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Mme. Catherine Etchebest Rapporteure
Mme. Anne Poupon Rapporteure
M. Jacques Chomilier Examinateur
Mme. Sophie Sacquin-Mora Examinatrice
M. Jean-Daniel Zucker Examinateur





Proteins are like dinosaurs, but better conserved. Fortunately, there is also plenty

to say about them, especially the well conserved ones. Still nothing about

dinosaurs escaping though.

https://xkcd.com/1399/
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Abstract

Protein-Protein Interactions (PPI) are at the centre of many biological processes,

and their understanding is therefore of the utmost importance. This work focuses

on two different aspect: the first is the prediction of interacting surfaces of the

protein through computational means, relying on features such as the conservation

of residues, their physico-chemical properties, the local geometry of the protein or

a score derived from the protein’s behaviour in a crowded environnement, inferred

from Complete Cross-Docking (CC-D) calculations. The second part of this work

focuses on the detection of interacting partners from a large scale CC-D; this part

uses a combination of methods to score the likelihood for two proteins to interact

with one another and present how it might be possible to apply such methods for

even larger scale.
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1.6.1 Résultats et nouveaux horizons . . . . . . . . . . . . . . . 19

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



1.1 Présentation du contexte

La plupart des processus biologiques sont régulés par des interactions protéine-

protéine (PPI). Une protéine est un polypeptide formé par un nombre variable de

résidus d’acides aminés châınés (de quelques dizaines à plusieurs milliers). Chacun

de ces résidus possède une châıne auxiliaire qui va définir ses propriétés. L’ensemble

des résidus définissant une protéine détermine sa structure 3D ainsi que sa fonction

biologique. Les protéines interagissent entre elles en se liant l’une à l’autre. Plusieurs

types d’interactions sont présents et présentent différentes forces : certaines interac-

tions instables seront de courte durée tandis que d’autres vont maintenir la protéine

liée au sein d’un complexe biologique. Les processus biologiques sont le plus souvent

régulés par une châıne d’interactions entre protéines, appelée voie de signalisation

et pouvant impliquer des centaines voire des milliers d’acteurs différents.

1.1.1 Le projet Help Cure Muscular Dystrophy

Le projet Help Cure Muscular Dystrophy (HCMD, ou “Aidons à Guérir la Dystro-

phie Musculaire”) a pour but d’étudier les interactions de 2246 protéines humaines

impliquées dans la dystrophie musculaire et pour lesquelles les structures 3D sont

connues. Le but final est de pouvoir être capable de décrire de façon computa-

tionelle leurs interactions et ainsi d’aider à comprendre le rôle qu’elles jouent dans

les différentes voies de signalisation impliquées. Ce projet est constitué de deux

parties principales :

Phase 1 consiste en l’analyse de 84 complexes protéiques provenant d’un jeu de

données benchmark de docking [76]. Chaque complexe de cet ensemble repré-

sente une interaction binaire (d’une protéine en particulier vers une autre

protéine), résultant ainsi en 168 protéines différentes. L’équipe du laboratoire

a effectué une expérience de docking asymétrique en utilisant le logiciel de

docking MAXDo [95] qui y a été développé. L’expérience, qui a duré 7 mois

et a fini en juin 2007, a été lancée sur la World Community Grid1 (WCG),

une organisation publique permettant à des personnes du public volontaires

de participer à des projets de recherche en donnant du temps de calcul de

leur ordinateur. Le rôle principal de cette phase est d’avoir un jeu sur lequel

développer des algorithmes et obtenir un retour sur leur performance.

Phase 2 implique les 2246 châınes protéiques pour lesquelles nous ne connaissons

pas leur(s) partenaire(s). Un second CC-D a été réalisé sur cette seconde

phase sur la WCG également, et a duré plus de quatre années entre mai 2009

et automne 2013.

1www.worldcommunitygrid.org
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La première publication sur ces jeux de données dans le cadre de ce projet [67]

a présenté notre capacité de détection des partenaires interagissant vis-à-vis des

partenaires non-interagissants.

1.1.2 But de la thèse

Dans ce cadre, mon travail de doctorat a pour but d’améliorer les algorithmes pré-

existants et d’en apporter de nouveaux pour le passage à l’échelle de la phase 2

du projet. Une première analyse [95] antérieure au lancement des deux phases

précédemment décrites avait établi qu’il était possible de détecter les partenaires

interagissant au sein d’un jeu de données en combinant les résultats de docking avec

une description précise des sites d’interaction. Cette étude a motivé et été confirmée

par la suivante, réalisée à plus grande échelle [67]. Cette dernière étude décrit nos

capacités de discrimination à grande échelle vis-à-vis du jeu de données obtenu en

première phase du projet, en utilisant les interfaces expérimentales (connues) des

complexes ainsi que les prédictions réalisées à l’aide du programme développé dans

l’équipe, JET [29]. Cette étude présente des résultats prometteurs, et mon travail

consiste à apporter de nouveaux concepts ainsi que d’adresser les points faibles du

projet sur les différents points suivants :

• Analyser les différentes façons des protéines d’interagir entre elles

• Développer de nouvelles méthodes et pipelines pour permettre une meilleure

compréhension et une meilleure exploitation de l’interface de liaison entre deux

protéines

• Combiner les connaissances et concepts ainsi acquis pour fournir une méthode

efficace d’identification des partenaires dans le cadre d’un CC-D

Difficulté de la problématique

Bien que la prédiction des sites d’interaction soit un domaine très étudié, la prédiction

à grande échelle de partenaires en interaction à travers un CC-D est encore à l’état de

travail pionnier, ouvrant la voie à de futures études. La capacité à comprendre com-

ment les protéines interagissent, en plus de fournir une meilleure compréhension de la

régulation des processus biologiques, apporte de nombreuses applications pratiques

pour la conception de petites molécules et pour la recherche contre de nombreuses

maladies.

Comprendre comment fonctionnent les réseaux à grande échelle nous permettra

ainsi de mettre en œuvre une automatisation où la plupart du travail est aujourd’hui

effectué manuellement. Ne serait-ce qu’être capable de réduire la taille potentielle

des partenaires en interaction pourrait permettre de considérablement réduire un

3



travail laborieux. L’amarrage moléculaire (docking) a jusqu’à présent été princi-

palement utilisé pour discriminer les conformations natives d’un complexe protéique

parmi un ensemble de leurres. Cependant, l’équipe du laboratoire a montré dans

une étude précédente [95] que combiner des interfaces connues avec les conforma-

tions de docking (et leur énergie associée) était suffisant pour discriminer les in-

teractions des partenaires interagissant par rapport aux non-interagissants. Cela a

largement motivé le développement du logiciel de prédiction d’interface protéine-

protéine par le laboratoire [29, 57]. Les conformations de docking ont rarement été

analysées sous un tel angle, ce qui représente un défi supplémentaire d’un point

de vue méthodologique. De telles études à grande échelle impliquent également le

développement de nouvelles méthodes pour les analyser : le CC-D du jeu de données

HCMD2 a généré plus de cent milliards de conformations de docking. Un autre im-

portant défi, en plus de la complexité combinatoire importante, est le grand espace

des partenaires négatifs par rapport aux positifs.

1.1.3 Avancements réalisés

Beaucoup de logiciels actuels de prédiction d’interface protéine-protéine tentent

maintenant d’évaluer les interfaces en considérant les interactions binaires avec une

autre protéine. Cependant, la cellule est un environnement peuplé (voir Fig. 1.1) et

la multiplicité d’interactions qu’une protéine fait et donc sa surface en interaction est

largement sous-estimée. Les protéines font continuellement des interactions : cer-

taines courtes et d’autres plus persistantes (voir Section 2.3.2). Elles peuvent ainsi

interagir en compétition ou en coopération les unes avec les autres [64]. De fait,

je souligne à quel point il est important de changer de paradigme d’une recherche

de paires de partenaires vers une recherche de multiples interacteurs, potentielle-

ment simultanément. Ce nouveau changement ouvre avec lui de nombreuses ques-

tions : quelles sont les limites d’une interface partagée entre plusieurs partenaires ?

L’interaction binaire a-t-elle encore un sens ?

Plan de la thèse

Je présente dans cette thèse les avancements que j’ai réalisés par rapport aux points

abordés ci-dessus.

Dans la première partie, je fournis une meilleure compréhension de l’interaction

entre protéines dans un environnement peuplé, lorsque plusieurs interactions sont

possibles. J’introduis ainsi les concepts de sites d’interaction multiples (spécifiques à

un partenaire) et de régions (non spécifique) et comment nos prédictions pourraient

nous guider vers une meilleure compréhension de ces derniers. Ceci est réalisé par

une analyse d’un ensemble de données original de 262 châınes protéiques. Cette

section couvre mes objectifs d’analyse de la façon dont les protéines peuvent interagir
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Figure 1.1: Représentation schématique d’un environnement cellulaire peuplé [73].
Crowded cell environment [73].
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entre elles et sur le développement de nouveaux concepts et pipelines pour interpréter

leurs interactions.

La deuxième partie met l’accent sur les progrès accomplis dans l’identification

des partenaires interagissant dans le cadre d’un CC-D à large échelle. En combinant

les connaissances jusque-là acquises et la meilleure compréhension des scores des

résidus à l’interface et leurs rôles dans les interactions protéine-protéine, je montre

à quel point il est essentiel de séparer les protéines par leurs fonctions respectives.

J’apporte également une analyse sur ces différentes classes fonctionnelles indiquant

comment certaines d’entre elles réagissent différemment à certains scores.

La quantité énorme de données générées lors de l’expérience de CC-D pour

HCMD2 a nécessité le développement d’un logiciel rapide et adapté pour obtenir

les interfaces de docking correspondantes : j’ai donc développé INTerface Builder

(INTBuilder; voir Chapitre 6, [25]) pour répondre à ce problème. Dans la troisième

partie je présente son développement ainsi que le nouvel algorithme pour la réduction

d’espace de recherche qu’il apporte avec lui.

1.2 Méthodes

Afin de pouvoir correctement aborder les différents points sur lesquels j’ai travaillé,

il est nécessaire de présenter les différentes méthodes avec lesquelles j’ai travaillé.

Un grand nombre de ces méthodes reposant sur l’analyse de deux jeux de données

de protéines, ce seront donc ceux-ci que je présenterai premièrement.

1.2.1 Jeux de données

P-262, un jeu de données de châınes protéiques

Ce nouvel ensemble de données, nommé P-262, est un sous-ensemble du plus grand

jeu de données de 2246 châınes protéiques étudié dans le cadre du projet HCMD2.

L’analyse de ce dernier nous a montré que certaines de ses structures appartenaient

à des complexes connus et qu’il était ainsi possible de construire un sous-ensemble de

protéines. Les châınes de P-262 sont celles restantes après avoir exclu : (a) les struc-

tures uniquement α-carbonnées (b) les châınes pour lesquelles les résultats n’étaient

pas disponibles (c) les châınes formant des complexes coiled-coil (d) les complexes

ayant des codes PDB obsolètes (e) les châınes pour lesquelles aucune interface de 5

résidus ou plus n’a pu être trouvée dans le complexe PDB associé (f) les châınes pour

lesquelles aucune interface impliquée dans une interaction fonctionnelle biologique

ne pouvait être trouvée parmi l’ensemble des homologues de la châıne protéique

dans la PDB (en considérant 90% d’identité de séquence). Étant donné que P-262

est un nouveau jeu de données que nous avons décrit, il n’y a pas d’autres études
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l’ayant analysé. Sur la base des informations récupérées des complexes PDB et

suivant la classification de [43], les 262 châınes de protéines ont été classées en sept

classes fonctionnelles différentes : 6 Inhibiteurs (I), 7 G-protéines (G), 13 protéines

Récepteurs (R), 17 Anticorps (AB), 10 Enzymes Régulatrices (ER), 56 autres En-

zymes (E) et 136 Autres (O) protéines que nous n’avons pu classer dans aucune des

autres sous-classes fonctionnelles.

Unité biologique

Les unités biologiques ou assemblages biologiques décrivent des interactions fonc-

tionnelles. De telles unités biologiques sont soit déterminées par l’auteur(e) ou

déterminées par un logiciel (PISA [54]) et nous avons choisi de considérer les deux

méthodes. Cela garantit que les interfaces calculées dans le complexe à l’aide du

logiciel INTBuilder [25] représentent une interaction biologique. Nous avons ainsi

défini l’ensemble de données de 262 châınes différentes provenant de 107 complexes

composés de deux ou plusieurs châınes.

PPI-262, un ensemble d’interfaces expérimentales

Pour chaque châıne, nous avons calculé chaque interaction expérimentalement con-

nue au sein du complexe auquel elle appartient. Nous avons ainsi obtenu PPI-262,

un ensemble de 329 sites d’interaction expérimentaux (IS, spécifiques à un seul

partenaire).

PPI-262ext, une extension de l’ensemble des interfaces expérimentales PPI-262

Partant de l’observation [69] que les interfaces fonctionnelles sont souvent con-

servées parmi les homologues proches, nous avons pu définir un ensemble de surfaces

expérimentales depuis ceux-ci que nous avons par la suite reportées sur la protéine

étudiée par alignement de séquence. En fusionnant ces surfaces, nous avons pu

définir des régions expérimentales (IR, utilisées par un ou plusieurs partenaires) et

avons ainsi obtenu PPI-262ext, un jeu de données de 370 IR sur l’ensemble des

châınes de P-262. L’ensemble du pipeline est décrit en Figure 1.2. Nous montrons

que dynJET2 est utile pour détecter les IS ainsi que les IR. On note que souvent, la

définition d’IR est plus biologiquement pertinente dans le cadre où elle rend mieux

compte de la multiplicité des interactions.

Dans le cadre de ce travail de détection de multiple sites ou régions d’interactions,

j’ai également développé un programme permettant d’effectuer une recherche des

homologues de la protéine et d’obtenir leur(s) interface(s) expérimentale(s), avant

d’effectuer un alignement de séquence pour traduire ces interfaces sur la protéine

étudiée. Le développement de cet outil répond à un réel besoin et son développement
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Figure 1.2: Représentation schématique du pipeline suivi pour obtenir les différents sets
PPI-262 et PPI-262ext.
Schematic representation of the pipeline we followed to obtain the different sets PPI-262

and PPI-262ext.
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a nécessité un effort important afin qu’il soit par la suite facilement accessible et

distribuable.

1.2.2 Jeu de données PPDBv2

Le jeu de données “Protein-Protein Dataset Benchmark” (PPDBv2) comprend 84

complexes protéiques connus qui ont chacun été séparé en tant que récepteur et

ligand dans leur forme non liée. Ces complexes ne se réfèrent pas toujours à une seule

châıne, mais peuvent regrouper plusieurs d’entre elles en tant qu’unité biologique

multimérique.

Une description antérieure [76] de l’ensemble de données ne le divisait que dans

quatre sous-ensembles différents: Enzyme-Inhibitor (EI), Anticorps-Antigènes (for-

me non liée ; AA), Antigènes-Anticorps (forme liée ; ABA), Autres (OX). Tous les

complexes sont sous la forme non liée (état qu’ils adoptent quand ils ne sont liés

à aucun autre partenaire) mis à part le sous-ensemble ABA (pour lequel la struc-

ture représente les changements conformationnels subis lors de la liaison). Cette

description, bien qu’elle fût celle considérée au début de mon travail de thèse, a été

mise à jour dans [43]. Cette mise à jour du jeu de données fournit de nouvelles

classifications séparant les protéines en classes fonctionnelles plus raffinées ainsi que

de nouvelles structures protéiques à analyser. Bien que nous considérions la clas-

sification la plus précise pour les 168 protéines précédentes, nous n’avons pas pris

en compte les nouvelles structures apportées par la mise à jour ; un cross docking

complet a été réalisé sur les 168 premières protéines et nous n’avons pas la capacité

de calcul pour réitérer la même expérience de CC-D en utilisant le même logiciel de

docking MAXDo pour les nouvelles protéines.

En utilisant les nouvelles classifications de protéines de [43], nous obtenons donc

le nombre suivant de protéines pour chacune des classes fonctionnelles : 20 anticorps-

antigènes (forme non liée ; AA), 24 anticorps-antigènes (forme liée ; ABA), 38

enzyme-inhibiteurs (EI), 6 enzymes (avec une châıne régulatrice ou accessoire ; ER),

12 enzyme-substrat (ES), 14 Autres contenant des G-protéines (OG), 14 Autres

contenant des récepteurs (OR), 30 Autres ne pouvant être classifiées autre part

(OX).

1.2.3 Amarrage Moléculaire

Des méthodes expérimentales basées sur la Résonance Magnétique Nucléaire (NMR)

ou par cristallographie par rayons-X ont été utilisées pour obtenir la structure 3D

de nombreux complexes protéiques. Cependant, l’accroissement important de nou-

velles séquences protéiques découvertes chaque année continue d’augmenter et il

est clairement apparent que de telles méthodes (NMR, rayons-X) ne permettent

pas la résolution de structures 3D de complexes protéiques à une vitesse suffisante.
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Pour pallier ce problème, de plus en plus d’efforts ont été employés à développer

des méthodes computationelles pour simuler le processus d’interaction entre deux

protéines (docking, ou amarrage moléculaire). Docker deux protéines consiste à

prendre deux structures protéiques (une en tant que récepteur, l’autre en tant

que ligand) et d’échantillonner l’espace autour du récepteur avec différentes po-

sitions du ligand. On obtient ainsi environ 300 000 conformations par couple de

protéines. Une fois les échantillons obtenus, l’algorithme de docking va utiliser

une fonction d’énergie pour évaluer chacune des différentes conformations. Cette

fonction d’énergie va permettre de déterminer la stabilité de l’interaction entre les

deux protéines. Le principe de la fonction d’énergie dans le domaine du docking

moléculaire est de pouvoir discriminer une conformation favorable (où le récepteur

et le ligand interagissent réellement ensemble dans un complexe biologique) par

rapport à des conformations qui présenteraient moins de stabilité. Il existe de nom-

breux algorithmes de docking moléculaire [98, 95, 115, 116, 35, 19, 109, 104, 26]

qui se basent sur différentes propriétés telles que la distance des atomes ou leurs

propriétés physico-chimiques.

Plusieurs classes d’algorithmes de docking existent : les algorithmes avec une

approche rigide (rigid-body docking), les algorithmes flexibles et des algorithmes

hybrides. La première grande classe considère les protéines comme des objets im-

muables et échantillonne les différentes orientations possibles sans tenir compte des

changements conformationels pendant l’étape de fixation d’une protéine à l’autre

partenaire. Cette méthode présente une certaine modélisation de la réalité mais

permet ainsi un temps de calcul bien inférieur à une approche entièrement flexible.

Les algorithmes hybrides docking peuvent appliquer une étape de minimisation de

l’énergie pour chacune des conformations obtenues. Cette étape permet d’effectuer

des changements de conformations mineurs mais qui peuvent se révéler cruciaux

afin de correctement évaluer la conformation obtenue. Afin de réduire le temps de

calcul de docking, certaines approches ont été explorées telles que la modélisation

en gros-grain des protéines où plusieurs atomes sont fusionnés en un seul, ou bien où

la surface est approximée par un ensemble de fonctions gaussiennes à plus ou moins

haute résolution.

1.2.4 Cross-Docking Complet

Le Complete Cross-Docking (CC-D, ou docking “tous contre tous”) d’un jeu de

données consiste à effectuer le docking de tous les couples possibles de protéines

dans le jeu de données. Ainsi, pour un jeu de données de n protéines, on obtiendra

n2 couples différents. Dans une expérience de docking asymétrique classique, chaque

protéine prend le rôle du récepteur (fixé dans l’espace) ainsi que celui du ligand (qui

va orbiter autour du récepteur) ; dans un docking symétrique en revanche les deux

protéines vont orbiter simultanément, il n’y aura ainsi pas de rôle tel que récepteur
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ou ligand, réduisant ainsi effectivement le temps de calcul de moitié.

1.3 INTerface Builder: Un outil rapide de recon-

struction d’interfaces

L’accroissement des ressources et de la puissance de calcul disponible ainsi que le

développement des algorithmes de docking [35, 95, 87] ont permis d’étudier à grande

échelle les PPI, où des dizaines à des milliers de protéines sont dockées les unes aux

autres [95, 67, 56]. De ce fait, les calculs de CC-D génèrent des quantités très

importantes (plus de 100 milliards) de conformations qui doivent être examinées

afin d’en extraire les informations pertinentes. Plusieurs types d’analyses peuvent

être effectuées, parmi lesquelles le calcul de la propension des résidus à se trouver

à l’interface dans les conformations de docking. Cette propriété en particulier peut

être exploitée afin de mieux prédire les sites d’interaction protéine-protéine [33,

95, 56] ainsi que les fonctions de ces dernières [107]. De plus, les interfaces des

conformations de docking peuvent être analysées pour sélectionner les plus plausibles

afin de détecter les partenaires interagissant dans la cellule [95, 67, 56]. Dans chaque

cas, les analyses nécessitent une détection rapide et précise des résidus d’interface

dans la conformation de docking.

Les approches les plus performantes identifient les résidus en interaction en fonc-

tion d’un critère de distance les séparant, des changements de surface accessible au

solvant (SASA) au cours de l’interaction [60] ou selon une modélisation de l’interface

par une triangulation de Voronoi [15]. Ces méthodes, bien que précises, ne sont pas

suffisamment rapides pour la très importante quantité de données qu’il nous est

nécessaire de traiter. Puisque le nombre de conformations peut atteindre plusieurs

milliards sur des expériences de docking a grande échelle, l’algorithme utilisé doit

donc être rapide et efficace. D’une part, les approches basées des grilles [102, 78]

détectent efficacement les interactions entre les particules sur un critère de distance

en complexité linéaire. D’autre part, le modèle Voronoi fournit une description plus

détaillée de l’interface au détriment du temps de calcul plus important. Un autre

goulot d’étranglement est l’entrée/sortie (I/O) requise. L’analyse des fichiers en util-

isant les outils demande aujourd’hui l’écriture et la lecture de chaque fichier PDB,

pour chaque conformation. Ce processus résulte en un très important I/O et il s’agit

d’un point qu’il est nécessaire d’adresser dans le développement de cette nouvelle

méthode. Les deux questions sont cruciales pour l’analyse des grands ensembles

de docking. Spécifiquement pour les résoudre, j’ai développé INTerface Builder

(INTBuilder), qui combine un nouvel algorithme réduisant l’espace de recherche

avec une capacité de lire directement les fichiers de sorties des logiciels de docking

les plus utilisés. En effet, l’algorithme d’INTBuilder (détaillé dans le Chapitre 6)

peut atteindre une complexité de O(n) en réduisant considérablement l’espace de
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Figure 1.3: Ce schéma permet de mieux comprendre le fonctionnement de la méthode de
réduction de l’espace de recherche de INTBuilder. On passe d’un calcul entre tous les
atomes des deux protéines vers un calcul d’un ensemble réduit de points.
This schema helps understand the working of the INTBuilder software. We go from a full
atom-atom computation involving many distance calculations to a reduce ensemble which
is faster to compute.
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recherche lors de l’analyse des distances inter-résidus des protéines considérées. De

plus, INTBuilder considère explicitement la description des conformations docking

par une transformation vectorielle et un ensemble d’angles d’Euler représentant la

translation et les rotations à appliquer au ligand par rapport au récepteur.

