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Abstract

Any software bug or device malfunction in safety-critical systems can have catastrophic
consequences. The validation and analysis of programs in critical systems is of paramount
importance to guarantee that the software satisfies its specification and that it is devoided
of runtime errors.

Static program analysis by abstract interpretation computes a sound approximation
of the set of reachable states of a program. It discovers invariant properties of programs
which are represented by elements of an abstract domain. Most industrial static analysis
tools do not use expressive relational numerical abstract domains like convex polyhedra
due to their computational cost.

We propose a new modular analysis for the automatic discovery of numerical properties
based on the computation of disjunctive relational summaries of procedures. Procedure
summaries are computed once and for all, and used to compute the effect of procedure
calls, in a bottom-up fashion. Our approach is especially applied to improve the scalability
of Linear Relation Analysis, or abstract interpretation with convex polyhedra, although
it is based on a more general framework usable with any relational abstract domain.

Disjunctive relational summaries are finite sets of abstract input-output relations rep-
resented by elements of a relational abstract domain. They are computed based on a
partitioning of procedure preconditions. We give heuristics to compute an abstract parti-
tion of a procedure precondition. We also give ways to improve the precision of summary
computation, notably through a careful treatment of preconditions during analysis. Our
approach also applies to recursive procedures where summaries are computed recursively
in terms of themselves.

We implemented our approach in a new static analysis platform for C programs called
mars. We conducted experiments on programs from the Mälardalen benchmark showing
that our approach can significantly reduce the analysis time for Linear Relation Analysis
compared to a full context-sensitive analysis where procedures are analyzed completely
in each call context. Analysis precision is not significantly damaged and can even be
improved due to the use of disjunction.

In a second part, we present an approach for the modular analysis of reactive sys-
tems for numerical properties. We propose a flexible representation of the behavior of
reactive components called Relational Mode Automata (RMA), which allows the analysis
of reactive systems behavior at various levels of abstraction. RMA can be constructed
automatically from disjunctive summaries of the procedures implementing component
reactions. The analysis results of individual components using RMA can be reused to
analyze larger reactive systems with multiple component instantiations in a modular way.
We give an application of this approach to the analysis of a simplified automated subway
control system.

Keywords: static analysis, abstract interpretation, interprocedural analysis, procedure
summaries, convex polyhedra, reactive systems, synchronous programming.





Résumé

La présence de bugs ou de dysfonctionnements dans les systèmes critiques peut avoir
des conséquences terribles. La validation et l’analyse des programmes embarqués dans les
systèmes critiques est d’une importance majeure pour garantir que les logiciels présents
soient conformes à leur spécification et dépourvus d’erreurs à l’exécution.

L’analyse statique par interprétation abstraite calcule une approximation sûre de
l’ensemble des états accessibles d’un programme. Elle permet de découvrir des propriétés
invariantes des programmes en les représentant par des éléments d’un domaine abstrait.
Les domaines abstraits numériques, comme le domaine des octogones ou des polyèdres
convexes, ont des niveaux de précision différents. Les outils industriels d’analyse statique
n’utilisent généralement pas les domaines abstraits numériques les plus expressifs, comme
le domaine des polyèdres convexes, à cause de la complexité de leurs opérations.

Nous présentons dans cette thèse une analyse modulaire des programmes pour la
découverte de propriétés numériques, basée sur le calcul de résumés disjonctifs et rela-
tionnels de procédures. Les résumés de chaque procédure sont calculés de manière ascen-
dante (bottom-up) et utilisés dans l’analyse de l’effet des appels de procédure. Bien que
notre approche soit appliquée à l’analyse de relations linéaires, ou interprétation abstraite
polyédrique, pour améliorer son passage à l’échelle, elle est définie dans un cadre plus
large applicable à n’importe quel domaine abstrait relationnel.

Les résumés disjonctifs de procédures sont des ensembles finis de relations d’entrée-
sortie représentées par des éléments d’un domaine abstrait relationnel. Ils sont calculés
en utilisant un partitionnement de la précondition d’une procédure. Nous proposons
des heuristiques pour calculer des partitions de préconditions. Nous présentons aussi des
améliorations concernant la précision du calcul des résumés, notamment grâce à un traite-
ment particulier des préconditions. Notre approche s’applique également aux procédures
récursives, où les résumés sont calculés en fonction d’eux-mêmes.

Notre analyse modulaire à été implémentée dans un nouvel outil d’analyse statique
pour les programmes C, appelé mars. Nos expérimentations montrent que notre approche
peut réduire significativement le temps d’analyse pour l’analyse des relations linéaires, par
comparaison avec une analyse classique qui analyse les procédures dans chaque contexte
d’appel. La précision des résultats n’est pas considérablement diminuée et peut même
être améliorée grâce à l’usage de la disjonction dans les résumés.

Dans une seconde partie, nous présentons une approche pour l’analyse modulaire des
systèmes réactifs. Nous proposons une représentation flexible des composants réactifs ap-
pelée Automates Relationnels de Mode, ou Relational Mode Automata (RMA), permettant
une analyse des systèmes réactifs à différents niveaux d’abstraction. Les automates rela-
tionnels de mode peuvent être construits automatiquement à partir des résumés disjonctifs
des procédures implémentant la réaction de chaque composant. Les résultats de l’analyse
de chaque composant peuvent être réutilisés dans l’analyse de systèmes réactifs de plus
grande taille où chaque composant peut être instancié plusieurs fois. Cette approche est
appliquée à l’analyse d’un système simplifié de contrôle d’un réseau de métro.

Mots clés : analyse statique, interprétation abstraite, analyse interprocédurale,
résumés de procédures, polyèdres convexes, systèmes réactifs, programmation synchrone.
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Chapter 1

Introduction

Many things have changed since the first paper on program verification by Alan
Turing in 1949. Abstract interpretation and interprocedural analysis were born
more than four decades ago. This thesis stands on the shoulders of giants.

1.1 Context

Today, embedded systems are everywhere. They are computer systems which are part of
a larger device. The examples are numerous, from consumer electronics with smartphones
or digital watches, and to very large and complex systems in avionics, transportation or
nuclear power plants. Many of them are produced in large volumes and most of them are
difficult to update, such as the firmware deeply embedded in communication subsystems
of smartphones or the control software of nuclear reactors.

Many embedded systems have real-time constraints and some of them are deemed
safety-critical in which any bug of the controlling software or malfunction of the device
can have catastrophic consequences, with a major impact on the environment and may
cause a large number of injuries or death. The examples of incidents involving a software
bug are well-known. The Ariane 5 crash [85] in 1996 was due to an integer overflow. The
Therac-25 radiation therapy machine [84] gave patients massive overdoses of radiation in
at least six accidents between 1985 and 1987 due to various software defects and wider
software engineering problems. More recently, the Boeing Dreamliner 787 [2] had to be
rebooted every 248 days due to a counter overflow in the firmware of the AC power
management system.

This motivates the need for a reliable and systematic validation process of safety-
critical systems providing trustworthy guarantees that the software satisfies its specifica-
tion and that it is devoided of runtime errors. There are several families of approaches:
• Testing or dynamic analysis consists in observing the behavior of the software at

runtime on some well-chosen inputs. Although this approach can detect bugs, it is
not exhaustive, since all inputs and scenarios can not be tested in general. Testing
can not prove the absence of bugs.
• Static analysis is a class of techniques performed on a static representation of a

program without executing it. Some of these techniques mathematically prove that
a program does not have bugs whereas others are able to find bugs.

Program analysis by abstract interpretation computes a sound approximation of the
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Chapter 1 Introduction

set of reachable states of a program. It discovers invariant properties of programs which
are represented by elements of an abstract domain. These invariants can be used to
prove the absence of errors at runtime, such as arithmetic overflows, or to prove a given
assertion. Industrial tools such as Polyspace [94] or Astrée [19] can prove the absence of
runtime errors in large embedded software written in C. Some tools such as PIPS [69]
Clousot [46] or Infer [29] are applied to a more general variety of software.

1.2 Contributions

Astrée made the achievement to scale to large embedded programs written in C, at the
expense of avoiding more precise abstract domains like convex polyhedra due to their
computational complexity. Less expressive abstract domains such as intervals of integers
or octagons are used instead. Despite large programs being organized as collections of
functions or procedures, Astrée performs a top-down analysis of programs without really
considering their interprocedural structure. Procedures are either inlined or reanalyzed
each time they are called.

Modular Analysis with Relational Procedure Summaries

In this thesis, we are interested in improving the scalability of Linear Relation Analysis,
or abstract interpretation based on convex polyhedra, by computing precise relational
summaries of procedures. We make use of the procedural structure of programs to propose
a new modular analysis for the automatic discovery of numerical properties. Although
specifically applied to convex polyhedra, it is based on a more general framework usable
with any relational abstract domain.

Our analysis framework comes with a formalization of relational abstract interpreta-
tion that we did not find elsewhere. Based on relational collecting semantics, we present
the construction of relational procedure summaries as abstract input-relations between
the initial values of procedure parameters and their final value at the exit of a procedure.

Procedures can exhibit very different behaviors which can not be expressed precisely
by a single element of a classical abstract domain such as convex polyhedra. In order to
have precise procedure summaries, we compute disjunctive relational summaries, where
each disjunct is an abstract input-output relation represented by a separate element of a
relational abstract domain.

Taken together, the sources of each individual relation in a disjunctive summary form
an abstract partition of the procedure precondition to account for all the possible values
of parameters. The precision of a disjunctive summary is determined by the quality
of the precondition partitioning. We give heuristics to compute an abstract partition
of a procedure precondition. We also give ways to improve the precision of summary
computation. As we show that preconditions are at the heart of precise summaries, they
are entitled to a specific and careful treatment during summary computation. Summaries
are computed once and for all in a bottom-up fashion and used to analyze the effect of
procedure calls.

We also show that our approach applies to recursive procedures. In some way, the
summary of a recursive procedure must be computed in terms of itself.
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1.3 Outline

We implemented this approach in a new static analyzer called mars (Mars Abstract
Interpretation Research System) based on Clang which consists of 20000 lines of C++
and 4000 lines of OCaml. It was designed from the ground-up for the experimentation of
new static analyses. The mars intermediate representation has been designed specifically
to ease the development of static analyses by abstract interpretation and to provide high-
quality source traceability information. This work has been published in [27].

Modular Analysis of Reactive Programs

Many embedded programs must react continuously to inputs at a speed determined by
their environment. They are called reactive programs. Reactive programs can be written
in languages like C or in special-purpose languages like synchronous languages such as
Lustre, Esterel or Signal. The flight control software of the Airbus A380 was written
in SCADE which is an industrial dataflow synchronous language based on Lustre.

Reactive programs are usually organized as collections of components computing the
system reaction to inputs and producing outputs. Reactive components can also have
memory which is updated at each reaction step. They are implemented by step procedures
which are called repeatedly inside a global infinite loop.

Although Astrée scales to large C programs generated from SCADE, it does not take
advantage of the specific nature of reactive programs and the structuring into components
is completely lost during the analysis.

In a second part, we pave the way toward a new modular analysis of reactive sys-
tems, based on the computation of disjunctive relational summaries of step procedures.
We propose an abstraction of reactive programs designed specifically for analysis called
Relational Mode Automata (RMA). It provides a flexible representation allowing the ex-
pression of reactive systems behavior at various levels of detail. RMA are constructed
automatically from the disjunctive relational summary of a step procedure. We propose
a reachability analysis of RMA and their parallel composition which does not require a
costly explicit construction of the parallel product prior to the analysis.

Various heuristics are given to reduce the level of precision of a given relational mode
automaton, in order to achieve different tradeoffs with respect to precision and analysis
performance. The analysis results of a component can be used for the modular analysis
of a larger system containing it, by computing its abstract effect in other step procedures.

This approach is currently implemented on small examples using the Python library
PyApron which provides a high-level binding to the Apron abstract domain library.

Other Works

During this thesis, the continuation of earlier works has been published, regarding some
improvements of abstract interpretation beyond the classical increasing and decreasing
sequences [26] and an application of Linear Relation Analysis to the estimation of the
Worst-Case Execution Time of programs [115].

1.3 Outline

This thesis is organized into three parts:

17



Chapter 1 Introduction

Part I gives an introduction to static analysis by abstract interpretation and gives an
overview of the state of the art regarding the interprocedural analysis of programs. It first
presents the program representation used throughout this thesis and recalls some basic
notions of semantics, along with the standard framework of abstract interpretation. It also
mentions some improvements to classical abstract interpretation for precision. Then, it
gives an overview of interprocedural analysis and its main approaches, from foundational
works to the state of the art, giving a modest glimpse to its abounding literature ranging
over more than four decades.

Part II presents our modular analysis based on the computation of disjunctive rela-
tional procedure summaries. It first describes our general framework with a formalization
of relational abstract interpretation. We give a particular application of this framework
to the convex polyhedra abstract domain. A special light is shed on the treatment of
preconditions and their role in summary computation. Then, we shows how disjunctive
procedure summaries can be obtained based on precondition partitioning. We give several
partitioning heuristics and improvements to summary computation. Finally, we present
the implementation of the mars static analyzer, as well as some experimental results.

Part III is dedicated to our approach for a modular analysis of reactive systems. It
starts with an introduction to reactive programs and synchronous languages, along with
the main approaches for analysis and verification. Then, we propose a representation of
reactive programs called Relational Mode Automata which are constructed automatically
from the summary of a step procedure. We present the analysis of RMA and ways to
tune their precision. Finally, we illustrate this approach on the example of a simplified
subway control system.
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State of the Art
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Chapter 2

Program Analysis by Abstract
Interpretation

Abstract interpretation [34, 37] is a general theory of the sound approximation of the
behavior of dynamic discrete systems. Its elegance resides in its ability to be applied to a
wide range of systems, from biological systems [43] to programs. It is especially applied
in program analysis to the automatic discovery of program properties and to prove that
a given program satisfies some important properties such as “the program never does an
arithmetic overflow”, “the program never dereferences a null pointer”, or “the program
never accesses an array out of bounds” and more generally “no runtime error can happen”.
Abstract interpretation is used by static analysis tools such as Polyspace [94], Astrée [19],
Clousot [46], TVLA [83] or Infer [29], notably for the analysis of safety-critical software,
such as in avionics or railway transportation systems.

Most interesting properties in program analysis, including the aforementioned safety
properties, are undecidable in general due to the expressivity of program semantics. The
sets of reachable states of programs are generally not computable by machine.

Abstract interpretation gives a general framework for the sound approximation of
program semantics, through a decidable abstraction of semantics, which can be used to
compute an over-approximation of the set of reachable states in a program.

We will recall in what follows the basic principles of abstract interpretation which are
necessary for the subsequent chapters.

2.1 Programs and Semantics

2.1.1 Transition Systems

The behavior of a program can be described by a transition system T = (S, I, τ) where S
is a set of states, I ⊆ S is a set of initial states and τ ⊆ S×S is a transition relation over
the set S of states. We denote as s1 → s2 that there exists a transition (s1, s2) ∈ τ from a
state s1 ∈ S to a state s2 ∈ S. If U ⊆ S, we denote as τ(U) = {s′ ∈ S | ∃s ∈ U, (s, s′) ∈ τ}
the set of successors of U .

A state s ∈ S is said to be reachable if it can be produced from an initial state in
a finite number of computation steps. Thus the set reach of reachable states is defined
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Chapter 2 Program Analysis by Abstract Interpretation

formally as follows:

reach =
⋃
k∈N

τ k(I)

A state s ∈ S is reachable if it is connected to an initial state by the transitive closure τ ?

of the transition relation τ .

Stated differently, a state is reachable if it is either an initial state or the successor
of a reachable state by the transition relation τ . We can also define reach as the least
solution of the fixpoint equation:

reach = I ∪ τ(reach)

In Section 2.2, we recall some basic notions of fixpoint theory which ensures that such
a recursive definition makes sense.

2.1.2 Programs as Control Flow Graphs

We adopt the classical representation of programs by Control Flow Graphs (CFG), in
contrast with other works using Abstract Syntax Trees, such as Astrée [19] or Mopsa
[101], or directly expressing program semantics as Horn clauses such as SeaHorn [56].

Definition 2.1.1 (Control-Flow Graph). A control-flow graph (or CFG) is a directed
graph G = (N,E) such that:

• N = {ν0, ..., νn} is a finite set of nodes being of one of the following types: start
node, junction node or statement node. A partial transfer function fν : D → D⊥
is associated to each statement node ν, where D = Vars → Values is the set of
variable valuations.
• E ⊆ N × N is a set of control-flow edges. Start nodes have no incoming edge

whereas statement nodes have only one incoming edge and junction nodes can have
several incoming edges.

For simplicity, each node has a single output possibly leading to several successor
nodes. This means that classical test nodes are transformed into pairs of conditions
appearing at the beginning of statement nodes, where the associated transfer functions
intersect their argument with the condition of the test (the then part) or its negation (the
else part). Since conditions guard statement nodes, the transfer functions fν are partial,
returning ⊥ when their argument does not satisfy the condition.

From CFGs to transition systems

The semantics of a CFG can be expressed as a transition system (S, I, τ) where the set
of states is S = N × D and each state is a pair (ν, d) made of a node and a variable
valuation. The set of initial states is I = N0×D where N0 is the set of start nodes of the
CFG. The transition relation τ is defined as:

((ν, d), (ν ′, d′)) ∈ τ ⇔ (ν, ν ′) ∈ E ∧ d′ =
{
fν′(d) 6= ⊥ if ν ′ is a statement node
d if ν ′ is a junction node
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2.1 Programs and Semantics

i := 0;

while i < 100

i := i + 1;

end;

i := 0

i < 100 ?
i := i+ 1

i ≥ 100 ?

ν0

ν1
ν2

ν3

ν4

ν5 ν6

Figure 2.1: Simple program with a while loop incrementing a variable i at each iteration.
It is represented by the control flow graph on its right.

2.1.3 Collecting Semantics

Classically, program states are partitioned according to the nodes of the CFG. It is a
particular instance of what is called trace partitioning [117], see Section 2.5.2. Instead
of computing the reachable states of the transition system, we compute the set Xν of
reachable variable valuations at each CFG node ν, defined as:

Xν = {d | (ν, d) ∈ reach}

The sets Xν satisfy the following system of equations called the collecting semantics
of the program:

Xν =


D if ν is a start node
fν(Xν′) if ν is a statement node and (ν ′, ν) ∈ E⋃
(ν′,ν)∈E

Xν′ if ν is a junction node

We can also write this system of equations as a vectorial fixpoint equation X = F (X)
where X ∈ Dk.

Example 2.1.1. We give the collecting semantics of the simple program of Figure 2.1.
There is a unique variable i of integer type, the set of valuations is D = Z. The semantic
equations are:

X0 = Z
X1 = X0[i := 0]
X2 = X1 ∪X4

X3 = (X2 ∩ (i < 100))[i := i+ 1]
X4 = X3

X5 = X2 ∩ (i ≥ 100)
X6 = X5
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Chapter 2 Program Analysis by Abstract Interpretation

From this system of equations, we define a semantic function F : Dk → Dk as follows:

F



X0

X1

X2

X3

X4

X5

X6


=



Z
fν1(X0)
X1 ∪X4

fν3(X2)
X3

fν5(X2)
X5


=



Z
X0[i := 0]
X1 ∪X4

(X2 ∩ (i < 100))[i := i+ 1]
X3

X2 ∩ (i ≥ 100)
X5


The functions fν1 : D → D, fν3 : D → D and fν5 : D → D are the transfer functions
representing the effect of statement nodes ν1, ν3, ν5. The system of semantic equations is
equivalent to the vectorial fixpoint equation X = F (X) with X ∈ Dk.

2.2 Fixpoint Theorems

As most interesting objects in computer science, program semantics are defined by systems
of fixpoint equations. The existence of solutions to such equations results from fixpoint
theory and order theory. We introduce in this section some basic definitions and notations
regarding partially ordered sets and lattices.

2.2.1 Complete Lattices

Definition 2.2.1 (Partially ordered set). A partially ordered set (D,v) is a non-empty
set D and a binary relation v over D satisfying the following properties:

∀a, b ∈ D, a v b (reflexivity)
∀a, b, c ∈ D, a v b ∧ b v c⇒ a v c (transitivity)
∀a, b ∈ D, a v b ∧ b v a⇒ a = b (antisymmetry)

An element m ∈ D is an upper bound of S ⊆ D if ∀x ∈ S, x v m. An element M ∈ D
is the least upper bound of S, denoted as tS, if M v m for every upper bound m of S.
An element l ∈ D is a lower bound of S ⊆ D if ∀x ∈ S, l v x. An element L ∈ D is the
greatest lower bound of S, denoted as uS, if l v L for every lower bound l of S.

Definition 2.2.2 (Lattice). A lattice (L,v,t,u) is a partially ordered set in which every
pair {a, b} ∈ L of elements of L has a least upper bound a t b = t{a, b} and a greatest
lower bound a u b = u{a, b} in L. The least upper bound t : L × L → L is called the
join operator of L and u : L× L→ L is called the meet operator of L.

Definition 2.2.3 (Complete lattice). A lattice (L,v,t,u,⊥,>) is a complete lattice if
every subset S ⊆ L has a least upper bound tS and a greatest lower bound uS in L.
The least element of L, called bottom, is denoted as ⊥ = uL and the greatest element of
L, called top, is denoted as > = tL.

Example 2.2.1. For any set X, the set 2X of all subsets of X, also called the powerset
of X, is a complete lattice (2X ,⊆,∪,∩, ∅, X) for inclusion. For example, the powerset 2Z

of Z is a complete lattice (2Z,⊆,∪,∩, ∅,Z).
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2.2 Fixpoint Theorems

2.2.2 Monotonic Functions and Tarski’s Fixpoint Theorem

Definition 2.2.4 (Monotonic function). Let (D1,v1) and (D2,v2) be two partially or-
dered sets. A function F : D1 → D2 from D1 to D2 is monotonic if it satisfies the following
property:

∀a, b ∈ D1, a v1 b⇒ F (a) v2 F (b)

Definition 2.2.5 (Fixpoint). Let (D,v) be a partially ordered set. Let F : D → D be a
function on D. An element x ∈ D is a pre-fixpoint of F if x v F (x). An element x ∈ D
is a post-fixpoint of F if F (x) v x. An element x ∈ D is a fixpoint of F if F (x) = x. We
denote as lfp(F ) the least fixpoint of F and as gfp(F ) the greatest fixpoint of F if they
exist.

Tarski’s fixpoint theorem ensures the existence of fixpoints for a monotonic function
on a complete lattice, such that the set fix(F ) of such fixpoints is itself a complete lattice.
The set fix(F ) being a complete lattice, it has a least element and a greatest element.
Thus a monotonic function F on a complete lattice L has always a least fixpoint lfp(F )
and a greatest fixpoint gfp(F ) in L.

Theorem 2.2.1 (Tarski’s fixpoint theorem). Let (L,v,t,u,⊥,>) be a complete non-
empty lattice and F : L → L be a monotonic function on L. The set fix(F ) of fixpoints
of F is a non-empty complete lattice:

lfp(F ) = u{x ∈ L | F (x) v x} gfp(F ) = t{x ∈ L | x v F (x)}

2.2.3 Continuous Functions and Kleene’s Theorem

Tarski’s fixpoint theorem ensures the existence of fixpoints for monotonic functions on
complete lattices. In practice, we use Kleene’s fixpoint theorem for continuous functions
which gives a method to compute fixpoints using Kleene iterations.

Definition 2.2.6 (Continuous function). Let (D,v,t,u,⊥,>) be a complete lattice. A
function f : D → D is Scott-continuous if it preserves least upper bounds:

∀X ⊆ D, f(tX) = tf(X)

Remark: a continuous function on a complete lattice is necessarily monotonic.

Theorem 2.2.2 (Kleene’s fixpoint theorem). Let F : D → D be a continuous function
on a complete lattice (D,v,t,u,⊥,>). The extreme fixpoints of F exist:

lfp(F ) =
⊔
n≥0

F n(⊥) gfp(F ) = u
n≥0

F n(>)
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Chapter 2 Program Analysis by Abstract Interpretation

Example 2.1.1 (continued) We apply Kleene’s fixpoint theorem to our example by
trying to compute the least solution of the system of semantic equations:

X0 = Z
X1 = X0[i := 0]
X2 = X1 ∪X4

X3 = (X2 ∩ (i < 100))[i := i+ 1]
X4 = X3

X5 = X2 ∩ (i ≥ 100)
X6 = X5

The solution is be computed in the complete lattice (2Z,⊆,∪,∩, ∅,Z) of possible valuations
for i. According to Kleene’s theorem, we start from (Xk = ∅)k=0..6. At the first iteration,
we get:

X0 = Z X1 = {0} X2 = {0} X3 = {1} X4 = {1} X5 = ∅ X6 = ∅

We can compute some more steps:

X0 = Z X1 = {0} X2 = {0, 1} X3 = {1, 2} X4 = {1, 2} X5 = ∅ X6 = ∅
X0 = Z X1 = {0} X2 = {0, 1, 2} X3 = {1, 2, 3} X4 = {1, 2, 3} X5 = ∅ X6 = ∅
X0 = Z X1 = {0} X2 = {0, 1, 2, 3} X3 = {1, 2, 3, 4} X4 = {1, 2, 3, 4} X5 = ∅ X6 = ∅

We can foresee that this kind of computation does not terminate in general for arbitrary
sets of integers. Also, it is well-known that arbitrary sets of integers are not machine-
representable. Thus it entails two main necessities: the use of a decidable, machine-
representable abstraction of sets of states and a way to enforce the convergence of fixpoint
computations. This is the main goal of abstract interpretation.

2.3 Concrete and Abstract Domains

For the reachable states of a program, the most precise property of interest is the least
fixpoint of collecting semantics, which is not computable in general or would result in
computations over a very complex domain which would track precisely all the aspects of
a program implementation, such as the state of registers, the stack and the heap. Such
a domain is called a concrete domain. The concrete semantics can be approximated by
an abstract semantics with values belonging to an abstract domain. The elements of the
concrete domain are said to be approximated by the elements of the abstract domain.

2.3.1 Abstract Domains

Definition 2.3.1 (Galois Connection). Let (D1,v1) and (D2,v2) be two partially ordered
sets. A Galois connection from D1 toD2 is a pair (α, γ) of functions such that α : D1 → D2

is called the abstraction function and γ : D1 → D1 is called the concretization function
satisfying the following property:

α(d1) v2 d2 ⇔ d1 v1 γ(d2)
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2.3 Concrete and Abstract Domains

Definition 2.3.2 (Abstract Domain). Let (C,vC ,tC ,uC) be a lattice of elements to be
abstracted considered as the concrete domain. An abstract domain is a lattice (D,v,t,u)
related to C by a Galois connection (α, γ) with α : C → D and γ : D → C.

Example 2.3.1 (Interval abstract domain). In Example 2.1.1, the concrete domain is
the complete lattice (2Z,⊆,∪,∩, ∅,Z). A possible abstract domain is the complete lattice
of intervals of integers (I,v,t,u,⊥, (−∞,+∞)) defined as:

I = (Z ∪ {−∞})× (Z ∪ {+∞})
∀(a, b), (c, d) ∈ I,

(a, b) v (c, d) ⇔ c ≤ a ∧ b ≤ d
(a, b) t (c, d) = (inf(a, c), sup(b, d))
(a, b) u (c, d) = (sup(a, c), inf(b, d))

We assume that (a, b) = ∅ for a > b. The Galois connection (α, γ) between 2Z and I is:

∀X ⊆ Z, α(X) =

{
(inf(X), sup(X)) if X 6= ∅
⊥ otherwise

∀(a, b) ∈ I, γ((a, b)) =

{
[a, b] if a ≤ b
∅ otherwise

2.3.2 Fixpoint Computation

The set of reachable states is the least fixpoint of a function F over a concrete domain
D. The elements of the concrete domain may not be representable by machine and the
concrete function F may not be computable. Instead, we compute the least fixpoint of a
sound approximation F ] : D] → D] of F over an abstract domain D].

Definition 2.3.3 (Sound approximation). Let (D,vD,tD,uD,⊥D,>D) and
(D],v,t,u,⊥,>) be complete lattices related by a Galois connection (α, γ). A
function F ] : D] → D] on D] is a sound approximation of a concrete function F : D → D
if it satisfies the following property:

∀d] ∈ D], F (γ(d])) vD γ(F ](d]))

The fixpoint transfer theorem guarantees that the least fixpoint of F ] over the abstract
domain D] is a sound approximation of the least fixpoint of F over the concrete domain
D.

Theorem 2.3.1 (Fixpoint Transfer Theorem). Let (D,vD,tD,uD,⊥D,>D) and
(D],v,t,u,⊥,>) be complete lattices related by a Galois connection (α, γ). Let
F : D → D be a monotonic function on D and let F ] : D] → D] be a monotonic
function on D] such that F ] is a sound approximation of F . The least fixpoint lfp(F ) of
F and the least fixpoint lfp(F ]) of F ] are related as follows:

lfp(F ) vD γ(lfp(F ]))

If F ] is continuous, it follows from Kleene’s Fixpoint Theorem that the least fixpoint
lfp(F ]) of F ] is the limit of the Kleene’s sequence (xi)

]
i≥0 defined as:

x]0 = ⊥
x]i+1 = F ](x]i)
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Chapter 2 Program Analysis by Abstract Interpretation

Example 2.1.1 (continued) We want to compute a solution of the system of equations
of our program, in the complete lattice of intervals of integers. The system of abstract
semantic equations over I is defined as:

X0 = >
X1 = X0[i := 0]
X2 = X1 tX4

X3 = (X2 u (i < 100))[i := i+ 1]
X4 = X3

X5 = X2 u (i ≥ 100)
X6 = X5

We compute a Kleene’s sequence starting with (Xk = ⊥)k=0..6. We get:

X0 = (−∞,+∞) X1 = (0, 0) X2 = (0, 0) X3 = (1, 1) X4 = (1, 1) X5 = ⊥ X6 = ⊥

We can compute some more steps:

X0 = (−∞,+∞) X1 = (0, 0) X2 = (0, 1) X3 = (1, 2) X4 = (1, 2) X5 = ⊥ X6 = ⊥
X0 = (−∞,+∞) X1 = (0, 0) X2 = (0, 2) X3 = (1, 3) X4 = (1, 3) X5 = ⊥ X6 = ⊥
X0 = (−∞,+∞) X1 = (0, 0) X2 = (0, 3) X3 = (1, 4) X4 = (1, 4) X5 = ⊥ X6 = ⊥

A Kleene’s sequence in the lattice of intervals of integers does not terminate in general.
The Kleene’s fixpoint theorem gives a method to compute least fixpoints of a continuous
function over an abstract domain, by recasting them as limits of possibly infinite iterations.
However, we have no way to compute limits of infinite iterations in general.

2.3.3 Convergence

A Kleene’s sequence is trivially converging when the abstract domain is a finite lattice,
such as the lattice of signs or the lattice Zk of integers representable on k bits, or if it
does not contain any infinite strictly increasing sequence. This is not the case for many
interesting abstract domains such as the lattice I of intervals of integers. The convergence
of a Kleene’s sequence can not be guaranteed in general. A solution is to extrapolate
the limit of a Kleene’s sequence using a widening operator, which guarantees a finite
computation converging to an upper approximation of the exact limit of the sequence.

Definition 2.3.4 (Widening operator). Let (D],v,t,u,⊥,>) be a complete lattice.
A widening operator is a binary operator ∇ : D] × D] → D] satisfying the following
properties:

1. ∀x, y ∈ D], x t y v x∇y
2. For every increasing sequence (xk)k≥0, the increasing sequence (yk)k≥0 defined as

follows:

y0 = x0 yk+1 = yk∇xk
is ultimately stationary: ∃` ∈ N,∀k ≥ `, yk+1 = yk.

For a discussion on the design of widening operators, see [38] and [33].
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Theorem 2.3.2 (Fixpoint extrapolation). Let F ] : D] → D] be a continuous function
on an abstract domain (D],v,t,u,⊥,>). Let ∇ : D]×D] → D] be a widening operator
on D]. The increasing sequence (Xk)i≥0 defined as:{

X0 = ⊥
Xk+1 = Xk∇F ](Xk)

is ultimately stationary: ∃` ∈ N, ∀k ≥ `,Xk+1 = Xk. The limit X∇ of the increasing
sequence (Xk)k≥0 is a post-fixpoint of F ] and thus a sound approximation of the least
fixpoint lfp(F ]) with lfp(F ]) v X∇.

When X∇ is not a fixpoint of F ], the solution given by the limit X∇ of the increasing
sequence can be improved by computing a decreasing sequence using a narrowing operator.

Definition 2.3.5 (Narrowing Operator). Let (D],v,t,u,⊥,>) be a complete lattice.
A narrowing operator is a binary operator 4 : D] × D] → D] satisfying the following
properties:

1. ∀x, y ∈ D], y v x4y v x
2. For every decreasing sequence (tk)k≥0, the decreasing sequence (zk)k≥0 defined as:

z0 = t0 zk+1 = zk4tk

is ultimately stationary: ∃` ∈ N,∀k ≥ `, zk+1 = zk.

The decreasing sequence (Yk)k≥0 starting with the limit X∇ of the increasing sequence
is defined as: {

Y0 = X∇

Yk+1 = Yk4F ](Yk)

Every term of the decreasing sequence is a post-fixpoint of F ] and a sound approximation
of the least fixpoint. We can stop the decreasing sequence arbitrarily after any number of
steps, without waiting for convergence, and still get a correct approximation of lfp(F ]).
In practice, we can compute a decreasing sequence without using any narrowing operator,
by just applying F ] for a finite number of terms as follows:

Y0 = X∇ Yk+1 = F ](Yk)

We denote as X∇4 the limit of the decreasing sequence. It is decreasing since F ] is
monotonic and its terms are post-fixpoints of F ].

Example 2.3.2 (Widening and narrowing on intervals). The following operator
∇ : I × I → I on intervals of integers is a widening operator:

∀(a, b), (c, d) ∈ I, (a, b)∇(c, d) =

({
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

)
The following operator 4 : I × I → I on intervals of integers is a narrowing operator:

∀(a, b), (c, d) ∈ I, (a, b)4(c, d) =

({
c if a = −∞
a otherwise

,

{
d if b = +∞
b otherwise

)
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Example 2.1.1 (continued) We compute an approximation of the sets of reachable
valuations of i in the interval abstract domain I. We define a system of abstract fixpoint
equations where the widening operator is applied on X2:

X0 = >
X1 = X0[i := 0]
X2 = X2∇(X1 tX4)
X3 = (X2 u (i < 100))[i := i+ 1]
X4 = X3

X5 = X2 u (i ≥ 100)
X6 = X5

We compute an increasing sequence as follows:

X0 X1 X2 X3 X4 X5 X6

[−∞,+∞] ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
[−∞,+∞] [0, 0] [0, 0] [1, 1] [1, 1] ⊥ ⊥
[−∞,+∞] [0, 0] [0,+∞] [1, 100] [1, 100] [100,+∞] [100,+∞]

The increasing sequence has converged. It gives the approximation [0,+∞] for the set of
reachable valuations of i at the head of the while loop at node 2. This post-fixpoint can
be improved by computing a decreasing sequence:

X0 X1 X2 X3 X4 X5 X6

[−∞,+∞] [0, 0] [0,+∞] [1, 100] [1, 100] [100,+∞] [100,+∞]
[−∞,+∞] [0, 0] [0, 100] [1, 100] [1, 100] [100, 100] [100, 100]

The decreasing sequence converges in a single iteration and gives the invariant
i ∈ [0, 100] at the head of the while loop.

Choice of Widening Nodes

The increasing and the decreasing sequence are computed in a chaotic way, by propagating
abstract values along the paths of the CFG. Since the widening operator loses information,
it is only applied to a selected set W of widening nodes cutting each loop of the CFG.
In example 2.1.1, widening was applied on X2 which is associated to the head ν2 of the
while loop.

Since finding a minimal cutting setW is an NP-complete problem, the set of widening
nodes is classically chosen heuristically using the method of strongly connected subcompo-
nents proposed by Bourdoncle [23, 24]. The method uses recursively Tarjan’s algorithm
[123] to find the strongly connected components (SCC) of a directed graph and their entry
nodes. The entry nodes are the targets of back edges, thus they are all junction nodes.
Bourdoncle’s method adds the entry node of each SCC to W , then removes them from
the graph and recursively applies Tarjan’s algorithm to the rest of each SCC. The result
is a hierarchy of strongly connected subcomponents, each of which is cut by a junction
node in W .
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2.4 Numerical Abstract Domains

We present in this section some numerical abstract domains abstracting subsets of Kn for
K ∈ {Z,Q,R}.

2.4.1 Affine Equalities

An affine relationship is an equality of the form
∑
ajxj = bi between a linear combination

of numerical variables xj and a constant bi. M. Karr [76] introduced the abstract domain
of affine equalities to discover all valid affine equalities among the variables of a program.
The domain representation and its operations are based on linear algebra.

A set of affine equalities over n variables determines an affine subspace and can be
represented by an m× n matrix M , where m ≤ n, along with an m-dimensional column
vector C. Each row of M and C represents an affine equality. The pair (M,C) is called
the constraint representation of the set of affine equalities. The domain of affine equalities
is a relational domain of finite height, which does not contain infinite strictly increasing
sequences.

2.4.2 Zones

Zones are subsets of Kn represented by sets of constraints of the form xi − xj ≤ c or
±xi ≤ c where c ∈ K is a constant and xi, xj are numerical variables. Zones were
proposed in [44, 127] for the model-checking of timed automata and were later adapted
to abstract interpretation [96].

Representation

A zone is represented by a potential graph with nodes labeled by numerical variables.
There is an edge from a node labeled by a variable xi to a node labeled by a variable xj
with weight c ∈ K if there exists a constraint xi − xj ≤ c. Unary constraints of the form
xi ≤ c are rewritten as binary constraints xi − x0 ≤ c with a phantom variable x0 which
is always equal to the constant zero. A potential graph is represented classically by its
adjacency matrix called a Difference Bound Matrix (DBM).

Operations on Zones

A DBM is normalized by computing its transitive closure by the Floyd-Warshall algorithm.
The equality or inclusion of two zones is tested by first normalizing their respective DBMs
and then comparing the values of the normalized DBMs.

Zones are closed under union and the least upper bound of two DBMs is obtained by
merging the two graphs and normalizing the resulting adjacency matrix. The greatest
lower bound of two DBMs m1 and m2 is computed by taking, for each pair (xi, xj) of
variables, the minimum of the weights associated to the edge (xi, xj) in m1 and in m2. It
gives the smallest constant c such that xi − xj ≤ c.

The widening m∇n of two DBMs m and n is defined as:

(m∇n)i,j =

{
mi,j if ni,j ≤ mi,j

+∞ otherwise
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The narrowing m4n of two DBMs m and n is defined as:

(m4n)i,j =

{
ni,j if ni,j = +∞
mi,j otherwise

Operations on DBMs have a O(n3) complexity in the number of numerical variables
due to the transitive closure algorithm used for normalization.

2.4.3 Octagons

The octagons abstract domain presented in [97, 100] is an extension of zones to sets of
constraints of the form ±xi ± xj ≤ c where xi, xj are numerical variables and c ∈ K is a
constant.

Representation

We consider that variables come in two flavors, each variable xi comes in a positive form
x+i and in a negative form x−i . A constraint of the form xi + xj ≤ c can be represented
by the pair of potential constraints x+i − x−j ≤ c and x+j − x−i ≤ c involving the positive
and the negative forms of the original variables xi and xj. More generally, any set of
constraints of the form ±xi ± xj ≤ c can be represented by a DBM using the following
translation scheme:

Octagon constraint Potential constraints
xi − xj ≤ c x+i − x+j ≤ c, x−j − x−i ≤ c
−xi − xj ≤ c x−i − x+j ≤ c, x−j − x+i ≤ c
xi + xj ≤ c x+i − x−j ≤ c, x+j − x−i ≤ c
xi ≤ c x+i − x−i ≤ 2c
xi ≥ c x−i − x+i ≤ −2c

Operations

The DBM representation of octagons is normalized using a variant of the Floyd-Warshall
algorithm called the strong closure algorithm [98].

In a similar way to zones, the emptiness of an octagon is tested as a side-product of
the strong closure algorithm. An octagon represented by a normalized DBM m is not
empty if there exists variables xi, xj such that mi,j 6= 0. The inclusion of two octagons is
tested by comparing the values in their respective normalized DBMs.

The intersection of two octagons is computed using the intersection of their DBMs.
The least upper bound of two octagons is the least upper bound of their normalized
DBMs.

The matrix-based representation of zones and octagons using DBMs is amenable to
fast parallel implementations. An implementation of the octagon abstract domain on
GPUs (Graphics Processing Unit) is described in [11].

Complexity and Expressivity

Zones and octagons are able to represent sets of constraints of the form xi − xj ≤ c for
zones and ±xi −±xj ≤ c for octagons. Operations have a O(n3) time complexity in the
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worst-case as they are based on the Floyd-Warshall algorithm. These domains are not
able to represent arbitrary linear relations of the form

∑
ajxj ≥ bi between numerical

variables, whereas linear relations can be expressed in their full generality by the more
costly abstract domain of convex polyhedra.

2.4.4 Convex Polyhedra

The convex polyhedra abstract domain was proposed in [41, 60] to discover sets of linear
relations of the form

∑
ajxj ≥ bi between program variables where the xj are numerical

variables and the aj and bi are constants. The set of solutions of a system of linear
relations is a convex polyhedron.

Representations of Convex Polyhedra

A convex polyhedron P can be represented either as a set of linear constraints:

P = {x = (x1, ..., xn) |
∧

1≤i≤m

∑
1≤j≤n

ajxj ≥ bi} = {x ∈ Zn | Ax ≥ B}

or as a system of generators:

P = {
∑
si∈V

λisi +
∑
rj∈R

µjrj | λi ≥ 0 ∧
∑

λi = 1 ∧ µj ≥ 0}

where V is a finite set of vertices and R is a finite set of rays. The pair (A,B) is called a
system of constraints of P and (V,R) is called a system of generators of P .

x

y

Figure 2.2: Unbounded convex polyhedron representing the set of constraints x+ 4y ≥ 7,
x+ 2y ≥ 5, x ≥ 1, y − x ≤ 3, 4y − x ≤ 21 and the system of generators with the set of
vertices V = {(3, 1), (1, 2), (1, 4), (3, 6)} and the set of rays R = {(4, 1), (4,−1)}.

