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Abstract

For patients diagnosed with early-stage cancer, treatment decisions depend on the eval-

uation of the risk of metastatic relapse. Current prognostic tools are based on purely

statistical approaches that relate predictor variables to the outcome, without integrating

any available knowledge of the underlying biological processes. The purpose of this thesis

is to develop predictive models of the metastatic process using an established mechanistic

modelling approach and the statistical mixed-effects modelling framework. In the first

part, we extend the mathematical metastatic model to describe primary tumour and

metastatic dynamics in response to neoadjuvant sunitinib in clinically relevant mouse

models of spontaneous metastatic breast and kidney cancers. The calibrated model is

then used to test possible hypothesis for the differential effects of sunitinib on primary

tumour and metastases, and machine learning algorithms are applied to assess the pre-

dictive power of biomarkers on the model parameters.

In the second part of this thesis, we develop a mechanistic model for the prediction

of the time to metastatic relapse and validate it on a clinical dataset of breast cancer

patients. This model offers personalised predictions of the invisible metastatic burden at

the time of diagnosis, as well as forward simulations of metastatic growth, and it could

be used as a personalised prediction tool to assist in the routine management of breast

cancer patients.

Key words: mixed-effects modelling, mechanistic modelling, breast cancer, metastatic

relapse, survival analysis, machine learning.
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Résumé

Le cancer est la deuxième cause de décès dans le monde, avec 9.6 millions de décès en

2018 [1]. Bien que, dans la plupart des cas, la tumeur primaire ne mette pas en danger

la vie du patient, les métastases endommagent souvent les organes vitaux, et dans 90%

des cas, elles sont la cause finale des décès dus au cancer. [2]. En effet, malgré les progrès

dans le diagnostic et le traitement de cette pathologie, la maladie métastatique représente

toujours une maladie terminale, non curable avec les moyens thérapeutiques actuels [3].

Les approches de modélisation mathématique sont de plus en plus utilisées dans la

recherche sur le cancer afin d’améliorer la compréhension des observations expérimentales

[4–6]. Elles peuvent aussi être utilisées pour guider les essais cliniques en permettant

d’explorer in silico un grand nombre de scénarios possibles [6–8]. Les modèles mathéma-

tiques fournissent également des prédictions quantitatives qui peuvent être utilisées pour

vérifier différentes théories en évaluant la correspondance des simulations de modèles avec

les observations expérimentales [9]. Plusieurs modèles mathématiques ont été proposés

pour décrire l’impact de diverses thérapies sur la croissance tumorale [7, 10–12]. D’autre

part, en raison de la complexité du processus métastatique, il y a relativement peu de

modèles mathématiques qui intègrent la dynamique des métastases [13–17]. Le mod-

èle métastatique proposé par Iwata et al. [14] réduit la complexité de la formation des

métastases à deux composantes principales: la croissance tumorale et la dissémination

des métastases. Ce modèle a pu décrire avec précision les données d’un patient atteint

d’un carcinome hépatocellulaire métastatique [14] et a été ultérieurement validé sur des

données expérimentales provenant de modèles murins du cancer non traités, ainsi que sur
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données cliniques de probabilités de rechutes métastatiques [9, 18, 19]. Parallèlement à

ces approches mécanistes, des modèles biologiquement agnostiques basés principalement

sur la régression de Cox ont été développés pour prédire le risque de rechute métastatique,

en particulier pour guider la décision sur le traitement adjuvant (post-chirurgical) du can-

cer du sein [20–22]. Rares sont les efforts qui utilisent des algorithmes d’apprentissage

automatique [23].

Cette thèse contient deux projets : la modélisation de la thérapie antiangiogénique

pré-opératoire sur des données pré-cliniques et le développement d’un modèle prédictif

pour le temps de rechute métastatique sur des données cliniques de patientes atteintes de

cancer du sein. Les sections suivantes décrivent les motivations et résument les résultats

de chacun de ces travaux.

Modélisation mathématique de la thérapie antiangiogénique

pré-opératoire

Malgré l’action clinique prouvée des inhibiteurs antiangiogéniques [24], des études expéri-

mentales récentes ont suggéré que ces médicaments peuvent avoir des effets différentiels

sur la tumeur primaire et sur les métastases [25–27]. Dans une étude de Ebos et al. [26]

utilisant des modèles murins de cancer du sein et de mélanome, le sunitinib a considérable-

ment inhibé la croissance des tumeurs primaires implantées orthotopiquement. Toutefois,

l’administration du sunitinib a augmenté la masse métastatique totale dans divers essais

de métastases, y compris après l’injection intraveineuse de cellules tumorales et après

l’ablation chirurgicale de tumeurs primaires implantées orthotopiquement. En outre, un

certain nombre d’études précliniques et cliniques suggèrent que l’arrêt du traitement an-

tiangiogénique peut entraîner une revascularisation rapide et un rebond de la croissance

tumorale [28]. Ces rebonds ont été observés pendant les pauses thérapeutiques avec le

sunitinib chez les patients atteints d’un carcinome cellulaire rénal métastatique [29, 30],

et avec le bevacizumab chez les patients atteints d’un cancer colorectal [31].

À ce jour, la majorité des modèles mathématiques en oncologie se focalisent sur les
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effets du traitement seulement sur la tumeur primaire. Cette étude étend un modèle

mécaniste du processus métastatique [19] pour décrire la croissance de la tumeur pri-

maire et de la masse métastatique totale en réponse au traitement néoadjuvant avec le

sunitinib dans des modèles murins orthochirurgicaux des cancers du sein et du rein. Le

modèle a été développé en utilisant un grand jeu de données comprenant des mesures

longitudinales de la taille de la tumeur primaire et de la masse métastatique chez 230

souris au total (132 souris pour le modèle du cancer du sein et 98 souris pour le modèle du

cancer du rein), ainsi que les données de survie et biomarqueurs pré-chirurgicaux (cellules

tumorales circulantes, cellules myéloïdes suppressives, marqueurs de prolifération et de

cellules endothéliales). Pour tester des hypothèses sur les effets différentiels du sunitinib

sur la tumeur primaire et les métastases, des simulations du modèle ont été effectuées

avec les paramètres estimés dans une étude précédente sur des groupes de contrôle [19].

Les simulations obtenues supposant que le sunitinib inhibe la croissance de chaque mé-

tastase ne sont pas capables de représenter les données expérimentales. En revanche, les

simulations obtenues supposant que le médicament inhibe seulement la croissance de la

tumeur primaire réussissent à bien reproduire les données expérimentales. Cela a été ob-

servé dans tous les groupes traités du modèle du cancer du sein, suggérant ainsi un effet

limité du traitement sur la croissance des métastases. Pour prendre en compte les dif-

férentes traitements, un modèle cinétique-pharmacodynamique (K-PD) a été développé

à partir de ces résultats de simulation. Ce modèle a été calibré simultanément sur les

données des animaux des groupes traitées et de contrôle en utilisant l’algorithme SAEM

[32] et a été en mesure de bien décrire les données tant au niveau de la population qu’au

niveau individuel. Confirmant les résultats précédents [19], la variabilité inter-animale

était principalement caractérisée par le paramètre du modèle exprimant le potentiel mé-

tastatique de la tumeur, µ, qui s’est également révélé significatif dans l’analyse de survie.

L’effet des covariables sur ce paramètre du modèle a été évalué utilisant des techniques

de régression par apprentissage automatique (réseaux de neurones artificiels, machines à

support de vecteur, forêts aléatoires) [33]. Cependant, les biomarqueurs inclus dans tous

les algorithmes testés n’ont démontré qu’une valeur prédictive limitée sur le paramètre
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mathématique.

Un modèle K-PD pour le traitement néoadjuvant avec sunitinib a également été

développé pour le modèle animal du cancer rénal. Dans ce cas, un modèle mathématique

avec différents taux de croissance pour la tumeur primaire avant et après le traitement

offrait une meilleure description des données, ce qui suggère un effet de rebond après le

traitement. Après avoir été calibré, le modèle K-PD a été utilisé pour étudier l’effet de

l’arrêt du traitement sur la tumeur primaire et la masse métastatique. Cette analyse

a montré que le rebond de la croissance de la tumeur primaire causé par l’arrêt du

traitement peut augmenter le masse métastatique par rapport aux animaux du groupe

de contrôle, suggérant que le sunitinib doit être administré de façon prolongée pour

obtenir un bénéfice thérapeutique.

Développement d’un modèle prédictif pour le temps de la

rechute métastatique

Le cancer du sein est le cancer le plus fréquent et la deuxième cause de décès par cancer

chez les femmes [34]. Dans la majorité des cas, la maladie est diagnostiquée aux pre-

miers stades, lorsque toutes les lésions détectables sont confinées au sein ou aux ganglions

lymphatiques voisins et peuvent être enlevées par intervention chirurgicale [35]. Cepen-

dant, après la chirurgie environ 20-30% des patients ont une rechute avec métastases

distantes [36], suggérant que des micrométastases cliniquement invisible pourraient déjà

être présents au moment de la chirurgie.

La connaissance précise du risque de rechute métastatique est d’importance cruciale

afin de personnaliser le traitement adjuvant et d’éviter l’utilisation de thérapies toxiques

et coûteuses lorsqu’elles ne sont pas nécessaires. Les outils existants pour la prédiction

du risque métastatique sont basés sur des modèles purement statistiques, tels que les

modèles de risques proportionnels de Cox [21, 22] et, à de rares occasions, des algorithmes

d’apprentissage automatique [37, 38]. Bien que des modèles mathématiques aient été

développés pour décrire la dynamique métastatique, aucun d’entre eux n’a à ce jour été
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utilisé comme outil prédictif. Cela pourrait être dû à la rareté des données recueillies

dans les études cliniques, qui sont souvent limitées aux données de type time-to-event et

n’incluent pas des mesures longitudinales de la taille de la tumeur.

Le but de cette étude est d’étendre le modèle mécaniste proposé par Iwata et al. [14]

pour prédire le temps de la rechute métastatique chez les patients atteints d’un cancer

du sein au stade précoce. Le modèle mécaniste a été développé et validé utilisant un

jeu de données cliniques contenant les temps de rechute et les caractéristiques clinico-

pathologiques de femmes diagnostiquées d’un cancer du sein précoce et opérées à l’Institut

Bergonié de Bordeaux entre 1989 et 1993. Les patientes inclus dans cette analyse n’ont

reçu aucun traitement en plus de la chirurgie et de la radiothérapie localisée de la tumeur

primaire, ce qui a permis d’évaluer l’histoire naturelle de la maladie. Les paramètres du

modèle ont été estimés avec une approche à effets mixtes, utilisant l’algorithme SAEM

[39]. L’algorithme random survival forest (RSF) [40] a été utilisé pour sélectionner un

premier ensemble de covariables prédictives de la rechute métastatique. Ces covariables

ont ensuite été considérées pour expliquer la variabilité des paramètres du modèle mé-

caniste utilisant une méthode de backward sélection. Avec un c-index de (0.63-0.70),

le modèle mécaniste était comparable pour performance prédictive à l’algorithme RSF

(c-index 0.67-0.71), à un modèle de régression de Cox (c-index 0.67-0.72) ainsi que à des

algorithmes de classification pour la prédiction de la survie à 5 ans. Le modèle proposé

représente une première tentative de modèle mécaniste dans le contexte de l’analyse de

survie pour la prédiction de la rechute métastatique. Il permet d’estimer individuelle-

ment l’importance des métastases cliniquement invisibles et le temp de rechute à partir

des données cliniques et histologiques disponibles au moment du diagnostic, et pourrait

donc être utilisé comme un outil de prédiction personnalisé pour mieux évaluer le risque

de rechute.

Mots clés : modélisation à effets mixtes, modélisation mécaniste, cancer du sein, rechute

métastatique, analyse de survie, apprentissage statistique.
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Chapter 1

Introduction

Cancer is the second leading cause of death worldwide, being responsible for 9.6 million

deaths in 2018, according to the World Health Organisation [1]. Although the majority

of primary tumours do not compromise the survival of cancer patients, metastasis – the

spread of a tumour throughout the body – often impairs the functioning of vital organs

and in the 90% of cases is the ultimate cause of death from cancer [2]. Indeed, despite

the progresses made in the diagnosis and treatment of cancer, metastatic disease still

represents a terminal illness, not curable with the current therapeutic means [3].

Mathematical modelling approaches are increasingly used in cancer research to com-

plement experimental investigations [4–6]. They may have utility in providing rationales

and computational tools to guide the design of clinical trials by allowing in silico explo-

ration of a large number of possible scenarios, impossible to all test by empirical means

[6–8]. Mathematical models also provide quantitative predictions that can be used to

verify different theories by assessing the agreement of model simulations with the experi-

mental observations [9]. Several mathematical models that describe the impact of various

cancer therapies on tumour growth have been proposed [7, 10–12]. However, owing to the

complexity of the metastatic process, mathematical models that also describe metastatic

dynamics are relatively few [13–17]. The metastatic model proposed by Iwata and col-

leagues [14] reduces the complexity of metastasis formation to the main components of

tumour growth and metastatic dissemination. It was shown to accurately describe CT
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scans data from a patient with metastatic hepatocellular carcinoma [14] and was further

validated against experimental data from untreated non-surgical and surgical metastatic

models of cancer, as well as clinical data of metastatic relapse probabilities [9, 18, 19].

In parallel to these mechanistic approaches, biologically agnostic models mostly based

on Cox regression have been developed for prediction of the risk of metastatic relapse, in

particular to guide decision on adjuvant (post-surgical) therapy for breast cancer [20–22].

Rare efforts exist that make use of machine learning algorithms [23].

The first part of this work extends the mechanistic approach introduced by Iwata et al.

to investigate the differential efficacies and the effects of different treatment schedules of

neoadjuvant sunitinib on primary and metastatic tumour growth, using primary tumour

and metastatic data from mouse models of spontaneous metastatic breast and kidney

cancers. This is the first modelling work utilising metastatic data from clinically relevant

mouse models to describe the impact of antiangiogenic therapy on metastatic disease

progression. Furthermore, it is the first to combine machine learning algorithms to

mechanistic modelling of metastasis.

The second part of this thesis focuses on the development of a mechanistic model to

predict the time to metastatic relapse. The model is built and validated on a clinical

dataset of breast cancer patients, using the random survival forest algorithm to preselect

the most predictive covariates. This study represents the first attempt of mechanistic

modelling in the context of survival analysis. Moreover, unlike current predictive models

of metastatic relapse, the developed mechanistic model, not only estimates the likelihood

of relapse, but also provides personalised predictions of the state of metastasis at the

time of diagnosis and of the future growth of metastases.

This chapter starts with a description of the biology of metastasis (Section 1.1).

Section 1.2 outlines the main strategies currently employed for the treatment of cancer,

focusing on antiangiogenic therapy, which is the one that we focus on in Chapters 3 and

4 of this thesis. Section 1.4 presents a short review of quantitative modelling approaches

in oncology and their contributions to the improvement of treatment strategies. The

chapter concludes with the objectives of this work (Section 1.5) and the outline of the
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thesis (Section 1.6).

1.1 The metastatic process1

The spread of cancer cells from the primary tumour and the subsequent formation of

metastatic colonies at distant sites involves a series of steps commonly referred to as the

invasion-metastatic cascade (Figure 1.1). These steps comprise local invasion of primary

tumour cells into nearby tissues and vessels; intravasation and transport of these cells via

the circulatory system; arrest and extravasation in distant organs to form micrometastatic

tumours; and colonisation of the new sites, namely the development of micrometastatic

tumours into clinically detectable metastatic lesions.

1.1.1 Local invasion

The dissemination of cancer cells requires the acquisition of mutations enabling cells of

the primary tumour to leave the primary site and travel to distant organs. One important

process conferring the abilities of motility and invasiveness is the cell-biological program

termed epithelial-mesenchymal transition (EMT). During the EMT, cancer cells assume

traits similar to those of cells of mesenchymal origin, leading to a reduced expression of

adhesion molecules, such as E-cadherin, whose role is to keep cells joined to each other in

epithelial tissues. Invading cells also acquire the ability to release various proteases which

disintegrate the extracellular matrix, allowing their passage to the stromal compartment.

1.1.2 Intravasation and transport in circulation

Cancer cells that reach the stromal compartment may intravasate into blood and lym-

phatic vessels. Transport of cancer cells via the bloodstream is called hematogenous

spread, while transport via the lymph is called lymphatic transport. Primary tumour

cells can enter either the vasculature of the normal surrounding tissues or the neovascula-

1Based on [41, Chap. 14]
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independent characteristics. Moreover,
because tumour progression can occur over
periods of years, the behaviour of a neoplasm
can vary at different disease stages.

This evolution has been attributed to
acquired genetic variations in the cells that
populate a neoplasm21. Peter Nowell pre-
dicted that those tumour cells that progress
to an advanced stage of malignancy — that
is, metastatic cells — would be less stable,
genetically, than non-metastatic tumour
cells. This hypothesis was tested using the
Luria and Delbruck fluctuation analysis22.
This analysis is based on acquisition of
mutations that confer resistance to the
metabolite 6-thiopurine (caused by a muta-
tion in hypoxanthine/guanine phosphori-
bosyl-transferase) and resistance to the
drug ouabain (caused by a mutation in the

advent of radioactive labelling of tumour
cells. A thorough review of the literature on
this topic, however, could have been accom-
plished in one night12,13. Bernard and Edwin
Fisher reported that they could quantify
metastasis by tracking tumour cells that
were labelled with 51chromium. The results,
however, were controversial, as 51chromium
was released by dead cells and re-internal-
ized by living cells14.

To overcome this deficiency, researchers
began to label cancer cells with 125iodine-
iodo-deoxyuridine, which is incorporated
into the DNA and is therefore not released
from cells. These studies showed that within
24 hours after entry into the circulation, less
than 0.1% of tumour cells are still viable,
and that less than 0.01% of these cells, when
introduced into the circulation, survive to
produce metastases15. Therefore, only a few
cells in a primary tumour can give rise to a
metastasis16. This prompted the question of
whether the development of metastases rep-
resents the fortuitous survival and growth of
very few neoplastic cells, or whether it rep-
resents the selective growth of unique sub-
populations of malignant cells that are
endowed with special properties.
Subsequent studies clearly showed that neo-
plasms are biologically heterogeneous and
that the process of metastasis is selective.

Biological heterogeneity in neoplasms
At the time of diagnosis, many human and
animal tumours are heterogeneous and
contain numerous subpopulations of cells
that have different biological characteris-
tics, including metastatic potential17–19. This

biological diversity can result from a
tumour’s multicellular origin, but in
tumours that originate from a single trans-
formed cell, the source of the biological
diversity is less clear.

Clinical and experimental studies have
shown that neoplasms undergo a series of
changes during the course of the disease.
For example, a growth that is initially
benign can change into a malignant, lethal
tumour. Leslie Foulds described this 
phenomenon of tumour evolution as ‘neo-
plastic progression’, and defined it as
“acquisition of permanent, irreversible
qualitative changes in one or more charac-
teristics of a neoplasm”20. This evolution of
tumours is gradual, and tumour cells pro-
ceed towards increased autonomy from
their host by a temporal change in various
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David Tarin and colleagues
reported the evidence of
organ-specific metastasis in
ovarian carcinoma patients
who were treated with
peritoneovenous shunts

Therapy of cancer
metastasis was
directed against host
factors (angiogenesis,
organ growth factors)

The metastatic
heterogeneity and
organ specificity of
human tumours was
confirmed by studies
using immune-
incompetent mice

In situ hybridization analyses,
immunohistochemistry and
laser-capture microdissection
techniques show the genetic,
biological and metastatic
heterogeneity of neoplasms
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Figure 2 | The main steps in the formation of a metastasis. a | Cellular transformation and tumour
growth. Growth of neoplastic cells must be progressive, with nutrients for the expanding tumour mass
initially supplied by simple diffusion. b | Extensive vascularization must occur if a tumour mass is to
exceed 1–2 mm in diameter39. The synthesis and secretion of angiogenic factors establish a capillary
network from the surrounding host tissue39. c | Local invasion of the host stroma by some tumour cells
occurs by several parallel mechanisms40. Thin-walled venules, such as lymphatic channels, offer very little
resistance to penetration by tumour cells and provide the most common route for tumour-cell entry into
the circulation12,41. d | Detachment and embolization of single tumour cells or aggregates occurs next,
most circulating tumour cells being rapidly destroyed. After the tumour cells have survived the circulation,
they become trapped in the capillary beds of distant organs by adhering either to capillary endothelial
cells or to subendothelial basement membrane that might be exposed27. e | Extravasation occurs next —
probably by mechanisms similar to those that operate during invasion. f | Proliferation within the organ
parenchyma completes the metastatic process. To continue growing, the micrometastasis must develop
a vascular network39 and evade destruction by host defences. The cells can then invade blood vessels,
enter the circulation and produce additional metastases6,7.

Figure 1.1 – The invasion-metastatic cascade. (Image from [42]).

ture that has been developed by the activation of tumour angiogenesis2. Cancer cells that

have intravasated remain for short time in circulation. They are usually arrested in the

first capillary bed encountered (often within the lung), because of their low deformability

and larger size compared to the internal diameters of microvessels.

Hematogenous spread is thought to be the main route of metastatic dissemination.

The role of lymphatic vessels in the metastatic process is less clear. In breast, colorectal,

cervical and oral carcinomas, some tumour cells do enter lymphatic vessels and accu-

2Angiogenesis is the formation of new blood vessels from the preexisting vasculature. It occurs
physiologically in reproduction, development and wound healing. Pathological angiogenesis is required
for a tumour to obtain blood supply and grow beyond a microscopic size [43].
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mulate in nearby lymph nodes. Cells within these nodes, however, rarely move to other

sites. Nevertheless, their presence represents an important clinical parameter, because it

is indicative of the metastatic aggressiveness of the tumour. Patients with a small num-

ber of positive lymph nodes are diagnosed with localised disease and may not progress to

the metastatic stage. In contrast, patients found with a large number of positive lymph

nodes at diagnosis may already have developed distant metastases.

1.1.3 Extravasation

The process of extravasation involves complex steps requiring the interaction between

cancer cells and the walls of capillaries in which they are trapped. In a similar way to

the mechanism of local invasion, cancer cells may release proteins, such as angiopoietin,

that make endothelial cells retract from one another, leaving holes in the capillary walls

through which they can extravasate. The extravasation process may require different

mechanisms depending on the target site. For instance, the capillaries in the bone marrow

and in the liver are fenestrated and allow a passive entry of circulating tumour cells. In

contrast, dissemination of cancer cells in the brain requires the activation of a tissue-

specific program in order to overcome the blood-brain barrier.

1.1.4 Metastatic colonisation

The colonisation of a new site is considered the most difficult step of the entire metastatic

process, because tumour cells have to adapt to a foreign environment which might be

very different from the primary site. Once extravasated, cancer cells can persist for a

long time in an inactive state of dormancy either as single cells or small micrometastatic

tumours. Moreover, only a very small number of these micrometastases will awaken

from this state of dormancy and eventually grow into clinically detectable lesions. For

instance, about 30% of breast cancer patients are found with thousands of disseminated

tumour cells in the bone marrow3. However, only half of these women will eventually
3A technique to identify micrometastases in the bone marrow consists in using antibodies reactive

with cytokeratins. Cytokeratin-positive cells are cells of epithelial origins, suggesting the presence of
cancer cells in otherwise fully mesenchymal tissues [44].
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develop a metastatic disease [44].

