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Résumé : Cette thèse de doctorat aborde le 

problème de l'agrégation de risques multiple 

(MHRA), qui vise à agréger les risques estimés 

pour différents contributeurs. 

La pratique actuelle de la MHRA est basée sur 

une sommation arithmétique simple des 

estimations de risques. Cependant, ces 

estimations sont obtenues à partir de modèles 

EPS (Estimation Probabiliste de risque) qui 

présentent des degrés de réalisme différents liés 

à différents niveaux de connaissances. En ne 

prenant pas en compte ces différences, le 

processus MHRA pourrait conduire à des 

résultats trompeurs pour la prise de décision 

(DM). Dans cette thèse, un cadre structuré est 

proposé afin d’évaluer le niveau de réalisme et 

de confiance dans les évaluations de risques et 

de l’intégrer dans le processus de MHRA. 

Ces travaux ont permis : 

(i) Une identification des facteurs contribuant à 

la fiabilité de l'évaluation des risques. Leurs 

criticités sont analysées afin de comprendre leur 

influence sur l’estimation des risques; 

(ii) Un cadre hiérarchique intégré est développé 

pour évaluer la confiance et le réalisme de 

l'estimation de risque, sur la base des facteurs et 

des attributs identifiés en (i); 

 

(iii) Une méthode basée sur un modèle réduit 

est proposée pour évaluer efficacement la 

fiabilité de l'évaluation des risques dans la 

pratique. Grâce à cette méthode, le nombre 

d'éléments pris en compte dans l'évaluation 

initiale des risques peut être limité. 

(iv) Une technique qui combine la théorie de 

Dempster-Shafer et le processus de hiérarchie 

analytique (DST-AHP) est appliquée au modèle 

développé. Cette technique permet d’évaluer le 

niveau de réalisme et confiance -dans l’analyse 

de risque- en utilisant une moyenne pondérée 

des attributs: la méthode AHP est utilisée pour 

calculer le poids des attributs et la méthode 

DST est utilisée pour tenir compte de 

l'incertitude subjective dans le jugement des 

experts dans l'évaluation des poids; 

(v) Une technique de MHRA est développée sur 

la base d'un modèle de moyenne bayésienne 

afin de surmonter les limites de la pratique 

actuelle de MHRA qui néglige le réalisme et 

confiance dans l'évaluation de chaque 

contributoire de risque; 

(vi) Le modèle développé est appliqué sur des 

cas réels de l'industrie des centrales nucléaires. 
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Abstract: This PhD thesis addresses the 
problem of Multi-Hazards Risk Aggregation 
(MHRA), which aims at aggregating the risk 
estimates from Probabilistic Risk 
Assessment (PRA) models for the different 
contributors. The current practice of MHRA 
is based on a simple arithmetic summation 
of the risk estimates. However, the risk 
estimates are obtained from PRA models 
that have different degrees of 
trustworthiness, because of the different 
background knowledge they are based on. 
Ignoring this difference in MHRA could lead 
to misleading results for Decision-Making 
(DM). In this thesis, a structured framework 
is proposed to assess the level of 
trustworthiness, which risk assessment 
results are based on and to integrate it in the 
process of MHRA. 

The original scientific contributions are:  
(i) Factors contributing to the 

trustworthiness of risk assessment 
outcomes are identified and their 
criticalities are analyzed under 
different frameworks, to understand 
their influence on the risk results;  

(ii) An integrated hierarchical 
framework is developed for 
assessing the trustworthiness of risk 
analysis, based on the identified 
factors and related attributes; 
 

(iii) A reduced order model-based 
method is proposed to efficiently 
evaluate the trustworthiness of risk 
assessment in practice. Through the 
reduced-order model, the proposed 
method can limit the number of 
elements considered in the original 
risk assessment; 

(iv) A technique that combines Dempster 
Shafer Theory and the Analytic 
Hierarchy Process (namely, DST-
AHP) is applied to the developed 
framework to assess the 
trustworthiness by a weighted 
average of the attributes in the 
framework: the AHP method is used 
to derive the weights of the 
attributes and the DST is used to 
account for the subjective 
uncertainty in the experts’ 
judgments for the evaluation of the 
weights; 

(v) A MHRA technique is developed 
based on Bayesian model averaging, 
to overcome the limitations of the 
current practice of risk aggregation 
that neglects the trustworthiness of 
the risk assessment of individual 
hazard groups; 

(vi) The developed framework is applied 
to real case studies from the Nuclear 
Power Plants (NPP) industry. 

 

 



“개천에서 용 난다” 

“A dragon rises up from a small stream” 

Korean proverb 

 

 

“我们最大的荣耀不是永不堕落，而是每次跌倒时都会崛起” 

“Our greatest glory is not in never falling, but in rising every time we fall” 

Confucius 

 

 

 "وتحسب أنك جرم صغير وفيك انطوى العالم الاكبر"

“You think of yourself as a small orb, but, in fact, within you lies a great universe” 

Ali Ben Abi-Taleb 

 

 

„Venez jusqu‟au bord‟, „Nous ne pouvons pas, nous avons peur.‟ 

„Venez jusqu‟au bord.‟, „Nous ne pouvons pas, nous allons tomber.‟ 

Venez jusqu‟au bord.‟, 

Et ils y sont allés 

Et il les a poussés. 

Et ils se sont envolés. 

„Come to the edge‟, he said. "We can't, we're afraid!" they responded. 

„Come to the edge‟, he said. „We can't, We will fall!‟, they responded. 

„Come to the edge‟, he said. 

And so they came. 

And he pushed them. 

And they flew. 

Guillaume Apollinaire 

https://www.brainyquote.com/authors/confucius-quotes
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Multi-Hazards Risk Aggregation considering the trustworthiness 

of the assessment 

Abstract 

This PhD thesis addresses the problem of Multi-Hazards Risk Aggregation (MHRA), which aims at 

aggregating the risk estimates from Probabilistic Risk Assessment (PRA) models for the different 

contributors. The current practice of MHRA is based on a simple arithmetic summation of the risk 

estimates. However, the risk estimates are obtained from PRA models that have different degrees of 

trustworthiness, because of the different background knowledge they are based on. Ignoring this difference 

in MHRA could lead to misleading results for Decision-Making (DM). In this thesis, a structured 

framework is proposed to assess the level of trustworthiness, which risk assessment results are based on 

and to integrate it in the process of MHRA. 

The original scientific contributions are:  

(i) Factors contributing to the trustworthiness of risk assessment outcomes are identified and their 

criticalities are analyzed under different frameworks, to understand their influence on the risk 

results;  

(ii) An integrated hierarchical framework is developed for assessing the trustworthiness of risk 

analysis, based on the identified factors and related attributes; 

(iii) A reduced order model-based method is proposed to efficiently evaluate the trustworthiness of risk 

assessment in practice. Through the reduced-order model, the proposed method can limit the 

number of elements considered in the original risk assessment; 

(iv) A technique that combines Dempster Shafer Theory and the Analytic Hierarchy Process (namely, 

DST-AHP) is applied to the developed framework to assess the trustworthiness by a weighted 

average of the attributes in the framework: the AHP method is used to derive the weights of the 

attributes and the DST is used to account for the subjective uncertainty in the experts‘ judgments 

for the evaluation of the weights; 

(v) A MHRA technique is developed based on Bayesian model averaging, to overcome the limitations 

of the current practice of risk aggregation that neglects the trustworthiness of the risk assessment 

of individual hazard groups; 

(vi) The developed framework is applied to real case studies from the Nuclear Power Plants (NPP) 

industry.  
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Chapter 1 Introduction 
This thesis addresses the issue of evaluating the trustworthiness of risk assessment for the purpose of 

Decision-Making (DM) and Multi-Hazards Risk Aggregation (MHRA). To contextualize the research of 

this thesis, Sect 1.1 revises the concept of risk assessment and introduces the problem of MHRA. Some 

open issues are identified. Sect. 1.2 reviews the literature on these open issues and Sect. 1.3 states the 

technical issues and the motivation of the thesis. Sect. 1.4 presents the structure of the thesis, in connection 

to the appended scientific papers. Finally, the scientific contributions of the thesis are discussed in Sect. 

1.5. 

1.1. Risk assessment 

Probability Risk Assessment (PRA) is widely applied in various industries to quantify risk, e.g., 

nuclear, aerospace, chemical, etc. The results of a PRA are used to support safety-related decisions [1]. In 

PRA, models are used to represent systems and processes, and provide estimates of risk metrics [2]. These 

models are built on a set of assumptions that are translated into quantitative assessments through 

mathematical models and computer codes [3], [4], [5]. The risk assessment models need to balance 

between the accurate representation of the phenomena in the system or process, and the definition of the 

proper level of detail of their description [3]. 

The PRA results, then, depend on different modeling factors such as: the strength of the background 

knowledge and information available on the systems and processes [6], [7], [8], [3], [9], the validity of the 

assumptions made [10], [11], [7], the phenomenological understanding of the systems and processes [6], 

the validity of the models used [12], [9], the level of details of the descriptions, etc. [13]. The confidence 

that the decision maker can put on the results of a PRA depends on these factors. Communicating the 

solidity and strength of these factors in the risk descriptions obtained from PRA is very important for 

informing the DM. For example, if a decision maker is to choose between two risk reduction measures, 

he/she would choose the one leading to lower risk, provided that it is physically and economically feasible; 

however, he/she might reconsider the decision if it is known that the risk results supporting the chosen 

reduction measure are less trustworthy than for the other.  

PRA models characterize risk by probabilistic indexes [6], where numerical values are calculated on 

the basis of a ―model of the world‖ [14] developed on the basis of the available knowledge on the problem. 

Then, the Strength of Knowledge (SoK) supporting the risk assessment must be considered [6], [15], [16], 
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[17], [18]. 

Also, the risk considered can some from multiple sources. When the system of interest is subject to 

multiple hazards (e.g., a NPP exposed to the risk from internal events, external flooding, fires, etc.), 

MHRA must be performed to combine the knowledge on the risk from the different contributing sources 

[19]. This is done by developing different PRA models for the different contributors, with different degrees 

of trustworthiness [19], [20] and, then, aggregating them. The current practice of MHRA consists of a 

simple arithmetic summation of the risk values obtained with the PRA models of the risk contributors [19], 

without considering their different degrees of trustworthiness. However, a simple summation of the risk 

estimates without accounting for the degree of trustworthiness may lead to results that are misleading for 

the DM [19]. 

In summary:  

(i) the risk description should be extended to cover also the factors affecting the trustworthiness 

of the risk assessment; 

(ii) the MHRA should not be limited to a simple arithmetic summation over the risk contributors, 

but should also consider the level of confidence for DM [19].  

1.2. Literature review 

Risk assessment methods and supporting tools for complementing the description and communication 

of risk are reviewed in Sect. 1.2.1; MHRA tools for aggregating the risk indexes of different hazard groups 

are reviewed and discussed in Sect. 1.2.2. 

1.2.1. Risk characterization 

New perspectives have been recently proposed to generalize the probabilistic formulation of risk by 

adopting uncertainty instead of probability (which is a specific way of quantifying uncertainty). In [8], risk 

is described in terms of events, consequences, uncertainty (𝐴, 𝐶, 𝑈)  and a conceptual structure is 

presented for linking to it the elements of a Data-Information-Knowledge-Wisdom hierarchy. In [6], 

uncertainty is regarded as the main component of risk and probability as an epistemic-based expression of 

uncertainty [6], so that the representation of risk is broadened to cover the events, consequences, 

predictions, uncertainty, probability, sensitivity and knowledge represented by A,C,C*,U,P,S and K 

respectively. A simple practical method is proposed to identify uncertainty factors as inter-alia assumptions 

and presuppositions (solidity of assumptions), historical field data (availability of reliable data), 

understanding of phenomena and agreement among experts. In [7], the available knowledge is recognized 
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as a key factor for the trustworthiness of the risk assessment outcomes and a framework is proposed for 

evaluating it. 

The assumptions made in PRA are also considered a key factor for the use of risk assessment to inform 

DM. An application of Numeral Unit Spread Assessment Pedigree (NUSAP) was proposed for analyzing 

the strength, importance and potential value-ladenness of assumptions through a pedigree diagram. The 

pedigree diagram covers seven criteria for evaluating the quality of assumptions: (i) plausibility; (ii) 

inter-subjectivity peers; (iii) inter-subjectivity stakeholders; (iv) choice space; (v) influence situational 

limitations; (vi) sensitivity to view and interests of the analyst (vii) and influence on results [10], [21], [22], 

[23]. Value ladenness is considered an independent variable that affects the quality of assumption in [7] 

and evaluated using seven main criteria (i) personal knowledge; (ii) sources of information; (iii) 

non-biasedness; (iv) relative independence; (v) past experience; (vi) performance measure; (vii) agreement 

among peers [7], [24]. 

In [17], the ―assumptions deviation risk‖ tis introduced to reflect the criticality of assumptions. For 

assessing this, the main assumptions on which the analysis is based are first identified and, then, converted 

into a set of uncertainty factors obtained by evaluating: (i) the degree of expected deviation of the 

assumptions from reality and the consequences, (ii) a measure of uncertainty of the deviation and 

consequences, (iii) the knowledge on which the assumptions are based. Finally, a score is assigned to each 

deviation to reflect the risk related to the deviation of the assumptions and their implication on safety. 

In [11], four approaches for treating uncertain assumptions are summarized: (i) law of total expectation; 

(ii) interval probability; (iii) crude SoK and sensitivity categorization; (iv) assumption deviation risk [11]. 

For the latter, the method proposed in [17], [25] is extended into a general and systematic framework for 

treating ―uncertain‖ assumptions in risk assessment models. In this approach, an assumption is placed in 

one of six ―settings‖, given the belief in the deviation from the assumption, the sensitivity of the risk index 

and its dependency on the assumption, and the SoK on which the assumptions are made. Guidance for the 

treatment of uncertainty related to the deviation of assumptions is given for each setting. The guidelines 

are based on the precept that with the increasing importance and criticality of an assumption, and the 

implication of its potential deviations, the effort exerted for characterizing its uncertainty should be 

increased.  

 An approach for integrating the ―assumptions deviation risk‖ in PRA is presented in [26]. In this 

approach, the risk of assumption deviation is evaluated through five steps: (i) the safety objectives are first 
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defined; (ii) the critical assumptions on which risk assessment depends are identified; (i) the deviation 

scenarios required to violate the safety objectives are defined; (iv) the likelihood that such deviation could 

occur is assessed; (v) the SoK supporting the assessment is evaluated. 

In [3], besides parametric uncertainty (epistemic uncertainty about the true values of the model 

parameters), the assumptions and approximations are identified as elements of model uncertainty to be 

accounted for by means of different approaches, including subjective and imprecise probabilities and 

semi-quantitative schemes. 

In [27], uncertainty in model predictions arising from model parameters and the model structure is 

discussed. Two main attributes are introduced to define model uncertainty: model credibility and model 

applicability [28]. Model credibility refers to the quality of the model in estimating the unknown in its 

intended domain of application and is defined by a set of attributes related to the model-building process 

and utilization procedure (conceptualization and implementation, which are in turn broken down into other 

sub-attributes). On the other hand, model applicability represents the degree to which the model is suitable 

for the specific situation and problem (represented by the conceptualization and intended use function 

attributes) [28]. 

Some works can be found in the literature for evaluating the trustworthiness of a model and other 

related quantities. In [29], the trustworthiness of risk assessment models is evaluated through a hierarchical 

tree of different factors i.e., modeling fidelity, SoK, number of approximations, amount and quality of data, 

quality of assumptions, number of model parameters etc. In [30], the trust of the model is evaluated based 

on the level of its maturity, evaluated through four main criteria: (i) uncertainty; (ii) knowledge; (iii) 

conservatism; (iv) sensitivity. 

Credibility and maturity of Model and Simulation (M&S) processes have also attracted attention. For 

example, in M&S and information systems, the Capability Maturity Model (CMM), developed by the 

Software Engineering Institute (SEI), has been developed to assess the maturity of a software development 

process in the light of its quality, reliability and trustworthiness, considering: representation and geometric 

fidelity, physics and material model fidelity, code and solution verification, model validation, uncertainty 

quantification, and sensitivity analysis [31]. In [9], a hierarchical framework has been developed to assess 

the maturity and prediction capability of a prognostic method for maintenance DM purposes. The 

hierarchical tree covers different attributes that are believed to affect the prognostic method prediction 

capability. In [12], a framework is proposed for assessing the credibility of M&S through eight criteria: (i) 
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verification; (ii) validation; (iii) input pedigree; (iv) results uncertainty (v) results robustness; (vi) use 

history; (vii) M&S management; (viii) people qualification. Finally, the quality of M&S is assured by two 

steps in the American Society of Mechanical Engineers (ASME) i.e., verification and validation [32]. 

Verification concerns the accuracy of the computational model in representing the conceptual and 

mathematical model, and validation is related to the accuracy of the model in representing reality [32]. 

Some open issues related to the evaluation of the trustworthiness of risk assessment outcomes are:  

(i) most of the aforementioned works treat the factors contributing to trustworthiness, without 

integrating them in a comprehensive framework;  

(ii) the evaluation of the SoK and model trustworthiness is done by directly scoring some 

intangible contributing factors, without breaking them into more tangible attributes, easier to 

evaluate in practice;  

(iii) trustworthiness is not integrated in the results of risk assessment. 

1.2.2.  MHRA 

Few works in the literature focus on MHRA and a relatively recent report by EPRI [19] indicates that 

current practice might not be appropriate for some DM contexts, due to the difference in the degrees of 

confidence on the risk contributors. The report also highlights some of the fundamental differences in the 

risk estimates from different hazard sources (e.g., maturity of the used tool and analysis, uncertainty level 

for each contributor). Then, it proposes a practical guidance for an integrated understanding of the risk to 

support DM, within the context of RG1.174 [33]; the USNRC regulatory guide on using PRA in RIDM 

(i.e., meet the current regulations, meet the defense in depth requirement etc.; see Figure 2 in [33] for more 

information). This is done by developing the relevant insights for each of the contributions to risk. Five 

main tasks are ―iteratively‖ performed according to this guidance: (i) understand the role of PRA in 

supporting the decision; (ii) identify the main risk contributors and assess the baseline risk and evaluate the 

confidence in the assessment; (iii) evaluate relevant risk metrics and refine the PRA if needed; (iv) identify 

and characterize key sources of uncertainty; (v) document conclusions for integrated DM. No clear 

guidance, however, is provided on how to evaluate the level of trustworthiness in risk assessment. 

An iterative method is proposed also in [34] for assessing different aspects of risk, aggregated from 

highly heterogeneous hazard groups, focusing on relative rather than absolute risk metrics. The method 

uses response surfaces that are based on arbitrary polynomial chaos expansion in combination with radar 

charts to visualize the overall risk and associated uncertainties. The response surface allows identifying 
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major contributors to the overall risk, individually or on aggregate basis for a very large number of input 

parameters. On the other hand, radar charts are used to visualize risk contributors of different nature and 

compare them to safety guidelines. However, the method does not address factors like model conservatism, 

biases, incompleteness, hidden model uncertainty (e.g., structural), etc. Also, radar charts do not really 

allow the aggregation of risk from different contributors. Instead, they only allow the relative comparison 

of the risk contributors (hazard groups) to a given threshold. 

1.3. Technical issues and motivation of the thesis 

The main objective of a risk assessment is to provide informative supports to DM [35], [36], [5], [3], 

[34]. Also, the current practice of MHRA is that of a simple arithmetic summation of the individual risk 

indexes, without considering the level of trustworthiness of the assessment of different risk contributors. 

With respect to these issues, the work presented in this thesis focuses on:  

(1) the development of an integrated framework to evaluate the level of trustworthiness of a risk 

assessment, considering all contributing factors; 

(2) the development of a MHRA framework that allows the integration of the level of trustworthiness 

of the risk assessment of the individual hazard groups in the aggregation process. 

1.4. Structure of the thesis 

Risk assessment is performed using models and performing analyses that are supported by 

background knowledge, including data, phenomenological understanding on the involved systems and 

process, etc. The quality of the assessment depends also on other factors like the quality of the assumptions 

made, the maturity of the analysis, the tools used, etc. In this thesis, these factors are included in an 

integrated framework for assessing the trustworthiness of the risk assessment. Trustworthiness is, then, 

integrated in the MHRA to support safety-related DM. 

The research included in this thesis can be divided into three main parts, as shown in Figure 1.1. In 

the first part (Chapter 2), an integrated framework is developed for assessing the trustworthiness of risk 

assessment. Then, in the second part (Chapters 3-5), maturity of analysis, assumptions and SoK that 

support the risk assessment, are considered. Finally, in the third part (Chapter 6), the two previous parts are 

integrated in a complete framework for evaluating the trustworthiness of risk assessment, and a technique 

is developed based on the weighted posterior method for MHRA considering the level of trustworthiness. 
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Figure 1.1 Conceptual scheme of the thesis work 

In chapter 2 and the appended paper I, we discuss trustworthiness in risk assessment and propose a 

four-levels, top-down, hierarchical tree to identify the main attributes and criteria that affect the level of 

trustworthiness of the models used in probabilistic risk assessment. The level of trustworthiness is 

decomposed into two attributes (Level 2), three sub-attributes (Level 3), one ―leaf‖ attribute (Level 3) and 

seven basic ―leaf‖ sub-attributes (Level 4). On the basis of this hierarchical decomposition, a bottom-up, 

quantitative approach is employed for the assessment of model trustworthiness, using tangible information 

and data available for the basic ―leaf‖ sub-attributes (Level 4). Analytical Hierarchical Process (AHP) [37] 

is adopted for evaluating and aggregating the sub-attributes. 

In chapter 3 and the appended paper II, we elaborate on some of the main contributing factors to the 

trustworthiness related to the maturities of risk assessment. In particular, we propose a hierarchical 

framework to evaluate the level of maturity of risk contributors in the light of DM. The framework consists 

of four attributes that are believed to affect the level of maturity of risk analysis, i.e., uncertainty, 

conservatism, knowledge and sensitivity. The knowledge attribute is, in turn, decomposed into five 

sub-attributes i.e., availability of data, consistency of data, data reliability, experience, and value-ladenness. 

AHP is again adopted for the application of the framework to assess the level of maturity. A reduced-order 

model technique is used to enable the application of the framework on a real problem. Then, the maturity 
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level is integrated in MHRA for a two-dimensional risk aggregation method. Scoring protocols for 

evaluating the attribute have been prepared to simplify the application of the framework and to reduce the 

subjectivity of the assessors. Finally, a numerical case study for the MHRA of a real NPP is carried out to 

show applicability. 

In chapter 4 and the appended paper III, we elaborate on the factors contributing to trustworthiness 

that are related to the assumptions in risk assessment models, to understand their implication on the 

trustworthiness in risk assessment models. In particular, we develop an extended framework for evaluating 

the risks that deviations from the assumptions made lead to a reduction of the safety margins. We extend 

the framework in [26] to cover also the risk of deviations from conservative assumptions and other 

contexts of DM and, then, introduce decision flow diagrams for the quantitative evaluation of the 

assumption deviation risks. Finally, we apply the framework to a real case study from the nuclear industry. 

In chapter 5 and the appended paper IV, we focus on the importance and the influence of background 

knowledge on the trustworthiness of risk analysis and zoom in on this particular attribute in order to 

provide a comprehensive evaluation approach. In particular, we develop a new quantitative method to 

assess the SoK of a risk assessment. A hierarchical framework is first developed to conceptually represent 

the SoK in terms of three attributes (assumptions, data, phenomenological understanding), which are 

further decomposed in sub-attributes and ―leaf‖ attributes to facilitate their assessment in practice. The 

hierarchical framework is, then, quantified in a top-down bottom-up fashion for assessing the SoK. In the 

top-down phase, a reduced-order risk model is constructed to limit the complexity and number of basic 

elements considered in the SoK assessment. In the bottom-up phase, the SoK of each basic element in the 

reduced-order risk model is assessed based on predefined scoring guidelines and, then, aggregated to 

obtain the SoK for the whole risk assessment model. The aggregation is done using a weighted average of 

the basic events‘ SoK, where the weights are determined by AHP. The developed methods are applied to a 

real-world case study, where the SoK of the PRA models of a NPP is assessed for two hazard groups, i.e. 

external flooding and internal events. 

Finally, in chapter 6 and the appended paper V, we integrate the previous efforts to develop a more 

complete and comprehensive framework for evaluating the trustworthiness of risk assessment, and, then, 

develop a new method for MHRA considering the level of trustworthiness. In particular, a hierarchical 

framework is first developed for evaluating the trustworthiness of risk assessment. The framework is based 

on two main attributes (criteria) i.e., the SoK and modeling fidelity, which are further decomposed into 
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sub-attributes and leaf attributes on different levels. The trustworthiness is calculated using a weighted 

average of the leaf attributes, where the weights are calculated using the Dempster Shafer 

Theory-Analytical Hierarchy Process (DST-AHP). A technique is, then, developed to update the model 

output risk estimates considering the level of trustworthiness and, finally, aggregate the risks from different 

hazard groups. The developed framework is, then, applied to a real case study of two hazard groups in a 

NPP. 

1.5. Contributions 

The scientific contributions of this thesis are:  

(i) Factors contributing to the trustworthiness of risk assessment outcomes are identified and their 

criticalities are analyzed under different frameworks, to understand their influence on the risk 

results (Chapter 2-6, papers I-IV);  

(ii) An integrated hierarchical framework is developed for assessing the trustworthiness of risk 

analysis, based on the identified factors and related attributes (Chapter 6, paper V); 

(iii) A reduced order model-based method is proposed to efficiently evaluate the trustworthiness of risk 

assessment in practice. Through the reduced-order model, the proposed method can limit the 

number of elements considered in the original risk assessment (Chapters 3 and 5, Papers II and 

IV); 

(iv) A technique that combines Dempster Shafer Theory and the Analytic Hierarchy Process (namely, 

DST-AHP) is applied to the developed framework to assess the trustworthiness by a weighted 

average of the attributes in the framework: the AHP method is used to derive the weights of the 

attributes and the DST is used to account for the subjective uncertainty in the experts‘ judgments 

for the evaluation of the weights (Chapter 6, Paper V); 

(v) A MHRA technique is developed based on Bayesian model averaging, to overcome the limitations 

of the current practice of risk aggregation that neglects the trustworthiness of the risk assessment 

of individual hazard groups (Chapter 6, Paper V); 

(vi) The developed framework is applied to real case studies from the Nuclear Power Plants (NPP) 

industry (Chapter 6, Paper V). 

