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Preface

“If – and the thing is wildly possible – the charge of writing nonsense were ever brought
against the author of this brief but instructional poem, it would be based, I feel convinced,
on the line,

‘Then the bowsprit got mixed with the rudder sometimes.’ ”

—Lewis Carroll1
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1For how (and why) bowsprit and rudder got anywhere close, refer to “The Hunting of the Snark” by
Lewis Carroll.
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Chapter 1

Introduction

Airborne travel is one of safest means of passenger transportation. Modern aircraft con-
stitute complex cyber-physical systems and it is due to scrutinising certification processes
of the regularising bodies, such as the European Aviation Safety Agency, that a high stan-
dard of safe, large-scale operation is maintained. Yet, the few accidents involving civil
aircraft usually claim a large number of victims and thus are highly newsworthy. Any
incident has the potential to shatter public trust into the technology anew, including,
to the authors very consternation, two recent accidents of a freshly redesigned airliner
model of a major company. The present dissertation aims to contribute to tomorrow’s
aviation safety by design and evaluation of advanced flight control systems.

Motivation

Aviation authorities and manufactures jointly monitor incidents and accidents that occur
in the operation of civil aircraft as well as their – potentially multiple – causes. This
efforts led to the development of the ICAO1/CAST2 Common taxonomy to classify
occurrences into principal categories (Corey et al. 2008, p. 8). According to figures for
the past three decades, the foremost cause of accidents leading to fatal injuries have
been events of in-flight loss-of-control (LOC-I), with a contribution of 26 % to all fatal
accidents from 1991 to 2015 (based on accumulated data of Boeing 2001, p. 19; Boeing
2008, p. 21; Boeing 2016, p. 22). Unsurprisingly, LOC-I events also constitute the
single largest contributor to fatalities (ibid.). Data of the International Air Transport
Association (IATA) for the recent years mirrors the fatality of LOC-I (Fig. 1.1; based on
IATA 2015, pp. 3 and 6–7); however, the figure highlights a further paradox of aircraft
accidents: counting both fatal and nonfatal accidents, the three major contributors to
fatal injuries (84 %), in-flight loss of control, controlled flight into terrain, and excursion
from runway or taxiway, make up less than 40 % of all accidents. In other words, the
majority of accidents in civil aviation remain nonfatal. Yet albeit rare, the high fatality
of LOC-I events makes it today’s “highest risk to aviation safety” (IATA 2015, p. 1).

The Common taxonomy defines the category of LOC-I flight events as “extreme”
deviation of the aircraft from its desired flight-path (ICAO 2013, p. 5); the US Fed-
eral Aviation Administration (FAA) maintains a similar definition (cf. also FAA 2016,
Chapter 4, p. 1). The definition further notes that loss of control, contrary to the cate-
gory title, is not necessary for such a deviation, and further incidences may lead to loss

1International Civil Aviation Organization
2Commercial Aviation Safety Team
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Figure 1.1: Contribution of ICAO/CAST categories to accidents and fatalities, respec-
tively, for 2010–2014 (IATA 2015). Commissioned illustration.

of control. Notwithstanding, events of loss-of-control that are direct result of another,
severe incident are to be assigned to the latter’s category (ICAO 2013). The term “in-
flight loss of control” is sometimes used synonymously to an upset of the aircraft, and
so is the idea of upset recovery; yet, the two terms are related but not identical. How-
ever, in-flight loss of control may eventually lead to an upset, and (intentional) flight at
conditions otherwise qualifying as upset increase the risk of loss-of-control (ICAO 2013,
p. 5). In the late 90s, a joint project of Boeing and NASA identified distinguished sets
of flight conditions, called “upset envelopes,” which are supposed to constitute an event
of LOC-I (Wilborn and Foster 2004, pp. 3–5). Upset flight of an aircraft is characterised
by highly nonlinear behaviour of the aircraft aerodynamics, including stall, oscillatory
spin, spirals, and post-stall rotations (cf. Chambers and Grafton 1977). In response
to this severe threat to aviation, manufacturers, airlines, and aviation authorities have
developed procedures for flight crews to avoid and tackle upset events (see Carbaugh
et al. 2008; IATA 2015).

Scientific Context
The severity of LOC-I events has led to a surge of high-quality scientific publications on
the detection, prevention, and recovery from aircraft upset conditions. A notable part
considered flight control technologies as an assistant component of a piloted aircraft’s
cockpit (including Schuet, Lombaerts, Acosta, et al. 2017; Smaili et al. 2016; Stepanyan
et al. 2017); these studies commonly include experiments with full-scale flight simulators
and professional pilots. Other researchers have approached the aircraft upset dynam-
ics from the perspective of system theory, applying well-established as well as recently
developed analysis methods (such as Chakraborty et al. 2011c; Kwatny et al. 2013; Mc-
Donough and Kolmanovsky 2017). These approaches utilised algebraic models of the
aircraft aerodynamics, i.e., polynomial, rational, or piecewise affine (to name a few)
representation of the aerodynamic coefficients, which have been identified and modeled
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a priori. A third major group of work studies advanced analysis and control methods
combined with high-fidelity aircraft computer models (e.g., Gill et al. 2013; Engelbrecht
2016; Tekles et al. 2017). A joint work of NASA and Boeing into the development of a
vehicle for aircraft upset research resulted in the widely recognised Generic Transport
Model (GTM). Along with the GTM’s openly available, high-fidelity model for MAT-
LAB/Simulink comes a 2.08 m-wingspan unmanned aircraft representing a 5.5 % scaled
generalised airliner (see Foster et al. 2005; Jordan et al. 2006). Despite the GTM, few
designs have actually been tested in flight experiments (such as Gregory et al. 2011).

We give a detailed review of the literature on upset recovery and related work in the
next chapter.

Research Objectives

Analysis and control of the aircraft flight dynamics over a large range of flight conditions
is one of the most difficult problems in systems and control engineering. To describe the
aircraft’s translational and rotational motion relative to earth at any time, numerous in-
dependent states and inputs are required. The aerodynamic forces and moments induced
by the wings, control surfaces, and the fuselage have no known algebraic relation to the
aircraft’s state and geometries but must be investigated in extensive wind-tunnel mea-
surements or simulations of fluid dynamics. (cf. Brockhaus et al. 2011, pp. 31, 99–108,
and 138–142). Moreover, control inputs are inherently constrained by physical limits
and control effects may change significantly with the state of the aircraft.

Consequently, insights due to algebraic analysis are limited by the accuracy of the
underlying model. On the other hand, nonlinearity of the aerodynamics and increasing
complexity of the aircraft flight control systems call for advanced certification methods in
order to ensure safe recovery, which, in turn, require algebraic models of higher order. We
have chosen an approach that adopts analysis and control methods from system theory
for as-accurate-as-possible aerodynamic models, in order to prove mathematically the
properties of the controlled aircraft system. We further consider recovery of a vehicle
without a pilot in the loop, that is, an autonomous unmanned aircraft or autonomous
operation of a piloted aircraft (see ICAO 2011, p. ix, for a glossary). In following
procedures for manual recovery (FAA 2016, Chapter 4, pp. 7 and 15), we will focus on
upset recovery using the aircraft’s control surfaces only, thus reducing the number of
control inputs. We then assume the aircraft to be recovered if it has been brought back
into its normal flight envelope (see Terminology in the next chapter) whence continuation
of the flight operation, such as regaining altitude or returning to level flight, can be
ensured.

Contributions

The research of this thesis has contributed both to system’s theory and aeronautical
control engineering. Its major contributions are:
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1. to develop a new and simplified fitting method for piecewise models that accurately
describe the aerodynamics over the full flight envelope, distributed in the open-
source pwpfit toolbox;

2. to thus provide a piecewise aircraft model for the Generic Transport Model for
analysis and control beyond the normal flight envelope;

3. to investigate the dynamics of a small, fixed-wing unmanned aircraft in deep-stall
flight and, based on the results, identify an algebraic model suitable for analysis
and control of longitudinal upset conditions;

4. to adapt and extend system theoretical analysis tools to piecewise-defined (aero-
dynamic) models including multivariate splines;

5. to implement a strategy for the synthesis of upset recovery control laws that guar-
antee stable recovery;

6. to reformulate the problem of upset recovery subject to minimal loss of altitude as
receding-horizon control problem and rigorously prove its stability; and

7. to demonstrate the application of receding-horizon control for recovery from upset
conditions such as oscillatory spins and spirals.

The probably greatest contribution of this thesis however are not its theoretical sugges-
tions nor the aeronautical results, although those too are new results; it is to transfer
the concepts of the wider field of system’s theory to the aerospace community, to adapt
theories for the needs of aerial designs, and to make their approaches available for aero-
nautical engineering and research.

Thesis Outline

The dissertation is divided into two parts, with the aim that both parts can be read
– and understood – independently. This is also ensured by the fact the main chapters
have been written as self-contained research articles. For this document, they have been
partially edited and are linked together. Further introduction and technical background
chapters give space for extended discussions. The following structure provide a logical
order and does not necessarily reflect the temporal sequence:

Chapter 1 The present chapter has given a rather broad introduction into the topic
and context of this dissertation. It was written for the thesis.

Chapter 2 The purpose of the second chapter is to introduce more specifically the
challenges of upset recovery and accommodate the reader with the relevant termi-
nology and literature. Furthermore, we define general notations and present the
two aircraft used in this dissertation. The chapter was written for the thesis.
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Part I is dedicated to modeling and analysis of an aircraft as nonlinear system. It
emphasises the unstable and nonlinear behaviour of an aircraft outside its normal flight
envelope. Throughout the first part, the aircraft is treated as open-loop system.

Chapter 3 We introduce a novel technique of piecewise-defined, polynomial modeling
of the aerodynamic coefficients and discuss the necessary adaptations for nonlinear
analysis tools. Chapter 3 has been published in the Journal of Guidance, Control,
and Dynamics (Cunis et al. 2019).

Chapter 4 Based on the piecewise polynomial modeling of the previous chapter, we
study in deep the change of dynamics during the transition from normal flight
into deep-stall, both by means of nonlinear analysis and inflight measurement
data. Chapter 4 is currently under review for the Journal of Aircraft (Cunis,
Condomines, Burlion, and la Cour-Harbo 2019).

Chapter 5 The last chapter of Part I constitutes a stand-alone, mainly theoretical
contribution that takes some of the ideas for the analysis of piecewise polynomial
models and extends these to more complex systems, making the results of the
dissertation available for accurate modeling techniques. Chapter 5 is currently
under review for Automatica (Cunis, Condomines, and Burlion 2019a).

Part II considers the problem of providing (autonomous) control for an aircraft in order
to restore its normal flight conditions, without exceeding its limitations, after an upset
situation. Here, we revisit the major results of the first part as such as we make use of
the provided models and its properties.

Chapter 6 In the first chapter of the control part, we start by extending the analysis
tool of Chapters 3 and 5 for control synthesis. Thus, we are able to derive provable
certificates for stable recovery from deep-stall flight conditions. This chapter is
currently under review for the Journal of Guidance, Control, and Dynamics (Cunis,
Condomines, and Burlion 2019b).

Chapter 7 We now consider a powerful control methodology for constrained nonlinear
systems, namely variants of model predictive control, in order to recover an aircraft
from deep-stall flight. In addition, we prove stability of the designed feedback.
Chapter 7 has been accepted for presentation in the 58th Conference on Decision
and Control (Cunis, Liao-McPherson, et al. 2019).

Chapter 8 With the last chapter of the main parts of this thesis, we further extend and
demonstrate the use of model predictive control for a full, six-degrees-of-freedom
aircraft model. This allows us to recover from upset situations such as spirals and
oscillatory spins subject to constraints and indicates future work. This chapter has
not been published yet.

Chapter 9 concludes the dissertation with a discussion of the obtained results, their
interconnection, and indicated future work. We finally summarise the major findings
and contributions. The last chapter, again, was written for the thesis.
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Chapter 2

Upset Recovery

Over the better part of the past two decades, researchers and aeronautical engineers have
directed their strength towards the reduction of accidents and fatalities related to in-
flight loss-of-control events. This has led to a rich body of scientific literature – including
a special issue of the Journal of Guidance, Control, and Dynamics (Lu et al. 2017) –
which can be loosely subsumed under the headings upset prediction, upset prevention,
and upset recovery. This chapter aims to introduce the reader to the terminology and
literature of upset recovery and to provide a common background to understand the
challenges and contributions of the subsequent study.

2.1 Terminology
Understanding the key concepts of aircraft upset recovery is imperative for the further
discussion. Due to the diverse nature of the literature, some concepts are well founded in
system’s theory, others are directly related to aeronautical (control) engineering. More-
over, we found the literature to be not always consistent in the terms its authors used.
In the following, we concisely review and, where necessary, define the most important
concepts in common language.

In-flight loss-of-control (LOC-I) A deviation of the aircraft’s actual flight path from
the desired flight path, which is ‘significant’ (FAA 2016, Chapter 4, p. 1) or ‘ex-
treme’ (ICAO 2013, p. 5). Also, a category of the ICAO/CAST Common taxonomy
for aircraft incident reports.

Flight envelope Generally speaking, a flight envelope is a hyper-dimensional manifold
– or sub-space – of which each dimension represents a single parameter of aircraft
flight. A flight envelope may be defined by a set of conditions on some or all
parameters (e.g., αmin ≤ α ≤ αmax for the angle of attack α). Besides the envelopes
of Wilborn and Foster (2004) about which conditions constitute an upset, there
are further envelopes worth consideration (illustrated in Fig. 2.1):

• The structural flight envelope or operational envelope comprises conditions at
which the aircraft may be operated without jeopardising the structural in-
tegrity of the vehicle. For commercial aircraft, the operational envelope is
specified by the manufacturer within the process of flight-worthiness certifi-
cation.

• The normal (or “nominal”) flight envelope is described by parameter values
at which the aircraft is supposed to fly over the course of regular operation.
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Figure 2.1: Artistic illustration of normal flight envelope, (structural) safe flight envelope,
and structural flight envelope. Commissioned illustration. (Note: planar depiction is for
illustration purposes only and does not represent the location of the aircraft. Envelopes
do not necessarily share common boundaries.)
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• The safe flight envelope is commonly defined as the maximal set such that
the aircraft can, for all times, be kept within either a normal flight envelope
(nominal safe) or the structural flight envelope (structural safe) by means of
flight control (cf. Kwatny et al. 2013, p. 157). In other words, the safe flight
envelope is the largest controlled invariant1 (not necessarily strict) subset of
the another, given envelope.

Trim (condition) An aircraft is called in trim if the forces and moments (lift, drag,
engine thrust, weight, etc.) level out. Then, a trim condition is a state at which
the aircraft is in trim. Almost all civil airliners are passively stable to moderate
perturbations of the normal flight trim conditions (Brockhaus et al. 2011, p. 672).

Upset (condition) An aircraft upset is an event at which the aircraft (unintentionally)
exceeds some parameters of normal flight (FAA 2016, Chapter 4, p. 2). Further-
more, Wilborn and Foster (2004) have tied the notion of upset to one of five flight
envelopes commonly observed in LOC-I incidents. An upset condition is subse-
quently a state at which the aircraft is upset (that is, a state that lies within one
of the upset envelopes). Often, an upset condition constitutes a stable and attrac-
tive mode of the flight dynamics (Goman et al. 1997, p. 546), such as oscillatory
spin or spiral (Fig. 2.2), increasing the difficulty of upset recovery.
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(b) Period-three oscillatory spin.

Figure 2.2: Illustrations of aircraft flight paths in upset conditions (based on Gill et al.
2013, Figures 4 and 8). Commissioned illustrations.

Aerodynamic stall A wing generates a force that lifts the aircraft due to the fact that
an incoming air flow streams around the wing (Brockhaus et al. 2011, p. 100);
initially, the generated lift increases with the angle relative to the advancing air.

1See Blanchini 1999, p. 1749, for a mathematical definition.
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However, at some point (namely the stall angle of attack) the air stream detaches
from the wing (see Fig. 2.3 for an illustration). Subsequently, insufficient lift is gen-
erated (FAA 2016, Chapter 4, p. 5). Stall events typically occur when the aircraft’s
nose is pulled up too far, or horizontal or vertical gusts change the environment of
the aircraft spontaneously and unanticipated.

15°, stall point, maximum lift6°, steady flow 25°, separated flow

relative wind

Figure 2.3: Illustration of the airflow around an aircraft wing before, at, and beyond the
stall angle of attack. Commissioned illustration.

With this terminology in mind, we can proceed to formulate upset recovery by means
of system theory. By the common definition, the aircraft is in a state of in-flight loss-
of-control once it deviates, by an exceptional margin, from the initially specified flight
path. An upset occurs, in addition, if the aircraft also leaves its normal flight envelope
and enters one of the upset envelopes. Any control action in order to return the aircraft
into the normal flight envelope must be applied within the safe flight envelope. However,
the safe flight envelope, by its definition, does not guarantee that the aircraft can be
recovered; only, that it can be kept within a desired envelope. In contrast to upset
recovery control, upset prevention aims to apply control before the aircraft has left or
is about to leave the normal flight envelope. LOC-I prevention, finally, could be both
understood as a) preventing a deviation from the desired flight path in the first place,
or b) prevention of a LOC-I accident as final result, paramount to upset recovery. It
should be noted though that only the safe flight envelopes are derived by system theory,
whereas normal, upset, and structural flight envelopes are to be specified a priori.

2.2 Literature Review

Belcastro et al. (2017), in their introduction-cum-survey for the JGCD special issue,
emphasised the multifaceted nature of hazards and challenges imposed by LOC-I. As
key elements for a ‘holistic solution’ (Belcastro et al. 2017, p. 742), they thus identified
research into the development of models for aircraft dynamics in upset conditions; de-
tection, prevention, and recovery of upset conditions by onboard systems monitoring the
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aircraft in real-time; and analysis and validation methods suitable for complex control
systems and nonlinear dynamics (Belcastro et al. 2017, pp. 744, 748–752, and 755).

The FAA Airplane Flying Handbook has since long been a reference for manual
recovery of a piloted aircraft (FAA 2016, Chapter 4), with procedures for stall recovery,
spin recovery, and spiral recovery. Gratton et al. (2014) evaluated different actions
in response to a stall upset; in this study, initially adding thrust was found to be ef-
fective in reducing the loss of altitude during stall recovery (Gratton et al. 2014, p. 472).
A major contribution for multidisciplinary research into upset recovery has been the
development of the Generic Transport Model (GTM). Based on aerodynamic wind-tunnel
test data for 3.5 % and 5.5 % scaled transport aircraft models, assessing in particular the
impact of elevator, rudder, flaps, and side-slip by increasing angle-of-attack, the Generic
Transport Model was developed (Foster et al. 2005) and validated against flight tests
of the AirSTAR, an unmanned aircraft representing a 5.5 % scaled generic transport
aircraft (Jordan et al. 2004; Jordan et al. 2006). The GTM’s three-gestalt, consisting
of a high-fidelity desktop simulation,2 aerodynamic data for aircraft training simulators,
and the test aircraft AirSTAR, provided background and comparability for researchers
of several disciplines. The GTM’s “big brother,” a full-scale aircraft model of its kin, is
referred to in the literature as Transport Class Model (TCM).

Today’s literature highlights the disparity of fields and approaches contributing to
upset recovery and the related issues. In the following, we will distinguish studies with
pilot-in-the-loop experiments, system theoretical approaches using algebraic models, and
control approaches developed on and evaluated against high-fidelity desktop simulations.

Control methodologies with pilot-in-the-loop experiments

Large aircraft simulators are commonplace in aeronautic practice. These training de-
vices emulate the aerial flight experience mimicking an aircraft’s instrumentation and
handling. Its wide range of application include training and licensing of pilots as well
as studies into crew behaviour under stress. Indeed, pilot-in-the-loop studies are fun-
damental for the evaluation of recovery schemes for commercial airliners. Cunningham
et al. (2011) evaluated and compared different control laws, namely linear quadratic reg-
ulator, model-reference adaptive control, L1-adaptive control, and H∞ control, against
a piloted GTM simulator. Crespo et al. (2012) further compared different linear, outer-
loop control strategies for upset recovery using piloted simulations with the GTM. In
addition, Gregory et al. (2011) reported practical flights with the AirSTAR aircraft using
an L1-adaptive control approach which was prior detailed by Xargay et al. 2010.

Nonlinear control techniques have been applied, too. Richards et al. (2017) detailed
an upset recovery system for both piloted and automated vehicles which has been eval-
uated in a pilot-in-the-loop simulation of the GTM. Optimal recovery trajectories are
computed solving linear receding-horizon (i.e., model-predictive) control problems online.
Using pseudo-control hedging (compare Lombaerts et al. 2010) and nonlinear dynamic
inversion, Stepanyan et al. (2016) presented upset recovery guidance algorithms under

2Made available as MATLAB/Simulink model in NASA (2016).
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state or input constraints. The different approaches were evaluated in a piloted GTM
simulation. Stepanyan et al. (2017) further proposed an adaptive approach to predict the
boundary of the safe nominal envelope during flight. Applied to the GTM, the prediction
system has been evaluated in a pilot-in-the-loop simulation. Moreover, Lombaerts et al.
(2013) computed invariant, viable, and forward and backward-reachable sets under the
presence of uncertainties.

Schuet, Lombaerts, Kaneshige, et al. (2017), too, employed fast (linear) model pre-
dictive control for guidance of the pilot in order to recover the aircraft from a stall event.
Lombaerts et al. (2017) developed a guidance system for recovery from stall events based
on the aircraft’s total energy. The two guidance systems were later evaluated in pilot-
in-the-loop simulations of the GTM (Lombaerts et al. 2018). Simulations of these and
further guidance algorithms are detailed in Schuet, Lombaerts, Stepanyan, et al. (2017).

From a conceptual point of view, taking into account human-vehicle interactions,
Smaili et al. (2017) details the design of upset recovery systems for civil airliner. Both
autonomous and manual (guidance) operations were evaluated in piloted simulations.
A visual guidance system for piloted upset recovery was presented by Richards et al.
(2018). This system was tested in piloted flights of a Learjet aircraft in different upset
scenarios including vehicle impairment.

Not only are recovery control and guidance procedures subjected to pilot-in-the-loop
simulation, Nooij et al. (2016) evaluated the SUPRA generic aircraft model itself using
the feedback of pilots with experience in post-stall flight. Smaili et al. (2016) further
developed a simulation environment based on a Boeing 747 commercial airliner as well
as a benchmark classification for upset recovery by modeling the 1982 accident of a
B747-200F freighter in order to test and compare piloted and automated operations.

System theoretical approaches to upset recovery

Analysis and control techniques founded in system theory have produced provable re-
sults. Chakraborty et al. used a nonlinear model of an F/A-18 fighter jet to investigate
the so-called “falling-leaf” upset mode, of which this aircraft model had been reported
to be prone. They considered linear analysis methods such as Bode margins and ro-
bustness against uncertainties (Chakraborty et al. 2011b), but found they could not
discriminate between an initial control approach and its revised version. Only with a
nonlinear region-of-attraction estimation (Chakraborty et al. 2011c) they were able to
show that the revised controller could actually prevent entering the falling-leaf mode.

McDonough et al. (2014) computed the set of initial conditions for which a closed-loop
system trajectory satisfies its constraints for all time, so-called recoverable set. Under
certain conditions, including a linear system and linear inequalities, the recoverable set
is finite and thus computable. The authors presented the computation, scaling, and
application of linear recoverable sets for flight planning under changing, environmental
conditions. Subsequently, McDonough and Kolmanovsky (2017) employed recoverable
sets in order to design a trim-point-to-trim-point control approach for a nominal, linear
control law synthesised for each trim point. Thus, the feasibility of a sequence of trim
points is guaranteed by the obtained, recoverable sets.
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Allen et al. (2012) determined the controlled invariant set of the nominal flight enve-
lope solving the Hamilton-Jacobian partial-differential equations (Lygeros 2004, p. 920).
The authors further discuss restoration, that is, recovery into, and protection of the
safe set by linear quadratic and sliding-mode control approaches, respectively, for the
longitudinal aircraft motion. Moreover, Kwatny et al. (2013) worked out a nonlinear,
full-envelope analysis of the longitudinal dynamics of the GTM. They compared normal
as well as high-angle of attack trim conditions obtained by continuation analysis and
argued that the trim condition at stall is, in fact, a bifurcation point; thus, controllabil-
ity at stall is reduced (Kwatny et al. 2013, p. 154). Reachability, safe sets, and control
under constraints are discussed and lead to a discussion of the GTM’s manoeuvrability
in terms of viable flight-path inclination over airspeed, which further demonstrates the
effects of limited elevator deflections. Based on these results, Dongmo (2010) in his PhD
thesis considered upset recovery as boundary-value problem employing nonlinear smooth
regulators as well as switching controllers with underlying sliding-mode formulation.

Based on the nonlinear the F/A-18 (presented in Chakraborty et al. 2011c), Chang
et al. (2016) evaluated the ability to recover from an initial upset condition to a pre-
defined trim condition using linear controllers. A linear quadratic regulator feedback was
subsequently modified in order to take into account the periodicity of the bank angle; in
addition, an linear quadratic regulator (LQR) feedback law was combined with height
tracking control, and then augmented for accommodation of elevator jam failures. In
particular, the authors demonstrated the ability to recover the aircraft into stable level-
flight trim conditions for different settings of the jammed elevator.

Recently, Zhao (2016) dedicated her PhD thesis to the design and development of
a discrete-event-driven, automatic flight control system for prevention and recovery of
upset events. The multi-mode, hierarchical control architecture was based on trajectory-
linearisation control and bandwidth adaptation techniques and subsequently analysed
applying linear robust control theory.

Control design for high-fidelity aircraft simulations

Several studies analysed, designed, and evaluated upset recovery systems using high-
fidelity desktop simulations such as the GTM simulation. Sparks and Moerder (2002),
as early example, employed trajectory optimisation for recovery from a high-bank upset
condition with minimal loss of altitude during recovery. Trajectories with and without
a rudder jam failure are compared.

Gill et al. (2013) performed a rich numerical continuation analysis of the GTM and
discussed bifurcation of the eight-states aircraft model with respect to the elevator de-
flection. They obtained several stationary and periodic solutions (such as spirals and
oscillatory spins), partially attractive, which constitute upset conditions. The authors
further investigated the transition between upset conditions and concluded that, for
some conditions, a sequence of disturbances or unfortunate control inputs is necessary
to reach these conditions (Gill et al. 2013, p. 1839).
Based on a similar analysis, Engelbrecht et al. (2013) described a state-machine based
control approach of simple linear controllers for upset recovery. The approach sequen-
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tially stabilises first body rates and aerodynamic angles; then recovers the attitude; and
finally reduces overspeed and recovers flight altitude. The PhD thesis of Engelbrecht
2016 constitutes one of the most comprehensive studies of upset recovery approaches
using high-fidelity models of the recent years. Additionally to the state-machine based
approach and bifurcation analysis as well as Monte Carlo simulations of the passive
GTM aircraft, he further discusses control approaches based on Lyapunov’s stability
theory and dynamic programming. All approaches were simulated against the GTM
high-fidelity model.
Kim et al. (2016) conducted a numerical bifurcation analysis of the nonlinear spin dy-
namics of an F/A-18 fighter jet and presented an optimal spin recovery approach based
on reinforcement learning.

Schuet, Lombaerts, Acosta, et al. (2017) proposed an online estimation and system
identification method that is employed to predict the safe flight envelope during flight,
in particular under presence of disturbances or damages. The authors discussed different
examples using a desktop simulator of a transport aircraft. Tekles et al. (2017) further
reported the development of a flight envelope protection system for the GTM which
overrides the conventional flight control system in order to ensure a safe flight condition.

Bunge and Kroo (2018) developed a control architecture for spin recovery with the
objective to reduce the loss of altitude during recovery. The architecture consists of
a switching control design with arrest and pull-out stages. The arrest controller is
derived by optimisation over an aircraft model for high angles of attack and the control
architecture is validated, with good results, against spin flight data recorded by NASA.
The authors further conducted flight test using a micro air vehicle (see Bunge 2017).

Akcal et al. (2018) performed Monte-Carlo simulations with a high-fidelity F/A-18
aircraft model to study the ability of different linear and nonlinear feedback laws to re-
cover the aircraft from high-rate upset conditions. The authors measure time and ability
to recover over a range of initial angles of attack. Yildiz et al. (2019) further detailed
the design of an elaborate switching-mode upset recovery control system, of which the
switching conditions are computed by parameter optimisation. The synthesised control
system is evaluated in Monte-Carlo simulations of the GTM and its ability to recover the
aircraft is compared to the designs of Engelbrecht et al. (2013) and Richards et al. (2017).
The proposed recovery scheme is further demonstrated on a high-fidelity simulation of
the F-16 agile aircraft.

Further studies

Early approaches for upset recovery studied the use of engine thrust only for recovery in
case of a failure of the hydraulic system. Burcham Jr et al. (1997) detailed the develop-
ment and evaluation of a flight control system based on throttle-only control. Controlling
both longitudinal and lateral dynamics of an MD-11 transport aircraft, both landing and
upset recovery using throttle-only control has been demonstrated in flight tests. Later,
Burcham Jr et al. 2009 discussed the effectiveness and feasibility of throttle-only control.
Flight tests have been performed with different transport aircraft and recoverability by
throttle only is evaluated for multiple flight segments. Throttle-only control is also pre-
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sented for military aircraft in Urnes Sr 2012, including throttle-only landing of a NASA
F-15 aircraft. Upset recovery of damaged aircraft was briefly discussed.

2.3 Challenges

Despite extensive research and many contributions, LOC-I still imposes significant chal-
lenges. This includes advances in computational methods for large-scale system applica-
tion and coordinated toolchains incorporating multiple approaches (Belcastro et al. 2017,
p. 767). In particular, validation and certification of flight control systems is imperative
to ensure safe recovery. However, future complex systems and flight at non-nominal
flight conditions call for novel verification techniques beyond Monte-Carlo simulations
and robust linear control theory (Philippe 2011, p. 206). Integration of this techniques
from research into practice is a tedious process (Philippe et al. 2011, p. 11) and requires
a close interaction between systems theory and aeronautical engineering.

Recent years have seen an increasing participation of unmanned aircraft within the
common airspace and this trend is widely expected to lead to unmanned as well as (small)
passenger aircraft that operate autonomously. Indeed, these vehicles aren’t any less
prone to upset situations. For a remote-piloted aircraft for example, flight through heavy
clouds implies an obstruction of the line-of-sight under presence of strong upwinds risks a
vehicle upset upon which the pilot may only react delayed. Autonomous and unmanned
aircraft which are upset do not only endanger passengers onboard as well as humans
and infrastructure in the proximity, but the safety of the wider aviation system and its
participating aircraft (Belcastro et al. 2017, pp. 764 and 766). In the absence of a pilot,
upset prevention and recovery requires extensive decision-making processes (Marshall
et al. 2018, p. 2) – a conundrum given the bespoken need for rigorous certification!

The role of autonomous and semi-autonomous operation in commercial aviation is
steadily increasing and the successful integration of automatic flight control systems for
military aircraft (Philippe et al. 2011, p. 12; Swihart et al. 2011, p. 10) strengthens wider
acceptance. Automatic operations do not only increase the vehicles safety, but also re-
duce pilot’s mental load (Harris 2007, p. 521; Endsley 2017, p. 16). In the view of the
perils of upset situations as well as recent accidents involving malfunctioning flight con-
trol systems, unmanned aircraft can provide testbeds for experiments, demonstrations,
and inflight validation, thus serving as moderators for public compliance.

Over the last years, researchers have developed several upset recovery control ap-
proaches and evaluated the proposed systems successfully with high-fidelity simulations.
System-theoretic approaches have made tremendous progress for nonlinear validation
and certification. However, there is a considerable disparity between the models consid-
ered in system theoretic studies and the aforementioned high-fidelity models. If nonlin-
ear system theory and analysis is to be applied for verification of future upset recovery
schemes, further research is imperative to incorporate the highly nonlinear aircraft dy-
namics into modeling and analysis tools. Moreover, extension towards analysis of hybrid
systems is necessary for verification of multi-mode, discrete-event-driven, and switching
control approaches such as Engelbrecht et al. (2013) or Yildiz et al. (2019).
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2.4 Preliminaries

The main chapters of the dissertation were written as self-contained research articles,
including preliminary definitions and notations. In order to avoid repetitions, we limit
this section to the most fundamental concepts; some of which may have been tacitly
used in the remainer.

2.4.1 Notations

We make use of the following conventions, notations, and definitions:

Mathematical notations

The set of natural numbers is denoted by N; the set of discrete, by Z; and the set of
real, by R. The sets of positive and non-negative (real) numbers are further denoted by
R+ and R≥0, respectively. For a pair of vectors a, b ∈ Kn, n ∈ N, the scalar product is
written as 〈a, b〉 = aT b. The 2-norm of a vector x ∈ Kn is denoted by ‖·‖2 and defined
as ‖x‖2 =

√
〈x, x〉. Polynomials in a body K and vector x ∈ Kn form the set K [x].

We make further use of the kappa-ell classes K, K∞, (L), and KL of continuous
functions, which are defined as follows:

Definitions 2.1. Let α : [0, a) → R≥0, δ : [0, ∞) → R≥0, and β : [0, a) × [0, ∞) → R≥0
be continuous with a ∈ R+ ∪ {∞};

• α belongs to class K if and only if α(·) is strictly increasing and α(0) = 0;

• α belongs to class K∞ if and only if a = ∞, α ∈ K, and α(r) → ∞ for r → ∞;

• δ belongs to class L if and only if δ(·) is strictly decreasing and limt→∞ δ(t) = 0;

• β belongs to class KL if and only if β(·, t) ∈ K, β(r, ·) ∈ L;

with t ∈ [0, ∞) , r ∈ [0, a).

We will frequently use the set-builder notation

A = {x ∈ Kn | ℘(x)} (2.1)

for some n ∈ N, body K, and predicate ℘ : Kn → {⊥, >}; by this notation, we say that
A is the set of all elements x in Kn such that ℘ holds, and A ⊆ Kn. More specifically,
the predicate might be specified by a real scalar field L : Kn → R and ν ∈ R, in which
case we write

ΩL≤ν =def {x ∈ Kn | L(x) ≤ ν } ; (2.2)

however, in Chapter 3 we use alternatively ΩL =def {x ∈ Kn | L(x) = 0} (note the equal-
ity here) and in Chapter 6, we write short Ων = ΩL≤ν if the choice of L(·) is unambiguous.
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Notations for aircraft dynamics

Variables for the notation of the aircraft state and motion follow, where possible, ISO
1151-1 (1988): Flight dynamics – Concepts, quantities and symbols – Part 1: Aircraft
motion relative to the air. Vector-valued variables such as forces, moments, and veloci-
ties, are conveniently expressed in one of the following orthogonal, right-handed reference
axis systems:

• Body axis system (xf , yf , zf): Originated in the aircraft’s centre of gravity; xf -axis
points longitudinally towards the nose; yf -axis points along star-board wing; zf -axis
completes the setup;

• Air-path axis system (xa, yaza): Originated in the aircraft’s centre of gravity; xa-
axis follows the aircraft’s velocity vector (VA); ya-axis points along star-board
wing but orthogonally to xa-axis; za-axis completes the setup;

• Earth-fixed axis system (xg, yg, zg): Originated in an arbitrary, fixed point; xg-axis
points (geographically) north; yg-axis points (geographically) east; zg-axis points
vertically down completing the setup.

Vector components referring to the respective axis system are indicated by subscripts (f ,
a, g); subscripts for the body axis system may be omitted.

The aircraft’s attitude vector is defined by rotation of the earth-fixed axes into body
axes using the Euler angle sequence Ψ (azimuth angle), Θ (pitch angle), and Φ (roll
angle). Likewise, the air-path angles χA (air-path azimuth), γA (air-path inclination),
and µA (air-path bank), in this order, rotate the earth-fixed axes into air-path axes.
Throughout the dissertation, we neglect the presence of wind and thus may drop the
subscript (A). The aerodynamic angles α (angle of attack) and β (side-slip angle) are
finally defined, in reversed order, by rotation of the air-path axes into body axes.

We prefer to denote the aircraft control inputs by the greek letters ξ (aileron de-
flection), η (elevator deflection), and ζ (rudder deflection) instead of δa, δe, δr.3 By con-
vention, a control deflection is positive if it leads to a mathematically-negative moment
with respect to the xf , yf , and zf -axis, respectively.

2.4.2 Nonlinear aircraft dynamics

The nonlinear equations of motion in this thesis are derived from Newtonian laws taking
the aircraft for a rigid body and a point mass. During flight, we consider the following
three types of forces and moments: aerodynamic force RA and moment QA due to the
aircraft’s motion relative to the air; weight force RG due to the earth’s gravity; and
thrust force RF and torque QF due to the propulsion. The total of forces lead to change
in the aircraft’s velocity vector VAf , in body axis obtained as

V̇Af = 1
m

(
RA

f + RG
f + RF

f

)
+ ωf × VAf , (2.3)

3Or δl, δm, δn according to ISO 1151-1.
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where ωf is the vector of body rates and m is the mass of the aircraft. Likewise, the
angular velocity is subject to the moments and

ω̇f = I−1
(
QA

f + QF
f − ωf × Iωf

)
, (2.4)

where I is the matrix of inertias with

I =

 Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz


for a symmetric aircraft (that is, Ixy = Iyz = 0). Rotating the weight force into body
axis, we have

RG
f = −g

 sin Θ
sin Φ cos Θ
cos Φ sin Θ

 . (2.5)

If we assume the engines (or propeller) to be aligned with the xf -axis, symmetric to the
xf -yf -plane, and shifted vertically from the centre of gravity by lt, the induced thrust
force and torque can be written as

RF
f =

F
0
0

 , QF
f =

 0
ltF
0

 , (2.6)

where F is the (undirected) thrust. We further obtain the aerodynamic forces and
moments as

RA
f = 1

2%SV 2
A

CX
CY
CZ

 , QA
f = 1

2%SV 2
A

 b Cl
cACm
b Cn

 , (2.7)

where % denotes air pressure, S the wing area, b the wing-span, cA the mean chord, and
VA = ‖VAf‖ is the airspeed.4 The dimensionless aerodynamic coefficients CX, CY, CZ, Cl,
Cm, Cn in body axis are functions of angle of attack, side-slip angle, surface deflections,
and body rates. For the latter, the normalised rates ω̂f are commonly used:

ω̂f = 1
2VA

b
cA

b

ωf . (2.8)

Finally, the body rates are converted into the nonorthogonal change of attitudeΦ̇
Θ̇
Ψ̇

 =

1 sin Φ tan Θ cos Φ tan Θ
0 cos Φ sin Φ
0 sin Φ sec Θ cos Φ sec Θ

ωf . (2.9)

4Throughout the thesis, we use “velocity” for the vector value and “speed” for its norm.
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We use the following notation for the vectors and their components:

V =

u
v
w

 ; ω =

p
q
r

 ; R =

X
Y
Z

 ; Q =

L
M
N

 ; (2.10)

in accordance with ISO 1151-1.
For the aircraft’s state vector, we choose the nine parameters

xT =
[

uf vf wf p q r Φ Θ Ψ
]

. (2.11)

Note that this choice excludes position of the aircraft from being a state, as these do not
affect the derivatives above.5 On the other hand, our choice is convenient for equilibrium
(ẋ = 0) and trim condition are equivalent here. The azimuth, too, has no effect on the
aircraft’s equations of motion and can hence be dropped. However, we might want to
impose the additional constraint

Ψ̇ = 0 (2.12)

for level flight or

Ψ̇ = χ̇A (2.13)

for a coordinated turn (see Cunis, Condomines, and Burlion 2017, pp. 109 and 111,
for details). The change of position now constitutes an output of the system aircraft
dynamics, namely

ẋg = Mgf(Φ, Θ, Ψ) Vf , (2.14)

where Mgf denotes the Euler rotation matrix from body into earth axis system under
the aforementioned sequence.

We also consider the longitudinal dynamics only, assuming level flight and zero side-
slip (Φ = β = 0). In this case, the equations of motion are reduced to

V̇A = 1
m

(
F cos α − 1

2%SV 2
ACD − mg sin γA

)
, (2.15)

γ̇A = 1
mVA

(
F sin α + 1

2%SV 2
ACL − mg cos γA

)
, (2.16)

q̇ = 1
Iyy

1
2%ScAV 2

ACm, (2.17)

Θ̇ = q, (2.18)

and Θ = α + γA. Here, the aerodynamic lift and drag coefficients CL, CD are obtained
from CX and CZ by rotation into the air-path axis system:[

CL
CD

]
=
[

+ sin α − cos α
− cos α − sin α

] [
CX
CZ

]
(2.19)

with Yf = Lf = Nf = 0.
5However, simulations such as the GTM implement an atmospheric model based on the altitude.

19



2.4.3 Aircraft

We are going to model, analyse, and finally control the upset dynamics of two dif-
ferent aircraft in the course of this dissertation. The first is the already introduced
Generic Transport Model, the result of a cooperation between Boeing and NASA in
order to improve studies of upset dynamics, and sujet d’étude of numerous research
papers. The second is a further fixed-wing unmanned aircraft called “Cumulus One”
which is developed by a Danish start-up and that has initially been studied through
a cooperation with the University of Aalborg (cf. Cunis, Leth, et al. 2018). Fig. 2.4
illustrates the two aircraft; Tab. 2.1 compares their main parameters. Unlike the GTM
whose asymmetry at stall prompts a roll departure into a spiral or oscillatory spin,
Cumulus One has been designed to descend in a stable deep-stall trim condition; thus,
we are able to isolate and investigate separately its longitudinal dynamics.

Table 2.1: Parameters of the Generic Transport Model and Cumulus One.

GTM Cumulus unit
flight mass m 26.19 1.55 kg
wing span b 2.09 1.66 m

mean chord cA 0.28 0.174 m
wing area S 0.55 0.277 m2

engine displacement lt 0.10 – m
air density % 1.20 1.25 kg/m

gravitational constant g 9.806 65 m/s2

Generic Transport Model

Widely recognised, the different instances of the GTM (Fig. 2.5) have facilitated research
and comparison of upset recovery in the last years. Equipped with twin engines, the
GTM is supposed to resemble a common passenger airliner in a scale of 5.5:100. Its
high-fidelity simulation is openly available as MATLAB/Simulink model (NASA 2016)
and gives access to a wide range of aerodynamic data. Although based on Newtonian
dynamics too, the simulation goes well beyond the nonlinear equations of motion of the
previous section; its many (optional) details include segmented control surfaces as well
as flaps, stabilisers, and landing gear, actuator dynamics, aerodynamic coupling, shifting
of the centre of gravity through fuel consumption, telecommunication delay and noise,
as well as an atmospheric model. Damage cases are provided, too.

For the shifting of the centre of gravity, the aerodynamics coefficients are determined
with respect to a reference xref

cg (in the body axis system); displacement of the centre of
gravity then induces the additional torque

Qcg
f = RA

f ×
(
xcg(t) − xref

cg

)
, (2.20)

where xcg(t) is the position of the centre of gravity at time t with xcg(0) = xcg0 6= xref
cg .

In the following, we assume the centre of gravity to be fixed to xcg(·) ≡ xcg0, referred
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(a) Generic Transport Model. (b) Cumulus One.

Figure 2.4: Illustrations of aircraft studied in the thesis. Commissioned illustrations.

(a) AirSTAR vehicle.
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Figure 2.5: Real-world and digital instances of the Generic Transport Model.

(a) Configuration in flight. (b) Disassembled for transport.

Figure 2.6: Cumulus One during and between flights.
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to simply as “xcg”. We further consider the thrust force F to be equally distributed
onto the engines and simultaneous deflections of the segments of ailerons, elevator, and
rudder, respectively denoted by ξ, η, ζ.

The GTM is taken into account in Chapters 3, 5, and 8.

Cumulus One

The Danish company Sky-Watch has been developing, manufacturing, and distributing
Cumulus One as an autonomous aircraft for agricultural mapping, surveillance, and
reconnaissance. Cumulus One (Fig. 2.6) is equipped with a singe propeller located at
the nose, a full-surface elevator, ailerons, and rudder. For weight reduction, there is no
landing gear but the aircraft is designed to deliberately enter and descent in a deep-stall
trim condition (deep-stall landing, cf. Cunis, Leth, et al. 2018, p. 532). Therefore, its
elevator has an extended range, down to −60◦, the rotor blades fold back when idle,
and shock-absorbing foam at the belly dampens the vehicle upon impact. The wings are
further placed with an upward inclination in order to enhance lateral stability.

We initially discuss the model of Cumulus One in Chapter 4 and subsequently use
its longitudinal dynamics in Chapters 6 and 7.

Photograph of Cumulus One in deep-stall flight (Courtesy Sky-Watch A/S).

2.5 Remarks
In order to address the challenges of upset recovery and the need of combined system
theoretical and aeronautical engineering, the two parts of this dissertation focus on
systems theory for analysis and control, respectively, of aircraft dynamics in general, and
unmanned or autonomous aircraft in particular, subject to upset conditions. Partially,
the tools we will employ are rooted in bespoken upset recovery approaches; yet, we have
identified and will address shortcomings of the methodologies prior for a wholesome
foundation of upset recovery in theory and practice. Doing so, we will introduce the
reader to further domains of aeronautical analysis and control as well as control and
system theory. Each part is therefore preceded by an introduction into aeronautical
applications as well as background chapters on the underlying theory. Due to the variety
and ongoing research of the covered domains, however, a full literature survey exceeds
the possibilities of the dissertation.
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Part I

Modeling & Analysis
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Modeling & Analysis
Analysis of aircraft dynamics in upset conditions provides valuable insight for upset
prevention and recovery, as well as serves as entry point for control verification. Yet,
confidence into an analysis result depends on the accuracy of the analysed model. Mod-
eling the dynamics of an upset vehicle is, however, a challenging task due to the variety
and nonlinearity of upset conditions.

Modeling Techniques Modeling of aircraft dynamics is commonly reduced to iden-
tification and representation of the aerodynamic coefficients in several aerodynamic con-
ditions and surface deflections. However, one might consider further subsystems such as
the actuator and engines, shifting of the centre of gravity, or flexible modes. For identifi-
cation, the aircraft is often subjected to extensive wind-tunnel measurements (as for the
GTM, Foster et al. 2005), flight tests (e.g., Rao et al. 2012), or, nowadays, simulations
of continuous fluid dynamics (see Kuzmin 2010, for an overview). Once the aerody-
namic coefficients have been measured, various methods for representation are applied
depending on complexity and purpose of the model. High-fidelity simulation often rely
on look-up tables and advanced techniques (Frink et al. 2017, p. 796) such as fuzzy logic
(Brandon and Morelli 2016, pp. 1271–1275). Other approaches rely on neural networks
(Linse and Stengel 1993, p. 1022) for identification from flight test data.

An alternative approach was demonstrated by Selig (2010), who computed a full-
envelope aerodynamic model for small acrobatic airplane (ca 80 cm up to 2.5 m) by
modeling component-wise lift and drag of wings, tail, fuselage, and propeller.

System theoretic approaches, on the other hand, have more specific needs for alge-
braic models; while bifurcation analysis has been applied to a variety of models, some
techniques assume either linear dynamics (µ-analysis), polynomial-based models (sum of
squares), or at least smooth derivatives (e.g., optimal control). Here, polynomial spline
functions can provide continuous models of desired accuracy and smoothness (Klein and
Morelli 2006, p. 54). De Visser et al. (2010) reported a fitting method for multi-variate
splines, which was later extended to accommodate for aerodynamic uncertainties (Tol
et al. 2016).

Analysis Methods For the purpose of certification, aircraft models are subjected to
extensive Monte-Carlo simulations of the high-fidelity models. Advanced linear analysis
techniques, which handle nonlinearities as uncertainties, are often applied supplementary
in the neighbourhoods of nominal trim conditions (Marcos et al. 2007, p. 69). For
the analysis of highly nonlinear upset dynamics, however, we focus on techniques that
explicitly take into account nonlinearities.

Continuation and bifurcation analysis has been developed from mathematical the-
ory into a state-of-the-art analysis tool for trim conditions and periodical orbits in the
nonlinear aircraft dynamics. As one of the first papers applying continuation and bi-
furcation analysis to nonlinear aircraft dynamics, in particular for high angles-of-attack,
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Caroll and Mehra (1982) focused on spin dynamics and recovery. Jahnke (1990) further
analysed the nonlinear dynamics of both a generic fighter jet and the F-14 aircraft, ap-
plying a continuation method and bifurcation theory to determine equilibria and their
stability for varying deflections of the control surfaces. Goman et al. (1997) reviewed
bifurcation analysis of nonlinear flight dynamics including stall, deep-stall, roll-coupling,
and oscillatory spins. Bifurcation analysis was applied in several recent publications that
considered upset dynamics and recovery (e.g., Engelbrecht et al. 2013; Gill et al. 2013;
Kwatny et al. 2013).

Recent improvements in semidefinite programming lead to the development and ap-
plication of polynomial sum-of-squares techniques. Chakraborty et al. (2011a) employed
sum-of-squares to estimate the region of attraction for the longitudinal motion of the
GTM using polynomial models of the aerodynamic coefficients. The authors further
exercised the same approach for nonlinear analysis of the F/A-18’s falling-leaf mode
(Chakraborty et al. 2011c). Anderson and Papachristodoulou (2012), too, computed the
region of attraction as well as various robust stability and performance indicators using
sum-of-squares for the longitudinal motion of the F/A-18.

Part Outline This part studies on nonlinear modeling and analysis of upset dynam-
ics. It is organised as follows: The first of two initial technical background chapters
introduces the reader to the theory of stability of nonlinear, switching, and hybrid sys-
tems including LaSalle’s theory of invariant sets, which serves as foundation for the
estimation of regions of attraction. The second background chapters gives details on
the concepts and implementation of sum-of-squares programming and further proposes
a new formulation that highlights the set-theoretic aspects. Chapter 3 then introduces
the author’s piecewise polynomial modeling technique as a simplified spline approach
and illustrates the application of bifurcation and sum-of-squares analysis to piecewise
systems. Chapter 4 further applies bifurcation theory in order to analyse and model
the dynamics of Cumulus One during transition into deep-stall. Chapter 5, as interim
conclusion, provides an improved algorithm that will allow to extend the results of this
part to elaborate spline-based models.
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Stability Concepts

The theory of system analysis, or system theory, divides the field of study into a mul-
titude of classes of systems. Always keen to abstract and refine in order to isolate and
study certain phenomena, we are aware of system definitions from general but complex
to simple and specific. Fig. I.1 recalls some of these classes and their hierarchy, yet
without claim of completeness. At the very bottom of the generalisation tree, linear sys-
tems benefit from a single equilibrium at the origin, which is either globally attractive
or not at all, and an explicit solution (Åström and Murray 2008, pp. 132, 136–137, and
141), however they seldom provide an exact description of physical systems (Robert H.
Cannon, cited in Åström and Murray 2008, p. 131) even though they are often “good
enough” approximations for analysis and control design in a small neighbourhood of
the equilibrium. Systems that are not linear may be characterised by multiple equi-
libria with local stability only, exhibit periodic solutions that are approached one side
or the other, both sides, or none, and even display chaotic behaviour (Slotine and Li
1991, pp. 7–12). Classical approaches therefore apply the term nonlinear system often
to anything that is just not linear, including systems of higher polynomial order, with
saturations or exhibiting hystereses (Abel 2013, pp. 379 & 380).

As we are not going to further consider linear systems, although we will now and
then retreat to linear control synthesis derived from a local linearisation, it is worth dis-
tinguishing the different kinds of nonlinear systems. Describing functions separate linear
and nonlinear elements (Slotine and Li 1991, p. 162) and thus provide a constructive
method to apply classical analysis methods to system with various nonlinear elements
(Abel 2013, pp. 396–401). For the purpose of our study of aircraft dynamics however,
describing functions are too vague—and at the same time, only applicable to restricted
nonlinearities (Slotine and Li 1991, p. 164). On the other hand, polynomial and rational
polynomial systems can represent most continuous functions, approximating irrational
elements by polynomial Taylor expansion. Moreover, a piecewise definition can reduce
the complexity of each subfunction without loss of overall accuracy (compare spline re-
gression; Klein and Morelli 2006, pp. 437 & 438). Piecewise definitions are also suitable
to represent saturations and other simple, nondifferentiable nonlinearities, and all to-
gether yield the class of switching systems, i.e., the system dynamics “switches” along
well-defined surfaces. Complicated nonlinearities such as hysteresis, however, are only
modeled by hybrid systems, where the switching of inner dynamics is more arbitrary.

In the following, we study dynamics and stability of continuous nonlinear systems,
having in mind the equations of motion of our aircrafts, which we will at some points
approximate by polynomial functions.

We start with trajectories as the fundamental principle of systems theory. Simply
speaking, system analysis studies the behaviour of trajectories of a system, just as con-
trol theory provides techniques of trajectory manipulation. Subsequently, we encounter
special types of trajectories and learn about different mathematical characterisations for
stability. Introducing continuation, we see our systems change and bifurcate; in other
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linear

ẋ = Ax

A ∈ Rn×n

polynomial

ẋ = f(x)

f ∈ R [x]n

rational

ẋ = G(x)−1 f(x)

f ∈ R [x]n, G ∈ R [x]n×n

describing function

ẋ = Aϕ(x)

A ∈ Rn×n, ϕ : Rn → Rn

switching

ẋ = hi(x) if x ∈ Φi

h : I × Rn → Rn

Φi ⊂ Rn

hybrid

ẋ = hi(x) , i = ki(x)

h : I × Rn → Rn

k : I × Rn → I

(Φi)i∈I form a set
partition of Rn.
(Φi)i∈I form a set
partition of Rn.

I ⊂ N is the set of
discrete modes.
I ⊂ N is the set of
discrete modes.

Figure I.1: Overview of linear and nonlinear system classes and their relationship (non-
exhaustive).
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words, we enter a world of higher dimension, similar to spacetime that has our stars born
and collapsed. The final definition of attractive and invariant sets elevates our study of
single trajectories to sub-spaces and quantitative rather than qualitative assessments.

Trajectories

A trajectory in the sense of system and control theory is a parametrised curve into the
n-dimensional state-space,

x : R −→ X , (I.1)

where X ⊆ Rn, which solves the nonlinear differential equation

ẋ(t) = f(t, x(t)) (I.2)

with f : R × X → Rn. The function f is simply called “the system”. For deterministic
systems, we have that if x1(t0) = x2(t0) for trajectories x1, x2 and t0 ≥ 0, then x1(t) =
x2(t) for all t ≥ t0—that is, two trajectories never cross. Systems that do not depend
on the time directly, ẋ = f(x(t)), are called autonomous or time-invariant. Here, the
trajectories of f effectively form equivalence classes:

[x(·)] =def
{
x′ : R → X

∣∣ ∃t0 ∈ R ∀t ∈ R. x′(t) = x(t0 + t)
}

. (I.3)

For most parts of this thesis, we consider autonomous systems. Due to determinism and
autonomy, a trajectory x(·) is sufficiently described by f and a starting point x0 ∈ X
such that x(t0) = x0 for an arbitrary t0 ∈ R. If f is Lipschitz-continuous,6 the solution
x(·) to the thus defined initial value problem exists and is unique (Åström and Murray
2008, pp. 97 & 98); we then say “x(·) starts in x0 for t0” and denote the flow of the
system by φ(x0, t) = x(t0 + t). The systems of this thesis are tacitly understood to be
(locally) Lipschitz.

Ordinary differential equations

Both time-variant and invariant systems are described by ordinary differential equations
(ODEs), that is, we consider only derivatives by time. ODEs are hardly the only type of
differential equations studied in systems theory; other, such as partial differential equa-
tions with derivatives in multiple variables, give rise to systems such as the heat equation
or multidimensional oscillations (e.g., Yu 2003, pp. 109–110), but are not relevant in the
scope of rigid aircraft dynamics.7 We therefore limit our study to ordinary differential
equations, which are sufficiently multifaceted.

>

6Or simply “Lipschitz,” namely, there is a constant κ ∈ R such that ‖f(x1) − f(x2)‖2 ≤ κ ‖x1 − x2‖2
for all x1, x2 ∈ X (Åström and Murray 2008, p. 98).

7Notwithstanding propulsion, of course. Analysis of flexible aircraft is indeed based on partial dif-
ferential equations.
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I.1 Equilibria, Stability, and Limit Cycles
Of the numerous possible trajectories of a system, two types of solutions are noteworthy:

Stationary solutions A trajectory x∗(·) = const. is a stationary solution if and only
if f(x∗(·)) = 0. From an interpretation of f as sum of multiple forces, stationary
solutions are usually called “equilibria,” as the forces are balanced in this point.
In the aeronautical context, the term trim condition is common, too. We will
frequently use x∗ for both the trajectory and its stationary value.

Periodic solutions A solution x†(·) for f is periodic if and only if there is a constant
τ ∈ R such that x†(t) = x†(τ + t) for all t ∈ R. By determinism, we also have
x†(t) = x†(kτ + t) for any k ∈ Z, and τ is called the period of x†(·).

Both stationary and periodic solutions can be stable in the intuitive sense that, despite a
(small) variation from the original trajectory, the system does not deviate. While there
are several mathematical characterisations for stability, we will only consider Lyapunov
stability and asymptotic stability here, as they are also important to understand the
later concepts of this chapter. A common third characterisation, exponential stability
(cf. Slotine and Li 1991, p. 51) is not further considered. While we define both kinds of
stability in terms of stationary solutions, a similar definition can be given for trajectories.

Definition I.2. A stationary solution x∗ of the system f is stable in the sense of Lya-
punov if and only if for every ε ∈ R+ there is a δ ∈ R+ such that for any x0 ∈ X with
‖x0 − x∗‖2 < δ holds: if x(·) is the trajectory starting in x0 for some t0 ∈ R, then
‖x(t0 + t) − x∗‖2 < ε for all t ≥ 0.

Stability in the sense of Lyapunov,8 or simply Lyapunov-stability, provides the weaker
characterisation for mathematical stability, since any trajectory that is close “enough”
to an equilibrium is only required to stay sufficiently close for all times, but no further
assumptions on the steady-state behaviour of the trajectories are taken. This is done by
the second and stronger form of our stability characterisations.

Definition I.3. A stationary solution x∗ of the system f is asymptotically stable if
and only if it is Lyapunov stable and there is a δ ∈ R+ such that for any x0 ∈ X
with ‖x0 − x∗‖2 ≤ δ holds: a trajectory x(·) starting in x0 for some t0 ∈ R con-
verges towards x∗ for time ad infinitum, i.e., there exists a function β ∈ KL such that
‖x(t0 + t) − x∗‖2 ≤ β(|x − x∗| , t) for all x ∈ X and t ≥ 0.