Afin de faciliter l’utilisation de la fonction de rotation, la sortie de plusieurs algo-

rithme de docking (iATTRACT [98], HEX [35], ZDOCK [19] et MAXDo [95]) est di-

rectement lue, contournant ainsi le problème d’écriture des résultats intermédiaires.

Cela permet ainsi à INTBuilder de traiter des millions de conformations en quelques

minutes. Autres logiciels (Rosetta [109], GRAMM-X [104]) génèrent directement les

fichiers PDB résultants correspondant à chaque conformation, ce qui permet à INT-

Builder de les analyser sans effectuer les rotations spécifiques aux conformations.

Bien qu’INTBuilder ait été conçu pour détecter les interfaces protéine-protéine, il

peut facilement être utilisé pour identifier les sites d’interaction des petites molécules

à partir de conformations obtenues par filtrage virtuel.

1.4 Détections et prédictions d’interfaces protéine-

protéine

La conservation, les propriétés physico-chimiques et la géométrie locale autour des

résidus ont été utilisées pour prédire les surfaces en interaction [105, 59, 11, 47,

36, 17, 81, 84, 29, 57, 30]. Au cours des 15 dernières années et sur la base (non

exhaustive) de ces propriétés, un certain nombre d’outils de prédiction de sites

d’interaction ont été développés [57, 113, 31, 106] (voir [30, 4] pour les reviews).

Ces outils classent les résidus de surface comme interagissant ou non-interagissant,

ou prédisent des patches d’interaction, généralement un ou deux par protéine. Un

patch d’interaction est un groupe de résidus de surface géométriquement proches et

susceptibles de participer ensemble à une ou plusieurs interaction(s). Une récente

étude a souligné que bien que la plupart des études évaluent leur méthode contre

des sites d’interactions couvrant généralement entre 25% et 30% de la surface de

la protéine, jusqu’à 75% de cette surface pourrait en réalité être impliquée dans

des interactions protéine-protéine [103]. Ce nombre a été estimé en copiant, pour

une protéine donnée, toutes les interfaces protéiques à partir de structures de com-

plexes dans la banque de données de protéines (PDB [9]) ayant un repli structural,

indépendamment de leur identité de séquence. Bien que toutes les interfaces ainsi

copiées ne soient pas susceptibles d’être fonctionnelles pour la protéine étudiée, cette

estimation suggère que le pourcentage de la surface en interaction serait largement

sous-estimé par la majorité des études.
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Figure 1.4: Méthodes de scoring décrites par dynJET2 (SC1, SC2, SC3, SCNIP ) et leurs
dérivations SC4∗, SC5∗ et SC6∗.
Scoring schemes described by dynJET2 (SC1, SC2, SC3, SCNIP ) and their derivations as
SC4∗, SC5∗ and SC6∗.
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1.4.1 Le développement de dynJET2

Au cours de ma thèse, j’ai apporté des améliorations aux logiciels de prédiction de

sites d’interactions protéine-protéine pré-existants (JET et JET2, [29, 57]). dynJET2

permet d’intégrer un score arbitraire aux trois autres scores déjà pré-existants. De

précédentes études [33, 55] ont montré qu’il était possible d’inférer un score issu

des conformations de docking (NIP) pour aider la prédiction des sites d’interaction.

J’ai ainsi pu intégrer ce score à différentes étapes de la prédiction des interfaces

de dynJET2. La Figure 1.4 illustre les stratégies de scoring que j’ai apporté avec

dynJET2.

L’étude de [95] a motivé à l’origine le développement de méthodes de prédiction

d’interfaces protéine-protéine afin, finalement, d’être en mesure de remplacer les

interfaces expérimentales par des prédictions. La première version de l’algorithme,

JET [29], était uniquement basée sur la séquence de la protéine et utilisait l’annotation

des propriétés physico-chimiques couplée au calcul d’une trace évolutive pour prédire

les sites d’interaction. Cependant, avec la quantité croissante de structures 3D de

protéines disponibles, une version plus récente a été développée afin d’incorporer ces

données géométriques dans la méthode de prédiction. Plus précisément, cette nou-

velle version JET2 [57] fait usage de la variance circulaire des résidus pour repérer

les régions protubérantes à la surface de la protéine. Trois propriétés sont donc ainsi

considérées pour la prédiction des sites d’interaction par JET2 : La conservation des

résidus, leurs propriétés physico-chimiques et leur variance circulaire. Contraire-

ment à de nombreux algorithmes de prédiction d’interfaces protéine-protéine, JET2

se base sur un modèle pré-établi de la définition de l’interface [62] et oriente ainsi sa

méthode de prédiction selon une approche seed-extension-outer layer, reproduisant

le modèle décrit du Support-Core-Rim. Certains scores seront donc utilisés plutôt

que d’autres pour prédire certaines régions de l’interface. On observera ainsi par

exemple une conservation plus élevée en particulier dans la région centrale (la plus

enfouie) de l’interface. Cette information va ensuite être utilisée par JET2 pour

prédire ces régions en particulier. De plus, JET2 possède différentes méthodes de

détection d’interfaces (Scoring Schemes, SC) qui sont adaptées à plusieurs types

d’interactions protéine-protéine : SC1, SC2 et SC3. Une grande base de données re-

groupant les predictions de JET2 sur plus de 20 000 châınes protéiques a également

été publiée par l’équipe [91].

1.5 Caractérisation des interactions multiples en-

tre protéines

La majeure partie des interactions protéiques se déroulant dans la cellule, elles peu-

vent être représentées sous forme de graphe où chaque nœud représente une molécule
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et chaque arête une interaction. Notre connaissance des réseaux d’interactions reste

cependant en grande partie incomplète, et l’évaluation expérimentale de l’ensemble

des interactions possibles d’une protéine reste très difficile [42, 93]. Une protéine peut

interagir avec plusieurs partenaires en même temps, avec deux (ou plus) partenaires

interagissant à des endroits différents de sa surface, voire avoir plusieurs partenaires

partageant de façon compétitive un même site d’interaction [64]. Afin d’avoir une

vue globale sur la multiplicité des interactions protéiques, nous devons être en mesure

de déchiffrer la complexité de leur surface vers une définition de sites (interaction

spécifique à un partenaire) et de régions (interactions non spécifiques) d’interactions

et une caractérisation de leurs propriétés. Une telle description, décrite au niveau

des résidus, permettrait également de prédire l’impact des mutations sur les inter-

actions protéiques et par conséquent leurs fonctions.

Comme expliqué précédemment, une stratégie alternative pour prédire les résidus

en interaction consiste à exploiter calculs de docking. Les méthodes de docking ont

été conçues à l’origine pour prédire la conformation native d’un complexe à partir

des structures connues de ses unités. Les conformations candidates sont générées

et évaluées sur la base de propriétés reflétant la force de l’association, par exem-

ple leur complémentarité de surface, le champ électrostatique, la désolvatation or

l’entropie conformationnelle. De ces ensembles de conformations, on peut dériver

des statistiques pour estimer la propension de chaque résidu de la protéine à ap-

partenir à une interface [33, 55]. Cela a été réalisé dans des études de docking

binaire [37, 61, 44, 24, 45] où l’on sait déjà a priori que les deux candidats inter-

agissent, dans des études de docking arbitraire [72] où les protéines d’un ensemble

de référence sont ancrées à des protéines choisies arbitrairement. Enfin, on peut

dériver ces statistiques d’un CC-D [95, 67, 107, 56, 55] qui impliquent des calculs de

docking sur toutes les paires de protéines possibles au sein d’un jeu de données.

Il a été montré dans [64] que les protéines présentent des sites d’interaction pou-

vant être ciblés par une multitude de différents partenaires. Au cours de l’analyse

du jeu de données P-262, nous combinons des propriétés calculées par l’analyse de

séquence et de structure des protéines, à savoir la conservation des résidus, leurs

propriétés physico-chimiques, la géométrie locale autour de ceux-ci et du score de

propension inféré des simulations de docking. Ces propriétés sont ainsi utilisées

pour nous aider à comprendre comment les protéines réussissent à interagir les unes

avec les autres dans un environnement aussi encombré que la cellule. À l’aide

de dynJET2, nous prédisons des sites d’interaction en combinant les quatre car-

actéristiques précédemment citées. dynJET2 identifie d’abord un petit groupe de

résidus localisés à la surface de la protéine, appelé la graine, puis la prolonge avec

deux couches successives de résidus. Les patchs prédits par les différents scores peu-

vent être soit complètement distincts ou alors peuvent se chevaucher partiellement,

ainsi reflétant la multiplicité des interactions qu’une protéine peut établir pendant
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sa durée de vie. Ces prédictions sont comparées à un ensemble de 329 interfaces

connues expérimentalement parmi les 262 protéines.

1.5.1 Analyses de prédictions des interfaces d’interaction

basées sur dynJET2

Les surfaces protéiques sont utilisées de multiples façons par une protéine. Nous

avons analysé un ensemble de protéines avec différentes fonctions et nous avons

montré qu’un site d’interaction pour un partenaire peut en réalité être partagé avec

plusieurs autres partenaires, de manière complète ou partielle. La prédiction des

sites d’interaction a été réalisée avec dynJET2, en tenant compte de quatre propriétés

basées sur la conservation, les propriétés physico-chimiques des résidus à l’interface,

la géométrie locale de surface de la protéine et un score inféré des conformations de

docking.

Nous avons montré que dans certains cas, cette quatrième propriété est complé-

mentaire aux trois premières. En outre, bien que certains IR ne pouvaient pas être

prédits par une seule propriété, la combinaison de l’ensemble des quatre propriétés

ont dans la plupart des cas permis de correctement définir les régions expérimentales.

En prenant en compte l’ensemble des protéines homologues connues et leur com-

plexes, nous pouvons fournir une description très précise de la surface en interaction

pour notre ensemble de données de châınes protéiques. Selon nos analyses, le pour-

centage de la surface couverte par des surfaces expérimentales (biologiquement fonc-

tionnelles) connues est de 48% sur PPI-262ext contre seulement 29% sur PPI-262, ce

qui indique que la surface d’interaction des protéines est très largement sous-estimée,

et qu’il est important de les prendre en compte lors de l’analyse des prédictions. Ces

résultats sont aussi en accord avec une étude publiée récemment sur le sujet [103].

Les interfaces récupérées des protéines homologues ont été fusionnées et ont ainsi per-

mit de mieux définir les IR. Je porte notamment l’attention sur l’importante quan-

tité de IS expérimentaux initiaux (23642) distribués sur l’ensemble des protéines du

jeu de données qui a été réduit à un faible nombre (1.4 IR par châıne protéique). Par

conséquent, nous avons pu constater dans l’évaluation des prédictions de dynJET2

un important nombre d’entre elles qui se sont révélées décrire de réels sites bi-

ologiquement fonctionnels. On obtient ainsi une valeur moyenne de F1-score de

0.41 en comparant l’union des prédictions de dynJET2 avec les IS de PPI-262, mais

cette valeur augmente à 0.57 sur l’union des IR présentes dans PPI-262ext. En par-

ticulier, le pourcentage de protéines pour lesquelles nous obtenons des prédictions

avec F1-score > 0.6 augmente de 18% à 46% en considérant l’union de PPI-262 et

PPI-262ext respectivement. De plus, le nombre de mauvaises prédictions (F1-score

< 0.2) diminue de ∼ 25% à 4% entre PPI-262 et PPI-262ext.

Nous avons également essayé de comprendre les raisons à l’origine des moins
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bonnes prédictions en regardant la Root Mean Square Deviation (RMSD) entre l’IR

expérimentale et les interfaces expérimentales dont elle provient chez les homologues.

Cette différence peut être très importante et se trouve être corrélée à la difficulté

de prédire certains sites ou régions d’interactions. Bien que dynJET2 reste résistant

aux petits réarrangements, sa performance diminue progressivement au fur et à

mesure que nous observons une augmentation de la valeur de RMSD. La moyenne

du RMSD pour les bonnes prédictions (F1-score > 0.6) est de 4.7Å, 8.3Å pour les IR

avec un F1-score intermédiaires (0.3 ≤ F1-score ≤ 0.6), 12.7Å pour les IR moins bien

prédites (F1-score < 0.3) et 13.3Å pour les IR qui ont été complètement manquées.

Nous avons montré que les capacités de dynJET2 pouvait nous aider à prédire

si une prédiction pouvait cibler un ou plusieurs partenaires. En effet, alors qu’un

faible nombre de partenaires est observé pour les IR possédant 0 ou 1 seed (prédite

par dynJET2), nous montrons ce signal disparait à mesure que le nombre de seeds

dans l’IR augmente. Il pourrait être possible d’affiner cette approche vers un compte

plus précis dans le futur.

L’un des principaux défis restants serait de diviser les interfaces prédites en IR ou,

éventuellement, en IS. Cela nous permettrait de déduire le nombre de partenaire(s)

avec lesquels la protéine considérée pourrait interagir avec, ainsi que décrire combien

de régions fonctionnelles elle possède.

1.6 Détections de partenaires interagissant à grande

échelle

La prédiction du site d’interaction de la protéine a longtemps été un sujet très étudié,

ainsi que l’identification de la conformation native pour un complexe protéique.

Cependant, les études à grande échelle essayant de décrire les partenaires interagis-

sant en combinant ces deux approches restent très rares. De nombreux obstacles

et difficultés en sont la cause : bien que de nombreux progrès aient été réalisés

à l’égard du docking au cours des dernières décennies, cela reste une expérience

coûteuse et son application à large échelle nécessite la mobilisation d’importantes

ressources. De plus, identifier les partenaires corrects à l’échelle de plusieurs cen-

taines de protéines demande une incroyable précision étant donné l’écrasante ma-

jorité de solutions négatives. En raison de ces entraves, la prédiction des interac-

tions protéine-protéine à grande échelle via l’utilisation de méthodes de CC-D en

est encore à ses débuts. À notre connaissance, il n’y a eu que trois études ([67],

[110] et plus récemment [70]) employant la méthode d’un CC-D pour l’identification

des partenaires à large échelle. Bien que [70] utilise des méthodes d’apprentissages

(en particulier un classificateur Random Forest), il est intéressant de noter que le

pipeline global suit le nôtre en combinant les méthodes de scoring des conformations
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par le logiciel de docking avec des prédictions de sites d’interaction.

Les interactions entre protéines étant au centre de la plupart des processus bi-

ologiques, il est donc crucial comprendre comment et avec quels autres partenaires

ces dernières interagissent [39]. Il y a une demande croissante, en pharmacologie par

exemple, de pouvoir cibler certaines protéines en particulier [40]. Les premières anal-

yses telles que [95] ont effectué un CC-D à petite échelle afin de répondre à la question

de prédiction du partenaire. Cette tentative, tout comme d’autres études [51, 52],

montre que l’énergie seule ne suffit pas à prédire les partenaires interagissant par

rapport aux partenaires non interagissant. Cependant, [95] a montré qu’il était pos-

sible de prédire les partenaires avec une très bonne précision en combinant l’énergie

de docking à une interface bien définie (dans ce cas, expérimentale). Dans notre

étude, nous suivons les premiers pas de [67] dans cette direction qui a analysé les

même résultats d’un CC-D sur la PPDBv2 de 84 complexes protéiques avec le logi-

ciel de prédiction d’interfaces JET [29]. Depuis, plusieurs améliorations ont été ap-

portées au pipeline, du point de vue de prédiction d’interface par le développement

de JET2 [57] puis de dynJET2, mais également du point de vue méthodologique sur

les méthodes d’évaluation des conformations de docking.

1.6.1 Résultats et nouveaux horizons

Dans cette partie de la thèse, j’effectue une analyse du PPDBv2 de 168 protéines

pour comprendre les méthodes disponibles pour analyser les conformations de dock-

ing, et observer leur impact sur notre capacité de discrimination.

Je montre notamment comment nos prédictions sont suffisamment précises pour

détecter les partenaires interagissant à grande échelle, atteignant parfois les limites

fixées par les interfaces expérimentales. Ainsi, nous obtenons des AUC décrivant

bien mieux les sous-ensembles que lors de la dernière étude ([67]). On présente en

Figure 1.6b les AUC obtenues en utilisant le pipeline qui a été développé dans cette

étude. On observe ainsi une très large augmentation dans les deux groupes liés aux

anticorps, vérifiant les nouvelles capacités de dynJET2 à utiliser le score NIP avec

les méthodes de SCd∗ pour mieux prédire leurs interfaces.

Avec ces résultats, cette étude ouvre la possibilité de porter sa méthode pour

l’analyse d’un protéome complet, créant ainsi un réseau d’interactions de nombreuses

protéines dans une cellule, potentiellement impliquées dans les même voies fonction-

nelles.

Nous avons également apporté des éclaircissements sur l’importance de la sépar-

ation des protéines dans différentes classes fonctionnelles, nécessitant ainsi le développ-

ement de méthodes pour automatiquement les analyser et les trier selon leur fonc-

tion.

L’étude appelle également à de nouvelles recherches pour affiner les différentes

19



Figure 1.5: Nous présentons ici le schéma représentant le pipeline menant à calculer le NII
score. Ce schéma ne prend pas en compte les différentes façons qui sont appliquées pour
certaines classes fonctionelles. Tous les paramètres que nous avons étudiés et analysés ont
été mis en couleur. Les matrices représentées ne correspondent pas à des valeurs réelles
et sont là uniquement pour donner une example du pipeline.
We represent here the global scheme used to represent the pipeline leading us to compute
the NII score. This scheme does not take into account the discrepancies of the different
ways to compute the functional classes. All the different parameters which we were able
to compare are highlighted in different colours. The matrices represented do not represent
real values and are here for providing a clear example of the pipeline.
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(a) Barplot comparant les AUC obtenues en utilisant la méthode dans [67] et avec la
méthode pour laquelle nous obtenons les meilleures valeurs d’AUC en utilisant les inter-
faces expérimentales. Cela correspond à un threshold de distance de 4.5Å pour calculer
les interfaces de docking, en ne considérant pas le CIPS [79] et en utilisant les fonctions
d’énergie PISA et iATTRACT pour les sous-ensembles EI et ER respectivement.
Barplot comparing the AUC obtained using the method in [67] and the method for which
we obtain the best AUC values, using experimental interface. This corresponds to choosing
a 4.5Å distance threshold for computing the docking interfaces, not considering the pair
potential and using PISA and iATTRACT energy functions for the subsets EI and ER
respectively.

(b) Barplot comparant les résultats obtenus auparavant en utilisant les prédictions [67],
les résultats que l’on obtient en utilisant le pipeline défini dans 5.4.1 (voir Figure 1.5) et
les interfaces expérimentales avec le même pipeline que les prédictions.
Barplot comparing the results previously obtained using the predictions ([67]), newly
obtained using the pipeline with the parameters defined in Section 5.4.1 (see Fig. 1.5) and
the experimental interfaces with the same pipeline as the predictions.

Figure 1.6: Les deux figures comparent les AUCs obtenues en utilisant de différentes
méthodes. Les prédictions de dynJET2 sont utilisées avec la meilleure combinaison de
patches selon le site expérimental étudié; The processus est décrit plus en détail en Sec-
tion 5.2.2.
The two figures compare the AUCs obtained using different methods. The dynJET2 pre-
dictions used were the best combination according to the target experimental site; this
process is further explained in Section 5.2.2.
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prédictions de dynJET2 dans les plusieurs régions d’interaction des protéines. Ici,

nous nous sommes appuyés sur la connaissance des sites expérimentaux afin de

pouvoir localiser la prédiction d’intérêt de dynJET2. Comme le montre [103] et

comme le confirment l’étude que j’ai précédemment réalisée sur la multiplicité des

sites d’interaction, une très large portion de la surface de la protéine pourrait être

impliquée dans des interactions fonctionnelles alors que les sites spécifiques étudiés

ici ne représentent qu’environ 25% de la surface. Cela signifie qu’afin de pouvoir nous

libérer complètement des connaissances expérimentales pour prédire les partenaires

interagissant et définir des sites d’interaction, nous devons être capables de séparer

les prédictions des différentes méthodes de scoring dans des régions distinctes. Une

nouvelle matrice représentant la force d’interaction entre les protéines du jeu de

données pourrait alors être calculée non pas sur la base de protéines, mais sur

chaque région de chaque protéine.

1.7 Conclusion

Le titre de ma thèse est “Géométrie des interactions protéiques” et son but était

d’analyser différents ensembles de données de protéines et d’élargir l’échelle analy-

ses existantes. Plus précisément, j’ai travaillé sur deux domaines: La détection et

l’interprétation des sites de liaison aux protéines et l’identification des partenaires

en interaction dans le cadre d’un Cross-Docking Complet à large échelle. L’analyse

des sites d’interaction protéique a apporté de nombreuses informations, notamment

le concept émergeant de sites d’interactions multiples et comment les protéines in-

teragissent dans un environnement peuplé. Ce sujet (décrit en détail au chapitre 4)

montre que la surface interagissante des protéines serait beaucoup plus grande que

ce qui est actuellement pris en compte dans la plupart des cas. L’analyse apporte

avec elle un nouvel outil qui pourrait être facilement utilisé lors d’une analyse plus

approfondie des interfaces biologiques entre homologues d’une protéine, ainsi que

dynJET2 (développé à partir du logiciel JET2 [57]), un logiciel de prédiction de sites

d’interaction capable de prendre en compte toute notation à l’échelle des résidus

dans sa méthode de prédiction. L’analyse apporte les concepts de sites d’interaction

(IS) et Régions d’interaction (IR). Ces deux définitions sont essentielles pour com-

prendre comment nous pourrions interpréter les interfaces à la surface des protéines.

De plus, l’étude montre comment il serait possible d’inférer le nombre de partenaires

ciblant un IR spécifique, et combien de régions fonctionnelles une protéine possède.

La deuxième analyse, centrée sur l’identification des protéines en interaction

dans un CC-D à grande échelle apporte de nombreux résultats prometteurs. Nous

montrons ici comment le développement d’une méthode de prédiction d’interfaces

plus avancée combinée à l’utilisation adaptée de méthodes d’évaluation nous a permis

de faire de grands progrès en termes d’identification de partenaires. Le logiciel
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INTBuilder (Chapitre 6, [25]) a été développé dans le cadre de cette étude pour

répondre aux besoins spécifiques d’un logiciel performant pour le calcul des interfaces

de docking. INTBuilder apporte avec lui un algorithme nouveau permettant de

réduire l’espace de recherche d’un ensemble de particules.

Cette analyse indique à quel point il est primordial de prendre en compte la classe

fonctionnelle à laquelle une protéine appartient afin de pouvoir correctement iden-

tifier son partenaire. De plus, nous montrons aussi que dans de nombreux cas, nos

capacités d’identification des partenaires ont atteint une limite qui semble fixée par la

qualité et la précision de nos prédictions. La recherche de meilleures et plus précises

prédictions devraient être la prochaine étape, mais il faut également souligner que

de telles prédictions ne peuvent être spécifiques à un seul partenaire. Cela implique

qu’il ne serait théoriquement pas possible d’atteindre les capacités de discrimination

aujourd’hui obtenues avec l’utilisation d’interfaces expérimentales. Plusieurs voies

sont possibles : l’une serait de essayer de développer des méthodes automatiques

pour la prédiction d’interfaces spécifiques à un partenaire, l’autre pourrait être de

changer la façon dont nous regardons la question avec la méthode actuelle. Au lieu

de caractériser comment une protéine interagit avec les autres à travers une seule

interface prédite, nous pourrions regarder simultanément l’ensemble des interfaces

prédites d’une protéine et voir comment chacune d’entre elles interagissent avec les

différentes interfaces prédites d’autres protéines.
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2.1 From DNA to proteins

I describe here the different biological objects that I manipulated throughout my

work, and which are necessary for the comprehension of the approaches developed

along the thesis.