The system of constraints (A,B) represents the polyhedron P by giving the constraints
satisfied by the points included in P . The system of constraints is equivalently given in
matrix form as AX ≥ B where X is an n-row vector of variables x1, .., xn.

The system of generators (V,R) represents a convex polyhedron P as the set of all
points which are sums of a convex combination

∑
si∈V λisi of vertices in S and of a positive

combination
∑

rj∈R µjrj of rays in R.
A generator G satisfies a linear constraint AiX ≥ Bi if Ai · G ≥ Bi. A system of

generators (V,R) satisfies a system of constraints (A,B) if all vertices in V and rays in R
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satisfy the constraints AX ≥ B. A generator G saturates a linear constraint AiX ≥ Bi if
Ai ·G = Bi.

The lattice of convex polyhedra is not complete since the convex hull of an infinite set
of polyhedra is not necessarily a polyhedron, as it can be, for example, a disk. However, it
is a sublattice of the complete lattice of convex sets. An analysis using convex polyhedra
involves only a finite number of operations, due to the use of widening, thus it is guaranteed
to stay within the sublattice of convex polyhedra.

Operations on Convex Polyhedra

x

y

P Q

P uQ

P tQ

Figure 2.3: Intersection and convex hull of convex polyhedra.

Conversion of Representations

A system of constraints or a system of generators is said to be minimal if no constraint or
generator can be removed without changing the represented set of points. Chernikova’s al-
gorithm [31], later improved by Le Verge [81], constructs the minimal system of generators
equivalent to a given system of constraints and conversely.

Intersection

The intersection of two convex polyhedra P and Q is the convex polyhedron P u Q
computed simply as the conjunction of the sets of constraints of P and Q.

Convex Hull

The union of two convex polyhedra is not convex in general. Instead, we compute the
convex hull of convex polyhedra, which is the smallest convex polyhedron containing both
polyhedra. The convex hull of two convex polyhedra P and Q is denoted as P tQ. Every
point in the convex hull P t Q is a convex combination of the generators of P and Q.
The convex hull is computed by joining together the generators of P and Q. This can
generate redundant generators and a pass of Chernikova’s algorithm should be applied to
obtain a minimal representation of the result.

Inclusion and Equality

The inclusion of two convex polyhedra P and Q is tested by checking if the system of
generators (S,R) of P satisfies the system of constraints of Q. The equality of two convex
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polyhedra P and Q is checked by testing the double inclusion of P in Q and symmetrically
of Q in P .

Emptiness Test

An empty convex polyhedron has an empty system of generators (∅, ∅) and infinitely
many constraint representations. The emptiness of a convex polyhedron P can be tested
by checking the emptiness of a minimal generator representation of P .

Widening

The classical widening operator on convex polyhedra was introduced in [60]. The widening
P∇Q of a convex polyhedron P by a convex polyhedron Q is defined roughly as removing
the constraints of P which are not satisfied by Q. The result is an extrapolation of both
P and Q as it contains both polyhedra.

More precisely, the widening P∇Q is defined as the set of constraints of P which are
satisfied by Q and the constraints of Q which are mutually redundant with constraints of
P . Two constraints are mutually redundant if they saturate the same set of generators,
either vertices or rays.

When the dimension of P is less than the dimension n of the space, the constraints of
P are rewritten to maximize the number of constraints of Q which are mutually redundant
with constraints of P . The aim is to maximize the number of constraints of Q which are
kept in P∇Q.

Example 2.4.1. We give a simple example of widening over convex polyhedra. Let
P = (i ≥ 0 ∧ i ≤ 0 ∧ n ≥ 0) and Q = (i ≥ 0 ∧ i ≤ 1 ∧ i ≤ n). The widening of P by Q is
P∇Q = (i ≥ 0 ∧ i ≤ n).

Many proposals concerning the improvement of widening operators have been made,
especially for the convex polyhedra abstract domain [9].

Widening with thresholds [61, 67, 18] consists in choosing constraints, from conditions
appearing in the program or some propagation of them [79], as candidate limits to the
widening, which has the effect of relaxing bounds of variables more gradually instead
of moving them to infinity. Widening with landmarks follows a similar idea where the
selection of constraints is made dynamically [120]. Widening with a care set [125] and
interpolated widening [54] make use of a proof objective.

Another improvement of widening is limited widening, defined as the intersection
(P∇Q) u A of the classical widening P∇Q by a limiting abstract value A. For limited
widening to be sound, the limiting value A must be an invariant at the node where the
limited widening is applied, such as, for example, a precondition of the procedure. An
increasing sequence using limited widening is not guaranteed to be converging in general.
For the convex polyhedra abstract domain, we can make the same argument as for the
termination of the classical widening, that either the number of constraints in the result
decreases or the dimension of the resulting convex polyhedron increases.

Complexity

Each operation on convex polyhedra have a preferred representation. Some operations
need either the system of constraints, such as intersection, or the system of generators, for
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the convex hull, or both for the inclusion test. Converting one representation to the other
can be costly, producing a representation which isO(2n) in size with respect to the original
representation. This is particularly the case for an axis-aligned n-dimensional hypercube,
where n variables have bounds with no relations between the variables, represented by
2n constraints and a system of generators with 2n vertices. In order to alleviate the costs
due to the double representation of convex polyhedra, a constraint-only representation
was proposed in [14, 48, 3, 92, 93].

2.5 Advanced techniques

In this section, we present some advanced techniques to improve the precision of properties
computed using abstract interpretation.

2.5.1 Guided Static Analysis

Guided static analysis [52, 53] was proposed to improve the precision of properties of
loops with multiple phases having very different behaviors which can depend on non-
deterministic choices.

We remember the set of program points which are reachable before the first application
of the widening operator during the increasing sequence. The widening operator is applied
and the increasing sequence is then computed only on the restricted program consisting
of the reachable program points before widening. When the increasing sequence has
converged, the decreasing sequence is computed on the program restriction to improve
the result of the increasing sequence.

A new program restriction is obtained at the end of the decreasing sequence, by taking
into account the program locations which are now reachable and which were previously
ignored. An increasing sequence, followed by a decreasing sequence, is restarted on the
newly derived program restriction.

More and more program points are added to the program restriction in a succession
of increasing and decreasing sequences, until the entire program is considered. A guided
static analysis is converging since there is only a finite number of program locations.

Intuitively, the guided static analysis approach discovers distinct loop phases and
analyzes them successively, avoiding the loss of precision occurring in a standard analysis
due to the simultaneous consideration of possibly very different behaviors.

Example 2.5.1. We consider the program shown in Figure 2.4. A standard Linear
Relation Analysis applies widening at node ν1 and gives the following abstract value for
ν1 after one iteration of the increasing sequence:

x+ y = 50 ∧ x ≥ 0

The node ν3 becomes reachable and is taken into account by the analysis, causing a
tremendous loss in precision at the join node ν4. When the analysis has converged, the
loop invariant obtained at ν1 is:

x+ y ≤ 50 ∧ y ≥ 1
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x := 0;

y := 50;

while true

if x < 50 then

x := x + 1;

y := y - 1;

else

x := x - 1;

y := y - 1;

end;

if y <= 0 then

break;

end;

end;

x := 0
y := 50

x < 50?
x := x+ 1
y := y − 1

x ≥ 50?
x := x− 1
y := y − 1

y ≥ 1? y ≤ 0?

ν0

ν1

ν2 ν3

ν4

ν5 ν6

ν7

Figure 2.4: A loop with two phases.

The abstract value obtained after the while loop at ν7 is:

y = 0 ∧ x ≤ 50

A guided static analysis first computes an increasing sequence followed by a decreasing
sequence in which the dashed program edges are ignored. A more precise loop invariant
is obtained at node ν1:

x+ y = 50 ∧ 0 ≤ x ≤ 49

The node ν3 remains unreachable when analyzing the entire program. We obtain the
following property at ν7 after the while loop:

x = 50 ∧ y = 0

We discovered the equality constraint x = 50 at node ν7 with the guided static analysis
whereas the classical Linear Relation Analysis only found the inequality constraint x ≤ 50.

2.5.2 Trace Partitioning

A way to avoid the loss of precision occurring at join nodes is to keep separate the abstract
values obtained at conditional branches. Trace partitioning [95, 117] was proposed to
abstract sets of program traces.

The idea is to duplicate abstract states and to keep them separate by associating an
abstract value to the set of program edges that a trace goes through to obtain that value.
Each time such a disjunction is introduced, the size of the abstract graph is doubled.

Heuristics are given to choose dynamically the nodes where the splitting of abstract
states is applied and when nodes in the graph of abstract states can be merged.
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x < 0?
s := −1

x ≥ 0?
s := 1

z := x/s

ν1

ν2 ν3

ν4

ν5

ν6

(a)

ν1, ∅

ν2, {(ν1, ν2)} ν3, {(ν1, ν3)}

ν4, {(ν1, ν2)} ν4, {(ν1, ν3)}

ν5, {(ν1, ν2)} ν5, {(ν1, ν3)}

ν6, {(ν1, ν2)} ν6, {(ν1, ν3)}

(b)

ν1, ∅

ν2, {ν1.ν2} ν3, {ν1.ν3}

ν4, {ν1.ν2} ν4, {ν1.ν3}

ν5, ∅

ν6, ∅

(c)

Figure 2.5: An example of trace partitioning to prove the absence of division by zero at
node ν5.

Example 2.5.2. We consider in this example the program fragment presented in Figure
2.5a which computes the absolute value of a variable x. We are interested in proving the
absence of division by zero at node ν5. We can prove the property by distinguishing all
paths such as in Figure 2.5b, since we have s = −1 at node ν5, {(v1, v2)} and s = 1 at
node ν5, {(v1, v3)}. The property can still be proven in Figure 2.5c if we merge the paths
at nodes ν5 and ν6.
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Interprocedural Analysis: A State of
the Art

3.1 The Origins of Interprocedural Analysis

Interprocedural analysis originated in side-effects analysis for compiler optimization from
works of Spillman [122], Allen [4] and Barth [12]. Frances E. Allen coined the term
of interprocedural analysis in 1974 and introduced some of the foundational concepts of
interprocedural analysis in [4]. At that time, early works on global dataflow analysis
[78] were considering whole programs, represented by a single global control-flow graph,
without any particular focus on the procedural structure of programs.

Programs as Collections of Procedures

Programs can be seen as collections of procedures K = {p1, .., pn} possibly referencing
each other. The references between the procedures can be expressed as a directed graph
C = (N,E) of nodes ni ∈ N and edges (ei, ej) ∈ E as follows:

1. Each node ni represents a procedure pi and the set of nodes N is in a one-to-one
correspondence with K.

2. Each edge (ei, ej) ∈ E represents one or more references from the procedure pi to
the procedure pj.

Such a graph C is termed the call graph of the program.

Cycles in the call graph indicate the presence of recursive procedures. A self-loop in
the call graph denote a simple recursive procedure referencing itself, whereas a non-trivial
cycle denote a set of mutually recursive procedures.

A procedure pi can reference a procedure pj by a call statement to pj. Other kinds
of procedure referencing are possible in languages allowing the explicit manipulation of
references or pointers to procedures, such as function pointers in C-based languages.

We should note that a call graph is not a control flow graph and does not represent
returns from procedure calls.

Frances Allen gives in [4] a classical algorithm for the construction of the call graph
of a collection of procedures.
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Completeness of a Collection of Procedures

Incomplete programs are programs where the implementation is only partially known
statically, prior to their concrete execution. It encompasses programs with dynamically-
linked libraries, which can be potentially different for each concrete execution platform,
and programs with reflective features, capable of modifying their own structure at runtime,
such as dynamic code generation in Lisp dialects or Javascript.

Definition 3.1.1 (Completeness of a set of procedures). A setK of procedures is complete
if there is a unique initial entry procedure p1 in K and if pi ∈ K references a procedure
pj then pj ∈ K.

We consider implicitly complete sets of procedures. The adaptation to incomplete
programs is considered to be outside the scope of this work.

Top-down and Bottom-up Analyses

We define a partial order relation <K called an invocation order from the call graph C
where ni <K nj if ni is a direct predecessor of nj in the call graph C. The invocation
order embodies the notion of interprocedural dependency between procedures. We define
conversely the inverse invocation order <K on procedures where ni <K nj if nj <K ni,
which can be seen as a sort of bottom-up view of the call graph.

Interprocedural analyses can be categorized according to the order in which procedures
are traversed. In a top-down analysis, procedures are analyzed according to the invocation
order <K from callers to callees, whereas in a bottom-up analysis, procedures are analyzed
according to the inverse invocation order <K from the callees up to the callers, usually by
computing summaries of procedures. Recently, hybrid analyses [128] have been devised,
in an attempt to combine the strengths of bottom-up analyses and top-down analyses.

In this thesis, we are interested in bottom-up approaches since procedures are analyzed
only once, regardless of the number of calling contexts and in possibly much smaller ab-
stract environments, allowing a modular analysis with potential scalability improvements
for numerical analyses by abstract interpretation such as Linear Relation Analysis.

The next contribution of historical significance with regards to its influence on many
posterior approaches is the work of M. Sharir and A. Pnueli in [118] which introduced the
functional approach and the call strings approach for distributive data flow frameworks.

3.1.1 The Functional Approach

The functional approach computes data flow properties of programs using summaries of
procedures, either from the bottom-up composition of individual propagation functions or
by propagating data flow properties in a top-down fashion and by tabulating the properties
obtained at the exit node of a procedure with the associated property at entry.

Data Flow Frameworks

The functional approach of Sharir and Pnueli considers finite data flow properties in a
distributive data flow framework.
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Definition 3.1.2 (Data flow framework). A data flow framework (L, F ) is made of a
semilattice of data flow properties (L,v,u,⊥,>) and a set F ⊆ L → L of monotonic
propagation functions on L.

The operation of the semilattice L is denoted by the meet operator u also called the
data flow confluence operator.

The set F of propagation functions contains the identity function on L and is closed
under the meet operation of L and functional composition.

Definition 3.1.3 (Distributive data flow framework). A distributive data flow framework
(L, F ) is a data flow framework (L, F ) where the propagation functions f : L→ L in the
set F are distributive for the operation u of the semilattice L as follows:

∀f ∈ F, ∀x, y ∈ L, f(x u y) = f(x) u f(y)

We use the control flow graph representation of procedures and we consider that each
procedure has a control-flow graph Gp = (Vp, Ep) where Vp is the set of the basic blocks
of procedure p and Ep is the set of edges. The root block of the procedure is denoted by
rp.

In the data flow framework (L, F ), a propagation function f(ni,nj) : L→ L is associated
to each edge (ni, nj) ∈ Ep in the CFG of each procedure p. It represents the transformation
of the data flow properties when control passes from the beginning of basic block ni to
the end of ni and then to the beginning of basic block nj.

Example 3.1.1 (Reaching definitions). Reaching definitions is a classical intraprocedural
data flow analysis computing the set of the variable definitions v := e reachable at a given
basic block ni ∈ Gp of a procedure p with no assignment to v between ni and a definition
of v. It is represented by a distributive data flow framework (L, F ) as follows:

1. The semilattice of data flow properties is L = P(Defp) where Defp is the set of the
variable definitions in p. The semilattice is partially ordered by set inclusion ⊆ and
the semilattice operation is set union.

2. The set F ⊆ L → L contains propagation functions f(ni,nj) : L → L for each edge
(ni, nj) ∈ Ep in the CFG of p which are defined as:

f(ni,nj)(d) = GEN(ni) ∪ (d−KILL(ni))

where GEN(ni) is the set of variable definitions in a basic block ni:

GEN(ni) = { (v := e) ∈ Defp | (v := e) ∈ ni }

and KILL(ni) is the set of definitions where the variable v is assigned in ni:

KILL(ni) = {(v := e1) ∈ Defp | ∃(v := e2) ∈ ni}

The set Rnj
of reaching definitions at the beginning of a basic block nj is the least

solution of the following system of equations:

∀nj ∈ Np, Rrp = ∅ Rnj
=

⋃
(ni,nj)∈Ep

f(ni,nj)(Rni
)

Constant propagation can be extracted from the results of reaching definitions. A variable
v is always equal to a constant c at the beginning of a basic block ni if a unique definition
v := c of v is reachable at ni, with (v := c) ∈ Rni

.
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It can be confusing that the operation of the semilattice of data flow properties is de-
noted by the meet operator but it is common practice in data flow analysis. The operator
is instantiated in each particular analysis, such as set union for reaching definitions in
Example 3.1.1.

Interprocedural Analysis over a Distributive Data Flow Framework

The functional approach considers data flow frameworks in the interprocedural case.
Let (L, F ) be a distributive data flow framework. For each entry block or root block rp

of a procedure p and each basic block ni of p, we add propagation functions ϕ(rp,ni) : L→ L
to the function space F which represent the propagation of data flow properties in p from
rp to ni. They are defined by the following set of equations:

∀x ∈ L, ϕ(rp,rp)(x) = x
∀ni ∈ Np − {rp}, ϕ(rp,ni)(x) = u(ni,nj)∈Ep h(ni,nj)(ϕ(rp,ni)(x))

h(ni,nj)(x) =

{
f(ni,nj)(x) if ni is not a call block
ueq∈Exitq ϕ(rq ,eq)(x) if ni ends with a call to procedure q

where h(ni, nj) denotes the propagation of properties from a basic block ni to its successor
nj. If ni ends with a call to a procedure q, properties are propagated in q and the returned
property is the meet of the properties obtained at the exit blocks of q. We compute the
maximal fixed point solution of the following set of equations:

X(main,rmain) = ⊥
X(q,rq) = uX(p,c) for each procedure p calling q in a basic block c
X(p,ni) = ϕ(rp,ni)(X(p,rp))

3.1.2 The Call Strings Approach

The call strings approach uses the interprocedural control flow graph of a collection of
procedures where the individual control flow graphs of each procedure are merged into a
single graph.

Definition 3.1.4 (Interprocedural control flow graph). LetK be a finite set of procedures.
Let E0 be the set of all intraprocedural edges (ni, nj) of procedures in K, such that (ni, nj)
represents a direct jump from basic block ni to basic block nj.

Let E1 be the set of all interprocedural edges (ni, nj) of procedures in K, such that
(ni, nj) represents either a procedure call in basic block ni to a procedure q (call edge),
with nj the root block of q, or a procedure return from the exit block ni of a procedure q
to the basic block nj in procedure p (return edge).

The interprocedural control flow graph of K is G∗ = (N∗, E∗, rmain) where the set of
nodes is N∗ =

⋃
p∈K Np, the set of edges is E∗ = E0 ∪ E1 and rmain is the root block of

the initial procedure of K.

Not all paths in G∗ are valid from an interprocedural point of view since G∗ ignores
the specificity of procedure calls and returns, which is that a given procedure call must be
eventually matched by a return to that same procedure in a well-parenthesized fashion.

42



3.1 The Origins of Interprocedural Analysis

Definition 3.1.5 (Interprocedurally valid paths). A path is valid if it respects the fact
that when a procedure returns, it returns to the most recent call site. More precisely, a
path is valid if it is represented by a string in the language of the following context-free
grammar:

valid → matched (p valid | matched
matched → ni | (p matched )p | matched matched

where (p is representing a call to a procedure p and )p a return from p.

We denote as IVP(ni, nj) the set of all interprocedurally valid paths from a basic block
ni to a basic block nj in G∗.

Definition 3.1.6 (Call string). A call string c = n1...nk ∈ N∗ is a tuple of basic blocks
such that there exists an interprocedurally valid path q ∈ IVP(rmain, n) starting at the
root block rmain of the initial procedure main and ending in a basic block n ∈ N∗ which
can be decomposed as

q = q0.n1.r1.q1 .... nk.rk.qk

where q0 is an intraprocedural path in the initial procedure starting at block rmain, q1
is an intraprocedural path in procedure p1 starting at its root block r1 and qk is an
intraprocedural path in procedure pk starting at rk and ending in block n.

The call strings approach is still a top-down functional approach, although it avoids
the propagation of data flow properties along non-interprocedurally valid paths. Each
propagated property is tagged by a call string, which encodes all the procedure calls
through which it has been propagated. Data flow properties associated to different call
strings are kept separated.

During propagation, data flow properties are tagged by call strings which are managed
as stacks and updated when propagating though a call edge or a return edge.

Definition 3.1.7 (Semilattice of data flow properties with call strings). Let Γ be the set
of all call strings corresponding to interprocedurally valid paths in G∗. The call strings
approach uses the data flow framework (L∗, F ∗) where L∗ = Γ → L is the semilattice of
functions associating data flow properties to call strings. The meet operation on L∗ is
defined as a pointwise meet operator:

∀f, g ∈ L∗, ∀c ∈ Γ, (f u g)(c) = f(c) u g(c)

We describe the set F ∗ of propagation functions. We define the update function, which
updates call strings when procedure calls and returns are traversed during propagation.

Definition 3.1.8 (Call strings update function). Let c be a call string and (ni, nj) ∈ E∗
be an edge in G∗. Let last(c) be the last block in the call string c and c − b be the call
string c in which the basic block b has been removed. The update function is defined as:

update(c, (ni, nj)) =


c if (ni, nj) ∈ E0is an intraprocedural edge
c.ni if (ni, nj) ∈ E1is a call edge and ni is a call block
c− last(c) if (ni, nj) ∈ E1is a return edge
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The update function appends the current block ni to the call string c when propagating
c through a procedure call and removes the last block of c if we are propagating through
a return edge. Thus call strings are managed as stacks, storing interprocedural events
encountered during propagation.

Definition 3.1.9 (Set F ? of propagation functions). For each edge(ni, nj) ∈ E∗ of the
interprocedural control flow graph, F ? contains a propagation function f ∗(ni,nj)

: L∗ → L∗

defined as:

∀g ∈ L∗, f ∗(ni,nj)
(g) = λc.

{
f(ni,nj)(g(c′)) if ∃c′, update(c′, (ni, nj)) = c
> otherwise

The functions f ∗(ni,nj)
are monotonic and distributive due to the functions f(ni,nj) being

themselves monotonic and distributive. We compute the maximal fixed point solution of
the following system of equations:

Xrmain
= ⊥

Xnj
= u(ni,nj)∈E? f ∗(ni,nj)

(Xni
)

Unbounded Call Strings and Termination

We can have unbounded call strings in the presence of unbounded recursion. In that case,
the lattice L∗ is infinite and the classic functional approach does not converge without
using any widening on call strings.

We can obtain a converging analysis if we bound the length of call strings. In that
case, the set Γ of call strings is finite and the lattice L∗ has a finite height. This solution
is not sound in general and we can loose information because we ignore some possible
execution paths.

However, according to theorem 5.4 in [118], if the lattice L of data flow properties
is finite, there is a bound M on the length of call strings for the bounded call strings
approach to give a sound result. This bound is M = K(|L| | +1)2 where K is the number
of call edges and |L| is the cardinality of L.

3.2 Interprocedural Data Flow Analysis via Graph

Reachability

T. Reps, S. Horwitz, and M. Sagiv proposed an algorithm in [116] to solve data flow
problems in polynomial time over finite lattices of data flow properties and distributive
propagation functions, in a top-down fashion, similarly to the functional approach of
M. Sharir and A. Pnueli. This algorithm solves all data flow problems belonging to this
class by converting them to a graph reachability problem. Truly live variables, copy
constant propagation and possibly non-initialized variables are examples of such problems.
The considered class of data flow problems is called the IFDS class.

We consider interprocedurally valid paths, just as in the call strings approach. We
denote as IV P (ni, nj) the set of interprocedurally valid paths from a node ni to a node
nj in the interprocedural control flow graph of the set of procedures.
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Definition 3.2.1 (Interprocedural Finite data flow Subset (IFDS) problem). An instance
of an Interprocedural Finite Data flow Subset (IFDS) problem is a 5-tuple (G∗, L, F,M,u)
such that

1. G∗ = (N∗, E∗) is the interprocedural control graph of a finite set K of procedures.
2. L is a finite lattice of data flow properties of cardinality |L|.
3. F ⊆ P(L) → P(L) is a set of distributive monotonic propagation functions on the

powerset of L.
4. M : E∗ → F is a function associating a data flow propagation function to each edge

of the interprocedural control flow graph G∗.
5. The meet operator on L is denoted as u which can be either the set union operator

or the set intersection operator.

Distributive propagation functions f : P(L) → P(L) ∈ F can be represented in a
compact way as a graph with at most 2(|L|+ 1) nodes and (|L|+ 1)2 edges. We describe
below this representation.

Definition 3.2.2 (Representation relation). The representation relation
Rf ⊆ (L ∪ {0})× (L ∪ {0}) of a propagation function f : P(L)→ P(L) ∈ F is:

Rf = {(0,0)}
∪ {(0, y) | y ∈ f(∅)}
∪ {(x, y) | y ∈ f({x}) ∧ y /∈ f(∅)}

The element 0 represents the empty set ∅. The relation Rf is the union of the singleton
set {(0,0)} representing the empty set, the set {(0, y) | y ∈ f(∅)} representing the images
of the empty set by the function f and the set {(x, y) | y ∈ f({x}) ∧ y /∈ f(∅)} of pairs
made of elements of L and their images by the function f .

The set (L ∪ {0}) has |L| + 1 elements, the lattice L having a finite cardinality |L|.
Thus the representation relation Rf of a propagation function f can be thought as a graph
with 2(|L|+ 1) nodes and (|L|+ 1)2 edges.

Example 3.2.1. The representation relation Rf of the function
f : P({a, b, c})→ P({a, b, c}) such that ∀S ∈ P({a, b, c}), f(S) = {a} is defined as
follows:

Rf = {(0, 0), (0, a)}
We should remark that there is no pair (b, a) because a ∈ f({b}) but a ∈ f(∅).

Because the IFDS problem class is specialized for finite lattices L and propagation
functions on the powerset P(L) of L, a finite representation of propagation functions
can be computed, and represented in a compact manner, using BDDs (Boolean Decision
Diagrams) for boolean lattices.

Converting a problem of the IFDS class into a graph reachability problem

Definition 3.2.3. Let IP = (G∗, L, F,M,u) be an IFDS problem instance. We define an
exploded interprocedural control flow graph for IP denoted by G]

IP = (N ], E]) as follows:

N ] = N? × (L ∪ {0})
E] = {((ni, d1), (nj, d2)) | (ni, nj) ∈ E? ∧ (d1, d2) ∈ RM(ni,nj)}
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Each node ni ∈ N? in the interprocedural control flow graph has been exploded into
|L| + 1 nodes. There is a pair (ni, d) ∈ N ] for each node ni and each data flow property
d ∈ (L ∪ {0}). There is an edge in E] between two nodes (ni, d1) and (nj, d2) if nj is a
successor of ni in the interprocedural control flow graph and if (d1, d2) is in the relation
Rf , representing the propagation function M(ni, nj) from basic block ni to basic block
nj.

The IP problem corresponds to the interprocedurally valid paths reachability problem
in the graph G]

IP from the source node (rmain,0).

Let X = (X1, ..., Xk) be the maximal fixed point solution of an IFDS problem instance
IP and Xni

⊆ L be the component of this solution associated to a basic block ni. Let
d ∈ L be a data flow property in lattice L.

According to theorem 3.8 in [116], we have d ∈ Xni
if there is an interprocedurally

valid path in G]
IP from (rmain,0) to (ni, d). Thus we can obtain the solution of an IFDS

problem instance by solving a graph reachability problem in G]
IP and by considering only

interprocedurally valid paths.

3.3 Stack Abstractions For Interprocedural Analysis

We present in this section some approaches to interprocedural analysis which are using
an abstraction of the stack.

In [22], F. Bourdoncle addresses the interprocedural abstract interpretation of a Pascal-
like imperative language. The author describes an analysis to partition the variables of
procedures into sets of variables sharing the same location in the stack. Concrete stacks
which can be encountered during a concrete execution are abstracted by abstract stacks.
The call contexts of a procedure corresponding to the same abstract stack are merged.
Procedures are then analyzed for each call context associated to a distinct abstract stack.
We must observe that in this approach, the construction of abstract stacks is quite heavy
and their definition is tedious.

Jeannet et al. [75, 121] proposed a method reminiscent of the call strings approach for
the relational numerical analysis of programs with recursive procedures and pointers to the
stack. It is a top-down approach based on an abstraction of the stack. An implementation
is available in the Interproc tool [71].

Several abstractions of procedures are used. First the standard semantics is abstracted
by a local semantics, in which the effect of a procedure is described only on the top
activation record. In the local semantics, procedures work on local copies of memory
locations.

A stack abstraction is used to obtain a reachability analysis of sets of activation records
from the local semantics. The abstract stacks which are reachable at a program point in
a procedure are collapsed and abstracted into sets of activation records.

We compute the set of the reachable activation records at each program point of a
procedure, using a relational interprocedural abstract interpretation. Finally, we obtain
an invariant which is a set of reachable activation records.

The hierarchy of abstractions used in this approach is as follows:
1. Standard semantics.
2. Local semantics: the effect of a procedure is restricted to the top activation record.
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3. Instrumented semantics: procedures are defined as transition systems on a set of
states (σ0, σ) where σ0 is the initial state at the beginning of a call and σ is the
current state.

4. Stack abstraction: sets of stacks are abstracted by sets of activation records.
5. Activation record abstraction: activation records are represented by functions
Id → B ∪ D]. The computed invariant are sets of such functions and are repre-
sented symbolically by MTBDDs (Multi-Terminal Binary Decision Diagrams) with
numerical abstract values as terminal nodes.

We can make here nearly the same remark as for the previous approach. Several
abstractions of the stack and activation records are performed. Thus we can question
the necessity of such stack abstractions and the possible alternatives for interprocedural
abstract interpretation especially regarding the complexity of their definition and their
construction.

A stack abstraction is also performed in [117] for trace partitioning. Interprocedural
traces are abstracted here by functions Stack×Loc→ P(S) from pairs (k, l) ∈ Stack×Loc
made of a stack and a control state, to a set S of memory states. Thus we obtain an
analysis which is sensitive to the calling context, at the expense of keeping potentially
large abstractions of the stack.

The call strings approach, which is separating data flow properties according to the
encountered call contexts, is an early example of stack abstraction since call strings are
updated with representations of the procedure calls and procedure returns encountered
during propagation.

3.4 Statement-level Summaries

An approach based on statement-level summaries implemented in the PIPS tool [5, 69]
was proposed to discover linear invariants in a collection of procedures by abstract in-
terpretation. Statements in procedures are abstracted by affine transformers [87] which
are input-output relations represented by convex polyhedra. The summary of a whole
procedure is obtained from the composition of statement transformers, in a bottom-up
fashion.

This analysis is divided into two phases, a transformer computation phase and an
invariant generation phase.

Each statement is first abstracted by a convex polyhedron representing a linear re-
lation between the state of the variables before the statement and their state after the
execution of that statement. Transformers for control structures are computed from the
transformers of individual statements. An algorithm is given to compute an abstraction
of the transformer of a loop from the transformer of its body, which is termed the Affine
Derivative Closure algorithm.

Invariants are obtained by forward propagation of the procedure precondition using
the transformers computed in the previous phase.

However, precision can be lost during the composition of individual statement trans-
formers. For each transformer, the number of variables can be doubled in the worst-case
to express the initial states of numerical variables. The execution time can increase ex-
ponentially during the computation of statement transformers due to the complexity of
convex polyhedra operations.
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Statement-level transformers are also used in [126], to solve interprocedural data flow
problems belonging to the IFDS class (see Definition 3.2.1). Procedure summaries are
derived from the composition of statement-level transformers. Transformers of loop state-
ments are constructed by iterated composition of the loop body transformer, until a fixed
point is reached. Convergence is guaranteed because the IFDS problem class is concerned
only by finite lattices.

Aggregate domains, abstract domains which can be expressed as aggregates of simpler
domains, allow transformers to be broken into micro-transformers, each micro-transformer
operating on a sub-domain. Each micro-transformer can separate cases corresponding to
distinct classes of values in a sub-domain, each having a precondition that defines a distinct
class of values and a postcondition describing how values are transformed. The aim is
to have micro-transformers consisting of cases defined on values behaving uniformly with
simpler postconditions.

3.5 Procedure Summaries Using Generic Assertions

The approach proposed in [55] is a bottom-up approach computing summaries of proce-
dures by backward propagation of generic assertions. A generic assertion is an assertion
which must be instantiated by symbols of an underlying abstraction.

For example, a generic assertion in the theory of linear arithmetic is αx+βy = γ where
α, β and γ are unknown variables. The assertion which has to hold after a procedure
call must be given manually. It is matched using a unification algorithm to the generic
assertion computed for the called procedure.

Example 3.5.1. We assume that the generic assertion summarizing a procedure p is
αx+ βy = γ. We want to check that the assertion y = 2x+ 1 holds after a call to p. We
match y = 2x+ 1 with the generic assertion αx+ βy = γ and we obtain the substitution
α 7→ −2, β 7→ 1 and γ 7→ 1. This substitution can be used to compute the summary of
the calling procedure, in a bottom-up fashion.

Procedure summaries are obtained by computing the weakest precondition of each
generic assertion at each point of a procedure. A fixed point computation is performed to
handle loops. The authors describe a generic assertion simplification technique because a
naive weakest precondition computation can be exponential in the number of operations
performed.

3.6 Relational Interprocedural Analyses

3.6.1 Modular Static Analysis

Cousot et al. [39, 40] describes the symbolic relational separate analysis for abstract in-
terpretation, which uses relational abstract domains, relational semantics and symbolic
names to represent initial values of parameters modified by a procedure. When used with
the polyhedra abstract domain, the approach computes procedure summaries which are
input-output relations represented by a single convex polyhedron, with no ability to cap-
ture disjunctive behaviors in procedures. Recursive procedures are supported, although
the technique is quite classical and was already presented earlier in [35, 36, 60].
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3.6.2 Relational Abstractions of Functions

A relational abstraction of sets of functions for shape analysis is proposed in [72]. It
considers functions of signature D1 → D2, provided that there exists abstractions A1 of
P(D1) and A2 of P(D2) and that A1 has a finite cardinality. This abstraction is rela-
tional since it is able to express relations between elements mapped by a set of functions.
However the abstraction A1 is required to be of finite cardinality, thus excluding usual
numerical abstract domains such as convex polyhedra.

3.6.3 Interprocedural Analyses based on Linear Algebra

Müller-Olm et al. [103] proposed an interprocedural bottom-up analysis discovering all
Herbrand equalities between program variables at each program point in polynomial time.
It considers abstracted programs with only affine assignments, ignoring conditions on
branches, with other assignments handled soundly as non-deterministic assignments. An
algorithm for precise interprocedural value numbering is derived from this approach.

An extension was proposed in [47] to obtain an interprocedural analysis to discover
linear two-variable equalities. It has a worst-case complexity of O(nk4) where n is the
program size and k is the number of program variables. It infers all valid equalities
between program variables of the form xi = c or xi = xj + c where c ∈ Z. No widening
operator is necessary.

Each procedure p is represented by a control flow graph Gp with control locations
as nodes and edges labeled with program statements. Let X be the set of all program
variables. A finite satisfiable set of equalities E can be represented by a weighted directed
graph, where the set of nodes is X ∪ {0} and there is an edge from xi to xj with weight
b if there the equality xi = xj + b is valid. The graph is assumed to be symmetric and
transitive. An equality xi = c with c ∈ Z is represented by an edge from xi to 0 with
weight c.

For every maximal connected component C of the graph, we choose a reference node,
which is either 0 or the variable xi with the least index i. For every other variable xj
in C, we only record the equality xj = b or xj = xi + b. The conjunction of all those
equalities is equivalent to E. A conjunction of such properties is said to be normalized.
A normalized conjunction consists of at most k equalities and can be represented by an
array of size k.

The length of every strictly increasing chain f alse v E1 v ... v En is bounded by
k+1, because in every pair Ei v Ei+1, Ei+1 has strictly more connected components than
Ei and the number of connected components in a graph of k + 1 nodes is bounded by
k + 1.

Summaries of procedures are obtained by computing weakest preconditions of generic
postconditions. For example, consider the procedure p below.

void p()

{

x1 = x1 + 1;

x2 = x2 - 1;

}
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The procedure p increments the global variable x1 and decrements the global variable x2.
We are interested in the postconditions at the end of the procedure which are of the form:

x1 = a ∧ x2 = b ∧ x2 = x1 + c

with a, b, c ∈ Z. The postcondition x1 = a ∧ x2 = b ∧ x2 = x1 + c, where a, b, c are left as
placeholder variables, is called a generic postcondition. The summary of procedure p is
obtained by computing the weakest precondition of the generic postcondition:

Precondition x1 = a− 1 ∧ x2 = b+ 1 ∧ x2 = x1 + c+ 2
Postcondition x1 = a ∧ x2 = b ∧ x2 = x1 + c

This approach is not able to express disjunctions in the procedure summary. It is extended
to discover linear two-variable equalities, which are equalities of the form xi = c or
xi = axj + b. Such a set of linear equalities can be put into a normal form where
each variable appears in only one equality. Therefore, when in normal form, a set E of
linear equalities has at most k equalities. The summary of a procedure is obtained by
computing weakest preconditions of linear generic postconditions of the form a1xi = a2
or a1xi = a2xj + a3.

3.6.4 Dual Interprocedural Analysis using Linear Arithmetic

Popeea et al. [106, 107, 108] presented an analysis to both prove user-supplied safety
properties and to find bugs by deriving a condition ok leading to success and a condition
err leading to failure for each procedure of a program. The summary of a procedure is
a pair (ok, err) of these two conditions, with ok and err being formulas in the first-order
theory of linear arithmetic.

The conditions ok and err of the procedure summary are inferred in a bottom-up
fashion, from callees to callers. The analysis is done in two steps:

1. A constraint abstraction of the procedure body is generated according to Hoare-style
rules for success and failure outcomes.

2. A fixpoint computation is used to derive closed-form formulas for both ok and err.
Disjunctive numerical properties can be represented in the ok and err formulas, with

linear equalities and inequalities. Simplification of formulas and checking for satisfiability
is handled by a complete decision procedure for linear arithmetic provided by the Omega
Test [77]. The Omega Test is known to have a doubly-exponential worst-case complexity.
This approach is implemented in the DUALYZER tool.
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Relational Summaries for Interprocedural
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Chapter 4

Relational Abstract Interpretation

Relational abstract interpretation is concerned by the automatic discovery of relations
between the variables of a program at each program point. Linear Relation Analysis
(LRA) proposed in [41, 60, 69] is the archetypal numerical relational analysis. Although
we are particularly interested in its application to Linear Relation Analysis, relational
abstract interpretation is not specific to numerical analyses, it also encompasses any
analysis inferring relations among states of a program, such as for example in shape
analysis, where relations may be inferred between memory elements or parts of data
structures.

By inferring abstract relations between states in a program, particularly between the
initial values of variables at the entry of a procedure and their values at exit, relational
abstract interpretation can serve as a foundation to compute relational summaries of
procedures.

We present in this chapter a formalization of relational abstract interpretation that we
did not find elsewhere. We start by giving a general characterization of relational abstract
domains, as abstractions of binary relations over sets of program states, since they are the
key ingredient to represent relations between states. Then, we take a particular attention
to procedure preconditions and we show that preconditions must be treated carefully in
order to obtain precise relational procedure summaries.

4.1 Relations on States and the Transitive Closure

We introduce some definitions and notations on states and relations as a prelude to our
presentation of relational abstract interpretation.

States and Relations

Let S be a set of states. We denote as ρ ⊆ S × S a relation over states. We denote as
R = P(S × S) the set of binary relations over S.

A relation ρ over S is a set of pairs (s1, s2) of states s1, s2 ∈ S, where s1 is termed
the source component of the pair and s2 is termed the target component of the pair. We
define classically the source projection src : R → S and the target projection tgt : R → S
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of binary relations as:

∀ρ ∈ R, src(ρ) = {s1 ∈ S | ∃s2 ∈ S, (s1, s2) ∈ ρ}
∀ρ ∈ R, tgt(ρ) = {s2 ∈ S | ∃s1 ∈ S, (s1, s2) ∈ ρ}

If U ⊆ S is a subset of S, then we denote the identity relation over U as
IdU = {(s, s) | s ∈ U}.

Definition 4.1.1 (Composition of binary relations). Let ρ1, ρ2 ∈ R be binary relations
over a set S. The composition ρ1 ◦ ρ2 of ρ1, ρ2 is defined as:

∀ρ1, ρ2 ∈ R, ρ1 ◦ ρ2 = {(s1, s3) | ∃s2 ∈ S, (s1, s2) ∈ ρ1 ∧ (s2, s3) ∈ ρ2}

Transitive Closure

Definition 4.1.2 (Transitive closure). Let ρ ⊆ S × S is a binary relation over S. The
transitive closure ρ? of ρ is defined as:

ρ? =
⋃
k≥0

ρk

If we consider the transition relation ρ ⊆ S × S of a transition system, the transitive
closure ρ? relates states which are reachable from one another in a finite number of
computation steps of the system described by the transition relation. The system can be,
for example, a program or a procedure. The image tgt(ρ?(I)) of a set I of initial states
by the transitive closure ρ? is the set of reachable states of the transition system under
consideration.

As an endpoint to these introductory matters on relations, we point the interested
reader to some classical references on the theory of binary relations, such as Tarski’s
classical revival paper [124] on the calculus of relations and [111].

