + 𝑃𝑊𝑊

1 ∙ 𝑃𝑊𝐺
2 ) ∙ 𝑃(𝐸 = 𝑊) + (𝑃𝐺𝑊

1 ∙ 𝑃𝐺𝑊
2 ) ∙ 𝑃(𝐸 = 𝐺)         (5.28) 

or also 

P(failure) = (𝑃𝑊𝐺
1 + 𝑃𝑊𝑊

1 ∙ 𝑃𝑊𝐺
2 − 𝑃𝐺𝑊

1 ∙ 𝑃𝐺𝑊
2 ) ∙ 𝑃(𝐸 = 𝑊) + (𝑃𝐺𝑊

1 ∙ 𝑃𝐺𝑊
2 )        (5.29) 

 

 

 

 

 

 

 

Figure 5.15 Successful (Blue) and unsuccessful (Red) outcomes 

 

V.7 Modelling a Complex Inspection Station 

  

Considering that a control process is composed of a set of elementary control stations organized 

along an acyclic directed graph as its nodes, it will be possible using the BCPN representation of 

an elementary control station (see figure 5.9) to link them according to that graph to get an overall 

BCPN representation of the control process. 

Figure 5.16 provides an example of BCPN representation of a passenger control process ( in this 

figure places connected by green arrows represent a single place of the BCPN). 

 

𝑃(𝑆 = 𝐺𝐸 = 𝐺) 𝑃(𝑆 = 𝐺𝐸 = 𝑊) 

𝑃(𝐹 = 𝑊𝐸 = 𝑊) 𝑃(𝐹 = 𝑊𝐸 = 𝐺) 
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Figure 5.16 Example of a BCPN representation of a complex control process 

 

V.8 Conclusion 

 

In this chapter, a microscopic analysis of the performance of a departure passenger control process 

has been performed. The proposed process presenting simultaneously a dynamic behaviour, which 

can be represented by Petri nets, and a probabilistic behaviour, which can be modelled using 

distributions of probabilities and conditional probabilities as found in Bayesian networks, a 

modelling tool to catch these two dimensions has appeared of interest. Then, Binary Bayesian 

Networks and a special class of Petri Nets, the Coloured Petri Nets, have been merged to produce 

this new modelling tool, Bayesian Coloured Petri Nets (BCPNs). 

It has not been the main objective here to analyse the mathematical properties of such modelling 

tool, this work remains to be done. However, its application to modelize elementary, or more 

complex, control structures has been displayed here providing a new tool to assess the expected 

performance of a passenger inspection station. 
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VI.1 Introduction 

 

This chapter develops an optimization approach to improve, in the mean, the performance of 

the system of control of passenger flows at boarding, whatever their subsequent path, through 

a probabilistic approach.  

Here contrarily to the previous chapter where passengers where considered individually, in this 

chapter passengers are considered as part of flows which are processed differently by a 

serial/parallel control structure. An analogy could be made with the filtering of a homeopathic 

solution which can be performed by successive filtering. This leads to address the problem as 

a multistage flow processing complex. This also opens the way to optimization of control 

operations at the flow level by providing mathematical formulations of control decision 

problems which impact the quality and the quantity of applied controls on departing passengers. 

The main objective of this chapter is to provide an approach to better master the control of the 

departing passenger flows by taking into account the mean performance of the control system 

as a whole as well as the mean performances of each of the elements that make it up, including 

staff. This should be a support for developing a strategy for improved control structure and 

security resource utilization.   

The first part of this chapter is devoted to the development of the probabilistic modelling of 

multi-stage control structures. Once mandatory and complementary controls are introduced, 

three control structures are considered including pre-screening, post-screening and mixed 

screening. In the second part of this chapter, the post-screening case is developed with an a 

priori classification and distribution of threats types, introducing two levels of classification of 

controlled passengers: 

 In the first situation, passengers are submitted to a common serial treatment at 

mandatory control stations and then they are distributed along complementary 

control processes, according to their detection performances and capacity, for 

post screening. 

 In the second situation, mandatory control organizes passengers in separate 

groups for further screening and assignment to post screening control stations. 

 

Different optimization problems rise in these two situations, where probability of threat 

detection must be maximized while probability of false alarm must be restrained. The final 
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question addressed is about uncertainty of the probability values with respect to the 

performances of the elementary components of the departing passenger control system. 

VI.2 Probabilistic Modelling of Multi-Stage Control  
 

From the security point of view, the multi-stage path of a passenger, presenting or not a threat, 

can be modelled by a directed graph (Figure 6.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 6.1 Multi-stage security screening 
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In the directed graph of figure 6.1, DH stands for “departure hall”, PL stands for “police”, UA 

stands for “under arrest”, “CC stands for “check-in counter”, SC stands for “passenger screening 

checkpoints”, BL stands for “boarding lounge”, BA stands for passenger “boarding aircraft” 

and DA stand respectively for “departed aircraft” with passenger on-board. 

With regards to the threat situations, the events taken into account in this graph are: 
 

 E0: “potential threat not detected at departure hall”,  

 E0’: “potential threat cleared at departure hall” 

 E1: “potential threat detected at departure hall”, 

 E1’: “potential threat confirmed at departure hall”, 

 E2: “potential threat not detected at check-in counter”, 

 E2’: “potential threat cleared at check-in counter”, 

 E3: “potential threat detected at check-in counter”, 

 E3’: “potential threat confirmed at check-in counter”, 

 E4: “potential threat not detected at security checkpoint”, 

 E4’: “potential threat cleared at security checkpoint”, 

 E5: “potential threat detected at security checkpoint”. 