DNA or Deoxyribonucleic Acid, is constituted of four different nucleobases: Ade-

nine (A), Cytosine (C), Guanine (G), Thymine (T). These nucleobases bind

themselves together (A binds with T and C binds with G) to form DNA

strands, and we have in each chromosome two DNA strands bound together

in a helix shape. The chromosomes are located in the cell nucleus, as can be

seen in Fig. 2.1. The sequence of bases in the DNA forms the genome, which

carries the genetic information from one generation to the next one. A gene

is a sequence of the DNA that can be transcripted to the mRNA and then

translated to a protein to execute a function. In Homo Sapiens, there are

approximately 3 billion base pairs.

mRNA are known as the messenger Ribonucleic Acid. Like the DNA, the mRNA

is constituted of four different nucleic bases. These bases are the same save

for the Thymine which is replaced by Uracile (U). As shown in the Fig. 2.2,

the mRNA is a single strand base pair sequence created from the DNA and

as its name indicates, carries the message copied from the DNA outside the

nucleus to the ribosomes. It is less stable than the DNA and is only meant

to transfer the necessary information for the ribosomes to construct a protein

before being degraded. Ribosomes read the mRNA sequence and aggregate

amino-acids residues in a chain. Ribosomes read the mRNA by steps of three

base called codons, each corresponding to a residue; the lecture begins with

the start codon AUG corresponding to the methionine. As the ribosomes read

the mRNA sequence, they will aggregate amino-acids residues into a chain

until they encounter either one of UAA, UAG or UGA, also known as the stop

codons, which will cause them to release the protein chain.

Amino-acids residues are the monomers chained by the ribosomes reading the

mRNA. Each Amino-acid possesses an amine (-NH2) and carboxyl (-COOH)

functional groups, linked together by a Cα atom. Twenty different amino-acids

can be translated from the genetic code (DNA); each of them has a common

part (called backbone) by which they bind to each other and a specific side-

chain attached to the Cα atom which will determine their properties. Amino-

acids residues are bound to each other through a covalent chemical bounds, and

we refer to them as “residues” since their binding causes the loss of their acid

groups. Polypeptides (long chain of residues) thus have a single N-terminal

and C-terminal located at the two extremities of the chain.

25



Figure 2.1: Schematic representation of the DNA as a chromosome in a cell.

Figure 2.2: Scheme representing the different stages from DNA to protein. Picture made
on https://www.khanacademy.org.
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Proteins are the main objects I consider through my work. As previously de-

scribed, they are formed by a chain of residues aggregated by the ribosomes.

During the aggregation, the chain will fold itself and thus achieve a spe-

cific form. The protein may then undergo several changes known as post-

translational modifications, which may cleave the chain or alter some of its

residues. We consider four different structures for the proteins, which are es-

sential to understand. The primary structure is the residue sequence, this

does not take into account the 3D shape of the protein and thus does not

need for it to be solved. The secondary structure represents the α-helix and

β-strands determined from the torsion angles of the residues’ backbone and

stabilised through the hydrogen bonds between the backbone atoms. The ter-

tiary structure represents the folding itself of the protein, usually burying the

hydrophobic residues at its centre and constituting a hydrophilic surface ac-

cessible by the solvant. It is stabilised by non-bonding interactions between

the backbone and side-chains atom (e.g. hydrogen bonds, van der Waals).

Protein-Protein Interactions might also play a role in the tertiary structure

stabilisation, introducing the quaternary structure which is the aggregation of

multiple proteins chains, then called subunits. This aggregation forms a single

functional unit called multimer.

2.2 Evolution and conservation

During the replication of the DNA, some “errors” might occur in the new sequence.

They are known as mutations and may present varying degrees of impact (beneficial,

neutral, deleterious or highly deleterious). The DNA code is degenerate, meaning

that multiple codons code for the same residue; on the one hand, a mutation chang-

ing a codon but not its corresponding residue will therefore be neutral, having no

ultimate effect on the protein sequence. On the other hand, mutations inducing

change in the protein sequence can affect its function, depending on the change.

Such a change could result in the complete loss of function for the protein (in the

case of a highly deleterious mutation). Mutations are part of what makes each

individual unique.

The principle of evolution has been simultaneously and independently introduced

by Charles Darwin and Alfred Russel [23, 94]. The notion of evolution describes

that all organisms originate from a single common ancestor. From there, the theory

explains that the fittest individual will prosper more than others, if it possesses the

genetic material the most adapted to its environment. At some points during history,

mutations in the population will occur and cause it to split into two groups. From

this theory, we can recreate a tree representing the dividing of populations where

each leaf of the tree would represent a different species. Two species therefore possess
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a last common ancestor, which is represented by a node in the tree corresponding

to the last individual before this ancestral species was split into two branches.

Since different species originate from a single ancestor, it is therefore possible

to find similarities in their genome. For that, a high number of sequences are

retrieved (among homologous species, or even inside the same species) to obtain

a set of homologous sequences, as in Fig. 2.4. In this figure, we observe that for

each column there may be different amount of variation between the residues. The

more a residue is consistent among homologous sequences, the more it is conserved;

this notion helps determine key residues for the protein. For instance, a residue

with a high conservation among the homologous sequences might have a crucial

role for the protein function; hydrophobic residues for instance are essential to the

protein folding process and therefore are highly conserved. It was also shown that

conservation plays an important role in protein interactions [28, 5].

2.3 Proteins Interactions

Proteins achieve different function with a wide variety of other biological objects

such as DNA, RNA, small ligands molecules or other proteins. This multitude of

interactors make for very different types of interactions for the protein: essential

characteristics for the binding of a small ligand molecule may not be relevant for

binding to other proteins. Even inside a single interaction set (Protein-Protein for

instance) and as we will further demonstrate, some characteristics show various

degrees of importance depending on the specific type of proteins. Antibodies for

instance show a very specific interface location and is often considered separately

from the rest [30].

Such complexity accounts for the difficulty current methods encounter to un-

derstand interactions. In this work we focus on the protein-protein study case. To

better understand the different characteristics specific to this case, I present the

different context that might lead proteins to bind one another and describe the

properties of the resulting interfaces. With these two notions, I will next advance to

present the protein docking concept which endeavours to computationally reproduce

the binding of two proteins.

2.3.1 Energies at the interface

Proteins fold and interact on the basis of free energy: the lowest the free energy is,

the more stable the structure. The native structure of a protein for instance will cor-

respond to the lowest free energy possible for it. The free energy difference between

the native state and the ensemble of denatured conformations is 5-15 kcal/mol. In

the same fashion, proteins will bind to one another because doing so will lower the
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Figure 2.3: Representation of the 2rih protein complex in bound form.

Figure 2.4: Example of multiple sequence alignments. We can observe how some columns
(i.e., positions on the sequence) consistently have the same residue (usually marked with a
single colour) while other positions have largely varying residues. We also note that there
may be changes among the individuals of the same species.
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overall free energy of the complex. We define ∆G the Gibbs or Helmholtz free energy

as:

∆G = ∆H − T∆S

with ∆H the internal energy (from internal interactions) and T∆S the entropy bu

temperature. The tertiary structure, or the protein folding process is stabilised

through non-bonding interactions:

• Electrostatic Interactions (5 kcal/mol)

• Hydrogen-bond Interactions (3-7 kcal/mol)

• Van Der Waals Interactions (1 kcal/mol)

• Hydrophobic Interactions (< 10 kcal/mol)

2.3.2 Strength of the interactions

Proteins accomplish their function by binding to other proteins, in a more or less

permanent fashion [77, 53, 86]. On the one hand, the fleeting transient interactions

are not meant to last and usually have a low binding affinity. A protein interact-

ing with another to regulate its function for a given time could make an example

of a transient enzyme-inhibitor complex. On the other hand, obligate interactions

present very strong binding affinity and are meant to be permanent interactions,

or not easily breakable (see Fig. 2.5). Both of these types of interactions present

different kinds of properties. Typically, larger complexes grouping themselves to-

gether to form a quaternary structure bind according to an obligate interaction (the

interaction is stable and intended to last).

2.3.3 Proteins interfaces

Several methods are used to define the interface of two interacting partners. One

of such methods is to look at the relative Accessible Surface Area (rASA) of the

residues of each protein. Upon binding to one another, the residues at the interface

become buried and their rASA changes (∆ASA> 0). This variation of the ASA can

therefore be used to characterise interface residues. Another method is to look at

the distance separating the residues from the two proteins. Finally, a definition of

the interface using a Voronoi model can also be used, as in [15].

Furthermore, it has been also shown that using features such as rASA it was

possible to define multiple regions of the interface [22, 6, 62]. The definition of [62]

brings a new area to the interface on top of the Rim and Core previously defined.

We describe here his definition of the interface, onto which we will rely on for our

analysis:
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• The Support represents the central region of the interface, which is the most

buried of the three. It is defined from the residues having less than 25% rASA

in the unbound form of the protein.

• The Rim is the bordering region of the interface and is defined from residues

with more than 25% rASA in the complexed state (bound to this other pro-

tein).

• The Core contains the residues that could not be classified into either the

support or the rim category. The rASA of these residues shrinks from more

than 25% rASA in the unbound form to less than 25% rASA in the bound

form.

A typical 1000Å2 interface involves an average of ∼ 28 residues, with ∼ 10 residues

forming the core, ∼ 8 residues forming the support and ∼ 10 residues forming the

rim [62]. The study suggests this definition of the interface general among globular

proteins. It shows that the rim and support composition of residues are very similar,

contrary to the core which present ones. It shows as well that this statement holds

true for different interfaces size and different types of complexes.

2.3.4 Residues properties and protein-protein interface pre-

diction

Proteins’ residues present different characteristics used by protein-protein interface

prediction software. At first, due to the lack of protein structural data, most early

protein-protein interface prediction software (predictors) were sequence based (see

Fig. 2.6A). Such predictors include residues scores such as the conservation level [3,

88, 68, 85], the propensity to belong to an interface (based on physico-chemical

properties [114]) or hydrophobicity [34]. First methods using these features achieved

a 64% accuracy score [30]. However, one of the main drawbacks from sequence based

predictors is their inability to determine if a residue is at the surface or not. It is also

why the introduction of 3D structures has drastically increased the global accuracy

of all methods. As no new improvement of performance has been observed among

new or existing tools, the combination of sequence based characteristics seems to

have reached its limits. The research of protein-protein interaction site prediction

has now shifted toward a more geometrical view of the issue [30].

The introduction of geometrical data has opened to door to a wide range of new

features, such as secondary protein structure, residue Accessible Surface Area (ASA)

or the overall shape of the protein; this new dimension also brought with it different

methods of prediction algorithms. Such predictors can be 3D mapping based

predictors (Fig. 2.6B) which use biological information about the protein structure

or the sequence and try to map it onto the protein [46, 21]. Another approach
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Figure 2.5: Representation of different ways to classify Protein-Protein Interactions in
terms of binding affinity [86].
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are machine-learning based classifiers (Fig. 2.6C). These classifiers regroup the

most decisive features to build a classification model to assign to each residue its

probability to belong to the interface. With the development of machine learning

approaches, many such classifiers have been developed in the past years [14, 12, 27,

65, 119, 32, 18, 20, 99, 100, 89, 63, 8]. A number of probabilistic predictors were

also used using Bayesian methods, Hidden Markov Model or Conditional Random

Field [13, 82]; these probabilistic models can as well use such information as co-

evolution analysis.

While a very broad set of different feature have been used, a previous study [117]

showed that they could compare to state-of-the-art methods by using only four dif-

ferent features: solvent accessible surface area (SASA), hydrophobicity, conservation

and propensity of the surface amino acids. On top of greatly reducing the algorithm

complexity, the study also suggests that this will help reduce the risk of over fit-

ting. It has been shown as well how docking a protein against non interactors could

provide a meaningful score to predict interfaces [33, 67, 55]; however, this method

suffer from the need to perform extensive docking calculations among many proteins

to obtain sufficient data.

Overall, many features have come into play with the introduction of more protein

structural data, and while many of these features demonstrated an important role

in protein-protein interactions, it has also been clearly shown that not one single

feature could predict all interactions. Combining the large variety of features to

obtain relevant predicted interface has therefore been a major challenge in this field.

We summarise the following main properties that can be relied upon for protein-

protein interface prediction (partially aggregated by [30]):

• Relative Surface Excluded solvent Area

• Solvation energy

• Electrostatic potential

• Conservation

• Physico-Chemical

• Circular Variance

2.3.5 Protein docking

To obtain the 3D structure, experimental methods based on Nuclear Magnetic Res-

onance (NMR) or X-ray crystallography have been used to determine many protein

complexes. However, the past 20 years have seen an increasing number of new pro-

tein sequences being released every year, and it clearly appears that such methods
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Figure 2.6: Schema representation of the different descriptors [30].
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(a) Schema representing the docking energy for each conformation. As it is described, we
have a better (thus lower) energy for favourable conformations than for the unfavourable
ones.

(b) Representation of a Complete Cross-Docking, showing how we obtain a matrix repre-
senting all the different protein pair. For each cell, there are ∼ 300 000 possible conforma-
tions. We show in Fig. 2.7c how the docking process can output different conformations
for a protein pair.

(c) Representation in more detail how the proteins are used during the docking experiment.
We present here an asymmetric docking, where we can see a clear distinction between
receptors and ligands.

Figure 2.7: Presentation of the docking concepts
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(NMR, X-ray) are unable to keep up with the sequence release speed. To tackle this

issue, more and more effort have been put into developing computational methods

to simulate the binding process.

Protein docking consists in taking two protein structures (one as a receptor,

the other as a ligand) and evaluating different structural conformations they can

achieve. This is done by sampling the space around the receptor and simulating

the binding process from the ligand to the receptor. For one pair of protein, about

300 000 different conformations are obtained.

For each conformation, the docking software then proceeds to evaluating it using

an energy function. The resulting energy value indicates how stable the interac-

tion is, and how likely the two proteins are to interact in this way (see Fig. 2.7a).

Different protein docking algorithm exist [98, 95, 115, 116, 35, 19, 109, 104, 26]

and are based on different properties such as atoms distance, biochemical or bio-

physical information. They can be classified in two groups: rigid-body and flexible

docking. The rigid-body approach considers proteins as immutable objects and try

out the different conformations without accounting for any conformational changes

while the flexible docking tries to take into account those structural changes during

the docking step. Although the rigid-body approach does not take into account

structural changes. Overall, a rigid-body docking approach will under perform the

greater the conformational change is upon binding. This trade of is made for the

sake of performance, thus being much quicker than the flexible ones. Some hybrid

docking algorithms also are capable combining a rigid-body approach with a flexible

capacity.

Other means to reduce the computation time have been approached, such as

using a coarse-grain reduced protein model, as developed in [115]. This coarse-grain

representation (as fully described in [67]) places one pseudo-atom at the Cα position

and either one or two pseudo-atom representing the side-chain (except for Gly).

Ala, Ser Thr, Val Leu, Ile, Asn, Asp and Cys have a single pseudo-atom located

at the geometrical centre of the side-chain heavy atoms. For the remaining amino

acids, a first pseudo-atom is located midway between the Cβ and Cγ atoms, while

the second is placed at the geometrical centre of the remaining side-chain heavy

atoms. This description, which allows different amino acids to be distinguished

from one another, has already proved useful in protein-protein docking [115, 116, 7]

and protein mechanics studies [97, 96].

Different docking software compute the interaction energy using by modelling

the global energy of a complex of chosen inter-atomic interactions (usually found

at the interface). Such energy functions take into account the complementarity of

the interface between two proteins, adding a penalty in case of clash. Moreover,

the many (see Fig. 2.8) physico-chemical properties of the amino-acids should be
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compatible. The general form of these models can be written as:

E = Ebond + Eangle + Etorsion + Enon-bonded + Eothers

A physical potential aims at maintaining a complementarity between the two

surfaces, and can be found under the form:

∑
i<j

[
Aij
R12
ij

− Bij

R6
ij

+
qiqj
εRij

]

A statistical potential is also used to evaluate the likelihood of two residues

interacting with one another. Such a likelihood can be described as:

∑
rij<rc

Paa(i), aa(j)
n

Pa,b = − log
f(a, b)

f(a)f(b)

with Paa(i), aa(j) the probability of the Amino-Acides (aa) to interact with one another

and n the total of possible interactions. Using such mesures allows docking software

to evaluate the different conformations between two proteins.

2.3.6 Complete Cross-Docking

The Complete Cross-Docking (CC-D) of a dataset consists in docking every protein

of this dataset against all the other proteins of the dataset, thus resulting in n2

different possible pair with n being the number of proteins. As shown in Fig. 2.7b,

2.7c, we obtain a matrix where each cell represents the conformations calculated for

a given protein pair. In a classical asymmetric docking computation, each protein

assumes the role of either the receptor (fixed in space) or the ligand (which is orbiting

around the receptor and testing the different conformations); in a symmetric docking

the two proteins are orbited at the same time and there is therefore no such role as

receptor and ligand, thus effectively cutting the amount of different pairs by half.

In the HCMD project context (described below; Sec. 2.4.1), the laboratory team

performed two CC-D on two different datasets.

2.4 Context of the thesis

2.4.1 The Help Cure Muscular Dystrophy project

The Help Cure Muscular Dystrophy (HCMD) project1 aims at investigating 2246 hu-

man proteins which structures are known, with a particular focus on the proteins

playing a role in neuromuscular disease. The goal is to be able to computationally

1http://www.ihes.fr/~carbone/HCMDproject.htm
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Figure 2.8: Amino-acids properties
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describe the interactions between the 2246 proteins, thus understanding their inter-

actions and being able to infer the different pathways involved. Two main phases

separate this project:

• Phase 1 consists in the analysis of a 84 protein complexes docking benchmark

dataset (PPDBv2, see Section 3.4) assembled by [76]. Each complex repre-

sents a binary interaction, thus representing 168 proteins. The laboratory

team performed an asymmetric CC-D using the MAXDo [95] software on this

dataset using the World Community Grid2 (WCG), a public computing grid

letting people over the world participate in research computations. Using the

WCG, the computation lasted 7 months and ended in June 2007. The role of

this phase is to have a testing set, one onto which we will be able to develop

algorithm and get a feedback on how well they are performing.

• Phase 2 involves the actual 2246 proteins chains dataset, for most of which we

don’t know the interacting partner(s). This second phase, a CC-D experiment

was also run on the WCG and lasted for more than four years from May 2009

to fall 2013.

The first publication on these datasets in the scope of this project [67] was

an early study of the 168 proteins dataset, which I will henceforth refer to as the

PPDBv2 dataset. It showed promising results, and presented how protein-protein

interface predictions could be used to predict interacting partners. The continuing

investigations on protein-protein interactions are now made within the framework

of the MAPPING project which targets two crucial issues:

• What are the regions at a protein surface that interact with partner?

• Which proteins interact with which in the cell?

During this doctorate, I will essentially use the data produced during this project

(CC-D calculations) along with the previous methodological developments done by

the laboratory in this context.

2.4.2 Goals

Protein-protein interactions (PPIs) are essential to all biological processes and their

misregulation is associated to many human diseases [10, 38]. Targeting PPIs with

small molecule drugs has become increasingly popular in the treatment of diseases [2,

111, 39, 118]. Hence, it is important to determine which protein interacts with which

one in the cell and in what manner. Although a lot of work and effort has already

been done to understand the governing rules of these interactions [112, 1, 113, 90,

2www.worldcommunitygrid.org
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49, 47, 83, 57, 29], we are not yet able to perfectly develop global methods that

would explain all interactions.

This is where my work comes in: Refining the previous methods developed by

the team in terms of understanding protein interactions and bringing new concepts

through with original methods and analysis. The main goals can be described as:

• Analysing how the different proteins interact with one another

• Developing new methods and pipelines to understand and exploit the inter-

acting surface of two proteins

• Joining the different aspects and concepts developed to provide an efficient

way to identify interacting partners in a crowded environment

Difficulties of the questions

Although the prediction of interaction sites is a heavily studied field, large scale

predictions of interacting partners through a CC-D is still at the state of pioneer

work, paving the way for future studies. The ability to understand how proteins

interact will, on top of providing a deep insight on how many of the biological pro-

cesses are regulated, bring many practical applications for small-ligand design and

research against many diseases. Understanding how large-scale networks function

will allow us to implement an automation where most of the work done today is

manual. Being able to reduce the potential size interacting partners to manually

test could drastically reduce a dull, painstakingly long manual work.

Docking has up to this point mainly been used to discriminate the correct native

conformation from a set of decoys for two proteins. However, the laboratory team

has shown in a previous study [95] how combining known interfaces with docking

conformations (and their associated energy) was sufficient to discriminate interact-

ing partners from non-interacting ones. This study has largely motivated the devel-

opment of protein-protein interface prediction software by the laboratory [29, 57].

Docking conformations have scarcely been analysed under such an angle before,

which presents an additional challenge from a methodological point of view. Such

large scale studies also imply developing new, adapted methods to analyse them: the

HCMD2 CC-D has generated more than a hundred billion docking conformations.

Another remaining important challenge is (on top of the important combinatory

complexity) the large space of negative partners compared with the positive ones.

In a pairwise analysis of partners, we have for instance in the PPDBv2 dataset (see

Section 3.4) only 168 correct partner prediction amongst 28224 possible protein pairs

(and thus 28056 negative pairs).
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2.4.3 Advancements made

Many of the current protein-protein interface predictions software now aim to evalu-

ate interfaces considering binary interactions with another protein. But the cell is a

crowded environment (see Fig. 1.1) and the multiplicity of interactions of a protein

makes and thus its interacting surface is largely underestimated. Proteins continu-

ously make interactions: fleeting ones and more persistent alike (see Section 2.3.2).

They interact in competition or in cooperation with each other [64] and we highlight

how important it now is to shift the paradigm from looking for pairwise interaction

to looking at multiple, potentially simultaneously ones. This new shift opens with it

many questions: what are the limits of an interface shared among multiple partners,

where does it start and stop? Do binary interaction still really make sense?

A plan for tackling these issues

In this thesis I present the advancements we made in the previously introduced

context. As mentioned, two main parts will focus on the prediction and analysis of

interaction sites and the large scale prediction of interacting partners respectively.

In a third part, I will also present a tool that I developed, INTBuilder [25].

In the first part, I present the background of what has been done in terms

of predicting the protein-protein interaction sites as well as presenting the major

features describing them. Here, I provide a better understanding of the interaction

of proteins in a crowded environment, when several interactions are possible. I

introduce the concept of multiple interaction sites (partner-specific) and regions

(non-specific), and how our predictions might guide us to a better understanding of

them. This is done through an analysis of an original 262 protein chains dataset.