Cancer cells from a given type of tumour have the propensity to metastasise in specific

organs. Usually, the frequency at which metastases occur in a given organ is determined

by two factors: the connection of the primary tumour site to this organ through the

circulatory system and the suitability of cancer cells to the microenvironment of the new

site. Breast carcinomas seed metastases preferentially in the brain, liver, bones and lungs.

In prostate tumours, metastases are often found in the bones, while colon carcinomas

tend to disseminate cancer cells in the liver.

1.2 Overview of anticancer treatments4

Depending on the characteristics and the clinical stage of a cancer, the aim of anticancer

treatments may be either to achieve a complete cure, or prolong survival and improve

symptoms. The main treatment modalities are surgery, radiotherapy, chemotherapy and

targeted therapies.

1.2.1 Surgery

Surgery is usually the first option for the majority of solid tumours diagnosed at the

initial localised stages. It may be preceded by cytotoxic chemotherapy or local radiation

in order to shrink the tumour so that to facilitate surgery and spare tissue for tumours

located in critical organs (neoadjuvant treatment). The excised tissue is then examined

in the laboratory to evaluate the risk of metastasis and decide whether/what type of

additional post-surgical treatment is needed.

1.2.2 Radiation

Radiotherapy utilises high doses of radiations that kill cancer cells by damaging their

DNA. It is usually combined with surgery or chemotherapy but can also be administered

alone in cancers displaying high sensitivity to radiations. There are two main adminis-

4Based on the National Cancer Institute (NCI) website (https://www.cancer.gov)
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tration modalities, external beam and internal radiation therapy. In the latter case, the

source of radiations is positioned inside the body, near the tumour (brachytherapy).

1.2.3 Chemotherapy

Chemotherapy utilises drugs that kill cancer cells by interfering with mechanisms involved

in cell division. It is used for the treatment of many types of cancers. However, because it

kills preferentially cells in the dividing phase, chemotherapy is usually more effective on

rapidly growing tumours. Because chemotherapy is given systemically, it also damages

normal cells, in particular those of tissues with rapid turnover, such as the haematopoietic

tissue, which causes important, possibly life-threatening, toxicities.

Chemotherapeutic drugs are classified according to their mechanisms of action. Alky-

lating agents are substances able to form covalent bounds with the DNA bases, disrupting

the process of DNA replication. Besides having cytotoxic effects, alkilating agents are

also potent mutagens and can favour the development of secondary malignancies [41].

Antimetabolites are substances that interfere with the normal functioning of metabolites

produced inside cells. Some of these drugs are chemical analogs of normal metabolites

and operate by substituting them in the DNA strands [41]. Other antimetabolites work

by destabilising microtubule assembly. For instance, paclitaxel and docetaxel induce cell

apoptosis by blocking the disintegration of microtubules at the end of mitosis [41].

Chemotherapeutic agents are often administered in combination. In order to max-

imise efficacy while maintaining tolerable levels of toxicity, multi-drug protocols usually

include drugs with different modes of action and dose-limiting toxicities [41].

1.2.4 Targeted therapy

These drugs are designed to target specific molecular pathways that are critical in the

development of cancer [45]. Targeted therapies are either monoclonal antibodies or small

molecules. Monoclonal antibodies are proteins produced in laboratory, usually by inject-

ing mice with the target protein. They are used for targets that are outside cells or on the

outer cell surface. Small molecules are usually developed for targets that are inside cells
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because these drugs can enter cells relatively easily. Tyrosine kinase inhibitors (TKI) are

examples of such drugs. These small molecules block the transmission of intracellular

signals by targeting receptor tyrosine kinases (RTKs) [45].

Targeted therapies approved for the treatment of cancer include hormone therapies,

signal transduction inhibitors and immunotherapies. Angiogenesis inhibitors are also

targeted therapies. Because they are the focus of this thesis, they will be described in a

separate section.

Hormone therapies

Hormone therapies are used for cancer whose growth depends on hormones, such as some

types of breast and prostate cancers. Hormone therapies can either block the production

of hormones or inhibit their action at the receptor level on cells. Tamoxifen is an example

of hormone therapy used for breast cancers expressing the oestrogen receptor (ER). This

drug prevent the growth of ER-positive cells by binding to ER receptors.

Signal transduction inhibitors

Unlike normal cells that proliferate under control of exogenous stimulatory signals, cancer

cells are able to produce growth signals by their own. Signal transduction inhibitors

interfere with this improper signalling. The monoclonal antibody trastuzumab, used in

breast cancer, is an example of such drugs. Its binding to the epidermal growth factor

receptor 2 (HER-2) inhibits the function of this receptor, slowing the growth of breast

cancers that overexpress HER-2.

Immunotherapies

The immune system is able to recognise and eliminate many types of tumours in their

initial stages. However, through new mutations, cancer cells acquire the ability to cir-

cumvent immune recognition and/or destruction [46]. Immunotherapies aim at improving

the immune response against cancer cells. Types of immunotherapy used to treat cancer

include adoptive cell transfer and drugs targeting immune checkpoints.
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• Adoptive cell transfer therapy, such as Chimeric Antigen Receptor (CAR)-T

cells therapy, consists in extracting T-cells from the tumour of the patient. Those T-

cells that are able to recognise and kill cancer cells are then expended in laboratory

and reintroduced in the patient.

• Immune checkpoints inhibitors are drugs that target mechanisms that keep

immune cells in an inactive state (immune checkpoints). These mechanisms, which

in normal conditions are critical for the maintenance of self-tolerance, are exploited

by cancer cells to escape immunesurveillance [47]. The cytotoxic T-lymphocyte

associated antigen 4 (CTLA4) and the programmed cell death protein 1 (PD1) are

the main targets of current checkpoints inhibitors. Immune checkpoint inhibitors

are approved for the treatment of several cancers, including melanoma, non-small

cell lung cancer, bladder cancer, head and neck cancers, liver cancer, renal cell car-

cinoma and stomach cancer. However only a limited number of patients respond to

these therapies. Some patients do not benefit at all from these drugs and experience

rapid disease progression at the first clinical evaluation, a phenomenon known as

hyperprogression [48]. In addition, infiltrated lymphocytes can make the tumour

appear larger under radiological evaluation, suggesting disease progression when

the tumour is indeed responding to therapy. The identification of biomarkers to

predict response of patients to these drugs is one of the main objectives of current

research.

1.3 Antiangiogenic therapy

Growth of a tumour beyond few millimetres in size requires blood supply, which largely

depends on the ability of tumour to release chemical signals that stimulate the devel-

opment of new blood vessels from the pre-existing vasculature [49]. The concept of

inhibiting tumour growth by blocking angiogenesis was introduced in the 1970’s by J.

Folkman [50]. Since then research in tumour angiogenesis has progressed, leading to the

identification of the main molecules implicated in tumour angiogenesis, namely the vas-
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cular endothelial growth factor (VEGF) and its tyrosine kinase receptor VEGFR-2 [51].

VEGF is secreted by tumour cells and binds to VEGFR-2 on endothelial cells, stimulat-

ing their proliferation and migration. In addition to VEGF, other signalling pathways

contributes to angiogenesis. However, most drugs developed to inhibit angiogenesis tar-

get the VEGF pathway because it is activated in many types of human tumours as a

consequence of hypoxic conditions. Drugs targeting the VEGF pathway include VEGF-

neutralizing antibodies (e.g. bevacizumab) and small molecules tyrosine kinase inhibitors

(TKIs) that block the kinase activity of VEGF receptors (e.g. sorafenib and sunitinib).

The first phase III trials demonstrating the efficacy of an angiogenesis inhibitor was

in metastatic colorectal cancer (mCRC), where adding bevacizumab to a fluorouracil-

based combination chemotherapy improved survival compared to the chemotherapy-alone

arm [52]. Tyrosine kinase inhibitors (TKIs) have demonstrated single-agent activity in

a number of metastatic cancers, including renal cell carcinoma (sunitinib [53, 54] and

sorafenib [55, 56]) and a number of highly angiogenic tumours, such as hepatocellular

carcinoma (sorafenib [57]), and pancreatic neuroendocrine tumours (sunitinib [58]). In

renal cell carcinoma, sensitivity to VEGF inhibitors relates to the inactivation of the von

Hippel Lindau (VHL) gene which causes increased expression of hypoxia-inducible factor

1 (HIF1A) and thus VEGF [24]. However, the reasons why certain cancer types respond

to anti-angiogenic agents whereas others do not, are not fully understood. Examples of

cancers where antiangiogenic therapies have repeatedly failed to improve survival in the

metastatic setting include breast, melanoma, pancreatic and prostate cancers [59].

Several phase II and III trials have been carried out to evaluate VEGF pathway

inhibitors in the neoadjuvant (pre-surgical) and adjuvant (post-surgical) settings. The

rationale for the administration of antiangiogenic agents in these perioperative settings is

to prevent local relapse and the growth of distant micrometastatic tumours. Moreover,

neoadjuvant therapy is used to reduce tumour size, in order to turn an unresectable

tumour into one that can be resected or improve surgical outcomes for resectable tumours

[28]. Use of sunitinib in the adjuvant setting was recently approved to treat patients

with renal cell carcinoma at high risk of recurrence based on the results of a randomised
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trial where adjuvant sunitinib significantly improved disease-free survival [60]. However,

several phase III trials with VEGF pathway inhibitors failed in the adjuvant setting,

including trials with bevacizumab in colorectal [61] and breast cancers [62], and with

sorafenib in hepatocellular carcinoma [63], suggesting that even when anti-angiogenic

therapy is effective for a cancer in the advanced stage, the same may not be true in

earlier stages. According to [24], one possible explantation of these differential efficacies

is that the biology of micrometastases might not involve VEGF.

Antiangiogenic drugs were developed with the hope of circumventing resistance by

targeting the more genetically stable endothelial cells of the tumour vasculature [64].

This hope, however, was not confirmed in practice, and both intrinsic and acquired

resistance were found to be a limitation also of this new treatment modality. One possible

mechanism of resistance is that the increased level of hypoxia caused by antiangiogenic

therapy activate alternative signalling pathways that drive tumour vascularisation [24].

Other mechanisms that have been proposed are selection of tumour cell populations that

can survive despite limited vascular supply, the heterogeneity of the tumour vasculature,

with more mature vessels less dependent on VEGF, and the infiltration of bone-marrow-

derived cell populations able to induce angiogenesis in a VEGF-independent manner [24].

Another reported resistance mechanism is vessel co-option, in which tumours rather than

inducing angiogenesis, exploit the pre-existing vasculature from the surrounding normal

tissue. Vessel co-option has been observed in many human tumours located in well

vascularised organs, such as the lungs, liver and brain [65–67].

1.4 Quantitative mathematical modelling in oncology

1.4.1 Tumour growth

The analysis of tumour growth patterns has perhaps been the first application of math-

ematical modelling in oncology [68]. Classical tumour growth models provide a mathe-

matical description of the macroscopic growth patterns without seeking deep-level expla-

nation of the biological processes driving tumour growth [69]. These models are generally
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defined by an ordinary differential equation (ODE) of the form

dV

dt
= f(V )V, V (t = 0) = V0, (1.1)

where V (t) is the tumour volume at time t, which is assumed to be proportional to the

total number of cells in the tumour. The function f(V ) is the specific growth rate and

can be interpreted as the fraction of volume that doubles in size during dt [10].

Exponential model

Assuming a constant f(V ) for all V , equation (1.1) yields the exponential growth model,

dV

dt
= αV, V (t = 0) = V0. (1.2)

The exponential model implies that the tumour doubling time is constant over time

(DT = log 2
α ). Exponential growth seems appropriate for describing tumour growth at

the initial stages [68] and experimental tumours [70, 71]. However, most human tumours

do not grow exponentially, showing a growth pattern characterised by decelerating growth

(i.e. increased doubling time) as the tumour size increases [72, 73]. To describe deceler-

ating growth patterns a variety of sigmoidal models have been introduced [73]. Examples

of these models are the Gompertz and logistic growth models. However, unlike the Gom-

pertz model, the logistic model has often been found unable to describe experimental

tumour growth data satisfactorily [69, 74].

Gompertz model

One of the most used models for describing tumour growth is the Gompertz model,

defined by
dV

dt
= α0e

−βtV, V (t = 0) = V0. (1.3)

Parameter α0 is the specific growth rate at size V0 and β represents the exponential decay

of the specific growth rate. Integration of equation (1.3) yields the analytical form of the
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Gompertz model,

V (t) = V0e
α0
β

(1−e−βt)
.

According to this model, the tumour will approach a limiting asymptotic size, given by

K = V0e
α0
β .

Despite lacking of a clear biological explanation, the Gompertz model was found to

provide a good empirical description of tumour growth in several studies on animals [69,

74–76] and has often been used as basis for models incorporating the effect of treatment

[10, 11].

1.4.2 Treatment

Skipper-Schabel-Wilcox model

One of the first quantitative studies of tumour growth in response to chemotherapy

was carried out by Skipper, Schabel and Wilcox, who in the early 1960s proposed what

became known as the log-kill model [71],

dV

dt
= αV (1− k C(t)),

where C(t) is the drug concentration at time t. This model is based on experimental

observations that for tumours growing exponentially, a certain level of therapy will always

kill a fixed fraction of tumour cells, regardless of the tumour size at the time of treatment.

This means that if a given dose of a given drug reduces 106 cells to 105 cells, the same

therapy applied to 104 cells will leave 103 cells alive (Figure 1.2). The concept of fractional

kill thus implies that small tumours should be easily cured by repeated cycles of therapy.

However, this prediction was not confirmed in the clinic, for example when the concept of

fraction kill was applied to the treatment of micrometastases in early-stage breast cancer

[77].
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Fig. 2. Metronomic vs. MTD  chemotherapy. Alternative dosing and scheduling is expected to achieve higher antiproliferative efficacy via novel mechanisms of action such
as  anti-angiogenic effect, action on cancer stem cells or immuno-stimulating properties, in addition to direct cytotoxicity on tumor cells.

chemotherapy schedules [7]. Based on experimental studies involv-
ing L1210 leukemic cells – which exhibit exponential growth when
left untreated –, they introduced and demonstrated the log-kill
effect for several cytotoxic agents, including 6-mercaptopurine, 5-
fluoruracil and vinblastine [7]. This principle, based on an analogy
with the law of mass action for kinetic reactions in chemistry, states
that exposure to a given amount of drug kills a constant fraction of
a cancer cell population, hence reducing it of a constant amount in
logarithmic scale (Fig. 3 ). For instance, if a drug has a one log-kill
effect, then it will reduce a population of 106 cells to 105 cells and
a population of 102 cells to 101 cells. Further on, based on their
experimental work that demonstrated that the presence of as little
as one single leukemic cell was sufficient to lead to the host death,
they argued that the goal of the therapy should be to achieve com-
plete cure of the disease, i.e. eradication of all malignant cells. In
this context, they demonstrated that a large-dose/short time (single

administration) schedule was superior to a chronic (daily) low-dose
schedule (with similar or larger total dose) [8]. However, when this
view (that was  involved in the calculation of the number of cycles
required for cure) was applied to the adjuvant systemic treatment
of micrometastases (for breast cancer for instance), it did not lead
to the expected results [9]. Two  major criticisms were addressed
to the work of Skipper et al.: (1) they considered a homogeneously
sensitive population of cancer cells (i.e. no resistance was  explicitly
taken into account) and (2) the experimental system they employed
was limited to a single leukemic cell line and their conclusions
might not extend to solid tumors.

Regarding point (1), substantial efforts in the modeling of resis-
tance to cytotoxic agents have been provided by the work of Goldie
and Coldman [10]. The Goldie–Coldman model states that mutation
rates toward resistance are relatively high within a population of
tumor cells and that mutations develop spontaneously during the

Fig. 3. Left: Skipper–Schabel–Wilcox log-kill model. Tumor growth is exponential (linear in log-scale) and each cycle of chemotherapy results in removal of a constant fraction
of  the tumor volume (as opposed to a constant amount of cells). This is reflected by a constant log-kill. The simulation assumes a log-kill of three (i.e. reduction of 99.9% of the
tumor  mass) over six three-weeks cycles, for an initial total tumor load of 109 cells, the first cycle starting at Day-0. The dashed line represents the size of one cell, that classical
MTD  chemotherapy approaches consider as the goal to achieve for eradication of the disease. Right: Norton–Simon model. Untreated tumor growth is Gompertzian and
exhibits a decreasing specific growth rate. The Norton–Simon hypothesis implies a larger log-kill for smaller tumors and suggests to densify the chemotherapy administration
protocol. This is illustrated by comparison of a three-weeks regimen (black curve) and a densified two-weeks regimen (gray curve). The latter exhibits deeper drop of the
tumor  burden and thus larger probability of “cure”. However, note that when tumor regrows, both schedules have the same time to recurrence.

Figure 1.2 – Left: log-kill model. Each cycle of therapy produces a fixed fraction kill. Right:
Norton-Simon model. This model suggests intensification of treatment schedules as the tumour
shrinks. (Image from [78]).

Norton-Simon model

The log-kill model is based on the assumption of exponential growth, which is not real-

istic for the majority of human tumours [72, 73]. In the 1970s, Norton and Simon [10]

proposed an alternative model to describe tumour regression in response to chemother-

apy. The Norton-Simon model is based on Gompertzian growth and assumes a kill rate

proportional to the growth rate of the untreated tumour, that is

dV

dt
= α0e

−βtV (1− k C(t)).

This model implies that a given therapy will cause slower regression in very large and very

small tumours than in histologically equivalent tumours of intermediate size. According

to the Norton-Simon model, the best therapeutic strategy would be then to employ a

moderate therapy initially (when the tumour is presumably of intermediate size) and

a final intensification (Figure 1.2). This prediction was confirmed in several clinical

trials where late intensification was accomplished either by increasing dose levels of the

same agents (intensification) or by using new agents in an aggressive manner (cross-over

intensification) [79, 80].
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The model of Hahnfeldt

An extension of the Gompertz model has been proposed by Hahnfeldt et al. [11] to

describe tumour growth dynamics under angiogenic control. This model differs from the

classical Gompertz model in that it represents the effects of angiogenic control by means

of a time-dependent carrying capacity, K:





dV
dt = αV log

(
K
V

)

dK
dt = −λ2K + bS(V,K)− dI(V,K)− eKC(t)

V (t = 0) = V0, K(t = 0) = K0.

In the equation for K, the first term represents the spontaneous vascular loss; the second

and third terms represent stimulation and inhibition due to the tumour cells; the last

term represents inhibition due to the administered drugs, taken to be proportional to the

concentration C(t). The expressions for S(V,K) and I(V,K) are established on the basis

of biological considerations. The authors used their model to analyse experimental data

from mice bearing Lewis lung tumours treated with antiangiogenic agents (endostatin,

angiostatin and TNP-470). The model predicted the existence of a limiting tumour size

despite the presence of vasculature in the tumour. This plateau is due to the balance of

endogenous stimulators and inhibitors and may be lowered by administering an inhibitor

agent.

Models of combination of chemotherapy and antiagiogenic therapy

Models with varying carrying capacity have been applied in a number of works evaluating

the synergetic interaction between antiangiogenic and cytotoxic agents [7, 81, 82]. These

modelling works were motivated by studies suggesting a transient normalisation of the

intratumoural vasculature induced by antiangiogenic agents [83, 84]. As chemotherapy

reaches the tumour through the blood circulation, this fact can be exploited for a more

efficient drug delivery.
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In [7], Mollard et al. built a PK-PD model describing the evolution in time of the

vascular quality under the effect of antiangiogenic agents. This model extends the model

of Hahnfeldt by decomposing the time dependent carrying capacity K(t) into a stable

component S(t) and an unstable component U(t), representing respectively the mature

and immature vessels components of the tumour vasculature. The effect of the cytotoxic

drug is described with a transit compartment model [12] in order to account for the

delay in the effect of the drug. The antiangiogenic drug is assumed to affect the unstable

vessels component because it represents the new vessels generated through the process

of angiogenesis. Simulations of the model suggested an optimal time gap of 3.4 days

between the administration of bevacizumab and paclitaxel. The proposed scheduling

was then tested experimentally on mice orthotopically xenografted with human breast

cancer cells, where the sequential administration of bevacizumab and paclitaxel with

a time lag of 3 days resulted in improved antitumour efficacy and reduced metastatic

spreading.

In [82], the authors simplified the model presented in [7] to identify the optimal

scheduling for the administration of bevacizumab and pemetrexed-cisplatin, using data

from a mouse model of non-small cell lung cancer (NSCLC). The mathematical model

predicted an optimal delay of 3 days between bevacizumab and chemotherapy. This

model prediction was further confirmed in experiments comparing the proposed schedule

against other sequential and concomitant administrations.

Models of the emergence of biochemical resistance

The Norton-Simon model explains failure of therapy through the concept of “kinetic resis-

tance” by which treatment can lose its efficacy as the tumour shrinks. This phenomenon

of kinetic resistance is different from the resistance acquired at the biochemical level due

to genetic and/or epigenetic events. The problem of biochemical resistance was first ad-

dressed in a quantitative sense by Goldie and Coldman, who developed a mathematical

model relating the drug sensitivity of a tumour to its spontaneous rate of mutations

towards phenotypic drug resistance [85]. Their analysis indicated that the probability of
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there being at least one resistant cell will rise dramatically during a very short interval

in the growth history of the tumour. Based on this result, the authors suggested that to

maximise the probability of cure, tumours should be treated as early as possible using

as many effective drugs as possible. Moreover, the authors recommended that if several

drugs cannot be administered simultaneously, they should be employed in a strict alter-

nating sequence. The concept of alternating sequence was tested in numerous clinical

trials. However, compared to sequential regimens, alternating regimens resulted in little

or no benefit [86].

To investigate the problem of the emergence of resistance in non-small cell lung

cancer (NSCLC) during treatment with the epidermal growth factor receptor (EGFR)

inhibitor erlotinib, Chmielecki et al. [8] developed a mathematical model based on a

stochastic branching process in which drug-sensitive and resistant cancer cells divide

or die according to growth rates dependent on the drug concentration, and sensitive

cells give birth at each division to a resistant cell with a certain probability. Model

parameters were determined using a patient-derived cell line. The authors then used

their model to select among a range of clinically tolerable schedules, the strategy that

minimises the probability of resistance or the conditional expected number of resistant

cells in the event that resistance has already emerged [87]. The optimal strategy identified

by the model consists in combining a daily low dose with twice weekly high-dose pulses.

This schedule was tested in patient in a phase I study [8]. The schedule selected by

the model analysis did not delay the development of resistance, probably because the

drug concentrations utilised in the preclinical models were not achievable in patients [8].

However, the clinical results indicated superiority of the pulse-continuous schedule in

controlling central nervous system metastases.

1.4.3 Metastasis

Compared to the vast literature dedicated to the modelling of the growth of a single

tumour, relatively few models have been proposed to describe the metastatic process. The

reason for this may be partly due to the complexity of the metastatic process that makes
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its modelling difficult as well as the limited availability of metastatic data. The study of

Liotta et al. [13, 88] is one of the first modelling work that makes use of experimental

data to model mathematically the metastatic process. The authors developed an ODE

model consisting of a number of compartments representing key steps of the metastatic

cascade. The model was parameterised using data from a mouse model of fibrosarcoma

that developed pulmonary metastases and its predictions were found in agreement with

the observed number of macroscopic metastases and the metastatic free survival in the

animals.