A solution that is asymptotically stable is, by definition, also Lyapunov stable. A
stationary solution that is neither asymptotically nor Lyapunov-stable is unstable. A
periodic solution that is asymptotically stable is called limit cycle; otherwise, it can still
be approached by trajectories from either within or without, or none (Slotine and Li
1991, p. 35).

8Notwithstanding, Lyapunov’s renown theorem of stability (see I.1.1) provides a condition for asymp-
totic stability.
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Asymptotic stability is defined in terms of a non-singular unitary ball of radius δ
around the stationary solution as δ > 0. Indeed, it is easy to see that for δ = 0, the
requirements in Definition I.3 would hold trivially for any stationary solution. If, on
the other hand, asymptotic stability is given for any δ > 0, then x∗ is called globally
asymptotically stable; otherwise, locally (—) stable.

Stability of non-stationary trajectories

We result in equivalent definitions of stability for a non-stationary solution x′(·) of f if
we consider the reformulated non-autonomous system f ′(t, e(t)) with

e(t) = x(t) − x′(t)
ė(t) = f(e(t) + x′(t)

)
− f

(
x′(t)

)
.

(I.4)

Then, e∗(·) = 0 is a stationary solution of f ′ and stability of x′(·) can be defined in terms
of e∗(·) and f ′.

I.1.1 Criteria for local and global stability

Determining whether a given system is stable or not can be a dreary task. A simulation
of several trajectories might give an indication, but would never be exhaustive and
is computationally difficult for systems with numerous states. While extensive Markov
simulations are in fact applied for certification of safety-critical systems such as passenger
aircraft (Philippe 2011), we rather consider mathematical tools for stability:

Local stability: linearization theory

In order to proof local stability, we have to look into the vicinity of a stationary solution.
From Taylor expansion, we have (Abel 2013, p. 17)

d
dt

(x∗ + δx) = f(x∗ + δx) = f(x∗) + ∂f
∂x

(x∗) δx +
∑
i,j

∂2f
∂xi ∂xj

(x∗) δxi δxj + · · · (I.5)

and with f(x∗) = 0,

lim
‖δx‖2→0

d
dt

δx = ∂f
∂x

∣∣∣∣
x∗

δx (I.6)

if ∂f
∂x(x∗) 6= 0. The matrix J∗ = ∂f

∂x(x∗) is called the Jacobian matrix of x∗ and Eq. (I.6)
is the linearised system for f (around x∗), where J∗ replaces the state matrix of a linear
system. That is, a nonlinear system f behaves like its linearised variant in a sufficiently
close to the stationary solution. As “sufficiently close” has been all that it took for
stability, the linearised dynamics tell us about the stability of the nonlinear system.

#

Without further study of linear systems’ dynamics—which is beyond the purpose of this
chapter—we can therefore conclude in a theorem for local stability.

31



Theorem I.4 (Åström and Murray 2008, p. 108). Let x∗ be a stationary solution of f
and J∗ the Jacobian matrix of x∗; if J∗ 6= 0, the following hold:

1. x∗ is asymptotically stable if each eigenvalue of J∗ has strictly negative real part;

2. x∗ is unstable if any eigenvalue of J∗ has strictly positive real part.
C

In Theorem I.4, the criterion for local asymptotic stability is also a sufficient condition
for Lyapunov stability, just as Lyapunov stability is necessary for asymptotic stability.
Example I.1. Consider a nonlinear low-pass filter with exponential damping governed by
the second-order differential equation

ξ̈ = −ξ + 2µeξ ξ̇, (I.7)

where µ ∈ R is some parameter. Introducing x1 =def ξ, x2 =def ξ̇, we can write (I.7)
equivalently as ẋ = f(x) and the Jacobian matrix has the eigenvalues µ ±

√
µ2 − 1.

Applying Theorem I.4, we learn that our nonlinear filter is asymptotically stable for
µ < 0, Lyapunov stable for µ ≤ 0, and unstable for µ > 0. Directly solving (I.7) for
µ = 0, we further encounter infinitely-many periodic solutions ξ : t 7→ ζ cos t with ζ ∈ R;
this is sometimes called a meta-stable mode.

Note that zero eigenvalues are not sufficient for Lyapunov stability; indeed, the sys-
tem of ξ̇ = µξ3 is unstable if µ > 0 but its eigenvalue will always be zero. That is, if
J∗ has zero eigenvalues, we cannot tell of the local behaviour from the linearised system
but have to take into account the terms of higher order.

Global stability: Lyapunov function theory

Lyapunov’s extensive work on the dynamics of nonlinear systems provides exact results
for local and global stability without the need of linearisation. Inspired by a system’s to-
tal energy, the idea behind Lyapunov’s theorem is that a scalar field V(·) decreases along
each trajectory towards a global minimum in the stable equilibrium. For a trajectory
x(·), we then have Vx(t) = V(x(t)) and V̇x = ∇V · ẋ.
Definition I.5. A function V : Rn → R≥0 is a Lyapunov candidate-function if and only
if there exist functions α1, α2 ∈ K∞ such that

α1(|x|) ≤ V(x) ≤ α2(|x|) (I.8)

for all x ∈ Rn.
We revisit the criterion for global stability here; results for local stability will be

discussed in I.3 when we are looking closer into the determination of attractive and in-
variant sets. The renown theorem has originally been formulated by Alexandr Lyapunov
in his 1892 doctoral9 thesis (Parks 1992, pp. 277, 280) but today can be found, in similar
form and under different names, in most textbooks on nonlinear analysis and control (cf.
Slotine and Li 1991, p. 59; Abel 2013, p. 409; Åström and Murray 2008, pp. 111–112).

9The Russian degree of a Doktor Nauk (“Doctor of Sciences”) is considered a higher doctorate.
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Theorem I.6 (Lyapunov’s stability theorem). Let x∗ be a stationary solution of f and
V(·) a Lyapunov candidate-function; if there exist a function ρ : R≥0 → R≥0 continuous,
positive definite such that

∇V(x − x∗) f(x) ≤ −ρ(|x − x∗|) (I.9)

for all x ∈ X , then x∗ is globally asymptotically stable. C

For simplicity, the stationary solution of interest is often assumed without loss of
generality to be located in the origin, i.e., x∗ = 0. If the condition in Theorem I.6 holds,
V(·) is called a Lyapunov function for f and x∗.

The stability criterion using Lyapunov’s theorem is straight-forward, yet a Lyapunov
function for a given system may not be unique and it is thus often difficult to construct
a suitable Lyapunov function that satisfies the condition in Theorem I.6 (Slotine and Li
1991, pp. 67 and 77). However, it can be proven that there exists a Lyapunov-function
for an asymptotically stable equilibrium (Malisoff and Mazenc 2009, p. 28); in fact,
different Lyapunov-functions may exist for a single stationary solution.

I.1.2 Stability of switching and hybrid systems

The analysis of systems which exhibit switching behaviour between distinguished, local
dynamics is much more difficult and stability of the local dynamics does not necessarily
imply stability of the switching dynamics. For example, it is well known that one can
choose matrices A1, A2 ∈ Rn×n and disjunct domains Φ1, Φ2 ⊂ Rn such that trajectories
of the switching system

ẋ =
{

A1x if x ∈ Φ1
A2x if x ∈ Φ2

diverge, even though both A1 and A2 have only strictly negative eigenvalues (De Schutter
et al. 2009, p. 44). The study of stability, reachability, and related safety criteria for
classes of switching or hybrid systems is subject of the Theory of Hybrid Systems (see,
e.g., Grossman et al. 1993; Lunze and Lamnabhi-Lagarrigue 2009, for an overview).

+

Indeed, if there is one function V(·) for the switching system “ẋ = hi(x) if x ∈ Φi”
with suitable hi : Rn → Rn, Φi ⊂ Rn such that the condition in Theorem I.6 is satisfied
by V and for each local dynamic hi, then the switching dynamics are asymptotically
stable, too. However, the existence of a single Lyapunov-function is not necessary for
stability of the switching dynamics, even if one requires Eq. (I.9) to hold only within the
respective Φi (Johansson and Rantzer 1998, pp. 555–556). In this case, stability may
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still be provable using a piecewise defined Lyapunov function. We summarise the results
of this section in the following theorem.10

Theorem I.7. Let a switching system be defined by the local dynamics h : I ×Rn → Rn

with I ⊂ N and (Φi)i∈I forming a set partition of Rn; let further x∗ be a stationary
solution of any hi satisfying x∗ ∈ Φi; if there exist a function ρ : R≥0 → R≥0 positive
definite such that one the following conditions hold

1. There is a Lyapunov-candidate function V(·) such that ∇V(x − x∗) hi(x) < 0 for
all x 6= x∗ and i ∈ I;

2. There is a Lyapunov-candidate function V(·) such that ∇V(x − x∗) hi(x) < 0 for
all x ∈ Φi − {x∗} and i ∈ I;

3. There is a family of Lyapunov-candidate functions (Vi)i∈I such that ∇Vi(x − x∗)
hi(x) < 0 for all x ∈ Φi − {x∗} and i ∈ I; as well as Vi(x) = Vj(x) for all
x ∈ ∂Φi ∩ ∂Φj and i, j ∈ I;

then x∗ is a globally asymptotically stable equilibrium of the switching dynamics. C

I.2 Continuation and Bifurcation
In the previous example of the low-pass filter, we have seen how the sign of the parameter
µ affected the stability of the origin. In fact, for µ = 0, the system turned meta-stable
and exhibited periodic solutions. The study of the change of system behaviour, in
particular the existence and stability of stationary solutions, by variation of one or more
parameters is called continuation and bifurcation theory and shall be the topic of this
section.

Consider the extended nonlinear differential equation

ẋ(t) = f(x(t) , µ) (I.10)

for µ ∈ Rp constant. Here, µ is called the continuation parameter and might represent
physical properties of the system and its environment, constant control inputs, uncertain-
ties, constant disturbances, and many more. A trajectory x∗(·) is a stationary solution
of f for a parameter µ∗ ∈ Rp if and only if x∗(·) is a stationary solution of f( · , µ = µ∗);
in this case, we might write shortly that (x∗, µ∗) is a stationary solution. Likewise, x†(·)
is periodic for µ† ∈ Rp if and only if it is a periodic solution of f

(
· , µ = µ†).

Depending on the structure of f , location and stability of a stationary solution x∗ for
µ∗ often change if the value of µ∗ is varied. Moreover, the system f may bifurcate for a
stationary solution (x∗, µ∗), where additional stationary and periodic solutions appear,
vanish, or interchange stability. A mathematical characterisation of a bifurcation point
is given by (Kwatny et al. 2003, p. 68):

10See Branicky 1998, pp. 477–479, for a concise treatment of multiple Lyapunov functions for hybrid
systems with arbitrary switching.
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Definition I.8. A stationary solution (x∗, µ∗) of f is a bifurcation point if and only if
there is no neighbourhood M of µ∗ with a unique, continuously differentiable function
x : M → X such that

f(x(µ) , µ) = 0

for all µ ∈ M.

We can state a simple, necessary condition for a bifurcation point (cf. Crawford 1991,
p. 996; Chen et al. 2000, p. 516).

Lemma I.9. Let (x∗, µ∗) be a stationary solution of f ; only if there is at least one
eigenvalue λ of the Jacobian J(x, µ) that crosses the imaginary axis for µ = µ∗, i.e.,
<λ(µ∗) = 0, then (x∗, µ∗) is bifurcation point. C

This lemma is implied by the Implicit function theorem stating that, if det J∗ 6= 0 for
a stationary solution (x∗, µ∗), there is indeed a unique differentiable function defined on
a neighbourhood M of µ∗ that solves the zero equation above (Crawford 1991, p. 999).

Various bifurcation types can be distinguished depending on how and where one
or more eigenvalues change the stability of a given system. In the following, we will
focus on bifurcations that occur in the continuation of a single parameter as well as the
continuation of those bifurcations for further parameters.11

I.2.1 Bifurcations in one parameter

Occurrence and properties of bifurcations in a single parameter are still subject to re-
search of the fields of applied mathematics and systems theory. For the sake of brevity,
we recall only some of the more common bifurcations in continuous systems which are
relevant for the study of this thesis, namely saddle-node, pitchfork, transcritical, and
Andronov-Hopf-bifurcations. A brief overview of these bifurcation types is given by
Tab. I.1. For further types of bifurcations such as the period-doubling bifurcation in
discrete systems, refer to, e.g., Crawford 1991, p. 1005 or Kuznetsov 1998, Chapter 4.

Table I.1: Bifurcations in continuous systems and one parameter.

States Equilibria created Change of stability Periodic orbits
Saddle-node 1 2 – –
Pitchfork 1 2 1 –
Transcritical 1 – 2 –
Andronov-Hopf 2 – 1 1

The following bifurcation types are illustrated in Fig. I.2:

11For bifurcations in multiple parameters, refer to Kuznetsov 1998, Chapters 8 and 9.

35



Saddle-node (Fig. I.2a). A simple bifurcation of one state at which a pair of equilibria
of opposite stability is created; consider examplary the system

ẋ = µ − x2 (I.11)

with µ ∈ R. Simple to see, the pair of equilibria ±√
µ exists only for µ > 0

and coincides for µ = 0, such that there are no equilibria for µ < 0 (that is to say,
branches of equilibria are “created” when µ changes from negative to positive). One
of the resulting branches is stable, the other unstable. In general, the stationary
solution (x∗, µ∗) is also a saddle-node bifurcation of the system f if both ∂ f

∂µ (x∗, µ∗)
and ∂2f

∂x2 (x∗, µ∗) are non-zero (Crawford 1991, p. 1000). The name saddle-node
bifurcation stems from the fact that, for more than one dimensions, an either
stable or unstable equilibrium (“node”) is turned into a stationary solution with
both negative and positive eigenvalues (“saddle”) due to the bifurcation (Crawford
1991, p. 1001).

Pitchfork (Fig. I.2b). Named after its characteristic shape, this bifurcation combines
an equilibrium that changes stability with the creation of two further branches of
equilibria; consider examplary

ẋ = µx − x3 (I.12)

with µ ∈ R. Here, the origin is an equilibrium for all µ but further equilibria ±√
µ

exist only if µ ≥ 0. If the origin is stable for µ < 0, then it is unstable for µ > 0
whereas the created branches are both stable (and vice-versa). Necessary for a
pitchfork bifurcation are ∂ f

∂µ = 0, ∂2f
∂µ ∂x 6= 0, ∂2f

∂x2 = 0, and ∂3f
∂x3 6= 0 (Crawford 1991,

p. 1002).

Transcritical (Fig. I.2c). Another simple bifurcation of one state yet instead of the cre-
ation of further equilibria, two equilibria coincide and subsequently “interchange”
stability. Consider the system

ẋ = µx − x2 (I.13)

with µ ∈ R. The equilibria 0 and µ converge for µ → −0 and turn unstable
and stable, respectively, in µ = 0. A transcritical bifurcation occurs if ∂ f

∂µ = 0,
∂2f

∂µ ∂x 6= 0, yet ∂2f
∂x2 6= 0 (Crawford 1991, p. 1001).

Andronov-Hopf (Fig. I.2d; also Hopf-bifurcation). Requires two or more states. In
an Andronov-Hopf-bifurcation, a single equilibrium changes stability as a pair of
complex-conjugated eigenvalues crosses the imaginary, and a family of periodic
orbits encircling the equilibrium is born. If some generecy conditions hold12, a

12see Kuznetsov 1998, Theorem 3.3.
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system is in the neighbourhood of the bifurcation point topologically equivalent13

to the Andronov-Hopf normal form (Kuznetsov 1998, pp. 86 and 91–100)

ẋ =
[
µ −1
1 µ

]
x − ‖x‖2

2 x (I.14)

with µ ∈ R and x ∈ R2. For µ ≥ 0, Eq. I.14 has the periodic solutions

x†(t) = ±√
µ

[
cos t
sin t

]T

.

I.2.2 Continuation of bifurcations

In addition to secondary bifurcations that may occur for variation of further parameters
(e.g., Torus or Hopf-Hopf-bifurcations, see Yu 2003, pp. 102 and following), the continu-
ation of an initial bifurcation along auxiliary parameters often also changes the location
of this bifurcation. Therefore, the continuation of a bifurcation can give important in-
sight into the robustness of a system with respect to changes of these parameters. We
want to further illustrate the relationship of a simple bifurcation and the variation of a
second parameter with a small example: Consider the system

ẋ = µ1 − µ2 − x2 (I.15)

similar to (I.11) but with (µ1, µ2) ∈ R2. If we initially hold µ2 =const. 0, analysis of
the equilibrium reveals a saddle-node bifurcation for µ∗

1 = 0. Indeed, the saddle-node
bifurcation occurs for any pair (µ∗

1, µ∗
2) with µ∗

1 = µ∗
2. This is further illustrated in

Fig. I.3. Here, µ2 provides a lower bound such that there is a (stable) equilibrium for µ1
and we might say that µ2 = µ1 constitutes a critical condition for the system in (I.11);
that is, |µ1 − µ2| serves as a measure for its robustness.

Despite the fact that this example is purely academic, it illustrates well an other-
wise rather complicated relationship between bifurcations and secondary parameters. We
make further use of the continuation of bifurcations in Chapter 4 in order to investigate
the change of stability of an aircraft due to uncertain system parameters.

G

13Functions f , g : Rn → Rn are (locally) topologically equivalent in the neighbourhoods X , Y ⊂ Rn of
x0, y0 if there is a homeomorphism ~ : X → Y such that (~ ◦ f)(x) = (g ◦ ~g)(x) for all x ∈ X ∩ f −1(X )
and ~(x0) = y0 (Kuznetsov 1998, p. 64).
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(d) Andronov-Hopf-bifurcation.

Figure I.2: Bifurcations in continuous systems and one parameter. A change of stability
is denoted by SN ( ), the origin of a family of periodic orbits by HB ( ).
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Figure I.3: Continuation of saddle-node (SN) bifurcations at (x∗, µ∗
1) along µ∗

2.

I.3 Attractors, Invariance, and the Region of Attraction
Similar to Lyapunov and asymptotic stability, we have the concepts of invariant sets and
regions of attraction, respectively. While the previous sections dealt with the existence
and interchange of (local) stability, in the following we are going to quantify the stable
domain. Before we discuss attraction and invariance, and subsequently define the region
of attraction of a stable stationary solution, we have to explain the circumstances under
which a set is “larger” than another set.

A partial order on sets

The binary subset or inclusion operator “⊆” for any two sets A, B ∈ K—namely, A ⊆ B
if and only if x ∈ B for each x ∈ A—forms an order on 2K as it is reflexive,

A ⊆ A (I.16)

for any A ∈ K; and antisymmetric,

A ⊆ B ∧ B ⊆ A =⇒ A = B (I.17)

for A, B ∈ K. However, the inclusion is not total, since there are A′, B′ ∈ K with neither
A′ ⊆ B′ nor B′ ⊆ A′. In this case, A′ and B′ are incomparable.

That is, if we are to say “B is larger than A” as A ⊆ B, then we will soon encounter
sets A′, B′ that we cannot compare. Instead, we will say “Υ is the largest set of K” if
and only if—given existence—A ⊆ Υ for all A ∈ K; in other words,⋃

A∈K
= Υ. (I.18)

Similar to maximum and supremum of a measurable class, the largest set Υ, if existing,
may or may not be element of K.
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I.3.1 Invariant and attractive sets

For the definition of both Lyapunov and (local) asymptotic stability, we relied on unitary
balls around the stationary solution. We now extend this to arbitrary shaped subsets Ω
of the state-space X .

Definition I.10. A bounded set Ω ⊂ X is an invariant set of the system f if and only
if for any x0 ∈ Ω holds: if x(·) is the trajectory starting in x0 for some t0 ∈ R, then
x(t) ∈ Ω for all t ≥ t0.

A stationary solution x∗ is stable in the sense of Lyapunov if for any ε ∈ R+ there is
an invariant set Ω that contains x∗ in its interior and ‖x − x∗‖2 < ε for every x ∈ Ω.

Definition I.11. A bounded set Ω ⊂ X is an attractive set of the system f with the
stationary solution x∗ as attractor if and only if for any x0 ∈ Ω holds: if x(·) is the
trajectory starting in x0 for some t0 ∈ R, then limt→∞ ‖x(t0 + t) − x∗‖2 = 0.

A stationary solution x∗ is asymptotically stable only if there is an attractive set Ω
that contains its attractor x∗ in its interior. If x∗ is locally asymptotically stable, the
largest attractive set R exists, in which case we call R the region of attraction of x∗, and
is invariant if bounded. For global asymptotic stability, as there is no bounded largest
attractive set, the state-space effectively constitutes the region of attraction.

I.3.2 Estimating the region of attraction

Determining the region of attraction of a locally stable equilibrium is less tractable than
proving its stability in the first place. Hard enough, one might be content with an
estimate ΩR.

Definition I.12. Let R be the region of attraction of a stationary solution x∗ of f ; a
set ΩR ⊂ R is called region of attraction estimate if and only if it is an invariant set of
f .

In their comprehensive 1985 survey, Genesio et al. mainly distinguished three methods
for the determination or estimation of a region of attraction: Zubov’s equation, the the-
orem of La Salle, (both derived from Lyapunov’s stability theory) and “non-Lyapunov”
methods such as exploiting the phase plane (Genesio et al. 1985, pp. 747–749).

Non-Lyapunov: phase-plane analysis

Phase-plane analysis and other non-Lyapunov methods for region of attraction estima-
tion are often limited to nonlinear systems with two states only (Genesio et al. 1985,
p. 749). Among those techniques, one might profit from the existence of a limit cycle
around the stable equilibrium as boundary of the region of attraction or study the flow
of the system (see Example I.2). The presence of further, unstable stationary solutions
in the neighbourhood of a stable equilibrium also limits its possible region of attraction.
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Figure I.4: Phase-plane of the Van-der-Pol oscillator with µ = −1. Solid lines converge
into the origin, dashed lines diverge.

Example I.2 (Van-der-Pol oscillator). A famous example for a system exhibiting periodic
behaviour, named after its inventor, is given by

ξ̈ = −ξ − µ
(
ξ2 − 1

)
ξ̇ (I.19)

with µ ∈ R and the stationary solution ξ = ξ̇ = 0 is unstable for µ > 0. For µ → +0, the
Van-der-Pol oscillator exhibits a near-circular stable limit cycle that becomes deformed
for larger µ (Slotine and Li 1991, p. 161). Since the existence of a limit cycles here
is independent of the sign of µ, the stationary solution and the limit cycle interchange
stability for µ < 0 (Fig. I.4): Trajectories that start within yet arbitrary close to the limit
cycle converge towards the stationary solution, whereas trajectories starting outside will
diverge. That is, the limit cycle defines the region of attraction of the origin.

Zubov’s equation

Zubov (1964) initially proposed to use that if

∇V f = − (1 − V) φ (I.20)

holds for a Lyapunov-candidate function V(·) and positive definite14 function φ(·), then
{x | V(x) ≤ 1} is an exact characterisation of the region of attraction for the stationary
solution x∗ = 0 of f (cited after Genesio et al. 1985, p. 748). Since an algebraic solution
of Zubov’s equations is usually difficult to find, his method has been further extended
in order to find a suitable estimate of the region of attraction. Extensions include the

14A (continuous) function φ is said to be positive definite (p.d.) if and only φ(·) > 0 everywhere except
at the origin and φ(0) = 0.
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under and over-approximation of the region of attraction boundary by a finite partial sum
of Lyapunov-candidate functions of increasing degree. Today, this approach is known
as method of maximal Lyapunov-functions based on the contributions of Vannelli and
Vidyasagar 1985.15

The theorem of La Salle

La Salle’s 1960 theorem provides the perhaps most widespread backend for region of
attraction estimation. It is often given as follows (La Salle 1960, Theorem 1; cited after
Genesio et al. 1985, p. 478):

Theorem I.13 (La Salle’s basic theorem). Let the set Ω ⊂ X contain the stationary
solution x∗ of f and let V(·) be a Lyapunov-candidate function; if

∇V(x − x∗) f(x) ≤ 0

for all x ∈ Ω with x 6= x∗ and there is no trajectory x′(·) of f such that x′(R) ⊂ E =
{x | ∇V(x − x∗) f(x) = 0}, then Ω is a region of attraction estimate of x∗. C

However, for the purpose of region of attraction estimation as provided in the fol-
lowing chapters, a modification of the basic theorem is more suitable. This is a modified
version of La Salle’s theorem (La Salle 1960, Theorem 2) for the case E = {x∗}.

Theorem I.14 (La Salle’s extended theorem). Let x∗ be a stationary solution of f , V(·)
a Lyapunov candidate-function, and Ωγ = {x | V(x − x∗) ≤ γ } for some γ ∈ R+; if

∇V(x − x∗) f(x) < 0

for all x ∈ Ωγ with x 6= x∗, then Ωγ is a region of attraction estimate of x∗. C

Several publications have been dedicated to the region of attraction estimation using
La Salle’s extended theorem.16 One of the most fruitful in recent days, namely the
use of sum-of-squares programming in order to check the condition in Theorem I.14, is
elaborately discussed in the subsequent chapter.

./

15Further reading: Rozgonyi et al. 2010; Chesi 2013; Valmorbida and Anderson 2017.
16Further reading: Topcu et al. 2008; Topcu et al. 2010; Khodadadi et al. 2014.
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Sum of squares

For about 150 years, mathematicians have studied the problem of polynomial nonnega-
tivity; namely, how to decide for a given polynomial f in n variables (f ∈ R [x1, . . . , xn]) if
f(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ R. It is quite obvious now, that a polynomial which
is defined by a (finite) sum of squared polynomials, i.e., f =

∑
i f

2
i with fi ∈ R [x1, . . . , xn],

is nonnegative. This leads to the immediate question whether, in turn, any nonnegative
polynomial can also be represented by a sum of squares. While that assertion holds for
polynomials in only one variable, Hilbert had soon disproven it in general (Putinar 1993,
p. 969) – even though an actual example of such a nonnegative, not-sum-of-squares poly-
nomial was only found by Motzkin (1967). Nonnegativity remains an NP-hard problem
for polynomials of 4th degree or higher (Parillo 2003, p. 295). Sum-of-squares polynomi-
als, on the other hand, can be reduced to positive semi-definite matrices and thus solved
in polynomial time.

Definition I.15. A symmetric matrix M ∈ Rn×n is positive semi-definite (M � 0)
if and only if xT M x ≥ 0 for all x ∈ Rn or, equivalently, all eigenvalues of M are
nonnegative.

We denote the set of positive semi-definite matrices by Sn and the set of sum-of-
squares (SOS) polynomials, by Σ [x1, . . . , xn]. The lemma that connects the two utilizes
the Gram matrix form a of a SOS polynomial, zT Q z, where each element of the vector
z is a monomial in the variables x1, . . . , xn.

Lemma I.16 (Choi et al. 1995, p. 106–108). A polynomial f ∈ R [x] of degree 2k is
sum-of-squares (f ∈ Σ [x]) if and only if there is positive semi-definite matrix Q of size
l (Q ∈ Sl) and a vector z of monomials in x (z ∈ B [x]l) of degrees k or lower such that
f = zT Q z. Furthermore, the smallest number l′ such that f =

∑l′
i=1 f

2
i is equal to the

rank of Q. C

With advances in semi-definite programming relaxations (most notably, by Parillo
2003), sum-of-squares optimisation techniques are today one of the most powerful tools
for semi-algebraic certification; that is, although the underlying semi-definite problems
are solved numerically, polynomial nonnegativity (and induced properties) hold alge-
braically the lemma above and subsequent theorems. Despite their mathematical power,
sum-of-squares programming becomes computationally infeasible for polynomials of high
degree and in numerous variables; efforts to make large problems tractable include the
selection of a suitable basis (e.g., via facial reduction, Permenter and Parrilo 2014),
exploitation of sparsity (see, e.g., Ahmadi et al. 2017), and, most recently, alternative
characterisations of polynomial nonnegativity which can be reduced to linear and second-
order cone programming rather than semi-definite programming (so-called DSOS and
SDSOS optimisation, Ahmadi and Majumdar 2018). Further relaxations of quadratic
matrix-inequalities (as in Kheirandishfard et al. 2018) potentially lead to improvements
for bilinear sum-of-squares problem, which heretofore are subject to bisection.
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In this chapter, we review the foundations of sum-of-squares which have led to SOS-
based techniques for the estimation of regions of attraction and related applications. We
start and recall the definitions of semi-definite and sum-of-squares programs. The main
result, the Positivstellensatz of real algebraic geometry, provides a theoretical framework
for the computation of SOS certificates which prove the implication of polynomial predi-
cates. We subsequently propose a new, general formulation that allows an interpretation
as set-inclusion problems and thus eases the discussion of invariant sets and regions of
attraction, as we shall finally demonstrate.

From semi-definite to sum-of-squares and quasi-convex optimisation

Semi-definite programs have been thoroughly studied. For a historical overview and
several examples, refer to Vandenberghe and Boyd (1996, pp. 52–62). A semi-definite
optimisation program is stated as minimising a linear function subject to a linear matrix
inequality in the decision variables λ ∈ Rn:

minimise cT λ

subject to F(λ) = F0 +
n∑

i=1
Fiλi � 0,

(I.21)

where λ = (λ1, . . . , λn), c ∈ Rn, and F0, F1, . . . , Fn ∈ Rn×n. Eq. (I.21) is convex and
can be reduced to a polynomial-time problem (Vandenberghe and Boyd 1996, p. 52).
We can write equivalently

minimise tr(CΛ)

subject to F(Λ) = A0 +
k∑

i=1
AiΛ � 0

(I.22)

with matrix decision variable Λ ∈ Rn×n and C, A0, A1, . . . , Ak ∈ Rn×n. Choosing
suitable monomials z(x), Eq. (I.22) extends to the sum-of-squares optimisation problem

minimise cT
1 λ1 + · · · + cT

k λk

subject to p1(λ1, x) , . . . , pk(λk, x) ∈ Σ [x] ,
(I.23)

where p1, . . . , pk are affine in the decision variables λ1, . . . , λk. Using the Gram matrix
from of Lemma I.16, we have pi(λi, x) = zT

i Qi zi with Qi ∈ Sli and Eq. (I.23) reduces to a
semi-definite program. Unfortunately, the necessary dimension li increases significantly
– even though still polynomially – with the number of variables or the polynomial degrees
(Parillo 2003, p. 299). The formulation above highlights the fact that the decision vari-
ables of a sum-of-squares program are the polynomial coefficients, not the polynomials
itself; however, we conveniently denote the sum-of-squares feasibility problem as

find s1, . . . , sk′ ∈ Σ [x]

subject to f0 +
k∑

i=1
sifi ∈ Σ [x]

(I.24)

with k′ ≤ k, where s1, . . . , sk are of bounded degree and f0, f1, . . . , fk ∈ R [x].
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A bilinear sum-of-squares problem requires to solve quadratic matrix inequalities,
which are NP-hard (Toker and Özbay 1995, p. 2526). Despite that, if the problem is
bilinear in a scalar only, the problem remains tractable using a quasi-convex optimisation
approach as described by Seiler and Balas (2010, p. 3339). There, a generalised SOS
program is given as

minimise µ

subject to f0 + µ s0 +
k∑

i=1
sifi ∈ Σ [x]

and s0, s1, . . . , sk′ ∈ Σ [x]

(I.25)

with k′ ≤ k, where µ ∈ R, s0, s1, . . . sk are of bounded degree, and f0, f1, . . . , fk ∈ R [x].

I.4 Semi-algebraic Set Inclusion
So far, we have considered sum-of-squares programming as a tool to certify global prop-
erties, namely, nonnegativity. For a local analysis such estimating as the region of
attraction, we would like to assert a statement (“A holds”) only for certain subspace
(“for all x that satisfy B”). If both A and B are described by polynomial inequalities,
we can prove “B ⇒ A” by computation of SOS certificates. Recall first the duality
between logical implication and set inclusion:

Lemma I.17. Let p, q be polynomials in n variables x (p, q ∈ R [x]); the following
statements are equivalent:

∀x ∈ Rn. (p(x) ≤ a ⇒ q(x) ≤ b) ; (α)
{x ∈ Rn | p(x) ≤ a} ⊆ {x ∈ Rn | q(x) ≤ b} ; (β)

{x ∈ Rn | p(x) ≤ a} ∩ {x ∈ Rn | q(x) > b} = ∅; (γ)

for any a, b ∈ R. C

For simplicity, we introduce the notation Ωp≤a =def {x | p(x) ≤ a} for p ∈ R [x] and
a ∈ R. Likewise, we shall write Op=a =def {x | p(x) = a}. These notations, combined
with the theoretical backing of the Positivstellensatz, allow us to discuss the stability
concepts of the previous chapter within the framework of sum-of-squares programming.

I.4.1 Der Positivstellensatz

The Positivstellensatz as lined out in this section is a generalization of Hilbert’s Null-
stellensatz for the real numbers R (Parillo 2003, p. 305). It constitutes nothing less than
both sufficient and necessary conditions for the existence of sum-of-squares certification
for set inclusion. Stating the theorem, however, requires some preliminary definitions:

Definitions (Monoid, Cone, & Ideal). Let S = {p1, . . . , pk} be a finite set (k ∈ N0) of
polynomials in n variables x; define:
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• The multiplicative monoid as M(S) = {
∏r

i=1 pi | pi ∈ S, r ∈ N0}.

• The polynomial cone as P(S) = {s0 +
∑r

i=1 sipi | si ∈ P(∅) , pi ∈ M(S) , r ∈ N0}.

• The ring ideal as I(S) = {
∑r

i=1 tipi | ti ∈ R [x] , pi ∈ S, r ∈ N0}.

Note that M(∅) = {1}, I(∅) = {0}, and P(∅) = Σ [x]. The following theorem goes
back to Stengle (1974, pp. 91–92) and is cited after Parillo (2003, Theorem 4.6).

Theorem I.18 (Positivstellensatz). Let f1, . . . , fk, g1, . . . , gm, and h1, . . . , hr be polyno-
mials in n variables x with k, m, r ∈ N0; the following statements are equivalent:

1. We have that the setx ∈ Rn

∣∣∣∣∣∣∣
fi(x) ≥ 0 for all 1 ≤ i ≤ k
gj(x) 6= 0 for all 1 ≤ j ≤ m
hl(x) = 0 for all 1 ≤ l ≤ r

 (I.26)

is empty;

2. There are f ∈ P, g ∈ M, and h ∈ I such that f + g2 + h = 0;

where P, M, and I are the cone of {fi}1≤i≤k, the monoid of {gj}1≤j≤m, and the ideal
of {hl}1≤l≤r, respectively. C

The polynomials f, g, and h in Theorem I.18 are refutations of the non-emptyness
of Eq. (I.26). Although their existence is guaranteed by the Positivstellensatz, the com-
putation is virtually intractable as they require highly exponential-time computations
(Parillo 2003, p. 305). Therefore, one uses only its sufficient condition in practice (Topcu
et al. 2008, Lemma 2):

Lemma I.19. Let f0, f1, . . . , fk, and h1, . . . , hr be polynomials in n variables x with
k, r ∈ N0; we have

{x ∈ Rn | f1(x) ≥ 0, . . . , fk(x) ≥ 0, h1(x) = 0, . . . , hr(x) = 0} ⊆ {x ∈ Rn | f0(x) ≥ 0}
(I.27)

if there are (si)i ⊂ Σ [x] and (tl)l ⊂ R [x] such that f0 −
∑k

i=1 sifi +
∑r

l=1 tlhl ∈ Σ [x].

Lemma I.19 can easily be seen if one replaces “(·) ∈ Σ [x]” by “(·) ≥ 0” and inserts
the left-hand side of (I.27) into the last equation. However, the proof given by Tan (2006,
p. 15–16) provides interesting details about the mechanisms of the Positivstellensatz as
well as the necessities of sum-of-squares certification.

Proof of Lemma I.19. As A ⊆ {x | f0(x) ≥ 0}, for any A ∈ 2R, is equivalent to ∅ =
A ∩ {x | −f0(x) ≥ 0 ∧ f0(x) 6= 0}, Eq. (I.27) follows necessarily from the existence of
f ∈ P({−f0, f1, . . . , fk}), g ∈ M({f0}), and h ∈ I({h1, . . . , hr}) such that f + g2 + h = 0.
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Thus, we may choose f′ = s0 (−f0) +
∑r

i=1 si (−f0) fi; g′ = f0; h′ =
∑k

l=1 t̂lhl; and with
t̂l = f0tl

−f0

(
s0 − f0 +

r∑
i=1

sifi −
k∑

l=1
tlhl

)
= 0. (I.28)

If f0 is not the null-polynomial17, s0 ∈ Σ [x] and the zero multiplication property yield
the desired sufficient condition.

Recall that we must choose the degree of the sum-of-square certificates (si)i (and the
polynomials (tl)l) a priori; comparing the coefficients in (I.28), we obtain that s0 as well
as the terms (sifi)i and (tlhl)l should be of similar degree in order to ensure feasibility
(Tan 2006, p. 113). However, the choice of the candidates f′, g′, h′ was restrictive – they
are, in fact, the smallest possible polynomials such that the Positivstellensatz provides a
meaningful condition – and other refutations involving more certificates could be chosen.
Parillo gives a more general procedure yet also notes that, given knowledge of the problem
structure, this results in an overparametrisation (Parillo 2003, pp. 306–307).

I.4.2 A general formulation

Theorem I.18 and Lemma I.19 give us the theoretical background to handle problems of
inclusion of polynomial semi-algebraic sets rather than problems of polynomial nonneg-
ativity. We shall now extend this methodology with a new formulation that highlights
the relation of the underlying sets:

Definition I.20. Let f0, f1, . . . , fk, and h1, . . . , hr be polynomials in n variables x with
k, r ∈ N0; we say, “(s, t) prove the set inclusion of Eq. (I.27),” and write

(s, t) `
k⋂

i=1
{x ∈ Rn | fi(x) ≥ 0} ∩

r⋂
l=1

{x ∈ Rn | hl(x) = 0} ⊆Σ {x ∈ Rn | f0(x) ≥ 0}

(I.29)

if s = (s1, . . . , sk) ⊂ Σ [x], t = (t1, . . . , tr) ⊂ R [x], and f0 −
∑k

i=1 sifi +
∑r

l=1 tlhl ∈ Σ [x].

With this definition, and recalling the Ω(·)-notation from the beginning of this section,
we can formulate a simple sum-of-squares certification problem based on (I.24) as

find s = (s1, . . . , sk′) ⊂ Σ [x]

subject to s `
k⋂

i=1
Ωfi≤0 ⊆Σ Ωf0≤0,

(I.30)

where, again, s1, . . . , sk are of bounded degree and f0, f1, . . . , fk ∈ R [x]. We now want
to extend Definition I.20 to the intuitive notion that some SOS certificates prove an
algebraic set notion such as Q1 ∪ Q2 ⊆ P1 ∩ P2. The following properties systematise
this idea.

17If it was, Eq. (I.27) would hold trivially.
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Proposition I.21. Let p, q, r ∈ R [x]; the following are sum-of-squares feasibility prob-
lems:

1. Solve s ` Ωq≤0 ⊆Σ Ωp≤0;

2. Solve t ` Or=0 ⊆Σ Ωp≤0;

3. Solve

(s1, s2) ` Q1 ∩ Q2 ⊆Σ P1 (α)
(s1, s2) ` Q1 ⊆Σ P1 ∩ P2 (β)
(s1, s2) ` Q1 ∪ Q2 ⊆Σ P1 (γ)

for any Q1, Q2, P1, P2 ⊂ Rn, if s1,2 ` Q1,2 ⊆Σ P1 and s1,2 ` Q1 ⊆Σ P1,2, respec-
tively, are SOS feasibility problems;

where the certificates are of bounded degree.

Proof. The first three statements follow directly from Definition I.20, Lemma I.19, and
Eq. (I.24). Now, let s1,2 ` Q1 ⊆Σ P1,2 be feasibility problems; if they have solutions,
by Lemma I.19, we have that Q1 ⊆ P1, P2 and therefore, Q1 ⊆ P1 ∩ P2. Likewise, if
s1,2 ` Q1,2 ⊆Σ P1 have solutions, then Q1, Q2 ⊆ P1 and Q1 ∪ Q2 ⊆ P1.

We derive similar results for the quasi-convex sum-of-squares optimization. Here, we
denote by Q(a) a subset of Rn that is governed by a scalar a ∈ R, e.g, Q : a 7→ Ωq≤a

with q ∈ R [x].

Proposition I.22. Let p, q ∈ R [x] and I ⊂ R; the following are quasi-convex sum-of-
squares problems:

1. Solve mina∈I −a s. t. s ` Ωq≤a ⊆Σ Ωp≤0;

2. Solve

min
a∈I

−a s. t.
(
s, s′) ` Q1(a) ∩ Q′ ⊆Σ P1 (α)

min
a∈I

−a s. t.
(
s, s′) ` Q1(a) ⊆Σ P1 ∩ P2 (β)

min
a∈I

−a s. t. (s1, s2) ` Q1(a) ∪ Q2(a) ⊆Σ P1 (γ)

for any Q1, Q2 : R → 2Rn, Q′, P1, P2 ⊂ Rn, if mina∈I −a s. t. s1,2 ` Q1,2(a) ⊆Σ P1,2
are quasi-convex SOS problems and s′ ` Q′ ⊆Σ P1,2 are SOS feasibility problems;

where the certificates are of bounded degree.

Proof. The first two statements follow directly from Definition I.20, Lemma I.19, and
Eq. (I.25). Now, let mina∈I −a s. t. s1,2 ` Q1(a) ⊆Σ P1,2 be quasi-convex problems
with solutions a1,2 ∈ I; by Lemma I.19, we have that Q1(a1) ⊆ P1, Q1(a2) ⊆ P2, and
therefore, Q1(ã) ⊆ P1 ∩ P2 for ã = min(a1, a2). Furthermore, if mina∈I −a s. t. s1,2 `
Q1,2(a) ⊆Σ P1 have solutions a1,2 ∈ I, then Q1(a1) , Q2(a2) ⊆ P1 and Q1(ã)∪Q2(ã) ⊆ P1
for ã = min(a1, a2).
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From here on, we will write “max a” rather than “min −a,” as convenient.
Some concluding remarks: We might also write s ` ∀x. q ≤ 0 ⇒Σ p ≤ 0 instead of

the set-notation of Definition I.20. The special cases (·) ` ∀x. p ≤ 0 and s ` @x. q ≤ 0
can then be written as (·) ` Rn ⊆Σ Ωp≤0 and s ` Ωq≤0 ⊆Σ ∅, respectively.

I.5 Region of Attraction Estimation
Backed by the theoretical results in real algebraic geometry of the previous section, sum-
of-squares programming seems almost predestined for analysis – and certification – of
stability by the theory of Lyapunov and La Salle. Notwithstanding, further applica-
tions include robustness (Chesi 2014, pp. 2815–2818), dissipativity (Ebenbauer and All-
göwer 2006, p. 1598), L2 gain and reachability (Anderson and Papachristodoulou 2012,
pp. 1103–1106), attractive invariant set (Tan 2006, pp. 42–44), and control synthesis
(Majumdar et al. 2013, pp. 4056–4058). The estimation of the region of attraction is a
common application of sum-of-squares, yet it also belongs to the more difficult problems.

Global monotonicity Given a polynomial Lyapunov candidate-function V and a
system f in the variables x, we can check the conditions of Lyapunov’s stability theorem
for global stability by sum-of-squares decomposition (Parillo 2003, p. 299); namely, that
the derivative ∇V·f(x) is strictly monotonic around the equilibrium (here, without loss of
generality, assumed to be the origin). As sum-of-squares are limited to semi-definiteness,
we will require instead of strict negativeness,

∇V · f(x) + ε ‖x‖2
2 ≤ 0 (I.31)

with ε > 0 small, which can be implemented as sum-of-squares feasibility problem. If V
is unknown but of bounded degree, we can furthermore search for a Lyapunov-function
if we implement additionally V − ε‖x‖2

2 ∈ Σ [x].
In the following, we denote the set of all x ∈ Rn such that (I.31) holds by ΩV,f,ε for

V ∈ R [x], f ∈ R [x]n, and ε > 0.

Local monotonicity The problem of local negative monotonicity of a Lyapunov
candidate-function can be reduced to semi-algebraic set-inclusion, namely,

s ` Φ ⊆Σ ΩV,f,ε, (I.32)

where Φ is given by (intersection of) polynomial inequalities, and searching for a suitable
Lyapunov-function is likewise implemented as SOS feasibility problem, given that Φ is
defined independently from V. This is in particular useful for local stability analysis
(without any statement about the region of attraction) of a polynomial system, or global
stability analysis of switching systems (Papachristodoulou and Prajna 2009, p. 1037).

If we want to find the largest level set of a given V which is invariant, however, we
have to relax (I.32) to the quasi-convex problem

max λ s ` ΩV≤λ ⊆Σ ΩV,f,ε. (I.33)
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The estimation of the region of attraction is commonly formulated as to find a Lya-
punov function where the invariant set is as large as possible. This immediately raises
the question: When is the invariant set ΩV1≤λ1 larger than ΩV2≤λ2, or even larger as
any other invariant set? In Section I.3 we have already seen that the order defined by
“⊆” is not total and that the largest invariant set is the one that includes any other; yet
testing every Lyapunov candidate-function and any invariant set for inclusion surely is
a tedious task. Instead, we are going to associate the size of an invariant set with an
inscribing body, such as an ellipsoid, E of given shape p. The pseudo-radius ρ such that
E inscribes ΩV≤λ can then be estimated as quasi-convex problem

max ρ s′ ` Ωp≤ρ ⊆Σ ΩV≤λ. (I.34)

Thus, we formulate the region-of-attraction estimation as the optimization problem
(Topcu et al. 2008, p. 2670)

max
V∈R[x]
ρ,λ>0

ρ


V − ε‖x‖2

2 ∈ Σ [x]
s ` ΩV≤λ ⊆Σ ΩV,f,ε

s′ ` Ωp≤ρ ⊆Σ ΩV≤λ

(I.35)

for given p, f, and ε > 0 small.18 However, we cannot solve Eq. (I.35) directly as sum-
of-squares problem, not even as quasi-convex problem, as it includes a polynomial term
bilinear in V and s. In order to address the problem of bilinearity, we will apply a bisec-
tion strategy that separates (I.35) in three distinctive steps, each involving a quasi-convex
optimisation or feasibility problem. This procedure, typically called “V-s-iteration,” is
composed of the steps:

1. Find the largest invariant set of given a Lyapunov candidate-function V,

λ∗ =def max λ s ` ΩV≤λ ⊆Σ ΩV,f,ε, (I.36)

where s ∈ Σ [x] certifies that ΩV≤λ∗ is an invariant set of f;

2. Find the largest ellipsoid E of given shape p that inscribes this invariant set,

ρ∗ =def max ρ s′ ` Ωp≤ρ ⊆Σ ΩV≤λ∗ , (I.37)

where s′ ∈ Σ [x] certifies that Ωp≤ρ∗ lies within the stable levet-set;

3. Find a polynomial Lyapunov function of given degree that is positive definite and
subject to the results and certificates of the two preceding steps,

V∗ =def arg


V − ε‖x‖2

2 ∈ Σ [x]
s ` ΩV≤λ∗ ⊆Σ ΩV,f,ε

s′ ` Ωp≤ρ∗ ⊆Σ ΩV≤λ∗

(I.38)

18The ε-terms enforcing positive-definiteness and negative monotonicity of V are not necessarily equal,
nor do they have to be quadratic. Any two positive definite polynomials l1, l2 do the job (see also Topcu
et al. 2008, p. 2670).

50



where s, s′, hold fixed, certify that ΩV∗≤λ∗ is indeed both invariant and inscribed
by E .

The result of the last step, V∗, can subsequently be used as candidate for the first
step and the procedure is repeated until, e.g., the estimated region of attraction is of
adequate size, the pseudo-radius of the ellipsoid E is non-increasing, or a certain number
of iterations is exceeded.

It is worth noting that the last step of the V-s-iteration does not necessarily lead to
a further increase of the estimated region of attraction; indeed, the previous Lyapunov
function-candidate does already solve Eq. (I.38). In practice however, due to trivia of
the underlying solvers, the last step usually returns a different V∗ that allows for an
enlarged invariant set (Chakraborty et al. 2011a, p. 340).

The V-s-iteration as presented here is by far the only strategy for a region-of-
attraction estimation using sum-of-squares polynomials. Topcu et al. 2008, for example,
used simulation data to a priori estimate the stable region of a given system and obtain a
convex set of Lyapunov candidate-functions. The problem of unfortunate selected ellip-
soidal shapes was addressed by Khodadadi et al. 2014, who proposed an adaptation step
to update and improve the “direction” of the subsequent search. Other authors removed
the necessity of an ellipsoidal shape function and the quasi-convex optimisation steps
entirely, simply restricting the result of the feasibility step to have an invariant 1-level
set that includes the previous estimate in its interior (Zheng et al. 2018). The quasi-
convex optimisation problems in Eqs. (I.36) and (I.37) may also be replaced by further
bisection, namely by sum-of-squares optimisation problems in λ, ρ > 0 for given s, s′ and
feasibility problems in s, s′ ∈ Σ [x] for given λ, ρ, respectively. While this may reduce
the computation time, it inevitably results in further sub-optimality of the resulting
region-of-attraction estimate.

�
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Chapter 3

Piecewise Modeling of Aircraft
Dynamics

This chapter is an exact copy of:

Torbjørn Cunis et al. (2019). “Piecewise Polynomial Modeling for Control
and Analysis of Aircraft Dynamics beyond Stall”. In: Journal of Guidance,
Control, and Dynamics 42.4, pp. 949–957. doi: 10.2514/1.G003618.
(published online December 2018)

in the authors’ accepted version.

Synopsis
We will show that, beyond stall, simple polynomial models of the aircraft dynamics
which are available in the literature, fail to represent full-envelope aerodynamics ac-
curately. Functional analysis methods such as bifurcation analysis and sum-of-squares
programming, however, are computationally heavy for advanced fitting methods such as
multi-variate splines. We therefore propose a new method of fitting polynomial piecewise
for low and high angles of attack (i.e., beyond stall). This chapter presents the theoret-
ical background of piecewise polynomial fitting using linear least-square optimisation.
We further illustrate how to apply continuation analysis and sum-of-squares region of
attraction analysis for this kind of piecewise systems and present preliminary results for
the GTM longitudinal equations of motion. This proves the proposed piecewise mod-
eling technique to be both accurate in fitting the full-envelope aerodynamic coefficients
and trim conditions of the GTM as well as applicable to functional analysis. Therefore,
we will continue in using piecewise polynomial modeling for the aircraft dynamics in
all subsequent chapters of this thesis. Details on the implementation can be found in
Appendix A; the piecewise polynomial aircraft model is detailed in Appendix B.1.

Statement of Contribution Torbjørn Cunis developed and implemented the pre-
sented modeling and analysis. Jean-Philippe Condomines contributed to the introduc-
tion. Both Jean-Philippe Condomines and Laurent Burlion provided supervision and
feedback during the initial submission and following revisions until final acceptance.
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Piecewise Polynomial Modeling for Control and
Analysis of Aircraft Dynamics beyond Stall

Torbjørn Cunis* and Laurent Burlion†
ONERA – The French Aerospace Lab, Centre Midi-Pyrénées, Toulouse, 31055, France

Jean-Philippe Condomines‡
French Civil Aviation School, Toulouse, 31055, France

Nomenclature
α0 = Low-angle of attack boundary (°);

ρ = Pseudo-radius (ρ ∈ R);

ϕ(·) = Boundary condition function (ϕ : Rm → R);

Σ = Positive-definite shape factor (Σ ∈ Rn×n);

Ωϕ = Boundary curve set (Ωφ ⊂ R
m);

Cl,m,n = Aerodynamic coefficients of moments in body axes (·);

CX,Y,Z = Aerodynamic coefficients of forces in body axes (·);

C = Objective matrix (C ∈ Rk×r);

d = Vector of measurements (d ∈ Rk);

f(·) = Non-linear, open-loop system dynamics (f : (X, ·) 7→ Ẋ);

g(·) , h(·) = Positive-semi-definite Lagrange multiplier (g, h : Rn → R≥0);

k = Number of measurements;

m = Number of variables;

n = Number of states; system degree; polynomial degree;

q = Vector of coefficients (q ∈ Rr);

r = Number of coefficients;
*Doctoral Researcher, Department of Information Processing and Systems, e-mail: torbjoern.cunis@onera.fr; associated

researcher with the French Civil Aviation School, Drones Research Group; AIAA Student Member.
†Research Scientist, Department of Information Processing and Systems, e-mail: laurent.burlion@onera.fr.
‡Assistant Professor, Drones Research Group, e-mail: jean-philippe.condomines@enac.fr.
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X∗, µ∗ = States and parameters at trim condition;

(·)post = Domain of high angle of attack;

(·)pre = Domain of low angle of attack;

X = State space (X ⊆ Rn);

∂X = Set boundary of X.

I. Introduction

Full-envelope aircraft models require extensive effort to represent the aerodynamic coefficients well in

the entire region of the envelope as flight dynamics beyond stall are highly non-linear and often unstable

[1, 2]. With upset recovery approaches found in the literature being model-based ([3–5], and references

herein) there is a clear need for reliable full-envelope models of flight dynamics. NASA’s Generic Transport

Model (GTM) has contributed significantly to analysis and control approaches of civil and unmanned aircraft

over the entire flight envelope (see, e.g., [6, 7]). Representing a 5.5 % down-scaled typical aerial transport

vehicle, the GTM provides exhaustive, full-envelope aerodynamic data from wind-tunnel studies [8] and its

open-source aerodynamic model for MATLAB/Simulink [9] has given access for development of modeling,

analysis, and control methods to the aerospace community. An overview of research studies on longitudinal

trim conditions, regions of attraction, and upset situations can be found in [2, 5, 10, 11]. However, analytical

representations proposed for the full-envelope aerodynamics are still insufficient for non-linear analysis and

control design [12]. Therefore, improved methods for accurate modeling are imperative, in particular when

developing robust and powerful advanced control strategies for upset recovery. Subsequently, model feedback

designs based on full-envelope aerodynamic models will grant full authority and control efficiency for stability

and performances in unmanned aircraft (UA) [13].

Polynomial models of the aerodynamic coefficients have provided a constructive method to define and

evaluate models based on analytical computation due to their continuous and differentiable nature. Despite

the fact that polynomial models have been published recently [10, 11], none of the results represent the

aerodynamic coefficients well in the entire region of the envelope [12]. Indeed, at the stall angle of attack, the

laminar flow around the wings in the pre-stall region changes to turbulent flow and remains so in post-stall.

This significant change of the flow dynamics motivates a piecewise model of the pre-stall and post-stall

dynamics instead.

Piecewise regression theory can be dated to the 1970s; first research focused on regression of a few

polynomial functions piecewise over the observations. However, the estimation of suitable switching surfaces
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or joints for the piecewise functions usually adds computational difficulty and load [14–17]. Later, multivariate

splines were introduced [18, 19]; using simplices and baryocentric coordinates for the base, the so-called

B-splines bear the advantage of generalized continuity, dimensional flexibility, and efficient evaluation as

well as a stable local basis [20]. Recently, a further approach combining splines with fuzzy logic has been

presented in [21].

While splines today present a powerful yet complex tool for accurate and smooth interpolation, they lack

an underlying physical model justifying the partition. Moreover, for functional analysis of trim conditions

and stable sets, as in [10, 11], splines weren’t used but polynomials. Motivated by the practical problems

encountered with mini-UAs flight control and guidance, civil aircraft fault detection and isolation, and upset

recovery, we aim to derive a simple yet powerful aerodynamic model still suitable for functional analysis. A

novel approach for piecewise polynomial modeling aerodynamic coefficients, the pwpfit toolbox for MATLAB,

was recently proposed in [22]. Here, we have proven feasibility of fitting both a piecewise polynomial model

and its joint surface using linear least-square (LSQ) optimization techniques. While this approach is limited

to a single joint without differential continuity, the switch in the dynamics is motivated by the change from

laminar to turbulent flow at stall and the resulting model is found to fit the full-envelope aerodynamics well.

This article focuses on the recent research detailing the theoretical aspects in the sequel and their

application to functional analysis. The main contributions of this paper are therefore: to address (in

§II) a concise bibliographical review of the polynomial based-methods used for full-envelope identification;

to introduce (in §III) a novel and generic formulation of the piecewise polynomial fitting method which

approximates a piecewise polynomial function and its joint; to provide (in §IV) a six-degrees-of-freedom model

of an aircraft and its aerodynamic coefficients, accounting for both pre-stall and post-stall characteristics by

piecewise identification; and finally to demonstrate and assess the extension of functional analysis tools for

the piecewise polynomial model (in §V).

II. State of the Art

A. Polynomial regression

Polynomial regression is a general approach similar to linear curve regression, where a polynomial function

f is to be found in order to approximate best a set of measured data points. Here, the coefficients of f are

subject to the optimality problem of minimal sum of squared residuals of f with respect to the measurements

(goodness of fit, GoF). The formulation of optimal coefficients as a linear least-square problem dates back

to Legendre (1805) and Gauss (1809); a first application can be found by Gergonne in 1815 [23]. It has

been shown that on average, the residuals of such an optimal polynomial vanish and their deviation is
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minimized [24]. Furthermore, polynomial functions are defined by basic mathematical operations of addition

and multiplication and thus provide by their nature smoothness to infinite differentiation. Recent polynomial

models of the full-envelope aerodynamic coefficients of the GTM have been presented in [10, 11].

B. Multi-variate splines

Splines are piecewise sequences of polynomial functions, where each polynomial is active only in the

respective partition. These partitions are chosen before fitting instead of being subject of the fit. The

polynomials sub-functions are computed such that at the boundaries of the selected partitions the overall

spline function is smooth to a certain degree of continuity. Thus, spline functions show characteristics of both

lookup tables and polynomials, as noted by de Visser et al. [18, p. 3]:

Effectively, spline functions [...] combine the global nonlinear modeling capability of lookup tables

with the analytic, continuous nature of polynomials.