Forward and Backward Relational Semantic Equations

The transitive closure ρ? of ρ can be expressed as the least solution of a forward fixpoint
equation and equally as the least solution of a backward fixpoint equation:

ρ? = µr. IdS ∪(r ◦ ρ) (forward equation)
ρ? = µr. IdS ∪(ρ ◦ r) (backward equation)

Trace Partitioning

Following the classical trace partitioning technique, we assume that the set S of states is
finitely partitioned according to a partition δ = {S1, S2, ..., Sn} as follows:

∀Si, Sj ∈ δ, i 6= j ⇒ Si ∩ Sj = ∅⋃
Si∈δ

Si = S

We can also denote S as the disjoint sum S = S1 ⊕ S2 ⊕ ... ⊕ Sn of the members of the
partition δ,
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Example 4.1.1. Trace partitioning can be done according to the control locations of a
program. We assume that L = {l1, l2, ..., ln} is a finite set of control locations, V is a
set of values and the set S of program states is the cartesian product S = L × Vn. We
construct classically the partition δL of S according to control locations in L as follows:

δL =
n⊕
i=1

{(li, V ) ∈ L | V ∈ Vn}

A partitioning can also be defined in a more semantic fashion and can express state
properties, like preconditions.

Definition 4.1.3 (Restriction of a relation). For a binary relation ρ ∈ R and Si, Sj ∈ δ,
we define the restricted relation ρ(Si, Sj) as follows:

∀Si, Sj ∈ δ, ρ(Si, Sj) = ρ ∩ (Si × Sj)

Property 4.1.1. The restriction ρ?(Si, Sj) of the transitive closure ρ? to Si, Sj ∈ δ can
be expressed as the least fixpoint of the following system of forward fixpoint equations:

∀i 6= j, ρ?(Si, Sj) =
n⋃
k=1

ρ?(Si, Sk) ◦ ρ(Sk, Sj)

ρ?(Si, Si) = IdSi
∪

n⋃
k=1

ρ?(Si, Sk) ◦ ρ(Sk, Si)

Intuitively, for any states si ∈ Si and sj ∈ Sj, the membership (si, sj) ∈ ρ?(Si, Sj) of
the pair (si, sj) in ρ?(Si, Sj) means that sj can be reached from si by iterated composition
of the binary relation ρ with itself, and since Si and Sj are disjoint, the binary relation ρ
must be applied at least once. If we consider ρ as the relation of a transition system on
S, this means that the state sj ∈ Sj is reachable from the state si ∈ Si in a finite, but
non-zero, number of computation steps. Additionally, if (si, sj) ∈ ρ?(Si, Si), the state sj
is reachable from si in zero computation steps if si = sj.

si sk sj
ρ?(Si, Sk) ρ(Sk, Sj)

Si Sk Sj

Figure 4.1: Graphical illustration of the forward fixpoint characterization of ρ?(Si, Sj) for
i 6= j.

As illustrated in Figure 4.1, we can split the path from a state si ∈ Si to a state sj ∈ Sj
into a finite path from si to a state sk ∈ Sk with Sk ∈ δ, denoted as (si, sk) ∈ ρ?(Si, Sk),
and an atomic computation step from sk to sj, denoted as (sk, sj) ∈ ρ(Sk, Sj). Then, the
transitive closure ρ?(Si, Sj) is the union of all such splittings for each Sk ∈ δ.
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4.2 Concrete Relational Semantics

We denote as (S, ρ, I, E) the transition system describing a procedure p where S is a set
of states, ρ ⊆ S × S is the transition relation of p, I ⊆ S is the set of initial states and
E ⊆ S is the set of exit states.

4.2.1 Concrete Relational Summaries

Definition 4.2.1 (Concrete Relational Summary). The concrete relational summary of
a procedure p is σp = ρ?(I, E).

The concrete summary σp of a procedure p is the transitive closure of the transition
relation ρ restricted to the set I of initial states and to the set E of exit states. It is the
set of pairs (sI , sE) made of an initial state sI ∈ I and of an exit state sE ∈ E reachable
from sI in a finite number of computation steps in the procedure p.

For the forward computation of a summary σp we are interested in the computation of
ρ?(I, Sj) for each Sj ∈ δ by instantiating the fixpoint characterization of ρ?(Si, Sj) given
in Property 4.1.1 using the following equations:

ρ?(I, Sj) =

(
n⋃
k=1

ρ?(I, Sk) ◦ (Sk, Sj)

)
∪
{

IdI if Sj = I
∅ otherwise

}

4.2.2 Concrete Semantics of Procedure Calls

The concrete summary of a procedure p can be used to express the set of states reachable
after a call to p given the states reachable immediately before the call. We can use the
summary of a called procedure to obtain its effect in a caller.

We make first some assumptions on the programs that we are considering in this
presentation for the sake of clarity, and we will consider thereafter that the necessary
transformations are available in practice.

We assume that all procedure parameters are given and that there are no parameters
with default values, neither partially-applied procedures.

We consider that all procedure parameters in a program are passed by reference, we
are not concerned with pointer manipulation in this presentation. We entrust existing
pointer analyses to detect aliasing problems and to provide us an abstraction of numerical
procedures consistent with our assumptions, on top of which our analysis should be built
in practice.

Instead of an explicit program transformation prior to our analysis, our approach could
also be used on top of another analysis providing us only a suitable view of procedures, in
which we would only work with abstract numerical variables and expressions generated
by a memory abstract domain, such as in [99].

We assume that global variables are dealt with as additional procedure parameters.
All variables are assumed to be parameters, since local variables don’t raise any problem
from the point of view of relational collecting semantics.

Let p be a procedure with a set S of states and let T be the set of states of a program
calling p. We denote as π : P(S × S)→ P(T × T ) the parameter passing mechanism for
the summary of p, which consists in renaming formal parameters into actual ones.
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4.2 Concrete Relational Semantics

Definition 4.2.2. Let Ti ⊆ T be the set of states reachable just before the call to p and
let Tj ⊆ T be the set of states reachable just after the call to p. The effect of the call to
p is described by the elementary relation ρ(Ti, Tj) = π(ρp).

4.2.3 From State to Relational Collecting Semantics

We are particularly interested in the relational analysis of numerical procedures and we
describe how a relational collecting semantics can be obtained from the usual collecting
semantics of a procedure.

States of Numerical Procedures

A state of a numerical procedure with n variables is a pair (`, V ) ∈ Loc × N n where
` ∈ Loc is a control location such as a line, a statement or a block in a control-flow graph,
and V = (v1, ..., vn) ∈ N n is a vector of numerical values in N .

Partitioning

Control locations ` ∈ Loc provide a natural partitioning of sets of states. We denote as
S` = {(`, V ) | V ∈ N n} the set of states at a control location `.

The set of initial states of a procedure at an entry control location `I is denoted as
S`I and can be further restricted by a precondition AI ∈ N n such as:

I = {(`I , V ) | V ∈ AI}

State Collecting Semantics

The usual collecting semantics defines the set A` of reachable variable valuations at a
control location ` in a procedure with A` = {V | (`, V ) is a reachable state from I} as
the least fixpoint of a system of fixpoint equations:

A` = F`({A`′ | `′ ∈ Loc}) ∪
{
AI if ` = `I
∅ otherwise

}
where the transfer function F` expresses how the states in S` depends on the states at
other control points. The sets A` of reachable states at each control location ` are termed
the collecting semantics of the procedure.

Relational Collecting Semantics

Collecting semantics on states can be extended to relational semantics as follows: for each
variable vi, a new variable v0i is introduced to record the initial value of the variable vi.
The new set of states is SR = Loc × N 2n and the new set of initial states is defined as
follows:

ARI = {(v01, ..., v0n, v1, ..., vn) | (v01, ..., v0n) ∈ AI ∧ vi = v0i , i ∈ {1, ..., n}}

IR = {(lI , V ) | V ∈ ARI }
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Chapter 4 Relational Abstract Interpretation

The relational collecting semantics of the procedure is equivalent to the usual state
collecting semantics of the procedure initialized with the assignments v0i = vi for each
i ∈ {1, ..., n}.

The relational collecting semantics AR` at a control location ` ∈ Loc are defined as:

AR` = FR
` ({AR`′ | `′ ∈ Loc}) ∪

{
ARI if ` = `I
∅ otherwise

}
The introduction of v0i variables to record initial values of variables is the only change

made with respect to the usual collecting semantics. Extended states are propagated and
transformed in the classical way by the transfer functions FR

` representing the effect of
statements at each control location ` ∈ Loc. We assume that the propagation functions
FR
` do not change the values of the v0i variables.

Let E ∈ Loc be the set of exit control locations of a numerical procedure p. The
concrete summary σp of the numerical procedure p can be defined as follows:

σp =
⋃
`∈E

AR`

If we consider the presence of local variables, they should be eliminated from this expres-
sion by existential quantification.

Thus the relational collecting semantics of a numerical procedure can be obtained in
a rather simple fashion from the usual state collecting semantics.

4.2.4 A very simple example

We give thereafter a very simple example of relational concrete summary. We consider
the example program in Figure 4.2, which implements the classical Euclidean division, by
the method of successive subtractions, as described originally in [45].

void div(int a, int b, int * q, int * r)

{

assume(a >= 0 && b >= 1);

1: *q = 0;

*r = a;

2: while

3: (*r >= b)

{

*r = *r-b;

4: *q = *q + 1;

5: }

6:}

A1 = {(a0, b0, q0, r0, a, b, q, r) |
a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0
∧ b = b0 ∧ q = q0 ∧ r = r0}

A2 = A1[q := 0][r := a]
A3 = A2 ∪ A5

A4 = A3 ∩ (r ≥ b)
A5 = A4[r := r − b][q := q + 1]
A6 = A3 ∩ (r ≤ b− 1)

Figure 4.2: Example program implementing the classical Euclidean division by the method
of successive subtractions.

The system of concrete fixpoint equations representing the div procedure is given on
the right-hand side of Figure 4.2. The set of reachable variable valuations at a control
location i is given by the set Ai.
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The concrete relational summary of the div procedure is given by the least fixpoint
solution for A6, at the unique exit point of the procedure:

A6 = (a = a0 ∧ b = b0 ∧ a = bq + r ∧ q ≥ 0 ∧ r ≤ b− 1 ∧ r ≥ 0 ∧ a0 ≥ 0 ∧ b0 ≥ 1)

It describes the effect of the div procedure on its parameters, by relating their final value
at the exit point of the procedure back to their initial value at the entry of the div

procedure. Relations between final values of parameters are recorded as well.
We should notice that the concrete summary of the div procedure contains a non-

linear relation, a = bq + r, which is the well-known property of Euclidean division, and
thus will not be obtainable by Linear Relation Analysis, as non-linear relations can not
be represented by convex polyhedra.

4.3 Relational Abstract Interpretation

4.3.1 General Framework

Relational Abstract Domain

A relational abstract domain is an abstract domain providing an abstraction of sets of
binary relations over program states.

Definition 4.3.1 (Relational abstract domain). A relational abstract domain is a com-
plete lattice (R],v,⊥,>,u,t) related to R by a Galois connection (αR, γR).

Example 4.3.1. We consider the set {x, y, z} of numerical variables and the set S = Z3

of variables valuations. We give some abstract relations over S expressed in the convex
polyhedra abstract domain:

r]1 = (x = x0 + 1 ∧ y = y0 ∧ z0 ≥ z ∧ y ≥ 23 ∧ x ≥ 1)

r]2 = (y = 2y0 + 1 ∧ x0 ≤ x ≤ x0 + 2y ∧ 1 ≤ y ≤ z)

It is well-known that we can express abstract relations between numerical states in
the convex polyhedra abstract domain by introducing a doubled vocabulary of variables
X0, X where variables in X0 represent the source state and variables in X represent the
target state. In example 4.3.1, we duplicated variables x, y, z and introduced variables
x0, y0, z0 to denote the initial value of variables x, y, z.

For U ⊆ S, we denote as Id](U) the abstract relation αR(IdU) which is the abstraction
in R] of the identity relation over U .

Definition 4.3.2 (Composition of abstract relations). The composition r]1 ◦ r
]
2 of two

abstract relations r]1, r
]
2 ∈ R] is defined as:

r]1 ◦ r
]
2 = αR(γR(r]1) ◦ γR(r]2))

A relational abstract domain R] induces two abstract domains S]→ and S]← on the set
S of states as follows:

∀U ⊆ S, αS→(U) = αR(U × S) αS←(U) = αR(S × U)
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Chapter 4 Relational Abstract Interpretation

We should note that both abstract domains S]→ and S]← are included in R]. Abstract
domains S]→ and S]← represent a set U of states as an abstract relation where U can be
either abstracted as the source or as the target of the abstract relation respectively.

Definition 4.3.3 (Abstract projections). The abstract source projection src] : R] → S]→
of abstract relations in a relational abstract domain R] is defined as:

src](r]) = αS→(src(γR(r])))

Similarly, we define the abstract target projection dst] : R] → S]← as follows:

tgt](r]) = αS←(tgt(γR(r])))

Relational Abstract Analysis

Let ρ ⊆ S × S be a transition relation over a set S of states. Let ρ] ∈ R] be an upper
bound of its abstraction in the relational abstract domain R] with αR(ρ) v ρ]. In order
to ensure convergence, we assume that the relational abstract domain R] provides both
a widening operator ∇ : R] ×R] → R] and a narrowing operator 4 : R] ×R] → R].

An upper approximation of the transitive closure ρ]? of an abstract relation ρ] can be
obtained by computing the limit r]∇ of an increasing sequence (r]n)n≥0 defined as:{

r]0 = ⊥
r]n+1 = r]n∇(r]n ◦ ρ)

and by computing the limit r]∇4 of a decreasing sequence (r′]n)n≥0 defined as:{
r′]0 = r]∇
r′]n+1 = r′]n4(r′]n ◦ ρ)

The limit r]∇4 is a sound approximation of the transitive closure ρ? of the concrete
transition relation ρ where ρ? ⊆ γR(r]∇4).

Abstract Partition

A relational abstract domain R] induces two abstract domains S]← and S]→ both providing
abstractions of the set S of states. We can define an abstract partition of the abstract
domain S]↔ for each direction ↔∈ {←,→}.

Definition 4.3.4 (Abstract partition). Let S]↔ be an abstract domain obtained from a
relational abstract domain R]. A finite abstract partition δ] ⊆ S]↔ of S]↔ is a finite set
δ] = {S]1, ..., S]n}, such that {Si = γS↔(S]i ) | S

]
i ∈ δ]} is a partition of S.

It is interesting to consider an abstract partition δ] = {S]1, ..., S]n} of S]↔ if the behavior
of a transition system can be split into several distinct behaviors expressed by abstract
elements S]1, ..., S

]
n.

More generally, for any subset U ⊆ S of states, we can define an abstract partition
δ] of U ]

← = αS↔(U) as a finite set δ] = {U ]
1, ..., U

]
n} where {Ui = γS↔(U ]

i ) | U
]
i ∈ δ]} is a

partition of U . This is especially useful when we consider a precondition A ⊆ S and we
are interested in an abstract partition relative to the precondition A, which is an abstract
partition of αS↔(A).
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Partitioned Relational Analysis

Let ρ ⊆ S × S be a transition relation over S. Let δ] = {S]1, ..., S]n} be an abstract
partition of S] = α(S).

For each S]i , S
]
j ∈ δ], we assume that we have an upper bound ρ](S]i , S

]
j) ∈ R] of the

abstraction αR(ρ(Si, Sj)) of ρ(Si, Sj) with αR(ρ(Si, Sj)) v ρ](S]i , S
]
j).

An upper approximation of the vector {ρ]?(S]i , S
]
j) | S

]
i , S

]
j ∈ δ]} can be obtained as

the limit of the increasing-decreasing sequences computed from the following system of
fixpoint equations:

∀i ∈ {1, ..., n},∀i 6= j, ρ]?(S]i , S
]
j) =

n⊔
k=1

ρ]?(S]i , S
]
k) ◦ ρ

](S]k, S
]
j)

ρ]?(S]i , S
]
i ) = Id]

S]
i

t
n⊔
k=1

ρ]?(S]i , S
]
k) ◦ ρ

](S]k, S
]
i )

Abstract Summary of a Procedure

Let p be a procedure represented by a transition system (S, ρ, I, E). We denote as
I] = α(I) the abstraction of initial states and as E ] = α(E) the abstraction of exit states.

Definition 4.3.5 (Abstract summary). The abstract summary of a procedure p described
by a transition system (S, ρ, I, E) is σ]p = ρ]?(I], E ]).

The abstract effect of a call to a procedure p with an abstract parameter passing
mechanism π] : R] → R], located between T ]i and T ]j is ρ](T ]i , T

]
j ) = π](σ]p).

4.3.2 Building Summaries Using LRA

The convex polyhedra abstract domain is a relational abstract domain abstracting a set
of numerical vectors by its convex hull which is its least convex superset. A detailed
presentation of the convex polyhedra abstract domain is given in Chapter 2.

Classical abstract domain operations are available, such as intersection (P1 u P2),
convex hull (P1 t P2), effect of variable assignment (P [x := expr]), widening (P1∇P2),
test for inclusion (P1 v P2) and emptiness (P = ∅). Instead of using a narrowing operator
to ensure the convergence of the decreasing sequence, only a limited number of iterations
of the decreasing sequence is computed. It is sound to do so since all terms of the
decreasing sequence are post-fixpoints of the abstract transfer function. A projection
operation (∃X,P ) also termed existential quantification is provided.

As shown in Example 4.3.1, convex polyhedra can represent abstract input-output
relations. We introduce additional variables to denote initial values and the source of the
relation. We denote as X0 the finite set of variables representing initial values of variables.
We denote as P (X0, X) the convex polyhedron involving variables in X0 denoting initial
values and variables in X denoting current values.

The source and the target projection of an abstract relation r] represented by a convex
polyhedron can be defined straightforwardly using the projection operator.
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Definition 4.3.6. The abstract source projection src] : N n → N n of abstract relations
represented by convex polyhedra is defined as:

src](P (X0, X)) = ∃X,P (X0, X)

Similarly, we define the abstract target projection tgt] : N n → N n as follows:

tgt](P (X0, X)) = ∃X0, P (X0, X)

Example 4.3.2. The source and target projections of the abstract relations defined in
Example 4.3.1 are:

r]1 = (x = x0 + 1 ∧ y = y0 ∧ z0 ≥ z ∧ y ≥ 23 ∧ x ≥ 1)

src](r]1) = (x0 ≥ 0 ∧ y0 ≥ 23)

tgt](r]1) = (x ≥ 1 ∧ y ≥ 23)

r]2 = (y = 2y0 + 1 ∧ x0 ≤ x ≤ x0 + 2y ∧ 1 ≤ y ≤ z)

src](r]2) = (y0 ≥ 0)

tgt](r]2) = (y ≥ 1 ∧ z ≥ y)

The composition of abstract relations expressed as convex polyhedra can be defined
naturally using classical operators.

Definition 4.3.7 (Composition of convex polyhedra). Let r]1 and r]2 be abstract relations
represented by convex polyhedra P1(X0, X1) and P2(X1, X2) over finite sets of variables
X0, X1, X2, X3. The abstract composition of r]1 and r]2 is defined as:

r]1 ◦ r
]
2 = ∃X1, (P1(X0, X1) u P2(X1, X2))

We can compute relational procedure summaries using Linear Relation Analysis where
procedure summaries are input-output relations represented by convex polyhedra.

We introduce X0 variables to denote initial values of procedure parameters. For the
sake of clarity, we duplicate all procedure parameters for the time being, at least in
principle. In practice, we do not have to duplicate a procedure parameter if it is a pure
input parameter or a pure output parameter. Following relational collecting semantics,
we introduce equalities at procedure entry between X0 variables denoting initial values
and X variables denoting current values of procedure parameters.

The relational summary of a procedure is given by the convex polyhedra obtained at
the procedure exit.

4.3.3 Example

We compute an abstract relational summary of the div procedure defined in our Euclidean
division example. We give the system of abstract fixpoint equations over the convex
polyhedra abstract domain associated to the div procedure.
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void div(int a, int b, int * q, int * r)

{

assume(a >= 0 && b >= 1);

1: *q = 0;

*r = a;

2: while

3: (*r >= b)

{

4: *r = *r-b;

*q = *q + 1;

5: }

6:}

P1 = (a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0
∧b = b0 ∧ q = q0 ∧ r = r0)

P2 = P1[q := 0][r := a]
P3 = P2 t P5

P4 = P3 u (r ≥ b)
P5 = P4[r := r − b][q := q + 1]
P6 = P3 u (r ≤ b− 1)

Figure 4.3: System of abstract fixpoint equations associated to the Euclidean division
example using LRA.

A standard Linear Relation Analysis, where the widening operator is applied on P3

during the increasing sequence and the decreasing sequence is limited to 2 iterations, gives
the following fixpoint solution for the div procedure:

P1 = (a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0 ∧ b = b0 ∧ q = q0 ∧ r = r0)
P2 = (a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0 ∧ b = b0 ∧ q = 0 ∧ r = a)
P3 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)
P4 = (a = a0 ∧ b = b0 ∧ r ≥ b ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)
P5 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 1 ∧ b ≥ 1 ∧ a+ 1 ≥ b+ q + r)
P6 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ b ≥ r + 1 ∧ a ≥ q + r)

The program point 6 is the unique exit point of the div procedure. In our system of
abstract fixpoint equations, P6 is the convex polyhedron associated to the exit point of
the div procedure. Although the non-linear property a = bq + r of Euclidean division
can not be expressed in the convex polyhedra abstract domain, we still obtain a rather
weak summary for the div procedure given by P6. We shall also remark in P6 that the
precondition a0 ≥ 0 has been lost. This suggests that preconditions should be considered
more carefully.

4.4 Preconditions

For closed programs, the initial state is generally not relevant, since normally, variables
are explicitly assigned an initial value before being used. Even global variables can be
considered to be assigned by a global initialization procedure executed right before the
main procedure. Global variables may also have a default initial value according to their
type in programming languages such as C. From the point of view of a static analysis
tool, we can consider that even if these default values are implicit from the programmer
side, they can still be seen as explicit variable assignments.

When looking at procedures during a concrete program execution, the initial values
of formal parameters comes from the values passed as actual parameters by a calling
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procedure. Conversely, when considering procedures individually in themselves, the initial
values of parameters are left undetermined and parameters can possibly take initially any
value in their semantic domain with respect to their type.

The correct behavior of a procedure often depends on a precondition, which is a
property constraining the initial values that parameters are allowed to take. We denote
as Ip the concrete precondition of a procedure p. We term as global precondition the
abstraction I]p of the set of legal initial states of a procedure p where I]p = αS→(Ip).

We took into account the global precondition a0 ≥ 0 ∧ b ≥ 1 of the div procedure
in our Euclidean division example. Such a global precondition can be user-supplied, as
a manually given annotation in the program source, or discovered by another analysis
from the calling context, or in a weaker form from the types of parameters. The global
precondition can also be simply > representing the total absence of information about
initial values of parameters.

4.4.1 Widening Under a Precondition

In a relational analysis, a precondition is an obvious invariant, since it is a property on
initial values of procedure parameters and a procedure can not change its initial state.
Thus any concrete summary σp of a procedure p and any concrete relation ρ?(Ip, Si) has
its source within Ip. This is less obvious for an abstract analysis because of the use of
widening.

It may happen that the result r]∇4 of a relational abstract analysis does not satisfy
the invariant given by a precondition, when γ(r]∇4) is not included in Ip × S due to
classical widening operators being defined independently of any procedure precondition.
This is what happened in our Euclidean division example during the computation of an
abstract relational summary of the div procedure.

As a consequence, it is both sound and interesting to use a limited widening operator,
taking into account the procedure precondition during the increasing sequence of the
relational abstract analysis to compute r]∇.

Definition 4.4.1 (Widening limited by precondition). The widening operator
∇I]p

: R] → R] limited by an abstract precondition I]p ∈ R] is defined as:

∀r]1, r
]
2 ∈ R], r]1∇I]p

r]2 = (r]1∇r
]
2) u I]p

Example 4.4.1. In our Euclidean division example, when computing a relational abstract
summary of the div procedure, the classical widening operator was applied on P3 with
P3 = P3∇(P2 t P5). Instead, we limit the widening on P3 by the global precondition of
the div procedure:

P3 = (P3∇(P2 t P5)) u (a0 ≥ 0 ∧ b0 ≥ 1)

We compute a new relational summary of the div procedure according to the following
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system of abstract fixpoint equations:

I] = (a0 ≥ 0 ∧ b0 ≥ 1)
P1 = I] u (a = a0 ∧ b = b0 ∧ q = q0 ∧ r = r0)
P2 = P1[q := 0][r := a]
P3 = (P3∇(P2 t P5)) u I]
P4 = P3 u (r ≥ b)
P5 = P4[r := r − b][q := q + 1]
P6 = P3 u (r ≤ b− 1)

Using Linear Relation Analysis, we obtain the following abstract values for
I], P1, P2, P3, P4, P5, P6:

I] = (a0 ≥ 0 ∧ b0 ≥ 1)
P1 = (a = a0 ∧ b = b0 ∧ q = q0 ∧ r = r0 ∧ b ≥ 1 ∧ a ≥ 0)
P2 = (r = a ∧ a = a0 ∧ b = b0 ∧ q = 0 ∧ b ≥ 1 ∧ a ≥ 0)
P3 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)
P4 = (a = a0 ∧ b = b0 ∧ r ≥ b ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)
P5 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 1 ∧ b ≥ 1 ∧ a+ 1 ≥ b+ q + r)
P6 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ b ≥ r + 1 ∧ a ≥ q + r)

The relational summary σ of the div procedure given by P6 at the unique exit point of
the procedure is:

σdiv = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ b ≥ r + 1 ∧ a ≥ q + r)

We have the precondition a0 ≥ 0 in σdiv. Instead of just recovering the precondition
a0 ≥ 0, we obtained the stronger constraint a ≥ q + r. This suggests that using a
widening limited by the procedure precondition is not only a technique to preserve and
recover the precondition in the procedure summary, and that beyond its initial intended
objective it is an effective general precision improvement technique.

4.5 Conclusion

We saw that the relational semantics of a procedure can be derived from the usual state
collecting semantics, using additional variables to denote initial values of variables. It
is not really new [69] in principle but a new general formalization that we did not find
elsewhere.

The relational semantics of a procedure can be used in a forward analysis to discover
abstract input-output relations between the possible values of procedure parameters at a
given control location and their initial values at procedure entry. The abstract relation
discovered at the exit node of a procedure is an approximate relational summary of the
procedure behavior.

The approach described in this chapter forms the basis of a general framework to
compute relational procedure summaries, which can be instantiated with any relational
abstract domain.

We presented the application of this approach to Linear Relation Analysis and the
convex polyhedra abstract domain to obtain relational procedure summaries which are
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sets of linear constraints. Finally, we discussed the importance of preconditions for precise
procedure summaries. Preconditions should be the object of a special attention, and be
handled carefully, notably through the use of a limited widening.

A single convex polyhedron is generally not precise enough due to convex approxima-
tion. It can not distinguish very different behaviors of procedures. In the next chapter, we
propose to compute disjunctive relational procedure summaries driven by preconditions.
Disjunctive relational summaries will be finite sets of abstract relations, representing dif-
ferent procedure behaviors, represented by elements of a relational abstract domain.
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Disjunctive Relational Procedure
Summaries

We presented the computation of relational summaries based on the relational collecting
semantics of procedures. We shown that relational collecting semantics can be defined in
terms of the usual collecting semantics of procedures by introducing variables denoting
initial values of parameters. As it can be expected, concrete relational summaries are not
computable by machine in general. We departed from them and described how abstract
relational summaries can be computed effectively, using a classical analysis by abstract
interpretation over a relational abstract domain, which is able to discover approximations
of relations over states.

We had a particular focus on the use of trace partitioning to compute approximations
of reachable relations over states and taking care of preconditions. In this chapter, we
propose to refine the partitioning by distinguishing different calling contexts, represented
by preconditions. We can see calling contexts as sets of possible initial states of procedures,
giving initial values to procedure parameters. Since preconditions are subsets of initial
states, they provide a simple way to represent calling contexts.

Usual abstract domains are generally not closed under disjunction, like octagons and
convex polyhedra. In a sense, not being able to express disjunctions, joining together
disjuncts into a single, possibly greater abstract value, is the essence of abstraction. It is
thus quite natural in order to have more precise procedure summaries to consider explicit
disjunctions of abstract relations.

Restrictions must be applied to be able to compute on such disjunctions. Moreover, to
be able to use a disjunctive procedure summary to analyze a procedure call, the values of
actual parameters must determine which disjunct of the summary applies. Thus distinct
disjuncts should have disjoint sources.

We present a method to compute disjunctive relational summaries of procedures based
on a recursive refinement of preconditions enabling each disjunct to express the behavior
of a procedure on a distinct set of calling contexts. We give several heuristics for automatic
precondition partitioning. We also show how disjunctive summaries are used to get the
abstract effect of a call in the calling procedure.

Finally, we apply our approach to summaries of recursive procedures. As recursive
procedures depend on themselves from an interprocedural point of view, the summary of
a recursive procedure is computed in terms of itself.
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Chapter 5 Disjunctive Relational Procedure Summaries

5.1 Motivating Example

We consider the very simple abs procedure given in Figure 5.1, which computes the
absolute value of its parameter x and stores the result in r. Its control-flow graph is given
on the right-hand side.

void abs(int * r, int x)

{

if(x >= 0){

*r = x;

} else {

*r = -x;

}

}

x ≥ 0?
r := x

x ≤ −1?
r := −x

ν0

ν1

ν2 ν3

ν4

ν5

Figure 5.1: The simple abs procedure computing the absolute value of the parameter x
and storing the result in r.

We compute a relational summary of the abs procedure using Linear Relation Analysis.
Following the method presented in Chapter 4, we consider this system of abstract fixpoint
equations in which a convex polyhedra Pi is associated to each program node νi:

P0 = (r = r0 ∧ x = x0)
P1 = P0

P2 = (P1 u (x ≥ 0))[r := x]
P3 = (P1 u (x ≤ −1))[r := −x]
P4 = P2 t P3

P5 = P4

We introduced additional variables x0 and r0 to denote the initial value of the parameters
x and r respectively, and we added equality constraints x = x0 and r = r0 in P0 to record
the initial value of x and r. A classical Linear Relation Analysis gives the following results
for P2, P3, and P5:

P2 = (r = x0 ∧ r = x ∧ r ≥ 0)
P3 = (r = −x0 ∧ r = −x ∧ r ≥ 1)
P5 = (x = x0 ∧ r ≥ x ∧ r ≥ −x)

Since ν5 is the unique exit node of the abs procedure, its relational summary σabs = P5 is
as follows:

σabs = (x = x0 ∧ r ≥ x ∧ r ≥ −x)

This is a rather weak summary for such a simple procedure, more so considering the
precise relations r = x and r = −x discovered respectively in P2 and P3. This loss of
precision is due to the join operator applied for P4, which computes the convex hull of P2

and P3. The convex polyhedra abstract domain, as most numerical abstract domains, is
not able to represent exactly the disjunction P2 ∨ P3, as it is not a convex set.
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Although very simple, the abs procedure has two distinct behaviors, represented by P2

and P3, which are triggered depending on the initial value of the parameter x respectively
when x ≥ 0 and when x ≤ −1 initially. A precise procedure summary should express
properly these two behaviors in a separate way.

Thus we can see on this simple procedure that we need to keep separate behaviors
of procedures which are distinct in some sense, to obtain precise procedure summaries.
We propose a method to compute disjunctive relational summaries of procedures, each
element of the summary being an abstract input-output relation, denoting a distinct
procedure behavior.

5.2 Disjunctive Refinement of Abstract Relations

We described in Chapter 4 how to compute procedure summaries following the relational
collecting semantics of procedures. These relational summaries were made of a single
abstract input-output relation, represented by an element of a relational abstract domain.
We use this approach as a basis for the computation of disjunctive relational summaries.

5.2.1 General Framework

We present the refinement of abstract input-output relations into finite disjunctions of
abstract relations.

Definition 5.2.1 (Disjunctive Refinement of an Abstract Relation). Let p be a procedure
described by a transition system (S, ρ, I, E) with I ⊆ S being the global precondition of
p and I] = α(I) being the abstraction of the global precondition I. Let δ] = {S]1, ..., S]n}
be an abstract partition of the set S of states.

A disjunctive refinement of the abstract relation ρ]?(S]i , S
]
j), for S]i , S

]
j ∈ δ], is a finite

set R = {r]?1 , ..., r]?m} of abstract relations such that:

1. ∀k ∈ {1, ...,m}, r]?k v ρ]?(S]i , S
]
j)

2. ∀k1, k2 ∈ {1, ...,m}, k1 6= k2 ⇒ γ(src](r]?k1)) ∩ γ(src](r]?k2)) = ∅

3.
m⋃
k=1

γ(src](r]?k )) = γ(S]i )

We assume that, for a given procedure p, we have an abstract partition δ] = {S]1, ..., S]n}
of the set S of states of the procedure p. This means that each member S]i ∈ δ] of the
abstract partition δ] denotes a part of the set S of states, and that the set {γ(S]i ) | S

]
i ∈ δ]}

of the concretizations γ(S]i ) of each member S]i ∈ δ] is a partition of S.

The abstract relation ρ]?(S]i , S
]
j), for some S]i , S

]
j ∈ δ], is the abstract transitive closure

between S]i and S]j , denoting all procedure behaviors starting from a state described by S]i
and ending in a state described by S]j . Each disjunct r]?k of the refinement R = {r]?1 , ..., r]?m}
of the abstract relation ρ]?(S]i , S

]
j) is itself an abstract relation, representing a part of these

behaviors.
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Chapter 5 Disjunctive Relational Procedure Summaries

Soundness of the Refinement

We first give a soundness condition for each disjunct r]?k ∈ R. We require that each

disjunct r]?k must be included in the original abstract relation ρ]?(S]i , S
]
j) where:

r]?k v ρ]?(S]i , S
]
j)

This ensures that each disjunct r]?k ∈ R denotes a part of the procedure behaviors in the

original abstract relation ρ]?(S]i , S
]
j).

Partition of the Source

As we intend to use disjunctions of abstract relations to represent distinct procedure
behaviors directed by the initial values of parameters triggering that behavior, the sources
of each disjunct r]?k ∈ R must be distinct in some way.

The concrete sources γ(src](r]?k )) of each disjunct r]?k ∈ R of the refinement R must
be disjoint. This is expressed in Definition 5.2.1 by the following requirement:

∀k1, k2 ∈ {1, ...,m}, k1 6= k2 ⇒ γ(src](r]?k1)) ∩ γ(src](r]?k2)) = ∅

The concretization function γ of a Galois connection is known to be a morphism for
the greatest lower-bound operator:

∀d]1, d
]
2 ∈ R], γ(d]1 u d

]
2) = γ(d]1) ∩ γ(d]2)

Thus we have fortunately that:

∀r]1, r
]
2 ∈ R], src](r]1) u src](r

]
2) = ⊥ ⇔ γ(src](r]1)) ∩ γ(src](r]2)) = ∅

Therefore in practice we can check that the abstract sources of the disjuncts are disjoint
in the abstract domain:

∀k1, k2 ∈ {1, ...,m}, k1 6= k2 ⇒ src](r]?k1) u src
](r]?k2) = ⊥

Finally, the set {src](r]?k ) | r]?k ∈ R} of the abstract sources of the disjuncts r]?k ∈ R of a

refinement R must cover the abstract source S]i of the original abstract relation ρ]?(S]i , S
]
j),

from the point of view of the concrete domain in order to encompass all possible initial
states of the procedure. This is why the set {src](r]?k ) | r]?k ∈ R} of abstract sources of

the disjuncts must be an abstract partition of S]i .

Example 5.2.1. We give an example of disjunctive refinement of an abstract relation
represented by convex polyhedra. We consider the abstract relation r]1 given in Example
4.3.1, which is defined as follows:

r]1 = (x = x0 + 1 ∧ y = y0 ∧ z0 ≥ z ∧ y ≥ 23 ∧ x ≥ 1)

The abstract source src](r]1) of r]1 is:

src](r]1) = (x0 ≥ 0 ∧ y0 ≥ 23)
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5.2 Disjunctive Refinement of Abstract Relations

We may want to refine r]1 according to the initial value of x compared to the initial value of
y, leading to two cases for the initial values of parameters x and y, which can be expressed
by the inequality constraints x0 < y0 and x0 ≥ y0. Thus we can refine r]1 into r]1,1 and

r]1,2, according to the constraints x0 < y0 and x0 ≥ y0 as follows:

r]1,1 = r]1 u (x0 < y0) = (x = x0 + 1 ∧ y = y0 ∧ y ≥ x ∧ z0 ≥ z ∧ y ≥ 23 ∧ x ≥ 1)

r]1,2 = r]1 u (x0 ≥ y0) = (x = x0 + 1 ∧ y = y0 ∧ z0 ≥ z ∧ y ≥ 23 ∧ x ≥ y + 1)

We denote this refinement as R = {r]1,1, r
]
2,2}. The disjuncts r]1,1 and r]1,2 have disjoint

abstract sources src](r]1,1) and src](r]1,2):

src](r]1,1) u src](r
]
1,2) = (x0 < y0 ∧ y0 ≥ 23 ∧ x0 ≥ 0) u (x0 ≥ y0 ∧ y0 ≥ 23 ∧ x0 ≥ 0) = ⊥

We should also see that the concretizations γ(src](r]1,1)) and γ(src](r]1,2)) of the abstract

sources of r]1,1 and r]1,2 are covering γ(src](r]1)) as follows:

γ(src](r]1,1)) ∪ γ(src](r]1,2)) = {(x0, y0, z0) ∈ Z3 | x0 ≥ 0 ∧ y0 ≥ 23}
= γ(src](r]1))

and naturally, as stated earlier, the abstract sources src](r]1,1) and src](r]1,2) are disjoint
in the abstract domain:

src](r]1,1) u src](r
]
1,2) = ⊥

Disjunctive Refinements as Conjunctions of Implications

A disjunctive refinement R = {r]1, ..., r]m} of an abstract relation ρ]?(S]i , S
]
j) is a finite set

of possibly smaller abstract relations r]1, ..., r
]
m which can be considered as formulas over

variables denoting initial values and variables denoting current values. The disjunctive
refinement R can be seen as a disjunctive formula constraining the initial and current
values of variables:

R =
m∨
k=1

r]k

Since a disjunctive refinement is directed by the abstract sources of its members which
are disjoint, it can be also seen as a conjunction of implications:

R =
m∧
k=1

(src](r]k)⇒ r]k)

5.2.2 Refinement by Precondition Partitioning

We are interested in computing disjunctive relational summaries of procedures directed by
the initial values of parameters leading to that behavior. Each of these sets of initial values
should be a distinct subset Ik ⊆ I of the global precondition I of the procedure. They
should form a partition δI = {I1, ..., Im} of the global precondition I of the procedure.

We should thus construct disjunctive relational procedure summaries from an abstract
partition δ]I = {I]k = α(Ik) | Ik ∈ δ} of the global precondition I of the procedure.
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Chapter 5 Disjunctive Relational Procedure Summaries

We can construct a disjunctive refinement R = {r]?1 , ..., r]?m} of the abstract transitive
closure ρ]?(I], S]j) from an abstract partition δ]I = {I]1, ..., I]m} of the global precondition
I by computing:

r]?k = ρ]?(I]k, S
]
j)

for each I]k ∈ δ
]
I of the abstract partition δ]I .

Definition 5.2.2 (Precondition partitioning). The disjunctive refinement
R = {r]?1 , ..., r]?m} of ρ]?(I], S]j) according to the abstract partition δ]I of the global
precondition I is defined as:

∀k ∈ {1, ...,m}, r]?k = ρ]?(I]k, S
]
j)

The partitioning of preconditions is used to define disjunctive relational procedure
summaries consisting of a finite set of abstract input-output relations. Each abstract
relation, as a member of the procedure summary, describes a distinct part of the procedure
behavior. It is separated from the others by the particular precondition leading to that
behavior. They are covering collectively the global precondition of the procedure. By
using an abstract partition of the global precondition, we ensure that all possible initial
states of the procedure are accounted for.

We give below a definition of disjunctive relational summaries based on a partitioning
of the global precondition.

Definition 5.2.3 (Disjunctive relational summary). Let p be a procedure represented
by a transition system (S, ρ, I, E). Let δ]I = {I]1, ..., I]m} be a finite abstract partition
of the global precondition I of the procedure p. The disjunctive relational summary
Rp = {r]1, ..., r]m} of the procedure p with respect to the abstract partition δ]I of the
precondition I is defined as:

∀r]k ∈ R, r]k = ρ]?(I]k, E
])

Example 5.2.2. We computed previously the following relational summary for the abs

procedure:

σabs = (x = x0 ∧ r ≥ x ∧ r ≥ −x)

The abs procedure has the implicit precondition I = Z2 which is abstracted by I] = >
in the convex polyhedra abstract domain.

x ≥ 0?
r := x

x ≤ −1?
r := −x

ν0

ν1

ν2 ν3

ν4

ν5

P2 = (r = x0 ∧ r = x ∧ r ≥ 0)
P3 = (r = −x0 ∧ r = −x ∧ r ≥ 1)
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5.2 Disjunctive Refinement of Abstract Relations

We can distinguish the two procedure behaviors expressed by P2 and P3 according to
the sign of the x parameter, respectively when x ≥ 0 and when x ≤ −1. We construct an
abstract partition δI = {I]1, I

]
2} of the global precondition I of the abs procedure:

δI = {I]1, I
]
2}

I]1 = (x0 ≥ 0)

I]2 = (x0 ≤ −1)

The summary σabs of the abs procedure is an approximation of the transitive closure
ρ]?(I], E ]) with ρ]?(I], E ]) v σabs. The summary σabs can be refined intoR = {r]1, r

]
2} where

abstract relations r]1 and r]2 are obtained by computing approximations of ρ]?(I]1, E ]) and
ρ]?(I]2, E ]).