To predict the number of tumour under the detectability limit, Iwata et al. [14]

proposed a deterministic model describing the evolution in time of the size distribution

of a population of metastatic tumours. The Iwata model is the model adopted in this

thesis to model the metastatic process and will be described in the next chapter, along

with its validations and extensions by other authors.

Hanin et al. have produced a number of works using a stochastic model of cancer

progression, accounting for primary tumour growth, dissemination of metastases, latency

and growth of metastases in secondary sites [15, 89]. Dissemination is modelled as a

Poisson process with rate dependent on the primary tumour size through a power law,

following the same assumption as Iwata et al. The model provides an explicit formula

for the volume distribution of the metastatic tumours at a given site, which is used for

estimating the identifiable parameters of the model from metastatic data. For example,

in [15], the authors applied their model to the autopsy data of an untreated lung cancer

patient with 428 metastases in the liver. Simulation results indicated that the first

metastasis started growing before diagnosis, thus suggesting that the patient could not

have been cured by surgery alone.

In a study by Heano et al. [16], the authors developed a mathematical model of

pancreatic cancer progression using clinical data of pancreatic cancer patients. The

model assumes exponential growth for primary tumour and metastases. Cancer cells

follow a stochastic process, where at each time step a cell is chosen to divide or die. The

probability of establishing a new colony at a distant site is assumed to be the product
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of the probability for a cell of the primary tumour to acquire a mutation conferring the

ability to metastasise and the probability for the mutated cells of being “exported” from

the primary tumour. The authors calibrated their model using autopsy data from 101

pancreatic cancer patients and validated it on a independent cohort of 127 patients. The

mathematical model was then used to evaluate the effects of resection and chemotherapy

strategies on patient survival. Simulation results suggested that chemotherapy strategies

able to effectively reduce the growth rate of primary and metastatic tumours are more

efficient in extending survival of patients than surgical resection alone.

Another class of models aims at describing the most likely pattern of metastasis from

a specific primary tumour. An example of such model is that of Newton et al. [17], who

proposed a Markov chain based model to describe the metastatic spread from primary

lung cancer. The model is based on a network of metastatic sites with a transition

matrix whose coefficients were estimated from the empirical distribution of the metastatic

locations in a population of 3827 deceased lung cancer patients. The calibrated model

was used to analyse the timing of metastasis in each sites. For example, the estimated

one-step and two-step transition probabilities allowed to classify metastatic sites as first-

order and second-order sites, as well as the identification of stronger self-seeder sites.

The authors also performed Monte Carlo simulations of the calibrated model in order to

compute the mean first-passage time from the lung to any given metastatic site. They

propose to use this quantity as a measure of metastatic progression, since according to

the model, if a patient has metastases in one of those sites with largest mean first-passage

times, then he is also likely to have metastases in other areas.

1.5 Motivations and objectives

This thesis contains two projects: the modelling study of neoadjuvant sunitinib on pre-

clinical data and the development of a predictive model for the time to metastatic relapse

on a clinical dataset of breast cancer patients. The following sections outline the moti-

vations and the aims of each one of these works.
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Modelling study of neoadjuvant sunitinib on preclinical data

Sunitinib is a drug with anti-angiogenic activity used in the treatment of patients with

metastases from renal cell carcinoma or gastrointestinal tumours. However, recent pre-

clinical studies have shown limited, or even opposing, efficacies in preventing metastatic

spread, despite clear inhibition of primary tumour growth [25–27]. In addition, there

are a number of preclinical and clinical studies suggesting that stopping antiangiogenic

treatment may lead to rapid revascularisation and rebound tumour growth [28]. To date,

the majority of mathematical models in oncology focus on the effects of treatment only

on primary tumour dynamics. This work aims at i) extending an established model of the

metastatic process [19] to describe primary tumour and metastatic dynamics in response

to sunitinib in clinically relevant mouse models of metastatic cancers, ii) testing possi-

ble hypotheses for the reported differential effects of sunitinib on primary tumour and

metastases, iii) evaluating different schedules of neoadjuvant sunitinib by simulations of

the calibrated model, and iv) assessing the predictive power of biomarkers on the model

parameters with the use of machine learning algorithms.

Development of a predictive model for the time to metastatic relapse

The second part of this thesis concerns the predictive modelling of the time to metastatic

relapse in patients diagnosed with early-stage breast cancer. The proposed model is based

on the biology of the metastatic process and is evaluated for its predictive power on a

dataset of 642 breast cancer patients. The final objective is to develop a predictive

model of clinical utility that, by providing estimates of the invisible metastatic burden

at the time of diagnosis and forward simulations of metastatic growth, could be used as

a personalised prediction tool to assist in the decision for adjuvant therapy.

1.6 Organisation of the thesis and summary of contributions

The biology of the metastatic development and the main anticancer treatments have

been described in this chapter. Chapter 2 describes the datasets used in this thesis, the
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mathematical model used to describe the metastatic process and the statistical techniques

utilised for the analysis of longitudinal and time-to-event data, with a first example of

modelling of tumour growth data. In Chapters 3 and 4, the metastatic model is extended

and applied to analyse experimental data of primary tumour and metastatic dynamics

from mice treated with neoadjuvant sunitinib therapy. In Chapter 5, the metastatic

model is adapted to fit time-to-relapse data and its predictive performance evaluated

and compared to Cox regression and machine learning algorithms. Finally, Chapter 6

summarises the thesis achievements, discusses the clinical implications of the results and

suggests possible future works.

The study carried out in Chapter 3 and 4 is based on an existing code in Matlab to

fit the Iwata model to primary tumour and metastatic burden data using a mixed-effects

population approach. My personal contribution has been to i) confirm the validity on

larger datasets of the models established in [19], ii) perform model simulations in Matlab

to test the effect of therapy on metastases, iii) adapt the code to fit longitudinal data from

treated animals, and iv) combine the mixed-effects framework with machine learning

algorithms available within the R caret package [90] in order to assess the predictive

power of biomarkers. The study of Chapter 3 has been presented in a poster at the

AACR Annual Meeting 2018 [91], and has been accepted for two oral presentations, at

the 28th PAGE meeting and the SMB Annual Meeting 2019. It is to be submitted to

the journal Cancer Research [92] along with the study presented in Chapter 4 [93].

For the study of Chapter 5, I have utilised the extension of the R saemix package to

right censored time-to-event data, developed by Belhal Karimi [39, 94]. My contribution

has been to i) code in Python the structural model and the likelihood function for the

mechanistic model of the time to metastatic relapse, and ii) make the connection between

Python and R by using the R package reticulate. The mechanistic model applied to a

dataset of early-stage breast cancer patients performs similarly to the state of the art

approaches. In addition, it brings advances to the field of survival analysis, being the first

attempt of mechanistic modelling for prediction of the time to metastatic relapse. This

work has been presented during an oral session dedicated to applications of machine
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learning in oncology at the 28th PAGE meeting and has been submitted to the JCO

Clinical Cancer Informatics [95].

1.6.1 Scientific production

Papers to be submitted

• C. Nicolò, M. Mastri, J. ML Ebos, S. Benzekry. Machine learning combined to

mechanistic modeling of differential effects of neoadjuvant Sunitinib on primary

tumor and metastatic growth. To be submitted to Cancer Res

• M. Mastri, C. Nicolò, S. Benzekry and J. ML Ebos. Impact of treatment breaks

and burst in the neo-adjuvant setting for anti-angiogenic therapy of kidney cancer.

To be submitted to Cancer Res

• C. Nicolò, C. Perier, M. Prague, G. MacGrogan, C. Bellera, O. Saut, and S. Ben-

zekry. Machine learning versus mechanistic modeling for prediction of metastatic

relapse in breast cancer. Submitted to JCO Clinical Cancer Informatics

Oral communications

• July 2019, SMB Annual Meeting, Montréal, Québec, Canada. Machine learning

combined to mechanistic modeling of differential effects of neo-adjuvant Sunitinib

on primary tumor and metastatic growth. Oral (speaker)

• June 2019, Population Approach Group meeting in Europe (PAGE), Stockholm,

Sweden. Machine learning combined to mechanistic modeling of differential effects

of neo-adjuvant Sunitinib on primary tumor and metastatic growth. Oral (speaker)

• June 2019, Population Approach Group meeting in Europe (PAGE), Stockholm,

Sweden. Machine learning versus mechanistic modeling for prediction of metastatic

relapse in breast cancer. Oral

• April 2018, Annual meeting of the AACR, Chicago, USA. Mathematical modeling

of differential effects of Sunitinib on primary tumor and metastatic growth. Poster



Chapter 2

Methods

2.1 Description of the data

2.1.1 Primary tumour and metastatic data in mouse models of cancers

in response to neoadjuvant sunitinib

The experimental data used in this study were made available to us by Dr. John

Ebos (Roswell Park Cancer Institute, Buffalo, USA) and were derived from two or-

thosurgical metastasis models representing competent and incompetent immune systems

with luciferace-tagged human breast (LM2-4LUC+) and mouse kidney (RENCALUC+)

cell lines, respectively [19]. Cancer cells were implanted orthotopically in mice, namely

into the right mammary fat pad for the breast model and into the left kidney for the

kidney mouse model. Primary tumour burden was monitored with callipers, while post-

surgical metastatic tumour burden was assessed by bioluminescence. Animals received

neoadjuvant sunitinib treatment according to different schedules, starting 14 days be-

fore primary tumour removal (Figure 2.1). The dataset contains measurements for 230

animals (132 for the breast model and 98 for the kidney model). Besides longitudinal

measurements of primary tumour and metastatic dynamics, it also comprises survival

data and pre-surgical molecular and cellular biomarkers, including vascular cell Ki67 and

CD31 expression, circulating tumour cells (CTCs) and myeloid derived suppressor cells
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Figure 1 – Left: Experimental setting for non-invasive monitoring of metastatic development in
clinically relevant animal models of breast and kidney cancer metastases. Data from John Ebos’s
lab (Roswell Park Cancer Institute, Bu�alo, NY, USA). Middle: Population fit of the breast data
set, based on a model for description of the population of metastases using equations (1) and the
nonlinear mixed-e�ects statistical framework for parameters estimation, where a distribution of
parameters is estimated rather than a parameter set per animal. Solid line = median simulation
under the estimated parameter distribution. Dashed lines = 10th and 90th percentiles. Right:
Individual fits in distinct animals. PT = Primary Tumor. Met = Metastatic burden.

of data about metastatic acceleration following treatment with Sunitinib (using bioluminescence
tracking techniques, see Figure 1), and research stays at the Roswell Park Cancer Institute are
planned during the PhD to gather more data. For the phenomenon of concomitant resistance, we
dispose of data about interaction of two simultaneously growing tumors in the same organisms,
and a mathematical model is currently being validated [Benzekry et al., 2016].

On the mathematical side, di�erent kinds of models, mathematical and computational meth-
ods will be employed depending on the questions that will be addressed. The main core is a
class of models for metastatic development first initiated by Iwata et al. [Iwata et al., 2000].
These models write as structured partial di�erential equations written to describe the temporal
development of a population of tumors represented by a density fl(t, v) structured in size (the
volume v of the lesion). When considering a growth rate g(t, v, Vp(t), fl(t, v)) (that may depend
on time t when a treatment is taken into account, and from the primary tumor and the other
tumors density fl(t, v) when tumor-tumor interactions are considered) and a dissemination rate
d(v), the general form writes

8
><
>:

ˆtfl(t, v) + ˆv(g(t, v, Vp(t)fl(t, v))fl(t, v)) = 0 ]0, T [◊]V0,+Œ[
g(V0)fl(t, V0) = d(Vp(t)) +

R+Œ
V0

d(v)fl(t, v)dv ]0, T [
fl(0, v) = 0 ]V0,+Œ[

(1)

where T is a fixed final end time, V0 is the initial (and minimal) size of a new tumor and Vp(t)
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Figure 2.1 – A) Sketch of the experimental setting for the studying of neoadjuvant sunitinib in
mouse models of breast and kidney cancers. B) Longitudinal data of primary tumour size and
metastatic burden. C) Bioluminescence monitoring of post-surgical metastatic development.
Data from Dr. John Ebos’s lab (Roswell Park Cancer Institute, Buffalo, USA)

2.1.2 Metastatic relapse in early-stage breast cancer patients

This dataset contains data of time to metastatic relapse for 642 women diagnosed with

primary operable invasive breast carcinoma and operated at the Bordeaux Bergonié in-

stitute between 1989 and 1993. The patients considered did not received any adjuvant

treatment, with the exception of post-surgical local irradiation for 512 patients, thus

allowing to assess the natural history of the course of metastasis. Figure 2.2 shows the

Kaplan-Meier estimates of overall and distant metastasis-free survival for these patients.

The latter was defined as the time from the date of diagnosis to the date of distant re-

currence and patients with no metastasis were censored at the date of last news or death.

Clinical/pathological variables available in the dataset included age and tumour size at

diagnosis, menopausal status, grade, T and N stages, histological type and number of
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invaded ganglions. In addition, ER and PR receptor, HER2, Ki67, basal markers, CD24,

CD44, ALDH1, BCL2, E-Cadherin and Trio were recorded.
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Figure 2.2 – Kaplan-Meier estimates of the distant metastasis-free survival (DMFS) and overall
survival (OS) for the breast cancer patients of the Bergonié dataset. + : censored observations.

2.2 The Iwata model for the description of the metastatic

process

2.2.1 Assumptions and equations

Iwata et al. [14] developed a mathematical model to describe the evolution in time of the

size distribution of metastatic tumours. A schematic representation of the model is shown

in Figure 2.3. In this model, the primary tumour is assumed to start from a single cell

and to grow at rate gp(v), where v denotes the tumour size, expressed either in volume

or in number of cells (1 mm3 ' 106 cells [96]). It is supposed that, while growing, the

primary tumour emits metastatic single cells at rate d(v). Each metastatic cell develops

into a new tumour, that grows at rate g(v) and also disseminates metastatic cells at

rate d(v). It is further assumed that the nuclei of colonisation are located far enough
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from each other so that their ranges do not overlap and that no metastatic tumour is

present at the initial time. The state of the metastatic process is described by means of

a function ρ(t, v), representing the distribution of metastatic tumours with size v at time

t. This solves the following initial-boundary value problem (IBVP):





∂tρ(t, v) + ∂v(g(v)ρ(t, v)) = 0, t ∈ (0,+∞), v ∈ (V0,+∞)

g(V0)ρ(t, V0) = d(Vp(t)) +
∫ +∞
V0

d(v)ρ(t, v) dv, t ∈ (0,+∞)

ρ(0, v) = 0, v ∈ (V0,+∞)

(2.1)

where V0 represents the size of one cell, and Vp(t) is the size of the primary tumour at

time t, which, by definition, solves





dVp(t)

dt
= gp(Vp)

Vp(0) = V0.

(2.2)

The model equations (2.1) can be derived as follows. Let P (t, v) be the number of

metastases with size smaller than v at time t

P (t, v) =

∫ v

V0

ρ(t, s) ds.

Passing from time t to time t + dt, this quantity has to satisfy the following balance

equation:

P (t+ dt, v + g(v)dt) = P (t, v) +

[
d(Vp(t)) +

∫ +∞

V0

d(v)ρ(t, v) dv

]
dt. (2.3)

Expanding the l.h.s. of (2.3) with respect to dt and dv yields

P (t+ dt, v + g(v)dt) ≈ P (t, v) + ∂tP (t, v)dt+ ∂vP (t, v)g(v)dt,
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Primary 
Tumor 
(PT)

PT growth law:   gp

0 t

Dissemination law:  d(v) = μvγ

Metastases Metastases growth law:   g

Figure 2.3 – Schematic representation of the mathematical metastatic model defined by (2.1) -
(2.2). gp and g are the growth rates of the primary tumour and metastases, respectively. d denotes
the dissemination rate from the primary tumour and metastases. It depends on the tumour
volume and two parameters µ and γ. The former characterises the metastatic aggressiveness
of the tumour, whereas the latter can be interpreted as the fractal dimension of the vessels
infiltrating the tumour [14].

so that one gets

∫ v

V0

∂tρ(t, s) ds+ g(v)ρ(t, v) = d(Vp(t)) +

∫ +∞

V0

d(v)ρ(t, v) dv.

Derivation of the above equation with respect to v yields

∂tρ(t, v) + ∂v(g(v)ρ(t, v)) = 0,
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while setting v = V0 provides the boundary condition

g(V0)ρ(t, V0) = d(Vp(t)) +

∫ +∞

V0

d(v)ρ(t, v) dv.

The former equation means that the number of metastases emitted in one time unit cor-

responds to the total rate of metastatic emission due to the primary tumour (first term

of the r.h.s.) and the metastatic tumours (second term of the r.h.s).

The model presented in [14] assumed:

• the same Gompertzian growth rate for both primary and secondary tumours:

gp(v) = g(v) = av log
b

v
,

where a is a growth rate constant and b is the maximum reachable size (carrying

capacity).

• a dissemination rate d(v) of the following form:

d(v) = µvγ ,

where µ is the dissemination coefficient and γ is the fractal dimension of blood

vessels infiltrating the tumour. A value of γ = 1 indicates that blood vessels are

homogeneously distributed inside the tumour, whereas a value of γ = 2/3 indicates

that the tumour vascularity is superficial [14].

2.2.2 Numerical discretisation

Macroscopic quantities

From the size distribution function ρ(t, v), it is possible to derive some macroscopic

quantities which are important when the model has to be compared against observed
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data. Example of such quantities are the total number of metastasis at time t,

N(t) =

∫ +∞

V0

ρ(t, v)dv, (2.4)

the metastatic burden (i.e. the total metastatic mass),

M(t) =

∫ +∞

V0

vρ(t, v)dv, (2.5)

and the cumulative number of metastases, that is the number of metastases of size larger

than a given size v̄:

Nv̄(t) =

∫ +∞

v̄
ρ(t, v)dv. (2.6)

More generally, we may rewrite the above quantities as weighted integrals

Ff (t) :=

∫ +∞

V0

f(v)ρ(t, v)dv. (2.7)

Proposition 1 (Hartung [97]). If the metastatic growth rate g is autonomous, then the

quantity defined in (2.7) satisfies

Ff (t) =

∫ t

0
f(V (s))

[
d(Vp(t− s)) +

∫ +∞

V0

d(v)ρ(t− v, v)dv

]
ds, (2.8)

where V is defined as the solution of





dV
dt = g(V ),

V (t = 0) = V0.

(2.9)

Proof. If g does not depend on time, the first equation in (2.1) can be rewritten as

∂t(g(v)ρ(t, v)) + g(v)∂v(g(v)ρ(t, v)) = 0, (2.10)

from which we see that g(v)ρ(t, v) is constant along the characteristics associated to

(2.10). The characteristic that solves (2.9) separates the domain into two subregions: to
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the left of it, the solution depends on the boundary condition, whereas to the right of it,

the solution depends on the initial condition, and thus is zero (Figure 2.4). Therefore,

we have

Ff (t) =

∫ +∞

V0

f(v)ρ(t, v)dv =

∫ V (t)

V0

f(v)ρ(t, v)dv.

Making the change of variables v = V (s), dv = g(V (s))ds and exploiting the conservation

property along the characteristics, we obtain

Ff (t) =

∫ t

0
f(V (s))ρ(t, V (s))g(V (s))ds

=

∫ t

0
f(V (s))ρ(t− s, V0)g(V0)ds

=

∫ t

0
f(V (s))

[
d(Vp(t− s)) +

∫ +∞

V0

d(v)ρ(t− s, v) dv

]
ds.
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Figure 2.4 – Picture of the characteristics for the IBVP (2.1).
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Remark 1. If secondary dissemination is neglected, (2.8) reduces to

Ff (t) =

∫ t

0
f(V (s))d(Vp(t− s))ds,

so that computation of Ff (t) does not require solving (2.1). In particular, the total number

of metastases (f ≡ 1) and the metastatic burden (f(v) = v) are respectively given by

N(t) =

∫ t

0
d(Vp(s))ds, M(t) =

∫ t

0
V (s)d(Vp(t− s))ds.

The latter equation can be solved efficiently through the use of a fast Fourier transform

algorithm [97].

To calibrate the mathematical model from primary tumour and metastatic burden

data, simulations of the model required for the fitting algorithm were performed with a

method based on the use of a fast Fourier transform algorithm [97]. This method cannot

be applied when the metastatic growth rate depends on time, such as in the case where

treatment is supposed to affect the growth of metastases. Simulations of the model in

this case were performed using a numerical scheme based on the method of characteristics

and involving a change of variables that, by straightening the characteristics, leads to

the resolution of a simpler problem [98].

A discrete version of the model was used to simulate the cancer history in individual

patients after model calibration (Section 5.3.4). In the discrete model, the appearance

time of the i-th metastasis is defined by

Ti = inf {t > 0 : N(t) ≥ i} .

Its volume is then given by 



dVi(t)

dt
= g(Vi)

Vi(t = Ti) = V0.

Both continuous and discrete versions of the Iwata model are implemented in the Matlab
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library METAMATS developed by S. Benzekry.

2.2.3 Extensions and validations

Iwata et al. [14] assessed the practical applicability of their model by fitting the cumu-

lative number of metastases (2.6) to CT scan data from a patient with hepatocellular

carcinoma as primary tumour and multiple metastatic tumours in the liver. The model

was found to reproduce well the behaviour of the observed data. In addition, since the

estimated value for the fractal dimension parameter γ was close to 2/3, the authors con-

cluded that for that patient the tumour vascularity should have been nearly superficial.

A detailed mathematical analysis of the Iwata model has been conducted by Barbolosi

et al. [99], who established the existence and uniqueness of solutions to the PDE and

presented an appropriate numerical scheme.

A two-dimensional version of the metastatic model (2.1) has been proposed by Ben-

zekry [98] in order to include the angiogenic process and model the effects of a combined

cytotoxic/antiangiogenic therapy. The author performed a mathematical analysis of the

model in the autonomous (model without treatment) and non-autonomous case (model

with treatment), and introduced an adapted numerical scheme. Model simulations were

then presented to illustrate possible applications of modelling to the clinic and compare

different treatment modalities [100, 101]. Based on simulation results, the author sug-

gests the use of a metronomic administration scheme [101]. Further extensions of the

model were also derived to account for possible systemic interactions between tumours

[102, 103].

In a work of Hartung et al. [18], the Iwata model has been validated against experi-

mental data of primary tumour and metastatic burden dynamics from orthotopic breast

tumor xenograft experiments conducted in mice.

Another validation of the Iwata model that uses data from mouse models was con-

ducted by Benzekry et al. [19]. The main difference of this study is that it utilises data

from orthosurgical mouse models in order to carry out a mathematical modelling anal-

ysis of the impact of surgery on metastasis. Validation was also extended to multiple
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animal models (breast and kidney). In addition, the authors calibrated the Iwata model

on a clinical dataset of metastatic relapse probability in breast cancer patients and used

the estimated distribution of µ to analyse the relationships between resected primary

tumour size and survival. The simulated relationship indicated two threshold for the

primary tumour size: a lower threshold, below which metastatic risk is negligible, and

an upper threshold, above which surgery has a negligible benefit. The authors pointed

out that estimation of the model parameter µ in a patient specific manner would be of

clinical relevance, since it would allow to use their model in practice as a diagnostic and

prognostic tool.