The contents in the thesis are based on a series of submitted papers. Table 1.1 shows how does each 

chapter correspond to the appended papers and the contributions. 
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Table 1.1 Structure of the thesis 

Chapters Associated papers Contributions 

Chapter 2. Assessing the trustworthiness of risk assessment 

models 

I i, ii 

Chapter 3. Risk analysis model maturity index for 

Multi-Hazards Risk Aggregation purposes 

II i, iii 

Chapter 4. Assumptions in risk assessment models and the 

criticality of their deviations within the context of decision 

making 

III i 

Chapter 5. Strength of knowledge supporting risk analysis: 

assessment framework 

IV i 

Chapter 6. Framework for multi-hazards risk aggregation 

considering trustworthiness 

V ii, iv, v 
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Chapter 2 Assessing the 

trustworthiness of risk assessment 

models 
Risk assessments rely on the use of complex models to represent systems and processes, and provide 

predictions of safety performance metrics [2]. Since the fundamental value of a risk assessment lies in 

providing informative support to (high-consequence) decision making, the importance placed on Modeling 

and Simulation (M&S) is very high within a risk assessment context. Accordingly, the confidence that can 

be put on the results of a risk assessment is fundamental for DM. Therefore, quantitative measures that 

relate to the credibility and trustworthiness of risk assessment outcomes must be provided to be used for 

DM purposes.  

Within this context, the objective of this chapter is to survey the factors that affect the credibility and 

trustworthiness of risk assessment models, and organize them within a ―preliminary‖ assessment 

framework. A review of the approaches proposed in the literature to assess the trustworthiness and 

credibility of a model is presented in Sect. 2.1. In Sect. 2.2, a hierarchical tree-based framework for 

assessing model trustworthiness is presented. In Sect 2.3, we review and explain the Analytic Hierarchy 

Process (AHP) for assessing trustworthiness within the developed framework. In Sect. 2.4, the framework 

is applied to a real case study concerning the RHR system of a NPP. Finally, Sect. 2.5 discusses the results 

and draws conclusions. 

2.1. State of the art 

Few methods have been proposed to assess the credibility and trustworthiness associated with 

engineering model predictions. In the literature, the trustworthiness of a method or a process is often 

measured in terms of its maturity. The model maturity was previously used to assess the maturity of a 

function of an information system [31],[38],[9]. Later, the SEI developed a framework known as the CMM 

to assess the maturity of a software development process, in the light of its quality, reliability and 

trustworthiness [39]. Recently, the CMM model has been extended to what so-called a Prediction 

Capability Maturity Model (PCMM) evaluate and assess the maturity of modeling and simulation efforts 

[31]. Other examples of maturity assessment approaches have been developed in different domains, such 
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as data maturity assessment, enterprise risk management and hospital information system [9]. In [40] and 

[9] a hierarchical framework based on the AHP has been developed to assess the maturity and prediction 

capability of a prognostic method for maintenance DM purposes. Finally, a framework for assessing the 

credibility of M&S is proposed by [12]. In this framework, three main groups of criteria are used to assess 

the credibility of M&S (i) M&S development including; (ii) M&S operations (iii) supporting evidence. 

These are in turn cover verification, validation, input pedigree, results uncertainty, results robustness, use 

history, M&S management, and people qualifications. However, most of the aforementioned works are not 

complete in the sense of evaluating the trustworthiness of risk assessment models Also, they do not present 

a rigorous evaluation protocols for the attributes and criteria. Instead, the evaluation of criteria is done by 

directly scoring the some intangible contributing factors, which is hard to apply in practice. 

2.2. Hierarchical tree for model trustworthiness characterization: abstraction and 

decomposition 

Many factors (attributes) affect the trustworthiness and credibility of analyses and models (for risk 

assessment in particular), and several studies and literature reviews have been made in order to identify 

them. Some of these are summarized as follows:  (i) phenomenological understanding of the problem; (ii) 

availability of reliable data; (iii) reasonability of the assumptions; (iv) agreement among the experts; (v) 

level of detail in the description of the phenomena and processes of interest; (vi) accuracy and precision in 

the estimation of the values of the model‘s parameters; (vii) level of conservatism; (viii) amount of 

uncertainty and others (see e.g., [6], [11], [8], [41]; [1], [3], [9], [31], [36], [19], [7]). However, these 

attributes (criteria) are not tangible and cannot be measured directly: as a consequence, other sub-attributes 

must be identified, which can be measured directly or subjectively scored. To this aim, we propose a 

method for model trustworthiness characterization and decomposition, which is based on the hierarchy tree 

shown in Figure 2.1. See the appended paper I for the detailed discussions. 

As mentioned above, many factors can be found in the literature that characterize the level of 

trustworthiness. Those factors can be categorized into two main groups: (i) ―strength of knowledge‖; (ii) 

―modeling fidelity‖, which embody the ability of a model of representing the reality and the degree of 

implementing correctly the model. In the ―strength of knowledge‖, among the four sub-elements proposed 

in [6], two were found to be more relevant to the context of interest, i.e., data and assumptions. In the 

modeling fidelity, it is argued that including more details about a problem is more representative and 

realistic, and hence more trustworthy. On the other hand, implementing the model correctly from a pure 
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trustworthiness point of view, without considering a costs-benefits reasoning, requires avoiding 

approximation: the less the approximations, the better the trustworthiness is. In accordance, a hierarchical 

tree for models‘ trustworthiness is proposed in Figure 2.1. 

 

Figure 2.1 A hierarchical tree-based framework for the trustworthiness of mathematical models 

The model trustworthiness, represented by T (Level 1), is characterized by two attributes: modeling 

fidelity, represented by 𝐹 = 𝑇1  and strength of knowledge, represented by 𝐾 = 𝑇2   (Level 2). The 

modeling fidelity (𝐹 = 𝑇1), measures the adequacy of the model representation of the phenomenon and the 

level of detail adopted in the model description (referred to as modeling validity in some literatures [42]).On 

the other hand, the strength of knowledge (𝐾 = 𝑇2 ) measures how solid the assumptions, data and 

information (which the model relies on) are [6]. These two attributes are in turn decomposed into 

sub-attributes (Level 3). In particular, the modeling fidelity 𝐹 = 𝑇1 is defined by the level of detail, 

represented by 𝐷 = 𝑇11  (Level 3) and by the number of approximations, represented by  𝐴𝑝 = 𝑇12 . 

Concerning the strength of knowledge 𝐾 = 𝑇2, among the four sub-attributes proposed in [43], i.e., the 

solidity of assumptions, the availability of reliable data, understanding of phenomena, and agreement 

among experts, two are found to be more relevant to the context indeed, i.e. data and assumptions. Thus, 

attribute 𝐾 = 𝑇2 is here defined by the quality of assumptions represented by 𝑄𝐴 = 𝑇21 and by the quality 

of data represented by 𝑄𝐷 = 𝑇22. Note that the number of approximations 𝐴𝑝 = 𝑇12 is considered as a basic 
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attribute, since it can be measured directly: thus, it is not further broken down into other sub-attributes. The 

other three attributes of Level 3 are instead broken down into more basic ―leaf‖ attributes that can be 

measured directly. In particular, the level of detail D = T11 is characterized in terms of the number of 

equations and correlations, namely Q = T111, the number of model parameters, namely Mp = T112, and the 

number of dependency relations included, namely Dr = T113. The overall quality of the assumptions 

QA = T21 is measured by the number of assumptions made As = T212, and by their impact I = T212 

(which can be assessed, e.g., by sensitivity analysis). Finally, the quality of the data QD = T22  is 

described in terms of the amount of data available, namely Ad = T221 and by the consistency of the data 

itself, namely C = T222. Precise definitions of the attributes are given in Table 2.1 for the sake of clarity.  

Table 2.1 Definition of the attributes used to characterize the model trustworthiness 

Attribute Definition 

Modeling fidelity 𝐹 = 𝑇1 Measures how close the model is to reality, i.e., the adequacy of the 

representation of the phenomena and processes of interest: the higher the 

modeling fidelity, the higher the trustworthiness of the model. 

Strength of knowledge 

𝐾 = 𝑇2 

Represents the level of understanding of the phenomena and the solidity of the 

assumptions, data and information, which the model relies on: the higher the 

strength of knowledge, the higher the trustworthiness of the model. 

Level of detail 𝐷 = 𝑇11 Measures the level of sophistication of the analysis by quantifying to which level 

the ―elements‖ and aspects of the phenomenon, process or system of interest are 

taken into account in the model: the higher the level of detail, the higher the 

trustworthiness of the model. 

Number of 

approximations 𝐴𝑝 = 𝑇12 

Measures the number of approximations that the analyst introduces in order to 

facilitate the analysis: it affects the modeling fidelity. The lower the number of 

model approximations the higher the modeling fidelity. 

Quality of assumptions 

𝑄𝐴 = 𝑇21 

In some studies, experts are obliged to formulate some assumptions, which 

might be due to the lack of data and information, to the complexity of the 

problem or to lack of phenomenological understanding. The quality of those 

assumptions is an indication of the strength of knowledge: the higher the quality 

of the assumptions, the higher the trustworthiness of the model. 

Quality of data 

 𝑄𝐷 = 𝑇22 

Represents the availability of sufficient, accurate and consistent background data 

with respect to the purposes of the analysis: the higher the quality of the data, the 

higher the trustworthiness of the model. 

Number of equations and 

correlations  𝑄 = 𝑇111 

The number of equations and correlations used in modeling is an indication of 

the level of detail, hence of the modeling fidelity: the higher the number of 

equations and correlations, the higher the trustworthiness of the model. 

Number of model 

parameters  𝑀𝑝 = 𝑇112 

The number of parameters introduced in the model is a measure of the level of 

detail (e.g., the number of components transition rates represents the level of 

discretization adopted to describe the failure process of a component or a 

system): the higher the number of model parameters, the higher the 



17 

 

trustworthiness of the model. 

Number of dependency 

relations  𝐷𝑟 = 𝑇113 

The larger the number of dependency relations that are taken into account, the 

more detailed and trustworthy the model. 

Number of assumptions 

 𝐴𝑠 = 𝑇211 

The larger the number of high-quality assumptions, the higher the 

trustworthiness of the model. 

Impact of assumptions  

 𝐼 = 𝑇212 

It quantifies how much assumptions can affect the model results (and it can be 

assessed by sensitivity analysis). The higher the impact of the assumptions, the 

lower the trustworthiness of the model. 

Consistency of data 

 𝐶 = 𝑇221 

It is an indication of how suitable and representative the data are for a specific 

process or system. The consistency of data relies on the sources of the data. For 

example, if we are collecting data about the failure of a safety system‘s pump 

from different power plants, we should first understand whether the power plants 

are of the same type, whether the plants work at the same power level and 

whether the pumps have the same work function and capacity. 

Amount of data 

 𝐴𝑑 = 𝑇222 

The higher the amount of data available, the stronger the knowledge. For 

example, the number of years of experience of a particular component in a plant 

can be sometimes considered an indication of the amount of data available. In 

any domain, a higher number of years‘ experience means a higher number of 

scenarios covered and hence a larger amount of data. The higher the amount of 

data, the higher the trustworthiness of the model. 

 

It should be noted that the approach proposed might not be comprehensive and complete. For example, 

an increase in the number of parameters of a model, on one side, increases the level of details that the 

model is capable to capture but, on the other side, may leave room for additional errors and uncertainties in 

its estimated parameters (which are not included in the present formulation). As specified before, the 

constituting attributes have been selected on the basis of an accurate and critical literature review of works 

treating the subject. Also, guidelines have been developed to provide  scoring protocols that facilitate the 

evaluation process. These guidelines help in overcoming the problem of evaluating some attribute that 

have contrasting effect on model trustworthiness, e.g., number of approximations (a lower score is given 

for a higher number of approximations). These guidelines have been developed on the basis of the 

experience and knowledge of Electricité De France (EDF) experts (see Appendix A in the appended paper 

I). So, the contribution here is considered as a first attempt of a systematic framework to address the 

evaluation of model trustworthiness and to give a structure to organized expert judgments on this. The 

framework is refined in Chapter 6 for a complete description and assessment of trustworthiness. 
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2.3. Analytical hierarchical process (AHP) for model trustworthiness quantification 

Given the hierarchical tree in Figure 2.1, the assessment of model trustworthiness is carried out within a 

Multi-Criteria Decision Analysis (MCDA) framework [44]; [45]. In this setting, we suppose that a system, 

process or phenomenon of interest for a risk assessment can be represented by different mathematical models 

of possibly different complexity and level of detail, 𝑀1,𝑀2, . . 𝑀𝑙 , . . , 𝑀𝑛. The task (i.e., the MCDA problem 

at hand) is to rank these alternative models with respect to their trustworthiness, in relation to the particular 

risk assessment problem of interest to support MCDA. In the present chapter, the Analytical Hierarchy 

Process (AHP) proposed by [46] is adopted to this aim. 

2.3.1. Introduction to analytical hierarchical process 

AHP is a MCDM method that is known for its capability of considering both quantitative and 

qualitative evaluations of attributes and factors [47] and it can be helpful in group-decision-making [48]. 

This method is usually used for decreasing the complexity of comparison process for decision-making 

purposes, as it allows comparing only two criteria (or alternatives) at a time and then computing the ―overall‖ 

relative importance of a criterion in a group of criteria. In addition, it allows gauging and enhancing the 

rationality and consistency of the expert‘s evaluation for the criteria by measuring the consistency of the 

pairwise comparison matrices. Pairwise comparison matrices are first constructed in AHP for assessing the 

relative importance of criteria. Then, the local relative importance of different alternatives are compared 

with respect to the criteria hierarchically. Decisions are made based on the overall all relative importance of 

each alternative [49]. 

In this approach, the top goal, i.e., the decision problem considered (in this case, ranking the model 

trustworthiness), is placed at the first level of the hierarchy and, then, decomposed into several sub-attributes 

distributed over different levels according to their degree of tangibility. Finally, the bottom level in the 

hierarchal tree-based AHP model contains the different alternatives that need to be evaluated with respect to 

the top goal (i.e., in this case the level of trustworthiness) [48], [9]. Through pairwise comparisons among the 

elements and the attributes of the same level, the alternative solutions, i.e., models, can be ranked with 

respect to the decision problem in the top level (i.e., the model trustworthiness) [48], [50]. 

The AHP model for model trustworthiness assessment is represented in Figure 2.1. The first step 

required to assess the model trustworthiness by AHP is the determination of the so-called inter-level 

priorities (in practice, weights that represent the importance of attributes in the same level relative to their 

parent attribute) for each attribute, sub-attribute, basic ―leaf‖ sub-attribute and alternative solution i.e., 
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𝑊(𝑇𝑖), 𝑊(𝑇𝑖𝑗), 𝑊(𝑇𝑖𝑗𝑘), and 𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘), respectively. Notice that in practice, each weight represents 

the relative contribution of an attribute of a given level to the corresponding ―parent‖ attribute of the upper 

level: for example, weight W(𝑇𝑖𝑗𝑘) quantifies the contribution of basic ―leaf‖ sub-attribute 𝑇𝑖𝑗𝑘 (of Level 

4) in the representation and definition of sub-attribute 𝑇𝑖𝑗 (of Level 3); instead, weight 𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘) is the 

weight of the 𝑙 − 𝑡 model with respect to the basic ―leaf‖ sub-attribute 𝑇𝑖𝑗𝑘. 

The weights 𝑊(𝑇𝑖), 𝑊(𝑇𝑖𝑗) and 𝑊(𝑇𝑖𝑗𝑘) are calculated using pairwise comparison matrices: in 

particular, one pairwise comparison matrix is constructed for the attributes at the second level 𝑆 = 2, one 

is constructed for each ―set‖ of sub-attributes at level 𝑆 = 3 that fall under the same ―parent‖ attribute in 

the upper level 𝑆 = 2, and one is constructed for each ―set‖ of basic ―leaf‖ attributes at level 𝑆 = 4 that 

fall under the same ―parent‖ sub-attribute in the upper level 𝑆 = 3. The comparison matrix is a (𝑛 × 𝑛) 

square matrix, to be filled by experts, where n is the number of elements being compared. Attributes in 

each level are compared to each other with respect to their contribution in defining their ―parent‖ attribute 

in the upper level. For example, a (3 × 3) matrix is constructed to compare the basic sub-attributes 𝑄 =

𝑇111, 𝑀𝑝 = 𝑇112 and 𝐷𝑟 = 𝑇113 (Level 4), with respect to their ―parent‖ sub-attribute 𝐷 = 𝑇11 (Level 

3). Typically, experts use a scale from 1 to 9 to evaluate the strength (i.e., the contribution) of each criteria 

with respect to the other; for example, the scale suggested by Saaty [48] used to carry out a qualitative 

comparison between two attributes A and B, is the following: 

1: A and B are equally important, 

2: A is slightly more important than B, 

3: A is moderately more important than B, 

4: A is moderately-plus more important than B, 

5: A is strongly more important than B, 

6: A is strongly-plus more important than B, 

7: A is very strongly more important than B, 

9: A is extremely more important than B. 

Another possibility is to use the “generalized balanced scale”, which is recommended due to its 

ability to overcome the problem of uneven dispersion of the local weights that could lead to inaccurate 

estimates. Please refer to appended paper 1 for more details about the balanced scale. 

A pairwise comparison matrix is made for each group of attributes in the same level (say, S) sharing the 

same parent attribute in the upper level (S-1). Each expert is asked to fill individually the pairwise 
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comparison matrices as illustrated above. For each matrix, the weight of each attribute can, then, be 

determined by solving the eigenvector problem and normalizing the principal eigenvectors (for details, see 

[48], [46], [49]). A good approximation for calculating simply the eigenvector is by multiplying the elements 

in each row and then to take the 𝑛-th root of the product (𝑛 is the matrix size). The output of the row is 

eventually, normalized with the other row‘s outputs.  

It should be noted that the consistency of the pairwise comparison matrix should be checked by 

calculating the consistency ratio (CR): 

 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
,  ( 2.1) 

where RI represents the consistency index of a randomly generated matrix and its value can be taken from 

Table 1 in [51], and CI is the consistency index which is calculated by Eq. (2.2): 

 𝐶𝐼 =
𝜆𝑚𝑎𝑥– 𝑛

𝑛;1
,  ( 2.2) 

where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue and 𝑛 is the order of the matrix and represents the number of 

attributes being compared [48], [24]. Saaty‘s acceptance criteria of consistency is adopted [48]: when 

𝐶𝑅    .1, the comparison matrix is consistent, otherwise it is not and the experts are demanded to revise 

their evaluations [24] [52], [51]. After checking the consistency of the matrices and obtaining the weights 

of the attributes from each expert. The final weight of each attribute is calculated by averaging the weights 

obtained from the experts. Notice that the weights obtained should be normalized to sum to 1 at each 

hierarchy. 

An illustration example on how to apply the AHP for determining the weights of is given below. Let‘s take 

again the level of details 𝐷 = 𝑇11 at Level 3 as an example. The level of details has three daughter attributes 

at Level 4: the number of equations and correlations 𝑄 = 𝑇111 , the number of model parameters 

𝑀𝑝 = 𝑇112, and the number of dependency relations 𝐷𝑟 = 𝑇113 (Level 4). A 3 × 3 pairwise comparison 

matrix is constructed to compare the basic sub-attributes. The experts are then asked to fill the pairwise 

comparison matrices in Table 2.2, in order to evaluate the importance of each attribute (criteria). The 

attributes relative importances with respect to the parent attribute (level of detail) have been evaluated 

using the 1-9 scaling. 

The first step is to evaluate the consistency of the matrix. By solving the eigenvector problem, the 

maximum eigenvalue is found to be 𝜆𝑚𝑎𝑥 = 3. From Eqs. (2.1) and (2.2), the consistency ratio for this 

matrix is 𝐶𝑅 =  , since the order of the matrix equals to maximum eigenvalue 𝜆𝑚𝑎𝑥 = 𝑛 = 3. This 
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means that the matrix is consistent. Now for determining the weights, let‘s adopt the approximation 

illustrated previously. The 3
rd

 root of the multiplication of the elements in each row is found and then the 

results are normalized to obtain the weights. For example, the relative importance of the first row is 

calculated as the following: 

√1 × 3 × 1
3

= 1.44 

Then it is normalized to 0.449 as illustrated in Table 2.2. Note that the weights of the three attributes in 

the example sum to one: ∑ 𝑊11𝑘
3
𝑘<1 = 1. 

 

Table 2.2  Pairwise comparison matrix for level of detail daughter attributes 

 Q Mp Dr Relative importance Normalized 

weight 

Q 1 3 1 1.44 0.449 

Mp 1/3 1 1/3  .33 0.102 

Dr 1 3 1 1.44 0.449 

 

2.3.2. Model trustworthiness quantification using AHP 

For the tangible basic leaf sub-attributes 𝑇𝑖𝑗𝑘, a quantitative evaluation 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘 can be given directly if 

they are quantitative in nature. If the basic leaf sub-attributes are not quantitative in nature, the scaling 

system explained above (i.e., scores from 1 to 9) can be adopted to provide a (semi-quantitative) relative 

evaluation of the leaf attributes  𝑇𝑖𝑗𝑘 with respect to the risk models 𝑀𝑙 available (guidelines are provided 

in Appendix A in the appended paper I for relatively evaluating the basic leaf sub-attributes). Also, if the 

attribute is not the larger the better with respect to the trustworthiness, the scaling system provided in the 

guidelines needs to be adopted. For example, the larger the number of approximation, the worst the 

trustworthiness is. Therefore, this attribute needs to be evaluated given the guidelines provided in the 

Appendices in the appended paper I. 

The corresponding inter-level weights 𝑊(𝑀𝑙, 𝑇𝑖𝑗𝑘) can, then, be obtained as 
𝑇𝑀𝑙,𝑇𝑖𝑗𝑘

∑ 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
𝑛
𝑙=1

. The weights 

𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘) are normalized so that ∑ 𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘) = 1
n
𝑙<1 , where n is the number of models. 

Finally, the normalized trustworthiness  𝑇(𝑀𝑙) of a model 𝑀𝑙 is evaluated using a weighted average 

of the leaf attributes, as indicated in Eq. (2.3):  

 𝑇(𝑀𝑙)  = ∑ ∑ ∑ 𝑊(𝑇𝑖) ∙ 𝑊(𝑇𝑖𝑗) ∙ 𝑊(𝑇𝑖𝑗𝑘) ∙
𝑇𝑀𝑙,𝑇𝑖𝑗𝑘

∑ 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
𝑛
𝑙=1

𝑛𝑇𝑖𝑗
𝑘<1

𝑛𝑇𝑖
𝑗<1

𝑛T
𝑖<1  2 ( 2.3) 

where 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘 is the numerical value that the basic ―leaf‖ sub-attribute 𝑇𝑇𝑖𝑗𝑘  takes with respect to model 𝑀𝑙, (for 
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example, for attributes Q = 𝑇111 variable 𝑇𝑀𝑙,𝑇111 equals the number of equations and correlations contained in 

𝑀𝑙), 𝑛 is the number of models to be compared, 𝑛𝑇, 𝑛𝑇𝑖, and 𝑛𝑇𝑖𝑗 are defined above. 

After obtaining the weight for each criterion with respect to the corresponding upper-level criteria, a 

―global‖ weighting for each criterion with respect to the top goal T can also be obtained by multiplying its 

weight by the weights of its upper parent elements in each level: for example, the ―global‖ weight of basic 

―leaf‖ sub-attribute  𝑇𝑖𝑗𝑘  with respect to the ―top‖ attribute (goal) T is given by  𝑊(𝑇𝑖𝐽𝑘) ∙   𝑊(𝑇𝑖𝑗) ∙  

 𝑊(𝑇𝑖) =   𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇𝑖𝑗𝑘). For example, in the hierarchical tree Figure 2.1, the ―global weighting‖ of the 

―consistency of data‖ (denoted by 𝑇221) with respect to level of trustworthiness is obtained by multiplying 

its weight by the weight of quality of data (denoted by 𝑇22)  by the weight of strength of knowledge 

(denoted by 𝑇2): 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇221)=  𝑊(𝑇221) ∙ 𝑊(𝑇22) ∙ 𝑊(𝑇2). The trustworthiness 𝑇(𝑀𝑙) can then be 

expressed directly as a function of the ―global‖ weights of the leaf attributes with respect to the top goal T:  

 𝑇(𝑀𝑙)  = ∑ ∑ ∑  𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇𝑖𝑗𝑘)
𝑇𝑀𝑙,𝑇𝑖𝑗𝑘

∑ 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
𝑛
𝑙=1

𝑛𝑇𝑖𝑗
𝑘<1

𝑛𝑇𝑖
𝑗<1

𝑛𝑇
𝑖<1   ( 2.4) 

In addition, the enumeration of some model leaf attributes (e.g., approximations, assumptions, 

formulas…) may be an ―artifact‖ of presentation or interpretation, in absence of a protocol rigorously 

constructed to this aim. On the other hand, the following aspects should be considered. First, such a type of 

evaluation has been already used for evaluating some attributes in some relevant models e.g., evaluation of 

phenomenological understanding, availability of reliable data, reasonability of assumptions and agreement 

among peers, demonstrating the feasibility [6]. Second, the issue of enumerating model assumptions and 

evaluating their quality have already been treated in several papers: see, e.g., [17], [53]. Then, most 

importantly, notice that the ―direct enumeration‖ is not the only way to provide numerical values TMl,Tijk 

for the basic ―leaf‖ attributes TTijk with respect to the model 𝑀𝑙. As mentioned above, if the analyst does 

not feel confident in evaluating the assumptions, formulas and correlations quantitatively, he/she may 

resort to semi-quantitative scale (e.g., scores from 1 to 9), in order to provide a relative evaluation of a 

―leaf‖ attribute TTijk  with respect to the different risk models 𝑀𝑙 ‘s available (see for example the 

enumerating protocols in Appendix A of the appended paper I, based on technical reports and experts‘ 

feedback).  

2.4. Application 

In this section, the hierarchical tree-based framework is applied to a case study concerning the 

modeling of the Residual Heat Removal (RHR) system of a NPP. In Sect. 2.4.1, the system is described; in 
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Sect. 2.4.2, the characteristics of the two models used to represent the system (i.e. the Fault Tree-FT and 

the Multi-States Physics-Based Model-MSPM) are presented; finally, in Sect. 2.4.3, the proposed approach 

is applied to evaluate the trustworthiness of the two models. 

2.4.1. The system 

The RHR system of a typical PWR reactor is taken as reference. The RHR is mainly used to remove 

the decay heat (residual power) from the reactor cooling system and fuel during and after the shutdown, as 

well as supplementing spent fuel pool cooling in the shutdown cooling mode for some types of reactors [4]. 

As illustrated in Figure 2.2, the main components of the RHR system are: pumps, heat exchangers, 

diaphragms, and valves. According to previous studies, it was found that 23% of RHR system failures are 

due to pumps failures, 58% are due to valves failures, while the rest of RHR system failures are due to 

other components‘ failures [54]. 

 

Figure 2.2 Schematic diagram of the RHR 

2.4.2. Models considered 

Two models have been considered for evaluating the reliability (resp., the failure probability) of the 

RHR system: a Fault Tree (FT) model (Sect. 2.4.2.1) and a Multi-State Physics-based Model (MSPM) 

(Sect. 2.4.2.2). 

2.4.2.1. Fault Tree (FT) Model 

Andromeda software has been used for the analysis of the RHR‘s components failure modes and 

criticalities (importance analysis). The analysis is based on a logical framework for understanding the 

different possible ways in which the components and the system can fail. The failure probabilities of the 

basic events used in the FT analysis are based on field experience feedback. The result of the FT analysis is 
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given in Table 2.3. 