 E5’: “potential threat confirmed at security checkpoint”, 

 E6: “potential threat not detected at boarding lounge”, 

 E6’: “potential threat cleared at boarding lounge”, 

 E7: “potential threat detected at boarding lounge”, 

 E7’: “potential threat confirmed at boarding lounge”, 

 E8: “potential threat not detected at boarding aircraft”, 

 E8’: “potential threat cleared at boarding aircraft”, 

 E9: “potential threat detected at boarding aircraft”, 

 E9’: “potential threat confirmed at boarding aircraft”. 

 

Here it is supposed that the following probabilities are available:  

 P1: Probability of detecting a real threat at the departure hall. 

 P3: Probability of detecting a real threat at the check-in counter. 

 P5: Probability of detecting a real threat at security checkpoint. 

 P7: Probability of detecting a real threat at the boarding lounge. 

 P9: Probability of detecting a real threat at aircraft boarding. 
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These probabilities include primary detection of potential threat and confirmation by security 

service as shown in Figure 6.2. The estimation of these probabilities is difficult to be performed 

since not every undetected threat results in a visible terrorist attempt and remains unnoticed. 

 

 

Figure 6.2 Graphical representation of a security stage 

 

Other probabilities which contribute to characterizing the performance of the multi-stage 

security system are false alarm probabilities, which produce flow disruption, delays and 

discomfort for no threat passengers and unnecessary means and attention by security staff. Here 

these are at each stage: 

 P0:  Probability of false alarm at the departure hall, 

 P2: Probability of false alarm at the check-in counter, 

 P4: Probability of false alarm at security checkpoint, 

 P6: Probability of false alarm at the boarding lounge, 

 P8: Probability of false alarm on board aircraft. 
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Estimations of these probabilities can be obtained by statistical means by collecting data about 

controls resulting in a false alarm at each stage of the control process. Continuous progress has 

been performed over the years by improved staff training. 

In the case of event E4’, E6’ and E8’, depending of the imminence of flight departure, the no 

threat passenger may risk to lose his flight. 

According to Figure 6.1, the global probability of successfully detecting a real threat (SDT) is 

given by:  

𝑃𝑆𝐷𝑇 =  𝑃1 + (1 − 𝑃1)∙ 𝑃3 + (1 − 𝑃1) ∙ (1 − 𝑃3) ∙ 𝑃5 + (1 − 𝑃1) ∙ (1 − 𝑃3) ∙ (1 − 𝑃5) ∙ 𝑃7     

+ (1 − 𝑃1) ∙ (1 − 𝑃3) ∙ (1 − 𝑃5) ∙ (1 − 𝑃7) ∙ 𝑃9                              (6.1) 

or  

      𝑃𝑆𝐷𝑇 =  𝑃1 + ∑ (∏ (1 − 𝑃2𝑠−1)) ∙ 𝑃2𝑘+1
𝑠=𝑘−1
𝑠=1

4
𝑘=1                                (6.2) 

The complementary probability of globally not detecting a real threat, PFDT, is given by: 

PFDT = 1 – PSDT                                                        (6.3) 

The global probability (success) of non-detection of a passenger (NDP) who is not a threat, 

PNDP is: 

PNDP = ∏ (1 − 𝑃2𝑘)𝑘=4
𝑘=0                                                 (6.4) 

and the complementary global probability of processing a false alarm, PFAP is given by: 

PFAP = 1- ∏ (1 − 𝑃2𝑘)𝑘=4
𝑘=0                                              (6.5) 

 

VI.3 Probabilistic Evaluation of a Control System with Pre-Filtering 
 

To avoid all passengers to be submitted to every possible stage of control inside the airport, 

inducing unnecessary delays and discomfort for passengers, as well as increased security cost 

(more equipment and staff), passengers can be classified by security according to the potential 

danger they can represent. This can be done already, in part, today before the passenger reaches 

the airport for travelling, at the time of booking a flight according to his personal information.  

 

VI.3.1 Multi-stage control structures 
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Here the a priori probability of having a threat associated to a passenger is written  and it is 

supposed that there M different threats are considered, T={T1, T2, ⋯,TM}, with the following 

probability distribution : i, i{1, ⋯, M}.   

Then it is supposed that arriving passengers are divided into N classes according to the a priori 

threat they may represent.  

Here two types of controls are considered: 

 Those that are mandatory, they belong to the set C1. 

 Those that are not mandatory, but may reinforce the C1 controls in certain 

circumstances, they belong to the set C2. 

So to each class n of passengers is assigned a subset 𝐶2
𝑛of controls of C2. Each control subset is 

supposed to be able to detect with some success a subset of different types of threat Tn where 

⋃ 𝑇𝑛 = 𝑇𝑁
𝑛=1  is the set of threats possibly detected by the complementary controls.  

 

At this stage, three main different organizations of control can be considered: 

 OB: C2 controls are realized before C1 controls so that a limited number of 

passengers pass through the mandatory controls C1; 

 OA: C2 controls are realized after C1 controls so that C1 controls are reinforced 

by C2 controls; 

 OM: C1 and C2 controls are mixed, for instance, some C2 controls are 

performed before C1 controls and others after. 

 

Figures 6.3.a, 6.3.b and 6.3.c represent these different control organizations (Yellow for C1, 

blue for C2, red for positive detection). 
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                                    C2                                                     C1 

Figure 6.3.a Pre-screening configuration of controls 

 

 

 

 

 

 

 

 

 

                                    C1                                                     C2 

Figure 6.3.b post-screening configuration of controls 
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Figure 6.3.c mixed configuration of screening 

 

To answer to the question of which organization is the best, many factors must be taken into 

account: 

 The characteristics of the flow of passengers: degree of homogeneity and 

distribution of types of flights. 

 Expected degree of danger: low, medium or high level of threat. 

 The performances of the different control stations (differences in detection 

performances and complementarity). 