2.3 Nonlinear regression

We suppose to dispose of a mathematical model that approximates the phenomenon

under study and that this model can be expressed as a parametric function of time f(t; θ),

which we will call the structural model. The next step to complete the model consists

in determining an estimate of the unknown parameter θ by making use of available

measurements. A model for continuous data is generally written as follows:

yj = f(tj ; θ) + ej 1 ≤ j ≤ n, (2.11)

where (yj , 1 ≤ j ≤ n) are the observations collected at times (tj , 1 ≤ j ≤ n), and (ej , 1 ≤

j ≤ n) is a sequence of residual errors with E(ej) = 0. Two estimation methods commonly

used in the context of parametric models are the least-squares method (Section 2.3.1)

and the maximum likelihood method (Section 2.3.2).

Besides estimating the model parameters, it is also important to evaluate the pre-

cision of the estimates. This can be done by looking at the standard errors, i.e. the

standard deviations of the components of the estimator. Standard errors can often be

estimated using analytical formula based on asymptotic results. In more complicated

cases, standard errors can be obtained using the bootstrap method [104, p. 108].
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2.3.1 Least-Squares Estimation

Definition 1 (Least-squares estimator). Let θ∗ be the true unknown value of θ. The

least-squares estimate of θ∗ is the value θ̂ = θ̂(y1, . . . , yn) that minimises the residual

sum of squares [105, p. 21]

S(θ) =
n∑

j=1

(yj − f(tj ; θ))
2. (2.12)

The least-squares method does not provide any estimate for the variance of the resid-

ual errors. However, if the ej are independent and identically distributed (i.i.d.) with

variance σ2, an a posteriori estimate of σ2 is given by [105, p. 21]

σ̂2 =
S(θ̂)

n− d
, (2.13)

where d is the dimension of the parameter vector θ.

Theorem 1 (Asymptotic normality of the LSE). Under certain regularity conditions, for

large n, the least-squares estimator has approximately a normal distribution [105, p. 24]

θ̂ ∼ N (θ∗, C), C = σ2(J(θ∗)TJ(θ∗))−1, (2.14)

where J =
[(

∂f(ti;θ)
∂θj

)]
is the jacobian matrix of the model.

The theorem above can be proved using a linear approximation [105, p. 23] and allows

to estimate the standard error of the jth component of θ̂ as:

ŝe(θ̂j) =

√
Ĉjj , with Ĉ = σ̂2(J(θ̂)TJ(θ̂))−1. (2.15)

2.3.2 Maximum Likelihood Estimation

Definition 2 (Likelihood function). Let Y = (Y1, . . . , Yn) be random variables with joint

density function pY (y1, . . . , yn; θ) and let y = (y1, . . . , yn) denote the observed values of
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Y . The likelihood is a function of θ defined by

Ly(θ) = pY (y1, . . . , yn; θ).

In particular, if Yj, j = 1, . . . , n, are independent, the likelihood is

Ly(θ) =
n∏

j=1

pYj (yj ; θ).

Definition 3 (Maximum likelihood estimator). The maximum likelihood (ML) estima-

tor is the value of θ that maximises Ly(θ).

An estimate of the variance of the ML estimator can be computed analytically using

the following asymptotic result [104, p. 129].

Theorem 2 (Asymptotic normality of the MLE). Let θ∗ be the true value of θ. Under

appropriate conditions, the ML estimator of θ has an asymptotic normal distribution

with mean θ∗ and covariance matrix C = I−1
y (θ̂), where Iy(θ̂) is the observed Fisher

information matrix (FIM)

Iy(θ̂) = − ∂2

∂θ2
log(Ly(θ̂)).

Going back to (2.11), since ej are random variables, yj are random variables as well.

For instance, if we assume that the ej are independent and identically distributed (i.i.d)

and that ej ∼ N (0, σ2), then yj are also independent and from (2.11) it follows that:

yj ∼ N (f(tj ; θ), σ
2), 1 ≤ j ≤ n.

Thus, the corresponding likelihood function is:

Ly(θ, σ) =
1

(2πσ2)n/2
exp



−

1

2

n∑

j=1

(
yj − f(tj ; θ)

σ

)2


 .
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To find the ML estimate of θ̂, we maximise the log-likelihood

LLy(θ, σ) = − 2

n
log 2π − n log σ − 1

2σ2

n∑

j=1

(yj − f(tj ; θ))
2 ,

from which we see that maximising the log-likelihood with respect to θ is the same as

minimising the residual sums of squares (2.12). This shows that under the assumption

of error normality and constant error model, the least squares estimator coincides with

the maximum likelihood estimator.

Models for continuous data are usually stated in the more general form:

yj = f(tj ; θ) + g(tj ; θ, ξ)εj 1 ≤ j ≤ n,

where g is the residual error model and (ε1, . . . , εn) are the standardised residual errors.

In this case, the likelihood writes:

Ly(θ, ξ) =
(2π)−n/2∏n
j=1 g(tj ; θ, ξ)

exp



−

1

2

n∑

j=1

(
yj − f(tj ; θ)

g(tj ; θ, ξ)

)2


 .

The residual error model g is a function that depends on a vector of parameter ξ. It may

also be a function of time and of the structural parameters θ. Examples of residual error

models are constant (g = a), proportional (g = bf(tj ; θ)) and combined (g = a+bf(tj ; θ))

error models.

2.3.3 Application example: practical identifiability study of the Gom-

pertz and Iwata models

In this subsection, we apply the mathematical model and the statistical methods de-

scribed above to analyse longitudinal data of brain metastases from a patient with a

lung adenocarcinoma as primary tumour. Figure 2.5 shows the acquired data. A treat-

ment with erlotinib was started after diagnosis of the primary tumour. This induced an

initial regression in the primary tumour size followed by subsequent regrowth. A first
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metastasis was detected in the brain 20 months after diagnosis of the primary tumour.

Other 5 metastases were detected 40 months after diagnosis, and yet other 14 before date

of last examination before death of the patient (47 months post-diagnosis).
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Figure 2.5 – Growth of the primary tumour (left) and of metastases (right) detected in the brain
of a patient with primary lung adenocarcima. Data from Bergonié Institute [106].

Growth of a single metastasis

The data points plotted in Figure 2.6 represent the progression of the first detected brain

metastasis in the patient. A Gompertz model

V (t;α0, β) = exp [(ln(Vi)− α0/β) exp(−β(t− ti)) + α0/β] , (2.16)

was used to fit these data. The left-most time point is the first measurement available

for the metastatic tumour after diagnosis of the primary tumour and was used to fix

V (t = ti) = Vi in the model. The Gompertz growth parameters were estimated through

least-squares regression. The resulting values were α0 = 3.79 · 10−2 day−1 and β =

1.43 · 10−3 day−1, and yielded an estimate for the origin of this metastasis of 325 days

prior to diagnosis of the primary tumour.

Practical identifiability of the model parameters depends on the quantity and quality

of data. To determine how many measurements are required, we evaluated the precision

of the parameters estimated using only the first 4 and 5 data points. The resulting fits
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Figure 2.6 – Fits of the Gompertz model obtained varying the number of points used for esti-
mating the model parameters, from 6 (top left) to 4. Points in blue are those used for the fit.
Solid lines are least squares fits. Dashed lines depict 95 % confidence intervals for the prediction
of V (t).

Table 2.1 – Parameter values estimated using variable number of data points

Number of points Parameter Unit Estimate r.s.e. (%)

6 α0 [day−1] 3.79 · 10−2 9.86
β [day−1] 1.43 · 10−3 11.5
tb [day] −325 23.3

5 α0 [day−1] 2.40 · 10−2 40.3
β [day−1] 8.05 · 10−4 55.1
tb [day] −698 59.9

4 α0 [day−1] 3.00 · 10−2 158
β [day−1] 1.08 · 10−3 202
tb [day] −505 108
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are shown in Figure 2.6. Best fit parameter values, inferred times of inception, tb, and

estimated standard errors are reported in Table 2.1. In each case, the standard error

of the inferred time of inception, tb, was estimated by simulation. Namely, we gener-

ated a sample of parameter vectors θm = (α0, β), m = 1, . . . ,M , from the asymptotic

distribution of the estimator (2.14), and computed the empirical standard deviation of

(tb(θ1), . . . , tb(θM )). According to the estimated standard errors, six data points are suf-

ficient to identify the model parameters and infer the time of origin of the metastatic

tumour with good precision. However, while 5 data points still allow to obtain satisfac-

tory estimates of the model parameters, 4 data points are insufficient.

Number of visible metastases and cumulative size distribution

Following [106], we modelled the unobserved pre-treatment phase of the primary tumour

growth with a Gompertz model and utilised two exponential growth curves to describe

the observed decrease and subsequent increase in tumour size.

Let Vp(t) denote the number of cells in the primary tumour at time t. Assuming a

dissemination rate of the form d(Vp) = µV γ
p , and neglecting secondary dissemination,

the cumulative number of metastases is given by

F (t, v) :=

∫ +∞

v
ρ(t, s)ds =

∫ t−τ(v)

0
µVp(s)

γds,

where τ(v) denotes the time needed for a metastatic tumour to reach size v. We assumed

a Gompertz growth law for the metastatic tumours (i.e. equation (2.16) with Vi = 1

cell) and estimated α0, β, µ and γ by fitting the cumulative distribution function to the

observed cumulative number of metastases. Figure 2.7 compares the resulting cumulative

distribution functions to the observed cumulative number of tumours at six successive

times. While the fitted curves seem to agree well with the data, the high uncertainty in

the estimated value of µ (see Table 2.2), indicates that the model with all free parameters

might be structurally unidentifiable. Indeed, as shown in Table 2.3, fixing µ to different

values resulted in equally good estimation of the remaining parameters. Moreover, a
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decrease in µ is compensated by an increase in γ.
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Figure 2.7 – Fit of the model to the observed cumulative size distribution.

Table 2.2 – Estimation of the model’s parameters by fitting the theoretical cumulative size
distribution to the observed cumulative numbers of metastases.

Number of points Parameter Estimate r.s.e. (%)

47 (first 6 days) α0 2.28e-02 6
β 7.36e-04 13
µ 8.27e-09 398
γ 6.47e-01 26
σ 1.85 -
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Table 2.3 – Parameter estimates (relative standard error (%)) obtained by fitting the theoretical
cumulative size distribution with fixed value of µ.

µ = 10−4 µ = 10−5 µ = 10−6 µ = 10−7 µ = 10−8 µ = 10−9

α0 1.16e-02 (20.1) 2.16e-02 (2.67 ) 2.28e-02 (1.75) 2.28e-02 (0.78) 2.26e-02 (0.70) 2.24e-02 (0.68)
β 1.12e-04 (160) 7.27e-04 (6.45) 7.73e-04 (1.62) 7.51e-04 (0.55) 7.20e-04 (2.25) 6.96e-04 (0.47)
γ 2.83e-01 (5.66) 3.43e-01 (0.98) 4.41e-01 (0.93) 5.40e-01 (0.39) 6.40e-01 (0.47 ) 7.39e-01 (0.28)
σ 2.19 2.11 1.98 1.89 1.83 1.80

Figure 2.8 compares the observed number of metastases to the theoretical number

of visible tumours (Nvis(t) =
∫ t−τ(Vvis)

0 µVp(s)
γds, assuming a visible threshold Vvis of

5 mm in diameter) with parameter values obtained by fitting the theoretical cumulative

size distribution to the data from the first 4, 5 and 6 follow up days. In all cases, the value

of µ was fixed to 10−9. By visual evaluation, the model calibrated on observations from

the first 4 follow-up days only, does not allow to predict the number of visible tumour

at days 2920 and 3067. On the contrary, these seem to be well predicted when also the

data from the next the follow-up day are used.
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Figure 2.8 – Observed and predicted number of visible metastases. Predictions are obtained
using the parameter estimated by fitting the cumulative size distribution to the data of the first
4, 5 and 6 follow-up days. In all cases, the value µ was fixed to 10−9. Dashed lines depict 95 %
CIs for Nvis(t; θ

∗).
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2.4 Machine learning regression algorithms

We have seen modelling approaches where the nonlinearity in the data is directly specified

by a structural model. There are also regression techniques that, being intrinsically

nonlinear, do not require to model the form of nonlinearity in the data and can be

applied in situations where this is unknown. Neural networks and tree-based models are

examples of such methods.

In what follows, we assume to have n pairs of observations {(x1, y1), . . . (xn, yn)} ⊂

Rp×R, where y denotes the response (or outcome) variable and x is a vector of p predictor

variables (or covariates). The response variable is related to the covariates by

yi = f(xi) + ei, E[ei] = 0, i = 1, . . . , n.

The goal of these algorithms is to estimate the regression function f .

2.4.1 Neural networks

In a neural network [33, p. 141] the outcome variable is modelled through a set of un-

observed variables called hidden units. Each hidden unit is a linear combination of the

predictor variables transformed by a nonlinear function, such as the logistic function:

hk(x) = g


β0k +

p∑

j=1

xjβjk


 , where g(u) =

1

1− e−u
.

A neural network usually contains multiple hidden units which are linked by a linear

combination to the outcome (Figure 2.9):

f(x) = γ0 +

H∑

k=1

γkhk.

Thus, for a number of p predictors, a neural network with H hidden units requires the

estimation of H + 1 + H(p + 1) total parameters. These parameters are estimated by
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minimising with an iterative algorithm the following objective function:

n∑

i=1

(yi − f(xi))
2 + λ

H∑

k=1

p∑

j=1

β2
jk + λ

H∑

k=0

γ2
k ,

where a weight decay λ is introduced to moderate overfitting by penalising large regression

coefficients. Neural networks have two tuning parameters: the value of λ and the number

of hidden units. Kuhn and Johnson [33] recommend to use values of λ between 0 and

0.1.142 7 Nonlinear Regression Models

Predictor
A

Predictor
B

Predictor
C

Predictor
P

Hidden
Unit1

Hidden
Unit H

Outcome

S
igm

oid
al

R
elation

sh
ip

L
in

ear
R

elation
sh

ip

−6 −2 2 4 6

0.
0

0.
4

0.
8

β1 + β11x1 + β21x2 γ0 + γ1h1(x) + γ2h2(x) + γ3 h3 (x)

F
irs

t H
id

de
n 

U
ni

t h
(x

)

−6 −2 2 4 6

−6
−2

2
4

6
P

re
di

ct
io

n

Fig. 7.1: A diagram of a neural network with a single hidden layer. The hidden
units are linear combinations of the predictors that have been transformed
by a sigmoidal function. The output is modeled by a linear combination of
the hidden units

The β coefficients are similar to regression coefficients; coefficient βjk is the
effect of the jth predictor on the kth hidden unit. A neural network model
usually involves multiple hidden units to model the outcome. Note that, unlike
the linear combinations in PLS, there are no constraints that help define
these linear combinations. Because of this, there is little likelihood that the
coefficients in each unit represent some coherent piece of information.

Figure 2.9 – Structure of a neural network with a single hidden layer. The hidden units are
linear combinations of the predictor variables transformed by a sigmoidal function. The outcome
variable is modelled as a linear combination of the hidden units. (From [33].)
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2.4.2 Regression trees

Tree-based models [33, p. 175] partition the covariate space into disjoint subsets through

a sequence of nested if-then statement. The outcome for a new sample is predicted by

simply following the if-then statements for the sample’s predictors down the tree.

One approach to construct regression trees is the classification and regression tree

(CART) methodology introduced by Breiman et al. [107]. Starting from the entire

dataset, S = {1, . . . , n}, the algorithm forms two daughter nodes, S1 and S2, by finding

the predictor x∗ ∈ {x1, . . . xP } and the split value c∗ ∈ R such that the overall sums of

squared error are minimised:

SSE =
∑

i∈S1

(yi − ȳ1)2 +
∑

i∈S2

(yi − ȳ2)2,

where S1 = {i ∈ S : x∗ ≤ c∗}, S2 = {i ∈ S : x∗ > c∗} and ȳi denotes the average of the

training set outcomes within group Si, i = 1, 2. This process is repeated within set S1 and

S2 until the number of samples in the nodes falls below a given threshold. Predictions in

terminal nodes are computed by averaging the training set outcomes within each node.

If the resulting tree is too large it is likely to overfit the training data. One strat-

egy to reduce overfitting consists in removing unnecessary nodes by applying a pruning

algorithm [33, p. 178].

A second technique to build regression trees is the conditional inference trees method-

ology of Horthorn et al. [108]. In these models, statistical tests are used to test the

independence between any of the p variables and the response. If the global hypothesis

can be rejected, the covariate with the strongest association with the response is selected

and the optimal binary split is determined by maximising a statistic quantifying the

discrepancy between the daughter nodes.

2.4.3 Bagged Trees and Random Forests

Ensemble methods are techniques that combine many models’ prediction in order to

make predictions more stable. In bagging (Bootstrap aggregating), m trees models are
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grown using bootstrap samples of the original data. Each tree in the ensemble provides a

prediction for a new sample and these m predictions are averaged to obtained the bagged

model’s prediction.

Besides making predictions more stable, bagging has the advantage of providing an

internal measure of prediction error which has been shown to correlate well with the

cross-validation error estimate [33, p. 197]. Indeed, when a bootstrap sample is generated,

certain samples are left out. These samples are called out-of-bag samples and are used

to evaluate the predictive performance of the tree built on the corresponding bootstrap

sample. The performance metric for the entire ensemble is then estimated as the mean

of the m out-of-bag metrics.

In bagging, generation of bootstrap samples induces a distribution of trees and thus

a distribution of predictions for each sample. However, because all predictors are con-

sidered at each split, trees generated by different bootstrap samples tend to have similar

structures. This phenomenon is known as tree correlation and in general weakens the

performance of bagging. Reducing correlation can be done by introducing randomness

in the tree construction process. The random forests algorithm is a generalisation of

bagged tree models, where splits in each trees are done by considering a subset of mtry

randomly selected covariates. Tuning parameters in random forests are the number mtry

of covariates that are used at each split and the number ntree of trees in the forest. Base

learners in random forests can be CART or conditional inference trees.

2.4.4 Evaluating predictive performance of regression models

Once a model has been built, one might be interested at knowing how good it is at pre-

dicting new samples. When predicting continuous outcomes, the root mean squared error

(RMSE) and the coefficient of determination R2, are metrics commonly used to evalu-

ate model performance. The former can be interpreted as the average distance between

observed and predicted data, while the latter quantifies the proportion of information

explained by the model.

Evaluating the model on the calibration set is referred to as apparent performance
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of the model. However, metrics of predictive performance are more useful if computed

on samples that were not used for model building. If the data set at hand is not large

enough for being split into a training and a test set, it is possible to build the model on

all samples and estimate its predictive performance by splitting the data into multiple

training and test sets using resampling techniques such as k-fold cross-validation or the

bootstrap method.

k-Fold Cross-Validation. In k-fold cross-validation, the original data set is randomly

partitioned into k sets, called folds, of approximately equal size. The model is fitted using

all samples except those belonging to the first fold. The held-out samples are predicted

by this model and used to compute the performance metric. This procedure is then

repeated for each of the k folds. At the end, the k estimates of the performance metric are

summarised, usually with mean and standard error. A schematic of the cross-validation

process is shown in Figure 2.10.

1 2 3

2 31

31 2

k…

k…

… k

…

1 2 3 k

Training setTest set

Figure 2.10 – A schematic of k-fold cross-validation. The original data are divided randomly into
k sets. At each iteration, samples of the blue square (test est) are predicted using the model
trained on the samples of the grey squares (training set).
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Bootstrap. A bootstrap sample has the same size of the original data set and is gen-

erated by drawing data with replacement. Therefore, some observations will be included

multiple times in a bootstrap sample, while others will not be selected. The samples that

are left out are called out-of-bag samples. For a given iteration of bootstrap resampling,

the model is fitted using the selected samples and the out-of-bag samples are used to

estimate model performance.

2.5 The population approach

In this section, we assume that the data at hand consists of repeated measurements

collected on several individuals from a population. The aim of the population approach

is to build a model for the population as a whole while quantifying variability between

subjects. As for the case of a single individual, we suppose that the structural model

representing the biological phenomenon can be written as a parametric function of time

f(t;ψ).

Population models were originally developed by fitting the model against the com-

bined data from all individuals, thus ignoring inter-individual variability (the “näive

pooled approach”), or by fitting each individual’s data separately and then combining

the individual parameter estimates to derive population characteristics, estimated as the

sample mean and the variance/covariance of the individual parameter estimates (the

“two-stage approach”) [109].

The mixed-effects approach allows to model explicitly intra- and inter-individual vari-

abilities in a unique statistical model and to estimate the population characteristics from

the whole data set in a one-step procedure. Unlike the two-stage approach, mixed-effects

models can be developed even when relatively few data are available for each individual

[32].



48 Methods

2.5.1 Nonlinear mixed-effects models

Let us consider a sequence of observations collected on a set of N individuals. We

denote with yi = (yij , 1 ≤ j ≤ ni) the observations taken on individual i at times

(tij , 1 ≤ j ≤ ni). The statistical model for the observations is the following:

yij = f(tij ;ψi) + g(ψi, σ, tij)εij , (2.17)

where f and g are parametric functions defining the structural model and residual error

model, respectively, and εij ∼i.i.d. N (0, 1) are the standardised residual errors. In the

population framework, it is further assumed that each individual can be represented by

a vector of individual parameters ψi. This is modelled parametrically as a function of

fixed effects ψpop, and individual random effects ηi:

h(ψi) = h(ψpop) + ηi, where ηi ∼ N (0,Ω), (2.18)

where h is a transformation such that h(ψi) can be assumed normally distributed. Com-

mon choices for h are the identity function (normal distribution for ψ) and the logarithmic

function (log-normal distribution for ψ). Equation (2.17) provides the conditional distri-

bution of the observations given the individual parameters, while equation (2.18) defines

the distribution of the individual parameters. The model can then be represented in

terms of probability distributions as follows:

p(y,ψ; θ) = p(y|ψ;σ)p(ψ;ψpop,Ω),

where y = (y1, . . . , yN ) and ψ = (ψ1, . . . , ψN ) are the observations and the parameter

vector for the set of N individuals. The notation p(y) is used for brevity to indicate the

probability density function of a random variable y; the semicolon is used to separate

random variables from nonrandom ones.
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2.5.2 Maximum likelihood estimation of the population parameters

The population model is completely defined by the vector of population parameter

θ = (ψpop,Ω, σ). This can be estimated by maximising with respect to θ the observed

likelihood function:

Ly(θ) := p(y; θ) =

∫
p(y,ψ; θ)dψ. (2.19)

In general, for nonlinear mixed-effects models the likelihood has no closed-form expres-

sion. To deal with its maximisation different methods have been proposed. These meth-

ods follow mainly three approaches: i) linearisation methods linearise the model or the

likelihood to obtain a more tractable problem; ii) integral approximation methods ap-

proximate numerically the likelihood and then maximise it directly; iii) EM-type methods

are iterative algorithms that maximise at each iteration an approximation of the condi-

tional expectation of the complete log-likelihood function log p(y,ψ; θ). This subsection

provides a brief description of the EM algorithm and of its stochastic approximation

version, namely the SAEM algorithm, which was used for parameter estimation of all

population models considered in this thesis [110, 111].