Computing summary member r]1 with precondition I]1

We compute the summary member r]1 as a sound approximation of ρ]?(I]1, E ]). A Linear
Relation Analysis of the abs procedure under the precondition I]1 = (x0 ≥ 0) gives the
following results:

P0 = (r = r0 ∧ x = x0 ∧ x ≥ 0)
P1 = (r = r0 ∧ x = x0 ∧ x ≥ 0)
P2 = (r = x0 ∧ x = x0 ∧ r ≥ 0)
P3 = ⊥
P4 = (r = x0 ∧ r = x ∧ r ≥ 0)
P5 = (r = x0 ∧ r = x ∧ r ≥ 0)

We have P3 = ⊥, thus the program point ν3 is unreachable under I]1. It is worth to
observe and to keep in mind that cleverly chosen preconditions can make unreachable a
given program location. The summary member r]1 under precondition I]1 is given by P5

as follows:
r]1 = (r = x0 ∧ r = x ∧ r ≥ 0)

Computing summary member r]2 under precondition I]2

Similarly, we compute r]2 as an approximation of ρ]?(I]2, E ]) using Linear Relation Analysis.
The summary member r]2 under precondition I]2 is as follows:

r]2 = (r = −x0 ∧ r = −x ∧ r ≥ 1)

Disjunctive Relational Summary of the abs Procedure

We computed a disjunctive relational summary R = {r]1, r
]
2} of the abs procedure directed

by an abstract partition δ]I = {I]1, I
]
2} of its global precondition I = Z2 with I]1 = (x0 ≥ 0)

and I]2 = (x0 ≤ −1). The disjunctive relational summary R of the abs procedure is:

R = {r]1, r
]
2}

r]1 = (r = x0 ∧ r = x ∧ r ≥ 0)

r]2 = (r = −x0 ∧ r = −x ∧ r ≥ 1)
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Chapter 5 Disjunctive Relational Procedure Summaries

5.2.3 Abstract Effect of a Call

We show how to use the disjunctive summary R of a procedure p to get the abstract
effect of a call to p in the calling procedure. We denote as π] : R] → R] a parameter
passing mechanism which renames, in abstract relations, formal parameters into actual
parameters.

Definition 5.2.4 (Abstract Effect of a Call). Let p be a procedure represented by a
transition system (S, ρ, I, E). Let R = {r]1, ..., r]m} be a disjunctive relational summary of
the procedure p. The abstract effect of a call to the procedure p situated between T ]i and
T ]j with a parameter-passing mechanism π] : R] → R] is defined as follows:

ρ(T ]i , T
]
j ) =

⊔
r]k∈R

π(r]k)

Example 5.2.3. The effectQ′ of the call statement abs(&r,&x) on the convex polyhedron
Q = (x ≥ 10) is computed as follows:

Q′ = (∃x0, Q[x/x0] u r]1) t (∃x0, Q[x/x0] u r]2)
= (∃x0, (x0 ≥ 10) u (r = x0 ∧ r = x ∧ r ≥ 0))
t(∃x0, (x0 ≥ 10) u (r = −x0 ∧ r = −x ∧ r ≥ 1))

= (r = x ∧ r ≥ 10) t ⊥
= (r = x ∧ r ≥ 10)

5.2.4 Application to Linear Relation Analysis

We are now interested in discussing some specific considerations for the construction and
manipulation of disjunctive relational summaries, particularly their application to Linear
Relation Analysis with abstract relations being represented by convex polyhedra.

Disjunctive Polyhedral Summaries

Let p be a procedure represented by a transition system (S, ρ, I, E). Let X be the finite
set of the formal parameters of p. Let I] be its polyhedral abstract global precondition
with I = α(I]).

A disjunctive relational summary of the procedure p is a finite set of convex polyhedra
R = {R1, ..., Rm} where each member Rk ∈ R of the summary is a convex polyhedron
representing an abstract input-output relation. The finite set {Ik}k∈{1,...,m} of convex
polyhedra defined as:

∀k ∈ {1, ...,m}, I]k = src](Rk) = ∃X,Rk

constitutes a finite abstract partition of the global precondition I of the procedure p.
This is analogous to what we introduced for general abstract relations, but now stated
specifically for convex polyhedra. We should note that the abstract source operation src]

is expressed through the variable elimination operation on convex polyhedra.
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5.2 Disjunctive Refinement of Abstract Relations

Polyhedron Transformer of a Procedure Call

Let q be a procedure calling the procedure p. We assume that a call to the procedure p in
the procedure q is denoted as a special edge (ni, nj) between two program nodes ni and
nj in the control-flow graph of the procedure q. This configuration is illustrated in Figure
5.2. The procedure p has a finite sequence X = (x1, .., xn) of formal parameters and the
calling procedure q supplies the finite sequence A = (a1, .., an) of actual parameters in the
call to procedure p, which is labeled on the edge (ni, nj) as follows:

call p(a1, ..., an)

For a discussion of our assumptions regarding procedure parameters, see Section 4.2.2.
We assume that the length of the sequence A of actual parameters supplied by the calling
procedure q is equal to the length of the sequence X of formal parameters expected by
the called procedure p. We also assume that actual parameters are distinct variables.

Procedure q

ni

nj

call p(a1, ..., an)

Procedure p

Summary

R = {R1, ..., Rm}

Figure 5.2: Graphical illustration of a procedure q calling a procedure p with actual
parameters A = (a1, ..., an).

We denote as Qi the convex polyhedron associated to ni in the calling procedure q
right before the call to p and as Qj the convex polyhedron associated to nj just after the
call. In order to avoid a top-down analysis of the procedure p each time the control-flow
edge (ni, nj) is examined, we compute the convex polyhedron Qj after the call in terms
of the summary R of p and the convex polyhedron Qi discovered before the call.

The application of a disjunctive summary involves a substantial amount of variable
renaming to encode the parameter passing mechanism.

Given the sequence A = (a1, ..., an) of actual parameters, we introduce an auxiliary
sequence A0 = (a01, ..., a

0
n) of variables denoting the values of actual parameters just before

the call to the procedure p.

We transform the calling context Qi into a property Qi[A/A
0] on variables denoting

actual parameters before the call.

Then, we match A0 variables denoting initial values of actual parameters in the input
property Qi[A/A

0] with the X0 variables denoting initial values of formal parameters in
each summary member Rk ∈ R. We denote as Rk[X

0/A0] the renaming, in a summary
member Rk ∈ R, of each variable x0 ∈ X0 into a0i ∈ A0.
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Chapter 5 Disjunctive Relational Procedure Summaries

Finally, we also rename the X variables denoting final values of procedure parameters
into variables denoting the values of actual parameters after the call to p. For each
summary member Rk ∈ R, we compute:

Rk[X
0/A0][X/A]

Definition 5.2.5 (Polyhedron Transformer of a Procedure Call). The convex polyhedron
Qj associated to nj after the call to the procedure p in the procedure q is defined as:

Qj =
m⊔
k=1

(∃A0, Qi[A/A
0] uRk[X

0/A0][X/A])

It collects the contributions of each summary member Rk of the called procedure p, which
are constrained by the calling context Qi. A renaming of variables ties actual parameters
in the caller with the formal parameters of the called procedure.

5.3 Partition Refinement

We saw how to compute disjunctive relational summaries of procedures given an abstract
partition of the global precondition of a procedure. This abstract partition of the global
precondition will be sometimes simply termed the partition of the summary.

The precondition of a procedure is the set of admissible initial values of parameters. We
get this global precondition either in a very simple way, from the the types of parameters,
or right from above, in the form of a user-given annotation. In the worst case, or in the
absence of any specific property of initial values of parameters, the global precondition of
a procedure can be chosen soundly to be the universal condition.

When we defined disjunctive relational summaries, we assumed that we had, given
before our hands, an abstract partition of the global precondition of a procedure. We
discuss how the abstract partition of the global precondition can be computed effectively.

Different objectives can be pursued regarding the computation of partitions of pre-
conditions. They are used to separate procedure behaviors which would involve a great
loss of precision if they would have been represented by a single element of a relational
abstract domain.

Thus we may be interested in choosing an abstract partition which tries to maximize
the separation of highly different procedure behaviors, in order to avoid that loss of
precision. We also want to limit the size of disjunctive relational summaries, with a
regard to the number of analyses which are computed for a given procedure. So, we have
here, as in some other occasions, a tradeoff between expressivity and cost. We propose
several heuristics corresponding to various intents and tradeoffs.

5.3.1 Refinement Heuristics

We can split recursively the global precondition of a procedure, into new preconditions,
which when taken back together, cover all the behaviors which were previously described
by the global precondition alone.

We say that these new preconditions refine the global precondition of the procedure.
We call refinement the process of splitting a precondition and refinement heuristic the
algorithm or scheme describing this process.
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Definition 5.3.1 (Refinement of a Precondition). Let p be a procedure described by a
transition system (S, ρ, I, E). Let I] be the global abstract precondition of the procedure
p, such that I ⊆ γ(I]). Let A] be an abstract precondition of p such that A] v I].

Two preconditions A]1 and A]2 are said to refine the precondition A] if they are covering
A] as follows:

A]1 t A
]
2 = A]

We do not require in the previous definition that the two preconditions A]1 and A]2 don’t
intersect since we are only interested in their covering of the abstract precondition A] in
order for the admissible initial states denoted by A] to be preserved by the refinement.

5.3.2 Refinement According to Local Reachability

We present a first refinement heuristic called refinement according to local reachability. Its
overall principle is to refine a precondition according to the abstract relation discovered
at a given control point of a procedure, and particularly according to the information
relative to the conditions under which that control point may be possibly reachable or
not.

Intuitively, for a given abstract relation r]k discovered at a program point νk in a

procedure p, the abstract source src](r]k) of r]k is a property on initial values of parameters,
which have been propagated along paths in the procedure during a relational analysis.
Since the abstract source src(r]k) is a property on the initial states of the procedure p,

it is thus a precondition of p. More precisely, the abstract source src(r]k) is a necessary
abstract precondition for the program point νk to be reachable in the procedure p.

Complementable Abstract Values

We want to characterize procedure behaviors where a given control point is not reachable.
We believe that, for some well-chosen control points in the procedure, the separation of
procedure executions according to whether that particular program point is reachable
or not can lead to great insights on the procedure behavior. We present the principles
enabling that separation.

As the abstract precondition I]k = src](r]k) is a necessary precondition for the control
point νk to be reachable, we would like to compute a precondition under which νk is
unreachable as some sort of negation of I]k. This negation operation is the complementation
of an abstract value, and the values for which such a complement value exists are said to
be complementable.

Definition 5.3.2 (Complementable abstract value). Let (D],v,t,u,⊥,>) be an ab-
stract domain related to a concrete domain (D,⊆,∪,∩, ∅) by a Galois connection (α, γ).
An abstract value d] ∈ D] is said to be complementable if there exists an abstract value
d] ∈ D] termed its complement such that:

1. d] u d] = ⊥
2. γ(d]) ∪ γ(d]) = D

We can note that d] being disjoint from its complement d] implies that this is also the
case in the concrete domain, such that γ(d]) ∩ γ(d]) = ∅.
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γ(d]) γ(d])

d] d]

γ γ

Figure 5.3: Illustration of the complement d] of an abstract value d].

Example 5.3.1. In the convex polyhedra abstract domain, only half-spaces are comple-
mentable, which are the abstract values defined by a single linear inequality. We give
below some examples of complementable abstract values, along with their complement,
in the convex polyhedra abstract domain. All involved variables are integers.

d]1 = (x < y) d]1 = (x ≥ y)

d]2 = (x < C) d]2 = (x ≥ C) where C is a constant

d]3 = (2x+ 3y ≤ z + t) d]3 = (2x+ 3y ≥ z + t+ 1)

Refinement of the Global Precondition

As before, we denote as I]k = src](r]k) the necessary abstract precondition for a control
point νk in the procedure p to be reachable. A sufficient precondition I

′] for νk to be
unreachable in the procedure p can be obtained if there exists a complementable abstract
value s] ∈ D] containing I]k with I]k v s] defined as:

I
′] = I] u s]

For the convex polyhedra abstract domain, it means that the complementable abstract
value s] is an half-space, in which I]k is included, since only half-spaces are complementable

for convex polyhedra. Therefore s] can be a constraint of the convex polyhedron I]k.

Definition 5.3.3 (Refinement According to Local Reachability). Let p be a procedure
represented by a transition system (S, ρ, I, E). Let I] be the abstract global precondition
of the procedure p, such that I = γ(I]). Let δ] = {S]1, ..., S]n} be a finite abstract partition
of the set S of states.

Let {r]∇4k (I], S]k)}k=1...n be the result of a relational analysis of the procedure p from

the abstract precondition I], such that each abstract relation r]∇4k (I], S]k) of the result is

an approximation of ρ]?(I], S]k).

For a given member S]k ∈ δ] of the abstract partition δ] of S, the abstract source

I]k = src](r]∇4k (I], S]k)) of the abstract relation r]∇4k (I], S]k) discovered for S]k is a necessary

precondition for S]k to be reachable. If s] is a complementable abstract value such that:

1. I]k v s]
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2. I
′] = I] u s] 6= ⊥ and I

′′] = I] u s] 6= ⊥
then I

′] and I
′′] are refining the global abstract precondition I]. The condition I

′] is a
sufficient precondition for S]k to be unreachable.

We denote as RLRk(I
]) = {I ′], I ′′]} a refinement according to local reachability of

the global abstract precondition I] into the two new abstract preconditions I
′] and I

′′],
with respect to the abstract relation r]∇4k (I], S]k) discovered for Sk by a relational analysis
starting with I].

The member S]k of the abstract partition δ] of the set S of states of the procedure p
can be the set of all states associated to a given control location νk in p. In that case
r]∇4(I], S]k) is the abstract relation discovered by a classical relational analysis at νk. We

only use the abstract relation r]k discovered at a given control location νk by a relational
analysis to refine the precondition I], hence the term of refinement according to local
reachability.

Algorithm

The refinement according to local reachability can be seen as consisting of the following
steps:

1. Analyze the procedure p with a classical relational analysis, starting with an abstract
precondition I]. We denote as {r]k}k=1,..,n the results discovered for each control
point ν1, ..., νn of the procedure p.

2. Choose a control point νk in the procedure p such that r]k 6= ⊥.
3. Choose a separating abstract value s] ∈ D], which is complementable, such that
src(r]k) v s], for which the following properties hold:

I
′] = I] u s] 6= ⊥
I
′′] = I] u s] 6= ⊥

We hold the intuition that the reachability of some well chosen control points in a
procedure, and the conditions leading to it, denote interesting cases of the procedure
behavior. With respect to callers of the procedure, we would like that calling contexts
have an empty intersection with as much summary members as possible, to lessen the loss
of precision during the computation of the effect of a call.

5.3.3 Refinement According to the Summary of a Called
Procedure

In the previous heuristic, we compute a refinement of the precondition of a procedure p
from the results of an analysis of p, with the intent to separate, by an explicit disjunction
of calling contexts, some interesting behaviors of p, with the hope that they may represent
typical cases of the procedure usage by its potential callers.

The effect of a call to a procedure with a disjunctive summary R = {σ]k}k=1,...,m

defined in 5.2.5 involves a least upper-bound in the calling procedure which is likely to
lose precision. Thus it can be interesting to refine the partitioning of the caller to split
this least upper-bound according to the disjunctive summary of the called procedure.
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Applicability of Summary Members

We are interested in deriving conditions under which a given summary member σ]k is
applicable at a call site in a caller, with respect to the possible values of actual parameters.

A summary member σ]k ∈ R of a procedure p is an abstract input-output relation,
respectively between initial and final values of formal parameters of the called procedure
p. The abstract source src](σ]k) is thus a condition on the formal parameters of the

procedure p for σ]k to be applicable. More properly, the formal parameters satisfy the

property tgt](σ]k) at the end of an execution of the procedure p, if their initial values

satisfy the condition src](σ]k).
From the point of view of the caller, the actual parameters satisfy the property

π](tgt](σ]k)) under the condition π](src](σ]k)) where π] is a parameter-passing mechanism.

We can say that the effect on actual parameters in the caller, described by π](σ]k), only

happen under the condition π](src](σ]k)), on the values of actual parameters just before

the call. Let us denote as J ]
k = π](src](σ]k)) the condition on actual parameters for σ]k to

be applicable at a given call site in the calling procedure.

Refinement of the Global Precondition

We want to refine the abstract precondition I] ∈ D] of the caller according to whether
the summary case σ]k is applicable or not.

Let ni be a control point in a procedure calling the procedure p just before the call to
p. The control point ni will also be termed a call site to the procedure p. This situation
is illustrated in Figure 5.2.

Using a classical relational analysis, r]i is the abstract relation discovered at ni before
the call p under the abstract precondition I]. Then I]k = src](r]i u Jk) is a necessary
precondition of the caller for the condition Jk to be satisfiable, and thus for the summary
case σ]k to be applicable at the call site ni.

We thus have a way to express the applicability of a summary case σ]k of a called

procedure in terms of a precondition I]k of the caller.
As for the refinement according to local reachability, we can separate the executions of

the caller in which the summary case σ]k is applicable, from the executions in which it is
not, by splitting the abstract precondition I] of the caller according to a complementable
abstract value s] ∈ D] such that I]k v s]. The condition I]k is entirely contained in s] and

thus the summary case σ]k is applicable, Jk is satisfied, when s] holds. As a consequence,

conversely, the summary case σ]k do not apply when the complement s] is satisfied.
We can split the precondition I] of q into two new preconditions I

′] and I
′′] according

to the separating value s] and its complement s]. The separation of I] into I
′] and I

′′] is
defined as:

I
′] = I] u s]
I
′′] = I] u s]

Definition 5.3.4 (Refinement According to the Summary of Called Procedures). Let
p be a procedure with a disjunctive relational summary Rp = {σ]k}k=1,...,m. Let q be a
procedure represented by a transition system (S, ρ, I, E) calling the procedure p. Let I]

be the abstract global precondition of the procedure q where γ(I]) = I. Let π] : D] → D]

be the parameter-passing mechanism corresponding to the call of p.
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Let σ]k ∈ Rp be a member of the summary of p and let Jk denote the precondition of σ]k
with Jk = π](src](σ]k)). In the calling procedure q, I]k = src](r]∇4(I], Jk)) is a necessary

precondition of q for Jk to be satisfiable and the condition for σ]k to be applicable in the
calling procedure q. If s] ∈ D] is a complementable abstract value such that:

I]k v s]

I
′]
k = I] u s] 6= ⊥ ∧ I

′′]
k = I] u s] 6= ⊥

then I
′] and I

′′] are refining the global precondition I] of the procedure q. The condition
I
′] is a sufficient precondition of q for Jk to be unsatisfiable.

We denote as RSCP]
k(Rp, I

]) = {I ′], I ′′]} a refinement of the abstract precondition I]

of a calling procedure according to the summary case σ]k ∈ Rp of the summary Rp of the
called procedure p.

Algorithm

The refinement of the abstract precondition I] of a procedure q according to the summary
of a called procedure p can be seen as consisting of the following steps:

1. Analyze the calling procedure q with a classical relational analysis, starting with
an abstract precondition I]. We denote as {r]c}c=1,...,n the results obtained for each
control point of the procedure q.

2. Choose a control point c in the procedure q located before a call to the procedure
p, such that r]c 6= ⊥.

3. Choose a member σ]k ∈ Rp of the disjunctive summary Rp of the called procedure
p.

4. Compute Jk = π](src](σ]k)) and I]k = src](r]∇4(I],Jk)).
5. Choose a separating abstract value s] ∈ D], which is complementable, such that
I]k v s], for which the following properties hold:

I
′] = I] u s] 6= ⊥
I
′′] = I] u s] 6= ⊥

An example of refinement according to summaries of called procedures is given in 5.5.

5.3.4 Iterative Refinement

We presented two heuristics in the previous sections to refine the global precondition of a
procedure. The refinement according to local reachability and the refinement according
to the summaries of called procedures are embodying different ways to compute an ab-
stract partition of a precondition. These partitioning heuristics can be used iteratively,
in a repeated fashion, to obtain more and more refined abstract partitions of the global
precondition.

Our proposal is to build the summary of a procedure as a sequence of analyses, working
on more and more refined partitions of the global precondition. Each analysis starts on
a refined abstract precondition, obtained by one of our partitioning heuristics, and its
results are used in turn by the heuristics, to split further the precondition. Once the
procedure has been analyzed according to each member of the current abstract partition,
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the partitioning heuristics are used to derive a new abstract partition, by refining the
preconditions, using the analysis results obtained at the current step.

The disjunctive relational summary of the procedure is constructed by collecting the
abstract relations discovered at the exit point of the procedure, respectively under each
precondition in the current abstract partition. If the procedure has several distinct exit
points, the abstract relations discovered at these exit points may be collapsed into a single
relation by the join operator of the relational abstract domain. As the abstract partition
of the global precondition of the procedure is refined further, the disjunctive summary
computed for the procedure becomes itself more and more refined and precise.

The iterative construction of procedure summaries can be seen as a sequence of steps.
We can denote as P(`) = {I](`)k }k=1,...,m`

the abstract partition of the global precondition
of a procedure at the `-th step. We start initially with P(0) = {I]} containing only the
global abstract precondition I]. At subsequent steps, for each `, we analyze the procedure
with a relational analysis respectively for each precondition I

](`)
k in the current abstract

partition P(`), computing the abstract relations {r](`)k }k=1,...,m`
as a result, which are then

used to refine P(`) into P(`+1) through the refinement techniques presented before.

Algorithm

We present the iterative construction of procedure summaries in a more rigorous way, in
the form of the pseudocode given in Algorithm 1.

Algorithm 1 Construction of the disjunctive summary of a procedure p by iterative
refinement of the global abstract precondition I].

1: procedure BUILD SUMMARY(I], θ)
2: P(0) ← {I]}
3: `← 0
4: repeat
5: P(`+1) ← ∅
6: for all I]k ∈ P(`) do

7: r
](`)
k ← Analyze the procedure p with a relational analysis starting with I]k

8: S(`) ← S(`) ∪ {r](`)k (I]k, E ])}
9: Ref ← REFINE(I]k, r

](`)
k )

10: P(`+1) ← P(`+1) ∪ Ref
11: end
12: `← `+ 1
13: until (P(`) = P(`−1)) ∨ (|S(`)| = θ)
14: return S(`)

15: end

The BUILD SUMMARY procedure computes a disjunctive relational summary of a
procedure p with a global abstract precondition I] ∈ D].

The computation of a disjunctive summary of the procedure p works iteratively as a
sequence of steps. Each step ` produces a disjunctive summary S(`) of p, according to
a current abstract partition P(`) of the global precondition of p. The current abstract
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partition P(`) is then possibly refined by one of the partition refinement heuristics pre-
sented earlier, which is denoted as REFINE in the above pseudocode, and which should
be instantiated by the actually used heuristic, such that refinement according to local
reachability (denoted as RLR) or refinement according to summaries of called procedures
(denoted as RSCP). A new abstract partition P(`+1) is constructed, which will be used
in the next step.

During an `-th step of the BUILD SUMMARY procedure, the next abstract partition
P(`+1) is set to be empty initially, at line 6, and then, in a pointwise way, for each I]k in

the current partition P(`), the procedure p is analyzed under the precondition I]k at line

8 by some classical relational analysis, such as LRA, which provides r
](`)
k as a result. If

we assume that there is an abstract partition δ] = {S]1, ..., S]m} of the set S of states of
the procedure p and that each Si ∈ δ is the set of states associated to some control point
ni in the procedure p, then the abstract relation discovered by the relational analysis at
point ni can be expressed as r

](`)
k (I]k, S

]
i ).

The analysis results r
](`)
k are used by the refinement heuristic denoted by REFINE at

line 9, possibly producing a set of new abstract preconditions refining the current abstract
precondition I]k. There are two possible outcomes for the result Ref of the refinement
heuristic:

1. The refinement criteria of the heuristic used are satisfied by the current precondition
I]k and the abstract relations r

](`)
k discovered for the procedure p and the refinement

heuristic produces a set Ref = {I ′], I ′′]} of new abstract preconditions refining the
precondition I]k.

2. In the case where the heuristic can not refine the precondition I]k, when its refinement
criteria can not be satisfied in any way, then it returns a singleton set containing
only the precondition I]k itself, with Ref = {I]k}, indicating that no refinement of I]

is possible by the chosen heuristic.
The result of the refinement heuristics denoted by Ref is then added to the next abstract
partition P(`+1) at line 10.

Termination of the Refinement

This iterative refinement process can continue for a while, as it is not guaranteed to termi-
nate in general. However, since the disjunctive summary S(`) of the procedure p computed
at the end of each `-th step is sound, this refinement process can be stopped arbitrarily
at any step. From a correctness standpoint, the termination of the BUILD SUMMARY
procedure is therefore not an issue. It is thus only a matter of desired precision and ex-
pressivity of the resulting disjunctive summary, for the refinement process to be continued
and for the refinement steps to be further pursued.

Moreover, for any practical purposes, we would want to have reasonably-sized sum-
maries, particularly regarding the number of necessary analyses for a given procedure.
Each summary member adds an additional abstract value that will potentially become an
operand of the join operator, which is costly for convex polyhedra, when computing the
effect of call statements in callers.

There is a tradeoff that must be made in practice regarding the maximum cardinality
of a disjunctive summary that we allow to be constructed by the BUILD SUMMARY
procedure. Since the refinement process can be stopped after any step and the computed
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summary still being sound, we can just stop the refinement process whenever the cur-
rent computed summary S(`) exceeds this fixed maximum cardinality. The maximum
cardinality of a disjunctive summary is considered to be a parameter of our approach in
practice, that will be denoted as θ. We will term as θ-limiting the technique consisting of
stopping the refinement process whenever the size of the summary becomes equal to the
θ parameter.

The refinement heuristics that we proposed earlier attempt to refine an abstract pre-
condition using the results of a relational analysis of the procedure, by searching for a
control point ni at which some refinement criterion is satisfied. Usually, many control
points of the procedure can satisfy the refinement criterion, producing potentially differ-
ent refinements of the precondition, with various levels of interest and usefulness.

Because we wanted our refinement heuristics to be as generic as possible, we did not
place any formal requirement on the choice of such a control point in the case where
several distinct points could satisfy the heuristic criterion. One may choose for example,
to refine repeatedly a precondition according to the same control point in the procedure.
This is especially why, in the presence of loops, we can not guarantee in general that the
iterative refinement process terminates.

We should note however, that the refinement process terminates if we restrict ourselves
to choose at most once a given control point along a chain of successive refinements of an
abstract precondition I]. This is especially the case, as we do so in practice, if we examine
once only control points which are direct successors of conditions in the procedure.

Ensuring the Monotonicity of the Refinement

By splitting a precondition, we intend to express more precisely the behavior of a proce-
dure specialized to these two new preconditions. We hoped intuitively that a relational
analysis would provide more precise results given more precise preconditions. However,
this is not guaranteed because of the non-monotonicity of the widening operator.

Thus at a step ` of the iterative refinement in the BUILD SUMMARY procedure, it is
both sound and interesting to use, in the relational analysis of the procedure p at line 8, a
widening limited by the result r](`−1) obtained at the previous step. The limited widening
∇` ensuring the monotonicity of the refinement process is defined as:

∀r]1, r
]
2 ∈ D], r]1 ∇` r

]
2 =

{
r]1∇r

]
2 if ` = 0

(r]1∇r
]
2) u r](`−1) if ` ≥ 1

where ∇ is the widening operator used by the underlying relational analysis, which can
be itself a limited widening.

Using such a limited widening is especially interesting for the construction of sum-
maries of recursive procedures, and avoids the difficulties addressed in [8] regarding non-
monotonic systems of fixpoint equations.

Example 5.3.2. We compute a disjunctive relational summary of the div procedure,
which was presented in Section 4.3.3.

The relational analysis of the div procedure, starting from the abstract precondition
I] = (a0 ≥ 0 ∧ b0 ≥ 1), provides for the branches of the loop condition at program points
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void div(int a, int b, int * q, int * r)

{

assume(a >= 0 && b >= 1);

1: *q = 0;

*r = a;

2: while

3: (*r >= b)

{

4:

*r = *r-b;

*q = *q + 1;

5:

}

6:}

P1 = (a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0
∧b = b0 ∧ q = q0 ∧ r = r0)

P2 = P1[q := 0][r := a]
P3 = P2 t P5

P4 = P3 u (r ≥ b)
P5 = P4[r := r − b][q := q + 1]
P6 = P3 u (r ≤ b− 1)

4 and 6, the following solutions:

P4(I
]) = (a = a0 ∧ b = b0 ∧ r ≥ b ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)

P6(I
]) = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ b ≥ r + 1 ∧ a ≥ q + r)

The program point 4 is right at the entry of the while loop in the div procedure and
the program point 6 is at the exit of the while loop. Since the while loop is the main
control structure of interest in the div procedure, we believe that the entry and the exit
of the while loop, at program points 4 and 6 respectively, can be relevant control points
to refine the abstract precondition I], following the spirit of the refinement according to
local reachability. We are interested in the conditions, on the initial values of the proce-
dure parameters, which can make these control points potentially reachable or conversely,
unreachable. These conditions can be derived from the sources of the abstract relations
discovered at program points 4 and 6, represented respectively by the convex polyhedra
P4(I

]) and P6(I
]).

The projection of these solutions on the variables denoting initial values of parameters
are as follows:

src](P4(I
])) = (a0 ≥ b0 ∧ b0 ≥ 1)

src](P6(I
])) = (a0 ≥ 0 ∧ b0 ≥ 1)

We have at program point 6 that src](P6(I
])) = I], thus it can not induce any refinement

of I]. However, we have the interesting constraint a0 ≥ b0 in src](P4(I
])) at program point

4. More importantly, we have src](P4(I
])) 6= I], thus we can try to apply the criterion of

refinement according to local reachability at program point 4.
We can choose the constraint s] = (a0 ≥ b0) as a complementable abstract value

to refine I]. As s] is a constraint of src](P4(I
])), then src](P4(I

])) is included in the
half-space represented by s], and thus src](P4(I

])) v s]. We can refine the abstract

precondition I] into I
](1)
1 and I

](1)
2 which are defined as follows:

I
](1)
1 = I] u s]

= (a0 ≥ b0 ∧ b0 ≥ 1)

s] = (a0 < b0 ∧ a0 ≥ 0)

85



Chapter 5 Disjunctive Relational Procedure Summaries

I
](1)
2 = I] u s]

= (a0 < b0 ∧ a0 ≥ 0)

We can obviously check that the criterion of the RLR heuristic holds as we have both
I
](1)
1 6= ⊥ and I

](1)
2 6= ⊥. I

](1)
1 corresponds to the case where the loop is entered at least

once and I
](1)
2 corresponds to the case where the loop is never entered.

Then, we analyze the div procedure using Linear Relation Analysis under the new
preconditions I

](1)
1 and I

](1)
2 respectively. We get the following results for program points

4 and 6:

P4(I
](1)
1 ) = (a = a0 ∧ b = b0 ∧ r ≥ b ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)

P6(I
](1)
1 ) = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ q + r ≥ 1 ∧ b ≥ r + 1

∧ a+ 1 ≥ b+ q ∧ a ≥ b)

P4(I
](1)
2 ) = ⊥

P6(I
](1)
2 ) = (a = a0 ∧ b = b0 ∧ b− 1 ≥ a ∧ a ≥ 0 ∧ q = 0 ∧ r = a)

We can use these results to further refine the partitioning of the global abstract precon-
dition I]. We can apply again the RLR heuristic. The projection of these solutions on
the variables denoting initial values of parameters are:

src](P4(I
](1)
1 )) = (a0 ≥ b0 ∧ b0 ≥ 1) = I

](1)
1

src](P6(I
](1)
1 )) = (a0 ≥ b0 ∧ b0 ≥ 1) = I

](1)
1

src](P4(I
](1)
2 )) = ⊥

src](P6(I
](1)
2 )) = (a0 < b0 ∧ a0 ≥ 0) = I

](1)
2

The abstract sources src](P4(I
](1)
1 )) and src](P6(I

](1)
1 )) are equal to the precondition I

](1)
1

itself. Similarly, src](P6(I
](1)
2 )) is equal to the precondition I

](1)
2 . Thus according to crite-

rion of the refinement according to local reachability, the abstract preconditions I
](1)
1 and

I
](1)
2 can not be further refined. Finally, the partition of the global abstract precondition

I] of the div procedure is P = {I](1)1 , I
](1)
2 }. The disjunctive summary S = {R1, R2} of the

div procedure associated to the partition P has thus two members R1 and R2 computed
as follows:

R1 = P6(I
](1)
1 ) R2 = P6(I

](1)
2 )

The disjunctive relational summary S = {R1, R2} of the div procedure is:

R1 = (a = a0 ∧ b = b0 ∧ r ≥ b ∧ q ≥ 0 ∧ b ≥ 1 ∧ a ≥ q + r)
R2 = (a = a0 ∧ b = b0 ∧ r ≥ 0 ∧ q ≥ 0 ∧ q + r ≥ 1 ∧ b ≥ r + 1

∧ a+ 1 ≥ b+ q ∧ a ≥ b)

5.4 A Last Improvement: Postponing Loop Feedback

The summary S of the div procedure was partitioned according to whether the loop is
entered at least once, which is the situation represented by R1, or never entered, which
is represented by R2. However, in the R1 case, if the loop is entered at least once, then q
should be incremented at least once and we should have at least q ≥ 1. As we can see in
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R1, this is a fact missed by the analysis. More specifically, the convex polyhedron R1 is
not included in the half-space denoted by the constraint q ≥ 1.

We could recover this fact by systematically unrolling once each loop that gives rise
to such a partitioning. So, in our example, we could first unroll once the while loop
and get the constraint q ≥ 1 by a Linear Relation Analysis performed afterward. We
propose however another, cheaper solution, based on trace partitioning. The problem
comes from the least upper-bound computed at loop entry, as denoted in the abstract
fixpoint equation:

P3 = P2 t P5

which is then followed in the abstract equation for P6 by the test on the loop condition:

P6 = P3 u (r ≤ b− 1)

The loss of precision caused by the least upper-bound operator happens before the test
r ≤ b − 1 has any chance to improve the result. The solution consists in permuting the
least upper-bound and the test, computing instead P6 as follows:

P6 = (P2 u (r ≤ b− 1)) t (P5 u (r ≤ b− 1))

Using this new abstract equation for P6, the summary member R1 becomes:

R1 = (a = a0 ∧ b = b0 ∧ a0 ≥ b0 ∧ b0 ≥ 1 ∧ r ≥ 0 ∧ q ≥ 1 ∧ b ≥ r + 1 ∧ a+ 1 ≥ b+ q + r)

We now have in R1 the constraint q ≥ 1 which was lost by the previous analysis.
Furthermore, once again, we recovered more precision than expected, since in addition to
finding q ≥ 1, the constraint a+ 1 ≥ b+ q has been strengthened into a+ 1 ≥ b+ q + r,
which ties nicely together all parameters of the div procedure.

We should note that this rewriting of the system of abstract fixpoint equations can be
also obtained by a program transformation applied on the procedure, transforming each
loop of the form while c do S into a do-while loop if c {do S while c} guarded by
the condition c. This transformation, often applied by compilers, is called loop inversion.

Therefore, beyond the particular example, our postponing of loop feedback can be a
general precision improvement technique for loops.

5.5 Summaries of Recursive Procedures

The relational abstract interpretation of recursive procedures was proposed a long time
ago in [35, 39, 60]. It involves the use of widening, since the summary of a recursive
procedure depends on itself. Moreover, a collection of mutually recursive procedures
must be analyzed simultaneously, with widening applied to a cut-set of their call graph.

In this section, we show on a simple example how our technique can be applied to the
construction of the disjunctive relational summary of a recursive procedure. Since the
procedure is recursive, its summary will have to be used to analyze procedure calls during
its own construction, and thus this will present an opportunity to refine the procedure
summary according to itself. In its own recursive way, it will illustrate the refinement
according to the summary of a called procedure.
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Example 5.5.1. The f91 procedure is an implementation of the well-known 91 function
defined by John McCarthy in [89, 88], which is a classical test case for the analysis of
recursive functions. For simplicity in this example, we do not duplicate parameters,
knowing that x is a value parameter, whose value is thus never changed, and that y is a
pure result parameter, whose initial value is never accessed.

void f91(int x, int * y) {

int z, t;

if(x > 100){ *y = x-10;

1:

} else {

z = x + 11;

f91(z, &t);

f91(t, y);

2:

}

}

Figure 5.4: Definition of the f91 procedure.

The polyhedral summary R(x, y) of the f91 procedure can be defined by the following
system of abstract fixpoint equations:

R(x, y) = P1 t P2

P1 = (x ≥ 101 ∧ y = x− 10)
P2 = (x ≤ 100 u (∃t, R(x+ 11, t) uR(t, y)))

The summary R is used in its own definition in the abstract equation defining P2 since
there are two recursive calls to the f91 procedure.

We can use a classical Linear Relation Analysis to compute approximate solutions of
this system of abstract fixpoint equations. The global abstract precondition I] of the f91

procedure is I] = >. Without partitioning and after one widening step, we get:

P1 = (x ≥ 101 ∧ y = x− 10)
P2 = (x ≤ 100 ∧ y + 9 ≥ x ∧ y ≥ 91)
R(0) = (x ≤ y + 10 ∧ y ≥ 91)

We can use the refinement according to local reachability to refine the global abstract
precondition I]. We compute the abstract sources of P1 and P2 and we get:

src](P1) = (x ≥ 101)
src](P2) = (x ≤ 100)

Since the abstract source src](P1) = (x ≥ 101) of P1 is a single linear constraint, it is
a complementable abstract value that we can use to split the precondition I]. We refine
the global abstract precondition I] into two new preconditions I

](1)
1 and I

](1)
2 defined as

follows:
I
](1)
1 = (x ≥ 101)

I
](1)
2 = (x ≤ 100)
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We analyze the f91 procedure with respect to this obvious partitioning, under each
new precondition I

](1)
1 and I

](1)
2 successively. Under the precondition I

](1)
1 , we get:

P1(I
](1)
1 ) = (x ≥ 101 ∧ y = x− 10)

P2(I
](1)
1 ) = ⊥

R(1)(I
](1)
1 ) = (x ≥ 101 ∧ y = x− 10)

and likewise under the precondition I
](1)
2 :

P1(I
](1)
2 ) = ⊥

P2(I
](1)
2 ) = (x ≤ 100 ∧ y ≥ 91)

R(1)(I
](1)
2 ) = (x ≤ 100 ∧ y ≥ 91)

The results are not much better, we still have only the inequality y ≥ 91 for the value of
the parameter y in R(1)(I

](1)
2 ). We refined the summary of the f91 procedure according

to local reachability and our source of interesting control points for refinement has dried
out. No control point satisfies the refinement criterion of the RLR heuristic anymore.

The summary of the f91 procedure can be refined further according to the summary of
the called procedure, which is here the f91 procedure itself. We can refine the precondition
I
](1)
2 according to the condition s] = (x+ 11 ≥ 101) at the first recursive call. We obtain

two new abstract preconditions I
](2)
1 and I

](2)
2 which are defined as follows:

I
](2)
1 = (90 ≤ x ≤ 100)

I
](2)
2 = (x ≤ 89)

We obtain the following disjunctive summary for the f91 procedure:

R(1)(I
](1)
1 ) = (x ≥ 101 ∧ y = x− 10)

R(2)(I
](2)
1 ) = (90 ≤ x ≤ 100 ∧ y = 91)

R(2)(I
](2)
2 ) = (x ≤ 89 ∧ y = 91)

This our most precise summary for the f91 procedure. We now have precise constraints
on the value of each parameter in every summary member. We have particularly that
y = 91 in both R(2)(I

](2)
1 ) and R(2)(I

](2)
2 ).

Even if there are seemingly two cases in the behavior of the f91 procedure, as denoted
explicitly by the two parts of the if statement, our disjunctive summary of the f91 pro-
cedure features three cases. Thus our approach was able to uncover non-trivial procedure
behavior which was not explicitly written in the procedure definition.

5.6 Conclusion

Procedures can commonly have very different behaviors, which are not precisely expressed
by a single element of a relational abstract domain like convex polyhedra. We extended
the approach presented in Chapter 4 to compute disjunctive relational summaries of
procedures based on a partitioning of a procedure precondition. Disjunctive summaries
are finite sets of abstract relations represented by elements of a relational abstract domain.
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Chapter 5 Disjunctive Relational Procedure Summaries

Several partitioning heuristics are given to compute automatically an abstract partition of
a precondition by iterative refinement. We also proposed a last improvement to summary
computation itself to improve the precision of summaries. Since recursive procedures are
often not supported by existing interprocedural analysis, we shown that our approach
can discover interesting disjunctive summaries for recursive procedures. Our approach
computes an analysis of a procedure for each precondition in the summary partition.
Thus we may wonder how it compares in practice with respect to other interprocedural
analysis. We give some experimental results in Chapter 6 using the mars static analyzer.
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Chapter 6

Implementation and Experiments

We describe in this chapter the design and implementation of our static analysis tool,
called mars. The mars (Mars Abstract interpretation Research System) system is a
static analysis framework for the analysis of C programs by abstract interpretation, with
numerical relational abstract domains like convex polyhedra. With a strong emphasis
on modularity and separation of concerns, enabling the change of multiple aspects of an
analysis, the mars static analysis system has been designed to foster the experimentation
of new interprocedural analyses, new iteration strategies and new abstract domains. We
present also some experiments of our approach, using the mars static analyzer on a set
of benchmark programs.

6.1 The mars Static Analyzer

The mars static analyzer is organized as a collection of tools computing numerical invari-
ants of programs written in a significant subset of C. A frontend tool based on Clang [80]
and LibTooling translates the abstract syntax tree of each C source file passed as input
into the mars intermediate representation. The analyzer tool of mars, which is called
mars, computes numerical invariants at each program point of interest in the intermediate
representation. The implementation of numerical abstract domains, is provided by the
Apron library [74].

The mars intermediate representation is the common exchange format between the
different tools. It is generated by the marsc frontend tool from a C source file given as
input, which can be then processed by the mars analyzer tool. The results computed by
the analyzer tool are associated to intermediate representation objects, such as program
nodes and procedures.

The mars intermediate representation is designed specifically to ease the implemen-
tation of new analyses by abstract interpretation. It is tailored to the needs of numerical
analyses such as Linear Relation Analysis. At the same time, it provides also a general
representation of programs, capable of representation many programming constructs com-
monly found in imperative languages like C. With numerical abstract interpretation in
mind, the mars intermediate representation eliminates the unnecessary features usually
found in compiler frameworks, such as LLVM IR, and provides a clean idealized view of
programs to numerical static analyses.