 Availability of space, staff and equipment as well as overall layout of terminal. 

 

VI.3.2 Mathematical representation of a multi-stage control structure 

The proper functioning of a control j can be described by: 

 the probability of detecting a real threat of type k at control j: 𝑝𝑘𝑗, 𝑗 ∈ 𝐶1 ∪

𝐶2, 𝑘 ∈ {1, ⋯ , 𝑀}; 

 The probability of generating a false alarm at control j with respect to a no threat 

k: qkj. 

Let during a given period of time xi be the proportion of passengers assigned to threat class 

I and then to go through C1 and 𝐶2
𝑛 controls: 

∑ 𝑥𝑖
𝑁
𝑖=1  =1                                                      (6.6) 
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Consider that the proportion of passengers representing a threat is very small, so it can be 

considered that there is conservation of passenger flow from the first to the last control 

stages. The error, being extremely small, can be ignored here.  

Then the proportion of passengers yj passing through the control j, whatever its position in 

the control sequence is given by: 

                                 𝑦𝑗 = 1  if   𝑗 ∈ 𝐶1    and   𝑦𝑗 = ∑ 𝑥𝑖
𝑁
𝑖=1,𝑗∈𝐶2

𝑖     if   𝑗 ∈ 𝐶2                             (6.7) 

 Figure 6.4 displays an example of post screening control structure: 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Example of post screening control structure with paths 
 

In the example of Figure 6.4, the flow constraints are such as: 

 𝑦1 = 𝑦2 = 𝑦3 = 1, 𝑦4 = 𝑥1 + 𝑥2, 𝑦5 = 𝑥5, 𝑦6 = 𝑥1  and   𝑦7 = 𝑥4 + 𝑥5      (6.8) 

 

Considering now that each control station j has a capacity of treatment Kj (given 

passengers/hour), and given the total flow of passengers per unit of time D ( 0) crossing the 

control structure, the proportion of passengers using it has a maximum value given by: 

 

𝑦𝑗
𝑚𝑎𝑥 = 𝑚𝑖𝑛{

𝐾𝑗  

𝐷
   , 1}       ∀𝑗 ∈ 𝐶2                                    (6.9) 

 

It is, of course, supposed that control stations of C1 have a capacity sufficient to cope with total 

incident flow . 

 

 

 

    C1 
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VI.3.3 Probabilistic performance evaluation 

 

The probability of having an alarm at control “j” , 𝑃𝑗
𝑎, is given by: 

 

  𝑃𝑗
𝑎 = (𝜏 ∙  (∑ 𝑝𝑘𝑗 ∙ 𝜋𝑘

𝑀
𝑘=1 ) + (1 − 𝜏) ∙ ( ∑ 𝑞𝑘𝑗 ∙ 𝜋𝑘)𝑁

𝑘=1 ) ∙ 𝑦𝑗       ∀ 𝑗 ∈  𝐶1 ∪ 𝐶2     (6.9) 

 
where the first term of the RHS of equation (6.9) corresponds to the cases where there is a threat 

and an effective detection of the threat and the second term of the RHS corresponds to the case 

in which there is no threat but a false alarm is generated. Then the probability of having a false 

alarm when a passenger comes to controls is 𝑃𝑓𝑎 given by: 

 

  𝑃𝑓𝑎 = (1 − 𝜏) ∙ ∑ ( ∑ 𝑞𝑘𝑗 ∙ 𝜋𝑘
𝑁
𝑘=1𝑗∈ 𝐶1∪𝐶2

)∙ 𝑦𝑗       ∀ 𝑗 ∈  𝐶1 ∪ 𝐶2     (6.10) 

 

and the mean number of false alarms per unit of time NFA is given by: 

NFA =𝐷 ∙ 𝑃𝑓𝑎                                                            (6.11) 

This formula is also an approximation, since the occurrence of multiple or successive false 

alarms is not considered for having an extremely small probability (a sum of product of two or 

more probabilities of false alarm which are already very small). 

 

The probability of non-detection of a threat when a passenger arrives to controls, 𝑃𝑛𝑑𝑡 , is given 

here by: 

𝑃𝑛𝑑𝑡 =  ∙ ∑ (∑ 𝜋𝑘 ∙ (∏ (1 − 𝑝𝑘𝑗)𝑗∈𝐶1∪𝐶2
𝑖 ) ∙ 𝑥𝑖

𝑀
𝑘=1 )𝑁

𝑖=1                            (6.12) 

 

and the mean number of detected threats per unit of time NDT is given by: 

 

NDT = 𝐷 ∙ (1 − 𝑃𝑛𝑑𝑡)                                                     (6.13) 

 

VI.4 Optimizing the assignment of passengers to screening channels  

 

The aim here is to minimize simultaneously the probabilities of non-detection of an existing 

threat and of generating a false alarm. While trying to guarantee a maximum level of false 

alarms and taking into account the average availability of the checkpoints. 
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VI.4.1 Problem formulation 

The considered problem is a bi-criteria optimization problem where the two criterion may be 

antagonist: intensifying control along a path is expected to decrease the number of non-detected 

threats but also to increase the number of false alarms on the same flow. The initial formulation 

is as follows: 

min
𝒙

{𝑃𝑛𝑑𝑡(𝒙), 𝑃𝑓𝑎(𝒚(𝒙))}                                                      (6.12) 

under the constraints: 

 

∑ 𝑥𝑖
𝑁
𝑖=1,𝑗∈𝐶2

𝑖  ≤ 𝑦𝑗
𝑚𝑎𝑥     ∀𝑗 ∈ 𝐶2                                              (6.13) 

 

∑ 𝑥𝑖
𝑁
𝑖=1 = 1         𝑥𝑖 ≥ 0  ∀𝑖 ∈ {1, ⋯ , 𝑁}                                 (6.14) 