While for a single-variable spline function, the boundaries equal point-wise joints, the partitions of

multi-variate splines can be more complex. In addition to simple rectangles (or rather rectangular polytopes),

triangular partitions have recently proposed by [20]. However, the high accuracy of splines in terms of their

residuals is opposed by their computational costs for further analytical investigation. Multi-variate splines

have been used in, among others, [18, 19] in order to model full-envelope aerodynamics.

III. Methodology
In vector notation, optimal coefficients for piecewise polynomial fits are expressed as linear least-squares.

We introduce a polynomial notation by the vectors of monomials and coefficients and thus reduce the goodness

of fit to a function of the latter. The joint will be given by the scalar field ϕ(·) in the variables of the model

and the scalar bound x0; here, we assume ϕ to be linear matrix inequality and x0 will be determined by the

fitting. The resulting model then has a single joint with value continuity, i.e., the model is not differentiable

at the joint. For models in several variables and outputs, such as the aerodynamic coefficients, it is desirable

to have further constraints to the fit enforced. We will add those desired properties of the piecewise fit as

constraint matrices.

Definition 1 A linear least-square (LSQ) problem is given as the optimization problem

lsq(C, d,A, 0) = arg min
q∈ΩA

‖Cq − d‖22 . (1)

with q ∈ Rr , C ∈ Rk×r , d ∈ Rk , and ΩA = {q |Aq = 0 } for a constraint matrix A.
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A. Polynomials

A monomial of degree n is a single product of powers where the exponents add up to the total degree n,

without any scalar coefficient. We notate a monomial of x = (x1, . . . , xm) in degrees n = (n1, . . . , nm) as

xn = xn1

1 . . . x
nm
m , (2)

where xn has the total degree n = ‖n‖1 = n1 + · · ·+ nm.

Definition 2 Pn(x) is the vector of monomials xν in variables x = (x1, . . . , xm) with degrees ν ∈ Nm and

total degrees ‖ν‖1 ≤ n; and the number of elements in Pn(x) is denoted by r[n], i.e., Pn ∈ R [x]r[n].

By this notation, a polynomial f is expressed as scalar product of its monomials and coefficients,

f (x) = 〈Pn(x) , q〉 (3)

with the vector of coefficients q ∈ Rr[n].

B. Piecewise polynomial fitting

Consider the k observations (xi, zi)i given as sequences over i ∈ [1, k]:

zi = γ(xi) + ε i, (4)

where (xi, zi, ε i)1≤i≤k ⊂ Rm × R × R and γ(·) and (ε i)i are an unknown function and measurement error,

respectively; we will find coefficients q1, q2 as well as a scalar x0 ∈ R such that

f : x 7−→




〈Pn(x) , q1〉 if ϕ(x) ≤ x0;

〈Pn(x) , q2〉 else;

with ϕ : Rm → R minimizes the sum of squared residuals

GoF( f ) =def

k∑
i=1

�� f (xi) − zi ��2 (5)

for an n > 0. We note the sub-polynomials of f by f1,2 : X1,2 → R, x 7→ 〈Pn(x) , q1,2〉 with X1 ∩ X2 = ∅ and

call X1 ∪X2 the entire domain of f . The joint of f is given by Ωϕ =def ∂X1 ∩ ∂X2 =
{
x ��ϕ(x) = x0

}
; if ϕ(·) is

a linear matrix inequality, the boundary is convex. Re-writing the goodness of fit using matrix calculus, we

reduce the cost functional to a cost function and polynomial data fitting to a linear least-square problem.
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The cost functional for f can be evaluated piecewise to

GoF( f ) =
∑

xi ∈X1

�� f1(xi) − zi ��2+
∑

xi ∈X2

�� f2(xi) − zi ��2 (6)

with X1 = {x1, . . . , xi′ }, X2 =
{
xi′+1, . . . , xk

}
chosen a priori. As f1, f2 are scalar products, we re-write (6) to

the cost function

GoF(q1, q2) = 

C1q1 − d1


2 + 

C2q2 − d2



2 (7)

where C1,2 are the monomials of Pn(·) evaluated in the observations of X1 and X2, respectively, and d1,2 are

the vectors d1 =

[
z1 · · · zi′

] T
, d2 =

[
zi′+1 · · · zk

] T
. The optimal coefficients are now subject to the

unconstrained (A = 0) linear-least square problem



q1

q2



= arg min
q′















C1 0

0 C2



q′ −



d1

d2















2

2

. (8)

Here, continuity of the piecewise defined f over its entire domain holds if

〈Pn(x) , q1〉 = 〈Pn(x) , q2〉 (9)

for all x ∈ Ωϕ. For single-variate functions, we have value continuity for the identity function ϕ = id and x0

is zero of

〈Pn(x) , q1 − q2〉.

In this scheme, the observations still need to be split into X1 and X2 initially; however, this leaves the

actual joint to be free. As the observations form a discrete set, an optimization approach over X1,2 would be

fair and just, thus yielding an ideal model. With piecewise polynomial fitting keeping most properties of

polynomial regression, it has been proven numerically in [22] that the inaccuracy of a fitted erroneous signal

is reduced: given data pairs (xi, zi)i by (4) with ε ∼ N (0, σ) and a piecewise fit f , the standard deviation of

f to the true values, γ(x) − f (x), is smaller than the measurement error σ.
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C. Constraint matrices

As the coefficients define a polynomial uniquely, we can restrict the coefficients (i.e., the polynomials) by

constraint matrices:

Proposition 1 (Constraint of continuity [22]) Let ϕ(x) = aTx ≤ x0 be a linear matrix inequality (LMI)

with aT =

[
a1 · · · am

]
and a1 , 0; a piecewise polynomial function f with continuity in Ωϕ is subject to

the constrained LSQ problem given by the continuity constraint matrix C , i.e.,

C



q1

q2



= 0⇐⇒ ∀x ∈ Ωϕ . 〈Pn(x) , q1〉 = 〈Pn(x) , q2〉. (10)

The constraint matrix C is constructed by separation of the constrained variables into Λ0 such that

〈Pn(x0) , q1,2〉 = 〈Pn(x̃) ,Λ0q1,2〉 (11)

for all x0 ∈
{
x ���a

Tx = x0
}
, where x̃ are the remaining free variables; we then have that

〈Pn(x̃) ,Λ0q1〉 = 〈Pn(x̃) ,Λ0q2〉

for all x̃ ∈ Rm−1 if and only if Λ0q1 = Λ0q2 and hence, Equation (10) holds for C =

[
Λ0 −Λ0

]
.

Due to measurement errors or modelling flaws, a polynomial fitting may have relations that either do

not exist or shall not be modeled; e.g., for a symmetric aircraft aligned to the flow, there is no side-force—

regardless its angle of attack. In this case, it is desirable to constrain the resulting polynomial to be zero (or

constant) for certain parameters x̃′ =
(
x j+1, · · · , xm

)
:

Proposition 2 (Zero constraint [22]) Let x′ =
(
x1, . . . , x j

)
for j > 0; a polynomial f = 〈Pn(x) , q〉 with

∀x′ ∈ Rj . 〈Pn

(
x′, 0m−j

)
, q〉 = 0 (12)

and 0m−j ∈ {0}m−j is subject to the constrained LSQ problem given by the zero constraint matrix Z.
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D. Implementation

The approach of piecewise polynomial fitting has two major modes, namely either the joint condition

is a result of fitting or the joint is chosen a priori; that is, without or with a given constraint of continuity,

respectively. The main steps for both modes are illustrated by the flow chart in Fig. 1, given the split sets

of parameters, X1 = {x1, . . . , xi′ } , X2 =
{
xi′+1, . . . , xk

}
and the corresponding observations Z = {z1, . . . , zk }.

Preliminary to the implementation of objective and constraints matrices, we have the computation of the

monomials in x. While the order of monomials is arbitrary for fitting, we introduce here the following

convention: for ν, µ ∈ Nm, the monomial xν precedes xµ as element of Pn(x) if and only if ‖ν‖1 < ‖µ‖1 or the

first non-zero element of (ν − µ) is positive and ‖ν‖1 = ‖µ‖1. In consequence, the vector of monomials breaks

up into blocks of monomials xn of equal total degree ‖n‖1 = N , denoted by pN ∈ R [x]
r[N ], and N ∈ [0; n]

ascending. The vector of monomials can be computed recursively for a given x ∈ Rm by [22, Alg. 1]. The

objective matrices C1,C2, d of Eq. (7) can directly be computed with the elements of X1, X2, and Z . Without

constraints, the output coefficients q1, q2 are subject to the unconstrained LSQ problem of (8).

Inputs: X1, X2, Z1:

compute C for x02b:

compute C1,C2, d3:

solve LSQ problem for q1, q24:

find x0 s.t.
〈Pn(x0) , q1 − q2〉 = 0

5a:

return q1, q2, x06:

2a

5b

Fig. 1 Flow chart for the piecewise polynomial fitting approach: a) without continuity con-
straint; b) with continuity constraint in x0.
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With the definition Pn =

[
p0(x) · · · pN (x)

]
, the continuity constraint matrix C is derived from (11)

by linear separation of each block. If the linear matrix inequality aTx ≤ x0 of Proposition 1 is given with a

single non-zero element of a – suppose, a1 , 0 –, separation of the assigned variable x1 ≡ x0 yields

pN (x0, x̃) = λN (x0)
T pN (x̃)

with x̃ ∈ Rm−1 and λN = diag pN (x0, 1m−1) for 1m−1 ∈ {1}m−1. The following algorithm combines λ0, λ1, . . . , λn

into the matrix Λ0 ∼ Aeq: [22, Alg. 2]

1: one = num2cell(ones(1,m-1));

2: j = 0;

3: for N=0:n

% let pN:= pN (·); rN:= r[N ]

4: pNx0 = double(pN(x0,one{:}));

5: Aeq(1:rN,j+(1:rN)) = diag(pNx0);

6: j = j + rN;

7: end

and C =

[
Λ0 −Λ0

]
. For aTx , x1, there is an invertible π : Rm → Rm with aTπ(y) = y1 for y = (y1, . . . , ym)

[22, Lemma 7] and we thus fit polynomials g1,2 with continuity constraint in y1 ≡ x0, resulting in

f1 =
(
g1 ◦ π

−1
)
; f2 =

(
g2 ◦ π

−1
)
.

The computation of the zero constraint is not illustrated in Fig. 1 but is given, regardless the constraint of

continuity, by [22, Alg. 3] and precedes the solution of the LSQ problem. However, if both zero constraint

and constraint of continuity are given, we need to ensure full rank of the complete constraint matrix,



C

Z



q′ = 0.
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IV. Piecewise, Full-envelope Aircraft Model
Modeling the aerodynamic coefficients of the GTM piecewise around the stall angle of attack, results in

the six-degrees-of-freedom equations of motion

f : (X,U) 7−→ Ẋ =




fpre(X,U) if α ≤ α0;

fpost(X,U) else;
(13)

where X and U denote the state and input vectors

X =

[
V α β µ γ χ p q r Φ Θ Ψ

] T

and U =

[
ξ η ζ F

] T
. Here, the angles of aerodynamics (α, β), air-path (µ, γ, χ), and attitude (Φ,Θ,Ψ)

are defined by the axis systems of ISO 1151-1 (Fig. 2): the body axis system
(
x f , y f , z f

)
aligned with the

aircraft’s fuselage; the air-path axis system
(
xa, ya, za

)
defined by the velocity vector; and the normal

earth-fixed axis system
(
xg, yg, zg

)
. The air speed V is the aircraft’s absolute velocity relative to the air and

the body rates (p, q, r) are defined around the body axes; as usual, the control inputs are aileron, elevator,

and rudder deflections ξ, η, ζ , respectively, and the thrust F.

xg

xa

x f

zg
za

z f mg

−ZA

F

−X A

V Θ
γ

α

(a) Longitudinal axes (β = µ = 0).

xg

x ′f

xa

yg
y′f ya

F ′ −X A

Y A′

V

Ψ

β′

χ

(b) Horizontal axes (γ = 0).

Fig. 2 Axis systems with angles and vectors (projections into the plane are marked by ′).

A. Equations of motion

A non-linear system of equations of motion for the six-degrees-of-freedom aircraft model of the GTM

has been proposed in [25]. Here, the changes of air speed V , side-slip β, inclination γ, and azimuth χ are

subject to lift, drag, thrust, and side-force (given by the aerodynamic force coefficients CX,CY,CZ and the

thrust input F); the changes of angular body rates ṗ, q̇, ṙ are given by the aerodynamic moment coefficients

Cl,Cm,Cn; and the changes of attitude Φ,Θ,Ψ are functions of the angular body rates.
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Fig. 3 Comparison of 3rd-order polynomial [10, 11] and piecewise identifications. [12]

B. Aerodynamic coefficients

The aerodynamic coefficients of the GTM are measured by its angle of attack, side-slip angle, surface

deflections, and normalized body rates. [9] The measurements are given by the unknown function Γ(·):

Ci = Γ(αi, βi, ξi, ηi, ζi, p̂i, q̂i, r̂i) + ε i (14)

for i ∈ [1, k] and Ci = (CX,i,CY,i,CZ,i,Cl,i,Cm,i,Cn,i) with ε i an unknown measurement error. Here, simple

polynomial models are unsuitable to represent the full-envelope aerodynamics (Fig. 3; see also [12]). Instead,

we will fit the pre-stall and post-stall dynamics piecewise to (Ci)1≤i≤k by

C�(α, β, . . . ) =




Cpre
� (α, β, . . . ) if α ≤ α0;

Cpost
� (α, β, . . . ) else;

(15)

and C� ∈ {CX,CY,CZ,Cl,Cm,Cn} are polynomials in the inputs to (14). Initially, a value for α0 is found by

fitting CX with respect to the angle of attack only and solve

Cpre
Xα

(α) = Cpost
Xα

(α) ,

resulting in α0 = 16.1110°. The obtained CX-model as well as (Ci)1≤i≤k are shown by Fig. 3. The boundary

condition α ≡ α0 then resembles a hyper-plane and for the full envelope, Cpre
� , Cpost

� are chosen to be sums of

3rd-order polynomials

C×� = C×�α(α) + C×�β(α, β) + C×�ξ(α, β, ξ) + C×�η(α, β, η) + C×�ζ (α, β, ζ) + C×�p(α, p̂) + C×�q(α, q̂) + C×�r(α, r̂)

(16)
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for × ∈ {pre, post}. Continuity of the single terms at the boundary α0,

Cpre
�∗ (α0, . . . ) = Cpost

�∗ (α0, . . . ) (17)

for all C�∗ and inputs, then implies continuity of (15). Lastly, we require the lateral coefficients (CY, Cl, Cn)

vanish in the symmetric setting, i.e., zero side-slip, no aileron nor rudder deflection (β = ξ = ζ = 0), nor

out-of-plane body rates (p̂ = r̂ = 0). Fig. 4 shows the piecewise polynomial model of the GTM aerodynamic

coefficients for angle of attack with neutral surface deflections (ξ = η = ζ = 0) and zero body rates

(p = q = r = 0). All functions are continuous in the joint α0 and the lateral coefficients vanish in β ≡ 0. As

only value continuity is ensured here, the obtained model is not continuously differentiable in α0; a more

general spline approach would allow for higher continuity, but comes at the cost of a priori choice of the joint.

The full polynomial expressions can be found in the technical report [25].
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(b) Piecewise model Cl(α, β).
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(c) Piecewise model Cm(α, β).
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(d) Piecewise model CY(α, β).

Fig. 4 (Part 1) Piecewise model of the aerodynamic coefficients in angle of attack and side-slip
angle for neutral surface deflections.
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(e) Piecewise model CZ(α, β).
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(f) Piecewise model Cn(α, β).

Fig. 4 (Part 2) Piecewise model of the aerodynamic coefficients in angle of attack and side-slip
angle for neutral surface deflections.

V. Towards Analysis of Piecewise Models
Functional analysis of full-envelope aerodynamic models, such as continuation of trim conditions and

estimation of regions of attraction, provides insight into the dynamical and statical properties of aerial

systems in their extended operation range. This section provides adaptations of analysis tools used in the

literature for the piecewise defined polynomial equations of motion of §IV despite the discontinuity in the

first derivative around stall.

A. Trim condition analysis

The theory of continuation and bifurcation considers the equilibria of a dynamic system

Ẋ = f(X,U, µ) , (18)

where µ denotes the parameters of the continuation, which may include state variables and control inputs as

well as other properties of f such as system parameters or external influences. By variation of the parameters

µ we can discuss the evolution, in particular creation, vanishing, and changes of stability, of the branches

of equilibria (X∗,U∗, µ∗), i.e., f(X∗,U∗, µ∗) = 0, as function of µ∗. Toolboxes like the Continuation Core and

Toolboxes (COCO) [26] offer computation of continuation and bifurcation of continuous functions. The GTM

equations of motion is said to be in a trim condition if and only if the airspeed and air-path are constant, i.e.,

V̇ = γ̇ = 0; the side force vanishes, β̇ = 0; the body rates remain unchanged; and roll and pitch angles are

constant. The heading is constant for level flight (Ψ̇ = χ̇ = 0). We now choose the continuation parameters

out of airspeed V , inclination γ, bank-angle µ, angle of attack α, side-slip β, the normalized rates p̂, q̂, r̂, the

surface deflections ζ, η, ξ, and thrust F, leaving the remaining quantities as free variables. We have now the

67



system of equations of motion in (18) defined piecewise as

f(X,U, µ) =




fpre(X,U, µ) if α ≤ α0;

fpost(X,U, µ) else.
(19)

For the partial derivatives of f are discontinuous in α0, the COCO toolbox cannot directly compute a

continuation of the piecewise system over the entire domain. Instead, we adjust the switching behaviour

manually: starting from a low angle of attack, we compute equilibria of fpre until the boundary condition

α = α0 is reached. As continuity holds at the joint,

fpre(X∗0,U
∗
0, µ

∗
0) = fpost(X∗0,X

∗
0, µ

∗
0) = 0, (20)

we can switch here to the dynamics of fpost without any reset and compute the high-angle of attack equilibria

starting from
(
X∗0,U

∗
0, µ

∗
0

)
until either the limits of the continuation parameter or the boundary again is

reached. In the latter case, we switch back to the low-angle of attack dynamics, and so on until finished.
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Fig. 5 Continuation of the longitudinal dynamics of the GTM for polynomial and piecewise
defined models of the aerodynamic coefficients.

In Fig. 5, we compare the piecewise continuation of (19) to polynomial models of the aerodynamic

coefficients for variation of the air speed and level flight (γ ≡ 0). The polynomial model of [10] has been

replaced by a similar fit. The trim data of the GTM ( ) have been obtained by the trim function for the

internal interpolation provided in the MATLAB simulation [9]. The first polynomial fit ( ) shows, similar
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Fig. 6 Stability of the longitudinal dynamics for polynomial and piecewise defined models.

to [10], a high-angle of attack branch for re-increasing air speed, which neither the polynomial fit of [11]

( ) nor the piecewise fit ( ) show. On the other hand, the latter certainly provide a better tracking of

the GTM angle of attack, thrust, and elevator deflection values at the varying trim conditions. While for the

polynomial fit of [11] the values of elevator deflection diverge to (unrealistic) multiples of 360 degrees with

decreasing air speed, the elevator deflection for the piecewise fit converges, allowing a second branch of trim

conditions for re-increasing air speed, too, however with far smaller angles of attack here.

We further provide in Fig. 6 information about local stability of the models: the critical point, where

the trim condition changes from (locally) stable to unstable, is marked with an asterisk; stable and unstable

trim conditions are drawn solid and dashed, respectively. While all three models are stable for low angles of

attack and unstable for high angles, the critical points are located differently. The piecewise model shows

additionally a section of stable trim conditions along the branch of increasing angles of attack, corresponding

to thrust inputs larger than 135 N—i.e., 100 % throttle—and elevator deflections of −19° to −23°. Only the

piecewise model has its first critical point located close to the GTM’s stall angle of attack (see also Fig. 3).
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B. Stable set analysis

When looking for the full-envelope, non-linear behaviour of an aircraft, knowledge about the flight envelope

is vitally important for the vehicle’s safety. Several characterisations of the flight envelope exist in literature.

First and foremost, the desired region of the state-space can be defined by limits on the aircraft states. Within

such a strict envelope, one would have the largest control-invariant set (or safe set) [27, 28], i.e., the largest

set of initial conditions such that, given suitable control input, the aircraft is kept within the flight envelope.

Finally, the regions of attraction for each stable trim condition provide a smaller, stable set and clearly, the

safe set encapsulates the stable sets of the contained trim conditions, where every region of attraction is

control-invariant in itself. While the safe set determines the abilities of the aircraft to be controlled, the

stable sets highlight the limitations of a chosen controller. The neighbourhood of a trim condition X∗ is

called stable, denoted by Xstable, if and only if for all initial conditions X0 ∈ X
stable the system eventually

approaches X∗. In order to compute and prove minimal stable sets of aerial vehicles based on Lyapunov

function theory, researchers have successfully applied sum-of-squares programming for smooth polynomial

models and ellipsoid-shaped sets [11, 29]. Given a shape P : X 7→ XTΣX, Lyapunov-candidate function V

with V(X) > 0 for all X , 0, and X∗ located in the origin, we have that

Xρ =
{
X ∈ X ��P(X) ≤ ρ

}
(21)

with ρ > 0 is stable if and only if

V̇(X) = ∇Vf(X) < 0 (22)

for all X ∈ Xρ − {X∗}. Equation (22) holds if there is a positive semi-definite polynomial h ∈ R [X] such that

∇Vf(X) + h(X) (ρ − P(X)) ≤ −ε ‖X‖22 , (23)

for ε > 0. While this technique requires continuous, polynomial functions to verify stability of a Xstable, we

can employ common Lyapunov function theory to compute a stable set for piecewise defined systems.

Theorem 1 ([30]) Let (fi)i∈I be defined in the pair-wise disjunct (Xi)i∈I and V(X) > 0 for all X , 0; the

neighbourhood Xρ is stable if for all i ∈ I and X ∈ Xρ ∩ Xi − {0}

V̇(X) = ∇Vfi(X) < 0. (24)

Simply speaking, stability of Xρ holds if V̇ with respect to fpre, fpost is negative just for low and high
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angles of attack, respectively. Similar to (23), where h(X) (ρ −V(·)) compensates for non-negative derivatives

outside the stable set, we have with positive semi-definite g1, g2

g1(X) (α0 − α) ≥ 0⇐⇒ α ≤ α0 (25)

g2(X) (α − α0) > 0⇐⇒ α > α0 (26)

and hence




∇Vfpre(X) + h1(X) (ρ − P(X)) + g1(X) (α0 − α) ≤ −ε ‖X‖22 ,

∇Vfpost(X) + h2(X) (ρ − P(X)) + g2(X) (α − α0) ≤ −ε ‖X‖22
(27)

for ε > 0 implies stability of Xρ for the system of (19).

The challenge now is to find a Lyapunov function that grants a largest-possible size ρ for the chosen

shape factor Σ. One such approach using sum-of-squares programming is the V-s-iteration, which has been

presented in [11] as iteratively-alternating steps:

1) find λ� = max λ such that there is h′(·) positive semi-definite with

∇Vf(X) + h′(X) (λ −V(X)) ≤ −ε ‖X‖22 ;

2) find ρ� = max ρ such that there is h0(·) positive semi-definite with

(V(X) − λ�) + h0(X) (ρ − P(X)) ≤ 0

holding λ� of the first step constant;

3) find V(·) such that




V(X) ≥ ε ‖X‖22 ,

∇Vf(X) + h′(X) (λ� −V(X)) ≤ −ε ‖X‖22 ,

(V(X) − λ�) + h0(X) (ρ� − P(X)) ≤ 0,

holding λ�, ρ� as well as h′(·) and h0(·) of the previous steps constant.

Initially, a crude guess of V(·) is found here from the linearization of f around X∗ [11]. The V-s-iteration

removes the difficulty to find simultaneously a Lyapunov function and its region of strictly negative time-

derivative (dissipative region) as well as proving positive multipliers, by distinct steps of sum-of-squares

71



optimization. First, the dissipative region of V(·) is determined, i.e., the level set V(X) = λ such that its

derivative is strictly negative within; then, the inscribing ellipsoid P(X) = ρ, the stable set, is fitted into this

level set. The last step attempts to find a feasible Lyapunov function-guess with the prior results witnessing

the minimal stable region. Exemplary, we compute a stable set of the piecewise model for the short-period

motion,



α̇

q̇



=




fpre
sp (α, q, η = η∗) if α ≤ α0;

fpost
sp (α, q, η = η∗) else;

(28)

in the neighbourhood of the trim condition V ∗ = 45.7 m/s, γ∗ = 0, α∗ = 3.75°, η∗ = 1.49°, and F∗ = 21.44 N

with the shape factor

Σ = diag(20°, 50 °/s)−2

accounting for the physical operation range of the Generic Transport Model at the selected trim condition.

As in [11], the states have thus been scaled by the shape; the non-polynomial operations sin, cos, and

(·)−1 have been replaced by finite Taylor series expansions; and polynomial terms of 6th order or higher or

with coefficients absolute smaller than 10−6 were removed. After 94 iterations, we obtain the stable set

Xρ0 =
{
X ��P(X) ≤ ρ0

}
with

ρ0 = 1.4404 (29)

and the dissipative region
{
X ��V0(X) ≤ λ0

}
⊆
{
X ��� V̇0(X) < 0

}
of the quartic Lyapunov function V0(·) with

λ0 = 0.3265. (30)

Fig. 7 shows the stable set as well as the dissipative region of the computed common Lyapunov function.

For the polynomial short-period model of [11], the stable set XρPol and the respective level set of the quartic

Lyapunov function VPol have been computed to ρPol = 1.6785 and λPol = 0.8522, respectively, and are too

shown by Fig. 7 for comparison. The obtained Lyapunov functions are given by

V0 = 6.5α4 + 0.37α3q + 0.19α2q2 + 0.023αq3 + 0.0027q4 − 0.080α3

+ 0.000 44α2q + 0.012αq2 − 0.0067q3 + 0.69α2 − 0.016αq + 0.020q2

(31)
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and

VPol = 20α4 − 2.8α3q + 1.6α2q2 − 0.21αq3 + 0.029q4 + 0.0033α3 + 0.000 88α2q

+ 0.000 13αq2 − 2.5 × 10−6q3 + 2.6 × 10−5α2 + 3.2 × 10−7αq + 1.4 × 10−6q2

It is thus demonstrated that the extension to common Lyapunov functions for the estimation of stable sets

for the piecewise polynomial model is feasible using sum-of-squares programming.
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Fig. 7 Stable set of the piecewise short-period model compared to [11].

VI. Conclusion
In-flight loss-of-control remains a severe threat to civil aviation safety. In the presence of highly non-linear,

unstable dynamics in upset situations, accurate models of the full-envelope aerodynamics are crucial for

successful analysis, protection, and recovery of the aircraft. This note proposes piecewise polynomial fitting

of the aerodynamic coefficients with a single non-smooth joint representing the change of dynamics at high

angles of attack. This approach yields a model almost as simple as polynomials but with the power of

splines to account for complex characteristics. The joint of the piecewise model is justified by the physical

properties of the aerial system and has been subject to the fit, too. Without the necessity of a priori choices

regarding the fit, we maintain all abilities of polynomial fitting. Given the example of the Generic Transport

Model, we have compared the piecewise model of the aerodynamic coefficients to polynomial models available

in the literature, proving the accuracy of both piecewise coefficients and trim conditions when measured

73



against the GTM’s raw data. Functional analysis tools such as continuation of equilibria and estimation of

safe and stable sets yield invaluable preparations for flight control schemes over the full envelope. We have

demonstrated how those tools, typically requiring continuous inputs, can be adapted to piecewise defined

systems, retaining crucial information about stability and attraction. Although the extensions apply to all

kinds of piecewise models including splines, the problem size grows with the number of cases and, in particular

for sum-of-squares programming, computationally unfeasible. The piecewise polynomial model for low and

high angles attack, however, provides all three accuracy, regression of measurements, and feasibility of the

subsequent analysis.
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Chapter 4

Dynamic Stability Analysis in
Deep-stall

This chapter corresponds to:

Torbjørn Cunis, Jean-Philippe Condomines, Laurent Burlion, and Anders la
Cour-Harbo (2019). “Dynamic Stability Analysis of Aircraft Flight in Deep
Stall”. In: Journal of Aircraft. doi: 10.2514/1.C035455

in the author’s accepted version.

Synopsis

In this chapter, we establish the nonlinear model of Cumulus One, based on piecewise-
defined aerodynamic coefficients, that lays the foundation for further control synthesis
and analysis in Chapters 6 and 7. Unlike for the Generic Transport Model in the previous
chapter, there are no wind-tunnel data available for modeling but we initially base our
model on the results of a static continuous fluid dynamics (CFD) simulation. We will
thoroughly investigate the longitudinal dynamics using a continuation analysis and, to
this extent, shortly review the basics of piecewise polynomial modeling and bifurcation
theory. The piecewise polynomial aircraft model is detailed in Appendix B.2. We will
further introduce the concept of a blending function that smoothens differentiability gap
of the piecewise polynomial model and thus facilitates the use of nonlinear solvers for
continuation and optimisation.

However, due to the lack of dynamic coefficients, the preliminary model does not
represent the aircraft’s stable flight in deep-stall which has been demonstrated in flight
tests. We therefore discuss two alternative models for the impact of non-zero pitch rate
onto the aerodynamic pitch-moment coefficient. Here, we make use of flight test data
recorded for deep-stall transition manoeuvres initiated by a specified step in the elevator
deflection. Combining bifurcation analysis and nonlinear parameter optimisation, we
identify optimal parameters for the two dynamic models. Obtaining good results for
both models, in the remainder of the thesis we will utilise what we call a linear pitch-
damping coefficient, namely, the additional pitch moment is given by Mq = −CMqq
where CMq = κ̂q̇q is the optimal linear damping parameter derived in this chapter.

A six-degrees-of-freedom bifurcation analysis as well as the discussion of descent
modes conclude the chapter and complete the previous insights from flight tests.
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Beyond aerodynamic stall, analysis of aircraft flight requires models accu-

rately representing nonlinearities and instabilities. Previous bifurcation analy-

sis studies therefore had a priori knowledge of the aircraft dynamics including

dynamic damping. Yet unlike airliners, extensive wind-tunnel tests and high-

fidelity models are rarely available for small unmanned aircraft. Instead, contin-

uous fluid dynamic simulations may provide basic insights into the aerodynam-

ics, however limited to static conditions. In this paper, we present bifurcation

analysis as a tool to discuss the effects of unidentified pitch-damping dynamics

during deep-stall transition that allows us to develop a nonlinear pitch-damping

model for a small unmanned aircraft. Preliminary studying the static case, we

extend the model based on deep-stall flight data and predict dynamics and sta-

bility. As a result, we investigate the deep-stall modes of the extended model

in full-envelope.
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η Elevator deflection (rad), negative if leading to positive pitch moment;

Θ Pitch angle (rad);

κpr, κq Parameters of (linear) roll-yaw and pitch damping (·);

κq̇q Parameter of linear damping model (·);

λαq Parameter of model of induced angle of attack (·);

ξ, ζ Aileron and rudder deflections (rad), negative if leading to positive moments;

Φ Bank angle (rad);

Cm Aerodynamic coefficient moment body y f -axis (·);

CD Aerodynamic drag coefficient (·), parallel to airstream;

CL Aerodynamic lift coefficient (·), perpendicular to airstream;

D Drag force (N), pointing towards negative air-path xa-axis;

F Thrust force (N), pointing towards positive body xf-axis;

k Number of measurements;

L Lift force (N), pointing towards negative air-path za-axis;

p, r Roll and yaw rates (rad);

q Pitch rate (rad/s);

X∗, η∗ State vector and elevator deflection at trim condition;

VA,VA Aircraft speed and velocity relative to air (VA = ‖VA‖2, m/s);

(·)post Domain of high angle of attack;

(·)pre Domain of low angle of attack;

xa, ya, za Air-path axis system;

xf, yf, zf Body axis system;

xg, yg, zg Normal earth-fixed axis system;
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I. Introduction

Analysis of aircraft dynamics is nowadays retrieved from discussion of aerodynamic models by means

of systems theory, occasionally combined with high-fidelity Monte-Carlo simulations. The underlying

aerodynamic model is based on physical models of the vehicle dynamics that include a description of the

causes of motion (the external forces experienced by the aircraft). In the context of the flight dynamics of

aerial vehicles, these forces include aerodynamic loads, gravitational forces, and propulsion. The models are

typically parametric and requires an initial identification phase before operation [1]. Hence, they heavily rely

on our a priori knowledge. The knowledge model needs to be as representative as possible for the aircraft

physics, such that it can be used to simulate the aircraft dynamics.

Literature review

In the normal flight regime, where the aerodynamic coefficients are fairly linear, and for small perturbations

from the trim condition, linear analysis methods apply, such as the Nyquist stability criterion or Bode plots and

margins [2]. For flights at high angles of attack as in deep-stall, beyond the bounds of the linear approximation,

linear approaches fail [3]. With the aircraft dynamics being highly non-linear and mostly unstable here [4],

disparate methods have been applied for analysis: Bifurcation analysis is rooted on mathematical continuation

and bifurcation theory to compute trim conditions, critical (bifurcation) points, and periodical orbits of the

non-linear aircraft dynamics [5–8]. Recoverable or safe sets are determined by means of reachability [9, 10],

control-invariance [11], and regions of local attraction [12, 13]. Modeling dynamic systems by means of state

representations, whether linear or non-linear, gives us access to a direct formulation of the underlying physics

of the process [1].

An understanding of the aerodynamics of the aircraft is usually gained by performing tests on the aircraft

or a scaled replica in a wind tunnel. Among the aircraft studied in a wind tunnel, including almost every

commercial type as well as many experimental designs, NASA’s generic transport model stands out for its

extensively studied aerodynamics [14, 15] and wide recognition in the literature [5, 12, 16–20]. Establishing a

satisfactory model is rarely straightforward, and ensuring that it is sufficiently representative of every aspect

of the operational behaviour of the true vehicle can be extremely challenging. Today, constant improvements

in experimental technology and processing power have enabled us to develop increasingly reliable and accurate

forecasting knowledge models. Modern computer programs allow numerical derivation of aerodynamics

based on the aircraft’s geometry only, additionally—or alternatively—to classical wind tunnel experiments.

Computational fluid dynamics (CFD) simulates aerodynamic forces and moments acting on the body in static

condition; CFD offers simulations of wide ranges of incidence angles and surface deflections, just as if placed

in a real wind tunnel [cf. 21, and references herein], but while the injection of body rates is possible, too,
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these computations are highly expensive. In a different approach, the AVL program takes advantage of an

extended vortex lattice model to linearise the aerodynamics around a specified trim point [22]. AVL includes

dynamic coefficients, but is limited to linearised predictions. In any case, an advanced aerodynamics model

demands significant investment of time and funding that should be carefully considered before a modeling

approach is adopted by an unmanned aircraft development project with “low-cost” constraints.

Main contributions

In this study, we aim to develop a non-linear flight dynamics model in order to study the deep-stall

transition behaviour of an unmanned aircraft with an extended flight envelope. For this purpose, we present

bifurcation analysis as a tool to discuss the effects of pitch-damping, which has been unknown here, onto

stability and dynamics of the aircraft in deep stall. In previous work analyzing and discussing bifurcations

of nonlinear aircraft models, knowledge of the dynamic behaviour of the aircraft was considered a priori.

Without these information in the begin of our study, we incorporate models of aerodynamic damping into

the analysis while critically assessing the model response against observations from test flights. We further

propose and evaluate different approaches for dynamic models.

We consider the Cumulus One, a commercially developed, small-size unmanned aircraft. It is designed to

land in a stable, near vertical descent in deep-stall in order to accomodate landing where most other fixed

wing aircraft cannot; therefore, its elevator is capable of exceptionally large deflection angles and the wings are

set in a dihedral manner to enhance lateral stability. For the purpose of deep-stall analysis and control, CFD

simulations resulted in static data covering large incidence angles and surface deflections. These computations

took ca. 3 h per configuration.* Further simulations of the aircraft’s unsteady dynamics would have resulted

in additional computations of about 10 h per configuration and each value of the rotational speed.† Instead,

Cumulus One has performed several experimental flights demonstrating the deep-stall descents, including

flights with the elevator fixed at various, large deflections. With the available full-envelope modeling data as

well as in-flight measurements at high angles of attack, the Cumulus One provides an advantageous testbed

for the derivation and discussion of non-linear analysis approaches for low-cost aircraft. However, since the

CFD data does not include dynamic behaviour, the effects of body rates to dynamics and stability at high

angles of attack need to be modeled separately. We therefore will study the effect of longitudinal pitch

damping during the transition into deep-stall and subsequently extend the flight dynamics model in order to

predict static and dynamic stability. The extended model then enables the assessment of deep-stall modes on
*Dasam, V. K., private communication (February 2018); here, “configuration” means a static aircraft with angle of attack,

side-slip angle, and control surfaces fixed to the selected values (Intel Xeon E5, 28 cores, 64 GB).
†Dasam, V. K., private communication (March 2018): 1 s of simulation equates to roughly 5 h of computation; simulating the

aircraft pitching up from −10° to 70° at a speed of 2 rad/s and back to −10° at −1 rad/s then takes around 2 s to be simulated.
Faster rotation reduces the simulation time, indeed, but initial trials indicate the need of smaller time steps here, too.
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the basis of real flight data gathered from experiments performed on the Cumulus One.

Outline

In the following section, we briefly introduce the Cumulus One aircraft as well as the flight data used in this

study, derive a longitudinal aerodynamic model of Cumulus One from well-known equations of motion, and

provide an algebraic representation of its aerodynamic coefficients by a smoothened piecewise interpolation of

the discrete CFD data points. The subsequent sections are organised as follows: In section III, we investigate

the existence and stability of longitudinal trim conditions by bifurcation analysis of the static model. By

extension of the original model, we introduce in section IV two different approaches to take into account

pitch damping in terms of the pitch rate and each an unkown model parameter. We thus will be able to

describe the dynamic behaviour around trim conditions; in particular, we discuss the influence of the model

parameters and find optimal values by differential parameter optimization. In section V at last, we study the

developed model in a six-degrees-of-freedom trim analysis investigating post-stall and deep-stall flight.

Fig. 1 Digital rendering of Cumulus One ready for flight. [23]

II. Piecewise Aircraft Model
In this section, we present the aircraft that we study and provide the longitudinal equations of motions

based on the aerodynamics. We further discuss different fitting methods for the aerodynamic coefficients in

order to attain a closed functional expression of the equations of motion suitable for continuation analysis

over the full flight envelope.

A. The Cumulus One

The Cumulus One (Fig. 1) is a fully autonomous, 1.65 m-wingspan, unmanned aircraft carried by the

Danish company SkyWatch for agricultural mapping, surveillance, and reconnaissance. Instead of landing

gear, it is equipped with shock-absorbing foam at its belly and intended to land vertically descending by a

deliberate deep-stall manoeuvre. In this manoeuvre, with steeper flight paths the drag of the wings becomes
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the dominant component to counteract the gravitational force, leading to a stable trim condition, and the

horizontal distance covered during the landing is minimised. For the purpose of stable deep-stall flight, the

elevator is designed to exceed the usual range and reach deflections of up to −60°. In the flight experiments

considered in this study, the transition to deep-stall is initiated in level flight by a step in the elevator

deflection. At the same time, the throttle is reduced to zero. The aircraft responds by pitching up, reduces

forward velocity to near zero, and, in consequence, stalls. In stall, the aircraft accelerates vertically downwards

and the pitch angle decreases rapidly, until the system settles in a stable deep-stall trim condition with a

small, negative pitch angle. During test flights, the descent is aborted after several seconds by setting the

flight configuration to take-off mode, which is basically full throttle and an elevator setting for a gentle

climb. The transition from deep-stall to post-take-off climb condition takes less than 2 second. The aircraft

subsequently climbs to cruising altitude, ready for a new deep-stall. This procedure has been repeated for

various deep-stall elevator deflections.

Table 1 Parameters of Cumulus One.

flight mass‡ m 1.55 kg
wing span b 1.66 m

mean chord cA 0.174 m
wing area S 0.277 m2

air density§ % 1.25 kg/m3

gravitational constant g 9.81 m/s2

Fig. 2 shows pitch angle and elevator deflection during initiation, descent, and recovery of an example

deep-stall descent manoeuvre. The parameters of the Cumulus One and its environment used in this study

are given by Tab. 1.

B. Aerodynamic modeling

Due to its dihedral wings, the Cumulus One is considered to be laterally stable. We therefore initially

neglect the lateral dynamics for the analysis of stability and, consequently, assume the side-slip angle β

to vanish. In deep-stall flight and transition, the aircraft is further unthrottled, i.e., the thrust force is

zero (F = 0). We will refer to the international standard body axis system (xf, yf, zf), air-path axis system

(xa, ya, za), and earth-fixed axis system (xg, yg, zg); respectively defined by the aircraft’s fuselage, velocity with

respect to air (VA), and the ground [24]. Here, lift and drag forces are defined along the air-path axes and

denoted L and D; angle of attack α, flight-path angle γA, and pitch angle Θ are given by rotations between

the axis systems. (Fig. 3.) If not stated otherwise, all variables are in SI-units, i.e., m, m/s, rad, rad/s, kg,
‡Total mass at take-off, including payload
§During the flight experiment, air density has been % = 1.156 kg/m3.
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C. Longitudinal equations of motion

The longitudinal equations of motion without thrust are given as non-linear 4-state, ordinary differential

equations [12, 16, 25]:

mV̇A =−
1

2
%V2

ASCD(α, η) − g sin γA; (1)

mVAγ̇A =
1

2
%V2

ASCL(α, η) − g cos γA; (2)

Iy q̇ =
1

2
%V2

AScACm(α, η) ; (3)

Θ̇ = q; (4)

with the pitch angle

Θ = γA + α (5)

and the air speed VA as norm of the velocity vector relative to air. Then, CL, CD, Cm are dimensionless

coefficients connected to lift force, drag force, and pitching moment. The elevator deflection η is, by convention,

negative when causing a positive pitching moment.

The aerodynamic coefficients of the body, wing, and surfaces of Cumulus have been simulated at selected

angles of attack and elevator deflections using static computational fluid dynamics (CFD) and are given to

(αi, ηi,CL,i,CD,i,Cm,i)1≤i≤k ⊂ R
5, (6)

where k denotes the number of combinations in α and η at which the CFD simulation was evaluated. Note

that we do not further model the effects of the pitch rate q to aerodynamic coefficients due to a lack of

dynamic data from CFD. Local stability is obtained by placing the centre of gravity before the aerodynamic

centre [2, 26]. It is well known that the pitch rate does not affect the trim conditions, but indeed their

stability, and we shall encounter this in the subsequent sections.

D. Polynomial aerodynamic coefficients

Polynomial models benefit from their infinite-differentiable nature and have therefore been used to model

full-envelope aerodynamic coefficients [12, 16]. Fitting a polynomial function to discrete data points or

measurements is straight-forward and often provided by scientific computation softwares. We find optimal
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Fig. 4 Polynomial model of aerodynamic coefficients.

polynomials Γ of finite degrees for the CFD data in (6) by solving the functional minimization problem

Γopt = arg min
Γ

k∑
i=0

wi
��Γ(αi) − C�,i ��2 , (7)

where k is again the number of data points from CFD, C�,i are the simulated, aerodynamic coefficients at

angle of attack αi, and wi > 0 is a positive weight associated with the data. A solution to (7) can be obtained

by least-squares optimization [27].

In order to prevent overfitting for the data points in the normal flight regime, where CFD simulations

have been performed in steps in the angle of attack of 1°, we introduce the weights [28]

wi =




0.1 if αi ≤ 20°;

1 else.

The resulting, 3rd-order polynomial model is shown in Fig. 4. While the polynomial roughly fits the CFD data

for the lift coefficient (Fig. 4a), it fails to represent the aerodynamics in the body axis system as demonstrated

in Fig. 4b. An extensive discussion of polynomial aerodynamic models can be found in Cunis et al. [29].
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E. Piecewise polynomial aerodynamic coefficients

To overcome the limits of polynomial models, Cunis et al. [29, 30] proposed to fit polynomial segments

piecewise both for low and high angles of attack as the aerodynamics are significantly altered by the stall of

the wings. Here, a pair of polynomial functions virtually accounting for the dynamics before and after stall

are obtained. The resulting model is continuous over the entire domain but not necessarily differentiable in

its joint. Such piecewise optimal polynomial functions are obtained as simultaneous solution to

(
Γpre
opt,Γ

post
opt

)
= arg min

Γ1,2

∑
i∈I1

wi
��Γ1(αi) − C�,i ��2 +

∑
i∈I2

wi
��Γ2(αi) − C�,i ��2 , (8)

where I1,2 are the indices of low and high angle of attack data, respectively, chosen a priori. The resulting

piecewise model is given as

Γpw(α, · · · ) =




Γpre
opt(α, · · · ) if α ≤ α0;

Γpost
opt (α, · · · ) else;

(9)

with Γpre
opt(α0, ·) ≡ Γpost

opt (α0, ·) and α0 is found as joint of the CX coefficient. The pwpfit toolbox then ensures

that all coefficient models are continuous in the same angle of attack α0 [31].

Fig. 5 shows the piecewise model and their polynomial segments. Defined as piecewise polynomials, we

are able to account for the full-envelope characteristics both of the lift and drag coefficients as well as the

coefficients in body axes. The pitch-moment coefficient Cm is modeled likewise [32].

F. Blending function for the piecewise model

Numerical tools, such as the Newton method, which utilise the local gradient, fail at the discontinuity

of the partial first derivative of (9) in α. Instead, we are blending the polynomial segments into each other

using the Heaviside step function:

ΓH (α, · · · ) = H (α − α0) Γ
pre
opt(α, · · · ) + (1 −H (α − α0)) Γ

post
opt (α, · · · ) . (10)

A smooth, analytic approximation for H (·) is found in the logistic function,

Hε (t) =
1

1 + e−2t/ε
, (11)

which has Hε (0) =
1
2 , Hε (t → −∞) = 0, Hε (t → +∞) = 1 for ε > 0. Naturally, it is desirable to have the

logistic parameter ε as small as possible in order to increase steepness; on the other hand, we need ε to be
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Fig. 5 Piecewise model of aerodynamic coefficients with polynomial segments.

sufficiently large to suit a numerical method. We then have that Hε under-approximates the Heaviside step

by no more than δ > 0 outside the interval (−τ; τ) if and only if

ε <
2τ

ln(δ−1 − 1)
.

Fig. 6 shows the blended piecewise model around the joint α0. The polynomial segments are blended into

each other by Hε with ε = π/36.

III. Static Bifurcation Analysis
Aircraft trim conditions provide an initial insight into nonlinear aerodynamics. Unlike linear systems,

nonlinear dynamics may exhibit multiple of those equilibria and knowledge about their existence and stability

is essential to any development of flight control laws. In this section, we conduct a preliminary study of

longitudinal trim conditions without further assumption about damping. As zero rate is imperative for

trim, damping effects will affect stability but not existence and location of the trim conditions. Existence,

branching, and stability of equilibria is the domain of continuation and bifurcation theory, which we are

going to present first. We then discuss the longitudinal trim conditions and initial stability results before

introducing damping models in the subsequent sections.
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Fig. 6 Blended piecewise polynomial model of the aerodynamic lift coefficients for ε = π/36.

A. Theory of bifurcation

The equations of motion of section B are written as 4-state ordinary differential equations

f(X, η) =



V̇A

γ̇A

q̇

Θ̇ − γ̇A



(12)

with states XT =

[
VA γA q α

]
and input η. The system is in an equilibrium or trim condition if and only

if f(X, η) = 0. Here, (4) directly implies q = 0 as necessary precondition for trim. Stability of an equilibrium

(X∗, η∗) in its close neighbourhood is locally determined by the Jacobian matrix J∗ = ∂f
∂X (X

∗, η∗); namely,

(X∗, η∗) is locally asymptotically stable if and only if all eigenvalues of J∗ have strictly negative real part,

and unstable otherwise [33]. If, for some parameter η∗, an eigenvalue of the Jacobian at the corresponding

trim condition (X∗, η∗) crosses zero and the trim condition changes stability, we have a critical or bifurcation

point (BP). Well-known bifurcations are saddle-node, pitch-fork, and transcritical as well as, for systems of

second order or higher, Andronov-Hopf bifurcations the latter are characterised by a family of periodic orbits

emanating around the critical point. [34]

With the elevator deflection as single parameter,¶ bifurcation analysis is a result of a continuation method,
¶The elevator deflection is chosen as continuation parameter similar to previous studies [5, 18]; being a control input, this

choice further allows a quick connection between bifurcation analysis and in-flight measurements.
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Fig. 7 Trim conditions of unthrottled longitudinal motion with the unstable regimes (A, B, C)
of equilibria dashed ( ); Hopf bifurcations marked by ; starting point marked by .

where the four equalities of f(X, η∗) = 0 are solved for small changes in η∗; stability of each trim condition

is determined by its Jacobian, J∗, and we have the necessary condition |J∗ | = 0 for a bifurcation point

[16]. Continuation and bifurcation of a given system can be computed using toolboxes such as COCO [35],

MATCONT [36], or the Dynamical Systems Toolbox [37]. In this section, we analyse the trim conditions of

longitudinal flight and their eigenvalues for the equations of motion of section B. By comparison of the model

with the flight experiment data and introduction of appropriate pitch damping models, we shall later extend

the model to cover the dynamics of deep-stall transitioning flight.

B. Stability of longitudinal trim conditions

The longitudinal trim conditions of unthrottled flight (F = 0) along the range of the elevator have been

computed using the Continuation Core and Toolboxes [COCO, 38] for MATLAB and are shown in Fig. 7.

For normal deflections (ca. −3° ≤ η ≤ 3°), the trim conditions resemble a stable, moderate descent with air

speeds between 12 m/s and 18 m/s and path inclination angles above −10°. With negative deflections, the

angle of attack increases while the air speed decreases – a well-known behaviour in aeronautics – until the

additional lift decreases: the aircraft stalls (Fig. 7a). Yet, the branch of trim conditions is continued into a

deep-stall descent of the almost levelled aircraft (Fig. 7b). At larger, positive deflections instead, the trim

conditions indicate a steep dive nose-down. The regimes of unstable trim conditions in level flight, after stall,

and in deep-stall are marked by A, B, and C, respectively.

Classically, the longitudinal motion is divided into the short-period oscillation, involving angle of attack
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Fig. 8 Eigenvalues of longitudinal motion for varying elevator deflections; eigenvalues in the
right half-plane (A, B, C) correspond to unstable trim conditions.

and pitch rate, and the long-period phugoid oscillation of airspeed and flight-path angle [2]. Consequently, we

expect two pairs of complex-conjugated eigenvalues. Fig. 8 illustrates the eigenvalues of (12) in the complex

plane for the continuation of elevator deflections: The eigenvalues of the phugoid mode are distinguished by

small real and imaginary parts, showing the characteristic under-damped and slow motion, while the short

period eigenvalues indicate the damped but fast oscillation. When one pair of eigenvalues enters the right

half-plane, the longitudinal motion turns unstable and a Hopf bifurcation occurs.

IV. Analysis of Dynamic Models
With the pitch rate not being taken into account by the static CFD simulation, the analysis above

has revealed that the model is insufficiently damped to be stable in deep-stall transition, while the flight

experiments suggest stable equilibria here. Instead, we need to separately add damping effects to the

aerodynamics. We will present two alternative models of pitch damping, each depending on a single, unknown

parameter, and discuss stability and time responses for variations in these parameters. Finally, we obtain a

quantitative model by optimization against the set of measured step responses.

A. Pitch damping models

Unsteady aerodynamics for stark changes of the aircraft’s orientation relative to the air stream affect the

damping of the aircraft. In order to describe the effects of a non-zero q to the pitch motion, we provide and

compare the two models described in the following. The first model will consist of a simple linear damping

term in the pitch-moment equation, that constitutes a steady modeling approach. The second modeling

approach takes into account the effective change of the angle of attack due to the rotation of the wings and
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thus can be considered as quasi-steady. To fully represent unsteady dynamics, one would need to include

either the derivatives of pitch rate and angle of attack or a sequence of their former values over time; this

is left for future work. The models discussed here will be of the form q̇ = g(X, η, ·) with a single, unknown

parameter for each model.

Linear damping model A simple model of the pitch damping effects is given by the extension of (3) with

a damping term linear in q,

q̇ =
1

2
%V2

AScAI−1y Cm(α, η) − κq̇qq, (13)

where κq̇q > 0 is the equivalent to linear dampers in classical mechanics.

Model of induced angle of attack More physically inspired, we can model the changes in the angle of

attack induced by the non-zero pitch rate. Namely, angle of attack and side-slip angle are calculated as [24]

sin α =
wA√

u2
A + w2

A

; sin β = vA
VA

; (14)

where uA, vA, and wA are the components of the air-path velocity vector in the body axis system. With the

side-slip angle being neglected, i.e., the lateral component vA is much smaller than VA, Eq. (14) simplifies to

sin α =
wA
VA
. (15)

A non-zero pitch rate leads to a vertical motion of the wing as well as the horizontal tail, proportional to q,

V̄q ∼ q, (16)

where the proportionality is positive if the aerodynamic center of the aircraft is located behind the aircraft’s

center of gravity. (That is, the aircraft is stable [26].) Introducing the induced angle of attack α̃ = α +∆α̃

and noting w̃A = wA + V̄q, we have

sin α̃ =
wA
VA

+
V̄q

VA
. (17)

93



Trigonometric identity yields

sin(α +∆α̃) = sin α cos∆α̃ + cos α sin∆α̃

and with (15) and small changes ∆α̃ we conclude in

∆α̃ ≈ λ ′ (cos α)−1 q
VA
, (18)

where λ ′ is the (unknown) constant of proportionality between V̄q and q. Using the notation of the normalized

pitch rate q̂ = qcA/VA, insertion into (3) gives us

q̇ =
1

2
%V2

AScAI−1y Cm
(
α + λαq (cos α)−1 q̂, η

)
(19)

with λαq = λ ′/cA > 0 for stable aircraft. Here, for q̂, η = const . the curve of Cm(α, ·) is shifted to Cm(α̃, ·)

by ∆α̃. With Cm(α̃, ·) monotonically decreasing in α̃, a positive pitch-rate decreases the pitch moment

(α ≤ α̃ ⇒ Cm(α, ·) ≥ Cm(α̃, ·); and vice-versa), effectively damping the motion. For an unstable aircraft

where the wing’s aerodynamic center is located before the center of gravity [26], Cm(α̃, ·) increases in α̃; with

λαq < 0 then, the pitch moment is again decreased by a positive pitch-rate resulting in a dissipative system.

B. Change of stability due to pitch damping

Both the linear damping model (13) and the model of induced angle of attack (19) rely on the choice of

suitable parameters κq̇q, λαq > 0, which are not easily determined. We therefore provide an analysis of trim

conditions, stability, and eigenvalues as well as dynamics system responses for variation of those parameters.

The change in κq̇q or λαq does not affect the existence or location of longitudinal trim conditions, as

q = 0 has been identified as necessary precondition for trim. However, the occurrence of Hopf bifurcations

(and thus the size of unstable regimes) alters for non-zero damping parameters: Fig. 9 shows the respective

values of the damping parameters κqq̇, λαq, for each of the two damping models, such that the trim condition

for the elevator deflection η undergoes a Hopf bifurcation. As result, the regimes of unstable trim conditions

within the range of the elevator deflections shrink and eventually vanish for increasing values of the damping

parameters. In the regimes A and C, the damping models (13) and (19) are similar in terms of Hopf

bifurcations for increasing parameters κq̇q and λαq, respectively. Only in regime B larger values of λαq would

be necessary to fully stabilise the dynamics with (19) in this regime. For negative damping the unstable

regimes are enlarged.
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We shall discuss the effects of the damping coefficient for each of the unstable regimes:

A: Instability in level-flight In the undamped model (κq̇q = λαq = 0), the eigenvalues of the phugoid

mode enter the right half-plane in level flight and the trim conditions are unstable for elevator deflections

around η = −8° (marked with A in Fig. 7 and 8). From continuation of Hopf bifurcations for the pitch

damping coefficient in Fig. 9, we learn that this instability vanishes for damping coefficients of approximately

κq̇q ≥ 2 and λαq ≥ 1.6. Fig. 10 shows step responses to elevator deflections from ηt<0 = 0° to ηt≥0 = −8°

and damping coefficients κq̇q, λαq ∈ [0; 5]: with eigenvalues close to zero, both unstable and stable conditions

respond slowly to the step input.
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Fig. 10 Step responses for ηt≥0 = −8° and increasing pitch damping coefficients.

B: Instability in post-stall At stall, flight dynamics often turn unstable leading to various upset situations

for conventional aircraft [5]. The Cumulus model, too, has a regime of unstable trim conditions after stall

(Fig. 7, marked with B), i.e., for elevator deflections around η = −24°, that vanishes for pitch damping

coefficients of approximately κq̇q ≥ 3.5 and λαq ≥ 5.3 (Fig. 9). If the elevator is deflected to this region the

system responds to this step with superposed oscillations that are smoothen for larger damping coefficients

(Fig. 11; here, values of κq̇q, λαq ≥ 5 are sufficient for stability of the trim condition). Again, the unstable

modes diverge slowly.

C: Instability in deep-stall The instability in deep-stall is the first to vanish for increasing pitch damping

coefficient but is in fact pushed towards larger, infeasible elevator deflections (Fig. 9, marked with C).

Yet when unstable, an elevator step leads to an immediate divergence (see Fig. 12 for elevator deflection

ηt≥0 = −50° with κq̇q = λαq = 0). Larger damping coefficients lead to a fast convergence in the deep-stall
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Fig. 11 Step responses for ηt≥0 = −24° and increasing pitch damping coefficients.
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Fig. 12 Step responses for ηt≥0 = −50° and increasing pitch damping coefficients.

trim condition (Fig. 12 for κq̇q, λαq > 0). Note that the Cumulus One is known to be stable in deep-stall

from flight experiments.

In these regimes, the pitch damping of the original model seems insufficient to represent stable modes

in deep-stall. In addition to the trim conditions being unstable for large elevator deflections (regime C in

Fig. 7), the undamped system does not represent the deep-stall transition behaviour of the flight experiments

as illustrated by Fig. 13 for an elevator deflection of ηt≥0 = −38° (a mathematically stable trim condition for

κq̇q = λαq = 0); here, the aircraft state does not approach the equilibrium smoothly but rather yields an

almost-constant oscillation—opposite to a positive pitch damping coefficient—that converges rather slowly.