More specifically, programs are collections of procedures represented by a control-flow
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graph which is not based on an SSA-form, in order to offer high-precision source traceback
information associated to analysis results.

Another key objective of the design of mars is to provide very precise source locations,
tracing every entity in the mars intermediate representation back to the original C source
code as given by the user, including across complex preprocessor usage, benefiting from
the rich location information available in the Clang AST (Abstract Syntax Tree). It
contrasts with other open-source static analysis frontends such as CIL [104], which takes
as input C programs which have already been processed by the C preprocessor. The
source locations given by CIL are only relative to the preprocessed C source. A more
detailed presentation of the mars intermediate representation can be found in 6.3.

C programs given as inputs are significantly processed by the marsc frontend to gen-
erate the intermediate representation. The mars analyzer tool is implemented in the
OCaml programming language and consists of approximately 4000 lines of code. The
marsc frontend tool, which is based on Clang, is implemented in C++ and contains
approximately 20000 lines of code on its own, excluding Clang itself.

6.1.1 Basic Usage

We describe some basic usage of the mars tools to provide a brief practical overview of
our static analysis system.

A C file named program.c is translated into the mars intermediate representation by
the marsc frontend using the command:

marsc program.c

The marsc tool creates an output directory, named by default out-program.c, in the
current working directory. The output directory holds the intermediate representation of
the input program encoded in the Json (Javascript Common Object Notation) format,
along with all the results computed for that program and the files produced by any analysis
of the program. The output directory serves as a common storage location in the user
filesystem for the mars tools and as the single source of truth for a given program.

The mars analyzer tool can be used to analyze the program using the intermediate
representation generated previously and possibly previous analysis results stored in the
output directory. It is run using the following command:

mars -o out-dir -t analysis_name -m main

where the output directory out-dir for the program is specified by the -o out-dir

option, the name of the particular analysis to be run is given by the -t analysis name

option and the name of the program entry procedure is given by the -m main option.
Analysis results can be found in the output directory encoded in Json, or depending

on the analysis implementation, displayed as an annotated C source file on the standard
output.

6.2 Design and Implementation

The mars system is structured as a collection of tools based on a common set of OCaml
modules. We give an overview of how these tools work together in Figure 6.1.
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C Source marsc frontend mars IR mars analyzer

mars IR

Analysis resultsmars-dump

Program visualization

Figure 6.1: Overview of the mars tools.

The mars tool is a modular static analyzer which runs analyses by abstract interpre-
tation on a program expressed in the mars intermediate representation. It is based on a
generic OCaml functor module named AbstractInterpreter, which takes as parameters
a module implementing an abstract domain, along with a module implementing transfer
functions on that domain, and a module describing an iteration strategy. The abstract
domain module must satisfy the Domain signature, while the transfer functions module
must satisfy the Transfer signature and the module giving the iteration strategy must
satisfy the Scheduler signature. This architecture is similar to other modular static
analyzers such as Infer [29].

Abstract
Interpreter

TransferProgram IR

Scheduler Abstract Domain

Apron

C ASTs
IR Code

Generator
IR

Transform
Engine

Program IR

Clang
C Source

marsc

mars

Figure 6.2: Architecture of the marsc frontend and the mars analyzer.
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6.2.1 Abstract Domains

We assume that the abstract domain is a lattice. The operators of the abstract domain are
given classically as functions in the abstract domain module, as specified by the Domain

signature given in Figure 6.3.

module type Domain =

sig

(* Type of abstract domain elements *)

type t

(* Type of the domain manager *)

type man

(* Create the domain manager *)

val create : unit -> man

(* Operators *)

val bottom : man -> t

val top : man -> t

val join : man -> t list -> t

val meet : man -> t -> t -> t

val widening : man -> t -> t -> t

val is_bottom : man -> t -> bool

val is_top : man -> t -> bool

val is_leq : man -> t -> t -> bool

end

Figure 6.3: Signature for abstract domain modules.

Abstract domain implementations can have a manager data structure, of type man in
the Domain signature, to hold the context usually required by abstract domain libraries
such as Apron.

6.2.2 Scheduler

A module providing an iteration strategy for the AbstractInterpreter functor is termed
a Scheduler. Scheduler modules must be conforming to the Scheduler signature, which
is given in Figure 6.4.

A scheduler module provides an extract function which is called by the abstract
interpreter to get the next program node to be examined during an analysis, deciding
of the order in which program nodes are visited. The Scheduler has access to the map
associating the current abstract value to a given program node, as computed so far by the
abstract interpreter. It can thus base its decision on abstract values associated to nodes
and express non-trivial iteration strategies such as the guided static analysis technique
[53]. After the update of a node, the abstract interpreter calls the schedule function,
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with a boolean parameter indicating whether the abstract value of the current node has
changed, which triggers the update of the successors of the current node.

The default scheduler module of mars uses the information given by Bourdoncle’s
algorithm [23, 24] on strongly-connected components of a procedure, with a priority queue,
to decide of the exploration order of program nodes.

We made the iteration strategy an explicit parameter of the AbstractInterpreter

functor as we wanted to experiment with various ways to explore new paths and nodes
in a program, to improve analysis precision, which was the subject of our previous work
[26]. The iteration strategy is usually not a changeable parameter in modular denotational
static analyzers such as [101], which are based on a recursive exploration of the abstract
syntax tree of procedures.

module type Scheduler =

sig

module Domain : Domain.S

type t

val create : IR.t

-> Proc.t

-> Domain.t StateMap.t

-> Domain.t

-> t

val is_empty : t -> bool

val extract : t -> Node.t

val do_widening : t-> Node.t -> bool

val schedule : t -> Node.t -> bool -> unit

end

Figure 6.4: Signature for the scheduler modules.

6.2.3 Transfer Function Module

A Transfer module defines a transfer function eval node for the evaluation of nodes
in a procedure over some abstract domain. The signature which must be satisfied by a
Transfer module is given in Figure 6.5.

Along with the incoming abstract value to the current node, the eval node func-
tion must be given a proc data data structure which can be used to store procedure
summaries. An interprocedural analysis, such as our approach, will store the computed
procedure summaries in proc data, which are implemented by the Summary module, and
that the matching Transfer module will be able to use for the evaluation of call state-
ments. A strictly intraprocedural analysis on the other side can use a dummy proc data

structure, parameterized by the NoSummary.t type (which is defined to be unit).
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module type Transfer =

sig

module Domain : Domain.S

module Summary : Summary.S

with module Domain = Domain

type proc_data = Summary.t ProcData.t

val eval_node : IR.t

-> Node.t

-> proc_data

-> Domain.t

-> Domain.t

end

Figure 6.5: Signature for transfer function modules.

6.3 The mars Intermediate Representation

We want analyses to be free from concerns about some features of real-world languages
such as C and particularly memory manipulation constructs like pointer dereferencing
and pointer arithmetics.

We consider that memory manipulation constructs, particularly operation on pointers,
should be handled by specialized pointer and alias analyses, transforming a procedure
accessing memory through pointers into a procedure with abstract memory locations,
manipulated through scalar variables and references. It enables numerical analyses to
focus on their main concern, which is the analysis of numerical statements in a procedure.
We implement such an analysis, in a simple way for the time being, in the marsc frontend.

6.3.1 Abstract Syntax

A program in the mars intermediate representation is a collection of procedures.

Procedures p ∈ Procs
A procedure p can be seen formally as a tuple of the form:

p = (id, form, dv, g)

where id ∈ Id is the name of the procedure, form ∈ Declp is a sequence of formal parameter
declarations, dv ∈ Declv is a sequence of local variable declarations and g ∈ CFG is the
control-flow graph of the procedure.

Formal Parameter Declaration form ∈ Declp
Formal parameters declarations follow the following rule:

form ::= ε | id : pmode t; form
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A declaration of a formal parameter id is of the form id : pmode t where pmode is the
parameter-passing mode of the parameter id and t is its type. For simplicity, parameters
are passed by reference.

Parameter Mode pmode ∈ PModes
The mode of a formal parameter indicates whether, a given parameter is either a

pure-value parameter (in mode), a pure-result parameter (out mode) or a value-result
parameter (in-out mode).

PModes = {in,out, in-out}

The value of a pure-value parameter can be only used but not modified, the value of a
pure-result parameter can not be used in the procedure before being set and the value of
value-result parameter can be both used and modified in the procedure.

Local Variable Declaration dv ∈ Declv
A sequence of declarations of local variables in a procedure is of the following form:

dv ::= ε | id : t; dv

Control-Flow Graphs g ∈ CFG
The control-flow graph of a procedure is a graph (N,E) where:
• The finite set N of nodes is made of three types of nodes: entry nodes, junction

nodes and statement nodes.
• E ∈ N ×N is the set of control-flow edges.
Each node has a single output, possibly leading to several successor nodes. There

are no explicit control-transfer instructions. Classical test nodes are split into several
conditions appearing in statement nodes. Their associated transfer functions intersect
their argument with the condition of the test.

We define the function nsuccs : Nodes → P(Nodes) associating to a node the set of
its successor nodes and the function npreds : Nodes → P(Nodes) associating to a node
the set of its predecessors.

∀n ∈ Nodes, nsuccs(n) = {s ∈ N | (n, s) ∈ E} npreds(n) = {p ∈ N | (p, n) ∈ E}

Entry Nodes Entries
An entry node n ∈ Entries has no predecessor node and a single successor node.

∀n ∈ Entries, npreds(n) = ∅ ∧ |nsuccs(n)| = 1

Statement nodes Stmts
A statement node n ∈ Stmt has a single predecessor node and possibly many successor

nodes.
∀n ∈ Stmts, |npreds(n)| = 1

Statement nodes contain a sequence of statements interpreted sequentially.
Statements can be of one of the following kind:
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• Deterministic assignment: x := e where e is an expression.
• Non-deterministic assignment: x := undet. The transfer function associated to a

non-deterministic assignment discards all information available on the variable x in
its argument.
• Assume statement: assume cond. The transfer function associated to an assume

statement intersects its argument with the condition cond.
The non-deterministic assignment x := undet can be used to handle conservatively in the
intermediate representation the unsupported constructs of the source language.

Junction nodes Junctions
A junction node can have several predecessor nodes.

∀n ∈ Stmts, |npreds(n)| ≥ 1

6.3.2 Translation of Tests

Test statements in the source language, such as if statements in C, are encoded by
a splitting of the test condition, through assume cond statements in statement nodes
denoting the several possible outcomes of a test condition. We give examples below.

Example 6.3.1 (Simple if statement). This simple if statement is encoded by the frag-
ment of the mars intermediate representation given in the right-hand side.

if(x >= y)

{

x = x - c;

}

else

{

x = x + c;

}

assume x ≥ y
x = x− c

assume x < y
x = x+ c

Figure 6.6: Translation of a simple if statement.

Example 6.3.2 (Ternary split of conditions). Equality tests are encoded by a ternary
split of the test condition, such that each condition in the generated assume statements
has a linear comparison operator. This transformation is aimed at improving the precision
of numerical analyses like Linear Relation Analysis.

if(x != y)

{

z = x+c;

}

else

{

z = 42;

}

assume x = y
z = 42

assume x < y
z = x+ c

assume x > y
z = x+ c

Figure 6.7: Translation of an if statement by a ternary split of the condition.
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More complex conditions are translated, in a classical fashion, into a DAG of assume
statements, to respect the short-circuit evaluation semantics of boolean operators in C.

Example 6.3.3. We give an example of the translation of an if statement with a condition
containing boolean operators, respecting the semantics of short-circuit evaluation in C.

if((x <= y) || (x <= z))

{

z = 42;

}

else

{

z = 0;

}

assume x ≤ y assume x > y

assume x ≤ z

z = 42 assume x > z

z = 0

Figure 6.8: Translation of an if statement with C boolean operators in the condition.

6.4 Non-duplication of Procedure Parameters

We assumed in our formal setting, for clarity, that procedure parameters are duplicated
during the computation of a relational summary. We proposed to introduce for each formal
parameter x an additional variable x0 denoting the initial value of x. This duplication can
become costly as it increases the number of variables in abstract values, and in particular
for Linear Relation Analysis, the dimension of convex polyhedra.

We should note that this duplication is not necessary for pure-value or pure-result
parameters, which are parameters whose values are respectively not modified or not used
before being modified. The initial value of a pure-value parameter is indistinguishable
from its final value and the initial value of a pure-result parameter can not be referred to.
We do therefore in practice a pre-analysis to determine the status of procedure parameters,
that is whether they are pure-value, pure-result or value-result parameters. We describe
the design of this specific data-flow analysis.

6.4.1 Boolean attributes

We associate with each formal parameter X of a procedure, three boolean attributes
Xi, Xc, Xu which are defined as follows:
• Xi is true when X is certainly equal to its initial value X0

• Xc is true when the value of X has certainly been changed
• Xu is true when the value of X may have been used

Quite clearly, we have the following properties for the attributes:
• X is a pure value-parameter if Xi is true at each exit point of the procedure.
• X is a pure result-parameter if Xc is true whenever Xu is true.
We then define how these attributes are initialized and propagated along the nodes of

the control-flow graph of a procedure.
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6.4.2 Semantic equations

With each node nk of the CFG, we want to associate a transfer function fk mapping the
set of formal parameters of a procedure to a boolean vector of B3, such that for each
parameter X, we have fk(X) = (Xi, Xc, Xu). We define fk from the individual transfer
functions f 1

k , f 2
k and f 3

k , updating respectively the attributes Xi, Xc and Xu as follows:

fk(X) = (f 1
k (X), f 2

k (X), f 3
k (X))

Entry Node

Let nk is an entry node. We define the transfer function fk as follows:

∀X, fk(X) = (tt ,ff ,ff )

It indicates that each parameter is equal to its initial value, and has neither been changed
nor used.

Junction Nodes

Let nk is a junction node. We define the transfer function fk as follows:

∀X, fk(X) =

 ∧
(n`,nk)∈E

f 1
` (X),

∧
(n`,nk)∈E

f 2
` (X),

∨
(n`,nk)∈E

f 3
` (X)


The attributes Xi and Xc are true respectively, if they were also true at each predecessor
node n`. The attribute Xu is true if it was true for at least once predecessor node.

Statement Nodes

Let nk be a statement node, with a condition Ck and assignment statements:

(X1
k := E1

k , ..., X
k
k := Ej

k)

where (X1
k , ..., X

j
k) are formal parameters of the procedure. We define the predicates U(X)

and C(X) for each parameter X such that:

• U(X) is true if and only if X appears either in the condition Ck or in some expression
Ei
k, which is if and only if the value of X is used in the node nk.

• C(X) is true if and only if X is one of the assigned variables X i
k, which is if X is

assigned at node nk.

Let np be the unique predecessor node of the statement node nk. Then, the transfer
function fk is defined as follows:

∀X, fk(X) =
(
f 1
p (X) ∧ ¬C(X) , f 2

p (X) ∨ C(X) , f 3
p (X) ∨ U(X)

)
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6.5 Experiments

We presented only tiny examples to illustrate our approach for which the partitioning of
the precondition is obvious. However, in presence of more complex control structures, such
as nested or successive loops, and when preconditions result from more involved invariants,
the interest of our method for discovering relevant preconditions is more convincing.

More thorough experiments are necessary to validate our approach and in particular
to answer the following questions.

1. Since we analyze a procedure several times to construct its summary, as required by
the iterative refinement of its precondition, it is likely to be time-consuming. Thus
it is interesting to measure to cost of summary construction with respect to the time
hopefully saved by using the summary.

2. Precondition partitioning is a heuristic process, thus it is important to evaluate the
precision lost or gained by using a disjunctive summary instead of analyzing the
procedure for each calling context.

Therefore our experiments consists in comparing our bottom-up approach computing
disjunctive relational summaries of procedures with an analysis of inlined programs, both
with respect to the analysis time and the precision of results. Several difficulties must be
addressed first.

Most public benchmarks are not usable, since they contain very few numerical pro-
grams with procedures. For instance, in the SV-COMP benchmark1, most numerical
examples are inlined and the ALICe benchmark2 also contains only monolithic programs.
For our assessment, we used the benchmark of the Mälardalen3 WCET research group,
which contains various small and middle-sized programs, such as sorts, matrix computa-
tions and fft. Moreover, some programs of this benchmark were sometimes extended with
auxiliary variables counting the number of executions of each block to help the evaluation
of the execution time [25]. These extensions, the name of which are prefixed with cnt

are particularly interesting for us, since they contains more numeric variables and should
stress the performance of our approach.

The comparison of results which are convex polyhedra is not straightforward. On
one hand, we must decide which polyhedra to compare. The correspondence of control
points between the inlined program and the structured program with procedures is not
easy to preserve. In our experiments, we only compared the results at the end of the
main program. Of course, for the comparison to be meaningful, the results on the inlined
program must be first projected on the variables of the original program. On the other
hand, while a qualitative comparison of two convex polyhedra is easy, by checking their
inclusion in both directions, a quantitative comparison is more difficult. It could be
achieved precisely by comparing their volumes, dedicated algorithms are available for
that [13, 32], but it is only possible for bounded polyhedra. In our assessment, besides a
qualitative comparison, we only compare the number of constraints.

All our experiments are done using the convex polyhedra abstract domain. Widening
is never delayed and decreasing sequences are limited to 7 terms. The analysis times are
those obtained on an Intel Xeon E5-2630 v3 2.40Ghz machine with 32GB of RAM and

1sv-comp.sosy-lab.org/2018/benchmarks.php
2alice.cri.mines-paristech.fr/models.html
3www.mrtc.mdh.se/projects/wcet/benchmarks.html
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20MB of L3 cache running Linux.
Table 6.1 compares our method with a standard LRA on inlined programs, in terms of

analysis time, qualitative precision and number of constraints of results found at the exit
points of the main procedures. The “# procs” column gives the number of procedures
in each program and the “max. # calls” column gives the maximum number of call sites
per procedure in a program. We denote as:
• til the time in seconds for analyzing the inlined program.
• tip the time in seconds for the interprocedural analysis of the original structured

program.
• Pil the polyhedron result of the inlined analysis at the exit points of the procedure.
• Pip the polyhedron result of the interprocedural analysis at the exit points of the

main procedure.
• Cil the number of constraints of Pil.
• Cip the number of constraints of the polyhedron Pip.
The qualitative results comparison is shown by column “cmp. res.” which indicates

whether the result Pip is better (A), worse (@), equal (=) or incomparable (<>) with
respect to Pil. The S column gives for each program the speedup of our method compared
to standard LRA with inlining, defined as:

S = Time for standard LRA with inlining/Time for disjunctive relational summaries

where:
S = til/tip

Our method is significantly faster than standard LRA using inlining for 13 over 19 pro-
grams (≈ 68% of programs), with an average speedup of 2.9. The loss of precision is
very moderate since only 1 over 19 programs, namely minver, has a less precise convex
polyhedra at the exit node of the main procedure.

Interestingly, our method also leads to precision improvements for some programs, such
as janne complex, my sin and cnt minver, due to the use of disjunction, enabling a
more accurate analysis of procedure behaviors. Moreover, those precision improvements
are not necessarily obtained at the expense of analysis time, since the janne complex
program has a more precise convex polyhedra at the exit of the main procedure, with a 60%
increase in the number of constraints and has also the highest speedup with S = 15.34.

Table 6.2 reports the computation times of the summary of each procedure in each
program. The τc column gives the fraction of the analysis time using our method spent
during the computation of each procedure summary, defined as follows:

τc = Procedure summary comp. time/Program analysis time using rel. summ.

We can also note that the janne complex program, which has the highest speedup
in Table 6.1, is consisting only of a single other procedure besides the main procedure.
Thus the speedup given by our method is already noticeable on small programs, even
with few procedures and few procedure calls. This is due to procedures being analyzed
separately in smaller variable environments compared to the inlined program. Overall,
our method is mostly faster than inlining when procedures have a much larger number of
local variables compared to the number of parameters.

The summary construction time for small utility procedures, such as the my fabs,
my sin, my cos and my log procedures, in the fft1 and cnt fft1 programs, are very
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# max. Inlining Interprocedural cmp.
Program procs # calls til Cil tip Cip res. S
fabs 2 1 0.013 4 0.015 4 = 0.87
fdct 2 1 0.084 0 0.069 0 = 1.22
fft1 6 3 0.742 4 0.465 3 <> 1.59
fir 2 1 0.040 1 0.072 1 = 0.55
janne complex 2 1 0.948 5 0.062 8 A 15.34
minver 4 2 0.155 1 0.686 2 @ 0.23
my sin 2 1 0.032 1 0.028 5 A 1.14
jfdctint 2 1 0.082 3 0.060 3 = 1.38
ludcmp 3 1 0.074 3 0.102 3 = 0.73
ns 2 1 0.057 0 0.051 0 = 1.13
qurt 4 1 0.057 1 0.028 1 = 2.06
select 2 1 0.097 0 0.057 0 = 1.69
ud 2 1 0.093 3 0.118 3 = 0.79
cnt fdct 2 1 0.098 1 0.075 1 = 1.31
cnt fft1 6 3 33.417 5 2.646 3 <> 12.63
cnt jfdctint 2 1 0.102 5 0.070 5 = 1.46
cnt ns 2 1 0.085 0 0.067 0 = 1.25
cnt qurt 4 1 0.601 2 0.063 2 = 9.54
cnt minver 4 2 1.008 1 3.424 6 A 0.29

Table 6.1: Experimental results.

small (lower than 4ms) and often individually negligible with respect to the analysis time
of the entire program (with τc often lower than 1%). This suggests that our method could
be particularly beneficial, in terms of analysis performance, for programs built on top of
a collection of utility procedures or a library of such procedures, each procedure summary
being computed only once and possibly used in many call contexts.

Our last experiment concerns the speedup of our interprocedural analysis with respect
to the number of calls. Notice that the Mälardalen benchmark is not very favorable in this
respect, since most procedures are called only once. Our analysis on the cnt ns program
has a moderate speedup of 1.25. In order to observe the evolution of the speedup with the
number of calls, we increase the number of calls to the foo procedure in the main procedure
of the cnt ns program. The graph of Figure 6.9 shows the evolution of the analysis times
of these successive versions, comparing our analysis with respect to standard LRA with
inlining.

The analysis of the cnt ns program using our disjunctive relational summaries analysis
becomes significantly faster than standard LRA with inlining when there are more than
2 calls to the foo procedure in the main procedure. Additionally, Fig. 6.9 shows that the
analysis time of the cnt ns program using standard LRA with inlining grows exponentially
in the number of calls to the foo procedure, while the analysis time using our method
grows much slower when the number of calls is increasing.

103



Chapter 6 Implementation and Experiments

Figure 6.9: Analysis times of the cnt ns program when increasing the number of calls in
the main procedure to the foo procedure.

6.6 Conclusion

We presented mars, a static analysis system designed and developed during this thesis
with two main objectives: facilitate the development of new static analyses and provid-
ing high-quality source traceability information. The mars static analyzer uses its own
intermediate representation designed specifically for numerical abstract interpretation. A
frontend tool translates C programs into the mars intermediate representation from the
abstract syntax tree provided by Clang. It also extracts traceability information given
by the compiler frontend which locates in the source each individual part of intermediate
representation. The mars static analyzer is based on a generic abstract interpreter allow-
ing the decoupling of the abstract domain, the transfer functions used on this domain and
the iteration strategy. These elements can be given independently as OCaml modules.

We conducted experiments of our modular analysis on a standard benchmark in the
WCET community. First, we shown that the construction time of procedure summaries
is often negligible with respect to the analysis time of the entire program. Then, we
compared our approach with respect to an analysis of the entire program using inlining.
We could be wondering whether the interest of using procedure summaries would be
showing only on programs with a sufficiently large number of procedure calls. Even on
small programs with few procedure calls, our method often provides a significant speedup
compared to a classical analysis using inlining. When the number of calls increases, the
analysis time of our method grows much slower than the duration of the analysis using
inlining which grows exponentially.

A number of improvements could be implemented in the future:

• When computing disjunctive procedure summaries using the refinement according
to local reachability, we examine the successors of test nodes to refine preconditions.
Advanced heuristics could be designed to examine only the successors of tests which
are deemed interesting in some sense to get precise summaries.
• Similarly, when searching for a constraint in a convex polyhedron to refine a precon-
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dition, we currently examine all possible constraints and select one that satisfies the
refinement criterion in no particular order. Heuristics could be proposed to select
the most interesting constraints.
• We compute a relational analysis for each refined precondition when computing a

disjunctive summary to take into account the effects of loops and widening. In
practice, an analysis optimized for performance could avoid to reanalyze completely
a procedure for each precondition by just splitting recursively the preconditions
according to tests, at the expense of less precise summaries.
• Disjunctive procedure summaries could be refined according to properties given by

an alias analysis and different aliasing situations involving procedure parameters. A
proper alias analysis should be implemented to improve the support of parameters
of pointer type.
• Procedure summaries only depend on the summaries of called procedures and could

be computed in parallel according to the dependencies given in the call graph of the
program.
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Program Function Time (s) τc
fabs fabs 0.001 0.067
fdct fdct 0.050 0.588
fft1 my fabs < 0.001 0.001

my sin 0.002 0.004
my cos < 0.001 0.001
my log < 0.001 < 0.001
fft1 0.350 0.753

fir fir 0.019 0.267
janne janne 0.037 0.602
minver mmul 0.047 0.069

minver fabs < 0.001 < 0.001
minver 0.616 0.897

my sin my sin 0.003 0.098
jfdctint jpeg fdct islow 0.031 0.528
ludcmp fabs < 0.001 0.002

ludcmp 0.055 0.540
ns foo 0.011 0.215
qurt qurt fabs < 0.001 0.007

qurt sqrt 0.004 0.138
qurt 0.002 0.066

select select 0.042 0.730
ud ludcmp 0.050 0.425
cnt fdct fdct 0.070 0.941
cnt fft1 my fabs 0.001 < 0.001

my sin 0.004 0.001
my cos < 0.001 < 0.001
my log < 0.001 < 0.001
fft1 1.750 0.661

cnt jfdctint jpeg fdct islow 0.035 0.500
cnt ns foo 0.026 0.382
cnt qurt qurt fabs 0.001 0.010

qurt sqrt 0.019 0.308
qurt 0.003 0.047

cnt minver mmul 0.126 0.037
minver fabs < 0.001 < 0.001
minver 2.925 0.854

Table 6.2: Summaries computation times.
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Modular Analysis of Reactive Systems
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Chapter 7

Analysis and Verification of Reactive
Systems

In this part, we want to design a modular analysis of reactive systems for numerical prop-
erties. We give a brief overview of reactive systems in 7.1. We are especially interested in
synchronous reactive programs. We present synchronous languages in 7.2 and a particular
synchronous language called Lustre in 7.3. The compilation of synchronous languages to
sequential code is discussed in 7.4. Under certain conditions, reactive components can be
compiled modularly, where each component is implemented by a step procedure invoked
inside a global infinite loop. We give in 7.5 a definition of the class of structured reactive
programs that will be considered in the following chapters. Finally, we describe in 7.6 the
state of the art regarding the analysis and verification of reactive programs.

7.1 Introduction to Reactive Systems

In the light of many foundational works [15, 62], reactive systems can be defined as systems
continuously reacting to their environment, at a speed determined by their environment.
They may receive inputs from the environment, such as sensor values or signals, and
produce outputs in reaction to these inputs. They are called reactive by contrast with
classical systems which are termed transformational systems, receiving their inputs at
the beginning of their execution and delivering their results upon termination. Most
industrial systems are reactive, such as control systems and process supervision systems.
Communication and network protocols, human-machine interfaces are other examples of
reactive systems.

The reliability of reactive systems is often highly desirable or even critical, as it is well-
known that errors in the operation of reactive systems can have terrible consequences, such
as the loss of human life or of massive amounts of money. The analysis and verification
of reactive systems is thus of paramount importance. Therefore, we may want to either
check that the system satisfies some given property, to ensure the safety of its operation,
or to compute an approximation of the set of its reachable states.

A reactive system can be seen as computing a sequence of reaction steps, where in
each step, current inputs are read, the system memory is updated, current outputs are
computed and finally delivered to the environment of the system, which can be for example
input-output devices. As such, a reactive program can be seen as a single, infinite, non-
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terminating loop, which implements the sequence of reaction steps. Each loop iteration
consists in reading current inputs, calling a step function on the current inputs and the
current memory, which returns the current outputs with a new memory. We give in Figure
7.1 an example of a loop representing a reactive program.

We denote as X the set of input variables, as Y the set of output variables and as M
the set of memory variables. We denote as read the operation which consists in reading
the current inputs and similarly, we denote as write the operation delivering the current
outputs to the program environment. The step function is denoted by S.

M = M0;
loop {
read(X);
(Y,M) = S(X,M);
write(Y );
}

Figure 7.1: Representation of a reactive program as a single infinite loop.

7.2 Synchronous Languages

Synchronous languages [62, 15] have been designed to express deterministic, structured
reactive programs. Synchronous programs are organized as collections of parallel reactive
components. However, we should note that the parallelism between components of a syn-
chronous program is only logical, being more of a logical concurrency, than an effectively
parallel or distributed implementation, as synchronous programs are classically compiled
into sequential programs.

The synchrony hypothesis considers that components react instantaneously to their
inputs in a logical instant. Physical time disappears and time is seen as a sequence of
discrete logical instants. Although such a reaction may involve many computations for its
implementation, they are seen as atomic at a logical level. Synchronous programs have
a uniquely defined behavior for every possible sequence of inputs, hence being determin-
istic, with no possibility of deadlock, thus being reactive, as the absence of deadlocks is
guaranteed by rules enforced by compilers.

Synchronous languages come in different styles, such as the imperative languages
Argos [90], Esterel [16], Mode Automata [91], SyncCharts [6], Statecharts
[42], and the functional languages Lustre [63] and Signal [82]. Esterel is based on
the parallel composition of processes with interrupts, communicating through the instan-
taneous broadcast of signals. Lustre and Signal are data-flow languages, based on
data streams carrying boolean, integer or arbitrarily typed data at each instant at which
they are defined. Streams are defined according to clocks which are themselves boolean
streams.

Although our work can be applied to reactive programs in any synchronous language,
we have a particular interest in the analysis of Lustre programs.
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7.3 The Lustre Programming Language

A Lustre program defines its output variables and its memory variables as functions
of its input variables and the previous value of its memory variables. An expression et
can be seen semantically as a function of discrete time, such that (et)t≥0 is a sequence of
values for each instant t ≥ 0. Variables are defined by equations, such that the equation
X = e means that the variable X is always equal to the expression e.

Y1 = 2×X1 +X2

Y2 = Y1 + 1

×

+

2

+1

X1

X2

Y1

Y2

Figure 7.2: Equational and graphical descriptions of a simple data-flow program.

In the data flow program represented in Figure 7.2, the variables X1, X2, Y1, Y2 can be
interpreted as functions of time:

∀t ∈ N, Y1(t) = 2 ∗X1(t) +X2(t)
∀t ∈ N, Y2(t) = Y1(t) + 1

In Lustre, expressions are built from identifiers, constants, arithmetical and logical
operations, along with two specific temporal operators:
• A delay operator pre, defined as follows:

∀t ≥ 1, (pre(E))t = Et−1

At the initial reaction step, the value (pre(E))0 is set to a special value nil.
• An initialization operator ->, giving an initial value to an expression at the initial

reaction step, defined as follows:

(E->F )0 = E0

∀t ≥ 1, (E->F )t = Ft

A Lustre program is structured into nodes. A Lustre node is a subprogram imple-
menting a reactive component, which defines output variables in terms of input variables,
possibly containing memory variables.

Example 7.3.1. The Sum node represented in Figure 7.3 has an integer input incr, a
boolean input reset and an integer output s. It computes the sum of the values of the
incr input since the last instant at which reset was true, otherwise since the initial
reaction step if reset has never been true.

The Sum node can be used in other nodes, such as in the equation
mod7 = Sum(1, (pre(mod7) = 6)) which instantiates the Sum node with 1 as the in-
crement value and reset it when the previous value was 6. The variable mod7 is thus the
cyclic sequence of non-negative integers modulo 7.
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node Sum (incr : int; reset : bool)

returns (s : int);

let

s = 0 -> if reset then

0

else

pre(s) + incr;

tel;

+
if

p
r
e

->

incr
0

s

reset

0

Figure 7.3: Definition of the Sum node with its representation as an operator network.

7.4 Compilation of Synchronous Languages

Synchronous programs are classically compiled to sequential code, with a single step
function implementing a reaction of the entire program. Such a step function is intended
to be called inside an infinite loop, which is in charge of triggering reactions, reading
inputs and writing outputs. The machine implementation of a step function in a sequential
imperative language is often called a step procedure.

Example 7.4.1. We show in Figure 7.4 the step procedure implementing in C the Lustre
node Sum represented in Figure 7.3.

void sum_step(bool init, int incr, bool reset, int * s)

{

if(init) {

*s = 0;

} else {

if(reset) {

*s = 0;

} else {

*s = *s + incr;

}

}

}

Figure 7.4: Step procedure implementing the Sum node represented in Figure 7.3.

The input variables incr and reset of the Sum node are passed by value to the
sum step procedure, while the output variable s is passed by pointer to allow imperative
updates. As we can see in the definition of the Sum node, the variable s is defined as being
equal to zero at the initial reaction step, through the use of the initialization operator.
The step procedure sum step tests the occurrence of the initial reaction step by a test on
the value of a special boolean parameter init, which is true at the initial reaction step
and false everafter. It is the responsibility of the external infinite loop to set appropriately
the value of the init parameter.
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Lustre allows the expression of hierarchy and node reuse by node calls in Lustre
expressions, which can be used in the definition of other nodes. A single monolithic step
procedure for the top-level node is classically obtained in the academic Lustre compiler
by inlining all node calls.

7.4.1 Modular Compilation

Modular compilation is highly desirable in industrial compilers, such as in SCADE suite
[7], to avoid an intolerable increase in the size of the generated code due to the inlining
of internal nodes.

However, modular compilation of synchronous programs is not possible in general, as
noticed by Gonthier in [51], and as exemplified by the double copy node shown in Figure
7.5.

Example 7.4.2. The node double copy is a valid Lustre node, since it is equivalent to
the set of equations z = x; y = z, although it can not be compiled in a modular way.

node double_copy (t1, t2 : int)

returns (v1, v2 : int);

let

v1 = t2;

v2 = t1;

tel;

double copy

t1 v1

v2t2

Figure 7.5: Definition and graphical representation of the Lustre node double copy.

The equations of the double copy node can be compiled either into the sequential
statements v1 = t2; v2 = t1; or into v2 = t1; v1 = t2;, since there are two possi-
ble sequential orderings for the equations as they have no dependencies between each
other. However, the ordering v1 = t2; v2 = t1; is not valid for the instantiation
(y,z) = double copy(x,z) resulting in the statements y = z; z = x; where z is used
before being defined. Conversely, the ordering v2 = t1; v1 = t1; is not valid for the
instantiation (y,z) = double copy(z,x).

Thus the double copy node cannot be compiled independently of its usage and it is
not possible to generate a single step procedure which can be called in every context.

In general, reactive components can not be compiled modularly, with a step procedure
per component without considering the component environment.

Solutions have been proposed for the modular compilation of synchronous programs,
either by enforcing restrictions on the ways components can be connected together, such
as in SCADE, or by source code transformation [113, 86, 109, 110].

In SCADE, the rule enforced to enable modular compilation is that every feedback
loop must cross an explicit external delay operator pre. Such a restriction rejects some
causally correct programs, such as the double copy node.

An alternative solution, between the inlining of all internal nodes and the rejection of
some causally correct feedback loops was proposed in [113, 86, 109, 110]. The decision
problem associated to the modular compilation of a synchronous data-flow network into
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c atomic components, without restricting valid feedback loops, was shown to be NP-
complete in [86]. However, according to [109], most real programs do not exhibit such
a complexity. A symbolic encoding of the problem was proposed in [109, 110] in terms
of input-output relations to obtain in polynomial time a decomposition of a node into
atomic components which is optimal in some cases.

We will only consider in what follows structured reactive programs which can be
compiled modularly.

7.5 Structured Reactive Programs

A reactive system can generally be considered to be made of a set of parallel components.
Each component can be seen as a reactive system of its own, with its own memory, inputs
and outputs, described by its own step function.

Structured reactive programs are sets of well-defined reactive components, where com-
ponent implementations are independent from one another. We assume that components
in a reactive program communicate solely by the means of inputs and outputs and a
component can not manipulate directly the internal memory of a distinct component.

Formally, we consider a structured reactive program to be made of an ordered list
(C1, ..., Cn) of reactive components. A reactive program has three pairwise-disjoint sets
of global variables:

• A set X of global input variables
• A set Y of global output variables
• A set M of global memory variables

For a set U of variables, we denote as V(U) the set of valuations of variables in
U . The step function S corresponding to the entire reactive program is such that
S : V(X)× V(M)→ V(Y )× V(M).

Reactive Component

Each component Ci for i = 1, ..., n of a reactive program has three pairwise-disjoint sets
of variables:

• A set Xi of component input variables
• A set Yi of component output variables
• A set Mi of component memory variables

Each reactive component Ci is implemented by a step function
Si : V(Xi)× V(Mi)→ V(Yi)× V(Mi) which associates valuations of output vari-
ables and memory variables to a valuation of input variables and a previous valuation of
memory variables.

The variables of a synchronous reactive data-flow component satisfy the following
properties:

1. Each input of a component Ci is either a global input of the reactive program, a
global memory or the output of a previous component:

∀i ∈ {1, ..., n}, Xi ⊆ X ∪M ∪
⋃

1≤j<i

Yj

114



7.6 Structured Reactive Programs

2. The memory of a component Ci is local to that component. The set Mi is disjoint
from any other set of variables.

3. The outputs of each component are disjoint:

∀i, j ∈ {1, ..., n}, i 6= j ⇒ Yi ∩ Yj = ∅

4. Each global output and each global memory variable is the output of a component:

Y ∪M ⊆
⋃

1≤i≤n

Yi

5. Component output variables are used either as global output, global memory, or as
input to another component:⋃

1≤i≤n

Yi ⊆ Y ∪M ∪
⋃

1≤i≤n

Xi

These properties on variables of a reactive program and its constituting components
give restrictions on the form of structured reactive programs. Components are considered
to communicate only through variables, at least from a high-level point of view, and the
actual communication mechanism used in a given implementation should be reducible to
variable manipulations.

Property 1 ensures that each input variable of a component has been properly written
or computed before being read by that component. All variables must be defined once
and only once, by a single component. In particular, as a kind of well-formedness condi-
tion, property 3 ensures that no two distinct components can write to the same variable.
Property 4 ensures that the global outputs of the program are well-defined and property
5 states that all outputs of a component are used.

S1
X1

Y1

S2
X2

Y2

M1

M2

M

Figure 7.6: Structured reactive program with sub-components.
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7.6 Analysis and Verification

Regarding reactive programs, experience shows as argued in [64], that we are mostly
interested in proving safety properties, or bounded liveness properties that can be reduced
to safety properties, which can be expressed as sets of possible valuations of component
variables.

7.6.1 Verification of Synchronous Programs and Observers

Classically, safety properties can be expressed as synchronous observers [66], which are
components receiving the inputs and the outputs of the component under verification and
deciding at each reaction step if the property is satisfied or not, setting appropriately the
value of an output variable giving the observer verdict.

A safety property can be verified on a reactive component by an analysis of the reach-
able states of the composition of the component to be verified with the observer of the
safety property. The property is satisfied if the output variable of the observer is al-
ways true. Thus, the safety property is transformed into an invariant property of the
composition of the component under verification with the observer.

Component C Observer O
outputsinputs ok

Figure 7.7: Composition of a reactive component C with an observer O.

Observers have the advantage over temporal logics that they can be expressed in the
same language as the program under verification, and thus can be executed and tested.

7.6.2 Analysis of Synchronous Programs

The analysis of synchronous programs is classically performed on a control structure called
a control automaton, which is a way to compile synchronous programs using a partial eval-
uation of boolean memory variables, as pioneered by Esterel [16] v2 and v3 compilers.
The academic Lustre compiler [114] is able to construct a boolean interpreted automa-
ton and to minimize it on-the-fly by bisimulation [20]. The transitions of the control
automaton are labeled by tests on boolean and numerical variables, and by assignments
of numerical variables. Such a control structure, in the case of purely-boolean control
programs, allows the model checking of safety properties.

Model Checking of the Boolean Control Automaton

The control automaton can also be used as a boolean abstraction of a general synchronous
program, by introducing free logical variables to represent tests on numerical variables,
representing an over-approximation of the program behavior, which can then be verified
by a model checker.
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Several tools based on model-checking have been developed (Lesar[112, 65],
TempEst[105], Xeve[21]) to verify boolean safety properties on synchronous programs
by an exploration of the state space of the control automaton, abstracting away the behav-
ior of numerical variables. These techniques can fail to verify a property on synchronous
programs with numerical variables, due to the over-approximation of the possible program
behaviors.

More precisely, properties depending directly or indirectly on numerical variables can
not be verified by model checking of the boolean control automaton. To alleviate these
limitations, the Lesar model checker eliminates numerically unsatisfiable transitions in
the control automaton before the model-checking itself. For linear constraints, efficient
decision procedures are available, such as the emptiness test of convex polyhedra. This
preprocessing restricts the boolean state-space to be explored by the model checker. How-
ever, the dynamic behavior of numerical variables is still ignored.

Linear Relation Analysis of Synchronous Programs

It was proposed in [67] to perform a Linear Relation Analysis on the boolean control
automaton of a synchronous program. As a result, a convex polyhedron associated with
each state of the control automaton is obtained, representing an over-approximation of
the set of reachable variable valuations at a given state for a forward analysis. We can also
perform a backward analysis and obtain an over-approximation of the variable valuations
leading to an erroneous state or a property violation. Numerical tests and assignments
of numerical variables on transitions of the control automaton can be used to derive a
system of fixpoint equations, partitioned according to boolean states, which is then solved
using the standard widening operator.