The EM algorithm

The expectation-maximisation (EM) algorithm is an iterative algorithm to find a value

of θ that maximise (2.19) given observed data y. The explanation of the algorithm is

provided in a classic paper of Dempster et al. [112]. Starting from an initial value θ0,

the kth iteration of the EM algorithm updates the current estimate θEMk−1 of θ with the

following two steps:

• E-step: Compute Qk(θ)EM = E
(
log p(y,ψ; θ)|y; θEMk−1

)
.

• M-step: Compute the value θk that maximises Qk(θ)EM .

The idea is that if we could observe the individual parameters ψ, we would estimate

θ just by maximising log p(y,ψ; θ). However, since we do not know log p(y,ψ; θ), we

maximise instead its current expectation given the data.
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In [112], it is proved that each iteration of the EM algorithm increases the likelihood of

the observations. The convergence properties of the EM algorithm have also been studied

by Wu [113], who showed that the EM sequence of parameter estimates converges to a

stationary point of the observed likelihood under general regularity conditions.

The main difficulty with the EM algorithm is that the E-step cannot be computed

explicitly when the relationship between the observations y and the individual parameters

ψ is nonlinear. To address this issue, other methods that approximate by simulation the

E-step have been proposed. The Stochastic Approximation of EM (SAEM) [110] replaces

the E-step with a stochastic approximation procedure. This algorithm is implemented

in different tools, including MONOLIX, NONMEM, MATLAB (nlmefitsa function) and

R (saemix package).

The SAEM algorithm

Given an initial value θ0, at iteration k the estimate of θ is updated through the following

three steps [32, p. 239]:

• Simulation step: For i = 1, . . . , N draw ψ
(k)
i from the conditional distribution

p(ψi|yi; θk−1).

• Stochastic approximation: Update Qk−1(θ) with

Qk(θ) = Qk−1(θ) + γk(log p(y, ψ(k); θ)−Qk−1(θ)),

where (γk) is a decreasing sequence of positive numbers with γ1 = 1.

• Maximization step: Choose θk that maximises Qk(θ).

Delyon et al. [110] showed that convergence of the SAEM algorithm requires that the

sequence of γk satisfies
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k < ∞. Lavielle [32] recommends

setting γk = 1 for the first K1 iterations in order to converge quickly to a neighbourhood

of a maximum of the likelihood, and γk = 1/(k − K1) for the remaining iterations to

ensure almost sure convergence to the maximum likelihood estimate of θ. Usually for
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nonlinear models, the individual parameters cannot be simulated exactly from the condi-

tional distribution. For these cases, the Metropolis-Hastings algorithm can be used. This

algorithm simulates data from a probability distribution by constructing a Markov chain

having as stationary distribution the probability distribution one wants to simulate [114].

After obtaining an estimate θ̂ of θ, the Metropolis-Hastings algorithm can be used to

obtain an empirical estimate of the conditional distribution p(ψi|yi; θ̂) of each individual.

The individual parameters can then be estimated as the conditional mean E[ψi|yi; θ̂],

or the conditional mode arg maxψi p(ψi|yi; θ̂). The latter estimates of the individual

parameters are also called empirical Bayes estimates (EBEs).

2.5.3 Model evaluation

Standard errors

Standard errors of the population parameters can be obtained from the inverse of the

observed Fisher information matrix:

Iy(θ̂) := − ∂2

∂θ2
log(Ly(θ̂)).

As for the likelihood function, the Fisher information matrix of nonlinear mixed-effects

models has no closed-form expression. One method to estimate it consists in approximat-

ing the log-likelihood by linearisation of the model around the vector of estimated indi-

vidual parameters and computing the partial derivatives numerically by finite difference.

Alternatively, the Fisher information can be estimated using a stochastic approximation

based on the Louis’ formula [32, p. 259]. This formula expresses ∂2

∂θ2
log(Ly(θ̂)) as com-

bination of conditional expectations that can be estimated by Monte Carlo simulations.

Diagnostic plots

Within the nonlinear-mixed effects modelling framework different graphical methods are

used for model evaluation [115].
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Population and individual fits. These are respectively obtained by superimpos-

ing the individual observations to the predicted profile given by the estimated popula-

tion model f(t; ψ̂pop) and the estimated individual model f(t; ψ̂i). They allow to assess

whether the model can describe individual dynamics and how individual profiles differ

from the population profile.

Observations vs. predictions. Population or individual predictions are plotted ver-

sus the observed data. If the model is correct, data points are expected to be scatter

along the identify line. The 90 % prediction interval, which depends on the error model,

can be displayed. An high proportion of data outside the prediction interval suggests

that the model is misspecified.

Individual weighted residuals IWRESij. These are estimates of the standardised

residuals εij obtained from the individual predictions as

IWRESij =
yij − f(tij ; ψ̂i)

g(tij ; ψ̂i, σ̂)
.

IWRES are usually plotted versus time or model prediction to check for heteroscedas-

ticity. If the model is correct, data points should be randomly scattered around the

horizontal zero-line with the majority of them lying within (-1.96, 1.96).

Visual predictive check. A visual predictive check (VPC) compares the percentiles

of the observations – usually the 10th, 50th and 90th percentiles – to the corresponding

theoretical percentiles estimated from multiple Monte Carlo simulations. Predictions in-

tervals are constructed using the theoretical percentiles computed from each simulations.

If the model is correct, the observed percentiles should remain inside the corresponding

prediction intervals.

Distribution of the individual parameters - shrinkage. Once the individual pa-

rameters have been estimated, the resulting histograms can be compared to the corre-
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sponding theoretical distributions defined in the statistical model. Further information

about the reliability of the individual parameter estimates can be obtained by computing

the η-shrinkage which is defined as:

η-shrinkage = 1− Var(η̂i)
ω̂2

,

where Var(η̂i) is the empirical variance of the estimated random effects η̂i’s and ω̂2

denotes the estimated variance. A high shrinkage indicates that the individual data are

not sufficient to correctly estimate the individual parameters. In this case, the individual

parameter estimates, as well as the diagnostic plots base on them, cannot be considered

reliable.

Correlation between random effects. This plot displays each pair of the estimated

random effects against each other. It allows to check the appropriateness of the assumed

covariance structure.

Model selection

A number of statistical tools have been proposed to aid selection among different plausible

models. These include information criteria such as the Akaike information criteria (AIC)

and the Bayesian information criteria (BIC), which are defined as

AIC = −2 logLy(θ̂) + 2P,

BIC = −2 logLy(θ̂) + log(N)P,

where P is the total number of population parameters (i.e. fixed effects, random effects,

and error model parameters) and N is the number of individuals. Both criteria include

a penalty to compensate the improvement in the likelihood due to a larger number of

parameters. According to [116], a drop in AIC or BIC of 2 can be taken as a threshold

for selecting one model over another.

In addition, to compare nested models, the Wald test and the likelihood ratio test
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(LRT) can also be used, in particular when one wants to assess whether a covariate

should be added in the model (see Section 2.5.4).

The LRT evaluates if the difference between the likelihood under the more complex

model and the base model is statistically significant. To compute the p-value, the LRT

statistic is compared against a χ2 distribution with degrees of freedom the difference in

the number of parameters between the two nested models.

The Wald test requires computation of the standard error to test whether a fixed

effect β is zero. In the univariate case, the Wald statistic is β̂/se(β̂) and is compared

against a normal distribution N (0, 1).

2.5.4 Models with covariates

Covariates can be introduced into the model in order to explain part of the variability

in the individual parameters and consequently to obtain more individualised predictions.

Although covariates may be included in the model through complex functions, for the

sake of model identification and parameter estimation, the effect of covariates on the

model parameters is usually modelled by a linear function:

hk(ψi,k) = hk(ψpop,k) + β · ci + ηi,k, ηik ∼ N (0, ω2
k),

where ci is a vector of individual covariates and the subscript k refers to the kth com-

ponent of the vector of individual parameters ψi. In this context, the β’s are additional

population parameters to be estimated.

The plot showing the correlations between covariates and individual parameters may

give a hint of which covariates trying on which parameter. Alternatively, the covariate

model can be built automatically using a stepwise procedure. This method consists in

a set of iteration of forward selection followed by a backward elimination step. During

the forward selection, the relationship of individual parameters and covariates not yet

included are evaluated in a univariate manner, and the model that improve some criteria

(LRT or BIC) is chosen for the next iteration. Covariates are included one at a time in
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this manner until the criteria stops improving. During the backward elimination step,

covariates are removed in a univariate manner.

A faster method for automatic building of the covariate model is the COSSAC (COn-

ditional Sampling use for Stepwise Approach based on Correlation tests) algorithm im-

plemented in the Monolix software. Instead of trying all covariates, this algorithm uses

samples from the a posteriori conditional distribution to calculate correlations between

random effects and covariates and decide which covariates trying first [117].

2.6 Survival analysis

Survival analysis refers to a set of statistical techniques for analysing data in which

the variable of interest is the time elapsed from a given origin to the occurrence of a

particular event. The event can be death, disease occurrence, disease recurrence or any

other experience of interest that might occur to an individual.

A common problem with survival data is that the time to event might not be observed

for all individuals. This situation is called censoring and occurs when a patient has not

experienced the event by the end of the study or is lost to follow-up.

Survival data are commonly modelled by means of probabilities. The survival function

gives the probability that an individual survives beyond a specified time. Depending on

the aim of the study, it can be estimated using different modelling approaches. This

section gives a general overview of the most commonly used. After introducing the basic

terminology and notation (Section 2.6.1), we describe the nonparametric Kaplan-Meier

estimator (Section 2.6.2) and the semi-parametric Cox regression model (Section 2.6.3).

Next, we present the parametric approach and how right-censoring is taken into account

in writing the likelihood (Section 2.6.4). We conclude with the more recent Random

Survival Forests model (Section 2.6.5).
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2.6.1 Definitions and notation

Functions used in survival analysis

Let T ≥ 0 be a random variable representing the time to event of an individual. The

survival function S(t) is the probability that an individual survives longer than time t:

S(t) = P (T > t).

The hazard function h(t) represents the instantaneous event rate conditionally on sur-

viving up to time t:

h(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

.

The cumulative hazard function H(t) is defined as:

H(t) =

∫ t

0
h(u)du.

The survival and hazard functions are related by

h(t) = − d

dt
logS(t), (2.20)

which is also equivalent to S(t) = e−H(t). Thus, the distribution of T is completely

defined by either S(t) or h(t): knowing h(t), one can determine the corresponding S(t),

and vice versa. However, survival models are usually defined by specifying the hazard

function.

Censoring

The most common type of censoring in survival analysis is right-censoring. In this case, it

is only known that the event will occur after a certain time C, called censoring variable.
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In presence of right-censoring, the observations are (T̃ , δ), where

T̃ = min(T,C), (2.21)

and δ is an indicator variable

δ =





0 if T > C,

1 otherwise.
(2.22)

2.6.2 The Kaplan-Meier estimator

The survival function can be estimated nonparametrically using the Kaplan-Meier es-

timator [118]. Let (T̃i, δi), i = 1, . . . , n, be i.i.d. right-censored observations and let

t1 < · · · < tk denote the distinct times of events. The Kaplan-Meier estimator of S(·) is

given by:

Ŝ(t) =
∏

j:tj≤t

(
1− dj

nj

)
,

where dj is the number of events that occurred at time tj , and nj is the number of

individuals known to be “alive” (who have not yet had an event or have been censored)

just before time tj . The Kaplan-Meier estimator is a step function, with a jump at each

time of event. Andersen et al. [119] showed that for large n, the distribution of Ŝ(t) is

approximately N (S(t), σ̂2
t ), where σ̂2

t can be estimated using Greenwood’s formula:

σ̂2
t = Ŝ(t)2

∑

j:tj≤t

dj
nj(nj − dj)

.

This property allows to estimate asymptotic confidence intervals for the survival proba-

bility.

Survival functions of two or more groups can be compared using the nonparamet-

ric log-rank test [120]. The log-rank test compares the number of events observed in

each group to the corresponding expected number of events calculated under the null

hypothesis that the survival functions are equal. The test statistic has approximately a

χ2 distribution with g − 1 degrees of freedom, where g is the number of groups. This



58 Methods

allows to compute a p-value to evaluate the significance of the difference between the

survival curves of the groups.

A stratified log-rank test can be used to take into account the impact of a second

covariate. However, to investigate the effect of several covariates simultaneously multi-

variate approaches are more appropriate.

2.6.3 The Cox proportional hazard model

The Cox proportional hazards (PH) model [121] assumes the following relationship be-

tween the hazard function h(t) and a vector of p explanatory variables Z = (Z1, Z2, . . . Zp)
T :

h(t;Z, β) = h0(t) exp(βTZ),

where β = (β1, . . . , βp) is the vector of regression coefficients and h0(t) is the baseline

survival function, representing the hazard of a subject with all explanatory variables

equal to zero. The name “proportional hazards” comes from the fact that given two

vector of covariates Zi and Zj , the hazard ratio is constant over time:

h(t;Zi, β)

h(t;Zj , β)
=
h0(t) exp(βTZi)

h0(t) exp(βTZj)

=
exp(βTZi)

exp(βTZj)
,

which is an assumption of the model whose validity has to be verified. A simple graph-

ical method to check the proportional hazards assumption when comparing two groups

consists in plotting the log[− log(Ŝ(t))] curves of the groups and checking if they are

approximately parallel.

The Cox model is considered a semi-parametric model since it includes a non-parametric

part h0(t) and a parametric part exp(βTZ). The quantities exp(βi) are called hazard

ratios. A value of exp(βi) greater than 1 indicates that the predictor variable Zi is associ-

ated with higher risk. The vector β can be estimated by maximizing a partial likelihood

which does not depend on h0(t), allowing to estimate the regression coefficients without
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making any assumption on h0(t). Let t1 < t2 < · · · < tk the distinct times of events.

Assuming that times are not tied, the conditional probability that subject i undergoes

the event at time ti, knowing that he is at risk at this time, is:

pi =
h(ti;Zi, β)∑

l:T̃l≥ti h(ti;Zl, β)
=

exp(βTZi)∑
l:T̃l≥ti exp(βTZl)

The partial likelihood as defined by Cox [122] is given by the product of the above

conditional probabilities calculated at each event time:

L(β) =

k∏

i=1

pi =

k∏

i=1

exp(βTZi)∑
l:T̃l≥ti exp(βTZl)

. (2.23)

The maximum partial likelihood estimators of the regression coefficients are the values

that maximise (2.23). They can be obtained using a Newton-like iterative method.

Consistency and asymptotical normality also hold for the estimators based on the partial

likelihood [123, 124], allowing to calculate asymptotic confidence intervals and use Wald

tests for evaluating the significance of the explanatory variables.

2.6.4 Parametric survival models

Parametric survival models assume that the survival times follow a chosen distribution

f(t; θ), whose parameters can be estimated by maximising the likelihood function. In

the presence of right-censored observations, the likelihood for n individuals is given by

L(θ) =

n∏

i=1

f(T̃i)
δiS(T̃i)

(1−δi), (2.24)

where (T̃i, δi), i = 1, . . . , n, are defined by (2.21) and (2.22). We observe that if T̃i is not

censored (i.e. δi = 1), its contribution to the likelihood is the usual f(T̃i; θ), while if it

censored (i.e. δi = 0), the contribution is S(T̃i; θ). Recalling the relationship between
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the hazard and survival functions (2.20), we can also write (2.24) as

L(θ) =
n∏

i=1

h(T̃i)
δiS(T̃i). (2.25)

Examples of classical distributions used in survival analysis are the exponential,

Weibull and log-logistic distributions.

• The exponential model assumes a constant hazard function over time: h(t;λ) = 1/λ,

where λ > 0. Its density and survival functions are:

f(t;λ) =
1

λ
e−

t
λ , S(t;λ) = e−

t
λ .

• The Weibull model is defined by the following hazard function:

h(t;λ, s) =
s

λ

(
t

λ

)s−1

,

where s > 0 is the shape parameter and λ > 0 is the scale parameter. h(t;λ, s) is an

increasing function if s > 1, a constant function (exponential model) if s = 1 and

a decreasing function if 0 < s < 1. The probability density and survival functions

of the Weibull distribution are:

f(t;λ, s) =
s

λ

(
t

λ

)s−1

e−(t/λ)s , S(t;λ, s) = −e−(t/λ)s .

• The log-logistic model is defined by the following hazard function:

h(t;λ, s) =

s

λ

(
t

λ

)s−1

1 +

(
t

λ

)s ,

where s > 0 is the shape parameter and λ > 0 is the scale parameter. If s ≤ 1

the hazard function decreases monotonically, while if β > 1 is a non-monotonic

function which has its maximum value at t = λ(s− 1)1/s. The probability density
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and survival functions of the log-logistic distribution are:

f(t;λ, s) =

s

λ

(
t

λ

)s−1

(
1 +

(
t

λ

)s)2 , S(t;λ, s) =

[
1 +

(
t

λ

)s]−1

.

2.6.5 Random survival forests

Random Survival Forests (RSF) are a relatively recent extension of the random forests

methodology for the analysis of right-censored survival data [125]. An implementation

of the RSF algorithm is provided in the R software package randomForestSRC [40]. As

in RF, trees are grown using ntree bootstrap samples of the data, and at each node

of a tree, mtry covariates are randomly selected as candidate for splitting. A split on

a given covariate Z is of the form Z ≤ c and Z > c. The best split is determined

by finding the candidate covariate and the split value that maximise survival difference

between daughter nodes. Survival splitting criteria available within the randomForestSRC

package are the log-rank splitting rule (the default rule) [126] and the log-rank score rule

[127]. Each tree is grown to full size under the constraint that terminal nodes should

have no less than nodesize unique deaths. The randomForestSRC algorithm generates

an ensemble estimate of the cumulative hazard function. This estimate is constructed by

combining information from the ntree trees grown from the bootstrap samples. More

precisely, cumulative hazard estimates are calculated at each terminal node using the

Nelson-Aalen estimator:

Ĥm(t) =
∑

j:tj,m≤t

dj,m
nj,m

,

where {tj,m} are the distinct times in a specific node m, and dj,m and nj,m denote the

number of deaths and individual at risks at time tj,m. Estimates Ĥb(t|Zi) for individual

i are computed for each tree b = 1, . . . ntree, by simply dropping Zi down the tree.

The ensemble cumulative hazard estimator is then derived by averaging the cumulative
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hazard estimates over all trees:

Ĥe(t|Zi) =
1

ntree

ntree∑

b=1

Ĥb(t|Zi).

One advantage of the RSF algorithm is that it can account for complex nonlinear

effects without making any model assumption. One disadvantage is that the resulting

model is much less interpretable than models constructed with standard survival meth-

ods. However, covariate predictiveness can be evaluated using the minimal depth statistic

proposed by Ishwaran et al. [128], which quantifies the importance of a variable based

on its positioning in a tree. The minimal depth for a given covariate ν is defined as

the distance Dν from the root node to the first node that splits on ν. This quantity

is computed for each tree and then averaged over the forest. The smaller the minimal

depth, the higher the importance of a covariate on survival.

2.6.6 Assessing the predictive ability of survival models

To be of practical utility, a survival model must be able to i) generate predicted proba-

bilities that agree numerically with the actual outcomes and ii) distinguish patients with

different outcomes. To characterise these components of predictive ability, two type of

measures are used: calibration and discrimination.

Calibration

Calibration of probability predictions can be assessed using a calibration plot. For a given

time t, this plot shows an estimate of the observed probability of surviving until time t

versus the corresponding model predicted probability. One way to construct this plot is

to bin the individuals into groups based on their predicted probabilities. Then, for each

bin, the Kaplan-Meier survival estimate is computed at time t, and plotted versus the

mean value of the bin [129].
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Discrimination

Discrimination can be assessed using the concordance index proposed by Harrell [129].

This index does not depend on a chosen time to evaluate the model and takes into

account censored observations [128]. It is computed by considering all possible pairs of

patients in which at least one of them has experienced the event. Pairs are considered

unusable if the shorter event time is censored or if both patients experienced the event at

the same time. A pair of observations is said to be concordant if the predicted survival

time is shorter for the patient who had the event sooner. To define concordant pairs,

instead of the predicted survival times, the predicted survival probabilities at any fixed

time point can be used interchangeably, provided that the two estimates of the survival

curves do not cross. This is true for instance if the proportional hazard assumptions

are satisfied [129]. The C-index is defined as the proportion of all usable pairs in which

the predictions and outcomes are concordant. This quantity gives an estimate of the

probability of concordance between predictions and outcomes. A value of 0.5 means that

model predictions are no better than random guessing, whereas a value of 1 indicates

perfect discrimination.
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Chapter 3

Modelling the differential effects of

Sunitinib on primary tumour and

metastatic growth

3.1 Introduction

Despite proven clinical action of antiangiogenic inhibitors [24], recent experimental stud-

ies have suggested differential effects of these drugs on primary and secondary tumours

[25–27]. A study by Pàez-Ribez et al. [25] reported that VEGF inhibitors suppressed

the growth of the primary tumour in mouse models of pancreatic neuroendocrine carci-

noma and glioblastoma, but concomitantly increased lymphatic and distant metastasis.

Ebos et al. [26] reported that in mouse models of breast cancer and melanoma, suni-

tinib significantly suppressed the growth of orthotopically implanted primary tumours.

However, administration of sunitinib increased tumour burden in various metastasis as-

says, including after intravenous injection of tumour cells and after surgical removal of

primary orthotopically grown tumours (Figure 3.1). Motivated by these alarming find-

ings, Blagoev et al. [130] conducted a retrospective analysis of data from the randomised

phase III trial that led to sunitinib’s approval in the United States and in Europe for the
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Figure 3.1 – Differential efficacies of sunitinib on primary and metastatic disease, taken from [26].
A) Sunitinib treated groups had significantly reduction in primary tumour volume compared to
control animals. B) Quantification by bioluminescence showed increased metastasis in sunitinib
treated animals.

treatment of mRCC [53]. The authors found no evidence of accelerated tumour growth

and shortened survival, concluding that sunitinib is not harmful in humans.

The preclinical results however highlight the need to further investigate tumour re-

sponse to these drugs. In this context, mathematical models may be useful to verify

different theories by assessing the agreement of model predictions with the experimen-

tal observations. Mathematical models may also help establishing predictive biomarkers

that would enable to tailor therapies for individual patients.

This study extends a previous mechanistic model [19] to integrate the effect of neoad-

juvant sunitinib therapy. The model is calibrated using the nonlinear mixed-effects statis-

tical framework on a large dataset of 104 mice treated with multiple scheduling strategies.

The usability of the biomarkers to predict the mathematical model parameters is further

investigated by means of artificial intelligence techniques. Finally, a survival model is

used to investigate the predictive power of the acquired biomarkers and of the mathe-

matical model’s parameters.
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Table 3.1 – Treatment schedules of neoadjuvant sunitinib. Groups written in red were used to
calibrate the K-PD model.