 

Two main techniques have been used to transform a multicriteria problem into a mono criteria 

one for which many solution algorithms have been developed to cope with many different 

classes of optimization problems: 

 Construct a single criterion by predefining weights associated to each criterion: 

 

min
𝒙

(𝑤1 ∙ 𝑃𝑛𝑑𝑡(𝒙) +  𝑤2 ∙ 𝑃𝑓𝑎(𝒚(𝒙))) 

with                                  𝑤1 ≥ 0 , 𝑤2 ≥ 0  and 𝑤1 + 𝑤2 = 1   (6.15) 

or 

                                         

min 
𝒙

((𝑃𝑛𝑑𝑡(𝒙))𝛼1 ∙ (𝑃𝑓𝑎(𝒚(𝒙)))
𝛼2

)                                (6.16) 

with                                  𝛼1 ≥ 0 , 𝛼2 ≥ 0  and 𝛼1 + 𝛼2 = 1 

It appears that in both cases the original significance of the   problem is lost in benefit of the 

mono criterion formalism. 

 Choose a primary criterion which will be minimized with an additional 

constraint relative to a maximum admissible level for the secondary criterion. 

The difficulty here being to produce this maximum admissible level, different 

values can be tested. When the additional constraint is saturated at solution, this 
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produces a pair of non-inferior solutions. The set of generated non inferior 

solutions is called a Pareto frontier [ref]. 

 

The adopted formulations is as follows: 

min
𝒙

𝑃𝑛𝑑𝑡(𝒙)                                                      (6.17) 

under  

𝑃𝑓𝑎(𝒚(𝒙)) ≤  𝑃𝑓𝑎
𝑚𝑎𝑥                                            (6.18) 

 

with constraints (6.13) and (6.14), where 𝑃𝑓𝑎
𝑚𝑎𝑥 is the maximum admissible level of the 

probability of false alarms. 

Considering the expressions of 𝑃𝑛𝑑𝑡(𝒙)  (relation (6.12)) and of 𝑃𝑓𝑎(𝒚(𝒙)) (relation (6.10)), 

this is a typical Linear Programming Problem (Dantzig et al., 1997 and 2003) for which many 

solvers, mainly based on the Simplex algorithm, exist.  

 
VI.4.2 Numerical application 

 

Here is considered the post-screening case, as depicted in Figure 6.4, where it has been 

considered that there are only four types of threats. The following table gives the probabilities 

of detection associated with the controls point by threat type, the probabilities by threat type 

and the probabilities of false alarms by control point. 

Table 6.1 Adopted probability distributions 

- C4 C5 C6 C7  

p1j 0.990 0.980 0.850 0.750 0.40 

p2j 0.850 0.995 0.965 0.550 0.25 

p3j 0.980 0.950 0.580 0.990 0.25 

p4j 0.800 0.975 0.995 0.780 0.10 

qjk = qj 0.001 0.001 0.002 0.002 - 

 

In Figure 6.4 have been considered seven different control paths in the post screening phase. 
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Table 6.2 Considered post-screening paths 

Proportion Treatment 

     x1 Nil 

     x2 C4 

     x3 C4 – C6 

     x4 C4 – C7 

     x5 C5 

     x6 C5 – C7 

     x7 C7 

 

 

Mean processing times, without (ti)and with alarms (i) , are shown in the table below: 

 

Table 6.3 Processing times at post-screening (in seconds) 

       -         C4          C5           C6         C7 
      ti         10          15          10        15 

     i        100         150         100       150 

 

 

The unit of time adopted is T = 10 minutes and initially, a request of D=1600 passengers / hour 

to pass the control. It is assumed here that the controls consist of 6 stations operating 

simultaneously. 

 

This leads to the formulation of the following linear optimization problem: 

 

                                  min 𝑥1 + 0.066500 𝑥2 + 0.0 06251 𝑥3 + 0.022325 𝑥4                          (6.19) 

+0.049250 𝑥5 + 0.003237 𝑥6 + 0.237000 𝑥7 

with the constraints:  

                                   𝑥2 + 3 𝑥3 + 3 𝑥4 + 𝑥5 + 3 𝑥6 + 2 𝑥7 ≤ 1002  𝑃𝑓𝑎
𝑚𝑎𝑥                            (6.20) 

𝑥5 + 𝑥6 ≤ 0.9625                                                           (6.21) 

𝑥3 + 𝑥6 ≤ 0.9625                                                           (6.22) 

𝑥4 + 𝑥6 + 𝑥7 ≤ 0.9625                                                       (6.23) 

  𝑥1 + 𝑥2 +  𝑥3 +  𝑥4 + 𝑥5 + 𝑥6 + 𝑥7=1                                  (6.24) 

𝑥𝑖  ≥ 0      𝑖 = 1, 2, ⋯ , 7                                       (6.25) 
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Taking 𝑃𝑓𝑎
𝑚𝑎𝑥= 0.003 (3 per 1000 checks), the following solution is obtained: 

 

It corresponds to a probability of not detecting a threat of 0.00488 for a false alarm probability 

of 0.00300. 