2.4.2.2. Multi-State Physics-based Model (MSPM) 

The MSPM has been used for the analysis of the RHR‘s failure. In MSPM, the state transition rate 

estimates are based on Physical Based Models (PBM) rather than operational data [55], and the whole 

process of transition and degradation is, then, described by Multi-States Models (MSM) [56]. 

In the present analysis of the case study, the main critical components were taken into account (i.e. 

pump, diaphragm, breaker, motor, contactor and valve). The MSM was used to model the pump, breaker, 

motor and contactor, while the PBM model was used to model the valve and diaphragm, taking into 

account the degradation dependency of the valve on the pump. 

More specifically, three states were considered for the pump, including the fully functioning state, a 

degradation state corresponding to external leakage and the failure state. The breaker was modeled by a 

continuous-time homogeneous Markov model, taking into account the perfectly functioning and the failed 

states, and four types of failures were taken into account. Similarly a continuous-time homogeneous 

Markov model was developed for the analysis of the contactor and the motor, and four and two types of 

failures were taken into account for each, respectively. On the other hand, the valve is subject to thermal 

fatigue that causes cracks or propagation of manufacturing defects, which are described by physical 

models and the related physical variables. 

The results of MSPM and FT are given in Table 2.3. The analysis shows similarities results in the first 

eight years. A difference between the two results starts to appear in the tenth year, showing a more rapid 

decline in the reliability values obtained by MSPM. 

Table 2.3 Values of reliability 

Time (years) 0 1 2 3 4 5 6 7 8 9 10 

Reliability/FT 1 0.779 0.607 0.473 0.369 0.288 0.224 0.175 0.143 0.107 0.083 

Reliability/MSPM 1 0.775 0.603 0.469 0.366 0.285 0.222 0.173 0.135 0.105 0.060 

 

2.4.3. Evaluation of model trustworthiness 

The analysis is carried out through two main steps: the first is an ―downward‖ evaluation of the 

weight of each element in the hierarchy tree with respect to the top goal of model trustworthiness; the 

second is a ―upward‖ assessment of the model trustworthiness by means of a numerical evaluation of the 

basic ―leaf‖ elements for both FT and MSPM models, as shown in Figure 2.3. 
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Figure 2.3 Hierarchical tree-based AHP model for the assessment of the trustworthiness of risk assessment 

models 

With respect to the weights evaluation, three experts were asked to fill the pairwise comparison 

matrices, in order to evaluate the importance of each attribute (criteria). As the experts were considered 

equally qualified, the weights from different experts, were averaged. The results are presented in Table 2.4. 

In particular, the weights of each attribute with respect to the corresponding ―upper level‖ parent 

(i.e., 𝑊(𝑇𝑖),𝑊(𝑇𝑖𝑗) 𝑎𝑛𝑑 𝑊(𝑇𝑖𝑗𝑘)) as well as the ―global‖ weight 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇𝑖𝑗𝑘), with respect to top goal T 

are given. For more information on how to apply AHP method and solve the pairwise comparison matrices, 

please see Sect. 2.3.1 and the case study in the appended paper I. 

The second step consists in an ―upward‖ calculation, for the evaluation of the basic ―leaf‖ attributes for 

each model. Actually, based on the data, information and knowledge available and used in the risk 

assessment analysis, two types of trustworthiness analysis have been implemented. In the first type, the 

analysis is performed through a direct quantitative evaluation of the leaf attributes (e.g., for Mp (𝑇112), the 

number of model parameters are counted, for each model if possible) or quantified semi-quantitatively if the 

attribute is qualitative in nature or doesn‘t correspond with the principle of the larger the better. In the second 

type, the analysis is based on a semi-quantitative evaluation of the leaf attributes carried out through 

comparing the two models to each other and to the state of the art, and then, assigning a relative score (1-9) 

for each leaf attribute. 
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In order to do that, scaling guidelines have been defined for the ―leaf‖ attributes based on several EDFs‘ 

technical reports, [57] and the feedback of experts, and scores of 1-9 have been defined (see Appendix A of 

the appended paper I for details). Actually, we do not claim that those guidelines are complete and 

comprehensive, but they are sufficient for the context of the work. Relying on the guidelines of Appendix A 

of the appended paper I, the data and technical reports used to perform the risk assessment, the relative score 

evaluation was performed for both FT and MSPM models: the results are reported in Appendices of the 

appended paper I, respectively. In passing, notice that the evaluation of the attribute ―Impact of the 

assumptions‖ (𝐼 = T212) is made as follows: a scale is given for each assumption and the scores are, then, 

averaged over all the assumptions.  

On the basis of the relative scores selected, the trustworthiness evaluation was performed for both 

models, as illustrated in Table 2.4: the ―normalized‖ level of trustworthiness was found to be 0.44 for Ft (𝑀1) 

and 0.56 for MSPM (𝑀2) by relative semi-quantitative evaluation of the attributes. Whereas they were found 

to be 0.34 for 𝑀1 and 0.66 for 𝑀2 by the quantitative evaluation. 

We have applied the same method also to evaluate the models trustworthiness T using the direct 

quantification of the leaf attributes. The results are reported in Table 2.4. 

Table 2.4 Comparison between FT and MSPM trustworthiness (relative/direct quantification) 

Attribute Weight Global 

weight 

Relative scores quantitative evaluation 

Fault Tree MSPM Fault Tree MSPM 

S WS S WS S WS S WS 

T 1.00 1.00 - 4.65 - 5.85 - 58.45 - 113.59 

F (𝑇1) 0.35 0.35 - 1.51 - 2.37 - 1.67 - 2.66 

Ap (T12) 0.54 0.19 6 1.13 7 1.32 7 1.32 7 1.32 

D (T11) 0.46 0.16 - 0.38 - 1.04 - 0.35 - 1.34 

Q (𝑇111) 0.46 0.07 3 0.22 8 0.60 1 0.07 9 0.67 

Mp 

(𝑇112) 

0.21 0.03 
3 

0.10 
7 

0.24 

8 0.27 18 0.61 

Dr (𝑇113) 0.32 0.05 1 0.05 4 0.21 0 0.00 1 0.05 

K (𝑇2) 0.65 0.65 - 3.14 - 3.49 - 56.78 - 110.93 

QD (𝑇22) 0.51 0.33 - 2.06 - 2.25 - 55.76 - 109.89 

Ad (𝑇221) 0.60 0.20 5 0.99 8 1.59 275 54.70 549.15 109.23 

C (𝑇222) 0.40 0.13 8 1.06 5 0.66 8 1.06 5 0.66 

QA (𝑇21) 0.49 0.32 - 1.08 - 1.23 - 1.02 - 1.04 

As (𝑇211) 0.20 0.06 5 0.32 6 0.38 4 0.25 3 0.19 

I (𝑇212) 0.80 0.25 3 0.76 3.33 0.85 3 0.76 3.33 0.85 

*S: score      *WS: weighted score 
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2.5. Conclusion 

In this work, we have developed a hierarchical tree-based decision-making framework to assess the 

relative trustworthiness of risk models. The approach is based on the identification of specific attributes 

that are believed to affect the trustworthiness of the model. This is obtained through a hierarchical-tree 

based ―decomposition‖ of the model trustworthiness into sub-attributes. The AHP method has been used to 

perform a weighted aggregation of the attributes to evaluate the model trustworthiness. The method has 

been applied to a case study involving the RHR system of a NPP. Two models of different complexity (i.e., 

FT and MSPM) have been considered to evaluate the system reliability and the trustworthiness of such 

models has been compared. 

FT trustworthiness has been found to score 4.65 out of 9, whereas MSPM has scored 5.85 out of 9 by 

the relative semi-quantitative evaluation of leaf attributes (or 0.34 and 0.66, respectively, by normalizing 

the results). Please note that 9 the maximum score in the scaling system. The quantitative evaluation of the 

two models resulted in 58.45 for FT, whereas 113.59 for MSPM or 0.56 and 0.66 when normalized. The 

two results confirm the expectation that MSPM provides more trustworthy risk estimates than FT, due to 

the fact that it takes into account components failure dependency relations and time dependency of the 

degradation affecting the component.  

Clearly, there is no claim that the trustworthiness assessment approach proposed is comprehensive 

and complete, as there exist other factors that affect the level of trustworthiness, which were not considered 

here. The method was, rather, a first attempt to systematically evaluate the models‘ relative trustworthiness. 

Obviously, it impossible to remove completely subjectivity and expert judgment is still present, the method 

provided is an attempt to cast such expert judgment in a systematic and structured framework. Also, further 

studies should be performed to define the scaling guidelines for attributes evaluation and study how to 

integrate the level of trustworthiness in RIDM. 
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Chapter 3 Risk analysis model 

maturity index for Multi-Hazards Risk 

Aggregation 
In risk assessment, we measure risk quantitatively or qualitatively to inform design solutions and 

maintenance strategies so that the risk is maintained below the accepted limit. The evaluation of the overall 

risk implies aggregating the risk indexes from different contributors, i.e., MHRA.  

MHRA must be capable of combining the outcomes of the risk assessment models relative to the 

different contributors, which are heterogeneous in nature and based on different degrees of maturity [19]. 

The current practice of MHRA adopts a simple arithmetic summation of the risk outcomes relative to the 

different contributors, without considering the different levels of knowledge base and maturity of the 

models used to obtain them [19]. The current practice of MHRA should be extended to reflect the level of 

maturity of the different risk analysis models whose outcomes are involved in the aggregation. In this 

chapter, a new index, namely the level of maturity, is introduced to reflect factors of heterogeneity in the 

assessment of the different risk contributors involved in the MHRA. A review of approaches for MHRA 

proposed in the literature is presented in Sect. 3.1. In Sect. 3.2 we propose a hierarchical tree to structure 

the level of maturity of a risk assessment model, we discuss the effect of the factors influencing the level 

of maturity on the risk assessment and DM and propose some evaluation guidelines. In Sect. 3.3, we 

illustrate how to evaluate the level of maturity for a given hazard group and introduce the reduced-order 

model to allow application on large scale PRA models. In Sect. 3.4, we apply the developed methods on a 

numerical case study. Finally, in Sect 3.5, we give conclusions and discuss potential future work.  

3.1. State of the art 

Few works in the literature focus on MHRA in risk assessment. EPRI report [19] indicates that the 

current practice of MHRA might not be appropriate for some contexts of DM due to the difference in the 

means employed for evaluating risk and the degrees of confidence in the risk contributors. The report also 

highlights some of the fundamental differences in the nature of the risk estimates from different sources 

(e.g., maturity of the used tool and analysis, uncertainty level for each contributor) [19]. Then, it proposes 

a practical guidance for an integrated understanding of the risk to support DM within the context of 
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RG1.174 (i.e., meets the current regulations, meet the defense in depth requirement etc. See Figure 2 in [33] 

for more information). This is done by developing the relevant insights for each of the contributions to risk. 

Five main tasks are required and ―iteratively‖ performed in this guidance: (i) understand the role of PRA in 

supporting the decision; (ii) identify the main risk contributors and evaluate the baseline risk and assessing 

the credibility or confidence in the assessment; (iii) evaluate relevant risk metrics and refine the PRA if 

needed; (iv) identify and characterize key sources of uncertainty; (v) document conclusions for integrated 

DM. It should be noted that this work doesn‘t provide a clear guidance on evaluating the level of realism 

and trustworthiness in risk assessment. 

An iterative method is also proposed in [34] for assessing the different aspects of risk aggregated 

from highly heterogeneous hazard groups and provide useful insights for RIDM, focusing on relative 

rather than absolute risk metrics. The method uses response surfaces that are based on arbitrary polynomial 

chaos expansion in combination with radar charts to visualize the overall risk and associated uncertainties. 

The response surface allows identifying major contributors to the overall risk, individually or on aggregate 

bases for a very large number of input parameters. On the other hand, radar charts are used to visualize risk 

contributors of different natures and compare them to safety guidelines. The method allows the comparison 

of risk contributors. However, it does not address factors like model conservatism, biases, incompleteness, 

hidden model uncertainty (e.g., structural), etc. Also, radar charts do not really allow the aggregation of 

risk from different contributors. Instead, they only allow the relative comparison of the risk contributors 

(hazard groups) to a given threshold. 

3.2. A hierarchical framework for PRA maturity assessment 

In risk assessment, many factors are believed to affect the suitability of risk definition and risk 

aggregation. Emphasis is paid in the literature on importance of communicating these factor for better 

informing DM [6], [36], [17], [19], [41]. In particular, MHRA includes aggregating risk indexes from 

different contributor that have different degrees of realism [19]. Different aspects leading to heterogeneity 

in the realism of risk analysis are identified in the literature. Some of these aspects are: (i) background 

knowledge; (ii) level of uncertainty; (iii) level of conservatism; (iv) importance measures; (v) level of 

details and sophistication of the analysis; (vi) accuracy and precision in the estimation of the values of the 

model‘s parameters; (vii) level of sensitivity; (viii), and others [1], [6], [36], [8], [17], [3], [19], [41], [58], 

[11]. 

In this section we propose a conceptual hierarchical tree to evaluate the maturity index based on some 
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attributes that are believed to affect the level of maturity of the risk analysis and that have huge implication 

of DM (Sect. 3.2.1). In Sect 3.2.2 we demonstrate the implication of these attributes on the maturity and 

propose scoring protocols for the evaluation of the attributes. 

3.2.1. The developed framework 

 

In this work, we focus on communicating the factors that lead to heterogeneity in the estimation of the 

different risk indexes, and accordingly affect their degrees of realism, through a metric referred to as ―level 

of maturity‖. The level Maturity of a PRA expresses the degree to which PRA is correctly implemented in 

a way that makes best use of the available knowledge to best represent the reality. 

In this work, four elements i.e., uncertainty, conservatism, knowledge and sensitivity [1], [6], [36], 

[19], [58], [11] relevant to the level of maturity and RIDM are reviewed and discussed. In this discussion, 

we argue the importance of these attributes in determining the level of realism of probabilistic risk analysis 

and we propose evaluation protocols that are based on solid argument presented in the same sections. The 

overall hierarchical representation of the framework is illustrated in Figure 3.1.  

3.2.2. Attributes evaluation 

In this section, we review the elements presented in Figure 3.1 and discuss their implication on the 

maturity of risk assessment and accordingly propose evaluation procedures. 

3.2.2.1. Uncertainty 

Uncertainty is defined as the imperfection of knowledge on the real value of a variable or its 

variability [59]. Uncertainty is an important source of differences between the reality and the model 

predictions [3]. Hence, uncertainty affects greatly the credibility of PRA [60], [61]. This means that it 

Figure 3.1 Level of maturity framework 
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reflects directly the level of maturity of the PRA and it should be addressed in its evaluation. 

Uncertainty classification 

Uncertainty can be classified relatively into different levels, depending on the degree of knowledge 

imperfection [62]. For example, [63] distinguishes four types of uncertainties depending on the level of 

knowledge: “Risk” where the system behavior is well known and quantifiable; “uncertainty” where the 

system parameters are known but the probability distributions are unknown; “ignorance” where the 

unknowns are unknown and finally; “indeterminacy” which underlies the indeterminacy in scientific 

knowledge. Walker et al., (2003) suggests three dimensions for uncertainty classification for 

uncertainty-based decision support purposes: the “location” where the uncertainty manifests itself within 

the model complexity, the “level” of uncertainty, which is, demonstrated by a spectrum between 

deterministic knowledge and absolute ignorance and finally, the “nature” of uncertainty which illustrates 

the type of uncertainty (epistemic or aleatory) [62]. The level of uncertainty is, further, classified into five 

progressive levels: determinism, statistical uncertainty, scenario uncertainty, recognized ignorance and 

total ignorance [62]. Spiegelhalter and Riesch (2011) identify, within the spirit of [62], five progressive 

levels of uncertainty for model-based risk analysis [64]. The levels are presented in Table 3.1.  

 

Table 3.1 Uncertainty levels descriptions and scores with respect to the level of maturity 

Level Description Score 

Level 1 (uncertainty 

about the outcome) 

This level of uncertainty manifests itself when the model and the 

parameters are known, and the analysis predicts a certain outcome with a 

probability 𝑃 (e.g., the uncertainty about the outcome in most traditional 

mathematical and philosophical problems of probability theory) 

 

5 

Level 2 (uncertainty 

about the parameters 

The model is known but its parameters are not. If the parameters are known 

then the model would predict an outcome with probability 𝑃 and exhibit 

an uncertainty of level one. This type of uncertainty arises due to lack of 

empirical information on the model parameters (e.g. input parameters 

related to Large Break in Primary Circuit of a Nuclear Power Plant that has 

never occurred) 

4 

Level 3 (uncertainty 

about the model) 

It reflects the likelihood of the competing models‘ abilities to reflect reality. 

This type of uncertainty is due to the model structure itself and the 

computer implementation of the model [62] 

3 

Level 4 (uncertainty 

about the acknowledged 

limitations and implicit 

assumptions-unmodeled 

This level covers any known limitations in understanding and modeling 

abilities, which arises from the inevitable assumptions and simplifications 

made such as: data extrapolations, limitation in the computations, and any 

aspects that we are aware that they have been omitted. 

2 
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uncertainty)  

Level 5 (Uncertainty 

about unknown 

inadequacies) 

It is the unrecognized uncertainty or as it was referred to by Donald 

Rumsfeld the ―unknown unknowns‖, which corresponds to the unforeseen 

events, unmodeled and unmodlable uncertainty. This type of uncertainty are 

usually acknowledged by brainstorming of the possible scenarios, or by the 

introduction of what so-called ‗fudge factors‘. 

1 

Whilst this classification seems crude and simple, it satisfactorily covers, at least from this problems‘ 

perspectives, the three dimensions defined by [62], i.e., “location”, “level” and “nature” of uncertainty. 

For example, the definition of uncertainty Level 1 refers to the aleatoric nature of uncertainty, whereas 

Levels 2-5 cover the epistemic nature of uncertainty. Also, where the five levels vary progressively from 

the known to the unknown-unknown, they simultaneously refer to its location i.e., parameter, model and 

context of uncertainty. Please notice that classification can be applied on the level of the hazard group as 

well as on the level of the basic events in the PRA model since the probabilities of basic events are 

determined using data and physical or statistical models. 

3.2.2.2. Conservatism of analysis  

Conservatism in PRA refers to desire of overestimating the risk purposely out of cautiousness. The 

conservatism in PRA arises from different considerations and perspectives, such as the concerns regarding 

the lack of knowledge about the nature and magnitude of the hazard [65]. This leads to the implementation 

of the concept of ―Better safe than sorry‖, which is further translated to the preference of overestimating 

the risk rather than underestimating it. For example, selecting risk estimate at the 95
th

 percentile, which, 

means that there is a 95% probability that the risk is overestimated and 5% is underestimated [66]. 

Although the conservatism is usually anticipated to increase safety, some counter-arguments still exist 

on its influence on safety margin [66]. It has been argued that conservatism cannot be advised only from a 

risk-aversion point of view, and that the cumulative effects of conservatism on decision-making, regulations 

and risk management are unacceptable [66], [65]. In particular, the effect of conservatism is not taken into 

account from a firm empirical sense [65], which might be, in some contexts, perceptive for the analysts by 

giving a false assurance of safety, leading to worst consequences of risk [67]. In fact, the overall effect of 

conservatism on safety (whether that conservatism is protective or not), depends greatly on the assumptions 

made, and the context of DM [67]. 

Viscusi et al. (1997) argue that though conservative risk estimates increases the risk magnitude, the 

implications of this increase on the safety is still a matter of the decision-makers‘ actions [65]. They have 

showed through a cost-benefit-based study (number of lives saved per unit cost) that unlike conservative 
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assessment, the mean parameter approach would result in enhanced judgment policies that would enhance 

the safety. This can be explained by the shift of prioritization of decision maker. Moreover, recent studies 

conclude and explicitly recommend that conservatism should be avoided in the light of some DM contexts 

like: comparing options and studying the effects of potential risk reduction measures [58]. The degree of 

conservatism should be complied with the decision contexts and requirements of the PRA. Otherwise, it 

might reduce the maturity level and sometimes mislead the decision maker. 

Conservatism classification  

All of the arguments mentioned in the previous section lead to questioning how to classify of levels of 

conservatism in the light of the maturity and its consequences on safety. At a first glance, classifying the 

levels of conservatism depending on the level of knowledge seems plausible, especially that conservatism 

represents a practical act performed to deal with uncertainties and lack of knowledge. However, this is not 

valid considering its implication on safety, where other aspects should be taken into account aside from 

strength of knowledge, e.g., the context of DM. Aven (2016) highlights the conservatism in risk analysis as a 

multi-dimensional concept, reinforcing the former arguments of experts about the real effect on safety [58]. 

This is done by firstly addressing the meaning of conservatism, secondly relating it to the strength of 

knowledge and thirdly evaluating its usefulness in the context of decision-making. In this vision, he 

compares conservative risk indexes (i.e., based on conservative assumptions) to three cases: (i) risk indexes 

based on best estimate assumptions; (ii) risk indexes based on true value parameters (iii) risk indexes based 

on true value parameters with a defined confidence statement. Then, for these cases (i-iii), he defines the 

possible states of knowledge on which the assumptions or risk parameters are based and finally, the possible 

contexts of decision, and tries to relate it to the consequences on safety [58]. Hereafter, we extend the work in 

[58] and define three main types of risk index estimates: (i) best judgment estimates (based on best judgment 

of assumptions and parameters); (ii) true value with a high confidence (based on strong knowledge); (iii) true 

value with a low confidence (based on weak knowledge). Then, for two context of DM, i.e., comparing 

alternatives and comparing the risk indexes to acceptance limit, we compare the three defined estimate types 

(i-iii) to the conservative estimates (based on conservative assumptions) and give scores for each possible 

scenario with respect to level of maturity and safety. In other words, we are comparing the estimates that are 

based on assumptions chosen to be conservative (for cautiousness reasons) to those estimates that are based 

on the best judgment or true values of assumptions and parameters. Figures 3.2-3.4 illustrate the different 

score for each corresponding scenario. From Figures 3.2-3.4, five levels of conservatism are defined in light 
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of their influence on the safety, where Leve l represents the worst influence of conservatism in terms of 

reducing the safety, Level 3 represents an acceptable influence of conservatism on safety, Level 5 

represents the best influence of conservatism on increasing the safety. Levels 2 and 4 are intermediate 

levels. 

 

 

Figure 3.2 Evaluation of the conservatism in the light of level of maturity (conservatism VS Best estimate) 

 

Figure 3.3 Evaluation of the conservatism in the light of level of maturity (conservatism VS True value/weak 

True value (low 

confidence, 𝑃 ≤ 9 %) 

based on weak 

knowledge 
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knowledge) 

 

Figure 3.4 Evaluation of the conservatism in the light of level of maturity (conservatism VS True value/strong 

knowledge) 

3.2.2.3. Knowledge 

Knowledge is the second top tier of the four levels knowledge-hierarchy (DIKW hierarchy). It is the 

yield of a combination of data, information, experience and judgment to be used in decision-making [8]. 

Knowledge manifests itself in three main forms: explicit, implicit, and tacit [68]. 

It is said that ―You can't manage what you can't measure". To best employ knowledge, one should be 

able to state its level. This led experts in safety and risk assessment to emphasize the importance of 

considering the background knowledge on which risk assessment is based, especially for RIDM purposes [8], 

[17], [18], [11], (Askeland et al., 2017), [16], [26]. This argument is visibly manifested in the new risk 

perspectives, which considers strength of knowledge in addition to the traditional elements i.e., scenarios, 

likelihood and consequences [17], [18], [69], [70]. For these reasons, evaluating strength of knowledge 

should be considered in evaluating the models‘ credibility and maturity. 

Knowledge evaluation 

Different attributes can be considered to evaluate the strength of knowledge, such as the amount of data 

and information, its suitability and usefulness, the human cognition regarding a specific phenomenon, the 

experience on the technology and of the analysts, etc. There are, however, two main methods on which most 

of the strength of knowledge assessment approaches are based: a semi-quantitative approach for evaluating 

True value (high 

confidence, 𝑃 ≥ 9 %) 

based on strong 

knowledge 
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the strength of knowledge [43] and the assumption deviation risk by [17]. In the first method, four main 

criteria are identified for evaluating the strength of knowledge: the phenomenological understanding, the 

reasonability and realism of assumptions, the availability of reliable and relevant data and the agreement 

among peers [43]. Based on the degree of fulfilling the criteria, the strength of knowledge is classified 

crudely to minor, moderate, and significant. The second method is based mainly on evaluating the criticality 

of the main assumptions on which probabilistic risk assessment is based. This is done by evaluating three 

criteria: deviation from assumption, the uncertainty of this deviation and the strength of knowledge 

supporting the assumptions. Accordingly, the number of assumptions and the criticality of deviation from 

assumption, indicates the strength of knowledge on which the probabilistic risk assessment is based [17]. 

However, one should not forget that in addition to the explicit properties of knowledge, it has also implicit 

and tacit properties [68]. Although it cannot be directly stated or documented, it contributes to the individual 

and organizational performance [71]. Obviously, in [6], the reasonability of assumptions and agreement 

among peers are partially related to the implicit and tacit knowledge. However, this framework does not 

cover convincingly the assessment of tacit knowledge (e.g., agreeing on an assumption or assessment does 

not necessarily make it good). Hence, the carriers of implicit and tacit knowledge (assessors) should rather 

be themselves evaluated.  

In fact, several researches have emphasized on the importance of evaluating the value-ladenness and 

confidence in experts‘ judgment. For example, [24] points to the fact that expert‘s judgment is subject to 

inevitable bias that lead experts that have the same background knowledge to make different judgment. It 

defines a few attributes that are believed to affect the experts‘ judgment, such as, the personal interest, the 

personal knowledge, the degree of independence, the experience, etc. Other aspects such the situational 

limitations, choice space, agreement among peers and stakeholders are included as well to assess the quality 

and robustness of assumptions on which risk analysis is based [53], [21], [10]. Above all, one can argue that 

there are many other attributes that could be used to better represent the level of knowledge.  

The method discussed earlier, which relies on four criteria for evaluating the strength of knowledge 

(i.e., the phenomenological understanding, the reasonability and realism of assumptions, the availability of 

reliable and relevant data and the agreement among peers [43])) seems very plausible and relevant to the 

context of this problem except that it doesn‘t take into account the assessment of the experts who make the 

assumptions and the reasoning of the analysis, neither the availability of trustable predicting models. In 

this work, we adjust and expand this method in Table 3.2, and add a new main attribute i.e., value-ladenness 
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of the assessor to the framework, to be adapt to the context of this chapter.  