Schedules Surgery (days post-implantation) Number of animals

Vehicle 34 27
60 mg/kg for 3 days 34 15
60 mg/kg for 7 days 34 6
60 mg/kg for 14 days 34 21
120 mg/kg for 3 days 34 20
120 mg/kg for 3 days / 60 mg/kg for 11 days 34 15
Vehicle 38 6
120 mg/kg for 3 days 38 6
120 mg/kg for 3 days / 60 mg/kg for 4 days 38 6
120 mg/kg for 3 days / 60 mg/kg for 8 days 38 6
120 mg/kg for 3 days / 60 mg/kg for 11 days 38 4

3.2 Materials and methods

3.2.1 Animal experiments

Human breast LM2-4 cancer cells (1 × 106 cells) expressing luciferase were implanted

into the right inguinal mammary fat pad of female SCID mice. Primary tumour burden

was monitored with Vernier callipers using the formula width2(length × 0.5). Treat-

ments started 14 days before primary tumours were surgically removed (34 or 38 days

post-implantation). All animals were treated daily with sunitinib followed by vehicle

for a total of 14-day treatment. Animals treated daily with vehicle for 14 days were

used as controls. Treatment schedules utilised in this study are reported in Table 3.1.

Post-surgical metastatic tumour burden was assessed by BLI and overall survival was

monitored based on signs of end stage disease. Circulating tumour cells and myeloid

derived suppressor cells levels were quantified on blood samples collected one day before

surgical resection. CD31+ cells (% area), Ki67+ cells (% cells) and Ki76+/CD31+ cells

(proliferating endothelial cells) were quantified on sections of the resected tumours.
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3.2.2 Mechanistic model of metastatic dissemination and growth

The primary tumour (PT) volume, Vp(t), was modelled as the solution of





dVp
dt

= gp(t, Vp)

Vp(t = 0) = Vi,

where gp(t, v) is the PT growth rate, defined below. The initial condition Vi was the

volume corresponding to the number of cells injected in the animals (= 1 mm3 based

on the conversion rule 1 mm3 ' 106 cells [96]). It was assumed that metastases started

from the volume V0 of a single cell and that all grew at the same rate g(t, v).

Emission of metastases was assumed to occur from the PT at the following volume-

dependent rate [19]:

d(Vp) = µVp,

where parameter µ can be interpreted as the daily probability that a cell from the PT

successfully establishes a metastasis [19].

The state of the metastatic process was described through a function ρ(t, v) repre-

senting the distribution of metastatic tumors with size v at time t. It solves the following

initial boundary value problem [14]:





∂tρ(t, v) + ∂v(g(t, v)ρ(t, v)) = 0, t ∈ (0,+∞), v ∈ (V0,+∞)

g(t, V0)ρ(t, V0) = d(Vp(t)), t ∈ (0,+∞)

ρ(0, v) = 0, v ∈ (V0,+∞).

The first equation derives from a balance equation on the number of metastases; the

second equation is a boundary condition for the rate of newly created metastases; the

third equation is the initial condition (no metastases exists at the initial time).

The total metastatic burden (MB) at time t was then given by

M(t) =

∫ +∞

V0

vρ(t, v)dv.
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In the particular case of an autonomous metastatic growth rate g(v) (i.e. with no effect of

the therapy on the growth of the metastases), the previous quantity satisfies the following

convolution formula [97]

M(t) =

∫ t

0
d(Vp(t− s))V (s)ds,

which can be solved efficiently through the use of a fast Fourier transform algorithm. In

the previous equation, V (s) represents the volume reached by a metastatic tumour after

a period of time s from its emission, when growing with growth rate g.

Untreated animals

As previously shown [19], the metastatic process in vehicle-treated animals from the same

ortho-surgical breast cancer mouse model can be adequately described using a Gomp-Exp

growth model [68] with same parameter values for both primary tumour and metastases:

gp(v) = g(v) = min

(
λv,

(
α− β log

(
v

V0

))
v

)
.

In this modification of the Gompertz model, the tumour growth rate is limited by an

experimentally determined in vitro proliferation rate λ [19]. This is done to avoid bio-

logically unrealistic fast growth rates for small volumes. Parameters α and β define the

Gompertz growth phase: the former is the specific growth rate at the size V0 of one cell,

the latter represents the exponential decay rate of the relative growth rate.

Sunitinib treated animals

The model we developed for the sunitinib treated animals assumed that the drug reduces

the primary tumour growth rate by a term proportional to its concentration, C(t):

gp(t, v) = min

(
λv,

(
α− β log

(
v

V0

))
v

)
(1− k C(t)),
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where k is a parameter of drug efficacy. As no pharmacokinetic data were available, we

used a kinetics-pharmacodynamics (K-PD) approach. Namely, we considered that the

drug concentration decays exponentially after each dose,

C(t) =
1

Vd

n∑

i=1

Die
−ke(t−τi)1t>τi ,

where Di indicates the dose administered at time τi; the volume of distribution Vd and

the elimination rate constant ke were fixed to the values reported in [131]. Inclusion of

treatment effect on metastatic growth was considered in the model development phase;

however, this led to model predictions which could not explain the behaviour of the

experimental data. Therefore, the final model considered that the antiangiogenic agent

did not affect growth of metastases, that is:

g(v) = min

(
λv,

(
α− β log

(
v

V0

))
v

)
.

3.2.3 Calibration and validation of the mathematical metastatic model

The mathematical metastatic model was fitted to the experimental data using a nonlin-

ear mixed-effects modelling approach [32]. Briefly, this consists in modelling inter-animal

variability by assuming a parametric distribution for the model parameters. All individ-

ual primary tumour and metastatic burden longitudinal data can then be pooled together

in a population model, whose parameters are estimated by likelihood maximisation [32].

The observed data were log-transformed and a proportional error model was used. For

the vector of individual parameters, a log-normal distribution with full covariance ma-

trix was assumed. Maximum likelihood estimates of the population parameters were

obtained using the Stochastic Approximation of Expectation-Maximization (SAEM) al-

gorithm implemented in the nlmefitsa Matlab function [132]. PT and MB data were

fitted simultaneously for vehicle and sunitinib-treated animals. Visual predictive checks

(VPC), individual fits and standard diagnostic graphical tools based on individual pa-

rameters were used for evaluating the adequacy of the different model components.
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3.2.4 Machine learning algorithms

Effects of covariates on the model parameters were assessed using linear regression and

a number of machine learning regression techniques (artificial neural networks, support

vector regression, random forest models) using the train function of the R caret package

[90, 133]. Except for the random forest models, data were centred and scaled prior to

modelling. Tuning parameter values of the regression models were selected to minimise

the root mean squared error (RMSE) using five replicates of a 10-fold cross-validation.

Partial least squares

Partial least squares (PLS) uses an iterative procedure to build linear combinations of

the original predictors that have maximum correlation with the response. These new

variables are called components. We evaluated PLS models with 1 through 7 components.

The optimal RMSE was obtained with 1 component, either when the outcome variable

was the metastatic potential parameter µ or its log-transformed.

Neural networks

Neural networks model the outcome variable by means of a set of intermediate variables

called hidden units. The model parameters are estimated by a modified version of the

least squares regression where a weight decay λ is introduced to penalise large regression

coefficients. Using cross-validation, we evaluated models with three different weight

decays (λ = 0, 0.01, 0.1) and a number of hidden units ranging from 1 to 10. For each

instance, five different neural networks were generated using different initial parameters

values, and the resulting predictions were averaged in order to reduce model instability.

The optimal models for predicting logµ and µ used a weight decay value λ = 0.1 and a

number of 1 and 10 hidden units, respectively.
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Support vector regression

Support vector regression uses an objective function that ignores data points with resid-

uals smaller than a certain threshold and simultaneously penalises large residuals by

means of a cost parameter that is set by the user. A support vector regression model

with radial basis function kernel was evaluated over cost parameter values ranging from

to 0.25 to 1.3 · 105. The final value of the cost parameter was C = 0.25 in both models

for predicting logµ and µ .

Random forests

A random forest is trained by drawing ntree bootstrap samples of the original data and by

growing a tree on each bootstrap data set. At each node of the tree, mtry predictors are

randomly selected as candidate variables for splitting. For a given sample, the forest’s

prediction is then obtained by averaging the samples predictions across trees. Based

learner in random forests can be either classification and regression trees (CART) or

conditional inference trees. We evaluated these two models using 1000 trees. In all cases,

the optimal value for mtry was 2.

3.2.5 Survival analysis

Survival times were analysed using the Monolix software [134]. To model these data a

log-logistic distribution was used. Its hazard function is defined by

h(t;Te, s) =

s

Te

(
t

Te

)s−1

1 +

(
t

Te

)s , t ∈ [0,+∞),

where Te > 0 is the scale parameter and s > 0 is the shape parameter. The scale pa-

rameter was assumed to vary from individual to individual and to model this variability

a log-normal distribution was used. We utilized the COSSAC (Conditional Sampling

for Stepwise Approach based on Correlation tests) covariate selection algorithm imple-
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mented in the Rsmlx package [135] for automatic building of the covariate model. This

algorithm uses a stepwise approach, adding first covariates with lowest p-value from the

Pearson’s correlation test (continuous covariate) or ANOVA (categorical covariate), and

confirming each step using a likelihood ratio test. Simulations of the final model were

performed using the simulx function of the mlxR R package [136].

3.3 Results

3.3.1 Simulations of the effect of neoadjuvant sunitinib treatment on

metastases suggested no effect on growth of metastases

We investigated possible mechanistic explanations of the reported differential effects of

neo-adjuvant Sunitinib on primary and secondary disease [26, 27]. The overall effect

of therapy on metastasis is the combined result of two phenomena: 1) reduction of

metastatic spread from the effect on the primary tumour and 2) impact of metastatic

growth itself. To disentangle the two, we generated model predictions under the as-

sumptions of effect (A) or no effect of therapy on metastatic growth (B) (Figure 5.2).

Thus, in scenario (B), only indirect metastatic effect is present, through limitation of

dissemination due to reduced primary tumour size. Of important note, to do so we

used parameter values estimated from a previous study on control groups [19]. In other

words, the model simulations were agnostic to the data and represent pure mechanistic

predictions. Simulations are reported in Figure 5.2. In first approximation, we mod-

elled the inhibitory effect of the anti-angiogenic drug by setting the tumour growth rate

to zero during the phase of treatment, which was able to describe the primary tumour

data reasonably well. Population distributions obtained under the hypothesis A (effect

of therapy on metastatic growth) failed to describe the data (Figures 5.2 and S1). On

the other hand, simulations under hypothesis B reproduced the behaviour of the exper-

imental data notably well. This was observed in all the treated groups (Figure S1) and

suggested rejection of the assumption A, with B being a valid possible alternative.



74 Modelling the effects of sunitinib on primary tumour and metastases

Tumor 
removedImplantation

Tx

Metastases

Primary
Tumor

Scenario A
• Primary tumour growth arrest

• Metastatic growth arrest

Orthotopic
implantation

Surgery

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

102

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

102

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Tx

B

Orthotopic
implantation

Surgery

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

102

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

102

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Tx

Figure 2

Data primary tumor
Data metastatic burden

Median simulation primary tumor
Median simulation metastatic burden scenario A
Median simulation metastatic burden scenario B

10th and 90th percentiles primary tumor

10th and 90th percentiles metastatic burden scenario A

10th and 90th percentiles metastatic burden scenario B

Tumor 
removedImplantation

Tx

Metastases

Primary
Tumor

Scenario B
• Primary tumour growth arrest only

A

Figure 3.2 – Using mechanistic mathematical modelling to test hypotheses of differential effects
of Sunitinib on primary tumour versus metastatic growth and dissemination. A mathematical
model previously developed and calibrated for pre- and post-surgical metastatic growth without
therapeutic intervention [19] was used to simulate the effect of neoadjuvant Sunitinib therapy by
assuming growth arrest on either both the primary and the metastases (A) or only the primary
tumour (B). Tx = treatment.

3.3.2 Calibration and validation of the K-PD mechanistic model

We developed a K-PD model (see methods) in order to account for differences between

treatment schedules and evaluated its descriptive abilities using the data of 104 mice

which received vehicle or neoadjuvant sunitinib treatment according to different schedules

(see Table 3.1). Estimates of the model parameters are reported in Table 3.2. These
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Table 3.2 – Parameter estimates of the K-PD model obtained by likelihood maximisation via
the SAEM algorithm. Abbreviations: CV, coefficient of variation computed as the ratio of
the standard deviation and the median of the estimated parameter distribution; r.s.e., relative
standard error.

Parameter (Unit) Meaning Median CV (%) r.s.e. (%)

µ (cell−1· day−1) dissemination coefficient 2.12 · 10−11 1.48 · 103 17.3
α (day−1) gompertzian growth parameter 1.94 18.1 2
β (day−1) gompertzian growth parameter 0.0911 19.7 2.21
λ (day−1) in vitro proliferation rate 0.837 (fixed) - -
k (L/mg) drug efficacy 0.446 32.1 6.34
ke (day−1) drug elimination rate 3.26 (fixed) - -
Vd (L/kg) volume of distribution 12 (fixed) - -

were identified with good precision (relative standard error ≤ 17%) thanks to the large

number of animals considered in the population fit. Confirming previous results [19],

the metastatic potential parameter µ was found to be the parameter which varies most

among individuals (largest coefficient of variation).

Figure 3.3 A shows the visual predictive checks (VPCs) for the vehicle group and two

representative treated group. Other groups are reported in Figure S2. The calibrated

model was able to describe both the structural dynamics and inter-subject variability of

the experimental data in both vehicle and treated animals. Representative individual

fits are shown in Figures 3.3 B and S3. These were in agreement with the experimental

data, indicating that the model could also describe individual dynamics.

Further model diagnostic plots are shown in Figures 3.4 - 3.6. From these, no clear

misspecification of the structural and residual error model could be detected. Points

in the observations versus individual predictions plots were evenly distributed around

the identity line (Figure 3.4 A) and the individual weighted residuals appeared to be

approximately normal (Figure 3.4 B and 3.4 C).

The distributions of the empirical Bayes estimates were in agreement with the theoret-

ical distributions defined in the statistical model (Figure 3.5). Moreover, the η-shrinkage

was ≤ 20% for each parameter, meaning that the individual parameter estimates and

the diagnostic tools based on them can be considered reliable [137]. Finally, correlations

found between the estimated random effects (Figure 3.6) confirmed the appropriateness
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of a full covariance matrix in the assumed distribution of the individual parameters. The

model could also predict PT and MB dynamics of five independent groups with different

time of surgery and drug schedules that were not used to estimate the model parameters

(Figure 3.7).
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Figure 3.3 – Calibration and validation of a K-PD mathematical model for primary tumour
growth and metastatic development (dissemination and growth) under neoadjuvant Sunitinib
treatment. The mathematical model was fitted to the experimental data using a mixed-effects
population approach. Maximum likelihood estimates of the population parameters were obtained
simultaneously for vehicle and treated groups using the SAEM algorithm (n=104 animals in to-
tal). A) Comparison of the simulated model distribution for vehicle, 7 and 14 days Su (60mg/kg)
treatment to the corresponding datasets. B) Examples of individual dynamics.
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Figure 3.4 – Model diagnostic plots. A) Observation vs. individual prediction. Solid lines are
identity lines. Dashed lines represent 90% prediction intervals. B) Individual weighted residuals
(IWRES) vs time. C) Individual weighted residuals vs log-transformed individual predictions.
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Figure 3.7 – Model predictions in independent datasets (surgery at day 38).

3.3.3 Machine learning for covariate analysis

Pre-surgical immunohistochemical measurements of tumour Ki67 and CD31, as well as

MDSC and CTC levels were available for a number of 66 animals. We investigated

whether these molecular and cellular biomarkers might help to explain part of the vari-

ability in the individual parameters. In particular, we looked for correlations between

biomarkers and parameter µ, whose large variability indicated that there might exist

subpopulations with different metastatic potential values. We first examined correlations

between biomarkers in order to identify potential redundancies in the data (Figure 3.8).

High correlations were found between Ki67 and Ki67+/CD31− (r = 0.979, p < 10−12) and

CTC and gMDSC (r = 0.678, p = 3.95 · 10−10). We next investigated the value of these

measurements as predictive biomarkers of the mechanistic parameters: α and β capture

growth kinetics, k the effect of treatment and µ metastatic dissemination. Figure 3.9 A
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shows the correlation matrix for biomarkers and the individual parameter estimates. As

the individual growth parameters α and β were highly correlated (r = 0.997, p < 10−5),

we used the tumour doubling time at the volume Vi = 1 mm3 to assess the impact of

covariates on the tumour growth parameters. It is defined by

DT = − 1

β
log

(
log 2 +A

A

)
, with A = log

(
Vi
V0

)
− α

β
.

A weak correlation was found between log(DT ) and mMDSC levels (Figure 3.9 A, r =

0.275, p = 0.0257). However, none of the available biomarkers was found to correlate

either with µ or logµ (Figure S4).

Partial least squares and a number of different machine learning regression algorithms

were tested in order to identify possible relationships between covariates and individual

estimates of the metastatic potential parameter. These included neural networks, support

vector regression (SVR) and random forest models [33]. Cross-validation results for the

RMSE of the final regression models were compared against the estimate of this metric for

the intercept-only model, i.e. the model were prediction is the same for all animals and

given by the median value in the population µpop. As shown in Figure 3.9 B, none of the
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Figure 3.9 – Machine learning algorithms for prediction of the dissemination mechanistic param-
eter µ. A) Univariate correlations between the biomarkers and the mathematical parameters. B)
Predictions versus observations for the Support Vector Machines algorithm. C) Cross-validated
RMSE across different regression models utilising the values of the biomarkers for obtaining in-
dividual estimates of the metastatic potential µ. To assess the significance of the covariate in the
models, RMSE were compared against the value of this metric obtained using a only-intercept
model. Bars are 95% confidence intervals. D) Cross-validated R2 with 95% confidence intervals

fitted models had RMSE significantly different from the intercept-only model, suggesting

that the biomarkers might not be important predictors of metastatic potential as defined

by µ. Values of R2 ranged from 0.133 to 0.199 across the models (3.9 C), with the highest

value reached by the conditional random forest model. Lowest RMSE was achieved by

the intercept-only model (1.32). Prediction error on logµ ranged from 9.83% ± 10.7%

for the best model (conditional random forests) to 10.6% ± 11.3% for the worse (random

forests, mean ± std), which was not superior to the predictive power of the intercept-

only model (9.71% ± 10.1%). Plotting the observed versus predicted values (Figure 3.9

D and S5) confirmed that the fitted algorithms were unable to explain the variability of

parameter µ.
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Table 3.3 – Parameter estimates of survival model with logµ included as covariate on the scale
parameter Te: log(Te) = log(Te,pop) + β logµ+ η.
Displayed is the p-value of the Wald test, testing the significance of the covariate in the model.

Parameter (Unit) Meaning Median CV (%) r.s.e. (%) p-value

Te (day) scale parameter 32.3 11.5 11.4
βµ (unitless) covariate coefficient -0.066 - 15.8 2.33 · 10−10

s (unitless) shape parameter 17.9 - 21.6

3.3.4 Survival analysis

We first analysed the survival data of the subgroup of 66 animals for which biomarkers

measurements were available. We fitted the log-logistic model and investigated the sig-

nificance of covariates on survival by automatic covariate selection using the COSSAC

algorithm. Searched covariates were the acquired biomarkers, treatment, and the loga-

rithm of the individual parameters, µ, α, β, estimated from the fit of the mathematical

metastatic model. Only covariate logµ was selected by the COSSAC algorithm, indicat-

ing that biomarkers and treatment differences were insignificant for prediction of survival.

Significance of the metastatic potential on survival was further confirmed on the entire

group of 104 animals by fitting the survival model (p = 2.33 · 10−10, Wald test) and

by direct assessment of the correlation between logµ and the observed survival values

(Figure 3.10 A). The model calibrated on the entire survival data was in agreement with

the empirical Kaplan-Meier estimate (Figure 3.10 B). Parameter estimates obtained from

this fit are reported in Table 3.3. To visualise the impact of the metastatic potential pa-

rameter on survival, we simulated two populations characterised by low and high value

of µ, respectively (10th and 90th percentiles of the estimated distribution). Survival

curves of the simulated populations and individual dynamics for animals with high and

low metastatic potentials are shown in Figure 3.10 C and D, respectively.
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3.4 Discussion

We extended a previously established mathematical model to integrate the effect of

neoadjuvant antiangiogenic treatment on primary and metastatic growth dynamics in

an orthosurgical mouse model of spontaneous metastatic breast cancer. Analysis of a

large data set using a non-linear mixed-effects modelling approach revealed

a highly heterogeneous population in terms of the metastatic potential pa-

rameter µ. Identifying biological predictors of µ able to reduce this variability would

be of critical clinical interest by providing more individualised predictions of metastatic

dynamics and survival. According to our analysis of the biomarkers as covariates

in the model, expression of Ki67 and CD31 in the primary tumour, and pre-

surgical CTC and MDSC levels are not significant predictors of metastatic

potential and survival in the breast model. Although likely to depend on the

animal model of cancer, these results highlight the need to investigate other molecular

and cellular markers. In this regard, a recent clinical study comparing tumour gene

expression profiling data in breast cancer patients at diagnosis and after 14 days of suni-

tinib neoadjuvant treatment, revealed a set of significantly differentially expressed genes

between the two times, among which TIMP3 (tissue inhibitor of metalloproteinase 3),

the metalloproteinase AD-AMSTS12, DLL4 (delta-like 4), FLT1 (vascular endothelial

growth factor receptor 1), immunoglobulins and inflammatory mediators [138]. Ideally,

longitudinal measurement of biomarkers could be included as time-varying covariates

in the mathematical model, allowing to explain variations in the metastatic potential

associated to therapy.

The mathematical models integrate the effect of treatment only on PT

growth since preliminary model simulations including treatment effects also

on metastases generated model predictions that were in contradiction with

the experimental data from the breast model. This made it possible to use the

convolution formula for the computation of the metastatic burden. However, if treatment

effects are also modelled on metastases, the metastatic burden solves a Volterra equation
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which is no more of convolution type and efficient quadrature techniques other than fast

Fourier transform algorithms have to be applied (see [97] and the references therein).

Our results confirm a number of preclinical studies showing differential

effect of antiangiogenic drugs on localised tumours compared to secondary

disease [25–27]. These could be explained by the fact that micrometastatic tumours

would rely on different mechanisms of vascularisation. Supporting this explanation, a

recent study showed that lung metastasis from breast, colorectal and renal cancers, tend

to co-opt the preexisting vasculature rather than inducing angiogenesis [65].

Given the increasingly diverse arsenal of systemic anticancer therapies available with

the approval of immune-checkpoint inhibitors, the questions of treatment sequence [82,

139] and dosing regimen [140, 141] are becoming crucial. The proposed model could

be used and extended to guide the rational design of treatment schedules and modes of

combination before preclinical or clinical testing.
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Chapter 4

Modelling the effect of sunitinib

treatment breaks in the neoadjuvant

setting

4.1 Introduction

Preclinical and clinical studies have suggested that discontinuous administration of VEGF-

inhibitors may lead to rapid revascularization and tumour re-growth [28]. Such rebounds

have been observed during treatment breaks with sunitinib in patients with metastatic

renal cell carcinoma [29, 30], and with bevacizumab in patients with colorectal cancer

[31], suggesting that prolonged administration of anti-VEGF therapy might be required

to achieve therapeutic benefit. Although tumour rebounds have not been reported in

all studies [142], further investigation of the effect of treatment breaks is critical, since

treatment is frequently discontinued in practice because of drug toxicities.

