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Titre :  
 
Rôle du système CRF dans les effets de récompense cérébrale et les troubles 
de la motivation induits par la morphine 

Résumé : 

 
La neurobiologie à l'origine d'un comportement social des consommateurs 

d'opiacés et des personnes dépendantes reste largement méconnue, entravant le 
développement de nouveaux traitements efficaces contre les troubles de l'utilisation 
des opiacés. Cependant, des preuves précliniques récentes suggèrent que le 
système du facteur de libération de la corticotrophine (CRF) pourrait être impliqué. 

Dans cette optique, nous avons utilisé la méthode des tâches à trois 
chambres (3-CH) ainsi qu'une méthode génétique et pharmacologique pour évaluer 
l’impact de l’administration de la morphine et du sevrage sur le comportement social 
des souris vis-à-vis de l'utilisation du système CRF. 

Dans une première série d'expériences, nous avons constaté que les sujets 
mâles manifestaient un intérêt pseudo-social accru suscité par l'hostilité pendant le 
sevrage des opiacés, ce qui indiquait les effets à long terme de l'administration 
chronique de médicaments sur le fonctionnement social normal. Par ailleurs, les 
femelles ont manifesté moins d’intérêt social lors du sevrage aux opiacés, un 
phénotype qui reproduit plus facilement ce qui a été observé chez l’homme. 
Notamment, le déficit en récepteurs CRF1 a complètement sauvé ce dernier déficit 
social, ajoutant ainsi aux preuves croissantes liant le système CRF aux 
dysfonctionnements comportementaux induits par la substance. 

Dans une deuxième série d'expériences, nous avons étudié plus largement les 
effets initiaux de la morphine sur les activités « naturellement » gratifiantes. Nous 
avons constaté qu'une seule et même administration aiguë d'une dose relativement 
faible du médicament suffisait à la fois à générer une récompense cérébrale et à 
induire de profonds déficits en intérêt social et en motivation liée à l'alimentation, 
fournissant ainsi des preuves expérimentales initiales du « détournement » du 
cerveau. Il est intéressant de noter que l'administration systémique d'antalarmine, 
antagoniste du récepteur de la CRF, a complètement inversé ce dernier déficit social, 
ce qui indique que le système CRF joue un rôle essentiel dans la médiation de la 
diminution de l'intérêt suscité par les substances pour des activités rémunératrices 
«naturellement» et renforce la notion de potentiel thérapeutique du ciblage de la 
CRF. 
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Title :  

Role of the CRF system in the rewarding and motivational effects of morphine 

Abstract : 

 
The neurobiology underlying poor social behavior of opiate users and 

dependent individuals remains largely unknown, hampering the development of novel 
effective therapies for opiate use disorders. However, recent pre-clinical evidence 
suggests that the corticotropin-releasing factor (CRF) system might be involved.  

In this light, we employed the three-chamber (3-CH) task and 
genetic/pharmacological approaches to assess the impact of morphine administration 
and withdrawal upon social behavior in mice with regard to the CRF system. 

In a first set of experiments, we found that male subjects displayed increased 
hostility-driven pseudo-social interest during opiate withdrawal, indicative of long-
lasting effects of chronic drug administration upon normal social functioning. On the 
other hand, female subjects displayed lower social interest during opiate withdrawal, 
a phenotype that more straightforwardly replicates what observed in humans. 
Notably, CRF1 receptor-deficiency completely rescued the latter social deficit, adding 
to the growing evidence linking the CRF system to substance-induced behavioral 
dysfunctions. 

In a second set of experiments, we investigated the initial effects of morphine 
more widely on naturally” rewarding activities. We found that a single, acute 
administration of a relatively low dose of the drug was sufficient to produce brain 
reward and at the same time to induce profound deficits in social interest and food-
driven motivation, providing initial experimental evidence of “hijacking” of brain 
reward systems by substances of abuse. Interestingly, systemic administration of the 
CRF receptor antagonist antalarmin completely reversed the latter social deficit, 
indicating a critical role of the CRF system in mediating substance-induced 
decreased interest for “naturally” rewarding activities and strengthening the notion of 
a therapeutic potential for CRF-targeting pharmacological agents. 
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[...]

Heroin, be the death of me
Heroin, it’s my wife and it’s my life, haha
Because a mainline into my vein
Leads to a center in my head
And then I’m better off than dead
Because when the smack begins to flow
I really don’t care anymore
About all the Jim-Jims in this town
And all the politicians making crazy sounds
And everybody putting everybody else down
And all the dead bodies piled up in mounds
Cause when the smack begins to flow
And I really don’t care anymore
Ah, when that heroin is in my blood
Heh, and that blood is in my head
Then thank God that I’m as good as dead
And thank your God that I’m not aware
And thank God that I just don’t care
And I guess I just don’t know
Oh, and I guess that I just don’t know

“Heroin”, written by Lou Reed.
The Velvet Underground & Nico, 1967.
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ABSTRACT

Opiate use disorders (OUDs) are chronic relapsing diseases with a ma-
jor health and socio-economic impact. Like other substance use disorders,
OUDs are characterized by a myriad of somatic, emotional-like, motivational,
cognitive and social behavior deficits. Nevertheless, the brain mechanisms
underlying the clinical features of OUDs remain poorly understood, hamper-
ing the development of novel effective therapies. The corticotropin-releasing
factor (CRF) system, a major coordinator of behavioral, neuroendocrine and
autonomic responses to stressors, might play a critical role in behavioral and
brain alterations associated with OUDs. CRF-like peptides exert their actions
through two subtypes of receptors, termed CRF1 and CRF2. Using clinically-
oriented laboratory animal models, previous studies reported differential, and
often opposite, roles for the two CRF receptor subtypes in the effects of sub-
stances of abuse. Notably, genetic inactivation of CRF1 or CRF2 receptors
respectively exacerbated or reduced somatic signs and cognitive deficits asso-
ciated with relatively early or late opiate withdrawal phases. However, the role
of the CRF system in the social behavior deficits induced by opiate adminis-
tration and withdrawal remains largely unknown.

Herein, we employed the three-chamber (3-CH) task for sociability (i.e.,
preference for an unfamiliar conspecific versus an object) and social novelty
preference (SNP, i.e., preference for a novel versus a familiar conspecific) in
order to assess the impact of chronic morphine administration and withdrawal
upon social behavior in mice. Surprisingly, we found that morphine with-
drawal increased, instead of decreasing, the social interest towards an unfamil-
iar same-sex conspecific in male mice. Further ethological analyses revealed
that morphine withdrawal also increased aggressive behavior in male mice.
Notably, social interest and aggressive behavior followed a similar time-course
and positively correlated with one another, suggesting a major role for aggres-
siveness in the apparent social interest displayed by opiate-withdrawn mice.
The latter findings indicate that aggressive behavior might contribute to the
social behavior dysfunctions associated with substance withdrawal. Finally,
exposure to an ethological environmental stressor relatively long time after
morphine discontinuation did not affect social behavior, indicating stress re-
silience in opiate-withdrawn mice.
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Using the CRF1 receptor-deficient mouse model, we also investigated the
role of the CRF1 receptor in the effects of opiate withdrawal upon social be-
havior. We found that CRF1 receptor-deficiency increased social interest in
substance-näıve male mice. Moreover, like the studies mentioned above, opi-
ate withdrawal increased the interest for an unfamiliar conspecific as well,
strengthening the notion of a possible aggressive-driven social approach in
opiate-withdrawn male mice.

Drugs of abuse activate brain reward systems and strongly narrow behavior
towards substance-seeking and substance-taking to the detriment of “natural”
rewarding activities, such as social interaction and food intake. Thus, using
the conditioned place preference (CPP), the 3-CH and the operant behavior
paradigms, we assessed morphine effects upon brain reward, social behavior
and motivation for food. We found that a single, acute administration of a
relatively low morphine dose induced CPP, indicating activation of brain re-
ward systems. However, the same drug dose strongly impaired social behavior
and motivation for food in both male and female mice. Notably, morphine did
not affect ambulation, olfaction or anxiety-like behavior, suggesting a selective
substance-induced disruption of the rewarding and motivational properties of
social behavior and food intake. Altogether, our findings indicate decreased
interest for “natural” rewarding activities following exposure to a brain reward-
ing dose of morphine, providing initial experimental evidence of “hijacking” of
brain reward systems by substances of abuse.

Then, to investigate the role of the CRF system in vulnerability of brain re-
ward and motivation systems to opiate substances, we used the CRF1 receptor-
preferring antagonist antalarmin. Systemic administration of the compound
fully rescued the deficits in social behavior, but did not affect the reduced
motivation for food induced by morphine. Thus, at least to some extent, the
latter results indicate a critical role for the CRF system in substance-induced
decreases in “natural” rewarding activities, strengthening the notion of a ther-
apeutic potential for CRF-targeting pharmacological agents.

Key-words: mice; social behavior; motivation; natural rewards; food; drugs
of abuse; morphine; opiate withdrawal; vulnerability; stress; aggressive behav-
ior; corticotropin-releasing factor; pharmacology.
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RÉSUMÉ

Les troubles de l’utilisation des opiacés (OUDs, en anglais) sont des affec-
tions chroniques récidivantes ayant un impact socio-économique et de santé
publique majeur. Les OUDs sont caractérisés par des déficits somatiques,
affectifs, motivationnels, cognitifs et du comportement social, cependant les
mécanismes cérébraux sous-jacents des caractéristiques cliniques des OUD
restent peu connus, freinant le développement de thérapies efficaces. Le système
du facteur de libération de corticotrophine (CRF), coordinateur majeur des
réponses comportementales, neuroendocrines et autonomiques aux évènements
stressants, joue un rôle crucial dans les altérations cérébrales et comportemen-
tales associées aux OUD. Les peptides analogues à CRF exercent leurs actions
via deux récepteurs : CRF1 et CRF2. Avec l’utilisation de modèles cliniques
d’animaux de laboratoire, des études ont démontré des rôles différentiels et
souvent opposés pour les récepteurs CRF1 et CRF2 dans l’effet des substances
d’abus. Il a notamment été démontré que l’inactivation génétique de CRF1

ou CRF2 peut respectivement exacerber ou réduire les déficits somatiques et
cognitifs associés avec les différentes phases de sevrage aux opiacés.

Cependant, le rôle du système CRF dans les déficits de comportements
sociaux induits par l’administration d’opiacés et le sevrage demeure large-
ment inconnu. Ici nous avons utilisé un test à trois chambres (3-CH) pour
la sociabilité (i.e., préférence pour un congénère inconnu vs. un objet) et la
préférence de nouveauté sociale (i.e., préférence pour un congénère nouveau
vs. un congénère familier) chez la souris afin d’évaluer l’impact d’une admin-
istration chronique de morphine et du sevrage sur le comportement social. De
manière surprenante, chez les souris mâles le sevrage à la morphine augmen-
tait l’approche sociale envers un congénère inconnu du même sexe. Cependant,
des analyses plus approfondies ont révélé également une augmentation du com-
portement agressif. Avec une interruption de morphine, l’intérêt social pour
un congénère inconnu et le comportement agressif sont corrélés et suivent une
même évolution temporelle, suggérant un rôle majeur de l’agressivité dans le
comportement social des souris sevrées aux opiacés. Finalement, l’exposition à
un stress environnemental éthologique longtemps après l’interruption de mor-
phine n’a pas altéré le comportement social indiquant une résilience au stress
de ces souris.
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L’utilisation de souris déficientes pour le récepteur CRF1 nous a permis
d’étudier le rôle de ce récepteur dans les effets de comportement social du
sevrage à la morphine. La déficience pour le récepteur CRF1 a augmenté
le comportement social des souris näıves pour la substance. De plus, de la
même manière que précédemment, le sevrage aux opiacés a augmenté l’intérêt
pour un congénère inconnu, renforçant la notion d’une approche sociale sup-
posément conduite par l’agressivité.

Les substances d’abus activent le circuit cérébral de la récompense et
réduisent fortement le comportement aux seules recherche et prise de sub-
stance, au détriment d’activités “naturellement” récompensantes comme la in-
teraction sociale et la prise de nourriture. Ainsi en utilisant les paradigmes de
préférence de place conditionnée (CPP), de 3-CH et de comportement opérant,
nous avons évalué les effets de la morphine sur la récompense cérébrale, le com-
portement social et la motivation pour la nourriture appétente. Nous avons
mis en évidence qu’une administration aigüe et unique d’une dose relativement
faible de morphine induisait un CPP, indiquant l’activation du circuit cérébral
de récompense. Cependant, la même dose a fortement altéré le comportement
social et la motivation pour la nourriture des souris. Ainsi, nos résultats in-
diquent un intérêt diminué pour les activités “naturellement” récompensantes
après une exposition à une dose de morphine récompensante, apportant une
évidence expérimentale de “détournement” du circuit cérébral de récompense
par les substances d’abus.

Pour explorer le rôle du système CRF dans la vulnérabilité de la récompense
cérébrale et le système de motivation aux opiacés, nous avons utilisé un an-
tagoniste d’affinité préférentielle pour le récepteur CRF1, l’antalarmin. La
administration systémique d’antalarmin a inversé complètement le déficit de
comportement social mais n’a pas eu d’effet sur la diminution de la motivation
pour la nourriture induite par la morphine. Ce dernier résultat indique donc un
rôle critique du système CRF dans la réduction d’intérêt pour les récompenses
“naturelles” induite par les substances d’abus, renforçant ainsi la notion de
potentiel thérapeutique pour les agents pharmacologiques ciblant CRF.

Mots-clés: souris; sociabilité; motivation; récompense naturelle; nourriture;
drogue; morphine; sevrage des opiacés; vulnérabilité; stress; comportement
aggressif; facteur de libération de la corticotrophine; pharmacologie.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Drug dependence

The purpose of the present section is to briefly define drug dependence.
First, a terminological explanation is given, followed by a quantitative picture
of the problem. Then, diagnostic criteria and behavioral disorders related to
drug use, abuse and dependence are presented, with insights from both clinical
and pre-clinical research and related neurobiological notions.

1.1.1 Presentation of the problem

1.1.1.1 What does “drug dependence” mean?

Drug dependence is generally defined as a chronic, relapsing disorder that
is comprised of three stages: preoccupation/anticipation, binge/intoxication,
withdrawal/negative affect. After decades of research, these three stages are
now conceptualized as feeding into one another, becoming more intense over
time and ultimately leading to the pathological state known as addiction, which
is usually portrayed as a collapsed vicious cycle (Figure 1.1). As an individual
moves from being a “user” to “abuser” to “dependent”, a shift occurs from im-
pulsivity to compulsivity and from positive reinforcement (i.e., recreational use
of the drug due to its euphoric effect) [Di Chiara and Imperato, 1988, Wise and
Bozarth, 1985] to negative reinforcement (i.e., “self-medication” use of the drug
to avoid or relieve pre-existing or withdrawal-related aversive states) [Markou
et al., 1998] driving motivated behavior. It is important to understand that the
latter distinction has crucial therapeutic implications. For instance, the most
successful treatment for an addictive disorder to date, methadone maintenance
for heroin dependence, was developed based on the hypothesis that relieving
withdrawal symptoms would diminish the desire to continue heroin use [Dole
and Nyswander, 1965]. Importantly, the progression towards drug dependence
involves alterations in brain circuitries that result in long-lasting drug-induced
neuroplastic changes [Koob and Volkow, 2010]. When do these changes begin
is still poorly understood, but, notably, they might occur even following pre-
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natal exposure [McCarthy et al., 2014, Monnelly et al., 2018, Roos et al., 2014]
or after the very first substance use [Walker et al., 2018, Alvarenga et al., 2010,
Ungless et al., 2001]. In the past decades, thanks to major advances in pre-
clinical research, critical neurotransmitters (i.e., gamma-aminobutyric acid,
glutamate, dopamine, opioid peptides, serotonin, acetylcholine, endocannabi-
noids, corticotropin-releasing factor) and neurocircuits (i.e., ventral tegmental
area, nucleus accumbens, extended amygdala, cerebellum, prefrontal cortex)
underlying the pathological changes at each of these stages have been identi-
fied.

Figure 1.1 – Simplified diagram illustrating the three stages that characterize the so-called

“cycle of addiction”. Behavioral states and brain areas characteristic of each phase are also

reported [Herman and Roberto, 2015]

1.1.1.2 World epidemiological picture

Drug dependence represents a major public health issue. The Internet-
driven globalization of trade witnessed during the last decade has been ex-
panding and diversifying both the range of drugs and drug markets, affecting
populations of industrialized and developing countries as never before. About
275 million people worldwide (approximately 5.6% of the global population
aged 15-64) used drugs at least once during 2016 and 31 million of people
using drugs suffered from substance use disorders (SUDs), meaning that their
drug use was harmful to the point where they may needed treatment. Some
450,000 people died in 2015 as a result of drug use, according to the World
Health Organization (WHO). Of those deaths, 167,750 were a direct result of
SUDs (mostly overdoses), with opioids accounting for 76% of them and con-
firming themselves as the most harmful class of drugs to date. The rest were
indirectly attributable to drug use and included deaths related to HIV and
hepatitis C acquired through unsafe injection practices. More data from the
World Drug Report 2018 show that we are also facing a potential supply-driven
expansion of drug markets, with production of opium and manufacture of co-
caine at the highest levels ever recorded. In particular, the non-medical use of
prescription analgesic opioids is of increasing concern for both law enforcement
authorities and public health professionals. Different analgesic opioids are mis-
used in different regions. In North America, illicitly obtained fentanyl and its

14



analogs, mixed with heroin or other drugs (such as cocaine and MDMA), are
driving an unprecedented number of overdose deaths: in 2016, 63,632 people
died from a drug overdose in the United States, the highest number on record
and a 21% increase from the previous year. Outside North America, the im-
pact of fentanyl and its analogues is relatively low. In Europe, for example, the
main opioids of concern remain heroin and morphine, but the non-medical use
of methadone, buprenorphine and fentanyl has also been reported. In countries
in West and North Africa and in the Near and Middle East, the non-medical
use of tramadol, a popular pharmaceutical opioid used to treat moderate and
moderate-to-severe pain, is emerging as a substance of abuse. This drug is
not yet under international control and is perceived by recreational users as a
way of boosting energy and improving mood. However, tramadol can produce
physical dependence, with WHO studies showing that this dependence may oc-
cur when it is used daily for no more than a few weeks. In the meantime, more
new psychoactive substances (NPS) are being synthesized and more are avail-
able than ever (a total of 803 NPS were reported in the period 2009-2017),
with increasing reports of associated harm and fatalities. In addition, drug
trafficking online using the darkweb continues to grow exponentially, despite
successes in shutting down popular trading platforms like Hansa or AlphaBay,
which featured more than 250,000 listings for illegal drugs and chemicals, had
over 200,000 users and 40,000 vendors during their activity period. All these
threats to health and well-being, as well as to security, safety and sustainable
development, demand an urgent response and therefore pressure health-care
systems and international communities to step up in responses to cope with
these challenges.

1.1.1.3 Diagnosis criteria for drug dependence

In the fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5), drug dependence is classified in the section “substance-
related and addictive disorders” that also comprises behavioural addictions
(i.e., sex, exercise or shopping addictions and gambling disorders). Substance-
related disorders are divided into two groups: substance use disorders and
substance-induced disorders. Each specific substance is addressed as a sep-
arate use disorder (e.g. opioid use disorder, pertinent to the subject of this
thesis), but nearly all substance use disorders are diagnosed based on the same
“A” criteria reported in Table 1.1. In contrast to the DSM-4TR, the notion
of severity for substance use disorders (i.e., from mild to severe) is introduced
in the DSM-5 and it is based on the number of criteria observed: the pres-
ence of 2-3 criteria is defined as mild, 4-5 criteria as moderate and 6 or more
criteria as severe dependence. The DSM-5 also emphasizes the notion of re-
mission when substance use disorder diagnosis is followed by a period of time
where none of the diagnostic criteria have been met (with the exception of
criterion A4, “Craving, or a strong desire/urge to use the substance,” which
may be met). If patients met none diagnostic criteria for a period of at least
3 months, but less than 12 months, they are considered in early remission;
for 12 months or longer periods, they are considered in sustained remission.
Substance-induced disorders are specific for each class of drugs and refer to in-
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toxication, withdrawal, and substance/medication-induced mental disorders,
such as psychotic disorders, anxiety disorders, and neurocognitive disorders.

Table 1.1 DSM-5 diagnostic categories and “A” criteria for SUDs.

Category Criteria

Impaired control

1. The substance is often taken in larger amounts or over a
longer period than was intended.

2. There is a persistent desire or unsuccessful efforts to cut
down or control the substance use.

3. A great deal of time is spent in activities necessary to
obtain or use the substance.

4. Craving, or a strong desire/urge to use the substance.

Social impairment

5. Recurrent substance use resulting in a failure to fulfill ma-
jor role obligations at work, school, or home (e.g., interference
with work).

6. Continued substance use despite having persistent or recur-
rent social or interpersonal problems caused or exacerbated by
the effects of the substance (e.g., arguments with others about
substance use).

7. Important social, occupational, or recreational activities
are given up/reduced because of substance use.

Risky use
8. Recurrent substance use in situations in which it is physi-
cally hazardous (e.g., driving under the influence of alcohol).

9. The substance use is continued despite knowledge of hav-
ing a persistent or recurrent physical or psychological problem
that is likely to have been caused or exacerbated by the sub-
stance.

Pharmacological criteria
10. Tolerance, as defined by either of the following: a) a need
for markedly increased amounts of the substance to achieve
the desired effect; b) a markedly diminished effect with con-
tinued use of the same amount of the substance.

11. Withdrawal, as manifested by either of the following:
a) the characteristic withdrawal syndrome for the substance;
b) the substance (or a closely related substance) is taken to
relieve or avoid withdrawal symptoms.

1.1.1.4 Treatment of drug dependence

In the last few years, a large body of research studies investigated the neu-
robiological mechanisms underlying the effects of substances of abuse and the
development of drug dependence, identifying stages of transition from recre-
ational to sustained substance use based on individual genetic predisposition
and drug-induced adaptations, up to the loss of control and fulfilment of the
above-mentioned diagnostic criteria for intervention. In spite of these tremen-
dous advancements, the number of medications approved by the Food and
Drug Administration (FDA) for the treatment of drug dependence is still scarce
[Chiamulera et al., 2017] (Table 1.2). Moreover, the efficacy of current treat-
ments is limited, with relapse rates being extremely high within the first year
and psychosocial interventions only modestly enhancing their effectiveness. At
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the moment, the aim of pharmacotherapy is to improve the quality of life of
patients by controlling and/or reducing the manifestation and the intensity
of physical and negative affective-like signs and symptoms during drug with-
drawal periods. Three types of pharmacotherapy are currently used for drug
dependence: agonists, antagonists and metabolism modulators. On a brighter
note, for the first time ever, the World Drug Report 2018 highlights the impor-
tance of gender- and age-sensitive drug policies, putting forward the particular
needs and challenges of women and young people.

Table 1.2 FDA-approved pharmacotherapies for drug dependence.

Pharmacotherapy Clinical indication Mechanism of action

Disulfiram Prevention of relapse to alco-
hol use

Ethanol metabolism inhibi-
tion

Methadone Opioid substitution therapy Full opioid receptors agonism

Nicotine replacement Tobacco smoking substitu-
tion therapy

Full nicotinic receptors ago-
nism

Naltrexone Drinking reduction and pre-
vention of relapse

Opioid receptors antagonism

Bupropion Anti-craving drug; relapse
prevention in ex-smokers

Dopamine and noradrenaline
re-uptake blocker; nicotinic
receptors antagonist

Buprenorphine Opioid detoxification therapy Partial opioid receptors ago-
nism

Acamprosate Relapse prevention in ex-
alcoholics

Partial glutamate receptors
agonism

Nalmefene Drinking reduction Partial opioid receptor ago-
nism

Varenicline Relapse prevention in ex-
smokers

Partial nicotinic receptors ag-
onism

1.1.2 Drug-induced behavioral disorders

Physical dependence is a state that develops as a result of the adapta-
tion (i.e., tolerance) produced by a resetting of homeostatic mechanisms in
response to repeated drug use [Koob, 2008a]. Drugs of abuse can affect nu-
merous systems that previously were in equilibrium. These systems find a new
equilibrium in the presence of inhibition or stimulation by a specific drug. A
person in this adapted or physically dependent state requires continued ad-
ministration of the substance to maintain this equilibrium. If administration
of the drug is stopped abruptly, another imbalance follows and the affected
systems must go again through a process of readjusting to a new equilibrium
without the drug. The appearance of a substance withdrawal syndrome when
substance administration is terminated is the only actual evidence of physical
dependence and in the next few sections are described the marked changes in
behavior that come with it. Withdrawal symptoms have at least two origins:
(1) removal of the drug producing dependence and (2) central nervous system
(CNS) hyperarousal owing to readaptation to the absence of the drug. Even
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if withdrawal symptoms are characteristic for a given category of drugs, they
share various commonalities and generally tend to be opposite in nature to the
original effects produced by the drug before tolerance developed.

1.1.2.1 Somatic signs and symptoms

When drug-dependent individuals abruptly terminate or substantially re-
duce their drug consumption, various somatic signs appear in a temporally
dynamic process [Heilig et al., 2010]. The physical manifestation of drug with-
drawal usually begins 3-12 hours after the last drug administration and peaks
in between 36 and 96 hours of drug abstinence, depending from the substance
abused [West and Gossop, 1994]. Relevantly to the current work, the time-
course of withdrawal from various popular opiate substances is schematized
in Table 1.3. The opiate withdrawal syndrome reflects generalized nervous
system hyperexcitability and is characterized by influenza-like symptoms, in-
cluding fever (i.e. body temperature dysregulation, sometimes accompanied by
hallucinations), excessive sweating (i.e., diaphoresis), shaking (i.e., tremor), in-
creased sensitivity to pain, rapid heartbeat (i.e., tachycardia), increased blood
pressure, muscle aches, nausea, vomiting, diarrhea and cramps. Dysphoric
mood and signs of pathological craving for the drug are also present. During
this phase, the focus of treatment strategies is therefore to control generalized
hyperexcitability and, in the most severe cases, to prevent motor seizures and
delirium tremens [Victor and Adams, 1953, Mayo-Smith, 1997]. Subsequently,
increased anxiety, depressed mood and disturbed sleep (i.e., insomnia) grow
strong in the subject, often accompanied by cyclic changes in weight, now ex-
pressed in the absence of the above-mentioned acute physical symptoms [Heilig
et al., 2010].

Using laboratory animals, researchers have been able to model many of
these classic withdrawal symptoms, including motor stereotypy, altered car-
diovascular function, central and behavioral thermal dysregulation, diarrhea
and body weight oscillations [Emmett-Oglesby et al., 1990]. For instance, rats
and mice withdrawn from chronic opiate administration (both opioid receptor-
antagonist precipitated and spontaneous) present a constellation of somatic
signs, including jumping (i.e., escape attempt), paw tremors, wet dog shakes,
head shakes, body stretches, diarrhea, chewing, teeth chattering, palpebral
ptosis and eye twitches [Maldonado et al., 1992, Gold et al., 1994, Papaleo and
Contarino, 2006, Papaleo et al., 2008b, Mucha et al., 1979, Bruijnzeel et al.,
2007, Papaleo et al., 2007, Bozarth and Wise, 1984]. Moreover, quantitative
measures of increased paw tremors and altered metabolic states exist for mice
and rats undergoing alcohol withdrawal [Macey et al., 1996, Meert et al., 1992,
Rasmussen et al., 2006, Crawshaw et al., 1994, Perez and De Biasi, 2015]. In
addition, hyperlocomotion and paw tremors are exhibited by mice experienc-
ing THC [Huang et al., 1998] and nicotine withdrawal [Damaj et al., 2003].
The study of such somatic outcomes is of considerable interest because with-
drawal symptoms are among the major causes of failure when drug-dependent
individuals try to quit the drug [West et al., 1989]. Therefore, therapeutic
actions towards relief of somatic symptoms might aid in drug cessation.
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Table 1.3 Time-course of withdrawal from various popular opiate substances.