Table 3.2 Level of knowledges' attributes evaluation guidelines 

 Score 1 3 5 

Data 

availability 

(A) 

Amount of 

data/field data 

(Sc3,1) 

No data or the data are so 

limited and (can extracted 

only from the same type of 

NPPs) 

The data are available 

and can be extracted 

from any other NPP 

The data are available in 

abundance (can be extracted 

easily from so many sources and 

places worldwide) 

Data 

consistency 

(Co) 

Source of data 

(Sc3,2) 

The data are extracted from 

other sources that is not 

related directly to the 

technology (not the exact 

same type of component) 

Other NPPs of the 

same type and 

technology 

Field data from the same power 

plant, and related to the same 

type of components 

Quality and 

reliability 

of data (Q) 

Quality of data 

(Sc3,3) 

Based on 

experts 

elicitation 

Data are 

calculated 

using 

statistical 

models 

Data are both assumed 

and calculated using 

computer physical and 

mathematical models 

Data are 

extracted 

using 

computer 

mathematical 

and physical 

models 

The data are 

measured 

precisely and 

accurately, and 

then modeled 

Quality of 

assumptions 

(Sc3,4) 

Represents strong 

simplifications 

Represents moderate 

simplifications 

Represents reasonable 

simplifications 

Experience 

(E) 

Phenomenological 

understanding 

(Sc3,5) 

The   phenomena   

involved   are   not   

well   understood 

The phenomena 

involved are 

understood but not 

completely 

The phenomena involved are 

very well understood 

Experience and 

knowledge 

regarding the 

hazard group 

(Sc3,6) 

No experience at all Experienced such an 

event in other 

industries 

This event is quite common and 

we have a wide experience in 

Availability of 

models (Sc3,7) 

Models are non-existent or 

known to give poor 

predictions. 

The models used are 

believed to give 

predictions with 

moderate accuracy 

The models used are known to 

give predictions with the 

required accuracy 

Value 

ladenness 

of the 

analysts 

(VL) 

Agreement among 

peers (Sc3,8) 

There is strong 

disagreement among 

experts 

There is slight 

agreement among 

experts 

There is broad agreement 

among experts 

Expert years in 

experience in the 

field and 

performance 

measure (Sc3,9) 

has quite short experience 

in risk assessment of NPPs 

It is his specialty and 

he practiced through 

training courses 

regarding the same 

type of NPPs 

Expert in this domain (long 

experience) 



38 

 

3.2.2.4. Sensitivity 

A mathematical model might embrace errors due to the lack of the knowledge regarding the input 

parameters or due the numerical methods used to solve the model [72]. The effects held by such errors are 

very important and need to be evaluated as it reflects the range of the trustworthiness and validity of the 

model. This is, done by sensitivity analysis [72].  

Sensitivity analysis is generally used to determine how a dependent variable can be changed and 

affected by the change of the input independent variable [72]. This is usually used to determine the critical 

control points and to prioritize additional data collection [73]. Moreover, it is implemented to provide the 

comprehensive understanding needed for a reliable use of the model, through highlighting and quantifying 

its most important features [72], as well as verifying and validating it [73]. 

In safety and risk assessment, sensitivity analysis can be useful in many ways. In particular, 

sensitivity analysis complements the risk analysis to inform decision-making [74], where it helps to 

identify the uncertain inputs that contributes to the uncertainty in the outputs and consequently, affect the 

DM process [75]. For example, in PRA of NPPs, sensitivity analysis is required to study the impact of 

different model basic events‘ probabilities on the decision [76]. Also, the importance of an assumption in a 

risk prediction model can be evaluated through altering the input parameters or the background knowledge 

related to the given assumption, which helps in identifying the critical assumptions and the risk of their 

deviations [43]. Furthermore, sensitivity analysis is recommended in the practice of risk assessment to 

reduce -in some cases- the unnecessary conservatism [33]. From these perspectives, sensitivity analysis is 

considered an indispensable tool for evaluating model credibility and maturity. 

Sensitivity evaluation 

Flage and Aven (2009) suggested integrating the sensitivity concept as a main component of the 

uncertainty in order to have a holistic picture of the uncertainty beyond the concept of the probability [6]. 

A rough semi-quantitative evaluation of sensitivity has been introduced with three levels of classification: 

significant sensitivity, moderate sensitivity and minor sensitivity. The simplicity of this method makes it 

very helpful in the context of DM, as it gives an indication on the associated consequences and 

implications of parameters‘ deviations. On the other hand, it doesn‘t show how to apply the sensitivity 

analysis, neither how to translate it into a sensitivity level. For this reasons, we suggest to complement this 

proposal by using a one-at-a-time index and then, converting it into a relative scores that represents the 

sensitivity levels. 
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In one-at-a-time method, the sensitivity index 𝑆 measures the relative change in the dependent (output) 

variable 𝑌(𝑥𝑖) by altering one input (𝑥):  

 𝑆 = |
𝑌(𝑥1:∆);𝑌(𝑥1)

𝑌(𝑥1)
| , (3.1) 

where 𝑥𝑖 is the input parameter, ∆ is an estimated suitable value by which the input parameter is alerted 

e.g., ±20% of the original value, ±SD (standard deviation) [77] or ±4SD [78]. However, we are considering 

a ±50% altering parameter in this study to represent more clearly the sensitivity of parameters, as we are 

more concerned with PSA models that have a linear relation with the basic events (if each basic event is 

unique and appears only one time in a given minimal cutset). 

In this kind of analysis converging to 0 indicates the insensitivity of the model, while diverging from 

0 indicates sensitivity. After applying these analysis, the results need to be converted into discrete scores 

(e.g., 1: minor, 2: moderate, 3: significant [43]) that indicate their levels. A sensitivity score (1-5) is 

assigned for the sensitivity index relying on the degree that the index converge or diverge from 0 as 

illustrated in Table 3.3. Please note that mapping the sensitivity indexes into scores is based on subjective 

elicitation and can be adapted given the context.  

Table 3.3 Scores representation of the sensitivity measure 

Interval S: ≤0.10 S : 0.10-0.25 S: 0.25-0.45 S: 0.45-0.70 S: ≥0.70 

Level of sensitivity 1 2 3 4 5 

Score 5 4 3 2 1 

Please notice that if we are applying the sensitivity analysis on the level of the basic events of the 

PRA model, then, it means that we are studying the dependency of the PRA model on this given basic 

event. 

3.3. PRA maturity assessment 

In this section we implement the developed framework through Analytical Hierarchy Process (AHP) 

method in Sect. 3.3.1. Then, we develop a method for evaluating the level maturity on the basis of small 

constituting elements of the PRA model in Sect. 3.3.2-3.3.4. In Sect. 3.3.5 develop a technique for 

aggregating the maturity of the overall risk analysis. 

3.3.1. Evaluation of the level of maturity 

For each criterion and sub-criterion defined in Figure 3.1, a semi-quantitative evaluation is carried out 

by assigning a relative score from 1 to 5, based on the set of pre-defined scoring criteria presented earlier in 

Sect. 3.2.2. The next step is to aggregate the scores of different attributes (criteria) to assess the overall 
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maturity of a risk contributor. In this work, the maturity level is calculated as a weighted average of the 

scores of the attributes. 

 𝑚𝑖 = ∑ ∑ 𝑤𝑖 ∙ 𝑤𝑖,𝑗 ∙ 𝑆𝑐𝑖,𝑗
𝑛𝑑
𝑖<1

𝑁𝑝
𝑗<1

 (3.2) 

where 𝑚𝑖 is the level of maturity for the 𝑖-th hazard group that need to be evaluated,  𝑤𝑖,𝑗, 𝑆𝑐𝑖𝑗 and 𝑤𝑖 

are respectively the weight and the score of the 𝑗-th sub-attribute in the 𝑖-th attribute, and the weight of the 

𝑖-th attribute. 𝑁𝑝 is the total number of attributes and 𝑛𝑑 is the number of sub-attributes related to the 𝑖-th 

evaluation criterion. The relative weight of each attribute 𝑤𝑖  and sub-attribute 𝑤𝑖,𝑗  is determined by 

Analytical heretical Process (AHP). Detailed description of AHP method was introduced in Chapter 2.  

3.3.2. The concept of reduced order model  

After determining the relative weight of the attributes, Eq. (3.2) can be applied to determine the level 

of maturity. Evaluating the level of maturity on the level of hazard group, however, is not realistic. Further, 

PRAs of complex systems are very complex and often embrace multiple PRA elements, which need to be 

evaluated separately. In this light, we develop a technique to limit the number of elements that need to be 

analyzed PRA models, namely, the reduced-order model.  

For the purpose of illustration, we consider the Probabilistic Risk Assessment (PRA) models used in 

the nuclear industry. Specifically, we refer to the widely applied event tree models. The events probabilities 

in the event tree model are calculated by fault tree models. The risk index considered is the probability of 

occurrence of a given consequence (e.g. the probability of core damage in a NPP). For each combination of 

operation state and scenario, a dedicated risk assessment model (in this case, an event tree) is developed 

and the total risk index is calculated by summing the values of the risk indexes calculated for each 

individual risk model: 

 𝑅 = ∑ ∑ 𝑅𝑖,𝑗
𝑛𝑆,𝑖
𝑗<1

𝑛𝑂
𝑖<1 ,  (3.3) 

where 𝑛𝑂 is the number of operation states (O), 𝑛𝑆,𝑖 is the number of accident sequences (scenarios, S) 

that are considered in operation state 𝑖 and can lead to the given consequence of interest. Each 𝑅𝑖,𝑗 in Eq. 

(3.3) quantifies the risk contribution specific to scenario 𝑗 (e.g., medium flood level) in operation state 𝑖 

(e.g., emergency shutdown).  

The risk models for calculating the specific risk index contribution 𝑅𝑖,𝑗  are characterized by 

initiating events (IEs), basic events (BEs) and their combinations in minimal cut sets (MCSs). Please note 

that the initiating events in the PRA model are basic events that trigger the abnormal activity, so it will be 
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treated hereafter as a basic event. Taking the rare-event approximation, 𝑅𝑖,𝑗   can be calculated by [79]: 

 𝑅𝑖,𝑗 = ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑘

𝑛𝑀𝐶𝑆,𝑖,𝑗
𝑘<1

, (3.4) 

where 𝑛𝑀𝐶𝑆,𝑖,𝑗 is the number of minimal cut sets in the risk model for operation state 𝑖 and scenario 𝑗, 

𝑀𝐶𝑆𝑘 is the 𝑘-th minimal cutset and 𝑃𝐵𝐸,𝑞 is the occurrence probability of the 𝑞-th basic event in 

𝑀𝐶𝑆𝑘.   

For the following illustration of the maturity assessment procedure, it can be considered that the four 

elements O, S, MCS and BE fully define the PRA model, as shown in Figure 3.5. We refer to these four 

elements as the ―constituting elements‖ of the model. In Figure 3.5, let‘s imagine that the PRA model is a 

box (cuboid). The box is divided into several cuboids each represents a given operation state. Each 

operation state cuboid is further broken down into smaller cuboids that represent the scenarios. The 

scenario cuboids are in turn broken into smaller cuboids each represents a MCS. Finally, the MCS cuboids 

are broken into the smallest constituting cuboids (known as the basic atomic elements) that represent the 

basic events. The idea behind this technique is to facilitate the process of maturity evaluation by dividing 

the PRA model into the smallest constituting elements known as the atomic elements. As illustrated in 

Figure 3.5, the atomic elements of the PRA model are the basic events. 

To assess the maturity of the PRA model, all the four atomic elements must be considered. In practice, 

however, PRA models are very complex: they contain many scenarios and operation states, combined in 

Figure 3.5 Atomic elements of a PRA model 
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large and complex fault trees and event trees, that consist of thousands of BEs and MCSs [80]. For such 

complex risk assessment models, it is not practical to consider all atomic elements for evaluating the 

maturity. To address this problem, we develop a top-down bottom-up method for maturity assessment. A 

reduced-order model for Eq. (3.4) is developed first, in order to limit the number of atomic elements that 

need to be analyzed. The model allows the assessment of maturity for most basic atomic elements and then 

calculating it for the other constituting elements. A detailed discussion on how to construct the 

reduced-order model is given in Sect. 3.3.3. Then, the maturity supporting each atomic element in the 

reduced-order model is assessed by a weighted average of the scores for the attributes in Figure 3.1. The 

weights are evaluated using pairwise comparison matrices of AHP. In Sect. 3.3.4, the maturity of each 

element is aggregated to evaluate the maturity of the entire PRA model. Finally, an approach is presented 

in Sect. 3.3.5 for risk aggregation considering the level of trustworthiness. 

3.3.3. Reduced-order PRA model construction 

In PRA models, most of the contribution to the total risk is provided by a small number of basic 

elements (known as ―Pareto principle‖) [81]. The rest of the basic elements might be in large number but 

contribute little to the total risk. To make feasible the maturity assessment, the PRA model is transformed 

into a reduced-order model that consists of the most important ―atomic elements‖, in order to reduce the 

number of elements that need to be analyzed. 

The procedure for constructing the reduced-order model is made of three steps. Firstly, the number of 

operation states 𝑛𝑂 is reduced to the 𝑛𝑂,𝑅𝑒𝑑 most relevant; to do this: 

 Calculate the risk 𝑅𝑂𝑖 for each operation state: 

 𝑅𝑂𝑖 = ∑ 𝑅𝑖,𝑗
𝑛𝑆,𝑖
𝑗<1 ,    1 ≤ 𝑖 ≤ 𝑛𝑂,  (3.5) 

where 𝑅𝑖,𝑗 is calculated by Eq. (3.4). 

 Rank 𝑅𝑂𝑖 1 ≤ 𝑖 ≤ 𝑛𝑂 in descending order. 

 Find the minimal 𝑛𝑂,𝑅𝑒𝑑 , so that: 

 
∑ 𝑅𝑂𝑖
𝑛𝑂,𝑅𝑒𝑑
𝑖=1

𝑅
≥ 𝛼,  (3.6) 

where 𝛼 is the fraction of total risk that is represented by the operation states kept in the reduced-order 

model (in the case study in Sect. 3.4, we choose 𝛼 =  .8). 

 Keep only the first, most contributing operation states, i.e., those with 𝑖 = 1,⋯ , 𝑛𝑂,𝑅𝑒𝑑; operation 

states with 𝑖 > 𝑛𝑂,𝑅𝑒𝑑 are eliminated. 
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The second step is to define the reduced number of scenarios 𝑛𝑆,𝑅𝑒𝑑,𝑖 for each operating state 𝑖 in the 

reduced-order model, where 𝑖 = 1,⋯ , 𝑛𝑂,𝑅𝑒𝑑:  

 Calculate the risk 𝑅𝑖,𝑗,  1 ≤ 𝑗 ≤ 𝑛𝑆,𝑖 by Eq. (3.4). 

 Rank 𝑅𝑖,𝑗 in descending order, 1 ≤ 𝑗 ≤ 𝑛𝑆,𝑖. 

 Find the minimal 𝑛𝑆,𝑅𝑒𝑑,𝑖 so that: 

 
∑ 𝑅𝑖,𝑗
𝑛𝑆,𝑅𝑒𝑑,𝑖
𝑗=1

𝑅𝑂,𝑖
≥ 𝛽,  (3.7) 

where 𝑅𝑂𝑖 is calculated by Eq. (3.5) and 𝛽 is the fraction of total risk provided by the scenarios in the 

reduced-order model (in the case study in Sect. 3.4, we choose 𝛽 =  .8). 

 Keep only scenarios for 𝑗 = 1,⋯ , 𝑛𝑆,𝑅𝑒𝑑,𝑖; scenarios with 𝑗 > 𝑛𝑆,𝑅𝑒𝑑,𝑖 are eliminated. 

 Repeat the procedures for 𝑖 = 1,2,… . , 𝑛𝑂,𝑅𝑒𝑑. 

Finally, the number of minimal cut sets 𝑛𝑀𝐶𝑆,𝑖,𝑗  is tailored to 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗 , 𝑖 = 1,⋯ , 𝑛𝑂,𝑅𝑒𝑑 , 𝑗 =

1,⋯ , 𝑛𝑆,𝑅𝑒𝑑,𝑖: 

 Calculate 𝑅𝑖,𝑗,𝑘  by: 

 𝑅𝑖,𝑗,𝑘 = ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑖,𝑗,𝑘 ,
1≤𝑖≤𝑛𝑂,𝑅𝑒𝑑
1≤𝑗≤𝑛𝑆,𝑅𝑒𝑑,𝑖

1≤𝑘≤𝑛𝑀𝐶𝑆,𝑖,𝑗
,  (3.8) 

 Rank 𝑅𝑖,𝑗,𝑘 in descending order. 

 Find the minimal 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗 so that: 

 
∑ 𝑅𝑖,𝑗,𝑘
𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗
𝑘=1

𝑅𝑖,𝑗
≥ 𝛾,  (3.9) 

where 𝑅𝑖,𝑗,𝑘 is calculated by Eq. (3.8) and 𝛾 is the fraction of total risk given by the minimal cutsets 

contained in the reduced-order model (in the case study in Sect. 3.4, we choose 𝛾 =  .8). 

 Keep only minimal cut sets for 𝑘 = 1,⋯ , 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗; minimal cut sets with 𝑘 > 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗 are 

eliminated. 

Taking the rare-event approximation, the total risk of the reduced-order PRA model can be calculated 

by: 

 𝑅𝑅𝑒𝑑 = ∑ ∑ ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑖,𝑗,𝑘

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗
𝑘<1

𝑛𝑆,𝑅𝑒𝑑,𝑖
𝑗<1

𝑛𝑂,𝑅𝑒𝑑
𝑖<1 ,  (3.10) 

Only the events that are contained in the reduced-order model (3.8) are considered when assessing the 

maturity. Note that from Eqs. (3.6), (3.7) and (3.9), the reduced order risk 𝑅𝑅𝑒𝑑 accounts for a portion 𝛼 ×

𝛽 × 𝛾  of the total risk 𝑅 . Please note that a value of 0.8 is usually chosen for 𝛼, 𝛽  and 𝛾  (Pareto 

Principle). However, the assessor is free to adjust these values given the context of the problem. 
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From Eq. (3.10), the risk index of the reduced-order PRA model can be viewed as the sum of 𝑛𝑙 =

∑ 𝑛𝑆,𝑅𝑒𝑑,𝑖
𝑛𝑂,𝑅𝑒𝑑
𝑖<1  risk index values 𝑅𝑅𝑒𝑑,𝑙 , 𝑙 = 1,⋯ , 𝑛𝑙  where 𝑅𝑅𝑒𝑑,𝑙  is known as the ―elementary risk 

model‖ and calculated by the corresponding individual risk model, composed of MCSs and BEs at a given 

operation state and a given scenario, as shown in Eq. (3.11): 

 𝑅𝑅𝑒𝑑,𝑙 = ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑙,,𝑘

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑙
𝑘<1 ,  (3.11) 

In Eq. (3.11), 𝑅𝑅𝑒𝑑,𝑙  is the risk index of the 𝑙-th ―elementary reduced-order risk model‖, where 

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑙 is the number of MCSs in the 𝑙-th individual reduced-order risk model. In other words, the 

―individual reduced-order risk model‖ represents herby the risk model at a given operation state and a given 

scenario. 

Assuming that the risk on reduced-order model is expressed by elementary reduced-order models, 

which represent the risk for each scenario at a given operation state, the weight of each elementary risk 

model can be expressed by: 

 𝑊𝑙  = 
𝑅𝑙 

∑ 𝑅𝑙
𝑛𝑙
𝑙=1

  (3.12) 

where 𝑅𝑙 is the risk of elementary reduced-order model and 𝑛𝑙 is the number of elementary reduced-order 

models and expressed by 𝑛𝑙 = 𝑛𝑂 × 𝑛𝑆. 

 Calculate the weight 𝑊𝑙,𝑞 of each basic event in a given elementary reduced-order model by: 

 𝑊𝑙,𝑞 =
𝐼𝑙,𝑞 

∑ 𝐼𝑙,𝑞
𝑛𝑙,𝑞
𝑞=1

   (3.13) 

where 𝑛𝑙,𝑞  is the number of basic events in the 𝑙 -th elementary reduced-order model, 𝐼𝑙,𝑞  is the 

Fussell-Vesely importance measures of the 𝑞-th basic event in the 𝑙-th elementary reduced-order model. 

3.3.4. Evaluation of the level of maturity of a single hazard group 

Given the reduced-order model technique introduced in the previous section, the level of maturity can 

simply be evaluated by two steps: 

 Evaluate the maturity on each basic event by: 

 𝑚𝑙,𝑞 = ∑ ∑ 𝑤𝑖 ∙ 𝑤𝑖,𝑗 ∙ 𝑆𝑐𝑖,𝑗,𝑙,𝑞
𝑛𝑑
𝑗<1

𝑁𝑝
𝑖<1

  (3.14) 

where 𝑚𝑙,𝑞 is the level of maturity for the 𝑞-th basic event in the 𝑙-th elementary reduced-order model, 

𝑤𝑖,𝑗 and 𝑆𝑐𝑖,𝑗,𝑙,𝑞 are respectively the weight and the score of the 𝑗-th sub-criterion in the 𝑖-th evaluation 

criteria for the 𝑞-th basic event in the 𝑙-th elementary reduced-order model. 

 Evaluate the maturity 𝑚𝑖  for the total hazard group by: 
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 𝑚𝑖 = ∑ ∑ 𝑊𝑙  ∙ 𝑊𝑙,𝑞 ∙ 𝑚𝑙,𝑞
𝑛𝑙,𝑞
𝑞<1

𝑛𝑙
𝑙<1  (3.15) 

3.3.5. Risk aggregation considering maturity levels 

In this work, we adopt the perspectives of [17] that when characterizing risk, not only the probability 

index estimated by PRA, but also the knowledge that supports the PRA should be taken into account. Hence, 

in this work, we use a tuple (𝑅𝑖 , 𝑚𝑖) to quantify the risk associated with hazard group 𝑖, where 𝑅𝑖 and 𝑚𝑖 

are respectively the risk index and is the maturity level of the 𝑖-th hazard group PRA model, evaluated based 

on the method presented in Sect. 3.3.1-3.3.4. 

A two-stage aggregation method is, then, developed for MHRA considering maturities of hazard groups. 

Suppose we have 𝑛 hazard groups with the risk tuple (𝑅𝑖 , 𝑚𝑖), 𝑖 = 1,2,⋯ , 𝑛 . The overall risk can, then, 

be represented as a risk tuple (𝑅,𝑀) and computed in two steps: 

Step 1: Aggregation of risk indexes. Risk indexes are aggregated following the summation rule: 

 𝑅 = ∑ 𝑅𝑖
𝑛ℎ
𝑖<1  (3.16) 

where 𝑅 is the risk index after considering all the hazard groups.  

Step 2: Determine the maturity of the aggregated risk assessment: 

In this work, the maturity can be represented for the overall framework by applying a weighted average 

the maturities from each hazard group, considering the risk contribution for each hazard group: 

 𝑀 = ∑ 𝑊,𝑖 ∙ 𝑚𝑖
𝑛ℎ
𝑖<1 = ∑ ∑ ∑ 𝑊,𝑖 ∙ 𝑊𝑙  ∙ 𝑊𝑙,𝑞 ∙ 𝑚𝑙,𝑞

𝑛𝑙,𝑞
𝑞<1

𝑛𝑙
𝑙<1

𝑛ℎ
𝑖<1   (3.17) 

where 𝑊,𝑖 is weight of the hazard group  and calculated as the following: 𝑛 is the number of 

hazard groups in the risk assessment model: 

 𝑊,𝑖 =
𝑅𝑖

∑ 𝑅𝑖
𝑛ℎ
𝑖=1

  (3.18) 

3.4. Application 

In this section, we apply the developed framework on a case study of two hazard groups in NPPs. The 

level of maturity assessment framework is, then, applied on the BEs and the total level of maturity for the 

overall hazard group is calculated by aggregating the BEs‘ maturities. The needed data and information that 

supports the model development were found in the technical reports provided by EDF, which are not 

mentioned here for confidentiality reasons. 

3.4.1. Description of the hazard groups PRAs 

In this section, we consider a case study extracted from PRA models of two hazard groups, i.e., 
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external flooding and internal events provided by EDF. Both PRA models were developed using the Risk 

Spectrum Professional software. 

In all generality, “external hazards” refer to undesired events originating from sources outside the 

NPP, such as external flooding, external fires, seismic hazards etc. [82]. In this case study, we consider a 

particular external hazard, i.e., external flooding, that is caused by the overflow of water due to naturally 

induced external causes, e.g., tides, tsunamis, dam failures, snow melts, storm surges, etc. [83]. The 

“external flooding” PRA model considered in this application is a combination of event trees and fault 

trees that are constructed to evaluate the risk of external flooding in different water level conditions 

(scenarios). The total risk index of external flooding is, then, calculated by summing the risk indexes at 

each water level. The PRA model of external flooding is complex and has a large scale, including three 

operation states, thousands of BEs and several thousands of MCSs. 

―Internal events‖ refer to undesired events that originate within the NPP itself and can cause initiating 

events that might lead to loss of important systems and, eventually, a core meltdown [19]. Major internal 

events include components, systems or structural failures, safety systems operation, and maintenance 

errors, etc. [84]. Internal events might also lead to other initiating events like turbine trip and Loss of 

Coolant Accidents (LOCAs). In nuclear PRA, internal events are considered a well-established and 

understood hazard group [36], and highly mature PRA models are available for their characterization. The 

internal events PRA model considered in this case study is based on a combination of event trees and fault 

trees that are constructed for evaluating the risk over different internal events (e.g., loss of offsite power, 

loss of auxiliary systems). The risk index of the entire internal events hazard group is, then, calculated by 

summing the risk indexes (i.e., minimal cut sets at a given operation state and scenario) of the individual 

internal events. Similarly to the PRA model of external flooding, the PRA model of internal events is 

complex and has a large scale, also containing three operation states, few thousands of BEs and several 

thousands of MCSs. 

3.4.2. Reduced-order model construction 

The first step in the developed for evaluating the level of maturity is to construct the reduced-order 

model. Here, we only show in details how to construct the reduced-order risk assessment model for the 

external flooding PRA model. For the internal events PRA model, the reduced-order model can be 

constructed in a similar way. 

In this case study, we set the fractions of the risk to be 𝛼 = 𝛽 = 𝛾 =  .8. From Eq. (3.6), we found 
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that only one out of six operation states (NS/SG-normal shutdown with cooling using steam 

generator-NS/SG) is needed for the reduced-order model, which contributes to 86% of the total risk index. 

Therefore, we have  𝑛𝑂 = 1. Similarly, based on Eq. (3.7), only one out of ten scenarios (water levels) is 

needed for the reduced-order model, whose risk contribution is 98.7%. Hence, we have  𝑛𝑆 = 1. Based 

on Eq. (3.9), given the operation states and scenarios of interest, 5 out of 3102 MCSs already contribute to 

8 .1%  of the risk at the given operation state and scenario. Thus, we have  𝑛𝑀𝐶𝑆 = 5 . Then, a 

reduced-order model can be constructed using the atomic elements in Table 3.4. The definitions of BEs in 

the MCSs of Table 3.4 can be found in Table 3.5. An illustration example on the pathway of the first 

minimal cut sets is given in Figure 3.6. Assuming the rare-event approximation, the risk index of interest, 

i.e., the probability of core meltdown, can be calculated using the MCSs and the BEs in Table 3.4, 

following Eqs. (3.6), (3.7), (3.9) and (3.10). The constructed reduced-order risk model can reconstruct 

86%× 98.7% × 8 .1% = 67.99%  of the total risk 𝑅. 