Linear Relation Analysis can be used either to verify a given property, on the control
automaton representing an observer composed with the program under verification, or for
the discovery of the possible reachable states without an explicit proof objective, which
can be applied to prove the absence of runtime errors such as arithmetic overflows.

A dynamic refinement of the control automaton, with respect to a property to be
verified, was proposed in [70, 73].

The Lack of Modularity

Either classical model checkers for synchronous languages, or Linear Relation Analysis
for synchronous programs as presented in [67], consider a monolithic control automa-
ton obtained after inlining all internal components. Thus due to inlining, the resulting
boolean control automaton can have an intractable size for large synchronous programs.
The analysis results for a given component are not reused, and a sub-component can be
analyzed many times if it is instantiated in several different contexts. Therefore a modular
verification approach for synchronous reactive programs would be highly desirable.

SAT/SMT-based Model Checking

More recently, several approaches have been proposed for the model checking of safety
properties of Lustre programs using SAT/SMT-based techniques, namely k-induction
[17, 28].

117



Chapter 7 Analysis and Verification of Reactive Systems

Let N be a Lustre node modeled as a formula ∆(n) expressing an equational system
of constraints describing the valuation of the variables of N at a given instant n in terms
of the valuations at instants n, n− 1,...,n− d where d is the maximum nesting depth of
the pre operator in N .

Let P be a property expressed as a quantifier-free formula P (n) over the variables of
N . We denote as ∆t the formula obtained by replacing every occurrence of n by t in ∆(n)
and as Pt the formula obtained by replacing every occurrence of n by t in P (n).

We can prove that P is an invariant for N by k-induction if we prove that the two
following statements are correct for some k ≥ 0:

∆0 ∧∆1 ∧ ... ∧∆k |= P0 ∧ P1 ∧ ... ∧ Pk{
∆n ∧∆n+1 ∧ ... ∧∆n+(k+1)

Pn ∧ Pn+1 ∧ ... ∧ Pn+k
|= Pn+(k+1)

The approach presented in [119, 1] based on SAT-based k-induction is used for the
model checking of boolean safety properties of Lustre programs in the Prover tool
integrated with the SCADE suite.

Kind 2 [57, 59, 58, 30] is an SMT-based model checker to verify safety properties of
finite and infinite state-space Lustre programs, using first-order logic with linear integer
and real arithmetic. Kind 2 relies on several SMT solvers as backends to prove quantifier-
free properties, which are expressed by the user in an extended dialect of Lustre, either
as assume-guarantee contracts or as invariants. Backends are run concurrently and can
cooperate to achieve a given proof goal. Kind 2 can also perform compositional reasoning
over nodes, by allowing the user to give assume-guarantee contracts on some nodes, and
by reusing the proven properties in these contracts during the verification of a hierarchy
of nodes. Kind 2 also takes advantage of the capabilities of modern SMT solvers, which
are incremental and backtrackable, able to return models and to compute unsatisfiable
cores. An earlier experiment of the SMT-based model checking of Lustre programs was
described in [49].

Modular Abstractions of Lustre Nodes

The lack of modularity of earlier verification approaches, based on model checking or
Linear Relation Analysis on a monolithic control automaton, can be tackled by computing
abstractions of the behavior of Lustre nodes in a modular fashion, and to use these
abstractions to compute invariants of Lustre programs. Then, a Lustre program can
be verified for a given property of interest by computing an invariant of the program
composed with an observer representing that property.

A modular abstraction of Lustre nodes by disjunctive invariants was proposed in
[102], based on predicate abstraction, using quantifier elimination and SMT-solving. A
finite set of predicates Π = {p1, ..., pm} over the variables of a Lustre program is consid-
ered. The approach computes disjunctive invariants of the form C1 ∨ ... ∨ Cn where each
disjunct Ci is a conjunction of predicates of Π with a bounded size. Such a disjunctive
invariant follows the template: ∨

i

m∧
j=1

bi,j ⇒ pj
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and can be obtained by instantiating the bi,j booleans. The problem of finding a dis-
junctive invariant over the finite set Π of predicates is reduced to finding suitable values
for the boolean variables bi,j. This problem is encoded into a quantifier-free formula F
over the bi,j variables, which can be solved using an SMT-solver. A minimal disjunctive
invariant, for a given template, can be obtained by iterative refinement.

Modular invariants of Lustre nodes encoded as Horn clauses are obtained in [50]
based on property-directed reachability [68], either by encoding modularly a synchronous
program as a set of Horn clauses or by synthesizing a modular invariant from a monolithic
invariant.

7.7 Conclusion

The analysis and verification of synchronous reactive programs is classically based on a
monolithic boolean control automaton describing the entire program. It is constructed by
inlining all node instantiations to get a single flat component. The modular structure of a
reactive program into sub-components is completely lost. Using model-checking or Linear
Relation Analysis, the analysis of the boolean control automaton involves rapidly for large
programs an explosion of the automaton size and of the number of abstract states. Several
approaches using SAT or SMT solvers for the modular verification of Lustre nodes have
been proposed. They require a proof objective or a property to be verified.

To prove the absence of errors at runtime like arithmetic overflows, we need to prove
automatically that program variables are always bounded, and it would be quite painful
for users to provide those bounds manually in large systems. Thus we are interested in
the automatic discovery of invariant properties of reactive programs, without requiring a
proof objective, in a modular way.

In the next chapter, we propose a new approach toward a modular analysis of reactive
systems, based on the computation of disjunctive relational summaries of step procedures.
The summaries of step procedures will be used to construct a representation of components
called Relational Mode Automata, designed specifically for analysis and providing several
levels of abstraction of component behavior. The analysis results of a relational mode
automaton can be used modularly to analyze larger systems made of other components
without computing a product automaton. We will also give a way to tune the level of
detail of a relational mode automaton to achieve different tradeoffs in analysis precision
and performance.
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Chapter 8

Towards a Modular Analysis of
Reactive Systems using Relational
Mode Automata

Reactive programs are usually structured as sets of components, cooperating together
to implement the system behavior. If the implementation of a reactive program is not
explicitly structured as such, it is quite convenient and natural to consider such a program
as being made of distinct components. Reactive programs involve concurrency between
the components, at the level of their logical structure, even if the actual implementation
is not concurrent itself. Classically, synchronous programs are compiled into a single step
procedure, in which all logical concurrency has been dealt away by a sequential scheduling
of component reactions.

As we saw in Chapter 7, synchronous programs are classically analyzed in a monolithic
fashion, either in the form of a step procedure implementing the whole program, or as a
single control automaton, resulting from the synchronous composition of its components.

The structure of a reactive program as a system of components is completely lost in
those approaches. There is no reuse of analysis results for components, which may be
instantiated in multiple different contexts.

Existing approaches for the modular analysis of synchronous programs consider only
Lustre programs, with an observer specifying explicitly the property to be checked. On
one hand, they do not handle reactive programs where, as in real-world industrial cases,
some components are implemented externally in a different language, such as C. This
is especially necessary to access native features of the implementation platform, such as
input-output devices. On the other hand, we would like to be able to not only verify,
but also automatically discover properties of reactive programs. For example, discovering
linear relations between the variables of a reactive program can be used to check if these
variables are bounded at all times, for every possible input event, without having to give
the actual bound manually. It can also be applied to the analysis of the Worst-Case
Execution Time (WCET) of reactive programs [25, 115].

We propose in this chapter an approach for the modular analysis of reactive programs,
where each component can be analyzed separately, to discover automatically relations
between input, output and memory variables.

121



Chapter 8 Modular Analysis of Reactive Systems

8.1 The Bounded Event Counter

We consider a very simple reactive program, which implements a bounded event counter,
defined by the counter step procedure given in Figure 8.1.

void counter_step(int n, int init, int event, reset, int * cnt)

{

assert(n >= 1);

1: if(init){

*cnt = event;

2: } else {

3: if(reset){

*cnt = event;

4: } else if(*cnt < n) {

*cnt = *cnt + event;

5: } else {

6: }

7: }

8:

}

Figure 8.1: Step procedure of the bounded event counter.

The bounded event counter receives two boolean inputs, reset and event, and re-
turns an integer output cnt counting the number of occurrences of an event, denoted by
the event variable, since the last reset, or since the first reaction step if no reset has
been received yet. The output cnt stays at the same value when it reaches the counter
capacity n, which is assumed to be a positive symbolic constant, until a reset is received.
For simplicity, boolean variables are implemented as integer variables between 0 and 1.
Alternatively, we could use an abstract domain combining boolean properties with convex
polyhedra [70, 10].

This may seem to be a simplistic example, however overflows of counter components
have been the cause of a number of notable software bugs in critical systems. The Boeing
Dreamliner 787 [2] had to be rebooted every 248 days, due to a counter overflow in
the firmware of the Generator Control Units (GCUs), which are in charge of AC power
management in the airplane.

Counter

init

reset

event

cnt

n

Figure 8.2: The bounded event counter component.
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In order to prove the absence of arithmetic overflows in the counter step procedure,
we must first guarantee that the output variable cnt remains bounded at all times. More
specifically, the value of cnt must be always between 0 and n, for every possible value
of n with n ≥ 1. We would like to obtain 0 ≤ cnt ≤ n at each reaction step in a
modular fashion, without having to consider other components and without inlining of
step procedures.

We can start by computing a classical Linear Relation Analysis on the step procedure
and see what properties can be discovered.

The parameters init and event are boolean variables in the high-level definition of
the counter component. From the knowledge of the high-level type of variables and the
user-provided assertion n ≥ 1, we get the precondition I] for the counter step procedure:

I] = (0 ≤ init ≤ 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

We define the following system of fixpoint equations:

Q1 = I]

Q2 = (Q1 u (init = 1))[cnt := event]
Q3 = Q1 u (init = 0)
Q4 = (Q3 u (reset = 1))[cnt := event]
Q5 = (Q3 u (reset = 0 ∧ cnt < n))[cnt := cnt+ event]
Q6 = Q3 u (cnt ≥ n)
Q7 = Q4 tQ5 tQ6

Q8 = Q2 tQ7

Using a classical Linear Relation Analysis, we get the following result for Q8 corresponding
to the exit point of the counter step procedure:

Q8 = (0 ≤ init ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

It is an utterly imprecise result, since we get nothing more than the precondition I] itself.
This not surprising, due to the convex hull operator applied for Q7 and Q8, and more so
since we did not take into account that the counter step procedure is called repeatedly
inside an infinite loop, with the init variable being true at the first iteration and false

everafter.
Thus it is interesting to compute a disjunctive relational summary of the counter step

procedure, to obtain a more precise representation of its behavior, and in the meantime,
to consider the specific nature of step procedures.

8.2 Disjunctive Summaries of Step Procedures

We are interested in computing summaries of reactive components implemented by a
step procedure. Step procedures can be either generated automatically as a result of the
compilation of a reactive program, such as for synchronous languages, or implemented
externally in a host language such as C.

8.2.1 General Principle

Following the approach presented in Chapter 5, we compute the disjunctive relational
summary of a step procedure p by iterative refinement of its global precondition I].
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Intuition

Reactive components update the value of variables based on the previous value of memory
variables and the current value of input variables. Thus it is interesting to compute
the summary of a component by distinguishing behaviors according to preconditions on
memory variables. Additionally, to obtain precise component summaries, we introduce
an additional level of disjunction, by partitioning further according to preconditions on
input variables. Partitioning with respect to constraints on memory variables is designed
to separate behaviors according to high-level component states, whereas partitioning with
respect to constraints on input variables separate the possible ways in which the next state
and outputs are computed.

Two-Level Partition Refinement

We use a two-level partition refinement scheme for step procedures. First, we refine
the global precondition I] of a step procedure according to constraints on memory vari-
ables. This first refinement phase produces an abstract partition δ]M = {I]1, ..., I]n} of
the global precondition I]. In a second phase, we refine each precondition I]k ∈ δ]M
according to constraints on input variables. Finally, we obtain an abstract partition
δ] = {I]1,1, .., I

]
1,m1

, ..., I]n,1, .., I
]
n,mn
} of the global precondition I].

The abstract partition δ] can be seen as made of two levels, in the sense that for each
k = 1..n, the sets {I]k,1, .., I

]
k,mk
} ⊆ δ] of preconditions produced by the second phase are

themselves abstract partitions of a precondition I]k ∈ δ]M given by the first refinement
phase.

Refinement Heuristics

Let I]k be a precondition of a step procedure p. Let Qi(I
]
k) ∈ D] be the abstract value

discovered at a control location νi of p by a relational analysis under the precondition I]k.

Definition 8.2.1 (Refinement with respect to memory variables). Let M0 be the set
of variables representing initial values of memory variables. If s] is a complementable
abstract value such that:

1. Qi(I
]
k) ↓M0 v s]

2. I]
′

k = I]k u s] 6= ⊥ and I]
′′

k = I]k u s] 6= ⊥
then I]

′

k and I]
′′

k are refining the precondition I]k according to memory variables.

Definition 8.2.2 (Refinement with respect to input variables). Let X be the set of input
variables. If s] is a complementable abstract value such that:

1. Qi(I
]
k) ↓ {M0, X} v s]

2. I]
′

k = I]k u s] 6= ⊥ and I]
′′

k = I]k u s] 6= ⊥
then I]

′

k and I]
′′

k are refining the precondition I]k according to input variables.

We should note that most step procedures in practice have no loops. Loops may
appear in step procedures generated from synchronous languages like Lustre when array
constructs are used.
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8.2.2 Example

We compute a disjunctive relational summary over the convex polyhedra abstract domain
for the counter step procedure shown in Figure 8.1. The counter step procedure is
represented by a system of fixpoint equations:

I] = (0 ≤ init ≤ 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)
Q1 = I] u (cnt = cnt0)
Q2 = (Q1 u (init = 1))[cnt := event]
Q3 = Q1 u (init = 0)
Q4 = (Q3 u (reset = 1))[cnt := event]
Q5 = (Q3 u (reset = 0 ∧ cnt < n))[cnt := cnt+ event]
Q6 = Q3 u (cnt ≥ n)
Q7 = Q4 tQ5 tQ6

Q8 = Q2 tQ7

We duplicate only the variable cnt with cnt0 since it is the only parameter modified by
the procedure. Let M0 = {init, n, cnt0} be the set of variables representing initial values
of memory variables.

Refinement According To Memory Variables

I]

I]1 I]
′

1

I]2 I]
′

2

init0 = 1 init0 = 0

cnt0 < n cnt0 ≥ n

Figure 8.3: Partitioning of I] according to preconditions on memory variables.

Refinement of I] A Linear Relation Analysis of the system of fixpoint equations gives
for Q2 at program point 2:

Q2(I
]) = (init = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

Q2 ↓M0 = (init = 1 ∧ n ≥ 0)

The inequality constraint s] = (init ≥ 1) from Q2 ↓ M0 is a complementable abstract
value. The complement of s] with respect to I] is s] = (init ≤ 0) u I] = (init = 0). The

global precondition I] is refined into I]1 and I]
′

1 :

I]1 = I] u s] = (init = 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

I]
′

1 = I] u s] = (init = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)
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Refinement of I]
′

1 A Linear Relation Analysis of the counter step procedure under

the precondition I]
′

1 gives at program point 4:

Q4(I
]′

1 ) ↓M0 = (init = 0 ∧ n ≥ 1)

We gained no interesting property on memory variables, besides the constraints that we
already had in I]

′

1 . This was expected since the program point 4 is only guarded by the
condition reset = 1 concerning only input variables. We get at program point 5:

Q5(I
]′

1 ) = (init = 0 ∧ reset = 0 ∧ cnt = cnt0 + event ∧ cnt0 ≤ cnt ≤ cnt0 + 1
∧ n ≥ 1 ∧ cnt0 < n)

Q5(I
]′

1 ) ↓M0 = (init = 0 ∧ cnt0 < n ∧ n ≥ 1)

We can refine I]
′

1 according to the constraint cnt0 < n into I]2 and I]
′

2 :

I]2 = (init = 0 ∧ cnt0 < n ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

I]
′

2 = (init = 0 ∧ cnt0 ≥ n ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

Both I]2 and I]
′

2 can not be refined further according to memory variables. We get an

abstract partition δ]M = {I]1, I
]
2, I

]′

2 } of the global precondition I]:

I]1 = (init = 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

I]2 = (init = 0 ∧ cnt0 < n ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

I]
′

2 = (init = 0 ∧ cnt0 ≥ n ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

Refinement According To Input Variables

We denote as X = {event, reset} the set of input variables of the bounded event counter.
In the second refinement phase, we refine each precondition obtained in δ]M according to
constraints on input variables.

I]

I]1 I]
′

1

I]2

I]3 I]
′

3

I]
′

2

I]4 I]
′

4

init0 = 1 init0 = 0

cnt0 < n cnt0 ≥ n

reset0 = 1 reset0 = 0 reset0 = 1 reset0 = 0

Figure 8.4: Partitioning of I].
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Refinement of I]2 A Linear Relation Analysis of the counter step procedure under
the precondition I]2 gives at program point 4:

Q4(I
]
2) = (init = 0 ∧ cnt0 < n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)

Q4(I
]
2) ↓ {M0, X} = (init = 0 ∧ cnt0 < n ∧ reset = 1 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

The precondition I]2 can be refined according to the constraint reset ≥ 1 in Q4(I
]
2) ↓ X

and its complement reset = 0 into I]3 and I]
′

3 :

I]3 = (init = 0 ∧ cnt0 < n ∧ reset = 1 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

I]
′

3 = (init = 0 ∧ cnt0 < n ∧ reset = 0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

The preconditions I]3 and I]
′

3 can not be refined any further.

Refinement of I]
′

2 A Linear Relation Analysis of the procedure under I]
′

2 gives:

Q4(I
]′

2 ) = (init = 0 ∧ cnt0 ≥ n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1
∧ n ≥ 1)

Q4(I
]′

2 ) ↓ {M0, X} = (init = 0 ∧ cnt0 ≥ n ∧ reset = 1 ∧ 0 ≤ event ≤ 1)

As for I]2, we can refine I]
′

2 according to the constraint reset ≥ 0 into I]4 and I]
′

4 :

I]4 = (init = 0 ∧ cnt0 ≥ n ∧ reset = 1 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

I]
′

4 = (init = 0 ∧ cnt0 ≥ n ∧ reset = 0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

Abstract Partition of I]

We get an abstract partition δ] = {I]1, I
]
3, I

]′

3 , I
]
4, I

]′

4 } of the global precondition I] of the
counter step procedure:

I]1 = (init = 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

I]3 = (init = 0 ∧ cnt0 < n ∧ reset = 1 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

I]
′

3 = (init = 0 ∧ cnt0 < n ∧ reset = 0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

I]4 = (init = 0 ∧ cnt0 ≥ n ∧ reset = 1 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

I]
′

4 = (init = 0 ∧ cnt0 ≥ n ∧ reset = 0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

Disjunctive Summary of the counter step Procedure

The disjunctive summary Sc = {r]1, r
]
2, r

]
3, r

]
4, r

]
5} of the counter step procedure is the

collection of the abstract relations discovered at the exit of the procedure under each
precondition in the abstract partition δ], with r]1 = Q8(I

]
1), r

]
2 = Q8(I

]
3), r

]
3 = Q8(I

]′

3 ),

r]4 = Q8(I
]
4), r

]
5 = Q8(I

]′

4 ). The summary Sc is as follows:

r]1 = (init = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

r]2 = (init = 0 ∧ cnt0 < n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)

r]3 = (init = 0 ∧ cnt0 < n ∧ reset = 0 ∧ cnt = cnt0 + event
∧ cnt0 ≤ cnt ≤ cnt0 + 1 ∧ n ≥ 1)

r]4 = (init = 0 ∧ cnt0 ≥ n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)

r]5 = (init = 0 ∧ cnt0 ≥ n ∧ reset = 0 ∧ cnt = cnt0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)
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8.2.3 From Disjunctive Summaries To Modes

I]

I]1

r]1

I]
′

1

I]2

I]3

r]2

I]
′

3

r]3

I]
′

2

I]4

r]4

I]
′

4

r]5

m1 m2

m0

cnt0 < n cnt0 ≥ n

init0 = 0init0 = 1

reset0 = 1 reset0 = 0 reset0 = 1 reset0 = 0

Figure 8.5: Partitioning of I] and the associated members r]1, r
]
2, r

]
3, r

]
4, r

]
5 of the summary

Sc regrouped into disjunctions m0,m1,m2 of linear relations.

Summary members derived from the same precondition on memory variables can be
grouped into disjunctions r]2 ∨ r

]
3 and r]4 ∨ r

]
5. The summary Sc of the counter step

procedure can be written as a set Sc = {m0,m1,m2} of disjunctions of linear relations:

m0 = (init = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)
m1 = ((init = 0 ∧ cnt0 < n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)

∨ (init = 0 ∧ cnt0 < n ∧ reset = 0 ∧ cnt = cnt0 + event
∧ cnt0 ≤ cnt ≤ cnt0 + 1 ∧ n ≥ 1))

m2 = ((init = 0 ∧ cnt0 ≥ n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)
∨ (init = 0 ∧ cnt0 ≥ n ∧ reset = 0 ∧ cnt = cnt0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1))

The disjunctive summary of a step procedure becomes a set S = {mi} of disjunctions
mi = Ti,1∨ ...∨Ti,n of linear relations (Ti,k)k=1..n ∈ D]. Each disjunction mi is represented
symbolically, without applying the convex hull operator. The summary members mi ∈ S
can be seen as the modes of the reactive component.

We assume that there is a unique summary member m0 ∈ S containing the constraint
init0 = 1 where m0 v (init = 1), that we identify as the initial mode of the component.

The sequence of reaction steps makes a component to transition from one mode to
another. Thus a reactive component can be represented by a control structure made of
modes, defined by disjunctions of abstract relations. These structures will be termed
relational mode automata.
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8.3 Relational Mode Automata

We propose a new representation of reactive components, allowing different levels of ab-
straction and designed specifically for the analysis of their behavior, called Relational
Mode Automata (RMA).

8.3.1 Definitions

Let Σ be the set of values with Σ = Z∪B and B = {0, 1}. Given a finite set V of variables,
a valuation of variables over V is a function σ : V → Σ. We denote as V(V ) the set of all
variable valuations over V . The projection σ ↓ U of a valuation σ on U ⊆ V is defined as
σ ↓ U = {v 7→ σ(v) | v ∈ U}.

Definition 8.3.1. (Relational Mode Automaton) A Relational Mode Automaton (RMA)
is a tuple R = (X, Y, Z,M, I,Loc, `0, φ, τ) defined as follows:

• X, Y, Z,M are the finite disjoint sets of input variables, output variables, local vari-
ables and memory variables of the relational automaton R. We denote collectively
as V = X ∪ Y ∪ Z ∪M the set of variables of R.
• I ⊆ V(V ) is the set of initial variable valuations.
• Loc is a finite set of control locations.
• `0 ∈ Loc is the initial control location.
• φ : Loc → Modes, with Modes = P(V(V )× V(V )), is a map associating a binary

relation φ(`) ∈ Modes on variable valuations to each control location ` ∈ Loc. The
relation φ(`) is called the mode associated to the control location `.
• τ ⊆ Loc× Loc is the control transition relation.

The values of variables are updated according to the binary relation φ(`) associated
to each control location `. Input variables and output variables are the external interface
of a relational mode automaton. Relational Mode Automata can be seen as a relational
extension of Mode-Automata [91].

States

Quite classically, a state of a relational mode automaton is a pair (`, σ) made of a control
location ` ∈ Loc and a variable valuation σ ∈ V(V ). We denote as S = Loc× V(V ) the
set of states of a RMA. We will say that control resides at a given control location ` ∈ Loc
for a state s if s is of the form s = (`, σ) for some variable valuation σ ∈ V(V ).

The set Loc of control locations should not be mistaken with the set S of automaton
states, as control locations are only abstract places where control may reside during an
execution. They are merely a notational facility to define the control structure of a
relational mode automaton.

Domain of a Mode

The source src(φ(`)) of a relation φ(`) defines the domain of applicability of a mode φ(`).
The domain dom(`) ⊆ V(V ) of a mode φ(`) is defined as dom(`) = src(φ(`)).
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`0 : Init `1 : Counting `2 : Full

Figure 8.6: Relational mode automaton Rev representing the bounded event counter
component.

When modes are known to be disjunctions of elements of a relational abstract domain
D], such as disjunctions of linear relations, the domain of a mode is more specifically
defined as:

dom(`) =
⊔

Ti∈φ(`)

src](Ti)[V0/V ]

Control Transitions

Each pair (`j, `i) ∈ τ in the control transition relation represents a possible control change,
from a location `j to a location `i, which is realized if the variable valuation σ of a state
s = (`j, σ) satisfies the domain of the destination mode φ(`i), with σ ∈ dom(`i). Control
transitions of the form (`, `) ∈ τ , when control can possibly stay at a given control location
`, are called self-transitions.

Example 8.3.1 (Bounded event counter). We define the relational mode automaton
Rev = (X, Y, Z,M, I,Loc, `0, φ, τ) representing the bounded event counter implemented
by the counter step procedure in Figure 8.1. The automaton Rev is shown in Figure
8.6. The variables of the automaton Rev are:

X = {event, reset}
Y = {cnt}
Z = ∅
M = {cnt, n}

The addition of an explicit init variable is not necessary, since relational mode automata
have an explicit initial control location `0.

The set Loc of control locations is Loc = {`0, `1, `2}. The modes of the relational
mode automaton Rev are relations on variable valuations over V , given by the function
φ : Loc→ P(V(V )× V(V )) defined formally as follows:

φ(`0) = (cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)
φ(`1) = ((cnt0 < n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)

∨ (cnt0 < n ∧ reset = 0 ∧ cnt = cnt0 + event
∧ cnt0 ≤ cnt ≤ cnt0 + 1 ∧ n ≥ 1))

φ(`2) = ((cnt0 ≥ n ∧ reset = 1 ∧ cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ n ≥ 1)
∨ (cnt0 ≥ n ∧ reset = 0 ∧ cnt = cnt0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1))

The set I of initial valuations is:

I = (cnt = 0 ∧ n ≥ 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)
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The control transition relation τ is defined as:

τ = {(`0, `1), (`1, `1), (`1, `2), (`2, `2), (`2, `1)}

8.3.2 Semantics

State Transition System

For a given relational mode automaton R, we define a state transition system
TR = (S, I,→R), where the set S of states is S = Loc× V(V ) and the state transition
relation →R⊆ S × S is defined as follows:

(`j, `i) ∈ τ (σ, σ′) ∈ φ(`j) σ′ ∈ dom(`i)

(`j, σ)→R (`i, σ′)

The state transition system TR is called the state semantics of the relational mode
automaton R.

Post-Condition Operator

For each pair (`, `′) of control locations, we define a post-condition operator
post(`, `′) : P(V(V ))→ P(V(V )) giving the image of a set U ⊆ V(V ) of valuations by
the mode φ(`), assuming that the next mode is φ(`′). When modes can be arbitrary
relations, the post(`, `′) operator is defined as follows:

∀U ⊆ V(V ), post(`, `′)(U) = tgt(φ(`) ∩ (U × src(φ(`′))))

When modes φ(`), φ(`′) ∈ P(D]) are disjunctions of abstract values in D] the post(`, `′)
operator is more specifically defined as:

∀d] ∈ D], post(`, `′)(d]) =
⊔

Ti∈φ(`)

∃V0, (Ti u (∃X, d][V/V0]) u dom(`′))

Reachable Valuations

The reachable states at a given control location ` ∈ Loc are the states (`, σ) which are
reachable from the initial control location `0 in a finite number of computation steps of
the state transition system TR. We define the set reach(`) of reachable valuations at a
control location ` ∈ Loc as:

reach(`) = {σ ∈ V(V ) | ∃σ0 ∈ I, σ0 ∈ dom(`0) ∧ (`0, σ0)→?
R (`, σ)}

The set reach(`) can be expressed as the least solution of the following system of fixpoint
equations:

reach(`0) = I ∪
⋃

(`,`0)∈τ

post(`, `0)(reach(`)) ∩ dom(`0)

reach(`) =
⋃

(`′,`)∈τ

post(`′, `)(reach(`′)) ∩ dom(`)

131



Chapter 8 Modular Analysis of Reactive Systems

Substitution

We define a way to get a new relational mode automaton from an already defined one,
by variable substitution. It is intended as a templating mechanism for relational mode
automata.

Let R = (X, Y, Z,M, I,Loc, l0, φ, τ) be a relational mode automaton and
V = X ∪ Y Z ∪M . Let W = (w1, ..., wm) and W ′ = (w′1, .., w

′
m) be two distinct tuples of

variables of equal length with V ∩W ′ = ∅.

Definition 8.3.2 (Variable Renaming). We denote as K[W/W ′] the renaming in K of
each variable wi ∈ W by the variable w′i ∈ W ′, such that K[W/W ′] = (K \W ) ∪W ′.

Definition 8.3.3 (Renaming of Valuations). For a valuation σ ∈ V(V ), we define the
renaming σ[W/W ′] ∈ V(V [W/W ′]) as follows:

∀σ ∈ V(V ),∀v ∈ V [W/W ′], σ[W/W ′](v) =

{
σ(wi) if v = wi ∈ W
σ(v) otherwise

Definition 8.3.4 (Variable substitution in RMA). We define the renamed relational mode
automaton R[W/W ′] = (X ′, Y ′, Z ′,M ′, I ′,Loc, `0, φ

′, τ) as follows:
• X ′ = X[W/W ′], Y ′ = Y [W/W ′], Z ′ = Z[W/W ′], M ′ = M [W/W ′]
• I ′ = {σ[W/W ′] | σ ∈ I}
• ∀` ∈ Loc, φ′(`) = φ(`)[W/W ′]

8.3.3 Parallel Composition

Two relational mode automata R1,R2 can have distinct sets V1, V2 of variables and thus
states with valuations defined over different sets of variables. The parallel composition
of R1 and R2 must have states with valuations keeping track of the variables of both
automata, defined over a greater set V = V1 ∪ V2 of variables. In order to properly define
the parallel composition of R1 and R2, we must extend the modes of R1 and R2 to the
greater set V of variables.

Definition 8.3.5 (Extension of valuations). Let Vk and V be finite sets of variables such
that Vk ⊆ V . We define the extension σk ↑ V ⊆ V(V ) of a valuation σk ∈ V(Vk) to a set
of valuations over V as:

∀σk ∈ V(Vk), σk ↑ V = {σ ∈ V(V ) | σ ↓ V = σk}

Each extended valuation σ ∈ σk ↑ V coincides with the original valuation σk on the
variables of Vk, preserving their values, such that σ ↓ V = σk. The extension σk ↑ V is
the set of all possible valuations σ of V satisfying this criterion.

The extension of valuations over a greater set V can be seen, in some sense, as intro-
ducing degrees of freedom for the variables of V which are not in Vk. The other variables
are allowed to to range freely over the set of all possible values.

Example 8.3.2. Let V1 = {x, y} and V2 = {z, t} be sets of variables. Let V = V1 ∪ V2.
Let σ1 = [x 7→ 1, y 7→ 2] be a valuation over V1 and let σ2 = [z 7→ 3, t 7→ 4] be a valuation
over V2. The extensions to V of the valuations σ1 and σ2 are:

σ1 ↑ V = {[x 7→ 1, y 7→ 2, z 7→ a, t 7→ b] | a, b ∈ Σ}
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σ2 ↑ V = {[x 7→ c, y 7→ d, z 7→ 3, t 7→ 4] | c, d ∈ Σ}

We should remark that the intersection (σ1 ↑ V ) ∩ (σ2 ↑ V ) is a singleton:

(σ1 ↑ V ) ∩ (σ2 ↑ V ) = {[x 7→ 1, y 7→ 2, z 7→ 3, t 7→ 4]}

We define straightforwardly the lifting of extension to sets of variable valuations.

Definition 8.3.6 (Extension of sets of valuations). Let Vk and V be finite sets of variables
such that Vk ⊆ V . We define the extension Uk ↑ V ⊆ V(V ) of Uk ⊆ V(Vk) to a set of
valuations over V as:

∀Uk ⊆ V(Vk), Uk ↑ V =
⋃

σk∈Uk

σk ↑ V

Using the extension of valuations, we define the extension of modes, which are relations
over variable valuations.

Definition 8.3.7 (Relational extension). Let Vk and V be finite sets of variables such that
Vk ⊆ V . We define the extension ρ ↑ V ⊆ V(V )× V(V ) of a relation ρ ⊆ V(Vk)× V(Vk)
to a relation over valuations of V as:

∀ρ ⊆ V(Vk)
2, ρ ↑ V = {(σ, σ′) ∈ V(V )2 | (σk, σ′k) ∈ ρ ∧ σ ∈ σk ↑ V ∧ σ′ ∈ σ′k ↑ V }

Example 8.3.3. Let V1 = {x, y, n} and V2 = {x, z, n} be sets of variables. Let
V = V1 ∪ V2. Let r1 ⊆ V(V1)×V(V1) and r2 ⊆ V(V2)×V(V2) be two relations defined as:

r1 = ((y = y0 + 1 ∧ x < n) ∨ (y = y0 ∧ x ≥ n))

r2 = ((z = z0 + 1 ∧ x < n) ∨ (z = z0 ∧ x ≥ n))

The relations r1 and r2 can be seen as the modes of two relational mode automata R1

and R2 incrementing their own output variable, respectively y and z, when a common
input variable x is strictly lower than n. The extensions to V of r1 and r2 are formally
defined as:

r1 ↑ V = {(σ, σ′) ∈ V(V )× V(V ) |
(σ′(y) = σ(y) + 1 ∧ σ′(x) < σ′(n) ∧ σ′(z) ∈ Σ ∧ σ ∈ V(V ))
∨ (σ′(y) = σ(y) ∧ σ′(x) ≥ σ′(n) ∧ σ′(z) ∈ Σ ∧ σ ∈ V(V ))}

r2 ↑ V = {(σ, σ′) ∈ V(V )× V(V ) |
(σ′(z) = σ(z) + 1 ∧ σ′(x) ≤ σ′(n) ∧ σ′(y) ∈ Σ ∧ σ ∈ V(V ))
∨ (σ′(z) = σ(z) ∧ σ′(x) ≥ σ′(n) ∧ σ′(y) ∈ Σ ∧ σ ∈ V(V ))}

The intersection (r1 ↑ V ) u (r2 ↑ V ) of the extended relations is:

(r1 ↑ V ) u (r2 ↑ V ) = ((y = y0 + 1 ∧ z = z0 + 1 ∧ x < n) ∨ (y = y0 ∧ z = z0 ∧ x ≥ n))

The intersection (r1 ↑ V ) u (r2 ↑ V ) represents the parallel composition of the modes r1
of R1 and r2 of R2.
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Definition 8.3.8 (Parallel composition of RMA).
Let R1 = (X1, Y1, Z1,M1, I1,Loc1, `

1
0, φ1, τ1) and R2 = (X2, Y2, Z2,M2, I2,Loc2, `

2
0, φ2, τ2)

be relational mode automata. Let V = Vars(R1) ∪ Vars(R2). The parallel product
R1×R2 is the relational mode automaton (X, Y, Z,M1 ∪M2, I,Loc1× Loc2, (`

1
0, `

2
0), φ, τ)

where:

• X = (X1 \ Y2) ∪ (X2 \ Y1)
• Y = (Y1 \X2) ∪ (Y2 \X1)
• Z = Z1 ∪ Z2 ∪ (X1 ∩ Y2) ∪ (Y1 ∩X2)
• I = (I1 ↑ V ) ∩ (I2 ↑ V )
• The function φ : Loc1 × Loc2 → P(V(V )× V(V )) associating modes to control

locations is defined as:

∀`1 ∈ Loc1,∀`2 ∈ Loc2, φ((`1, `2)) = (φ1(`1) ↑ V ) ∩ (φ2(`2) ↑ V )

• ((`1, `2), (`
′
1, `
′
2)) ∈ τ ⇔ (`1, `

′
1) ∈ τ1 ∧ (`2, `

′
2) ∈ τ2

The parallel composition extends the modes of the original automata R1 and R2 to
get modes updating the variables of both automata, defined over valuations of the global
set V of variables.

The intersection (φ1(`1) ↑ V ) ∩ (φ2(`2) ↑ V ) of extended modes defines the parallel
composition of each pair (φ1(`1), φ2(`2)) of modes. It allows, in a simple way, the parallel
composition of relational mode automata and the combination of the original modes.

In accordance with the semantics of synchronous languages, relational mode automata
have simultaneously the control residing in their respective initial locations at the first
reaction step.

(l10, l
2
0) (l11, l

2
1) (l12, l

2
2)

(l12, l
2
1)

(l11, l
2
2)

Figure 8.7: Transition diagram of the product automaton Rs = R1
ev ×R2

ev.

Example 8.3.4 (Parallel composition of bounded counters). We consider the parallel
composition of two relational mode automata R1 and R2 representing bounded event
counters reacting to the same event and reset commands, where R1 = Rev[cnt/cnt1] and
R2 = Rev[cnt/cnt2].

We define the parallel product Rs = R1 × R2. The relational mode automaton
Rs = (Xs, Ys, Zs,Ms, Is,Loc1 × Loc2, (`

1
0, `

2
0), φs, τs) is defined as follows. The sets of
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variables are:
Xs = {event, reset}
Ys = {cnt1, cnt2}
Zs = ∅
Ms = {cnt1, cnt2, n}

The set Is of initial variable valuations is:

Is = (cnt1 = 0 ∧ cnt2 = 0 ∧ n ≥ 1 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

The function φs : Loc1 × Loc2 → P(V(Vs)× V(Vs)) is defined as:

φs((`
1
0, `

2
0)) = (cnt1 = event ∧ cnt1 = cnt2 ∧ 0 ≤ cnt1 ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

φs((`
1
1, `

2
1)) = (cnt1,0 < n ∧ cnt2,0 < n ∧ reset = 1 ∧ cnt1 = event ∧ cnt1 = cnt2

∧ 0 ≤ cnt1 ≤ 1 ∧ n ≥ 1)
∨ (cnt1,0 < n ∧ cnt2,0 < n ∧ reset = 0 ∧ cnt1 = cnt1,0 + event
∧ cnt2 = cnt2,0 + event ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

φs((`
1
1, `

2
2)) = (cnt1,0 < n ∧ cnt2,0 ≥ n ∧ reset = 1 ∧ cnt1 = event ∧ cnt1 = cnt2

∧ 0 ≤ cnt1 ≤ 1 ∧ n ≥ 1)
∨ (cnt1,0 < n ∧ cnt2,0 ≥ n ∧ reset = 0 ∧ cnt1 = cnt1,0 + event
∧ cnt2 = cnt2,0 ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

φs((`
1
2, `

2
2)) = (cnt1,0 ≥ n ∧ cnt2,0 < n ∧ reset = 1 ∧ cnt1 = event ∧ cnt1 = cnt2

∧ 0 ≤ cnt1 ≤ 1 ∧ n ≥ 1)
∨ (cnt1,0 ≥ n ∧ cnt2,0 < n ∧ reset = 0 ∧ cnt1 = cnt1,0
∧ cnt2 = cnt2,0 + event ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

φs((`
1
2, `

2
2)) = (cnt1,0 ≥ n ∧ cnt2,0 ≥ n ∧ reset = 1 ∧ cnt1 = event ∧ cnt1 = cnt2

∧ 0 ≤ cnt1 ≤ 1 ∧ n ≥ 1)
∨ (cnt1,0 ≥ n ∧ cnt2,0 ≥ n ∧ reset = 0 ∧ cnt1 = cnt1,0 ∧ cnt2 = cnt2,0
∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

The control transition relation τs ⊆ Locs × Locs is defined as:

τ = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14}

t1 = ((l10, l
2
0), (l

1
1, l

2
1))

t2 = ((l10, l
2
0), (l

1
2, l

2
1))

t3 = ((l10, l
2
0), (l

1
1, l

2
2))

t4 = ((l11, l
2
1), (l

1
1, l

2
1))

t5 = ((l11, l
2
1), (l

1
1, l

1
2))

t6 = ((l11, l
2
1), (l

1
2, l

2
1))

t7 = ((l11, l
1
2), (l

1
2, l

2
2))

t8 = ((l12, l
2
1), (l

1
2, l

2
1))

t9 = ((l12, l
2
1), (l

1
2, l

2
2))

t10 = ((l11, l
2
2), (l

1
1, l

2
2))

t11 = ((l11, l
2
2), (l

1
2, l

2
2))

t12 = ((l12, l
2
2), (l

1
2, l

2
2))

t13 = ((l12, l
2
2), (l

1
1, l

2
1))

t14 = ((l10, l
2
0), (l

1
2, l

2
2))

The modes φs((l
1
1, l

2
2)) and φs((l

1
2, l

2
1)) are not reachable in any concrete execution of the

product automaton Rs. As both counters are reacting to the same event and initialized
to the same value, they must be equal at each step. Although intuitively simple and quite
obvious, the equality of counters involves, in some sense, the dynamics of the product
automaton, which are not considered in the definition of the parallel product.

The actually reachable structure, made of reachable modes only, should be much
smaller. Since the reachability of modes in a relational mode automaton is undecidable
in general, we turn once more to the abstract world.
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8.4 Reachability Analysis of Relational Mode

Automata

We define a reachability analysis for relational mode automata which computes, for each
control location ` ∈ Loc, approximations reach](`) ∈ D] of the sets of reachable valua-
tions. The approximation reach](`) is defined as the least solution of a system of fixpoint
equations:

reach](`0) = I t
⊔

(`j ,`0)∈τ

post(`j, `0)(reach](`j)) u dom(`0)

∀`i ∈ Loc, `i 6= `0 ⇒ reach](`i) =
⊔

(`j ,`i)∈τ

post(`j, `i)(reach](`j)) u dom(`i)

8.4.1 Computation Strategy

We compute a local increasing and decreasing sequence at each control location ` where
there is a self-transition (`, `) ∈ τ , starting from the least upper bound of the abstract
values computed at predecessor locations. Local sequences are computed inside a global
sequence, until convergence of all abstract values associated to control locations. The
computation of local sequences at each location is designed to avoid a loss of precision, by
first computing the effect of a mode applied repeatedly in isolation, before the propagation
to other modes.