By varying the total demand  (the 𝑦𝑗
𝑚𝑎𝑥     ∀𝑗 ∈ 𝐶2  change with D), the following table is 

obtained: 

Table 6.4 Solutions for different levels of demand 

D x1 x2 x3 x4 x5 x6 x7 Pndt Pfa 

1400 0.0 0.0 0.33672 0.0 0.0 0.66328 0.0 0.00435 0.00300 
1600 0.0 0.0 0.30729 0.03751 0.0 0.65520 0.0 0.00448 0.00300 

2000 0.0 0.01254 0.29901 0.03232 0.02301 0.61194 0.02321 0.00476 0.00299 

2400 0.12388 0.03452 0.25161 0.05223 0.03333 0.32712 0.17731 0.00628 0.00267 

3200 0.42331 0.09612 0.08560 0.05726 0.09721 0.14281 0.09770 0.01329 0.00213 

 

By varying 𝑷𝒇𝒂
𝒎𝒂𝒙  (demand = 1600 pax / h), non-inferior solutions composed of the pairs                  

( Pndt , 𝑷𝒇𝒂
𝒎𝒂𝒙) can be obtained. Table 6.5 displays these results: 

 

Table 6.5 Solutions for different levels of 𝑷𝒇𝒂
𝒎𝒂𝒙  (demand = 1600 pax / h) 

𝑷𝒇𝒂
𝒎𝒂𝒙 x1 x2 x3 x4 x5 x6 x7 Pndt 

0.00285 0.0 0.02105 0.23541 0.13908 0.13307 0.44116 0.01023 0.00482 
0.00290 0.0 0.00015 0.24452 0.10043 0.06742 0.58320 0.00428 0.00475 

0.00295 0.0 0.0 0.27745 0.06761 0.02381 0.63113 0.0 0.00461 

0.00300 0.0 0.0 0.30729 0.03751 0.0 0.65520 0.0 0.00448 

 

It appears from tables 6.4 and 6.5 that according to the level of demand for control and to the 

admitted level of false alarms, the optimal distribution of the flows of controlled passengers’ 

changes significantly.  This gives support to adaptive control procedures according to estimated 

level of threat and changing demand levels.  

VI.5 Optimization of Passenger Assignment with Pre-Selection 

 

It is assumed here that the sequence of mandatory checks C1 makes it possible to make a first 

classification of the passengers with respect to the threats that they can represent (pre-selection). 

0,65520.0,0,03751.0,30729.0,0,0 7654321  xxxxxxx
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It is assumed that the passengers have been divided at exit of C1 in Z classes with a probability 

𝜏𝑚 that a passenger of class m {1,…,Z} represents a real threat. Then these passengers’ classes 

are supposed to be subdivided to go through a post-screening process (C2). 

 

VI.5.1 Problem formulation 

 

Let zm the given proportion of passengers in class m, m =1 to Z, then: 

∑ 𝑧𝑚
𝑍
𝑚=1 = 1                                                       (6.26) 

 with   zm  0   m = 1 to Z                                           (6.27) 

Variables xim representing the proportion of passengers of the threat class m, m = 1 to Z, which 

are assigned to the control sequence i, i = 1 to N, are introduced. Here N = |𝐶2 |.  Then the 

following restrictions must be satisfied: 

∑ 𝑥𝑖𝑚
𝑁
𝑖=1 = 𝑧𝑚  𝑚 = 1 𝑡𝑜 𝑍                                 (6.28) 

0 ≤ 𝑥𝑖𝑚  𝑖 = 1 𝑡𝑜 𝑁,  𝑚 = 1 𝑡𝑜 𝑍                               (6.29) 

The assignment of the Z classes of passengers to the different possible control tracks will have 

consequences on the overall performances of the passenger screening system.  

In this situation, the probability of non-detection of a threat is given by: 

𝑃𝑛𝑑𝑡 = ∑ ∑ (𝜏𝑚 (∑ 𝜋𝑢
𝑀
𝑢=1 ∏ (1 − 𝑝𝑢𝑗)

𝑗∈𝐶2
𝑖 ) 𝑥𝑖𝑚)𝑁

𝑖=1
𝑍
𝑚=1                  (6.30) 

while the probability of generating a false alarm is now given by: 

𝑃𝑓𝑎 = ∑ ∑ ((1 − 𝜏𝑚) (∑ 𝜋𝑘 ∑ 𝑞𝑘𝑗𝑗∈𝐶2
𝑖

𝑀
𝑘=1 ) 𝑥𝑖𝑚)𝑁

𝑖=1
𝑍
𝑚=1                      (6.31) 

We can then formulate following the same approach than in the previous section, the problem 

of minimizing the probability of non-detection of a threat, under the constraints of a maximum 

level for the probability of false alarms and the availability of checkpoints. 

 

min
𝒙

∑ ∑ (𝜏𝑚 (∑ 𝜋𝑘
𝑀
𝑘=1 ∏ (1 − 𝑝𝑘𝑗)

𝑗∈𝐶2
𝑖 ) 𝑥𝑖𝑚)𝑁

𝑖=1
𝑍
𝑚=1                            (6.32) 

under different constraints 
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 A false alarm constraint: 

∑ ∑ ((1 − 𝜏𝑚) (∑ 𝜋𝑘 ∑ 𝑞𝑘𝑗𝑗∈𝐶2
𝑖

𝑀
𝑘=1 ) 𝑥𝑖𝑚)𝑁

𝑖=1
𝑍
𝑚=1 ≤  𝑃𝑓𝑎

𝑚𝑎𝑥                   (6.33) 

where 𝑃𝑓𝑎
𝑚𝑎𝑥 is the retained maximum level of probability of false alarm. 