Table 3.4 Reduced-order model constituents 

Operating state Scenarios MCS 

𝑁𝑆/𝑆𝐺 Water level A 

MCS1={BE1, BE2, BE3} 

MCS2={BE2, BE3, BE4} 

MCS3={BE3, BE5, BE6, BE7, BE8} 

MCS4={BE2, BE3, BE7, BE9} 

MCS5={ BE2, BE3, BE6, BE10} 

 

Table 3.5 Basic events included in the reduced-order model 

Symbol Basic event 

BE1 External flooding with water level A inducing a loss of offsite power 

BE2 Loss of auxiliary feedwater system due to the failure to close the isolating valve 

BE3 Loss of component cooling system because of clogging 

BE4 Failure of all pumps of the Auxiliary feedwater (AFW) system 

BE5 Failure of the turbine of the AFW system 

BE6 Failure of the Diesel Generator A 

BE7 Failure of the Diesel Generator B 

BE8 Failure of the common diesel generator 

BE9 Failure of pumps 1 and 2 of AFW system 

BE10 Failure of pumps 2 and 3 of AFW system 
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3.4.3. Evaluation of the level of maturity for external flooding hazard group 

The levels of maturity for the basic events in Table 3.5 need to be evaluated using the developed 

method in Sect. 3.3. In the following, we illustrate in detail how to apply the developed framework on a 

basic event namely ―External flooding with water level A inducing a loss of offsite power‖ (BE1). For the 

other basic events, we directly give the results in Table 3.7. 

As shown in Eq. (3.14), the level of maturity of a basic event is evaluated as a weighted average over 

the maturity attributes and sub-attributes illustrated in Figure 3.1. Hence, the weights of the maturity 

attributes and sub-attributes need to be determined. AHP method is adopted in this work for this purpose 

[48]. As illustrated in Chapter 2, two pairwise matrixes need to be constructed and filled by experts. The 

first is a 4 × 4 comparison matrix, constructed for evaluating the weights 𝑊𝑖 (relative importance) of the 

attributes under level of maturity in defining their ―parent‖ attribute i.e., level of maturity. The second is 

5 × 5 comparison matrix constructed for comparing the weights 𝑊𝑖,𝑗 (relative importance) of the strength 

of knowledge ―daughter‖ attributes (i.e., sub-attributes under the strength of knowledge). For more 

illustration on AHP method and pairwise comparison matrixes, see Chapter 2. The results are presented in 

Table 3.6. Notice that, the weights are evaluated only once and used for the evaluation of all the basic 

events.  

The next step for evaluating the level of maturity is to assess the attributes and sub-attributes 

presented in Figure 3.1 for 𝐵𝐸1 in the light of the guidelines presented in Sect. 3.2.2. In this basic event, 

Figure 3.6 Illustration of a MCS in an individual reduced-order model 
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the probability was calculated by extrapolating the probability distributions based on observed data to the 

extreme water flowrate (i.e., flowrates that have never occurred). In more details, the following steps were 

performed:  

 Water heights that lead to failure of specific equipment were defined. 

 The water flowrate was predicted for the given heights at the NPP platform ensuring to cover 

each flowrate that can lead to the given water height at the platform. 

 The flowrate was multiplied by safety factors. 

 The ―return period‖ were obtained by the same law that was used to estimate the millennial 

flooding flowrate of the river of interest. 

 The return periods for flowrates of interest were then, calculated by extrapolating the 

flooding data curves toward extreme values (at low probabilities) of flow at the platform of 

the power plant. 

 The frequencies (frequency =1/ return period) were then, rounded and mean values were 

obtained by the law for the flowrates of the Millennial Flood. 

 The frequency of each interval is chosen to be the maximum frequency at the whole height 

interval. 

 No uncertainty analysis was taken into account for estimation the frequencies of the critical 

heights. 

 Due the basin special characteristics, the analysts are forced to consider the ―renewal theory‖ 

(combining two statistical models of occurrence of events and their magnitude together). 

Comments:  

 Experts have confidence in the calculation used to convert the heights into flowrates because 

they are based on solid deterministic models. 

 Experts have doubts on extrapolating the frequency to the extreme flowrates. 

 This result is also to be considered with caution since they are based on the current limited 

models and knowledge. 

 Multiplying the flowrates by safety and augmentation factors is considered conservative. 

 The characteristics of the river basin are special in view of the evolution of the distributions 

of extreme floods, which opens more room for uncertainty. 

 Using renewal theory-based approach is considered conservative. 
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 High uncertainty is presented in the analysis. 

From the previous arguments, one can notice that there is uncertainty about the acknowledged 

limitations and implicit assumptions (unmodeled uncertainty). This meets Level 4 of uncertainty, which 

leads the analysts to assign a score of (2) From Table 3.1.  

For the conservatism attribute, it is not possible in this case to consider the conventional acceptance 

criteria (e.g., acceptable core meltdown of 1 ;4) since we are considering only one hazard group. 

Accordingly, experts were asked to assign an artificial value for the acceptable external flooding 

probability, in order to compare it to the estimated external flooding risk value of our model of interest. 

Now, since the analysis of the external flooding probability is based on hydrodynamic model, it is 

considered to be realistic but with low level of confidence. From Figure 3.3, since we are comparing the 

risk metric to an acceptance criteria, it was found that the conservative estimates are misinforming. A score 

of 2 was assigned for the conservatism. 

The sensitivity of this basic event is calculated by Eq. (3.1). The basic events probability is altered by 

50%. Which leads to the total change in the model output by 50% (since this basic event appears in each 

minimal cutset and has a Fussell-Vesely importance measure of 1). From Table 3.3, this corresponds to a 

level 4 of sensitivity, which in turn, corresponds to a score of 2 in the light of maturity. 

The same way of reasoning was adopted for evaluating the scores of knowledge attributes. The results 

are shown in Table 3.6. The maturity attributes scores are then, aggregated by Eq. (3.14). The level of 

maturity for BE1 is found to be 2.15. 

    
Table 3.6 Assessment of ―leaf‖ attributes (BE1 ) 

 

Attribute U C S     K 

Sub-attribute - - - A Co QD QA Ph Ex AM P PM 

𝑊𝑖 0.30 0.15 0.15     0.40 

𝑊𝑖,𝑗  - - - 0.25 0.06 0.17 0.17 0.10 0.05 0.10 0.05 0.05 

Score 2 2 1 1 5 3 2 3 5 3 5 5 

 

The same steps are repeated for all the basic events and presented in Table 3.7. The final step before 

evaluating the overall level of maturity for external flooding hazard group 𝑚𝑒𝑥𝑡;𝑓𝑙𝑜𝑜𝑑, is to determine the 

weights of each basic event, in a given elementary model and the corresponding elementary model by Eq. 

(3.12) and Eq. (3.13). 
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From Eq. (3.12), the weight of the elementary model is: 𝑊1  = 
𝑅𝑙 

∑ 𝑅𝑙
1
𝑙=1

= 1. 

From Eq. (3.13), the weight of the basic event in the given elementary model is: 𝑊1,1 =
𝐼𝑙,1 

∑ 𝐼𝑙,𝑞
𝑛𝑙,𝑞
𝑞=1

=

 .32  

The same procedure are repeated for each basic event and the results are presented in Table 3.7. Finally, the 

overall level of maturity for the hazard group is evaluated by Eq. 3.15. The level of maturity is found to be 

𝑚𝑒𝑥𝑡;𝑓𝑙𝑜𝑜𝑑 = 2.45. 

Table 3.7 Knowledge assessment and aggregation over the basic events 

BE BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10 

𝑚𝑙,𝑞 
2.150 1.488 2.690 3.948 4.002 4.002 4.038 3.962 3.908 3.908 

Il,q
 

1.000 0.9020 0.553 0.182 0.141 0.127 0.121 0.045 0.028 0.028 

Wl,q 0.320 0.289 0.177 0.058 0.045 0.041 0.039 0.014 0.009 0.009 

The same steps are repeated for the internal events hazard groups and the maturity was found to 

be 𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 3.87. 

Finally, for risk maturity aggregation, we adopt the technique presented in Sect. 3.3.5 where the risk is 

represented as a risk tuple (𝑅,𝑀). Please note that the risk presented here after are artificial and the real 

number that provided by EDF are not presented for some confidentiality reasons.  

External flooding risk tuple: (𝑅𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑, 𝑚𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑) = (1.5
;5, 2.45) 

External flooding risk tuple: (𝑅
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

, 𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) = (1. 2
;7, 3.87) 

First, by Eq. (3.16) the total risk is calculated arithmetically 𝑅 = 1.512;5. Then the level of maturity is 

calculated by Eq. (3.17). Two variables need to be considered, the level of maturity 𝑚𝑖 of a given hazard 

group, and its corresponding weight (relative importance). The hazard group weight is calculated by 

Eq.(3.18) and found to be 𝑊𝑒𝑥𝑡;𝑓𝑙𝑜𝑜𝑑 =  .992 and 𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =  .  8. Finally, the overall maturity is found 

to be 2.462 and the risk tuple is (1. 512;5, 2.45). 

3.4.4. Results and discussion 

As expected, the level of maturity for internal events (𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 3.87) is higher than that for external 

flooding (𝑚𝑒𝑥𝑡;𝑓𝑙𝑜𝑜𝑑 = 2.45). This means that the analysis and the results of the internal events are more 

realistic than these for external flooding. This can be explained by the fact that unlike external flooding, risk 

analysis for internal events hazard group in NPP has been performed for all power plants all over the world, 

which in turn, created the opportunity to develop solidly the appropriate models, level of details and base 

knowledge required for realistic evaluations [19]. This leads to a relatively well established highly mature 
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PRAs [36]. On the other hand, as seen in the example above: most of the risk is contributed by BE1 (external 

flooding with water level A inducing a loss of offsite power), BE2 (loss of auxiliary feedwater system due to 

the failure to close the isolating valve), and BE3 (loss of component cooling system because of clogging). 

The three basic events probabilities are obtained based on relatively, low level of knowledge, high 

conservatism and high uncertainty. For example, the probability of occurrence of BE1 is calculated by 

extrapolating the distributions based on observed data to the extreme water flowrate (i.e., flowrates that have 

never occurred). Besides, the probabilities of floods were taken as mean values without considering the 

uncertainty analysis. In addition, the characteristics of the river basin are special in view of the evolution of 

the distributions of extreme floods, which opens more room for uncertainty. 

The overall risk is represented by (𝑅,𝑀) = (1. 512;5, 2.45). Most of the risk and level of maturity 

in this tuple is on account of external flooding hazard group, which in turn, explains the low level of 

maturity on the overall risk. 

3.5. Conclusion 

In this chapter, we have proposed a method for evaluating qualitatively the different degrees of 

realism and maturity in risk contributor‘s analysis. In this framework, we tried to focus on the attributes 

that are believed and emphasized in the literature to affect the level of realism and maturity of analysis, and 

most importantly, the process of DM. The framework is based on four main attributes: uncertainty, 

conservatism, strength of knowledge and sensitivity. The strength of knowledge attribute, was further 

broken into five sub-attributes (data availability, data consistency, source of data, quality and reliability of 

data, experience and value-ladenness of the analysts. Analytical Hierarchy Process (AHP) is adopted to 

apply the framework, where pairwise comparison matrixes were built to estimate the relative weights of 

the attributes. An assessment protocols were developed to facilitate the process of attributes evaluation for 

a given problem. A technique called the reduced-order model was also developed to allow the application 

of the developed framework on the level of constituting elements (basic events), which in turn, leads to a 

more relevant and accurate assessment. Finally, the developed framework was applied on two hazard 

groups in NPP; namely, external flooding and internal events. The application of the framework to a case 

study stresses the importance of accounting for the level of maturity of a given hazard group for better 

informing DM. For example, the level of maturity can be very important in informing the decision maker 

in contexts where an option needs to be chosen, or to assess if the analysis are sufficiently mature or need 

to be enhanced for making a decision. 
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A potential limitation of the developed approach is that it was developed to be applied only on the 

level of ―atomic elements‖ and not the level of the model structure. Therefore, the framework need to be 

enhanced in the future to consider two levels of analysis: the level of atomic elements and the level of the 

model structure. In addition, we do not pretend that the framework itself is complete in terms of the 

attributes and factors that affect the level of maturity. However, it still stands a good starting point for 

overcoming the heterogeneity in the maturity level of the hazards group that in turn lead to mathematical 

inconsistent and physically non-meaningful results. Finally, please note that it is out of the context of this 

work to show in details the process of DM given this maturity index. 
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Chapter 4 Assumptions in risk 

assessment models and the criticality of 

their deviations within the context of 

decision making 
The trustworthiness of risk assessment models depends crucially on the validity and solidity of the 

assumptions made. In PRA, assumptions are typically made, based on best, conservative, or (sometimes) 

optimistic judgments. Best judgment and optimistic assumptions may result in failing to meet the 

quantitative safety objectives, whereas conservative assumptions may increase the safety margins but 

result in costly design or operation. In the present chapter, we develop an extended framework for 

evaluating the criticality (risk) of the deviations from the assumptions made in the risk assessment, which 

might lead to a reduction of the safety margins. In particular, a review of the approaches proposed in the 

literature to assess the assumptions and assumptions deviation risk is presented in Sect. 4.1. In Sect. 4.2, 

we present the extended method. Then, in Sect. 4.3, the implementation procedures are illustrated, and an 

application of the framework to a real case study of NPP is presented in Sect. 4.4. Finally, in Sect. 4.5, we 

offer a discussion and some conclusions.  

4.1. State of the art 

In risk analyses, assumptions are inevitably made by experts because of incomplete knowledge, data, 

information and understanding of the phenomena involved [11], for simplifying the analysis when 

necessary [10]. The recognition of the importance of assumption on the results of risk assessment led 

experts in the field to formulate some methods to evaluate the quality of assumptions and to treat the 

uncertain ones. 

As seen from Chapter 1, the NUSAP is applied in [21], [22], [10], [23] to assess the quality of 

assumptions through a pedigree diagram. Also, some methods are proposed for treating uncertain 

assumptions [11]: (i) law of total expectation; (ii) interval probability; (iii) crude strength of knowledge 

and sensitivity categorization; (iv) assumption deviation risk. First, in the ―law of total expectation‖, a 

probability distribution expressing the belief on different assumptions is introduced [11]. This kind of 
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techniques is appropriate when the beliefs on the assumption are based on strong knowledge and historical 

data [11]. Second, in the ―the interval probability‖, the assessors are asked to assign the minimum and 

maximum values of assumptions and their corresponding believed probability [11]. This technique is more 

appropriate for cases of weak knowledge [11]. Third, in the crude SoK and sensitivity categorization, the 

criticality of assumption is assessed by assessing the strength of knowledge on which the assumptions are 

made, as well as the dependency of risk assessment on this assumption [11]. Finally, for the assumption 

deviation method, the risk of deviation is evaluated considering three elements: the degree of expected 

deviation of assumption from reality, the likelihood of the deviation, and the knowledge on which the 

assumptions are based [17], [26]. This method was later extended in [11], where some setting were defined 

given the belief in the deviation from the assumption, the sensitivity of the risk index and its dependency 

on the assumption, and the SoK on which the assumptions are made [11]. Guidance for treatment of 

uncertainty related to the deviation of assumptions were given for each setting. However, the 

aforementioned methods either do not comply with evaluating the level of trustworthiness of risk 

assessment models within the context of hierarchical framework, lack of a rigorous evaluation protocols, 

or do not comprehensively consider different types of assumptions, e.g., conservative assumptions and DM, 

e.g., comparing alternatives. 

4.2. The proposed framework 

In this section, the original work of Khorsandi and Aven (2017) [26] is extended. Compared to 

previous works on the subject, we consider also conservative assumptions, other contexts of DM, and 

introduce decision flow diagrams to support the classification of the criticality of the assumptions made. 

In this work, we assume that each assumption 𝐴𝑠𝑖 affects the numerical values of some parameters 

in the Probabilistic Risk Assessment (PRA) model. The factor that links the assumptions to the numerical 

parameters is called ―juncture‖ in this paper. The criticality (𝐶) of an assumption is assessed based on the 

six criteria: (i) the type of assumption; (ii) the context of decision making; (iii) the belief (likelihood) in 

deviation from reality; (iv) the amount of deviation from reality; (v) the likelihood of the deviation; (vi) the 

margin of deviation; (vii) the strength of the knowledge supporting the assumption made. Three levels of 

criticality are defined with their corresponding settings: 

1. Very critical (𝐶 = 1): The assumption is based on weak knowledge and the confidence on 

the assigned value of the model parameters is low. Besides, the assumption deviation has 

severe influence on the decision making and might lead to exceedance of the safety limit. 
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Further analysis and justification of the assumption is required. 

2. Not very critical (𝐶 = 2): The assumption is made based on a moderate level of knowledge. The 

assumption deviation is likely to happen, but the risk metric remains within the safety limits 

even after considering such assumption deviation. The assumption can be trusted to support DM 

if the risks of the deviation from other assumptions are all not critical (𝐶 = 3). Further analysis 

and justification of the assumption is needed only when multiple other assumptions are also in 

this state. 

3. Not critical (𝐶 = 3): The assumption made is based on strong knowledge. An assumption 

deviation is unlikely to happen or, if it happens, it does not affect the DM. The assumption can 

be trusted and decisions can be made based on the current assumption. 

To evaluate the criticality of the assumptions deviations, six criteria are considered, as shown in Figure 4.2.

 

Figure 4.1 Criteria for evaluating the criticality of assumption deviation 

1. Type of assumption (𝐴): Assumptions made in PRA can be classified into different types. For 

example, [19] distinguishes three types of assumptions: conservative assumptions, best judgment 

assumptions and approximations. Conservative assumptions are made out of cautiousness and tend to 

overestimate the risk rather than underestimate it; best judgment assumptions are believed to 

represent expected scenarios, given the available knowledge; approximations are assumptions that are 

made for reducing the complexity of the models [20]. Deviations in different types of assumptions 



57 

 

might lead to different influences on the PRA. In our framework, three types of assumptions are 

considered: 

i. Optimistic assumption (𝐴1): the assumption is judged by peers to underestimate the risk when 

compared to reality 

ii. Best judgment (𝐴2): the assumption is judged by peers as representative of reality (realistic) 

iii. Conservative assumption (𝐴3): the assumption is judged by peers to overestimate the risk 

when compared to reality (pessimistic). 

2. Context of the decision making (𝐷𝑀): Risk metrics are used to support DM in different contexts [19]. 

In this work, we distinguish between two contexts of DM. First, the comparison with safety objectives, 

whereby the risk metrics are compared to quantitative safety goals and criteria [19]. In this case, the 

decision maker would accept performing the task (project, task, work, etc.) if the risk metric is lower 

than the safety objective; otherwise, some safety reduction measures (e.g., safety barriers, safety 

systems, etc.) need to be implemented in order to reduce the risk. Second, the comparison of 

alternatives, whereby risk metrics of different alternatives are compared. In this case, the decision 

maker would choose the alternative that leads to a lower risk, or choose the risk reduction measure 

that leads to a higher reduction of the risk metric given the cost of the application. The criticality of 

assumptions deviations varies from one context to another, where, in comparing risk metric to a safety 

goal, only the deviation toward critical scenarios need to be considered. On the other hand, for 

comparing alternatives in terms of their risks, all the deviation scenarios need to be considered, since a 

conservative assumption might lead to a higher risk metric and hence, lead the decision maker to make 

a wrong decision by choosing another alternative that has a higher risk in reality but appears lower due 

to the different levels of conservatism in the analysis.  

3. Belief in deviation (𝐵) measures the realism of an assumption and is expressed by the likelihood of 

assumption deviation. The likelihood is assigned by the experts following the criteria defined in [26], 

i.e., what could cause the assumption to deviate in reality; what are the key drivers of those causes; 

etc. 

4. Amount of deviation from reality (𝐷) refers to the amount of deviation between the assumed 

parameter value and the true value. It is assigned by experts and expressed in percentage. 
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5. Strength of knowledge  (𝐾)  refers to the strength of the background knowledge that supports the 

evaluation of the belief in deviation and the amount of deviation. 

6. Margin of deviation  (𝜇) refers to the degree to which an assumption may deviate before the 

deviation changes the decisions made based on the results of risk assessment, e.g., the violation of the 

acceptance criteria or the change of the prioritization of different options. This margin is calculated 

analytically (see Sect. 4.3.8) and expressed in percentage. 

 

Figure 4.2 A comparison between the original (Khorsandi & Aven, 2017 [26]) and the extended frameworks for 

assumption deviation risk assessment 

 

Overall criticality 

Strength of 

knowledge 

Amount & likelihood 

of deviation 

Deviation 

threshold 

Assigning an overall 

score for the deviation 

criticality 

(corresponding to a 

specific setting) 

 

  

Context of decision 

 

Type of assumption 

    

Likelihood (belief) of 

assumptions deviation: 

Khorsandi and Aven 

(2017) 

 

Margin of deviation 

(in percentage) to 

violate safety 

Amount of believed 

deviation as estimated 

by the expert 

Margin of deviation 

(in percentage) to 

change the 

prioritizations 

 

Acceptance criteria 

Comparing alternatives  
Best 

Conservative 

Optimistic  

Strength of 

knowledge 

Flage and Aven 

(2009) assessment 

framework 

Original 

Added 

Adjusted 

 



59 

 

The logical combination of the six criteria yields different levels of criticality. Decision flow diagrams 

are introduced in this work to capture the logical relationship between the six criteria and the criticality of 

assumptions deviations. Only one example on decision flow diagram is presented in Sect. 4.3.9, the rest of 

the decision flow diagrams are presented in the appended paper III (Sect. 2.2.9). 

A comparison between the original assessment framework in Khorsandi and Aven (2017) and the 

extended framework is made in Figure 4.2. It can be seen that the original work in [26] is adjusted and 

extended to include an additional context of DM (comparing alternatives) and also a new type of 

assumption (conservative assumptions). Accordingly, new criteria are added or adjusted to integrate the 

new decision context and type of assumption in the assessment of the assumption deviation risk. As to the 

presentation of the assumption deviation risk, the radar plot in [26], which presents the contributing factors 

to the assumption deviation risk individually, is replaced with an overall integrated metric for assumption 

deviation risk, i.e., the criticality (𝐶). These extensions make it possible for the extended framework to 

provide a more comprehensive description of the risk from assumptions deviations.  

4.3. Implementation of the framework  

As shown in Figure 4.3, nine main steps are needed for applying the developed framework to assess 

the criticality of assumptions deviations. The nine steps are discussed in details in sub Sect. 4.3.1-4.3.9.  

 

Figure 4.3 Procedure for applying the developed framework for assumption deviation criticality (risk) 

assessment. 

4.3.1. Identify critical assumptions 

In the first step, the assumptions made in the PRA are identified. The assumptions might be made due 
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to lack of understanding and knowledge about a phenomenon or as an attempt to reduce the modeling 

details and complexity [20], [19]. The type of each assumption (𝐴) is determined by expert judgment, 

making reference to the definitions in Sect 4.2.1. 

4.3.2. Identify the model parameters affected by the assumption of interest 

As mentioned in Sect 4.2, in this work, we assume that there is a juncture that connects numerically 

an assumption to one or more parameters in the PRA model. Without losing generality, let us assume that 

the PRA model is represented by: 

 𝑅 = 𝑓(𝑝1, 𝑝2, … 𝑝𝑚, … 𝑝𝑛),  (4.1) 

where 𝑅 is the risk metric and 𝑝1, 𝑝2, … 𝑝𝑚, … 𝑝𝑛 are the model parameters (e.g., failure probabilities), 𝑓 

is the function that depends on the structure of the model. where 𝐴𝑠 represents a set of assumptions. In 

the framework, we only consider the assumptions that can be altered numerically or that can change the 

numerical values of the model parameters. We do not consider the assumptions that are related to the 

model structure or that cannot be measured numerically. The second step, then, involves identifying the 

model parameters affected by each assumption, as shown in Figure 4.4.  

 

 

4.3.3. Assess the belief in assumption deviation 

The belief in deviation is evaluated as the subjective probability assigned by experts that the 

assumption deviates from the actual conditions. The assigned value is conditional on the available 

background knowledge, including experts‘ individual expertise. It should be noted that the aim of 

evaluating the belief in deviation is not to assign a precise value for the probability of deviation. Rather, it 

Figure 4.4 Representation of connections between assumptions and model parameters 
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aims at expressing the experts‘ beliefs , based on the available knowledge, on how likely the assumption 

might be deviating from reality [26]. Such a step can be regarded as a tool for making good use of experts‘ 

individual expertise by reflecting their implicit knowledge that cannot be directly stated or documented.  

To determine the value of 𝐵, the likelihood (𝑙) needs to be evaluated by experts first, following the 

considerations recommended by Khorsandi and Aven (2017) [26]: What could cause the assumption to 

deviate? What are the key drivers of those causes? Has a similar deviation occurred in the past? What 

evidence is available for supporting the potential for a deviation? 

Then, the value of  𝐵 is determined based on the likelihood (𝑙): 

a. 𝐵 = 1, 𝑖𝑓  ≤ 𝑙 ≤ 2 % 

b. 𝐵 = 2, 𝑖𝑓 2 %  𝑙 ≤ 3 % 

c. 𝐵 = 3, 𝑖𝑓 3 %  𝑙 ≤ 1  % 

4.3.4. Evaluate the amount of believed deviation from the true value 

The amount of believed deviation is evaluated as the relative distance between the assumed 

parameter value and the true value believed by experts, as expressed by Eq. (4.2). Similar to the belief 

in deviation, the believed deviation 𝐷 is evaluated by experts and represents the experts‘ belief on how 

severe the deviation could be. The value assigned to 𝐷 takes a positive sign (+) if the assumption is 

believed to deviate towards dangerous scenarios and a negative sign (−) if it is deviating towards safe 

scenarios: 

 𝐷 =
𝑝 ;𝑝

𝑝
 (4.2) 

where 𝐷 is the amount of believed deviation, 𝑝𝑡 is the parameter value believed true by the experts, and 

𝑝 is the parameter value as assumed in the analysis. 

4.3.5. Evaluate the strength of knowledge 

The assigned belief (likelihood) and amount of deviation are conditional on the background 

knowledge available, and on the individual expertise and points of view of the experts who made the 

assessment. Therefore, the strength of knowledge on which the assessment is based is highly relevant and 

is explicitly considered in both the original and extended framework. In this work, we use the method 

proposed in [6] for evaluating the strength of knowledge. This approach is mainly based on the evaluation 

of four criteria: (i) reasonability and realism of assumptions; (ii) phenomenological understanding; (iii) 

availability of reliable data and information; (iv) agreements among peers. In addition, we take into account 
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a fifth criteria, suggested by Khorsandi and Aven (2017): (v) the level of expertise and competence of the 

experts. A score of 1-3 is given for each criterion, corresponding to three levels, i.e., weak, moderate and 

strong, respectively. 