Widening Limited by Preconditions of modes

The domain dom(`) of a mode φ(`) is an obvious invariant of the control location `.
The standard widening operator ∇ does not take into consideration dom(`) and does not
preserve it in general. We use a widening ∇` : D] × D] → D] limited by dom(`) in the
local sequences at each control location `. The limited widening ∇` is defined as:

Q1∇`Q2 = (Q1∇Q2) u dom(`)

Local Increasing Sequences

The local increasing sequence (Y `
i )k≥0 at a control location `, starting with an abstract

value d] ∈ D], is defined as:

Y `
0 = d]

Y `
i+1 = Y `

i ∇`(Y
`
i t F`(Y `

i ))

where the local transfer function F` : D] → D] gives the image of an abstract value by
the mode φ(`) as follows:

∀d] ∈ D], F`(d
]) =

{
post(`, `)(d]) u dom(`) if (`, `) ∈ τ
d] if (`, `) /∈ τ

We denote as Y `
∇ the limit of a local increasing sequence (Y `

i )i≥0.

136



8.4 Reachability Analysis of Relational Mode Automata

Local Decreasing Sequences

The decreasing sequence (Z`
i )i≥0 at a control location ` starting with the limit Y `

∇ of the
increasing sequence (Y `

i )i≥0 is defined as:

Z`
0 = Y `

∇
Z`
i+1 = Z`

i4F`(Z`
i )

We denote as Ω`(d
]) = Z`

4 the limit of the local decreasing sequence at `, computed from

the limit of an increasing sequence (Y `
i )i≥0 starting with d] ∈ D].

Global Increasing Sequence

We denote as (Gk)k≥0 the global increasing sequence computed over the entire relational
mode automaton. The terms of (Gk)k≥0 belongs to the product domain (D])L, where
L = |Loc| is the number of control locations. For each term Gk, we denote as G`

k ∈ D]

the component of Gk associated to a location `.

Incoming Value At each step of the global sequence, local sequences are started on
values obtained at predecessor locations. The incoming abstract value in`(Gk) ∈ D to a
control location ` is:

in`(Gk) =


I t

⊔
(`′,`0)∈τ

post(`′, `0)(G
`′

i ) u dom(`0) if ` = `0⊔
(`′,`)∈τ

post(`′, `)(G`′

i ) u dom(`) if ` 6= `0

Global Transfer Function The global transfer function FG : (D])L → (D])L computes
a local increasing and decreasing sequence at each control location ` starting with in`(Gk):

FG(Gk)
` = Ω`(in`(Gk))

The global increasing sequence (Gk)k≥0 is defined as follows:

G0 = ⊥L
Gk+1 = Gk∇(Gk t FG(Gk))

We denote as G∇ the limit of the global increasing sequence (Gk)k≥0.

Global Decreasing Sequence

The global decreasing sequence is defined as:

G′0 = G∇
G′i+1 = G′i+14FG(G′i+1)

We denote as G′4 the limit of the decreasing sequence (G′i)i≥0. The approximation of the

set of reachable valuations at a control location ` is reach](`) = G′`4.
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8.4.2 Reachability Analysis of the Bounded Event Counter

We compute a reachability analysis of the relational mode automaton Rev defined in
Example 8.3.1. The global increasing sequence starts with G`

0 = ⊥ for each location `.

Global Iteration 1

Location `0 The incoming abstract value in`0(G0) to the initial location `0 is:

in`0(G0) = I = (cnt = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

We obtain immediately a new value G`0
1 associated to `0:

G`0
1 = Ω`0(in`0(G0))

= (cnt = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

Location `1 The incoming value in`1(G1) at `1 is:

in`1(G1) = post(`0, `1)(G
`0
1 ) u dom(`1)

= (cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ cnt < n ∧ 0 ≤ reset ≤ 1)

We compute a local increasing sequence at `1, starting with in`1(G1), as follows:

Y `1
0 = in`1(G1)

Y `1
i = Y `1

i ∇`1(Y
`1
i t F`1(Y

`1
i ))

The decreasing sequence converges immediately. The abstract value G`1
1 at `1 is:

G`1
1 = (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

Location `2 The incoming value in`2(G1) at `2 is:

in`2(G1) = post(`0, `2)(G
`0
1 ) u dom(`2) t post(`1, `2)(G

`1
1 ) u dom(`2)

= (cnt = n ∧ event = 1 ∧ cnt ≥ 1 ∧ 0 ≤ reset ≤ 1)

The local increasing and decreasing sequence at `2 gives:

G`2
1 = (cnt = n ∧ cnt ≥ 1 ∧ event ≥ reset ∧ reset ≥ 0 ∧ event ≤ 1)

Global Iteration 2

Location `1 The incoming value at `1 is:

in`1(G1) = post(`0, `1)(G
`0
1 ) u dom(`1) t post(`1, `1)(G

`1
1 ) u dom(`1)

t post(`2, `1)(G
`2
1 ) u dom(`1)

= (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

The local sequences at `1 gives:

G`1
2 = (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

We have G`1
2 = G`1

1 , thus the global increasing sequence has converged. We get the
following approximations of sets of reachable valuations:

reach](`0) = (cnt = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

reach](`1) = (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

reach](`2) = (cnt = n ∧ cnt ≥ 1 ∧ event ≥ reset ∧ reset ≥ 0 ∧ event ≤ 1)
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8.4.3 Iterative Construction of the Control Transition Relation

Whereas the modes of a relational mode automaton can be obtained from the members
of the disjunctive summary of a step procedure, the control transition relation τ can be
constructed iteratively by a reachability analysis.

We compute a transition relation τk at each iteration k ≥ 0 of the global increasing
sequence (Gk)k≥0, as follows:

τ0 = ∅
τk+1 = {(`, `′) ∈ τk | `′ 6= `0 ∧ post(`, `′)(G`

k) u dom(`′) 6= ⊥}

In the first global term G0, the initial control location `0 is the only location known to be
reachable with G`

0 = I. We start with τ0 = ∅. Then, at each global iteration k, we add
a control transition (`, `′) to τk+1 when a location ` is discovered to be reachable and `′

can be a direct successor of `, which is when post(`, `′)(G`
k) u dom(`′) 6= ⊥. Finally, τ is

obtained from the limit G∇ of the global increasing sequence.

Example 8.4.1. We construct iteratively the control transition relation τ of the bounded
event counter that we defined manually in Example 8.3.1.

`0 : Init

Figure 8.8: Initially, only `0 is known to be reachable and τ = ∅.

Location `0 We start with an empty transition relation τ = ∅. The value associated to
the initial control location is G`0

0 = I. We examine possible transitions from `0:

post(`0, `1)(G
`0
0 ) u dom(`1) = (cnt = event ∧ 0 ≤ cnt ≤ 1 ∧ cnt < n ∧ 0 ≤ reset ≤ 1)

post(`0, `2)(G
`0
0 ) u dom(`2) = (cnt = 1 ∧ n = 1 ∧ event = 1 ∧ 0 ≤ reset ≤ 1)

Thus we add transitions from `0 to `1 and `2. The control transition relation becomes
τ = {(`0, `1), (`0, `2)}.

`0 : Init `1 : Counting `2 : Full

Figure 8.9: We add transitions (`0, `1) and (`0, `2).

Location `1 The value G`1
1 computed at `1 is:

G`1
1 = (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

We examine possible transitions from `1:

post(`1, `1)(G
`1
1 ) u dom(`1) = (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1

∧ 0 ≤ reset ≤ 1)

post(`1, `2)(G
`1
1 ) u dom(`2) = (cnt = n ∧ event = 1 ∧ reset = 0 ∧ cnt ≥ 1)
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We add the self-transition (`1, `1) and (`1, `2). The control transition relation becomes:

τ = {(`0, `1), (`0, `2), (`1, `1), (`1, `2)}

`0 : Init `1 : Counting `2 : Full

Figure 8.10: We add the self-transition on `1 and the transition (`1, `2).

Location `2 The value G`2
1 computed at `2 is:

G`2
1 = (cnt = n ∧ cnt ≥ 1 ∧ event ≥ reset ∧ 0 ≤ reset ≤ 1)

post(`2, `1)(G
`2
1 ) u dom(`1) = (cnt = event ∧ reset = 1 ∧ 0 ≤ cnt ≤ 1 ∧ cnt < n)

post(`2, `2)(G
`2
1 ) u dom(`2) = (cnt = n ∧ cnt ≥ 1 ∧ event ≥ reset ∧ event ≤ 1 ∧ reset ≥ 0)

We add the self-transition (`2, `2) and (`2, `1).
The global increasing sequence has converged. The control transition relation of the

bounded event counter is:

τ = {(`0, `1), (`0, `2), (`1, `1), (`1, `2), (`2, `1), (`2, `2)}

`0 : Init `1 : Counting `2 : Full

Figure 8.11: We add the self-transition on `2 and a transition (`2, `1).

8.5 Analysis of a Parallel Composition of Relational

Mode Automata

We can compute a reachability analysis on a parallel composition of relational mode
automata in different ways.

A rather crude way is to construct explicitly the parallel product automaton as defined
in 8.3.8 and to compute a reachability analysis of the product automaton. It has a
quadratic number of modes with respect to the original automata. Furthermore, the
parallel product does not consider the dynamic behavior of relational mode automata
and many control locations of the product can be unreachable, as shown in Example
8.3.4. Thus to mitigate the cost of the explicit parallel product, we construct only the
reachable part of the parallel product automaton, called the reduced product automaton,
as a side-product of the reachability analysis.
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8.5.1 Computation Strategy

Let R1 = (X1, Y1, Z1,M1, I1,Loc1, `
1
0, φ1, τ1) and R2 = (X2, Y2, Z2,M2, I2,Loc2, `

2
0, φ2, τ2)

be relational mode automata. The reduced product automaton of R1 and R2 is denoted
as R = (X, Y, Z,M, I1 u I2,Loc1 × Loc2, (`

1
0, `

2
0), φ, τ).

We adapt the reachability analysis defined in 8.4 to pairs of parallel relational
mode automata. We compute local increasing and decreasing sequences at pairs
(`1, `2) ∈ Loc1 × Loc2 of control locations inside a global sequence. At the beginning,
only the initial pair (`10, `

2
0) is known to be reachable. In each global iteration k ≥ 0,

we explore only the pairs (`1, `2) of locations which were found to be reachable in earlier
iterations.

We construct the control transition relation τ of the reduced product by adding the
newly reachable pairs (`1, `2) at the end of each iteration. When the global sequence has
converged, the reduced product automaton is only made of locations which have been
found to be reachable during the analysis.

We denote as (Gk)k≥0 the global increasing sequence over the entire relational mode

automaton. For each term Gk, we denote as G
(`1,`2)
k ∈ D] the abstract value associated

to a pair (`1, `2) of locations.

Domain The domain dom((`1, `2)) of a pair (φ(`1), φ(`2)) of modes is defined as:

∀(`1, `2) ∈ Loc1 × Loc2, dom((`1, `2)) = dom(`1) u dom(`2)

Limited Widening We define a widening operator ∇(`1,`2) : D] ×D] → D] limited by
dom((`1, `2)) for each pair (`1, `2) of locations, as:

∀P,Q ∈ D], P∇(`1,`2)Q = (P∇Q) u dom((`1, `2))

Post-Condition Operator The post((`1, `2)) : D] → D] operator giving the image of
an abstract value d] by a pair (φ(`1), φ(`2)) of modes is defined as:

∀d] ∈ D], post((`1, `2))(d
]) = post(`1)(d

]) u post(`2)(d
])

Control Transition Relation The control transition relation (τk)k≥0 of the reduced
product automaton at an iteration k of the global increasing sequence (Gk)k≥0 is:

τ0 = ∅
τk+1 = {((`1, `2), (`′1, `′2)) | (`′1, `′2) 6= (`10, `

2
0)

∧ post((`1, `2), (`
′
1, `
′
2))(G

(`1,`2)
k ) u dom((`′1, `

′
2)) 6= ⊥}

Local Increasing Sequence

A local increasing sequence (Yi)i≥0 at a pair (`1, `2) of locations starting with an abstract
value d] ∈ D] is defined as:

Y
(`1,`2)
0 = d]

Y
(`1,`2)
i+1 = Y

(`1,`2)
i ∇(`1,`2)(Y

(`1,`2)
i t F(`1,`2)(Y

(`1,`2)
i )
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Chapter 8 Modular Analysis of Reactive Systems

where the local transfer function F(`1,`2) : D] → D] gives the image of an abstract value
by a pair (φ(`1), φ(`2)) of modes, as follows:

∀d] ∈ D], F(`1,`2)(d
]) =

{
post((`1, `2), (`1, `2))(d

]) u dom((`1, `2)) if ((`1, `2), (`1, `2)) ∈ τk
d] if ((`1, `2), (`1, `2)) /∈ τk

We denote as Y
(`1,`2)
∇ the limit of a local increasing sequence (Y

(`1,`2)
i )i≥0.

Local Decreasing Sequence

A local decreasing sequence (Z
(`1,`2)
i )i≥0 at a pair (`1, `2) of locations starting with the

limit Y
(`1,`2)
∇ of the increasing sequence is defined as:

Z
(`1,`2)
0 = Y

(`1,`2)
∇

Z
(`1,`2)
i+1 = Z

(`1,`2)
i 4F(`1,`2)(Z

(`1,`2)
i )

We denote as Ω(`1,`2)(d
]) = Z

(`1,`2)
4 the limit of the local decreasing sequence at (`1, `2),

computed from the limit of an increasing sequence (Yi)i≥0 starting with d].

Incoming Value The incoming abstract value in(`1,`2)(Gk) ∈ D] to a pair (`1, `2) of
locations is:

in(`10,`
2
0)

(Gk) = I t
⊔

((`1,`2),(`10,`
2
0))∈τk

post((`1, `2), (`
1
0, `

2
0))(G

(`1,`2)
k ) u dom((`10, `

2
0))

for (`1, `2) 6= (`10, `
2
0):

in(`1,`2)(Gk) =
⊔

((`′1,`
′
2),(`1,`2))∈τk

post((`′1, `
′
2), (`1, `2))(G

(`′1,`
′
2)

k ) u dom((`1, `2))

Global Transfer Function The global transfer function FG : (D])L → (D])L computes
a local increasing and decreasing sequence at each pair (`1, `2) of control locations starting
with in(`1,`2)(Gk):

FG(Gk)
(`1,`2) = Ω(`1,`2)(in(`1,`2)(Gk))

We denote as G′4 the limit of the global decreasing sequence. The approximation of

the set of reachable valuations at (`1, `2) is reach]((`1, `2)) = G
′(`1,`2)
4 .

8.5.2 Construction of the Reduced Product Automaton

The sets of variables of the reduced product automaton are defined as:
• X = (X1 \ Y2) ∪ (X2 \ Y1)
• Y = (Y1 \X2) ∪ (Y2 \X1)
• Z = Z1 ∪ Z2 ∪ (X1 ∩ Y2) ∪ (Y1 ∩X2)

The control transition relation τ is obtained from the limit G∇ of the global increasing
sequence. The function φ : Loc1 × Loc2 → D] associating modes to control locations is
defined as:

φ = {φ1(`1) ∧ φ2(`2) | ∃(`′1, `′2), ((`1, `2), (`′1, `′2)) ∈ τ ∨ ((`′1, `
′
2), (`1, `2)) ∈ τ}

where φ1(`1) ∧ φ2(`2) denotes the disjunction formed by the product of the disjunctions
φ1(`1) and φ2(`2).
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8.5 Analysis of a Parallel Composition of Relational Mode Automata

8.5.3 Example

We analyze the parallel product Rs = R1×R2 of the bounded event counters R1 and R2

defined in Example 8.3.4. We construct the reduced product automaton Rs during the
analysis. The initial term of the global increasing sequence is G0 = ⊥ and τ = ∅.

(l10, l
2
0)

Figure 8.12: Initially, only (`10, `
2
0) is known to be reachable and τ = ∅.

Global Iteration 1

Location (`10, `
2
0) The incoming abstract value to the initial location (`10, `

2
0) of Rs is:

in(`10,`
2
0)

(G0) = I1 u I2 = (cnt1 = 0 ∧ cnt2 = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

The abstract value G
(`10,`

2
0)

1 associated to (`10, `
2
0) is:

G
(`10,`

2
0)

1 = Ω(`10,`
2
0)

(in(`10,`
2
0)

(G0))

= (cnt1 = 0 ∧ cnt2 = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

We examine the possible transitions from (`10, `
2
0):

post((`10, `
2
0), (`

1
1, `

2
1))(in(`10,`

2
0)

(G0)) u dom((`11, `
2
1)) 6= ⊥

post((`10, `
2
0), (`

1
2, `

2
2))(in(`10,`

2
0)

(G0)) u dom((`12, `
2
2)) 6= ⊥

post((`10, `
2
0), (`

1
1, `

2
2))(in(`10,`

2
0)

(G0)) u dom((`11, `
2
2)) = ⊥

post((`10, `
2
0), (`

1
2, `

2
1))(in(`10,`

2
0)

(G0)) u dom((`12, `
2
1)) = ⊥

The locations (`11, `
1
2) and (`12, `

2
2) are reachable from (`10, `

2
0). The control transition relation

becomes τ = {((`10, `20), (`11, `21)), ((`10, `20), (`12, `22))}.

(l10, l
2
0) (l11, l

2
1) (l12, l

2
2)

Figure 8.13: The locations (`11, `
2
1) and (`12, `

2
2) are reachable from the initial location

(`10, `
2
0).

Location (`11, `
2
1) The incoming abstract value to (`11, `

2
1) is:

in(`11,`
2
1)

(G1) = (cnt1 = event ∧ cnt1 = cnt2 ∧ 0 ≤ cnt1 ≤ 1 ∧ cnt1 < n ∧ 0 ≤ reset ≤ 1)

We compute an increasing sequence at (`11, `
2
1), followed by a decreasing sequence. We get

the abstract value G
(`1,`21)
1 at (`11, `

2
1):

G
(`11,`

2
1)

1 = (cnt1 = cnt2 ∧ cnt1 < n ∧ cnt1 ≥ event ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)
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We examine possible transitions from (`11, `
2
1):

post((`11, `
2
1), (`

1
1, `

2
1))(in(`11,`

2
1)

(G1)) u dom((`11, `
2
1)) 6= ⊥

post((`11, `
2
1), (`

1
1, `

2
2))(in(`11,`

2
1)

(G1)) u dom((`11, `
2
2)) = ⊥

post((`11, `
2
1), (`

1
2, `

2
1))(in(`11,`

2
1)

(G1)) u dom((`12, `
2
1)) = ⊥

post((`11, `
2
1), (`

1
2, `

2
2))(in(`11,`

2
1)

(G1)) u dom((`12, `
2
2)) 6= ⊥

We add the self-transition ((`11, `
2
1), (`

1
1, `

2
1)) and a transition to (`12, `

2
2).

(l10, l
2
0) (l11, l

2
1) (l12, l

2
2)

Figure 8.14: The location (`12, `
2
2) is reachable from (`11, `

2
1) and we add the self-transition

on (`11, `
2
1).

Location (`12, `
2
2) The incoming abstract value to (`12, `

2
2) is:

in(`12,`
2
2)

(G1) = (cnt1 = n ∧ cnt1 = cnt2 ∧ cnt1 ≥ 1 ∧ event = 1 ∧ 0 ≤ reset ≤ 1)

We compute an increasing and decreasing sequence at (`12, `
2
2). We get the abstract value

G
(`12,`

2
2)

1 associated to (`12, `
2
2):

G
(`12,`

2
2)

1 = (cnt1 = n ∧ cnt1 = cnt2 ∧ cnt1 ≥ 1 ∧ 0 ≤ reset ≤ event ∧ event ≤ 1)

We examine the possible transitions:

post((`12, `
2
2), (`

1
2, `

2
2))(in(`12,`

2
2)

(G1)) u dom((`12, `
2
2)) 6= ⊥

post((`12, `
2
2), (`

1
1, `

2
1))(in(`12,`

2
2)

(G1)) u dom((`11, `
2
1)) 6= ⊥

We add the self-transition ((`12, `
2
2), (`

1
2, `

2
2)) and a transition back to (`11, `

2
1).

(l10, l
2
0) (l11, l

2
1) (l12, l

2
2)

Figure 8.15: We add a self-transition on (`12, `
2
2) and a transition from (`12, `

2
2) back to

(`11, `
2
1).

Global Iteration 2

Location (`11, `
2
1) The incoming abstract value to (`11, `

2
1) is:

in(`11,`
2
1)

(G1) = (cnt1 = cnt2 ∧ cnt1 < n ∧ cnt1 ≥ event ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

We get the abstract value G
(`11,`

2
1)

2 associated to (`11, `
2
1):

G
(`11,`

2
1)

2 = (cnt1 = cnt2 ∧ cnt1 < n ∧ cnt1 ≥ event ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

We have G
(`11,`

2
1)

1 = G
(`11,`

2
1)

2 . The global increasing sequence has converged.
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8.6 Reduction of Relational Mode Automata

Reduced Product Automaton

We construct the reduced product automaton Rs = (X, Y, Z,M, I1 u I2,Loc, (`10, `
2
0), φ, τ)

from the analysis results. The sets of variables are X = {event, reset}, Y = {cnt1, cnt2},
Z = ∅, M = {cnt1, cnt2}. The set of control locations is Loc = {(`10, `20), (`11, `21), (`12, `22)}.
The control transition relation τ is:

τ = {((`10, `20), (`11, `21)), ((`10, `20), (`12, `22))((`11, `21), (`11, `11)), ((`11, `21), (`12, `22)),
((`12, `

2
2), (`

1
2, `

2
2)), ((`

1
2, `

2
2), (`

1
1, `

1
1))}

The function φ : Loc→ P(V(V )× V(V )) associating modes to control locations is:

φ((`10, `
2
0)) = (cnt1 = event ∧ cnt1 = cnt2 ∧ 0 ≤ cnt1 ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

φ((`11, `
2
1)) = (cnt1,0 < n ∧ cnt2,0 < n ∧ reset = 1 ∧ cnt1 = event ∧ cnt1 = cnt2

∧ 0 ≤ cnt1 ≤ 1 ∧ n ≥ 1)
∨ (cnt1,0 < n ∧ cnt2,0 < n ∧ reset = 0 ∧ cnt1 = cnt1,0 + event
∧ cnt2 = cnt2,0 + event ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

φ((`12, `
2
2)) = (cnt1,0 ≥ n ∧ cnt2,0 < n ∧ reset = 1 ∧ cnt1 = event ∧ cnt1 = cnt2

∧ 0 ≤ cnt1 ≤ 1 ∧ n ≥ 1)
∨ (cnt1,0 ≥ n ∧ cnt2,0 < n ∧ reset = 0 ∧ cnt1 = cnt1,0
∧ cnt2 = cnt2,0 + event ∧ 0 ≤ event ≤ 1 ∧ n ≥ 1)

8.6 Reduction of Relational Mode Automata

We are interested in the analysis of reactive components represented by relational mode
automata at different levels of precision. The precision of a relational mode automaton
can be reduced at two different levels, either by merging modes, producing an automaton
with fewer modes, or from the inside of modes, by merging disjuncts for modes defined
by disjunctions of abstract relations.

8.6.1 Reduction by Merging Modes

Principle A relational mode automatonR = (X, Y, Z,M, I,Loc, `0, φ, τ) can be reduced
by merging some of its modes. Two modes φ(`1) and φ(`2) of R are merged by replacing
the locations `1, `2 by a fresh location `′ /∈ Loc where the mode associated to `′ is the
relation φ(`1) ∪ φ(`2). The control transitions originating from or leading to `1 or `2 are
rewritten in terms of `′. If `1 or `2 is the initial location `0, then `′ becomes the new initial
control location.

Reduction  `1,`2 For `1, `2 ∈ Loc, the reduction relation R  `1,`2 R′ associating a
reduced relational mode automaton R′ to R by merging the modes φ(`1), φ(`2) is defined
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Chapter 8 Modular Analysis of Reactive Systems

as:

R `1,`2 R′ ⇔ R′ = (X, Y, Z,M, I,Loc′, `′0, φ
′, τ ′)

∧ Loc′ = (Loc \ {`1, `2}) ∪ {`′} ∧ `′ /∈ Loc

∧ `′0 =

{
`′ if (`1 = `0) ∨ (`2 = `0)
`0 otherwise

∧ φ′(`′) = φ(`1) ∪ φ(`2) ∧ ∀` 6= `′, φ′(`) = φ(`)
∧ τ ′ = (τ ∩ (Loc′ × Loc′)) ∪ {(`, `′) | (`, `1) ∈ τ ∨ (`, `2) ∈ τ}

∪ {(`′, `) | (`1, `) ∈ τ ∨ (`2, `) ∈ τ}

When modes φ(`1), φ(`2) are disjunctions of elements of a relational abstract domain D],
the merged mode is φ′(`′) = merge(φ(`1), φ(`2)) where merge : P(D]) × P(D]) → P(D])
can be any sound merging function such that:⋃

T1 ∈ φ(`1)
T2 ∈ φ(`2)

γ(T1) ∪ γ(T2) ⊆
⋃

m∈merge(φ(`1),φ(`2))

γ(m)

In particular, merge can keep separated the disjuncts of both modes such that:

merge(φ(`1), φ(`2)) = φ(`1) ∨ φ(`2)

or in another extreme, be the join of all disjuncts:

merge(φ(`1), φ(`2)) =
⊔

Ti∈φ(`1)∪φ(`2)

Ti

8.6.2 Internal Reduction

When the modes of a relational mode automaton are disjunctive relations, the preci-
sion of modes can be reduced by merging some disjuncts. For example, we can replace
some disjuncts, or all of them, by their least upper bound. More generally, a mode
φ(`) = T1 ∨ ... ∨ Tn is reduced into a mode φ′(`) with respect to a mode-reducing function
mred : P(D])→ P(D]) as:

φ′(`) = mred(φ(`))

where mred can be any sound mode-reducing function, satisfying:⋃
Ti∈φ(`)

γ(Ti) ⊆
⋃

mi∈mred(φ(`))

γ(mi)

8.7 Invariants

8.7.1 Invariant of a Relational Mode Automaton

Let reach] : Loc→ D] be the function associating approximations of the sets of reachable
variable valuations at each control location of a relational mode automaton R. The
invariant inv(R) is defined as:

inv(R) =
⊔

`∈Loc

reach](`)
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8.7 Invariants

Example 8.7.1. For Rev representing the bounded event counter, we computed in 8.4.2
the following approximations of sets of reachable valuations:

reach](`0) = (cnt = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)

reach](`1) = (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)

reach](`2) = (cnt = n ∧ cnt ≥ 1 ∧ event ≥ reset ∧ reset ≥ 0 ∧ event ≤ 1)

The invariant of Rev is:

inv(Rev) = reach](`0) t reach](`1) t reach](`2)
= (0 ≤ cnt ≤ n ∧ cnt+ reset ≤ event+ n ∧ 0 ≤ reset ≤ 1 ∧ event ≥ 0
∧ n ≥ 1)

8.7.2 Weaker invariants

We can get a weaker and less-precise invariant of R by eliminating variables. The choice
of variables to eliminate is made heuristically, according to a proof objective or high-level
user-specified goals.

Example 8.7.2. If we are only interested in the bounds on the output variable cnt of the
event counter, in terms of the counter capacity parameter n, we can use instead a weaker
invariant Wev:

Wev = inv(Rev) ↓ {cnt, n}
= (0 ≤ cnt ≤ n ∧ n ≥ 1)

The weaker invariant Wev has fewer constraints than inv(Rev) although it is still useful
to prove that the variables of a collection of counter components are bounded. However,
Wev is not expressive enough to discover the equality of parallel event counters reacting
to the same event, such as in 8.5.3.

8.7.3 Disjunctive Invariant

Conversely, we can get a more precise invariant of a relational mode automaton by keeping
as separate disjuncts some or all the abstract values reach](`) discovered at each control
location.

Example 8.7.3. For the bounded event counter, we can either keep the full disjunctive
invariant:

Jev = reach](`0) ∨ reach](`1) ∨ reach](`2)
= (cnt = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)
∨ (cnt < n ∧ cnt+ reset ≥ event ∧ cnt ≥ 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1)
∨ (cnt = n ∧ cnt ≥ 1 ∧ event ≥ reset ∧ reset ≥ 0 ∧ event ≤ 1)

or just distinguish the abstract value reach](`0) discovered at the initial location from the
other disjuncts:

J ′ev = reach](`0) ∨ (reach](`1) t reach](`2))
= (cnt = 0 ∧ 0 ≤ event ≤ 1 ∧ 0 ≤ reset ≤ 1 ∧ n ≥ 1)
∨ (0 ≤ cnt ≤ n ∧ cnt+ reset ≤ event+ n ∧ 0 ≤ reset ≤ 1 ∧ event ≥ 0 ∧ n ≥ 1)
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Chapter 8 Modular Analysis of Reactive Systems

A disjunctive invariant of the relational mode automaton representing a given reactive
component can be used to compute the abstract effect of a call to the step procedure
of the component, when the component is instantiated inside a larger component. The
abstract effect of a call to the step procedure is computed as for disjunctive summaries
in 5.2.4. An example using disjunctive invariants is given in Chapter 9.

8.7.4 Relational Augmentation

An invariant J ∈ P(D]) of a relational mode automaton R can be augmented by adding
back into J some constraints from the modes of R, describing how the values of memory
variables are computed in terms of their previous values and input variables. It is intended
as a way to reintroduce some of the relational information given in the modes of R, by
combining it with the constraints discovered in the invariant J .

We compute an abstract relation Φ ∈ D] on memory and input variables from the
modes of R as follows:

Φ =
⊔

`∈Loc

 ⊔
Ti∈φ(`)

Ti ↓ {M,X}


The augmented invariant QR ∈ P(D]) is defined as:

QR =
∨
Qi∈J

Qi u Φ

8.8 Conclusion

We proposed a new representation of the behavior of reactive components called Relational
Mode Automata (RMA). Relational mode automata can be constructed automatically
from a disjunctive summary of the step procedure of a reactive component. They are
designed specifically for the analysis of reactive programs, allowing different levels of
abstraction and precision.

We described a reachability analysis of RMA, which is able to analyze the parallel
composition of several reactive components without requiring an explicit construction of
the synchronous product of automata prior to the analysis. Instead, only the part of the
composition found to be reachable during the analysis is explored and constructed.

We shown that the analysis results of a RMA representing a given reactive component
can be used in the form of a disjunctive invariant to compute the effect of a call to the step
procedure implementing the component, in order to analyze larger components. Thus our
approach can be used for the modular analysis of reactive programs.

Our approach has been implemented for small examples using the PyApron library
providing high-level Python bindings for convex polyhedra to the Apron library. In
the next chapter, we present an application to a larger example which is a simplification
of a real proposal of subway control system.
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Chapter 9

Example: A Subway Control System

We are interested in the analysis of a larger reactive program which models the behavior of
a subway control system. This is a classical example [67] for the verification of synchronous
programs which has been greatly simplified from a real proposition. The control system
of a simple subway train is implemented by the train step procedure shown in Figure
9.1.

In our subway system, all trains on the same track receive a common time signal from
a central clock, represented in each train by a boolean input variable s. Signaling beacons
are installed along the tracks. The boolean input variable b is true when a beacon is
detected by a train. Ideally, a train should cross one beacon per s signal. A train is
controlled according to the difference delta between the number of received clock ticks
and the number of detected beacons. A train is considered to be late when the difference
delta becomes greater or equal to 10 and to be early when delta becomes lower or equal
to −10.

We assume that trains have a stopping distance equal to 10 beacons. Trains are
controlled using an hysteresis to avoid shaking for passenger comfort. A train begins
to brake when delta = −10 and keeps braking until the train is completely stopped or
delta ≥ 0. A train stays stopped until delta ≥ 0. Similarly, a train is considered to be late
when delta = 10, and becomes ontime only when it has gained enough advance, which is
when delta ≥ 0.

When a train is stopped, no new beacons are detected. When a train is late, in order
to avoid collisions with other trains on the same track, the central clock disables the time
signal for the track. In other trains, it causes delta to decrease, compelling trains to brake
when delta becomes lower or equal to −10. When the slower train resumes its course and
returns to its normal pace, more beacons are encountered and the difference delta starts
to decrease. The train becomes on time again when delta becomes lower or equal to zero.
The central clock then resumes the time signal for the entire track, allowing other trains
to return to their normal speed. Thus collision avoidance is achieved by suspending time.

In order to guarantee the safety of the subway, we want to discover bounds on the
difference nb1−nb2 = delta2−delta1 in number of encountered beacons between any pair
of trains. These bounds can then be used for the initial placement of trains to ensure the
absence of collisions. We also want to prove that numerical variables in each train are
bounded at all times, to guarantee the absence of arithmetic overflows at runtime.

We start by analyzing a single train as implemented by the train step procedure.
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Chapter 9 Example: A Subway Control System

Then, we show that the invariant discovered for a single train can be used in a modular
way to prove the absence of collisions in a subway system made of several trains.

9.1 Detailed Summary of the train step Procedure

We construct a relational mode automaton representing a single train by computing the
disjunctive relational summary of the train step procedure. The train step procedure
is represented by the following system of fixpoint equations:

I] = (0 ≤ init ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ ontime ≤ 1 ∧ 0 ≤ late ≤ 1
∧ 0 ≤ onbrake ≤ 1 ∧ 0 ≤ stopped ≤ 1)

Q1 = I u (init0 = init ∧ ontime0 = ontime ∧ late0 = late ∧ onbrake0 = onbrake
∧ stopped0 = stopped ∧ nbrake0 = nbrake ∧ delta0 = delta)

Q2 = (Q1 u (init = 1))[init := 0][delta := 0][ontime := 1][late := 0]
[onbrake := 0][stopped := 0][nbrake := 0]

Q3 = (Q1 u (init = 0 ∧ ontime = 1))[delta := delta+ s− b]
Q4 = (Q3 u (delta ≥ 10))[ontime := 0][late := 1][nbrake := 0]
Q5 = (Q3 u (delta ≤ −10))[ontime := 0][onbrake := 1][nbrake := b]
Q6 = (Q3 u (−9 ≤ delta ≤ 9))[nbrake := 0]
Q7 = Q4 tQ5 tQ6

Q8 = ((Q1 u (init = 0 ∧ ontime = 0 ∧ late = 1)) u (s = 0))[delta := delta− b]
[nbrake := 0]

Q9 = (Q8 u (delta ≤ 0))[ontime := 1][late := 0]
Q10 = (Q8 u (delta ≥ 1)) tQ9

Q11 = (Q1 u (init = 0 ∧ ontime = 0 ∧ late = 0 ∧ onbrake = 1))[delta := delta+ s− b]
Q12 = (Q11 u (delta ≥ 0))[ontime := 1][onbrake := 0][nbrake := 0]
Q13 = (Q11 u (delta ≤ −1 ∧ nbrake ≥ 10))[stopped := 1][onbrake := 0]
Q14 = (Q11 u (delta ≤ −1 ∧ nbrake ≤ 9))[nbrake := nbrake+ b]
Q15 = Q12 tQ13 tQ14

Q16 = ((Q1 u (init = 0 ∧ ontime = 0 ∧ late = 0 ∧ onbrake = 0 ∧ stopped = 1)) u (b = 0))
[delta := delta+ s]

Q17 = (Q16 u (delta ≥ 0))[ontime := 1][stopped := 0][nbrake := 0]
Q18 = (Q16 u (delta ≤ −1)) tQ17

Q19 = Q1 u (init = 0 ∧ ontime = 0 ∧ late = 0 ∧ onbrake = 0 ∧ stopped = 0)
Q20 = Q2 tQ7 tQ15 tQ18 tQ19

The disjunctive summary of the train step procedure is computed according to the
two-level refinement scheme presented in 8.2. The global precondition I] of the procedure
is first refined according to preconditions on memory variables and then according to
preconditions on input variables. The sets of input, output, local and memory variables
of a train component are:

X = {s, b}
Y = {ontime, late, onbrake, stopped, delta}
Z = ∅
M = {init, ontime, late, onbrake, stopped, delta, nbrake}
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9.1 Detailed Summary of the train step Procedure

void train_step(int * init, int s, int b, int * ontime, int * late,

int * onbrake, int * stopped, int * nbrake, int * delta)

{

1: if(*init == 1){

*init = 0; *delta = 0; *ontime = 1; *late = 0;

*onbrake = 0; *stopped = 0; *nbrake = 0;

2: } else if(*ontime == 1){

*delta = *delta + s - b;

3: if(*delta >= 10){

*ontime = 0; *late = 1; *nbrake = 0;

4: } else if(*delta <= -10){

*ontime = 0; *onbrake = 1; *nbrake = b;

5: } else {

*nbrake = 0;

6: }

7: } else if(*late == 1){

assert(s == 0);

*delta = *delta - b; *nbrake = 0;

8: if(*delta <= 0){

*ontime = 1; *late = 0;

9: }

10: } else if(*onbrake == 1){

*delta = *delta + s - b;

11: if(*delta >= 0){

*ontime = 1; *onbrake = 0; *nbrake = 0;

12: } else if(*nbrake >= 10){

*stopped = 1; *onbrake = 0;

13: } else {

*nbrake = *nbrake + b;

14: }

15: } else if(*stopped == 1){

assert(b == 0);

*delta = *delta + s;

16: if(*delta >= 0){

*ontime = 1; *stopped = 0; *nbrake = 0;

17: }

18: } else { 19: }

20:

}

Figure 9.1: The train step procedure.
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Chapter 9 Example: A Subway Control System

Beacon

Central
Clock

Figure 9.2: A subway track.

We denote as M0 = {init0, delta0, nbrake0, ontime0, late0, onbrake0, stopped0} the set of
variables representing previous values of memory variables.

9.1.1 Refinement on Memory Variables

I]

I]1 I]
′

1

I]2 I]
′

2

I]3 I]
′

3

I]4 I]
′

4

I]5 I]
′

5

init0 = 1 init0 = 0

ontime0 = 1 ontime0 = 0

late0 = 1 late0 = 0

onbrake0 = 1 onbrake0 = 0

stopped0 = 1 stopped0 = 0

Figure 9.3: Partitioning tree of I] according to preconditions on memory variables.

Refinement of I] A Linear Relation Analysis of the train step procedure under the
global precondition I] gives for Q2:

Q2 = (init0 = 1 ∧ 0 ≤ ontime0 ≤ 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ init = 0 ∧ delta = 0
∧ ontime = 1 ∧ late = 0 ∧ onbrake = 0 ∧ stopped = 0 ∧ nbrake = 0)

Q2 ↓M0 = (init0 = 1 ∧ 0 ≤ ontime0 ≤ 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1)
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9.1 Detailed Summary of the train step Procedure

I] can be refined according to the constraint init0 = 1 and its complement init0 = 0 into
two new preconditions I]1 and I]

′

1 :

I]1 = I] u (init0 = 1)
= (init0 = 1 ∧ 0 ≤ ontime0 ≤ 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

1 = I] u (init0 = 0)
= (init0 = 0 ∧ 0 ≤ ontime0 ≤ 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Refinement of I]1 We compute a Linear Relation Analysis of the train step procedure
under the precondition I]1. We get Q3(I

]
1) = ⊥, Q8(I

]
1) = ⊥, Q11(I

]
1) = ⊥, Q16(I

]
1) = ⊥

and Q19(I
]
2) = ⊥. The precondition I]1 can not be refined further.

Refinement of I]
′

1 We compute a Linear Relation Analysis under the precondition I]
′

1 .

We can refine I]
′

1 at program point 3, according to the constraint ontime0 = 1 and its

complement ontime0 = 0 into I]2 and I]
′

2 :

I]2 = I]
′

1 u (ontime0 = 1)
= (init0 = 0 ∧ ontime0 = 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

2 = I]
′

1 u (ontime0 = 0)
= (init0 = 0 ∧ ontime0 = 0 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Refinement of I]2 Under precondition I]2, we get Q8(I
]
2) = ⊥, Q11(I

]
2) = ⊥, Q16(I

]
2) = ⊥

and Q19(I
]
2) = ⊥. We do not consider the program points 4, 5, 6 since they are guarded

by tests depending on inputs. The test *delta >= 10 depends on the current value of
delta which is computed by the statement *delta = *delta + s - b involving input
variables s and b. Thus I]2 can not be refined further according to memory variables.

Refinement of I]
′

2 We can refine I]
′

2 at program point 8 according to the constraint

late0 = 1 and its complement late0 = 0 into I]3 and I]
′

3 :

I]3 = I]
′

2 u (late0 = 1)
= (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

3 = I]
′

2 u (late0 = 0)
= (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 0 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Refinement of I]3 Under precondition I]3, we get Q11(I
]
3) = ⊥, Q16(I

]
3) = ⊥

and Q19(I
]
3) = ⊥. We do not consider the program point 9 as it is guarded by

the test *delta <= 0 and the current value of delta is computed by the statement
*delta = *delta - b which depends on the input variable b. Thus I]3 can not be refined
according to memory variables.
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Refinement of I]
′

3 We can refine I]
′

3 at program point 11 according to the constraint

onbrake0 = 1 and its complement onbrake0 = 0 into I]4 and I]
′

4 :

I]4 = I]
′

3 u (onbrake0 = 1)
= (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 1 ∧ onbrake0 = 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

4 = I]
′

3 u (onbrake0 = 0)
= (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 0 ∧ onbrake0 = 0
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Refinement of I]4 Under precondition I]4, we get Q16(I
]
4) = ⊥ and Q19(I

]
4) = ⊥. Tests at

program points 12, 13 and 14 depends on input variables. The else if(*nbrake >= 10)

branch is entered if delta ≤ −1 and Q13 is defined in the system of equations as being
guarded by the condition delta ≤ −1∧nbrake ≥ 10. Thus I]4 can not be refined according
to memory variables only.