Opiate substance Withdrawal
onset

Withdrawal
peak

Withdrawal
end

Fentanyl 3-5 h 8-12 h 4-5 days

Heroin 8-12 h 36-72 h 7-10 days

Methadone 36-72 h 96-144 h 14-21 days

Morphine 8-12 h 36-72 h 7-10 days

Tramadol 8-12 h 72-96 h 7-10 days

1.1.2.2 Negative affective-like states

Psychological changes are also key components of the drug withdrawal syn-
drome. Symptoms of both anxiety and depression, including irritability, dys-
phoria (i.e., state of unease or dissatisfaction) and anhedonia (i.e., reduced
ability to experience pleasure or diminished interest in engaging in pleasur-
able activities) [APA, 2013, Haertzen and Hooks, 1969] emerge following ter-
mination of chronic drug use [Koob and Le Moal, 2008]. Importantly, data
have shown that depressed mood is associated with a worse clinical outcome
among substance-dependent patients [Hasin et al., 2002]. The occurrence of
depression in drug-dependent individuals is more frequent than in the general
population, with approximately 40% of people committing suicide having some
record of drug abuse [Dragisic et al., 2015]. Indeed, suicidal tendencies have
been described as common features of alcohol [Pompili et al., 2010, Bradvik
and Berglund, 2003] or opiate dependence [Darke and Ross, 2002, Oquendo
and Volkow, 2018]. At the same time, epidemiological data indicate that the
incidence rate of drug abuse among depressed patients is substantially higher
than in the general population [Davis et al., 2008]. However, it is unclear
whether drug abuse increases the risk of depression and vice versa [Fergus-
son et al., 2009]. Clinical studies report onset of depression following smoking
cessation in individuals with no history of mood disorders [Aubin, 2009] or
long-term changes in depressive symptoms and sleeping patterns in abstinent
smokers [Moreno-Coutino et al., 2007]. Depressed mood is also a significant
co-morbid symptom of alcohol abuse [Martinotti et al., 2008]. MDMA use
has been associated to the development of depressive symptoms and increased
anxiety-like behavior in a number of clinical studies as well [McCardle et al.,
2004, Sumnall and Cole, 2005, MacInnes et al., 2001].

Animal models of anxiety and depression have proven very useful in the un-
derstanding of comorbidity [Hughes, 2007], with rodent models of drug with-
drawal usually showing increased anxiety-like behavior in the elevated plus
maze, the light/dark box, the marble-burying and the social interaction tests
[Kliethermes et al., 2004, Overstreet et al., 2002, Becker et al., 2016]. More-
over, anhedonia, another key symptom of clinical depression, is consistently
modelled in rodents using reward-sensitive procedures, such as intracranial
self-stimulation and sucrose preference paradigms. Anhedonia-like behavior
has been reported in rodents withdrawn from nicotine [Epping-Jordan et al.,
1998, Bevins and Besheer, 2006, Bruijnzeel et al., 2010a], ethanol [Bruijnzeel
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et al., 2010b, Schulteis et al., 1995], psychostimulants [D’Souza and Markou,
2010, Galineau et al., 2005, Straiko et al., 2007] and opiates [Schulteis et al.,
1994]. However, the latter aspect of drug dependence is better discussed in the
next subsection as part of the altered motivational processes associated with
substance administration and withdrawal.

1.1.2.3 Altered motivation/craving

Motivation is defined as the process by which organisms finalize their be-
havior to the control of the environment in relation to their needs. A basic
aspect of this process involves learning the relationship between biologically
significant stimuli and otherwise neutral stimuli that come to predict their
occurrence. By this process, organisms approach useful goal-stimuli, avoid
harmful ones and disregard those of no use. It is believed that altered motiva-
tional processes dramatically reduce the ability to overcome drug dependence
[APA, 2013]. Accordingly, motivation for drugs (i.e., craving) is particularly
high during drug withdrawal periods [Robinson and Berridge, 2003] and has
been demonstrated to positively correlate with the intensity of the drug with-
drawal syndrome [Janiri et al., 2005].

Laboratory studies provide compelling evidence in favor of dramatic changes
in motivational processes in animals exposed to relatively large amounts of
drugs of abuse, but often with contrasting results. Morphine and cocaine
withdrawal increased self-administration of heroin and remifentanil in rats and
rhesus monkeys [Cooper et al., 2008, Gerak et al., 2009] and early studies re-
ported that during opiate, cocaine or ethanol withdrawal or upon presentation
of withdrawal-conditioned stimuli, operant responding for food or for sweet
solutions was decreased in rats and monkeys [Goldberg and Gonzalez, 1976,
Simpson and Annau, 1977, Carroll and Lac, 1987, Baldwin and Koob, 1993,
Denoble and Begleiter, 1978]. Cessation of amphetamine treatment has been
shown to induce reward deficits [Kitanaka et al., 2008], such as an elevation
in the brain reward threshold [Paterson et al., 2000], decreased sucrose intake
[Barr and Phillips, 1999, Der-Avakian and Markou, 2010a,b] or impaired sex-
ual behavior [Barr et al., 1999]. Opiate-withdrawn monkeys showed increased
heroin choice over food, suggesting an increase in the relative reinforcing effi-
cacy of heroin, as compared to food [Negus, 2006]. Accordingly, human studies
report decreased responsiveness to “naturally” rewarding stimuli, reduced food
intake and a poor nutritional status in heroin-dependent individuals [Lubman
et al., 2009, Santolaria-Fernandez et al., 1995, Zijlstra et al., 2009]. However,
other studies reported heightened consumption of liquid or solid reinforcers
and elevated desire for food in opiate-dependent individuals [Morabia et al.,
1989, Weiss, 1982]. Accordingly, a study from our laboratory reported that
cessation of chronic morphine administration sharply increases the motivation
to obtain palatable food, as assessed by an operant behavior task [Rouibi and
Contarino, 2012]. Notably, opiate withdrawal did not affect the ability to
discriminate between rewarded and non-rewarded actions, or to learn a new
operant task to obtain palatable food. Indeed, upon application of a reward
contingency reversal paradigm, opiate-withdrawn mice were faster than con-
trol drug-näıve mice in learning the new operant task, most probably due to
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a persistent elevation in motivation [Rouibi and Contarino, 2012], suggesting
that opiate withdrawal might preserve motivation-driven cognitive function.
Importantly, increased food-driven behavior lasted for at least 12 days after
morphine discontinuation whereas opiate withdrawal-induced body weight loss
returned to control levels already 24 hours after the last administration, sug-
gesting independency between motivation and energy needs [Rouibi and Con-
tarino, 2012]. In conclusion, using clinically-relevant experimental paradigms,
the above-mentioned studies demonstrated dramatic increases in motivation
in drug-withdrawn subjects, either directed towards the drug of abuse itself
or other reinforcers. In this context, to better understand motivational shifts
induced by drugs of abuse, in the Article 3 reported herein we investigated
the acute initial effects of morphine administration upon motivation for food
using a palatable food-driven operant behavior task.

1.1.2.4 Cognitive signs

Substance abuse has been extensively demonstrated to impair learning and
memory. For instance, alcoholic patients showed an estimate of 50-75% deficit
in learning and memory tasks during abstinence periods [Parsons and Nixon,
1993]. Chronic use of opioids has been linked to reduced attention and memory
processes [Bruera et al., 1989], with drug-abstinent individuals showing cogni-
tive deficiencies in the field of working memory, executive function and fluid
intelligence [Rapeli et al., 2006]. Moreover, measures of cognitive performance,
such as delayed recall and verbal learning, were significantly poorer in indi-
viduals with a history of amphetamine use [McCardle et al., 2004]. Notably,
the cognitive dysfunctions of amphetamine and opioid users were not recov-
ered several years after drug withdrawal [Ersche et al., 2006]. Psychostimulant
drug use has also been shown to induce cognitive dysfunctions [APA, 2013,
Millan et al., 2012]. For instance, cocaine users displayed higher impulsivity,
bad decision-making and memory deficits [Bolla et al., 2000, Kirby and Petry,
2004], as well as significant impairments in verbal memory and fluency [Kelley
et al., 2005], visuospatial and concentration tasks [Berry et al., 1993]. Finally,
chronic THC use resulted in impaired decision-making and spatial working
memory ability [Bolla et al., 2002] up to one month following drug cessation
[Schweinsburg et al., 2008b,a].

Several preclinical studies have been successful in modeling drug-induced
cognitive dysfunction, revealing impaired learning and memory performance
following both drug administration and withdrawal in the five-choice serial re-
action time, the Morris water maze and the novel object recognition (NOR)
tests [Morisot and Contarino, 2016, Morisot et al., 2014, Bisagno et al., 2002,
Briand et al., 2008b, Mendez et al., 2008]. For instance, mice withdrawn from
chronic ethanol treatment showed significant learning and memory deficits, as
revealed by impaired acquisition and long-term retention in the T-maze, the
foot-shock avoidance, the shuttle box active avoidance and the step-down pas-
sive avoidance tests [Farr et al., 2005]. Discontinuation of chronic morphine
administration in mice resulted in impaired performance in the object recog-
nition task [Morisot and Contarino, 2016, Rabbani et al., 2009]. Memory was
also impaired after withdrawal from repeated MDMA administration in mice
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[Nawata et al., 2010]. Moreover, cocaine-withdrawn rats showed a decrease
in memory performance during a Y-maze and a two-lever operant paradigm
[Amin et al., 2016]. Impaired novel object recognition was also observed in
cocaine-treated mice or rats 2 to 6 weeks after drug discontinuation [Briand
et al., 2008a, Steele and Southwick, 1985, Morisot et al., 2014].

1.1.2.5 Social behavior dysfunction

The association between impaired social behavior and substance abuse was
explicitly stated in early raw propositions that “drunkards” fail in the area
of social interest [Steele et al., 1985]. Later studies in humans confirmed
that multiple drugs of abuse impair social interest, an evolutionary adaptive
and powerfully rewarding behavior [Verdejo-Garcia, 2014, Preller et al., 2014b,
Uekermann and Daum, 2008, Babor et al., 1976]. Even in individuals who are
socially well integrated when they start using drugs, continued drug use can
often lead to social exclusion, which in turn promotes continued drug use in
accordance to the vicious cycle of addiction (Figure 1.1). Specifically, during
early stages of drug use, the drug is typically taken in a recreational, impul-
sive manner. However, as dependence develops, drug use is thought to become
increasingly compulsive. As drug use escalates and transitions into compul-
sive drug use occurs, these individuals typically become unable to function
socially, ultimately facing social marginalization and exclusion, factors that
promote further drug use [Brownell et al., 1986].

Relatively recently, these profound and often long-lasting changes in so-
cial interest have been successfully modeled in rodents [Blanco-Gandia et al.,
2015]. For instance, 1 week after chronic drug administration, both morphine-
and cocaine-treated mice failed to display social interest in the three-chamber
task (schematized in Figure 1.2) [Morisot et al., 2018, Zanos et al., 2014], a
phenomenon that could be observed up to 4 weeks of abstinence in opiate-
withdrawn mice [Becker et al., 2016]. Moreover, the social deficit induced by
chronic cocaine administration and withdrawal could be reinstated by exposure
to a mild environmental stressor 5 weeks after drug discontinuation [Morisot
et al., 2018]. Worth citing, a recent study demonstrated that rats with a his-
tory of heroin self-administration that were given the choice between rescuing
their cage-mate (i.e., a naturally occurring pro-social behavior) or continuing to
self-administer heroin, always preferred the latter option [Tomek et al., 2018].
Indeed, not only drug withdrawal, but also acute and continued drug adminis-
tration are emerging as potentially disruptive when it comes to social interest.
Indeed, in the current work we provide initial evidence that acute morphine
administration strongly impairs social interest in both male and female mice
(Article 3). Two neuropeptides have been shown to be highly implicated in
many aspects of mammalian social behavior: oxytocin (OXY) and arginine
vasopressin (AVP). OXY is produced in the hypothalamus and facilitates a
wide variety of processes related to social behavior, including maternal be-
havior, trust, anxiolysis and sexual pair-bond formation [Anacker and Beery,
2013, Ross and Young, 2009, Young et al., 2008]. On the other hand, AVP
activity has been associated with aggression and anxiety [Kelly and Goodson,
2014]. Growing evidence has been suggesting an important role for OXY in
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drug addiction [Sarnyai and Kovacs, 2014]. Indeed, researchers have hypoth-
esized that drugs of abuse stimulate the OXY system [Dumont et al., 2009]
and that social interest and drug dependence might share common neural sub-
strates [Young et al., 2011, Liu et al., 2011]. This idea is further supported by
the above-mentioned clinical findings showing that drug-dependent individuals
typically display antisocial traits and poor socially-conscious decision making
[Dawe et al., 2004, McGregor et al., 2008]. However, although pre-clinical tri-
als in rodents highlighted the potential of OXY in rescuing social behavior
deficits [Zanos et al., 2014], clinical translational value has not been achieved
yet [Woolley et al., 2016, 2017, Kosfeld et al., 2005].

Figure 1.2 – Schematic illustration of the three-chamber (3-CH) task, widely employed in

the work described in this thesis. During the pre-habituation phase, the subject mouse is

confined to the central chamber for 5 min; then, the doors are opened and free exploration

of the whole apparatus is allowed for 10 min (habituation phase). During the subsequent

10 min sociability phase, the subject mouse explores the entire apparatus with one wire

cage containing an unfamiliar conspecific (social stimulus) and the other an unanimated

object (unsocial stimulus). Preference for the social stimulus (time spent with the animal

in the top half-chamber, light grey) is believed to reflect intact social interest. At last,

during the 10 min social novelty preference phase, the subject mouse explores the entire

apparatus with one wire cage containing the already met conspecific (familiar stimulus) and

the other a novel unfamiliar conspecific (novel stimulus). Preference for the novel stimulus

(time spent with the novel animal in the top half-chamber, dark grey) is believed to reflect

intact discrimination abilities.

1.1.2.6 Vulnerability to stress

A central feature of drug addiction is the high rate of relapse during drug
abstinence [Hunt et al., 1971, O’Brien and Gardner, 2005]. Over the years,
many human studies have suggested that relapse is often provoked by stress
[Khantzian, 1985, Kosten et al., 1986]. Indeed, substance abusers often cite
stress as a reason for relapse into drug use [Ludwig and Wikler, 1974, Bradley
et al., 1989, Wallace, 1989, McKay et al., 1995]. Vulnerability to stressful life
events is indeed a hallmark of drug dependence that might persist long after
cessation of drug intake and dramatically fuel key clinical features, such as
deregulated up-shifted motivational states and craving [Preston and Epstein,
2011, Sinha, 2001]. Accordingly, exposure to stressors, such as food or sleep
deprivation, extreme hyper- or hypothermia and drug withdrawal, has long
been associated with increased drug craving [Childress et al., 1993].

Human evidence has led to the development of animal models to study
the mechanisms underlying stress-induced relapse to drug-seeking and drug-
taking. The first study to use a reinstatement model was published in 1995
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using male and female rats that were trained to self-administer heroin for 12
hours a day for 12 days. In the latter study, acute exposure to 10 min of inter-
mittent footshock stress immediately before the test reinstated heroin seeking
after 1 or 2 weeks of extinction training and after an additional 4 to 6 weeks
drug-free period [Shaham and Stewart, 1995]. Shortly after, various studies
showed that the effect of intermittent footshock on reinstatement of heroin-
seeking could be generalized to rats with a history of cocaine [Erb et al., 1996],
alcohol [Le et al., 1998], nicotine [Buczek et al., 1999] and methamphetamine
[Shepard et al., 2004] self-administration. Subsequently, exposure to other
stressors was demonstrated to reinstate drug CPP after extinction in rats and
mice: forced swim and restraint stress reinstated cocaine CPP in mice [Redila
and Chavkin, 2008] and rats [Sanchez et al., 2003] and morphine CPP in rats
[Li et al., 2013]. Moreover, systemic injections of the putative pharmacolog-
ical stressors U50,488H [Redila and Chavkin, 2008] and yohimbine [Mantsch
et al., 2010] reinstated cocaine CPP in mice. Finally, a 10 min exposure to an
elevated platform stressor 1 hour prior testing was able to reinstate memory
deficits in the novel object recognition task 5 to 8 weeks after cessation of ei-
ther chronic cocaine [Morisot et al., 2014] or morphine [Morisot and Contarino,
2016] administration, up-shifted motivational states in a food-driven operant
task (i.e., non-rewarded nose- pokes) 5 weeks after cessation of chronic mor-
phine administration [Morisot et al., 2015] and social deficits 6 weeks after
cessation of chronic cocaine administration [Morisot et al., 2018].
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1.2 The corticotropin-releasing factor (CRF)

system

The purpose of the present section is to briefly describe the CRF system.
First, the anatomical distribution of its ligands and receptors is illustrated, fol-
lowed by the description of its involvement in regulating stress responses via
the hypothalamic-pituitary-adrenal (HPA) axis. Subsequently, the involve-
ment of the CRF system in motivated behaviors is addressed, relatively to the
subject of this thesis.

1.2.1 Anatomical complexity of the CRF system

The anatomical distribution of CRF in the brain suggests that this peptide
not only acts as a key neuroendocrine stress mediator, but that is also able
to regulate neuronal activity in a neuromodulatory fashion. In fact, CRF is
expressed throughout the central nervous system (CNS), including the most
limbic and cortical structures, where it has been shown to regulate the emo-
tional and cognitive components of stress responses.

1.2.1.1 The CRF family peptides

The mature and biologically active form of CRF is a 41 amino acid peptide
generated by proteolytic cleavage of a 196 amino acid precursor that has been
characterized in 1981 [Vale et al., 1981]. To date, the mammalian CRF family
comprises three additional peptides: urocortin (UCN) 1, initially described in
1995 [Vaughan et al., 1995], followed by the discovery of UCN2 (or stresscopin-
related peptide) and UCN3 (or stresscopin) shortly afterwards [Hsu and Hsueh,
2001, Lewis et al., 2001, Reyes et al., 2001]. CRF is most closely related to
UCN1, sharing 43% amino acid homology, whereas CRF sequence identity with
UCN2 and UCN3 is 34% and 26%, respectively [Dautzenberg and Hauger,
2002]. In comparison to CRF, UCN-expressing neurons are found in more
discrete regions and nuclei of the CNS (Figure 1.3). All four neuropeptides
have also been detected in the periphery: CRF mRNA has been detected in
the adrenal gland, heart, gut, placenta, ovary, testis, lung and spleen in mice
[Muglia et al., 1994]; UCN1 mRNA is abundant in the gastrointestinal tract
and immune tissues such as the thymus and spleen in rats [Bittencourt et al.,
1999]; UCN2 and UCN3 mRNA are expressed in the small intestine and skin
in mice and recognized as modulators of centrally- and peripherally-controlled
metabolic function [Kuperman and Chen, 2008, Li et al., 2003, Chen et al.,
2004].

1.2.1.2 The CRF receptors

CRF and urocortins signal through the activation of two, membrane-bound,
G-protein-coupled receptors (GPCRs), named CRF1 and CRF2 receptor, which
share 70% amino acid identity [Perrin et al., 1993, Chen et al., 1993, Chang
et al., 1993, Vita et al., 1993]. CRF shows a much higher affinity for CRF1,
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Figure 1.3 – Schematic illustration of the spatial distribution and relative expression of

CRF family peptides in the mouse brain [Dedic et al., 2018]. Abbreviations: anterior pitu-

itary (APit); arcuate nucleus: ARC; basolateral nucleus of the amygdala (BLA); bed nucleus

of the stria terminalis (BNST); caudate putamen (CPu); central nucleus of the amygdala

(CeA); cerebellum (Cb); cingulate cortex (CingCx); corticotropin-releasing factor (CRF);

corpus callosum (cc); cortical nucleus of the amygdala (CoA); Barrington’s nucleus (Bar);

diagonal band of Broca (DBB); Edinger Westphal nucleus (EW); frontal cortex (FrCx);

globus pallidus (GPe); inferior colliculi (IC); inferior olive (IO); intermediate lobe of the

pituitary (IPit); locus coeruleus (LC); lateral septum (LS); laterodorsal tegmental nucleus

(LDTg); lateral hypothalamic area (LHA); lateral superior olive (LSO); medial nucleus of

the amygdala (MeA); medial preoptic area (MPO); medial septum (MS); medial vestibu-

lar nucleus (MV); nucleus tractus solitarii (NTS); olfactory bulb (OB); occipital cortex

(OccCx); parietal cortex (ParCx); parabrachial nucleus (PB); periaqueductal gray (PAG);

perifornical area (PFA); piriform cortex (Pir); pontine gray (PG); posterior pituitary (Ppit);

pedunculopontine tegmental nucleus (PPTg); prememmillary nucleus (PMN); paraventric-

ular nucleus of the hypothalamus (PVN); red nucleus (R); raphe nuclei (RN); reticular

thalamic nucleus (RTN); superior colliculi (SC); substantia nigra (SN); supraoptic nucleus

(SON); spinal trigeminal nucleus (Sp5n), superior paraolivary nucleus (SPO); urocortin 1

(UCN1); urocortin 2 (UCN2); urocortin 3 (UCN3) ventral medial hypothalamus (VMH);

ventral tegmental area (VTA).

while UCN1 displays equal affinities for both receptors. UCN2 and UCN3,
on the other hand, appear to be relatively selective ligands of CRF2 (Fig-
ure 1.5) [Perrin et al., 1995, Dautzenberg and Hauger, 2002, Hsu and Hsueh,
2001]. Several pharmacological agents are hypothesized to bind preferentially
one or the other CRF receptor, such as the herein employed (Article 3) CRF1

receptor-preferring antagonist antalarmin [Webster et al., 1996]. However, al-
though some compounds show higher CRF1 receptor in vitro binding affin-
ity, as compared to the CRF2 receptor [Ruhmann et al., 1998, Grace et al.,
2007] (Table 1.5), neither behavioral nor CRF receptor activity studies ex-
ist yet to support the notion of receptor subtype-selectivity for the current
available compounds. Moreover, based on the reported CRF1/CRF2 receptor
binding affinity ratios (ranging from 100 to 500), it cannot be excluded that
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such compounds interact with both CRF receptor subtypes, at least at the
behaviorally active doses usually employed in animal studies. Accordingly, in-
tracerebroventricular (i.c.v.) administration of the CRF2 receptor-preferring
antagonist antisauvagine-30 (ASV-30) induced behavioral effects in mice lack-
ing CRF2 receptors, suggesting an interaction with CRF1 receptors [Ruhmann
et al., 1998]. Thus, pharmacological studies investigating the relative func-
tion of each of the two known CRF receptor subtypes should be considered
with caution. On the other hand, genetically-engineered mouse models might
provide more reliable information on the specific role of each receptor sub-
type. Indeed, CRF1 and CRF2 receptor-deficient mice show preserved CRF2

and CRF1 receptor activity, respectively [Contarino et al., 2000, Coste et al.,
2000, Bale et al., 2000, Papaleo et al., 2008a]. Similarly to its main ligand CRF,
CRF1 receptor mRNA is found throughout the rodents CNS, including the cor-
tex, cerebellum, limbic forebrain and anterior pituitary corticotropes, where its
stimulation by CRF-like peptides initiates HPA axis activity [Van Pett et al.,
2000, Kuhne et al., 2012]. The CRF2 receptor displays a more confined and
partially overlapping expression with the CRF1 receptor, with high densities
in the olfactory bulb, bed nucleus of the stria terminalis (BNST), lateral sep-
tum, ventromedial hypothalamic nucleus and dorsal raphe nucleus (Figure 1.4)
[Van Pett et al., 2000, Chalmers et al., 1995, Lovenberg et al., 1995, Day et al.,
2004, Lukkes et al., 2009].

Figure 1.4 – Schematic illustration of the spatial distribution and relative expression of

CRF1 receptors (CRFR1) and CRF2 receptors (CRFR2) in the mouse brain [Dedic et al.,

2018]. Abbreviations: see Figure 1.2

1.2.1.3 The CRF-BP

The activity of CRF and UCN1 can be additionally regulated by the CRF-
binding protein (CRF-BP) [Dautzenberg and Hauger, 2002, Seasholtz et al.,
2002, 2001]. This 37-kDA protein is thought to act as an endogenous buffer,
possibly by regulating the availability of active CRF and UCN1 (Figure 1.5)
[Seasholtz et al., 2001, 2002, Behan et al., 1995]. In situ hybridization and

27



immunohistochemistry studies indicate that the CRF-BP is expressed pre-
dominantly in the cerebral cortex, amygdala, BNST and raphe nucleus in rats
[Potter et al., 1992].

Figure 1.5 – CRF family members, their receptors and the CRF-binding protein [Dedic

et al., 2018]. The arrows represent ligand-receptor or ligand-binding protein interactions.

Dashed arrows indicate low-affinity binding, solid arrows indicate high-affinity binding. Ab-

breviations: corticotropin-releasing factor (CRF); CRF-binding protein (CRFBP); CRF1

receptor (CRFR1); CRF2 receptor (CRFR2); urocortin 1 (UCN1); urocortin 2 (UCN2);

urocortin 3 (UCN3).

1.2.2 The CRF system and stress responses: the HPA
axis

CRF (also referred to as corticotropin-releasing hormone or CRH) is the
major physiological activator of the HPA axis and coordinates the neuroen-
docrine responses to stress. Perception of physical or psychological stress by
an organism is followed by a series of events, including the release of CRF
from parvocellular neuroendocrine neurons of the paraventricular nucleus of
the hypothalamus (PVN). These neurons project via the external zone of the
median eminence and release CRF into the hypophysial portal vasculature,
which transports the neuropeptide to secretory corticotrope cells of the ante-
rior pituitary, which express the CRF1 receptor. The activation of CRF1 recep-
tors stimulates the release of ACTH and other pro-opiomelanocortin (POMC)
–derived peptides [Vale et al., 1983]. ACTH, in turn, triggers the synthesis
and release of glucocorticoids (GCs) from the adrenal cortex (cortisol in hu-
mans, corticosterone in rodents), which mediate numerous physiological and
metabolic reactions and ultimately prepare the organism to deal with the
stressful situation (Figure 1.6). These responses to GCs include cardiovascular
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activation, energy mobilization, anti-inflammatory effects and suppression of
reproductive and digestive functions [de Kloet, 2003, Sapolsky, 2000, Munck
et al., 1984, Picard et al., 2014, Stahn and Buttgereit, 2008, Quax et al., 2013,
Buttgereit et al., 2009]. In order to return the HPA axis to its normal state and
to protect it from overshooting, GCs signal back via glucocorticoid (GR) and
mineralocorticoid (MR) receptors at various feedback levels (e.g. pituitary,
hippocampus and PVN), which ultimately inhibit the secretion of CRF and
consequently ACTH. Noteworthy, the HPA axis is not exclusively activated
during aversive stressful situations. In fact, the physiological stress-response
to appetitive, rewarding stimuli can be as large as the response to negative
stimuli. For instance, positive experiences such as a sexual encounters, wheel
running and winning a fight (i.e., social victory) in rats have been shown to
induce a similar degree of HPA axis activation as an aversive footshock, social
defeat or restraint stress [Koolhaas et al., 1997, 2011].

Figure 1.6 – CRF integrates neuroendocrine and higher-order behavioral responses by

regulating peripheral HPA axis function and modulating synaptic transmission in the CNS

[Dedic et al., 2018]. Abbreviations: adrenocorticotropic hormone (ACTH); corticotropin-

releasing factor (CRF); paraventricular nucleus of the hypothalamus (PVN).

1.2.3 The CRF system and motivated behavior

Beyond activating aversive behaviors, stress also promotes some appetitive
behaviors. For instance, food intake and relapse into drug-seeking in models
of addiction are both increased by CRF-releasing stressors [Rouibi and Con-
tarino, 2012, Shaham et al., 2000, Pecoraro et al., 2005]. However, besides the
traditional association of CRF with aversive stress, some CRF brain systems
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are activated also by positive rewards, even in the absence of stressors. For in-
stance, CRF release is increased in the central nucleus of the amygdala (CeA)
by food ingestion [Merali et al., 2004, 1998] and in the prefrontal cortex (PFC)
by presentation of Pavlovian cues associated with food reward [Merali et al.,
2004]. Similarly, sucrose ingestion normalizes CRF levels in the hypothalamus
and in the amygdala in adrenalectomized rats [Laugero et al., 2001]. Most
importantly, in the nucleus accumbens (NAc), CRF facilitates cue-elicited mo-
tivation for sucrose in rats [Pecina et al., 2006] and social bonding in praire
voles [Lim et al., 2007], behaviors believed to be mediated also by dopamine
(DA) transmission[Aragona et al., 2006, Lex and Hauber, 2008]. Indeed, a
wealth of experimental evidence highlights that motivated behavior is facili-
tated by activity of the mesolimbic DA projections from the ventral tegmental
area (VTA) to the NAc [Salamone et al., 2009]. Accordingly, DA levels in the
NAc are elevated during appetitive behavior [Roitman et al., 2004] and social
interaction [Gunaydin et al., 2014], but, interestingly, also in response to a va-
riety of stressors [Tidey and Miczek, 1996, Inglis and Moghaddam, 1999]. The
latter studies suggest that mesolimbic VTA DA neurons are well positioned to
mediate the interaction between stress and motivation. Accordingly, during
stress exposure, CRF is released into the VTA in an activity-dependent man-
ner [Wang et al., 2005]. Of major interest, Wanat et al. demonstrated that
CRF acts on VTA DA neurons to attenuate the motivation to work for nat-
ural rewards [Wanat et al., 2013]. Specifically, using a progressive ratio (PR)
operant behavior reinforcement schedule, the latter study first determined the
amount of work (breakpoint) that rats were willing to make to obtain a food
reward; then, to examine whether an acute stress modulated the motivation
to work for the food reward in a CRF-dependent manner, rats received a bi-
lateral intra-VTA injection of a non-selective CRF receptor antagonist (i.e.,
α-helical9-41) and underwent 20 minutes of acute restraint stress prior to be
tested in the PR schedule of reinforcement. Stress exposure significantly re-
duced the breakpoint relative to prior baseline sessions, an effect that was
blocked by the CRF receptor antagonist when administered into the VTA, but
not in other brain regions [Wanat et al., 2013].
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1.3 The CRF system and drug dependence

In the present section, the prominent role of the CRF system in drug de-
pendence, compulsive-like drug self-administration and reinstatement of drug-
seeking following cessation of substance intake is discussed. Related to the
data presented in this thesis, antagonism of the CRF system as a potential
therapeutic tool for drug dependence is also briefly discussed.