A weighted average of the five criteria scores 𝑘𝑖 , 𝑖 = 1,2,…5,  is used to calculate the overall 

knowledge score 𝑆𝐾: 

 𝑆𝐾 = ∑ 𝑤𝑖 ⋅ 𝑘𝑖
5
𝑖<1 , (4.3) 

where 𝑤𝑖 is the weight of criterion 𝑘𝑖. Obviously, the five criteria are not equally important in defining the 

strength of knowledge. To handle this, the AHP [48] is used to determine the weights of the strength of 

knowledge criteria. More illustration on AHP method and how to apply it is presented in chapter 2. The 

strength of knowledge denoted by 𝐾, is, then, calculated based on the value of 𝑆𝐾:  

 𝐾 = 1,  if 1 ≤ 𝑆𝐾 ≤ 1.6 

 𝐾 = 2,  if 1.6  𝑆𝐾 ≤ 2.3 

 𝐾 = 3, if 𝑆𝐾 > 2.3 

4.3.6. Determine the context of decision 

In the original work in [26], only one context of DM was considered, i.e., comparing a risk metric to a 

specific safety objective. In this sense, only assumptions deviations toward dangerous scenarios (optimistic 

assumptions) need to be considered. However, in the practice of risk management, we often need to compare 

alternatives in terms of their risks (e.g., two options leading to risks or choosing among two options 

implemented to reduce the risk). In this case, all the deviation scenarios need to be considered, since a 

conservative assumption might lead to an ―unrealistically‖ higher risk metric, which, in turn, leads the 

decision maker to prefer the alternative with the ―unrealistically‖ lower risk metric; in other words, it gives a 

―false alarm‖ of high risk. For more illustration, take the example in Figure 4.5. In this example, the decision 

maker is comparing two alternatives, 𝐴𝑙1 and 𝐴𝑙2, and he/she prefers to choose the alternative with the 

lower risk. At a first glance and using conservative assumptions, the decision maker would choose 𝐴𝑙1 as it 

has a lower risk metric value (the blue solid line). However, a second look shows that the value of 𝑅2 (in the 

meshed filling) is lower than that of 𝑅1, when the true condition is used in the calculation rather than a 

conservative assumption. Hence, it is important to identify the context of DM when implementing the 

extended framework. In this work, two DM contexts are distinguished, namely, comparing a risk metric to a 

safety objective (𝐷𝑀1) and comparing two alternatives (𝐷𝑀2).  



63 

 

 

4.3.7. Define the safety objective 

The safety objective needs to be identified considering the given decision context, as shown in Figure 

4.3. The safety objective represents a numerical value whose exceedance by the risk metric would lead to 

changes in the results of the risk-informed decision making. The safety objective is dependent on the 

context of the DM. For the decision context 𝐷𝑀1, the safety objective is identified as the threshold that the 

risk metric should not exceed. On the other hand, if the decision context is 𝐷𝑀2, the assessor needs to 

choose the alternative with the lowest risk metric value. Therefore, the (higher) risk metric value of another 

alternative is defined as the safety objective under this DM context. 

4.3.8. Identify the margin of deviation 

Next, the margin of deviation (𝜇) needs to be calculated. This margin represents the maximum 

tolerable assumption deviation before the risk-informed decision is changed. As shown in Figure 4.4, 

different assumptions might affect one or more model parameters, or, the other way around, a model 

parameter might be affected by one or more assumptions. In this work, we calculate the margin of 

deviation one assumption at a time, to reduce the complexity of the analysis. Assume that the assumption 

of interest 𝑎𝑖 affects model parameters 𝑝1, 𝑝2, … 𝑝𝑚. Then, we assume that the assumption deviation 

affects ―similarly‖ the related parameters (𝑝1, 𝑝2, … 𝑝𝑚) to make the equation solvable. The assumption 

deviation can be modeled by: 

 {

𝑝1́ = (1 + 𝜇)𝑝1
𝑝2́ = (1 + 𝜇)𝑝2

⋮
𝑝�́� = (1 + 𝜇)𝑝𝑚

  (4.4) 

where 𝑝𝑖,́  𝑖 = 1, 2,…𝑚, are the deviated model parameters and 𝜇 represents the amount of deviation in 
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Figure 4.5 Comparing the risk related to two alternatives taking into account the risk metric value based on 

the assumption made and the true condition 

𝐴𝑙2 
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the model parameters (and assumed to be the same for all parameters affected by an assumption) due to the 

deviation in the assumption. It should be noted that in theory, the basic event probabilities can also change 

by different amounts, resulting in different values of 𝜇 for different basic events. Then, the deviated risk 

metric �́� is calculated by: 

 �́� = 𝑓(𝑝1́, 𝑝2,́ … 𝑝�́�, 𝑝𝑚:1…𝑝𝑛)  (4.5) 

The value of 𝜇 can be calculated by solving the following equation: 

 
𝑎𝑟𝑔
𝜇 𝑓 .(1 + 𝜇) ∙ 𝑝1, (1 + 𝜇) ∙ 𝑝2, … (1 + 𝜇) ∙ 𝑝𝑚,  𝑝𝑚:1, … 𝑝𝑛/ = 𝑅𝑡  (4.6) 

In Eq. (4.6), 𝑅𝑡 is the safety objective defined in Sect. 4.3.7, i.e.: 

 𝑅𝑡 = {
𝑅𝑙𝑖𝑚, 𝑖𝑓 𝑡𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑖𝑠 𝐷𝑀1
𝑅2, 𝑖𝑓 𝑡𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑖𝑠 𝐷𝑀2

  (4.7) 

where 𝑅𝑙𝑖𝑚 and 𝑅2 represent the safety limit objective and the risk metric value of the alternative being 

compared, respectively. 

4.3.9. Evaluate the overall criticality based on the decision flow diagrams 

The criticality of an assumption deviation measures its influence on the risk-informed decision 

making and, hence, on the safety of the system. As defined in Sect. 4.2, the criticality of the assumption 

deviation depends on both the severity of the influence and the likelihood of the deviation. Four scenarios 

are distinguished to quantify the severity of the influence of the assumption deviation: 

a. failures in meeting the established objectives, i.e., the magnitude of deviation is larger the deviation 

margin, leading to the exceedance of the safety limit; 

b. success in meeting the established objectives i.e., the magnitude of deviation is lower than the 

deviation margin, or the deviation is occurring towards lower amounts of risk due to conservatism in 

the assumption; 

c. Altering the different prioritization when comparing two or more alternatives, i.e., the risk metric 

based on unrealistic assumptions is higher or lower than what it would be based on the true 

conditions, leading to the mischoice among the different alternatives. 

d. Unchanging the prioritization when comparing two or more alternatives, i.e., the risk metric based on 

unrealistic assumptions is higher or lower than what it would be based on the true conditions, leading 

to misranking the different alternatives. 

Considering the scenarios defined above and the likelihood of deviation, decision flow diagrams are 

built for evaluating the criticality of assumption deviation risk. We present only one example on the 
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decision flaw diagram In Figure 4.6, the rest are presented in the appended paper III (Sect. 2.2.9). It should 

be noted that in these figures, the difference between the margin of deviation 𝜇 and the amount of 

deviation 𝐷, denoted by ∆𝜇, is calculated and used to measure the safety margin for a given assumption 

deviation: 

 ∆𝜇 = 𝜇 −  𝐷  (4.8) 

Following the steps in Sects. 4.3.1-4.3.8, the criticality 𝐶 can be evaluated using the decision flow 

diagrams presented in Figure 4.6 and appended paper III (Figure 6-8).    
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Figure 4.7 Criticality assessment decision flow diagram for decision context 𝐷𝑀1 and assumptions of types 

𝐴1 and 𝐴2. 
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4.4. Application 

In this section, we apply the developed framework on real PRA models for the external flooding 

hazard groups of the same case study presented in Chapter 3. The PRA model for external flooding is 

chosen because it is less mature compared to the PRA model of other hazard groups and involves many 

assumptions. 

4.4.1. Evaluation of assumption deviation risk 

4.4.1.1. Identifying critical assumptions 

The critical assumptions in the PRA model of external flooding (the basic events of the external 

flooding listed in Table 3.4), are identified following the procedures in Sect. 4.3.1 and listed in Table 4.1. 

The assumption deviation risks for the assumptions in Table 4.1 need to be evaluated using the developed 

method in Sect 4.3. In the following, we illustrate in detail how to apply the developed framework on one 

conservative assumption, namely ―the clogging accompanying some floods is unpredictable and 

unfilterable‖. For the other assumptions, we directly give the classification results in Sect. 4.4.2.8. 

Table 4.1 List of the assumptions related to the reduced-order model of the external flooding hazard group. 

𝐴𝑠𝑖 Description Type 

Affected 

basic 

event 

𝐴𝑠1 

It is assumed that failure to close the isolating valves for volumetric 

protection sealing-water proofing causes the total loss of Emergency 

Feed Water System (EFWS) 

Conservative BE2 

𝐴𝑠2 If the floods occur, the clogging is certain (𝑃 = 1) Best judgment BE3 

𝐴𝑠3 
If the river flooding is accompanied with clogging, then, it is 

unpredictable and unfilterable 
Conservative 

BE3, 

BE4 

𝐴𝑠4 

Clogging leads to failure of Essential Services Water System 

(component cooling system) and therefore, the reactor containment 

spray system 

Best judgment 
BE3, 

BE4 

𝐴𝑠5 

It is assumed that probabilities of a given level of flood can be 

calculated by extrapolating the distributions based on observed data to 

the extreme water flowrate (i.e., flowrates that have never occurred) 

and that the probabilities of floods can be taken as mean values 

Best judgment 
BE1 

 

𝐴𝑠6 
It is assumed that once the water reaches the bottom of an equipment, 

the equipment fails 
Conservative 

BE2-BE

10 

𝐴𝑠7 
It is assumed that once the water level exceeds the height of the 

barriers, the water will enter and fill the building 
Best judgment 

BE2-BE

10 

𝐴𝑠8 
It is assumed that unit 1 cannot get help from unit 2 and vice versa, or 

from the safeguard system shared between the two units 
Conservative BE8 



68 

 

𝐴𝑠9 
It is assumed that the river flood can be predicted using statistical 

models 
Optimistic BE1 

𝐴𝑠10 

It assumed that once the river flood is predicted, the probability of 

failing to transit into the state of ――emergency shutdown‖ (i.e., normal 

shutdown and cooling with steam generator, normal shutdown and 

cooling with residual heat removal system etc.) is the intrinsic failure 

probability that is considered in normal cases 

Best judgment 
BE1 

 

4.4.1.2. Identification of model parameters affected by the assumption of interest 

The model parameters in the PRA model are the probabilities of the basic events in the event tree. As 

the clogging can lead to the loss of component cooling system (CCS) or the loss of the pumps in the 

auxiliary feedwater system, the assumption 𝐴𝑠3 is related to the two basic events BE3 and BE4, as 

presented in Table 4.1. 

4.4.1.3. Assessment of the belief in deviation 

Experts from EDF are invited to assess the belief in deviation. In this assumption, the probability that 

the clogging is not detected and filtered is 1 (𝑃 = 1), while in reality, the clogging is usually detectable and 

can be filtered, which means that the true value of this probability is less than 1 (𝑃  1), leading to a lower 

risk than the value calculated using the assumed model parameters. Therefore, the experts think that this 

assumption is very conservative, indicating that the assumption deviation might reduce the value of the 

risk metric. 

Some observations can also help the expert to better understand the assumption and evaluate the 

belief in deviation, as shown in Table 4.2. 

Table 4.2 Assessment of the belief in deviation 𝐴𝑠3 

Aspects Assessment 

What could cause the assumption to deviate? The amount of precipitation can usually be predicted. Hence, if the river 

flooding is caused by precipitation, then, it can be predicted. 

Unless it is due to barrier rupture, the river level usually increases 

gradually and can be seen and noticed easily. 

If there is heavy precipitation, the operators would pay more attention to 

the water filters on the river and clean the filters to make sure that the water 

intake is not clogged. 

What are the key drivers of those causes? The fact that the river level increases is a gradual process. 

The fact that the operators are able to clean the clogging if it occurs. 

Has a similar deviation occurred in the past? Yes. 

What evidence is available for supporting the 

potential for a deviation? 

The feedback reports show that a clogging has occurred before and that 

operators were able to see it and manage it. 

Based on the analysis illustrated in Table 4.2, the belief in deviation was assigned to be 70%. 
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Therefore, we have  𝐵 = 3. 

4.4.1.4. Evaluate the amount of believed deviation from the true value 

Experts in EDF are asked to evaluate, based on their beliefs, the amount of assumption deviation from 

the true values. The experts have assigned the amount of deviation in percentage to be 𝐷 = −5 %, 

meaning that the experts believe that the assumption is conservative and deviating towards a higher risk.  

4.4.1.5. Evaluate the strength of knowledge 

The strength of knowledge has been evaluated as indicated in Sect. 4.3.5. The strength of knowledge 

attributes are evaluated separately, as shown in Table 4.3. 

Table 4.3 Strength of knowledge criteria and weights. 

Attribute Weight Score 

Reasonability and realism of assumptions (𝑘1) 0.13 1 

Availability of reliable data and information (𝑘2) 0.13 2 

Phenomenological understanding (𝑘3) 0.42 1 

Agreement among peers (𝑘4) 0.16 1 

Level of expertise and competence of the experts (𝑘5) 0.16 2 

The overall knowledge score 𝐾 is calculated using Eq. (4.3): 

 𝐾 = ∑ 𝑤𝑖 ∙ 𝑘𝑖
5
𝑖<1 = 1.29 

Then, based on the criteria defined in Sect. 4.3.5, we have 𝐾 = 1. 

4.4.1.6. Determine the context of decision making and define the safety objective 

The context of the DM in this case study is to compare a risk metric to a safety limit. The risk limit 

for core meltdown varies between 1 × 1 ;5 and 1 × 1 ;4 [85]. As the flooding events are usually 

site-specific [86], the contribution of the external flooding hazard group to core meltdown also varies from 

one NPP to another. Moreover, we consider only a part of the external flooding PRA model in this case 

study (through the reduced-order model). Accordingly, for illustration purposes, we artificially set the 

safety limit of the considered PRA model to be 𝑅𝑙𝑖𝑚 = 1.6 × 1 
;8. 

4.4.1.7. Identify the margin of deviation 

As the assumption 𝐴𝑠3 affects the basic events 𝐵𝐸3, 𝐵𝐸4, the vector of basic events‘ probabilities 

related to the assumption are P𝑚 = (𝑝𝐵𝐸3, 𝑝𝐵𝐸4). Accordingly, the deviated risk function can be expressed 

using Eq. (4.5):  

 𝑅 =́ 𝑅𝑡 = 𝑅𝑙𝑖𝑚 = 𝑓(𝑝1, 𝑝2, �́�𝐵𝐸3 , 𝑝𝐵𝐸4́ , 𝑝5, … 𝑝10)

= 𝑓(𝑝1, 𝑝2, (1 + μ) ∙ 𝑝3, (1 + μ) ∙ 𝑝4, 𝑝5…𝑝10) 
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The solver in Microsoft Excel is used to solve Eq. (4.6), with 𝑅𝑙𝑖𝑚 = 1.6 3 × 1 ;8. The resulted margin 

of deviation is 𝜇𝐴𝑠3  = 26.4 %. The margins of deviation for the remaining assumptions are calculated in 

a similar way, as presented in Table 4.4 next in Sect. 4.4.2.8. 

4.4.1.8. Evaluate the overall criticality based on the decision flow diagram 

As illustrated in Sect. 4.3, the overall criticality of assumptions deviation is assigned based on the 

decision flow diagrams (presented in Figures 6-8, appended paper III). For the assumption of interest (𝐴𝑠3), 

the belief (likelihood) in the deviation is assigned to be 70% (level 3). The difference between the 

deviation margin and the amount of believed deviation is 76.40%. The strength of knowledge is assessed to 

be 𝐾 = 1. For an acceptance-criteria decision-context, this means that we believe that we are under the 

safety limit, and the deviation is not considered critical and can be accepted. On the other hand, our belief 

is based on weak knowledge, which makes it less credible. Following the decision flow diagram in Figure 

4.6, the criticality of this assumption is 𝐶 = 2. Accordingly, the assumption is not very critical and listed 

in the ―waiting list‖, which means that it is accepted unless there are other criteria and information on other 

assumptions deviations that change the evaluation. 

The same steps are repeated for each assumption. The scores and the evaluation corresponding to each 

criterion for each assumption are presented in Table 4.4 together with their final criticality scores.   

Table 4.4 Assumption-deviation criticality and criticality criteria assessment 

𝐴𝑖 Type 𝐵𝐸s 𝑙𝑖 ∶  𝐵𝑖 𝐷𝑖 𝜇𝑖 ∆𝜇𝑖 𝐾𝑖 𝐶𝑖 

1 Conservative BE2 95%:3 -90%     1 2 

2 Best judgment BE3 30%:2 90% 35.11% -54.89% 2 1 

3 Conservative BE3, BE4 70%:3 -90% 26.40% 116.40% 1 2 

4 Best judgment BE3, BE4 5%:1 5% 26.40% 21.40% 3 3 

5 Best judgment BE1 50%:3 50% 24.22% -25.78% 3 1 

6 Conservative BE2-BE10 90%:3 -70% 20.38% 90.38% 1 2 

7 Best judgment BE2-BE10 40%:3 30% 20.38% -9.62% 2 1 

8 Conservative BE8 20%:1 -30% 869.95% 899.95% 1 2 

9 Optimistic BE1 40%:3 30% 24.22% -5.78% 2 1 

10 Best judgment BE1 5%:1 5% 24.22% 19.22% 3 3 

  

As shown in Table 4.4, the different assumptions have three levels of criticality i.e., 1, 2, 3 (very 

critical; not very critical; not critical). The corresponding actions that need to be taken by decision-makers 

and analysts are respectively:  

(i) 𝐶 = 3: The deviation is very likely to happen. Besides, the assumption deviation has severe 



71 

 

influence on the decision making and might lead to exceedance of the safety limit. Further analysis 

and justification of the assumption is required. This kind of assumptions decreases greatly the 

safety margin of the NPP. Therefore, it should be treated carefully. 

(ii) 𝐶 = 2: The assumption can be trusted to support decision making if the risks of the deviation 

from other assumptions are all not critical (𝐶 = 3). Further analysis and justification of the 

assumption is needed only when other assumptions are also in this state. This kind of assumptions 

does not decrease the safety margin of the NPP if the other assumptions are of the same type or 

less critical. 

(iii) 𝐶 = 1: An assumption deviation is unlikely to happen or, if it happens, it does not affect the 

decision making nor the safety of the NPP. The assumption can be trusted and decisions can be 

made based on the current assumption. This assumption does not impact the safety margin of the 

NPP. 

As shown from the example above, the assumptions deviations might be inevitable. Since they might 

significantly affect the results of QRA, the decision makers and analysts should pay attention to their 

criticality. In the NPP industry in particular, some deviations might be very critical and lead to catastrophic 

consequences. 

4.5. Conclusion 

In this work, we have extended the approach of Khorsandi and Aven (2017) for evaluating 

assumptions deviations in QRAs. The extended framework covers a new context of DM very relevant in 

practice, namely, that of comparing alternatives (rather than comparing a single alternative against a safety 

objective) and an additional type of assumptions, namely, conservative assumptions (rather than just the 

best judgment type of assumptions). An integrated metric, the criticality of assumption deviation, is 

defined and evaluated based on the extended framework through the use of decision flow diagrams. The 

developed framework is applied to a case study of a PRA model of the external flooding hazard group of 

an NPP. The implementation of the framework has shown its feasibility and its ability to cover different 

types of assumptions and to provide a more complete evaluation of the assumption deviation. 

The use of decision flow diagrams has both pros and cons. The pros are that these diagrams facilitate a 

standardized assumption deviation risk assessment, increasing both the transparency and efficiency of the 

assessment. These are desirable attributes in case of peer review of the assessment and considering the 

large number of assumptions typically involved in PRAs. A con of such diagrams are that they give a 
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―mechanical‖ assessment procedure where the assessment is based on strict rules rather than the use of 

overall judgments. Another possible limitation of the current research that need to be addressed in the 

future is that it analyzes the deviation risk for one assumption at a time and, thus, fails to take into account 

the deviation risk for several assumptions simultaneously.  
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Chapter 5 Strength of knowledge 

supporting risk analysis: assessment 

framework 
In PRA, models are developed to calculate probabilistic indexes for risk characterization [6]. The 

outcomes are inevitably conditioned on the knowledge of the problem. Then, it is well-accepted that 

epistemic uncertainty must be quantified for a comprehensive characterization of risk. This relates to the 

Strength of Knowledge (SoK) that supports the risk modeling and assessment [15], [16]. The SoK has been 

identified also in Chapter 2 as a crucial part of the trustworthiness of the risk assessment outcomes. 

The aim of this chapter is to develop a framework for assessing the SoK of PRA models and that can be 

applied on the constituting elements of a PRA model. A hierarchical framework is developed to conceptually 

describe the SoK and relate it to its major contributors. Sect. 5.1 briefly presents some common methods for 

evaluating the SoK of a risk assessment model. In Sect. 5.2, a SoK assessment hierarchical framework is 

developed. In Sect. 5.3, the framework is implemented in a top-down and bottom-up fashion for practical 

SoK assessment, based on the reduced order model presented in Chapter 3. In Sect. 5.4, a case study 

concerning two hazard-group PRA models of a NPP is presented. Finally, a discussion and conclusion on the 

method are presented. 

5.1. State of the art 

Few methods are found in the literature for assessing the SoK supporting risk assessment. In [6], a 

―crude‖ qualitative, direct grading of the SoK that supports risk assessment is introduced. In this method, the 

SoK is classified to minor, moderate, and significant with respect to four criteria: the phenomenological 

understanding of the problem and availability of precise and well-understood predicting models for the 

physical phenomena of interest, the availability of reliable data, the reasonability of assumptions made, and 

the agreement among experts [6], [11], [17], [41], [7]. In [17] a semi-quantitative approach known as 

assumption deviation risk has been introduced. The core idea of this method that poor assumptions are main 

sources of weak knowledge and, thus, the solidity of assumptions on which risk analysis is based should be 

evaluated [17], [11]. This approach is based on converting the main assumptions into uncertainty factors and 

identifying the criticality of assumptions by assigning crude risk scores for the main assumptions of the 
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risk assessment model based on: (i) the possible deviation from the assumptions and the associated 

consequences; (ii) the uncertainty of this deviation; (iii) the background knowledge that supports the 

assumptions. Similarly, [11] defines guidelines to treat the uncertainty associated with six typical settings 

that correspond to different levels of assumptions deviations. However, most of the aforementioned lack of 

an integrated framework that covers the different contributing factors to SoK. Also, they evaluate the SoK 

by directly scoring of some intangible contributing factors, which is hard to apply in practice. 

5.2. A hierarchical framework for SoK assessment 

In this section, we construct a conceptual framework to describe the SoK that supports a PRA. The 

framework developed, based on the review presented in the appended paper IV. The main attributes that 

contribute to the SoK are identified from the literature and organized hierarchically based on the 

framework proposed in [6], but adjusted and expanded to include more contributors and facilitate the 

practical implementations. 

 

 

As shown in Figure 5.1, the SoK, denoted by 𝐾 (Level 1), represents the solidity of background 

knowledge that supports a risk model. A high value of 𝐾 indicates that the model is well supported and, 

therefore, its results are trustable. The SoK is characterized by three level-2 attributes: solidity of 

assumptions (𝐴), availability and reliability of data (𝐷), and understanding of the phenomena (𝑃). The 

attribute 𝐴 measures the plausibility, objectivity and sensitivity of the assumptions upon which the model is 

based; 𝐷 measures the amount and reliability of data that support the model evaluation; and 𝑃  measures 

Figure 5.1 A hierarchical conceptual framework for knowledge assessment 
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the degree of comprehension of the phenomena involved in the risk assessment.  

The three attributes of level-2 are further decomposed into sub-attributes (Levels 3 and 4) to assist their 

evaluation in practice. Please note that the breaking-down is designed in such a way that the sub-attributes in 

the same hierarchy are independent and mutually exclusive. Detailed definitions of the attributes are given in 

Table 5.1 and Table 5.2 Detailed guidelines for the evaluation of the attributes at the bottom levels of the 

framework are defined in Appendices A-C of appended paper IV.  

Table 5.1 Definition of SoK attributes (Level 3) 

Attribute Definition 

Value ladenness of the analyst 

(𝑉𝐿 = 𝐾12) 

The degree to which the presumed values and beliefs that are taken as facts, and the 

assumptions made by experts are affected by the personal points of view, bias, 

subjectivity, and external or personal limitations 

The sensitivity of assumption 

(𝑆 = 𝐾13) 

The degree to which the models‘ output varies with assumptions 

Amount of available data 

(𝐴𝐷 = 𝐾21) 

The quantity of data that supports the modeling and analysis 

Reliability of data (𝑅𝐷 = 𝐾22) The degree to which the available data is complete, accurate and error-free, consistent, 

valid and representative of reality 

Years of experience (𝑌𝐸 = 𝐾31) The amount of experience (measured in years) regarding a specific phenomenon 

Number of experts involved 

(𝑁𝐸 = 𝐾32) 

The number of experts who are explicitly or implicitly involved in understanding the 

phenomena and the risk analysis 

Academic studies on the 

phenomena (𝐴𝐸 = 𝐾33) 

The number of academic resources, i.e., articles, books, etc., available in relation to the 

phenomena of interest 

Industrial evidence and 

applications on the phenomena 

(𝐼𝐸 = 𝐾34) 

The number of industrial applications and reports related to the specific phenomena or 

events of interest 

 

Table 5.2 Definition of SoK attributes (Level 4) 

Attribute Definition 

Personal knowledge (𝑃𝐾 = 𝐾121) The level of analysts‘ knowledge and relevance to the problem 

Source of information (𝑆𝐼 = 𝐾122) The degree of solidity, relevance, and confidence of the experts‘ source of information 

and knowledge 

Unbiasedness and plausibility (𝑈 = 𝐾123) The experts‘ degree of objectivity and unbiasedness towards personal interest, or an 

intentional or non-intentional tendency towards a specific subject in the analysis 

Relative independence (𝑅𝐼 = 𝐾124) The degree of independence of the analysts from limitations or external pressures 

Past experience (𝑃𝐸 = 𝐾125) The experts‘ degree of experience in the related domain and more specifically, in the 

specific problem under analysis 

Performance measures (𝑃𝑀 = 𝐾126) The experts‘ degree of professionalism, skills, and competencies, past fulfillment of 

assigned missions and level of achievement 

Agreement among peers (𝑃 = 𝐾127) The degree to which the assumptions made by different experts are consistent 
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Completeness (𝐶 = 𝐾221) The degree to which the collected data contains the needed information for the risk 

modeling and assessment 

Consistency (𝐶𝑜 = 𝐾222) The degree of homogeneity of data from different data sources 

Validity (𝑉 = 𝐾223) The degree to which the data are collected from a standard collection process and 

satisfy the syntax of its definition (documentation related) 

Accuracy and conformity (𝐴𝑐 = 𝐾224) The degree to which data correctly reflects the reality about an object or event 

Timeliness (𝑇 = 𝐾225) The degree to which data are up-to-date and represent reality for the required point in 

time 

5.3. A top-down bottom-up method for SoK assessment 

In this section, we present a top-down bottom-up method to facilitate the practical implementation of 

the framework proposed in Figure 5.1 for the evaluation of the SoK supporting risk assessment models. In 

Sect. 5.3.1, we give an overview of the SoK assessment method and how to evaluate the SoK on the level 

of basic elements of a PRA model. In Sect. 5.3.2, we show and how to aggregate the SoK of the basic 

elements to evaluate the SoK of the total risk assessment model. 