This section largely covers my goals of analysing how proteins might interact with

one another and developing new pipelines to interpret their interactions.

The second part focuses on the advancements at discriminating interacting part-

ners from non-interacting ones. Joining the knowledge and the better understanding

of scores at the interface and how they might play a role in protein-protein inter-

actions, I will show how essential it is to separate proteins into their respective

functional classes to evaluate them using different approaches. We also provide

an analysis of how these different classes might respond differently to different ap-

proaches.

The humongous amount of data generated during the HCMD2 CC-D exper-

iment (∼ 100 billion conformations) required the development of a swift, high

throughput and adapted software: I consequently developed INTerface Builder

(INTBuilder; [25]) to answer this issue. In the third part I present its development

and the novel algorithm of search space reduction it brings with it.
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Methodology
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This chapter focuses on bringing the already existing definitions and methods

onto which I have relied upon throughout my doctorate. These methods may have

been used or developed for previous studies, or are essential to the understanding of

the new concepts and methods we develop in this thesis. The methods we developed

are detailed on the respective chapters of the analysis they were established for.

3.1 Interface residues

3.1.1 Surface residues

In the scope of this work, as well as in previous ones [67, 57], we have considered

residues to belong to the surface of a protein if they were displaying at least 5% of

relative Accessible Surface Area (rASA) computed using the Naccess [41] software.

This definition is especially important as most of the methods used to analyse the

residues involved in protein interactions only consider surface residues.

3.1.2 Experimental residues

Experimental residues are residues known to interact with a partner. To obtain

them, the 3D structure of a protein complex must be resolved. As presented in

Section 2.3.3 and for previous studies [67], a change in the rASA upon binding was

used using the Naccess software.

3.1.3 Protein-Protein interface prediction

A predicted region is a cluster of residues which we call a patch, potentially describing

an interaction with a specific partner or a cluster of residues covering an extended

surface of the protein and potentially describing several interactions.

The development of protein-protein interface prediction algorithm resulted in a

first version, JET [29], which used only sequence based features (although it still

required the 3D structure to detect surface residues and to merge clusters) and used

the scoring of the physico-chemical properties coupled with an evolutionary trace.

The predictions of JET not being precise enough, a newer version JET2 [57] was next

released which made use of the circular variance property of the residues (reflecting

the local geometry around them). Below, we describe the different residue-based

scores computed and which were used to predict protein-protein interfaces.

Evolutionary Trace

TJET reflects the evolutionary conservation level of a residue, and is computed from

phylogenetic trees constructed by using sequences, homologous to a query sequence
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and sampled by a Gibbs-like approach [29]. The Gibbs-like approach extracts N rep-

resentative subsets of N sequences [29] in a way that, within each subset, the propor-

tions of sequences sharing [20−39]%, [40−59]%, [60−79]%, and [80−98]% sequence

identity with the query sequence are similar (ideally, about one quarter for each

group of identity). Sequences in a subset are then aligned using CLUSTALW2 [58]

and a distance tree is constructed from the alignment based on the Neighbor Joining

algorithm [101]. From each tree T , a tree trace level is computed for each position

in the query sequence: it corresponds to the level n in the tree T where the amino

acid at this position appeared and remained conserved thereafter (see [29] for a more

precise definition). Let us recall that this definition of evolutionary trace is notably

different from the measure defined in [66, 75] to rank protein residues.

Then, tree trace levels are averaged over the N trees to get statistically signif-

icant values, which we denote relative trace significances, or TJET , and which are

calculated as follows [29]:

TJET (j) =
wI × ( 1

|I|
∑

h∈I dh) + wj × dj
wI + wj

(3.1)

where I is the set of residue positions which are neighbours of aj (i.e., with at least

one atom distant by less than 5Å to at least one atom of aj) and where dj is the

relative trace significance of aj. The weights were fixed at wI = 3 and wj = 4, as

in [29]. TJET values are scaled between 0 (least conserved residue of the protein)

and 1 (most conserved residue of the protein) for the calculation of residue scores.

Physico-Chemical properties

PC indicates the physico-chemical propensity specific to amino acids located at a

protein interface. The original values, taken from [80], range from 0 to 2.21 and are

scaled here between 0 and 1 for the calculation of residue scores.

Circular Variance

CV is the circular variance, a measure of the vectorial distribution of a set of neigh-

bouring points around a fixed point in 3D space [16]. For a given residue, CV

reflects the density of the surrounding residues: residues buried within the protein

will display high CV values, while exposed or protruding residues will display low

CV values. Compared to solvent accessibility, CV changes more smoothly from

the surface to the interior of the protein [74], and is thus less sensitive to small

conformational changes. CV can be applied equally well to atomic or coarse-grain
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representations [16]. The CV value of an atom i is computed as:

CV (i) = 1− 1

ni

∣∣∣∣∣ ∑
j 6=i,ri≤rc

~rij
|| ~rij||

∣∣∣∣∣ (3.2)

where ni is the number of atoms distant by less than rcÅ from atom i. The CV

value of a residue j is then computed as the average of the atomic CVs, over all

atoms of j. A low CV value indicates that a residue is located in a protruding region

of the protein surface. CV values are scaled between 0 (most protruding residues)

and 1 (least protruding residues) for the calculation of residue scores.

Normalised Interaction Propensity

It has previously been shown in [33, 107, 56] that it is possible to exploit the docking

procedure to compute a propensity for each residue to belong to an interacting

surface. This Interface Propensity (IP) value represents the probability for residue

i of protein P to belong to an interaction site.

Here, IP is inferred from CC-D calculations using the MAXDo software [95] (see

Section 3.2), where each query protein is docked against many protein partners, that

are not necessarily partners in the cell [95, 67]. To compute the IP in earlier works

[95, 67], we used a Boltzmann weighting factor which favours docked interfaces with

low energies. As a consequence, for a given protein pair PQ, all interfaces with a

2.7kcal/mol or more energy difference from the lowest energy docked interface has a

Boltzmann weight lower than 1% (see [67] for more details). This is meant to limit

the propensity computations to only the most favourable conformations.

Here, as in [55], we limit the number of docked interfaces that would have to

be reconstructed for determining the interface residues, and we choose to calcu-

late residues’ IP values using only the lowest energy docking poses satisfying the

2.7kcal/mol condition, we therefore have:

IPP (i) =
Nint,P (i)

Npos,P
(3.3)

where Npos,P is the total number of energy-based filtered conformations of protein

P docked against some protein Q in the dataset, and Nint,P (i) is the total number

of energy-based filtered conformations of protein P docked against some protein Q

in the dataset having residue i occurring at the interface.

NIP (Normalised Interaction Propensity) is defined in Eq. (3.3) and reflects the

propensity of a residue to be found at the interface. The normalisation process, as

done in [67], is necessary to compare the IP scores among proteins: a positive NIP

value indicates that the residue i is favoured to occur at potential binding sites, and
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a negative NIP value indicates that it is disfavoured. NIP is defined as:

NIPP (i) =
IPP (i)−<IPP (j)>j∈P

max (IPP (j))j∈P−<IPP (j)>j∈P
(3.4)

where < IPP (j) >j∈P and max (IPP (j))j∈P are the average IP and the maximum

IP , respectively, computed over all the residues j in P . The NIP value represents

how often a residue is docked on the retained conformations (that is, those con-

formations that have less than 2.7kcal/mol energy difference from the best one, as

explained above).

Combining residue-based scorings to predict interfaces

Unlike many prediction algorithms, JET2 strives to reproduce the interface defined

by [62] as close as possible. Indeed, looking at Fig. 3.1 we clearly see how the

different parts (Support, Core, Rim, See Section 2.3.3) present various attributes.

We find as expected for protein-protein interfaces a higher conservation particularly

in the most buried region upon interaction (Support), conservation which falls short

the farthest we get from the centre of the interface. Based on the Support-Core-

Rim model, JET2 implemented a seed-extension-outer layer model and derived it

into three different scoring methods: SC1, SC2 and SC3 (see Fig. 1.4). Each of these

scoring methods targets different types of interfaces. A large database regrouping

the JET2 predictions on more than 20 000 protein chains has also been published

by the team1 [91].

I present here the three scoring schemes previously developed in the JET2 soft-

ware.

SC1 targets very conserved residues (identified by the TJET score) to form a seed

which is then extended using both TJET and PC scorings. An outer layer

is added considering both PC and CV scorings. SC1 is intended to detect

diverse protein binding sites. This step, essentially unchanged compared to

the original JET version, was extensively described in [29].

SC2 detects both seed and extension layers using a combination of TJET and CV

scorings. It aims at detecting highly conserved residues that are not buried

too deeply beneath the surface of the protein. The outer layer is defined based

on PC and CV, as in SC1. SC2 specifically distinguishes protein interfaces

from small ligand binding sites.

SC3 disregards evolutionary information and solely employs PC and CV for de-

tecting all three layers of the interface. SC3 yields consistent predictions for

interfaces displaying very low conservation signal, e.g. antigen binding sites.

1http://www.jet2viewer.upmc.fr/
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Figure 3.1: Boxplots describing the different properties used by JET2 at the different areas
of the interface. [57]

47



3.1.4 Evaluating the interface predictions

Interface evaluation

To evaluate our capacity to predict experimental surfaces, we use several well-known

statistical measurements that we define below. We consider as a True Positive (TP)

an experimental residue rightfully predicted, as True Negative (TN) a non predicted

residue which is not experimental, as False Positive (FP) a predicted residue which is

experimental and as False Negative (FN) an experimental residue which is predicted.

From these definitions, we present below the different scores:

Recall =
TP

TP + FN

PPV =
TP

TP + FP

F1-score = 2× Recall× PPV

Recall + PPV

Specificity =
TN

FP + TN

Accuracy =
TP + TN

TP + TN + FP + FN

3.2 Protein docking and conformations scoring

Below, I give an overview of the MAXDo docking software (providing different con-

formations for each pair of proteins) and the different scoring methods (only pro-

viding a mean to evaluate a conformation) I used during my work. MAXDo uses

a rigid-body docking approach which can be either symmetric or asymmetric. The

asymmetric approach fixes one of the two proteins in space (receptor) and samples

a set of starting points around it for the second (ligand). Each starting position and

orientation of the ligand is described by a set of Euler angles (see Fig. 3.2) respec-

tively to the receptor. The ligand next approaches the latter as close as possible.

This has been the docking method used for performing the CC-D on the PPDBv2

dataset [76] (see Section 3.4). Each docking conformation can then be described

using a set of Euler angle, as in Fig. 3.2.

The second method, the one used for the CC-D of the HCMD2 (2246 dataset) is

the symmetrised docking. With this method, a set of starting positions is sampled

around the receptor as well, but during the docking approach the ligand does not

have to close in straight to the receptor and can instead deviate from its axis. During

this CC-D, the starting positions were filtered out using a cone from the JET [29]

predictions in order to reduce the computation time. This deviation helped avoid

overlooking conformations presenting a good energy.

48



Figure 3.2: Docking process using Euler angles to describe the conformation.
Available at https://github.com/meetU-MasterStudents/2017-2018_partage/blob/

master/Docs/Meet-U_opening_2018_P6P7P11.pdf.
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MAXDo [95] is the docking algorithm used to perform the Complete Cross-

Docking computations, explained below (See 2.3.6, 2.4.1); it was developed

by the laboratory and reimplements the docking method developed by Zach-

arias [115]. This algorithm is a rigid-body docking software we used on a

coarse-grain reduced protein representation [115]. This coarse-grain represen-

tation was necessary in order to reduce the computation time of the whole

docking process. To compute the energy, the interactions between the pseudo-

atoms of the Zacharias representation [115] are treated using a soft LJ-type

potential with appropriately adjusted parameters for each type of side-chain.

In the case of charged side-chains, electrostatic interactions between net point

charges located on the second side chain pseudo-atom were calculated by us-

ing a distance-dependent dielectric constant ε = 15r, leading to the following

equation for the interaction energy of the pseudo-atom pair i, j at distance rij:

Eij =

(
Bij

r8ij
− Cij
r6ij

)
+

qiqj
15r2ij

where Bij and Cij are the repulsive and attractive LJ-type parameters respec-

tively, and qi and qj are the charges of the pseudo-atoms i and j.

iATTRACT [98] is a newer docking software that mixes a rigid-body approach

with flexibility. The rigid-body first provides an ensemble of conformations

which did not take into account any conformational change. iATTRACT then

performs 2500 minimisation steps allowing simultaneously a large rotation

of the protein with local deformations of the interface. This algorithm is

the follow-up from its previous versions [115, 116]. In this study, we only

used MAXDo’s docking algorithm to obtain the docking poses. To each of

these docking poses was applied iATTRACT’s minimisation process before

proceeding to use iATTRACT’s energy function to score the conformation.

The energy function of iATTRACT is described as:

Vprotein =
∑
ij

(
σij
rij

)12

−
(
σij
rij

)6

+
qiqj
εrij

where the dielectric constant ε is set to 10.

PISA [54] is a scoring method developed to discriminate between biological and

non biological complexes. PISA is based on the dissociation free energy to

evaluate a complex stability. On top of the dissociation free energy, PISA

considers larger assemblies more probable than the smaller ones and considers

that single-assembly sets take preference over multi-assembly sets. As such, it

can be used to evaluate the likeliness of a conformation to be biological (and

thus can be used to score the conformations from a docking algorithm).
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CIPS [79] is a pair potential scoring method developed in the laboratory. CIPS

was trained using 230 bound structures from the Protein-Protein Docking

Benchmark 5.0 [108]. CIPS is meant to be used as a high throughput technique

able to largely filter out most of the non-native conformations with a low error

rate. This will help when combined with our predictions to determine which

partners interact together.

3.3 Detection of interacting partners

3.3.1 Interactions evaluation

To perform the discrimination, we score each conformation of a docked pair of

proteins (P1, P2) to represent how likely these two proteins are to interact with each

other in this conformation. This gives us a set of values for each protein pair, from

which we select the best (the minimum, as the energy is negative). The previous

study [67] used the following formula to compute the Interaction Index IIP1,P2 :

IIP1,P2 = min(FIRP1 ∗ FIRP2 ∗ EMAXDo
P1,P2

) (3.5)

where EMAXDo
P1,P2

is the corresponding energy computed with MAXDo to each confor-

mation of P1 and P2, FIRP1 and FIRP2 the Fraction of Interface Residues represent-

ing the overlap between the docking interface and the known or predicted interface.

This method lets us define a unique II for each pair of proteins, from which we are

able to define a matrix. This II value is then normalised using the Equations 3.6

and 3.7. The idea behind this normalisation is explained below.

Previous studies from the laboratory [67, 56] showed that taking into account

how a protein interacts in the dataset is crucial to correctly assess how it interacts

with a given partner. Thus, we define here for every protein pair P1, P2 a Normalised

Interaction Index (NII) as:

NIIP1,P2 =
min(II ′P1,P2

, II ′P2,P1
)4

minP (II ′P1,P
) minP (II ′P2,P

) minP (II ′P,P1
) minP (II ′P,P2

)
(3.6)

where II ′P1,P2
is a symmetrised version of the interaction index IIP1,P2 and is defined

as:

II ′P1,P2
=

IIP1,P2√
MP1ṀP2

MPi
=

1

2|P|
∑
Pj inP

IIPi,Pj
+ IIPj ,Pi

(3.7)

where P are the 168 proteins of our dataset. NII values vary between 0 and 1.

Values close to zero imply that two proteins cannot form an interface involving

a significant fraction of the experimentally identified residues, or that interfaces

involving these residues have poor interaction energies. Values close to one indicate
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predicted interfaces with good energies and composed of experimentally identified

residues.

For each protein P1, we define as predicted partner of P1 the protein Pi that

leads to NIIP1,Pi
= 1.

3.3.2 Partner identification evaluation

To evaluate our capacity to identify interacting protein partners, we define here as

TP the predicted protein pairs interacting with one another, as TN the protein pairs

correctly predicted as non-interacting partners, as FP the non-interacting protein

pairs predicted as interacting and FN the interacting protein pairs not predicted as

interacting. Using these values, we define the False Positive Rate (FPR) and the

True Positive Rate (TPR) as follows:

FPR =
FP

FP + TN
TPR =

TP

TP + FN

The computation of FPR and TPR for various thresholds enables the Receiver

Operating Characteristics (ROC) curve to be drawn. The performance of our part-

ner identification capacity is given by the resulting AUC (Area Under Curve) value.

An AUC of 0.5 would correspond to a random prediction whereas an AUC of 1

would represent a perfect prediction.

3.4 Datasets

3.4.1 PPDBv2 dataset

The Mintseris Protein-Protein Benchmark Dataset v2 (PPDBv2, see Section 2.4.1,

[76]) comprises 84 protein known complexes which where each separated in a recep-

tor and a ligand protein in its unbound form. The average size of the protein in

residues in this dataset is 287, the minimum 29, the maximum 1979 and the stan-

dard deviation 230. Those complexes do not always refer to a single chain, but can

also regroup several of them, as a multimeric biological unit.
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Chapter 4

Multiple binding site analysis
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4.1 The question

I show in this chapter how we developed the dynJET2 algorithm, a structure based

interface prediction algorithm providing different scoring methods depending on the

type of surface.

Furthermore, I present as well the analysis and a new insight of protein-protein

interactions on an original dataset P-262. The publication (soon to be submitted)

performs an analysis of this dataset, brings a new concept of Interacting Site (IS)

versus Interacting Regions (IR) (see Chapter 3, Subsection 4.2.2) and explains how

crucial the multiple sites’ concept is for proteins interaction analysis and what we

can do to interpret them. We also show how it might be possible to analyse our

predictions to infer if a surface might interact with one or more partner.

First, I will present the different methods that we developed in the scope of this

study, then I will present the context that led us to pursue this direction and finally

the results obtained.

C. Dequeker, E. Laine, A. Carbone, “Multiple binding sites of protein-protein

interactions predicted by combining sequence analysis and molecular docking”, to

be submitted, 2018

4.2 Methods

4.2.1 P-262, a dataset of protein chains

This original dataset, named P-262, is a subset of the larger one studied in the

HCMD2 project (see Section 2.4.1). Starting the analysis of the 2246 proteins

dataset showed us that some complex structures in the dataset were experimen-

tally resolved, which allowed us to build the sub-dataset. The chains in P-262 are

those that remain from the larger one after excluding: (a) only α-carbon structures

(b) chains for which results were missing (c) chains forming coiled-coils complexes

(d) deprecated PDB code (e) chains for which no interface of 5 residues or more

could be found in the associated PDB file (see Section 3.1) (f) chains for which no

biological interfaces (of more than 5 residues) could be found for their homologs in

the whole PDB (considering 90% sequence identity, see Section 4.2.5).

Biological Unit

Biological units or biological assemblies describe functional interactions. Such bio-

logical assemblies are either “author provided” or “software determined” (using the

PISA software [54]), and we choose to consider both. This ensures that the interfaces

computed in the complex using the INTBuilder software [25] (see Chapter 6) carry
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a biological meaning. We thus defined the dataset of 262 different chains coming

from 107 complexes comprised of two or more chains.

4.2.2 Experimental residues

The experimental residues presented in Section 3.1.2 are computed in this study us-

ing a distance based definition to determine which residues belong at the interface.

To accomplish this, we used the INTBuilder software1 (See Chapter 6; [25]) with a

distance threshold of 5Å and considered the resulting set of experimental residues

as defining the interface of the complex. Note that we only considered the experi-

mental interfaces of at least 6 residues and computed from a complex known to be

a biological unit (considered to be involved in a functional, biological interaction).

Interactions in non-binary complexes

Proteins might interact in several manners. Let A, B and C be three proteins;

we consider as a single interaction the case where A and B exclusively and solely

bind to one another, excluding C. Note that a single interaction may involve several

partners: if B and C both bind to A, and B has at least one residue at less than 5Å

from a residue of C, then we consider proteins B and C to be in contact, describing

a single interaction with A. However, if B and C are not in contact, then we refer

to the interactions between B and A, and C and A as separate interactions. We

refer to a multiple partners interaction, if two or more proteins bind to another

protein to form a complex, as for instance B and C binding to A. A more schematic

representation of these definitions may be found in Fig. 4.1.

Interacting regions and sites of a protein surface

Protein surfaces can be decomposed in Interaction Regions (IR) or Interaction Site

(IS). To define these IR and IS, we consider clusters of residues, either experimen-

tally defined or predicted as in Section 3.1.3 (a cluster of residues is made of multiple

residues separated by ≤ 5Å from one another). An experimental IS is an interacting

surface specific to a single pairwise interaction between two proteins. An experi-

mental IR describes a cluster of residues known to be involved in more than one

interaction. Experimental regions are identified by using the approach described

in Section 4.2.5, which gathers a set of IS retrieved from close homologs of the

query protein (sequence identity > 90%). To obtain a region from residues clusters,

we merge two clusters of residues C1, C2 at the surface of a protein if the maxi-

mum proportion of their overlap with respect to their size (max{overlap(C1, C2),

overlap(C2, C1)}) is below a threshold (we used a threshold of 0.6 as it gave us the

most realistic regions compared to the experimental information). Additionally, we

1www.lcqb.upmc.fr/INTBuilder/
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Figure 4.1: Schematic representation of the different types of interactions possible involv-
ing non-binary complexes.
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merge any small cluster of at most 5 residues with another cluster if they overlap by

at least one residue, regardless of the overlap percentage. This process is iterated

over all interaction sites for a single protein until no more interaction site is left.

PPI-262, a dataset of experimental interfaces

We computed every experimentally known interaction (as defined below) between

proteins of P-262 and obtained PPI-262, a set of 329 experimental interaction sites.

The median size in residues for the 262 protein chains set is 192.5, the average is

200.5 and its standard deviation is 131.2, indicating a large variation of protein

size inside the dataset. Indeed, the smallest protein comprises 21 residues against

789 for the largest. Based on the information recovered from the PDB complexes,

the 262 protein chains have been classified in seven different functional classes, fol-

lowing [108]: 6 Inhibitors (I ), 7 G-proteins (G), 13 Receptor-proteins (R), 17 Anti-

bodies (AB), 10 Enzymes Regulatory (ER), 56 other Enzymes (E ) and 136 Others

(O) that we were not able to classify in any of the other functional subclasses.

PPI-262ext, an extended dataset of experimental interfaces

To obtain a most accurate evaluation of our predictions, we extended the PPI-262

dataset to a wider range of interfaces coming from the known homologs of each

protein in the dataset. We worked under the hypothesis that homologs with a

sequence identity of 90% to the corresponding protein in PPI-262 describe the same

protein. Hence, the interaction of the homologs with other partners could be used as

extra information on the interactions of the protein in the dataset. To construct the

extended set of interaction sites PPI-262ext, we first searched for homologs in the

Protein Data Bank (PDB) that have at least a 4Å resolution. These homologs were

pre-computed by the PDB using BLASTClust (with the arguments -p T -b T -S

90) for clustering their sequences at 90% identity, and we downloaded them2. We

then retrieved the homologs, retained only the ones known to belong to biological

assemblies and computed their experimental interaction sites. This step provides

a number of new IS. In order to map interacting residues from the homologous

structure to the original protein, we perform a global pairwise sequence alignment

using a blosum62 matrix between the protein and its homolog. The large number

of IS (23642) thus obtained represent the totality of known functional interactions

defined throughout the entirety of the PDB for the 262 query proteins. Once all

the IS were mapped to each query protein, we merged them into IR, as described

in Section 4.2.2. 370 IR total were obtained for the proteins in P-262. The whole

processes leading to compute the PPI-262 and PPI-262ext sets is shown in Figure 1.2.