1.3.1 The CRF system and the acute effets of drugs of
abuse

Most drugs with abuse potential, including opiates [Buckingham, 1982],
amphetamine [Swerdlow et al., 1993], cocaine [Calogero et al., 1989], nico-
tine [Buckingham and Hodges, 1979], marijuana [Weidenfeld et al., 1994] and
alcohol [Rivier et al., 1984] acutely activate the HPA axis via elevating hy-
pothalamic production of CRF [Rivier et al., 2003, Sarnyai et al., 1992a].
Interestingly, blocking corticosterone production, by either adrenalectomy or
pharmacological blockade of its synthesis, inhibited the acquisition of cocaine
self-administration in rats [Goeders and Guerin, 1996]. The latter result sug-
gested that hypothalamic CRF-induced HPA axis activation may be involved
in the very onset of drug self-administration [Logrip et al., 2011], facilitating
activity in brain reward and motivation circuits and, as a result, easing ac-
quisition of drug-taking behavior [Piazza and Le Moal, 1997, Goeders, 1997].
Accordingly, functional antagonism of CRF neurotransmission has been shown
to attenuate drug intake. Specifically, various CRF1 receptor-preferring antag-
onists (i.e., antalarmin, MJL-1-109-2 and R121919) attenuated alcohol self-
administration in rats undergoing acute withdrawal during an intermittent
alcohol vapour exposure paradigm [Funk et al., 2007, Funk and Koob, 2007].
Moreover, non-selective CRF receptors antagonism (i.e., D-Phe CRF12-41) ef-
fectively decreased alcohol consumption in rats undergoing acute or protracted
substance withdrawal [Valdez et al., 2002]. Similar results were observed in
rats self-administering heroin and cocaine [Goeders and Guerin, 1996, Valdez
et al., 2002, Specio et al., 2008].

1.3.2 The CRF system and drug-induced reward

The involvement of the CRF system in the rewarding effects of drugs of
abuse has been poorly investigated, as compared to, for instance, its role in
the stress-induced reinstatement of drug-seeking and drug–taking behavior.
However, some studies employing conditioned place preference (CPP) proce-
dures have provided initial evidence in favor of a role for the CRF system
in the rewarding effects of cocaine [Lu et al., 2003, Contarino et al., 2017,
Kreibich et al., 2009]. Indeed, intracerebroventricular (i.c.v.) infusion of a
non-selective CRF receptors antagonist or of a CRF1 receptor-preferring an-
tagonist (i.e., α-helical CRF9-41 or CP-154,526) prior to cocaine condition-
ing sessions blocked the acquisition of drug-induced CPP in rats [Lu et al.,
2003]. Moreover, mice exposed to 6-min daily sessions of forced swim dur-
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ing a week displayed potentiated cocaine-induced CPP that was blocked by
administration of a CRF1 receptor-preferring antagonist (i.e., antalarmin) im-
mediately before each forced swim stress [Kreibich et al., 2009]. More recently,
CRF1 receptor-deficiency was shown to decrease the dose of cocaine needed
to produce CPP [Contarino et al., 2017]. Moreover, in the same study, CRF1

receptor-deficiency exacerbated stereotypy produced by relatively high cocaine
doses, an effect that seemed to be independent from the HPA axis activity
[Contarino et al., 2017]. With regard to the latter point, previous studies
showed that the drastic reduction in corticosterone synthesis and levels by
adrenalectomy does not affect CPP responses to cocaine in rats [Russo et al.,
2003, Suzuki et al., 1995]. Finally, cocaine-induced CPP was inhibited by a
CRF1 receptor-preferring antagonist (i.e., antalarmin) in two different stud-
ies [Lu et al., 2003, Contarino et al., 2017]. Even more recently, it has been
reported that CRF1 receptor-preferring antagonism (i.e., CP-154,526) blocks
the enhanced response to cocaine after social stress, as assessed by another
CPP procedure [Ferrer-Perez et al., 2018]. Altogether, the above-mentioned
results indicate a critical role for the CRF1 receptor pathway in cocaine reward,
independently from the closely related HPA axis activity.

1.3.3 The CRF system and withdrawal from drugs of
abuse

While hypothalamic CRF may play a role in the very onset of drug self-
administration, extrahypothalamic sources of CRF, particularly within the ex-
tended amygdala and other limbic structures, might be implicated in the nega-
tive reinforcement mechanisms associated with later stages of drug dependence
[Koob, 2010]. Multiple lines of evidence have demonstrated that, while acute
drug exposure yields a transient elevation of CRF expression in multiple brain
regions [Zhou et al., 1996, Maj et al., 2003], chronic drug exposure results in
an overactivation of the CRF system, which is central to the drug dependence
and withdrawal phenotypes observed upon cessation of drug intake [Zorrilla
et al., 2001, Zhou et al., 2003, Sommer et al., 2008, George et al., 2007, Caber-
lotto et al., 2004]. During the progression of drug dependence, drug exposure
disrupts the HPA axis negative feedback mechanisms [Zhou et al., 1996], result-
ing in a blunted response [Koob and Kreek, 2007]. However, when the drug is
subsequently withdrawn, CRF release in the extended amygdala increases, ac-
companied by somatic and psychological withdrawal signs [Richter and Weiss,
1999, Olive et al., 2002, Merlo Pich et al., 1995]. Particularly striking across
multiple drugs of abuse is the elevation of CRF in the central nucleus of the
amygdala (CeA) at various withdrawal time points, which could be observed
in rats not only when assessing levels of messenger RNA (mRNA) expression
[Caberlotto et al., 2004, Maj et al., 2003, Sommer et al., 2008] and protein
content [Zorrilla et al., 2001], but also as an elevation of CRF released into
the extracellular space [Rodriguez de Fonseca et al., 1997, Richter and Weiss,
1999, George et al., 2007]. Similar to the CeA, increased CRF release has
also been observed in the lateral bed nucleus of the stria terminalis (BNST)
during alcohol withdrawal in rats [Olive et al., 2002], suggesting an elevated
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activation of CRF signaling throughout the whole structure of the extended
amygdala. Some of the changes observed in CRF mRNA and peptide levels
in pre-clinical studies are summarized in Table 1.4. The increase in CRF-like
immunoreactivity observed in the amygdala 6 weeks after withdrawal from
chronic alcohol or cocaine administration has been proposed to underlie the
elevated anxiety-like behavior characteristic of advanced stages of addiction
[Zorrilla et al., 2001]. In this light, administration of CRF receptor antag-
onists during multiple alcohol withdrawal periods had a long-lasting ability
to prevent stress-induced anxiety-like behavior in rats [Breese et al., 2005b].
Moreover, elevated anxiety-like behavior and alcohol self-administration ob-
served in rats after 4 or 6 weeks of withdrawal were reversed by a non-selective
CRF receptors antagonist (i.e., D-Phe CRF12-41) [Valdez et al., 2002, 2003].
Relatively to the withdrawal-induced elevations of drug intake, data from CRF
receptor knock-out mice support a prominent role for the CRF1 receptor. In-
deed, deletion of the CRF1 receptor gene abolished drug dependence-induced
elevations in the self-administration of alcohol [Chu et al., 2007] and opiate
withdrawal-induced conditioned place aversion [Contarino and Papaleo, 2005].
However, CRF2 receptor-deficient mice also showed no conditioned aversion
to the environmental cues associated with both spontaneous and naloxone-
precipitated opiate withdrawal, when compared to wild-type mice [Ingallinesi
et al., 2012]. The latter results suggest the involvement of both CRF recep-
tors in mediating dysphoria-like states. Similarly, the somatic signs associated
with the withdrawal syndrome seem to involve both receptor subtypes as well.
Specifically, CRF2 receptors may regulate the effects of opiate withdrawal,
which are largely absent in CRF2 receptor knock-out mice [Papaleo et al.,
2008b]. Accordingly, deletion of CRF1 receptors increased the somatic signs
of opiate withdrawal [Papaleo et al., 2007].

Table 1.4 Alterations in corticotropin-releasing factor (CRF) messenger RNA (mRNA)

expression and protein levels throughout the various stages of drug dependence following

exposure to cocaine, morphine or alcohol. Abbreviations: bed nucleus of stria terminalis

(BNST); central nucleus of amygdala (CeA); hippocampus (Hip); hypothalamus (Hyp);

paraventricular nucleus of hypothalamus (PVN); increase (↑); decrease (↓).

Stage CRF Cocaine Morphine Alcohol

Acute drug intake
mRNA ↑ PVN, CeA ↑ CeA ↑ PVN

peptide ↓ Hyp, Hip ↑ Hyp, BNST

Chronic drug intake
mRNA ↓ Hyp ↑ PVN

peptide ↑ CeA, Hyp, ↓ BNST ↓ Hyp

Drug withdrawal
mRNA ↑ PVN ↑ PVN, CeA ↑ PVN

peptide ↓ Hyp, CeA ↑ CeA

1.3.4 The CRF system and reinstatement of
drug-seeking

Drug dependence is characterized by high rates of relapse even following
prolonged periods of drug abstinence [Koob and Le Moal, 2001], which is of-
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ten provoked by exposure to stressors [Sinha, 2001]. In laboratory animals,
after acquisition and subsequent extinction of drug self-administration or con-
ditioned place preference (CPP), reinstatement of drug-seeking can be induced
by (1) re-exposure to a stimulus previously paired with the drug (cue-induced
reinstatement), (2) priming injection of the drug (drug-induced reinstatement)
and (3) exposure to a stressful event (e.g., intermittent unpredictable foot-
shock, immobilization, food deprivation, social defeat, swim stress) or admin-
istration of pharmacological agents (e.g., yohimbine) [Erb et al., 1996, Kreibich
et al., 2009, Shaham and Stewart, 1994, Shalev et al., 2000]. Initial evidence
of the involvement of the CRF system in such phenomenon came from the
observation that i.c.v. injections of a non-selective CRF receptors antagonist
(i.e., α-helical CRF9-41) decreased footshock-induced reinstatement of heroin
seeking in rats [Shaham et al., 1997]. Subsequently, several studies reported
that i.c.v. injections of a similiar non-selective CRF receptors antagonist (i.e.,
D-Phe CRF12-41) decreased footshock-induced reinstatement of drug-seeking
in animals exposed to cocaine [Erb et al., 1998], alcohol [Le et al., 2000] or
nicotine [Zislis et al., 2007]. The fact that systemic injections of a CRF1

receptor-preferring antagonist (i.e., CP-154,526) were also able to decrease
footshock-induced reinstatement of heroin-, cocaine- [Shaham et al., 1998] and
ethanol-seeking [Le et al., 2000] suggested that these effects were mediated by
the CRF1 receptor. Moreover, CRF1 receptor-preferring antagonism (i.e., CP-
154,526) reversed cue-induced reinstatement of cocaine-seeking and attenuated
cue- and drug priming-induced reinstatement of amphetamine-seeking in rats
[Moffett and Goeders, 2007, Goeders and Clampitt, 2002], strengthening the
idea that reinstatement of drug-seeking behavior is mainly a CRF1 receptor-
mediated process. In this light, i.c.v. injections of a CRF1 receptor-preferring
antagonist (i.e., R278995), but not of a CRF2 receptor-preferring antagonist
(i.e., astressin-2B), were able to decrease footshock-induced reinstatement of
nicotine-seeking in rats [Bruijnzeel et al., 2009]. Footshock-induced morphine
or cocaine CPP “reactivation” (i.e., a previously learned CPP that is no longer
expressed and that is restored by exposure to a stressor) was decreased in rats
by i.c.v. injection of a non-selective CRF receptor antagonist (i.e., α-helical
CRF9-41), but not of a CRF2 receptor-preferring antagonist (i.e., antisauvagine-
30) [Lu et al., 2000, 2001]. Moreover, i.c.v. injection of a non-selective CRF re-
ceptor antagonist (i.e., α-helical CRF9-41) decreased food deprivation-induced
reinstatement of heroin-seeking in rats [Shalev et al., 2006] and systemic admin-
istration of a CRF1 receptor-preferring antagonist (i.e., antalarmin) decreased
yohimbine-induced reinstatement of alcohol-seeking in rats [Ghitza et al., 2006,
Marinelli et al., 2007]. Finally, additional evidence in favor of a role for extra-
hypothalamic CRF in stress-induced reinstatement of drug-seeking came from
the fact that i.c.v. injections of CRF reinstated heroin- [Shaham et al., 1997],
cocaine- [Brown et al., 2009] and alcohol-seeking [Le et al., 2000] in rats. Over-
all, these findings point out to a critical role for the CRF system in stress- and
cue-induced reinstatement of drug-seeking.
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1.3.5 The CRF system: potential therapeutic target?

As previously highlighted, in terms of neurobiological consequences, neu-
ropsychiatric disorders (e.g., autism, schizophrenia, depression, anxiety) and
substance use disorders share a high level of comorbidity. In this light, the
therapeutic potential of CRF receptor-specific antagonists relies in their long
known antidepressant and anxiolytic activity [Bremner et al., 1997, Nemeroff
et al., 1984, Zorrilla et al., 2013a]. Among all therapeutic candidates, CRF1

receptor-preferring antagonists have long been considered by many to possess
the strongest preclinical evidence, possibly due to their higher selectivity in
vitro, as compared to CRF2 receptor-preferring antagonists (Table 1.5).

Table 1.5 Antagonists of CRF receptors commonly used in animal models of drug depen-

dence. Relative specificity for each CRF receptor subtype measured in vitro and expressed

as inhibitor constant values (Ki) is reported.

Compound Activity CRF1 vs. CRF2

α-helical CRF9-41 non-selective CRF receptors antagonist Ki=35 vs. 11nM

D-Phe CRF12-41 non-selective CRF receptors antagonist Ki=20 vs. 50nM

antalarmin CRF1 receptor-preferring antagonist Ki=1.0 vs. >10000nM

CP-154,526 CRF1 receptor-preferring antagonist Ki=0.44 vs. >10000nM

CP 376395 CRF1 receptor-preferring antagonist Ki=12 vs. >10000nM

LWH-63 CRF1 receptor-preferring antagonist Ki=0.68-0.7 at CRF1

MJL-1-109-2 CRF1 receptor-preferring antagonist Ki=1.9 at CRF1

MTIP CRF1 receptor-preferring antagonist Ki=0.22 vs. >1000nM

NBI 35965 CRF1 receptor-preferring antagonist Ki=4 vs. >10000nM

R121919 CRF1 receptor-preferring antagonist Ki=0.24 vs. >1000nM

R278995 CRF1 receptor-preferring antagonist Ki=53.2 vs. >10000nM

antisauvagine-30 CRF2 receptor-preferring antagonist Ki>100 vs. 0.29nM

astressin-2B CRF2 receptor-preferring antagonist Ki>10000 vs. 0.49nM

In the past two decades, the effects of the manipulation of the CRF sys-
tem on critical features of drug dependence have been extensively studied
(Table 1.6). Relatively to the symptoms of drug withdrawal, VTA-specific
CRF1 receptor-preferring pharmacological antagonism (i.e., antalarmin), as
well as optogenetic silencing, have been shown to significantly alleviate nico-
tine withdrawal-induced anxiety in mice [Zhao-Shea et al., 2015]. Relatively to
the stress-induced reinstatement of drug-seeking and drug-taking, systemic ad-
ministration of various brain penetrant CRF1 receptor-preferring antagonists
consistently blocked relapse-like behavior triggered by stressors in a number
of studies [Heilig and Koob, 2007, Le and Shaham, 2002, Mantsch et al., 2016,
Zorrilla et al., 2013a]. For instance, knocking down CRF1 receptors in the
VTA with short hairpin RNAs blocked the food deprivation-induced reinstate-
ment of cocaine-seeking in mice [Chen et al., 2014]. In a similar study, but
using a different kind of stressor, administration of a CRF1 receptor-preferring
antagonist (i.e., CP-154,526) prior to a physical stressor (i.e., footshock) sig-
nificantly attenuated the reinstatement of drug-seeking behavior in rats with
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a history of cocaine or heroin self-administration [Shaham et al., 1998]. Intra-
VTA CRF1 (i.e., CP 376395) or CRF2 receptor-preferring antagonism (i.e.,
astressin-2B) during social defeat prevented the subsequent escalation of co-
caine self-administration in rats [Holly et al., 2016]. Moreover, intra-VTA
CRF1 receptor-preferring antagonism (i.e., NBI 35965) paired with simulta-
neous stimulation of CRF2 receptors (i.e., urocortin 3) significantly reduced
binge-like ethanol consumption in mice [Rinker et al., 2017]. Acute treat-
ment with a nonpeptide CRF1 receptor-preferring antagonist (i.e., LWH-63)
inhibited ethanol self-administration in a subset of rats that responded to
acute withdrawal from chronic alcohol vapor by increasing their alcohol in-
take [Sabino et al., 2006]. A CRF1 receptor-preferring antagonist (i.e., CP
376395) administered peripherally or into the VTA reduced the escalation of
cocaine self-administration after social defeat [Boyson et al., 2014]. Relevantly
to reward, it has been reported that CRF1 receptor-preferring antagonism (i.e.,
antalarmin and CP-154,526) inhibits the rewarding effects of cocaine [Lu et al.,
2003, Contarino et al., 2017] and blocks the enhanced response to the drug af-
ter social stress, as assessed by CPP procedures [Ferrer-Perez et al., 2018].

Table 1.6 Effects of manipulation of the CRF system on critical features of drug de-

pendence. Abbreviations: drug reward (Rwd); somatic signs of withdrawal (Smt): negative

affective-like states (Naf); reinstatement of drug-seeking (Rst); urocortin 3 (UCN3); increase

(↑); decrease (↓); not tested (NT).

Manipulation Rwd Smt Naf Rst

Synthesis of CRF-like peptides
CRF NT NT ↑ ↑
UCN3 ↓ NT ↓ NT

Pharmacological blockade of CRF receptors CRF1-2 ↓ ↓ ↓ ↓

Genetic disruption of CRF receptors
CRF1 ↑ ↑ ↓ NT
CRF2 NT ↓ ↓ ↓

Unfortunately, clinical translation of such pre-clinical results has not been
achieved yet. The first CRF1 receptor-preferring antagonist evaluated in hu-
mans (i.e., R121919) showed promising results relatively to depression-like
symptoms [Zobel et al., 2000], but was followed by a series of studies yielding
negative results in depression [Binneman et al., 2008], anxiety [Coric et al.,
2010] and attention deficit [Kwako et al., 2015] disorders. Given the large
body of pre-clinical research pointing out to the involvement of CRF1 receptor-
mediated signalling in the psychopathology of drug dependence, the limited
therapeutic success achieved by these studies is somehow surprising. Vari-
ous reasons may account for this. First of all, the dosage of CRF1 receptor-
preferring antagonist needed to obtain sufficient receptor occupancy remains
unclear. Accurately determining the dose would require a specific CRF1 ligand
that is suitable for positron emission tomography (PET). Radioligands with
PET imaging potential have been developed, but are still being characterized
[Lodge et al., 2014]. Furthermore, since higher binding affinity is associated
with increased antagonist efficacy, the dissociation kinetics of antagonists may
be important for pre-clinical and clinical efficacy [Zorrilla et al., 2013a]. How-

36



ever, to conclude on a positive note, we are the first to our knowledge reporting
a strong behavioral effect of CRF1 receptor-preferring antagonism (i.e., anta-
larmin) on the acute effects of initial substance administration, a result that
suggests a whole new therapeutic value for these pharmacological agents.
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AIM OF THE CURRENT WORK

Drug use, abuse and dependence are major health and socio-economic is-
sues, characterized by profound social and motivational deficits that are be-
lieved to strongly contribute to the establishment and maintenance of com-
pulsive drug-seeking and drug-taking, making abstince difficult to sustain and
relapse more likely to happen [Le Moal and Koob, 2007, Volkow et al., 2011].
However, the specific role of the CRF system in mediating such social and
motivational alterations remains unknown.

Thus, by employing the three-chamber (3-CH) social task [Moy et al., 2004],
a food-driven operant behavior paradigm, a single-exposure conditioned place
preference (CPP) procedure, CRF1 receptor-deficient mutant mice and the
CRF1 receptor-preferring antagonist antalarmin, we aimed at investigating:

1 the impact of chronic morphine administration and withdrawal upon
social behavior in a time-course fashion (Article 1);

2 the impact of a mild environmental stressor upon social behavior follow-
ing long-term opiate withdrawal (Article 1);

3 the role of the CRF1 receptor in the social behavior alterations induced
by chronic morphine administration and withdrawal (Article 2);

4 the impact of acute morphine administration on “natural” rewards, such
as social interaction and food intake (Article 3);

5 the role of the CRF system in the behavioral alterations induced by acute
morphine administration (Article 3).
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2.1 Abstract

2.1.1 Background and purpose

In humans, decreased social interest is a major clinical feature of opiate use
disorders (OUDs). However, no animal studies modeling the timeline of drug-
induced social behavior deficits are available to date. In the present study,
we assessed the short- and long-term effects of spontaneous opiate withdrawal
upon social interest. In addition, we investigated whether exposure to an
ethological environmental stressor affects social behavior after a relatively long
drug-free period.

2.1.2 Experimental approach

Two experiments were carried out. In the first experiment, mice were
repeatedly tested in the three-chamber (3-CH) task 7, 21, 35 and 49 days
following the interruption of chronic morphine administration. In the second
experiment, after being exposed to a mild environmental stressor, mice were
tested in the 3-CH task only once, 49 days following the interruption of chronic
morphine administration. The 3-CH task allowed the investigation of social
interest and discrimination abilities. Follow-up ethological measurements of
aggressive behavior were also taken.

2.1.3 Key results

Morphine withdrawal increased social interest towards an unfamiliar con-
specific. However, ethological analysis also revealed increased aggressive be-
havior in opiate-withdrawn mice. Notably, social interest and aggressive be-
havior followed a similar time-course and positively correlated with one an-
other. Moreover, following exposure to an environmental stressor, neither con-
trol nor long-term opiate-withdrawn mice displayed impaired social interest,
indicating stress resilience.

2.1.4 Conclusions and implications

The present findings demonstrate that spontaneous withdrawal from chronic
morphine administration boosts social interest in mice tested in the 3-CH
paradigm, as compared to saline-treated control mice. We herein suggest
that this phenomenon is due to increased aggressive behavior, an unprece-
dented result that contributes to the clarification of the complex symptoma-
tology of OUDs, suggesting a possible role for aggressiveness in social behavior
dysfunctions. Moreover, we show that performances in the 3-CH paradigm
are completely unaffected by exposure to a mild environmental stressor fol-
lowing chronic morphine treatment and spontaneous prolonged withdrawal,
thereby providing the first experimental evidence of resilience to stress in
opiate-withdrawn mice.
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2.2 Introduction

Opiate use disorders (OUDs) are chronic relapsing diseases with a ma-
jor health and socio-economic impact. Indeed, worldwide prevalence rates of
OUDs range between 0.5-2% of the population aged 15–64 (www.who.int).
Moreover, opiate substances account for about 76% of the deaths related to
substances of abuse, highlighting the particularly harmful nature of these drugs
(www.unodc.org/wdr2018). Studies also show an alarming rise in the recre-
ational use of prescription analgesic opiates (e.g., morphine, fentanyl, oxy-
codone) among adolescents, indicating that the incidence rate of OUDs may
dramatically increase in the next few years [EMCDDA, 2017]. OUDs are
characterized by a myriad of somatic and non-somatic symptoms, such as
severe influenza-like signs, negative affective-like states, altered motivational
processes, impaired social behavior and a long-lasting vulnerability to stressors
[APA, 2013, Preller et al., 2014a, Preston and Epstein, 2011, Sinha, 2001]. Cur-
rently, OUDs are treated mainly by substitutive opioid receptor agonists, such
as methadone and buprenorphine [Nutt and Lingford-Hughes, 2008]. How-
ever, opiate “theraphy” also induces dependence [EMCDDA, 2017]. Novel
treatments for OUDs are thus urgently needed and their development heavily
relies on a better understanding of these diseases.

Studies suggest that substance-induced deficits in social behavior, such as
artificial sociability, antisocial traits and social isolation, strongly contribute
to the establishment and maintenance of compulsive drug-seeking and drug-
taking, making abstinence difficult to sustain and relapse more likely to happen
[Babor et al., 1976, Le Moal and Koob, 2007, Volkow et al., 2011]. Nevertheless,
the neural mechanisms underlying disruption of social behavior by substances
of abuse remain poorly understood. In order to study the deficits in social
behavior induced by opiate administration and withdrawal and related brain
alterations, various laboratory animal models have been developed. In par-
ticular, studies using the social interaction (SI) [File and Hyde, 1978] or the
three-chamber (3-CH) test [Moy et al., 2004] revealed decreased social inves-
tigation in morphine- and heroin-withdrawn rats and mice, which could be
observed up to 49 days after discontinuation of opiate administration [Becker
et al., 2016, Goeldner et al., 2011, Lalanne et al., 2017, Lutz et al., 2014,
Zanos et al., 2014]. However, studies also reported enhanced social interaction
in adult mice following morphine exposure during adolescence [Lutz et al.,
2013], thereby highlighting the need for further investigations.

On the other hand, extensive evidence has been linking opiate withdrawal
to increased aggressive behavior in rodents. Indeed, 48 hours after the re-
moval of a subcutaneous morphine pellet [Kantak and Miczek, 1986, Tidey
and Miczek, 1992] or cessation of chronic morphine treatment [Rodriguez-Arias
et al., 1999], mice undergoing spontaneous opiate withdrawal exhibited height-
ened aggressive behavior (i.e., threats and attacks) in the resident-intruder
paradigm, as compared to controls. Dependent rats undergoing spontaneous
morphine withdrawal also displayed increased aggressive behavior 65-72 hours
after the last drug administration [Lal et al., 1971]. Moreover, mice chroni-
cally administered with morphine displayed increased aggressive behavior up
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to at least 15 days following naloxone-precipitated withdrawal [Felip et al.,
2000]. Accordingly, human studies also report on the adverse social conse-
quences of opiate use and withdrawal. Indeed, increased aggressive behavior,
irritability and social isolation have been observed in dependent subjects fol-
lowing long-term self-administration of heroin and during periods of opiate
abstinence [Babor et al., 1976, Gerra et al., 2004a,b].