In flight, we have experienced a smooth transition to deep-stall for this elevator deflection.
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Fig. 13 Step responses for ηt≥0 = −38° and increasing pitch damping coefficients.

Fig. 14 now shows the location of eigenvalues for η = −38° and increasing pitch damping coefficients:

For κq̇q, λαq small, the pair of eigenvalues of the short-period oscillation are close to the imaginary axis,

representing the underdamped dynamics obtained in the previous figure. For larger values, this pair of

eigenvalues moves deeper into the left half-plane, while the eigenvalues of the Phugoid oscillation move

towards the imaginary axis but do not come close. The imaginary parts of all four eigenvalues are marginally

affected by the pitch damping coefficient.

linear damping κq̇q = 0 κq̇q = 1.5 κq̇q = 5.0

induced angle of attack λαq = 0 λαq = 1.5 λαq = 5.0
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Fig. 14 Eigenvalues of longitudinal motion for η = −38° and varying pitch damping coefficients.
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C. Optimal model parameters

The static bifurcation analysis suggested the introduction of a pitch damping model; a further study

of eigenvalues in this section has revealed the necessity of a sufficiently large damping parameter, in order

to ensure both static and dynamic stability of the deep-stall transition. However, neither provide an

actual guess of the parameter and indeed, the pitch damping behaviour is an unknown system property. A

qualitative comparison of the model to the in-flight measurements can result in a rough estimate, but more

accurate values are determined by optimization of the system output with respect to the recorded flight

data. Different methods are commonly used for parameter estimation, one of the most notably being the

maximum-likelihood method, [39], but without covariance matrix of the measurements, we will rely instead

on a simple differentially-constrained optimization of the time-wise L2 error norm in order to compare and

evaluate the proposed damping models. Here, we are going to find optimal values for parameters of both

pitch damping models and for each test flight data set separately. The distribution of optimal parameters over

the different (commanded) elevator deflections then will allow us to discriminate between the two proposed

modeling approaches. As noted previously, this is not meant to be an identification of the real system and

rather an attempt to fit the model as close as possible [compare 40, p. 29] and thus assess the proposed

models. With the angle of attack and air speed not measured directly during flight, we use the recorded pitch

angle during the initiation of the deep stall manoeuvre as reference for the step response of the equations of

motion to fit the damping parameter and initial states for each step [39].

For optimal parameters of the pitch damping model, we solve the following differentially-constrained,

quadratic optimization problem:

Iopt = min
kq,x0,δt

∫ T

0

(α(t) + γA(t) −Θmeas(t + δt))
2 dt

such that ẋ(t) = f
(
x(t) , ηt≥0, kq

)
for 0 ≤ t ≤ T

(20)

where Θmeas is the measured pitch angle in flight and δt is the time difference between recorded actuator

command of the autopilot and the deflection of the elevator (time delay and actuator phase lag). The

unknown parameter kq, in lieu of the parameters κq̇q and λαq of the linear damping model and the model of

induced angle of attack, respectively, is then subject to the optimization. Further free parameters are the

initial state x(0) = x0 as well as the time difference δt . Introducing discrete operators, a numerical solution
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to (20) is computed by MATLAB’s fmincon function solving for Ξ ∈ Rn × R2 minimizing I(ti,Ξ) ∈ R, where

I(ti,Ξ) =
∑
i

(
αi + γAi − Θ̃(ti + δt)

) 2
(21)

where ∀1 ≤ i ≤ N
∆

∆t
xi − f

(
xi−1, ηt≥0, kq

)
= 0 (22)

with

Ξ =

[
x0 δt kq

] T
. (23)

Here, the measured pitch angle has been cubically interpolated to Θ̃(·) to yield continuity; the sequence

(xi, ti)1≤i≤N is found using ode45 with parameter kq and (ti)i ⊂ [0,T ]. Table 2 presents the optimal values for

κq̇q and λαq as well as for the time difference δt of the linear damping model and model of induced angle

of attack, respectively, using MATLAB’s active-set algorithm and starting from κ0 = λ0 = 5, δt0 = 0. A

comparison of in-flight measurement and optimal fits, both as sequences with respect to time t and their

corresponding frequency spectra, is examplary shown in Fig. 15 for the first data set.

Table 2 Optimal pitch damping parameters with data set #10 marked as outlier of the linear
damping model.

Step Data set linear induced
κq̇q δt / s λαq δt / s

ηt≥0 = −38° 1 1.240 27 0.079 14 1.584 49 0.097 56
2 1.228 23 0.066 49 1.974 05 0.058 30

ηt≥0 = −41° 3 1.966 33 0.046 97 2.473 11 0.046 32
4 1.749 47 0.054 18 1.673 27 0.086 02

ηt≥0 = −44° 5 2.091 83 0.019 37 2.870 59 0.044 86
6 1.945 78 0.074 54 1.749 74 0.099 34

ηt≥0 = −47° 7 2.384 01 0.030 50 2.254 81 0.086 21
8 2.173 74 0.032 21 2.776 14 0.066 09

ηt≥0 = −50° 9 2.239 84 0.033 21 2.414 70 0.084 21
10 (3.558 45) 0.027 53 2.652 45 0.100 00

ηt≥0 = −53° 11 2.317 44 0.041 97 2.291 33 0.086 83
12 2.227 98 0.043 16 2.299 87 0.092 94

Upon a large elevator deflection one gets a stark response of the aircraft, yielding high angles of attack

and pitch rates. If the pitch damping is not as simply linear as initially modeled but rather dependent on

further parameters, we expect the optimal damping coefficient κq̇q of the linear model to be some function of

the elevator deflection. Indeed, Table 2 clearly shows an increasing optimal linear coefficient as the elevator

deflections decrease along the data sets. The optimal parameter of the model of induced angle of attack,
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Fig. 15 Optimal model fit for data set #1 (ηt≥0 = −38°; κq̇q = 1.240 27; λαq = 1.584 49).

although slightly increasing, seems to be less dependent on the elevator deflection; however, this model is

more sensitive to external parameters and shows a lot of variation within the data set of equal steps in the

deflection.
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Fig. 16 Frequency spectra for the errors of optimal and averaged linear damping models.

Removing the outlying dataset #10 for the linear damping model, we result in estimates for the pitch

damping parameters as means of the optimal parameters with their 1σ-confidence intervals:

κ̂q̇q = 1.960 45 ± 0.402 34 (24)

λ̂αq = 2.251 21 ± 0.427 14. (25)

We are now going to investigate how the effectiveness of the models to capture the deep-stall transition

dynamics changes if the optimal parameter values are changed for the averaged parameters. Figs. 16 and 17

compare, for the linear damping model and the model of induced angle of attack, respectively, the frequency

spectra of the errors between optimal models from Tab. 2 and the respective data sets with the errors of

the averaged models (κ̂q̇q and λ̂αq). For the linear damping model, the errors are compatible except for

frequencies around approximately 0.6 Hz. The optimal model and averaged model of induced angle of attack

similarly show an increased disparity for frequencies in the range of approximately 0.6 Hz to 0.75 Hz, although

less so than for the linear damping. Neither the linear damping model and the model of induced angle of

attack show large disparities in the errors for higher frequencies (2 Hz and beyond), where wind gusts and

turbulences disturb the flight.
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Fig. 17 Frequency spectra for the errors of optimal and averaged models of induced angle of
attack.

The two kinds of pitch damping models that we proposed in this section, a constant gain on the pitch rate

q and a shifting of the pitch-moment coefficient by the normalized rate q̂, have shown similar properties in

terms of stability and dynamics of the deep-stall transition as well as for the extraction of optimal parameters.

Other approaches are reasonable, such as constant gain on the normalized rate or a pitch-moment derivative

Cmq̂ = ∂Cm
∂q̂ thus providing dependency on the air speed, as well as the stability derivative Cmα̇ = ∂Cm dt

∂dα

contributing for the horizontal tail [41]; however, a further study of these is omitted here for the similar

nature of the proposed models does not suggest additional insights and the obtained results satisfy our needs.

In the subsequent study of six-degrees-of-freedom dynamics, we will therefore rely on the optimal linear

model. The model of induced angle of attack, yet more elaborate, does not provide a constructive method to

incorporate damping of the lateral rotations.

V. Transition to Deep-stall Flight
For conventional aircraft, aerodynamic stall of the wings almost inevitably leads to a departure of the

vehicle. In consequence, the aircraft often enters a spiral or oscillatory spin motion which are fatal without

appropriate recovery. An extensive study of post-stall modes has been provided for the Generic Transport

Model by Gill et al. [5]. The GTM in particular is characterised by a “preference” to depart to the left
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rather than to the right when stalling due to its slightly asymmetric aerodynamics. Cumulus One, on the

contrary, is supposed to enter a deep-stall descent mode that is both longitudinally and laterally stable. This

stable transition to deep-stall flight can be evaluated in a six-degrees-of-freedom bifurcation analysis. The

CFD simulation was performed on a full-body assembly model of the aircraft which was assumed to be

symmetric-by-design;‖ slight asymmetries in the obtained lateral aerodynamic coefficients might therefore be

due to numerical inaccuracies.

Here, we extend the longitudinal equations of motion of (1)–(4) and (13) to eight differential equations

for the states

X6dof =

[
uA vA wA p q r Φ Θ

] T
(26)

with the components of air velocity, VA =

[
uA vA wA

] T
, and angular rates, ω =

[
p q r

] T
, defined in

body axes; bank and pitch angles, Φ and Θ, respectively, in earth-fixed axes; as well as the inputs

U6dof =

[
ξ η ζ

] T
. (27)

The deflections of elevator, η, ailerons, ξ, and rudder, ζ , are again negative when causing positive moments.

(All variables as defined in ISO 1151-1 [24].)

The equations of motion are then given as

V̇A =
1

2
ρV2

ASm−1



CX(α, β, ξ, η, ζ)

CY(α, β, ξ, η, ζ)

CZ(α, β, ξ, η, ζ)



− g



sinΘ

sinΦ cosΘ

cosΦ cosΘ



− ω × VA; (28)

Iω̇ =
1

2
ρV2

AS



b Cl(α, β, ξ, η, ζ)

c Cm(α, β, ξ, η, ζ)

b Cn(α, β, ξ, η, ζ)



− ω × Iω −KIω; (29)



Φ̇

Θ̇



=



1 sinΦ tanΘ cosΦ tanΘ

0 cosΦ − sinΦ



ω; (30)

where tan α = wA/uA, sin β = vA/VA, and VA =
√

u2
A + v2A + w2

A. The linear damping is modeled with the

‖Dasam, V. K. and Holst, J., private communication (August 2019).
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parameters K = diag
(
κpr, κq, κpr

)
. The aircraft’s heading and its rate of change are not considered here.

Note that, for this simple demonstration of a bifurcation analysis, we use a coupled roll-yaw damping

parameter κpr , since without reliable flight data for an identification of the lateral damping the observation

of independent parameters κp, κr is feasible. With the physical origins of roll and yaw damping differing

considerable, additional tests to obtain separate lateral damping models in future use are strongly recommended.

As for the longitudinal motion, stability of the aircraft depends on the choice of the damping parameters

and the underdamped system (κpr = 0) is in fact unstable for most parts of the normal flight range. A

continuation of the occurring Hopf bifurcations reveals this dependency (Fig. 18): The pitch motion exhibits

a pair of Hopf bifurcations in the post-stall domain, that were already encountered in the analysis of the

longitudinal dynamics. For increasing pitch damping parameter κq, the Hopf bifurcation vanishes (note that

the continuation of the pitch damping parameter has been set up around the optimal parameter; therefore,

the longitudinal dynamics exhibit only a single pair). As for the longitudinal dynamics, trim conditions

between are unstable. A third Hopf bifurcation exists at a positive elevator deflection governing the overall

stability. With increasing roll-yaw damping parameter κpr this Hopf bifurcations moves towards neutral

elevator but from κpr > 1, a corresponding Hopf bifurcation appears for η = −60°. If κpr is chosen sufficiently

large, the pair of Hopf bifurcations, too, disappears. It should be noted, however, that roll damping in general

does not have a stabilizing effect over the full envelope of bank angles. In order to maintain a stable system

within the considered envelope, the damping parameters are chosen as

K = diag(2.5, 1.96, 2.5) . (31)

With these damping parameters, then, we can perform a six-degrees-of-freedom bifurcation analysis starting

from the elevator-neutral trim condition

X∗6dof =
[

14.09 m/s <0.01 m/s 0.12 m/s 0.01 °/s <0.01 °/s 0.17 °/s <0.01° −3.64°
] T

and

U∗6dof =
[
0.03° −0.00° 2.34°

] T
.

Note that the roll/yaw rates are non-zero at trim due to a slightly positive bank angle.
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(a) Roll-yaw damping for κq = 1.96.
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Fig. 18 Occurrences of Hopf bifurcations of the six-degrees-of-freedom motion for continua-
tion of the model parameters.
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Fig. 19 Six-degrees-of-freedom trim conditions for continuation of the elevator deflection η.
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Trim conditions of both longitudinal and lateral motion, as computed by COCO [38], are shown in Fig. 19.

Due to a minor dependency of the aircraft’s lateral asymmetry, the bank angle at trim deviates from neutral

for increase angle of attack. On the other hand, the steep descent for positive elevator deflections involves

increasing bank angles and therefore constant change of the heading. The previously encountered Hopf

bifurcations around stall bear a family of limit cycles, shown enlarged in the insets, that in fact mainly

affects the longitudinal motion (compare Figs. 19a and 19b). A pair of saddle-node bifurcations—a single

real eigenvalue crossing the imaginary axis—between −54° and −66° bank angle reveal a branch of unstable

trim conditions for constant angle of attack of approximately −3.2°. Fig. 20 illustrates the deep-stall and

steep descent modes encountered at each end of the bifurcation. Note that the aircraft is drawn scaled with

respect to longitude and latitude but in equal time steps; both trajectories are depicted for 10 s. The steep

descent, when compared to the deep-stall mode, establishes a significantly larger descent rate in fast and

tight downward helix. This circular trajectory must not be confused with a spiral motion, where the aircraft

additionally exhibits rotations around its body axes. Instead, the turn is a result of lateral asymmetries of

the polynomial model. Our bifurcation analysis has not found any spin or spiral modes, although we would

expect some; due to the stability of the aircraft in deep-stall, branches of such limit cycles involving the

lateral axis are disconnected from the main branch of longitudinal trim conditions and therefore difficult

to find using continuation techniques. The analysis shows, however, that the Cumulus aircraft does not

depart at stall, only develops a periodic orbit of longitudinal motion, before settling to a stable deep-stall

trim condition.
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Fig. 20 Comparison of descent modes: (a) deep-stall descent; (b) steep descent.
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VI. Conclusion
In this article, we developed a nonlinear model of a small unmanned aircraft in order to represent

deep-stall transition dynamics from static CFD data. For this purpose, we proposed pitch-damping models

and demonstrated the use of bifurcation analysis to discuss its effects compared to the initially static model

and flight experiments. Starting with a model of longitudinal equations of motion by a blended, piecewise

polynomial fit of the aerodynamic coefficients from static CFD, a continuation analysis was able to predict

trim conditions. However, we found the stability of deep-stall flight deduced from the model to be inconsistent

with the flight experiments and hence proposed alternative extensions to the initial model, both including a

single unknown damping parameter. While larger parameters indeed led to increased stability of both models,

we could not induce an isolated damping model only by the change of stability. On the other hand, we were

able to provide estimations for the coefficients by optimal model fitting and thus also provided a measure

for the reliability of the propose damping models. Both models seem to be simple and suitable for further

analysis. We have finally provided an extensive, six-degrees-of-freedom bifurcation analysis to investigate the

extended model and discussed stability in the aircraft’s different modes of post-stall and deep-stall flight.
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Chapter 5

Local Stability Analysis for
Splines

This chapter corresponds to:

Torbjørn Cunis, Jean-Philippe Condomines, and Laurent Burlion (2019a).
“Local stability analysis for large polynomial spline systems”. In: Revision
under review for Automatica

in the author’s revised version, edited for format.

Synopsis

From the algebraic point of view, the piecewise polynomial models of the previous chap-
ters are splines with a single knot in α0, and thus constitute a switching system. Unlike
switching systems commonly considered in the literature for stability analysis, however,
the boundary between the two polynomial segments (i.e., between the two subsystems)
for a normal flight trim condition does not cross the boundary. Therefore, an invariant
set of the trim condition might include states of both the low and high angles of attack
regimes (as in Fig. 3.7), or be contained in the low angle of attack regime exclusively.
As the estimated region of attraction grows in the course of the V-s-iteration, evaluating
the invariance as polynomial or piecewise problem can affect the computation time sig-
nificantly. This chapter provides the theoretical background for the stable set analysis
in Chapter 3 and further extends the bespoken idea for arbitrarily defined polynomial
splines systems. Improving the efficiency of spline analysis, it enables the application
of this thesis’s results to more accurate aerodynamic models in future work. We will
elaborate that thought in Chapter 9.

Statement of Contribution Torbjørn Cunis devised and implemented the proposed
algorithm, proved its correctness, and estimated the asymptotic run time. Jean-Philippe
Condomines assisted with the wording of the article. Laurent Burlion provided feedback
both for theoretical and engineering aspects.
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Nomenclature
n Number of states;

Φ Subset of the state-space (Φ ⊂ Rn);
Ωq≤a Polynomial surface (Ωq≤a = {x ∈ Rn | q(x) ≤ a}) with q ∈ R [x] and a ∈ R;

∂A Boundary of a set A ⊂ Rn;
intA Interior of a set A ⊂ Rn;
clA Closure of a set A ⊂ Rn;

Σ [x] Polynomial sum-of-squares cone (Σ [x] ⊂ R [x]);
R [x] Set of polynomials in x ∈ Rn with real-valued coefficients;
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Local stability analysis for large polynomial
spline systems ?

Torbjørn Cunis a,b, Jean-Philippe Condomines b,
Laurent Burlion c

aONERA – The French Aerospace Lab, 2 avenue Edouard Belin, 31055 Toulouse,
France

bENAC, Université de Toulouse, 7 avenue Edouard Belin, 31055 Toulouse, France
cRutgers, The State University of New Jersey, 98 Brett Road, Piscataway,

NJ 08854, USA

Abstract

Polynomial switching systems such as multivariate splines provide accurate fitting
while retaining an algebraic representation and offering arbitrary degrees of smooth-
ness; yet, application of sum-of-squares techniques for local stability analysis is
computationally demanding for a large number of subdomains. This communiqué
presents an algorithm for region of attraction estimation that is confined to those
subdomains actually covered by the estimate, thereby significantly reducing com-
putation time. Correctness of the results is subsequently proven and the run time is
approximated in terms of the number of total and covered subdomains. Application
to longitudinal aircraft motion concludes the study.

Key words: Nonlinear analysis; stability analysis; switching functions; polynomial
methods; Lyapunov function.

1 Introduction

Recently, several works on polynomial fitting have been led and provide a
constructive method for determining models based on analytical computation
due to their continuous and differentiable nature. Computing the exact region

? This paper was not presented at any IFAC meeting. Corresponding author T. Cu-
nis.

Email addresses: tcunis@umich.edu (Torbjørn Cunis),
jean-philippe.condomines@enac.fr (Jean-Philippe Condomines),
laurent.burlion@rutgers.edu (Laurent Burlion).
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of attraction for this kind of nonlinear dynamics is very hard if not impossi-
ble. Therefore, researchers have focused on determining polynomial Lyapunov
functions for polynomial systems building upon sum-of-squares [1–3] includ-
ing extensions to rational and composite Lyapunov-functions [4–6]. However,
when polynomials are unsuitable to represent system dynamics, piecewise de-
fined polynomials such as splines [7] provide more tractable models, requiring
extended effort when determining local stability: it is well known for exam-
ple, that stability of the subsystems does not guarantee stability of the entire
system [8]. Therefore, approximation techniques have been developed for the
estimation of the region of attraction of piecewise systems. Early work was
limited to a priori given, multiple quadratic Lyapunov functions [9] and could
only provide very rough estimates of the region of attraction. In [10] though,
analysis of polynomial fuzzy models is considered employing again compos-
ite Lyapunov functions; taking each the point-wise extremum, this approach
provides directly a continuous function. It is worth noting that this might
come at the cost of a large number of decision variables and that there are
no relaxations with respect to the respectively active subdomains. [11] pro-
poses a further approach using multiple Lyapunov functions for switching
hybrid systems with polyhedral subdomains which share a boundary in the
origin. Sum-of-squares complexity was discussed [12]; where subdomains are
considered for stability, the complexity increases with the number of bounding
constraints.

The present paper focuses on a new formulation of the region of attraction
estimation for large piecewise systems of local polynomial dynamics and poly-
nomial domains, such as switching systems and multivariate splines, within
the sum-of-squares framework. We present preliminary results and extend pre-
vious work to switching systems (in Sec. 2). The main result, an algorithm
for splines, is discussed in Sec. 3, and is applied to an engineering example
in Sec. 4. The appendix illustrates an extension to multiple Lyapunov func-
tions. For the implementation of the constraints, in particular the polynomial
containment problem (Lemma 1), we rely on the semidefinite programming
techniques of [1, 13]. A concise discussion of the V-s-iteration is given in [14].

2 Preliminaries

Consider the autonomous system ẋ = f(x) given by the k ∈ N ordinary
differential equations

ẋ = fi(x) , if x ∈ Φi (1)

for 1 ≤ i ≤ k, where x ∈ Rn, fi ∈ R [x]n, and Φ1, . . . ,Φk are intersections
of polynomial inequalities Ωϕ≤x0 =def {x ∈ Rn |ϕ(x) ≤ x0} with ϕ ∈ R [x],
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x0 ∈ Rn, forming a set partition of Rm. 1

Notation The interior, boundary, and closure of A ⊆ Rm are notated by
intA, ∂A, and clA, respectively. A∗ =def A − {0}. The set of sum-of-squares
polynomials is notated by Σ [x].

Assumptions f(0) = 0, i.e., the origin is a stationary point of f .

Lemma 1 Let p, q1, . . . , qk ∈ R [x]; we have

Ωq1≤0 ∩ · · · ∩ Ωqk≤0 ⊆ Ωp≤0

if there exist s1, . . . , sk ∈ Σ [x] such that ∑k
i=1 siqi − p ∈ Σ [x].

Lemma 1 is an explicit formulation of [1, Lemma 2]. We then write with
s = (s1, . . . , sk),

s `
⋂
i

Ωqi≤0 ⊆Σ Ωp≤0 (2)

and say “s proves” the inclusion. We also say that “qi, p solve” the inclusion.

Problem 2 Let p ∈ Σ [x]; solve the optimisation

max
β�,γ�∈R
V∈R[x]

β� such that
Ωp≤β� ⊆ ΩV≤γ� (3)
Ω∗

V≤γ� ⊆ {x |∇V(x) f(x) < 0} (4)

with V(·) positive definite 2 and V(x) = 0.

If (V , β�, γ�) solve Problem 2 for p, then ΩV≤γ� is an invariant subset of the re-
gion of attraction [1, Lemma 1] and admits the largest inscribing region Ωp≤β� .
Simultaneously searching for an optimal function V(·) while proving invariance
of ΩV≤γ� involves bilinear terms. If the degree of V ∈ R [x] is restricted and
f ∈ R [x], the V-s-iteration [1, 14] solves Problem 2 by alternating-iteratively
searching for V , γ�, and β� maximal such that s1, s2 prove (3) and (4).

Remark 3 The sum-of-squares formulation is limited to nonnegativity; we
thus make use of that p(x) < 0 if p(x) ≤ −ε |x|22 for p ∈ R [x], x 6= 0, and
ε > 0.
1 A1, . . . ,Ak form a set partition of a body K if and only if they are pairwise
interior-disjunct and

⋃
iAi = K.

2 A continuous function ϕ is said to be positive definite (p.d.) if ϕ(·) > 0 everywhere
except the origin and ϕ(0) = 0.

119



We write ΩV,f,ε =def
{
x
∣∣∣∇Vf(x) ≤ −εxTx

}
for V ∈ R [x], f ∈ R [x]m, and

ε > 0.

If there exists a single function V : Rm → R p.d. such that ∇Vfi(x) < 0
for all x ∈ A∗ and all 1 ≤ i ≤ k, then A is also invariant for the piecewise
system and V is a Lyapunov function of the switching dynamics. However,
this requirement is unnecessary strict when it comes to the subsystems that
are not active [8]; indeed, the following suffices:

Corollary 4 Let V : Rm → R be continuous p.d. with V(0) = 0 and A = ΩV≤α

for some α ∈ R; if

∀x ∈ A∗. (x ∈ Φi ⇒ ∇Vfi(x) < 0) (5)

for all 1 ≤ i < j ≤ k, then A =
⋃

i (A ∩ Φi) is invariant.

Lemma 1 encodes (5) into a polynomial sum-of-squares problem, recalling Φi

is an intersection of polynomial inequalities. Now, ⋃i (ΩV≤γ� ∩ Φi) is invariant
if

s2,i ` Ω∗
V≤γi

∩ Φi ⊆Σ ΩV,fi,ε, (6)

s2,i ⊂ Σ [x], for all 1 ≤ i ≤ k and γ� = min{γ1, . . . , γk}.

Remark 5 The idea of Corollary 4, and of the paper, can be extended to
piecewise defined functions

V(x) = Vi(x) , if x ∈ Φi,

for 1 ≤ i ≤ k. We further illustrate this in the appendix.

3 Spline systems

While we have not taken further assumptions on the Φi, in the present litera-
ture the invariant set is commonly assumed to cover all domains. 3 For large
spline systems with bounded domains and only local stability, each subdomain
taken into account whilst not part of the invariant set adds an inactive bound-
ary to the computational load. We therefore present an adapted algorithm to
efficiently compute a region of attraction estimation for spline systems.

Definition 6 A spline system is a triple SP =
(
I, f(·), E

)
, where I ⊂ N are

the domains, f : I×Rm are the piecewise nonlinear dynamics, and E : I×I →
3 Either by looking for global stability [15] or choosing boundaries crossing the
origin [9, 11].
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{Rm → R} is the weighted switching relation, where the dynamics switch from
fi to fj with i, j ∈ I for x ∈ Rm if and only if hij = E(i, j) is defined and
hij(x) > 0. 4

We define some further notation: for i ∈ I, let adj[i] =def {j |hij = E(i, j) is
defined} be the set of adjacent domains of Φi, that is, Φi =

⋂
j∈adj[i] {x |hij(x)

≤ 0}; VK(·) denotes the function-candidate in the K-th iteration and IK ⊂ I
will denote the set of domains covered by the invariant set ΩVK≤γ� ; for i′ ∈ I,
distK [i′] is the distance of Φi′ with respect to VK , defined as

distK [i′] = sup{γ |ΩVK≤γ ∩ Φi′ = ∅} ; (7)

at last, we extend adj[·] to 2I with adj[I] =def
⋃

i∈I adj [i]− I for I ⊂ I.

With this notation, we can state Algorithm 1 computing the optimal estimate
ΩV≤γ� for a spline structure: If, for any iteration K, the invariant set ΩVK≤γ�

is contained in the subdomains IK , it suffices to check invariance only of these
subdomains and with respect to the boundaries in between, instead of proving
Eq. (6) for all i ∈ I. Now, in order to examine whether an i′ ∈ I is covered by
the optimal invariant set of VK , we preliminary compute the invariant set for
some I ′ ⊂ I − {i′} and evaluate the distance of i′; only if i′ is “closer” than
the boundary of the preliminary invariant set, i′ ∈ IK .

The algorithm consists of three cascaded loops; the outer for loop over K of the
basic V-s-iteration (“K-iteration”), an inner repeat-until loop determining
IK (“IK-loop”), and inner-most for loops over the elements of IK . While the
restriction to IK in line 8 reduces the problem size, the IK-loop itself adds
to the run time. On the other hand, if VK and adj[i] ∩ IK remain unchanged,
Eq. (∗i) yields the same value γi; that is, after each inext added to IK , it suffices
to re-execute line 8 for any i ∈ IK ∩ adj[inext]. We refer to the thus modified
algorithm as Algorithm 1b.

Proposition 7 After each repetition of the K-iteration in Algorithm 1(b),
the following hold:

(1) ΩVK≤γ� ⊂ ⋃
i∈IK Φi;

(2) ΩVK≤γ� is invariant.

PROOF. After each iteration of the IK-loop, we have that

∀i ∈ IK Ω∗
VK≤γpre ∩ Φi ⊆ {x |∇Vfi(x) < 0} ; (8)

4 For a spline structure to behave like a spline, we tacitly understand that E(·, ·) is
irreflexive as well as symmetric with hij = E(i, j) = −hji if defined for i, j ∈ I.
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Algorithm 1 Estimate invariant set ΩV≤γ� ⊂ ⋃
i∈I Φi with I = IKmax and

V = VKmax .
1: for K = 1 to Kmax
2: if K > 1 then
3: find VK p.d. solving

s1 ` Ωp≤β� ⊆Σ ΩVK≤γ� (††)
∀i ∈ IK . s2,i ` ΩVK≤γi∩ (∗∗)⋂

j∈adj[i]∩IK

Ωhij≤0 ⊆Σ ΩVK ,fi,ε

4: end
5: IK := IK−1

6: repeat
7: for i ∈ IK
8: find γi := maxγ≥0 γ s.t. s2,i ⊂ Σ [x] solves

s2,i ` ΩVK≤γ∩ (∗i)⋂
j∈adj[i]∩IK

Ωhij≤0 ⊆Σ ΩVK ,fi,ε

9: end
10: γpre := min{γi | i ∈ IK }
11: for i′ ∈ adj[IK ]
12: compute distK [i′] as

min
γ≥0,x

VK(x)=γ

γ s.t.
∧

j∈adj[i′]
hi′j(x) ≤ 0 (‡i′)

13: end
14: γmin := mini′∈adj[IK ] distK [i′]
15: if γpre ≥ γmin then
16: inext := arg mini′∈adj[IK ] distK [i′]
17: IK := IK ∪ {inext}
18: end
19: until IK = I or γpre < γmin
20: γ� := γpre
21: for i ∈ IK
22: find β� := maxβ≥0 s.t. s1 ∈ Σ [x] solves

s1 ` Ωp≤β ⊆Σ ΩVK≤γ� (†)

23: end
24: end
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as Φi ⊆
⋂

j∈I Ωhij≤0 for any I ⊂ adj[i], adj[i] ∩ IK ⊂ adj[i], γpre ≤ γi, and s2,i
proves (∗i), 5 for all i ∈ IK ; and

ΩVK≤γmin ⊂
⋃

i∈IK
Φi; (9)

as γmin ≤ distK [i′] for i′ 6∈ IK and (‡i′) implies (7). Since γpre < γmin for ter-
mination of the IK-loop, (9) implies ΩVK≤γ� ⊂ ⋃

i∈IK Φi with γ� = γpre. Thus,
ΩVK≤γ�∩Φi = ∅ for all i ∈ I−IK

6 and therefore, ΩVK≤γ� =
⋃

i∈I (ΩVK≤γ� ∩ Φi)
is invariant by Corollary 4 for (8) holds. 2

As all loops are limited by either the number of elements in I or Kmax, Algo-
rithm 1b terminates and ΩV≤γ� is an invariant set of the given spline system.
Initially, we have I0 = {i ∈ I | 0 ∈ Φi}, and, assuming a singleton I0 = {i0},
V1 = xTPx as solution to the polynomial Lyapunov equation for fi0 . 7

Asymptotic run time estimation In order to compare the run time of the
proposed approach for splines to the basic approach of the previous section,
we count the total number of executions of line 8 and the number of decision
variables s2,i involved each time. 8 Here, we assume that the spline structure
SP has k subdomains; every domain has (in average) M adjacent cells; the
resulting invariant set covers R subdomains; and the number of iterations is
chosen as Kmax = R. Consider now the following, distinct cases: in the worst
case, the initial invariant set ΩV1≤γ� covers all R subdomains; whereas in the
average case, ΩVK≤γ� grows in each repetition of the K-iteration into one fur-
ther subdomain inext. In both cases, I0 is taken as singleton.
Clearly, the asymptotic run time of the basic approach in both cases is equiva-
lent to T basic

M (k) = Rk(M +1). Algorithm 1b, in the worst case, repeats line 8
in the first iteration for R times, afterwards once each iteration: proving (∗i)
requires a single decision variable the first time (adj[i0]∩{i0} = ∅) and m∗+1
decision variables from there on, where m∗ is the number of adjacent domains
of i in I1 and each repetition of the IK-loop adds one inext; in the following
R−1 iterations, line 8 is executed R times each with M+1 decision variables;

5 Using A1 ∩ A2 ⊆ A′
1 ∩ A′

2 for A1,2 ⊆ A′
1,2.

6 Assuming that intΦi,j are disjunct if i 6= j.
7 If I0 is not a singleton, P can be found as solution to

AT
i P + PAi <

∑
j∈adj[i]∩I0

hij(x) ∀i ∈ I0

with Ai = ∂fi/∂x.
8 Line 8, being inside of all three loops, is the major difficulty if line 12 is efficiently
computed using MATLAB’s fmincon or a similar numerical method.
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that is,

Tworst
M (R) = 1 +R

M∑
m∗=1

(m∗ + 1) + (R− 1)R (M + 1) .

In the average case, Algorithm 1b executes line 8 once in every iteration for
each of the r∗ domains in IK with m∗ ≤ M decision variables; additionally,
since IK+1 = IK ∪ {inext}, line 8 is executed for every adjacent subdomain of
inext in IK (i.e., at most M times) with m∗ + 1 decision variables; that is,

T avg
M (R) = 1 +

R∑
r∗=2

r∗ (M + 1) +R
M∑

m∗=1

(m∗ + 1) .

If M = 3 (M = 4), 9 the worst-case asymptotic run time is less than T basic
M

for R < 0.987 k (R < 0.981 k) and the average-case is less than 1
2
T basic
M for

R < 0.944 k (R < 0.933 k).

4 Application example

The short-period motion of a transport aircraft might be given as autonomous
system

ẋ1 = x2 (10)
ẋ2 = fM(x1, x2) , (11)

where x1 is the angle of attack, x2 is the pitch rate, and fM(·) is a 3rd-order
piecewise polynomial model of the aerodynamic pitch coefficient defined as
5-by-5 rectangular spline (boundaries depicted in Fig. 1) with fM(0, 0) = 0. 10

After scaling the system to x̃ = Dx with D ∈ R2×2, we compute the invariant
set of the origin using Algorithm 1b. Such a problem has been discussed in
[14] for a polynomial model and in [17] for a once-piecewise polynomial model.

9 M = 3 and M = 4 are tantamount to planar systems with triangular and rect-
angular domains, respectively.
10 See [16] for details.
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Fig. 1. Invariant set after Kfin = 124 iterations for aircraft short-period motion
(solid: invariant set ΩVK≤γ� ; dotted: inscribing ellipsoid Ωp≤β� ; dashed: subdomain
boundaries).

Algorithm 1b finds the optimal invariant set shown in Fig. 1, covering 20 of
25 domains, after 124 repetitions of the K-iteration and a run time equivalent
of T = 10 098. The basic approach runs the same number of repetitions with
a run time equivalent of T basic = 13 020. In each repetition of the K-iteration,
line 8 is executed multiple times subject to both the elements already in IK−1

and those added to IK during the inner IK-loop. The number of linear ma-
trix inequality (LMI) variables to solve the sum-of-squares problems (∗i) then
varies with the number of elements in adj[i] ∩ IK . Table 1 gives details of the
computations, including the number of LMI variables in (∗i) averaged for each
repetition K, comparing Algorithm 1b and the basic approach. 11

Table 1
Details of the application example: number of elements in IK ⊆ I; run time equiv-
alent; number of executions of line 8; and average number of LMI variables.

Alg. 1b basic

K #IK TK #l8 LMI #IK TK #l8 LMI

1 12 86 28 208 25 105 25 250

2 12 44 12 356 25 105 25 378

3 13 56 15 359 25 105 25 378

4 14 60 16 360 25 105 25 378

5 15 65 17 363 25 105 25 378

6 20 111 29 365 25 105 25 378

7 20 86 20 374 25 105 25 378
...

...
...

...
...

...
...

...
...

Kfin 20 86 20 374 25 105 25 378

11 The basic approach corresponds to Alg. 1 with IK ≡ I.
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5 Conclusion

Extensions of sum-of-squares techniques such as the V-s-iteration for piece-
wise polynomial systems quickly grow infeasible for large systems, which spline
models embody. In this article, we therefore presented an adapted algorithm
for splines, relaxing the problem to the subdomains that are actually covered
by the region of attraction estimate. We have proven correctness of our ap-
proach and demonstrated a worst case run time superior to the basic approach
for regions of attractions spanning more than 90 % of the subdomains of a reg-
ular planar spline system. While this ratio will shrink for higher dimensions,
so does the number of subdomains increase.
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A Appendix

The proposed algorithm can be modified for multiple Lyapunov functions:

Corollary 8 Let Vi : Rm → R be continuous p.d. with Vi(0) = 0 and Ai =
ΩVi≤α for all 1 ≤ i ≤ k and some α ∈ R; if

∀x ∈ A∗
i . (x ∈ Φi ⇒ ∇Vifi(x) < 0) (A.1)

∀x ∈ ∂Φi ∩ ∂Φj. Vi(x) = Vj(x) (A.2)

for all 1 ≤ i < j ≤ k, then A =
⋃

i (Ai ∩ Φi) is invariant.

Then, Eq. (3) holds if

s1,i ` Ωp≤βi
⊆Σ ΩVi≤γ� , (A.3)

s1,i ∈ Σ [x], for all 1 ≤ i ≤ k and β� = min{β1, . . . , βk}.

The continuity condition (A.2) cannot be represented by sum-of-squares im-
mediately. Papachristodoulou and Prajna [15] suggested to add an equality
constraint for each polynomial boundary, however leading to increased con-
servativeness for large systems.

Proposition 9 Eq. (A.2) holds if and only if

∀x ∈ clΦi ∩ clΦj. Vi(x) ≤ Vj(x) (A.4)

for Φi,Φj pairwise disjunct.

PROOF. Follows directly from clΦi ∩ clΦj = (∂Φi ∩ ∂Φj) ∪ (intΦi ∩ intΦj)
with intΦi ∩ intΦj = ∅ and (vi ≤ vj) ∧ (vj ≤ vi) ⇔ vi = vj. 2

In line 3 of Algorithm 1(b), Eq. (A.4) holds for Vi,Vj ∈ R [x] p.d. if

rij `
⋂

a∈adj[i]∩IK

Ωhia≤0 ∩
⋂

b∈adj[j]∩IK

Ωhjb≤0 ⊆Σ ΩVi≤Vj
(A.5)

with rij ⊂ Σ [x] and i ∈ IK , j ∈ adj[i] ∩ IK .

Now, when adding a subdomain inext to the current IK (line 17), we search for
Vinext ∈ R [x] p.d. such that (A.5) holds for i = inext and all j ∈ adj[inext]∩ IK .

Remark 10 Instead of (A.3), we might require

s1,i ` Ωp≤β� ⊆Σ ΩVi≤γ� (A.6)
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for all 1 ≤ i ≤ k when searching for V1, . . . ,Vk.

Eq. (A.6) imposes a less strict constraint on those Vi with βi > β�.
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Part II

Upset Recovery Control
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Upset Recovery Control
The nonlinear equations of motion of an aircraft surely belong to the most difficult
problems of control engineering (cf. Brockhaus et al. 2011, pp. 30–34; and Philippe et
al. 2011, p. 11). Several independent states describe the translational and rotational
velocities coupled, amongst others, by the (unknown) aerodynamic coefficients. Time-
varying effects such as fuel consumption, uncertain models, and various disturbances as
well as state and input constraints further add to the difficulty. It is for that reason
that, of all control approaches theoreticians have thought of almost everyone has or will
be dedicated to the problem of flight control.

Until today, flight control systems are organised in a hierarchical manner (Brockhaus
et al. 2011, p. 46). It would be too easy though to dismiss this as reluctance of flight
control engineers when confronted with novel technologies; in fact, the hierarchical struc-
ture accommodates for the need of certification through third-body agencies (Bates and
Postlethwaite 2002). Nevertheless, several advanced techniques have been developed in
recent years that solve nonlinear and robust flight control problems in a single loop. To
name a few, Sieberling et al. (2010) introduced incremental dynamic inversion, which is
comparatively robust against model errors and disturbances but sensitive to time delays
in measurements; Lombaerts et al. (2010) proposed to use pseudo control hedging as a
method to prevent control saturation and violation of the safe flight envelope; and Ure
and Inalhan (2012) reported a sliding-mode control framework for acrobatic flight of
unmanned aircraft.

Engelbrecht and Engelbrecht (2016) further employed dynamic as well as sequential
quadratic programming techniques to obtain altitude-minimal trajectories for open-loop
recovery from an inverted-bank upset condition. The idea of solving the nonlinear opti-
mal problem in feedback loop for a control input (as in Schuet, Lombaerts, Kaneshige,
et al. 2017, for pilot guidance) is called model-predictive control (MPC). Today, MPC is
widely applied in aeronautics (see Eren et al. 2017 for a state of the art). In particular,
for its ability to accommodate for input constraints MPC is widely applied in fault-
tolerant control schemes (such as Joosten et al. 2010; de Almeida and Leißling 2010;
Maciejowski and Yang 2015; Ferranti et al. 2018). With a mature theory of closed-loop
stability and robustness, MPC is well-suited to our need for certifiable upset recovery
control under constraints and optimality measures.

Sum-of-squares programming, too, can be applied for a control synthesis that implic-
itly grants stability. Ataei-Esfahani and Wang (2007), for the example of flight control,
employed sum-of-squares programming and Rantzer’s dual-Lyapunov theorem (Rantzer
2001, p. 162) in order to synthesize a linear feedback for the slow-dynamics of a hyper-
sonic aircraft with global stability. For this purpose, the aircraft dynamics are modeled
by bilinear aerodynamic coefficients.

Part Outline This part studies the synthesis and verification of control approaches
for upset recovery. It is organised as follows: The initial technical background chapter
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serves as an introduction into nonlinear control theory with focus on optimal and model-
predictive control. Chapter 6 applies the sum-of-squares programming technique in order
to verify stable recovery from deep-stall conditions. In Chapter 7, we formulate altitude-
minimal recovery as model-predictive control problem and proof stability of the control
scheme. Chapter 8 concludes the part by extending model-predictive control to recovery
from spiral and spin events.
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Nonlinear Control

The purpose of designing a control law, whether based on the current states and outputs
of a system (“feedback control”) or not (“feed-forward control”), is augmenting the
system in order to achieve a desired controlled behaviour. Common goals are to enhance
the performance or stability of the underlying system; to ensure that the system remains
within a certain set of states; to recover a desired state after a disturbance of the system;
or to make the system follow a given reference trajectory. Roughly speaking, there are
about as many control approaches as there are classes of control systems – illustrated in
Fig. II.1 – and some approaches classically designed for linear systems can be extended
to nonlinear systems. A deep study of linear control approaches would be beyond the
scope of this chapter, but it should be noted that approaches such as pole placement
or optimal linear control synthesis are well applied locally in the neighbourhood of an
equilibrium.

For nonlinear systems such as polynomial, rational, or switching systems, the linear
concept of controllability can be extended to the notion of flatness. Here, a system is
said to be flat if there is a (virtual) output which is uniquely described by the system’s
states, inputs, and history of inputs, and which in turn determines states and inputs
for all times (Abel 2013, p. 412). While the existence of such a flat output is sufficient
for controllability, there are further necessary conditions for a system to be flat (Rigeros
2015, pp. 85–86). If the system under consideration is not flat, a “flat-like” control law
can still be synthesized solving a boundary-value problem (Graichen 2006, pp. 14–20)
or a set of differential algebraic equations (Seifried and Blajer 2013, p. 116). Related
to the concept of flatness is the idea of feedback linearisation, where a nonlinear system
is transformed in such a way that an equivalent linear system is found,1 for which then
a linear control law can be designed (Slotine and Li 1991, pp. 236–241; see also Isidori
2013, p. 370, and references herein). The process of input-state linearisation is also
known as nonlinear dynamic inversion (cf., e.g., Sieberling et al. 2010, pp.1733–1734).

Control of nonlinear systems is especially challenging in the presence of bifurcations
as well as input and state constraints. The field of control that aims to influence how
and where a bifurcation occurs is called bifurcation control (see, e.g., Alonso et al. 2003,
for an introduction). Various control approaches further address state and input con-
straints, such as augmenting the reference signal by pseudo-control hedging (Johnson
2000, pp. 15–18) or reference-governor schemes (Nicotra and Garone 2018, p. 91). A
more direct method is found in nonlinear optimal control, where the control signal is
subject to minimising a given cost function amid state and input constraints (Abel 2013,
p. 344). Itself a method of feed-forward control design, solving the optimisation problem
repetitively and with respect to the current state leads to the idea of model-predictive
control (MPC).

1Therefore, this approach is also called exact linearisation in contrast to the “inexact” linearisation
of the Taylor series.
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linear

ẋ = Ax + Bu

A ∈ Rn×n, B ∈ Rn×m

polynomial

ẋ = f(x, u)

f ∈ R [x, u]n

rational

ẋ = G(x)−1 f(x, u)

f ∈ R [x, u]n, G ∈ R [x]n×n

describing function

ẋ = Aϕ(x) + ψ(u)

A ∈ Rn×n, ϕ : Rn → Rn

ψ : Rm → Rn

switching

ẋ = hi(x, u) if x ∈ Φi

h : I × Rn × Rm → Rn

Φi ⊂ Rn

hybrid

ẋ = hi(x, u) , i = ki(x, u)

h : I × Rn × Rm → Rn

k : I × Rn × Rm → I

(Φi)i∈I form a set
partition of Rn.
(Φi)i∈I form a set
partition of Rn.

I ⊂ N is the set of
discrete modes.
I ⊂ N is the set of
discrete modes.

companion form

ẋ = f(x) + g(x) u

f(x) ∈ Rn, g(x) ∈ Rn×m

A polynomial system
in companion form is
given by f ∈ R [x]n
and g ∈ R [x]n×m.

A polynomial system
in companion form is
given by f ∈ R [x]n
and g ∈ R [x]n×m.

Figure II.1: Overview of linear and nonlinear control system classes and their relationship
(non-exhaustive).
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The remainder of this chapter is concerned with the formulation of optimal control
problems and, subsequently, model-predictive control techniques. In particular, we in-
troduce the concepts of tracking and economic MPC and explain their differences for
the analysis of stability and robustness. Prior to that, we revisit the companion form
for control-affine systems, which is utilised in various control design approaches.

Trajectories under control input

We consider from now on control systems in form of the extended differential equation

ẋ(t) = f(x(t) , u(·)) (II.1)

with f : X × U → Rn and U ⊆ Rp. The input signal u(·) ∈ U is commonly interpreted as
constant, known input (compare the bifurcation parameter of Section I.2); time-varying
control input; time-varying, unknown disturbance signal; or a constant or time-varying
but unknown uncertainty. If the input signal is represented by the parametrised curve
u : R → U , the system is time-variant and, if also Lipschitz-continuous, has a unique
solution xu : R → X for the initial solution xu(t0) = x0. We then call xu(·) the solution
of f starting in x0 under the control input u(·).

The companion form: control-affine systems

For the design of control laws by input-state linearisation or nonlinear dynamic inversion,
but also the control synthesis using sum-of-squares programming, it is necessary that
the considered system is affine in its control inputs. This notion is equivalent to the
so-called companion form of a polynomial or rational system:

ẋ = f ′(x, u) = f(x) + g(x) u (II.2)

where the control input u enters linearly via the matrix-valued field g(·) and the system
is only nonlinear in its state variables. Slotine and Li (1991, p. 236) notes that the
companion form can be derived by a substitution of variables from a system of the form

ẋ = f(x) + g(x) w(u + φ(x)) , (II.3)

where w : Rm → Rn is invertible and φ(x) ∈ Rm.
In general, the companion form can be derived by augmenting a non-affine system

with integrating input dynamics:[
ẋ
ẋu

]
=
[
f ′(x, xu)

0m

]
+
[

0n

1m

]
du, (II.4)

where xu denotes the inputs-turned-states and du, their desired change. While this
can be applied to any nonlinear system that is not control-affine, it also results in non-
hyperbolic eigenvalues representing the input dynamics.
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II.1 Optimal Control Problems
Optimal control problems can be formulated in different ways, for linear and nonlinear
systems, in continuous or discrete time, with an infinite or finite horizon, subject to
constraints or not. All share that we seek to find a pair of trajectories of states x̂ : (·) → X
and inputs û : (·) → X , where X ⊆ Rn denotes, again, the state-space and U ⊆ Rm is the
set of admissible inputs, that minimises a cost function2 J : (·, ·) → R. We will consider
first that the optimal control problems are solved once, prior execution of the control
law (“offline”), whereas the next section is dedicated to iterative (“online”) solutions.

The unconstrained, continous-time, infinite-horizon control problem for a linear sys-
tem with initial condition x0 is commonly written as

min
x(·)∈{R→Rn}
u(·)∈{R→Rm}

J (x(·) , u(·)) =
∫ ∞

0
‖x(t)‖2

Q + ‖u(t)‖2
R dt (II.5)

such that ẋ(t) = Ax(x)+Bu(t) for all t ≥ 0 and x(0) = x0. Here, ‖x‖2
Q and ‖u‖2

R denote
the weighted quadratic errors of states and inputs, xT Q x and uT R u respectively, for
some weight matrices Q ∈ Rn×n, R ∈ Rm×m. If one chooses a structured control input
of the form u : t 7→ K x(t) with the feedback gain matrix K ∈ Rm×n as decision variable,
Eq. (II.5) resembles just the common linear quadratic regulator problem with the well-
known solution K̂ = −R−1BT P and J (x̂, û) = ‖x0‖P, where P denotes the unique
solution of the algebraic Riccati equation (Skogestad and Postlethwaite 2005, p. 376).

Introducing nonlinear dynamics or constraints – or both – into the cost equation
imposes a greater challenge. Without further assumptions about the structure of u(·),
the infinite horizon results into an infinite-dimensional, generally intractable optimisa-
tion problem (Kouvaritakis and Cannon 2016, p. 18). Instead, one often relies on a
finite-horizon approximation of the cost function. Denote

JT (x(·) , u(·)) =
∫ T

0
`(x(t) , u(t)) dt (II.6)

for T ∈ R≥0, x : [0, T ] → X , u : [0, T ] → U , and an arbitrary stage cost ` : X ×U → R; we
obtain the cost of (II.5) as special case limT →∞ JT . We will now attempt to minimise
the combined cost JT (x(·) , u(·)) + `∞(x(T )), where the terminal penalty `∞ : X → R
accounts for the omitted terms of t ∈ [T, ∞) (Jadbabaie et al. 2001, p. 778). The
terminal penalty commonly represents the suboptimal cost of a local controller taking
over at time T (dual-mode paradigm, Kouvaritakis and Cannon 2016, p. 19).

In order to further relax the optimisation problem, we consider the discrete system

xk+1 = f+(xk, uk) , (II.7)

where the vector field f+ : Rn × Rm = Rn is chosen in such a matter that

xk = x(kτ) (II.8)
2Or functional, as the case may be.
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for all k ∈ {0, . . . , N} if x(·) is the trajectory of the continuous system f(·, ·) under the
zero-order hold control input u(·) given by

u : t 7→


u0 if t < τ
uk if kτ ≤ t < (k + 1) τ
uN if Nτ ≤ t

(II.9)

and starting in x(t = 0) = xk=0. Interpreting τ ∈ R≥0 as sample time, N ∈ N as
discrete horizon, and k as discrete samples, we have that, in other words, f+ and f
coincide periodically at the sampling time points tk = kτ (Grüne and Pannek 2017,
p. 17). While the existence of an equivalent discrete system can be proven,3 one will
often rely on a numerical approximation in absence of an algebraic notation (Grüne and
Pannek 2017, pp. 20 and 22).

With Eqs. (II.6) and (II.7), we obtain the constrained, discrete-time, finite-horizon
control problem for a system f+(·, ·) with initial condition x0 and nonlinear constraints
(gi : R≥0 × X × U → R)i∈I , where I ⊂ N is finite, as

min
x(·)∈X N

u(·)∈UN

JN

(
x(·), u(·)

)
= `∞(xN ) +

N−1∑
k=1

`(xk, uk) (II.10)

such that xk+1 = f+(xk, uk) for all k ∈ {0, · · · , N − 1} and gi(k, xk, uk) ≥ 0 for all k ∈
{0, . . . , N} and i ∈ I. Solved in open loop with a terminal constraint xN = xf , Eq. (II.10)
constitutes an optimal variant to the boundary value problems of Graichen (2006, pp. 73
and following). However, it also serves as an entry point for the model-predictive control
paradigm of the next section, where the open-loop, finite-horizon optimisation will be
solved iteratively.

II.2 Model-Predictive Control
The fundamental idea behind model-predictive control (MPC) is to solve the optimal
control problem iteratively for the most recent state measurement x(t0), usually but not
necessarily with as same a period as the sampling time of the underlying discrete model,
and only take the first element(s) of the optimal control sequence. Thus, the terminal
time step t0 +Nτ is perpetually pushed back (“receding horizon”) and the terminal state
xN with its suboptimal local controller is never reached. While being computationally
demanding, the model-predictive control scheme constitutes in fact a feedback control
law; if x̂(·), û(·) denote the arguments of the optimal solution of the open-loop problem
of Eq. (II.10) with initial condition x0 = x(t0), the model-predictive control feedback is
given as

uMPC(t) = µN (x0) = û[1] (II.11)
3Note that neither the choice of (tk)0≤k≤N as periodic sample times, nor that of u(·) as zero-order

hold is necessary for this result. For a complete introduction into sampled-data systems, refer to Grüne
and Pannek 2017, Chap. 2.2.
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for t ∈ [t0, t0 + τ), where û[i] denotes the i-th element of û(·).
We are naturally interested in the set of initial conditions x0 ∈ X whence the MPC-

feedback is able to drive the system to a stable solution – in other words, we would like
determine the region of attraction. Necessary for a stabilising control is the plain exis-
tence of a solution to the open-loop problem, that is, the feasibility of the optimisation.
We denote the set of initial conditions which elicit a feasible optimisation problem as

XN =
{

x0 ∈ X
∣∣∣ ∃u(·) ∈ UN .

(
x0, u(·)

)
∈ ZN

}
, (II.12)

where ZN is the set of admissible solutions, that is,

ZN =
{(

x, u(·)
)

∈ X × UN
∣∣∣ ∧

i∈I
gi(k, xu

k , uk) ≥ 0 for all 0 ≤ k ≤ N
}

(II.13)

if xu
(·) denotes the trajectory under control inputs u(·) and starting in x0. However,

feasibility for an initial condition x(t0) = x0 does not guarantee that any future state
x(t), t > t0, under MPC-feedback grants a feasible problem (Grüne and Pannek 2017,
p. 178) or leads to a desired region of attraction. We will conclude this section reviewing
the conditions for the stage cost `, terminal penalty `∞, and constraints gi(·) such that
the feasible initial conditions XN are not only forward-invariant4 but also lead to stable
operation.

In the following, we assume that the constraints gi(k, ·) either hold independently of
k ∈ {0, . . . , N} (in which case we may omit the first argument) or are only active in the
last time step N , and

gi(N, x, u) ≥ 0 =⇒ gi(x, u) ≥ 0 (II.14)

for all i ∈ I. The set of admissible state-input pairs is then denoted

Z =
{

(x, u) ∈ X × U
∣∣∣∧

i∈I
gi(x, u) ≥ 0

}
. (II.15)

For further convenience, we write the set of states that satisfy the terminal constraint
as

Xf =
{

xN ∈ X
∣∣∣ ∃u ∈ U .

∧
i∈I

gi(N, xN , u) ≥ 0
}

. (II.16)

Then, XN constitutes nothing else than set of states x0 that can be recovered into Xf

without violating any state and input constraints. The terminal set is commonly chosen
to contain a stationary solution xf , including the singular set {xf }, which grants an
optimal steady-state operation.

Remark The use of a ’stability-related’ (Alamir 2017, p. 288) terminal set Xf as well
as penalty `∞ is common in the literature to ensure asymptotically stable closed-loop
operation, yet it restricts the feasible set, requires long predictions horizons, and thus lead
to increased computation times (ibid.). Recent work proved stability of unconstrained
MPC schemes under conditions such as suboptimality (Reble and Allgöwer 2012, p. 1815)
or contraction (Alamir 2017, p. 290). These are beyond the scope of this thesis.

4A set A ⊂ X is forward-invariant (under feedback µ(·)) if and only if x ∈ A ⇒ f +(x, µ(x)) ∈ A.
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II.2.1 Tracking and economic stage cost

We have not further considered the structure nor properties of the stage cost function `,
although we may have thought of a weighted cost similar to that of Eq. (II.5). In order to
further formalise this idea, we introduce now the tracking MPC (also “standard” MPC)
stage cost

`T : (x, u) 7→ ‖x − xf ‖2
Q + ‖u − uf ‖2

R (II.17)

for a target stationary solution (xf , uf ) and positive-definite weights Q ∈ Sn, R ∈ Sm.
Then, `T has an unique minimum in (xf , uf ), namely, minx,u `T(x, u) = `T(xf , uf ) = 0.
In consequence, the MPC feedback will drive the system towards the target point – as
far as possible amid the constraints – in its attempt to minimise the cost function. The
tracking MPC stage cost formulation is not necessarily limited to stationary solutions
but can indeed be extended to an arbitrary reference trajectory xref(·) under the control
inputs uref(·) if the stage cost is chosen to be time-varying (Grüne and Pannek 2017,
pp. 53 and following). We shall see that, under moderate assumptions on the terminal
penalty and constraints, the tracking MPC stage cost almost always yields stable closed-
loop dynamics.

Yet, not every measure that might be desirable to optimise can be formulated as
positive definite tracking cost. Those cases have first been considered in the field of
chemical process engineering, where a process is to be operated under monetary, eco-
nomic aspects and the economically best operation point even is not necessarily a steady
state (Ellis et al. 2017, p. 6). In subsequence, the branch of model-predictive control
feedback subject to non-definite cost functions is called economic MPC and we denote
the corresponding ecnomic stage cost by `E. Since the economic cost is not formulated
with respect to a chosen reference, the target stationary solution is obsolete. Instead,
we have the notion of an optimal equilibrium (Grüne and Pannek 2017, p. 222).