2ftp://resources.rcsb.org/sequence/clusters/
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4.2.3 Predicted residues

As mentioned in the introduction, the main focus of this part is to provide a new

insight, a better understanding of protein-protein interactions and an improvement

of the already existing methods. In an effort to provide with more refined and

accurate interfaces, we developed dynJET2 (available at3). This enhanced version

of the previously used protein-protein interface predictions software JET and JET2

(see Section 3.1.3, [29, 57]) can incorporate any residue-based scoring on top of the

prediction capacities of the JET2 software.

With dynJET2’s ability to incorporate any residue-based score to the prediction

algorithm, we were able to include the NIP score (see Section 3.1.3) in its compu-

tations method. This has allowed me to create a different scoring scheme for this

score: SCNIP (see below). This combination brings together the efficient clustering

algorithm from JET2 with the NIP value.

We note as well on Fig. 3.1c how poorly conserved are the AA interactions and

other studies such as [30, 48, 50] confirm how different Antibodies interfaces are. As

said in [48], “antibody protein interactions are relatively “happenstance” and are

selected principally by the strength of the binding constant, without being subject to

evolutionary optimisation over many years”; indeed, the capacity for docking-based

scores such as NIP (further described below) show far greater capacity at defining

the antibodies’ interaction site. so match the possibility of dynamically adding new

values to the interface prediction as opposed to the intrinsic values previously, we

named this new extension of the software dynJET2.

Definition of the scoring schemes

We computed the NIP for this dataset over ∼ 50 000 energy filtered conformations

(see Section 3.1.3) per pair of protein docked, accounting for more than 1.6 billion

interfaces in total for P-262; we therefore computed the IP value over 13 100 000

different conformations on average for each residue.

To include the NIP score alongside SC1, SC2 and SC3, we added it in dynJET2

at different stages of the clusterisation (see Fig. 1.4). Each different strategy for

introducing the NIP derives the three scoring schemes SC1, SC2 and SC3. I refer to

them below as SC4∗, SC5∗ and SC6∗. This notation is further used in my work to

refer as the best combination of the three derivations when considering predictions

(See Section 4.2.4). In the same fashion, I refer to the set of patches from SC1, SC2,

SC3 and SCNIP as SCd∗.

SCNIP applies the NIP score of the residues to all three layers (core, extension and

outer layer). The usage of NIP is motivated by the observation that proteins

3www.lcqb.upmc.fr/dynJET2/
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tend to dock to their cognate partners and also to non-interactors via the same

region at their surface [95, 71, 67, 107].

SC4∗ Merges the NIP score with the JET2 scoring for all three layers.

SC5∗ Uses only the NIP for the seed detection, and combines it with JET2 for the

two remaining layers. This scoring scheme aims at picking up the seeds using

the NIP information while still relying on JET2 to extend further.

SC6∗ Keeps the JET2 scoring for the seed detection and combines it with NIP

for the remaining layers. Unlike SC5, SC6 relies on JET2 to find the signals

necessary to detect the seeds. Its two next layers are detected by combining

both the JET2 and NIP scores.

4.2.4 Best combination of predictions

To properly assess our interfaces predictions quality (using dynJET2), we chose to

take the combination of interfaces that would best match the experimental targeted

interface. This is done by taking each set of predictions from either SCd∗, SC4∗,

SC5∗ or SC6∗ (Fig. 1.4 for a definition of the sets) and merging the different predicted

patches to obtain the best F1-score value against the targeted experimental interface.

This process gives us a single predicted patch for each experimental interface.

Comparison with Multi-VORFFIP

To compare dynJET2 to Multi-VORFFIP4 (in Fig. 4.4a; [100]), we considered 252

protein chains, instead of the 262 comprising the PPI-262 dataset from which we

eliminated the chains used for Multi-VORFFIP’s training and those for which it

provided no answer. We then considered the residues as being predicted if Multi-

VORFFIP gave them a probability of > 0.5 to belong to an interface, as in [57].

For each complex and each prediction method, the union of predicted residues was

compared to the union of experimental IR’s residues and the associated F1-score

was computed.

4.2.5 Homology

Conformational variability of IRs

For each IR, the Root Mean Square Deviation (RMSD) of its backbone atoms (or,

if not possible, its C-α atoms) was computed between the query structure from

PPI-262 and each of the homologous structures on which the IR was detected. For

each homologous structure, only the subset of residues detected on this structure

4www.bioinsilico.org/cgi-bin/SUPER_VORFFI/htmlVORFFI/home
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were considered to compute the RMSD. RMSD values were then averaged over the

homologous structures (including the query structure if the IR was also detected on

it). This gives us a single RMSD value for each IR.

Counting the number of partners

To count how many different partners a protein has, we consider all known homologs

of the protein in the PDB and their partners. We cluster the partners depending

on their sequence homology: two partners are different if they share less than 90%

sequence identity. This threshold in agreement with the criteria we applied to protein

chains and their homologs. The number of protein classes provides an estimation of

the number of partners for the protein.

4.3 Multiple interactions

4.3.1 Background

A detailed description of the protein interactions with other proteins, nucleic acids

and small molecules is expected to provide direct information on the biological pro-

cesses they regulate and on the way to interfere with them. The ensemble of protein

interactions taking place in a living cell can be represented as a graphical network,

where each node stands for a molecule and each edge stands for an interaction.

Our knowledge of interaction networks is largely incomplete, as the experimental

assessment of all possible interactions of a protein is very challenging [42, 93]. A

protein may interact with several partners at the same time each partner binding to

a different site at its surface, or its surface may present a shared binding region that

will be used by different partners at different moments of its lifetime [64]. In order

to get a comprehensive view of the multiplicity of protein interactions, we need to be

able to decipher the complexity of protein surfaces toward identifying binding sites

and binding regions and characterising their specific properties. Such a description,

provided at the residue level, would also permit to predict the impact of mutations

on protein interactions and hence functions.

Prediction and coverage of the interacting surface

Conservation, physico-chemical properties, and local geometry have been used to

predict interacting surfaces [105, 59, 11, 47, 36, 17, 81, 84, 29, 57, 30], and, based on

these properties, in the past 15 years, a number of tools have been developed [57,

113, 31, 106] (see [30, 4] for surveys). These tools either classify surface residues

as interacting or non-interacting, or predict interaction patches, generally one or

two per protein. A recent study highlighted that while most prediction methods

typically predict 25− 30% of the protein surface as interacting, as much as 75% of
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the protein surface could potentially be used for protein-protein interactions [103].

This number was estimated by copying, for a given protein, all protein interfaces

from complex structures in the Protein Data Bank (PDB [9]) having a similar fold

irrespective of their sequence identity. Although not all copied interfaces are likely

to be functional for the query protein, this estimation suggests that the interface to

surface ratio is underestimated by most predictors.

An alternative strategy to predict interacting residues consists in exploiting

molecular docking calculations. Docking methods were originally designed to predict

the structure of a complex starting from the known structures of its components.

Candidate conformations, called docking poses, are generated and evaluated based

on properties reflecting the strength of the association, e.g. shape complemen-

tarity, electrostatics, desolvation, conformational entropy. By deriving statistics

from the collection of docking poses, one can estimate the propensity of each pro-

tein surface residue to be found at a docked interface and use these propensities

to identify binding sites [33, 55]. This has been realised in single docking stud-

ies [37, 61, 44, 24, 45], where the docking involves two protein partners already

known to interact, in arbitrary docking studies [72], where proteins from a bench-

mark set are docked to arbitrarily chosen proteins, and in complete cross-docking

(CC-D) studies [95, 67, 107, 56, 55], which involve performing docking calculations

on all possible protein pairs within a given dataset.

Competition, cooperation and prediction of multiple binding sites

It has been shown in [64] that proteins present binding sites targetable by a multitude

of different interactors. In the present analysis, we combine residue based properties

inferred from protein sequence and structure analysis, namely evolutionary conserva-

tion, physico-chemical properties and local geometry, with residue propensities to be

found at an interface derived from docking simulations to demonstrate how these fea-

tures can help to decipher how such “hub” proteins might interact in a crowded en-

vironment such as the cell. We predict patches at protein surfaces with the dynJET2

algorithm, an updated version of the existing tool JET2 [57, 91] integrating the four

features in four different scores (see Methods 3.1). Each dynJET2 patch reproduces

the support-core-rim model of interacting surfaces (see Section 2.3.3, [62]). To do

so, dynJET2 first identifies a small group of residues localised on the protein sur-

face, called the “seed” of the patch, and then extends it with two successive layers

of residues. The patches predicted by the different scores may be distinct or par-

tially overlapping, reflecting the multiplicity of interactions a protein may establish

during its lifetime. They are compared with a set of experimentally known protein

interfaces detected at the surface of 262 protein chains.

These protein chains are part of a larger set of 2246 proteins involved in muscular

dystrophy, on which we performed complete cross docking (see Methods 4.2.1).
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Starting from the observation [69] that functional interfaces are conserved across

closely related homologs, we retrieved all interacting surfaces described by complexes

in the PDB involving either a protein from the dataset or a close homolog. By

coupling these interacting surfaces, we were able to define experimental interacting

sites (IS, used by a single partner) and interacting regions (IR, used by one or

several partners) for each protein, recovering as much information as possible on the

multiple interactions that the protein might have in the cell.

We show that dynJET2 is useful to detect both IS and IRs. We demonstrate

that the evaluation of protein-protein interface prediction algorithms cannot be cor-

rectly assessed by relying on one single complex for a given protein. In most cases,

IS cannot be precisely defined based on their properties and it is more pertinent to

consider IR instead. Moreover, by exploiting the three layer structure of the pre-

dicted patches, we are, in some cases, able to estimate the number of interacting

partners.

4.3.2 Complexity of the multiple interfaces

Docking calculations and dynJET2 predictions were performed on P-262, represent-

ing 262 protein chains. The predictions were assessed against two sets of experi-

mental interfaces, PPI-262 and PPI-262ext. PPI-262 comprises 329 IS detected on

P-262 and PPI-262ext 370 IR. The two examples in Fig. 4.2 illustrate the complexity

of the experimental interaction surfaces. Binding sites may be disjoint, overlapping

or included in others (Fig. 4.2, on the left), and they may be defined by the interac-

tion with other proteins or small ligands (Fig. 4.2, on the right). The two examples

show 5 IS (3 on the left and 2 on the right), which were merged into 3 distinguished

IR (2 on the left and 1 on the right, contoured by thick forest green lines).

4.3.3 Estimation of the protein surface involved in func-

tional interactions

A proper estimation of the protein surface involved in functional interactions is

necessary to correctly assess protein interface prediction algorithms. On average,

the union of experimental IS detected on PPI-262 cover 29% of the protein surface

(Fig. 4.3a). Hence, by looking at PPI-262, one may infer that the residues involved

in functional interactions generally represent less than a third of the protein surface.

However, when looking at the extended dataset PPI-262ext (Fig. 4.3b), the coverage

increases up to 48% and a significant number of proteins (32) have their surface

completely or almost completely covered by functional interactions (coverage≥80%).

This suggests that most of the proteins from P-262 engage in multiple interactions

with different partners. Considering only one complex for each protein leads to

underestimating interacting surfaces.
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Figure 4.2: Two examples of the usage of the protein surface by different part-
ners. The query proteins are displayed as grey cartoons, their interacting sites as opaque
coloured surfaces and their partners as coloured cartoons and transparent surfaces. Left:
protein chain 1ezx C (in grey) interacts with its partner 1ezx A (in blue) and two other
partners, 4b2b B (in red) and 5gxp B (in green). The 3 corresponding IS lead to the
definition of 2 IRs, as depicted on the schema at the bottom, where each IR is contoured
by a thick forest green line. Notice that the green and blue IS are not merged because
they overlap by less than 60% of their respective surfaces. Right: the complex 1yk1 is
composed of two proteins (in grey and blue) and an interposed ligand (in orange). The 2
IS detected at the surface of the 1yk1 A chain are merged into an IR. F1-scores computed
for dynJET2predictions (best matching combination of predicted patches) against two IS
(1ezx A-1ezx C and 1yk1 A-1yk1 E) and the associated IR are reported.
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Figure 4.3: bf Proportion of protein surface covered by experimental interfaces and pre-
dicted patches. Distribution are reported for: (a) the union of IS from PPI-262, (b) the
union of IR from PPI-262ext, (c) the union of patches predicted by dynJET2, (d) individ-
ual IS from PPI-262, (e) individual IR from PPI-262ext,(f-i) individual patches predicted
by each dynJET2’s scoring schemes (SC1: yellow, SC2: purple, SC3: cyan, SCNIP : red).
The union of IS, IR or predicted patches is realised for each protein. Notice that the sizes
of the predicted patches do not add up when considering their union, since several of them
overlap.
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The estimation provided by the union of dynJET2 predictions is slightly higher,

56% on average (Fig. 4.3c). The associated distribution is similar to that of exper-

imental interfaces (compare Fig. 4.3c with 4.3b), except for two notable differences

at the extremities: the minimum coverage is higher for predictions than for exper-

imental interfaces (18% versus 6.2%), and there are more proteins completely or

almost completely covered (≥ 80%) by predictions than by experimental interfaces.

The first difference can be explained by the specifics of dynJET2 clustering algo-

rithm, which discards very small predictions (see Methods and [29]). The second

difference suggests that all functional interfaces have not been yet experimentally

characterised.

We also evaluated the relative sizes of individual experimental interfaces, namely

IS and IR (Fig. 4.3de), and of individual patches predicted by dynJET2 (Fig. 4.3fghi,

and see Methods for a precise definition of predicted patches). Experimental IS and

docking-based (SCNIP ) predicted patches represent about one quarter of the protein

surface, on average, and display very similar distributions (compare Fig. 4.3d and

4.3f). Experimental IR and conserved (SC1, SC2) predicted patches are bigger,

covering about one third of the protein surface, on average (Fig. 4.3e,g,h). They

display much larger standard deviations, in the [24−28]% range, denoting their great

variability. Finally, the predicted patches that are protruding and not conserved

(SC3) are the smallest (Fig. 4.3i), with an average size of 16% of the protein surface

(almost twice as small as SC1 predictions). These results suggest that SCNIP and

SC3 are suited to detect binary binding sites whereas SC1 and SC2 rather describe

generic binding regions.

4.3.4 Assessment of the overall predictive performance of

dynJET2

The identification of a protein’s set of interacting residues is important to understand

the determinants of molecular association. For each protein, we compared the union

of all patches predicted by dynJET2 with the union of all IS (respectively IRs) from

PPI-262 resp. PPI-262ext). To do so, we relied on the F1-score, which reflects the

balance between precision (or positive predictive value) and recall (or sensitivity).

The average F1-score on PPI-262 is 0.41 ± 0.24 and it increases up to 0.57 ± 0.19

on PPI-262ext (Fig. 4.4a). This increase reflects a global shift of the F1-score dis-

tribution toward higher values (p-value=10−4 with the Mann-Whitney U test) In

particular, the proportion of proteins with very good predictions (F1-score > 0.6)

increases from 18 to 46% while the proportion of proteins with very poor predictions

(F1-score < 0.2) drastically reduces from about one quarter to 4%. These results

highlight the importance of considering all available experimental information to

properly evaluate protein interface predictions. Predicted residues that would be
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Figure 4.4: Agreement between experimental interfaces and predicted patches.
(a) Distribution of F1-scores computed for the union of dynJET2 predictions (in tones of
blue) and for the union Multi-VORFFIP predictions (in green), for each protein. dynJET2

predictions were assessed on the union of residues from PPI-262 (in light blue) and from
PPI-262ext (in dark blue), while Multi-VORFFIP predictions were assessed on a sub-
set from PPI-262ext involving 252 protein chains (see Methods) (b-e) Distributions of
F1-scores computed for individual patches predicted by dynJET2 scoring schemes (SC1:
orange, SC2: purple, SC3: cyan, SCNIP : red) against the best matching combination of IR
from PPI-262ext. Distributions of F1-scores computed for the best matching combination
of predicted patches against each IR from PPI-262ext.
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considered as false positives when looking only at the restricted dataset, PPI-262,

are actually involved in interactions with other partners as revealed by the extended

dataset, PPI-262ext. dynJET2 predictions are more sensitive and more precise on

this dataset.

We compared dynJET2 predictions to those of Multi-VORFFIP [100], a state-

of-the-art machine learning method, integrating a broad set of residue descriptors

including solvent accessibility, energy terms, sequence conservation, crystallographic

B-factors and Voronoi Diagrams derived contact density, in a two steps random

forest ensemble classifier. Against a subset of PPI-262ext(see Methods 4.2.4), Multi-

VORFFIP predictions display a distribution of F1-scores much wider than that

obtained for dynJET2predictions (Fig. 4.4a, compare the blue and green boxes).

Moreover, the average F1-score is of 0.42±0.28, significantly lower than the average

value of 0.57± 0.19 computed for dynJET2on the same dataset.

4.3.5 Contribution of different scores in the detection of in-

teracting regions

We further investigated to what extent the partitioning of protein surfaces into

patches predicted by dynJET2 matches experimental IRs. By definition, an IR is

the result of merging several IS (see Methods 4.2.2). Two IS being merged into

an IR may represent two binary interactions with two different partners targeting

overlapping areas on the protein surface, as illustrated on Fig. 4.2, or a single binary

interaction with a single partner whose binding mode slightly differs from one PDB

structure to another. Hence, IR provide a way to account for multiple interactions

and also for the binding mode variability of one single interaction. The multiplicity

and diversity of interactions and associated binding modes support the definition of

IRs, in addition to IS.

The distributions of F1-scores computed for each scoring scheme (Fig. 4.4bcde)

display broad spectra of values, showing that none of the scores is sufficient on its

own to detect all IRs. This observation is also illustrated by the two examples of

Figs 4.5a and 4.5c, where several scores are necessary to capture the entirety of the

experimental signal. Combining SC1, SC2 and SC3 enables increasing the average

F1-score by about 10 points and drastically reducing the number of completely

missed to IR 28 over 370 (7.6%) (Fig. 4.4f). This is indicative of the complementarity

of the three scoring schemes in their coverage of the protein surface, as already

observed in [57]. Accounting for SCNIP patches further enhances the quality of the

predictions (compare Fig. 4.4f and 4.4g).

To better characterise the contribution of docking-based information, we com-

pared the predictive performance of SCNIP with those of SC1, SC2, SC3 (Fig. 4.5b),

either considered individually (JET2
max, on top) or altogether (JET2

comb, at the bot-
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Figure 4.5: Examples and comparison of dynJET2 predictions. (a) Protein struc-
ture 2pav P (light grey cartoon) displayed with the patches predicted by SC1 (in beige)
and SC3 (in cyan), the two experimental IR from PPI-262ext (in grey tones) and the
corresponding partners (beige, yellow and black cartoons); (b) Scatter plot of F1-scores
computed for SC1, SC2, SC3 (x-axis) and for SCNIP (y-axis) against experimental IR from
PPI-262ext. For each IR, the best matching patch or combination of patches is consid-
ered. Top: scone, SC2 and SC3 are considered individually and the best matching scoring
scheme, JET2

max, is retained. Bottom: SC1, SC2 and SC3 are combined together to de-
fine JET2

comb. (c) Protein structure 2gd4 H (light grey cartoon) displayed with the patches
predicted by SC1 (beige) and SCNIP (red), the three experimental IR from PPI-262ext (in
grey tones) and the corresponding partners (medium grey, dark grey and black cartoons).
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tom). We observed that the vast majority of IR (68%, respectively 75%) are better

or equally detected by JET2
max (resp. JET2

comb) than by SCNIP . Hence, evolution-

ary conservation, physico-chemical properties and local geometry are generally able

to better capture protein interface signals than the coarse-grained empirical energy

function used in the docking experiment. Nevertheless, there are a number of cases

where docking-based predictions are more accurate (Fig. 4.5b, points above the di-

agonals). Protein 2gd4 H provides a good example for this (Fig. 4.5c): among the

three IR displayed at its surface, one (in white) is very well detected by SCNIP (in

red, F1-score = 0.74), while it is completely missed by JET2
comb. In cases like this,

docking-based data provide valuable information to improve predictions by unveiling

interfaces that could not be detected otherwise.

4.3.6 From an interacting region to the prediction of multi-

ple protein interactions

94% of the IR from PPI-262ext could be detected, at least partially, by using all

dynJET2 scoring schemes (Fig. 4.4g). Some of these IR display a very good match

with a predicted patch (see SC1in Fig. 4.5a and SCNIP in Fig. 4.5c). It may also

happen that a predicted patch covers several IRs, as illustrated on Fig. 4.5a and

4.5c, where the patches predicted by SC3 and SC1 , respectively, extend over 2 IR

(in dark grey and black).

Fig. 4.5a shows a SC3 prediction of an IR extending over two IS. While this

prediction is correct in the sense that it covers a known interacting surface, it lacks

precision when considering each one of the two sites individually. The same obser-

vation is illustrated in Fig. 4.5c where SC1 covers two experimental IS. In some of

these ambiguous cases, it is possible to infer the existence of multiple interacting

sites within a region by crossing the information gathered from predictions coming

from different scores. Indeed, the presence of SC1 in Fig. 4.5a (middle), shows us

that an experimental interacting surface is present at this location. Coupling this

information with the SC3 prediction (Fig. 4.5a, top) could be an indicator of the

existence of two IS within the IR predicted with SC3.

More generally, we looked into the process that leads dynJET2 to identify IR and

explicitly considered the seeds that dynJET2 extends to propose a prediction. These

seeds correspond to the support, that is the central layer, of the Levy geometrical

model of protein interfaces [29, 57] and we want to use them to test whether they are

good indicators of IS. To evaluate the number of seeds lying in experimental IRs, we

merged the seeds of SC1, SC2, SC3, SCNIP predictions that were in contact and in

Fig. 4.6 we report the number of resulting seeds for predicted IR and experimental

ones. We observe that SC3 and SCNIP generate predictions containing one or two

seeds at most indicating that they tend to identify binary interactions. SC1 and
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SC2 show roughly the same counting on IR with one or two seeds but also on IR

with three or four seeds, as displayed by experimental interfaces of the dataset

PPI-262, suggesting that SC1 and SC2might be good indicators for determining the

presence of multiple interactions in a predicted IR.

We can also observe that a non negligible number of IR in the dataset PPI-262ext

is associated to the existence of 3 or 4 seeds. This seems to suggest that only a

combination of scores can identify these IR and that the characteristics of the seeds

can be different in the same IR.

4.3.7 Number of interacting partners

For each protein, we retrieved from the PDB all the homologs and their partners,

and identified the associated experimental IRs. Then, we compared the number

of partners targeting an IR to the number of seeds predicted by dynJET2 in that

IR. We wanted to test the hypothesis that different seeds might be associated to

different partners. Fig. 4.6b shows that the number of seeds can indeed be used as

an indicator of the number of partners a protein has.