 

 The capacity of the checkpoints of C2 during the period T: 

 

∑       ∑ 𝑥𝑖𝑚   ≤   𝑦𝑗
𝑚𝑎𝑥𝑍

𝑚=1
𝑁
𝑖=1,𝑗∈𝐶2

𝑖    𝑗 ∈ 𝐶2                                    (6.34) 

 

 The constraints of proportion: 

∑𝑁
𝑖=1 𝑥𝑖𝑚   = 𝑧𝑚  𝑚 = 1 𝑡𝑜 𝑍                                      (6.35) 

    The domains of the variables: 

0  ≤   𝑥𝑚𝑖   ≤ 1  𝑖 = 1, ⋯ , 𝑁 𝑚 = 1, ⋯ , 𝑍                             (6.36)   

 

VI.5.2 Numerical application 

 

The control structure of Figure 6.4 is again considered, but here it is supposed that the C1 

filtering leads to four classes (Z=4) of passengers with threat characteristics given in table 6.6:  

Table 6.6 Passenger distribution after pre-filtering 

m 1 2 3 4 

𝑧𝑚 0.70 0.15 0.10 0.05 

𝜏𝑚 0.0001 0.001 0.001 0.002 

 

For   𝑃𝑓𝑎
𝑚𝑎𝑥    =      0.00300, the following solution is obtained (where 𝑥𝑖 = ∑ 𝑥𝑖𝑚

𝑍
𝑚=1 ): x1= 0, 

x2 = 0, x3 = 0.30634, x4 = 0.02845, x5=0, x6=0.66531 and x7= 0, which corresponds to a 

probability of not detecting a threat of 0.00439 for a false alarm probability of 0.00300. 

By varying the total demand, the following table is obtained: 
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Table 6.7 Solutions with pre-filtering for different levels of demand 

  D   x1    x2    x3    x4     x5     x6    x7   Pndt   Pfa 

1400 0.0 0.0 0.32655 0.0 0.0 0.67345 0.0 0.00428 0.00300 

1600 0.0 0.0 0.30634 0.02845 0.0 0.66531 0.0 0.00439 0.00300 

2000 0.0 0.01167 0.28784 0.03332 0.01983 0.64578 0.02139 0.00458 0.00300 

2400 0.12388 0.03452 0.27023 0.04536 0.05452 0.55538 0.09351 0.00527 0.00287 

3200 0.42331 0.09612 0.23945 0.04975 0.07843 0.42580 0.11045 0.09829 0.00254 

 

 

Then by varying the level of 𝑃𝑓𝑎
𝑚𝑎𝑥, the following table is obtained: 

 

Table 6.8 Solutions with pre-filtering for different levels of  𝑃𝑓𝑎
𝑚𝑎𝑥 

𝑷𝒇𝒂
𝒎𝒂𝒙   x1    x2    x3    x4     x5     x6    x7 Pndt 

0.00285 0.0 0.01320 0.25231 0.18621 0.14320 0.39067 0.00841 0.00472 

0.00290 0.0 0.0 0.24452 0.13429 0.07670 0.54449 0.0 0.00461 

0.00295 0.0 0.0 0.28761 0.05462 0.04530 0.61277 0.0 0.00450 

0.00300 0.0 0.0 0.30634 0.02845 0.0 0.66531 0.0 0.00439 

 

 

Thus, in this numerical case appears the beneficial effect of selective pre-filtering which for the 

same level of false alarms leads to much lower levels of non-detection of threat. 

 

VI.6 Coping with probability uncertainty 
 

The optimization problems considered in this chapter, either (6.16)-(6.17) or (6.32)-(6.33)-

(6.34)-(6.35)-(6.36), assume the availability of elementary probabilities {pkj, k = 1 to M, 𝑗 ∈ 𝐶1 ∪

𝐶2
𝑖  or 𝑗 ∈ 𝐶2

𝑖 , i = 1 to N }and {qkj, k = 1 to M, 𝑗 ∈ 𝐶1 ∪ 𝐶2
𝑖  or 𝑗 ∈ 𝐶2

𝑖 , i = 1 to N}. In general, these 

probabilities are not the result of statistics obtained in real operations conditions, they are the 

result of statistics obtained through costly and lengthy laboratory experiments, the result of 

expert knowledge or a mix of them. So, it can be expected that the level of accuracy of these 

estimations is not extremely high. Moreover, the operational conditions under which these 

phenomena appear (failure to detect nor failure to clear) are influenced by many factors of 

different origin whose impact is difficult to be quantized (equipment, operators, demand, 

period, weather, etc.). Then it appears of interest to represent the uncertainty attached to any set 

of probabilities proposed to formulate the above optimization problem so that some sensitivity 
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analysis with respect to the values of these probabilities can be conducted. Different approaches 

can be adopted: 

 Classical sensitivity analysis of Linear Programming (Jansen, 1997) where 

variations of the values of the probabilities around reference values would be 

considered, does not apply easily to multiple uncertainty about constraint 

coefficients (constraints 6.18 and 6.33 are concerned). 

 Random generation of numerical instances of the Linear Programming problems 

with resolution where an a priori distribution is assumed for each probability 

value. This intensive computational exercise should lead to a distribution of 

solutions and performance. 

 Fuzzy representation of probabilities or fuzzy dual probabilities (Mora-Camino, 

2018), could be considered, however, the solution of fuzzy linear programming 

problems leads in general to cumbersome calculations.  

 

The more likely situation is that, Expert opinion, as a result of qualitative-quantitative analysis, 

will at most provide a sound interval for independent probabilities (the pkj and the qkj): 

{𝑝𝑘𝑗
− ≤ pkj ≤ 𝑝𝑘𝑗 

+ , k = 1 to M, 𝑗 ∈ 𝐶1 ∪ 𝐶2
𝑖  or 𝑗 ∈ 𝐶2

𝑖 , i = 1 to N }                         (6.37) 

and  

{𝑞𝑘𝑗
− ≤ qkj ≤ 𝑞𝑘𝑗

+  , k = 1 to M, 𝑗 ∈ 𝐶1 ∪ 𝐶2
𝑖  or 𝑗 ∈ 𝐶2

𝑖 , i = 1 to N}                        (6.38) 

Then considering that 𝑃𝑛𝑑𝑡  is a decreasing function of the parameters pkj while 𝑃𝑓𝑎 is an 

increasing function of the parameters qkj, two extreme scenarios can be constructed: 