Definition II.1. A stationary solution (x∗, u∗) ∈ Z is optimal with respect to the stage
cost `E if and only if

`E(x∗, u∗) ≤ `E(x, u) (II.18)

for all admissible stationary solutions (x, u) ∈ Z, i.e., f+(x, u) = x (in continuous time,
f(x, u) = 0). Then, the optimal cost is `∗ = `E(x∗, u∗).5

While the existence of at least one optimal equilibrium can be proven under the
assumption of continuity and compact Z (Grüne and Pannek 2017, Lemma 8.4), its
uniqueness is not guaranteed. Moreover, there might be a non-stationary solution such
as a periodic orbit that provides a better performance in average. This is formulated
in the concept of optimal operation at steady-state (Ellis et al. 2017, p. 61); namely, we

5The optimal cost is not necessarily zero, and could be as well positive as negative. We can, however,
always adapt the stage cost such that `∗ = 0 without losing generality.
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have an asymptotic average economic performance of

lim sup
N→∞

1
N

N∑
k=1

`E(xk, uk) ≥ `∗ (II.19)

for any trajectory x(·) under control input u(·) where (xk, uk) ∈ Z for all k ≥ 0. Indeed,
if we consider stability of a system under economic model-predictive control as whether
the optimal equilibrium is stable – in the sense of the bespoken definitions – for any
recoverable initial condition, there must not be any other stationary or periodic solution
with matching performance. Determining whether a given system is optimally operated
at steady-state or not, however, turns out to be a challenging task for many practical
systems.

≫

II.2.2 Stability of model-predictive control

With the optimisation problem solved numerically in feedback loop to the control system,
the closed-loop model-predictive control system constitutes in fact a hybrid system. Even
if the control system itself is considered in discrete-time, the model-predictive control
loop has no closed algebraic representation. These aspects render proving stability of
model-predictive control strategies difficult. The natural methodology here is Lyapunov’s
stability theory (Theorem I.6) for a complex nonlinear system. We will consider stability
as the existence of a “quasi-global” asymptotic stable equilibrium, that is, any initial
condition that can be recovered (as defined by XN ) will be recovered.
Problem II.2. Let (x∗, u∗) ∈ Z be an admissible stationary solution of the system f+ and
µ : XN → U , a model-predictive control feedback with horizon N ∈ N; find a Lyapunov
candidate-function V : X → R with respect to x∗ such that

V ◦ f+(x, µN (x)) − V(x) ≤ −ρ(|x − x∗|) (II.20)

for all x ∈ XN and with ρ(·) continuous, positive definite.
Stability of the infinite-horizon problem does not imply stability of the finite horizon,

predictive control scheme without further assumptions (Jadbabaie et al. 2001, p. 778).
Even though the second, local mode is technically never reached by the receding-horizon
optimal feedback, it is commonly taken that a local controller κf is present and the cost
of the latter mode is represented by the terminal penalty.

Assumption II.3. Let `, `∞ : X → R be stage cost and terminal penalty, respectively,
and Xf ⊂ X be the terminal region; there is a local control law κf : X → U such that

`∞ ◦ f+(x, κf (x)) − `∞(x) ≤ −`(x, κf (x)) (II.21)

and f+(x, κf (x)) ∈ Xf for all x ∈ Xf .
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We will further assume tacitly that f+(·, ·), `(·), and `∞(·) are continuous, as well as
that X , Xf , and U are compact (hence, Z is compact). The following, classical theorem
provides sufficient conditions for closed-loop stability (cf. Jäschke et al. 2014, p. 1261;
Rawlings et al. 2017, p. 114).

Theorem II.4. Let (x∗, u∗) ∈ Z be an admissible stationary solution, ` : Z → R, `∞ :
X → R be stage cost and terminal penalty, respectively, with `(x∗, u∗) = `∞(x∗) = 0 and
Xf ⊂ X be a terminal region with x∗ ∈ Xf ; if there are functions α1, α2 ∈ K∞ such that

α1(|x − x∗|) ≤ `(x, u)
`∞(xf ) ≤ α2(|xf − x∗|)

(II.22)

for all (x, u) ∈ Z where x ∈ XN and xf ∈ Xf , and `∞ is positive definite in Xf , then
(x∗, u∗) is asymptotically stable under model-predictive control feedback µN with region
of attraction XN . C

For a proof, the optimal value function J 0
N : x0 7→ ĴN , where ĴN is the optimal

value of (II.7) with initial condition x0, is demonstrated to be a Lyapunov function in
XN with respect to x∗ (Rawlings et al. 2017, pp. 115–119). In the special case that
the terminal set constitutes the singleton Xf = {x∗}, boundedness of J 0

N from above is
not established by (II.22); instead, we introduce the assumption of weak controllability
(Rawlings et al. 2017, p. 116; cited after Diehl et al. 2011, p. 704).

Assumption II.5. Let (x∗, u∗) ∈ Z be an admissible stationary solution; there exists
a function γ ∈ K∞ such that

N∑
k=1

|uk − u∗| ≤ γ(|x − x∗|) (II.23)

with
(
x, u(·)

)
∈ ZN for all x ∈ XN .

The lower bound in Eq. (II.22) implies necessarily that the stage cost is positive
definite, which is the case for the tracking cost but not the more general economic
cost. All is not lost though, for stability of an economic MPC feedback scheme might
still hold (Angeli et al. 2012, p. 1617) and an alternative Lyapunov function can be
formulated under certain requirements on the system f+ and the economic cost `E. Dif-
ferent approaches have been proposed hitherto, and these share the notion of rotated
cost

¯̀(x, u) =def `(x, u) + Λ(x) − Λ ◦ f+(x, u) − `∗ (II.24)
¯̀∞(x) =def `∞(x) + Λ(x) − Λ(x∗) − `∞(x∗) (II.25)

for a suitable function Λ: X → R such that the auxiliary optimal control problem

J̄ 0
N (x0) =def min

u(·)| (x0,u)∈ZN

¯̀∞(xu
N ) +

N−1∑
k=1

¯̀(xu
k , uk) , (II.26)
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where xu
(·) denotes the trajectory under control inputs u(·) and starting in x0, has as same

the optimal argument û(·) as Eq. (II.10) and J̄ 0
N (·) constitutes a Lyapunov function with

respect to x∗ (Jäschke et al. 2014, p. 1263; Amrit et al. 2011, p. 180).
The first to establish a Lyapunov function for economic model-predictive control were

Diehl et al. (2011), who assumed strong duality of the steady-state problem. Namely, if
there exist λ ∈ Rn and α ∈ K∞ such that (x∗, u∗) is the unique pair satisfying

`(x∗, u∗) + α(|x − x∗|) ≤ `(x, u) + 〈λ, x − f+(x, u)〉 (II.27)

for all (x, u) ∈ Z and Xf = {x∗}, then the rotated optimal value function J̄ 0
N with

Λ : x 7→ 〈λ, x〉 can be proven to be a Lyapunov function. (Diehl et al. 2011, p. 704).
The condition of strong duality was subsequently relaxed to the more general concept
of strict dissipativity (Amrit et al. 2011, p. 179; Angeli et al. 2012, p. 1618) with respect
to ς`(x, u) =def `(x, u) − `∗.

Definition II.6. Let (x∗, u∗) ∈ Z be the optimal stationary solution of the system f+

and ς : Z → R be a supply rate; f+ is called strictly dissipative with respect to ς(·) if and
only if there exists a storage function Λ : X → R and positive definite ρ : R≥0 → R≥0
such that

Λ ◦ f(x, u) − Λ(x) ≤ −ρ(|x − x∗|) + ς(x, u) (II.28)

for all (x, u) ∈ Z.

Strict dissipativity with respect to ς`(·) follows from strong duality, whereas strong
duality follows from strong convexity of the rotated stage cost ¯̀ given that Λ(·) is linear
(Jäschke et al. 2014, p. 1263). We can thus summarise the results for closed-loop stability
of economic model-predictive control as follows:

Theorem II.7. Let ` : Z → R, `∞ : X → R be stage cost and terminal penalty, respec-
tively, (x∗, u∗) ∈ Z be an optimal stationary solution of the system f+, and Xf ⊂ X be
a terminal region with x∗ ∈ Xf ; if one of the following hold:

1. There is a linear Λ: X → R such that the rotated stage cost ¯̀ is strongly convex;

2. There is a λ ∈ Rn satisfying the assumption of strong duality for ` and f+ as given
above;

3. The system f+ is strictly dissipative with respect to the supply rate ς` : (x, u) 7→
`(x, u) − `∗;

then (x∗, u∗) is asymptotically stable under model-predictive feedback µN with region of
attraction XN . C

See Amrit et al. (2011, pp. 180 and 181, with Assumption II.3) and Angeli et al.
(2012, pp. 1619 and 1620, with Assumption II.5) for a proof.
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Regularisation for unstable steady-state operation

Angeli et al. (2012) and Jäschke et al. (2014) considered the situation that a chosen,
purely economic stage cost `E does not result in a optimal operation at steady-state
which is stable; therefore, both proposed augmenting the stage cost by a positive def-
inite penalty term in order to ensure strict dissipativity (Angeli et al. 2012, p. 1620) and
strong convexity (Jäschke et al. 2014, p. 1263), respectively. The regularized economic
stage cost is thus given as6

`R : z 7→ `E(z) + 1
2 ‖z − z∗‖2

Q (II.29)

for all z =def (x, u) ∈ Z, where Q ∈ Sn+m is a nonnegative, matrix-valued regularisation
weight and z∗ =def (x∗, u∗) ∈ Z is the desired stationary solution.

Jäschke et al. (2014) selected the linear function Λ(x) = 〈λ, x〉 such that

∇z`E(z∗) + ∇z
(
x − f+(x, u)

)
(z∗) λ +

∑
i∈I

∇zgi(z∗) ηi = 0 (II.30)

with ηi ≥ 0 for all i ∈ I and
∑

i∈I ηigi(z∗), where ∇zφ(z∗) denotes the gradient of a func-
tion φ(·) with respect to z evaluated in z∗. Here, λ and (ηi)i∈I are the unique Lagrange
multipliers of the Karush-Kuhn-Tucker condition (cf. Grüne and Pannek 2017, p. 388)
for the optimal steady-state problem “min(x,u)∈Z `E(x, u) such that x = f+(x, u).” The
rotated regularised stage cost function ¯̀R then has a global minimum in z∗ if the second-
order condition

∇2
z
¯̀R(z) = ∇2

z`E(z) −
n∑

i=1
∇2

zf+
i (z) + Q � 0 (II.31)

holds for all z ∈ Z (Jäschke et al. 2014, p. 1263), where ∇2
zφ(z) denotes the Hessian

matrix of φ(·) with respect to z and f+
i denotes the i-th component of f+(·, ·). That

is, ¯̀R(·) is strongly convex. In order to ensure positivity of the Hessian matrix, one
may select a diagonal weight Q = diag(q1, · · · , qn+m) � 0 by exploiting the lower bound
of the Gershgorin circle theorem for matrix eigenvalues (Jäschke et al. 2014, p. 1264),
namely that a quadratic matrix A with elements Ai,j ∈ R is positive definite7 if the
lower bound

0 < Ai,i −
∑
i 6=j

|Ai,j | (II.32)

holds for all diagonal entries Ai,i. Now, if A denotes the matrix-valued function z 7→
∇2

z`E(z) −
∑n

i=1 ∇2
zf+

i (z) with elements Ai,j(z) ∈ R, choosing

qi > max
z∈Z

∑
i 6=j

|Ai,j(z)| − Ai,i(z) (II.33)

6Cited after Jäschke et al. (2014); note that Angeli et al. (2012) maintained a more general formulation
allowing for a positive definite function α : Z → R≥0.

7Recall that A is positive definite if and only if all eigenvalues are positive.
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for q1, . . . , qn+m implies strong convexity of the rotated stage cost and thus stability of
the regularised economic MPC feedback.

Note that Gershgorin’s circle theorem tends to result in highly conservative estimates
for the eigenvalues (DeVille 2016, p. 1). Moreover, strong convexity of the stage cost is
not necessary for closed-loop stability. Therefore, the regularisation weights Q obtained
by the procedure above are likely to be unnecessarily large, thus over-penalising the
original, economic cost. Later work of Yu and Biegler (2019) hence addressed the iden-
tification of so-called critical states in order to reduce the overall regularisation penalty
(Yu and Biegler 2019, pp. 47–49 and 51). Furthermore, in order to facilitate the selection
of regularisation weights for strong convexity by the Gershgorin bound, the procedure
above is restricted to the use of the Lagrange multiplier λ for duality. The regularisation
scheme of Angeli et al. (2012), on the other hand, allows for arbitrary linear or continuous
functions Λ(·), yet the proposed search for the weakest lower bound is computationally
demanding.
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Chapter 6

Sum-of-squares Control Synthesis

This chapter corresponds to:

Torbjørn Cunis, Jean-Philippe Condomines, and Laurent Burlion (2019b).
“Sum-of-squares Flight Control Synthesis for Deep-stall Recovery”. In: Re-
vision under review for Journal of Guidance, Control, and Dynamics

in the author’s revised version.

Synopsis
So far, sum-of-squares (SOS) programming has been used to analyse the region of at-
traction of a given flight control approach. Now we are going to augment the bespoken
approaches of the previous chapters to synthesise new linear and polynomial feedback
laws. Estimating the region of attraction also under control input constraints, we can
thus verify stable recovery as backwards reachability problem for upset conditions. Here,
the choice of an ellipsoid as parameter of the SOS iteration turns out to be both crucial
and challenging. Instead, we will directly utilise a given deep-stall flight condition and
ensure its reachability. The derived control feedback grants stable recovery by design.
This chapter constitutes a further demonstration of the usability of sum-of-squares pro-
gramming techniques for flight control synthesis and verification in the view of LOC-I
prevention and upset recovery.

Statement of Contribution Torbjørn Cunis implemented the sum-of-squares algo-
rithms for control analysis and synthesis as well as developed the backwards-reachability
scheme for deep-stall recovery. Jean-Philippe Condomines contributed to the wording
of the manuscript. Laurent Burlion provided guidance and feedback throughout the
drafting.

147



148



Sum-of-squares Flight Control Synthesis for Deep-stall
Recovery

Torbjørn Cunis*
ONERA – The French Aerospace Lab, Centre Midi-Pyrénées, Toulouse, 31055, France

Jean-Philippe Condomines†
ENAC, Université de Toulouse, Toulouse, 31055, France

Laurent Burlion‡
Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

In lieu of extensive Monte-Carlo simulations for flight control verification,

sum-of-squares programming techniques provide an algebraic approach to the

problem of nonlinear control synthesis and analysis. However, their reliance on

polynomial models has hitherto limited the applicability to aeronautical control

problems. Taking advantage of recently proposed piecewise polynomial models,

this paper revisits sum-of-squares techniques for recovery of an aircraft from

deep-stall conditions using a realistic yet tractable aerodynamic model. Local

stability analysis of classical controllers is presented as well as synthesis of poly-

nomial feedback laws with the objective of enlarging their nonlinear region of

attraction. A newly developed synthesis algorithm for backwards-reachability

facilitates the design of recovery control laws, ensuring stable recovery by design.

The paper’s results motivate future research in aeronautical sum-of-squares ap-

plications.

Nomenclature
α Angle of attack (rad);

α0 Low-angle of attack boundary (α0 = 16.2949°);

γA Flight-path angle relative to air (rad);

η Elevator deflection (rad), negative if leading to positive pitch moment;

ϑ Signed distance ratio (ϑ ∈ R);
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λ Level set (λ ∈ R+);

ρ Pseudo-radius (ρ ∈ R+);

ϕ(·) Boundary condition function (ϕ : Rm → R);

dη Change of elevator deflection (rad/s);

K Feedback control law (K : Rn → Rp);

n Number of states; system degree;

p Number of inputs;

P Positive-definite, polynomial shape function (P : Rn → R≥0, P ∈ R [x]);

q Pitch rate (rad/s);

VA Aircraft speed relative to air (m/s), positive along xa-axis;

x∗, η∗ State vector and elevator deflection at trim condition;

x̃, η̃ Scaled state vector and elevator deflection;

(·)post Domain of high angle of attack;

(·)pre Domain of low angle of attack;

E (Quasi)-Ellipsoidal set (E =
{
x �� P(x) ≤ ρ

}
) with shape function P and pseudo-radius ρ;

Σ [x] Polynomial sum-of-squares cone (Σ [x] ⊂ R [x]);

R [x] Set of polynomials in x with real-valued coefficients;

I. Introduction

Prediction and prevention of inflight loss-of-control (LOC-I) commonly requires prior knowledge of

the aircraft’s dynamics using a reliable and representative aerodynamic model. However, establishing

a satisfactory model is rarely straightforward, and ensuring sufficient representation of every aspect of the

operational envelope of the true vehicle is extremely challenging. Indeed, dynamics beyond the nominal

flight envelope are highly nonlinear and often unstable. Flight control certification for commercial airliners

therefore relies today on simple but extensive and cumbersome Monte-Carlo simulations of high-fidelity

models [1] in order to analyse the viable subset of the flight envelope, which demands significant investment

of time and computational power. Yet, more sophisticated tools based on nonlinear stability theory have
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been applied in the literature. Mathematical continuation and bifurcation analysis establishes trim conditions

and periodic orbits as well as their stability [2, 3]; however, attraction or reachability of a stable solution

cannot be determined quantitatively using the continuation methodology. Reachability analysis, on the other

hand, numerically evolves reachable subsets of the state-space over time, identifying possible violations of

predefined constraints [4, 5]. An alternative formulation of the reachability problem is the algebraic notion

of controlled invariant sets, or safe sets [6, 7]. Defined as the largest set such that the aircraft can be kept

within the state constraints subject to control input limitations, the safe set determines bounds for prevention

and recoverability from LOC-I events. The idea of a safe set as defined by the existence of an admissible

control sequences is thus contrasted by the set of converging state trajectories subject to an a priori specified

control law, namely, the region of attraction of the closed-loop system.

Determining the region of attraction of a given system up to a desired accuracy is, in general, a non-trivial

task [8]. Recently, Lyapunov stability theory and LaSalle’s later extension have been turned into a systematic

analysis approach employing sum-of-squares (SOS) programming techniques [9, 10]. Relaxed to semi-definite

problems [11], SOS provides global stability proofs [12] as well as provable under-estimates for the region of

attraction of systems defined by polynomial dynamics [13]. Those methods for stability analysis can further

extended for synthesis of control feedback laws ensuring or enlarging a region of attraction subject to input

constraints [14, 15].

Sum-of-squares techniques have been exploited to analyze the short-period motion of an F/A-18 aircraft

model [16]. A special iteration technique, called V-s-iteration, was applied to estimate the region of attraction

of the longitudinal motion of the Generic Transport Model [17]. In [18], this technique was employed to

validate a revised control law for the F/A-18 “falling-leaf” mode. It is worth noting that this work used a

reduced six-state polynomial aircraft model that was derived by sampling the equations of motion rather than

the aerodynamic coefficients. Despite SOS techniques being a powerful tool to generate Lyapunov functions

for suitable models, few work on SOS for aircraft dynamics has been published since. Simple polynomials

are often unsuitable to fit full-envelope aerodynamics accurately, whereas advanced modeling techniques,

such as multivariate splines [19], are computationally heavy to analyse using SOS. Simple piecewise-defined

models, as proposed by the authors in [20], have the potential of bridging this gap, since they both describe

accurately aircraft dynamics in the domains of low and high angles of attack while only slightly increasing

the computational load for sum-of-squares programming.

In this article, we synthesize controllers for and verify deep-stall recovery of a small unmanned aircraft

using SOS programming and a piecewise polynomial model. The choice of aircraft, a fixed-wing capable of

stable deep-stall transition, descent, and recovery [21], allows us to isolate longitudinal dynamics. Continuing

our work in [20], we present an extended V-s-iteration for piecewise-defined aircraft dynamics in order to
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obtain feedback control laws subject to state and inputs constraints. While we initially rely on common

polynomial surfaces to govern the estimate (cf. [13, 14, 17, 18]), we later replace it by a single deep-stall

condition. We thus provide a systematic analysis by SOS beyond polynomial aircraft models. The present

paper is organised as follows: In Section II, we introduce the aircraft, its piecewise polynomial model and

recall the basics of SOS analysis. Section III analyzes stable recovery of a linear-quadratic regulator and

synthesizes polynomial controllers subject to an enlarged region of attraction. Section IV concludes the article

by a revised formulation of control synthesis specifically for deep-stall recovery.

Note on polynomial surfaces For sum-of-squares analysis and control synthesis, we make use of geometric

objects defined by polynomial functions on the state-space, i.e., E =
{
x ��, P(x) ≤ ρ

}
for some polynomial P in

x and ρ > 0. The most common examples are ellipsoids (in three dimensions) and the related hyper-ellipsoidal

surfaces, which are governed by quadratic functions P = xTQx with positive-definite matrix Q. For simplicity,

we call both ellipsoids and hyper-ellipsoids ellipsoidal surfaces. The concept of (hyper)-ellipsoids can be further

extended to positive polynomial surfaces of order larger than two, of which we will refer as quasi-ellipsoids.

II. Methodology
We consider an autonomous, 1.65 m-wingspan, unmanned aircraft that, instead of landing gear, is intended

to land vertically descending by a deliberate deep-stall manoeuvre. In this manoeuvre, the drag of the wings

counteract the gravitational force, leading to a stable trim condition, and the horizontal distance covered

during the landing is minimised. For the purpose of stable deep-stall flight, the elevator is designed to exceed

the usual range and reach deflections of up to −60°. The parameters of the aircraft used in this study are

given by Tab. 1.

Table 1 Parameters of the aircraft.

flight mass m 1.55 kg
wing span b 1.66 m

mean chord ca 0.174 m
wing area S 0.277 m2

air density % 1.25 kg/m3

gravitational constant g 9.81 m/s2

The aircraft is considered to be laterally stable due to its dihedral wings. We therefore neglect the lateral

dynamics for the analysis of stability and, consequently, assume the side-slip angle β to vanish. In deep-stall

flight and transition, the aircraft is further unthrottled, i.e., the thrust force is zero (F = 0).

We will refer mainly to the international standard air-path axis system (xa, ya, za) oriented along the
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Fig. 1 Longitudinal axes with angles and vectors for β = 0.

aircraft’s velocity vector with respect to air (VA) [22]. Lift and drag forces are defined along these axes and

denoted L and D; angle of attack α, flight-path angle γA, and pitch angle Θ are given by rotations into body

axis system (xf, yf, zf) as well as earth-fixed axis system (xg, yg, zg), defined by the aircraft’s fuselage and the

ground, and between. (Fig. 1). If not stated otherwise, all variables are in SI-units; angles are however given

in degrees where convenient.

A polynomial g ∈ R [x] is a sum of squares (SOS) if g =
∑

i gi(x)
2 for some (gi)i ⊂ R [x]; the set of

sum-of-squares polynomials is denoted by Σ [x]. It can be proven that g ∈ Σ [x] if and only if there is a

positive semidefinite matrix M such that g = zTM z, where z is a vector of monomials in x [10]. This relation

reduces the problem of finding SOS polynomials to semidefinite programming [11], given that the objective is

linear in the SOS variables. However, the problem of a single decision variable entering bilinearly into the

objective, although bilinear problems are generally NP-hard, can efficiently be solved as quasi-convex SOS

program [10]. Notwithstanding that any SOS polynomial is positive semidefinite, the opposite does not hold.
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A. Equations of motion

The longitudinal equations of motion without thrust are given as nonlinear 4-state, ordinary differential

equations [17, 23, 24]:

V̇A =−
1

2
%V2

ASm−1CD(α, η) − g sin γA; (1)

VA γ̇A =
1

2
%V2

ASm−1CL(α, η) − g cos γA; (2)

Iy q̇ =
1

2
%V2

AScaCm(α, η) − kq̇qq; (3)

Θ̇ = q; (4)

with the pitch angle

Θ = γA + α (5)

and the air speed VA as norm of the velocity vector relative to air. Then, CL, CD, Cm are dimensionless

coefficients connected to lift force, drag force, and pitching moment. The elevator deflection η is, by convention,

negative when causing a positive pitching moment. The linear damping coefficient kq̇q accounts for non-static

aerodynamics (see [21]).

The aerodynamic coefficients of the body, wing, and surfaces have been modeled by piecewise polynomial

functions

C�(α, · · · ) =




Cpre
� (α, · · · ) if α ≤ α0;

Cpost
� (α, · · · ) else;

(6)

with Cpre
� (α0, ·) ≡ Cpost

� (α0, ·) and α0 = 16.2949°. Fig. 2 shows the piecewise model and their polynomial

segments. Defined as piecewise polynomials, we are able to account for full-envelope characteristics both of

the lift and drag coefficients as well as the coefficients in body axes [20]. The resulting models are continuous

over the entire domain but not necessarily differentiable in its joint. The pitch-moment coefficient Cm is

modeled likewise. The full aircraft model is detailed in [25].

B. Region of attraction estimation

In the following, we develop a region of attraction estimation for piecewise polynomial systems under

constrained control inputs using SOS programming and extend this framework to find a control law that

enlarges the region of attraction of the controlled system. In order to resolve the resulting bilinear terms, we
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Fig. 2 Piecewise model of aerodynamic coefficients with polynomial segments [21].

will make use of the V-s-iteration [17].

Let a piecewise polynomial system be defined as

f(x, u) =




f1(x, u) if ϕ(x) ≤ 0;

f2(x, u) else;
(7)

with state vector x ∈ X ⊂ Rn, input vector u ∈ U ⊂ Rp, submodels f1, f2 ∈ R [x, u]nand boundary ϕ ∈ R [x];

assume further f(x∗, u∗) = 0. The equilibrium (x∗, u∗) is stable if there exists a non-empty set of initial

conditions such that the trajectories converge, the region of attraction R, and R contains x∗ in its interior.

Now, Ωλ =
{
x ��V(x) ≤ λ

}
is an invariant subset of R if, for V : X → R continuous and positive definite,

V(0) = 0, and λ ∈ R+,

∀x ∈ Ωλ. ∇Vf(x, u∗) < 0 (8)

and Ωλ is bounded [8]. Moreover, we call Ωλ invariant under control K(·) if Ωλ is an invariant set of the

closed-loop system fK : x 7→ f(x,K(x)) for some control law u = K(x) and K(x) ∈ U for all x ∈ Ωλ.

As Lyapunov functions are non-unique, alternative V(·) give rise to different estimates of the region

of attraction. For comparison of the size of an invariant subset, the V-s-iteration introduces a surface

Eρ =
{
x �� P(x) ≤ ρ

}
with P ∈ R [x] positive (quadratic) chosen as parameter of the estimation [13]. The
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estimation of a maximal invariant subset of the region of attraction is then subject to the optimisation

problem

max
V,∈R[x]
λ>0

ρ > 0 s.t. (8) and Eρ ⊂ Ωλ.

as well as V(x) > 0 if x , 0 and V(0) = 0.

1. Piecewise region of attraction

Recall that Ωλ bounded is an invariant subset of R under control K if V(·) is a continuous and positive

definite function and ∇VfKi(x) < 0 for any x ∈ Ωλ and i ∈ {1, 2} such that fKi is active. For V1,2 ∈ R [x], we

have the sufficient SOS constraint [20] (see also [13, Lemma 10])

V1,2(x) − la ∈ Σ [x] (9)

−∇V1fK1 − lb + (V1 − λ) s1,λ + ϕ s1,ϕ ∈ Σ [x] (10)

−∇V2fK2 − lb + (V2 − λ) s2,λ + ϕ s2,ϕ ∈ Σ [x] , (11)

where si,λ, si,ϕ ∈ Σ [x], i ∈ {1, 2} relax negativity of ∇Vifi to the respective partitions defined by Ωλ and ϕ(·)

and la,b ∈ R [x] are positive definite terms [13], e.g., la = lb = εxTx with some small ε > 0. As V(·) is

defined piecewise itself—i.e., V(x) = V1(x) if ϕ(x) ≤ 0; V(x) = V2(x) else;—, we ensure continuity along the

boundary ϕ ≡ 0 by the additional SOS constraint

−V1 +V2 + ϕ sϕ,1 − ϕ s−ϕ,1 ∈ Σ [x] (12)

−V2 +V1 + ϕ sϕ,2 − ϕ s−ϕ,2 ∈ Σ [x] , (13)

where sϕ,i, s−ϕ,i ∈ Σ [x] with i ∈ {1, 2} enforce that both V1(x) ≤ V2(x) and V2(x) ≤ V1(x) if ϕ(x) = 0.

2. Invariant sets under control

The definition (7) and subsequent constraints (9)–(11), as is easy to see, apply equally to closed-loop

controlled systems fK where K(·) is linear or polynomial in x. This alone, however, is insufficient for

invariance under control as we have defined it above. We might now assume U to be defined as conjunction

U =
{
u �� p1(u) ≤ 0, . . . , pm(u) ≤ 0

}
with

(
pj

)
1≤ j≤m

⊂ R [u]; if furthermore K ∈ R [x]p, we can state a necessary
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SOS constraint for invariance of Ωλ under control K as

−
(
pj ◦K

)
+ (V − λ) s j,λ′ ∈ Σ [x] , (14)

where
(
pj ◦K

)
(x) = pj(K(x)), with s j,λ′ ∈ Σ [x] for all 1 ≤ j ≤ m. The constraints (9)–(11) and (14), in fact,

hold independently of each other and can be evaluated separately. As the subset-relation “⊆” on the level

sets Ω(·) constitutes a total order, ΩλK with λK = min{λ, λ ′} is an invariant subset of the region of attraction

of fK(·) under control K.

3. V-s-iteration

The ellipsoid Eρ can be fitted inside the invariant Ωλ if

− (Vi − λ) + (P − ρ) si,P ∈ Σ [x] (15)

with si,P ∈ Σ [x] for i ∈ {1, 2}.

Note that we require V1,2 to be of some fixed degree. However, some constraints involve bilinear terms

of the form Vi s(·) once V1,2 become decision variables. The V-s-iteration uses a bisection approach of

iteratively-alternating steps; a detailed discussion of the basic V-s-iteration has been given by Chakraborty

et al. [17]. We extend here the approach in order to incorporate control input constraints for a K(·) given a

priori and, later on, synthesize an optimal control feedback:

1a) Find λ� maximal such that (10)–(11) hold for V1,2 fixed;

1b) Find λ∗ maximal such that (14) holds for V1,2 fixed;

2) Find ρ� maximal such that (15) holds for V1,2 and λ† = min{λ�, λ∗} fixed;

3) Find V1,V2 ∈ R [x] of fixed degree such that (9)–(15) hold for ρ� and λ† fixed.

The purpose of Eρ here is twofold: first, to quantify the size of the provable invariant subset Ωλ for each

iteration; and second, to prevent the last step from yielding a smaller estimate than hitherto achieved.

C. Control synthesis

Until now, we have considered the control law to be given and fixed. Yet, we can further adapt our

approach to find a suitable K in the attempt to enlarge the (estimated) region of attraction within the bounds

imposed by the control input constrains. As the SOS constraints must be linear in the prospective control

function, we require the control system to be in the companion form affine in u, viz. ẋ = fx(x) + fu(x)u with

fx ∈ R [x]n , fu ∈ R [x]n×p, such that fK(x) = fx(x) + fu(x)K(x). The input constraints
(
pj

)
j
, too, must be
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linear in u, pj(u) = pT
j u with pj ∈ R

p, and K guarantees control-invariance of Ωλ′ if

−pT
j K + (V − λ ′) s j,λ′ ∈ Σ [x] (16)

with s j,λ′ ∈ Σ [x] for all j.

Then, in order to circumvent bilinearities, we execute again steps 1) and 2) for K fixed and incorporate a

supplementary second-to-last step

3a) Find K ∈ R [x] of fixed degree such that (10)–(11) and (16) hold for V1,2 as well as ρ� and λ† fixed.

The old and new last step is once more computed for K fixed. The thus augmented iteration is performed by

Algorithm 1.

D. Preliminary stability analysis

In [21], we have applied bifurcation theory as well as optimization techniques in order to derive the linear

pitch-damping model in Eq. (3). We have thus identified an optimal coefficient Cmq ≈ 1.96. In consequence,

Fig. 3 shows the location and stability of longitudinal trim conditions (note that the choice of Cmq does not

affect the location of stationary solutions as q = 0 is a necessary conditions for trim), parametrized by the

elevator deflection η. The black dot in Fig. 3 indicates the largest deflection, η = 6.5°, for which the aircraft

enters a steep, nose-down descent; the minimal elevator deflection is −60°. Shortly after stall, the aircraft

encounters an unstable regime of stationary solutions with a family of limit cycles (Hopf bifurcation).
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Fig. 3 Trim conditions of longitudinal motion with unstable regimes dashed [21].
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Algorithm 1 Extended V-s-iteration for control synthesis under state and input constraints.
1: for N = 1 to Nmax
2: if N > 1 then
3: find KN ∈ R [x] s.t. for all j ∈ [1,m], i ∈ {1, 2},

−pT
j KN +

(
VN,i − λ

†
)

si j,λ′ ∈ Σ [x]

−∇VN,ifKN i − lb +
(
VN,i − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

4: find VN,1,VN,2 ∈ R [x] s.t. sϕ,i, s−ϕ,i ∈ Σ [x] and for all j ∈ [1,m], i ∈ {1, 2},

VN,i(x) − la ∈ Σ [x]

−
(
VN,i − λ

†
)
+ (P − ρ�) si,P ∈ Σ [x]

−∇VN,ifKN i − lb +
(
VN,i − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

−pT
j KN +

(
VN,i − λ

†
)

si j,λ′ ∈ Σ [x]

−VN,i +VN,3−i + ϕ sϕ,i − ϕ s−ϕ,i ∈ Σ [x]

5: end
6: for i ∈ {1, 2}
7: find λ�i := maxλ≥0 λ s.t. si,λ, si,ϕ ∈ Σ [x] and

−∇VN,ifKN i − lb + (VN,i − λ) si,λ + ϕ si,ϕ ∈ Σ [x]

8: find λ∗i := maxλ′≥0 λ
′ s.t. si j,λ′ ∈ Σ [x] and for all j ∈ [1,m],

−pT
j KN + (VN,i − λ

′) si j,λ′ ∈ Σ [x]

9: end
10: λ† := min

{
λ�1, λ

�
2, λ
∗
1, λ
∗
2

}

11: for i ∈ {1, 2}
12: find ρi := maxρ≥0 s.t. si,P ∈ Σ [x] and

−
(
VN,i − λ

†
)
+ (P − ρ) si,P ∈ Σ [x]

13: end
14: ρ� = min{ρ1, ρ2}
15: end

159



III. Region of Attraction at Trim Point
Where classical control synthesis relies upon linearized models, the region of attraction estimation provides

knowledge about the limitations of the chosen control implementation. Unlike the safe set [see, e.g., 6, 7],

that provides an exploratory study in order to estimate the abilities of the aircraft to be controlled, we must

study a region of attraction in the context of a given controller and the respective trim condition [20]. For

the latter we choose a low-inclination gliding descent trim at η∗glide = −5° (see Appendix A).

In this section, we investigate the capability of different controllers to stably recover the aircraft from a

deep-stall trim condition. We first consider a linear quadratic regulator, which could have been derived by

classical control techniques. Later on however, we apply the SOS tools in order to derive a polynomial control

law that improves stability and recovery of the vehicle. For both analysis and control synthesis, we scale the

state vector xT =

[
VA γA q α

]
by diag(10 m/s, 45°, 150 °/s, 45°)−1 and the input η, by (80°)−1, in order to

normalize states and inputs. The scaled variables are henceforth denoted by x̃, η̃, etc. The viable (unscaled)

elevator inputs are given to U = [−60°; +20°] and represent the physical limits of the aircraft elevator. We

further approximate the non-polynomial functions (sine, cosine, inverse) by Taylor series expansions and

truncate high-order polynomial terms (Appendix A) in order to facilitate the resulting SOS problems [17].

The aircraft longitudinal motion is commonly divided into short-period dynamics involving pitch rate

and angle of attack as well as the long-period phugoid oscillation of airspeed and flight-path angle and often

discussed separately, as-if uncoupled. When discussing the region of attraction, we take into account the full,

coupled 4-state model of Eqs. (1)–(4) but display the estimates as projections into either phugoid VA-γA plane

or short-period α-q plane. Details for all SOS computations are given in Appendix B.

A. Analysis of the Linear Quadratic Regulator

A further but more advanced element of the classical linear toolbox is the renown linear quadratic regulator

(LQR). Here, we minimize the quadratic cost function J̃ =
∫ ∞
0

x̃(t)T Q̃ x̃(t) + R̃ η̃(t)2 dt taking into account

the linearized dynamics f̃(x̃∗ + δx̃, η̃∗ + δη̃) ≈ Ãδx̃ + b̃δη̃ in order to find a linear feedback. We obtain the

optimal cost-to-go for an initial condition x̃0 = x̃(0) as J̃opt = x̃T0 S̃ x̃0, where S̃ denotes the solution to the

general Riccati equation with
(
Ã, b̃, Q̃, R̃

)
and the LQR feedback is given as η̃ = K̃LQR = −

[
R̃−1b̃T S̃

]
x̃. For

weights Q̃ = I4×4, R̃ = 10, the LQR feedback is synthesized to

K̃LQR = −0.1163ṼA + 0.3881γ̃A + 0.2412q̃ + 0.0007α̃. (17)

The control-invariant estimate of the region of attraction for K̃LQR is presented in Fig. 4 with the ellipsoidal

shape E governed by P̃ = 4Ṽ2
A + 4γ̃2A + q̃2 + α̃2. Again, E and the control inputs returned by the LQR
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feedback are illustrated in Fig. 4, too.
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Fig. 4 Estimated control-invariant region of attraction of the linear quadratic regulator.

Even after descaling, the LQR gain on the angle of attack is significantly smaller, diminishing its

contribution to the overall control feedback. With the additional gains on airspeed and path inclination, the

estimated region of attraction contains the aircraft’s high-angle of attack conditions in the lower-left corner

of the phugoid plane. Consequently, the depicted LQR feedback is able to stably recover from deep-stall.

B. Synthesis of polynomial control laws

Until now, we have considered the control input to be determined by an a priori obtained state feedback

law, which might have been designed by any means of control engineering. Synthesis of such a control law

is subject to various objectives including desired closed-loop dynamics, disturbance rejection, and optimal

reference tracking. From this section on, we treat the feedback law as decision variables of sum-of-squares

analysis rather than as part of the initial problem formulation. Thus, the feedback control is synthesized

with the aim of enlarging the region of attraction, again quantified by the size of the ellipsoidal shape E. In

the following, we subsequently derive a linear feedback similar to laws discussed in the previous section, a

polynomial feedback, and piecewise feedback comparable to gain-scheduling control approaches. Further

details can be found in Appendix B.

In order to reformulate the dynamics of section II into the companion form, we take the elevator deflection
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η to be a state and introduce the rate of the actuator, dη, as new input:



ẋ

η̇



=



fEOM(x, η)

0



+



0

1



dη, (18)

where fEOM are the system dynamics of the previous sections. The thus extended state vector is denoted by

xη and scaled by diag(10 m/s, 45°, 150 °/s, 45°, 20°)−1; the new input dη is scaled by (100 °/s)−1. The viable

(unscaled) actuator rate inputs are constrained to |dη | ≤ 200 °/s in order to ensure realistic actuator dynamics.

The role of the ellipsoid E, and in particular the polynomial P governing its shape, for control synthesis

deserves a further discussion. In the last step of the extended V-s-iteration that is employed for both analysis

and control synthesis, the ellipsoid
{
x �� P(x) ≤ ρ�

}
serves as lower bound for the region of attraction estimate,

both in size and shape. Recall further that each estimate
{
x ��V(x) ≤ λ�

}
is itself invariant; if the feedback

law is chosen prior analysis, as in the preceding section, all invariant sets of the aircraft are predetermined by

the closed-loop system dynamics. That is, we “find” a certain invariant set by guessing a Lyapunov function

and computing its largest stable level set. With the feedback law being a decision variable of the control

synthesis now, the selection of a control feedback actively “shapes” the resulting invariant set. In consequence,

we expect the estimated region of attraction to follow the chosen ellipsoidal shape more closely and therefore,

we must carefully select its shape.

We will initially choose a polynomial P of second order that results in an ellipsoid which is rotated with

respect to the normal vector of the phugoid plane, in order to enhance recovery from deep-stall trim conditions,

where air speed is exceptionally low and the path inclination is oriented steeply downwards. As the elevator

deflection constitutes a state of Eq. (18), the constraints η ∈ [−60°; 20°] form asymmetric boundaries. Hence,

to ensure recovery from deep-stall trim of conditions of largely negative elevator deflections is challenging. We

will therefore employ an asymmetrically defined quasi-ellipsoidal shape governed by a fourth-order polynomial.

1. Linear feedback control

We start with synthesizing a linear feedback law dη = Klin = G x, where G ∈ R5×5 is a decision variable

of the sum-of-squares program. Fig. 5 shows the estimated region of attraction for the synthesized linear

control feedback. The ellipsoidal shape E is governed by

P̃ = 220Ṽ2
A − 360ṼAγ̃A + 100α̃2 + 25η̃2 + 220γ̃2A + 100q̃2

and rotated with respect to the phugoid plane. The synthesized linear feedback law is illustrated in Fig. 5 as

contour plots with respect to states and elevator deflection.
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Fig. 5 Region of attraction of the synthesized linear control feedback matrix.

The synthesized linear feedback maintains a region of attracting that contains initial conditions of a wide

range of airspeed, path inclination, and angle of attack. In phugoid and short-period plane, the invariant set

only loosely follows the ellipsoidal shape, leading to an enlarged region of attraction. However, the ellipsoidal

shape starkly affects the elevator deflection, as the dynamics of the actuator are decoupled, and the upper

bound constraints both positive and negative deflections. Thus, negative elevator deflections observed in

deep-stall flight are not contained by the estimated region of attraction of this linear feedback controller.

2. Polynomial feedback control

Indeed, sum-of-squares control synthesis benefits from its ability to synthesized polynomial feedback laws

which are not represented by linear matrices. Whereas the Lyapunov function-candidate is conveniently

represented by a polynomial without linear coefficients and of even degree to facilitate positivity of the

Lyapunov function, it seems reasonable to have a polynomial feedback law without constant terms and of

odd degree. Here, we choose a polynomial dη = Kpoly with linear, quadratic, and cubic terms. Furthermore,

to maintain a region of attraction including large negative elevator deflections, we select an asymmetric

quasi-ellipsoidal shape E that is governed by P̃poly given in Appendix C. The estimated region of attraction

for the synthesized third-order control feedback is shown in Fig. 6.

The differences between third-order (cubic) and first-order (linear) feedback laws can well be obtained

from the isolines, that is, the contour lines of equal actuator rate inputs. Not only decreases the distance
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Fig. 6 Region of attraction of the synthesized polynomial control feedback law.

between two isolines with increasing distance from the trim condition, their course varies starkly between

different sections of the state-space. Moreover, the invariant set seems to be “embedded” into the contour

lines of equal feedback.

The asymmetric quasi-ellipsoid pushes the boundary of the invariant set towards larger negative elevator

deflections, without violating the upper constraint. However, deep-stall trim conditions with their angles of

attack of ≥ 30° are not contained by the estimated region of attraction.

3. Piecewise feedback control

It seems desirable to have alternative control laws for high and low angles of attack in order to adapt for

changed dynamics beyond stall. With the aerodynamic model defined piecewise, it is convenient to synthesize

a piecewise polynomial control law for the same regions, that is,

dη = Kpw(x) =




Kpre if α ≤ α0;

Kpost else;
(19)

where Kpre,Kpost are third-order polynomials in x. Note that we don’t require a boundary condition, as

we command a change of deflection, but could enforce equality of Kpre and Kpost along α ≡ α0 similar to

(12)–(13). When synthesizing polynomial feedbacks for a control-invariant region of attraction spanning both
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low and high angles of attack, both must not violate state and input constraints within their respective

domains. Fig. 7 shows the estimated region of attraction for the synthesized piecewise third-order control

feedback. The ellipsoidal shape E is extended towards the section of high angles of attack and large negative

elevator deflections and therefore governed by P̃pw detailed in Appendix C. For the sake of legibility of the

phugoid-plane projection, we only show the contour lines of equal control feedback for the low angle of attack

law.

invariant subset (α ≤ α0) ellipsoidal shape 0 actuator rate (°/s, α ≤ α0)
invariant subset (α > α0) trim condition 0 actuator rate (°/s, α > α0)
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Fig. 7 Region of attraction of the synthesized piecewise polynomial control feedback law.

C. Discussion

We employed the sum-of-squares framework in order to synthesize linear, polynomial, and piecewise

polynomial control feedback laws that, by design, grant an enlarged region of attraction subject to constraints

on the deflection and rate of change of the elevator. Here, as discussed in the beginning, the choice of its shape

P turns out to be crucial for the shape of the resulting provable invariant set and thus the synthesized feedback

law. Alternative iteration approaches which remove the necessity of a shape function by a set-inclusion

constraint of the estimates likewise lack the directional information to effectively synthesize a control feedback

that enlarges the region of attraction towards the desired states. On the other hand, during the iteration

the surface Eρ and the input constraints form lower and upper bounds, respectively, for the computation

of a new feedback law K. As the deflection constraint has been particularly asymmetric (−60° to 20°), we

made use of increasingly complicated, asymmetrically shaped quasi-elliposidal surfaces. Thus we were able to
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synthesize feedback laws for recovery from flight condition at increasingly steep descents at low airspeeds

without violating the elevator deflection constraint. However, if the generated invariant sets do not contain

the deep-stall flight conditions (which is the case), this is rather due to the choice of P as parameter of the

V-s-iteration then to the form of the control feedback. Despite a large number of iterations, when these

bounds finally converge and the iteration terminates (see Table 2 in Appendix B), we have not succeeded in

reaching the deep-stall flight conditions with the resulting set invariant under the synthesized control. In the

next section, we will therefore propose an alternative algorithm that directly formulates the SOS control

synthesis as reachability problem.

Sum-of-squares programming is notoriously limited by the size of the resulting matrices for the semidefinite

problems, which in turn is a function of both the number of state variables and polynomial degree and scales

badly [26]. A further partitioning of the state-space into piecewise defined polynomials could help reduce the

necessary polynomial degree to accurately represent aircraft dynamics, thus also the underlying matrix size,

but increases the number of decision variables in Eq. (10) and must be subject to a careful trade-off.

IV. Deep-stall Recovery
Reachability of deep-stall trim conditions via SOS control synthesis, as the previous section revealed,

remains subject of a careful selection of the ellipsoidal shape E. Defining a polynomial surface, in particular

in higher dimensions and larger-than-quadratic order, is a nontrivial task (see also Appendix C for a sum-of-

squares procedure for quasi-ellipsoids based on a selection of points). On the other hand, deep-stall recovery

is often formulated as finite-horizon problem, namely, as part of a multi-mode paradigm where the flight

controller switches to a local feedback after recovery. In this section, we modify the control synthesis into a

simplified backwards reachability scheme, where the ellipsoidal shape is replaced by a target state whence

recovery is to be ensured. An alternative approach for a finite-horizon backwards reachability analysis was

presented in [27]; here, the ellipsoidal shape is replaced by a constraint enforcing that each prior estimate is

nested in the next. However, this approach lacks any directional information for enlarging the closed-loop

reachable set under the control law to be synthesized. We further provide a numerical comparison of deep-stall

recovery by all presented feedback laws in the time domain.

A. Backwards reachability control synthesis

Denote the target state by x1 and the distance vector from the nominal trim by x̄ = x1 − x∗. The target

state can be recovered into the nominal trim condition by a control feedback K (i.e., x1 is backwards reachable

from x∗), if there is a function V(·) and level set λ such that Ωλ is a control-invariant region of attraction

estimate (cf. Eqs. (10)–(14)) and x1 ∈ Ωλ, that is, V(x̄) ≤ λ. Obtaining such K, V(·), and λ requires again
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bisection: Given V(·) and λ such that (10)–(14) hold, we define the degree of reachability ϑ� as the maximal

distance ratio ϑ such that

V(ϑx̄) ≤ λ (20)

and observe that x1 can be recovered if ϑ� ≥ 1. For robustness, it might be desirable to have x1 well inside

the interior of Ωλ, that is, the degree of reachability is strictly larger than one or even satisfies a chosen

margin. The V-s-iteration for backwards reachability is then formulated as follows:

1) Find λ�, λ∗ maximal such that (10)–(11) as well as (14) hold for V and K fixed;

2) Find ϑ� maximal such that (20) holds for V and K as well as λ ′ = min{λ�, λ∗} fixed;

3a) Find K ∈ R [x] of fixed degree such that (10)–(11) and (16) hold for V as well as ϑ� and λ ′ fixed;

3b) Find V ∈ R [x] of fixed degree such that (9)–(14) and (20) hold for K as well as ϑ� and λ ′ fixed.

Instead of Eρ before, the degree of reachability ϑ� ensures that, in the last step, the region of attraction

estimate grows towards the target state x1, that is, the degree of reachability increases. The thus modified

V -s-iteration is performed by Algorithm 2. Note that, unlike finite-horizon reachability the obtained feedback

law K stabilizes the target trim condition beyond recovery, too. Line 11 of Algorithm 2 cannot be solved as

the sum-of-squares problem (20) is not linear in ϑ in general, but is efficiently obtained using a nonlinear

solver such as MATLAB’s fmincon.

We choose now one of the stable deep-stall trim conditions as target state, namely, that at η1 = −40° (see

Appendix A). Again, states and inputs are scaled to x̃, d̃η, etc. and subject to state and input constraints.

For the sake of a demonstration here, we choose a single function-candidate V(·) as well as a linear control

feedback. Fig. 8 illustrates the estimated region of attraction, a five-dimensional surface, as slices projected

into the phugoid plane; for this purpose, we assign the free parameters as α = tᾱ, q = tq̄, and η = tη̄ and use

the ratio t for the out-of-plane drawing axis.

With a terminal degree of reachability of ϑ� = 1.3027, the synthesized feedback law robustly recovers

the aircraft from the deep-stall target into nominal flight. Note that the invariant subset is shaped mainly

around the trajectory from x1 to x∗, as this has been the objective, rather than growing as large as possible.

This is further illustrated in Fig. 9, which depicts the estimated regions of attraction in the course of the 39

iterations. With increasing iterations, the region of attraction estimate it stretched towards the target flight

condition x1 until contained (ϑ� ≥ 1).
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Algorithm 2 Modified V-s-iteration for backwards reachability of target x̄ = x1 − x∗.
1: for N = 1 to Nmax
2: if N > 1 then
3: find KN ∈ R [x] s.t. for all j ∈ [1,m], i ∈ {1, 2},

−pT
j KN +

(
VN − λ

†
)

s j,λ′ ∈ Σ [x]

−∇VN fKN i − lb +
(
VN − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

4: find VN ∈ R [x] s.t. for all j ∈ [1,m], i ∈ {1, 2},

VN (x) − la ∈ Σ [x]

−∇VN fKN i − lb +
(
VN − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

−pT
j KN +

(
VN − λ

†
)

si j,λ′ ∈ Σ [x]

VN (ϑ
�x̄) ≤ λ†

5: end
6: for i ∈ {1, 2}
7: find λ�i := maxλ≥0 λ s.t. si,λ, si,ϕ ∈ Σ [x] and

−∇VN fKN i − lb + (VN − λ) si,λ + ϕ si,ϕ ∈ Σ [x]

8: end
9: find λ∗ := maxλ′≥0 λ

′ s.t. s j,λ′ ∈ Σ [x] and for all j ∈ [1,m],

−pT
j KN + (VN − λ

′) s j,λ′ ∈ Σ [x]

10: λ† := min
{
λ�1, λ

�
2, λ
∗
}

11: find ϑ� := maxϑ≥0 s.t.

VN (ϑx̄) ≤ λ†

12: end
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Fig. 8 Region of attraction of a linear control feedback law, synthesized by backwards reach-
ability of the deep-stall target.
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(c) 25 iterations (ϑ�25 = 1.1841).

Fig. 9 Region of attraction estimates during iteration of the backwards-reachability control
synthesis.

B. Numerical comparison

We consider recovery from the deep-stall trim condition x1, given in Appendix A, and simulate the

closed-loop behaviour for the feedback laws discussed in this study. Fig. 10 compares recovery under control

synthesized for reachability to the previous synthesized linear, polynomial, and piecewise polynomial feedback

laws as well as to the LQR feedback. In addition, the closed-loop response with a single-rate damping law,

η̃ = k̃ηq q̃, where k̃ηq = 1 is a positive, proportional gain on the (scaled) pitch rate. All trajectories have been

computed against the non-polynomial longitudinal equations of motion given in Eqs. (1)–(4) rather than the

polynomial approximations employed for the SOS iterations.

The LQR controller, as bespoken in Section III, recovers stably and fast; the pitch-damper (in dashed)

too is eventually recovering though delayed and with large oscillations. As for the control laws of Section B,
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Fig. 10 Comparison of time responses starting in x1.

the objective of synthesis has been an enlarged region of attraction rather than closed-loop performance;

consequently, the recovery is performed rather slow and with considerable overshoot (in particular for the

polynomial and piecewise polynomial feedback laws). The control law synthesized for reachability of the

deep-stall condition also leads to a slow but straight recovery. An extended SOS control synthesis improving

performance measures in addition to enlarging the region of attraction and/or ensuring backwards reachability

could be achieved by further maximizing a exponential stability gain in Eqs. (10) and (10).

In Fig. 11, we detail trajectories starting in various deep-stall flight conditions in the phugoid plane

and additionally show projections of the respective region of attraction estimates. The response for the

trim condition x1 is drawn in solid; the other responses (in dashed) have been computed for non-trim

conditions given in Appendix A. In addition, for each trajectory the point it enters the region of attraction

estimate is marked by a black square (due to the projection into the phugoid plane, these points might

not necessarily appear inside the ellipsoid). For the feedback law synthesized by backwards reachability,

further out-of-plane slices of the estimated region of attraction are projected into the phugoid plane as well.

Except for one trajectory of the LQR feedback (drawn dotted), all controllers are able to recover from each

deep-stall condition into the gliding trim condition. However, for the high-inclination conditions x6 and

x7 this has partially led to saturations of the elevator deflection and its rate of change. Therefore, even

though the saturation has not prevented recovery, these conditions could not have been included in any region

of attraction estimate subject to the imposed constraints in the methodology presented in this paper. In
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(a) Linear control law.
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(b) Polynomial control law.
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(c) Piecewise control law.
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(d) Reachability-synthesis law.
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(e) LQR feedback law.

Fig. 11 Time responses and region of attraction estimates in the phugoid plane.
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the other cases, the fact that stable recovery trajectories lie outside the estimates highlights the inevitable

conservatism of any sum-of-squares analysis approach.

V. Conclusion
Sum-of-squares techniques provide exact certificates for stability and the region of attraction, but the

application to accurate, full-envelope aircraft models such as multivariate splines is computationally demanding.

Simple piecewise polynomial models, on the other hand, accommodate the aerodynamic coefficients well in

both domains of low and high angles of attack, while only moderately increasing the costs of sum-of-squares

analysis. In this note, we have applied sum-of-squares techniques to a fixed-wing aircraft model in order to

verify stable recovery from deep-stall. As an intermediate result, we verified that a classical LQR feedback

law onto the elevator deflection is sufficient for recovery without violation of input constraints. We then

further extended the sum-of-squares analysis for control synthesis, using the actuator rate instead of deflection.

Here, the choice of an ellipsoidal shape function for the sum-of-squares program turned out to be crucial,

yet a selection was challenged by asymmetric constraints on the elevator deflection. Despite all three of the

synthesized linear, polynomial, and piecewise polynomial feedback laws could not be verified to recover the

aircraft from its deep-stall trim conditions, this does not imply no such control feedback exist. Concluding

our study, we proposed a reformulated sum-of-squares control synthesis based on backwards-reachability of a

target trim condition without the necessity of an ellipsoidal shape. Indeed, a simple linear control feedback

could thus be verified to recover the aircraft. We therefore held sum-of-squares programming combined with

piecewise polynomial models a powerful tool for aircraft analysis and verification.

Appendix
We provide details of the polynomial aircraft model, the sum-of-squares computations, and the computation

of quasi-ellipsoidal surfaces using SOS programming.

A. Details on the polynomial aircraft model

The low-angle of attack trim condition x∗ for gliding descent in Section III is given by

V ∗A = 11.3631 m/s, γ∗A = −2.2834°, q∗ = 0 °/s, α∗ = 3.2240°, η∗ = −5°,

and the deep-stall target trim condition x1 in Section IV, by

VA1 = 8.3131 m/s, γA1 = −35.5372°, q1 = 0 °/s, α1 = 31.6781°, η1 = −40°.
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The additional deep-stall conditions are given by

VA2 = 5.0000 m/s, γA2 = −57.2958°, q2 = 0 °/s, α2 = 29.8081°, η2 = −38°;

VA3 = 18.3333 m/s, γA3 = −44.5634°, q3 = 0 °/s, α3 = 32.5836°, η3 = −41°;

VA4 = 16.6667 m/s, γA4 = −19.0986°, q4 = 0 °/s, α4 = 35.1836°, η4 = −44°;

VA5 = 15 m/s, γA5 = 6.3662°, q5 = 0 °/s, α5 = 37.6092°, η5 = −47°;

VA6 = 13.3333 m/s, γA6 = 31.8310°, q6 = 0 °/s, α6 = 39.8574°, η6 = −50°;

VA7 = 11.6667 m/s, γA7 = 57.2958°, q7 = 0 °/s, α7 = 41.9214°, η7 = −53°.

The piecewise model of Eqs. (1)–(4) is not immediately suitable for sum-of-squares analysis. The non-

polynomial sine and cosine functions in γA and α are therefore approximated by 5th-order and 4th-order

Taylor series expansions,

sin a ≈ a −
a3

3!
+

a5

5!
; cos a ≈ 1 −

a2

2
+

a4

4!
;

respectively, which have an error of less than ±0.02 for γA, α ∈ ]−90°; +90°[. The inversion of VA in Eq. (2) is

likewise replaced by

a−1 ≈ a−10 − a−20 (a − a0) + 2a−30 (a − a0)
2 − 3!a−40 (a − a0)

3,

where a0 denotes the airspeed in trim. This approximation is less accurate, however, the resulting piecewise

polynomial seems to be conservative, that is, it diverges rather than the nonlinear model.

The uncontrolled piecewise polynomial model with the polynomial approximations above is of order 13.