We noticed that IR with a few partners are sometimes difficult to predict; we

find 38 experimental IR for which no seeds were predicted, although 17 of them

are at least partially covered by dynJET2 predictions, including a seed but also its

extensions (see Methods).

While predictions of one seed in the experimental IR indicate a small amount of

partners on average, we observe that this assumption becomes less and less sharp

while the number of seeds increases. A precise estimation of the number of partners

cannot be correctly realised for two main reasons: first, the finite size of an IR can

only admit a limited number of seeds within it, and second, the intrinsic nature of

the protein might render impossible the estimation. For instance, we could retrieve

up to 405 different partners for the antibody chain 3C08 L. This protein chain has

many homologs (1273), and one can expect its homologs to be other antibodies

targeting different proteins. A precise counting of the variability is impossible.

Hence, in order to improve the evaluation of the number of seeds in experimental

IRs, we merged overlapping seeds (of at least one residue) from SC1, SC2, SC3 and

SCNIP . We observe a sharp signal where having two merged seeds or more correlates

with a high number of partners (Fig. 4.6b).

In conclusion, although the number of seeds does not strictly correlate with the

number of partners, we observe that it can be used as an indicator for a protein to

have a high or a low number of partners. In particular, interfaces for which no seeds

are detected consistently display a low number of partners.
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Figure 4.6: Comparing number of partners versus number of seeds. (a) Number
of seeds corresponding to dynJET2 predictions based on different scores (SC1 in yellow,
SC2 in violet, SC3 in cyan and SCNIP in red) and experimental interfaces in the datasets
PPI-262 (grey) and PPI-262ext (black). (b) Number of partners for each experimental IR
in PPI-262ext, and number of seeds predicted by dynJET2 in the IR.

Figure 4.7: Conformational deviations computed on IR between query struc-
tures and homologs’ structures. Distribution of the RMSD for 370 experimental IR
from PPI-262ext computed between each of the 262 protein structures from P-262and the
structures of its homologs. The IR are split into three groups based on the F1-scores
computed for the best-matching dynJET2 predictions: F1-score > 0.6 in green (153 IRs),
F1-score < 0.3 in orange (80) and 0.3 ≤ F1-score ≤ 0.6 in blue (139). Note that the
orange curve includes 22 IR which were completely missed by dynJET2.
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4.3.8 Influence of conformational changes

Docking calculations and dynJET2 predictions were performed on the crystallo-

graphic structures from P-262, while the experimental interfaces from PPI-262ext

were detected on a much larger set of structures displaying various degrees of confor-

mational deviations. To assess the influence of such conformational changes on the

quality of the predictions, we computed the Root Mean Square Deviation (RMSD) of

the IR backbone atoms between each query structure from P-262 and the structures

of its homologs (see Methods). We observe that the quality of the predictions deteri-

orates with increasing conformational deviations (Fig. 4.7). The average RMSD is of

4.7Å for well detected IR (F1-scores > 0.6), 8.3Å for IR detected with intermediate

sensitivity and/or precision (0.3 ≤ F1-score ≤ 0.6), 12.7Å for poorly detected IR (0

< F1-scores < 0.3) and 13.3Å for completely missed IR (F1-score = 0). Given that

8Å represents a substantial conformational rearrangement, this analysis also shows

that dynJET2 is able to detect binding interfaces even when they are deformed.

4.4 Perspectives

Protein surfaces are used in multiple ways by a protein. We have analysed a pool of

proteins with different functions and showed that an interaction site for a partner

might be shared with several other partners, in either a complete or partial way.

Protein binding site prediction has been realised with dynJET2, a modified ver-

sion of JET2, taking into account three scoring schemes based on conservation,

physico-chemical properties of residues at the interface and local geometry of the

protein surface, together with a fourth scoring scheme based on docking propensity.

We have shown that, in some cases, the fourth schema is complementary to the first

three. Also, some IR could not be predicted by one single scoring scheme, but a

combination of them was able to accurately describe the experimental interface.

By taking into account all known homologous proteins and their crystallographic

complexes, we could provide the most accurate description of the interacting sur-

face for our dataset of proteins. The percentage of the surface covered by known

interactions is 48% on PPI-262ext, compared to 29% on PPI-262. It is important to

notice that experimental patches do not simply add supplementary interfaces, but

they help to better identify interacting regions that adjust partners in alternative

complexes. By merging together these alternative sites, we could synthesise over 370

patches, spread over different homologs, into a relatively small number of regions

(1.4 per protein chain). As a consequence, in the evaluation of dynJET2 predic-

tions, we could appreciate that a large amount of predicted regions proved to be

accurate with respect to experimental regions identified by homologs and describing

real biological and functional interfaces.

We also tried to understand the reasons behind poor predictions by looking at
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the amount of structural difference among experimental interfaces across homologs.

This difference can be very important and it correlates with the difficulty of ac-

curately predicting a binding site. Although dynJET2 remains resistant to small

rearrangements, its performance steadily decreases as we observe an increase in the

conformational changes of a protein during complexification.

We showed how reproducing the support-core-rim model could help us predict

the tendency of a protein to be partner specific or to bind to many partners. It seems

plausible to refine the approach towards a more accurate count. With the help of

future PPI data, it also seems achievable to associate functions to the partners

binding on different surface areas, described by different seeds on a region.

One of the main remaining challenges would be to split the predicted interfaces

into IR or possibly into IS. Being able to do so would allow us to infer the number of

partner the considered protein might interact with, as well as describing how many

functional regions it has.
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5.1 The question

Prediction of the interactions sites of the protein has long been a heavily studied

subject, as well as identifying the correct native conformation for two proteins among

a set of decoys. However, large scale studies trying to identify interacting partners

through a CC-D experiment remains at the pioneer stage. Many difficulties lay

ahead: although much progress has been made in this regard over the past decades,

protein docking remains a resource intensive experiment and applying it to an all-to-

all situation requires extensive computational resources. Then, identifying correct

partners at the scale of several hundreds of proteins requires an incredible accuracy

as the number of interacting partners only represents a fraction of the possible

solutions. For instance, the PPDBv2 dataset contains 168 proteins and thus 28224

(168×168) possible protein pairs with only 168 correct interactions against 28056

incorrect interactions.

Due to these shortcomings, predicting protein-protein interactions at large scale

using CC-D methods is still in its early days. To our knowledge, there has only

been three studies (the first being ours [67], then [110, 92] and the latest published

recently; [70]). However, [56] shows that geometrical docking alone does not carry

sufficient information to distinguish cognate partners from non-interactors in an un-

biased CC-D experiment. Although [70] uses machine learning methods (specifically

a Random Forest classifier), it is interesting to see that the global pipeline proceeds

in the same way as ours, combining scoring methods with binding site predictions

to evaluate the conformations.

C. Dequeker, E. Laine, A. Carbone, “Protein partners discrimination reached

with coarse-grain docking and binding sites predictions”, in preparation, 2018.

5.2 Methods

5.2.1 Towards a better description of the PPDBv2 dataset

An early description of the dataset (version 2) released by [76] (see Section 3.4.1)

only split it into four different subsets: Enzyme-Inhibitor (EI), Antibodies-Antigens

(AA), Antibodies-Bound Antigens (ABA), Others (OX). All complexes are in the

unbound form (state which they adopt when they are not binding to any other

partner), except for the ABA subset, which is in the bound form (the structure rep-

resents the conformational changes they may have undergone upon binding). This

description, while it has been considered at the beginning of my work, has been

updated (version 5, PPDBv5) in [108]. This dataset update provides new classifi-

cations separating the proteins into more refined functional classes as well as new

protein structures to analyse. Although we did consider the functional classifica-
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tion refinement of the PPDBv2 168 proteins, we did not take into account the new

protein structures brought by the update; a complete cross docking was performed

on the first 168 proteins, and we did not have the computational power to redo the

experiment using the same docking software to the new ones.

Using the new protein classifications of PPDBv5 [108], we obtain the following

number of proteins for each functional classes (see Fig. 5.1): 20 unbound Antibodies-

Antigenes (AA), 24 Antibodies-Bound Antigens (ABA), 38 Enzymes-Inhibitors (EI),

6 Enzymes (with a regulatory or accessory chain) (ER), 12 Enzymes-Substrates

(ES), 24 Others G-protein containing (OG), 14 Others Receptor containing (OR),

30 Others miscellaneous (OX).

A diverse protein-size dataset

We represent in Fig. 5.1 the different subsets thus defined. We can clearly see a

large difference among the different functional classes in terms of variability. It

is important to note that some subset inherently show a low variability due to

their limited size. However, it is clear when comparing similarly sized subsets the

differences observed; for instance, OX presents a much higher standard deviation

(246) compared to OG (117). This surface size variability sheds some light on how

different proteins are, and how difficult it might be to find a rule able to predict how

they interact.

5.2.2 Interface residues

In this study we use the same definition of the experimental residues as the one

described in Section 4.2.2 and we consider as well the same predictions from dynJET2

(see Section 4.2.3).

Interface predictions and why combine them together

JET2 provided three different scoring schemes which could be used to detect different

type of interfaces. With dynJET2’s ability to include another score to the interface

prediction, we added the NIP score at different stages of the clustering process.

This is illustrated on Fig. 1.4. For each different stages of NIP inclusion tested, we

derived all three scoring methods SC1, SC2 and SC3 into SCXNIP−1, SCXNIP−2,

SCXNIP−3 respectively.

Since a predicted patch does not always precisely match an experimental site

(see Chapter 4, [57]) and in order to compare two proteins in terms of partner

discrimination, we use the combination of the predicted patches for which we obtain

the highest F1-score (see Methods 5.2.2). In this process, the set of predictions

considered comes from a single group SCX of predictions. We therefore only consider

78



Figure 5.1: Boxplot representation of the surface size of the 168 proteins functional classes
defined in [108].
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predictions coming from either SC4NIP−1−2−3, SC5NIP−1−2−3, SC6NIP−1−2−3 or SC1-

2-3-NIP and refer to them as SC4∗, SC5∗, SC6∗ and SCd∗respectively (see Fig. 1.4).

Shifts of the experimental interface

In order to generate the necessary data for Fig. 5.7 (see Section 5.4.4), we performed

a gradual shift of the experimental interfaces. The percentage of the shifted surface

is rounded to get the amount of residues to shift (number of iteration of the following

process). Then for each residue to shift, we pick a bordering residue of the interface

rb (being part of the interface, and in contact with a surface residue not being part

of the interface), then take at random a neighbour rn of the farthest interface residue

from rb. We then consider rn as being part of the interface and rb not being part

of the interface anymore. The residue rb cannot be picked again to be part of the

interface in the following iteration.

5.2.3 Detection of interacting partners

Interactions evaluation

We consider as interacting partners (True Positive) the proteins known to form a

complex, and as non-interacting partners (True Negative) the other proteins. This

definition of true positive and true negative is used to compute the AUC in order

to evaluate our interaction predictions.

In order to score the likelihood for a protein pair to interact, the laboratory team

developed in earlier studies [95, 67] an Interaction Index (II, see Section 3.3). We

modified this interaction index which now takes into account a reference interface

(predicted or experimentally known, see Section 4.2.3) coupled with the docking

interface computed using INTBuilder (see Chapter 6, [25]), a docking energy (from

iATTRACT, PISA or MAXDo) and a pair potential score (CIPS [79]). To com-

bine our reference interface with the docking interface, we compute the Fraction of

Interface Residues (FIR) of the docking interface contained in the reference (exper-

imental or predicted) interface. This gives us for each conformation a FIR value

ranging from 0 to 1 for both proteins of the pair. We describe the IIP1,P2 as:

IIP1,P2 = FIRP1 × FIRP2 × EP1,P2 × PPP1,P2 (5.1)

where FIRP1 and FIRP2 are the FIR assigned to the proteins P1 and P2 respec-

tively for each conformation, EP1,P2 the energy computed using an energy function

(MAXDo, iATTRACT, PISA) and PPP1,P2 a pair potential score (CIPS) assigned

to the conformation.
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5.2.4 Functional classes specific scores

To compute the Interaction Index for all the different functional classes, we tried to

stick to one single method to avoid over fitting the results with too many different

computation ways. Thus, we define the following default parameters that were

applied for all functional classes, save for EI, ER and OR (described next): all

residue-residue is considered a contact from 5Å distance threshold. The default

combination of interface was SC6∗. The MAXDo energy function was used, and to

compute the II we multiplied by the CIPS pair potential.

For three functional classes we modified some of these default values. In EI and

ER, we use the PISA and iATTRACT energy functions without CIPS respectively.

In OR, we use the MAXDo energy function alone without multiplying it with the

CIPS.

5.3 Background

There is an increasing demand, in pharmacology for instance, to be able to target

specific proteins among many [40].

Early studies such as [95] performed small scale CC-D in order to answer the

partner prediction question. This attempt, along other studies [51, 52], shows that

energy alone is not sufficient in predicting interacting partners. However, [95] shows

that it is possible to predict partners with a high precision by combining a well

defined interface (in this case, the experimental interface) with the given docking

energy associated to the conformation. In this study, we follow the first steps made

by [67] which analysed a large scale CC-D of 84 protein complexes with the inter-

face prediction software JET [29]. Since, several improvements were made to the

pipeline, including the development of JET2 [57], then more recently dynJET2 (see

Section 4.2.3) as well as the integration of new developed scores.

Proteins bind to each other through a number of properties; conservation, physico-

chemical properties of residues, geometry of the protein, phosphorylation [105, 59,

11, 47, 36, 17, 81, 84, 29, 57, 30] being of the most important ones. We show here

how the dynJET2 prediction software is able to tackle the complexity of predicting

the multitude of different protein interfaces through its different scoring methods,

and how it is able to help in the identification of interacting partners.

5.4 Scores used and their impact on partner iden-

tification

The PPDBv2 dataset (see Methods 3.4.1, Section 5.2.1) forms 84 binary complexes

known to interact, and we strive to discriminate interacting partners from non in-

81



teracting ones.

The CC-D experiment was realised on the full dataset on unbound structures,

leading to 28224 docking Simulations. For each couple of proteins, about 300 000

ligand-receptor orientations were explored (which we refer to as conformations) cor-

responding to ligand and receptor complete surfaces; this experiment required more

than 7 months of computation time on the WCG in 2007, as mentioned in Sec. 2.4.1.

The docking algorithm simulates the actual docking process in which ligand-receptor

pairwise interaction energies are calculated. In this study we used several different

energy functions to evaluate the docking conformations, as mentioned in Meth-

ods 3.2.

II and NII computation

We now consider for the present analysis four main components in the II compu-

tation: The predicted interface, the docking interface (computed for each docking

conformation), the energy score computed with an energy function (MAXDo [95],

iATTRACT [98] or PISA [54]) and the presence or absence of a pair potential scor-

ing (CIPS [79]). The II formula which is now used for the study is described at

Eq. 5.1.

The pair potential scoring evaluates the likelihood of the observed residue-residue

interactions. The whole process that we now use is described in the Fig. 1.5 pipeline.

We show there how from a set of receptors and ligands, the laboratory team per-

formed a CC-D experiment to obtain an ensemble of conformations. Then, we

present how we use the known/predicted interface with the docking interface to ob-

tain the FIR and combine it with the docking energy (from MAXDo, iATTRACT

or PISA) along with the pair potential CIPS. We show in Fig. 5.6a and Fig. 5.6c

the obtained II matrices obtained using experimental interface to compute the FIR

(Fig. 5.6a) and our binding site predictions (Fig. 5.6c).

In a previous study [56], we showed the importance of taking into account the

proteins’ behaviour among the dataset to really be able to interpret their II. Particu-

larly, it has been shown that proteins may adopt a sticky behaviour (i.e., consistently

producing high II) while others may show a reluctance to bind to other partners

(globally low II). Thus, as in [67] and further explained in Methods in equation 3.6

and 3.7, we perform a normalisation step on the II matrix. This normalisation

step is crucial to take into account the behaviour of a protein among the studied

dataset. We further show in Fig.5.6 the impact such normalisation can have on the

noise reduction using the experimental and the predicted interfaces respectively; the

transition from Fig. 5.6a to Fig. 5.6b shows how applying the normalisation reduces

the noise and make the diagonal (representing interacting partners) come out. In

more quantitative terms, the normalisation improves the discrimination AUC from

0.74 to 0.82. The transition from Fig. 5.6c to Fig. 5.6d (using predicted interfaces)
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describes an increase in the AUC value from 0.33 to 0.67.

5.4.1 Predicting the interacting partners

As mentioned above, we rely on four main parameters. The predicted surface is

determined through the scoring schemes used by our prediction algorithm dynJET2.

The predictions considered are the best combination from either SC5∗, SC6∗, SC4∗

or SCd∗ (See Fig. 1.4, Methods) this process is further explained in Section 5.4.3.

The docking interface is computed using a distance threshold with the INTBuilder

software [25]. This distance threshold can therefore be tweaked to vary the docking

interfaces size. The energy function is either one of iATTRACT, PISA or MAXDo.

The conformations were obtained using the MAXDo docking software. The scoring

performed by PISA or MAXDo relies on the conformations computed using MAXDo.

In contrast, the scoring done by iATTRACT involves a minimisation (using its own

provided tool) of the conformations generated by MAXDo. As we further show, our

different functional classes respond differently to these parameters and we rigorously

compared their effect separately to determine if they should or not be included in

our partner discrimination pipeline.

In order to avoid the risk of over fitting, we strove to define a single default

method that would match most functional classes, and considered altering a param-

eter for a class if it consistently brought improvement to our partner discrimination

capacity using the dynJET2 predictions. For this, we computed the resulting AUC

of every possible combination of the parameters, for each functional class. We choose

as default parameters the parameters providing the globally best partners discrimi-

nation capacity.

We ranked every possible combination of parameters according to their average

AUC values (see Tables 5.5, 5.9, 5.6, 5.7, 5.8). We then define as default parameters

values those for which we globally obtained the best results. To decide for each class

if one parameter value should be used instead of another, we ranked the ten best pa-

rameters combinations by their outcome AUC and plotted them in Fig. 5.2, 5.4, 5.5.

For each barplot, we present the 10 best results of each class and divide them us-

ing the studied parameter for its possible values. To decide if one parameter value

should be specifically used for a functional class, we perform Mann Whitney U-test

of two distributions: the first regroups every AUC values (for all parameters combi-

nations) for this functional class with the default parameter value while the second

distribution fixes the considered value. Under a p-value of 0.05, we consider the

studied parameter value to significantly improve our discrimination potency and de-

cide to use its value for the given class. Below, we present our observations following

this pipeline for each of the four parameters:

Distance threshold is represented in Fig. 5.2. We show that the threshold dis-
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tance impacts very little on the different functional classes, except the 6.0Å

threshold which is deleterious for AA and ABA functional classes. We there-

fore choose the 5Å distance threshold and use it next to compute the following

AUC tests.

Predictions show that the SC6∗ (using solely NIP to detect the seeds of the inter-

face) method consistently provides equally or better results than other predic-

tions methods for all functional classes, except ER. We therefore performed a

Mann Whitney U-test to compare the AUC distributions for ER using on one

set the SC5∗ predictions and the other the SC6∗ predictions. We obtained a

p-value of 0.24 and therefore decided to keep the SC6∗ prediction method for

all functional classes.

Energy function is represented in Fig. 5.5a and Fig. 5.5b. We observe that for

all functional classes except EI and ER, MAXDo performs equally well or

better than iATTRACT or PISA in the detection of interacting partners in a

CC-D. Thus, we performed a Mann Whitney U-test for EI and ER fixing the

two MAXDo and PISA parameters. We thus obtain two p-value of 2.55 ×
10−6 and0.21 respectively. We performed a third test for ER between the

MAXDo and iATTRACT distributions and obtained a p-value of 3.12×10−6.

We therefore decided to choose the PISA energy function for EI, and the

iATTRACT one for ER (as the p-value with PISA wasn’t sufficient to declare

it different from MAXDo).

Pair Potential is represented in Fig. 5.3. We separated this plot among the dif-

ferent energy functions. We observe that using the pair potential using the

iATTRACT or PISA energy functions degrades our discrimination capacity.

However, we observe that using the MAXDo function on pair with the CIPS

pair potential provided equally or better results for all functional classes except

OR. Thus, similarly as before, we performed a test for OR fixing the MAXDo

with CIPS pair potential for one set and with the MAXDo energy function

without CIPS for the other and obtained a p-value of 0.01. We therefore con-

sidered this distribution as different and did not use the CIPS pair potential

for the OR functional class.

5.4.2 Difference between predictions and experimental re-

sults

Overall, we present in Fig. 1.6b the AUC obtained using this method with exper-

imental interfaces along with our predictions SC6∗. The barplot also shows the

previously attained results to show the improvements made [67]. It is interesting to
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Figure 5.2: Barplot representation of the AUC values when separating by threshold (in
Å). For each subset, its top 10 methods were considered and we then separated them
according to the distance threshold used to compute the docking interfaces. The opaque
bar represents the average of the AUC values and the transparent one represents the
maximum value achieved among the different methods. If one of the parameters is not
selected in the 10 best combinations, it is possible to not appear on the plot (which is the
case for the threshold of 6.0Å for AA and ABA in this plot).
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Figure 5.3: Barplot representation of the AUC values when separating by energy, and
adding or substituting the pair potential (CIPS). For each subset, its top 10 methods
were considered and we then separated them according to the presence or absence of the
CIPS pair potential. The opaque bar represents the average of the AUC values and the
transparent one represents the maximum value achieved among the different methods. We
bring the attention on the fact that this plot only show a single possible combination of
parameters for the experimental interfaces (right), thus explaining why no transparent bar
are shown.
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Figure 5.4: Barplot representation of the AUC values when separating by predictions. For
each subset, its top 10 methods were considered and we then separated them according
to the prediction used. The opaque bar represents the average of the AUC values and the
transparent one represents the maximum value achieved among the different methods.

Figure 5.5: Barplot representation of the AUC values when separating by energy functions.
For each subset, its top 10 methods were considered and we then separated them according
to the energy function used. The opaque bar represents the average of the AUC values and
the transparent one represents the maximum value achieved among the different methods.
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look at the AA and ABA groups, which reflects how adding 3D information about

the protein improved the results. We observe as well that adding the CIPS pair

potential score to the experimental values decrease their partner discrimination ef-

ficiency. CIPS is a high throughput software meant to swiftly reduce the search

space of possible native conformations with a high precision. CIPS is especially

helpful when using the predictions as it restricts a large number of possible con-

formations from being considered. Coupling it with other features let us balance

their individual advantages and shortcomings. However, I think that while the CIPS

filters many wrong conformations, it sometimes underrates a near native conforma-

tion. Although this would not affects much the predictions as its filtering of wrong

conformations is more effective than the few errors it makes removing near native

conformations; however, experimental interfaces do not need any external guidance

to evaluate the “right” conformation. Thus, CIPS’ effectiveness in removing the

wrong conformations would be redundant and the few errors it would make impact

more the discrimination potency. With more time, I would further validate this hy-

pothesis by analysing the conformations. In Fig. 1.6a, we show how the best method

for the experimental interfaces improves over the previously obtained AUCs.