In the present study, to assess the short- and long-term effects of spon-
taneous opiate withdrawal upon social behavior, we treated C57BL/6 male
mice with increasing doses of morphine and repeatedly tested them in the
3-CH task throughout a relatively long period of time following discontinua-
tion of substance administration. In addition, we investigated the effect of a
relatively long opiate withdrawal period upon exposure to an ethological en-
vironmental stressor. We employed the 3-CH paradigm since it is believed to
provide automated measures of social interest (i.e., sociability, or preference
for an unfamiliar conspecific versus an unanimated object) and discrimination
abilities (i.e., social novelty preference, or preference for a novel versus a famil-
iar conspecific) that, differently from the SI paradigm, are independent from
anxiety-like states or locomotor activity [Moy et al., 2013, Silverman et al.,
2010]. Considering that opiate withdrawal has long been associated with in-
creased aggressive behavior, in order to discern aggressiveness from harmless
social interest [Kaidanovich-Beilin et al., 2011], throughout the various 3-CH
tests we also examined the expression of aggressive behavior, as assessed by
the number of bites and the latency to first bite. The latter approach allowed
us to control for the expression of aggressive behavior in short- and long-term
opiate-withdrawn mice, as well as for its correlation with social interest.
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2.3 Materials and methods

2.3.1 Subjects

C57BL/6 male mice were purchased from Janvier Labs. The colony room
(22±2 ◦C, relative humidity: 50–60%) was maintained on a 12 h light/dark
cycle (lights on at 08h00). Mice were housed in groups of 4 in polycarbonate
cages (29.5 x 11.5 x 13 cm; L x W x H) containing bedding and a cotton nestlet
(SAFE, Augy, France). They had ad libitum access to standard laboratory
food (3.3 kcal/g; SAFE, Augy, France) and fresh water. Mice were 4 weeks
old upon arrival and 10-16 weeks old at the beginning of the experiments,
with a body weight of 22-30 g (25±0.2 g; mean ± S.E.M.). Animals were daily
monitored for the presence of adverse effects of the experimental treatment and
veterinary advice was sought if they displayed signs of distress. All studies were
conducted in accordance with the European Communities Council Directive
of 24 November 1986 (86/609/EEC) and approved by the local Animal Care
and Use Committee. The present study complied with the ARRIVE Guidelines
[Kilkenny et al., 2010] and the BJP standard guidance for studies using animals
[Curtis et al., 2015, McGrath and Lilley, 2015].

2.3.2 Three-chamber (3-CH) apparatus

The 3-CH apparatus was a rectangular box (60 x 40 x 20 cm, L x W x H)
divided in 3 equal chambers and made of dark Plexiglas. Dividing transparent
Plexiglas walls had small square doors (8 cm) that could be manually opened
and closed. The central chamber was empty and each side chamber contained
a round wire cage (12 cm diameter, 14 cm high with bars spaced 1 cm apart)
in which a living mouse or an unanimated object could be placed.

2.3.3 3-CH testing protocol

Prior to the beginning of the experiments, animals were handled (1 min/day)
during 3 consecutive days. The behavioral testing was conducted during the
light phase of the 12 h light/dark cycle in a quiet dedicated room dimly il-
luminated (10 lux). The 3-CH task allowed the study of 1) sociability (i.e.,
preference for an unfamiliar conspecific versus an unanimated object) and 2)
social novelty preference (i.e., SNP, preference for a novel versus a familiar con-
specific). To reduce the number of animals used, mice were repeatedly tested
in the 3-CH task at the various drug withdrawal time points (Experiment 1).
Due to the limited number of animals that could be tested daily, behavioral
studies investigating the effect of a relatively long opiate withdrawal period
upon exposure to an ethological environmental stressor (Experiment 2) were
identically carried out using 4 independent cohorts of mice. No statistical dif-
ferences were found between the independent experiments and therefore the
results were pooled. Within each animal cohort and across testing days, all
the experimental conditions (i.e., treatment, stress) were pseudo-randomized.
During the pre-habituation phase, the subject mouse was confined to the cen-
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tral chamber for 5 min; then, the doors were opened and he could freely explore
the 3 chambers and the empty wire cages for 10 min (habituation phase). Dur-
ing the subsequent 10 min sociability phase, the subject mouse was allowed
to explore the entire apparatus with one wire cage containing an unfamiliar
conspecific and the other an unanimated object. Ultimately, a 10 min SNP
test was carried out, during which a novel unfamiliar conspecific was placed
in the wire cage that previously contained the unanimated object, so that the
subject mouse could choose between an already investigated familiar and a
novel mouse. The unfamiliar conspecifics were substance-näıve C57BL/6 male
mice age-matched with the subject animals, handled (1 min/day) and habitu-
ated to the wire cages (10 min/day) over the 3 days preceding the first 3-CH
test. The position of the unfamiliar conspecific (i.e., left or right side chamber)
was counterbalanced within each experimental group. Between each test, the
apparatus was cleaned with water and the wire cages with 70% ethanol and
water. The experiments were recorded on a video camera placed on top of
the apparatus and measures obtained from a previously validated homemade
video tracking software. In particular, the time spent by the subject mouse ex-
ploring the upper half part of the side chambers containing the wire cages (i.e.,
all 4 paws inside the half-chamber) was considered as a measure to assess his
social interest and discrimination abilities. Moreover, to control for sedation
or hyperactivity [Moy et al., 2013], the total distance travelled during each of
the experimental phases (habituation, sociability and SNP) was recorded.

2.3.4 Morphine administration paradigm

Mice received intraperitoneal (i.p.) injections (10 ml/kg) of physiologi-
cal saline or morphine hydrochloride (Francopia, Gentilly, France) every 12 h
(08h00 - 20h00) for 6 consecutive days, as follows: day 1: 20 mg/kg; day 2:
40 mg/kg; day 3: 60 mg/kg; day 4: 80 mg/kg; day 5: 100 mg/kg; day 6: 100
mg/kg, only one injection in the morning. The latter treatment was chosen
because it produced cognitive deficits and vulnerability to the same etholog-
ical environmental stressor employed herein in previous studies [Morisot and
Contarino, 2016, Morisot et al., 2015]. Mice were weighed immediately before
each injection and body weight changes calculated as percentage of the body
weight recorded just prior to the first injection.

2.3.5 Experimental planning

Two different experiments were carried out. In Experiment 1, mice were
repeatedly tested in the 3-CH task 7, 21, 35 and 49 days after the last injection
(Figure 2.6A). In Experiment 2, mice were tested in the 3-CH task only once,
49 days after the last injection (Figure 2.6B). To assess vulnerability to stress,
within each experimental group, approximately half of the mice were exposed
to an elevated platform stressor (EPS) for 10 min and tested in the 3-CH
task 1 h later; the other half of subject animals remained undisturbed in their
home-cages (i.e., non-stressed, NS). The EPS was a square (10 x 10 cm) made
of dark grey polypropylene and situated 40 cm above the floor. The stressing
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procedure was carried out in a separate room under direct lighting of the
animal (70 lux). Throughout the testing procedure, to control for the ability
to detect social stimuli without loading on cognitive function, no inter-trial
interval (ITI) was applied between the sociability and the SNP phases [Millan
and Bales, 2013, Silverman et al., 2010].

2.3.6 Quantification of aggressive biting behavior
(ABB)

In order to control for the expression of aggressive behavior, an observer
blind to the experimental groups was trained to quantify the ABB occurring
during the sociability phase for Experiment 1. Considered the physical charac-
teristics of the apparatus, bites were distinguished into 3 different categories:
(1) direct bites to the animal (e.g. biting the tail of the unfamiliar conspecific
when it is sticking out of the cage); (2) focused bites to the animal’s wire
cage (e.g. biting the bars, the basement or the roof of the cage trying to di-
rectly reach the unfamiliar conspecific); (3) unfocused bites to the wire cage
containing the unanimated object. In addition, the latency to first bite was
evaluated, reflecting the time in between the opening of the doors and the first
biting episode directed towards either the unfamiliar conspecific or its cage.

2.3.7 Statistical analysis

Each mouse was assigned a unique identification number that was used to
conduct blind testing and data analysis. To prevent initial side preferences
from biasing the results, only animals exploring the two half-chambers con-
taining the wire cages for at least 60 cumulative sec and within a 20-80% ratio
during the habituation phase were included in the study (inclusion criteria).
For Experiment 1, a three-way analysis of variance (ANOVA) with Treatment
(saline versus morphine) as a between-subjects factor and Side (either animal
versus object or familiar versus novel) and Phase (either habituation versus
sociability or sociability versus SNP) as within-subjects factors was used. For
Experiment 2, a four-way ANOVA with Treatment (saline versus morphine)
and Stress (non-stressed versus EPS-stressed) as between-subjects factors and
Side (either animal versus object or familiar versus novel) and Phase (either
habituation versus sociability or sociability versus SNP) as within-subjects fac-
tors was used. A two-way ANOVA was used to analyze body weight changes,
with Treatment (saline versus morphine) as a between-subjects factor and
Days as a within-subjects factor. Within treatments, the numbers of bites
were compared using paired t-tests. Linear regression analysis were performed
to explore putative correlations between the number of direct + focused bites
(X axis) and the time spent with the unfamiliar conspecific during the socia-
bility phase (Y axis). The accepted value for significance was P<0.05. If main
or interaction effects were significant, the Newman-Keuls post-hoc test was
used for individual group comparisons. Statistical analyses were performed
using the Statistica software (Version 10). Data graphs were created using
GraphPad Prism.
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2.4 Results

2.4.1 Opiate withdrawal increases social interest

The intermittent administration of escalating doses of morphine induced
a body weight loss (Treatment X Day effect: F4,88=21, P<0.0001) that was
evident starting 48 hours after the beginning of the treatment, before the
third drug injection (P<0.001; Figure 2.7A). However, upon OWD 7, saline-
and opiate-withdrawn mice displayed similar body weight changes, indicating
body weight recovery (P=0.10; Figure 2.7A). Analysis of sociability measures
on OWD 7 revealed a Phase X Side interaction effect (P<0.0001; Table 1),
but no Phase X Side X Treatment interaction effect (P=0.12; Table 1). In-
deed, during the sociability phase, saline- and morphine-withdrawn mice spent
more time in the half-chamber containing the mouse, as compared to both the
previous phase (P<0.001; Figure 2.8A) and the opposite half-chamber contain-
ing the object (P<0.001; Figure 2.8A), indicating that relatively early opiate
withdrawal does not affect social behavior in mice. Analysis of sociability
measures on OWD 21, however, revealed a Phase X Side X Treatment sig-
nificant interaction effect (P<0.05; Table 1). Indeed, during the sociability
phase, saline-treated mice spent a similar amount of time in the half-chamber
containing the mouse, as compared to both the previous phase (P=0.19; Fig-
ure 2.8B) or the opposite half-chamber containing the object (P=0.15; Figure
2.8B). The latter result indicates loss of social interest upon re-testing in saline-
treated mice tested in the 3-CH task. In contrast, morphine-withdrawn mice
still spent more time in the half-chamber containing the mouse, as compared
to both the habituation phase (P<0.05; Figure 2.8B) and the opposite half-
chamber containing the object (P<0.001; Figure 2.8B). This result indicates
that opiate withdrawal increases the interest for an unfamiliar conspecific in
morphine-withdrawn mice, as compared to saline-treated control mice. Finally,
no Phase X Side (P=0.79, P=0.26; Table 1) or Phase X Side X Treatment
(P=0.14, P=0.47; Table 1) interaction effects were observed on OWD 35 or
49, respectively, indicating loss of social interest also in opiate-withdrawn mice
(Fig. 2.9A and 2.9B).

2.4.2 Opiate withdrawal increases aggressive behavior

On OWD 7, saline- and morphine-withdrawn mice showed similar levels of
direct bites (P=0.13), focused bites (P=0.28), unfocused bites (P=0.42) and
latency to first attack (P=0.93), indicating that relatively early opiate with-
drawal phases do not affect aggressive behavior (Figure 2.8C). However, on
OWD 21, morphine-withdrawn mice exhibited more direct bites than saline-
withdrawn mice (P<0.05; Figure 2.8D). Although not significant, morphine-
withdrawn mice also showed more focused bites, as compared to saline-treated
mice (P=0.06; Figure 2.8D). On the other hand, the two groups did not differ
in the number of unfocused bites (P=0.54; Figure 2.8D) or latency to first
attack (P=0.95; Figure 2.8D). Interestingly, the number of bites directed to-
wards the unfamiliar conspecific (direct + focused bites) positively correlated
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with the time spent in the half-chamber containing the social stimulus during
the sociability tests carried out on OWD 7 (r=0.76, P<0.05; Figure 2.8E) and
OWD 21 (r=0.86, P<0.001; Figure 2.8F). In contrast, the latter two mea-
sures did not correlate in saline-withdrawn mice, neither on OWD 7 (r=0.20,
P=0.53; Fig. 2.8E) or OWD 21 (r=0.42, p=0.17; Figure 2.8F). The latter re-
sults indicate that the increase in social interest observed in opiate-withdrawn
mice on OWD 21 might be driven by augmented aggressiveness and that some
signs of aggressive behavior might be present already on OWD 7, when no
opiate withdrawal effect is observed upon social interest. Finally, during both
OWD 35 and 49, no differences in aggressive behavior were noted between
experimental groups (Fig. 2.9C and 2.9D), indicating a transient nature for
opiate withdrawal-induced aggressiveness.

2.4.3 Opiate withdrawal does not affect SNP

Independently from the experience of drug administration and withdrawal,
SNP performances were unaffected throughout all 4 tests (Phase X Side X
Treatment interaction effects: OWD 7: P=0.45, OWD 21: P=0.07, OWD 35:
P=0.20, OWD 49: P=0.45; Table 2; Figure 2.10). Indeed, both saline- and
morphine-withdrawn mice spent more time in the half-chamber containing the
novel mouse, as compared to the opposite half-chamber containing the familiar
mouse (OWD 7: P<0.001, OWD 21: P<0.05, OWD 35: P<0.05, OWD 49:
P<0.05; Figure 2.10). However, only on OWD 7 and 21 both groups spent
more time in the half-chamber containing the novel mouse compared to the
previous sociability phase (P<0.05 and P<0.05; Figure 2.10A and B). The
latter result suggests that repeated testing in the 3-CH apparatus might result
in a progressive decline in SNP as well. Finally, opiate withdrawal did not affect
locomotor activity (Table 4). Indeed, throughout OWD 7 to 49, saline- and
morphine-withdrawn mice travelled similar distances during the 3 experimental
phases of the 3-CH task (Figure 2.11), excluding a role for locomotor activity
in the social behavior differences described herein.

2.4.4 Stress does not impair social behavior in
long-term opiate-withdrawn mice

To investigate whether long-term opiate-withdrawal associates with stress-
induced vulnerability of social behavior, mice were treated with saline or mor-
phine and tested in the 3-CH task 49 days after the last administration; within
treatment, half of the mice were exposed to an elevated platform stressor (EPS)
1 h prior being tested. The intermittent administration of escalating mor-
phine doses induced a body weight loss (Treatment X Day effect: F4,256=71,
P<0.0001) that was evident starting 48 hours from the beginning of the treat-
ment, after the third injection (P<0.0001; Figure 2.7B). However, in opiate-
treated mice body weight was fully recovered on OWD 49 (Figure 2.7B). Nei-
ther treatment nor stress affected sociability (Table 3). Indeed, during the
sociability phase, saline- and morphine-withdrawn mice spent more time in
the half-chamber containing the mouse, as compared to both the habitua-

49



tion phase (P<0.001; Figure 2.12) or the opposite half-chamber containing the
object (P<0.001; Figure 2.12), independently from the exposure to the EPS.
Likewise, neither treatment nor stress affected SNP (Table 3). Indeed, a Phase
X Side interaction effect (P<0.0001) revealed that during the SNP phase saline-
and morphine-withdrawn mice spent more time in the half-chamber containing
the novel mouse, as compared to both the sociability phase (P<0.0001; Figure
2.13) or to the opposite half-chamber containing the familiar mouse (P<0.0001;
Figure 2.13), independently of exposure to the EPS. The latter results indicate
that long-term opiate withdrawal does not affect social behavior in mice and
that it is not associated with vulnerability to environmental stressors. No-
tably, sociability and SNP scores of mice tested for the first time at OWD
49 (Experiment 2; Figure 2.13) were similar to those observed in mice tested
for the first time at OWD 7 (Experiment 1; Figure 2.8A), suggesting that re-
peated testing in the 3-CH apparatus might lead to a progressive habituation
response. Finally, analysis of locomotor activity measures revealed an effect of
the treatment (P<0.05), but no Treatment X Stress effect (P=0.61). In par-
ticular, opiate-withdrawn mice travelled less distance than saline-withdrawn
mice, independently from the test phase considered (Phase x Treatment inter-
action effect: P=0.77; Table 5). The fact that, despite traveling significantly
different distances, the two experimental groups displayed identical social in-
terest and social recognition abilities, highlights the independence of social
behavior measures from locomotion in the 3-CH paradigm.
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2.5 Discussion

In the present study, we show that C57BL/6 adult male mice experiencing
withdrawal from chronic morphine administration displayed higher social inter-
est towards an unfamiliar conspecific in the three-chamber (3-CH) paradigm, as
compared to their saline counterparts. Moreover, we demonstrate that chronic
morphine administration and withdrawal increased aggressive biting behav-
ior (ABB), in parallel to the boosted interest towards an unknown congener
exhibited by the same mice. Throughout, preference for social novelty was
preserved and did not differ between saline- and morphine-withdrawn mice,
indicating unaltered olfactory function and ability to detect and discern social
stimuli. Furthermore, following a rather long 49 days substance withdrawal
period, neither opiate withdrawal nor exposure to a relatively mild stressor im-
paired social behavior, indicating resilience to stress in morphine-withdrawn
mice.

To assess the impact of morphine withdrawal upon sociability and social
novelty preference, mice were repeatedly tested in the 3-CH paradigm, starting
from 7 days after the last administration and up to 49 days of abstinence, with
a time interval of 14 days between each test. Substance-näıve and morphine-
treated mice spent a similar amount of time investigating an unfamiliar con-
specific during the first behavioral test, 7 days after the last administration.
The latter result is in apparent contrast with the only other study available
employing the 3-CH task and showing reduced sociability and social novelty
preference following 7 days of spontaneous morphine withdrawal in male mice
[Zanos et al., 2014]. One could argue that different experimental conditions
may underlie the discrepancies between the two studies, such as minor changes
in the cumulative amount of drug administered (920 mg/kg in their study and
700 mg/kg in ours) or different housing conditions (individual housing in their
study and standardized group housing in ours). Nevertheless, unpublished
data from our laboratory (not shown) indicate that neither higher cumulative
amounts of drug (i.e., 1200 mg/kg) nor individual housing lead to social impair-
ments in the 3-CH task at opiate withdrawal day 7. Moreover, our result is in
line with previous studies conducted in both morphine- [Goeldner et al., 2011]
and heroin-withdrawn male mice [Lutz et al., 2014] and showing unaffected so-
cial interest in the social interaction (SI) test after 7 days of opiate abstinence.
However, these studies also reported decreased SI in withdrawn mice 28 and 49
days following the last drug administration, whereas we herein show unaffected
social interest in non-stressed animals tested for the first time 49 days follow-
ing the last morphine administration. This discrepancy highlights once again
the profound differences between the 3-CH and the SI paradigms. Indeed,
while their measures of SI differ from our measures of social interest, they cor-
roborate reports from our laboratory showing increased anxiety-like behavior
during long-term opiate abstinence (i.e., 37 days after the last administration)
[Morisot et al., 2015]. During the second test (i.e., first re-test), at opiate
withdrawal day 21, morphine-treated mice displayed a significantly stronger
interest for the unknown congener, as compared to substance-näıve controls.
The latter result suggests heightened social interest in morphine-treated mice
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experiencing opiate withdrawal. During the third and fourth test (i.e., second
and third re-tests), at opiate withdrawal 35 and 49, both experimental groups
exhibited a profound loss of social interest, spending a similar amount of time
with the unknown congener and the unanimated object. Independently from
the treatment received, social novelty preference was unaffected throughout
the whole experiment, despite a slight progressive decrease of social interest
towards the novel congener was noticeable as well.

To our knowledge, we are the first to point out that repeated testing in the
3-CH apparatus leads to a strong behavioral habituation response. The only
other evidence available of this phenomenon comes from the very first paper
introducing the 3-CH paradigm [Moy et al., 2004] and showing a decrease in
the time spent with the unknown congener and an increase in locomotor ac-
tivity following re-testing. In our case, however, the progressive decrease in
the interest for the task is not mirrored by a locomotor sensitization.

Exposure to a mild environmental stressor (i.e., the elevated platform) 49
days following the last administration did not affect social behavior in neither
morphine-treated nor substance-näıve mice. This result differs from what hap-
pens in humans, where stress exposure is considered a major risk factor for
relapse to drug-intake in former addicted individuals [Sinha, 2001]. Accord-
ingly, previous laboratory animal studies showed that physical, psychological
or pharmacological stressors reinstate substance-seeking behaviors and induce
negative affective-like states, even after relatively long periods of withdrawal
[Morisot and Contarino, 2016, Morisot et al., 2014, 2018, 2015, Breese et al.,
2005a, Blatchford et al., 2005, Shaham et al., 2003]. Specifically, the same
stressor has been previously shown to induce the re-emergence of recognition
memory deficits in mice spontaneously withdrawing from chronic morphine
administration [Morisot and Contarino, 2016, Morisot et al., 2014, 2015] and
of sociability deficits in cocaine abstinent mice [Morisot et al., 2018]. The fact
that the same environmental stressor did not induce social impairments in
opiate-withdrawn mice, as compared to cocaine abstinent ones, might be ex-
plained by the existence of different mechanisms underlying the incubation of
psychostimulant and opiate craving [Pickens et al., 2011]. For instance, during
cocaine withdrawal, a robust increase and persistence in drug-seeking behav-
ior is noticeable up to 60 days following the last drug exposure, as assessed by
lever pressing for drug-paired cues in rats [Grimm et al., 2001]. When it comes
to heroin, on the other hand, this behavior vanishes somewhere in between 25
and 60 days of withdrawal [Shalev et al., 2001]. Moreover, Becker et al. have
shown that, after a 4-week abstinence period from chronic drug administra-
tion, morphine- and cocaine-treated mice exhibit clearly different behavioral
profiles [Becker et al., 2016]. For instance, mice treated with morphine, but
not cocaine, displayed decreased sociability in the 3-CH task, profound social
interaction deficits, increased motor stereotypies and marble burying. Coher-
ently, morphine abstinent mice showed increased Fos levels in anxiety-related
brain structures (CeA, PCN) and decreased Fos expression in reward-related
brain structures (VTA), whereas cocaine abstinent animals displayed reduced
Fos staining in anxiety-related brain structures (CeA, PCN) and unaltered
Fos levels in reward-related brain structures (VTA) [Becker et al., 2016]. Al-
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together, their results provide strong evidence of the existence of profound
differences between morphine and cocaine abstinent mice.

In addition, the current study provides further evidence of increased aggres-
sive behavior in mice withdrawing from opiate substances and, most impor-
tantly, is one of the few available portraying this phenomenon during sponta-
neous withdrawing conditions [Rodriguez-Arias et al., 1999, Tidey and Miczek,
1992]. In humans, increased irritability and aggressiveness are considered a
hallmark of heroin abstinence [Gerra et al., 2004b]. Unfortunately, such symp-
tomatic profile has not been well characterized in animal models of sponta-
neous withdrawal. The vast majority of the studies available are naloxone-
precipitated and focus on heightened aggressive behavior during acute (i.e.,
48 hours) morphine withdrawal [Kantak and Miczek, 1986, 1988, Lal et al.,
1971, Rodriguez-Arias et al., 1999, Tidey and Miczek, 1992], with only one
study showing increased aggressiveness in relatively long-term (i.e., 14 days)
abstinent mice experiencing naloxone-precipitated morphine withdrawal [Felip
et al., 2000]. Thanks to the time-course fashion of our experimental plan-
ning, we were able to identify a specific window of time during spontaneous
prolonged withdrawal when subjects experienced augmented will to engage in
aggressive behavior. This window loosely extends from 7 to 35 days of absti-
nence, coherently including the timing of the study cited above and linking
the latter results to a huge amount of existing literature. Notably, aggressive
biting behavior (ABB) positively correlated with the social interest expressed
by opiate-withdrawn mice in the 3-CH paradigm at both opiate withdrawal
days 7 and 21. Only on the latter day, though, drug-withdrawing subjects
displayed significantly higher ABB, as compared to controls, in parallel with
the expression of significantly higher social interest, as described above. This
increase in aggressiveness becomes non-significant again after 35 days and ul-
timately completely extinct after 49 days of abstinence.

The 3-CH task has proven several times to be able to measure social interest
independently from locomotor alterations and anxiety-like states. For instance,
ethanol withdrawal decreases the exploration of the 3-CH apparatus, indicative
of increased anxiety-like behavior, without impairing sociability [Moy et al.,
2013]; BTBR mice (i.e., mouse model of autism spectrum disorders) exhibit
lower sociability without displaying significant differences in exploratory ac-
tivity, as compared to C57BL/6 controls [Yang et al., 2012]; wild-type CRF2

receptor mice display sociability deficits after 7 days of cocaine withdrawal
without significant differences in the number of entries to the chambers of the
apparatus [Morisot et al., 2018]. Even in the current study, morphine with-
drawal induced significant hypolocomotion without altering social interest 49
days after the last administration. However, we herein show that aggressive
behavior and social interest follow the same time course. By demonstrating
that they are positively related at a behavioral level, we highlight that their
development following drug exposure and withdrawal is shared. Noteworthy,
although previously described as a possibility [Kaidanovich-Beilin et al., 2011],
we are the first to our knowledge to have scored additional behaviors (i.e.,
ABB) in the 3-CH paradigm and to have done such thing in a time-course
fashion. This approach turned out to be very interesting, since it made possi-
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ble for us to unravel a possible role for aggressive behavior in the heightened
interest for an unknown congener elicited by opiate withdrawal. In addition,
our protocol did not require the use of additional cohorts of animals, pointing
out practical and ethical advantages for future experimental designs. However,
our studies also highlighted what could be considered a major flaw of the 3-CH
paradigm: under specific circumstances (i.e., opiate withdrawal, male mice),
increased aggressive behavior in such paradigm could be mistaken for social
interest.