In order to ease the complexity of the SOS computation, we have removed any polynomial term of 6th order

or higher or with coefficients absolutely smaller than 10−6.

B. Details on the SOS computations

We provide details about the sum-of-squares computations, polynomial degrees of the problems, and the

decision variables involved, respectively. Table 2 details the results of the different SOS computations in

Sections III and IV in terms of the pseudo-radii ρ� of the ellipsoidal shapes Eρ and degree of reachability ϑ�,

respectively, as well as the level sets for invariance and invariance under control, λ� and λ∗. The number

of involved states is further given as well as the number of repetitions of the (extended) V-s-iteration and
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Table 2 Results of SOS computations.

(a) Stability analysis (Intel Core i7, 3 GHz, 16 GB).

Section n ρ� λ� λ∗ Iterations Time
Sec. III.A 4 54.5349 1.0513 1.0513 135 3.8295 h

(b) Control synthesis (Intel Core E5, 3 GHz, 16 GB).

Section n ρ� λ� λ∗ Iterations Time

Sec. III.B
1

5
39.0320 38.7939 38.5986 109 36.4526 h

2 251.9531 35.3516 38.6230 70 18.4957 h
3 295.6543 17.7979 19.1650 73 21.1351 h

(c) Deep-stall recovery (Intel Core i7, 3 GHz, 16 GB).

Section n ϑ� λ� λ∗ Iterations Time
Sec. IV 5 1.3027 57.5684 99.9023 29 4.5832 h

Table 3 Polynomial degrees of SOS problems.

Section f K fK V1,2 la,b P pη
Sec. III.A 5 1 5 4 2 2 2

Sec. III.B
1

5
1

5 4 2 2 22 3
3 3

Sec. IV 5 1 5 4 2 – 2

Table 4 Polynomial degrees of SOS multipliers.

Section si,λ si,ϕ sϕ,i s−ϕ,i si,P sη,λ′

Sec. III.A 2 2 2 2 1 1

Sec. III.B
1

2 2 2 2 1 12
3

Sec. IV 2 2 2 2 – 1
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the total computation time. Table 3 reports the polynomial degrees of control system, Lyapunov functions,

positive terms la,b, ellipsoidal shape functions, and constraints. In addition, Table 4 gives the chosen degrees

for the sum-of-squares multipliers in Eqs. (9)–(16).

C. Computing quasi-ellipsoids with SOS

If the cartesian dimensions, that is, number of variables, or the desired polynomial order of a quasi-

ellipsoid grow, so does the number of independent coefficients. Thus, selecting an ellipsoidal manually becomes

increasingly difficult. In order to obtain the asymmetric shapes in Sections III.B-2 and III.B-3, we have

solved the following sum-of-squares problem given a sequence of points x◦1, . . . , x
◦
k
∈ Rn, k ∈ N finite: find

P ∈ R [x] such that P is positive-definite and

P(x◦i ) = 1 (21)

for all 1 ≤ i ≤ k. As the degree of P is predefined, the equality constraints in (21) are linear in the decision

variables (the coefficients of P).

The 4th-order, asymmetric shape functions P̃poly and P̃pw are thus derived to (coefficients are subject to

rounding; coefficients < 10−3 are omitted):

P̃poly = 5.37 × 102Ṽ4
A − 2.90 × 101Ṽ3

Aγ̃A − 1.48 × 10−3Ṽ3
Aq̃ + 5.42 × 102Ṽ2

Aα̃
2 + 2.41 × 102Ṽ2

Aη̃
2

+ 4.11 × 102Ṽ2
Aγ̃

2
A + 5.42 × 102Ṽ2

Aq̃2 − 2.51 × 10−3ṼAα̃2η̃ − 2.84 × 10−3ṼAα̃q̃2 − 2.61 × 102ṼAγ̃3A

+ 1.09 × 10−3ṼAγ̃Aq̃2 + 5.00 × 102α̃4 − 1.33 × 10−3α̃3γ̃A − 2.65 × 10−3α̃3q̃ + 2.41 × 102α̃2η̃2

− 1.89 × 10−3α̃2η̃γ̃A + 5.42 × 102α̃2γ̃2A − 1.93 × 10−3α̃2γ̃Aq̃ + 5.42 × 102α̃2q̃2 + 2.04 × 101η̃4

+ 2.41 × 102η̃2γ̃2A + 2.41 × 102η̃2q̃2 + 1.35 × 10−3η̃γ̃Aq̃2 + 1.38 × 10−3η̃q̃3 + 1.50 × 102γ̃4A

+ 5.42 × 102γ̃2Aq̃2 − 2.46 × 10−3γ̃Aq̃3 + 5.00 × 102q̃4 − 4.93 × 10−3α̃2η̃ − 2.34 × 10−3α̃q̃2

+ 1.17 × 102η̃3 + 5.04 × 102Ṽ2
A − 2.24 × 102ṼAγ̃A + 5.00 × 102α̃2 + 6.63 × 10−3α̃q̃

+ 2.23 × 102η̃2 + 2.06 × 102γ̃2A + 5.00 × 102q̃2;

P̃pw = 5.41 × 102Ṽ4
A − 2.93 × 101Ṽ3

Aγ̃A − 1.21 × 10−3Ṽ3
Aq̃ + 5.46 × 102Ṽ2

Aα̃
2 + 2.07 × 10−3Ṽ2

Aα̃q̃

+ 2.43 × 102Ṽ2
Aη̃

2 − 1.44 × 10−3Ṽ2
Aη̃q̃ + 4.15 × 102Ṽ2

Aγ̃
2
A + 1.69 × 10−3Ṽ2

Aγ̃Aq̃ + 5.46 × 102Ṽ2
Aq̃2

− 1.12 × 10−3ṼAα̃2q̃ − 2.02 × 10−3ṼAα̃η̃q̃ + 1.32 × 10−3ṼAα̃γ̃2A − 2.63 × 102ṼAγ̃3A − 2.86 × 10−3ṼAγ̃Aq̃2

− 1.33 × 10−3ṼAq̃3 + 5.24 × 102α̃4 + 1.51 × 101α̃3η̃ + 1.10 × 10−3α̃3γ̃A + 1.11 × 10−3α̃3q̃
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+ 1.91 × 102α̃2η̃2 + 1.05 × 10−3α̃2η̃γ̃A + 5.46 × 102α̃2γ̃2A + 4.00 × 10−3α̃2γ̃Aq̃ + 5.46 × 102α̃2q̃2

+ 7.84 × 101α̃η̃3 − 1.58 × 10−3α̃η̃q̃2 − 1.32 × 10−3α̃γ̃2Aq̃ + 1.05 × 10−3α̃γ̃Aq̃2 + 2.89 × 101η̃4

+ 2.43 × 102η̃2γ̃2A + 2.43 × 102η̃2q̃2 − 2.17 × 10−3η̃q̃3 + 1.51 × 102γ̃4A + 5.46 × 102γ̃2Aq̃2

+ 3.83 × 10−3γ̃Aq̃3 + 5.00 × 102q̃4 + 1.69 × 10−3ṼAα̃η̃ − 1.86 × 10−3ṼAγ̃Aq̃ − 1.15 × 10−3ṼAq̃2

− 4.61 × 101α̃3 + 3.65 × 101α̃2η̃ + 1.58 × 10−3α̃2γ̃A + 2.24 × 10−3α̃2q̃ − 8.84 × 101α̃η̃2

+ 1.57 × 10−3α̃q̃2 + 1.06 × 102η̃3 + 1.07 × 10−3γ̃Aq̃2 + 5.08 × 102Ṽ2
A − 2.27 × 102ṼAγ̃A

+ 1.19 × 10−3ṼAq̃ + 5.22 × 102α̃2 + 2.25 × 101α̃η̃ + 2.21 × 102η̃2 + 2.05 × 102γ̃2A

+ 1.06 × 10−3γ̃Aq̃ + 5.00 × 102q̃2;

shape functions are defined in scaled variables.
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Chapter 7

Economic Deep-stall Recovery

This chapter corresponds to:

Torbjørn Cunis, Dominic Liao-McPherson, et al. (2019). “Economic Model-
Predictive Control Strategies for Aircraft Deep-stall Recovery with Stability
Guarantees”. In: 58th IEEE Conference on Decision and Control (to be
presented). Nice, FR

in the authors’ finally submitted version, edited for layouting.

Synopsis

Versatile control feedback amid nonlinear dynamics and strict input constraints as well
as a mature stability theory makes the use of model-predictive control for upset recovery
advantageous. Several publications considered upset trajectories that minimised the loss
of altitude (LOA) during the recovery. However, these studies did not take into account
the implications of the LOA-minimal formulation for closed-loop stability. Indeed, if no
thrust is applied, the aircraft can only acquire a descending trim condition; nevertheless,
this does not rule out transient flight conditions with positive ascend. Therefore, the
LOA objective function is not positive-definite as necessary in Theorem II.4 for closed-
loop stability of tracking MPC. In this chapter, we formulate the problem of LOA-
minimising receding-horizon optimal control for longitudinal recovery from deep-stall as
the economic MPC problem it actually is. Proving stability of EMPC, as we have seen,
requires dissipativity (or a similar notion, cf. Theorem II.7) and is a nontrivial task.
Employing sum-of-squares programming techniques for the piecewise polynomial model,
in addition to estimating a region of attraction of a level-flight trim condition, allows
us to ensure dissipativity of the aircraft dynamics. Thus, we are able to ensure stable
recovery under the objective of minimal altitude-loss.

Statement of Contribution Torbjørn Cunis implemented the MPC synthesis and
simulation, analysed the region of attraction, and developed the sum-of-squares reg-
ularisation procedure. Dominic Liao-McPherson contributed to the wording of the
manuscript and assisted with practical and theoretical aspects of model-predictive con-
trol. Jean-Philippe Condomines, Laurent Burlion, and Ilya Kolmanovsky provided feed-
back and review.
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Nomenclature
α Angle of attack (rad);
α0 Low-angle of attack boundary (α0 = 16.2949◦);
γ Flight-path angle relative to air (rad);
η Elevator deflection (rad), negative if leading to positive pitch moment;
η̇ Rate of elevator deflection (rad/s);
κ(·) Control feedback law (κ : Rn → Rm);
fN (·, u) Iterative system evaluation (fN = f(·, uN ) ◦ · · · ◦ f(·, u1)) for u ∈ UN ;
F Thrust force (N), positive along xf -axis;
`(·) MPC stage cost function (` Rn × Rm → R);
m Number of inputs;
n Number of states;
N Horizon length (N ∈ N);
q Pitch rate (rad/s);
Q Symmetric weight matrix (Q � 0);
Qx, Qu Positive weight matrices for states and inputs (Qu ∈ Rm×m, Qx ∈ Rn×n);
V Aircraft speed relative to air (m/s), positive along xa-axis;
xf , uf States and inputs at target trim condition;
xlvl, ulvl States and inputs at level-flight trim condition;
zg Vertical position in earth-fixed reference system (m); negative altitude;

(·)post Domain of high angle of attack;
(·)pre Domain of low angle of attack;

U Viable control inputs (U ⊂ Rm);
X Viable state-space (X ⊂ Rn);
XN Set of feasible initial conditions (XN ⊆ X ) with horizon N ;

Σ [x] Polynomial sum-of-squares cone (Σ [x] ⊂ R [x]);
R [x] Set of polynomials in x ∈ Rn with real-valued coefficients;
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Economic Model-Predictive Control Strategies for Aircraft

Deep-stall Recovery with Stability Guarantees?

Torbjørn Cunis,1 Dominic Liao-McPherson,2 Jean-Philippe Condomines,3

Laurent Burlion,4 and Ilya Kolmanovsky2

Abstract

Aircraft upset recovery requires aggressive control actions to handle highly nonlinear aircraft dynamics
and critical state and input constraints. Model predictive control is a promising approach for returning
the aircraft to the nominal flight envelope, even in the presence of altered dynamics or actuator limits;
however, proving stability of such strategies requires careful algebraic or semi-algebraic analysis of both
the system and the proposed control scheme, which can be challenging for realistic control systems. This
paper develops economic model predictive strategies for recovery of a fixed-wing aircraft from deep-stall.
We provide rigorous stability proofs using sum-of-squares programming and compare several economic,
nonlinear, and linear model predictive controllers.

I. Introduction

Aircraft upset incidents remain a severe cause of fatalities in civil aviation [1] and this has motivated

research into upset and loss of control recovery [2–6]. Upset recovery has been approached with various

control techniques including adaptive control [7], machine learning [8], and model predictive control (MPC)

[9, 10]. MPC, in particular, is promising since it can handle nonlinearities, actuator saturation, and state

constraints. It also tends to have a provably large closed-loop region of attraction.

In this paper, we propose a loss of altitude (LOA) minimizing economic model predictive control (EMPC)

strategy for deep-stall recovery which we compare to linear and nonlinear tracking type MPC controllers.

LOA is an important performance metric for upset recovery maneuvers and it can be exploited to enlarge

the operational envelope during and after the maneuver, particularly at low altitudes [11, 12]. The EMPC

framework, see, e.g., [13] for an overview, allows for direct minimization of the LOA. We consider a 1.6 kg

fixed-wing unmanned aircraft capable of stable deep-stall descent [14, 15], which allows us to isolate the

longitudinal aerodynamics.

?Partly supported by ONERA, University of Michigan Advanced Research Computing, and NSF Award No. CMMI 1562209.
1TC was with the Department of Information Processing and Systems, ONERA – The French Aerospace Lab, 31055 Toulouse,

France, and the ENAC Drones Research Group; TC is now with the University of Michigan, tcunis@umich.edu.
2DL and IK are with the Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA,

{dliaomcp,ilya}@umich.edu.
3JC is with the Drones Research Group, ENAC, Université de Toulouse, jean-philippe.condomines@enac.fr.
4LB is with Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA, laurent.burlion@rutgers.edu.
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MPC has been applied to a variety of aerospace systems [16]. In [9], MPC is employed to generate guidance

trajectories for recovery of a piloted aircraft from a high-pitch upset. EMPC has been extensively studied in

the context of process control [13]; however, comparatively few aerospace applications have been reported in

the literature [16]. LOA minimizing EMPC was considered in [10] for automatic recovery from a high-bank

condition. However, closed-loop stability of the proposed MPC recovery scheme was not proven in either [9]

or [10].

Closed-loop stability of an EMPC controller can be guaranteed if the dynamics and stage cost jointly

satisfy an appropriate dissipativity condition both with [17] and without [18] terminal constraints. When

dissipativity does not hold (or cannot be proven), regularization terms can be added to ensure closed-loop

stability [19]. For nonlinear systems proving these conditions is nontrivial. However, advances in semi-definite

relaxations [20] have led to a surge of sum-of-squares (SOS) programming techniques [21, 22] which have

been used to compute stability certificates for continuous [23, 24] and discrete [25, 26] systems as well as

proving dissipativity properties [27, 28]. Further, an SOS-based stability analysis for general MPC strategies

is presented in [29]. However, computational issues and the restriction of SOS programming to polynomial

functions conflict with the need for accurate aerodynamic models.

Our contributions are fourfold: (i) We design an LOA minimizing EMPC controller using a piecewise

polynomial model of the aircraft dynamics that is suitable for both accurate control and application of SOS

techniques; (ii) we illustrate how SOS techniques can be applied to systems with piecewise dynamics in order

to rigorously prove the stability of our EMPC controller; (iii) we propose an adaptive regularization scheme

using SOS to determine minimal regularization gains that ensure dissipativity; (iv) we provide a comparison

between linear, nonlinear, and economic MPC for LOA-minimal recovery. In this work, we restrict ourselves

to terminal state constraints.

The layout of the paper is as follows: In II, we discuss the upset recovery problem. In III, we recall the

theories of EMPC and SOS programming; we then provide the optimal control formulation in IV. In V, we

show using SOS programming that the synthesized closed-loop system satisfies the conditions for asymptotic

stability. Finally, VI compares different MPC strategies.

Notation: Real-valued variables and functions are designated in italic, finite sequences in bold,

polynomials in Fraktur. x[i] is the i-th element of a sequence x. x̄ is the difference between x and a reference

x∗. R [x] is the set of polynomials with real coefficients. For a function p (polynomial p) and a ∈ R, denote

Ωp≤a = {x | p(x) ≤ a} and Op=a = {x | p(x) = a}. Superscripts pre and post denote low and high-angle of

attack dynamics.

II. Problem Formulation

In the context of aviation, the term upset can be used to describe a variety of abnormal situations. In

a technical sense, an upset can be understood as an undesired yet often attractive mode of the nonlinear

dynamics that shows significantly altered steady-state responses and usually immediately precedes wing stall
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and departure of the aircraft (e.g., deep-stall flight, gyroscopic spins, or spirals). Input saturation, inversion

and tight state constraints make designing recovery approaches challenging.

In this paper, we develop an MPC strategy to minimize loss-of-altitude using only the elevator η, i.e.,

thrust F = 0, in accordance with governmental procedures for manual recovery [30]. LOA is a crucial metric

for both collision avoidance and operating envelope recovery post stabilization [11, 12]. We will adopt the

convention that the aircraft has recovered when it returns to a stable trim condition within the region of

attraction of a nominal flight controller which subsequently reinstates level flight.

We consider only the longitudinal aircraft dynamics, which are given by

mV̇ = F cosα− (q̄CD(α, η) +mg sin γ) , (1a)

mV γ̇ = F sinα+ (q̄CL(α, η)−mg cos γ) , (1b)

Θ̇ = q, (1c)

Iy q̇ = (cAq̄Cm(α, η)− CMqq) , (1d)

with airspeed V , inclination γ, pitch rate q, angle of attack α, pitch angle Θ = γ+α, and elevator deflection

η, where q̄ = 1
2%SV

2 and CMq > 0 is a linear damping parameter. The aircraft’s descent rate is then

żg = −V sin γ. (2a)

The aerodynamic coefficients CL, CD, Cm are given as continuous piecewise polynomial models

C�(α, η) =

 Cpre if α ≤ α0;

Cpost else;
(3)

with α0 = 16.29° and Cpre,Cpost ∈ R [α, η]. The polynomials and remaining parameters are provided in [31].

The elevator deflection is physically restricted to values between −60° to 20°. In this work, we treat the

elevator rate η̇, rather than the deflection, as a control input, the state is thus x = (V, γ, q, α, η) and the

control input is u = (η̇, F ). The underlying aerodynamic models are defined on the following regions of

the state-space X = [5 m/s; 30 m/s]× [−60°; +60°]× [−150 °/s; +150 °/s]× [−10°; +75°]× [−60°; +20°]. The

control inputs are restricted to U = [−200 °/s; +200 °/s]×R≥0;

III. Methodology

Consider a nonlinear system which represents (1),

ẋ = f(x, u) , (4)

subject to the constraints x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, and its discrete time representation

x+ = f+(x, u) = x+ τ f(x, u) (5)

with sampling period τ > 0. For some u ∈ UN and x1 = x, write xN+1 = fN (x,u); let Z = X × U and

denote the set of trim conditions as Ztrim = {(x, u) ∈ Z |x = f+(x, u)}.

183



Definition 1: A set X ′ ⊂ X is called a stable set for x0 ∈ X ′ and κ : X ′ → U if and only if

fN
κ (x) ∈ X ′, (6a)

|x0 − f∞
κ (x)| → 0, (6b)

with f+
κ = f+(·, κ(·)) for all x ∈ X ′ and N > 0. The region of attraction R then is the largest* stable set.

The stable sets of (4) can be characterized using Lyapunov’s stability theory:

Theorem 1: [32] Let V(·) be positive-definite with V(0) = 0 and λ > 0; if

∇V · (fκ(x)− x∗) < 0 (7)

for all x 6= x∗ with V(x̄) ≤ λ, then ΩV≤λ is a stable set for fκ(x
∗) = 0. C

Stability of (4) follows under some mild conditions [33].

A. Model predictive control

The model-predictive feedback law is defined by the solution of the following OCP:

Given a measured state x0 ∈ X and target (xf , uf ) ∈ Ztrim; solve the constrained nonlinear program

min
x,u

N−1∑
i=1

`(xi, ui) , (8a)

xi+1 = f+(xi, ui), i = 0, . . . , N − 1, (8b)

xN = xf , x ∈ XN , u ∈ UN (8c)

Here, ` : Z → R is called the stage cost. The MPC feedback law is then

u(t) = û[1](x(t)) (9)

where (x̂, û) is a minimizer of (8) with x0 = x(t). The set of recoverable conditions is further defined as

ZN =
{
(x0,u) ∈ X × UN

∣∣ fN (x0,u) = xf and

∀k ≤ N. fk
(
x0,u

k
)
∈ X

}
,

(10)

where uk are the first k elements of u, and XN denotes the projection of ZN onto X . We assume that [17]:

Assumption 1: Z is compact, ` and f+ are continuous and XN contains xf in its interior.

The following Theorem provides sufficient conditions for closed-loop stability of EMPC.

Theorem 2: [17] Let (xf , uf ) ∈ Ztrim satisfy:†

1) f+ is strictly dissipative with respect to (w.r.t.) the supply rate‡ ς` : (x, u) 7→ `(x, u)− `(xf , uf );

*In the sense of X ′ ⊆ R for any stable set X ′.
†Assumption 2 of [17] is fulfilled if f+ is locally controllable in an open environment of xf .
‡We write hereafter “dissipative w.r.t. the cost `.”
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2) `(xf , uf ) ≤ `(x, u) for all (x, u) ∈ Ztrim;

then xf is an asymptotically stable equilibrium of (5), (9) with region of attraction XN as defined above. C

Recall that:

Definition 2: The control system (5) is called strictly dissipative w.r.t. a supply rate ς : Z → R if and only

if there exists a storage function Λ: X → R such that

Λ
(
x+

)
− Λ(x) ≤ −ρ(x− xf ) + ς(x, u) (11)

for a ρ : X → R≥0 positive definite§ and all (x, u) ∈ Z.

Note that unlike conventional MPC, ` may not necessarily be positive definite around the target equilibrium.

B. Sum-of-squares programming

We make extensive use of sum-of-squares (SOS) programming to prove dissipativity and to estimate the

region of attraction of the nominal controller. A polynomial f ∈ R [x] is a sum of squares, f =
∑

i f
2
i with

(fi)i ⊂ R [x], if and only if f = z(x)
T
Qz(x), where Q � 0 and z is a vector of monomials in x [22]; the

set of sum-of-squares polynomials is denoted Σ [x]. This equivalence reduces the problem “f ∈ Σ [x]” to a

semi-definite programming problem [20]. Since sum-of-squares polynomials are non-negative, the following

lemma can be proven.

Lemma 1: [23] Let f, g1, . . . , gk, h ∈ R [x]; we have⋂
i

Ωgi≤0 ∩ Oh=0 ⊆ Ωf≤0. (12)

if
∑

i sigi + ph− f ∈ Σ [x] for s1, . . . , sk ∈ Σ [x] and p ∈ R [x]. C

If the sufficient condition holds, we write (s, h) `
⋂

i Ωgi≤0 ∩ Oh=0 ⊆Σ Ωf≤0 with s = (s1, . . . , sk), saying

that (s, h) proves the set inclusion.

IV. Controller Design

In this section, we devise an EMPC strategy for LOA minimal recovery and a corresponding regularization

scheme to ensure dissipativity. No thrust is applied during recovery and we consider only the elevator rate as

an input, i.e., u = η̇. In level flight a nominal flight controller κlvl stabilizes the aircraft. Thus, the nominal

trim condition is unattainable for the elevator-only recovery strategy; instead, we choose a target steady-

state (xf , uf ) for EMPC that is contained in the interior of the control-invariant nominal stable set, viz.

xf = (10.8 m/s, −2.28°, 0 °/s, 4.15°, −6.80°) , (13a)

uf = 0 °/s, (13b)

§A continuous function φ is said to be positive definite (p.d.) if φ(·) > 0 everywhere except at the origin and φ(0) = 0.
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the unique gliding trim condition with minimal descend speed [15]. We want the EMPC controller to minimize

the positive loss-of-altitude, ∆zg = zgN − zg0, which corresponds to the altitude-loss stage cost

`∆(x) = z+g − zg = −τV sin γ. (14)

We denote by `∗∆ the steady-state loss of altitude, which satisfies `∗∆ = `∆(xf , uf ) ≤ `∆(x, u) for all (x, u) ∈

Ztrim. Without propulsion, the aircraft descends in steady-state in order to convert potential into kinetic

energy and `∗∆ > 0. However, (14) is not positive definite on Z; the loss of altitude becomes negative (i.e.,

the aircraft ascends) for any positive inclination γ. To ensure that the dissipativity condition in Theorem 2

holds we add quadratic regularization terms to the stage cost:

`R(x, u) = `∆(x) +
1
2 ‖x− xf‖2Qx

+ 1
2 ‖u− uf‖2Qu

, (15)

where Qx ∈ Rn×n, Qu ∈ Rm×m are positive diagonal matrices. In the next section we illustrate how to

determine minimal gains Qx and Qu which ensure dissipativity.

We also investigate the performance of a nonlinear tracking MPC controller which uses the stage cost

`T (x, u) =
1
2 ‖x− xf‖2Qx

+ 1
2 ‖u− uf‖2Qu

; (16)

where Qx and Qu are positive definite weighting matrices. The stability of the tracking NMPC can be

established using [33, Theorem 5.5]. All controllers enforce the box constraints (x, u) ∈ X × U .

V. Analysis

As our main result, we use SOS programming to synthesize a suitable storage-candidate function L and

regularization gains satisfying the conditions of Theorem 2. We further estimate the region of attraction of

the nominal level-flight trim condition to ensure that the target steady-state for recovery lies within reach

of the nominal flight controller. In order to transform the nonlinear aircraft dynamics model (1)–(2) into

a piecewise polynomial form, we replace sine and cosine by their 3rd-order Taylor polynomials, providing

sufficient accuracy within the chosen ranges of γ and α. Likewise, within the stable neighbourhood the

inversion V −1 is well approximated by a 5th-order Taylor polynomial. The resulting polynomial functions

are denoted by fV , fγ , etc. and x+ = fpre (ẋ = fpre) if α ≤ α0, x+ = fpost (ẋ = fpost) else. For tractability,

any terms of fpre, fpost with degree larger than 5 or coefficients smaller than 10−6 are removed with negligible

loss of accuracy. The cost supply rate is likewise approximated by S` ∈ R [x, u].

A. Dissipativity & Regularization

To prove that the EMPC feedback law is stabilizing, the system dynamics must be strictly dissipative w.r.t.

the stage cost `. Proving this condition requires a suitable storage function Λ : X → R satisfying (11). With

an analytical search for Λ being intractable in general, a polynomial storage function proving dissipativity

can be synthesized by solving a sum-of-squares feasibility problem. However, it is often unknown a-priori if

there exists a sum-of-squares polynomial storage function of a given degree which proves dissipativity of the
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dynamics w.r.t. the chosen stage cost. This can be remedied with a regularization. It has been established in

[19] that if the gains Q = diag(Qx, Qu) in (15) are chosen sufficiently large, then the dynamics are dissipative

w.r.t. the stage cost. There, the authors propose a procedure based on Gershgorin’s circle theorem which is

computationally simple but prone to conservative (large) regularization gains.

Instead, we propose to use min-trace SOS programming to search simultaneously for a polynomial storage-

candidate L and diagonal gains Q that directly prove the dissipativity condition (11), by solving the problem

min
Q�0

s1,s2⊂Σ[z]
L∈R[x]

tr(Q) s.t.


s1 ` Z ∩ Ωα≤α0
⊆Σ Ωpre

L,Q

s2 ` Z ∩ Ωα≥α0
⊆Σ Ωpost

L,Q

(17)

where Ω
(·)
L,Q denotes the set of all z ∈ Rm+n where

L ◦ f(·)(z)− L(z)−S`(z) ≤ 1
2 ‖z − zf‖2Q − ε ‖x̄‖22 (18)

for some small ε > 0 and x+ = f(·) ∈ {fpre, fpost}. This approach is guaranteed to have a feasible solution,

allows the choice of L as a polynomial of arbitrary order, while ensuring that Q → 0 if the system is

dissipative and L is a polynomial of suitable order.

For a linear storage-candidate, solving Eq. (17) yields

Q1 = diag(0.0014, 0.39, ε̃1, ε̃2, ε̃3, ε̃4) , (19)

where ε̃i < ε. For a quadratic storage however, we get regularization gains Q2 ≺ ε I5, indicating that the

discrete aircraft system is almost dissipative.

B. Nominal region of attraction

The MPC recovery controllers do not use thrust; we rely on a nominal flight controller κlvl to return the

aircraft to steady level flight. To ensure safety we switch from the MPC to the nominal control law only

once the system state is within the region of attraction of κlvl. As an example we choose the nominal flight

trim condition

xlvl = (13 m/s, 0°, 0 °/s, 1.35°, −1.51°) , (20a)

ulvl = (0 °/s, 0.835 N) , (20b)

with κlvl given as continuous LQR feedback for the linearized dynamics around (xlvl, ulvl). The controlled

dynamics are given by ẋ = f
(·)
κ .

Using a polynomial Lyapunov-candidate function V ∈ R [x], we can reformulate (7) into a sum-of-squares

optimization problem in order to estimate the region of attraction of (xlvl, ulvl) in nominal flight. An

arbitrarily chosen ellipsoidal shape function p is used to determine the size of the stable set. As sum-of-

squares are limited to non-negativity, we use the relaxed condition

∇V · f(·)κ (x) ≤ −ε ‖x̄‖22 (21)
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Fig. 1: Provable stable set under nominal LQR control inputs.

with ε > 0 small; let Ω
(·)
V denote the set of states x such that (21) holds for ẋ = f

(·)
κ ∈ {fpre

κ , fpost
κ }. The

optimization problem is then given as

max
λ,ρ>0
s0∈Σ[x]

s1,s2⊂Σ[x]
V p.d.

λ s.t.


s0 ` Ωp≤ρ ⊆Σ ΩV≤λ

s1 ` ΩV≤λ ∩ Ωα≤α0
⊆Σ Ωpre

V

s2 ` ΩV≤λ ∩ Ωα≥α0
⊆Σ Ωpost

V

(22)

which is a bilinear program. We therefore employ the iterative bisection strategy described in [23, 24].

After 49 iterations, the provable stable set in Fig. 1 is obtained with λ∗ = 0.6859 and ρ∗ = 28.8696; p

is given in the appendix. A larger ROA may be computable using multiple Lyapunov function-candidates

Vpre,Vpost.

VI. Numerical Results

We placed an NMPC controller (NMPC, `T ), a linear MPC (LMPC) controller¶, an EMPC controller

with regularization gains Q1 (r-EMPC, `R) and the un-regularized EMPC controller (EMPC, `∆) in closed-

loop with the nonlinear model. The regularization gains Q2 are small enough that the closed-loop traces

of r-EMPC using Q2 were indistinguishable from un-regularized EMPC. All MPC simulations utilize Euler

integration with a sampling rate τ = 50 ms, horizon length N = 120, and simulation time T = 20 s. The

optimal control problem (8) was solved using Ipopt [34]. Further details of the computations are given in

the appendix (Tab. I). The initial condition was (8.26 m/s,−36.4°, 0 °/s, 32.6°,−41°).

Fig. 2 shows the closed-loop trajectories for all four strategies; only LMPC fails to recover the aircraft

due to elevator inversion in deep-stall. Of the remaining three, pure EMPC provides the most aggressive

¶The LMPC controller was designed using the same stage cost and constraints as the NMPC controller but using (5) linearized
about the target equilibrium as the prediction model.
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Fig. 2: Economic and tracking MPC for deep-stall recovery in airspeed V , inclination γ, and angle of attack α.

approach, partially regaining height by ascent, leading to a slower transition back to normal flight, whereas

the regularization gains cause r-EMPC to transition faster. Both economic strategies noticeably overshoot‖

the target airspeed and path inclination in order to regain altitude.

Recall that the MPC controllers guide the aircraft to a stable gliding conditions and a nominal flight

controller is used to resume level flight. The nominal controller takes over if the state enters its ROA, which

was estimated in Section V, (but not earlier than 5 s into the recovery). The resulting recovery trajectories are

shown in Fig. 3. The tracking NMPC recovery shows by far the largest LOA (8.4 m), while non-regularized

and regularized EMPC are similar (7.5 m and 7.4 m), with r-EMPC encountering a slightly reduced LOA

due to the later switching point of the non-regularized scheme.

VII. Conclusion

Economic MPC is a promising tool for LOA-minimal recovery of an aircraft from upset conditions; however,

providing certifiable guarantees of closed-loop stability is nontrivial. In this paper, we applied polynomial

SOS programming to a piecewise longitudinal aerodynamics model to prove stability of a deep-stall recovery

EMPC strategy, proposed an SOS based regularization scheme that computes minimal regularization gains

needed to ensure dissipativity and illustrated that the gains approach zero as the order of the storage

function-candidate is increased. To guarantee stability for all (admissible) states, even very small gains help

to avoid undesirable closed-loop behaviour such as periodic oscillations.

Finally, we presented a numerical comparison of different MPC strategies for recovery of nominal flight.

Our investigations revealed EMPC offers significant performance advantages compared nonlinear tracking

MPC and that regularized EMPC is also compatible with recovery of level flight. Future work includes

reduction of computation and application to NASA’s GTM.

‖Overshoot is acceptable in this application except during very low-altitude flight.
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Appendix

The aircraft states and inputs, were scaled by dV = 10 m/s, dγ = 45°, dq = 150 °/s, dα = 45°, dη = 80°,

ddη = 100 °/s, and dF = 25 N. The gains for linear and nonlinear tracking MPC were Qx = I5 and Qdη =

0.010 and for nominal LQR feedback, Qx = I5 and Qu = I2 (all gains with respect to the scaled states and

inputs).

Eq. (17) for Q2 has been solved on a single node of the University of Michigan HPC clus-

ter in 3 h (Intel Xeon E5, 2.4 GHz, 44 GB). The ellipsoidal shape for Eq. (22) is defined as p =(
d−1
x x

)T diag(0.50, 0.50, 1, 1, 0.50)
(
d−1
x x

)
; the computation took 6.0 h on a personal computer (Intel Core

i7, 3 GHz, 16 GB). All SOS problems were constructed and solved by sosopt/SeDuMi. As the piecewise

model is not differentiable in α0 due to Eq. (3), we approximate the aerodynamics by H(α− α0) Cpre +

(1−H(α− α0)) Cpost, where H(α) = 1
1+e−2α/µ , and Problem 8 is solved while iteratively decreasing µ.

Further details of the simulations are given in Tab. I. The implemented controllers are not yet real-time

capable and need efforts to optimize their computational footprint.

TABLE I: Simulation details & results. Computation time accuracy ± 10 ms (Intel Core i7, 3 GHz, 16 GB).

EMPC r-EMPC NMPC

average time OCP 1.74 s 0.768 s 0.674 s
comp. time (MPC) 951 s 503 s 486 s
comp. time (to level) 522 s 362 s 309 s

optimal cost (k=1) 4.76 6.65 9.89
residual norm <3×10−5 <1×10−5 <9×10−4
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Chapter 8

Model-Predictive Spiral and
Spin Recovery

Model-predictive control, due to its optimality formulation, is indeed powerful for sys-
tems with allocation problems1 or multiple, inter-coupled inputs and outputs. This
makes MPC well suited for the problem of upset recovery in the full six degrees of free-
dom, where all three ailerons, elevator, and rudder are to be controlled within their
physical limits. We therefore prepare in this chapter an MPC scheme for recovery from
spiral and spin upset conditions and demonstrate its ability for six-degrees-of-freedom
recovery using the GTM’s high-fidelity simulation as “real” system and the piecewise
polynomial aerodynamics as imperfect prediction model. This draws the arch back from
the system theoretic approaches, such as MPC with its theory of stability, towards con-
trol of real physical systems and high-fidelity models. A full analysis of the (nominal)
control setting, as presented in the previous chapter for the longitudinal motion, within
the present study is not computationally tractable and must remain future work; so does
the dissipativity analysis for EMPC stability. This chapter concludes the control part
of the dissertation.

In the following, we will refer to the piecewise polynomial equations of motion of
Chapter 3 as model; and of the high-fidelity simulation (NASA 2016) as simulation.

Nomenclature

α, β Angle of attack and side-slip angle (rad);
Θ, Φ Pitch and bank angle (rad);
ζ Rudder deflection (rad), negative if leading to positive yaw moment;
η Elevator deflection (rad), negative if leading to positive pitch moment;
ξ Aileron deflection (rad), negative if leading to positive roll moment;
`(·) NMPC stage cost function (` : Rn+m × Rm → R);
m Number of actuators (m = 3);
n Number of equation-of-motion states (n = 8);
N Horizon length (N ∈ N);
p, q, r Components of body rate ω (rad/s);
Q, R Positive weight matrices for states and inputs (Q ∈ Sn+m, R ∈ Sm);

1Allocation: Assignment of several, partially redundant control inputs in order to achieve a single
control task, e.g., tracking a reference pitch angle. This is a particular problem for agile and highly non-
linear fighter jets, some of which have more than 12 independent control surfaces (e.g., Proctor 2019).
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t Simulation time (s);
t0 Time (s) at which the optimal control problem is solved;
VA Aircraft speed relative to air (m/s), positive along xa-axis;
u, v, w Components of aircraft velocity VA relative to air (m/s);
xδ, uδ States and inputs of the actuator dynamics;
xe8 States of the eight-parameter equations of motion;
xf , uf States and inputs at target trim condition;

X Viable state-space of the eight-parameter equations of motion (X ⊂ Rn);
Xη Viable state-space of the elevator (Xη ⊂ R);
Xξ Viable state-space of the ailerons (Xξ ⊂ R);
Xζ Viable state-space of the rudder (Xζ ⊂ R);
Xδ Viable state-space of the actuator dynamics (Xδ = Xξ × Xη × Xζ);
Uδ Viable control inputs of the actuator dynamics (Uδ ⊂ Rm);
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(b) Oscillatory spin (η = −24◦, ζ = −10◦).

Figure 8.1: Flight paths for spiral and oscillatory spin modes of the GTM (aircraft to
scale).

8.1 Problem Setting
Spiral and spin both are three-dimensional rotary motions, that is, they involve rev-
olutions around more than one of the aircraft body axes. Hence, recovery requires
coordinate effort of multiple, independent control inputs. Gill et al. (2013) identified
dynamic regimes with rotary motion of the GTM, including regimes of steep spirals
(Gill et al. 2013, p. 1837, cf. Fig. 2.2a) and oscillatory spins of period one and three
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(Gill et al. 2013, pp. 1838 and following, cf. Fig. 2.2b) which are partially stable and
attractive. In this chapter, we consider recovery from each a steep spiral and period-one
oscillatory spin initial condition. Fig. 8.1 illustrates these flight conditions.2 Here, the
steep spiral mode is entered for an elevator deflection η = −30◦ and neutral rudder; the
oscillatory spin mode, for an elevator and rudder deflections η = −24◦ and ζ = −10◦.3
Unlike oscillatory spin, the spiral motion is characterised by constant (non-zero) body
rates; only the heading changes as result of the steep spiral. Therefore, the spiral is
technically4 a trim condition of aircraft flight. The oscillatory spin, in contrast, is in
fact a periodic motion involving all three airspeed and aerodynamic angles, body rates,
and attitude. The (approximate) periodicity of the chosen oscillatory spin condition is
illustrated in Fig. 8.2. Again, we consider recovery approaches of the unthrottled aircraft
(F = 0) in order not to further model the engines of the GTM and to follow the means
of the previous chapters. This is in agreement with the FAA procedures (FAA 2016,
Chapter 4, pp. 15 and 23).
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Figure 8.2: Periodic motion in oscillatory spin mode (η = −24◦, ζ = −10◦).

In the GTM simulation, the surface actuators are represented by first-order linear
dynamics with restricted range and speed. These dynamics can be written as

δ̇(t) = 2πf (δcmd − δ(t)) (8.1)

2In the figure, the aircraft drawing is roughly to scale and its orientation represents the aircraft
attitude. The aircraft are depicted first at t = 1.495 s and subsequently with a period of ∆t = 1.75 s.

3The present GTM simulation appears to be rather sturdy with respect to spin; without a significant
rudder deflection, the aircraft spin will eventually steady into a spiral (see Gill et al. 2013, pp. 1839–1841,
for a discussion of the effects of rudder onto spiral and spin modes).

4Also practically; yet, why would one want to trim their aircraft into a steep spiral?
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with f = 5 Hz for δ ∈ {ξ, η, ζ}. Deflections are limited to ξ ∈ Xξ = [−20◦; +20◦],
η ∈ Xη = [−30◦; +20◦], and ζ ∈ Xζ = [−30◦; +30◦]. The actuator speed is limited
to
∣∣∣δ̇(t)

∣∣∣ ≤ δ̇max = 300 ◦/s for all surfaces. The piecewise polynomial model is defined
on the following regions of the state-space X , namely, VA ∈ [−100 m/s; +100 m/s]3;
ω ∈ [−300 ◦/s; +300 ◦/s]3; Φ ∈ [−90◦; +90◦]; Θ ∈ [−85 ◦/s; +75 ◦/s].5

8.2 Controller Design
We are going to synthesise a tracking model-predictive control (NMPC) strategy in
order to recover the aircraft from an upset condition to an unthrottled, normal flight
trim condition with low descent speed, viz.6

Vf = 35.9 m/s, αf = 6.42◦, Φf = −0.037◦, Θf = 0.238◦,

ξf = −0.893◦, ηf = −1.71◦, ζf < 0.005◦,
(8.2)

and βf = 0 ◦/s, ωf = 0 ◦/s, as well as Ψ̇f = 0 ◦/s. To this extent, we take into account
the discrete nonlinear dynamics

x+
8e = x8e + τ f8e(x8e, xδ) , (8.3)

x+
δ = xδ + τ uδ, (8.4)

where f8e(·, ·) denotes the continuous, eight-parameter nonlinear equations of motions
of Eqs. (2.3)–(2.9), not taking into account the change of heading Ψ̇, and (2.20) with

xT
8e =

[
u v w p q r Φ Θ

]
∈ X ,

xT
δ =

[
ξ η ζ

]
∈ Xξ × Xη × Xζ = Xδ,

uT
δ =

[
ξ̇ η̇ ζ̇

]
∈ Uδ,

and F = 0. For the model, we use the (desired) actuator rates ξ̇, η̇, ζ̇ as inputs and
have the sampling period τ = 50 ms. The set of admissible state-input pairs is then
Z = X × Xδ × Uδ. Note that, although we do not model the actuator dynamics of
(8.1) in order to cut down the a priori knowledge, we limit the actuator rates such that∣∣2πf

(
δ+ − δ(t)

)∣∣ ≤ δ̇max for all t ∈ [0; τ); i.e.,

Uδ =
[
− δ̇max

2πfτ
; + δ̇max

2πfτ

]3

.

Finally, we denote the combined state vector by

x =
[

x8e
xδ

]
,

the discrete system by x+ = f+(x, uδ), and the steady-state control inputs are uδf =
0 ◦/s.

5Recall VT
A =

[
u v w

]
and ωT =

[
p q r

]
.

6The subscript xf for the target steady-state is not to be confused with the body-axis system, (·)f .
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8.2.1 Tracking-control cost function

For the model-predictive control feedback µN (·), we solve the finite-horizon optimal
control problem (II.10) with finite horizon N = 120, initial state x0 = x(t), terminal
state constaint Xf = {xf }, and tracking stage cost

`(x, uδ) = 1
2 ‖x − xf ‖Q + 1

2 ‖uδ‖R (8.5)

with positive-definite weights Q ∈ S11, R ∈ S3. After scaling of states and inputs, we
choose the weights Q̃ = I11 and R̃3 = I/100; the scaling matrices are given in the end
of this chapter. Recall, the control feedback µN (x(t)) = û1 is subject to the optimal
solution (

x̂(·), û(·)
)

= arg max
x(·),u(·)

N−1∑
k=1

`(xk, uk) s.t. xk+1 = f+(xk, uk) (8.6)

with xk ∈ X ×Xδ, uk ∈ Uδ for all k ∈ {0, . . . , N} and xN = xf . Furthermore, the tracking
cost function in (8.5) is positive-definite. Asymptotic stability of the nominal closed-loop
dynamics hence follows by Theorem II.4 under the assumption of weak controllability
(Assumption II.5).

8.2.2 Nominal closed-loop response

Evaluating the closed-loop behaviour of the nominal model provides first insights into
the offered upset recovery strategies. Fig. 8.3 therefore shows the nominal recovery
trajectories for the initial steep spiral and oscillatory spin conditions. Here, air speed VA
and angle of attack α have been calculated afterwards based on the velocity components
in the body axis system.

The nominal aircraft model can be said to be fully recovered both from steep spiral
and oscillatory spin after 15 s. Furthermore, as it is seen often in the literature, the
speed of the aircraft is initially increased in both manoeuvres to gain lift. For spin
recovery with its initially low airspeed and high angle of attack (compared to the spiral
initial condition as well as the target steady-state), the angle of attack too is increased
first before driven down and held roughly constant below 15◦ until the bank angle is
recovered (ca 3 s to 5 s into the manoeuvres). After the bank angle is level, the angle of
attack is reduced well under the trim value and the desired longitudinal flight condition is
subsequently attained. Perhaps counter-intuitively, the bank angle during recovery from
oscillatory spin, although initially positive (i.e., banking to star board), is driven beyond
−30◦ (towards port) before recovered. We will observe this behaviour also in the high-
fidelity simulation. At the lowest bank angle, the angle of attack of both manoeuvres
is lowered to a temporary minimum and it is only after that point in time that the air
speed is increased.

�
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(b) Recovery from oscillatory spin.

Figure 8.3: Nominal NMPC strategies for recovery from steep spiral and oscillatory spin
upsets.
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8.3 Simulation Results
We are now going to simulate the tracking-control MPC strategy, with the nominal piece-
wise polynomial model for prediction, embedded into the high-fidelity GTM simulation.
The Simulink instance of the latter uses a fixed-step ode3 solver operating at a frequency
of 200 Hz, 10 times faster than the discrete prediction model (τ−1 = 20 Hz). The optimal
control problem is still solved at the lower frequency of 20 Hz and the control input is
subsequently hold constant in between. The optimal control inputs, the actuator rates
returned by µN (·), are converted into the deflection commands as

δcmd(t) = δ(t0) + τ δ̇µ (8.7)

for all t ∈ [t0; t0 + τ) if δ̇µ is the MPC feedback for x(t0). As the time constant of (8.1) is
smaller than τ , the actuators will not reach the commanded deflection within one period
of the MPC feedback. This adds to disparity between the nominal model and simulation.
Furthermore, the simulation computes the dynamic coefficients using the hybrid Kalviste
method (Murch and Foster 2007, p. 4), whereas the piecewise polynomial model directly
evaluates the aerodynamic coefficients for the normalised body rates p̂, q̂, r̂.

The simulation has been given a “head start,” that is, the model-predictive controller
engages first for t = τ .

8.3.1 Recovery from steep spiral

Fig. 8.5 shows the aircraft states during simulated recovery from the steep spiral up-
set condition. Air speed and and aerodynamic angles were calculated post-simulation
based on the components of the velocity vector in the body axis system. The figure
further details the state values predicted by MPC for the next step, i.e., x̂(t) = x̂1 for
t ∈ [t0; t0 + τ) if x̂(·) is the optimal trajectory for x(t0). Here, commanded and one-step
ahead predicted actuator deflections are equal. A bit surprising, the simulation recovers
faster than the nominal model but in a similar manner. Again, the bank angle is recov-
ered first with a medium angle of attack of about 15◦. After 4 s, similar to the nominal
system response, the aircraft is levelled and the longitudinal flight condition is restored
by reducing angle of attack and air speed.

Fig. 8.4 further details the aircraft’s flight path and attitude during recovery. Note
that the depiction of the aircraft is enlarged here for convenience. We observe that,
due to the quick recovery of the bank angle, the spiral recovery constitutes an almost
straight manoeuvre without further change of the heading despite the initial rotatory
flight condition.
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Figure 8.4: Flight path of NMPC recovery from steep spiral upset (aircraft not to scale).
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Figure 8.5: Simulated NMPC recovery for steep spiral upset. Simulation in solid ( ), one-step prediction dotted ( ).
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8.3.2 Recovery from oscillatory spin

As depicted in Fig. 8.7, for oscillatory spin, too, the simulated recovery is faster than
the nominal model but otherwise behaves similar. It should be noted here that, due
to the delayed engagement of the MPC feedback only after one period τ and the fact
that the oscillatory spin constitutes a periodic motion, the first state of the simulated
NMPC recovery has been slightly evolved compared to the initial condition of the air-
craft simulation, which has coincided with the initial condition for the nominal NMPC
recovery. During early restoration of the bank angle, the aileron operates at this lower
limit for almost 400 ms but is moved to a near-neutral position soon after. When the
aircraft restores its angle of attack, after the lateral motion has been kept close to the
trim condition for some time, however, we observe a spike in the lateral motion initiated
by a sharp deflection of ailerons and rudder. It is only afterwards that, together with the
angle of attack, the lateral motion is fully restored. Yet, this aberration does not seem
to have much impact on the flight path of oscillatory spin recovery, as Fig. 8.6 shows.
The flight path further reveals a quick recovery of the lateral spin motion.
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Figure 8.6: Flight path of NMPC recovery from oscillatory spin upset (aircraft not to
scale).
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Figure 8.7: Simulated NMPC recovery for oscillatory spin upset. Simulation in solid ( ), one-step prediction dotted ( ).
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8.3.3 Discussion

Overall, the piecewise polynomial model has well predicted the one-step ahead future
aircraft states during recovery from steep spiral and oscillatory spin. During both ma-
noeuvres, however, we observe a stark disparity between the predicted and actual pitch
rates while the bank angle is recovered. Here, angle of attack and elevator deflection
both are roughly constant with α = 15◦ and η = −10◦. Comparison of look-up table
data and polynomial model for the pitch-moment coefficient Cm, in Fig. 8.8, reveals a
highly inaccurate model for these conditions. It is worth noting that polynomials of
higher degrees could improve model and thus prediction.
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Figure 8.8: Piecewise polynomial Cm model over β for α = 15◦, η = −10◦.

It might be interesting to further compare the optimising tracking MPC (NMPC)
recovery strategies to switching control approaches such as presented by Engelbrecht
et al. (2013) or Yildiz et al. (2019). In fact, the NMPC recovery reveals some sequential
elements for the recovery of angle of attack and side-slip, reduction of roll and yaw rate,
as well as bank angle restoration.7 First, angle of attack and side-slip8 are reduced –
yet not recovered – and the body rates are regulated. Only after restoration of the
bank angle angle of attack and side-slip, too, are fully recovered. In that, the NMPC
recovery contrasts the approach of Engelbrecht et al. which emphasised the recovery of
aerodynamic angles over attitude (Engelbrecht et al. 2013, pp. 4 and 13–15). The work
of Yildiz et al., on the other hand, focused on the regulation of body rates first before
recovering all three angle of attack, side-slip angle, and bank angle (Yildiz et al. 2019,
pp. 11 and 12). As in the switching approaches, the NMPC recovery restores air speed
last.

7We omit pitch angle and rate from this discussion, since both are tightly coupled to the reduction
and recovery of the angle of attack.

8The side-slip angle is not shown in Figs. 8.5 and 8.7.
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8.4 Concluding Remarks

The lower recovery time of the simulation compared to the nominal model indicates
that the aircraft is, in fact, rather well-behaving in terms of spiral and spin upsets. In-
deed, previous analysis revealed that reduction of the angle of attack suffices for spiral
recovery (Gill et al. 2013, p. 1836) and neutral position of the rudder leads to the re-
laxation of oscillatory spin into a spiral motion (see footnote 3 above). Nevertheless,
the use of MPC seems to be advantageous for optimal recovery trajectories. Further
application of economic MPC for optimal recovery, which comes with an increased com-
putation time (cf. Tab. 7.1), as well as algebraic analysis of the six-degrees-of-freedom
dynamics remain future work. The presented, successful recovery of the high-fidelity
GTM simulation shows that the piecewise model is as well sufficiently accurate, as the
mode-predictive control approach robust against uncertainties, in order to recovery the
aircraft despite the immanent model disparity. Of course, this demonstration is not
a conclusive verification of necessary robustness, which thus remains for future work.
Beyond Monte-Carlo simulations, the natural theoretic entry point for the discussion of
robustness is the notion of input-to-state stability (e.g., Limon et al. 2009, p. 6).
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Figure 8.9: Details of the NMPC simulation. Computation time accuracy ±10 ms (Intel
Core i7, 3 GHz, 16 GB).

We further discuss details of simulation and model:

Simulation details We have solved the optimal control problem in Eq. (8.6) using the
nonlinear interior-point solver Ipopt (Wächter and Biegler 2006). Here, the functions
necessary to solve the problem, such as the objective function JN (·, ·) of (II.10) as well
as its gradient vector and Hessian matrix, were compiled into MATLAB’s binary mex
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file format in order to increase evaluation speed. The computed optimal trajectories
x̂′

(·), û′
(·) of x(t0) for a time t0 are subsequently used as initial guess for x(t0 + τ). Thus,

we are able to reduce the time for computing the optimal control feedback below 1 s
in average; only the first optimal control problem, for which no proper initial guess
exists, requires between 10 s and 30 s (Fig. 8.9). Further reduction of the computation
times is imperative for future work integrating model-predictive recovery strategies into
real aircraft systems, in particular if economic MPC is to be used for altitude-minimal
recovery.

Model details The singular non-differentiable point of the piecewise polynomial aero-
dynamic models (namely, at α0) were again smoothened by the Heaviside step function
H(α) = 1

1+e−2α/ν and the parameter ν has been reduced from π
36 for the first iteration

down to π
576 for the fifth and all following iterations. States and inputs of the discrete

nonlinear dynamics are scaled by

Dx8e = diag(40 m/s, 25 m/s, 35 m/s, 50 ◦/s, 100 ◦/s, 50 ◦/s, 30◦, 45◦) ,

Dxδ
= diag(15◦, 20◦, 25◦) ,

Duδ
= diag(150 ◦/s, 150 ◦/s, 150 ◦/s) ,

respectively.

206



A lemma for weak controllability
In Chapters 7 and 8 we have made, without further justification, the assumption of
weak controllability in order to proof stability of model-predictive feedback control with
a singular terminal state constraint Xf = {xf } (cf. Theorem II.4 and Assumption II.5).
We will see now that this assumption was indeed reasonable. Namely, we shall proof that
local controllability around xf within a non-singular set satisfying the input constraints
implies weak controllability.

Lemma. Let (x∗, u∗) ∈ Z be an admissible stationary solution of the system f+ and
N ∈ N+; if there are a set XE ⊂ X that contains x∗ in its interior, a local control law
κf : X → U , and a function α ∈ K∞ such that for all x ∈ XE there is a trajectory x̌(·)
with x̌0 = x, x̌N = x∗, and for all k ∈ {0, . . . , N − 1}

x̌k+1 = f+(x̌k, κf (x̌k)) , (8.8)
(x̌k, κf (x̌k)) ∈ Z, (8.9)

|κf (x̌k) − u∗| ≤ N−1α(|x − x∗|) (8.10)

then (x∗, u∗) and XN satisfy Assumption II.5.

For simplicity, we assume without loss of generality that x∗ = 0, u∗ = 0. Assump-
tion II.5 now reads that, for each x ∈ XN ,

N∑
k=1

|uk| ≤ γ(|x|) ,

where u(·) ∈ UN is a control sequence that drives x̌0 = x to x̌N = xf and γ ∈ K∞ is a
function independent of the choice of x. To construct such a function γ(·) making use
of κf , XE , and α(·) will proof our lemma. To this extent, we choose a positive number
A0 > 0 satisfying

|x| ≤ A0 ⇒ x ∈ XE . (8.11)

Proof. Let κf , XE , and α(·) satisfy the sufficient condition and denote ū = maxu∈U |u|.
We define γ(·) piecewise as

γ : y 7→ α(y) + Nū ·
{

y/A0 if 0 ≤ y < A0,
1 if y ≥ A0.

Since α ∈ K∞, γ(·) is indeed continuous, strongly monotonic increasing, radially un-
bounded, and γ(0) = 0; that is, γ ∈ K∞, too. Furthermore, if |x| ≥ A0, we have
immediately

∑N
k=1 |uk| ≤ Nū ≤ γ(|x|) for any u(·) with

(
x, u(·)

)
∈ ZN . On the other

hand, for any |x| < A0 (i.e., x ∈ XE) there is a trajectory x̌(·) as above such that

N∑
k=1

|κf (x̌k)| ≤ α(|x|) ≤ γ(|x|) (8.12)

and (x̌k, κf (x̌k)) ∈ Z for all k ∈ {0, . . . , N}. Hence, Assumption II.5 holds.
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We conclude our brief discussion with some remarks. First, for the existence of ū we
made use of the compactness of U .9 The accumulated control expenses then are trivially
bounded by Nū; the difficulty here is to drive the system into the target condition in
finite time while the necessary control inputs diminish when approaching steady-state.
With an argument similar to our reasoning for local stability, the system f+ behaves in a
small environment E around the stationary solution (x∗, u∗) similar to the linearisation
∆x+ = A∆x + B∆u, where ∆x = x − x∗ and ∆u = u − u∗. If now the linear system
is controllable, namely, the linear equalities (Abel 2013, p. ?)

−An (x − x∗) =
[
B AB · · · An−1B

]
︸ ︷︷ ︸

=def C

∆un−1
...

∆u0

 , (8.13)

where n is the number of states, have a unique solution ∆ǔ(·) for any x ∈ E , we say f+ is
locally controllable in E . In this case, the controllability matrix C has full rank and the
control sequence u(·) to drive f+ in n steps from x ∈ E to x∗ is subject to the mapping
u∗ − C−1An (x − x∗) + g(x − x∗) with the so-called “high-order function” g (Chen and
Narendra 2004, Theorem 3, p. 665).10 Thus, if (x∗, u∗) is contained in the interior of
Z and N ≥ n, we can choose X ′ ⊆ E such that uk ∈ U for all k ∈ {0, . . . , n, . . . , N}
and x ∈ X ′;11 furthermore, the input cost

∑N
k=1 |uk − u∗| is bounded by a K∞-function

α(|x − x∗|). That is, local controllability implies weak controllability.
In this study, both the longitudinal equations of motion of Cumulus as well as the six-

degrees-of-freedom equations of motion of the GTM were locally controllable around the
chosen normal-flight trim conditions. Hence, we were right to assume weak controllability
for stability of the synthesised model-predictive feedback.