5.4.3 Predictions using dynJET2

Previously in Chapter 4, we showed how multiple interactions regions exist at the

proteins’ surfaces and how dynJET2 predictions, if matched against a single of these

regions, could at first present many false positive. In this dataset, considering the

many predictions made by dynJET2, we must find a way to evaluate specific predic-

tions: those that would best match the experimental IS. Therefore to set ourselves

in the context where we are analysing specific IS, we consider for each IS the best

matching combination of our predictions (according to the F1-score; see Sec. 5.2.2).

Looking at Fig. 5.5, we note that while the same trends are globally maintained be-

tween experimental results and predicted ones, some scoring methods are far more

forgiving than others of the lower accuracy of the interfaces. For instance, The dif-

ference observed for the ER subset shows that the iATTRACT scoring scheme alone

is able to compensate the dynJET2 predictions (which performs poorly in terms of

F1-score, see Table 5.1). We also show that we are able to better predict interact-

ing partners when considering smaller classes. We even perform as well using the

dynJET2 predictions as when using the experimental interface (for example ER:

AUC of 0.81 using predictions against 0.79 using experimental values).

Interestingly, the combination for the predictions working the best is SC6∗, thus

relying solely on the NIP to detect the seeds, which the dynJET2 software will next

expand. It is interesting as well to see that the combinations SCd∗, SC4∗ or SC5∗

do not always bring similar results. Looking more closely at Table 5.1, we note

that the functional classes for which SC6∗ performs substantially better are AA and
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Figure 5.6: Partner prediction matrices using the experimental and predicted interfaces.
The pipeline used to compute the II is the one described in Section 5.4.1 for both ex-
perimental and predicted matrices. For every line of the matrix, we represent a protein
when it was considered as a receptor during the CC-D experiment and for every column,
we represent a protein when it was considered as a ligand during the CC-D experiment.
We ordered the matrix by putting on the diagonal the complexes known to interact. The
parameters described in Methods for each dataset were used for the subset matrices. The
ALL matrix was computed using only the default parameters. We present here the differ-
ent matrices (a) the II experimental matrix. (b) the NII experimental matrix (c) the II
predicted matrix (using default parameters, see Methods) (d) the NII predicted matrix
(with default parameters) (e) the NII AA predicted matrix (f) the NII ABA predicted
matrix (g) the NII EI predicted matrix (h) the NII ER predicted matrix (i) the NII ES
predicted matrix (j) the NII OG predicted matrix (k) the NII OR predicted matrix (k)
the NII OX predicted matrix.
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Table 5.1: Table representing the average F1-values obtained for each functional classes
using the best combination according to the experimental interface, for each set of predic-
tions. The best combination is made as in Methods 5.2.2.

Predictions ALL AA ABA EI ER ES OG OR OX

SC4∗ 0.48 0.39 0.48 0.58 0.43 0.51 0.51 0.40 0.40
SC5∗ 0.48 0.39 0.47 0.58 0.43 0.50 0.49 0.42 0.42
SC6∗ 0.49 0.45 0.52 0.58 0.43 0.49 0.49 0.41 0.42
SCd∗ 0.46 0.40 0.46 0.57 0.37 0.49 0.47 0.40 0.40

Table 5.2: Table representing the average recall values obtained for each functional classes
using the best combination according to the experimental interface, for each set of predic-
tions. The best combination is made as in Methods 5.2.2.

Predictions ALL AA ABA EI ER ES OG OR OX

SCd∗ 0.64 0.63 0.65 0.73 0.68 0.70 0.64 0.55 0.51
SC5 0.63 0.60 0.66 0.72 0.64 0.69 0.63 0.58 0.51
SC6 0.62 0.59 0.61 0.72 0.60 0.70 0.65 0.56 0.51
SC4 0.62 0.62 0.64 0.73 0.56 0.68 0.61 0.57 0.50

Table 5.3: Table representing the average PPV values obtained for each functional classes
using the best combination according to the experimental interface, for each set of predic-
tions. The best combination is made as in Methods 5.2.2.

Predictions ALL AA ABA EI ER ES OG OR OX

SC6 0.43 0.39 0.47 0.51 0.33 0.40 0.41 0.35 0.39
SC4 0.42 0.32 0.41 0.52 0.37 0.43 0.46 0.34 0.40
SC5 0.41 0.31 0.40 0.51 0.33 0.41 0.43 0.36 0.40
SCd∗ 0.39 0.33 0.38 0.48 0.26 0.40 0.40 0.33 0.38

Table 5.4: Table representing the average accuracy values obtained for each functional
classes using the best combination according to the experimental interface, for each set of
predictions. The best combination is made as in Methods 5.2.2.

Predictions ALL AA ABA EI ER ES OG OR OX

SC4 0.85 0.81 0.89 0.82 0.85 0.87 0.88 0.82 0.85
SC6 0.85 0.82 0.90 0.83 0.83 0.85 0.86 0.82 0.86
SC5 0.85 0.81 0.88 0.83 0.82 0.86 0.87 0.82 0.86
SCd∗ 0.83 0.81 0.87 0.81 0.76 0.85 0.86 0.81 0.84

90



ABA; the F1-score value of only the antibodies predictions using SC6∗ present is

0.13 greater than the second best performing prediction (SC5∗) with a value of 0.66

over 0.53 for SC6∗ and SC5∗ respectively for the antibodies. We also know that the

SCNIP alone is not sufficient to fully predict the interfaces. From this statement,

and knowing that the SC6∗ scoring method is performing well, we can assume that

for most interaction site, the NIP value is able to pick up the centre of it, and that

making use of the intrinsic properties such as evolutionary trace or physico-chemical

properties are crucial to fully define the protein-protein interfaces.

5.4.4 Interface sensitivity

To assess how sensitive the interfaces were, and how was the AUC impacted by small

and larger variation of the interface, we shifted different amounts of the experimental

interfaces using the process described in Methods 5.2.2. For each shift we ran a

prediction experiment using the shifted interfaces, which result we then reported on

Fig. 5.7 along their F1-score compared to the non shifted experimental interface.

We shifted for 10 different percentage of the surface (by step of 10%), and for each

different percentage we ran the partner discrimination experiment 10 times to ensure

consistent results.

We note that the functional classes with the fewest proteins also present the most

varying results, which is an expected outcome. We highlight how some subsets react

very differently than others. A striking drop in the AUC value is observed for the

functional classes AA, ABA, OG, OR, OX starting from the very first shift (only

10% of the interface being shifted). The biggest drop occurs for the OX group, which

the proteins could not be placed in any of the other functional classes and which is

therefore also the most difficult group for us to predict since we cannot rely on any

specific measure. Conversely, the EI group does not show any difference in partner

prediction performance for the first shift, and is also the group for which the best

results could be easily achieved (as early as in the previous study [67]). These plots

also show that our predictions seem to fit in the same range of here achieved AUC,

maybe indicating the limit of our partner prediction method considering the quality

of our predictions. They also state that the limiting factor now to better predict

interacting partners are our interface predictions. A third point of the Fig. 5.7 shows

that all three enzyme classes show very good resistance to light modification of the

experimental interface, which is not the case of other subsets (AA, ABA, OG, OR,

OX).
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Figure 5.7: Shifts of the experimental interfaces for every functional classes and for the
main dataset. The AUCs were computed using the energy from MAXDo only, with the
experimental interfaces and using docking interfaces computed with a threshold of 5Å. The
F1-score values correspond to the F1-score of the shifted experimental interfaces compared
to the non-shifted ones.
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5.5 Perspectives

In this study, we have shown how our predictions are precise enough to detect in-

teracting partners in a large scale study, sometimes reaching the limits set by the

experimental interface. We have also put in evidence how some functional classes

are tackled more efficiently by different energy function, suggesting that this could

help identify these specific features better captured by PISA and iATTRACT. This

study opens up the possibility on running full proteome analysis, thus building an

interaction network of many proteins in a cell, or involved in a same functional

pathway. We also have shed some light on how important separating proteins into

different functional classes, thus requiring the development of methods to automat-

ically analyse and sort their functions.

The study also calls for new methods to refine the different predictions of dynJET2

in separated interacting regions. Here, we relied on the knowledge of the experimen-

tal site we where looking for to locate the prediction region of interest to us. In [103],

they show that as much as 75% of the protein surface might be experimentally ac-

tive, while single interacting sites as studied here only represent about 25% of the

surface. This means that to be able to fully unshackle ourselves from the exper-

imental knowledge to predict interacting partners and define interaction sites, we

should be able to separate the prediction patches into separate ones. A new interac-

tion matrix could then be computed not based on each protein, but with each line

describing a interacting region, targeting potentially a different set of proteins.
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Table 5.5: Table representing the AUC values obtained for each functional classes using
the experimental interfaces, for each combination of parameters possible. Lines were
sortes according to the average of AUC computed over each functional class, and weighed
according to their number of proteins. The red value refers to the AUC obtained for the
matrix in Fig. 5.6b.

Interface Energy CIPS
Distance

Threshold
ALL AA ABA EI ER ES OG OR OX

Exp. Interface MAXDo No 6.0 0.85 0.84 0.96 0.84 0.73 0.89 0.91 0.80 0.90
Exp. Interface MAXDo No 5.0 0.82 0.86 0.92 0.81 0.78 0.83 0.90 0.79 0.88
Exp. Interface MAXDo No 4.5 0.85 0.86 0.91 0.83 0.84 0.82 0.92 0.82 0.87
Exp. Interface MAXDo Yes 6.0 0.80 0.81 0.85 0.85 0.53 0.80 0.87 0.64 0.88
Exp. Interface iATTRACT No 4.5 0.82 0.86 0.93 0.84 0.88 0.76 0.85 0.81 0.81
Exp. Interface MAXDo Yes 4.5 0.80 0.86 0.86 0.78 0.71 0.83 0.82 0.69 0.83
Exp. Interface iATTRACT No 6.0 0.81 0.86 0.91 0.83 0.85 0.78 0.83 0.72 0.80
Exp. Interface iATTRACT Yes 4.5 0.78 0.86 0.89 0.79 0.65 0.81 0.83 0.69 0.79
Exp. Interface MAXDo Yes 5.0 0.78 0.79 0.86 0.79 0.71 0.80 0.83 0.63 0.85
Exp. Interface iATTRACT No 5.0 0.80 0.82 0.89 0.83 0.85 0.73 0.81 0.75 0.80
Exp. Interface iATTRACT Yes 6.0 0.77 0.81 0.87 0.83 0.64 0.71 0.81 0.65 0.82
Exp. Interface iATTRACT Yes 5.0 0.75 0.74 0.85 0.79 0.51 0.80 0.77 0.59 0.77
Exp. Interface PISA No 6.0 0.77 0.74 0.79 0.90 0.94 0.85 0.78 0.70 0.77
Exp. Interface PISA Yes 6.0 0.77 0.73 0.76 0.91 0.78 0.82 0.75 0.69 0.82
Exp. Interface PISA No 5.0 0.78 0.74 0.79 0.89 0.92 0.86 0.78 0.73 0.75
Exp. Interface PISA No 4.5 0.77 0.74 0.79 0.88 0.84 0.84 0.77 0.71 0.73
Exp. Interface PISA Yes 4.5 0.76 0.75 0.78 0.86 0.55 0.83 0.74 0.68 0.74
Exp. Interface PISA Yes 5.0 0.76 0.68 0.80 0.87 0.74 0.85 0.75 0.65 0.74
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Table 5.6: Table representing the AUC values obtained for each functional classes using the
best combination of SC4∗ according to the experimental interface. The best combination
is made as in Section 5.2.2. The AUC values are represented for each combination of
parameters possible. Lines were sortes according to the average of AUC computed over
each functional class, and weighed according to their number of proteins.

Interface Energy CIPS
Distance

Threshold
ALL AA ABA EI ER ES OG OR OX

SC4∗ MAXDo Yes 4.5 0.63 0.58 0.71 0.69 0.60 0.76 0.68 0.72 0.52
SC4∗ MAXDo Yes 5.0 0.61 0.59 0.74 0.66 0.67 0.68 0.61 0.62 0.52
SC4∗ iATTRACT Yes 4.5 0.62 0.73 0.67 0.74 0.64 0.73 0.52 0.56 0.52
SC4∗ MAXDo No 6.0 0.63 0.49 0.64 0.68 0.61 0.79 0.70 0.78 0.52
SC4∗ iATTRACT No 4.5 0.64 0.67 0.67 0.78 0.87 0.79 0.51 0.63 0.52
SC4∗ MAXDo No 5.0 0.63 0.48 0.65 0.67 0.68 0.74 0.70 0.84 0.53
SC4∗ MAXDo Yes 6.0 0.62 0.48 0.64 0.73 0.60 0.67 0.69 0.59 0.56
SC4∗ MAXDo No 4.5 0.63 0.50 0.64 0.72 0.65 0.76 0.68 0.82 0.53
SC4∗ iATTRACT No 6.0 0.59 0.57 0.60 0.69 0.72 0.75 0.58 0.57 0.55
SC4∗ PISA No 4.5 0.63 0.57 0.62 0.84 0.78 0.76 0.56 0.70 0.50
SC4∗ iATTRACT Yes 5.0 0.60 0.55 0.71 0.72 0.82 0.69 0.48 0.46 0.54
SC4∗ PISA No 6.0 0.63 0.56 0.59 0.80 0.97 0.76 0.62 0.64 0.49
SC4∗ iATTRACT No 5.0 0.61 0.55 0.64 0.73 0.81 0.75 0.50 0.61 0.55
SC4∗ PISA No 5.0 0.63 0.54 0.61 0.83 0.92 0.79 0.59 0.68 0.48
SC4∗ PISA Yes 4.5 0.62 0.58 0.62 0.81 0.55 0.70 0.54 0.59 0.50
SC4∗ iATTRACT Yes 6.0 0.58 0.53 0.59 0.72 0.62 0.58 0.60 0.55 0.53
SC4∗ PISA Yes 5.0 0.61 0.48 0.64 0.80 0.93 0.69 0.51 0.56 0.51
SC4∗ PISA Yes 6.0 0.61 0.48 0.55 0.83 0.91 0.66 0.58 0.55 0.51
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Table 5.7: Table representing the AUC values obtained for each functional classes using the
best combination of SC5∗ according to the experimental interface. The best combination
is made as in Section 5.2.2. The AUC values are represented for each combination of
parameters possible. Lines were sortes according to the average of AUC computed over
each functional class, and weighed according to their number of proteins.

Interface Energy CIPS
Distance

Threshold
ALL AA ABA EI ER ES OG OR OX

SC5∗ iATTRACT Yes 4.5 0.64 0.67 0.67 0.75 0.78 0.79 0.59 0.58 0.60
SC5∗ iATTRACT No 4.5 0.65 0.63 0.65 0.79 0.88 0.80 0.57 0.64 0.64
SC5∗ MAXDo Yes 5.0 0.62 0.58 0.70 0.68 0.46 0.83 0.68 0.63 0.51
SC5∗ MAXDo Yes 4.5 0.64 0.52 0.70 0.72 0.56 0.77 0.73 0.72 0.52
SC5∗ MAXDo Yes 6.0 0.62 0.54 0.63 0.73 0.56 0.71 0.71 0.62 0.54
SC5∗ MAXDo No 4.5 0.64 0.47 0.64 0.72 0.52 0.82 0.74 0.79 0.51
SC5∗ iATTRACT No 5.0 0.63 0.60 0.66 0.76 0.91 0.72 0.59 0.62 0.55
SC5∗ iATTRACT No 6.0 0.62 0.57 0.63 0.72 0.86 0.71 0.62 0.60 0.56
SC5∗ PISA No 4.5 0.64 0.56 0.64 0.81 0.49 0.82 0.56 0.71 0.54
SC5∗ MAXDo No 6.0 0.63 0.50 0.57 0.70 0.57 0.73 0.76 0.72 0.50
SC5∗ iATTRACT Yes 5.0 0.61 0.55 0.67 0.75 0.88 0.75 0.54 0.50 0.53
SC5∗ PISA No 5.0 0.63 0.55 0.64 0.81 0.42 0.84 0.56 0.66 0.51
SC5∗ MAXDo No 5.0 0.62 0.45 0.63 0.69 0.52 0.74 0.71 0.79 0.49
SC5∗ iATTRACT Yes 6.0 0.60 0.51 0.59 0.73 0.71 0.64 0.61 0.57 0.57
SC5∗ PISA Yes 4.5 0.62 0.56 0.64 0.78 0.47 0.69 0.54 0.57 0.53
SC5∗ PISA No 6.0 0.63 0.53 0.64 0.81 0.67 0.83 0.56 0.71 0.47
SC5∗ PISA Yes 6.0 0.63 0.49 0.60 0.84 0.80 0.75 0.56 0.57 0.55
SC5∗ PISA Yes 5.0 0.61 0.49 0.66 0.78 0.62 0.74 0.52 0.56 0.53
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Table 5.8: Table representing the AUC values obtained for each functional classes using the
best combination of SC6∗ according to the experimental interface. The best combination
is made as in Section 5.2.2. The AUC values are represented for each combination of
parameters possible. Lines were sortes according to the average of AUC computed over
each functional class, and weighed according to their number of proteins. The red value
refers to the AUC obtained for the matrix in Fig. 5.6d.

Interface Energy CIPS
Distance

Threshold
ALL AA ABA EI ER ES OG OR OX

SC6∗ MAXDo Yes 5.0 0.67 0.69 0.76 0.70 0.58 0.84 0.69 0.63 0.66
SC6∗ iATTRACT Yes 4.5 0.66 0.71 0.70 0.73 0.63 0.82 0.59 0.50 0.70
SC6∗ MAXDo Yes 4.5 0.67 0.61 0.73 0.71 0.55 0.81 0.73 0.72 0.61
SC6∗ MAXDo No 5.0 0.67 0.60 0.70 0.70 0.51 0.80 0.71 0.81 0.65
SC6∗ iATTRACT No 4.5 0.66 0.65 0.65 0.74 0.80 0.83 0.58 0.63 0.72
SC6∗ MAXDo No 6.0 0.67 0.56 0.62 0.71 0.53 0.84 0.78 0.69 0.60
SC6∗ MAXDo No 4.5 0.66 0.55 0.65 0.69 0.48 0.83 0.70 0.79 0.65
SC6∗ iATTRACT No 5.0 0.66 0.63 0.70 0.74 0.86 0.78 0.59 0.63 0.65
SC6∗ iATTRACT Yes 5.0 0.64 0.62 0.74 0.72 0.83 0.79 0.55 0.49 0.65
SC6∗ MAXDo Yes 6.0 0.65 0.61 0.62 0.74 0.66 0.71 0.74 0.61 0.62
SC6∗ iATTRACT No 6.0 0.63 0.57 0.63 0.73 0.78 0.71 0.70 0.65 0.62
SC6∗ iATTRACT Yes 6.0 0.62 0.52 0.62 0.74 0.69 0.64 0.64 0.55 0.66
SC6∗ PISA No 4.5 0.65 0.57 0.61 0.81 0.51 0.78 0.57 0.78 0.56
SC6∗ PISA Yes 6.0 0.64 0.59 0.57 0.82 0.73 0.81 0.55 0.63 0.57
SC6∗ PISA Yes 4.5 0.62 0.62 0.62 0.78 0.48 0.77 0.54 0.61 0.53
SC6∗ PISA No 6.0 0.63 0.59 0.59 0.80 0.53 0.86 0.53 0.80 0.53
SC6∗ PISA No 5.0 0.63 0.57 0.61 0.80 0.56 0.83 0.56 0.75 0.50
SC6∗ PISA Yes 5.0 0.62 0.59 0.63 0.77 0.72 0.76 0.52 0.59 0.51
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Table 5.9: Table representing the AUC values obtained for each functional classes using the
best combination of SCd∗ according to the experimental interface. The best combination
is made as in Section 5.2.2. The AUC values are represented for each combination of
parameters possible. Lines were sortes according to the average of AUC computed over
each functional class, and weighed according to their number of proteins.

Interface Energy CIPS
Distance

Threshold
ALL AA ABA EI ER ES OG OR OX

SCd∗ MAXDo No 6.0 0.65 0.57 0.61 0.71 0.40 0.84 0.78 0.71 0.58
SCd∗ MAXDo Yes 5.0 0.64 0.54 0.73 0.70 0.48 0.86 0.67 0.61 0.56
SCd∗ iATTRACT Yes 4.5 0.63 0.66 0.65 0.76 0.54 0.81 0.58 0.45 0.63
SCd∗ MAXDo Yes 6.0 0.65 0.56 0.68 0.75 0.56 0.75 0.73 0.60 0.57
SCd∗ MAXDo Yes 4.5 0.64 0.61 0.65 0.71 0.39 0.82 0.69 0.67 0.54
SCd∗ MAXDo No 5.0 0.64 0.48 0.63 0.71 0.37 0.82 0.74 0.78 0.57
SCd∗ MAXDo No 4.5 0.64 0.49 0.57 0.72 0.42 0.82 0.75 0.75 0.60
SCd∗ PISA No 4.5 0.66 0.62 0.61 0.83 0.46 0.80 0.62 0.77 0.58
SCd∗ iATTRACT No 4.5 0.64 0.63 0.60 0.78 0.95 0.81 0.55 0.62 0.63
SCd∗ PISA No 6.0 0.65 0.62 0.60 0.81 0.52 0.87 0.57 0.80 0.58
SCd∗ iATTRACT No 5.0 0.63 0.60 0.62 0.75 0.96 0.79 0.59 0.60 0.58
SCd∗ PISA No 5.0 0.65 0.60 0.58 0.82 0.44 0.85 0.61 0.74 0.55
SCd∗ iATTRACT No 6.0 0.62 0.58 0.61 0.74 0.93 0.74 0.65 0.61 0.54
SCd∗ iATTRACT Yes 5.0 0.62 0.51 0.67 0.74 0.89 0.81 0.55 0.43 0.59
SCd∗ PISA Yes 6.0 0.65 0.54 0.58 0.84 0.70 0.78 0.57 0.61 0.63
SCd∗ iATTRACT Yes 6.0 0.61 0.57 0.62 0.75 0.68 0.67 0.62 0.50 0.57
SCd∗ PISA Yes 4.5 0.63 0.65 0.63 0.80 0.45 0.78 0.54 0.56 0.53
SCd∗ PISA Yes 5.0 0.63 0.55 0.63 0.81 0.56 0.76 0.53 0.57 0.55
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Part III

A tool for computing interfaces
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INTerface Builder
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INTerface Builder (INTBuilder) is a fast, easy-to-use software to compute protein-

protein interfaces. It is designed to retrieve interfaces from molecular docking

software outputs in an empirically determined linear complexity. INTBuilder di-

rectly reads the output formats of popular docking programs like ATTRACT, HEX,

MAXDo and ZDOCK, as well as a more generic format and Protein Data Bank

(PDB) files. It identifies interacting surfaces at both residue and atom resolutions.

This work has been published in [25].