In conclusion, the present study demonstrates in an original way that
spontaneous withdrawal from chronic morphine administration induces higher
social interest in male mice tested in the 3-CH paradigm, as compared to
saline-treated control mice. We herein suggest that this phenomenon is due
to increased aggressiveness, as assessed by ethological measures of aggressive
biting behavior (ABB), which we believe drives the withdrawing-subject to-
wards the unfamiliar conspecific for reasons other than harmless social interest.
Noteworthy, the increment in ABB is narrowed to a specific window of time,
thereby suggesting the existence of peculiar oscillations in aggressive behavior
during opiate-withdrawal, an unprecedented result that contributes to the clar-
ification of the complex symptomatology of OUDs. Moreover, we show that
performances in the 3-CH task are completely unaffected by chronic morphine
treatment and exposure to a mild enviromental stressor along spontaneous pro-
longed withdrawal, thereby providing the first evidence of stress resilience in
opiate-withdrawn mice. Future research should better investigate long-term ef-
fects of spontaneous opiate withdrawal on both social and aggressive behavior,
trying to unravel putative shared neurobiological mechanisms and keeping in
mind the surprising results of this study when it comes to choosing paradigms,
protocols and experimental animals.
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2.6 Tables and figures

Table 1, Figure 2.1 – Statistical analysis of social interest of drug-näıve and morphine-
withdrawn mice (Treat) during the time-course experiment (Experiment 1). Social interest
is evaluated comparing the time spent in the half-chamber with the unfamiliar conspecific
during the sociability phase to both the same half-chamber during the previous habituation
phase (Phase) and the opposite half-chamber (Side) containing the unanimated object. The
accepted value for significance was P<0.05.
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Table 2, Figure 2.2 – Statistical analysis of discrimination abilities of drug-näıve and
morphine-withdrawn mice (Treat) during the time-course experiment (Experiment 1). Dis-
crimination abilites are evaluated comparing the time spent in the half-chamber with the
novel unfamiliar conspecific to both the same half-chamber during the previous sociability
phase (Phase) and the opposite chamber (Side) containing the already familiar conspecific.
The accepted value for significance was P<0.05.
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Table 3, Figure 2.3 – Statistical analysis of social interest and discrimination abilities
of drug-näıve and morphine-withdrawn mice (Treat) during the single test experiment (Ex-
periment 2) with appliance of a mild environmental stressor (Stress). Social interest and
discrimination abilities are evaluated as described in Table 1 and 2, respectively. The ac-
cepted value for significance was P<0.05.
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Table 4, Figure 2.4 – Statistical analysis of locomotor activity displayed by drug-näıve
and morphine-withdrawn mice (Treat) during the time-course experiment (Experiment 1).
Locomotion is analyzed for habituation, sociability and social novelty preference (Phase).
The accepted value for significance was P<0.05.
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Table 5, Figure 2.5 – Statistical analysis of locomotor activity displayed by drug-näıve
and morphine-withdrawn mice (Treat) during the single test experiment (Experiment 2) with
appliance of a mild environmental stressor (Stress). Locomotion is analyzed for habituation,
sociability and social novelty preference (Phase). The accepted value for significance was
P<0.05.
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Figure 2.6 – Experimental planning. (A) Experiment 1: following 3 days of handling
(H), mice were injected twice a day every 12 hours (white and grey standing for AM and
PM) with either saline or increasing doses of morphine, before being repeatedly tested in
the three-chamber (3CH) apparatus at 7, 21, 35 and 49 days of opiate withdrawal. (B)
Experiment 2: following the same handling and administration procedures employed in
Experiment 1, approximately half of the mice were exposed to an elevated platform stressor
(EPS) 1 h prior being tested in the 3-CH apparatus only once, after 49 days of opiate
withdrawal.
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Figure 2.7 – Body weight changes. The intermittent administration of escalating
morphine doses induced a body weight loss that become significant starting 48 hours after
the beginning of the treatment, before the third drug injection . However, upon OWD 7
for Experiment 1 (A) and OWD 49 for Experiment 2 (B), respectively, saline- and opiate-
withdrawn mice displayed similar body weight changes, indicating complete body weight
recovery. Values represent mean ± S.E.M. N=12-16 per experimental group. ***P<0.0001.
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Figure 2.8 – Social interest and aggressive behavior (Experiment 1: OWD 7-
21). At OWD 7, independently from the treatment received, mice spent significantly more
time in the half-chamber with the unfamiliar conspecific (animal, light grey), as compared
to both the same half-chamber during the previous habituation phase (animal, white) and
the opposite half-chamber containing the unanimated object (object, light grey) (A). At
OWD 21, just morphine-treated subjects displayed significant social interest (B). At OWD
7, saline- and morphine-withdrawn mice showed similar levels of biting behavior (C). At
OWD 21, morphine-withdrawn mice exhibited significantly higher biting behavior towards
the unfamiliar conspecific (animal), as compared to saline-treated control mice (D). The to-
tal number of bites directed towards the unfamiliar conspecific and his cage (animal + cage
animal) correlated with the time spent in the half-chamber containing the social stimulus
during the sociability tests carried out on both OWD 7 (E) and OWD 21 (F). Values rep-
resent mean ± S.E.M. N=12 per experimental group. *P<0.05, **P<0.001, ***P<0.0001.
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Figure 2.9 – Social interest and aggressive behavior (Experiment 1: OWD 35-
49). Independently form the treatment, at both OWD 35 (A) and OWD 49 (B) mice failed
to spend more time in the half-chamber with the unfamiliar conspecific (animal, light grey),
as compared to either the same half-chamber during the previous habituation phase (animal,
white) or the opposite half-chamber containing the unanimated object (object, light grey).
At both OWD 35 (C) and OWD 49 (D) saline- and morphine-withdrawn mice showed similar
levels of biting behavior. Values represent mean ± S.E.M. N=12 per experimental group.
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Figure 2.10 – Social discrimination abilities (Experiment 1). Throughout all 4 test-
ing days, mice always spent more time in the half-chamber with the novel unfamiliar conspe-
cific (novel, dark grey), as compared to the opposite chamber containing the already familiar
conspecific (familiar, dark grey). On OWD 7 (A) and OWD 21 (B), however, the time spent
with the novel unfamiliar conspecific was significantly higher also when compared to the
same half-chamber during the previous sociability phase (novel, light grey). Values repre-
sent mean ± S.E.M. N=12 per experimental group. *P<0.05, **P<0.001, ***P<0.0001.
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Figure 2.11 – Locomotor activity (Experiment 1). Locomotor activity remained
unaffected throughout the whole experiment, with no significant differences between neither
phases nor testing days in both saline- and morphine-treated animals. Values represent
mean ± S.E.M. N=12 per experimental group.
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Figure 2.12 – Social interest (Experiment 2). Independently from the treatment
received (saline, morphine) or the appliance of a mild environmental stressor (NS, EPS),
mice from all experimental groups spent more time in the half-chamber with the unfamiliar
conspecific (animal, light grey), as compared to both the same half-chamber during the
previous habituation phase (animal, white) and the opposite half-chamber containing the
unanimated object (object, light grey). Values represent mean ± S.E.M. N=15-16 per
experimental group. ***P<0.0001.
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Figure 2.13 – Social discrimination abilities (Experiment 2). Independently from
the treatment received (saline, morphine) or the appliance of a mild environmental stressor
(NS, EPS), mice from all experimental groups spent more time in the half-chamber with
the novel unfamiliar conspecific (novel, dark grey), as compared to both the same half-
chamber during the previous sociability phase (novel, light grey) and the opposite half-
chamber containing the already familiar conspecific (familiar, dark grey). Values represent
mean ± S.E.M. N=15-16 per experimental group. ***P<0.0001.
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Figure 2.14 – Locomotor activity (Experiment 2). Independently from the appliance
of a mild environmental stressor (NS, EPS), morphine-treated mice travelled significantly
less distance overall, as compared to saline-treated mice. Values represent mean ± S.E.M.
N=15-16 per experimental group. ***P<0.0001.
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3.1 Abstract

3.1.1 Background and purpose

In humans, poor social interest is a major clinical feature of opiate use dis-
orders. The corticotropin-releasing factor (CRF) system mediates behavioral
and neuroendocrine responses to stressors and might underlie the behavioral
deficits associated with drug use, abuse and withdrawal. However, its implica-
tion in the social impairments induced by opiate substances remains unknown.
CRF signaling is mediated by two CRF receptor subtypes, termed CRF1 and
CRF2. In the present study, we investigated the role for the CRF1 receptor in
social behavior following discontinuation of drug administration.

3.1.2 Experimental approach

Littermate wild-type (CRF1+/+), heterozygous (CRF1+/-) and knock-out
(CRF1-/-) mice were tested in the three-chamber task for sociability (i.e., pref-
erence for an unfamiliar conspecific versus an unanimated object) and social
novelty preference (SNP, i.e., preference for a novel versus a familiar conspe-
cific) 7 days following the interruption of chronic morphine administration.

3.1.3 Key results

Morphine withdrawal increased social interest towards an unknown con-
gener in CRF1+/+ mice, as compared to their saline counterparts. Interest-
ingly, partial and full CRF1 receptor-deficiencies also increased social interest
towards an unknown and a novel congener, independently from the experience
of drug administration and withdrawal.

3.1.4 Conclusions and implications

The present findings suggest a central role for the CRF1 receptor pathway
and a minor role for the hypothalamic-pituitary-adrenal axis in social behavior
deficits, independently from the experience of opiate administration and with-
drawal, strengthening the notion of a therapeutic potential for CRF-targeting
pharmacological agents.
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3.2 Introduction

Opiate Use Disorders (OUDs) are a major health issue worldwide, espe-
cially due to the alarming rise in the recreational use of prescription analgesic
opiate drugs (https://www.unodc.org/wdr2018/index.html). The key clinical
features of OUDs are the extremely aversive somatic and negative affective-like
states of the drug withdrawal syndrome [APA, 2013], a pathological motiva-
tion and irresistible desire for the drug, antisocial traits [Kalivas and Volkow,
2005, McGregor et al., 2008, Preller et al., 2014a, Young et al., 2008] and
a long-lasting vulnerability to stressors [Preston and Epstein, 2011, Sinha,
2001]. Altogether, these elements make abstinence difficult to sustain and
relapse more likely to happen [Le Moal and Koob, 2007, Stewart, 2008]. Cur-
rently, OUDs are treated mainly by substitutive opioid receptor agonists, such
as methadone and buprenorphine [Nutt and Lingford-Hughes, 2008], which
unfortunately also induce dependence [EMCDDA, 2017]. The development of
effective new therapies is therefore urgently needed and heavily relies upon
a better understanding of the brain mechanisms underlying such clinical fea-
tures.

The corticotropin-releasing factor (CRF) system helps mediate the neu-
roendocrine and behavioral responses to stressful challenges and plays a well-
established role in the regulation of the hypothalamic-pituitary-adrenal (HPA)
axis. CRF might also be implicated in OUDs. For instance, early (8-48 h)
morphine withdrawal is associated with increased CRF mRNA expression in
the central nucleus of the amygdala (CeA) and the paraventricular nucleus
of the hypothalamus (PVN), brain regions implicated in the effects of sub-
stances of abuse [Ingallinesi et al., 2012, Maj et al., 2003, Papaleo et al., 2007].
CRF signaling is mediated by two types of receptors, named CRF1 and CRF2

[Hauger et al., 2003]. Initial studies using pharmacological agents showed that
CRF receptors antagonism attenuated either the somatic signs or the nega-
tive affective-like states of naloxone-precipitated opiate withdrawal [Heinrichs
et al., 1995, Iredale et al., 2000, Lu et al., 2000, Stinus et al., 2005]. More
recent studies, employing mouse models bearing genetic inactivation of only
one type of CRF receptor, unveiled distinct, if not opposite, roles for CRF1

and CRF2 receptors in the behavioral consequences of opiate administration
and withdrawal. For instance, CRF1 or CRF2 receptor-deficiency increases or
decreases, respectively, the somatic signs and the recognition memory deficits
induced by spontaneous morphine withdrawal in mice [Morisot and Contarino,
2016, Papaleo et al., 2007, 2008b]. Moreover, CRF2 receptor-deficiency re-
duces the negative affective-like states of early morphine withdrawal phases
and eliminates the stress-induced reemergence of recognition memory deficits
and vulnerability of motivational states in mice undergoing long-term spon-
taneous morphine withdrawal [Ingallinesi et al., 2012, Morisot and Contarino,
2016, Morisot et al., 2015, Rouibi and Contarino, 2013].

In parallel, an increasing number of studies suggest a central but complex
role for the CRF system in social behavior. For instance, intracerebroven-
tricular (i.c.v.) administration of CRF has been shown to facilitate partner
preference in male prairie voles [DeVries et al., 2002] and to decrease the
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time of interaction with an unknown or a novel congener throughout a CRF1

receptor-mediated mechanism in mice tested in the three-chamber paradigm,
as demonstrated by employing a pharmacological approach (i.e., antalarmin)
[Bagosi et al., 2017a,b]. In addition, transgenic CRF overexpression, urocortin
3- or CRF2 receptor-deficiency have been shown to enhance social investi-
gation and social memory, as assessed by the social interaction test and a
social odor discrimination task (i.e., ability to discriminate between a tube
filled with clean bedding and a tube filled with bedding belonging to sex- and
age-matched familiar or unknown congeners) [Deussing et al., 2010, Kasahara
et al., 2011]. However, more recently, mice bearing a targeted CRF2 receptor-
deficiency in the medial nucleus of the amygdala (MeA) were shown to exhibit
an abnormally low preference for novel conspecifics in a three-chamber-based
task [Shemesh et al., 2016], thereby highlighting the need for further investi-
gations. Nevertheless, altogether these findings point out at the CRF system
as a likely major player in altered social behavior.

However, the role of the CRF system in the social behavior deficits induced
by drugs of abuse remains very little studied. To our knowledge, only one study
to date has investigated the specific role of the CRF system in drug-induced
deficits in social interest. In such study, Morisot et al. showed that CRF2

receptor-deficiency eliminates the sociability deficit and vulnerability induced
by withdrawal from chronic cocaine administration [Morisot et al., 2018]. In-
terestingly, deletion of the CRF2 receptor not only rescued the behavioral
deficit, but also prevented the stress-induced increased expression of oxytocin
(OXY) in the supraoptic nucleus (SON) associated with long-term cocaine
withdrawal. Accordingly, decreased OXY peptide levels in the hypothalamus,
increased OXY receptor binding in the lateral septum and amygdala and de-
creased social behavior have also been shown in mice withdrawing from chronic
morphine administration [Zanos et al., 2014].

In this context, the present study aimed at elucidating the role for the CRF1

receptor in putative social behavior alterations induced by chronic morphine
administration and spontaneous opiate withdrawal in mice. For this purpose,
we employed the well-validated three-chamber paradigm, which is thought to
reliably measure social interest, independently from emotional-like states [Moy
et al., 2013, Silverman et al., 2010].
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3.3 Materials and methods

3.3.1 Subjects

Male CRF1 receptor wild-type (CRF1+/+), heterozygous (CRF1+/-) and
knock-out (CRF1-/-) mutant mice were generated on a mixed C57BL/6x129
background and derived from mating CRF1+/- mice. Genotypes were identi-
fied by PCR analysis of tail DNA. The colony room (22±2 ◦C, relative humid-
ity: 50–60%) was maintained on a 12 h light/dark cycle (lights on at 08h00).
Mice were housed in groups of 2-4 in transparent polycarbonate cages (29.5 x
11.5 x 13 cm; L x W x H) containing bedding and a cotton nestlet (SAFE,
Augy, France). They had ad libitum access to standard laboratory food (3.3
kcal/g; SAFE, Augy, France) and fresh water. The subjects were 11-23 weeks
old at the beginning of the experiment, with a body weight of 23-33 g (27±0.3
g; mean ± S.E.M.). Animals were daily monitored for the presence of adverse
effects of the experimental treatment and veterinary advice was sought if they
displayed signs of distress. All studies were conducted in accordance with the
European Communities Council Directive of 24 November 1986 (86/609/EEC)
and were approved by the local Animal Care and Use Committee. The present
study complied with the ARRIVE Guidelines [Kilkenny et al., 2010] and the
BJP standard guidance for studies using animals [Curtis et al., 2015, McGrath
and Lilley, 2015].

3.3.2 Morphine administration paradigm

Each animal was handled (1 min/day) for 3 consecutive days before the
experiment started. Afterwards, mice received intraperitoneal (i.p.) injections
(10 ml/kg) of physiological saline or morphine hydrochloride (Francopia, Gen-
tilly, France) every 12 h (08h00 - 20h00) for 6 consecutive days, as follows:
day 1: 20 mg/kg; day 2: 40 mg/kg; day 3: 60 mg/kg; day 4: 80 mg/kg; day
5: 100 mg/kg; day 6: 100 mg/kg, only one injection in the morning. This
treatment was chosen because it successfully produced cognitive deficits and
vulnerabilities to stressors in previous studies [Morisot and Contarino, 2016,
Morisot et al., 2015](Morisot et al., 2014a). Mice were weighed immediately
before each injection and body weight (BW) changes calculated as percentage
of the BW recorded just prior to the first injection.

3.3.3 Three-chamber apparatus

The three-chamber apparatus was a rectangular box (60 x 40 x 20 cm, L
x W x H) made of dark Plexiglas and divided in 3 equal chambers. Divid-
ing transparent Plexiglas walls had small square doors (8 cm) that could be
manually opened and closed. The central chamber was empty and each side
chamber contained a round wire cage (12 cm diameter, 14 cm high with bars
spaced 1 cm apart) in which a living mouse or an unanimated object could be
placed.
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3.3.4 Three-chamber testing

Mice were tested in the three-chamber (3-CH) paradigm 7 days following
the last administration. The testing was conducted during the light phase
of the 12 h light/dark cycle in a quiet dedicated room dimly illuminated (10
lux). The 3-CH task allowed the study of 1) sociability (i.e. preference for
an unfamiliar conspecific versus an unanimated object) and 2) social novelty
preference (SNP, i.e. preference for a novel versus a familiar conspecific). Due
to the breeding capacity and to the limited number of animals that could be
tested daily, behavioral studies were identically carried out using 5 independent
cohorts of mice. No statistical differences were found between the independent
experiments and therefore the results were pooled. Within each cohort and
across test days, all experimental conditions (i.e., genotype, treatment) were
pseudo-randomized. During the pre-habituation phase, the subject mouse was
confined into the central chamber for 5 min; then, the doors were opened and
he could freely explore the three chambers and the empty wire cages for 10
min (habituation phase). During the subsequent 10 min sociability phase, the
subject mouse was allowed to explore the entire apparatus with one wire cage
containing an unfamiliar mouse and the other an unanimated object. Ulti-
mately, a 10 min SNP test was carried out, during which a novel mouse was
placed in the wire cage previously containing the object, so that the subject
mouse could now choose between the already investigated familiar and the
novel mouse. The unfamiliar mice were substance-näıve C57BL/6 male mice
age-matched with the subject mice, handled (1 min/day) and habituated to
the wire cages (10 min/day) over the 3 days preceding their first employment.
The position of the unfamiliar mouse (i.e., left or right side chamber) was coun-
terbalanced within experimental groups. Between each test, the apparatus was
cleaned with water and the wire cages with 70% ethanol and water. The ex-
periments were recorded on a video system and the time measures obtained
from a previously validated homemade video tracking software. In particular,
the time spent by the subject mouse exploring the upper half part of the side
chambers containing the wire cages was considered as a measure of social inter-
est. Moreover, to control for sedation or hyperactivity [Moy et al., 2013], the
total distance travelled during each of the experimental phases (habituation,
sociability and SNP) was recorded.

3.3.5 Statistical analysis

Each mouse was assigned a unique identification number that was used to
conduct blind testing and data analysis. To prevent initial side preferences
from biasing the results, only subjects exploring both the half-chambers con-
taining the wire cages for at least 60 cumulative sec and within a 20-80% ratio
during the habituation phase were included in the study. A four-way analysis of
variance (ANOVA) with Genotype (CRF1+/+ versus CRF1+/- versus CRF1-
/-) and Treatment (saline versus morphine) as between-subjects factors and
Side (either animal versus object or familiar versus novel) and Phase (either
habituation versus sociability or sociability versus SNP) as within-subjects fac-
tors was used. A two-way ANOVA was used to analyze body weight changes,
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with Treatment (saline versus morphine) as a between-subjects factor and Days
as a within-subjects factor. The accepted value for significance was P<0.05.
If main or interaction effects were found, the Newman-Keuls post-hoc test was
used for individual group comparisons. Statistical analyses were performed us-
ing the STATISTICA software (Version 10). Data graphs were created using
GraphPad Prism.
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3.4 Results

3.4.1 Increased social interest in opiate-withdrawn
CRF1 wild-type mice

The intermittent administration of escalating doses of morphine induced a
body weight loss (Treatment X Day effect: F4,296=51.7, P<0.0005) that was
evident starting 48 hours after the beginning of the treatment, before the third
drug injection (P<0.0005; Figure 3.3). This effect was independent from the
genotype (Genotype X Treatment X Day: F8,296=1.75, P=0.09). Upon day
7 of opiate withdrawal, saline- and morphine-treated mice displayed similar
body weight changes, indicating body weight recovery (F1,76=0.03, P=0.87;
Figure 3.3).

Statistical analysis of time measures during the sociability phase revealed
a Phase X Side X Genotype X Treatment significant interaction effect (Table
1, P<0.05). Independently from the treatment received, all CRF1+/+ mice
displayed significant social interest during the sociability phase (Figure 3.4), as
revealed by more time spent in the half-chamber containing the unfamiliar con-
specific, as compared to both the previous habituation phase (saline: P<0.05;
morphine: P<0.0005) or the opposite half-chamber containing the unanimated
object (saline: P<0.005; morphine: P<0.0005). Morphine-treated CRF1+/+
mice, however, spent significantly more time in the half-chamber containing
the unknown congener, as compared to saline-treated CRF1+/+ control mice
(P<0.0005; Figure 3.4). The latter result indicates that experiencing opiate
withdrawal increases the will to interact with an unknown conspecific.

3.4.2 Partial and full CRF1 receptor-deficiency
increase social interest

Independently from the treatment received, CRF1+/- and CRF1-/- mice
displayed strong social interest during the sociability phase (Figure 3.4), spend-
ing significantly more time in the half-chamber containing the unfamiliar con-
specific, as compared to both the previous habituation phase (P<0.0005) or
the opposite half-chamber containing the unanimated object (P<0.0005). In-
terestingly, the time spent by saline-treated CRF1+/+ control mice interacting
with the unknown mouse was significantly lower when compared to all these 4
experimental groups as well (P<0.0005, Figure 3.4). The latter result suggests
that, independently from the experience of opiate withdrawal, inactivation of
approximately half CRF1 receptors is sufficient to induce a significant increase
in social interest.

3.4.3 Partial and full CRF1 receptor-deficiency
increase social novelty preference

Statistical analysis of social novelty preference (SNP) measures revealed a
Phase X Side X Genotype significant interaction effect (Table 1, P<0.05). In-
dependently from the treatment received, CRF1-/- mice exhibited significant
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social discrimination abilities during the SNP phase (Figure 3.5), spending
more time in the half-chamber containing the novel unknown congener, as
compared to both the previous sociability phase (P<0.0005) or the opposite
half-chamber containing the already familiar mouse (P<0.05). CRF1+/- mice
also spent more time with the novel unfamiliar mouse (Figure 3.5), but just
compared to the previous phase (P<0.0005), not to the opposite half-chamber
(P=0.62). Similarly, CRF1+/+ mice also spent more time in the half-chamber
with the novel unknown congener (Figure 3.5), but just compared to the previ-
ous phase (P<0.05), not to the opposite half-chamber (P=0.86). However, the
time spent by CRF1-/- mice with the novel unfamiliar conspecific is not signif-
icantly higher when compared to CRF1+/- (P=0.17) or CRF1+/+ (P=0.11)
mice. The latter result suggests that, independently from the experience of
opiate withdrawal, full inactivation of CRF1 receptors slightly ameliorates so-
cial discrimination abilities.

A strong decrease in locomotion is observed in between phases (Table 2,
P<0.0005), independently from the treatment (Table 2, P=0.65) or the geno-
type (Table 2, P=0.05). This effect probably reflects a progressive habituation
of the mice to the apparatus and the focus on the introduction of subsequent
stimuli. Independently from the treatment, an effect of genotype on loco-
motion is present (Table 2, P<0.005), with CRF1-/- mice travelling longer
distances as compared to both CRF1+/- (P<0.05) and CRF1+/+ (P<0.005)
mice (Figure 3.6). Moreover, independently from the genotype, there is an
effect of the treatment (Table 2, P<0.05). Post-hoc analysis, however, failed
to show a significant difference between saline- and morphine-treated animals
(P=0.08).

77



3.5 Discussion

In the current study, by employing the three-chamber (3-CH) paradigm, we
show that CRF1+/+ adult male mice experiencing withdrawal from chronic
morphine administration display higher social interest towards an unfamiliar
conspecific, as compared to their saline counterparts. Furthermore, by employ-
ing a genetic approach, we show that partial or full deletion of CRF1 receptors
also outcome in heightened social interest towards an unknown or a novel con-
gener, independently from the experience of opiate withdrawal.

To assess the impact of opiate withdrawal and of CRF1 receptor-deficiency
upon social interest, wild-type (CRF1+/+), heterozygous (CRF1+/-) and
knock-out (CRF1-/-) adult male mice were injected with either saline or mor-
phine and tested in the 3-CH paradigm 7 days after the last drug administra-
tion. To mimic the clinical settings, mice were treated with intermittent es-
calating doses of morphine and opiate withdrawal-related alterations assessed
following spontaneous withdrawal [O’Brien, 1996]. Using such a clinically-
oriented paradigm, we found that, on opiate withdrawal day 7 (OWD7), CRF1

+/+ morphine-treated mice displayed significantly stronger social interest to-
wards an unfamiliar conspecific, as compared to saline-treated CRF1+/+ con-
trol mice. This result diverges sharply from what is usually observed in hu-
mans, where drug withdrawal is strongly linked to antisocial traits and social
isolation [Kalivas and Volkow, 2005, McGregor et al., 2008, Preller et al., 2014a,
Young et al., 2008]. It also differs from the only other study available inves-
tigating the effects of chronic morphine administration in the 3-CH paradigm
and showing reduced social interest in drug-treated animals on OWD7 [Zanos
et al., 2014]. However, our result fuels the already existing idea that, when
testing adult male mice in the 3-CH paradigm, increased aggressiveness trig-
gered by the experience of drug administration and withdrawal might interfere
with social interest, thereby masking putative social behavior deficits. As a
matter of fact, unpublished data from our laboratory show that aggressiveness
(i.e., aggressive biting behavior) and social interest positively correlate at a
behavioral level in C57BL/6 adult male mice tested in the 3-CH task at OWD
7 (see Article 1). In this light, it is worth considering that our inbred CRF
strain is based on a C57BL/6 genetic background and that the cumulative
amount of morphine (i.e., 700 mg/kg) and age-range of animals employed in
the two studies are the same (i.e., 11-23 weeks old at the beginning of the
experiment). It is therefore reasonable to hypothesize that increased aggres-
siveness induced by opiate withdrawal might underlie the significantly higher
social interest displayed by morphine-treated CRF1+/+ subjects when com-
pared to their saline-treated counterparts.

On the other hand, the fact that CRF1 receptor-deficient mice, indepen-
dently from the treatment received, displayed stronger social interest towards
the unfamiliar conspecific, as compared to saline-treated CRF1+/+ control
mice, provides initial evidence of CRF-mediated mechanisms underlying social
interest and related alterations. Accordingly, it has been recently suggested
that CRF might affect social interest in a CRF1-dependent manner. Specif-
ically, intracerebroventricular (i.c.v.) administration of the CRF peptide de-
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creased the time of interaction with the unfamiliar conspecific in male mice
tested in the 3-CH task, an effect that was prevented by co-administration of
the CRF1 receptor-preferring antagonist antalarmin [Bagosi et al., 2017b]. Al-
together, these results provide initial pharmacological and genetic evidence of
a major role for the CRF1 receptor pathway in mediating social interest and re-
lated dysfunctions. Importantly, existing literature excludes the possibility of
increased aggressive behavior in CRF1-/- mice being responsible for such phe-
nomenon. Indeed, pharmacological antagonism of CRF1 receptors has been
shown to induce a higher latency to bite and lower lateral attack frequencies
and chase durations in Syrian hamsters [Farrokhi et al., 2004] and rhesus mon-
keys [Habib et al., 2000]. In the study by Farrokhi et al., antagonism of CRF1

receptors even enhanced the frequency and duration of olfactory investigation,
indicating that decreased aggressiveness was not due to deficient social behav-
ior [Farrokhi et al., 2004]. Moreover, CRF1 receptor-deficient mice exhibited
normal levels of isolation-induced intermale aggression in the resident-intruder
paradigm, with a significantly lower percentage of attacks to the ventral por-
tion of the mid-section of intruders by CRF1-/- mice being the only significant
difference between genotypes [Gammie and Stevenson, 2006].

Genetic inactivation of approximately 50% of CRF1 receptors [Contarino
and Papaleo, 2005, Schmidt et al., 2003] resulted in a behavioral phenotype
similar to that observed in CRF1-/- mice, indicating that even partial disrup-
tion of the CRF1 receptor pathway is sufficient to boost social interest. Now,
CRF1+/- and CRF1-/- mice greatly differ in both basal and stress-related
hypothalamic-pituitary-adrenal (HPA) axis activity, with only CRF1-/- mice
showing deficient corticosterone responses to stress [Contarino and Papaleo,
2005, Smith et al., 1998, Timpl et al., 1998]. Therefore, the current data sug-
gest that there is little-to-no involvement of the HPA axis in mediating social
dysfunctions. This result is in line with previous works showing that CRF1+/-
and CRF1-/- mice often display similar behavioral responses. For instance,
they both lack the negative motivational states that accompany opiate with-
drawal [Contarino and Papaleo, 2005] and they both lead to anxiolytic-like
effects in the elevated plus maze (EPM) test [Trimble et al., 2007], which are
known to be independent from the HPA axis activation [Muller et al., 2003, Pa-
paleo et al., 2007, Refojo et al., 2011, Smith et al., 1998]. On the other hand,
CRF1+/- and CRF1-/- mice differently experience the somatic signs of opi-
ate withdrawal [Papaleo et al., 2007], with just CRF1-/-, not CRF1+/- mice,
displaying heightened jumps, wet dog shakes and diarrhea 8 hours after the
cessation of chronic morphine administration. Altogether, these data support
a model that links plasma corticosterone deficiencies to somatic responses, but
not to social, affective and anxiety-like outcomes of drug administration and
withdrawal.

In line with what witnessed during the sociability phase, when compared
to CRF1+/+ mice, CRF1-/- mice displayed a stronger preference for social
novelty as well, an effect that was independent from the treatment received.
On the other side, partial genetic disruption of CRF1 receptors (i.e., CRF1+/-)
just slightly ameliorated the preference for a novel unknown congener. This
is not the first evidence of the expression of intermediate behavioral outcomes
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relatively to CRF1+/- mice. For instance, CRF1+/- mice showed levels of
alcohol withdrawal-induced anxiety-like behavior that were intermediate be-
tween those detected in CRF1+/+ and CRF1-/- mice [Timpl et al., 1998].
Supporting the idea that CRF1 receptors might play a major role in mediating
preference for social novelty, it has been recently demonstrated that adminis-
tration of a CRF1 receptor-preferring antagonist (i.e., antalarmin) could rescue
the deficit in social novelty preference induced by central administration of the
CRF peptide in male mice [Bagosi et al., 2017a].