{
{𝑝𝑘𝑗 = 𝑝𝑘𝑗

−  𝑝𝑘𝑗, 𝑘 =  1 to 𝑀, 𝑗 ∈ 𝐶1 ∪ 𝐶2
𝑖  or 𝑗 ∈ 𝐶2

𝑖 , 𝑖 =  1 to 𝑁 }

{ 𝑞𝑘𝑗 = 𝑞𝑘𝑗
−  , 𝑘 =  1 to 𝑀, 𝑗 ∈ 𝐶1 ∪ 𝐶2

𝑖  or 𝑗 ∈ 𝐶2
𝑖 , 𝑖 =  1 to 𝑁}

}                  (6.37) 

and 

{
{ 𝑝𝑘𝑗  = 𝑝𝑘𝑗 

+ , 𝑘 =  1 to 𝑀, 𝑗 ∈ 𝐶1 ∪ 𝐶2
𝑖  or 𝑗 ∈ 𝐶2

𝑖 , 𝑖 =  1 to 𝑁 } 

{𝑞𝑘𝑗 =  𝑞𝑘𝑗
+   , 𝑘 =  1 to 𝑀, 𝑗 ∈ 𝐶1 ∪ 𝐶2

𝑖  or 𝑗 ∈ 𝐶2
𝑖 , 𝑖 =  1 to 𝑁}

}                  (6.37) 

The first instance of the linear programming problems, either (6.16)-(6.17) or (6.32)-(6.33)-

(6.34)-(6.35)-(6.36), will provide a maximum value for 𝑃𝑛𝑑𝑡  and the second one a minimum 

value for 𝑃𝑛𝑑𝑡  while 𝑃𝑓𝑎 will remain at it maximum value 𝑃𝑓𝑎
𝑚𝑎𝑥. So this first result will be 
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obtained by solving twice each linear programming problem considered above. Then, for each 

flow solution, either in xi or xim, an efficiency interval will be defined: 

                     𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥   𝑖 = 1, ⋯ , 𝑁                                       (6.38) 

or 

                     𝑥𝑖𝑚
𝑚𝑖𝑛 ≤ 𝑥𝑖𝑚 ≤ 𝑥𝑖𝑚

𝑚𝑎𝑥   𝑖 = 1, ⋯ , 𝑁, 𝑚 = 1, ⋯ , 𝑀                       (6.39) 

 

VI.7 Conclusion 

 

The probabilistic approach used in this study to manage passenger flows at security system, 

seen as a multistage processing complex, has led to the formulation of two linear programming 

problems of limited complexity. 

 This approach has several advantages: 

 It allows putting in equation the dilemma (probability of non-detection versus 

probability of false alarm). 

 It shows the interest of the differentiated control treatment of departing 

passengers. 

 It shows the interest of establishing a first filtering before implementing a 

differentiated treatment that becomes then more efficient. 

 The degree of complexity of the probabilistic models developed remains small 

and leads to problems of linear programming in small continuous variables. 

 

Nevertheless, this approach also has important limitations: 

 It is completely static and cannot provide online decision support. 

 It does not take into account the stochastic natures of demand and service times 

which lead to the generation of external and internal queues in the control 

system. Then the modelling approach adopted cannot take into account the 

spatial organization of the control system inside the passenger terminal. 

 Another difficulty is relative to the quantification of the optimization problems 

considered and the accuracy of the necessary probabilistic data.  
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The quantitative part of this study has only considered the post screening case, beyond 

numerical uncertainty of elementary probabilities, the probability of non-detection of a threat 

has remained very small. The approach developed could have been used to optimize the 

distribution of the passenger flows with the other two structures considered (pre-screen and 

mixed-screen) and to compare their respective performances.  

It appears that the decision of which control units should be mandatory and which should be 

assigned to pre or post screening cannot be based only in distributions of probability: if 

repetitiveness can be admitted for false alarms, threat occurrences must be treated as unique 

events. 
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The operation of the passenger control system at an airport has special characteristics that lead 

to the formulation of original problems of analysis, modelling and optimization. 

 

Beyond the activities of verification of the transport title of passengers, control measures aiming 

at the security of the air transport, each time reinforced after new attacks, have been 

implemented or reinforced at airports during the last decades. The competition between the 

technology of security at airports and the malicious ingenuity of terrorists has led to the 

strengthening of the airport security sector, which uses ever more sophisticated control 

equipment and more and better trained security teams. This represents a considerable extra cost 

for the air transport sector, ultimately higher costs for passengers, hence the interest in 

guaranteeing its efficiency while limiting costs. 

 

The main objective of this thesis has been to provide a methodological contribution to the 

assessment of the expected performances of the resources implemented at airports to ensure the 

security of passengers. 

 

After having introduced the main concepts and definitions of airport security, an analysis of the 

passenger control system in airport terminals has been carried out. Then a logical model of the 

departure control system of the passengers in an airport has been constructed with the aim of 

allowing to test different scenarios of attack of the system, to analyse the behaviour of the 

system under different conditions and to evaluate the permeability with respect to different 

types of attacks. The proposed solution, through the graphical representation of the logical 

model, seems to be relevant for the analysis of other complex systems in future research and 

development works. 

 

A probabilistic approach has then been developed to allow the evaluation of the departure 

passenger flow control systems by considering the possibility of the occurrence of wrong 

diagnostics at its elementary control stations with eventually a double check. This has led to 

considering Coloured Petri Nets to represent the dynamics of a control unit. However, since 

CPN have a deterministic behaviour, probabilities have been introduced at the outcome of their 

transitions. Then, considering the succession of control tasks induced a dependence, the 

structure in question has been related to Bayesian Networks, leading to the concept of Bayesian 
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Coloured Petri Nets (BCPNs). This concept has been illustrated in the case of a single passenger 

control unit and then extended to general control structures.  