6.1 Background and presentation of the question

The increasing amount of computing resources and the development of efficient

molecular docking algorithms [35, 95, 87] have made possible large-scale studies of

PPIs, where tens to thousands of proteins are docked to each other [95, 67, 56]. These

cross-docking calculations generate millions to billions of conformations that must

be screened in order to extract pertinent information. Several types of analysis can

be performed, among which the calculation of the residues’ propensity to be found

at the interface in the docking poses. This property can be exploited toward protein

binding sites [33, 95, 56] and functions [107] prediction. Also, docking interfaces

can be analysed to select those that resemble the most known or predicted protein

interfaces toward the identification of the cellular partners [95, 67, 56]. Both types of

analysis require the fast and accurate detection of interacting residues in the docking

conformations.

State-of-the-art approaches identify interacting residues based on inter-atomic

distances, changes in residue Solvent Accessible Surface Area (SASA) upon bind-

ing [60] or a Voronoi model of the interface [15]. These methods suffer issues stem-

ming from the large amount of data they need to handle. The first one is the speed

of their algorithm. Since the number of conformations can go up to several billions

on large-scale docking experiments, the algorithm used should be both fast and

accurate in its computation of the interface. On the one hand, approaches based

on grid-boxing or zoning [102, 78] efficiently detect interactions between particles

based on a distance criterion in linear complexity. On the other hand, Voronoi

model provides a more detailed description of the interface at the expense of more

computation time. Another bottleneck is the input/output (I/O) required. To be

able to analyse docking ensembles with current tools, one has to write and read the

PDB file corresponding to each docking pose before actually computing the interface

with the various software available today, the whole process resulting in a very high

I/O.

Both issues are crucial to the analysis of large docking ensembles. To specifically

address them, we have developed INTerface Builder (INTBuilder), which combines

a new, efficient algorithm with the ability to directly read the output of rigid-body
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docking software. Indeed, the algorithm of INTBuilder (detailed below) can achieve

a complexity of O(n) by drastically reducing the search space when scanning protein

surfaces for interface residue. INTBuilder explicitly considers the description of the

docking pose by a scalar and a set of Euler angles representing the translation and

rotations to be applied to the ligand relative to the receptor. To facilitate the

usage of the rotating feature, the output of several rigid-body docking algorithm

(iATTRACT [98], HEX [35], ZDOCK [19] and MAXDo [95]) is directly read with

the effect of bypassing the I/O need. This allows INTBuilder to treat millions of

conformations in a few hours. Other software (Rosetta [109], GRAMM-X [104])

directly outputs the resulting PDB files corresponding to each conformation, which

allows INTBuilder analyse them without performing the rotations.

Although INTBuilder was designed to detect protein-protein interfaces, it can

also readily be employed to identify the binding sites of small molecules (chemical

compounds) from conformations obtained by virtual screening.

6.2 Algorithm

INTBuilder defines interfaces as sets of atoms or of residues, depending on the chosen

scale, that are close to each other in a protein complex. It uses only one parameter

(customisable by the user), that is the threshold distance under which two particles

(residues or atoms) will be considered as interacting; we refer to this distance as

d − thresh. A naive algorithmic approach would be to consider the two sets of

particles P1 and P2 of each partner respectively and compute all the inter-atomic

distances, thus leading to an O(n2) complexity, n being the number of particles.

The idea behind the INTBuilder algorithm is to reduce the search space of parti-

cles before actually computing the inter-atomic distances (Fig. 6.1 and Algorithm 1).

To do so, INTBuilder first selects the geometric centre p− I of the ensemble of par-

ticles from the partner 1, P − 1. It then selects the farthest particle from it among

of the ensemble of particles for the partner 2, P − 2, and name it p− I. From p− I,

it computes the minimum distance to any particle belonging to P − 1 and subtracts

to it d− thresh. We call the result of this subtraction d− cut. Any particle of P −2

that is strictly closer to p−I than d−cut is removed from P−2. Next, the algorithm

selects the farthest particle of P − 1 from p − I, names it p − I in turn and oper-

ates the same process. These steps are looped over while at least one particle has

been removed with each iteration. The second step of the algorithm simply consists

in computing all inter-atomic distances between the remaining candidate particles.

We define two sets I − 1 and I − 2 representing interface particles of partner 1 and

partner 2 respectively. As such, any pair of particles from partner 1 and partner 2

are added to I − 1 and I − 2 respectively if they are separated by a distance lower

than d− thresh. To ascertain that the algorithm does not erroneously remove any
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interface particle, we reason as follows.

We want to show that at each iteration (cycle do at line 4 in Algorithm 1),

INTBuilder reduces the number of particles in P1,P2 while keeping those lying at

the interface. We denote di,j the distance between particles pi and pj.

Each iteration comprises two ”internal iterations” (cycles for at line 8 and 16

in Algorithm 1), the first eliminating some particles in P2 and the second in P1. At

the beginning of each internal iteration, INTBuilder defines a particle pI (lines 6

and 14 in Algo 1). At the first iterative step, INTBuilder takes, as pI , the farthest

particle of the partner 2 from the centre of mass of the partner 1.

If pI belongs to the interface, notice that min{dI,j − dthresh | pj ∈ P2} < 0 by

definition. This implies that no particles’ deletion will be realised by INTBuilder

at the first internal iteration step, and the algorithm will go on by considering the

particle in P1 that is most distant from pI and will take this particle to be the new

pI .

If pI does not belong to the interface, then let po be any particle of P2 belonging

to the interface. We want to prove that po cannot be removed by INTBuilder.

INTBuilder chooses a particle pm ∈ P1 that is the closest to pI . Then, it removes

from P2 all particles pj satisfying the equation:

dI,j < dI,m − dthresh (6.1)

Since po belongs to the interface of partner 2, by definition of particles at the in-

terface, there is a particle pk ∈ P1 belonging to the interface of partner 1 such as

do,k ≤ dthresh. In order to show that po does not satisfy equation (1), we show:

dI,o ≥ dI,m − dthresh (6.2)

Notice that dI,m ≤ dI,k because of the way pm was chosen, and since dI,k ≤ dI,o+do,k,

we have

dI,m ≤ dI,o + do,k (6.3)

Since do,k ≤ dthresh then, by (3), we derive dI,m−dthresh ≤ dI,o, that is (2), as claimed

above. To show that particles in the interface are not removed in P1 by the second

internal iteration of the algorithm, we proceed in a similar way.

Although the worst case scenario could theoretically lead the algorithm to a

complexity of O(n2), that only happens if the whole surface of the protein is inter-

acting (the complexity of INTBuilder is mainly linked with the size of the interacting

surface itself more than the size of the protein).

To estimate the empirical complexity of the algorithm, we computed the inter-
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(a) First step (b) Second step (c) Iteration of the sec-
ond step

Figure 6.1: Scheme of the search space reduction algorithm. (a) The geometric centre of
the blue partner (red star) is chosen as a starting point and the farthest particle p2 of the
orange partner is selected. (b) The minimum distance between p2 and the blue partner is
computed and dthresh is subtracted to it to obtain dcut. All the particles closer than dcut
(in grey) are removed from the orange partner. (c) The particle p1 of the blue partner
that is the farthest from p2 is chosen and the reduction step is repeated.

Figure 6.2: Percentage of remaining residues in two proteins P1, P2 given as entry to
INTBuilder in regard to the number of steps performed by the algorithm. The plot is
constructed from 10% of conformations randomly chosen from the PPDBv2 database [76,
67]. After the 6th step, the curve reaches a stable behaviour where only 22% of the residues
are kept for most proteins.
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Algorithm 1 Reducing the search space and pairwise detection

1: let P1 be the ensemble of particles for the partner 1
2: let P2 be the ensemble of particles for the partner 2
3: compute the geometric centre of P1 and call it pI
4: do
5: choose p2 such that dp2,pI ≥ dpj ,pI for all pj ∈ P2

6: let p2 be called pI
7: compute dcut as min(dpI ,pi − dthresh) for all pi ∈ P1

8: for pj ∈ P2 do
9: if dpI ,pj < dcut then

10: remove pj from P2

11: end if
12: end for
13: choose p1 such that dp1,pI ≥ dpi,pI for all pi ∈ P1

14: let p1 be called pI
15: compute dcut as min(dpI ,pj − dthresh) for all pj ∈ P2

16: for pi ∈ P1 do
17: if dpI ,pi < dcut then
18: remove pi from P1

19: end if
20: end for
21: while at least an element is removed in P1 or P2

22:

23: let I1 be the set of interface particles for the partner 1
24: let I2 be the set of interface particles for the partner 2
25: for pi ∈ P1 do
26: for pj ∈ P2 do
27: if dpi,pj ≤ dthresh then
28: add pi to I1
29: add pj to I2
30: end if
31: end for
32: end for

faces of about 50 million complex structure predictions, obtained from a complete

cross-docking of 168 proteins [76] using the docking algorithm MAXDo [95]. Overall,

we found that the do-while loop (Algorithm 1, lines 4-21) had an average of 5.8 iter-

ations and a maximum number of iterations Nmax of 23. Thus, the reduction of the

search space algorithm is realised in O(n×Nmax). Since Nmax is constant, this step

has a time complexity of O(n). The last part of the INTBuilder algorithm (from

line 23 on) computes all the distances between the remaining candidate particles of

P−1 and P−2 and stores them in I−1 and I−2 respectively if they are in contact

with one another. Although the complexity of this last step is O(n2), n holds only

for roughly a quarter of its original value after the space reduction obtained in the

first part of the algorithm (Fig. 6.2).
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6.3 Comparison with other methods

INTBuilder is distance based, and as other similar methods its main challenge con-

sists in reducing the search space before computing all pairwise distances between

remaining candidates particles. As INTBuilder, boxing approaches [102] focus on re-

ducing the search space and do so with a complexity of O(n). An important part of

the boxing approaches consists in defining the grid size, which adds another param-

eter to the program. To the best of our knowledge, no tool is available to specifically

detect protein-protein interfaces using a boxing approach. In contrast, INTBuilder

has the advantage of its algorithmic simplicity, ease of implementation and of a sin-

gle defined parameter (threshold distance). Overall, boxing approaches are applied

to more general issues (Discrete Element Method, Molecular Dynamics) while INT-

Builder focuses on a specific issue. We have measured the computation time required

by INTBuilder and a naive approach (computing every inter-atomic distances) and

specifically evaluated the computation time of INTBuilder’s algorithm compared to

the naive approach in Table 6.3. The results show a decrease of the computation

time of the interface determination by a factor from ten to one hundred over the

naive algorithm, depending on the size of the protein. INTBuilder’s efficiency was

also compared with Naccess [41] and the Voronoi model [15] when computing the

interface for a single complex (Table 6.4). Since we do not read from a docking out-

put, we do not use INTBuilder’s perk of bypassing the I/O. This permits us to focus

on the algorithm speed itself in its comparison to other software. When looking at

several conformations however, INTBuilder’s ability to bypass the I/O and allows it

to outshine the other software in terms of computation speed. Indeed, both software

require to write the PDB file corresponding to each conformation, which proved to

be extremely hindering for treating the 50 million conformations of our set. Both

tables show that INTBuilder is consistently faster than the other two software, its

increase in speed ranging from twenty to more than one hundred times faster. We

computed in the table 6.5 the interface for five hundreds conformations computed

with HEX [35]. We show here the importance of the I/O ability implemented in

INTBuilder (also present in the Naive approach). Naccess and Voronoi give a com-

putation time in the same order of magnitude as the docking time itself. The naive

approach, while benefiting from the I/O ability of INTBuilder also shows its lack of

scalability when considering bigger complexes.

We compared the accuracy with which the different methods were able to define

interfaces. All three of them yield similar interfaces (Table 6.1 and Fig. 6.3). On

average, the detected interfaces comprise the same number of particles (atoms or

residues), and they share more than 79% of particles in common (Table 6.1). We

further evaluated the impact of the small differences between the interfaces detected
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(a) Boxplot representation of perfor-
mances distributions when comparing
interfaces computed with INTBuilder
(atom-resolution) against those computed
using a Voronoi description [15] on 84
complexes from the PPDBv2 database [76].
The data used for the plot regroups 4 750
938 different conformations.

(b) Boxplot representation of perfor-
mances distributions when comparing
interfaces computed with INTBuilder
(residue-resolution) against those computed
using the Naccess software on 168 com-
plexes from [76]. The data used for the plot
regroups 49 192 401 different conformations.

Figure 6.3: Performance distributions when comparing INTBuilder 5.0Å to other methods
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Atom
Voronoi

Residue
Naccess

Recall 0.79 0.90

PPV 0.80 0.83

Accuracy 0.98 1.00

Specificity 0.99 1.00

F1-score 0.79 0.86

Naccess/Voronoi average interface size 78 16

INTBuilder average interface size 78 17

Table 6.1: Statistical values obtained when comparing INTBuilder with a 5Å distance
cutoff to Naccess and Voronoi model. For the INTBuilder-Voronoi comparison, 4 750 938
conformations were treated and the interfaces were detected at the atomic scale. For the
INTBuilder-Naccess comparison, 49 192 401 conformations were treated and the interfaces
were detected at the residue scale. PPV stands for Positive Predictive Value.

by INTBuilder, Naccess and Voronoi (Table 6.1) on the discrimination of binding

partners. We considered the 14 196 possible protein pairs of our dataset of 168

proteins and the goal was to single out the 84 experimentally validated pairs of

interactors. The docking interfaces detected by INTBuilder, Naccess and Voronoi

were compared to the experimentally known interfaces. For each protein pair, the

docking pose with the interface resembling the experimental interface the most was

selected, and the overlap between docking and experimental interfaces was used

to compute an interaction index for the protein pair. All protein pairs were then

ranked based on their interaction indices (see [67] for a detailed description of the

protocol). The discrimination power of the approach was estimated by the Area

Under the Curve (AUC). The AUC values obtained on the whole dataset and on

the different functional classes are very similar between the three detection methods

(Table 6.2). In other words, no significant advantage over INTBuilder could be

gained from using another method. These results show that INTBuilder is accurate

enough to be used in the context of partner discrimination.

6.4 Conclusion

We have presented INTBuilder, a new, easy-to-use and very efficient software which

computes the interface between two proteins. The speed of its algorithm comes from

a new way to reduce the search space before computing the interacting distances

between remaining particles and is able to achieve an O(n) complexity. INTBuilder

itself has been implemented in such a way that it can process millions of different

conformations coming from docking software in a limited amount of time. Specif-
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Atom Residue

INTBuilder Voronoi INTBuilder Naccess

AA (20) 0.83 0.84 0.86 0.83

ABA (24) 0.86 0.91 0.92 0.92

EI (38) 0.84 0.88 0.81 0.82

ER (6) 0.78 0.72 0.78 0.74

ES (12) 0.87 0.90 0.83 0.87

OG (24) 0.93 0.95 0.90 0.87

OR (14) 0.81 0.82 0.79 0.87

OX (30) 0.87 0.92 0.88 0.84

Table 6.2: AUC values for the identification of interacting partners in the Protein-Protein
Docking Benchmark v2 [76]. The complete cross-docking experiment is described in [67].
The AUCs were obtained by using experimental interfaces and docking interfaces com-
puted according to the method described in the column. The dataset is divided into 8
functional classes: Antibody-Antigen (AA), Bound Antibody-Antigen (ABA), Enzyme-
Inhibitor (EI), Enzyme-Regulator (ER), Enzyme-Substrate (ES), Other linked to G-
protein (OG), Other regulatory (OR) and Other (OX).

Complexes
Size

(atoms)
INTBuilder (s)

(atom)
Naive approach (s)

(atom)

7CEI 1724 0.0004 0.0027

1FC2 2010 0.0002 0.0024

1ACB 2291 0.0004 0.0034

1TMQ 4479 0.0010 0.0124

1JPS 4858 0.0010 0.0225

1IBR 4944 0.005 0.0261

1RLB 5171 0.0004 0.0206

2VIS 5337 0.0006 0.0294

1ML0 6221 0.0020 0.0112

1N2C 20058 0.0042 0.3607

Table 6.3: Computation time required to compute the interface for each bound complex
using inter-atomic distances. We compare the time required for the computation of the
interface only, and do not consider the I/O. The comparison is made when using INT-
Builder’s algorithm to reduce the search and when using a naive approach computing all
inter-atomic distances. Calculations have been realised on a single core processor Intel
Xeon E3-1271 v3 @ 3.60GHz.
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Complexes
Size

(atoms)
INTBuilder (s)
(atom/residue)

Naccess (s)
(residue)

Voronoi (s)
(atom)

7CEI 1724 0.003 0.225 0.139

1FC2 2010 0.006 0.382 0.227

1ACB 2291 0.004 0.377 0.174

1TMQ 4479 0.006 0.784 0.284

1JPS 4858 0.006 0.707 0.291

1IBR 4944 0.014 0.575 0.387

1RLB 5171 0.006 0.757 0.297

2VIS 5337 0.014 1.271 0.338

1ML0 6221 0.011 1.057 0.382

1N2C 20058 0.028 3.413 1.18

Table 6.4: Computation time required to compute the interface of the bound complex. For
the three tools, time is expressed in seconds (s). For Naccess and Voronoi, time includes
external tools to perform the necessary rotations. Calculations were realised on a single
core processor Intel Xeon E3-1271 v3 @ 3.60GHz.

Complexes
Size

(residues)
HEX (s)

INTBuilder (s)
(atom/residue)

Naive approach (s)
(atom/residue)

Naccess (s)
(residue)

Voronoi (s)
(atom)

7CEI 1724 184 0.404 1.081 101.3 67.5

1FC2 2010 264 0.498 0.632 80.4 50.6

1ACB 2291 176 0.551 1.044 84.0 61.3

1TMQ 4479 168 1.139 3.500 115.8 92.9

1JPS 4858 192 2.964 6.507 146.3 120.5

1IBR 4944 152 5.573 8.453 177.8 123.7

1RLB 5171 176 1.590 7.392 161.7 130.5

2VIS 5337 200 1.382 8.851 156.2 121.9

1ML0 6221 176 1.426 2.676 111.0 105.1

1N2C 20058 256 16.781 59.157 470.8 473.9

Table 6.5: Computation time required to compute the interface of 500 conformations for
each bound complex, using the docking algorithm HEX. Time is expressed in seconds
(s). For Naccess and Voronoi, time includes external tools to perform the necessary rota-
tions. Calculations have been realised on a single core processor Intel Xeon E3-1271 v3 @
3.60GHz.
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ically, it can directly read the output of known rigid-body docking software. This

feature allows it to avoid any excess of I/O and thus brings a valuable gain of time

when considering large set of docking conformations.

The data obtained from the interfaces of large-scale docking calculations can

be exploited to identify cellular partners and/or compute propensities of residues

to be found at the interface. Although INTBuilder was designed for PPIs, it can

also be readily applied to small-molecule docking. The simplicity of INTBuilder’s

usage makes it a valuable tool to identify the binding sites of small molecules from

conformations obtained by virtual screening.
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Conclusion
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The title of the PhD. thesis is “Geometry of protein interactions” and its goal

was to analyse different datasets of proteins and enlarge the scale of the existing

analysis. Specifically, I worked on two fields: The detection and interpretation of

the protein binding sites and the identification of interacting partners in a large scale

Complete Cross-Docking study (CC-D).

The analysis of protein interaction sites has brought much information, including

the emerging concept of multiple interaction sites and how proteins interact in a

crowded environment. This topic (described in depth in Chapter 4) shows that the

interacting surface of proteins would be far greater than expected and far greater

than what is currently accounted for in most cases. The analysis brings with it a new

tool which could be readily used for further analysis of biological interfaces among

homologs of a query protein and dynJET2 (developed from the JET2 software [57]),

a prediction software able to take into account any residue-based scoring into its

prediction method. The analysis brings the concepts of Interaction Sites (IS) and

Interaction Regions (IR). These two definitions are essential to understand how we

might interpret the interfaces at the proteins’ surface. Furthermore, the study shows

how it might be possible for a protein to infer if an IR is targeted by several partners

and how many functional regions a protein has. New work and effort should go in

two directions: further investigating ways to separate the dynJET2 predictions into

matching IR and refining the precision with which we are able to determine if a

predicted interface is actually an IS (specific to one partner) or an IR.

The second analysis, centred on the identification of interacting proteins in a large

scale CC-D also brings many promising results. We show here how the development

of a more advanced interface prediction method along the use of adapted scoring

methods regarding the proteins’ functions has allowed us to make great progress in

terms of partner discrimination. To answer the need of high-performing software

to compute the interfaces corresponding to docking conformations, I developed the

INTBuilder software (Chapter 6, [25]) which brings an innovative way of reducing

the search space of an ensemble of particles. This analysis brings an important

message showing how crucial it is to take into account the functional class a protein

belongs to. Moreover, we show as well that in many cases our capacities in terms

of partners identification have reached a limit which seems set by the quality and

the precision of our predictions. Searching for better and more accurate predictions

should be the next goal, but it should also be stressed that such predictions will not

be specific to a single partner. This implies that it would not be possible to attain

experimental-like discrimination results. Several paths lay ahead: One would be to

try to develop automatic methods for partner-specific interface prediction, the other

could be to shift the way we look at the issue with the current method. Instead

of characterising how a protein interacts with others through a single, well-defined

predicted interface, we could look simultaneously at all predicted interfaces of a
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protein and see how each of them interact with the different predicted interfaces of

other proteins.
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6.5 Work done

Articles

C. Dequeker, E. Laine, A. Carbone. INTerface Builder: A Fast Protein-Protein

Interface Reconstruction Tool. J Chem Inf Model, 57(11):2613-2617, Nov 2017.

Data and software available at http://www.lcqb.upmc.fr/INTBuilder/

C. Dequeker, E. Laine, A. Carbone, “Multiple binding sites of protein-protein in-

teractions predicted by combining sequence analysis and molecular docking”, to be

submitted, 2018

Data and software available at http://www.lcqb.upmc.fr/dynJET2/ (as soon as

the work is published)

C. Dequeker, E. Laine, A. Carbone, “Protein partners discrimination reached with

coarse-grain docking and binding sites predictions”, in preparation, 2018

Posters

C. Dequeker, E. Laine, A. Carbone, Large scale analysis of protein interactions,

Journées Ouvertes de Biologie Informatique & Mathématiques (JOBIM 2018), Mar-

seille, France, July 3-6, 2018.

C. Dequeker, E. Laine, A. Carbone, Large scale analysis of protein interactions,

Journée de Biologie Structurale, Paris, France, October 2nd, 2017.

C. Dequeker, R. Raucci, E. Laine, A. Carbone. Large scale analysis of protein

interactions. 15th European Conference on Computational Biology (ECCB 2016),

The Hague, The Netherlands. September 3-7, 2016

F. Corsi, C. Dequeker, E. Laine, F. Nadalin, R. Raucci and A. Carbone. Large scale

analysis of protein interactions. Symposium du Réseau de Biologie des Systèmes de

Sorbonne Universités, Paris, France, June 6th, 2016.

Presentations

C. Dequeker, E. Laine, A. Carbone, Proteins and their multiple interaction sites.

UPMC Young Researchers’ Meeting: Modeling Complex Biological Systems, Paris,

France, December 13th, 2017.

C. Dequeker, E. Laine, A. Carbone. Approaches and scorings for partner discrimi-

nation. MAPPING meeting. Paris, France, June 30th, 2017.

C. Dequeker, E. Laine, A. Carbone. Approaches and scorings for partner discrimina-

tion. Internal Seminar at the Laboratory of Computational and Quantitative Biology

(LCQB). Paris, France, April 13th, 2017.
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