Finally, on a different note, CRF1-/- mice travelled a significantly longer
distance, as compared to both CRF1+/- and CRF1+/+ mice. It has long
been demonstrated that activation of CRF receptors modulates locomotor ac-
tivity under various conditions [Dunn and Berridge, 1990]. For instance, CRF1

receptor-deficiency has been shown to eliminate the locomotor activation in-
duced by CRF administration [Contarino et al., 2000]. It could be argued that
such ambulatory alterations underlie the differences in social interest observed
in the current work. However, morphine-treated CRF1+/+ mice and both
saline- and morphine-treated CRF1+/- mice display increased social interest
while travelling the same distance of saline-treated CRF1+/+ mice. The lat-
ter result is exemplary of the independence of the two measurements in the
current scenario and excludes ambulatory alterations to be responsible for the
social behavioral differences described above.

In conclusion, the present study shows that spontaneous withdrawal from
chronic morphine administration induces higher social interest in CRF1+/+
mice, as compared to controls. Based on the data presented in Article 1, we
suggest that opiate withdrawal-induced increased aggressive behavior under-
lies such phenomenon. Moreover, we show that, independently from chronic
morphine treatment and spontaneous prolonged withdrawal, partial (CRF1+/-
) or full (CRF1-/-) disruption of major components of the stress-responsive
system outcomes in higher social interest as well, compared to saline-treated
CRF1+/+ control mice. The latter findings provide initial evidence of a major
role for the CRF1 receptor pathway and of a minor role for the HPA axis in
mediating social interest and related deficits.
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3.6 Tables and figures

Table 1, Figure 3.1 – Statistical analysis of social interest (i.e., time measures of the socia-
bility phase) and social discrimination abilities (i.e., time measures of the social novelty pref-
erence phase, SNP) displayed by drug-näıve and morphine-withdrawn (Treat) CRF1+/+,
CRF1+/- and CRF1-/- (Geno) mice at opiate withdrawal day 7 (OWD7). Social interest
is described as the time spent in the half-chamber with the unfamiliar conspecific, as com-
pared to both the same half-chamber during the previous habituation phase (Phase) and
the opposite half-chamber (Side) containing the unanimated object. Social discrimination is
described as the time spent in the half-chamber with the novel unknown congener, as com-
pared to both the same half-chamber during the previous sociability phase (Phase) and the
opposite half-chamber (Side) containing the already known familiar congener. The accepted
value for significance was P<0.05.
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Table 2, Figure 3.2 – Statistical analysis of locomotor activity displayed during the
habituation, sociability and social novelty preference (SNP) phases (Phase) by drug-näıve
and morphine-withdrawn (Treat) CRF1+/+, CRF1+/- and CRF1-/- (Geno) mice at opiate
withdrawal day 7 (OWD7). The accepted value for significance was P<0.05.
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Figure 3.3 – Body weight changes. The intermittent administration of escalating mor-
phine doses induced a body weight (BW) loss that became significant 48 hours after the
beginning of the treatment, as assessed before the third drug injection. However, upon
opiate withdrawal day 7 (OWD7), saline-treated controls and opiate-withdrawn mice dis-
played similar body weight changes, indicating complete body weight recovery. N=39-43
per treatment group. Values represent mean ± S.E.M. ***P<0.0005.
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Figure 3.4 – Social interest. Statistical analysis of habituation and sociability measures
revealed a Geno X Treat X Side X Phase significant interaction effect. Post-hoc individ-
ual group comparisons showed that all experimental groups (n=6) displayed social interest.
However, morphine-treated (mor) CRF1 wild-type (+/+) mice spent significantly more time
with the animal (A), as compared to saline-treated (sal) CRF1 wild-type mice. Moreover,
independently from the experience of drug administration and withdrawal, CRF1 heterozy-
gous (+/-) and knock-out (-/-) mice also spent significantly more time with the animal, as
compared to saline-treated wild-type mice. Social interest is expressed as the time spent
by the subject mouse in the half-chamber with the animal (A, light grey), as compared
to both the same half-chamber during the previous habituation phase (A, white) and the
opposite half-chamber containing the unanimated object (O, light grey). N=12-15 per ex-
perimental group. Values represent mean ± S.E.M. *P<0.05, **P<0.005, ***P<0.0005.
###P<0.0005 (# = as compared to the time spent with the animal during the sociability
phase by saline-treated wild-type controls).
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Figure 3.5 – Social discrimination abilities. Statistical analysis of sociability and SNP
measures revealed a significant Geno X Side X Phase significant interaction effect. Post-hoc
individual group comparisons showed that all experimental groups (n=3) displayed social
discrimination abilities. Independently from the treatment received (sal/mor), CRF1 wild-
type (+/+) mice spent significantly more time with the novel animal (N), but just compared
to the previous phase. CRF1 heterozygous (+/-) mice exhibited a similar preference, but
to a higher extent. CRF1 knock-out (-/-) mice also spent significantly more time with the
novel animal, but not just compared to the previous phase, also to the opposite half-chamber
containing the familiar animal (F). Social disciminatation is expressed as the time spent by
the subject mouse in the half-chamber with the novel animal (N, dark grey), as compared
to both the same half-chamber during the previous sociability phase (N, light grey) and
the opposite half-chamber containing the familiar animal (F, dark grey). N=12-15 per
experimental group. Values represent mean ± S.E.M. *P<0.05, ***P<0.0005.
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Figure 3.6 – Locomotor activity. Independently from the treatment received (sal/mor),
the total distance travelled by CRF1 knock-out (-/-) mice was significantly higher, as com-
pared to both heterozygous (+/-) and wild-type (+/+) mice. N=12-15 per experimental
group. Values represent mean ± S.E.M. #P<0.05, ##P<0.005 (# = as compared to CRF1

knock-out mice).
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4.1 Abstract

4.1.1 Background and purpose

Drugs of abuse activate brain reward systems and strongly narrow be-
havior towards substance-seeking and substance-taking to the detriment of
“natural” rewarding activities, such as social interaction or food intake. The
corticotropin-releasing factor (CRF) system, a major coordinator of behav-
ioral, neuroendocrine and autonomic responses to stressors, might play a crit-
ical role in mediating behavioral and brain alterations associated with drug
intake.

4.1.2 Experimental approach

Using the three-chamber (3-CH) task and a food-driven operant behavior
paradigm, we assessed the effects of relatively low doses of morphine upon
social behavior and motivation for highly palatable food (HPF) in both male
and female mice. Moreover, using a single-exposure conditioned place prefer-
ence (CPP) procedure, we tested the rewarding properties of the most effective
morphine dose. Finally, we employed the CRF1 receptor-preferring antagonist
antalarmin to assess the involvement of the CRF system in the alterations
induced by acute drug administration.

4.1.3 Key results

A single intraperitoneal injection of morphine (2.5 mg/kg) sharply impaired
social behaviour and motivation to obtain HPF in a gender-independent man-
ner. Notably, morphine did not affect locomotion, olfaction or anxiety-like
behaviour, suggesting a specific effect upon the hedonic properties of the “nat-
ural” reinforcers in question. Interestingly, the same morphine dose induced
CPP, indicating activation of brain reward systems. Systemic administration
of the CRF1 receptor-preferring antagonist antalarmin completely reversed the
social behavior deficit, but not the decreased motivation for food, induced by
acute drug administration.

4.1.4 Conclusions and implications

Altogether, our findings indicate decreased interest for “natural” hedonic
activities following exposure to a brain rewarding morphine dose, providing
initial experimental evidence of “hijacking” of brain reward and motivation
systems by opiate substances. Moreover, we demonstrate that the CRF system
might be, at least in part, implicated in such phenomenon, strengthening the
notion of a therapeutic potential for CRF-targeting pharmacological agents.

88



4.2 Introduction

Drugs of abuse act on brain reward systems, although the brain evolved to
respond to “natural” rewards, such as food and social interaction [Kelley and
Berridge, 2002]. It has been postulated that “artificial” stimulation of brain
reward systems by drugs of abuse triggers neuroadaptations within these sys-
tems, altering reward processing so that the value of the drug is enhanced and,
concurrently, the value of “natural” rewards is reduced [Koob and Le Moal,
1997, Volkow et al., 2011]. Accordingly, human studies reported decreased
responsiveness to “natural” reinforcers across a range of psychophysiological
measures (i.e., self-ratings, facial electromyography, startle-elicited postauric-
ular reflex, event-related potentials) [Lubman et al., 2009], reduced food intake
[Lubman et al., 2009] and defective brain activation (as assessed by functional
magnetic resonance imaging) in response to pleasant non-drug-related stimuli
in heroin-dependent individuals [Zijlstra et al., 2009].

Using laboratory animals, researchers have been able to model some of
these phenomena. For instance, early studies reported that during opiate, co-
caine or ethanol withdrawal or upon presentation of withdrawal-conditioned
stimuli, operant responding for food or for sweet solutions was decreased in
rats and monkeys [Goldberg and Gonzalez, 1976, Simpson and Annau, 1977,
Denoble and Begleiter, 1978, Carroll and Lac, 1987, Baldwin and Koob, 1993].
Similarly, cessation of amphetamine administration was shown to induce re-
ward deficits in various animal models [Kitanaka et al., 2008]. For instance,
amphetamine-treated rats exhibited an elevation in the brain reward thresh-
old [Paterson et al., 2000], decreased sucrose intake [Barr and Phillips, 1999,
Der-Avakian and Markou, 2010a,b] and impaired sexual behavior [Barr et al.,
1999]. Moreover, opiate-withdrawn monkeys showed increased heroin choice
over food, suggesting an increase in the relative reinforcing efficacy of the
drug, as compared to food [Negus, 2006]. In addition, a recent study reported
that rats with a history of heroin self-administration given the opportunity
to rescue a cage-mate from confinement (i.e., a naturally occurring rewarding
pro-social behavior) and continue to self-administer the drug, preferred the
latter option [Tomek et al., 2018]. On the other hand, depending upon dose,
route of administration, employment of food- deprivation procedures and time
after injection at which testing occurs, acute morphine administration was
shown to either suppress or enhance food intake [Carr, 1984, Gulati et al.,
1991, Jalowiec et al., 1981, Leshem, 1988, Sanger and McCarthy, 1980]. Fi-
nally, acute administration of various psychostimulants [Daza-Losada et al.,
2009, Maldonado and Navarro, 2001, Navarro and Maldonado, 1999, Slam-
berova et al., 2015, 2010] and of relatively low doses of morphine [Slamberova
et al., 2016] was shown to acutely reduce social investigation in the social
interaction paradigm in adult male mice and rats. Unfortunately, the latter
paradigm assesses mostly anxiogenic-like activity during agonistic encounters,
rather than providing measures of social interest that are independent from
anxiety-like states or locomotor activity, like the three-chamber paradigm does
[Moy et al., 2013, Silverman et al., 2010].

Besides brain reward systems, drugs of abuse also activate brain stress
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systems, such as the corticotropin-releasing factor (CRF) system [Briand and
Blendy, 2010, Koob, 2008b]. For instance, cocaine increases the expression and
the extracellular levels of CRF in the central nucleus of the amygdala (CeA), a
brain region underlying both the effects of drugs of abuse and stress responses
[Maj et al., 2003, Richter et al., 1995]. Besides, extrahypothalamic brain CRF
systems mediate the behavioral effects of drugs of abuse. Indeed, CRF re-
ceptor antagonists eliminated alcohol self-administration in rats undergoing
both acute withdrawal [Funk and Koob, 2007, Funk et al., 2007] and pro-
tracted abstinence [Valdez et al., 2003]. In addition, CRF receptor antagonists
attenuated the escalation of intravenous cocaine [Goeders and Guerin, 1996,
Specio et al., 2008] and heroin self-administration [Greenwell et al., 2009] and
effectively and consistently reduced the stress-induced reinstatement of drug-
seeking behavior in mice and rats [Erb et al., 1998, Kreibich et al., 2009, Le
et al., 2000, Shaham et al., 1997, Shaham and Stewart, 1994, Shalev et al.,
2000, Zislis et al., 2007]. However, despite extensive research supporting the
role of CRF in drug addiction [Koob, 2008b], its specific involvement in the
“hijacking” of brain reward systems by drugs of abuse remains to be elucidated.
Nevertheless, mice bearing a specific genetic mutation for one of the two CRF
receptor subtypes, termed CRF1 and CRF2, have provided initial evidence of
the involvement of the CRF system in drug-induced reward alterations. For
instance, recent studies from our laboratory have shown that CRF1 receptor-
deficient mice display altered sensitivity to the rewarding effects of cocaine,
as assessed by conditioned place preference (CPP) responses [Contarino et al.,
2017], and that CRF2 receptor-deficiency rescues the social behavior deficits
induced by chronic cocaine administration in mice [Morisot et al., 2018]. The
latter results provide initial evidence that the CRF system might underlie the
“hijacking” of brain reward systems described above.

Thus, the goal of the current work was to build a reliable model of reduced
interest for “natural” rewards following exposure to a small, rewarding dose of
morphine and to investigate the putative role of the CRF system in mediating
such phenomenon.
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4.3 Materials and methods

4.3.1 Subjects

C57BL/6 male and female mice were generated in our local animal facility
and derived from mating mice originally purchased from Janvier Labs. Sub-
ject animals were housed in groups of 2-4 and kept on a 12 h light/dark cycle
(lights on from 08h00 to 20h00) in a colony room maintained under standard
laboratory conditions (temperature of 22±1◦C, relative humidity of 50-60%).
Standard laboratory food (3.3 kcal/g; SAFE, Augy, France) and fresh water
were available ad libitum. Mice were 12-20 weeks old at the beginning of the
experiments, with a body weight comprised between 23-32 g (27±0.3 g; mean
± S.E.M.) for the males and 18-25 g (22±0.3 g; mean ± S.E.M.) for the fe-
males. Animals were monitored on a daily basis and veterinary advice was
sought if any signs of distress were noticed. All studies were conducted in ac-
cordance with the European Communities Council Directive of 24 November
1986 (86/609/EEC) and approved by the local Animal Care and Use Commit-
tee. All efforts were made to minimize animal discomfort and to reduce the
number of animal used.

4.3.2 Morphine administration paradigm

Mice received an intraperitoneal (i.p.) injection (10 ml/kg) of either physio-
logical saline or morphine hydrochloride (Francopia, Gentilly, France) dissolved
in physiological saline in the volume of 1.25 mg/kg or 2.5 mg/kg.

4.3.3 Antalarmin administration paradigm

A vehicle solution (94% physiological saline, 1% NaOH, 5% HCl; pH=5) or
antalarmin (TOCRIS, Lille, France) dissolved in vehicle solution in the volume
of 20 mg/kg was administered orally (per os, 10 ml/kg) 1 hour before the i.p.
injection. During this time span, mice were kept in their home cage.

4.3.4 Three-chamber (3-CH) testing

The impact of acute morphine administration upon social behavior was
investigated with the 3-CH task [Moy et al., 2004]. The 3-CH apparatus was
a rectangular box (60 x 40 x 20 cm, L x W x H) divided in 3 equal chambers
and made of dark Plexiglas. Dividing transparent Plexiglas walls had small
square doors (8 x 8 cm) that could be manually opened and closed. The cen-
tral chamber was empty and each side chamber contained a round wire cage
(12 cm diameter, 14 cm high with bars spaced 1 cm apart) in which a liv-
ing mouse or an unanimated object could be placed. Prior to being tested,
each animal was handled (1 min/day) during 3 consecutive days. The experi-
ments were conducted during the light phase of the 12 h light/dark cycle (from
10h00 to 15h00) in a dedicated quiet room under dim light conditions (10 lux).
Immediately after being injected with either saline, morphine 1.25 mg/kg or
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morphine 2.5 mg/kg, subjects were first confined in the central chamber for
5 min in order to get used to the testing conditions (pre-habituation phase).
Subsequently, they were allowed to explore the whole apparatus for 10 min
(habituation phase) prior being challenged with a preference task. The 3-CH
paradigm allowed testing for: 1) sociability (i.e., preference for an unfamiliar
conspecific versus an unanimated object); 2) intact olfaction (i.e., preference
for scented cotton versus unscented cotton). The unfamiliar conspecifics were
substance-näıve mice of the same sex and age-matched with the subject an-
imals, handled (1 min/day) and habituated to the wire cages (10 min/day)
over the 3 days preceding the test. The scented stimulus was a cotton nest-
let taken from a cage of three sex- and age-matched mice 24 h following its
placement in the cage. After being cleaned of residual bedding, the shredded
cotton was placed inside a wired column (3 cm diameter, 12 cm high) and
under one wire cage as an olfactory stimulus. A novel cotton nestlet manually
shredded with gloves was placed inside an identical wired column and under
the opposite wire cage as control stimulus. Across test days, all experimental
conditions (i.e., treatment) were pseudo-randomized and the position (i.e., left
or right side chamber) of the unfamiliar conspecific or the scented cotton coun-
terbalanced within each experimental group. The experiments were recorded
with a camera placed on top of the apparatus and the time spent exploring its
various sections and the locomotor activity scored by a previously validated
home-made video tracking system. Time spent engaging socially (i.e., social
interest) was defined as the time spent by the subject animal with all four
paws in the half-chamber containing the social stimulus. To prevent initial
side preferences or insufficient exploratory behavior from biasing the results,
only animals exploring each side half-chamber for no more than 80% of the 10
min habituation phase and for at least 1 cumulative min were included in the
study.

4.3.5 Elevated plus-maze

The impact of acute morphine administration on anxiety was investigated
with the elevated plus-maze (EPM) test. The apparatus was made of black
Plexiglas and consisted of two open arms (30 x 5 cm, L x W) and two enclosed
arms of the same size with walls 30 cm high. The arms were elevated 30 cm
above the ground and extended from a central platform (5 x 5 cm). All testing
was conducted during the light phase of the light/dark cycle (from 10h00 to
15h00) in a dedicated quite room under relatively dim light conditions (30
lux). In order to match the timings of the 3-CH test and avoid possible shifts
in the effects of the drug, the subjects were positioned in the EPM apparatus
20 min after being injected intraperitoneally, thereby matching the middle of
the sociability phase. Mice were individually tested for 5 minutes in the EPM
apparatus. In particular, each mouse was placed onto the center platform
facing an open arm to initiate the test session. Between each session, the
apparatus was carefully cleaned with water. Behaviors scored were the number
of open and closed arms entries and the time spent on the various sections of
the apparatus. Arm entries were defined as entry of all four paws into the arm.
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At the end of the test, the number of entries into and the time spent on the
open arms were expressed as a percentage of the total number of arm entries
and test duration, respectively. The closed and the total number of entries
were taken as indices of ambulatory activity. The experiments were recorded
with a video system and behaviors scored by a trained observer blind to the
treatments.

4.3.6 Operant behaviour

The impact of acute morphine administration on the motivation for and
the intake of highly palatable food (HPF) was investigated through an oper-
ant behavioural paradigm. Each operant behavior apparatus (22 x 14 x 20
cm, L x W x H) was equipped with dim light sources and with two nose-poke
holes (1 cm in diameter, 8.5 cm apart, 2.5 cm from the grid floor) mounted at
the opposite ends of the same wall, each equipped with infrared photo-beams
connected to a computer (Imetronic, Pessac, France). Nose-poking into one
of the two holes, i.e., the active hole, resulted in food pellet delivery whereas
nose-poking into the other hole, i.e., the inactive hole, had no consequences.
Centered between the nose-poke holes was a food trough situated 2 cm from
the grid floor; food pellet delivery occurred when the photo-beam of the active
nose-poke hole was interrupted for at least 500 msec. We used 20 mg palatable
food pellets (5-TUL, 3.4 kcal/g; PMI Nutrition International, LLC, St. Louis,
MO, USA), which were delivered by an automated dispenser situated outside
the apparatus. Photo-beams allowed monitoring of food trough visits and an
additional food pellet was not delivered until a food trough visit (removal of the
previously delivered food pellet), thereby allowing resolution of food-directed
behavior at the unit of an individual food pellet. The wire grid floor of the cage
allowed the passage of uneaten food pellets to a sliding drawer, making storage
impossible and allowing evaluation of food spillage. Each apparatus was also
equipped with two series of photo-beams that served to record horizontal and
vertical ambulatory activity. Prior to the beginning of the experiment, each
mouse was handled for 1 minute during 3 consecutive days. Starting on the
day after the last handling session, mice were daily confined to the apparatus
for a 1 hour test (15h00-16h00). Within gender, half of the mice were assigned
either the left or the right nose-poke hole as the active hole. A fixed ratio
(FR)-1 reinforcement schedule was initially applied for either 6 (operant be-
havior) or 12 (operant behavior with antalarmin) consecutive days, i.e., one
nose-poke resulting in the delivery of one food pellet. Then, FR-3 and a FR-6
reinforcement schedules were each applied for 3 consecutive days, during which
3 or 6 active nose-pokes produced the delivery of one food pellet, respectively.
Food pellets obtained, food pellets spilt and extra-pokes (non-reinforced active
nose-pokes) made during each FR phase were also calculated. The mice were
then switched to a progressive ratio (PR)-2 reinforcement schedule for the rest
of the experiment, i.e., the number of active nose-pokes required to obtain
each successive food pellet was progressively increased by 2. A within-subject
design was employed to test the effects of the various morphine doses. Follow-
ing 3 PR-2 baseline days, every mouse was injected with saline, morphine 1.25
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mg/kg and morphine 2.5 mg/kg, with either 1 (operant behavior) or 2 (oper-
ant behavior with antalarmin) injection-free additional PR-2 baseline days in
between injection days. The mice were weighed just before each injection and
body weight changes calculated as percentage of the body weight recorded just
prior to the first injection.

4.3.7 Single-exposure conditioned place preference

Morphine reward was examined using the conditioned place preference
(CPP) paradigm, one of the most employed behavioural models of drug reward
in rodents. The CPP apparatus consisted of a rectangular Plexiglas box (42 x
21 x 21 cm, L x W x H) divided by a central partition into two chambers of
equal size (20 x 20 x 20 cm, L x W x H). During the test sessions, an aperture (4
x 4 cm) in the central partition allowed the mice to enter both chambers of the
apparatus. One chamber had dark grey walls and a smooth grey floor whereas
the other had vertical white and black striped (2 cm) walls and a slightly rough
white floor. Light intensity inside the CPP apparatus was 60 lux. Transparent
Plexiglas lids allowed the recording of the experiment. During the three days
preceding the experiment, each mouse was handled daily for 1 minute. On
experimental day 1, mice were individually placed into a CPP chamber and,
following the first entry into the opposite chamber, allowed to freely explore the
apparatus for 20 minutes (pre-conditioning test, 12h00). On experimental day
2, drug-treated mice received saline in the morning (09h00) and morphine in
the afternoon (15h00), injected intraperitoneally just before being confined in
the assigned chamber for 30 min (conditioning). Control mice received saline
prior both trials. On experimental day 3, post-conditioning tests were per-
formed as the pre-conditioning tests by individually placing each mouse in the
CPP chamber paired with saline during the afternoon conditioning trial. The
pre- and post-conditioning sessions were recorded on a video system and the
time spent in each chamber and the locomotor activity scored by a video track-
ing system. Time spent in a chamber was considered when all four paws were
situated inside that chamber. An unbiased CPP procedure was used through-
out the experiment, i.e., within a group, half of the mice were confined to the
preferred and the other half to the non-preferred CPP chamber, as determined
from the pre-conditioning test results. Moreover, within experimental groups,
care was taken to balance drug assignment between the two CPP chambers.

4.3.8 Statistical analysis

Each mouse was assigned a unique identification number that was used
to conduct blind testing and data analysis. A three-way analysis of variance
(ANOVA) with Treatment (sal, mor 1.25, mor 2.5) as a between-subjects factor
and Phase (habituation, sociability) and Side (animal, object or scented cotton,
unscented cotton) as within-subjects factors was used to analyze the results of
the 3-CH social and olfactory tasks. A two-way ANOVA with Treatment (sal,
mor 1.25, mor 2.5) as a between-subjects factor and Phase (habituation, so-
ciability) as a whithin-subjects factor was used to examine locomotor activity
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in the 3-CH social and olfactory tasks. A one-way ANOVA with Treatment
(sal, mor 1.25, mor 2.5) as a between-subjects factor was used to examine the
percentage of entries made into the open arms, the percentage of time spent
in the open arms, the number of closed arm entries and the total number of
arm entries during the EPM test. A repeated measure ANOVA with Treat-
ment (sal, mor 1.25, mor 2.5) as a within-subjects factor was used to analyze
active nose-pokes, food pellets ingested, discrimination indexes and locomotor
activities on the treatment days of the operant behaviour task. A four-way
ANOVA with Pre-treatment (veh, anta) and Treatment (sal, mor) as between-
subjects factors and Phase (habituation, sociability) and Side (animal, object)
as within-subjects factors was used to analyze the results of the 3-CH social
task with antalarmin. A three-way ANOVA with Pre-treatment (veh, anta)
and Treatment (sal, mor) as between-subjects factor and phase (habituation,
sociability) as within-subjects factor was used to examine locomotor activity
in the 3-CH social task with antalarmin. A repeated measure ANOVA with
Treatment (veh/sal, veh/mor, anta/sal, anta/mor) as a within-subjects factor
was used to analyze active nose-pokes, food pellets ingested, discrimination in-
dexes and locomotor activities on the treatment days of the operant behaviour
task with antalarmin. The accepted value for significance was P<0.05. If main
or interaction effects were significant, the Newman-Keuls post-hoc test was em-
ployed for individual group comparisons. Statistical analyses were performed
using the STATISTICA software (Version 10). Data graphs were created using
GraphPad Prism.
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4.4 Results

4.4.1 Acute administration of morphine induces
deficits in social interest

Statistical analysis of sociability measures revealed a Phase X Side X Treat-
ment significant interaction effect in both male (P<0.05; Table 1) and female
(P<0.005; Table 1) mice. Post-hoc individual group comparisons indicated
that, independently from the gender, mice treated with morphine in the volume
of 2.5 mg/kg failed to spent more time in the half-chamber containing the unfa-
miliar conspecific, as compared to both the previous phase (P=0.69 for males,
P=0.19 for females) or the opposite half-chamber (P=0.64 for males, P=0.38
for females). Moreover, drug-treated mice spent significantly less time in the
half-chamber containing the animal when compared to saline-treated control
mice (P<0.005 for males; P<0.0005 for females; Figure 4.4A and 4.4C). Al-
together, these results are indicative of decreased social interest in both male
and female mice administered with morphine in the volume of 2.5 mg/kg.
In contrast, independently from the gender, saline-treated control mice spent
more time in the half-chamber containing the unfamiliar mouse, as compared
to both the habituation phase (P<0.0005 for males, P<0.0005 for females; Fig-
ure 4.4A and 4.4C) or the opposite half-chamber containing the unanimated
object (P<0.0005 for males, P<0.0005 for females; Figure 4.4A and 4.4C),
indicative of strong social interest in both male and female saline-treated con-
trol mice. Male mice injected with morphine in the volume of 1.25 mg/kg
also spent more time in the half-chamber containing the unfamiliar mouse, as
compared to both the previous phase (P<0.05; Figure 4.4A) or the opposite
half-chamber (P<0.05; Figure 4.4A), indicative of intact social interest. On
the other side, female mice injected with the same dose of morphine failed
to spend more time in the half-chamber containing the unfamiliar conspecific,
as compared to both the habituation phase (P=0.06) or the opposite half-
chamber (P=0.07), indicative of decreased social interest. Moreover, female
mice administered with morphine in the volume of 1.25 mg/kg spent signifi-
cantly less time in the half-chamber containing the animal when compared to
saline-treated control mice (P<0.05). Statistical analysis of locomotor activity
measures revealed no effect of the treatment (P=0.16 for males, P=0.22 for
females; Table 1; Figure 4.6A and 4.6B) independently from the test phases,
as revealed by a non-significant Phase X Treatment interaction effect (P=0.25
for males; 0.07 for females; Table 1).