9This is a classic assumption in MPC theory (Section II.2); in Chapters 7 and 8 we have therefore
defined U by closed and bounded intervals.

10Chen and Narendra (2004, p. 664) define a high-order function g(·) to be continuous, g(0) = 0, and

∂g

∂x (0) = 0.

In this case, |g(·)| can be locally bounded by a K∞ function.
11Note that uk = u∗ for n ≤ k ≤ N .
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Chapter 9

Conclusions

Upset flight conditions are characterised by highly nonlinear aerodynamics and unstable
or undesired attractive equilibria. Upset aircraft are prone to accidents due to in-flight
loss-of-control which, albeit rare, contribute most to fatal accidents in civil aviation.
For this reasons, in-flight loss-of-control constitutes a severe threat to both manned
and unmanned aviation and recovery from upset flight conditions is highly imperative.
However, recovery approaches are challenged by uncertain aerodynamic models for upset
flight dynamics, nonlinear traits, and state and input constraints. In this thesis, we have
hence recalled, applied, and extended methods to recover an aircraft from an upset
condition into its normal flight envelope. For application, we have considered the well-
known Generic Transport Model (GTM) as well as a smaller unmanned aircraft named
Cumulus One which is capable of stable flight in deep-stall trim conditions. These
aircraft differ not only in the lateral stability post stall, but in their modeling premises:
while the GTM comes with extensive aerodynamic data from wind-tunnel and flight
tests, for Cumulus One we were limited to CFD simulations.

Following a review of the extensive literature on upset prediction, prevention, and
recovery, we have initially presented a new modeling technique for piecewise polynomial
models of the aerodynamic coefficients. We have then used this technique to create a
model of the GTM based on the provided windtunnel and flight test data and have com-
pared equilibria of the piecewise model to trim conditions of the GTM simulation. We
have also demonstrated the use of a previously presented sum-of-squares programming
techniques to estimate the region of attraction of the piecewise short-period motion.
Moreover, we have investigated the deep-stall dynamics of Cumulus One in order to
derive a piecewise polynomial model of its aerodynamics, too. Here, we were limited
to data of static continuous fluid dynamics simulations. We have thus proposed fur-
ther models of the dynamic derivatives and elaborately discussed the implied behaviour
during transition into deep-stall, eventually optimising the model parameters against
recorded flight data of deep-stall transitions.

Stability of deep-stall recovery has been verified using sum-of-squares programming
to estimate the region of attraction of the normal flight condition under local control
feedback. We have further extended the sum-of-squares methodology in order to syn-
thesise feedback laws which enlarge the region of attraction towards deep-stall flight
conditions, thus certifying stable recovery by control design, and proposed a backwards-
reachability scheme that facilitates the representation of deep-stall flight. Based on our
initial ideas for piecewise sum-of-squares analysis of the GTM’s region of attraction,
we have proposed an improved algorithm for stability analysis of multivariate spline
systems.
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Where upset recovery is subject to measures of optimality, iterative solutions of
optimal control problems led to model-predictive control (MPC). Here, we formulated
the problem of minimising the loss-of-altitude during recovery within the economic MPC
framework. Using sum-of-squares, we were able to prove dissipativity of the control
system and thus stability of the designed MPC feedback. Despite a regularisation penalty
necessary to ensure dissipativity, this strategy has been advantageous when compared to
linear and nonlinear tracking MPC strategies. Finally, we have applied MPC to recover
an aircraft from steep spiral and oscillatory spin conditions, which we have demonstrated
within the high-fidelity GTM simulation, using the piecewise polynomial aerodynamics
as uncertain prediction model. As sum-of-squares do not scale well with an increasing
number of state variables, we could not simply expand the EMPC scheme but resorted
to tracking MPC here.

We shall conclude the dissertation discussing the results, drawing connections in
between, and indicating future work. Finally, we summarise its major contributions.

9.1 Discussion

In this thesis, we have examined in deep different techniques for modeling, analysis,
and control of aircraft upset dynamics and recovery of a vehicle into its normal flight
envelope. Hereby, the vehicle was assumed to operate fully autonomous and the flight
control system to have exclusive authority over the control surfaces. This setting is
opposed by the, in the literature considering commercial aviation more common, case of
recovery by the pilots while guided by the flight computer. Stability analysis of guided
recovery approaches might be performed by means of this thesis with the pilot activity in
feed-back loop, yet in this case the actions and reactions of the pilots, in particular their
possibly imperfect and delayed behaviour, must be taken into further account. Such
an approach, for example, has been followed by Richards et al. (2017), who provided
a separate pilot model (Richards et al. 2017, pp. 921 and 922). It should be noted
though, that modeling pilot behaviour as part of a prediction model for MPC recovery
guidance might lead to an attempted inversion of this dynamics in the optimised recovery
strategies.

Piecewise modeling techniques

Essentially constituting a simple spline model with single knot, the piecewise polyno-
mial modeling technique presented in Chapter 3 turned out to be a tractable method
and well-suited to improve the accuracy of polynomial-based aerodynamic models while
keeping the cost of analysis such as sum-of-squares programming affordable. Yet, fur-
ther improvements are thinkable that do not change the underlying structure of the
model definition. Namely, so far we have modeled the aerodynamics piecewise along a
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hyperplane through α0 and orthogonal to the angle of attack-axis,

C�(α, . . .) =
{

Cpre
� (α, . . .) if α ≤ α0,

Cpost
� (α, . . .) if α > α0,

and argued that the change of dynamics around the stall angle of attack suggests a
piecewise model. This choice of a switching surface facilitated both the derivation of α0
as free parameter of the CL-over-α model1 and the further implementation of equality
constraints in α0. The argument of switching dynamics, however, does not rely on a
planar switching surface and indeed, one would imagine the stall angle of attack (and thus
a change of dynamics) to depend on further parameters such as side-slip angle or elevator
deflection. The following, piecewise model would be able to provide a better fitting while
still obeying the structure of piecewise polynomial model with single switching surface:

C�(α, β, . . .) =
{

Cpre
� (α, β, . . .) if ϕ(α, β) ≤ 0,

Cpost
� (α, β, . . .) if ϕ(α, β) > 0,

(9.1)

where ϕ(·) is a strongly monotonous, polynomial function in α and β. On the other
hand, obtaining a suitable ϕ as well as ensuring continuity along this surface for all
(sub)-models is unlike more difficult. The computation of such an advanced model
might even require the application of further preprocessing steps such as classification
of the identification data as in, e.g., Scampicchio et al. (2018), or the use of neural
networks. The necessity of continuity of all piecewise coefficient models along a chosen
surface ϕ(·) ≡ 0 further requires a careful selection of the polynomial fitting method.

Where computation time and resource consumption is not a major concern but model
accuracy, multivariate splines such as proposed by de Visser et al. (2009) provide a pow-
erful alternative to simple piecewise polynomial models. We hold that all applications
of this thesis can be augmented for multivariate spline models using the ideas of Chap-
ter 5. Given the fact that stability certificates are to be computed only once, it can
be envisaged to have a control approach designed based on simple piecewise polyno-
mial model for speed yet eventually certified against a spline model for accuracy. The
further potential of adaptive spline models (cf. Tol et al. 2016) is especially promising
for model-based predictive control strategies. Moreover, an extended local analysis of
hybrid (polynomial) systems allows for certification of recently published, state-based
switching recovery control strategies (such as Engelbrecht 2016; Yildiz et al. 2019). To
this extend, the spline system definition of Section 5.3 can be modified to allow for
unilateral switching surfaces.

Sum-of-squares stability analysis

Local stability analysis and region of attraction estimation using sum-of-squares pro-
gramming have been extensively discussed within this and previous studies, usually
founded in Lyapunov’s stability theory and La Salle’s subsequent theory of invariant

1Or CX-over-α with forces in the body axis system.

211



sets. The latter stated that the level set of a Lyapunov-candidate function, V(·) ≡ γ for
some γ > 0, bounded an invariant subset of the region of attraction if V̇(x) is negative
definite for all x where V(x) ≤ γ. We have encoded this constraint as the SOS problem

s `
{

x
∣∣∣V(x) ≤ γ

}
⊆Σ

{
x
∣∣∣ V̇(x) ≤ −ε ‖x‖2

2

}
(9.2)

or, equivalently,

s (V − γ) − V̇ − ε ‖x‖2
2 ∈ Σ [x] (9.3)

with s ∈ Σ [x] and ε > 0 making use of the Positivstellensatz.
A further, interesting insight can now be gained by looking at Zubov’s equation with the
formulation above in mind: Recall that V(·) ≡ γ bounds the true region of attraction if

V̇(x) + ε ‖x‖2
2 = −s(x) (γ − V(x)) (9.4)

for all x ∈ X , replacing the positive definite multiplier of Eq. (I.20) by s ∈ Σ [x] and
ε > 0. Similarly, we might require

V̇ + ε ‖x‖2
2 + s+ (γ − V)

−V̇ − ε ‖x‖2
2 + s− (V − γ)

}
∈ Σ [x] (9.5)

with s+, s− ∈ Σ [x]. This, however, is nothing else than to say that V̇(·) is positive
definite in the interior of V(·) ≡ γ but negative in the exterior. With a small relaxation,
we can extend the thought to the approximation of inner and outer bounds of the region
of attraction, viz.

s− `
{

x
∣∣∣V(x) ≤ γ1

}
⊆Σ

{
x
∣∣∣ V̇(x) ≤ −ε ‖x‖2

2

}
(9.6)

s+ `
{

x
∣∣∣V(x) ≥ γ2

}
⊆Σ

{
x
∣∣∣ V̇(x) ≥ +ε ‖x‖2

2

}
(9.7)

for 0 < γ1 ≤ γ2. Here, Eq. (9.6) is just equivalent to the invariant set of La Salle’s;
however, it might be more challenging to find a Lyapunov-candidate function that fulfils
(9.7), too.

In particular, the region of attraction estimation is powerful to investigate local
stability of a passive or controlled aircraft around a given flight condition. With an
aircraft being capable to fly at several, possibly continuous trim conditions (compare
the bifurcation diagrams in Chapters 3 and 4), this is only a small aspect of the general
flight control system. Future research should therefore focus on the dependency and
change of the region of attraction on variation of one or multiple parameters: Consider,
for the sake of an example, a family of equilibria (xµ, µ) for a scalar parameter µ ∈ R
such that for µ∗ = 0, the equilibrium in x∗

0 turns from stable (µ < 0) into unstable
(µ > 0); that is, the right-hand side region of attraction Rµ>0 is singular. It is tempting
now to assume that for µ < 0, the region of attraction shrinks towards Rµ→−0; yet, the
simple case of a linear system which is either globally stable (R = X ) or not (R = {x∗})

212



demonstrates that this cannot be true in general. A possible approach towards the
analysis of regions of attraction along a family of trim conditions lies in parametrised
polynomial function V ∈ R [x, µ] such that V(·, µ) is a Lyapunov-candidate function for
all (viable) parameters µ. Such functions were considered by, e.g., Papachristodoulou
and Prajna (2009) for global robust stability, but the conservativeness of the approach
might be challenging. On the other hand, the analysis of region of attraction estimates
along the trim conditions seems crucial for further acceptance of sum-of-squares methods
for aeronautical control certification.

Model-predictive control considerations

In Chapters 7 and 8, we have bespoken stability of the presented MPC strategies in terms
of the set of feasible initial conditions XN . We have not further considered this set, which
gives rise to the closed-loop region of attraction and indeed depends on the horizon length
N as well as on the final set Xf , but we can relate it to the safe set discussed by, amongst
others, Kwatny et al. (2013). Consider the structural envelope C ⊂ X ; the operational
safe set is defined in infinite discrete time as X safe =

{
x
∣∣∣ ∃u(·) ⊂ U . ∀k. fk(x, u1···k) ∈ C

}
for dynamics x+ = f(x, u).2 If, as it is commonly assumed, the final set Xf itself is a
forward-invariant subset of C, we have the following set inclusions:3

Xf = X0 ⊆ X1 ⊆ · · · ⊆ XN ⊆ XN+1 ⊆ · · · ⊆ X safe. (9.8)

Here, two questions are of particular interest. First, whether there exist a horizon length
N∗ such that XN∗+1 ⊆ XN∗ ; in this case, increasing the horizon length beyond N∗ does
not further enlarge the region of attraction. And second, whether the final inclusion
is in fact strict, XN→∞ ( X safe; that is, whether there are conditions from which the
aircraft can be kept within the operational envelope albeit not recovered for any horizon
length. A particular difficulty in the determination of XN is the simultaneous problem
of viability in C and reachability of Xf . Lygeros (2004) introduced the sets of viable,
invariant, and reachable states, of which the safe set is a special case, and which are
given in discrete time as (based on Lygeros 2004, p. 919)

VibN K =
{

x
∣∣∣ ∃u(·) ∈ UN . ∀k ≤ N. fk(x, u1···k) ∈ K

}
,

InvN K =
{

x
∣∣∣ ∀u(·) ∈ UN . ∀k ≤ N. fk(x, u1···k) ∈ K

}
,

RecN K =
{

x
∣∣∣ ∃u(·) ∈ UN . ∃k ≤ N. fk(x, u1···k) ∈ K

}
,

for some K ⊂ X and N ≥ 0.4 Clearly, we have XN ⊆ RecN Xf by definition, yet it does
follow immediately that the reaching trajectory also is viable in C. The feasible initial

2The f k-notation was defined in Chapter 7 as f k = f ◦ · · · ◦ f .
3Recall the definition

XN =
{

x
∣∣ ∃u(·) ∈ UN . f N (x, u1···N ) ∈ Xf ∧ ∀k < N. f k(x, u1···k) ∈ C

}
for any horizon length N ≥ 0.

4Note that X − RecN K = InvN (X − K) and VibN→∞ C = X safe.
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conditions are then subject to the lower and upper bounds

RecN Xf ∩ InvN C ⊆ XN ⊆ RecN Xf ∩ VibN C, (9.9)

although these approximations are likely to be rather vague. Further research should
focus on the estimation of XN for MPC recovery schemes in order to certify stable
operation over the desired upset envelopes.

A further challenge for upset recovery by model-predictive control has turned out to
be the computation time necessary to solve the optimal control problem online and in
feedback-loop. Foregoing improved solver algorithms and computational power of the
flight computer systems, possible solutions are to update the optimal recovery trajecto-
ries at a lower frequency (that is, further prediction states and inputs are used for control
feedback) or even to compute the full trajectory off-board, ensuring robust tracking by
simpler onboard feedback designs.

9.2 Summary
For the past decades, in-flight loss-of-control has remained a severe threat to the safety
of aircraft and aerial operations as well as crew and passengers alike. In response, an
extensive literature for upset prediction, prevention, and recovery was established. Most
of these developments can be divided into experiments with (piloted) aircraft training
devices, application of control engineering to high-fidelity models, and advances moti-
vated in system theory. However, these strategies lacked a common, holistic approach.
Moreover, the need for verification of the proposed strategies has not been resolved yet,
in particular with an increasing number of unmanned and autonomous vehicles to en-
ter the airspaces in near future. This thesis has aimed towards the inclusion of system
theoretic approaches for realistic models and thorough verification of their stability.

A piecewise polynomial modeling technique was proposed as simple alternative to
multi-variate splines. The established model of the Generic Transport Model turned
out to accurately represent the full-envelope aerodynamic coefficients and well predicted
a wide range of trim conditions. Yet, the aircraft model was accessible for functional
analysis tools such as bifurcation theory and sum-of-squares programming. Moreover,
we established an equations-of-motion model for the unmanned aircraft Cumulus One
based on static continuous fluid dynamics data and we elaborately discussed dynam-
ics and stability during its transition into stable deep-stall flight, as demonstrated in
recorded flight tests. Thus, we eliminated the need of extensive wind-tunnel studies, as
commonly used to study the dynamics of airliners, which might be not attainable in the
scope of small aircraft projects. These two piecewise polynomial aircraft models laid the
fundament for the further application of analysis and control methodologies.

Early applications of sum-of-squares programming for investigations of aircraft sta-
bility or robustness relied on polynomial models of limited accuracy. The development
of a simple yet accurate polynomial-based model motivated further application of sum-
of-squares programming for analysis and control of aircraft flight. Thus, we applied the
initial framework for Lyapunov-based region-of-attraction estimation to verify stable
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recovery from deep stall. An extension of this approach allowed the synthesis of feed-
back laws which by design ensure stable recovery. The proposed backwards-reachability
scheme removed the necessity of a high-dimensional ellipsoidal (or quasi-ellipsoidal) sur-
faces, of which the specification is nontrivial problem, and replaced it by a single target
flight state such as a deep-stall trim condition. Furthermore, we illustrated initial ideas
for the efficient application of sum-of-squares programming for Lyapunov-based stability
analysis of splines, thus enabling the extension of this thesis’ results to highly accurate
large-scale models.

Model-predictive control strategies for upset recovery have been promising for their
ability to deal with nonlinearities and input constraints of upset conditions as well as for
the introduction of optimality measures. Reformulating the problem of upset recovery
minimising the loss of altitude as economic MPC strategy, we rigorously proved its
stability by computing a minimal regularisation weight using sum-of-squares. Despite
the regularisation, the proposed strategy successfully increased the outcoming altitude
of the aircraft after recovery from deep stall. We further demonstrated the power of
nonlinear tracking MPC for the recovery from steep spiral and oscillatory spin flight
modes against the GTM high-fidelity simulation. This also showed the accuracy of the
piecewise polynomial model for prediction.

Future work envisages the application of sum-of-squares programming techniques,
based on piecewise polynomial or even spline models, for the verification of advanced
flight control techniques and upset recovery approaches. The application of sum-of-
squares analysis to the six-degrees-of-freedom flight dynamics, which would also enable
future verification of EMPC recovery schemes minimising the loss of altitude, continues
to be challenging yet highly incentive. With its manifold contributions, this thesis con-
stitutes a first step stone of holistic approaches that combine realistic models, functional
analysis for verification, advanced control techniques, and high-fidelity aircraft simula-
tions in order to tackle the problems of in-flight loss-of-control and upset recovery.
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Appendix A

The pwpfit Toolbox

This appendix chapter corresponds to:

Torbjørn Cunis (2018). “The pwpfit Toolbox for Polynomial and Piece-wise
Polynomial Data Fitting”. In: 18th IFAC Symposium on System Identifica-
tion. Stockholm, SE, pp. 682–687. doi: 10.1016/j.ifacol.2018.09.204

in the author’s finally submitted version.

Synopsis
The pwpfit toolbox has been developed in order to compute the piecewise polynomial
models of Chapters 3 and 4. This appendix details the mathematical background as
well as the implementation beyond the initial presentation in Chapter 3. Furthermore,
we discuss aspects of the fitting method such as computation time and sensitivity to
measurement noise. Note that for demonstration purposes only, the piecewise polynomial
aerodynamics model has been derived as single polynomials in all inputs,

C�(α, β, ξ, η, ζ, . . .)

Due to the disadvantages of this strategy both in computation time and fitting accuracy,
the models finally used in this thesis are sums of polynomials

C�α(α) + C�β(α, β) + C�ξ(α, β, ξ) + C�η(α, β, η) + C�ζ(α, β, ζ) + · · · ,

as bespoken in Section A.7 and given in Appendix B.1 and B.2.
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Abstract

Several techniques have been proposed for piecewise regression as extension to stan-
dard polynomial data fitting, either selecting the joints a priori or adding computa-
tional load for optimal joints. The pwpfit 1 toolbox provides piecewise polynomial
fitting without pre-selection of joints using linear-least square (LSQ) optimization
only. Additional constraints are realised as constraint matrices for the LSQ problem.
We give an application example for the multi-variable aerodynamic coefficients of
the general transport model in pre-stall and post-stall.

Key words: Grey Box Modeling; Toolboxes; Mechanical and Aerospace;
Multivariable System Identification; Nonlinear System Identification; Hybrid
System Identification.

1 Introduction

Polynomial data fitting names a branch of approaches dedicated to the problem
of optimal coefficients for a polynomial function f , such that f approximates
the measured data points, usually called “observations”. A common solution
consists of minimising the sum of squared residuals of f with respect to the
observations using linear least-square (LSQ) techniques (Kariya and Kurata,
2004). Several methods exist to solve LSQ problems (Golub, 1982; Lawson
and Hanson, 1995). Compared to modern tools, polynomials benefit from fast
and simple evaluation.

1 Published under LGPL-2.1: https://github.com/pwpfit.
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However, a single polynomial function might not be suitable to describe the
observed characteristics. Early approaches included regression of a few poly-
nomial functions piecewise over the observations; in order to find suitable
switching surfaces (joints) for the piecewise functions, these approaches used
maximum-likelihood or Newton-Gauss methods (Robison, 1964; Gallant and
Fuller, 1973), hierarchical clustering (McGee and Carleton, 1970), or regres-
sions trees (Chaudhuri et al., 1994). Later, multivariate splines were intro-
duced fitting sequences of polynomial functions over fine grids, which are
rectangular (Klein and Morelli, 2006) or triangular (de Visser et al., 2009)
partitions of the observations. Here, the knots of the grids, i.e. the joints of
the piecewise functions, are chosen prior, and are not a subject of, the fit.
Both piecewise regression and multivariate splines ensure the fitted piecewise
functions to be continuous or even smooth at their joints.

While splines today present a powerful yet complex tool for accurate and
smooth interpolation, they lack of an underlying physical model justifying the
partition. 2 The problem of finding appropriate joints remains open.
In this paper, we introduce the pwpfit 1 toolbox for MATLAB, which uses
standard LSQ techniques while leaving the joint as parameter of optimization.
The interface of the toolbox, on the other hand, resembles that of MATLAB’s
well-known fit function. 3 Following a study of the theoretical and imple-
mentation details, we discuss exemplary the fitting of piecewise aerodynamic
coefficients for the model of a typical airliner.

2 Preliminaries

A monomial of degree n is a single product of powers where the exponents
add up to the total degree n, without any scalar coefficient. We introduce the
vector notation for a monomial x = (x1, . . . , xm) in degrees n = (n1, . . . , nm),

xn = xn1
1 . . . xnm

m , (1)

with the total degree n = ‖n‖1 = n1 + · · ·+ nm.

2.1 Monomials & Polynomials

Definition 1 Pn(x) is the vector of monomials xν in variables x = (x1, . . . , xm)
with degrees ν ∈ Nm and total degrees ‖ν‖1 ≤ n; and the number of elements

2 MATLAB’s smoothing spline option for the built-in curve fitting function, for
example, uses by default the observation points itself.
3 https://mathworks.com/help/curvefit/fit.html
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in Pn(x) is denoted by r[n], i.e. Pn ∈ R [x]r[n].

While the order of monomials in Pn(x) is arbitrary, we choose to have xµ

before xν if and only if ‖µ‖1 < ‖ν‖1 or µ is reverse-lexicographically before
ν if ‖µ‖1 = ‖ν‖1.
Defining the auxiliary vector pN of monomials xν with ‖ν‖1 = N , recursively
over the number of variables m as

pN(x) =


xN
1 if m = 1;[
xN
1 xN−1

1 p1(x̃)
T · · · pN(x̃)

T

]T
else

(2)

with x̃ = (x2, . . . , xm) for m > 1, we can write

Pn(x) =
[
1 p1(x)

T · · · pn(x)
T

]T
. (3)

By this notation, a polynomial f is expressed as scalar product of its mono-
mials and coefficients,

f(x) = 〈Pn(x) ,q〉 (4)

with the vector of coefficients qT =
[
b1 · · · br[n]

]
.

2.2 Polynomial fitting

The observations (xi, zi) are conveniently given as sequences over i ∈ [1, k]:

Problem 2 Consider the k observations

zi = γ(xi) + εi, (5)

where (xi, zi, εi)1≤i≤k ⊂ Rm × R× R and γ(·) and (εi)i are an unknown func-
tion and measurement error, respectively; find coefficients for f = 〈Pn(x) ,q〉
minimizing the goodness of fit (GoF)

GoF(f) def
=

k∑
i=1

|f(xi)− zi|2 (6)

for an n > 0.

Re-writing the goodness of fit using matrix calculus, we reduce the cost func-
tional to a cost function and polynomial data fitting to a linear least-square
problem.
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Definition 3 A linear least-square (LSQ) problem is given as the optimization
problem

lsq(C,d) = arg min
q

‖Cq− d‖22 (7)

with q ∈ Rr, C ∈ Rk×r, and d ∈ Rk.

We have the residuals in vector notation as

e =


Pn(x1,1, . . . , x1,m)

T

...

Pn(xk,1, . . . , xk,m)
T


︸ ︷︷ ︸

def
= K

q−


z1
...

zk


︸ ︷︷ ︸

def
= κ

(8)

and the goodness of fit

GoF(q) = ‖e‖22 . (9)

The coefficients of the optimal fit 〈Pn(x) ,q0〉 now are subject to the linear-
least square problem

q0 = arg min
q

‖Kq− κ‖22 . (10)

3 Piecewise fitting

Problem 4 Take the observations of Problem 2; find coefficients q1,q2 such
that

f : x 7−→

 〈Pn(x) ,q1〉 if ϕ(x) ≤ x0;

〈Pn(x) ,q2〉 else

with ϕ : Rm → R and x0 ∈ R minimizes the goodness of fit of (6). 4

We note the sub-polynomials of f by f1,2 : X1,2 → R,x 7→ 〈Pn(x) ,q1,2〉 and
call X1∪X2 the entire domain of f . The joint of f is given as Ωϕ

def
= X1∩X2 =

{x |ϕ(x) = x0}.

The cost functional for f can be evaluated piecewise to

GoF(f) =
∑

xi∈X1

|f1(xi)− zi|2+
∑

xi∈X2

|f2(xi)− zi|2, (11)

4 While solutions for multiple pieces can be derived, we focus on a single joint here.
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where X1 = {x1, . . . ,xi′}, X2 = {xi′+1, . . . ,xk} are initial guesses of the sub-
domains.

We then have the residuals as e1,2 = K1,2 q1,2 − κ1,2 with

K1 =


Pn(x1)

T

...

Pn(xi′)
T

 , κ1 =


z1
...

zi′

 ; (12)

K2 =


Pn(xi′+1)

T

...

Pn(xk)
T

 , κ2 =


zi′+1

...

zk

 ; (13)

and

GoF(f) = ‖e1‖22 + ‖e2‖22 =
∥∥∥∥[ eT1 eT2

]∥∥∥∥2
2
. (14)

Again, we reduce piecewise fitting to the linear least-square problem

q1

q2

 = arg min
q′

∥∥∥∥∥∥∥
K1 0

0 K2

q′ −

κ1

κ2


∥∥∥∥∥∥∥
2

2

(15)

with the objective matrix K
def
= diag(K1,K2).

Continuity of the piecewise defined f over its entire domain holds if

∀x ∈ Ωϕ. 〈Pn(x) ,q1〉 = 〈Pn(x) ,q2〉. (16)

For single-variable functions, we have continuity for the identity function ϕ =
id and x0 is zero of

〈Pn(x) ,q1 − q2〉.

In the multivariate case, computing ϕ is generally hard.
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4 Constraints

To impose constraints on the coefficients (and thus the polynomials), we recall
the constrained linear least-square problem (Haskell and Hanson, 1981)

lsq(C,d,A,0) = arg min
q∈ΩA

‖Cq− d‖22 . (17)

with ΩA = {q |Aq = 0}.

Lemma 5 Let f1,2 = 〈Pn(x) ,q1,2〉 be polynomials; we have f1(x) = f2(x) for
all x ∈ Rr[n] if and only if q1 = q2.

In case of multiple variables or outputs, one may have x0 for the single-variable,
single-output case and ensure continuity in x0 for all other variables and out-
puts.

Proposition 6 (Constraint of continuity) Let

ϕ(x) = aTx ≤ x0 (18)

be a linear matrix inequality (LMI) with aT =
[
a1 · · · am

]
and a1 6= 0; a piece-

wise polynomial function f with continuity in Ωφ is subject to the constrained
LSQ problem with continuity constraint matrix C.

PROOF. We can simplify (18) to ϕ(x) = x1 ≤ x0 w.l.o.g.:

Lemma 7 Let ϕ : x 7→ aTx with a1 6= 0; there is a linear, invertible π such
that

(ϕ ◦ π) : y 7−→ y1 (19)

with y = (y1, . . . , ym).

For ϕ(x) 6= x1, we thus fit polynomials g1,2 to (πxi, zi)i such that g1,2 join in
(ϕ ◦ π)(y) = x0 and find f1,2 as

f1 =
(
g1 ◦ π−1

)
; f2 =

(
g2 ◦ π−1

)
. (20)

We now have continuity if

∀x ∈ Ωx0 . 〈Pn(x) ,q1〉 = 〈Pn(x) ,q2〉 (21)

with Ωx0 = {x |x1 = x0}; hence

∀x̃ ∈ Rm−1. 〈Pn(x0, x̃) ,q1〉 = 〈Pn(x0, x̃) ,q2〉. (22)
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Separation of the assigned variable x1 ≡ x0 as ΛT
0 yields

〈Pn(x0, x̃) ,q1,2〉 = 〈ΛT
0Pn(x̃) ,q1,2〉

= 〈Pn(x̃) ,Λ0q1,2〉 (23)

with

Λ0 =



1 x0 xn
0

diagp1(1m−1) . . . xn−1
0 diagp1(1m−1)

. . .

diagpn(1m−1)


,

(24)

where 1m−1 ∈ {1}m−1. By Lemma 5, we have that

〈Pn(x̃) ,Λ0q1〉 = 〈Pn(x̃) ,Λ0q2〉 (25)

for all x̃ ∈ Rm−1 if and only if Λ0q1 = Λ0q2. Hence, the constraint of continuity
is written as

[
Λ0 −Λ0

] q1

q2

 = 0 (26)

and C =
[
Λ0 −Λ0

]
.

Due to measurement errors or modelling flaws, a polynomial fitting may have
relations that shall not be modeled; 5 in this case, it is desirable to constrain
the resulting polynomial to be zero (or constant) for certain parameters x̃∗ =
(xj+1, · · · , xm):

Proposition 8 (Zero constraint) Let x∗ = (x1, . . . , xj) for j > 0; a poly-
nomial f = 〈Pn(x) ,q〉 with

∀x∗ ∈ Rj. 〈Pn(x
∗,0m−j) ,q〉 = 0 (27)

with 0m−j ∈ {0}m−j is subject to the zero constraint matrix Z.

PROOF. Separating the assigned parameters x̃∗ = 0m−j as VT
0 and applying

5 E.g., for a symmetric aircraft aligned to the flow, there is no side-force—regardless
its angle of attack.
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Lemma 5, we have that

〈Pn(x
∗) ,V0q〉 = 0 (28)

for all x∗ ∈ Rj if and only if V0q = 0.

Using V′ = diag
(
v1, . . . , vr[n]

)
where vi = 1 if the i-th element of Pn(1j,0m−j)

is non-zero, vi = 0 otherwise, V0 is obtained by removing the all-zero rows of
V′, thus ensuring full rank.

For piecewise polynomial fitting with zero constraint, take

Z =

V0 0

0 V0

 . (29)

If both zero constraint and constraint of continuity are given, we need to
ensure full rank of the complete constraint matrix:

 C

Z

q′ =


Λ0 −Λ0

V0 0

0 V0


q1

q2

 = 0.

5 Implementation

The pwpfit toolbox is implemented in MATLAB using the Optimization tool-
box 6 for linear least-square solving and Symbolic math toolbox 7 for represen-
tation of the vector of monomials.

As MATLAB is rather slow on arrays of variable length, we use a statically
allocated array to generate the vector of monomials Pn in m variables. Ap-
plying a recursive sub-routine (Alg. 1) to write the auxiliary pN(x) at the
l-th(and following) positions of P, the vector of monomials is then computed
as symbolic expression P of parameters X:=x according to (3).

The length of P, i.e. the number of monomials in Pn(x), is given as sum of
multicombinations

r[n] =
n∑

N=1

(
m+N − 1

N − 1

)
=

(
m+ n

n

)
. (30)

6 https://mathworks.com/help/optim
7 https://mathworks.com/help/symbolic
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Algorithm 1. Recursive algorithm for pN(x).
1: function [P,l] = monomial(P,l,X,m,n,X0=1)
2: if m == 1 then
3: P(l) = X0*Xˆn;
4: l = l+1;
5: else
6: for j = 0:n
7: X0 = X0*X(1)ˆ(n-j));
8: [P,l] = ...
9: monomial(P,l,X(2:end),m-1,j,X0);

10: end
11: end
12: end

Alg. 2 illustrates the computation of the left-hand side of the continuity con-
straint matrix, Λ0, for ϕ(x) = x1 ≤ x0, using the auxiliary vectors pN(x0,1m−1)
in degrees N ∈ [0, n] with 1m−1 ∼ one.

Algorithm 2. Code-snippet for Λ0 ∼ Aeq in x0.
1: one = num2cell(ones(1,m-1));
2: j = 0;
3: for N=0:n

% let pN:=pN(·); rN:= r[N ]
4: pNx0 = double(pN(x0,one{:}));
5: Aeq(1:rN,j+(1:rN)) = diag(pNx0);
6: j = j + rN;
7: end

Given a vector y0 whose i-th component is zero if and only if the fitted poly-
nomials are zero in the parameter xi, Alg. 3 yields the zero separation matrix
V0. Here, we make direct use of MATLAB’s logical indexing for matrices in
order to remove the all-zero rows of the square matrix V′.

Algorithm 3. Code-snippet for V0 ∼ Azero.
% let p:=Pn(·); r:= r[n]

1: Azero = eye(r);
2: Y = num2cell(y0);
3: pY = double(p(Y{:}));
4: Azero(pY==0,:) = [];

The constrained linear least-square problem is solved by the lsqlin function
of the Optimization toolbox. As lsqlin requires a linear inequality constraint,

Aq ≤ b,

we assign A =
[
1 · · · 1

]
and b = 104.
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If no continuity constraints are given, the joint x0 of a single-variable function
with ϕ = id is found using a non-linear function solver. 8 The resulting coeffi-
cients and their joint are returned as pwfitobject, which provides interfaces
for plotting and exporting the obtained piecewise function and the polynomial
sub-functions.

The auxiliary functions prepareHyperSurfaceData and LMI2single are pro-
vided to prepare tabular data for fitting 9 and to simplify an LMI constraint
of continuity (Lemma 7), respectively.

6 Aerodynamic identification

The aerodynamic coefficients of an aircraft are subject to, amongst others, its
angle of attack, side-slip angle, the deflection of ailerons, elevator, and rudder,
as well as the body rates. Measurements for various inputs, e.g. of the NASA
Generic Transport Model (GTM, Jordan et al., 2006), are usually performed
in the wind-tunnel:

Example 9 (GTM 10 ) The observations of the aerodynamic coefficients of
the GTM are given by the unknown function Γ(·) to

Ĉ = Γ
(
α̂, β̂, ξ̂, η̂, ζ̂

)
+ ε (31)

for the observed inputs α̂ ∈ A, β̂ ∈ B, ξ̂ ∈ Ξ, η̂ ∈ H, and ζ̂ ∈ Z with
Ĉ =

(
ĈX, ĈY, ĈZ, Ĉl, Ĉm, Ĉn

)
and ε an unknown measurement error.

For polynomial and piecewise polynomial fitting, observations in (31) have to
be transformed to tabular data

(Ci)1≤i≤k = Γ(A×B × Ξ×H × Z) + (εi)1≤i≤k (32)

with Ci = (CX,i, CY,i, CZ,i, Cl,i, Cm,i, Cn,i) and

k = |A×B × Ξ×H × Z| . (33)

Here, simple polynomials models seem unsuitable to represent the full-envelope
aerodynamics (Fig. 1; see also Cunis et al., 2018). At the stall angle of attack,
the laminar flow around the wings of the pre-stall region changes to turbulent

8 https://mathworks.com/help/optim/ug/fsolve.html
9 Extending MATLAB’s functions prepareCurveData and prepareSurfaceData.
10 https://software.nasa.gov/software/LAR-17625-1
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Fig. 1. Observed coefficients ĈX(α̂) ( ) and comparison of 3rd-order polynomial
( , ) and piecewise ( ) identifications. (Cunis et al., 2018)

flow and remains so in post-stall. This significant change of the flow dynamics
motivates a piecewise fitting of the pre-stall and post-stall dynamics: 11

C�(α, β, ξ, η, ζ) =

 Cpre
� (α, β, ξ, η, ζ) if α ≤ α0

Cpost
� (α, β, ξ, η, ζ) else

where C� ∈ {CX, CY, CZ, Cl, Cm, Cn} are 6-dimensional polynomials. Initially,
α0 = 16.11° is found by fitting CXα with respect to the angle of attack only,
resulting in

Cpre
Xα(α0) = Cpost

Xα (α0) ,

which is the boundary angle of attack. The boundary condition α ≡ α0 then
resembles a 5-dimensional hyper-plane.

We now have continuity of the coefficient functions over their entire domain if

Cpre
� (α0, · · · ) ≡ Cpost

� (α0, · · · ) .

At last, we require the lateral coefficients (CY, Cl, Cn) to vanish in the symmet-
ric setting, i.e. zero side-slip, no aileron nor rudder deflection (β = ξ = ζ = 0).

The obtained, piecewise polynomial models for the CX and CY coefficients are
exemplary shown in Fig. 2 for angle of attack and side-slip angle with neutral
surface deflections (ξ = η = ζ = 0). Besides, the residuals

eX = CX
(
α̂, β̂

)
− ĈX

eY = CY
(
α̂, β̂

)
− ĈY

are given for
(
α̂, β̂

)
∈ A×B.

11 A script for MATLAB can be found in the demo folder.
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A six-degrees-of-freedom trim analysis of the GTM with piecewise polynomial,
aerodynamic coefficients has been presented in (Cunis et al., 2017).

7 Note on computation time

When fitting polynomials of high dimension to large data sets, the computa-
tion of a single polynomial in all variables usually takes a considerably long
time. In Tab. 1 we compare the computation time for objective matrix, con-
straint matrices, and the solution of the resulting LSQ problem for all six
coefficients of Example 9.
Here, the objective matrix K takes by far the most time; by (15), the size of
K resolves to

2k × r[n] (34)

and both k (33) and r[n] (30) grow exponentially with the number of variables
m. The size of C and Z, too, grow with m but are independent of k. 12

Table 1
Time consumption for fit of multi-variate polynomials C�(α, β, ξ, η, ζ): computation
time for objective matrix K, continuity constraint matrix C, zero constraint matrix
Z, and solving the LSQ problem. All values in seconds with accuracy ± 10 ms (Intel
Core i7, 3 GHz, 16 GB).

K C Z lsq

CX (α, β, ξ, η, ζ) 2058.39 0.84 — 2.60

CY (α, β, ξ, η, ζ) 2100.64 0.59 — 2.62

Cm (α, β, ξ, η, ζ) 2100.22 0.59 — 2.62

CY (α, β, ξ, η, ζ) 2102.25 0.60 <0.01 1.71

Cl (α, β, ξ, η, ζ) 2109.07 0.63 <0.01 1.65

Cn (α, β, ξ, η, ζ) 2102.38 0.59 0.01 1.54

Rather than single, high-dimensional polynomials, it may be more appropriate
to sequentially fit sums of polynomial terms lower dimensions, for sub-sets of
the variables:

C� = C�α(α) + C�β(α, β) + C�ξ(α, β, ξ)

+ C�η(α, β, η) + C�ζ(α, β, ζ) (35)

12 In addition, the computation of Z by MATLAB’s logical indexing is obviously
very efficient.
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with m ≤ 3. In this case, continuity of each term in α0 implies continuity of
C� over its entire domain. Tab. 2 shows the reduced computation time for the
sequential fit of CX.

Table 2
Time consumption for sequential fit of polynomial sum CX = CXα + CXβ + CXξ +
CXη +CXζ : computation time for objective matrix K, continuity constraint matrix
C, and solving the LSQ problem. All values in seconds with accuracy ± 10 ms (Intel
Core i7, 3 GHz, 16 GB).

K C lsq

CXα (α) 0.16 — 0.04

CXβ (α, β) 4.89 0.16 0.15

CXξ (α, β, ξ) 39.06 0.25 0.10

CXη (α, β, η) 31.34 0.20 0.11

CXζ (α, β, ζ) 36.49 0.20 0.04

CX (α, β, ξ, η, ζ) 111.94 0.81 0.44

8 Sensitivity analysis

In order to study the sensitivity of piecewise fitting, we take the GTM co-
efficients data of Example 9 as “true” values (ε ≡ 0) and add a white noise
νX :

C†
X = ΓX(α̂) + νX (36)

and νX is normally distributed with deviation σX
def
= 0.01. We then compute

a batch of piecewise fits (
C

{j}
X (α)

)
j

for 10 000 noise samples; a family of obtained curves is shown in Fig. 3.

The joints α{j}
0 have a sample mean α0 = 16.11° and deviation σα = 0.51°. The

error of fit with respect to the “true” values has a sample standard deviation

σ
(
C{j}(α̂)− ΓX(α̂)

)
< σX

for all observations α̂. That is, piecewise polynomial fitting is able to reduce
the error with respect to the erroneous signal.
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Fig. 3. Piecewise fits of erroneous coefficients (σX = 0.01).

9 Conclusion

With the rise of multivariate splines, prior research to piecewise polynomial
regression has been abandoned. However, by pre-selection of the knots, spline
fitting does not take into the underlying model; in fact, it thus over-estimates
the observations. On the other hand, the estimation of the “true” switching
points of a piecewise physical system usually adds computational difficulty
and load.

In this paper, we have presented an approach of piecewise polynomial fitting
using the LSQ optimization technique in order to fit both polynomial models
and the joint point. The pwpfit toolbox for MATLAB provides functions for
polynomial and piecewise polynomial data fitting under continuity and zero
constraints. We demonstrated our approach by fitting piecewise polynomial
models of the aerodynamic coefficients of an airliner model; here, we argued
that simple polynomial models are unsuitable for the full-envelope dynam-
ics while the dynamical changes at the stall point prompt the application of
piecewise regression. By simulation of the sensitivity to random noise sam-
ples, we proved that piecewise polynomial fitting improves the estimation of
an erroneous signal.
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Appendix: Proofs

PROOF. [Lemma 5] By reduction to:

〈Pn(x) ,q1 − q2〉 ≡ 0 ⇐⇒ q1 − q2 = 0

where 〈Pn(x) ,q1 − q2〉 is the zero polynomial.
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PROOF. [Lemma 7] By construction:

π−1 =


a1 a2 · · · am

1
. . .

1

 ;

π−1 is invertible as |π−1| = a1 and ϕ(x) = y1 ⇔ x = πy.
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Appendix B

Aerodynamic Models

This appendix chapter details the piecewise polynomial models for the aerodynamic
coefficients of the Generic Transport Model (GTM) and Cumulus One. The polynomial
models of its sections B.1 and B.2 are part of the technical reports

Torbjørn Cunis et al. (2018b). Piecewise Polynomial Model of the Aero-
dynamic Coefficients of the Generic Transport Model and its Equations of
Motion. Tech. rep. hal-01808649, version 3. Toulouse, FR: ONERA –
The French Aerospace Lab; French Civil Aviation School. url: https :
//archives-ouvertes.fr/hal-01808649v3;

and

Torbjørn Cunis and Anders la Cour-Harbo (2019). Piecewise Polynomial
Model of the Aerodynamic Coefficients of the Cumulus One Unmanned Air-
craft. Tech. rep. hal-02280789. Støvring, DK: Sky-Watch A/S. url: https:
//archives-ouvertes.fr/hal-02280789;

respectively.

Preliminaries
If not stated otherwise, all variables are in SI units. We will refer to the following
axis systems of ISO 1151-1: the body axis system (xf , yf , zf) aligned with the aircraft’s
fuselage; the air-path axis system (xa, ya, za) defined by the velocity vector VA; and the
normal earth-fixed axis system (xg, yg, zg). The orientation of the body axes with respect
to the normal earth-fixed system is given by the attitude angles Φ, Θ, Ψ and to the air-
path system by angle of attack α and side-slip β; the orientation of the air-path axes to
the normal earth-fixed system is given by azimuth χA, inclination γA, and bank-angle
µA. (Fig. B.1.)
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Figure B.1: Axis systems with angles and vectors, following Brockhaus et al. (2011,
Figures 2.7 and 2.8, p. 66). Projections into the drawing plane are marked by ′.

266



B.1 Generic Transport Model

The piece-wise polynomial models of the aerodynamic coefficients are given

C�(α, β, ξ, η, ζ, p̂, q̂, r̂) =
{

Cpre
� (α, β, . . . ) if α ≤ α0,

Cpost
� (α, β, . . . ) else,

(B-1.1)

where C� ∈ {CX, CY, CZ, Cl, Cm, Cn} are polynomials in angle of attack α, side-slip β,
surface deflections ξ, η, ζ, and normalized body rates p̂, q̂, r̂; and the boundary is found
at

α0 = 1.611 × 101◦. (B-1.2)

The polynomials in low and high angle of attack, Cpre
� , Cpost

� , are sums

Cpre
� = Cpre

�α(α) + Cpre
�β (α, β) + Cpre

�ξ (α, β, ξ) + Cpre
�η (α, β, η) + Cpre

�ζ (α, β, ζ)

+ Cpre
�p (α, p̂) + Cpre

�q (α, q̂) + Cpre
�r (α, r̂) ; (B-1.3)

Cpost
� = Cpost

�α (α) + Cpost
�β (α, β) + Cpost

�ξ (α, β, ξ) + Cpost
�η (α, β, η) + Cpost

�ζ (α, β, ζ)

+ Cpost
�p (α, p̂) + Cpost

�q (α, q̂) + Cpost
�r (α, r̂) . (B-1.4)

In the following subsections, we present the polynomial terms obtained using the pwpfit
toolbox. Coefficients of absolute value < 10−2 have been omitted for readability.

B.1.1 Domain of low angle of attack

Polynomials in angle of attack:

Cpre
Xα = −3.873 × 10−2 + 2.436 × 10−1α + 4.452α2 − 1.739 × 101α3; (B-1.5)

Cpre
Zα = −1.674 × 10−2 − 5.241α − 1.866α2 + 2.847 × 101α3; (B-1.6)

Cpre
mα = 1.192 × 10−1 − 1.465α + 8.129α2 − 3.198 × 101α3; (B-1.7)

Cpre
Yα, Cpre

lα , Cpre
nα are zero by definition.

Polynomials in angle of attack and side-slip:

Cpre
Xβ = 1.167 × 10−2 + 1.270 × 10−2α − 2.049α2 + 2.727 × 10−2αβ + 6.619 × 10−2β2

+ 9.808α3 + 2.490 × 10−1α2β − 5.723 × 10−1αβ2 − 1.065 × 101α4 − 1.178α3β

+ 1.936α2β2 − 4.259 × 10−2β4; (B-1.8)

Cpre
Yβ = −1.024β + 2.190 × 10−1αβ − 3.066 × 10−1α2β + 6.970 × 10−2β3 + 4.667α3β

− 1.062αβ3; (B-1.9)
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Polynomials in angle of attack and side-slip (ct’d):

Cpre
Zβ = −3.530 × 10−2 − 1.815 × 10−2α + 2.911α2 + 2.392 × 10−2β2 − 6.328α3

− 9.822 × 10−2α2β + 4.018αβ2 − 8.805α4 + 3.280 × 10−1α3β − 8.609α2β2

+ 1.649 × 10−1β4; (B-1.10)

Cpre
lβ = −1.438 × 10−1β + 1.768 × 10−1αβ + 5.193 × 10−2α2β + 2.029 × 10−1β3

+ 3.495α3β − 1.113αβ3; (B-1.11)

Cpre
mβ = 6.781 × 10−2 − 2.047 × 10−1α − 9.113α2 + 2.062 × 10−2αβ − 1.396β2

+ 5.492 × 101α3 + 1.698 × 10−1α2β − 1.633αβ2 − 8.362 × 101α4

− 9.896 × 10−1α3β + 1.176 × 101α2β2 − 2.705 × 10−2αβ3 + 1.164β4; (B-1.12)

Cpre
nβ = 2.279 × 10−1β − 2.278 × 10−1αβ − 2.297 × 10−1β3 − 1.697α3β

+ 5.385 × 10−1αβ3. (B-1.13)

Polynomials in angle of attack, side-slip, and aileron deflections:

Cpre
Xξ = 3.259 × 10−2α − 2.617 × 10−1α2 + 4.191 × 10−2β2 + 1.406 × 10−2βξ

+ 1.355 × 10−1ξ2 + 1.195α3 + 9.401 × 10−2α2β − 1.475 × 10−1αβ2

+ 1.610 × 10−2αβξ − 1.289 × 10−1αξ2 − 2.732α4 − 3.076 × 10−1α3β

+ 9.928 × 10−1α2β2 − 5.747 × 10−1α2βξ + 1.614 × 10−1α2ξ2 − 1.105 × 10−1β4

− 4.821 × 10−2β2ξ2 − 1.241 × 10−2βξ3 − 4.992 × 10−1ξ4; (B-1.14)

Cpre
Yξ = 8.019 × 10−2β − 2.155 × 10−2ξ − 1.925αβ − 3.586 × 10−2αξ + 5.012 × 10−1α2β

+ 2.295 × 10−1α2ξ − 2.054 × 10−2β3 − 2.441 × 10−1βξ2 − 1.469α3β

− 7.512 × 10−1α3ξ + 3.189αβ3 + 5.135αβξ2 + 2.269 × 10−1αξ3; (B-1.15)

Cpre
Zξ = −3.007 × 10−2α − 3.219 × 10−1α2 − 3.316 × 10−2β2 − 1.395 × 10−1βξ

+ 2.880 × 10−2ξ2 + 3.097α3 + 9.414 × 10−2α2β − 3.276 × 10−1αβ2

+ 3.851 × 10−1αβξ

− 2.473 × 10−1αξ2 − 5.289α4 − 3.080 × 10−1α3β

+ 1.422 × 10−1α2β2 + 1.690 × 10−1α2βξ − 7.951 × 10−1α2ξ2 + 1.092 × 10−1β4

+ 2.744 × 10−2β3ξ − 5.842 × 10−2β2ξ2 + 1.970 × 10−1βξ3 + 1.180 × 10−1ξ4;
(B-1.16)
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Polynomials in angle of attack, side-slip, and aileron deflections (ct’d):

Cpre
lξ = 2.091 × 10−2β − 7.928 × 10−2ξ − 1.577 × 10−1αβ + 4.597 × 10−2αξ

+ 1.493 × 10−1α2β + 6.975 × 10−1α2ξ − 6.616 × 10−2β3 + 2.718 × 10−2β2ξ

− 3.594 × 10−2βξ2 + 6.936 × 10−2ξ3 − 5.085 × 10−1α3β − 1.316α3ξ

+ 3.379 × 10−1αβ3 + 1.641 × 10−2αβ2ξ + 4.531 × 10−1αβξ2 − 1.387 × 10−1αξ3;
(B-1.17)

Cpre
mξ = −3.941 × 10−2 + 5.900 × 10−2α + 1.630 × 10−1α2 + 4.007 × 10−1β2

− 1.319 × 10−2βξ − 5.638 × 10−1ξ2 + 2.568α3 + 9.425 × 10−2α2β

− 1.548αβ2 + 6.836 × 10−2αβξ − 4.389 × 10−1αξ2 − 4.594α4 − 3.084 × 10−1α3β

− 1.295α2β2 − 4.795 × 10−2α2βξ + 3.560 × 10−1α2ξ2 + 8.456 × 10−2β4

+ 8.246 × 10−2β3ξ + 8.406 × 10−2β2ξ2 + 3.826 × 10−2βξ3 + 2.201ξ4; (B-1.18)

Cpre
nξ = −2.486 × 10−1αβ + 1.367 × 10−2αξ + 4.109 × 10−2α2β + 5.253 × 10−2α2ξ

+ 2.860 × 10−2β3 − 1.716 × 10−2βξ2 + 1.565 × 10−2ξ3 + 3.371 × 10−1α3β

+ 4.834 × 10−2α3ξ + 3.373 × 10−1αβ3 + 4.935 × 10−2αβ2ξ + 6.904 × 10−1αβξ2

− 1.224 × 10−1αξ3. (B-1.19)

Polynomials in angle of attack, side-slip, and elevator deflections:

Cpre
Xη = −3.562 × 10−2α − 2.917 × 10−1α2 + 1.480 × 10−1αη − 1.017 × 10−1η2 + 1.173α3

− 4.111 × 10−1α2η + 3.333 × 10−2αβ2 − 1.113 × 10−2αβη + 1.050 × 10−1αη2

− 3.584 × 10−2η3; (B-1.20)

Cpre
Yη = −2.666 × 10−1β + 1.036αβ − 3.141α2β + 5.318 × 10−1β3; (B-1.21)

Cpre
Zη = 4.072 × 10−2α − 1.635 × 10−2β − 5.261 × 10−1η + 2.051 × 10−1α2

+ 7.380 × 10−2αβ + 5.000 × 10−2αη − 1.185 × 10−2β2 − 1.770α3

− 6.003 × 10−2α2β + 8.150 × 10−1α2η + 3.060 × 10−1αβ2 − 2.759 × 10−2αβη

+ 1.808 × 10−1αη2 + 2.965 × 10−1β2η + 1.207 × 10−2βη2 + 6.445 × 10−1η3;
(B-1.22)

Cpre
lη = −1.224 × 10−2β + 5.692 × 10−2αβ − 2.864 × 10−1α2β + 4.670 × 10−2β3;

(B-1.23)
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Polynomials in angle of attack, side-slip, and elevator deflections (ct’d):

Cpre
mη = 2.816 × 10−2 + 3.174 × 10−2α − 5.357 × 10−2β − 1.851η − 1.719 × 10−1α2

+ 2.062 × 10−1αβ − 1.716 × 10−1αη − 1.994 × 10−1β2 + 2.626 × 10−2βη

− 1.733 × 10−1η2 − 2.999 × 10−1α3 − 6.794 × 10−2α2β + 5.136α2η

+ 8.162 × 10−1αβ2 − 2.269 × 10−2αβη + 8.973 × 10−1αη2 + 6.933 × 10−1β2η

+ 1.107 × 10−1βη2 + 1.324η3; (B-1.24)

Cpre
nη = −5.721 × 10−2β + 1.419 × 10−1αβ − 3.441 × 10−1α2β + 1.099 × 10−1β3.

(B-1.25)

Polynomials in angle of attack, side-slip, and rudder deflections:

Cpre
Xζ = −1.087 × 10−2 + 2.617 × 10−2α + 3.514 × 10−1α2 + 2.213 × 10−2β2

+ 9.083 × 10−2βζ − 2.731α3 − 4.230 × 10−2αβ2 − 3.962 × 10−2αβζ

+ 1.321 × 10−2αζ2 + 6.059α4 + 5.290 × 10−2α2β2 + 2.449 × 10−1α2βζ

− 2.110 × 10−1α2ζ2 − 1.102 × 10−2β4 − 4.228 × 10−2β2ζ2 − 1.300 × 10−1βζ3

− 5.581 × 10−2ζ4; (B-1.26)

Cpre
Yζ = 1.871 × 10−1β + 3.080 × 10−1ζ + 8.200 × 10−1αβ − 5.011 × 10−1αζ

+ 1.596 × 10−1α2β + 1.251α2ζ − 4.553 × 10−1β3 − 2.243 × 10−1β2ζ

+ 1.677 × 10−1βζ2 − 2.346 × 10−1ζ3 + 1.401 × 101α3β − 6.802α3ζ − 2.757αβ3

+ 3.067 × 10−1αβ2ζ − 6.776 × 10−1αβζ2 + 1.093αζ3; (B-1.27)

Cpre
Zζ = −1.061 × 10−1α + 1.635 × 10−2β + 2.543 × 10−1α2 − 7.380 × 10−2αβ

+ 5.456 × 10−2β2 + 5.442 × 10−2βζ + 1.172 × 10−1ζ2 + 3.459α3

+ 6.003 × 10−2α2β + 8.863 × 10−2αβ2 − 3.667 × 10−1αβζ + 6.284 × 10−2αζ2

− 6.397α4 − 9.843 × 10−1α2β2 + 1.934α2βζ − 1.049α2ζ2 − 9.888 × 10−2β4

− 1.397 × 10−1β3ζ − 4.678 × 10−2β2ζ2 − 4.313 × 10−2βζ3 − 1.221 × 10−1ζ4;
(B-1.28)

Cpre
lζ = 2.400 × 10−2ζ + 2.695 × 10−2αβ − 2.740 × 10−2αζ + 1.495 × 10−1α2β

+ 6.804 × 10−2α2ζ − 1.278 × 10−2β3 − 2.597 × 10−2β2ζ − 1.680 × 10−2ζ3

+ 6.000 × 10−1α3β − 2.512 × 10−1α3ζ − 1.717 × 10−1αβ3 + 4.621 × 10−2αβ2ζ

+ 2.036 × 10−2αβζ2 + 4.049 × 10−2αζ3; (B-1.29)
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Polynomials in angle of attack, side-slip, and rudder deflections (ct’d):

Cpre
mζ = −1.559 × 10−2 − 3.890 × 10−2α + 5.357 × 10−2β + 3.346 × 10−1α2

− 2.061 × 10−1αβ + 3.233 × 10−2β2 − 3.399 × 10−1βζ + 2.982 × 10−1ζ2 − 7.653α3

+ 6.794 × 10−2α2β + 7.235 × 10−1αβ2 − 3.538 × 10−1αβζ + 2.117 × 10−2αζ2

+ 2.328 × 101α4 − 1.037α2β2 + 5.879 × 10−1α2βζ − 1.013α2ζ2 − 3.110 × 10−1β4

− 3.042 × 10−1β3ζ + 2.127 × 10−1β2ζ2 + 6.797 × 10−1βζ3 − 2.471 × 10−1ζ4;
(B-1.30)

Cpre
nζ = 3.962 × 10−2β − 1.448 × 10−1ζ + 1.089 × 10−1αβ + 3.297 × 10−2αζ

+ 6.064 × 10−1α2β − 2.636 × 10−1α2ζ − 1.082 × 10−1β3 + 1.142 × 10−1β2ζ

− 5.237 × 10−2βζ2 + 8.848 × 10−2ζ3 − 1.391α3β + 1.698α3ζ − 3.869 × 10−1αβ3

− 9.788 × 10−2αβ2ζ + 7.711 × 10−2αβζ2 − 8.987 × 10−2αζ3. (B-1.31)

Polynomials in angle of attack and normalized body p-rate:

Cpre
Yp̂ = −7.051 × 10−2p̂ − 1.377 × 10−1αp̂ − 1.268 × 10−2p̂2 − 8.622 × 10−1α2p̂

+ 3.826 × 10−1αp̂2 + 1.414 × 101p̂3; (B-1.32)

Cpre
lp̂ = −2.657 × 10−1p̂ − 2.469 × 10−1αp̂ − 1.523 × 10−2p̂2 + 3.159α2p̂

+ 5.397 × 10−1αp̂2 − 2.843p̂3; (B-1.33)

Cpre
np̂ = −8.324 × 10−2p̂ − 4.426 × 10−2αp̂ − 6.486 × 10−2p̂2 + 1.221α2p̂

+ 7.313 × 10−2αp̂2 + 5.811p̂3; (B-1.34)

Cpre
Xp̂ , Cpre

Zp̂ , Cpre
mp̂ are zero due to lack of GTM measurement data.