5.3.1. SoK assessment for the basic events 

Similar to the assessment of maturity presented in Chapter 3, the assessment of SoK starts from 

determining the SoK for each basic event. The total SoK for the reduced PRA model is evaluated as a 

weighted average of the BEs‘ SoK, as will be illustrated later in Sect. 5.3.2. The first step is, hence, to 

construct the reduced-order PRA model using the same procedural steps illustrated in Chapter 3. 

After constructing the reduced order model and identifying the basic events that need to be assessed, the 

SoK is then, evaluated for a single basic event as a weighted average of the attributes scores presented in Figure 

5.1, where the attribute scores are evaluated based on the scoring guidelines presented in Appendices A-C of the 

appended paper IV, which, in turn are derived based on technical reports, literature and experts‘ elicitation. The 

SoK is, then, assessed as follows: 

 𝐾 = ∑ ∑ ∑ 𝑊𝑖 ∙ 𝑊𝑖𝑗 ∙ 𝑊𝑖𝑗𝑘 ∙  𝐾𝑖𝑗𝑘
𝑛𝑖𝑗𝑘
𝑘<1

𝑛𝑖𝑗
𝑗<1

𝑛𝑖
𝑖<1 ,  (5.1) 

In Eq. (5.1),  𝑊𝑖 ,𝑊𝑖𝑗 and 𝑊𝑖𝑗𝑘 are respectively the weights of the 2
nd

, 3
rd

 and 4
th
 level attributes in the 

hierarchical tree of Figure 5.1, 𝐾𝑖𝑗𝑘 is the score of the ―leaf‖ attributes, while 𝑛𝑖, 𝑛𝑖𝑗 and 𝑛𝑖𝑗𝑘 are 

respectively the number of attributes in the 2
nd

, 3
rd

 and 4
th

 levels. Letting 𝐾𝑙𝑒𝑎𝑓,𝑘 denote the knowledge 

score for the 𝑖-th leaf attribute in the bottom level, Eq. (5.1) can be simplified as: 

 𝐾 = ∑ 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 ∙ 𝐾𝑙𝑒𝑎𝑓,𝑘
𝑛𝑙𝑒𝑎𝑓
𝑘<1

,  (5.2) 

where 𝑛𝑙𝑒𝑎𝑓 = 19 is the number of leaf attributes in the assessment framework of Figure 5.1, 𝐾𝑙𝑒𝑎𝑓,𝑘 is 
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evaluated based on the guidelines in Appendices A-C of appended paper IV , 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 is the global 

weight of the 𝑘-th ―leaf‖ attribute with respect to the top level goal and is calculated by: 

 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 = {
 𝑊𝑖 ∙ 𝑊𝑖𝑗 ,            𝑖𝑓𝐾𝑙𝑒𝑎𝑓,𝑘  is in level 3

 𝑊𝑖 ∙ 𝑊𝑖𝑗 ∙ 𝑊𝑖𝑗𝑘 , 𝑖𝑓𝐾𝑙𝑒𝑎𝑓,𝑘  is in level 4
,  (5.3) 

Note that the global weights 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 , 𝑘 = 1,2,… , 𝑛𝑙𝑒𝑎𝑓  of the leaf attributes sums to one: 

∑ 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 = 1
𝑛𝑙𝑒𝑎𝑓
𝑘<1

. 

As shown in Appendices A-C of appended paper IV, 𝐾𝑙𝑒𝑎𝑓,𝑘 is between 1 and 5, with a high value 

indicating strong knowledge. From Eqs. (5.1) and (5.2), and since the scores of leaf attributes are on 

between 1and 5, it is obvious that also 𝐾𝐵𝐸 ∈ ,1,5- and a large value indicates strong knowledge on the 

corresponding BE. 

Given the assessment framework developed in Figure 5.1, the AHP [48] is adopted for evaluating the 

relative importance (weights) 𝑊𝑖 , 𝑊𝑖𝑗  and 𝑊𝑖𝑗𝑘  in Eq. (5.3). Please note that since there are no 

alternatives to be compared in this work, pairwise comparison matrices are only needed for deriving the 

criteria (attributes) weights. More illustration on AHP method and evaluating the weights of criteria is 

presented in Chapter 2. 

As illustrated in Chapter 3, the PRA model is deconstructed to its constituting elements and then, the 

number of constituting elements is reduced. In this reduced order PRA model, the most basic element is the 

―basic event‖, where a minimal cutset consists of a group of ―basic events‖. On the other hand, a given 

scenario mathematically consists of a group of minimal cutsets. Finally, a given operation states consist of 

a group of scenarios. Accordingly, the assessment of the SoK starts with the evaluation of the BEs in the 

reduced-order model. The SoK of the BEs is denoted by 𝐾𝐵𝐸 and evaluated as in Eq. (5.4) by a weighted 

average of the leaf attributes scores. We take the generic 𝑞-th BE as an example to illustrate step by step 

the evaluation of SoK assessment method. For the sake of simplicity, we dropped the 𝑞 subscripts in the 

symbols: 

 𝐾𝐵𝐸  = ∑ 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 ∙ 𝐾𝑙𝑒𝑎𝑓,𝑘
𝑛𝑙𝑒𝑎𝑓
𝑘<1

  (5.4) 

5.3.2. Aggregation of the SoK 

Once the SoKs of the basic events in the reduced-order models are evaluated, they can be aggregated 

to evaluate the total SoK for the PRA model. Let  𝐾𝐵𝐸,𝑙,𝑞 represent the SoK of the 𝑞-th BE in the 𝑙-th 

reduced-order model. The aggregation of  𝐾𝐵𝐸,𝑙,𝑞 should consider the difference in the atomic elements‘ 

(i.e., BEs, MCs, Scenarios, etc.) contribution to the total risk. Different importance measures can be used to 
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evaluate the contribution of the basic events. For example, as the reduced-order risk model is constructed by 

the BEs in the MCSs, the weights of the BEs can be calculated based on Fussell-Vesely importance measures 

[79]: 

 𝑊𝐵𝐸,𝑙,𝑞 =
𝐼𝐵𝐸,𝑙,𝑞 

∑ 𝐼𝐵𝐸,𝑙,𝑞
𝑛𝐵𝐸,𝑙
𝑞=1

,  (5.5) 

where 𝐼𝐵𝐸,𝑙,𝑞  is the Fussell-Vesely importance measure value of the corresponding 𝑞 -th BE in the 

elementary risk model 𝑙. Remember that ―elementary reduced-order risk model‖ represents the risk model 

at a given operation state and a given scenario and composed of MCSs at this operation state and scenario, 

as illustrated in Chapter 3, Eq. (3.11). 

The SoK for the 𝑙-th elementary reduced-order risk model, denoted by 𝐾𝑙 , is calculated by a weighted 

average of knowledge scores on its basic events by: 

 𝐾𝑙 = ∑  𝑊𝐵𝐸,𝑙,𝑞 ∙ 𝐾𝐵𝐸,𝑙,𝑞
𝑛𝐵𝐸,𝑙
𝑞<1 ,  (5.6) 

The importance of the reduced-order model is evaluated by its contribution to the total risk: 

 𝑊𝑙 = 
𝑅𝑅𝑒𝑑,𝑙

∑ 𝑅𝑅𝑒𝑑,𝑙
𝑛𝑙
𝑙=1

,  (5.7) 

where 𝑅𝑅𝑒𝑑,𝑙 is the risk index value of the 𝑙-th ―elementary reduced-order model‖ and is calculated by Eq. 

(3.11) in Chapter 3. 

To calculate the total SoK 𝐾𝑅𝑒𝑑 of the reduced-order risk model, the knowledge indexes 𝐾𝑙s of the 

individual reduced-order risk models are further aggregated by considering their contributions: 

 𝐾𝑅𝑒𝑑 = ∑ 𝑊𝑙 ∙ 𝐾𝑙
𝑛𝑙
𝑙<1 ,  (5.8) 

The index 𝐾𝑅𝑒𝑑 is, then, used to represent the SoK of the entire PRA of a specific hazard group: its 

value is between 1 and 5, with a high value indicating that there is strong knowledge in support of the 

PRA model and its risk outcomes. 

5.4. Application 

In this section, we apply the developed framework to a case study of real PRA models for two hazard 

groups in NPPs (previously illustrated in Chapter 3). The reduced-order models that were constructed for 

each hazard group in Chapter 3 are adopted. The SoK assessment framework is, then, applied on the BEs 

and the total SoK is obtained by aggregating the BEs‘ SoKs. Finally, a comparison is made on the SoKs of 

the two PRA models to provide some conclusions to relevant RIDM. 

5.4.1. Reduced-order model  

As illustrated in Sect. 5.3, the assessment needs to be carried out at the level of small risk contributors. 
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Hence, we adopt the developed reduced-order model of the case study presented in Chapter 3 (detailed 

description of constructing the reduced order model for the same case study is presented in the, Sect. 3.4.2) 

5.4.2. Knowledge assessment of basic events 

In this section, we show how to assess the SoK for the BEs in Tables 3.4-3.5. As shown in Eq. (5.4), 

the SoK of the basic event is evaluated as a weighted average over the SoK of the 19 leaf attributes in 

Figure 5.1. Hence, the first step of applying the SoK assessment framework is to determine the global 

weights of the ―leaf‖ attributes. The weights are evaluated using the same procedural steps illustrated 

Chapter 3. Then, the SoK for the ―leaf‖ attributes, i.e., 𝐾𝑙𝑒𝑎𝑓,𝑘 in Eq. (5.4) is determined following the 

assessment guidelines in in Appendices A-C of appended paper IV. Here, we give an illustrating example 

on how to evaluate the SoK of the basic event BE2. The first leaf attribute, i.e., quality of assumptions 𝐾11, 

is evaluated based on the guidelines in Appendix A.1 of appended paper IV. In this basic event, the loss of 

equipment is calculated by assuming that as long as the water reaches the bottom of each equipment, a 

failure is caused. This assumption is based on extrapolating some data to extreme values, and it is 

conservative. Therefore, this assumption was judged by the experts to lie between two cases with score 1 

and score 3 in Table A.1: an inter-level score of 2 was given by the experts. Take the amount of data 𝐾21 

as another example: the number of years of experience on BE2 is 10 years; therefore, from Appendix B.1 

of appended paper IV, the SoK score of 𝐾21 is assessed by the experts to be 1. The rest of the leaf 

attributes are assessed similarly and the results are given in Table 5.3 and Table 5.4. Then, from Eq. (5.4) 

we found 𝐾𝐵𝐸 = 3.55   for BE2. The procedures are repeated for each BE; the resulting 𝐾𝐵𝐸s are given 

in Table 5.5. 

Table 5.3 Assessment of level-3 knowledge ―leaf‖ attributes (BE2 ) 

Attribute QA AD YE NE AE IN 

𝑊𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 0.3234 0.0587 0.1190 0.0630 0.1190 0.1190 

Score 2 1 5 5 5 5 

 

Table 5.4 Assessment of level-4 knowledge ―leaf‖ attributes (BE2 ) 

Attribute PK SI U RI PE PM P C Co V Cu Ac 

𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 0.0203 0.0134 0.0177 0.0144 0.0179 0.0186 0.0221 0.0148 0.0110 0.0147 0.0139 0.0190 

Score 5 5 4 4 5 5 4 5 5 3 4 3 

5.4.3. Knowledge Aggregation 
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Finally, the 𝐾𝐵𝐸s in Table 5.5 are aggregated for the SoK of the entire model. For this, the SoK of the 

individual reduced-order risk models 𝐾𝑙  need to be calculated first by Eqs. (5.5) and (5.6), with the 

Fussell-Vesely (FV) importance measures for the BEs also given in Table 5.5. In this case study, we have 

𝑙 = 1 for the external events. The resulted 𝐾𝑙 from Eqs. (5.5) and (5.6) is 𝐾𝑙 = 2.9 . Then, the total SoK 

for external flooding, denoted by 𝐾𝑅𝑒𝑑,𝐸𝑥, is calculated based on the reduced-order model using Eqs. (5.7) 

and (5.8). In this case study, since we have only one individual risk model, using Eqs. (5.7) and (5.8) leads 

to 𝐾𝑅𝑒𝑑,𝐸𝑥 = 𝐾𝑙,1 = 2.9 . 

Table 5.5 Knowledge assessment and aggregation over the basic events 

BE BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10 

FV 
0.9020 1.0000 0.5530 0.1820 0.1410 0.1270 0.1210 0.0450 0.0277 0.0277 

𝑊𝐵𝐸,𝑙,𝑞 = 𝑁𝐹𝑉 0.2885 0.3199 0.1769 0.0582 0.0451 0.0406 0.0387 0.0144 0.0089 0.0089 

𝐾𝐵𝐸 1.6582 3.6595 2.9006 3.2178 3.7778 3.7778 3.0102 3.7778 3.2178 3.2178 

𝑊𝐵𝐸,𝑙,𝑞 × 𝐾𝐵𝐸,𝑙,𝑞 0.4784 1.1705 0.5131 0.1873 0.1704 0.1535 0.1165 0.05437 0.0285 0.0285 

*(FV): Fussell-Vesely  

*(NFV): Normalized Fussell-Vesely 

5.5. Results and discussion 

The same steps were repeated on the internal events PRA model. We directly present the final SoK for 

the internal events PRA model: 𝐾𝑅𝑒𝑑,𝐼𝑛 = 4. 4. The SoK for both hazard groups are graphically illustrated 

in Figure 5.2. In Figure 5.2, we also illustrate the risk indexes (probability of core meltdown) evaluated for 

the two hazard groups (note that the values of the risk indexes are scaled due to confidentiality reasons). It 

can be seen from the Figure 5.2 that the SoK on the internal events is higher than that on external flooding: 

this means that we are surer of the risk index value calculated with the PRA model of internal events, than 

of that for the external flooding hazard group.  

In fact, these results confirm expectations, as the internal events hazard group has been well studied in 

nuclear PRAs and mature models are available, whose parameters have relatively low uncertainty [19]. On 

the other hand, the PRAs for external flooding is generally considered less mature [36] and several 

limitations have been pointed out in the current external flooding PRA models. For example, the flood 

frequencies are obtained by extrapolating the fitted historical data (usually limited) to the design basis 

flood levels, which results in high uncertainty [36]. In particular, the probability of extreme floods is very 

low [83] and flooding events are very site-specific [86]. Hence, very few data are available for risk 
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modeling, which limits the SoK for external flooding. The low occurrence probability of external flooding 

and the lack of operating experience and data related to them makes it very difficult also to predict and 

estimate their consequences, which adds to the uncertainties in the risk analysis as it limits the SoK of the 

PRA model used [83]. Specifically, in the case study considered, a large fraction of the risk contribution 

(69% of the reduced-order risk for external flooding) is due to three basic events i.e., BE1, BE2, and BE3. 

As shown in Table 5.5, two of them (BE1, BE3) have quite low SoK, which limits the SoK of the entire 

PRA model. 

 

Figure 5.2 Representation of hazard groups‘ levels of risk and SoK 

5.6. Conclusion 

In this chapter, we have proposed a new method for implementing a quantitative evaluation of the 

SoK of risk assessment models. The underlying conceptual framework has been developed based on a 

thorough literature review. The framework is based on three main attributes (assumptions, data, and 

phenomenological understanding), which are further decomposed into more tangible sub-attributes and 

―leaf‖ attributes for quantification. Detailed scoring guidelines are defined for the evaluation of the leaf 

attributes. In order to facilitate the application of the knowledge evaluation framework in practice, a 

top-down bottom-up approach is proposed, where a reduced-order model is constructed in the top-down 

phase to reduce the complexity of the analysis, and the SoKs are evaluated and aggregated hierarchically in 

the bottom-up phase. The application of the framework on a real case study of PRA models for two hazard 

groups, i.e., external flooding and internal events in NPP, has shown its operability. The results of the case 

study are consistent with the expectations of industrial practice, where the SoK of external flooding is 

lower than that of internal events, for which more data and information (i.e., strong knowledge) are 

available.  

A potential limitation of the developed method is that we are assuming that the risk assessment model 
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itself is complete in covering all the possible scenarios. The SoK on model structure and model uncertainty 

[27], [87] is not considered in this work. For a more comprehensive knowledge assessment, further studies 

are needed to extend the developed method to consider completeness and comprehensiveness, including 

model uncertainty in the PRA model [27], [87]. Also, as the weights of the attributes in the framework are 

subjectively evaluated, formal expert judgment elicitation methods should be used for evaluating the 

weights. Finally, the evaluation framework and method do not pretend to be complete but they stand as a 

starting point for a practical assessment of the SoK of risk assessment models. 
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Chapter 6 Framework for 

multi-hazards risk aggregation 

considering the trustworthiness 
A criticism of the current practice of MHRA is that the aggregation is conducted by a simple 

arithmetic summation of the risk metrics from different hazard groups, without considering the 

heterogeneity in the degrees of maturity and realism of the risk analysis for each hazard group [19]. The 

risk aggregation should also consider the different realism and trustworthiness in the analyses. In this 

chapter, we extend the framework developed in Chapter 2 to a more comprehensive and complete 

framework for trustworthiness assessment. Then, we develop a new method for MHRA considering the 

level of trustworthiness. In particular, a review of the approaches proposed in the literature for a broader 

characterization of risk is presented in Sect. 6.1. In Sect. 6.2, a hierarchical framework is developed for 

assessing the trustworthiness of PRA models. In Sect. 6.3, the procedural steps for implementing the 

framework are presented. Sect. 6.4 illustrates how to evaluate the risk considering the level of 

trustworthiness. In Sect. 6.5, the developed framework is applied to a case study from the nuclear industry 

and finally, Sect. 6.6 concludes this chapter. 

6.1. State of the art 

It was realized among experts in the domain that a comprehensive representation of the risk is needed 

to better inform DM. As has been illustrated in Chapter 1, some proposals are found in the literature as an 

attempt of a broader representation of risk through what so-called ―new risk perspectives‖ that highlights 

uncertainty instead of probability for representing the risk. We summarize these proposal in the following.  

In [8], a structure is presented to help understand the suitability of risk representation through linking 

the elements of Data-Information-Knowledge-Wisdom hierarchy to the general risk perspectives i.e., 

events, consequences, uncertainty (𝐴, 𝐶, 𝑈). In [6], a method is also proposed in accord with the new risk 

perspective that requires a comprehensive description of risk that covers: the events, consequences, 

predictions, uncertainty, probability, sensitivity and knowledge. As illustrated in Chapter 4, some attempts 

are found in the literature for treating uncertain assumptions as an implication of new risk perspectives 

such as, the law of total expectation, interval probability, crude strength of knowledge and sensitivity 
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categorization assumption deviation risk [11], [17], [26].  

For assessing directly the trustworthiness, we list some of the methods illustrated in Chapter 1. Other 

methods and detailed description can be also found in Chapter 1. A hierarchical framework is proposed in 

[29] for evaluating the trustworthiness of risk assessment models through evaluating attributes and 

sub-attributes of the modeling fidelity and the SoK. In [31], the CMM is proposed to assesses the maturity 

of a software development process in the light of its quality, reliability, and trustworthiness. A hierarchical 

framework is proposed in [9] for assessing the maturity and prediction capability of a prognostic method 

for maintenance DM purposes. A framework for assessing the credibility of M&S is proposed in [9] given 

eight criteria: (i) verification; (ii) validation; (iii) input pedigree; (iv) results uncertainty (v) results 

robustness; (vi) use history; (vii) M&S management; (viii) people qualification [12]. The quality of M&S 

is assessed in ASME by two steps, i.e., verification and validation [32]. Nevertheless, as illustrated 

previously in Chapter 1, most of the aforementioned works treat the contributing factors to trustworthiness 

in risk analysis separately, without integrating them in a comprehensive framework that covers all the 

contributing factors to trustworthiness and they the evaluation of their attributes is carried out by directly 

scoring the some intangible contributing factors, which is hard to apply in practice. Above all, none of the 

aforementioned methods integrate the trustworthiness in the result of risk assessment, neither is it 

considered in MHRA. 

6.2. A hierarchical framework for trustworthiness assessment 

As illustrated previously, various factors might affect the trustworthiness of risk assessment. We are 

listing some of the most relevant factors that are believed to greatly affect the trustworthiness of risk 

assessment. For example, the level of strength of knowledge [6], [8], [17], [7], conservatism [58], [30], 

uncertainty, level of sophistication and details in the analysis [36], [19], [13], experience, number of 

approximations and assumptions made in the analysis are identified in [36], [19], [22], [10], [11], [23] as 

fundamental factors that influence the realism and trustworthiness of analysis.. The communication of the 

sensitivity is stressed for a comprehensive description of risk [6], [30]. Also, other factors are identified as 

contributing factors of the credibility of M&S including verification, validation, input pedigree, result‘s 

uncertainty, result‘s robustness, use history, M&S management, people qualification [12]. 

The trustworthiness of risk assessment is defined in this chapter as the degree of confidence that the 

background knowledge is strong enough to support the PRA and that PRA model is suitable and correctly 

made in a robust and thorough way to make the best use of the available knowledge in order to reflect, to 
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the best possible reality. In this work, a hierarchical tree is developed based on four main factors: (i) the 

SoK that supports a risk assessment [6], [8], [17], [7]; (ii) the technical adequacy, maturity, quality, and 

ability of the used tool to represent reality [31], [12], [9]; (iii) the quality of the modeling process [1], [31], 

[32], [12], [9]; (iv) the sensitivity of the model given the input parameters and assumptions i.e., namely the 

robustness of the results [6]. The four main factor are categorized into two main groups: the SoK and the 

modeling fidelity, and in turn broken down more tangible sub-attributes based on a thorough literature 

review and the attempts presented in the previous chapters. The developed hierarchical framework is 

presented in Figure 6.1, and detailed definitions of the attributes, sub-attributes and ―leaf‖ attributes are 

given in Table 6.1-6.4. More information on the attributes elicitation and framework construction are 

presented in the appended paper V. 

 

Figure 6.1 A Hierarchical tree for trustworthiness evaluation 

 

 

Table 6.1 Definition of trustworthiness attributes (Level 1) 

Attribute Definition 

Modeling fidelity (𝑀𝐹 = 𝑇1) The degree of confidence that the selected PRA model is technically adequate for 

describing the problem of interest and that the model is implemented in a trustable 

way so that the results of the developed model can reasonably of represents the 

reality 

The strength of knowledge 

(𝑆𝑜𝐾 = 𝑇2) 

The amount of high-quality explicit knowledge that is available to support the PRA 
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Table 6.2 Definition of trustworthiness attributes (Level 2) 

Attribute Definition 

Robustness of the results 

(𝑅𝑜𝑅 = 𝑇1,1) 

The capability of the PRA results to remain unaffected by small variations in model 

parameters or model assumptions 

Suitability of the model (𝑆𝑜𝑀 =

𝑇1,2) 

The technical adequacy of the tool, maturity and ability to model the problem of 

interest 

Quality of application (𝑄𝐴𝑝 =

𝑇1,3) 

The degree to which the analysis is implemented with the minimum required levels of 

details and modeling adequacy that have the degree of quality, suitable for supporting 

the application of interest 

Knowledge of potential hazards and 

accidents evolution 

process (𝑃𝑜𝐻 = 𝑇2,1) 

The availability of documentation and knowledge of abnormal events, accidents and 

their evolutions, from similar systems 

Phenomenological understanding 

(𝑃 = 𝑇2,2) 

The knowledge that supports the comprehension of the system functionality and the 

related phenomena 

Data (𝐷 = 𝑇2,3) Amount and quality of data needed that supports estimating the model parameters 

 

Table 6.3 Definition of trustworthiness attributes (Level 3) 

Attribute Definition 

Model sensitivity (𝑀𝑆 = 𝑇1,1,1) The degree to which the model output varies when one or several parameters change 

Impact of assumptions (𝐼𝑜𝐴 =

𝑇1,1,2) 

The degree to which the model output varies when one or several assumptions change 

Robustness of the model 

(𝑅𝑜𝑀 = 𝑇1,2,1) 

The capability of the model to keep its performance when applied to a different 

problem settings 

Suitability of the tool for the 

problem (𝑆 = 𝑇1,2,2) 

The ability to capture all the important details and characterizations of the problem of 

interest 

Historical use (𝐻𝑈 = 𝑇1,2,3) The degree of confidence gained in this method by the long historical usage 

Conservatism (𝐶𝑣 = 𝑇1,3,1) The intentional acts for overestimating the risk by making conservative assumptions 

out of cautiousness 

The accuracy of calculations 

(𝐴𝑐𝐶 = 𝑇1,3,2) 

The degree of the voluntarily accepted error in the calculation, e.g., significant 

figures, simulation errors, and cutoff errors 

 

Quality of assumptions (𝑄𝑜𝐴 =

𝑇1,3,3) 

The degree to which the assumption is valid, representing reality and supporting the 

model 

Verification (𝑉𝑟 = 𝑇1,3,4) The degree of assurance that the analysis maintains the requirements of quality 

control standards and obtains the acceptance from different analysts 

Level of sophistication (𝐿𝑜𝑆 =

𝑇1,3,5) 

The degree of treatment of the problem, and amount of effort and details invested in 

the problem given its requirement (requirement and complexity) 

Number of known hazards 

(𝑁𝐻 = 𝑇2,1,1) 

The documented experience on known hazards that might affect the system of interest 

 

Availability of accident analysis 

reports (𝑁𝐻 = 𝑇2,1,2) 

The availability of technical reports that cover thoroughly the different sequences of 

any abnormal activity, incident or accident in the time frame and the progressions of 

each phase 

Experts knowledge about the 

hazard (𝑁𝐻 = 𝑇2,1,3) 

The undocumented experience possessed by experts on known hazards 
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Years of experience (𝑌𝐸 = 𝑇2,2,1) The amount of experience (measured in years) regarding a specific phenomenon 

Number of experts involved 

(𝑁𝐸 = 𝑇2,2,2) 

The number of experts who are explicitly or implicitly involved in understanding the 

phenomena and the risk analysis 

 

Academic studies on the 

phenomena (𝐴𝐸 = 𝑇2,2,3) 

The number of academic resources, i.e., articles, books, etc., available about the 

phenomena of interest 

Industrial evidence and applications 

on the phenomena (𝐼𝐸 = 𝑇2,2,4) 

The number of industrial applications and reports related to the specific phenomena 

or events of interest 

Amount of available data 

(𝐴𝐷 = 𝑇2,3,1) 

The amount of data that are needed to evaluate the model parameters 

Reliability of data (𝑅𝐷 = 𝑇2,3,2) The degree to which the properties of data satisfy the requirements of risk analysis 

 

 

Table 6.4 Definition of trustworthiness attributes (Level 4) 

Attribute Definition 

The plausibility of assumptions (𝑃𝑙 =

𝑇1,3,3,1) 

The degree of realism of the statements made in the analysis, in cases of lack of 

knowledge or to facilitate the problem solution 

Value ladenness of assessors  (𝑉𝐿 =

𝑇1,3,3,2) 

The experts‘ degree of objectivity, professionalism, skills and competencies, past 

fulfillment of assigned missions and level of achievement 

Agreement among peers (𝐴𝑔 = 𝑇1,3,4,1) The degree of resemblance between the peers on the analysis and assumptions made if 

they were asked to perform the analysis separately 

Quality assurance (𝑄𝐴 = 𝑇1,3,4,2) The degree of following the standards in the process of implementing the analysis 

Level of granularity (𝐿𝑜𝐺 = 𝑇1,3,5,1) The depth of analysis and subdivision of the problem constituting elements 

Number of approximations (𝑁𝑜𝐴 =

𝑇1,3,5,2) 

The intentional simplifications made to facilitate the modeling 

Level of details (𝐿𝑜𝐷 = 𝑇1,3,5,3) The degree with which the important contributing factors are captured in the modeling 

compared to the requirement of the analysis (e.g., the dependency among components) 

Completeness (𝐿𝑜𝐷 = 𝑇2,3,2,1) The degree to which the collected data contain the needed information for the risk 

modeling and assessment 

Consistency (𝐿𝑜𝐷 = 𝑇2,3,2,2) The degree of homogeneity of data from different data sources 

Validity (𝐿𝑜𝐷 = 𝑇2,3,2,3) The degree to which the data are collected from a standard collection process and 

satisfy the syntax of its definition (documentation related) 

Timeliness (𝐿𝑜𝐷 = 𝑇2,3,2,4) The degree to which data correctly reflect the reality of an object or event 

Accuracy (𝐿𝑜𝐷 = 𝑇2,3,2,5) The degree to which data are up-to-date and represent reality for the required point in 

time 

6.3. Evaluation of the level of trustworthiness  

In this section, a bottom-up method for evaluating the level of trustworthiness is developed where a 

combination of Dempster Shafer Theory (DST) and Analytical Hierarchy Process (AHP) is used to 

determine the weights of the attributes/sub-attributes in the framework proposed in Figure 6.1. 