4.4.2 Morphine-induced deficits in social interest are
independent from olfactory impairments

In male mice, statistical analysis of sociability measures revealed a Phase x
Side x Treatment significant interaction effect (P<0.05, Table 2). Indeed, i.p.
administration of morphine in the volume of 2.5 mg/kg, but not 1.25 mg/kg,
significantly reduced the time spent with the scented cotton, as compared to
saline-treated controls. Despite this, post-hoc individual group comparisons
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also indicated that all 3 experimental groups spent significantly more time in
the half-chamber containing the scented cotton, as compared to both the habit-
uation phase (saline: P<0.0005; morphine 1.25 mg/kg: P<0.0005; morphine
2.5 mg/kg: P<0.05; Figure 4.5A) or the opposite half-chamber containing
the unscented cotton (saline: P<0.0005; morphine 1.25 mg/kg: P<0.0005;
morphine 2.5 mg/kg: P<0.05; Figure 4.5A), indicative of intact ability to dis-
criminate in male mice. In female mace, no significant effect of the treatment
was noted (Phase x Side x Treatment: P=0.40, Table 2), with all animals
spending significantly more time in the half-chamber containing the scented
cotton, as compared to both the habituation phase (P<0.0005) or the oppo-
site half-chamber containing the unscented cotton (P<0.0005), as revealed by
post-hoc tests following a significant Phase X Side significant interaction ef-
fect (P<0.0005, Table 2). The latter result is indicative of intact ability to
discriminate in female mice (Figure 4.5B).

4.4.3 Morphine-induced deficits in social interest are
independent from anxiety-like states

Statistical analysis of elevated plus-maze (EPM) measures revealed no ef-
fect of the treatment. In particular, i.p. administration of morphine did not
affect either the percentage of time spent in the open arms (F2,29=1.37, P=0.27
for males; F2,29=0.12, P=0.88 for females) or the percentage of open arm en-
tries (F2,29=2.22, P=0.13 for males; F2,29=0.25, P=0.78 for females), indicative
of unaltered anxiety in both male (Figure 4.6A) and female (Figure 4.6B) mice.
The number of closed arm entries (F2,29=0.07, P=0.93 for males; F2,29=0.76,
P=0.48 for females) and of total arm entries (F2,29=0.15, P=0.86 for males;
F2,29=0.36, P=0.70 for females) were not affected by morphine administration
as well, indicative of unaltered locomotion in both male (Figure 4.6C) and
female (Figure 4.6D) mice.

4.4.4 Acute administration of morphine induces
deficits in the motivation for and in the intake of
highly palatable food (HPF)

Both male and female mice undergoing fixed ratio (FR) reinforcement
schedules acquired and displayed consistent levels of food-motivated behaviour
in the operant paradigm. Statistical analysis of operant behavior measures dur-
ing treatment days (TD, pulled) revealed a significant effect of the treatment
in the number of active nose-pokes (F2,20=4.81, P<0.05 for males; F2,22=5.36,
P<0.05 for females) and food pellets consumed (F2,20=6.33, P<0.05 for males;
F2,22=6.85, P<0.005 for females). Specifically, i.p. administration of mor-
phine in the volume of 2.5 mg/kg, but not 1.25 mg/kg, significantly reduced
the number of active nose-pokes (P<0.05 for males, Figure 4.7A; P<0.05 for
females, Figure 4.8A) and of food pellets consumed (P<0.05 for males, Figure
4.7B; P<0.005 for females, Figure 4.8B), indicative of impaired motivation for
and intake of HPF. No significant effect of the treatment on the discrimina-
tion index was noted (F2,20=1.60, P=0.23 for males; F2,22=1.94, P=0.17 for
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females), indicative of intact ability to distinguish between active and inactive
nose-pokes in both male (Figure 4.7C) and female (Figure 4.8C) mice. No
significant effect of the treatment on horizontal activity (i.e., back and forth,
measured in light beams) was noted (F2,20=1.11, P=0.35 for males; F2,22=2.91,
P=0.08 for females), indicative of unaltered locomotor activity in both male
and female mice (Figure 4.9A). A significant effect of the treatment on verti-
cal activity (i.e., rearings, measured in light beams) was noted in female mice
(F2,22=5.43, P<0.05). Specifically, i.p. administration of morphine in the vol-
ume of 2.5 mg/kg, but not 1.25 mg/kg, significantly reduced the number of
rearings (P<0.05, Figure 4.09B), indicative of impaired “exploratory behav-
ior” in female mice. No significant effect was noted in male mice (F2,20=2.09,
P=0.15), despite a strong decrease in the number of rearing was noticeable as
well.

4.4.5 Morphine reward assessed by single-exposure
conditioning place preference

Male mice administered with morphine during the afternoon condition-
ing session displayed rewarding responses to the drug. In particular, during
the post-conditioning test, mice administered with the 2.5 mg/kg morphine
dose, but not mice administered with saline, spent significantly more time
in the drug-paired chamber of the CPP apparatus, as compared to the pre-
conditioning test (F1,19=5.28, P<0.05; Figure 4.10).

4.4.6 CRF antagonism fully recovers the deficits in
social interest induced by morphine

Statistical analysis of sociability measures revealed a Phase X Side X Pre-
treatment X Treatment significant interaction effect in male mice (P<0.05,
Table 3). Post-hoc individual group comparisons indicated that not just con-
trol subjects pre-treated with vehicle and treated with saline (veh/sal), but
also subjects pre-treated with antalarmin and treated with morphine in the
volume of 2.5 mg/kg (anta/mor) displayed significant social interest. Indeed,
they spent more time with the unfamiliar conspecific, as compared to both the
previous phase (P<0.05 for veh/sal; P<0.005 for anta/mor; Figure 4.11A) and
the opposite half-chamber (P<0.05 for veh/sal; P<0.05 for anta/mor; Figure
4.11A). On the other side, subjects pre-treated with vehicle and treated with
morphine (veh/mor) failed to spent more time in the half-chamber containing
the unfamiliar conspecific, as compared to both the previous phase (P=0.91)
or the opposite half-chamber (P=0.77). Moreover, veh/mor mice spent signif-
icantly less time in the half-chamber containing the animal when compared to
veh/sal (P<0.0005; Figure 4.11A), thereby replicating the results shown in Fig-
ure 4.4A. Surprisingly, veh/mor mice spent significantly less time in the half-
chamber containing the animal when compared to anta/mor as well (P<0.0005;
Figure 4.11A), indicative of rescued social interest in morphine-treated male
mice pre-treated with antalarmin. According to the statistics employed, sub-
jects pre-treated with antalarmin and treated with saline (anta/sal) also failed
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to display social interest, spending similar time in the half-chamber with the
unknown congener, as compared to both the previous phase (P=0.82) and
the opposite half-chamber (P=0.49). In addition, the time spent by anta/sal
mice with the animal was significantly lower when compared to veh/sal mice
(P<0.05; Figure 4.12A). Statistical analysis of locomotor activity measures
revealed no effect of the pre-treatment (P=0.88; Table 3), but a significant
effect of the treatment (P<0.05; Table 3) that is dependent on the test phases,
as revealed by a significant Phase X Treat interaction effect (P<0.05; Table
3). Indeed, morphine-treated male mice travelled a longer distance during the
sociability phase, as compared to saline-treated mice (P<0.05; Figure 4.13).
In female subjects, systemic pre-treatment with the CRF1 receptor-preferring
antagonist antalarmin induced freezing behavior in morphine-treated mice
(anta/mor), forcing us to exclude almost all the animals in this experimental
group (4/5) according to the inclusion criteria discussed in the Materials and
methods section. However, statistical analysis of the remaining experimental
groups (pre-treatment not considered) revealed a Phase X Side X Treatment
significant interaction effect (P<0.05; Table 3). Indeed, saline-treated mice
spent more time in the half-chamber with the unfamiliar conspecific, as com-
pared to both the previous phase (P<0.0005; Figure 4.11B) and the opposite
half-chamber (P<0.0005; Figure 4.11B), while morphine-treated mice spent
similar time in the half-chamber with the unfamiliar conspecific, as compared
to both the previous phase (P=0.21) and the opposite half-chamber (P=0.31).
Moreover, the time spent by morphine-treated mice with the animal was signif-
icantly lower when compared to saline-treated mice (P<0.005; Figure 4.11B),
thereby replicating the results shown in Figure 4.4B.

4.4.7 CRF antagonism does not recover the deficits in
motivation for and intake of HPF induced by
morphine

Both male and female mice undergoing fixed ratio (FR) reinforcement
schedules acquired and displayed consistent levels of food-motivated behaviour
in the operant paradigm. Statistical analysis of operant behavior measures
during treatment days (TD, pulled) revealed a significant effect of the treat-
ments in the number of active nose-pokes (F3,33=8.53, P<0.0005 for males;
F3,33=23.3, P<0.0005 for females) and food pellets consumed (F3,33=11.0,
P<0.0005 for males; F3,33=27.8, P<0.0005 for females). Specifically, inde-
pendently from the per os pre-treatment, i.p. administration of morphine
in the volume of 2.5 mg/kg significantly reduced the number of active nose-
pokes (P<0.005 for males, Figure 4.13A; P<0.0005 for females, Figure 4.14A)
and of food pellets consumed (P<0.005 for males, Figure 4.13B; P<0.0005
for females, Figure 4.14B), thereby replicating the results shown in Figure
4.7 and Figure 4.8. The latter results also indicate no effect of antalarmin
on morphine-induced motivational and intake deficits. No significant effect
of the treatments on the discrimination index was noted (F3,27=0.17, P=0.97
for males; F3,27=2.40, P=0.09 for females), indicative of intact ability to dis-
tinguish between active and inactive nose-pokes in both male (Figure 4.13C)
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and female (Figure 4.14C) mice. No significant effect of the treatments on
horizontal activity (i.e., back and forth, measured in light beams) was noted
(F3,33=0.59, P=0.63 for males; F3,33=2.21, P=0.10 for females), indicative of
unaltered locomotor activity in both male and female mice (Figure 4.15A).
A significant effect of the treatment on vertical activity (i.e., rearings, mea-
sured in light beams) was noted in both male (F3,33=11.4, P<0.0005) and
female (F3,33=14.1, P<0.0005) mice. In particular, independently from the
pre-treatment, i.p. administration of morphine in the volume of 2.5 mg/kg
significantly reduced the number of rearings (P<0.0005), indicating impaired
“exploratory behavior” in both male and female mice (Figure 4.15B).
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4.5 Discussion

In the present study, we investigated the initial effects of morphine on “nat-
ural” rewards in mice. We found that, independently from the gender, acute
administration of relatively low doses of the drug induces profound deficits
in social interest, motivation for and intake of highly palatable food (HPF).
Notably, we demonstrated that these phenomena are not due to altered lo-
comotor activity, olfactory dysfunctions, impaired stimuli discrimination or
anxiety-like states. Once selected the most effective dose of morphine (2.5
mg/kg), we subsequently revealed its rewarding properties with an original
single-exposure conditioned place preference (CPP) procedure. Then, by em-
ploying a pharmacological approach, we investigated the involvement of the
CRF system in the behavioral deficits induced by the selected dose of the
drug. Aside replicating all of the previously obtained results, pharmacological
blockade of CRF receptors was able to fully recover the drug-induced deficits
in social interest, but not the deficits in motivation for and intake of HPF.

To assess the impact of relatively low doses of morphine (1.25-2.5 mg/kg)
upon social interest, mice were tested in the three-chamber (3-CH) task im-
mediately after intraperitoneal (i.p.) administration of the drug. Indepen-
dently from the gender, acute administration of the 2.5 mg/kg dose of mor-
phine strongly impaired social interest, as compared to saline-treated controls.
Specifically, drug-treated mice failed to spend more time in the half-chamber
containing the unfamiliar conspecific, as compared to both the previous habit-
uation phase and the opposite half-chamber containing the unanimated object.
In male subjects, although not significant, blunted social interest was notice-
able after injection of the 1.25 mg/kg dose of morphine, suggesting a dose-
dependent effect of the drug. In female subjects, however, both morphine
doses significantly impaired social interest, indicating a gender difference. To
date, relatively few studies have investigated the initial impact of substances of
abuse upon social behavior. For instance, psychostimulants such as metham-
phetamine, amphetamine, cocaine and MDMA have been shown to acutely
suppress social interaction (SI) in adult male mice [Maldonado and Navarro,
2001, Navarro and Maldonado, 1999] and rats [Daza-Losada et al., 2009, Slam-
berova et al., 2015, 2010]. Moreover, morphine (2.5-5 mg/kg) has been shown
to acutely reduce particular patterns of SI in adult male rats, such as mu-
tual sniffing, allo-grooming, following and genital investigation [Slamberova
et al., 2016]. However, to our knowledge, the present study is the first to date
showing reduced social interest following acute administration of a substance
of abuse in the 3-CH paradigm, which, unlike the SI test, provides measures
of social interest that are independent from anxiety-like states [Moy et al.,
2013, Silverman et al., 2010]. Nevertheless, we carried out further studies to
provide additional evidence of unaltered anxiety-like behavior in drug-treated
subjects by testing our animals in the elevated plus-maze (EPM), a thoroughly
validated rodent model for the study of the anxiolytic-like or anxiogenic-like
properties of pharmacological agents [Cole et al., 1995, Hogg, 1996]. Indepen-
dently from the gender, none of the two doses of morphine employed herein
resulted in altered anxiety-like states, as assessed by the percentage of time or
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entries made into the open arms of the EPM apparatus [Pellow et al., 1985,
Rodgers et al., 1997]. Previous works have shown that acute i.p. injections
of morphine (5-6 mg/kg) produced anxiolytic-like effects in rats tested in the
EPM [Koks et al., 1999, Rezayof et al., 2009, Zarrindast et al., 2005]. However,
in agreement with the present findings, no anxiolytic-like effects of morphine
were observed in mice administered with drug doses lower than 10 mg/kg [Shin
et al., 2003].

One original aspect of the current study is the set-up of a 3-CH task to
test the effects of morphine upon olfaction, based on evidence of adult male
mice displaying similar interest towards an unfamiliar conspecific and a scented
cotton in the same behavioral paradigm [Ryan et al., 2008]. Accordingly, in
the current study, delivering a discrete social olfactory cue (i.e., scented cot-
ton, a shredded cotton nestlet left for 24 h in a cage with three same-sex
age-matched unknown congeners) in the 3-CH task was sufficient to elicit in-
terest in drug-näıve male and female mice. Interestingly, the amount of time
spent by saline-treated mice with the scented cotton nestlet during the olfac-
tory task was undiscernible from the amount of time spent by saline-treated
mice with the unfamiliar conspecific during the social task, strengthening the
importance of olfactory stimuli in driving mouse behavior [Arakawa et al.,
2008, Hurst et al., 2001]. Notably, during the olfactory task, both male and
female mice treated with the 2.5 mg/kg dose of morphine displayed a reliable
preference for the scented cotton, as compared to the unscented one. The lat-
ter result is indicative of unaltered olfaction-driven stimuli discrimination in
morphine-treated mice. Moreover, the fact that mice administered with the
drug displayed interest towards the animal-scented cotton, but not towards the
animal itself, represents a powerful indication that the non-living stimulus, de-
spite representing a strong olfactory cue, does not embody all the requirements
needed to be considered a real “social” stimulus (e.g., visual, tactile and audi-
tory cues).

To assess the impact of relatively low doses of morphine (1.25-2.5 mg/kg)
upon motivation for and intake of HPF, mice were trained for the acquisition of
a food-driven operant task. Specifically, the impact of morphine administration
was assessed using a progressive ratio (PR) schedule of reinforcement, which is
known to reliably measure the motivational properties of a reinforcer and/or
the motivational state of an animal [Arnold and Roberts, 1997, Hodos, 1961].
Since we used a within-subject experimental design, to control for residual ef-
fects of the drug, a PR-2 schedule was applied also during the injection-free
operant tests performed in between treatment days. Independently from the
gender, acute administration of the 2.5 mg/kg dose of morphine significantly
impaired the motivation for and the intake of HPF, as revealed by a reduced
number of active nose-pokes and of food pellets ingested. However, the abil-
ity to discriminate between active and inactive nose-pokes (i.e., discrimination
index) was unaffected by the drug, indicating preserved cognitive function.
Acute administration of the 1.25 mg/kg dose of morphine had no effect on
either of the two measures. It could be argued that the initial hypophagic
response observed herein is due to the sedative properties of the drug, since
doses of morphine ranging between 5-10 mg/kg have been reported to cause an
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initial phase of about 1 h of inhibition of all activities (i.e., freezing behavior)
in single-housed mice [Hecht and Schiorring, 1979]. However, our measures
of horizontal activity (i.e., back and forth) showed no significant differences
between experimental groups, thereby excluding putative sedative effects of
the drug. Accordingly, an early study reported that lower doses of morphine
(0.3-2.5 mg/kg) do not modify locomotor activity in group-housed adult male
mice [Marcais et al., 1981]. Interestingly, the latter study also showed an
inhibition of spontaneous climbing behavior following injection of morphine
(1.25 mg/kg), in line with the strong decrease in vertical activity (i.e., rear-
ing) observed herein. Relevantly to the decreased motivation to obtain food in
drug-administered subjects, rhesus monkeys acutely administered with mor-
phine (0.1-5.6 mg/kg) 15 min before the testing session displayed a signif-
icant dose-dependent decrease in food-reinforced operant behavior [Schulze
and Paule, 1991]. Moreover, male rats acutely administered with morphine
(3 mg/kg) exhibited decreased response rates to incremental food-based re-
peated acquisition procedures (i.e., incremented sequential responses on lever
presses required to obtain food) without showing impairments in the accuracy
of discrimination [Paule and McMillan, 1984]. Interestingly, acute morphine
administration and morphine withdrawal seem to have opposite effects upon
food-driven operant behavior. Indeed, morphine withdrawal significantly in-
creased motivation for and intake of HPF in male mice tested in a similar
operant behavior paradigm [Rouibi and Contarino, 2012]. Notably, in the lat-
ter study, the increased motivation for food displayed by morphine-withdrawn
mice was paralleled by decreased horizontal activity and unaffected vertical
activity, once again excluding a role for locomotion and/or exploration in the
motivational properties of drugs of abuse.

To assess the rewarding properties of morphine, we used the CPP paradigm,
a behavioral test extensively employed to investigate the rewarding effects
of drugs of abuse and other reinforcing stimuli in rodents [Calcagnetti and
Schechter, 1994, Contarino et al., 2002, Hoffman, 1989, Tzschentke, 1998].
However, in contrast to the majority of studies carried out to date with re-
peated drug administrations and conditioning sessions protocols, herein we
used a single-exposure (i.e., one conditioning trial) CPP procedure. The lat-
ter approach has been previously employed to assess the rewarding effects of
drugs of abuse. For instance, single-exposure CPP has been reported for nico-
tine [Spina et al., 2006], morphine [Bardo and Neisewander, 1986, Fenu et al.,
2006], cocaine [Crooks et al., 2010] and more recently alcohol [Grisel et al.,
2014]. The single-exposure CPP is of major interest for several reasons. First
of all, it is less time consuming and avoids excessive manipulation (i.e., fewer
injections), thereby reducing stress and discomfort of the animals. Secondly,
allows the study of the very initial positive or negative reinforcing effects of the
drug upon behavior [Bozarth, 1987], ruling out potential consequences of re-
peated drug exposures upon neuronal signalling [Ungless et al., 2001]. Notably,
the present findings might have higher scientific significance, as compared to
prior results obtained with the same experimental approach. Indeed, besides
administering a much lower dose of the drug (i.e., 2.5 mg/kg instead of 8
mg/kg) through a different administration route (i.e., intraperitoneal instead
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of intravenous) in another animal model (i.e., mice instead of rats), we em-
ployed a more reliable CPP paradigm (i.e., an unbiased CPP protocol instead
of a systematic association of the drug with the non-preferred compartment).
Despite these major differences with previous works, we were able to demon-
strate a significant preference for a context paired with a single exposure to
morphine in male mice. Future experiments will address the question if female
mice display morphine reward using the same experimental approach.

To assess the involvement of the CRF system in the social and motivational
deficits induced by acute administration of a rewarding dose of morphine, we
employed a pharmacological approach. In male mice, per os administration
of the CRF1 receptor-preferring antagonist antalarmin completely rescued the
profound deficits in social interest induced by the drug, as assessed by the 3-
CH task. This result indicates a central role for the CRF system in mediating
substance-induced impairments in social behavior. Notably, antalarmin did
not affect locomotion, indicating a specific effect upon social behavior. How-
ever, pre-treatment with antalarmin induced freezing behavior in morphine-
treated, but not in saline-treated, female mice. The mechanisms underlying the
latter effect remain totally unknown. However, the same dose of antalarmin
employed herein (20 mg/kg, per os) did not produce freezing behavior in fe-
male mice undergoing opiate withdrawal [Papaleo et al., 2007] or male mice
treated with cocaine [Contarino et al., 2017], suggesting a gender-dependent
impact of antalarmin upon the acute effects of opiate drugs.

An increasing number of studies suggest a central but complex role for
the CRF system in the modulation of social behavior. For instance, male
mice bearing a targeted CRF2 receptor-deficiency in the medial nucleus of the
amygdala (MeA) exhibited abnormally low preference for novel conspecifics
in a 3-CH-based task [Shemesh et al., 2016]. Moreover, intracerebroventric-
ular (i.c.v.) administration of CRF has been shown to decrease the time of
interaction with an unfamiliar or a novel conspecific in male mice tested in
the 3-CH task, an effect that was reverted by i.c.v. co-administration of an-
talarmin [Bagosi et al., 2017a,b]. In the present study, however, the rescue of
morphine-induced deficits in social interest by systemic administration of the
latter compound might have higher clinical value.

To our knowledge, only another study to date has investigated the role of
the CRF system in the social behavior deficits induced by drugs of abuse. In
such study, Morisot et al. showed that CRF2 receptor-deficiency eliminates the
sociability deficits and vulnerability induced by withdrawal from chronic co-
caine administration [Morisot et al., 2018]. Thus, the present findings provide
additional evidence of CRF-mediated mechanisms underlying the deleterious
effects of drugs of abuse upon social behavior. Nevertheless, antalarmin failed
to rescue the decreased nose-poking or pellet intake that followed acute mor-
phine administration, suggesting that the CRF system is not involved in the
intial food-driven motivational deficits induced by opiate drugs. The differen-
tial effects of the CRF1 receptor-preferring antagonist upon morphine-induced
social or motivational deficits remain to be elucidated. A wealth of experimen-
tal evidence indicates that motivated behavior is facilitated by the activity of
the mesolimbic dopamine (DA) projections that from the ventral tegmental
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area (VTA) extend to the nucleus accumbens (NAc) [Salamone et al., 2009].
In this context, Bariselli et al. have recently shown that inhibition of VTA-DA
neurons attenuates the exploration of non-familiar conspecifics and interferes
with the reinforcing properties of social interaction in male mice, as assessed
by the 3-CH task and a conditioned place preference (CPP) procedure, re-
spectively [Bariselli et al., 2018]. Even more interestingly, Wanat et al. have
demonstrated that CRF acts in the VTA to attenuate the motivational proper-
ties of “natural” rewards. Specifically, rats undergoing acute restraint stress or
injected with CRF into the VTA exhibited reduced motivation for food under
a PR reinforcement schedule, an effect that was blocked by bilateral intra-
VTA injection of a CRF receptors antagonist [Wanat et al., 2013]. At last, an
additional plausible player in this complex equation is the hypothalamic neuro-
hormone oxytocin (OXY). Indeed, aside from its long-known pro-social [Bartz
et al., 2010, Ishak et al., 2011, Kosfeld et al., 2005] and hypophagic effects
[Lawson et al., 2015, Ott et al., 2013, Thienel et al., 2016, Spetter et al., 2018],
it has been recently demonstrated that OXY release in the VTA is necessary to
elicit social reward [Hung et al., 2017]. Thus, future studies might investigate
the role of VTA-DA neurons and hypothalamic OXY circuits, as well as their
interaction with the CRF system, in the behavioral effects described herein.

In conclusion, the present results indicate that, independently from the
gender, acute administration of a relatively small rewarding dose of morphine
in mice strongly decreases the interest for “natural” rewards, such as social
behavior and the motivation to obtain HPF. These findings provide initial ex-
perimental evidence of “hijacking” of brain reward systems by substances of
abuse, blending in and enriching fundamental assumptions of addiction neuro-
science models. We propose that the latter phenomenon is mediated, at least
in part, by the CRF system, thereby strengthening the notion of a therapeu-
tic potential for CRF-targeting pharmacological agents. This notion acquires
additional clinical relevance when considering that treatment approaches that
have recently gained major importance, such as cognitive behavioral therapy,
rely on the emotional responsiveness and social abilities of drug users [Moos,
2007], which are dramatically impaired in drug-dependent individuals [Preller
et al., 2014b]. In addition, we set-up a novel CPP assay of initial sensitivity
to the rewarding effects of morphine and presented an original 3-CH-based
olfactory task that might be useful to understand critical features of substance
use disorders.
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4.6 Tables and figures

Table 1, Figure 4.1 – Statistical analysis of social interest (sociability) and locomotion
displayed by saline-treated and morphine-treated (Treat) male and female mice during the
3-CH social task. Social interest is described as the time spent by the subject animal
in the half-chamber with the unfamiliar conspecific, as compared to both the same half-
chamber during the previous habituation phase (Phase) and the opposite half-chamber (Side)
containing the unanimated object. The accepted value for significance was P<0.05.
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Table 2, Figure 4.2 – Statistical analysis of olfactory discrimination (sociability) dis-
played by saline-treated and morphine-treated (Treat) male and female mice during the
3-CH olfactory task. Olfactory discrimination is described as the time spent by the sub-
ject animal in the half-chamber with the scented cotton, as compared to both the same
half-chamber during the previous habituation phase (Phase) and the opposite half-chamber
(Side) containing the unscented cotton. The accepted value for significance was P<0.05.
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Table 3, Figure 4.3 – Statistical analysis of social interest (sociability) and locomotor
activity displayed by saline-treated and morphine-treated (Treat) male and female mice
during the 3-CH social task with antalarmin (Pre-Treat). Social interest is described as
the time spent by the subject animal in the half-chamber with the unfamiliar conspecific,
as compared to both the same half-chamber during the previous habituation phase (Phase)
and the opposite half-chamber (Side) containing the unanimated object. The accepted value
for significance was P<0.05.
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Figure 4.4 – 3-CH social task and relative locomotor activity. Social interest
displayed by male (A) and female (B) mice in the 3-CH social task after treatment with
either saline (sal), morphine 1.25 mg/kg (mor 1.25) or morphine 2.5 mg/kg (mor 2.5). Social
interest is expressed as the time spent by the subject mouse in the half-chamber with the
unfamiliar conspecific (animal, grey), as compared to both the same half-chamber during
the previous habituation phase (animal, white) and the opposite half-chamber containing
the unanimated object (object, grey). Independently from the gender, animals treated
with morphine in the dose of 2.5 mg/kg spent less time with the unfamiliar conspecific, as
compared to saline-treated controls. (C) In female subjects, animals treated with morphine
in the dose of 1.25 mg/kg also spent less time with the unfamiliar conspecific, as compared
to saline-treated controls. Distance travelled by male (B) and female (D) mice during
the two phases of the 3-CH social task. No significant differences were noted between
experimental groups. Values represent mean ± S.E.M. N=9-13 per experimental group.
*P<0.05, ***P<0.0005. ##P<0.005, ###P<0.0005 (# = as compared to the time spent
with the animal during the sociability phase by saline-treated controls).
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Figure 4.5 – 3-CH olfactory task. Olfactory discrimination abilities displayed by male
(A) and female (B) mice in the 3-CH olfactory task after treatment with either saline (sal),
morphine 1.25 mg/kg (mor 1.25) or morphine 2.5 mg/kg (mor 2.5). Olfactory discrimi-
nation is expressed as the time spent by the subject mouse in the half-chamber with the
scented cotton (scent, grey), as compared to both the same half-chamber during the previous
habituation phase (scent, white) and the opposite half-chamber containing the unscented
cotton (unscent, grey). (A) In male subjects, animals treated with morphine in the dose of
2.5 mg/kg spent less time with the scented cotton, as compared to saline-treated controls.
Despite this, all experimental groups displayed intact olfactory discrimination abilities. (B)
In female subjects, all animals displayed intact olfactory discrimination abilities, with no
significant differences noted between experimental groups. Values represent mean ± S.E.M.
N=9-12 per experimental group. *P<0.05, ***P<0.0005. #P<0.05 (# = as compared
to the time spent with the scented cotton during the sociability phase by saline-treated
controls).
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Figure 4.6 – Elevated plus-maze test. Percentage of time spent on and percentage of
entries made into the open arms by male (A) and female (B) mice after treatment with either
saline (sal), morphine 1.25 mg/kg (mor 1.25) or morphine 2.5 mg/kg (mor 2.5). Number of
closed and total (closed plus open) arm entries made by male (C) and female (D) mice. No
significant differences were noted between experimental groups. Values represent mean ±
SEM. N=10-11 per group.