Polynomials in angle of attack and normalized body q-rate:

Cpre
Xq̂ = −2.988 × 10−2α + 8.513 × 10−1q̂ + 7.587 × 10−2α2 + 1.243 × 101αq̂

+ 5.713 × 102q̂2 + 1.273 × 10−1α3 + 2.348 × 101α2q̂ + 2.197 × 103αq̂2

+ 2.529 × 103q̂3; (B-1.35)

Cpre
Zq̂ = −3.295 × 101q̂ − 2.025 × 10−1α2 − 3.215 × 101αq̂ + 1.402 × 103q̂2

− 2.820 × 10−1α3 − 8.058 × 101α2q̂ + 1.239 × 103αq̂2 + 2.346 × 103q̂3; (B-1.36)
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Polynomials in angle of attack and normalized body q-rate (ct’d):

Cpre
mq̂ = −2.440 × 10−2 − 3.282 × 10−2α − 4.238 × 101q̂ + 4.962 × 10−1α2 − 2.991αq̂

+ 7.650 × 102q̂2 + 9.087 × 10−1α3 + 2.959 × 101α2q̂ + 2.215 × 103αq̂2

+ 2.370 × 103q̂3; (B-1.37)

Cpre
Yq̂ , Cpre

lq̂ , Cpre
nq̂ are zero due to lack of GTM measurement data.

Polynomials in angle of attack and normalized body r-rate:

Cpre
Yr̂ = 7.481 × 10−1r̂ + 8.649 × 10−1αr̂ + 8.814 × 10−1r̂2 + 1.625α2r̂ − 1.485αr̂2

+ 2.662r̂3; (B-1.38)

Cpre
lr̂ = 1.470 × 10−1r̂ + 7.551 × 10−1αr̂ + 8.625 × 10−1α2r̂ + 1.246 × 10−1αr̂2

− 5.986r̂3; (B-1.39)

Cpre
nr̂ = −3.366 × 10−1r̂ − 2.491 × 10−1αr̂ − 4.710 × 10−1r̂2 − 9.122 × 10−1α2r̂

+ 1.028αr̂2 + 1.990 × 101r̂3; (B-1.40)

Cpre
Xr̂ , Cpre

Zr̂ , Cpre
mr̂ are zero due to lack of GTM measurement data.

B.1.2 Domain of high angle of attack

Polynomials in angle of attack:

Cpost
Xα = 1.884 × 10−2 − 1.304 × 10−1α + 1.687 × 10−1α2 − 2.236 × 10−2α3; (B-1.41)

Cpost
Zα = −3.648 × 10−1 − 2.712α + 1.647α2 − 3.692 × 10−1α3; (B-1.42)

Cpost
mα = 2.467 × 10−1 − 2.847α + 2.748α2 − 1.105α3; (B-1.43)

Cpost
Yα , Cpost

lα , Cpost
nα are zero by definition.

Polynomials in angle of attack and side-slip:

Cpost
Xβ = 1.005 × 10−1α − 2.388 × 10−1α2 + 2.516 × 10−2β2 + 1.987 × 10−1α3

+ 1.597 × 10−1αβ2 − 1.083 × 10−2β3 − 5.455 × 10−2α4 − 1.480 × 10−1α2β2

+ 1.008 × 10−2αβ3 − 4.259 × 10−2β4; (B-1.44)

Cpost
Yβ = −3.931 × 10−1β − 2.181αβ + 1.680α2β − 5.908 × 10−1β3 − 4.016 × 10−1α3β

+ 1.287αβ3; (B-1.45)
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Polynomials in angle of attack and side-slip (ct’d):

Cpost
Zβ = −3.984 × 10−2 + 1.833 × 10−1α − 2.681 × 10−1α2 + 3.892 × 10−2αβ

− 2.931 × 10−1β2 + 1.685 × 10−1α3 − 8.820 × 10−2α2β + 3.329αβ2

− 3.904 × 10−2α4 + 5.597 × 10−2α3β − 2.148α2β2 + 1.649 × 10−1β4; (B-1.46)

Cpost
lβ = 7.429 × 10−2β − 3.392 × 10−1αβ + 1.114 × 10−1α2β − 1.420 × 10−1β3

+ 1.134 × 10−1αβ3; (B-1.47)

Cpost
mβ = 3.566 × 10−1 − 2.954α − 9.610 × 10−2β + 7.802α2 + 5.097 × 10−1αβ

− 5.890 × 10−1β2 − 7.667α3 − 7.357 × 10−1α2β − 1.740αβ2 + 2.469α4

+ 2.962 × 10−1α3β + 1.931α2β2 − 4.029 × 10−2αβ3 + 1.164β4; (B-1.48)

Cpost
nβ = 1.972 × 10−1β − 1.857 × 10−1αβ − 2.858 × 10−1α2β − 2.377 × 10−1β3

+ 1.598 × 10−1α3β + 5.671 × 10−1αβ3. (B-1.49)

Polynomials in angle of attack, side-slip, and aileron deflections:

Cpost
Xξ = 7.897 × 10−2 − 6.106 × 10−1α + 1.476α2 + 1.348 × 10−1β2 − 2.540 × 10−2βξ

− 8.348 × 10−2ξ2 − 1.489α3 − 2.532 × 10−1αβ2 − 1.262 × 10−2αβξ

+ 8.968 × 10−1αξ2 + 5.305 × 10−1α4 + 1.935 × 10−1α2β2 + 2.641 × 10−2α2βξ

− 7.173 × 10−1α2ξ2 − 1.105 × 10−1β4 − 4.821 × 10−2β2ξ2 − 1.241 × 10−2βξ3

− 4.992 × 10−1ξ4; (B-1.50)

Cpost
Yξ = −1.486β − 5.892 × 10−2ξ + 4.744αβ + 1.271 × 10−1αξ − 4.548α2β

− 9.750 × 10−2α2ξ + 2.041β3 + 2.727βξ2 + 1.205 × 10−1ξ3 + 2.605α3β

+ 3.095 × 10−2α3ξ − 4.143αβ3 + 1.328 × 10−2αβ2ξ − 5.429αβξ2

− 1.846 × 10−1αξ3; (B-1.51)

Cpost
Zξ = 3.850 × 10−2 − 3.322 × 10−1α + 7.616 × 10−1α2 − 4.318 × 10−2β2

− 2.775 × 10−1ξ2 − 4.800 × 10−1α3 − 3.257 × 10−1αβ2 − 3.434 × 10−2αβξ

+ 6.763 × 10−1αξ2 + 5.426 × 10−2α4 + 2.623 × 10−1α2β2 − 3.271 × 10−2α2βξ

− 2.060 × 10−1α2ξ2 + 1.092 × 10−1β4 + 2.744 × 10−2β3ξ − 5.842 × 10−2β2ξ2

+ 1.970 × 10−1βξ3 + 1.180 × 10−1ξ4; (B-1.52)
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Polynomials in angle of attack, side-slip, and aileron deflections (ct’d):

Cpost
lξ = −1.068 × 10−1β − 3.470 × 10−2ξ + 4.186 × 10−1αβ − 4.155 × 10−2αξ

− 4.999 × 10−1α2β + 8.423 × 10−2α2ξ + 8.172 × 10−2β3 + 3.547 × 10−2β2ξ

+ 1.940 × 10−1βξ2 + 3.000 × 10−2ξ3 + 2.530 × 10−1α3β − 3.236 × 10−2α3ξ

− 1.880 × 10−1αβ3 − 1.308 × 10−2αβ2ξ − 3.645 × 10−1αβξ2; (B-1.53)

Cpost
mξ = −6.152 × 10−2 + 6.358 × 10−1α − 1.619α2 − 5.200 × 10−1β2 + 5.069 × 10−2βξ

− 6.111 × 10−2ξ2 + 1.436α3 + 1.727αβ2 − 2.018 × 10−1αβξ − 2.612αξ2

− 4.335 × 10−1α4 − 1.297α2β2 + 1.048 × 10−1α2βξ + 1.727α2ξ2 + 8.456 × 10−2β4

+ 8.246 × 10−2β3ξ + 8.406 × 10−2β2ξ2 + 3.826 × 10−2βξ3 + 2.201ξ4; (B-1.54)

Cpost
nξ = −1.696 × 10−1β + 1.289 × 10−2ξ + 4.582 × 10−1αβ − 3.435 × 10−2αξ

− 2.269 × 10−1α2β + 3.699 × 10−2α2ξ + 3.275 × 10−1β3 + 1.669 × 10−2β2ξ

+ 3.967 × 10−1βξ2 − 4.545 × 10−2ξ3 + 1.614 × 10−1α3β − 2.100 × 10−2α3ξ

− 7.257 × 10−1αβ3 − 1.728 × 10−2αβ2ξ − 7.814 × 10−1αβξ2 + 9.485 × 10−2αξ3.
(B-1.55)

Polynomials in angle of attack, side-slip, and elevator deflections:

Cpost
Xη = 4.213 × 10−2 − 2.760 × 10−1α − 1.058 × 10−2η + 5.456 × 10−1α2

+ 6.126 × 10−2αη + 3.880 × 10−2β2 − 6.334 × 10−2η2 − 2.930 × 10−1α3

− 6.328 × 10−2α2η − 8.755 × 10−2αβ2 − 3.154 × 10−2αη2 − 3.584 × 10−2η3;
(B-1.56)

Cpost
Yη = −6.083 × 10−1β + 1.973αβ − 2.152α2β + 5.318 × 10−1β3; (B-1.57)

Cpost
Zη = −1.001 × 10−1 + 5.594 × 10−1α − 5.939 × 10−1η − 9.261 × 10−1α2

+ 2.903 × 10−2αβ + 5.851 × 10−1αη + 1.100 × 10−1β2 − 3.519 × 10−2η2

+ 4.519 × 10−1α3 − 2.379 × 10−2α2β − 2.296 × 10−1α2η − 1.273 × 10−1αβ2

+ 3.189 × 10−1αη2 + 2.965 × 10−1β2η + 1.207 × 10−2βη2 + 6.445 × 10−1η3;
(B-1.58)

Cpost
lη = −4.916 × 10−2β + 1.503 × 10−1αβ − 1.517 × 10−1α2β + 4.670 × 10−2β3;

(B-1.59)
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Polynomials in angle of attack, side-slip, and elevator deflections (ct’d):

Cpost
mη = 9.009 × 10−2 − 3.720 × 10−1α − 1.880η + 4.356 × 10−1α2 + 1.470αη

+ 1.915 × 10−2βη − 8.652 × 10−2η2 − 1.393 × 10−1α3 − 3.411 × 10−1α2η

+ 7.562 × 10−2αβ2 + 5.886 × 10−1αη2 + 6.933 × 10−1β2η + 1.107 × 10−1βη2

+ 1.324η3; (B-1.60)

Cpost
nη = −6.973 × 10−2β + 1.423 × 10−1αβ − 1.871 × 10−1α2β + 1.099 × 10−1β3.

(B-1.61)

Polynomials in angle of attack, side-slip, and rudder deflections:

Cpost
Xζ = 1.608 × 10−2 − 1.403 × 10−1α + 4.785 × 10−1α2 + 8.168 × 10−2β2

+ 2.035 × 10−1βζ − 1.219 × 10−1ζ2 − 6.694 × 10−1α3 − 3.163 × 10−1αβ2

− 4.627 × 10−1αβζ + 4.562 × 10−1αζ2 + 2.979 × 10−1α4 + 2.740 × 10−1α2β2

+ 3.251 × 10−1α2βζ − 3.071 × 10−1α2ζ2 − 1.102 × 10−2β4 − 4.228 × 10−2β2ζ2

− 1.300 × 10−1βζ3 − 5.581 × 10−2ζ4; (B-1.62)

Cpost
Yζ = 3.051β − 2.050 × 10−1ζ − 1.179 × 101αβ + 1.702αζ + 1.445 × 101α2β

− 2.320α2ζ − 2.302β3 − 2.597 × 10−1β2ζ − 1.821 × 10−1βζ2 + 3.527 × 10−1ζ3

− 6.130α3β + 1.104α3ζ + 3.811αβ3 + 4.328 × 10−1αβ2ζ + 5.664 × 10−1αβζ2

− 9.961 × 10−1αζ3; (B-1.63)

Cpost
Zζ = 2.196 × 10−1 − 1.248α + 2.437α2 − 2.903 × 10−2αβ − 8.348 × 10−2β2

+ 1.415 × 10−1βζ − 8.089 × 10−2ζ2 − 2.074α3 + 2.379 × 10−2α2β

+ 3.447 × 10−1αβ2 − 1.626 × 10−1αβζ + 5.912 × 10−1αζ2 + 6.539 × 10−1α4

− 1.491 × 10−1α2β2 + 1.068 × 10−1α2βζ − 4.224 × 10−1α2ζ2 − 9.888 × 10−2β4

− 1.397 × 10−1β3ζ − 4.678 × 10−2β2ζ2 − 4.313 × 10−2βζ3 − 1.221 × 10−1ζ4;
(B-1.64)

Cpost
lζ = 1.292 × 10−1β − 4.707 × 10−1αβ + 4.654 × 10−2αζ + 5.459 × 10−1α2β

− 7.022 × 10−2α2ζ − 9.073 × 10−2β3 − 1.892 × 10−2β2ζ + 1.235 × 10−2βζ2

− 2.025 × 10−1α3β + 3.111 × 10−2α3ζ + 1.055 × 10−1αβ3 + 2.116 × 10−2αβ2ζ

− 1.039 × 10−2αβζ2 − 3.324 × 10−2αζ3; (B-1.65)
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Polynomials in angle of attack, side-slip, and rudder deflections (ct’d):

Cpost
mζ = 4.285 × 10−1 − 3.325α + 8.084α2 + 2.446 × 10−1β2 − 9.740 × 10−1βζ

+ 1.994 × 10−1ζ2 − 7.822α3 − 3.630 × 10−1αβ2 + 2.617αβζ + 1.495 × 10−1αζ2

+ 2.615α4 + 1.423 × 10−1α2β2 − 1.957α2βζ − 2.199 × 10−1α2ζ2 − 3.110 × 10−1β4

− 3.042 × 10−1β3ζ + 2.127 × 10−1β2ζ2 + 6.797 × 10−1βζ3 − 2.471 × 10−1ζ4;
(B-1.66)

Cpost
nζ = 1.492 × 10−1β − 1.462 × 10−1ζ − 2.233 × 10−1αβ + 5.470 × 10−2αζ

+ 1.477 × 10−2α2β + 1.840 × 10−1α2ζ − 3.768 × 10−1β3 + 1.760 × 10−1β2ζ

− 3.633 × 10−2βζ2 + 6.741 × 10−2ζ3 − 1.341 × 10−2α3β − 1.060 × 10−1α3ζ

+ 5.682 × 10−1αβ3 − 3.177 × 10−1αβ2ζ + 2.005 × 10−2αβζ2 − 1.492 × 10−2αζ3.
(B-1.67)

Polynomials in angle of attack and normalized body p-rate:

Cpost
Yp̂ = −5.752 × 10−2p̂ − 5.900 × 10−1αp̂ + 9.700 × 10−1p̂2 + 5.820 × 10−1α2p̂

− 3.112αp̂2 + 1.414 × 101p̂3; (B-1.68)

Cpost
lp̂ = 4.360 × 10−2p̂ − 5.892 × 10−1αp̂ + 1.330 × 10−1p̂2 + 4.640 × 10−1α2p̂

+ 1.256 × 10−2αp̂2 − 2.843p̂3; (B-1.69)

Cpost
np̂ = 1.134 × 10−1p̂ − 5.042 × 10−1αp̂ − 2.397 × 10−1p̂2 + 3.692 × 10−1α2p̂

+ 6.950 × 10−1αp̂2 + 5.811p̂3; (B-1.70)

Cpost
Xp̂ , Cpost

Zp̂ , Cpost
mp̂ are zero due to lack of GTM measurement data.

Polynomials in angle of attack and normalized body q-rate:

Cpost
Xq̂ = 3.365 × 10−2 − 2.087 × 10−1α + 2.296 × 101q̂ + 2.462 × 10−1α2

− 7.636 × 101αq̂ + 8.211 × 102q̂2 − 9.727 × 10−2α3 + 5.965 × 101α2q̂

+ 1.308 × 103αq̂2 + 2.529 × 103q̂3; (B-1.71)

Cpost
Zq̂ = 1.480 × 10−2 − 3.851 × 10−1α − 9.123 × 101q̂ + 9.776 × 10−1α2

+ 1.991 × 102αq̂ + 1.312 × 103q̂2 − 6.773 × 10−1α3 − 1.656 × 102α2q̂

+ 1.558 × 103αq̂2 + 2.346 × 103q̂3; (B-1.72)
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Polynomials in angle of attack and normalized body q-rate (ct’d):

Cpost
mq̂ = 1.277 × 10−1 − 4.700 × 10−1α − 1.137 × 101q̂ + 4.318 × 10−1α2

− 1.460 × 102αq̂ + 1.029 × 103q̂2 − 1.729 × 10−1α3 + 1.459 × 102α2q̂

+ 1.275 × 103αq̂2 + 2.370 × 103q̂3; (B-1.73)

Cpost
Yq̂ , Cpost

lq̂ , Cpost
nq̂ are zero due to lack of GTM measurement data.

Polynomials in angle of attack and normalized body r-rate:

Cpost
Yr̂ = 3.868r̂ − 1.182 × 101αr̂ + 1.677r̂2 + 7.267α2r̂ − 4.315αr̂2 + 2.662r̂3; (B-1.74)

Cpost
lr̂ = −1.541 × 10−1r̂ + 3.156αr̂ + 1.893 × 10−2r̂2 − 3.867α2r̂ + 4.201 × 10−2αr̂2

− 5.986r̂3; (B-1.75)

Cpost
nr̂ = −6.393 × 10−1r̂ + 7.144 × 10−1αr̂ − 2.392 × 10−1r̂2 − 5.096 × 10−1α2r̂

+ 2.033 × 10−1αr̂2 + 1.990 × 101r̂3; (B-1.76)

Cpost
Xr̂ , Cpost

Zr̂ , Cpost
mr̂ are zero due to lack of GTM measurement data.

B.1.3 MATLAB source code

The source code for the aerodynamic coefficients and the equations of motion can be
found at:

https://github.com/pwpfit/GTMpw.

B.1.4 Spline-based longitudinal coefficients

This model is used in Chapter 5 as an application example of a spline-based longitudinal
aircraft model. It has neither been designed nor evaluated for engineering purposes.

The longitudinal aerodynamic coefficients are obtained as

C�(α, η, q̂) = C�α(α) + C�η(α, η) + C�q̂(α, q̂) , (B-1.77)

where C� ∈ {CX, CZ, Cm}, q̂ = caq/ (2VA), and

C�α(α, η) =



C
(1)
�α if α ∈ (−∞; α1),

C
(2)
�α if α ∈ [α1; α2),

C
(3)
�α if α ∈ [α2; α3),

C
(4)
�α if α ∈ [α3; α3),

C
(5)
�α if α ∈ [α4; ∞);

(B-1.78)
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C�η(α, η) =



C
(1)
�η if α ∈ (−∞; α1),

C
(2)
�η if α ∈ [α1; α2),

C
(3)
�η if α ∈ [α2; α3),

C
(4)
�η if α ∈ [α3; α3),

C
(5)
�η if α ∈ [α4; ∞);

(B-1.79)

C�q̂(α, q̂) =



C
(1)
�q̂ if q̂ ∈ (−∞; q̂1),

C
(2)
�q̂ if q̂ ∈ [q̂1; q̂2),

C
(3)
�q̂ if q̂ ∈ [q̂2; q̂3),

C
(4)
�q̂ if q̂ ∈ [q̂3; q̂3),

C
(5)
�q̂ if q̂ ∈ [q̂4; ∞);

(B-1.80)

with

α1 = 5◦, α2 = 15◦, α3 = 25◦, α4 = 45◦; (B-1.81)
q̂1 = −0.200◦, q̂2 = −0.075◦, q̂3 = 0.075◦, q̂4 = 0.200◦; (B-1.82)

and

C
(1)
Xα(α) = −2.459 × 10−2 − 1.835 × 10−3α + 8.268 × 10−1α2; (B-1.83)

C
(2)
Xα(α) = −2.039 × 10−1 + 2.778α − 7.493α2; (B-1.84)

C
(3)
Xα(α) = 2.173 × 10−1 − 1.218α + 1.628α2; (B-1.85)

C
(4)
Xα(α) = 2.206 × 10−2 − 1.103 × 10−1α + 1.143 × 10−1α2; (B-1.86)

C
(5)
Xα(α) = −5.170 × 10−2 + 2.378 × 10−2α + 6.318 × 10−2α2; (B-1.87)

C
(1)
Zα (α) = −2.815 × 10−2 − 4.949α + 8.370 × 10−1α2; (B-1.88)

C
(2)
Zα (α) = 1.546 × 10−1 − 8.239α + 1.454 × 101α2; (B-1.89)

C
(3)
Zα (α) = −8.150 × 10−1 − 2.984 × 10−1α − 1.648α2; (B-1.90)
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C
(4)
Zα (α) = −4.669 × 10−1 − 2.158α + 7.858 × 10−1α2; C

(5)
Zα (α) = −1.052 − 9.955 × 10−1α + 2.537 × 10−1α2;

(B-1.91)

C(1)
mα(α) = 1.569 × 10−1 − 1.724α + 1.806α2 + 1.197 × 101α3; (B-1.92)

C(2)
mα(α) = 5.646 × 10−1 − 1.042 × 101α + 5.928 × 101α2 − 1.183 × 102α3; (B-1.93)

C(3)
mα(α) = 7.543 − 6.430 × 101α + 1.743 × 102α2 − 1.604 × 102α3; (B-1.94)

C(4)
mα(α) = −8.659 × 10−1 + 1.176α − 1.875α2 + 6.807 × 10−1α3; (B-1.95)

C(5)
mα(α) = −1.053 + 1.752α − 2.210α2 + 5.614 × 10−1α3; (B-1.96)

C
(1)
Xη (α, η) = −9.929 × 10−3η + 1.946 × 10−1αη − 8.214 × 10−2η2 + 6.278 × 10−1α2η

+ 2.128 × 10−1αη2 − 3.587 × 10−2η3; (B-1.97)

C
(2)
Xη (α, η) = 1.140 × 10−2η − 9.478 × 10−3αη − 5.982 × 10−2η2 + 1.652 × 10−1α2η

− 4.294 × 10−2αη2 − 3.587 × 10−2η3; (B-1.98)

C
(3)
Xη (α, η) = 6.012 × 10−2η − 1.752 × 10−1αη − 4.327 × 10−2η2 + 8.743 × 10−2α2η

− 1.062 × 10−1αη2 − 3.587 × 10−2η3; (B-1.99)

C
(4)
Xη (α, η) = 2.681 × 10−2η − 7.895 × 10−2αη − 5.634 × 10−2η2 + 4.179 × 10−2α2η

− 7.621 × 10−2αη2 − 3.587 × 10−2η3; (B-1.100)

C
(5)
Xη (α, η) = −2.814 × 10−1η + 5.861 × 10−1αη − 1.327 × 10−1η2 − 3.053 × 10−1α2η

+ 2.098 × 10−2αη2 − 3.587 × 10−2η3; (B-1.101)

C
(1)
Zη (α, η) = −5.950 × 10−1η + 5.769 × 10−2αη + 3.917 × 10−2η2 + 4.460 × 10−2α2η

+ 2.304 × 10−2αη2 + 1.142η3; (B-1.102)
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C
(2)
Zη (α, η) = −6.264 × 10−1η + 4.609 × 10−1αη + 1.219 × 10−2η2 − 4.523 × 10−1α2η

+ 3.323 × 10−1αη2 + 1.142η3; (B-1.103)

C
(3)
Zη (α, η) = −6.306 × 10−1η + 2.994 × 10−1αη + 5.138 × 10−2η2 + 2.243 × 10−1α2η

+ 1.826 × 10−1αη2 + 1.142η3; (B-1.104)

C
(4)
Zη (α, η) = −6.662 × 10−1η + 5.157 × 10−1αη − 3.375 × 10−1η2 − 8.418 × 10−2α2η

+ 1.074αη2 + 1.142η3; (B-1.105)

C
(5)
Zη (α, η) = −1.116η + 1.625αη + 3.116 × 10−1η2 − 7.678 × 10−1α2η

+ 2.473 × 10−1αη2 + 1.142η3; (B-1.106)

C(1)
mη(α, η) = −1.879η − 4.676 × 10−2αη − 2.274 × 10−1η2 − 8.450 × 10−1α2η

+ 3.783 × 10−1αη2 + 1.409η3; (B-1.107)

C(2)
mη(α, η) = −2.006η + 1.410αη − 2.604 × 10−1η2 − 8.072 × 10−1α2η

+ 7.561 × 10−1αη2 + 1.409η3; (B-1.108)

C(3)
mη(α, η) = −1.916η − 7.109 × 10−2αη − 7.037 × 10−1η2 + 3.530α2η

+ 2.449αη2 + 1.409η3; (B-1.109)

C(4)
mη(α, η) = −1.612η + 7.653 × 10−1αη + 8.022 × 10−1η2 + 1.680 × 10−2α2η

− 1.002αη2 + 1.409η3; (B-1.110)

C(5)
mη(α, η) = −1.555η + 5.348 × 10−1αη − 7.773 × 10−1η2 + 2.185 × 10−1α2η

+ 1.009αη2 + 1.409η3; (B-1.111)

as well as

C
(1)
Xq̂ (α, q̂) = −2.944 × 10−3 − 1.776q̂ − 9.511 × 10−3α − 2.765 × 102q̂(2)

− 2.319q̂α − 5.445 × 10−3α2; (B-1.112)

C
(2)
Xq̂ (α, q̂) = 8.254 × 10−4 + 6.887 × 10−1q̂ + 3.791 × 10−3α + 1.201 × 102q̂(2)

+ 1.492q̂α − 5.445 × 10−3α2; (B-1.113)
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C
(3)
Xq̂ (α, q̂) = 1.483 × 10−3 + 1.338q̂ + 2.569 × 10−3α + 2.324 × 102q̂(2)

+ 5.581 × 10−1q̂α − 5.445 × 10−3α2; (B-1.114)

C
(4)
Xq̂ (α, q̂) = 9.025 × 10−4 + 1.897q̂ + 4.214 × 10−3α + 1.449 × 102q̂(2)

− 6.991 × 10−1q̂α − 5.445 × 10−3α2; (B-1.115)

C
(5)
Xq̂ (α, q̂) = 1.446 × 10−3 + 2.271q̂ − 8.633 × 10−3α − 7.040q̂(2)

+ 2.981q̂α − 5.445 × 10−3α2; (B-1.116)

C
(1)
Zq̂ (α, q̂) = −8.248 × 10−3 − 2.581 × 101q̂ + 1.378 × 10−1α + 2.806 × 103q̂(2)

+ 2.216 × 101q̂α + 3.690 × 10−3α2; (B-1.117)

C
(2)
Zq̂ (α, q̂) = −9.819 × 10−3 − 3.215 × 101q̂ + 1.877 × 10−2α + 1.121 × 103q̂(2)

− 1.192 × 101q̂α + 3.690 × 10−3α2; (B-1.118)

C
(3)
Zq̂ (α, q̂) = −1.398 × 10−2 − 3.613 × 101q̂ + 2.921 × 10−2α + 5.071 × 102q̂(2)

− 3.943q̂α + 3.690 × 10−3α2; (B-1.119)

C
(4)
Zq̂ (α, q̂) = −9.819 × 10−3 − 4.011 × 101q̂ + 1.877 × 10−2α + 1.121 × 103q̂(2)

+ 4.036q̂α + 3.690 × 10−3α2; (B-1.120)

C
(5)
Zq̂ (α, q̂) = −8.248 × 10−3 − 4.644 × 101q̂ + 1.378 × 10−1α + 2.806 × 103q̂(2)

− 3.005 × 101q̂α + 3.690 × 10−3α2; (B-1.121)

C
(1)
mq̂(α, q̂) = 8.325 × 10−3 − 4.163 × 101q̂ − 1.327 × 10−2α + 3.004 × 102q̂(2)

− 1.072 × 101q̂α − 8.073 × 10−2α2; (B-1.122)

C
(2)
mq̂(α, q̂) = 9.034 × 10−3 − 4.027 × 101q̂ + 9.180 × 10−3α + 6.325 × 102q̂(2)

− 4.284q̂α − 8.073 × 10−2α2; (B-1.123)

C
(3)
mq̂(α, q̂) = 8.730 × 10−3 − 4.045 × 101q̂ + 1.195 × 10−2α + 6.749 × 102q̂(2)

− 2.169q̂α − 8.073 × 10−2α2; (B-1.124)
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C
(4)
mq̂(α, q̂) = 8.541 × 10−3 − 3.992 × 101q̂ + 9.362 × 10−3α + 3.814 × 102q̂(2)

− 1.927 × 10−1q̂α − 8.073 × 10−2α2; (B-1.125)

C
(5)
mq̂(α, q̂) = −5.290 × 10−4 − 3.526 × 101q̂ + 8.018 × 10−3α − 2.086 × 102q̂(2)

+ 1.922 × 10−1q̂α − 8.073 × 10−2α2; (B-1.126)
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B.2 Cumulus One
The piece-wise polynomial models of the aerodynamic coefficients are given

C�(α, β, ξ, η, ζ) =
{

Cpre
� (α, β, . . . ) if α ≤ α0,

Cpost
� (α, β, . . . ) else,

(B-2.1)

where C� ∈ {CX, CY, CZ, Cl, Cm, Cn} are polynomials in angle of attack α, side-slip β,
and surface deflections ξ, η, ζ; and the boundary is found at

α0 = 17.949◦. (B-2.2)

The polynomials in low and high angle of attack, Cpre
� , Cpost

� , are sums

Cpre
� = Cpre

�α(α) + C�ξ(β, ξ) + Cpre
�η (α, η) + C�ζ(β, ζ) (B-2.3)

Cpost
� = Cpost

�α (α) + C�ξ(β, ξ) + Cpost
�η (α, η) + C�ζ(β, ζ) . (B-2.4)

In the following subsections, we present the polynomial terms obtained using the pwpfit
toolbox. Coefficients of absolute value < 10−2 have been omitted for readability.

B.2.1 Domain of low angle of attack

Polynomials in angle of attack:

Cpre
Xα = −2.566 × 10−2 + 5.722 × 10−1α + 1.496α2 − 1.148 × 101α3; (B-2.5)

Cpre
Yα = 5.402 × 10−2 − 2.345 × 10−1α − 2.001α2 + 7.054α3; (B-2.6)

Cpre
Zα = −3.475 × 10−1 − 5.467α + 1.853α2 + 2.663 × 101α3; (B-2.7)

Cpre
lα = 4.875 × 10−2 − 2.190 × 10−1α − 2.004α2 + 7.146α3; (B-2.8)

Cpre
mα = 6.214 × 10−2 − 1.755α − 3.427α2 + 1.256 × 101α3; (B-2.9)

Cpre
nα = 4.748 × 10−2 − 2.097 × 10−1α − 2.016α2 + 7.171α3. (B-2.10)

Polynomials in angle of attack and elevator deflections:

Cpre
Xη = 4.327 × 10−2η − 4.458 × 10−1αη + 3.370 × 10−1α2η − 4.567 × 10−1αη2

+ 7.331 × 10−2η3; (B-2.11)
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Polynomials in angle of attack and elevator deflections (ct’d):

Cpre
Yη = 1.832 × 10−2η + 7.484 × 10−2αη − 4.384 × 10−1α2η; (B-2.12)

Cpre
Zη = −2.567 × 10−1η + 3.085 × 10−1αη − 5.105 × 10−2η2 − 7.394 × 10−1α2η

+ 6.936 × 10−1αη2 + 1.337 × 10−1η3; (B-2.13)

Cpre
lη = 1.699 × 10−2η + 8.936 × 10−2αη − 4.564 × 10−1α2η + 1.571 × 10−2αη2;

(B-2.14)

Cpre
mη = −9.028 × 10−1η + 7.437 × 10−1αη − 4.924 × 10−2η2 − 8.415 × 10−1α2η

+ 2.210αη2 + 5.251 × 10−1η3; (B-2.15)

Cpre
nη = 1.532 × 10−2η + 8.758 × 10−2αη − 4.513 × 10−1α2η + 1.487 × 10−2αη2.

(B-2.16)

B.2.2 Domain of high angle of attack

Polynomials in angle of attack:

Cpost
Xα = 1.266 × 10−2 − 3.159 × 10−1α + 3.832 × 10−1α2 − 1.226 × 10−1α3; (B-2.17)

Cpost
Yα = −2.297 × 10−2α2 + 1.337 × 10−2α3; (B-2.18)

Cpost
Zα = −4.179 × 10−1 − 2.345α + 9.586 × 10−1α2 − 3.665 × 10−2α3; (B-2.19)

Cpost
lα = 2.006 × 10−2 − 8.200 × 10−2α + 1.012 × 10−1α2 − 3.515 × 10−2α3; (B-2.20)

Cpost
mα = −2.552 × 10−1 − 5.131 × 10−1α − 2.677 × 10−1α2 + 1.332 × 10−1α3; (B-2.21)

Cpost
nα = 1.159 × 10−2 − 3.062 × 10−2α + 2.727 × 10−2α2. (B-2.22)

Polynomials in angle of attack and elevator deflections:

Cpost
Xη = −1.342 × 10−2η − 1.663 × 10−1αη − 1.796 × 10−1η2 + 2.254 × 10−2α2η

+ 9.274 × 10−2αη2 + 7.331 × 10−2η3; (B-2.23)

Cpost
Zη = −2.922 × 10−1η + 1.829 × 10−1αη + 1.277 × 10−1η2 + 2.284 × 10−2α2η

+ 1.229 × 10−1αη2 + 1.337 × 10−1η3; (B-2.24)

Cpost
mη = −9.498 × 10−1η + 6.099 × 10−1αη + 5.093 × 10−1η2 + 6.456 × 10−2α2η

+ 4.264 × 10−1αη2 + 5.251 × 10−1η3; (B-2.25)

Cpost
Yη , Cpost

lη , Cpost
nη are approximately zero.
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B.2.3 Full-envelope polynomials

Polynomials in side-slip and aileron deflections:

CXξ = 6.557 × 10−2β2 + 4.214 × 10−2βξ − 1.493ξ2 + 4.264 × 10−2ξ3 − 1.647 × 10−2β4

− 2.321 × 10−2β3ξ + 9.649 × 10−2β2ξ2 + 2.859 × 10−2βξ3 + 3.084 × 101ξ4;
(B-2.26)

CYξ = −3.697 × 10−1β − 1.570 × 10−1ξ − 3.231 × 10−2β2 − 6.137ξ2 + 7.416 × 10−2β3

+ 1.611 × 10−2βξ2 + 2.214ξ3 + 6.487 × 10−1β2ξ2 + 5.323 × 10−2βξ3

+ 1.456 × 102ξ4; (B-2.27)

CZξ = 3.411 × 10−1β2 + 4.141 × 10−1βξ − 3.717ξ2 + 4.234 × 10−2ξ3 − 9.915 × 10−2β4

− 1.922 × 10−1β3ξ + 1.945 × 10−1β2ξ2 + 9.909 × 10−1βξ3 + 9.856 × 101ξ4;
(B-2.28)

Clξ = −5.798 × 10−2β − 3.929 × 10−1ξ − 2.906 × 10−2β2 − 5.551ξ2 + 1.763 × 10−2β3

+ 1.722 × 10−1β2ξ + 4.557 × 10−1ξ3 + 5.835 × 10−1β2ξ2 + 5.332 × 10−2βξ3

+ 1.319 × 102ξ4; (B-2.29)

Cmξ = −3.978 × 10−2β2 + 5.554 × 10−1βξ − 4.689ξ2 + 4.229 × 10−2ξ3 + 2.585 × 10−2β4

− 2.309 × 10−1β3ξ + 4.077 × 10−1β2ξ2 − 5.068 × 10−1βξ3 + 1.160 × 102ξ4;
(B-2.30)

Cnξ = 3.686 × 10−2β + 1.392 × 10−2ξ − 2.828 × 10−2β2 − 5.410ξ2 − 1.160 × 10−1ξ3

+ 5.678 × 10−1β2ξ2 + 5.334 × 10−2βξ3 + 1.286 × 102ξ4. (B-2.31)

Polynomials side-slip and rudder deflections:

CXζ = −1.031 × 10−2βζ − 7.986 × 10−2ζ2 + 1.086 × 10−2βζ3 + 9.739 × 10−2ζ4;
(B-2.32)

CYζ = −8.526 × 10−2ζ − 2.128 × 10−2β2 − 3.569 × 10−1ζ2 + 1.049 × 10−2β2ζ

+ 1.924 × 10−2βζ2 + 7.679 × 10−2ζ3 + 5.663 × 10−2β2ζ2 + 5.247 × 10−1ζ4;
(B-2.33)

CZζ = −2.036 × 10−2β2 − 1.332 × 10−2βζ − 1.743 × 10−1ζ2 + 1.834 × 10−2β2ζ2

+ 3.683 × 10−2βζ3 + 2.631 × 10−1ζ4; (B-2.34)
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Polynomials side-slip and rudder deflections (ct’d):

Clζ = −1.930 × 10−2β2 − 3.221 × 10−1ζ2 + 5.111 × 10−2β2ζ2 + 4.735 × 10−1ζ4;
(B-2.35)

Cmζ = −3.231 × 10−2β2 − 1.436 × 10−2βζ − 2.672 × 10−1ζ2 + 1.241 × 10−2β3ζ

+ 1.472 × 10−2β2ζ2 + 1.051 × 10−2βζ3 + 4.193 × 10−1ζ4; (B-2.36)

Cnζ = 2.158 × 10−2ζ − 1.882 × 10−2β2 − 3.137 × 10−1ζ2 − 1.338 × 10−2ζ3

+ 4.978 × 10−2β2ζ2 + 4.611 × 10−1ζ4. (B-2.37)

B.2.4 Linear pitch-damping model

In Chapters 6 and 7, the pitch-damping behaviour of the longitudinal motion was rep-
resented by the linear model

IyM = q̄caCm(α, η) − CMqq (B-2.38)

with CMq = 1.960.
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Appendix C

Implementation of MPC
Recovery

This appendix chapter details the implementation of model-predictive control (MPC)
strategies for upset recovery. We discuss the reduction of the optimal control problem
(OCP) onto a nonlinear optimisation problem, which is solved using an open-source
interior-point solver; review the aircraft simulation of the Generic Transport Model
(GTM) provided by NASA; and explain the simulation of tracking MPC (NMPC) re-
covery within MATLAB/Simulink.

C.1 Solving the Optimal Control Problem
We use the Ipopt open-source software package (as detailed in Wächter and Biegler 2006)
to iteratively solve the OCP – formulated as general nonlinear optimisation problem –
at each step of the MPC feedback.

C.1.1 Nonlinear optimisation with Ipopt

Ipopt solves the general nonlinear programming problem (cf. Ipopt 2016, p. 3)

min
Ξ∈RN

J(Ξ) (C.1)

s.t. ΓL ≤ γ(Ξ) ≤ ΓU, (C.2)
ΞL ≤ Ξ ≤ ΞU, (C.3)

where J : RN → R is the objective function; Ξ = (ξ1, . . . , ξN ) are real-valued decision
variables with lower and upper bounds ΞL, ΞU ∈ (R ∪ {±∞})N , ΞL ≤ ΞU, respectively;1
and γ : RN → RM are M nonlinear constraints with ΓL, ΓU ∈ (R ∪ {±∞})M, ΓL ≤ ΓU.

Easy to see, we can write the nonlinear constraints of (C.2) equivalently as

γ≤(Ξ) =
[
γ(Ξ) − ΓU

ΓL − γ(Ξ)

]
≤ 0 (C.4)

and, for convenience, define

γ≤(Ξ) =def

 g≤(Ξ)
g=(Ξ)

−g=(Ξ)

 (C.5)

1The inequality operator “≤” here is to be understood element-wise and, in general, ∞ 6≤ ∞.
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with g≤ : RN → RM1 and g= : RN → RM2 , imposing the equality constraints g=(Ξ) = 0.
Of importance for an efficient and successful optimisation are the gradient vector

and the Jacobian matrix of J(·) and γ(·), respectively, and the Hessian matrix of the
Lagrangian L(·), with respect to Ξ, viz. (Ipopt 2016, p. 27)

gradJ(Ξ) =
[

∂J
∂ξ1

(Ξ) · · · ∂J
∂ξN

(Ξ)
]T

; (C.6)

Jγ(Ξ) =


∂γ1
∂ξ1

(Ξ) · · · ∂γ1
∂ξN

(Ξ)
... . . . ...

∂γM
∂ξ1

(Ξ) · · · ∂γM
∂ξN

(Ξ)

 ; (C.7)

HL(Ξ, λ, µ) =


∂2L
∂ξ2

1
(·) · · · ∂2L

∂ξ1∂ξN
(·)

... . . . ...
∂2L

∂ξN ∂ξ1
(·) · · · ∂2L

∂ξ2
N

(·)

 ; (C.8)

with

L(Ξ, λ, µ) =def λJ(Ξ) +
M∑
i=1

µiγi(Ξ) , (C.9)

where γi, µi are the i-th components of γ(·) and µ, respectively.

C.1.2 Formulation of the OCP

The open-loop OCPs of Eq. (II.10) and following are formulated as the nonlinear problem
with decision variables

Ξ = (x1, . . . , xN , u0, . . . , uN−1) , (C.10)

objective function

J : Ξ 7→ `∞(xN ) +
N−1∑
k=1

`(xk, uk) , (C.11)

equality constraints

g= : Ξ 7→

 f+(x0, u0) − x1
...

f+(xN−1, uN−1) − xN

 , (C.12)

and inequality constraints

g≤ : Ξ 7→


gi(x1, u1)

...
gi(xN−1, uN−1)

gi(N, xN )


i∈I

. (C.13)

288



Where state-space X and admissible control inputs U are defined as box constraints
x ≤ x ≤ x and u ≤ u ≤ u, respectively, upper and lower bounds of the decision
variables are set to

ΞL =
[

x · · ·N x u · · ·N u
]T

, (C.14)

ΞU =
[

x · · ·N x u · · ·N u
]T

, (C.15)

where “a · · ·n a” denotes a repetition of a for in total n times.
We have made use of CasADi (Andersson, Gillis, Horn, et al. 2018) in order to

construct and evaluate Eqs. (C.11)–(C.13) as well as (C.6)–(C.9) given N , `(·, ·), `∞(·),
f+(·, ·), and gi(·, ·) for all i ∈ I as well as x, x and u, u. All problem function instances
have been compiled into MATLAB executables (mex) for fast, iterative execution (see
Andersson, Gillis, and Diehl 2018, p. 42).

C.2 The GTM Simulation

The MATLAB/Simulink model2 for the Generic Transport Model (NASA 2016) consists
of the aircraft simulation block itself (“GTM_T2”), a wind and feedback command gen-
erator block, and further utility blocks for trimming, linearisation, and logging of the
simulation (Fig. C.1).

input

control

cmd

Select
feedback

2
Linearize Output

1
Trim Output

InBias

InSurf

Aux

Xout

SelectOutputs

In

NamedStore

GTM Design-Simulation Model
Release 13-08

Subversion Info: $LastChangedRevision: 4850 $
Last modified by cunis on 13-May-2019 18:57:14

Copyright 2009
United States Government as represented by the 

Administrator of the National and Aeronautics and Space Administration.

No copyright is claimed in the United States under Title 17, U.S. Code.
All Other Rights Reserved.

Feedback

cmds

winds

Input Generator
GTM_T2

Sensors

AeroCoefs

AC_Params

Engines

EOM_Xdot

AuxVars

ThrustFM

SurfacePos

EOM_State

2
Linearizing Input

1
Trimming Input

Feedback cmd

NMPC

Control

From

surf

eom

aux

thrust

xdot

engines

AC_Params

aero

Sensors

ctrllog

Figure C.1: Overview of the Simulink model with aircraft simulation (centre), feedback
(left), and utilities (top & right). The NMPC feedback is also shown (bottom left).

2We use “model” here for the MATLAB/Simulink mdl file in the sense Mathworks does.
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For the simulation, forces and moments of aerodynamics, engines, gravity, and the
landing gear, and subsequently the aircraft’s equations of motion, are modeled as well
as uplink/downlink transport delays, actuators dynamics, and sensors (Fig. C.2).
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Figure C.2: Overview of the aircraft simulation with blocks for engines (3rd row left),
aerodynamics (4th row left), gravity (top row right), landing gear (2nd row right), and
equations of motion (3rd row right) as well as delays, actuators, and sensors (respectively
top, 2nd, and bottom row left).

C.2.1 Equations of motion

Central part of the simulation are the equations of motion based on forces and moments
generated by the aircraft and its components. Main contributor to the aircraft dynamics
are the aerodynamic forces and moments divided into basic airframe, control surfaces,
dynamics derivatives, and stall-rolling asymmetry (Fig. C.3). The latter has not been
used in the upset recovery experiments. Based on the total of forces and moments,
the equations of motions are modeled as simple point-mass dynamics of a rigid body
(Fig. C.4); note that the input Forces consists of both forces and moments.
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C.2.2 Inputs & Outputs

From the point of view of a feedback controller – human or computer – the outputs
of the aircraft simulation are provided as sensor data and subject to a downlink delay;
the respective input commands are again delayed in the uplink and then applied to the
actuator dynamics, which result in the actual change of the control surfaces. In both
directions, the transport delays (Fig. C.5) equate to 15 ms for sensor downlink and for
command uplink.3
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AntiAliasing

2
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Sensors

Figure C.5: Uplink and downlink of inputs and outputs with transport delays.

The GTM has a total of 16 independent control surfaces; namely, each inner and
outer, left and right elevators; left and right ailerons; upper and lower rudder; each inner
and outer, left and right spoiler; as well as each inner and outer, left and right flaps.
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Figure C.6: Actuator dynamics for elevator, aileron, rudder, spoiler, and flaps.

3The time delay of the inputs are divided into 5 ms prior actuator dynamics and 10 ms for the surface
positions to “take effect.”
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The dynamics of each surface are independently modeled as first-order linear transfer
functions (Fig. C.6, exemplary for the outer left elevator) with individual limits on rates
and positions. These control inputs are further completed by gear shift, break, and
steering servo of the landing gear (for control on ground) as well as individual throttle
commands for the left and right engine.
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Figure C.7: Sensor data output grouped into aerodynamic data, earth-fixed position,
velocity, and orientation (“MIDG”), body rates and accelerations (“MAG3”) as well as
outputs of the control devices (all top to bottom).

Finally, the sensor outputs are grouped into aerodynamic data (such as angle of
attack, side-slip angle, and true airspeed), inertial measurements4 (position, orientation,
velocity) with respect to the earth-fixed axis system, rates and accelerations within the
body axis system, and the outputs of the control subsystems, i.e., surface positions and
engine data (Fig. C.7).

4Subject to an additional time delay of 40 ms.
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C.3 MPC Recovery Simulation

The NMPC feedback block subsumes mainly three distinguished elements, namely, col-
lecting aircraft and actuator outputs from the sensor data into the extended NMPC
state vector, solving the OCP using Ipopt, and computing and assigning the optimal
control inputs onto the aircraft actuator commands (Fig. C.8). The target condition
and sample time for NMPC are given as constant parameters to the simulation.

Remark The NMPC feedback is evaluated as discrete system with a frequency of
20 Hz, whereas the aircraft simulation is considered continuous – although, in fact, the
aircraft equations of motion are solved with a fixed step of 5 ms (200 Hz). In these figures
depicting the MATLAB/Simulink elements, the sample time of the signals is color-coded
as follows: black, continuous time; red, quasi-continuous (5 ms); blue, NMPC sample
time (50 ms); yellow, mixed sample time; and pink, constants.
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Figure C.9: Assignment of control inputs onto the aircraft actuator commands (throttle
was chosen to be constantly zero).

For the NMPC state vector, the velocity vector in air-path axis system (in SI units)
is calculated from aerodynamic sensor data (angle of attack, side-slip angle, true air-
speed in knots) and angular values are converted from degrees to radians. A warning
is issued if the aircraft’s state violates the NMPC constraints and render the OCP in-
feasible. Positions of the individual control surfaces are collected into a single variable
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for each ailerons, elevator, and rudder.5 The OCP is solved within a Simulink MATLAB
Function block that calls the Ipopt nonlinear solver using the pre-compiled MATLAB
executables for objectives, constraints, and first and second derivatives. Here, the most
recent optimal solution is kept persistent in order to benefit from the Ipopt warm-start
capabilities (Ipopt 2016, p. 58). Finally, the resulting actuator control inputs, based
on the surfaces’ current positions and optimal changes, are assigned to the individual
surface commands (Fig. C.9; note the negative sign of the left aileron command).

5As of now, this is done by calculating the respective median. A warning may be issued if the
individual surface positions do not coincide.





Abstract Upset flight dynamics are characterised by unstable, highly nonlinear behaviour
of the aircraft aerodynamic system. As upsets often lead to in-flight loss-of-control (LOC-I) acci-
dents, it still poses a severe threat to today’s commercial aviation. Contributing to almost every
second fatality in civil aviation while representing merely 10 % of the total accidents (both fatal
and nonfatal), the International Air Transport Association has classified LOC-I as the “high-
est risk to aviation safety”. Considerable effort has been undertaken in response by academics,
manufacturers, commercial airlines, and authorities to predict and prevent LOC-I events as well
as recover from upset conditions into the nominal flight envelope. As result, researchers from
both aeronautical engineering and system theory have made significant contributions towards
aviation safety; however, approaches from engineering and theory are rather disparate. This the-
sis therefore focuses on the application and transfer of system theoretical results to engineering
applications.

In particular, we have found simple polynomial models for aircraft dynamics, despite common
in the system theoretical literature, failing to represent full-envelope aerodynamics accurately.
Advanced fitting methods such as multi-variate splines, on the other hand, are unsuitable for
some of the proposed functional analysis methods. Instead, a simple piecewise defined polynomial
model proves to be accurate in fitting the aerodynamic coefficients for low and high angles of
attack. State-of-the-art bifurcation analysis and analysis based on sum-of-squares programming
techniques are extended for this class of models and applied to a piecewise equations of motion
of the Generic Transport Model (GTM). In the same spirit, we develop a model for a small,
fixed-wing aircraft based on static continuous fluid dynamics (CFD) simulations. In the lack
of dynamic coefficients from CFD, we identify a pitch-damping model comparing bifurcation
analysis and flight data that predicts well dynamics and stability of deep-stall flight.

Previous developments in sum-of-squares programming have been promising for the cer-
tification of nonlinear dynamics and flight control laws, yet their application in aeronautical
engineering halted. In combination with piecewise polynomial modeling, we are able to re-apply
this technique for analysis in an accurate but computationally feasible manner to verify stable
recovery. Subsequently, we synthesise inherently stable linear and polynomial feedback laws for
deep-stall recovery. We further extend the estimation of regions of attraction for the piecewise
polynomial model towards an improved algorithm for local stability analysis of arbitrary switch-
ing systems, such as splines, thus making our work available for future analysis and certification
of highly accurate algebraic models.

With highly nonlinear dynamics and critical state and input constraints challenging upset
recovery, model-predictive control (MPC) with receding horizon is a powerful approach. MPC
further provides a mature stability theory contributing towards the needs for flight control cer-
tification. Yet, for realistic control systems careful algebraic or semi-algebraic considerations
are necessary in order to rigorously prove closed-loop stability. Employing sum-of-squares pro-
gramming, we provide a stability proof for a deep-stall recovery strategy minimising the loss of
altitude during recovery. We further demonstrate MPC schemes for recovery from spiral and
oscillatory spin upsets in an uncertain environment making use of the well-known and freely
available high-fidelity GTM desktop simulation.

The results of this thesis are thus promising for future system theoretic approaches in mod-
eling, analysis, and control of aircraft upset dynamics for the development and certification of
flight control systems in order to prevent in-flight loss-of-control accidents.

Keywords Nonlinear control; upset recovery; aerodynamics modeling; stability analysis; un-
manned aircraft; system theory.





Résumé Le travail effectué au cours de cette thèse tente d’apporter des solutions algo-
rithmiques à la problématique de reprise au décrochage d’un aéronef. A travers de nombreux
exemples d’application sur des modèles aérodynamiques, le lecteur pourra appréhender les con-
cepts abstraits présentés dans cette thèse. Alors que la capacité pour un aéronef à revenir à une
situation nominale après une sortie du domaine de vol est un élément clé pour les systèmes de
transport aérien du futur, les recherches menées dans ce cadre sont encore peu nombreuses. Pour-
tant, un tel dépassement conduit généralement à une perte de contrôle (dénommée LOC-I), que
l’Association du Transport Aérien International (IATA) a classé dans la catégorie des « risques
les plus élevés pour l’aviation ».

Dans un premier temps, nous avons montré que les modèles polynomiaux habituellement util-
isés en théorie des systèmes ne représentent pas fidèlement l’aérodynamique d’un modèle d’avion
sur l’ensemble de son enveloppe de vol. Nous avons donc tout d’abord montré qu’un modèle
polynomial par morceaux représente avec exactitude les coefficients aérodynamiques pour les
angles d’attaque faibles et élevés. Nous avons alors pu étendre à cette classe de systèmes, des
méthodes récentes d’étude de bifurcation et d’analyse de stabilité qui utilisent des techniques
de programmation semi-définie basées sur la positivité de polynômes (SOS); nous avons notam-
ment appliqué ces résultats au modèle d’avion de transport générique dénommé GTM. Dans le
même esprit, nous avons développé un modèle pour un petit aéronef à voilure fixe basé sur des
simulations numériques en mécanique des fluides (CFD). Les coefficients dynamiques n’étant pas
déterminés en CFD, nous avons identifié le coefficient d’amortissement du tangage en comparant
l’analyse de bifurcation et les données de vol, ce qui nous a permis d’étudier à la fois la dynamique
et la stabilité du vol en cas de fort décrochage.

Des résultats antérieurs ont montré que les techniques SOS étaient prometteuses pour la certi-
fication des lois de commande pour des systèmes non-linéaires, cependant sans avoir été appliqués
à l’ingénierie aéronautique. En adaptant ces techniques aux modèles polynomiaux par morceaux,
nous avons montré qu’il est désormais possible de les utiliser d’une manière précise mais réal-
isable sur le plan calculatoire. Ensuite, nous avons synthétisé des lois de commandes linéaires
et polynomiales pour la récupération d’un fort décrochage. En outre, nous sommes désormais
en mesure d’estimer des régions d’attraction pour des modèles polynomiaux par morceaux; pour
cela, nous avons proposé un algorithme amélioré pour l’analyse de stabilité locale des systèmes à
commutation, tels que ceux qui sont définis par des splines, rendant ainsi notre travail disponible
pour l’analyse et la certification futures de modèles d’avion très fidèles.

La commande prédictive basée modèle (MPC) s’est avérée être une approche très efficace
lorsque la dynamique du système est fortement non linéaire et soumise à des contraintes d’état
qui rendent difficile la récupération après le décrochage. Cependant, pour des systèmes réalistes,
il est nécessaire de prendre des précautions afin de prouver rigoureusement la stabilité en boucle
fermée. En utilisant la technique SOS, nous avons ainsi montré la stabilité d’une stratégie de
récupération d’un fort décrochage visant à minimiser la perte d’altitude. Nous avons aussi montré
qu’une telle stratégie de commande permet la récupération d’une spirale infernale en utilisant le
simulateur GTM.

Les résultats de cette thèse sont donc prometteurs et fournissent de nouvelles approches
théoriques pour la modélisation, l’analyse de stabilité et le contrôle de la dynamique des futurs
aéronefs ainsi que pour le développement et la certification de systèmes de commande de vol
visant a prévenir les accidents dus à la perte de contrôle.

Mots clés Commande non linéaire ; récupération d’un aéronef ; modélisation dynamique ;
analyse de stabilité ; pilote automatique ; théorie des systèmes.





Aircraft upset conditions have, in the past, led to rare but fatal accidents and 
to this day remain a severe threat to civil aviation. In response, considerable 
efforts contributed towards the prevention and detection of upset conditions 
as well as recovery of the aircraft into its desired flight regime. Despite these 
efforts made, comprehensive strategies including analysis of aircraft 
dynamics, recovery control, and verification of the implemented control over a 
large flight envelope have been missing for future aircraft safety.
In this thesis, we apply and extend recently developed tools such as 
bifurcation theory, sum of squares analysis and control synthesis, and 
nonlinear model-predictive control, to a set of newly developed piecewise 
polynomial aircraft models, which provide a trade-off between modeling 
accuracy and computational complexity. Thus, we contribute to the 
development as well as certification of safer flight control systems.

Dans le passé, le décrochage d’aéronefs a entraîné des accidents rares mais 
mortels et reste à ce jour une préoccupation importante pour l’aviation civile. 
Malgré les efforts déployés pour la prévention et la détection du décrochage 
ainsi que la récupération de l'avion, des stratégies telles que l'analyse de la 
dynamique, le contrôle de la récupération au décrochage et la vérification des 
lois de commande mises en œuvre constituent un chaînon manquant pour la 
sécurité des avions à venir.
Dans cette thèse, nous appliquons et étendons des outils récents de 
l'automatique, tels que la théorie de la bifurcation, les programmes de « sum 
of squares » et le contrôle prédictif modèle non-linéaire aux modèles d’avions 
polynomiaux par morceaux développés, qui offrent une bonne précision de 
modélisation et une faible capacité de calcul. Ainsi, nous contribuons au 
développement et à la certification de systèmes de contrôle de vol plus sûrs.
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