Here we adapt the analysis of the previous chapter to investigate the effects of treat-

ment discontinuation in the neoadjuvant setting. The mathematical metastatic model is

developed using data from an orthosurgical mouse model of metastatic kidney cancer.

Simulations of the calibrated model are then used to investigate the impact of treatment
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Table 4.1 – Treatment schedules of neoadjuvant sunitinib.

Schedules Surgery (days post-implantation) Number of animals

Vehicle 30 16
Vehicle 26 6
Vehicle 23 6
60 mg/kg for 3 days 30 14
60 mg/kg for 7 days 30 6
60 mg/kg for 14 days 30 17
60 mg/kg for 14 days 26 6
120 mg/kg for 3 days 30 13
120 mg/kg for 3 days / 60 mg/kg for 11 days 30 14

breaks on primary tumour and metastatic dynamics. The predictive power of biomarkers

and numerical parameters is also investigated through survival analysis.

4.2 Materials and methods

4.2.1 Animal experiments

RENCALUC+ cells (4×104 cells) were implanted into left kidney of Balb/c mice. Primary

tumour burden was monitored with Vernier callipers using the formula width2(length×

0.5). Treatments started 14 days before primary tumours were surgically removed (23,

26 or 30 days post-implantation for the kidney model). All animals were treated daily

with sunitinib followed by vehicle for a total of 14-day treatment. Animals treated daily

with vehicle for 14 days were used as controls. Treatment schedules utilised in this study

are summarised in Table 4.1. Post-surgical metastatic tumour burden was assessed by

BLI and overall survival was monitored based on signs of end stage disease.

Myeloid derived suppressor cells levels were quantified on blood samples collected one

day before surgical resection.

4.2.2 Mechanistic model of metastatic dissemination and growth

As previously shown [19], the metastatic process in vehicle-treated animals from the same

ortho-surgical mouse kidney model can be adequately described assuming an exponential
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growth law with different parameter values for primary tumour and metastastases:

gp(v) = αpv, g(v) = αv.

This model was adapted to include the effect of neoadjuvant sunitinib therapy as follows.

The primary tumour volume, Vp(t), was modelled as the solution of

dVp
dt

=





αpVp t ≤ τstart

αp(1− k C(t))Vp τstart < t ≤ τend

αrebVp t ≥ τend

Vp(t = 0) = Vi,

where Vi is the tumour volume at the time of injection, [τstart, τend] is the time interval

in which treatment was administered, and αp, αreb denote the pre-treatment and post-

treatment growth rates, respectively (this model, therefore, includes the possibility of

post-treatment growth rebound). We assumed that the drug reduces the primary tumour

growth rate by a term proportional to its concentration C(t), where k is a parameter

of drug efficacy. Concerning metastatic growth, it was supposed that the antiangiogenic

drug does not affect the growth of metastases on the basis of simulations of the breast

model, where inclusion of treatment on metastatic growth yielded model predictions in

contradiction with the experimental data (Section 3.3.1).

The structural mathematical model contains six parameters – Vi, αp, k, αreb, µ and α.

A log-normal distribution was used for αp, k, αreb, µ, α, while parameter Vi was considered

without random effect. As done in the analysis of the breast data set, the observations

were log-transformed and a proportional error model was used.

A number of model structures have been considered during the model development

phase, including a model with same pre- and post-treatment growth parameters for the

primary tumour. The latter assumption, however, resulted in larger uncertainty on the
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Table 4.2 – Estimated population parameters for the kidney isograft data under different models.

Model Parameter (Unit) Meaning Median CV (%) r.s.e. (%)

Same pre- and
post-treatment
PT growth

Vi (cell) initial “take” 1.44 · 106 - 8.73
αp (day−1) PT growth rate 0.149 62.4 6.58
k (L/mg) drug efficacy 0.036 3.49 · 103 114
ke (day−1) drug elimination rate 3.26 (fixed) - -
Vd (L/kg) volume of distribution 12 (fixed) - -
µ (cell−1· day−1) dissemination coefficient 0.02 130 19.3
α (day−1) metastatic growth rate 0.077 60.4 10.4

Different pre-
and
post-treatment
PT growth

Vi (cell) initial “take” 1.58 · 106 - 9.3
αp (day−1) pre-treatment PT growth rate 0.142 66.6 7.58
k (L/mg) drug efficacy 0.168 458 42.6
ke (day−1) drug elimination rate 3.26 (fixed) - -
Vd (L/kg) volume of distribution 12 (fixed) - -
αreb (day−1) post-treatment PT growth rate 0.214 48.3 11.8
µ (cell−1· day−1) dissemination coefficient 0.02 166 19.9
α (day−1) metastatic growth rate 0.074 68.3 10.8

estimated parameters. Therefore, the model with different pre- and post-treatment pri-

mary tumour growth rates was considered more appropriate for describing the observed

data.

4.3 Results

4.3.1 Calibration and validation of the K-PD model

We developed the K-PD model described above using a dataset containing 98 mice which

received vehicle or neoadjuvant sunitinib treatment according to different schedules (Ta-

ble 4.1). Parameters were estimated under two models: a first model, assuming that

growth of the primary tumour reverts to the pre-treatment phase when the drug con-

centration becomes negligible, and a second model allowing for different pre- and post-

treatment growth rates of the primary tumour. Values of the estimated parameters under

these two models are given in Table 4.2. While Vi, αp, µ and α were estimated with good

precision in both cases, the uncertainty in parameter k was much higher in the model

with same pre- and post-treatment growth rates, which was also rejected according to

the Akaike and Bayesian information criteria (∆AIC = -23.8, ∆BIC = -18.6). The model

with different pre- and post-treatment growth rates was then selected. It was able to
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describe the entire dataset both at the population and individual levels. VPCs of vehicle

and two treated groups with representative individual fits are shown in Figure 4.1. Other

groups and individual fits are reported in Figure S1 and Figure S2. Inter-animal vari-

ability was mainly explained by the variability in metastatic potential and the variability

of response to therapy, as quantified by the coefficient of variation of parameters µ and

k. Observations vs model predictions and weighted residuals are shown in Figure 4.2.

From these, no clear misspecification of the structural and residual error model could be

detected. Substantial η-shrinkage was present for parameter αreb (91.9%), k (70.7%) and

µ (62.8%), indicating that the data do not contain enough information to recover the

individual estimates of these parameters, which therefore should not be used for covariate

screening.
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Figure 4.1 – Calibration and validation of a K-PD mathematical model for primary tumour
growth and metastatic development (dissemination and growth) under neoadjuvant Sunitinib
treatment. The mathematical model was fitted simultaneously to the data of vehicle and treated
groups (n=98 animals in total). A) Comparison of the simulated model distribution for vehicle,
3 and 14 days Su (60mg/kg) treatment to the corresponding datasets. B) Examples of individual
dynamics.
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Figure 4.2 – Model diagnostic plots. A) Observation vs individual prediction. Solid lines are
identity lines. Dashed lines represent 90% prediction intervals. B) Individual weighted residuals
(IWRES) vs time. C) Individual weighted residuals vs log-transformed individual predictions.
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Table 4.3 – Effect of the length of break on primary tumour and metastatic burden. Reported
are the median change in volume compared to control.

Schedules PT volume (% vehicle) Metastatic burden (% vehicle)

13 days break 214 69
12 days break 163 47
11 days break 125 22
10 days break 101 11
9 days break 62 -1
8 days break 44 -10
7 days break 28 -6
6 days break 5 -11
5 days break -10 -17
4 days break -26 -18
3 days break -36 -24
2 days break -47 -29
1 days break -54 -22
0 days break -62 -28

4.3.2 Simulation of the impact of breaks

Simulations of the calibrated K-PD model were then used to compare treatment strate-

gies with breaks of different length. Treatment was assumed to start 14 days before

surgery, as in the preclinical experiments. Breaks of length from 0 to 13 days were con-

sidered, assuming a daily dose of 60 mg/kg. The effect of treatment on PT and metastatic

burden was quantified by the percent change of tumour volume compared to vehicle at

surgery and the final simulation time, respectively. Results from these simulations are

summarised in Table 4.3 and Figure 4.3. These show that rebound in primary tumour

growth caused by treatment cessation may result in increased metastatic burden com-

pared to vehicle, and suggest that break should not be longer than 9 days in order to

have a reduction of the metastatic burden.

4.3.3 Survival analysis

We analysed the survival data of 76 animals for which MDSC levels were available. A

Gompertz survival model with delay was found to appropriately describe these data. Its
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Figure 4.3 – Simulations of the calibrated model comparing vehicle (black line) versus treatments
of increasing duration given at dose 60 mg/kg/day (grey lines).

hazard function is defined by

h(t;Te, s) =





0 if t < tdel

s

T ′e
exp

(
t− tdel
T ′e

)
otherwise,

where tdel is the delay after which the survival function starts to decrease; Te and s are

the scale and shape parameter, respectively, and the following re-parametrisation is used:

T ′e =
Te

log(1 + log 2
s )

.

Only parameter Te was assumed to vary between individuals and for this a log-normal

distribution was assumed. The VPC of the fitted model is shown is Figure 4.4 A. Impact

of covariates on survival was assessed by automatic building of the covariate model using

the COSSAC algorithm of Monolix [117]. Besides MDSC levels, searched covariates were

also the logarithm of the individual parameters αp and α estimated from the fit of the

mathematical metastatic model. The final survival model included granulocytic MDSC

and logαp as covariates on parameter Te (Table 4.4). Predictions of the developed model

for simulated populations with high or low values (around the 10th and 90th percentile)
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Table 4.4 – Parameter estimates of the survival model for the kidney data set.

Parameter (Unit) Meaning Median CV (%) r.s.e. (%) p-value

Te (day) scale parameter 11.3 56.2 42.3
βgMDSC (unitless) covariate coefficient -0.173 - 25.4 8.44·10−5

βαp (unitless) covariate coefficient -0.683 - 25.2 7.29·10−5

s (unitless) shape parameter 0.0334 - 20.7
tdel (day) delay 42.3 - 2.16

of one of the two covariates are shown in Figure 4.4.
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Figure 4.4 – Survival analysis for the kidney data set. A) Visual predictive check for the survival
model. Displayed are the empirical Kaplan-Meier curve with the 90% prediction interval calcu-
lated by model simulations. B) Survival curves with events simulated for two groups with high
(8.08±2.1) and low (2.39±0.88) gMDSC levels and median value of the estimated distribution of
logαp (−1.89). C) Survival curves with events simulated for two groups with high (−1.34±0.32)
and low (0.07± 0.12) values of logαp and median value of gMDSC (4.13).
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4.4 Concluding remarks

Antiangiogenic drugs, such as sunitinib and axitinib, are used for the treatment of pa-

tients with metastatic renal cell carcinoma [24]. However, duration and scheduling of

therapy with these drugs remain controversial, as rapid revascularization during treat-

ment break has been reported in a number of preclinical studies, and rebound tumour

growth has been observed in patients after treatment withdrawal.

In this study, we developed a mathematical model to investigate the effect of dis-

continuous administration of neoadjuvant sunitinib in a clinically relevant orthosurgical

mouse model of spontaneous metastatic kidney cancer. Our model-based analysis of

the data indicated a more rapid growth of the primary tumour after treatment

cessation and data-calibrated simulations suggested that prolonged therapy

may be needed to achieve therapeutic benefit on metastasis.

The survival analysis performed here identified the primary tumour growth rate before

treatment and granulocytic MDSC levels as predictive marker of survival for kidney

cancer. The growth rate constant after treatment cessation might also correlate with

survival. However, its predictive value could not be assessed due to the uncertainty in

the individual estimates of this parameter as indicated by the large η-shrinkage.

The proposed model could be improved with the integration of pharmacokinetic data.

It could also be scaled to human pharmacodynamics and used as a simulation tool to

identify schedules that may improve post-surgical outcome.



Chapter 5

Prediction of metastatic relapse in

clinical breast cancer

5.1 Introduction

Breast cancer is the most frequent cancer and the second leading cause of cancer death

in women [34]. In the majority of cases, the disease is diagnosed in the early stages,

when all detectable lesions confined to the breast or nearby lymph nodes can be removed

by surgical intervention [35]. However, approximately 20-30% of patients are reported

to relapse with distant metastases after surgery [36], suggesting that clinically occult

micrometastases might already be present at the time of surgery. Because at present no

treatments are effective against metastatic breast cancer, to lower the risk of relapse, ad-

juvant therapy, such as chemotherapy, hormone therapy and/or target therapy, is usually

administered in addition to surgery [143]. Accurate prediction of the risk of metastatic

relapse is therefore of critical clinical importance in order to personalise adjuvant treat-

ment and avoid use of toxic and costly therapies when not needed.

Several prognostic tools have been developed to quantitatively evaluate the risk of

recurrence in early-stage breast cancer patients. Online tools that calculate individual-

ized survival probabilities and risk of recurrence are based on multivariate analysis and
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integrate clinical variables such as age, tumour size, histological grade, hormone receptor

and nodal status. Examples of these tools include the online Adjuvant! program [20, 144]

and the PREDICT model [22]. Genomic test, such as MammaPrint and Oncotype DX

utilise gene expression signatures determined on tumour samples to classify patients as

being either at low or high risk of breast cancer recurrence [145]. All these tools, however,

are based on purely statistical models, such as Cox proportional hazards models [21, 22]

and machine learning algorithms [37, 38], relating predictor variables to the outcome,

without integrating any available knowledge of the underlying biological processes.

Mechanistic modeling approaches are playing an increasingly significant role in cancer

research and have been used to investigate many aspects of tumor development and

metastasis, as well as treatment responses and resistance [4]. However, despite a number

of mathematical models have been developed to describe metastatic dynamics [14–17],

none of them have been validated as predictive tools to assess the extent of invisible

metastases and predicting metastatic recurrence in individual patients. This might be

due to the scarcity of data collected in clinical studies, which are often limited to time-

to-event data and do not include longitudinal measurements of tumour size.

In [19], the authors extended the mathematical formalism first introduced by Iwata

et al. [14] for describing metastatic dissemination and growth to account for surgery

and validated the model using experimental data from clinically relevant orthosurgical

mouse models of breast and kidney cancers. They demonstrated that a model with same

growth kinetics for both primary and secondary tumours was able to accurately describe

the data of post-surgical metastatic burden in the breast model. Furthermore, the model

could also describe the size-dependent probability of 20-years metastatic recurrence in a

historical dataset of 2,648 breast cancer patients [146].

In the current work, we developed and validated our mechanistic model for individ-

ualized prediction of distant metastasis free survival (DMFS) using a dataset containing

DMFS and clinical/pathological characteristics of women that were diagnosed with early

operable breast cancer at the Bordeaux Bergonié institute between 1989 and 1993. Pa-

tients included in this dataset did not receive any kind of therapy in addition to surgery
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and localised radiation of the primary tumour, thus allowing to assess the natural his-

tory of the course of metastasis. Model parameters were estimated using a mixed-effects

approach, using the stochastic approximation of the expectation-maximization (SAEM)

algorithm [32] to maximise the resulting likelihood function. We used the random sur-

vival forest algorithm [147] to build a first predictive model and preselect the most pre-

dictive covariates to test in the mechanistic model. For comparison, we also applied

more traditional approaches, such as Cox regression, and machine learning classification

algorithms for predicting 5-year outcome. Predictive performance of all different models

was internally evaluated by cross-validation using the concordance index and calibration

plots.

We finally illustrate the possible value of the mechanistic approach by performing

data-calibrated simulations of the entire cancer history of real patients. Our aim was

to derive a model that not only estimates the likelihood of relapse, but also provides

personalised predictions of the state of metastasis at the time of diagnosis and of future

growth of metastases.

5.2 Methods

5.2.1 Description of the data

We used the data of 642 women diagnosed with primary operable invasive breast carci-

noma and operated at the Bordeaux Bergonié institute between 1989 and 1993, which

has previously been comprehensively analysed using standard statistical tools (Cox re-

gression) [148]. The patients considered did not received any adjuvant treatment. The

time to relapse variable was defined as the time from the date of diagnosis to the date

of distant recurrence and patients with no metastasis were censored at the date of last

news or death. Clinical/pathological variables available in the dataset included age and

tumour size at diagnosis, menopausal status, grade, T and N stages, histological type

and number of invaded ganglions. In addition, ER and PR receptor, HER2, Ki67, basal

markers, CD24, CD44, ALDH1, BCL2, E-Cadherin and Trio were recorded.
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Missing covariate (Figure S1) values were imputed before model building using the

missForest imputation algorithm implemented in the missForest R package [149]. Us-

ing the default value of 100 trees per forest, continuous and categorical covariates were

imputed with a 4.4% and 7.1% error, respectively, according to the out-of-bag (OOB)

estimate of the imputation error returned by the missForest function.

5.2.2 Random survival forests analysis

The random survival forest (RSF) algorithm is an extension of Breiman’s random forest

for the analysis of right-censored time-to-event data [125]. The algorithm consists in

drawing ntree bootstrap samples from the original data and growing a survival tree on

each bootstrapped data set by using a survival splitting criterion. An ensemble estimate

of the cumulative hazard function is then obtained for each individual by averaging the

cumulative hazard estimates from all trees [125].

We utilised the RSF implementation of the randomForestSRC R package [40]. All

RSF models were fitted using 1000 trees, with the log-rank splitting rule [125]. The

optimal values of the tuning parameters, namely the mtry number of variables to be

sampled at each split and the minimum number of data points in a terminal node, were

selected to maximise the concordance index calculated on the OOB data, using the tune

function provided within the randomForestSRC package.

Impact of covariates on DMFS was assessed using the forest-averaged minimal depth

[128], which quantifies the predictiveness of a covariate in a tree by its distance from

the root node to the first node where it is used to split (smaller minimal depth values

correspond to more predictive covariates). Covariates were then ordered on the basis of

minimal depth and selected by running a nested analysis.

Partial dependence plots were used to further examine the effect of each covariate on

the predicted DMFS, after averaging the effects of all other variables in the model.
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5.2.3 Mechanistic model of metastatic dissemination and growth

The individual primary tumour (PT) kinetics in individual i were described by the Gom-

pertz model

V i
p (t) = e

αi

βi
(1−e−βit)

, (5.1)

where V i
p (t) is the number of cells within the PT at time t, and αi and βi are the

Gompertzian growth parameters. Under this model, the tumour volume converges to a

theoretical upper limit K = eα
i/βi . This was fixed to 1012 cells according to the value

reported in [150], leaving αi as the only free parameter driving growth. PT size reported

as a diameter in the data was converted in number of cells assuming spherical shape and

the classical assumption 1 mm3 = 106 cells [96].

Considering a dissemination rate from the primary tumour given by [19]

di(V i
p ) = µiV i

p ,

the total number of metastases at a given time t is

N i(t) =

∫ t

0
di(V i

p (s))ds =

∫ t

0
µiV i

p (s)ds.

Each metastasis was assumed to start from a single cell and to grow at the same rate of

the primary tumour,

gi(v) =
(
αi − βi log v

)
v.

The state of the metastatic process was then described by a function ρi(t, v), representing

the distribution of metastatic tumour with size v at time t. Its evolution in time is

described by the following transport equation [14]

∂tρ
i(t, v) + ∂v(g

i(v)ρi(t, v)) = 0, t ∈ (0,+∞), v ∈ (1,+∞), (5.2)
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with boundary and initial condition

gi(1)ρi(t, 1) = di(Vp(t)), t ∈ (0,+∞),

ρi(0, v) = 0, v ∈ (1,+∞).

(5.3)

5.2.4 Mechanistic modelling of time-to-relapse

To calibrate the metastatic model on time-to-relapse data, we defined the theoretical

time to relapse as illustrated in Figure 5.1. More precisely, assuming a value Vvis as

detection threshold, the time τvis for a tumour to reach this size was given from the

assumption of Gompertzian growth, i.e.

τvis = − 1

βi
log

(
1− βi

αi
log (Vvis)

)
.

In an analogous way, the time from the first cancer cell to the detection of the primary

tumour, tidiag, was determined from the known size of the primary tumour at diagnosis,

V i
diag:

tidiag = − 1

βi
log

(
1− βi

αi
log
(
V i
diag

))
.

A visibility threshold Vvis corresponding to 5 mm in diameter was assumed.

Since metastases of size larger than Vvis at time t, must have been emitted in the time

interval (0, t− τ ivis), the number of visible metastases at time t can be obtained as

N i
vis(t) = N(t− τ ivis).

The theoretical time-to-relapse was then defined as

TTR(V i
diag;α

i, µi) =





inf
{
t > 0 : N i

vis(t
i
diag + t) ≥ 1

}
if N i(tidiag) ≥ 1,

+∞ otherwise.
(5.4)
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That is, the time elapsed from diagnosis to the appearance of the first visible metastasis,

if, according to the model, at least a metastasis was present before diagnosis; otherwise

it was considered as infinitive.

Lapse time 
from 
diagnosis

0- tdiag

Visibility threshold

Dissemination: 
μ

Primary tumor 
growth 

! !

TTR

lo
g(

Tu
m

or
 s

iz
e)

Metastatic 
growth  

pre-surgical history TTR

Figure 5.1 – Scheme of the mechanistic model for the time-to-relapse. Growth of primary and
metastatic tumours are characterised by a common growth parameter α. Emission of metastases
from the primary tumour occurs at a rate that depends on the primary tumour volume and on
a parameter of metastatic potential µ. The time-to-relapse is defined as the lapse time from
diagnosis at which the first emitted metastasis reaches the visible size.

5.2.5 Calibration of the mechanistic model using mixed-effects learn-

ing

The mathematical model for the individual time-to-relapse was thus defined as a func-

tion of V i
diag and a vector of structural parameters ψi = (αi, µi). It was fitted to the

time-to-relapse data using a mixed-effects modelling approach, as described below.

Let T i denote the time-to-relapse variable for patient i. A constant error model was
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assumed on the log-transformed data:

log(T i) = log
(
TTR(V i

diag;ψ
i)
)

+ ei, (5.5)

where ei is the residual error following a normal distribution with mean 0 and variance

σ2. The individual parameters were assumed to be log-normally distributed and a linear

covariate model was used:

logαi = log(αpop) + βα · xiα + ηiα, ηiα ∼ N (0, ω2
α)

logµi = log(µpop) + βµ · xiµ + ηiµ, ηiµ ∼ N (0, ω2
µ)

(5.6)

where xiα and xiµ are vectors of subject-specific covariates, which might be identical, or

partially or completely different.

The statistical model for the observations (5.5), implicitly defines for each individual

i the probability density function of T i conditionally on the individual parameters ψi.

The corresponding survival and hazard functions can then be obtained as follows:

S(t | ψi;V i
diag) = P(T i > t | ψi) = P(log T i > log t | ψi)

= P




log T i − log
(
TTR(V i

diag;ψ
i)
)

σ
>

log t− log
(
TTR(V i

diag;ψ
i)
)

σ
| ψi



= 1− Φ




log t− log
(
TTR(V i

diag;ψ
i)
)

σ
| ψi

 ,

h(t | ψi;V i
diag) = − d

dt
logS(t | ψi) =

1

σtS(t | ψi)
φ




log t− log
(
TTR(V i

diag;ψ
i)
)

σ
| ψi

 ,

where Φ and φ are the cumulative distribution and probability density functions of the

standard normal distribution, respectively.