111



Figure 4.7 – Operant behavior (male). Evolution of active nose-poking (A), daily food
pellets intake (B) and discrimination index (C) of male mice undergoing fixed (FR) and
progressive ratio (PR) reinforcement schedules. On treatment days (TD) 1, 2 and 3, mice
were administered with saline (sal), morphine 1.25 mg/kg (mor 1.25) or morphine 2.5 mg/kg
(mor 2.5). The higher dose of morphine induced a significant decrease in the number of active
pokes (A) and of food pellets consumed (B) on a stable PR-2 reinforcement schedule. Values
represent mean ± SEM. N=11 per group. #P<0.05 (# = as compared to saline-treated
control mice).
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Figure 4.8 – Operant behavior (female). Evolution of active nose-poking (A), daily
food pellets intake (B) and discrimination index (C) of female mice undergoing fixed (FR)
and progressive ratio (PR) reinforcement schedules. On treatment days (TD) 1, 2 and 3,
mice were administered with saline (sal), morphine 1.25 mg/kg (mor 1.25) or morphine
2.5 mg/kg (mor 2.5). The higher dose of morphine induced a significant decrease in the
number of active pokes (A) and of food pellets consumed (B) on a stable PR-2 reinforcement
schedule. Values represent mean ± SEM. N=12 per group. ##P<0.005 (# = as compared
to saline-treated control mice).

113



Figure 4.9 – Locomotor activity (operant behavior). (A) Horizontal activity (i.e.,
back and forth, measured in photo beams) of male and female mice the day of the treatment
(TD), when they were administered with saline (sal), morphine 1.25 mg/kg (mor 1.25) or
morphine 2.5 mg/kg (mor 2.5). No significant differences were noted between experimental
groups. (B) Vertical activity (i.e., rearings, measured in photo beams) of male and female
mice the day of the treatment (TD). In female subjects, the higher dose of morphine induced
a significant decrease in vertical activity. Values represent mean ± SEM. N=11-12 per group.
#P<0.05 (# = as compared to saline-treated control mice).
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Figure 4.10 – Single-exposure conditioned place preference. Time spent in the
drug-paired chamber of the conditioned place preference apparatus during the pre- and post-
conditioning tests. Mice injected with morphine 2.5 mg/kg (mor 2.5) during the afternoon
conditioning session displayed a significant increase in the time spent in the drug-paired
chamber. Values represent mean ± SEM. N=10-11 per group. *P<0.05.
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Figure 4.11 – 3-CH social task with antalarmin. Social interest displayed by male
(A) and female (B) mice in the 3-CH social task after pre-treatment with either vehicle (veh)
or antalarmin (anta) and treatment with either saline (sal) or morphine 2.5 mg/kg (mor).
Social interest is expressed as the time spent by the subject mouse in the half-chamber with
the unfamiliar conspecific (animal, grey), as compared to both the same half-chamber during
the previous habituation phase (animal, white) and the opposite half-chamber containing the
unanimated object (object, grey). (A) In male subjects, veh/mor mice spent less time with
the unfamiliar conspecific, as compared to both veh/sal and anta/mor mice. (B) In female
subjects, anta/mor mice displayed freezing behavior. Nevertheless, veh/mor mice spent less
time with the unfamiliar conspecific, as compared to veh/sal mice. Values represent mean ±
S.E.M. N=4-7 per experimental group. *P<0.05, **P<0.005, ***P<0.0005. ##P<0.005,
###P<0.0005 (# = as compared to the time spent with the animal during the sociability
phase by veh/sal). ◦◦◦P<0.0005 (◦ = as compared to the time spent with the animal during
the sociability phase by anta/mor).

116



Figure 4.12 – Locomotor activity (3-CH social task with antalarmin). Distance
travelled by male mice during the two phases of the 3-CH social task after pre-treatment with
either vehicle (veh) or antalarmin (anta) and treatment with either saline (sal) or morphine
2.5 mg/kg (mor). Independently from the pre-treatment, morphine-treated mice travelled
a longer distance during the sociability phase, as compared to saline-treated mice. Values
represent mean ± SEM. N=9-13 per group. *P<0.05.
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Figure 4.13 – Operant behavior with antalarmin (male). Evolution of active nose-
poking (A), daily food pellets intake (B) and discrimination index (C) of male mice undergo-
ing fixed (FR) and progressive ratio (PR) reinforcement schedules. On treatment days (TD)
1, 2 and 3, mice were pre-treated with either vehicle (veh) or antalarmin (anta) 1 h before
being administered with either saline (sal) or morphine 2.5 mg/kg (mor) and placed in the
operant chambers. Independently from the pre-treatment, morphine-treated mice displayed
a significant decrease in the number of active pokes (A) and of food pellets consumed (B)
on a stable PR-2 reinforcement schedule. Values represent mean ± SEM. N=12 per group.
##P<0.005 (# = as compared to saline-treated control mice).
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Figure 4.14 – Operant behavior with antalarmin (female). Evolution of active
nose-poking (A), daily food pellets intake (B) and discrimination index (C) of female mice
undergoing fixed (FR) and progressive ratio (PR) reinforcement schedules. On treatment
days (TD) 1, 2 and 3, mice were pre-treated with either vehicle (veh) or antalarmin (anta)
1 h before being administered with either saline (sal) or morphine 2.5 mg/kg (mor) and
placed in the operant chambers. Independently from the pre-treatment, morphine-treated
mice displayed a significant decrease in the number of active pokes (A) and of food pellets
consumed (B) on a stable PR-2 reinforcement schedule. Values represent mean ± SEM.
N=12 per group. ###P<0.0005 (# = as compared to both saline-treated experimental
groups).
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Figure 4.15 – Locomotor activity (operant behavior with antalarmin). (A) Hori-
zontal activity (i.e., back and forth, measured in photo beams) of male and female mice the
day of the treatment (TD), when they were pre-treated with either vehicle (veh) or anta-
larmin (anta) 1 h before being administered with either saline (sal) or morphine 2.5 mg/kg
(mor) and placed in the operant chambers. No significant differences were noted between
experimental groups. (B) Vertical activity (i.e., rearings, measured in photo beams) of male
and female mice the day of the treatment (TD). Independently from the gender and the pre-
treatment, morphine-treated mice displayed decreased vertical activity. Values represent
mean ± SEM. N=12 per group. ###P<0.0005 (# = as compared to both saline-treated
experimental groups).
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CHAPTER 5

GENERAL DISCUSSION

5.1 Summary of present results

The aim of the present work was to assess vulnerability/resilience to opi-
ate substances and to investigate the role for the corticotropin-releasing factor
(CRF) system in the short- and long-term behavioral outcomes of opiate ad-
ministration and withdrawal in mice.

To begin with, we investigated the effect of chronic morphine administra-
tion and withdrawal on social behavior in a previously unreported time-course
fashion. Using the three-chamber (3-CH) test for sociability and social novelty
preference, we initially found that opiate-withdrawn mice displayed signifi-
cantly higher social interest following discontinuation of morphine adminis-
tration, as compared to drug-näıve control mice. However, follow-up etho-
logical analyses revealed increased aggressive behavior in opiate-withdrawn
mice. Notably, social interest for an unfamiliar conspecific and aggressive be-
havior followed a similar time-course and strongly correlated one with each
other, suggesting a possible role for aggressiveness in social behavior dysfunc-
tions. Moreover, following exposure to an environmental stressor relatively
long time after morphine discontinuation, neither drug-näıve control nor long-
term opiate-withdrawn mice displayed impaired social interest for an unfamil-
iar conspecific, indicating stress resilience.

Using the CRF1 receptor-deficient mouse model, we also tested the role for
the CRF1 receptor in opiate withdrawal-induced changes in social behavior.
Likewise the studies mentioned above, we found that opiate withdrawal in-
creased social interest in wild-type mice, as compared to saline-treated control
mice. Moreover, CRF1 receptor-deficiency increased social interest, indepen-
dently from drug administration and withdrawal, providing initial evidence in
favor of a major role for the CRF1 receptor pathway in social behavior. In ad-
dition, CRF1 heterozygous mice displayed a behavioral profile similar to CRF1

knock-out mice. The latter finding suggests a minor role for the HPA axis in
mediating social behavior of drug-näıve or opiate-withdrawn mice.

Then, we investigated the effect of relatively small doses of morphine on
social behavior and motivation for and intake of highly palatable food (HPF).
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In both male and female mice, we found that a single, acute administra-
tion of morphine strongly impaired social behavior, motivation for and in-
take of HPF, as assessed by the 3-CH test and a food-driven operant behav-
ior task, respectively. Notably, morphine did not affect ambulatory activity,
olfaction or anxiety-like behavior, suggesting a specific effect upon the he-
donic/motivational properties of social behavior and HPF. Subsequently, we
assessed the rewarding effects of the morphine dose producing social behavior
and motivation deficits and found that it could induce conditioned place pref-
erence (CPP) after just a single drug conditioning session. The latter results
indicated that the dose of morphine producing social behavior and motivation
deficits also induced activation of brain reward systems. Altogether, these
findings indicate decreased interest for “natural” rewards following exposure
to a morphine dose that produces brain reward, providing initial and original
experimental evidence of “hijacking” of brain reward systems by substances of
abuse.

To investigate the role of the CRF system in the vulnerability of brain
reward systems to opiate substances, we then employed a pharmacological
approach. We found that systemic administration of the CRF1 receptor-
preferring antagonist antalarmin completely reversed the social behavior, but
not the motivation and intake deficits induced by acute morphine administra-
tion. Thus, to some extent, the latter results indicate a critical role for the
CRF system in mediating the drug-induced decrease in the interest for “nat-
ural” rewards, thereby strengthening the notion of a therapeutic potential for
CRF-targeting pharmacological agents.

5.2 How does chronic morphine

administration and withdrawal affect

social interest?

In humans, deficits in social behavior, such as artificial sociability, antiso-
cial traits and social isolation, are hallmarks of substance use disorders (SUDs)
[Kessler et al., 1997, Regier et al., 1990, Mariani et al., 2008]. These deficits
are believed to strongly contribute to the establishment and maintenance of
compulsive drug-seeking and drug-taking, making abstinence difficult to sus-
tain and relapse more likely to happen [Babor et al., 1976, Le Moal and Koob,
2007, Volkow et al., 2011].

In animals, withdrawal from chronic drug administration has been shown to
decrease social interest in the 3-CH task in a number of studies [Becker et al.,
2016, Morisot et al., 2018, Zanos et al., 2014] and the reemergence of social
behavior deficits following exposure to an ethological environmental stressor
has also been recently observed [Morisot et al., 2018]. However, throughout
our investigation of the impact of opiate withdrawal upon social behavior us-
ing the same behavioral paradigm (i.e., the 3-CH task), morphine-treated mice
always spent either a similar or a higher amount of time interacting with the
unfamiliar congener, as compared to saline-treated control mice. In addition,
following a relatively long drug-free period, exposure to an environmental stres-
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sor did not affect social behavior. Our results, insofar as unexpected, indicate
unaffected or heightened social interest induced by chronic morphine treat-
ment and spontaneous prolonged opiate withdrawal and resilience to stress.
In the present studies, we suggested that the increase in social interest was
due to augmented aggressiveness, as revealed by ethological measurements of
increased aggressive biting behavior (ABB). Indeed, we believe that aggressive
behavior might drive opiate-withdrawn mice towards the unfamiliar conspe-
cific for reasons other than social interest. Noteworthy, the increment in ABB
is narrowed to a specific time window, thereby indicating oscillations of aggres-
sive behavior during opiate withdrawal, a novel result that could contribute to
the understanding of the complex symptomatology of SUDs.

5.2.1 Could the alterations induced by chronic
morphine administration and withdrawal be
generalized to other drugs of abuse?

Over the last decades, a unitary view of drug dependence has emerged,
nurtured by influential theories highlighting shared psychological processes
and neurobiological substrates across different drugs of abuse. Although these
theories have allowed significant advances in the field, they fail to take into ac-
count important differences between drugs of abuse, especially when it comes
to opiate versus psychostimulant drugs. For instance, using a battery of sev-
eral behavioral tests, a recent study [Becker et al., 2016] investigated the out-
come of chronic drug administration and of withdrawal from various drugs of
abuse (i.e., cocaine, morphine, nicotine, THC, alcohol) in adult male mice.
Mice undergoing a 28-day withdrawal from morphine, nicotine, THC and al-
cohol, but not cocaine, exhibited deficient social interaction, motor stereotypes
and exacerbated anxiety-like behavior, associated with increased Fos stimula-
tion of anxiety-related regions (i.e. CeA, PVN) and lowered Fos stimulation
of reward-related regions (i.e., VTA). Most importantly, when tested in the
3-CH task, morphine-withdrawn, but not cocaine-withdrawn mice, failed to
spend significantly more time in the chamber containing the unfamiliar con-
specific, as compared to the unanimated object, indicating impaired social
interest. Accordingly, the percentage of time in close contact ratio was sig-
nificantly reduced in morphine-withdrawn, but not in cocaine-withdrawn mice
[Becker et al., 2016]. Moreover, in a recent study from our laboratory [Morisot
et al., 2018], a deficit in social interest was detected 7 days after the cessation
of chronic cocaine administration, a result that differ from the present find-
ings obtained with morphine administration and withdrawal. In addition, in
the latter study, exposure to an environmental stressor was able to induce the
reemergence of social behavior deficits in long-term cocaine-withdrawn mice,
whereas in the present study morphine-withdrawn mice displayed stress re-
silience. In this context, it is noteworthy to mention that the same stressor
applied in the present and previous studies could induce the reemergence of
recognition memory deficits and up-shifted motivational states in long-term
opiate-withdrawn mice, as assessed in the novel object recognition (NOR) and
operant behavior tasks, respectively [Morisot and Contarino, 2016, Morisot
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et al., 2015]. Thus, overall, these findings suggest a dissociation between so-
cial behavior and cognitive function.

5.2.2 Opiate withdrawal and increased aggressive
behavior: a gender issue?

Female mice routinely employed in pre-clinical studies are relatively non-
aggressive, as compared to male mice [Scott, 1966]. Consequently, the exist-
ing literature regarding aggressive behavior in mice is almost entirely male-
based, from the study of territorial aggression [Crawley et al., 1975, Miczek
and O’Donnell, 1978] and dominance [Wang et al., 2011] to the outcomes of so-
cial provocation [Fish et al., 1999], from the effects of social isolation [Guidotti
et al., 2001] to substance-induced aggression [Fish et al., 1999, Miczek and
de Almeida, 2001, Miczek et al., 1998], with the only exception being the stud-
ies of maternal aggression [Noirot et al., 1975, Lonstein and Gammie, 2002].
Moreover, research on genetics and neurobiological substrates underlying ag-
gressive behavior investigates offensive behaviors, which are observed only in
adult male mice. For instance, it has been demonstrated that GABAergic
projections from the basal forebrain to the lateral habenula modulate the re-
warding aspects of behavior displayed by adult aggressor male mice [Golden
et al., 2016] and that this feature might underlie the addiction-like properties
of aggressive behavior [Golden et al., 2017]. Another recent study has shown
that male, but not female mice, respond positively to optogenic stimulation of
progesterone receptor-expressing (PR+) neurons in the ventrolateral subdivi-
sion of the mouse ventromedial hypothalamus (VMHvl), which are believed to
mediate territorial aggression [Yang et al., 2017]. The latter studies suggest
that using female mice might have led to different results in the experiments
described in the present work (Article 1 and Article 2), probably unraveling
the effects of drug administration and withdrawal on non-aggressive social
behavior. Indeed, preliminary data from our laboratory indicate that, unlike
male mice, chronic morphine administration and withdrawal induce sociability
deficits in female CRF1 wild-type mice. Interestingly, this impairments seem
to be rescued by CRF1 receptor-deficiency (Figure 5.1). We are thus carrying
out additional studies to confirm the latter findings. Our new results might
bring novel evidence in favor of gender-related issues in the investigation of
the social behavior deficits induced by opiate administration and withdrawal.

5.2.3 Compensatory mechanisms in CRF
receptor-deficient mutant mice

Inducing null mutations provides a powerful technique to investigate gene
function, especially when no selective pharmacological agents are available.
However, inactivation of a gene function may be associated to compensatory
mechanisms [El-Brolosy and Stainier, 2017, Tautz, 1992]. Indeed, CRF1 and
CRF2 receptor-deficiencies are associated with changes in the expression of
CRF-like peptides. For instance, CRF1 knock-out mice have increased CRF
mRNA in the PVN [Smith et al., 1998] and CRF2 knock-out mice have in-
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Figure 5.1 – Social interest displayed in the 3-CH task by CRF1 receptor wild-type (+/+),

heterozygous (+/-) and knock-out (-/-) adult female mice on opiate withdrawal day 7. This

preliminary data suggest that full CRF1 receptor-deficiency eliminates social behavior im-

pairments induced by morphine (mor) administration and withdrawal. Social interest is

expressed as the time spent exploring the half-chamber containing the animal (A) during

the sociability phase, as compared to both the same half-chamber during the previous habit-

uation phase and the opposite half-chamber containing the object (O) during the sociability

phase. N=8-13/group. Values represent mean ± S.E.M. *P<0.05, **P<0.005, ***P<0.0005

(paired t-test within-group comparisons).

creased UCN1 mRNA in the Edinger-Westphal nucleus and the CeA and aug-
mented CRF mRNA in the CeA [Weninger et al., 1999, Bale et al., 2000].
Thus, it cannot be excluded that compensatory mechanisms in CRF1 recep-
tor knock-out mice might have contributed to the behavioral effects observed
in the present work (Article 2). Local infusions into discrete brain regions
of lentiviral-based systems of RNA interference for the CRF1 or the CRF2

receptor might address the latter issue in future studies.

5.3 How does acute morphine administration

affect “naturally” rewarding activities?

Most drugs of abuse produce subjective feelings of well-being and eupho-
ria in humans, which are thought to contribute to the drugs’ potential to be
used or abused [Fischman and Foltin, 1991, de Wit and Griffiths, 1991]. Ac-
cordingly, drug-induced changes in mood or subjective states have long been
the primary indicators used by the Food and Drug Administration (FDA) to
assess the likelihood of abuse for new medications [Balster and Bigelow, 2003,
Carter and Griffiths, 2009]. Drugs of abuse have been hypothesized to “hijack”

125



brain reward systems, strongly narrowing behavior towards substance-seeking
and substance-taking to the detriment of “natural” rewarding activities, such
as social interaction and food intake [Meyer et al., 2016]. However, the study
of the “hijacking” properties of drugs has been impeded, at least in part, by
the absence of reliable animal models able to assess the initial sensitivity to
the reinforcing properties of substances of abuse, an important endophenotype
in the trajectory toward excessive drug-taking behavior and drug dependence
[Lambert et al., 2006]. Indeed, not only behavioral and neurochemical sensi-
tization [Jackson and Nutt, 1993, Vanderschuren et al., 2001], but also gene
expression [Le Foll et al., 2005] and neuronal plasticity [Ungless et al., 2001]
have been shown to occur already after the first drug exposure, possibly pro-
moting long-lasting drug-conditioning and drug-seeking behavior [Ciccocioppo
et al., 2004].

In both animals and humans, studies on the objective responses to rein-
forcing stimuli provide valuable insights into brain reward function [Kelley and
Berridge, 2002]. For instance, in rodents, some “natural” reinforcers, such as
sucrose, elicit a characteristic facial liking reaction [Grill and Norgren, 1978].
Unfortunately, no measure of initial subjective reward perception exists for
drugs of abuse in rodents and, even if such approach were useful in studying
initial reactions, it is questionable whether such methodology would reliably
assess reward for drugs taken by administration routes other than oral [Kiefer
et al., 1990]. However, this concept of initial “liking” could be embodied
by single-exposure conditioned place preference (CPP) procedures, where the
preference for a context paired with a single drug intake is evaluated. In this
context, the current work provides original evidence that acute administration
of a brain rewarding dose of morphine sharply decreases the interest for “nat-
ural” rewarding activities, like social interaction and food intake. Moreover,
following assessment of locomotion, olfaction and anxiety-like behavior, we
suggest a specific effect of the drug upon the hedonic/motivational properties
of these “natural” reinforcing stimuli.

5.3.1 Could the alterations induced by acute morphine
administration be generalized to other drugs of
abuse?

Single drug exposure conditioned place preference has been documented
for nicotine [Spina et al., 2006], morphine [Bardo and Neisewander, 1986, Fenu
et al., 2006]), cocaine [Crooks et al., 2010, Runegaard et al., 2017] and most
recently for ethanol [Grisel et al., 2014]. Moreover, studies in mice and rats
have shown that a single exposure to almost all drugs of abuse can induce be-
havioral sensitization. As a matter of fact, a single injection of cocaine [Valjent
et al., 2010], amphetamine [Frussa-Filho et al., 2004, Chinen et al., 2006], mor-
phine [Valjent et al., 2010, Vanderschuren et al., 2001] or ethanol [Fukushiro
et al., 2010] enhances the locomotor stimulation produced by the subsequent
administration of the drug hours, days or weeks later, which is potentiated
when the locomotor-stimulating effect of the priming injection is paired with
the test environment [Chinen et al., 2006]. Nevertheless, different drugs of
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abuse might diversely affect “natural” rewarding activities. For instance, in a
recent study in humans [Spronk et al., 2016], acute cannabis administration
was accompanied by slower reaction times and impaired accuracy, while co-
caine yielded quicker reaction times and improved accuracy. The latter result
strengthens the notion that, despite common neurobiological mechanisms, the
behavioral outcomes of different drugs of abuse are most often drug-specific.

5.4 Valuable methodological advancements of

the current work

From a methodological perspective, we invested a considerable amount of
time and energy to advance the current interpretation of results obtained with
the 3-CH paradigm. First of all, by considering the time spent in just the top
half-chambers of the apparatus (containing the unfamiliar conspecific or the
unanimated object), we provided a more reliable measure of social behavior,
as compared to the previously standard and most often used whole-chamber
measurements. Secondly, by developing and validating a home-made video-
track system, we provided automated measures of the behavior, thus avoiding
possible human biases or errors. Furthermore, taking into consideration also
the results obtained during the habituation phase of the 3-CH task and by in-
troducing inclusion/exclusion criteria, we considerably increased the reliability
of the findings obtained. Moreover, by employing a more rigorous statistical
analysis that takes into account the behavioral dynamics across the different
phases of the 3-CH test (i.e., three- or four-way ANOVA including the mea-
sures obtained during the habituation phase), we increased by far the biological
significance of our results. With regard to the latter point, it should be men-
tioned that most of the 3-CH studies carried out to date used simple Student’s
t-tests to compare the time spent by the tested animal with the unfamiliar
conspecific or the unanimated object. Furthermore, unlike prior studies [Moy
et al., 2004], we are the first to our knowledge to point out that repeated test-
ing in the 3-CH task leads to a strong behavioral habituation response and
to score additional behaviors (i.e., ABB), an issue previously described just
as a possibility [Kaidanovich-Beilin et al., 2011]. Notably, the latter approach
might have evidenced what could be considered a major flaw of the 3-CH
paradigm, i.e., under specific conditions (i.e., opiate withdrawal, male mice)
increased aggressive behavior expressed during this test could be erroneously
interpreted for social interest.

5.5 Future perspectives

How does morphine administration modify neural circuitries, leading to
decreased interest for “natural” reinforcers? In the current work, we show
that systemic pre-treatment with the CRF1 receptor-preferring antagonist an-
talarmin is able to completely rescue the profound deficits in social interest
induced by acute injection of morphine, thereby providing initial evidence in
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favor of the involvement of the CRF system in the above-mentioned “hijack-
ing” properties of drugs of abuse. However, although some CRF antagonists
preferentially bind the CRF1 or the CRF2 receptor in vitro (i.e., antalarmin),
it cannot be excluded that they interact with both CRF receptor subtypes in
vivo, at least at the behaviorally active doses usually employed [Zorrilla et al.,
2013b]. Thus, to clarify the specific role for the CRF1 or the CRF2 receptor in
morphine-induced social behavior deficits, future studies could be carried out
using lentiviral-based systems of RNA interference [Lebow et al., 2012, Sztain-
berg et al., 2010]. In this context, the ventral tegmental area (VTA) would be a
likely target region of interest, since this brain region has long been implicated
in the rewarding and motivational properties of “natural” rewards, includ-
ing social interaction, and substances of abuse [Bariselli et al., 2016, Kalivas
and Volkow, 2005]. Our hypothesis is that lentiviral-induced disruption of
VTA CRF1 receptor-mediated (or CRF2 receptor-mediated) neurotransmis-
sion might eliminate the social behavior deficits induced by acute administra-
tion of morphine. With regard to the life-long whole-body CRF1 or CRF2

receptor-deficient mouse models, lentiviral-based systems of RNA interference
could allow the assessment of the specific role for each CRF receptor subtype
in discrete brain regions. Moreover, the latter genetic approach might rule out
possible confounding factors linked to the lack of CRF receptors throughout
development. The result of such studies might shed new light on the neural
mechanisms underlying substance use disorders and promote research-based
pre-clinical and clinical trials aimed at evaluating the therapeutic potential of
CRF receptor subtype-selective pharmacological agents.

Recent optogenetic studies revealed that activity dynamics of VTA-nucleus
accumbens (NAc) projections might encode and predict key features of social
interaction [Gunaydin et al., 2014]. Dopamine (DA) neurons arising from the
VTA and projecting to the NAc have long been implicated in the reinforc-
ing actions of substances of abuse [Nestler, 2005, Wanat et al., 2009, Wise and
Morales, 2010]. In the context of the “hijacking” phenomenon described herein,
investigating the relative impact of “natural” and “artificial” reinforcers in such
anatomical pathway would be hence very intriguing. Interestingly, it has been
shown that a single in vivo exposure to cocaine induces long-term potentiation
of alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) receptor-
mediated currents at excitatory synapses onto DA cells in the VTA [Ungless
et al., 2001]. The latter result indicates that a prominent form of synaptic
plasticity can be elicited by a single in vivo exposure to a drug of abuse and
therefore be involved in the early stages of the development of drug depen-
dence. It is likely that a single injection of morphine also induces plasticity
in the VTA, since overexpression of the AMPA receptor subunit GluR1 in the
VTA increases the stimulant and rewarding properties of morphine [Carlezon
et al., 1997]. Therefore, it would be interesting to assess the electrophysiolog-
ical impact of the morphine dose employed herein (2.5 mg/kg) and examine
whether DA neurons are implicated in the behavioral effects described in the
current work (Article 3).

Accumulating evidence indicates that oxytocin (OXY) plays a crucial role
in social and affiliative behaviors. Indeed, deleting OXY or the OXY re-
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ceptor gene results in dramatic social behavior deficits in mice [Sala et al.,
2013, Takayanagi et al., 2005, Winslow and Insel, 2002, Pobbe et al., 2012].
Moreover, changes in the OXY system have been observed following drug ad-
ministration. For instance, withdrawal from chronic cocaine or morphine ad-
ministration decreases OXY levels in the hypothalamus and the hippocampus
and increases OXY receptor-binding in the lateral septum and the amygdala
[Sarnyai et al., 1992b, Georgiou et al., 2016, Zanos et al., 2014]. Moreover,
treatment with OXY may decrease cocaine self-administration and cue-induced
reinstatement of cocaine-seeking behavior in rats [Leong et al., 2017]. Further-
more, following exposure to a stressful event, long-term cocaine-withdrawn
mice displayed elevated expression of OXY in the supraoptic nucleus (SON),
an effect that was abolished by CRF2 receptor-deficiency [Morisot et al., 2018].
Nevertheless, the role for the CRF system in social behavior deficit and brain
OXY changes induced by acute administration of drugs of abuse remains poorly
understood. Therefore, by using the in-situ hybridization technique routinely
employed in our laboratory [Morisot et al., 2018, 2014, 2015, Ingallinesi et al.,
2012, Papaleo et al., 2007], it would be of great interest to investigate the
expression of OXY in the paraventricular (PVN) and the supraoptic (SON)
nuclei of the hypothalamus, which are major sources of OXY in the brain
that also express both CRF receptor subtypes [Young et al., 2005, Van Pett
et al., 2000]. Finally, single-dose or continuous treatment with OXY have been
reported to improve social interest in animal models of autism spectrum dis-
order [Sala et al., 2011, Teng et al., 2016, Hara et al., 2017, Harony-Nicolas
et al., 2017, Penagarikano et al., 2015, Meziane et al., 2015]. Thus, it would
be interesting to test the effects of OXY administration (e.g., intranasal) upon
the social behavior deficits induced by acute morphine administration. The
latter studies might pave the way to the development of novel pharmacological
therapies aimed at preventing the initial fall into drug abuse in the trajectory
towards drug dependence.
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