Refinement of I]
′

4 We can refine I]
′

4 at program point 16 according to the constraint

stopped0 = 1 and its complement stopped0 = 0 into I]5 and I]
′

5 :

I]5 = I]
′

4 u (stopped0 = 1)
= (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 1 ∧ onbrake0 = 1
∧ stopped0 = 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

5 = I]
′

4 u (stopped0 = 0)
= (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 0 ∧ onbrake0 = 0
∧ stopped0 = 0 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Refinement of I]5 Under precondition I]5, we get Q19(I
]
5) = ⊥. As for other precondi-

tions, I]5 can not be refined at Q16 guarded by *delta >= 0.

Abstract Partition on Memory Variables We get an abstract partition
δ]m = {I]1, I

]
2, I

]
3, I

]
4, I

]
5, I

]′

5 } of the global precondition I].

9.1.2 Refinement on Input Variables

Refinement of I]2 We get for Q4(I
]
2) under precondition I]2:

Q4(I
]
2) = (init0 = 0 ∧ ontime0 = 1 ∧ delta = delta0 + s− b ∧ onbrake = onbrake0

∧ stopped = stopped0 ∧ ontime = 0 ∧ nbrake = 0 ∧ late = 1 ∧ init = 0
∧ b+ delta ≤ delta0 + 1 ∧ b+ delta ≥ delta0 ∧ 0 ≤ late0 ≤ 1
∧ 0 ≤ onbrake ≤ 1 ∧ 0 ≤ stopped ≤ 1 ∧ delta ≥ 10 ∧ b ≥ 0)

Q4 ↓ {M0, X} = (init0 = 0 ∧ ontime0 = 1 ∧ delta0 + s ≥ 10 + b ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ s ≤ 1
∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1)

We can refine I]2 into I]6 and I]
′

6 at program point 2, according to the constraint
delta0 + s ≥ 10 + b and its complement delta0 + s < 10 + b which involve input variables.
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9.1 Detailed Summary of the train step Procedure

I]2

I]6 delta ≥ 10 ∧ late = 1

I]
′

6

I]7 delta ≤ −10 ∧ onbrake = 1

I]
′

7
−9 ≤ delta ≤ 9 ∧ ontime = 1

ontime0 = 1

Figure 9.4: Partitioning of I]2 according to input variables, with the ranges of possible

values for delta under preconditions I]
′

7 , I]7, I
]
6.

It corresponds to the condition *delta >= 10 on the current value of delta.

I]6 = I]2 u (delta0 + s ≥ 10 + b)
= (init0 = 0 ∧ ontime0 = 1 ∧ delta0 + s ≥ b + 10 ∧ 0 ≤ late0 ≤ 1
∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

6 = I]2 u (delta0 + s < 10 + b)
= (init0 = 0 ∧ ontime0 = 1 ∧ delta0 + s < b + 10 ∧ 0 ≤ late0 ≤ 1
∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Refinement of I]
′

6 We get for Q5(I
]′

6 ):

Q5(I
]′

6 ) ↓ {M0, X} = (init0 = 0 ∧ ontime0 = 1 ∧ delta0 + s + 10 ≤ b ∧ 0 ≤ late0 ≤ 1
∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

6 can be refined into I]7 and I]
′

7 at program point 5, according to the constraint
delta0 + s+ 10 ≤ b, which corresponds to the condition *delta <= -10.

I]7 = I]
′

6 u (delta0 + s+ 10 ≤ b)
= (init0 = 0 ∧ ontime0 = 1 ∧ delta0 + s + 10 ≤ b ∧ 0 ≤ late0 ≤ 1
∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]
′

7 = I]
′

6 u (delta0 + s+ 10 > b)
= (init0 = 0 ∧ ontime0 = 1 ∧ delta0 + s + 10 > b ∧ 0 ≤ late0 ≤ 1
∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

I]3

I]8 delta ≤ 0 ∧ ontime = 1

I]
′

8 delta > 0 ∧ late = 1

late0 = 1

Figure 9.5: Partitioning of I]3 according to input variables, with the ranges of possible

values for delta under preconditions I]8 and I]
′

8 .
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Refinement of I]3

Q9(I
]
3) ↓ {M0, X} = (init0 = 0 ∧ late0 = 1 ∧ ontime0 = 0 ∧ b ≥ delta0 ∧ s = 0

∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ b ≤ 1)

I]3 is refined into I]8 and I]
′

8 according to the constraint b ≥ delta0:

I]8 = I]3 u (b ≥ delta0)

I]
′

8 = I]3 u (b < delta0)

I]4

I]9 delta ≥ 0 ∧ ontime = 1

I]
′

9

I]10 delta ≤ −1 ∧ nbrake0 ≥ 10 ∧ stopped = 1

I]
′

10
delta ≤ −1 ∧ nbrake0 ≤ 9 ∧ onbrake = 1

onbrake0 = 1

Figure 9.6: Partitioning of I]4 according to input variables, with the ranges of possible

values for delta under preconditions I]9, I
]
10, I

]′

10.

Refinement of I]4

Q12(I
]
4) ↓ {M0, X} = (init0 = 0 ∧ onbrake0 = 1 ∧ late0 = 0 ∧ ontime0 = 0

∧ delta0 + s ≥ b ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ s ≤ 1)

I]4 is refined into I]9 and I]
′

9 according to the constraint delta0 + s ≥ b:

I]9 = I]4 u (delta0 + s ≥ b)

I]
′

9 = I]4 u (delta0 + s < b)

Refinement of I]
′

9

Q13(I
]′

9 ) ↓ {M0, X} = (init0 = 0 ∧ onbrake0 = 1 ∧ late0 = 0 ∧ ontime0 = 0
∧ 0 ≤ stopped0 ≤ 1 ∧ nbrake0 ≥ 10 ∧ b ≥ delta0 + s+ 1
∧ 0 ≤ b ≤ 1 ∧ 0 ≤ s ≤ 1)

I]
′

9 is refined into I]10 and I]
′

10 according to the constraint nbrake0 ≥ 10:

I]10 = I]
′

9 u (nbrake0 ≥ 10)

I]
′

10 = I]
′

9 u (nbrake0 < 10)

Refinement of I]5

Q17(I
]
5) ↓ {M0, X} = (init0 = 0 ∧ stopped0 = 1 ∧ ontime0 = 0 ∧ onbrake0 = 0

∧ late0 = 0 ∧ b = 0 ∧ 0 ≤ s ≤ 1 ∧ delta0 + s ≥ 0)

I]5 is refined into I]11 and I]
′

11 according to the constraint delta0 + s ≥ 0.

I]11 = I]5 u (delta0 + s ≥ 0)

I]
′

11 = I]5 u (delta0 + s < 0)

156



9.1 Detailed Summary of the train step Procedure

I]5

I]11 delta ≥ 0 ∧ ontime = 1

I]
′

11
delta ≤ −1 ∧ stopped = 1

stopped0 = 1

Figure 9.7: Partitioning of I]5 according to input variables, with the ranges of possible

values for delta under preconditions I]11 and I]
′

11.

9.1.3 Summary

I]

I]1

r]1

I]2

I]6

r]2

I]7

r]3

I]
′

7

r]4

I]3

I]8

r]5

I]
′

8

r]6

I]4

I]9

r]7

I]10

r]8

I]
′

10

r]9

I]5

I]11

r]10

I]
′

11

r]11

I]
′

5

r]12

init0 = 1

ontime0 = 1 late0 = 1 onbrake0 = 1

stopped0 = 1

stopped0 = 0

m0

m1 m2 m3 m4

m5

Figure 9.8: Disjunctive summary of the train step procedure and grouping of summary
members into modes m0,m1,m2,m3,m4,m5.

Preconditions obtained by considering constraints on previous values of memory vari-
ables have been refined according to constraints depending on input variables. The set
of preconditions δ = {I]1, I

]
6, I

]
7, I

]′

7 , I
]
8, I

]′

8 , I
]
9, I

]
10, I

]′

10, I
]
11, I

]′

11, I
]′

5 } is an abstract partition of
the global precondition I] of the train step procedure.

The disjunctive relational summary Strain of the train step procedure is:

Strain = {r]1, r
]
2, r

]
3, r

]
4, r

]
5, r

]
6, r

]
7, r

]
8, r

]
9, r

]
10, r

]
11, r

]
12}

where r]1 = Q20(I
]
1), r

]
2 = Q20(I

]
6), r

]
3 = Q20(I

]
7), r

]
4 = Q20(I

]′

7 ), r]5 = Q20(I
]
8), r

]
6 = Q20(I

]′

8 ),

r]7 = Q20(I
]
9), r

]
8 = Q20(I

]
10), r

]
9 = Q20(I

]′

10), r
]
10 = Q20(I

]
11), r

]
11 = Q20(I

]′

11), r
]
12 = Q20(I

]′

5 ).

r]1 = (init0 = 1 ∧ init = 0 ∧ ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ late = 0
∧ nbrake = 0 ∧ delta = 0 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1 ∧ 0 ≤ ontime0 ≤ 1
∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ s ≤ 1)

r]2 = (init0 = 0 ∧ ontime0 = 1 ∧ late = 1 ∧ delta = delta0 + s− b ∧ onbrake = onbrake0
∧ stopped = stopped0 ∧ ontime = 0 ∧ nbrake = 0 ∧ init = 0 ∧ delta0 + 1 ≥ b+ delta
∧ b+ delta ≥ delta0 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ onbrake ≤ 1
∧ 0 ≤ stopped ≤ 1 ∧ delta ≥ 10)
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r]3 = (init0 = 0 ∧ ontime0 = 1 ∧ onbrake = 1 ∧ delta ≤ −10 ∧ delta = delta0 + s− b
∧ nbrake = b ∧ late = late0 ∧ stopped = stopped0 ∧ ontime = 0 ∧ init = 0
∧ delta0 + 1 ≥ b+ delta ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ late ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ stopped ≤ 1 ∧ b+ delta ≥ delta0)

r]4 = (init0 = 0 ∧ ontime0 = 1 ∧ ontime = 1 ∧ delta = delta0 + s− b ∧ −9 ≤ delta ≤ 9
∧ onbrake = onbrake0 ∧ stopped = stopped0 ∧ nbrake = 0 ∧ init = 0
∧ delta0 + 1 ≥ b+ delta ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ late ≤ 1 ∧ 0 ≤ onbrake ≤ 1
∧ 0 ≤ stopped ≤ 1 ∧ b+ delta ≥ delta0)

r]5 = (init0 = 0 ∧ late0 = 1 ∧ ontime = 1 ∧ late = 0 ∧ delta = delta0 − b ∧ s = 0
∧ onbrake = onbrake0 ∧ stopped = stopped0 ∧ ontime0 = 0 ∧ nbrake = 0 ∧ init = 0
∧ 0 ≤ b ≤ 1 ∧ delta ≤ 0 ∧ 0 ≤ onbrake ≤ 1 ∧ 0 ≤ stopped ≤ 1)

r]6 = (init0 = 0 ∧ late0 = 1 ∧ late = 1 ∧ delta ≥ 1 ∧ delta = delta0 − b ∧ s = 0
∧ ontime0 = 0 ∧ ontime = 0 ∧ nbrake = 0 ∧ init = 0 ∧ 0 ≤ b ≤ 1
∧ 0 ≤ onbrake ≤ 1 ∧ 0 ≤ stopped ≤ 1)

r]7 = (init0 = 0 ∧ onbrake0 = 1 ∧ ontime = 1 ∧ onbrake = 0 ∧ delta ≥ 0
∧ delta = delta0 + s− b ∧ stopped = stopped0 ∧ ontime0 = 0 ∧ nbrake = 0
∧ late0 = 0 ∧ late = 0 ∧ init = 0 ∧ delta0 + 1 ≥ b+ delta ∧ b+ delta ≥ delta0
∧ 0 ≤ b ≤ 1 ∧ 0 ≤ stopped ≤ 1)

r]8 = (init0 = 0 ∧ onbrake0 = 1 ∧ stopped = 1 ∧ onbrake = 0 ∧ delta ≤ −1
∧ delta = delta0 + s− b ∧ nbrake = nbrake0 ∧ ontime0 = 0 ∧ ontime = 0
∧ late0 = 0 ∧ late = 0 ∧ init = 0 ∧ delta0 + 1 ≥ b+ delta ∧ b+ delta ≥ delta0
∧ 0 ≤ b ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ nbrake ≥ 10)

r]9 = (init0 = 0 ∧ onbrake0 = 1 ∧ onbrake = 1 ∧ delta = delta0 + s− b
∧ stopped = stopped0 ∧ ontime0 = 0 ∧ ontime = 0 ∧ late0 = 0 ∧ late = 0
∧ init = 0 ∧ nbrake = nbrake0 + b ∧ delta0 + 1 ≥ b+ delta ∧ 0 ≤ b ≤ 1
∧ delta ≤ −1 ∧ 0 ≤ stopped ≤ 1 ∧ nbrake ≤ b+ 9 ∧ b+ delta ≥ delta0)

r]10 = (init0 = 0 ∧ stopped0 = 1 ∧ ontime = 1 ∧ delta = delta0 + s ∧ stopped = 0
∧ ontime0 = 0 ∧ onbrake0 = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late0 = 0 ∧ late = 0
∧ init = 0 ∧ b = 0 ∧ delta0 + 1 ≥ delta ∧ delta ≥ delta0 ∧ delta ≥ 0)

r]11 = (init0 = 0 ∧ stopped0 = 1 ∧ stopped = 1 ∧ nbrake = nbrake0 ∧ delta = delta0 + s
∧ ontime0 = 0 ∧ ontime = 0 ∧ onbrake0 = 0 ∧ onbrake = 0 ∧ late0 = 0 ∧ late = 0
∧ init = 0 ∧ b = 0 ∧ delta ≤ −1 ∧ delta0 + 1 ≥ delta ∧ delta ≥ delta0)

r]12 = (init0 = 0 ∧ ontime0 = 0 ∧ late0 = 0 ∧ onbrake0 = 0 ∧ stopped0 = 0
∧ delta = delta0 ∧ nbrake = nbrake0 ∧ stopped = stopped0 ∧ ontime = ontime0
∧ onbrake = onbrake0 ∧ late = late0 ∧ init = 0 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

The members of the disjunctive summary Strain can be grouped into modes according
to which precondition on memory variables they have been derived from, as shown in
Figure 9.8. The modes of a train are as follows:

m0 = r]1
m1 = (r]2 ∨ r

]
3 ∨ r

]
4)

m2 = (r]5 ∨ r
]
6)

m3 = (r]7 ∨ r
]
8 ∨ r

]
9)

m4 = (r]10 ∨ r
]
11)

m5 = r]12
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9.2 Relational Mode Automaton for a Train

Init
m0

Ontime
m1

Late
m2

Onbrake
m3

Stopped
m4

Figure 9.9: Relational Mode Automaton Rtrain.

From the modes of a train given by the summary of the train step procedure, we
construct the relational mode automaton Rtrain = (X, Y, Z,M, I,Loc, `init, φ, τ) shown in
Figure 9.9. The initial variable valuations are:

I = (0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ ontime ≤ 1 ∧ 0 ≤ late ≤ 1 ∧ 0 ≤ onbrake ≤ 1
∧ 0 ≤ stopped ≤ 1 ∧ init = 1)

The set of control locations is Loc = {`init, `ontime, `late, `onbrake, `stopped} and the modes are
φ(`init) = m0, φ(`ontime) = m1, φ(`late) = m2, φ(`onbrake) = m3, φ(`stopped) = m4.

We can write each mode φ(`) as a conjunction A` ∧ T of a precondition A` and a
disjunction T = T`,`0∨...∨T`,`n of linear input-output relations (Ti)i=1..n. The precondition
A` gives the domain of the mode and the disjunction T gives the possible ways in which
the variables can be updated. The function φ : Loc→ V(V )×V(V ) associating modes to
control locations is:

φ(`init) = (delta = 0 ∧ late = 0 ∧ stopped = 0 ∧ onbrake = 0
∧ nbrake = 0 ∧ ontime = 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

φ(`ontime) = (ontime0 = 1 ∧ 0 ≤ late0 ≤ 1 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)
∧ ((−9 ≤ delta ≤ 9 ∧ ontime = 1 ∧ delta = delta0 + s− b ∧ late = late0
∧ stopped = stopped0 ∧ onbrake = onbrake0 ∧ nbrake = 0)
∨ (delta ≥ 10 ∧ late = 1 ∧ delta = delta0 + s− b ∧ stopped = stopped0
∧ onbrake = onbrake0 ∧ nbrake = 0 ∧ ontime = 0)
∨ (delta ≤ −10 ∧ onbrake = 1 ∧ delta = delta0 + s− b
∧ stopped = stopped0 ∧ nbrake = b ∧ late = late0 ∧ ontime = 0))
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φ(`late) = (late0 = 1 ∧ ontime0 = 0 ∧ 0 ≤ stopped0 ≤ 1 ∧ 0 ≤ onbrake0 ≤ 1
∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)
∧ ((delta ≥ 1 ∧ late = 1 ∧ delta = delta0 + s− b ∧ s = 0 ∧ ontime = ontime0
∧ onbrake = onbrake0 ∧ stopped = stopped0 ∧ nbrake = 0)
∨ (delta ≤ 0 ∧ ontime = 1 ∧ delta = delta0 + s− b ∧ stopped = stopped0
∧ onbrake = onbrake0 ∧ nbrake = 0 ∧ late = 0))

φ(`onbrake) = (onbrake0 = 1 ∧ ontime0 = 0 ∧ late0 = 0 ∧ 0 ≤ stopped0 ≤ 1
∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)
∧ ((delta ≤ −1 ∧ onbrake = 1 ∧ delta = delta0 + s− b ∧ late = late0
∧ stopped = stopped0 ∧ nbrake = nbrake0 + b ∧ ontime = ontime0
∧ nbrake0 ≤ 9)
∨ (delta ≥ 0 ∧ ontime = 1 ∧ delta = delta+ s− b ∧ late = late0
∧ stopped = stopped0 ∧ onbrake = 0 ∧ nbrake = 0)
∨ (nbrake0 ≥ 10 ∧ stopped = 1 ∧ delta = delta0 + s− b ∧ late = late0
∧ onbrake = 0 ∧ nbrake = nbrake0 ∧ ontime = ontime0))

φ(`stopped) = (stopped0 = 1 ∧ ontime0 = 0 ∧ onbrake0 = 0 ∧ late0 = 0
∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)
∧ ((delta ≤ −1 ∧ stopped = 1 ∧ delta = delta0 + s− b ∧ b = 0
∧ nbrake0 ≥ 10 ∧ late = late0 ∧ onbrake = onbrake0 ∧ nbrake = nbrake0
∧ ontime = ontime0)
∨ (delta ≥ 0 ∧ ontime = 1 ∧ delta = delta0 + s− b ∧ late = late0
∧ stopped = stopped0 ∧ onbrake = onbrake0 ∧ nbrake = 0))

The control transition relation τ ⊆ Loc× V(V )× Loc is:

τ = {(`init,>, `ontime), (`ontime,>, `ontime), (`ontime,>, `late), (`ontime,>, `onbrake),
(`late,>, `late), (`late,>, `ontime), (`onbrake,>, `onbrake), (`onbrake,>, `ontime),
(`onbrake,>, `stopped), (`stopped,>, `stopped), (`stopped,>, `ontime)}

9.3 Analysis of a Single Train

For each control location ` 6= `init, we denote as stay` a property which is satisfied when
control stays at `:

stayontime = (−9 ≤ delta ≤ 9)
staylate = (delta ≥ 1)
stayonbrake = (delta ≤ −1 ∧ nbrake ≤ 10)
staystopped = (delta ≤ −1 ∧ nbrake ≥ 10)

We define a limited widening operator ∇` for each control location ` as:

P∇`Q = (P∇Q) u stay`

Initially, only the control location `init is known to be reachable. The initial term of
the global increasing sequence is trivially:

G`init
= I
= (0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ ontime ≤ 1 ∧ 0 ≤ late ≤ 1
∧ 0 ≤ onbrake ≤ 1 ∧ 0 ≤ stopped ≤ 1)
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9.3 Analysis of a Single Train

The incoming abstract value in`ontime
at `ontime is:

in`ontime
= post(`init, `ontime)(G`init

)
= (ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late = 0
∧ delta = 0 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

The abstract value G`ontime
is the limit of a local increasing and decreasing sequence at

`ontime starting with in`ontime
.

Local iteration at `ontime

We compute a local increasing sequence at `ontime as follows:

Y `ontime
0 = (ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late = 0

∧ delta = 0 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Y `ontime
k+1 = Y `ontime

k ∇`ontime
(Y `ontime

k t post(`ontime, `ontime)(Y `ontime
k ))

After convergence, we get:

G`ontime
= (ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late = 0
∧ − 9 ≤ delta ≤ 9 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

Local iteration at `onbrake

The incoming abstract value at `onbrake is:

in`onbrake
= post(`ontime, `onbrake)(G`ontime

)
= (onbrake = 1 ∧ stopped = 0 ∧ ontime = 0 ∧ nbrake = 1 ∧ late = 0
∧ delta = −10 ∧ s = 0 ∧ b = 1)

We compute a local increasing sequence at `onbrake, we get:

G`onbrake
= (onbrake = 1 ∧ stopped = 0 ∧ ontime = 0 ∧ late = 0
∧ b ≤ 1 ∧ nbrake ≥ b+ s ∧ delta ≤ −1 ∧ nbrake ≤ 10 ∧ s ≥ 0 ∧ nbrake ≥ 1
∧ delta+ nbrake ≥ s− 9)

Local iteration at `stopped

The incoming abstract value at `stopped is:

in`stopped = post(`onbrake, `stopped)(G`onbrake
)

= (stopped = 1 ∧ ontime = 0 ∧ onbrake = 0
∧ nbrake = 10 ∧ −19 + s ≤ delta ≤ s− 1
∧ late = 0 ∧ 0 ≤ s ≤ 1 ∧ b = 0)

We compute a local increasing sequence at `stopped, we get:

G`stopped = (stopped = 1 ∧ ontime = 0 ∧ onbrake = 0 ∧ nbrake = 10
∧ late = 0 ∧ b = 0 ∧ delta ≤ −1 ∧ 0 ≤ s ≤ 1 ∧ delta ≥ s− 19)
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Chapter 9 Example: A Subway Control System

Local iteration at `ontime

We compute a new incoming value at `ontime with the contributions of G`onbrake
and

G`stopped .

in`ontime
= post(`init, `ontime)(G`init

) t post(`onbrake, `ontime)(G`onbrake
)

t post(`stopped, `ontime)(G`stopped) t post(`ontime, `ontime)(G`ontime
)

= (ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late = 0
∧ − 9 ≤ delta ≤ 9 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ s ≤ 1)

The incoming value has not changed, thus the loop `ontime, `onbrake, `stopped has converged.

Local iteration at `late

The incoming abstract value at `late is:

in`late = post(`ontime, `late)(G`late)
= (late = 1 ∧ stopped = 0 ∧ ontime = 0 ∧ onbrake = 0 ∧ nbrake = 0
∧ delta = 10 ∧ s = 1 ∧ b = 0)

We compute a local increasing sequence at `late, we get:

G`late = (late = 1 ∧ stopped = 0 ∧ ontime = 0 ∧ onbrake = 0 ∧ nbrake = 0
∧ b+ delta = 10 ∧ b+ s ≤ 1 ∧ 0 ≤ b ≤ 9)

Local iteration at `ontime

Finally, we can compute the incoming value at `ontime using the values associated to its
predecessors:

in`ontime
= post(`init, `ontime)(G`init

) t post(`onbrake, `ontime)(G`onbrake
)

t post(`stopped, `ontime)(G`stopped) t post(`late, `ontime)(G`late)
t post(`ontime, `ontime)(G`ontime

)
= (ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late = 0
∧ − 9 ≤ delta ≤ 9 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ s ≤ 1)

The incoming value at `ontime has not changed, thus the analysis of the relational mode
automaton Rtrain has converged. We discovered for each control location:

G`init
= (0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ ontime ≤ 1 ∧ 0 ≤ late ≤ 1
∧ 0 ≤ onbrake ≤ 1 ∧ 0 ≤ stopped ≤ 1)

G`ontime
= (ontime = 1 ∧ stopped = 0 ∧ onbrake = 0 ∧ nbrake = 0 ∧ late = 0
∧ − 9 ≤ delta ≤ 9 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ b ≤ 1)

G`late = (late = 1 ∧ stopped = 0 ∧ ontime = 0 ∧ onbrake = 0 ∧ nbrake = 0
∧ b+ delta = 10 ∧ b+ s ≤ 1 ∧ 0 ≤ b ≤ 9)

G`onbrake
= (onbrake = 1 ∧ stopped = 0 ∧ ontime = 0 ∧ late = 0
∧ b ≤ 1 ∧ nbrake ≥ b+ s ∧ delta ≤ −1 ∧ nbrake ≤ 10 ∧ s ≥ 0 ∧ nbrake ≥ 1
∧ delta+ nbrake ≥ s− 9)

G`stopped = (stopped = 1 ∧ ontime = 0 ∧ onbrake = 0 ∧ nbrake = 10
∧ late = 0 ∧ b = 0 ∧ delta ≤ −1 ∧ 0 ≤ s ≤ 1 ∧ delta ≥ s− 19)
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The variable delta is bounded at every reaction step:

G`ontime
↓ delta = (−9 ≤ delta ≤ 9)

G`late ↓ delta = (1 ≤ delta ≤ 10)
G`onbrake

↓ delta = (−19 ≤ delta ≤ −1)
G`stopped ↓ delta = (−19 ≤ delta ≤ −1)

Let Jtrain be a disjunctive invariant of the Rtrain automaton defined as:

Jtrain = post(`init, `ontime)(G`init
) ∨ (G`ontime

tG`onbrake
tG`stopped tG`late)

For clarity, we use a simpler and weaker disjunctive invariant J ′train of Rtrain:

J ′train = (init = 0 ∧ delta = 0 ∧ late = 0) ∨ (init = 0 ∧ −19 ≤ delta ≤ 10 ∧ late = 0)

In order to increase moderately the precision, we augment J ′train by adding relations given
by the modes of the automaton Rtrain as described in 8.7.4.

Qtrain = (init0 = 1 ∧ init = 0 ∧ delta = 0 ∧ late = 0)
∨ (init0 = 0 ∧ init = 0 ∧ −19 ≤ delta ≤ 10 ∧ delta = delta0 + s− b
∧ 0 ≤ late ≤ 1)

Qtrain is an over-approximation of a reaction step of the relational mode automaton Rtrain

and represents the effect of a call to the train step procedure.

9.4 Modular Analysis of a Pair of Trains

We want to discover a bound on the difference delta = nb2−nb1 in number of encountered
beacons on a subway track between any pair of trains. A subway track with two trains
is modeled by the track step procedure given in Figure 9.10. As we did previously for
a single train, we also want to prove that the variables of all trains are bounded. We
analyze the track step procedure in a modular way, using the results of the analysis of
a single train.

The track step procedure implements an instance of each train by calling the
train step procedure which updates the trains variables at each reaction step. Since
the track step procedure is written only for analysis purposes, the numbers of detected
beacons are counted in an unbounded fashion and stored respectively in nb1 and nb2.

Disjunctive Summary of track step

The disjunctive summary Strack = {r]1, r
]
2} of the track step procedure is:

A = (0 ≤ b1 ≤ 1 ∧ 0 ≤ b2 ≤ 1 ∧ 0 ≤ clk ≤ 1 ∧ 0 ≤ s ≤ 1 ∧ 0 ≤ ontime1 ≤ 1
∧ 0 ≤ late1 ≤ 1 ∧ 0 ≤ onbrake1 ≤ 1 ∧ 0 ≤ stopped1 ≤ 1 ∧ 0 ≤ ontime2 ≤ 1
∧ 0 ≤ late2 ≤ 1 ∧ 0 ≤ onbrake2 ≤ 1 ∧ 0 ≤ stopped2 ≤ 1 ∧ 0 ≤ init ≤ 1
∧ 0 ≤ init0 ≤ 1 ∧ 0 ≤ late10 ≤ 1 ∧ 0 ≤ late20 ≤ 1)

r]1 = A u (init0 = 1 ∧ init = 0 ∧ nb1 = 0 ∧ nb2 = 0 ∧ s = clk ∧ delta1 = 0
∧ delta2 = 0 ∧ late1 = 0 ∧ late2 = 0)

r]2 = A u (init0 = 0 ∧ init = 0 ∧ nb1 = nb10 + b1 ∧ nb2 = nb20 + b2
∧ delta1 = delta10 + s− b1 ∧ delta2 = delta20 + s− b2
∧ late10 + late20 + s ≥ clk ∧ late10 + s ≤ 1 ∧ late20 + s ≤ 1 ∧ clk ≥ s)
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Chapter 9 Example: A Subway Control System

Relational Mode Automaton Rtrack

Using the summary Strack we construct the relational mode automaton Rtrack, shown
in Figure 9.11, representing the track step procedure. The set of control locations is
Loc = {`0, `1} and the modes are φ(`0) = r]1 and φ(`1) = r]2.

`0 : r]1 `1 : r]2

Figure 9.11: Relational mode automaton Rtrack.

Reachability Analysis of Rtrack

A reachability analysis of the relational mode automaton Rtrack gives:

reach](`0) = A u (nb1 = 0 ∧ nb2 = 0 ∧ delta1 = 0 ∧ delta2 = 0 ∧ late1 = 0
∧ late2 = 0 ∧ s = clk)

reach](`1) = A u (delta2− delta1 = nb1− nb2 ∧ −19 ≤ delta1 ≤ 10
∧ − 19 ≤ delta2 ≤ 10 ∧ nb1 ≥ 0 ∧ nb2 ≥ 0 ∧ late1 + late2 + s ≥ clk
∧ late1 + s ≤ 1 ∧ late2 + s ≤ 1 ∧ clk ≥ s ∧ init = 0)

The projection on the numbers of beacons detected by each train is:

G`1 ↓ {nb1, nb2} = (−29 ≤ nb1− nb2 ≤ 29 ∧ nb1 ≥ 0 ∧ nb2 ≥ 0)

Thus the difference nb1 − nb2 in number of detected beacons by each train is bounded.
We can use the constraint −29 ≤ nb1 − nb2 ≤ 29 for the initial placement of trains. It
ensures that no collisions are possible if trains are initially separated by more than 29
beacons on a track.

Verification of the Assertion on late

We use the results of the reachability analysis of Rtrack to prove that the assertion
late = 1⇒ s = 0 holds for each train. It ensures that a train do not receive the time
signal when it is late, which is enforced by the implementation of the global clock of the
track.

reach](`0) u (late1 = 1) = ⊥
reach](`0) u (late2 = 1) = ⊥
reach](`1) u (late1 = 1) = A u (delta2− delta1 = nb1− nb2 ∧ s = 0 ∧ late1 = 1

∧ init = 0 ∧ −19 ≤ delta1 ≤ 10 ∧ −19 ≤ delta2 ≤ 10
∧ nb1 ≥ 0 ∧ delta1− delta2 + nb1 ≥ 0)

reach](`1) u (late2 = 1) = A u (delta2− delta1 = nb1− nb2 ∧ s = 0 ∧ late2 = 1
∧ init = 0 ∧ −19 ≤ delta1 ≤ 10 ∧ −19 ≤ delta2 ≤ 10
∧ nb1 ≥ 0 ∧ delta1− delta2 + nb1 ≥ 0)

The assertions late1 = 1⇒ s = 0 and late2 = 1⇒ s = 0 are verified at each location of
Rtrack and also hold when the train step procedure is called to implement each train.

164



9.5 Conclusion

9.5 Conclusion

In this chapter, we were interested in the analysis of a classical example [67] of subway
system inspired from a real industrial proposition.

We presented the detailed computation of the disjunctive relational summary of the
metro step procedure implementing a single train. The computed summary was used to
construct automatically an abstraction of the behavior of a single train as a relational
mode automaton. We analyzed the relational mode automaton representing a single train
and discovered that all the variables of a train are bounded at runtime. In particular,
we found using our approach the classical result that the difference delta between the
number of received clock ticks and the number of detected beacons is always bounded
with −19 ≤ delta ≤ 10. We computed a disjunctive relational invariant of an individual
train from analysis results.

We used the disjunctive relational invariant of a single train to analyze a pair of trains
on a subway track in a modular way. Reduction techniques presented in 8.6 were used to
simplify the analysis and get rid of unnecessary details. We discovered that the difference
nb1 − nb2 = delta2 − delta1 in number of encountered beacons between any pair of trains
on a track is always bounded with −29 ≤ nb1− nb2 ≤ 29 although neither 29 nor bounds
are given explicitly.

The computations involved in this example have been performed using the PyApron
library which provides a high-level Python binding to the Apron library for the convex
polyhedra implementation. The implementation of the refinement process was written
specifically for that example.

We chose to consider all variables as integers and to represent booleans as integer
variables between 0 and 1. We could have used an abstract domain allowing the expression
of boolean properties with convex polyhedra [70, 10].
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void track_step(int * init, int clk, int b1, int b2,

int * ontime1, int * late1, int * onbrake1,

int * stopped1, int * delta1, int * nbrake1,

int * ontime2, int * late2, int * onbrake2,

int * stopped2, int * delta2, int * nbrake2,

int * nb1, int * nb2)

{

int s;

if(*init){

*nb1 = 0;

*nb2 = 0;

s = clk;

train_step(init, s, b1, ontime1, late1,

onbrake1, stopped1, nbrake1, delta1);

train_step(init, s, b2, ontime2, late2,

onbrake2, stopped2, nbrake2, delta2);

} else {

assert(*stopped1 == 0 || b1 == 0);

assert(*stopped2 == 0 || b2 == 0);

/* Counting beacons detected by each train */

*nb1 = *nb1 + b1;

*nb2 = *nb2 + b2;

/* Local clock of the track */

if((*late1 == 1) || (*late2 == 1)){

s = 0;

} else {

s = clk;

}

/* Train 1 */

train_step(init, s, b1, ontime1, late1,

onbrake1, stopped1, nbrake1, delta1);

/* Train 2 */

train_step(init, s, b2, ontime2, late2,

onbrake2, stopped2, nbrake2, delta2);

}

}

Figure 9.10: The track step procedure.
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Conclusion

We proposed a modular interprocedural analysis for numerical properties, as a solution to
the cost of using expressive relational abstract domains in program analysis. An analysis
using a relational abstract domain can be straightforwardly converted into a relational
analysis computing an input-output relation. Such relations can be used as procedure
summaries, computed once and for all, and used in a bottom-up fashion to compute the
effect of procedure calls.

We described a general framework to compute relational procedure summaries by ab-
stract interpretation, based on the forward propagation of abstract input-output relations.
Even if it is especially applied to convex polyhedra, it can be used with any relational
abstract domain. Although the idea is not new [69], we proposed a formalization of
relational abstract interpretation that we did not find elsewhere.

Applying this idea to Linear Relation Analysis, we concluded that procedure sum-
maries made of individual input-output relations represented by convex polyhedra are
not precise enough and deserve to be refined disjunctively. We proposed a method based
on precondition partitioning to compute disjunctive relational summaries. We gave par-
titioning heuristics for refining summaries, according to the reachability of control points
or calling contexts of called procedures. We also identified several improvements to sum-
mary computation itself, like widening limited by preconditions and previously computed
relations, and a more precise computation of abstract relations at loops exit points.

We shown that our approach can be used to compute disjunctive relational summaries
of recursive procedures, as it is often a weakness of existing interprocedural analyses. Our
analysis was able to uncover non-trivial procedure behaviors caused by recursion.

We provide an implementation of our approach in a new static analysis platform for
C programs called mars. It was the product of a significant effort to design a new tool
to simplify the development of static analyses, while accepting a large subset of C and
providing highly-precise traceability information. Using mars, we conducted experiments
of our modular analysis on a set of benchmark programs well-known in the WCET research
community. We shown that our approach can significantly reduce the analysis time for
Linear Relation Analysis, compared to a classical full context-sensitive approach where
procedures are analyzed completely in each call context. This is especially the case for
procedures which are called several times, like procedures which are part of a library or a
framework. On the other hand, analysis precision is not significantly damaged and can be
even improved due to the use of disjunction. This approach was published in [27]. Some
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possible future works were given in 6.6.

During the time of this thesis, we also published the continuation of earlier works on
the improvement [26] of Linear Relation Analysis and the application of Linear Relation
Analysis to the computation of the Worst-Case Execution Time of programs [115].

Reactive systems can be generally structured as collections of components reacting to
inputs, producing outputs and updating their internal memories to achieve the system
functionality. The reaction of each component to its environment is implemented by a step
procedure. Synchronous languages like Lustre are well-known for the implementation
of synchronous reactive systems.

In a second part, we proposed an approach toward a modular analysis of reactive
systems for numerical properties. We presented a flexible abstraction of reactive compo-
nents called Relational Mode Automata (RMA), allowing the representation of reactive
components at various levels of abstraction, to achieve different tradeoffs in analysis per-
formance and precision. Relational mode automata can be constructed automatically
from the disjunctive relational summary of the step procedure implementing a given reac-
tive component. The core idea of relational mode automata is that component behavior
can be described by a collection of component modes and the possible transitions between
them.

We described a reachability analysis of RMA which is able to analyze a parallel compo-
sition of reactive components without constructing the synchronous product of automata
prior to the analysis. Only the part of the product found to be reachable is constructed.

We shown that the analysis results of RMA can be computed once and for all and
used to analyze component instantiations in a larger reactive system. We gave several
heuristics to adapt the level of abstraction of RMA, either by merging modes or by the
internal reduction of modes themselves, and through the use of disjunctive invariants.

We applied our approach to the analysis of an example of reactive system from a
real proposition for an automated subway control system. Although it has been greatly
simplified for clarity, it retains its core train regulation strategy.

Our objective was to guarantee the absence of arithmetic overflows at runtime by
proving automatically that all variables in a train are bounded at all times. We were
interested in the pure discovery of variable bounds, as they are not provided explicitly
in the system definition. The analysis results of the RMA for an individual train were
used in a modular way to discover constraints on the initial placement of trains on a track
ensuring that the subway system is safe.

Although wider experiments should be conducted on a significant set of real-world
reactive programs, we believe that our approach based on relational mode automata is
humbly paving the way toward a modular analysis of reactive systems for numerical
properties. In order to achieve this goal, some questions should be addressed by future
works:

1. The automatic construction of RMA from disjunctive relational summaries of step
procedures was described in 8.1 on the example of the counter step procedure.
Either the counter step procedure or the metro step procedure were written man-
ually in C, in a particular form, where the values of memory variables are tested
first and secondly input variables are tested to determine the current reaction of
the component. It enables our two-level refinement scheme to produce clean and
simple disjunctive summaries by identifying syntactically the tests on memory vari-
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ables and the tests depending on input variables. Although this form may seem
quite natural for a human being, it is not the case for step procedures generated
automatically from synchronous languages like Lustre.
We could propose a way to construct relational mode automata from general step
procedures by identifying semantically the tests depending only on memory variables
and the tests possibly depending on input variables. However this would involve a
fairly costly dependency analysis, for a benefit not really superior in practice to the
syntactical identification of tests, as the construction of RMA from step procedures
should remain as cheap as possible.
Instead, a more pragmatic way would be to address the compilation of synchronous
programs into step procedures of the appropriate form for analysis. Classically,
heuristics are used in the compilation of Lustre programs to decide where tests
should be placed in the generated code. A new heuristic could be possibly devised
to structure the control flow of the generated procedure in the preferred way for
RMA construction.

2. We presented in 8.6 and 8.7 a catalogue of techniques to adapt the level of ab-
straction of RMA to analyze larger reactive systems: reduction by merging modes,
internal reduction of modes, weakening of invariants, disjunctive invariants and rela-
tional augmentation. All these techniques can be combined in various ways. For the
analysis of our subway, we computed a weakened disjunctive invariant of a relational
mode automaton, which was augmented by linear relations given by the automaton
modes.
Experiments should be conducted on the impact of these techniques on the precision
of analysis results and analysis performance. Heuristics should be designed to select
automatically the reduction techniques to apply during the analysis of a reactive
program, depending on high-level goals: whether we want to perform the most
precise analysis of a reactive program achievable with our approach, or if we want
a modestly-precise analysis to put the emphasis on performance.

We devised two approaches for the modular analysis of interprocedural phenomena,
being either procedures, possibly with recursion, or reactive components, which can be
seen in a sense as a special case of procedures with persistent memories. Similarly, our
approaches could be applied to the analysis of object-oriented programs, where objects
have memory in the form of their data fields, which are persisted and can be modified by
methods from one call to another.

Our approaches show that expressive relational abstract domains such as convex poly-
hedra can be used to compute precise procedure summaries which in turn can improve
significantly analysis scalability. They give a direction toward the adoption of expressive
relational abstract domains in static analysis tools for large programs.
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[113] P. Raymond. Compilation séparée de programmes Lustre. Technical report, Master
Thesis, Projet SPECTRE, IMAG, July 1988.

[114] P. Raymond. Efficient Compilation of a Declarative Synchronous Language: the
Lustre-V3 Code Generator. PhD thesis, Institut National Polytechnique de Grenoble
- INPG, Nov. 1991. 141 pages.

[115] P. Raymond, C. Maiza, C. Parent-Vigouroux, E. Jahier, N. Halbwachs, F. Carrier,
M. Asavoae, and R. Boutonnet. Improving WCET evaluation using linear relation
analysis. LITES, 6(1):02–1, 2019.

[116] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 49–61. ACM, 1995.

[117] X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 29(5):26, 2007.

[118] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
1978.

[119] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction
and a SAT-solver. In International conference on formal methods in computer-aided
design, pages 127–144. Springer, 2000.

[120] A. Simon and A. King. Widening polyhedra with landmarks. In Asian Symposium
on Programming Languages and Systems, pages 166–182. Springer, 2006.

[121] P. Sotin and B. Jeannet. Precise interprocedural analysis in the presence of pointers
to the stack. In European Symposium on Programming, pages 459–479. Springer,
2011.

[122] T. C. Spillman. Exposing side-effects in a PL/I optimizing compiler. In IFIP
Congress (1), pages 376–381, 1971.

[123] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on com-
puting, 1(2):146–160, 1972.

[124] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89,
1941.

179



[125] C. Wang, Z. Yang, A. Gupta, and F. Ivančić. Using counterexamples for improving
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