Here also, the proposed modelling tool, BCPN, seems to have a potential for application in 

other areas where a succession of controls takes place with possibility of local failure. 

 

After the establishment of a global evaluation model based on an undifferentiated serial 

processing of passengers, a typification of threats and passengers has been introduced so that 

differentiated control along different control channels, perhaps at reduced cost, can be 

established. The cases without and with pre-filtering, this one allowing a premier classification 

of passengers, have been considered. This has led to the formulation of linear programming 

optimization problems for the distribution of the flows of passengers in the different control 

channels where the objective is to minimize the global probability of non-detection of a threat 

while limiting false alarm level. The numerical results obtained highlighted the interest of pre-

filtering and organizing passengers in separate groups. 

 

Thus, in this thesis, the approach that was initially purely descriptive and normative, has 

become analytical both in the logical analysis of the operation of control units, as in the 

modelling of expected performance for the system. The modelling of these performances has 

been carried out according to two points of view: first a possibilistic point of view through 

vulnerability analysis and then a probabilistic point of view with some involved dynamics. 

Finally, assuming the availability of elementary performance probabilities for the control units, 

an optimization approach has been developed to organize the control flows for a given level of 

demand. 

 

Much remains to be done in this area, and the development of modelling, analysis, assessment 

and decision support tools such as those outlined in this thesis seems to need to be 

complemented by the development of big data analysis techniques in this field, allowing it to 

get free of the probability paradigm when facing unique events such as unprecedented terrorist 

attacks. This will ensure on one side the efficiency of the security system and on the other side 

the optimization of the allocated security resources. 
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Regulating the use of passenger name record (PNR) data (Source: European Council) 

Passenger name record (PNR) data is personal information provided by passengers and 

collected and held by air carriers. It includes information such as the name of the passenger, 

travel dates, itineraries, seats, baggage, contact details and means of payment. The proposal for 

a directive presented by the Commission aims to regulate the transfer of such PNR data to 

member states' law enforcement authorities and their processing for the prevention, detection, 

investigation and prosecution of terrorist offences and serious crime. 

The European Parliament and the Council agreed on a compromise text in December 2015. On 

14 April 2016, the European Parliament adopted its position. The Council then adopted the 

directive on 21 April 2016. Member states will have two years to bring into force the laws, 

regulations and administrative provisions necessary to comply with this directive. 

Organised crime and terrorist activities often involve international travel. As a response to the 

abolition of internal border controls under the Schengen Convention, the EU provides for the 

exchange of personal data between law enforcement authorities. The PNR system aims 

to complement the already existing tools to cope with cross-border crime. Processing PNR data 

would allow law enforcement authorities to discover persons unsuspected of crime or terrorism 

before a specific data analysis would show they might be. 

In addition, most member states already use PNR data granted under national law to the police 

or other authorities. An EU PNR system would also harmonise member states' legal provisions, 

avoiding legal uncertainty and security gaps, whilst at the same time safeguarding data 

protection. 

The draft directive aims to regulate the transfer of PNR data from the airlines to national 

authorities, as well as their processing of this data. Under the new directive, airlines will have 

to provide PNR data for flights entering or departing from the EU. It will also allow, but not 

oblige, member states to collect PRN data concerning selected intra-EU flights. 

The directive establishes that PNR data collected may only be processed for the prevention, 

detection, investigation and prosecution of terrorist offences and serious crime. 

In the context of these activities, PNR data can be used in several ways: 

 for a pre-arrival or pre-departure assessment of passengers against defined risk criteria, 

or in order to identify specific persons 

 as input in the development of these risk criteria 

 for specific investigations or prosecutions 

To protect the fundamental rights to protection of personal data, to privacy and to non -

discrimination, the directive includes a series of limitations for the transfer, processing and 

retention of PNR data: 

 the directive prohibits the collection and use of sensitive data 

 PNR data can only be kept for a period of 5 years, and must be depersonalised after a 

period of 6 months so the data subject is no longer immediately identifiable 
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 member states are required to establish a passenger information unit to handle and 

protect the data; this unit must include a data protection officer 

 member states must ensure that passengers are clearly informed about the collection of 

PNR data and of their rights. 

 automated processing of PNR data cannot be the only basis for decisions producing 

adverse legal effects or seriously affecting a person. 

 transfer of PNR data to third countries can only take place in very limited circumstances 

and on a case-by-case basis.   

 

Passenger Name Record data as far as collected by air carriers: 

 (1) PNR record locator  

(2) Date of reservation/issue of ticket  

(3) Date(s) of intended travel  

(4) Name(s)  

(5) Address and contact information (telephone number, e-mail address)  

(6) All forms of payment information, including billing address  

(7) Complete travel itinerary for specific PNR  

(8) Frequent flyer information  

(9) Travel agency/travel agent  

(10) Travel status of passenger, including confirmations, check-in status, no show or go show 

information  

(11) Split/divided PNR information  

(12) General remarks (including all available information on unaccompanied minors under 18 

years, such as name and gender of the minor, age, language(s) spoken, name and contact 

details of guardian on departure and relationship to the minor, name and contact details of 

guardian on arrival and relationship to the minor, departure and arrival agent)  

(13) Ticketing field information, including ticket number, date of ticket issuance and one-way 

tickets, Automated Ticket Fare Quote fields  

(14) Seat number and other seat information  

(15) Code share information  

(16) All baggage information  

(17) Number and other names of travellers on PNR  

(18) Any Advance Passenger Information (API) data collected  

(19) All historical changes to the PNR listed in numbers 1 to 18 
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