Let Ci denote the censoring variable for individual i. With right-censoring, the ob-

servations are (T̃i, δi), where T̃i = min(Ti, Ci) and δi = 1Ti≤Ci is the indicator variable.
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The contribution of individual i to the likelihood is then given by [151]

Li(θ) =

∫
h(T̃ i | ψi; θ)δiS(T̃ i | ψi; θ)p(ψi; θ)dψi,

where θ = (αpop, µpop, βα, βµ, ωα, ωµ, σ) are the parameters to be estimated and p(ψi; θ)

is the probability density function of the individual parameters, defined by (5.6).

The likelihood function was maximised using the Stochastic Approximation of the EM

(SAEM) algorithm [32] implemented in the R saemix package [39]. Standard errors of

the estimated parameters were obtained with the bootstrap method using 100 bootstrap

sample, and significance of covariates was assessed using the Wald test.

Only covariates selected through the RSF analysis were tested in the mechanistic

model. A backward elimination procedure was used to build the covariate model, by

removing covariates with the highest p-value and refitting until all remaining covariates

had p-value lower than 0.2.

To assess the overall fit of the base model, the mean of the conditional survival

functions was compared to the Kaplan-Meier estimate of the survival curve. The former

was estimated as
1

N

N∑

i=1

S(t | ψi;V i
diag),

with (ψ1, . . . , ψN ) and (V 1
diag, . . . , V

N
diag) drawn respectively from the estimated distribu-

tion of the individual parameters and the values of Vdiag in the data.

5.2.6 Evaluation of the model predictive performance

Discrimination and calibration of all models were internally validated using 10-folds

cross-validation. Discrimination was quantified by the Harrell’s concordance index [129].

Calibration of the models was examined graphically by comparing the model predicted

probabilities against the Kaplan-Meier estimates of the DMFS, after binning individuals

into quantiles groups according to their predicted probabilities [129].
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5.3 Results

5.3.1 Random survival forests (RSF) multivariate analysis

We performed a RSF analysis [147] to identify covariates most predictive of DMFS.

Cross-validated C-index for the nested RSF models with variables ordered on the basis of

minimal depth (Figure 5.2 A) are shown in Figure 5.2 B. This metric improved as the size

of the model increased, reaching a maximum with a number of variables between 5 and

8. Beyond the size, adding more variables did not improve discrimination. Therefore, we

chose the RSF model with the 8 top covariates. In order of importance, these were Ki67,

tumour size, age, HER2, CD44, EGFR, TRIO and PR. The cross-validation estimate of

the C-index for this model was 0.69 (95% CI, 0.67-0.71). Calibration plots for 2-, 5- and

10-year outcome are shown in Figure 5.2 C. Overall there was a good agreement between

the observed and model predicted probabilities of DMFS, but with underprediction of

DMFS in higher risk groups.

Partial dependence plots for the selected covariates are displayed in Figure 5.3. These

plots indicated strong nonlinear relationships between covariates and DMFS, with a

non-monotonic behaviour for age and tumour size. Moreover, response/covariates rela-

tionships looked flatter at 2 years, suggesting that the examined covariates were more

predictive of late than early relapse.
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Figure 5.2 – Survival random forest and covariate selection. A) Minimal depth ranking of co-
variates. B) Apparent and cross-validated Harrell’s C-index under sequentially fit RSF models
with variables ordered by importance using minimal depth. Bars are 95% confidence intervals.
C) Calibration plots for the RSF model with the 8 top variables (red box in figure A). Bars are
95% confidence intervals.
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Figure 5.3 – Partial dependence plots of the random forest predicted DMFS as a function of the
top eight predictors according to the minimal depth ranking. Symbols are partial dependence
points estimates. Loess smooth line are added to indicate trends.
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Table 5.1 – Parameter estimates of the mechanistic model for the time-to-relapse.
Abbreviation: r.s.e., relative standard error.

Parameter Estimate r.s.e. (%)
logαpop -6.337 12.635
logµpop -26.814 3.683
σ 0.542 28.409
ωα 3.373 36.435
ωµ 3.780 15.876

5.3.2 Calibration and validation of the mechanistic model

We first evaluated the ability of the mechanistic model to describe the time-to-relapse

data without using any covariates, except for tumour size, which is a variable deeply

encoded in the structural model. Estimates of the population parameters obtained with

the SAEM algorithm are reported in Table 5.1. Both fixed and random effects were

identified with satisfactory precision (relative standard error < 36.4%). Moreover, the

median value of µ was consistent with the value estimated in a previous work using

data of metastatic relapse probabilities from a cohort of breast cancer patients [19].

Figure 5.4 compares the model estimation of the DMFS function to the empirical Kaplan-

Meier estimate of the DMFS function with its 95% confidence interval. Despite a slight

underestimation for smaller times, the model well captured the shape of the Kaplan-Meier

estimate. To further verify the agreement between model and data, we also compared

model curves and the Kaplan-Meier curves for different values of the tumour size at

diagnosis. Although the model curves remained within the Kaplan-Meier confidence

interval in all cases, we observed that model predictions tended to be less accurate as the

tumour size increased, with overestimation of the risk of relapse for large PT sizes.

5.3.3 Mechanistic covariate analysis and predictive power of the math-

ematical model

We next tested the covariates selected by the RSF analysis in the mechanistic model.

We built the covariate model using a backward elimination procedure, starting with the

full model containing all covariates on both parameters α and µ. Notably, the analysis
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Table 5.2 – Parameter estimates of the final model for the time-to-relapse with covariates.

Parameter Estimate r.s.e. (%) p-value
logαpop -8.883 10.151
βKi67,α 0.086 27.376 2.59 ·10−4

βHER2,α 0.029 42.833 0.020
βCD44,α 0.011 60.816 0.1
βTRIO,α 0.016 58.119 0.085
logµpop -26.342 3.696
βEGFR,µ 0.039 47.527 0.035
σ 0.606 23.104
ωα 2.062 22.715
ωµ 3.563 16.759

confirmed the predictive value of Ki67 (a proliferation index) and revealed this biomarker

as strongly correlated with the growth parameter α (p < 0.001, Table 5.2). The final

model included Ki67, HER2, CD44 and TRIO on the growth parameter α, and EGFR on

the dissemination parameter µ (Table 5.2). Moreover, the largest values of the coefficient

associated to Ki67 and HER2 suggest that levels of these covariates have largest impact

on growth than levels of CD44 and TRIO. The cross-validated C-index for this model

was 0.67 (95% CI, 0.63-0.70). Calibration plots for 2-, 5- and 10-year outcome are shown

in Figure 5.5 and demonstrate good predictive accuracy of the model. Nevertheless, as

for the RSF model, DMFS was underestimated in high risk groups.

5.3.4 Predictive simulations of the mechanistic model

Once the mechanistic model has been calibrated and predictive covariates identified, the

model can be used to perform simulations for new patients by using their individual co-

variates values. We used the calibrated model to simulate the natural cancer history for

a number of representative patients of our dataset. Simulations were performed using a

discrete version of the metastatic model (see [19] for details). Results of the simulations

are reported in Figures 5.6 and S2, along with the size of the primary tumour at diagnosis

and the covariate values predicting the growth and metastatic potential parameters α

and µ (the remaining unexplained variability was neglected for these predictions). Im-
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portantly, all simulations shown here represent pure predictions, since for each patient,

they were generated using the model calibrated on the corresponding cross-validation,

independent, training set.

These examples illustrate the possible utility of the mechanistic approach. For in-

stance, for patients 47 and 255 (Figure 5.6), the model predicts a time from one cell

to detection of 601 (1.65 years) and 4214 (11.5 years) days, respectively. At diagnosis,

patient 47 is predicted to have a total of 9 invisible metastases. The largest metastasis is

formed by 2.07 · 103 cells, while the smallest by 2.08 cells. According to this simulation,

the first metastasis in this patient is emitted 490 days (1.34 years) after the first cell of the

PT. The model predicts relapse 447 days (1.23 years) after diagnosis, with a prediction

error of 292 days. Patient 255 is predicted to have 19 invisible metastases at the time of

diagnosis. The largest metastasis contains 1.73 ·104 cells, while the smallest by 1.41 cells.

The largest metastasis in this patient is emitted 3170 days (8.68 years) after the first cell

of the PT. The model predicts relapse 1609 days (4.41 years) after diagnosis, making a

prediction error of 202 days. The differences in PT and metastatic dynamics for these

two patients are due to the different covariates values (Table in Figure 5.6). Levels of

Ki67 and HER2 are higher in patient 47, causing faster tumour growth. Moreover, unlike

patient 255, the tumour of patient 47 expresses EGFR, which according to our model, is

associated with a higher metastatic potential.

Model predictions are also informative in the case of individuals that were censored

at the last follow-up visit. For instance, patient 486 (see Figure S2) was censored at 12.6

years after diagnosis. According to the model prediction, this patient is free of disease

and does not relapse (TTR = +∞).

5.4 Discussion

We propose a mechanistic model for prediction of metastatic recurrence after

surgical intervention in patients with early-stage breast cancer which, for the first

time, is able to simulate pre- and post-diagnosis history of the disease only
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Table 5.3 – Cox regression using the first 8 covariates selected by minimal depth with the random
survival forest model.

HR 95% CI p-value
Ki67 1.02 [1.01, 1.03] 1.71 ·10−4

Tumor size 1.01 [0.99, 1.03] 0.46
Age 0.99 [0.98, 1.01] 0.49

HER2 1.01 [1.00, 1.01] 0.05
CD44 1.00 [1.00, 1.01] 0.47
EGFR 1.01 [1.00, 1.02] 0.06
TRIO 1.01 [1.00, 1.01] 0.12

PR 1.00 [0.99, 1.00] 0.80

from data available at diagnosis. Grounded on the biology of the metastatic process

(simplified here in two determinants: growth and dissemination), our model provides

biological insights that machine learning algorithms and classical methods

for the analysis of time-to-event data do not. For instance, it allows to test

whether covariates are associated with growth and/or dissemination. For these

data, Ki67 and HER2 were found significant for predicting the proliferation rate param-

eter α, whereas EGFR was found associated with the metastatic potential parameter µ.

Another advantage of the mechanistic model is that, once validated, it can be used to

perform patient-specific simulations able to assess the extent of invisible metastases at

the time of diagnosis and to predict future growth of metastases. In turn, this might aid

selecting patients that will most benefit from extended adjuvant therapy. Notably, with

a concordance index of 0.67 (95% CI, 0.63 - 0.70), the mechanistic model was

found to perform similarly to the RSF algorithm (95% CI, 0.67-0.71) and a

Cox regression model (95% CI, 0.67-0.72, see Table 5.3). Comparable results

were also obtained in terms of performance metrics of 5-year outcome between the mech-

anistic model, RSF, Cox regression and classification machine learning algorithms (Table

5.4). The latter were tested by Cynthia Périer and included logistic regression (LR), sup-

port vector machines, random forests (RF), k-nearest neighbours and gradient boosting.

Here only metrics for the best performing machine learning classification algorithms are

reported. We refer to [95] for more details.
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Table 5.4 – Performance metrics for prediction of 5-year DMFS. Abbreviations: AUROC, area
under the receiving operating curve; PPV, positive predicted value; NPV, negative predicted
value

AUROC Accuracy PPV NPV F1 score
RF 0.70 0.64 0.66 0.62 0.61
LR 0.71 0.66 0.71 0.63 0.61
RSF 0.75 0.71 0.71 0.71 0.71
Mechanistic model 0.73 0.73 0.72 0.70 0.70
Cox 0.75 0.79 0.77 0.71 0.72

One limitation of the mechanistic model is that it relies on a linear covariate model,

which may not be appropriate when complex relationships exist between covariates and

outcome. Indeed, the partial plots produced by the RSF predictions indicated nonlinear

effects of covariates, especially for age at diagnosis, and this might explain why some

covariates identified as predictive in the RSF analysis were then lost when assessed for

significance on the parameters of the mechanistic model.

The proposed mechanistic model for the time to relapse represents a first attempt of

a mechanistic, individual-level, predictive metastatic model and might be improved in

a number of ways. For instance, unexplained variability remained despite the inclusion

of covariates, suggesting that biomarkers other than those tested might improve model

predictions. In this regard, models including gene signature have been shown to have

higher predictive power compared to models based on standard histological and clinical

variables [152]. The mechanistic model could also be refined by including the phenomenon

of dormancy on metastases, which has been proposed to explain relapse occurring after

many years from surgery [153, 154]. Finally, to be applied in the clinic, the model

predictive performance should be further evaluated on external data sets.
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Figure 4
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Figure 5.4 – A) Mean of the conditional DMFS functions from the mechanistic model and Kaplan-
Meier DMFS estimate with 95% confidence interval. B) DMFS predictions of the mechanistic
model and Kaplan-Meier estimates with 95% confidence intervals stratified by values of the
primary tumour size at diagnosis.
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Figure 5.5 – Calibration plots of DMFS for the final mechanistic model with covariates.
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Figure 6
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from the fit of the mechanistic model to the time to relapse data. Left: Growth of the primary
tumour and of visible metastases. The red dashed line indicates the recorded TTR. Right: size
distribution of the metastases at the time of diagnosis.



Chapter 6

Conclusions

6.1 Summary of the thesis achievements

This thesis has extended an established mechanistic model of the metastatic process [19]

to describe primary tumour and metastatic dynamics in response to neoadjuvant suni-

tinib therapy in clinically relevant orthosurgical mouse models of spontaneous metastatic

breast and kidney cancers. Model development was guided by a large dataset comprising

longitudinal measurements of primary tumour size and metastatic burden in a total of

230 mice (132 mice for the breast model and 98 mice for the kidney model), as well as

survival data and pre-surgical biomarkers (circulating tumour cells and myeloid-derived

suppressor cells counts, proliferation and endothelial immunohistochemical markers).

Simulations of the model with parameter values estimated from a previous study on

control groups [19] have been used to test possible hypothesis for the differential effects

of sunitinib on primary tumour and metastases. Population distributions obtained under

the assumption of effect of therapy on metastatic growth failed to described the data.

On the contrary, simulations obtained under the hypothesis of no effect of therapy on

metastatic growth could reproduce well the behaviour of the experimental data. This

has been observed in all treated groups of the breast animal model and suggested lim-

ited effect of treatment on the growth of metastases. To account for differences between

treatment schedules, a kinetics-pharmacodynamics (K-PD) model has been developed on
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the breast dataset, based on these simulation results. Primary tumour and metastatic

burden data have been fitted simultaneously for vehicle and sunitinib-treated animals us-

ing the Stochastic Approximation of Expectation-Maximization (SAEM) algorithm [32]

implemented in the nlmefitsa Matlab function. The calibrated K-PD model was able to

describe both the structural dynamics and inter-subject variability of the experimental

data in both vehicle and treated animals. Confirming previous results [19], interanimal

variability was mainly characterised by the model parameter expressing the metastatic

potential of the tumour, µ, which was also found to be significant in survival analysis.

Effects of covariates on this model parameter have been assessed using linear regression

and a number of machine learning regression techniques (artificial neural networks, sup-

port vector machines, random forest models) [33]. However, the biomarkers included in

all tested machine learning algorithms demonstrated only limited predictive power on the

mathematical parameter (R2 = 0.13 – 0.2, best relative error on logµ 9.83± 10.70%).

A K-PD model of sunitinib neoadjuvant treatment has also been built for the kidney

animal model. In this case, it was found that a model with different pre- and post-

treatment primary tumour growth rates provided a better fit of the data, suggesting a

post-treatment rebound effect. The calibrated model has then be used to investigate

the effect of treatment discontinuation on primary tumour and metastatic burden dy-

namics. This analysis has shown that rebound in primary tumour growth caused by

treatment cessation may result in increased metastatic burden compared to control an-

imals, suggesting that prolonged therapy may be needed to achieve therapeutic benefit

on metastasis.

The second study presented in this thesis has dealt with the prediction of metastatic

relapse in breast cancer patients. A mathematical model for the time-to-relapse has been

developed based on the size-structure population dynamics framework proposed by Iwata

et al. [14] and the corresponding survival function has been derived in order to account

for censored data. The model has been validated using a dataset containing distant

metastatic free survival and clinical/pathological characteristics of 642 women that were

diagnosed with early operable breast cancer. Patients included in this dataset did not
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receive any kind of therapy in addition to surgery and localised radiation of the primary

tumour, thus allowing to assess the natural history of the course of metastasis. Model

parameters were estimated using a mixed-effects approach, using the implementation of

the SAEM algorithm of the R saemix package [39]. Selection of the most predictive

covariates to test in the mechanistic model was performed using the random survival

forests (RSF) algorithm [40]. Achieving a concordance index of 0.67 (0.63-0.70), the

mechanistic model had similar predictive performance to the RSF (c-index 0.67-0.71),

Cox regression model (c-index 0.67 - 0.72) and machine learning classification algorithms

for prediction of 5-year metastatic free survival. The proposed model represents a first

attempt of mechanistic model in the context of time-to-event models for prediction of

metastatic relapse. It allows to individually estimate the extent of the clinically occult

metastatic burden and the time to relapse from clinical and histological data available

at diagnosis, and thus could be used as a personalised prediction tool to better evaluate

the risk of relapse and personalise adjuvant therapy.

6.2 Future work

Treatment of cancer in the neoadjuvant setting has several potential benefits, including

reducing tumour size to convert an inoperable tumour into one that can be resected or

improve surgical outcomes by sparing critical tissue in patients with resectable primary

tumours. Furthermore, the neoadjuvant setting allows to assess whether patients will re-

spond to treatment in case of relapse with distant metastases after surgery. However, the

clinical utility of tyrosine kinase inhibitors (TKIs) for the treatment of early-stage can-

cers is still controversial [27], thus highlighting the need for further preclinical in vivo/in

silico studies. This study has shown that antiangiogenic therapy may have limited effect

on the growth of metastases, despite inhibiting primary tumour growth. These findings

could be explained by the fact that micrometastatic tumours would rely on mechanisms

of vascularisation that might not involve the VEGF pathway, thus suggesting that an-

tiangiogenic therapy may have limited utility also in the adjuvant setting. Consequently,
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surgery should not be delayed and if used in the pre-operative setting, antiangiogenic

agents should be combined with other drugs capable of effectively inhibiting the growth

of metastases. In this context, the proposed model may serve as a basis and extended

to guide the rational design of treatment schedules and modes of combination before

preclinical or clinical testing.

This analysis has also shown the limited value of pre-surgical biomarkers (Ki67 and

CD31 expression levels in the primary tumour, CTC and MDSC counts) as predictors

of metastatic potential and survival. Although likely to depend on the animal model

of cancer, these results highlight the need to investigate other molecular and cellular

markers.

The mechanistic model for predicting the time to metastatic relapse in breast cancer

patients has shown similar predictive performance to well established statistical and ma-

chine learning techniques for the analysis of time-to-event data. The next step to achieve

concrete clinical transfer, should be the evaluation of the model predictive performance

on external datasets. In addition, the model could be adapted and fitted to data of

treated patients in order to build a model that could also help in evaluating the benefit

of different treatment options. This approach could also be applied for other types of

cancers, such as prostate and kidney cancers, for which the low rate of relapse raises the

issue of selecting those patients requiring additional therapy.

The main limitation of the mechanistic model is that it uses a linear covariate model,

which may not be appropriate when complex relationships exist between covariates and

outcome. This might explain why some covariates identified as predictive in the RSF

analysis were then lost when assessed for significance on the parameters of the mechanistic

model. One possibility to deal with this issue would be to combine the RSF algorithm

with the mechanistic model, by using the latter to estimate the survival function in the

terminal nodes.
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Figure S1. Comparison of simulation of therapy (A) vs no
therapy (B) on metastases

Surgery at day 34Figure S1. Comparison of simulation of therapy (A) vs no therapy (B) on metastases

Surgery at day 34
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Surgery at day 38

Surgery at day 38
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Figure S2. Population fits of all the groups used to calibrate
the model parameters (surgery at day 34)

Figure S2. Population fits of all the groups used to calibrate the model parameters
(surgery at day 34)
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Figure S3. Representative individual fits of the model for
Sunitinib-treated animals
Figure S3. Representative individual fits of the model for Sunitinib-treated animals

Vehicle

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

Su60(3D)

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

Su60(7D)

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

Su60(14D)

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)
Orthotopic

implantation
Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

Su120(3D)

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

Su120(3D)/
Su60(11D)

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB

0 20 40 60 80
Time (days)

104

106

108

1010

P
ri
m

a
ry

 t
u
m

o
r 

si
ze

 (
ce

lls
)

104

106

108

1010

M
e
ta

st
a
tic

 b
u
rd

e
n
 (

ce
lls

)

Orthotopic
implantation

Surgery
(t = 34)

Pre-surgical

PT

Post-surgical

MB



126 Supplementary figures to Chapter 3

Figure S4. Individual parameters VS covariatesFigure S7. Individual parameters vs covariates
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Figure S5. Observed vs Predicted values for the machine
learning algorithms

Models for predicting µ.

Figure S9. Observed vs Predicted values for the machine learning algorithms

Models for predicting µ

Conditional random forest Random forest Neural networks
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128 Supplementary figures to Chapter 3

Models for predicting logµ.
Models for predicting log(µ)

Conditional random forest Random forest Neural networks
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Figure S1. Population fits of all the groups used to calibrate
the model parameters
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Figure S2. Representative individual fits of the model for
Sunitinib-treated animals. (Surgery at day 30)
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Figure S1. Percentage of missing values in each variable
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Figure S2. Predictions of the mechanistic model for individ-
ual patients

Figure S3. Predictions of the mechanistic model for individual patients
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Patient 29
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Patient ID Tumor size (mm) Ki67 (%) HER2 (%) CD44 (%) TRIO (%) EGFR (%) Observed TTR (cens) Predicted TTR Prediction error (days)

541 27 30 0 90 30 100 1137 (1) 523 614
194 20 15 100 40 12 0 2051(1) 1400 652
304 8 25 80 0 0 100 1049(1) 1477 428
374 20 60 0 5 0 21 245(1) 935 690
29 15 15 90 39 0 10 2663 (1) 1916 747
281 30 22 100 0 23 0 1559 (1) 538 1021
486 20 39 90 25 40 0 4582 (0) +1 -

1

ID Vdiag (mm) Ki67 (%) HER2 (%) CD44 (%) TRIO (%) EGFR (%) Obs. TTR (cens) Pred. TTR Prediction error (days)
541 27 30 0 90 30 100 1137 (1) 523 614
194 20 15 100 40 12 0 2051(1) 1400 652
304 8 25 80 0 0 100 1049 (1) 1477 428
374 20 60 0 5 0 21 245 (1) 935 690
29 15 15 90 39 0 10 2663 (1) 1916 747
281 30 22 100 0 23 0 1559 (1) 538 1021
486 20 39 90 25 40 0 4582 (0) +∞ -
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Figure S3. Calibration plots for the Cox model with the eight
covariates selected through the RSF analysis.Figure S4. Calibration plots for the Cox model with the eight covariates 
selected through the RSF analysis 
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