6.3.1. Evaluation of the trustworthiness 

In this framework, five levels of trustworthiness are defined with their corresponding settings: 
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1. Strongly untrustworthy (𝑇 = 1): represents the minimum level of trustworthiness and, therefore, 

the decision maker has the lowest confidence in the result of the PRA. The analysis is made based 

on weak knowledge and/or nonrealistic analysis, leading to an estimated value that might be far 

from the real one. Further analysis and justifications need to be implemented on the risk analysis 

to enhance its trustworthiness. Otherwise, the risk assessment is not considered representative and 

one should not rely on its results to support any kind of DM. 

2. Untrustworthy (𝑇 = 2): represents a low level of trustworthiness and, therefore, the decision 

maker has low confidence in the results of the PRA. At this level, the analysis is made based on 

relatively weak knowledge and/or nonrealistic analysis, leading to unrealistically estimated risk 

values. Further analysis and justifications need to be implemented on the risk analysis to enhance 

its trustworthiness. The decision maker can use the results with caution and only as a support for 

DM. 

3. Moderately trustworthy (𝑇 = 3): represents a moderate level of trustworthiness and, therefore, the 

decision maker has an acceptable level of confidence in the results of the PRA. The analysis is 

made based on relatively moderate knowledge and/or relatively realistic analysis. The decision 

maker can rely cautiously on the model output to make the decision. 

4. Trustworthy (𝑇 = 4): represents a high level of trustworthiness and, therefore, the decision maker 

has quite high confidence in the results of the PRA. The analysis is made on a relatively high level 

of knowledge and realistic analysis. The decision maker can rely confidently on the models output 

to make decisions. 

5. Highly trustworthy (𝑇 = 5): represents the maximum level of trustworthiness. At this level, the 

PRA model outputs accurately predict the risk index with a proper characterization of parametric 

uncertainty. The decision maker can rely on the models output to support DM involving severe 

consequences, e.g., loss of human lives. 

In practice, the trustworthiness of risk assessment might be between two of the five levels defined 

above: for example, 𝑇 =  2.6 means that the level of trustworthiness is between untrustworthy and 

moderately trustworthy. 

In this work, the level of trustworthiness is calculated using a weighted average of the ―leaf‖ attributes in 
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Figure 6.1. 

 𝑇 = ∑ 𝑊𝑖 ∙ 𝐴𝑖
𝑛
𝑖   (6.1) 

where 𝑊𝑖 is the weight of the leaf attribute that measures its relative contribution to the trustworthiness of 

risk assessment; 𝐴𝑖 is the trustworthiness score for the i-th leaf attribute, evaluated based on the scoring 

guidelines presented in the Appendices of the appended paper V; 𝑛 is the number of the leaf attributes (in 

Figure 6.1, we have 𝑛 = 27). The scores should be assigned using the scoring guidelines presented in 

Appendices A-B of the appended paper V. On the other hand, the weights are determined based on 

Dempsthe Shafer-Analytical Hierarchy Process (DST-AHP) as discussed in Sect. 6.3.2 [88]. 

6.3.2. Dempster Shafer Theory - Analytical Hierarchy Process (DST-AHP) for 

trustworthiness attributes weight evaluation 

The weights of the different attributes in Figure 6.1 can be determined by using the AHP method to 

compare their relative importance with respect to the trustworthiness of risk assessment [48]. AHP is 

usually used because it can decrease the complexity of the comparison process, as it allows comparing 

only two criteria at a time, rather than comparing all the criteria simultaneously, which could be very 

difficult in complex problems. It should be noted that since there are no alternatives to be compared, 

pairwise comparison matrixes of AHP are only used for deriving the attributes (criteria) weights.  

To consider the fact that experts are subjective, not fully reliable and might have conflicting 

viewpoints caused by the multidisciplinary nature of the problem or the incomplete knowledge of the 

experts, Dempster-Shafer-Analytical Hierarchy Process (DST-AHP) is used. This allows combining 

multiple sources of uncertain, fuzzy and highly conflicting pieces of evidence with different levels of 

reliability [88], [89]. In this method, the assessors are asked to identify the focal sets that comprise of a 

single or group of the criteria. The experts determine the criteria contained in the focal sets in such a way 

that they are able to compare them (the focal sets) given their knowledge. Then, pairwise comparison 

matrices are constructed for the focal sets. Using focal sets instead of single criteria allows taking into 

account the partial uncertainty between possible criteria. The Basic Belief Assignments (BBA) of the 

corresponding focal sets are derived from the pairwise comparison matrices. The BBAs from different 

experts are combined using the DST fusion rule. The weights for each criterion are assumed to be BBA of 

the corresponding focal element (single criterion), and are derived based on maximum belief-plausibility 

principle in Dempster-Shafer theory, or on the maximum subjective probability obtained by probabilistic 

transformations using the transferable belief model [88], [90], [89]. It should be noted that in this work, we 
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only apply this method to derive the relative weights of the criteria, rather than using it to rank alternatives. 

Similar ideas have been used in [91], [92]. Procedure for calculating the weights of the leaf attributes based 

on DST-AHP is presented below. 

I. Constructing pairwise comparison matrices 

First, the experts are asked to construct pairwise comparison matrices (also known as knowledge 

matrices) to compare the relative importance of the sub-attributes in the same level of the hierarchy with 

respect to their parent attribute. . For example, the pairwise comparison matrix for the attribute modeling 

fidelity (𝑇1) is a 3 × 3 matrix that compares the relative importance of the three modeling fidelity 

daughter attributes: 

𝑇1,1 𝑇1,2 𝑇1,3
𝑇1,1
𝑇1,2
𝑇1,3

[

1 𝑀𝐹12 𝑀𝐹13
𝑀𝐹21 1 𝑀𝐹23
𝑀𝐹31 𝑀𝐹32 1

]
 

where the entries correspond to the pairwise comparisons of the daughter attributes robustness of the 

results (𝑇1,1), suitability of the selected model (𝑇1,2) and quality of the application (𝑇1,3), respectively. 

The generic element 𝑀𝐹𝑖𝑗 is assigned by assessing the relative importance of attribute 𝑖 to attribute 𝑗 

following the scoring protocols in [48]. For example, the element 𝑀𝐹12 is assigned by comparing the 

relative importance of 𝑇1,1 to 𝑇1,2. 

Compared to conventional AHP comparison matrices, the expert is free to choose, based on his/her 

belief, the elements of the pairwise comparison matrix. These elements can be focal elements that 

represent a single criteria, e.g., *𝐴+ or a distinct group of criteria, e.g., *𝐴, 𝐵+ that are comparable 

favorably (to the best of expert's knowledge) to the universal set that contains all the criteria, which allows 

accounting for the uncertainty in the judgment [93], [92], [89]. For example, the expert can choose a focal 

set of *𝑆𝑜𝑀, 𝑄𝐴𝑝+  if he/she believes that it can be compared favorably to the universal 

set  *𝑆𝑜𝑀,𝑄𝐴𝑝, 𝑅𝑜𝑅+ ; i.e., the set of *𝑆𝑜𝑀,𝑄𝐴𝑝+  can be compared to *𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅+  (the 

sub-attributes SoM, QAp, RoR were defined in Table 6.1-6.4). Then, the expert is asked to fill the pairwise 

comparison matrices to represent his/her belief in the relative importance of a given set (of one or multiple 

attributes) compared to the others. Favoring the universal set *𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅+ over *𝑆𝑜𝑀,𝑄𝐴𝑝+, means 

that the universal set contains an element that is not contained in the other set, and at the same time it is 

more important than the elements of the other set, i.e., 𝑅𝑜𝑅 is more important than 𝑆𝑜𝑀 and 𝑄𝐴𝑝. 

Finally, as in the conventional AHP method, the consistencies of the matrixes need to be tested, and the 
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assessors are asked to update their results if the consistency is lower than the required value [46].  

II. Computing the pairwise comparison matrix 

In this step, the weights are derived using the conventional AHP technique, according to which the 

normalized principal eigenvector of the matrix represents the weights. A good approximation for solving 

the eigenvector problem in case of high consistency is to normalize the columns of the matrix and, then, 

average the rows for obtaining the weights. For more details on AHP and deriving the weights from 

pairwise comparison matrices, the reader might refer to [94]. Please note that, as mentioned earlier, the 

weights derived from the pairwise comparison matrices are assumed to be the BBA of the associated focal 

sets. 

III. Reliability discounting 

Usually, multiple experts are involved in evaluating the weights. Each expert is regarded as an 

evidence source. Reliability of an evidence source represents its ability to provide correct measures of the 

considered problem [89]. Shafer‘s reliability discounting is often used to consider the reliability of the 

source information in DST-AHP [95]:  

 𝑚𝛿(𝐴) = {
(𝛿) ∙ 𝑚(𝐴)      ∀𝐴 ⊆ Θ,  A ≠ Θ

(1 − 𝛿) + (𝛿) ∙ 𝑚(Θ),   A = Θ
  ,  𝛿 ∈ , ,1- (6.2) 

 

where Θ represents the complete set of criteria, 𝐴 is the focal elements in the power set 2Θ, 𝑚(𝐴) is 

the BBA for 𝐴, 𝑚𝛿(𝐴) is the discounted BBA, 𝛿 is the reliability factor. A value of 𝛿 = 1 means that 

the source is fully reliable and a value of 𝛿 =   means that the source is fully unreliable. The reliability 

factor of the experts is determined by the decision maker based on their previous knowledge and 

experience.  

IV. Combination of experts opinions 

Next, Dempster‘s rule of combination [95] is used to combine two independent pieces of evidence 

assigned by different experts. The discounted BBAs from different experts are combined by [89]: 

 𝑚1,2
𝛿 (𝐶) = (𝑚1

𝛿⊕𝑚2
𝛿)(𝐶) = {

                                                           𝐶 = 𝜙,
1

1;𝐾
∙ ∑ 𝑚1

𝛿(𝐴) ∙ 𝑚2
𝛿(𝐵) 𝐴∩𝐵<𝐶≠𝜙 𝐶 ≠ 𝜙,

 (6.3) 

where 𝑚1,2
𝛿 (𝐶) is the new BBA resulting from the combination of the two discounted BBA 𝑚1

𝛿(𝐴) and 

𝑚2
𝛿(𝐵) of the two experts. 𝐾 is the conflict factor in the opinions of experts and given by: 

 𝐾 = ∑ 𝑚1
𝛿(𝐴) ∙ 𝑚2

𝛿(𝐵)𝐴∩𝐵<𝜙  (6.4) 

V. Pignistic probability transformation 
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The belief functions resulted from the discounting and combination are defined for focal sets (might 

contain one or multiple leaf attributes). To obtain the weights of each leaf attribute, the masses (𝑚1,2
𝛿 (𝐶)) 

assigned to the focal sets need to be transformed into masses for the basic elements. In this paper, the 

transferable belief model proposed by [96] is used for the transformation. In this method, the masses 

𝑚1,2
𝛿 (𝐶) on the credal level are converted to the pignistic level using the insufficient reason principle [96], 

[97]: 

 𝑤(𝑥) = ∑ 𝑚(𝐶)
1𝐶(𝑥)

|𝐶|
, ∀𝑥 ∈ 𝛩𝐶⊆𝛩,𝐶≠𝜙   (6.5) 

where 𝑤(𝑥) denotes the belief assignment of a single element (𝑥) on the pignistic level, 1𝐶  is the 

indicator function of 𝐶 : 1𝐶 = 1, 𝑖𝑓 𝑥 ∈ 𝐶 𝑎𝑛𝑑   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 . |𝐴| is the length of A (the number of 

elements in the focal set). The mass functions obtained from the pignistic probability transformation 

represent the relative ―believed weights‖ of the attributes. 

After obtaining the local weights of the leaf attributes with respect to their parent attribute, the global 

weights with respect to the top-level attribute, i.e., the trustworthiness, need to be determined. This can be 

done by multiplying the weight of the daughter attribute by the weights of the upper parent attributes in 

each level. For example, the ―global weight‖ of the historical use with respect to the trustworthiness, 

denoted by 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝐻𝑈), is calculated by:  

 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝐻𝑈) = 𝑤(𝐻𝑈) × 𝑤(𝑆𝑜𝑀) × 𝑤(𝑀𝐹)   

where 𝑤(𝐻𝑈),𝑤(𝑆𝑜𝑀) 𝑎𝑛𝑑 𝑤(𝑀𝐹) are the local weights of the historical use, the suitability of model, 

and the modeling fidelity. For simplicity reasons, hereafter the global weights for leaf attributes are 

denoted by 𝑊𝑖 and in the framework of Figure 6.1, we have 𝑖 = 1,2,⋯ ,27. 

6.4. Evaluation of the risk considering trustworthiness levels 

In this section, the ―weighted posterior‖ method is used for integrating the risk index with the 

trustworthiness of the PRA for a single hazard group and a structured methodology is developed for 

eliciting these weights. Finally, an illustration is presented on MHRA considering the level of 

trustworthiness. 

6.4.1. Evaluation of the risk of a single hazard group 

After evaluating the level of trustworthiness for the PRA of a given hazard group, the next question is 

how to integrate the estimated risk from the PRA with the level of trustworthiness. In this paper, we 

develop a Bayesian averaging model for integrating the trustworthiness based on the ―weighted posterior‖ 
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method [98]. Let us consider two scenarios: the risk assessment is trustable, denoted by 𝐸𝑇, and its 

complement, i.e., the risk assessment is not trustable (𝐸𝑁𝑇). The risk after the integration can, then, be 

calculated as: 

 𝑅𝑖𝑠𝑘|𝑇 = 𝑃(𝐸𝑇) ∙ Risk|𝐸𝑇 + (1 − 𝑃(𝐸𝑇) ∙ Risk|𝐸𝑁𝑇  (6.6) 

where 𝑅𝑖𝑠𝑘|𝑇 is the estimation of risk after considering the trustworthiness of the PRA; 𝑃(𝐸𝑇) is the 

subjective probability that 𝐸𝑇 will occur and is dependent on the trustworthiness of the risk assessment; 

Risk|𝐸𝑇 is the estimated risk from the PRA. Due to the presence of epistemic (parametric) uncertainty in 

the analysis, Risk|𝐸𝑇  is often expressed as a subjective probability distribution of the risk index. 

Risk|𝐸𝑁𝑇 is an alternate distribution of the risk when the decision maker thinks the PRA is not trustable. 

In this paper, we assume Risk|𝐸𝑁𝑇 is a uniform distribution in [0,1], indicating no preference on the value 

of the risk index. Similar models have been used in literature to consider unexpected events in risk analysis 

[99]. For example, [100] developed a similar model to calculate the default risk in similar scenarios 

considering the unexpected events. 

The following steps summarize how to use Eq. (6.6) to evaluate the risk given the trustworthiness of 

the risk assessment: 

i. The risk distribution Risk|𝐸𝑇  is evaluated for each hazard group using conventional PRA 

considering the parametric uncertainty propagation. 

ii. The level of trustworthiness of PRA of the corresponding hazard group is assessed, using the 

procedures in Section 6.3. 

iii. The subjective probability of trusting the PRA is determined by the detailed procedures described 

in Section 6.4.2. 

iv. The level of trustworthiness is integrated in the risk using Eq. (6.6). 

6.4.2. Determining the probability of trusting the PRA 

The probability 𝑃(𝐸𝑇) in Eq. (6.6), which represents the decision maker‘s belief that the risk 

assessment results are correct and accurate, needs to be elicited from the decision makers. The elicitation 

process needs to be organized and structured to ensure the quality of the elicitation.  

Different methods can be found in the literature for the assessment of a single probability using 

experts elicitation such as probability wheels, lotteries betting, etc. [101]. In this work, we choose the 

―certainty equivalent gambles‖ for the elicitation. We summarize the following steps for the elicitation of 

the probability of trust using the ―certainty equivalent gambles‖ and some general recommendations are 
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presented in the appended paper V for ensuring the quality of the elicitation process: 

i. The elicitor informs the decision maker about the definition of the different levels of 

trustworthiness and its physical meaning, based on the definitions in Sect. 6.3.1. 

ii. The decision maker is asked to compare two scenarios: (1) he/she participates in a gamble 

where he/she will win $1,000 if an accident occurs and $0 if the accident does not occur; (2) 

he/she wins $x for sure. 

iii. The experts exchange information between them and discuss. 

iv. Suppose that a PRA was conducted and predicts that the consequences will occur for sure, 

and the trustworthiness of the PRA is one of the five levels defined in Sect. 6.3.1. Then, for 

each level of trustworthiness, the elicitor varies the value of x until the decision maker feels 

indifferent between the two scenarios. 

v. The probability of trust at the current level of trustworthiness is, then, calculated by: 

 𝑝 =
𝑥

1000
  (6.7) 

where 1000 here represents the $1000 that the expert gains if the accident does not occur (the model 

prediction is correct). 

vi. The elicitor fits a suitable function to the five data points, in order to determine the 

probability of trust for trustworthiness levels between the defined levels. The shape of the 

fitted function should be determined based on the assessors‘ behavior towards taking risk in 

trusting a low fidelity PRA: 

 A convex function should be chosen if the assessor is risk-averse, meaning that the 

decision maker trusts only the PRA with high levels of trustworthiness. 

 A linear function is chosen if the assessor is risk neutral. 

 A concave function is chosen if the assessor is risk-prone, meaning that although a PRA 

might not have a very high level of trustworthiness, the decision maker is willing to 

assign a high probability of trust to it. 

The risk assessor can eventually use this function to estimate the probabilities of trust for each hazard 

group.   

6.4.3. MHRA considering trustworthiness levels 

Main steps for MHRA considering the level of trustworthiness are presented in Figure 6.2. 
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Trustworthiness of each single group PRA is evaluated and integrated into the risk estimate for each hazard 

group first. After the integration, the risk is expressed as a subjective distribution on the probability that a 

given consequence will occur. Then, the estimated risk from different hazard groups is aggregated. This 

step can be simply done by adding the risk distributions from different hazard groups, as shown in Eq. 

(6.8), where 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙 is the total risk considering the level of trustworthiness; (𝑅𝑖|T) is the risk from 

the hazard group 𝑖 given the level of trustworthiness; 𝑛 is the number of hazard groups. Monte-Carlo 

simulations are often used to do the summation. 

 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑅𝑖𝑠𝑘𝑖|T)
𝑛
𝑖<1   (6.8) 

 

Figure 6.2 Main steps for MHRA considering the trustworthiness of the PRA  

6.5. Application 

In this section, we apply the developed framework to a case study for two hazard groups in the 

nuclear industry: The external flooding and internal events hazard groups. The PRA models of the two 

hazard group were developed and provided by EDF. The level of trustworthiness was then, assessed for 

each hazard group. The risk distributions from each hazard group were then recalculated considering the 

level of trustworthiness, and finally, the risk was aggregated from the two hazard groups.  

6.5.1. Description of the PRA model 

The two hazard groups considered in this framework are external flooding and internal events. The 

external flooding refers to the overflow of water that is caused by naturally induced hazards such as river 

overflows, tsunamis, dam failures and snow melts [83], [102]. The internal events refer to any undesired 

event that originates within the NPP and can cause initiating events that might lead to abnormal state and 

eventually, a core meltdown [19]. Examples of internal events include structural failures, safety systems 

operation and maintenance errors, etc. [84]. In this case study, bow-ties models are used to assess the 

probability of Core Damage Frequency (CDF). In this case study, the risk analysis was provided by EDF 

[7]. In the original work of EDF, the uncertainty propagation was implemented, but only the mean values 

Single hazard group risk assessment considering trustworthiness 
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of the probability distributions of the risk were considered in MHRA and used for comparison to the safety 

criteria. However, due to confidentiality reasons, real values cannot be presented. Instead, we artificialize 

the risk distribution for illustration purposes. The risk distributions with parametric uncertainty 

propagation are presented in Figure 6.3. 

 

Figure 6.3 Probability distribution of the risk considering the parametric uncertainty: (a) external flooding risk, 

(b) internal events 

6.5.2. Evaluation of level of trustworthiness 

6.5.2.1. Evaluation of the attributes weights 

As illustrated in Sect. 6.3, the first step for evaluating the level of trustworthiness is to determine the 

relative importance (weights) of the trustworthiness attributes. The weights of the attribute are evaluated 

using DST-AHP technique. Here, for illustration reasons, the sub-attribute ―modeling fidelity‖ (𝑇1) is taken 

as an example to illustrate how to obtain local weights through pairwise comparison and DTS-AHP. 

I. Constructing pairwise comparison matrices 

As shown in Sect. 6.3, the first step in DST-AHP technique is to construct the pairwise comparison 

matrix. Take the daughter attributes of modeling fidelity as an example. In this example, a 4 × 4 pairwise 

comparison matrix is constructed in Table 6.5. 

Table 6.5 Pairwise comparison matrix (knowledge matrix) for comparing modeling fidelity ―daughter‖ attributes 

Modeling fidelity *𝑇1,1+ *𝑇1,2+ *𝑇1,3+ Θ = *𝑇1,1, 𝑇1,2, 𝑇1,3+ 

*𝑇1,1+ 1 0 0 1/2 

*𝑇1,2+ 0 1 0 5/2 

*𝑇1,3+ 0 0 1 4 
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*𝑇1,1, 𝑇1,2, 𝑇1,3+ 2 2/5 1/4 1 

Please note that the zeros that appear in the matrix indicate that there is no need to compare the individual criteria 

directly: they are compared indirectly through comparing the individual criteria to the universal set Θ [88]. 

𝑇1,1  represents the Quality of application, 𝑇1,2  represents the Suitability of the model, 𝑇1,3  represents the 

robustness of the results 

In this matrix, the expert has considered four groups of focal sets: three for individual criteria and one 

containing all the criteria in order to consider the uncertainty in the evaluation. Choosing focal sets like 

this means that to the best of their knowledge, the experts believe that the aforementioned focal sets can be 

favorably compared to the universal set Θ. 

II. Computing the pairwise comparison matrix 

In the previous example, the expert was asked to fill the pairwise comparison matrix to express 

his/her preference of a criterion over another. In this step, the weights of the focal sets are derived using 

conventional AHP technique, where the normalized principal eigenvector of the matrix represents the 

weights. This can be directly done by normalizing each column in the matrix individually and, then, 

averaging the elements in each row to obtain that weight. 

 

Table 6.6 Normalized pairwise comparison matrix (knowledge matrix) of modeling fidelity ―daughter‖ attributes 

Modeling fidelity *𝑇1,1+ *𝑇1,2+ *𝑇1,3+ Θ = *𝑇1,1, 𝑇1,2, 𝑇1,3+ Weight (BBA) 

*𝑇1,1+ 0.33 0 0 0.06 0.10 

*𝑇1,2+ 0 0.71 0 0.31 0.26 

*𝑇1.3+ 0 0 0.8 0.5 0.32 

*𝑇1,1, 𝑇1,2, 𝑇1,3+ 0.67 0.29 0.2  0.13  0.32 

III. Reliability discounting 

After computing the BBA for each expert‘s matrix, they need to be discounted based on the reliability 

of each expert. For illustration purposes, the reliability 𝛿 of the expert who made the assessment is 

assumed to be 0.60. From Eq. (6.2), the discounted weights are found as the following: 

𝑚0.60(𝑇1,1) =  .6 ×  .1 =  . 6 

Similarly for 𝑚0.60(𝑇1,2) =  .16, & 𝑚0.60(𝑇1,3) =  .19. 

Finally, 𝑚0.60(Θ) is found as the following: 

𝑚0.60(Θ) = (1 −  .6 ) +  .6 ×  .32 =  .59 

Please note that the BBAs (weights) sum to one before and after the discounting. 
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IV. Combination of experts opinions 

In This case study, three experts are invited for evaluating the weights. Their assigned BBAs are 

summarized in Table 6.7 (the BBAs are calculated following the steps in Sect 6.3.2, step III). 

Table 6.7 discounted basic belief assignment from two experts 

Focal sets of the 

criteria 

Expert 1 Expert 2 Expert 3 

𝑚𝛿(𝐴) 𝑚𝛿(𝐴) 𝑚𝛿(𝐴) 

*𝑇1,1+ 0.06 0.16 0.02 

*𝑇1,2+ 0.16 0.24 0.38 

*𝑇1,3+ 0.19 0.24 0.46 

*𝑇1,1, 𝑇1,2, 𝑇1,3+ 0.59 0.36 0.14 

The combination of the experts' judgments is conducted sequentially. Table 6.8 shows the procedures 

for combining the judgments of the first two experts. 

Table 6.8 Dempster's rule of combination matrix 

         Expert 2 

Expert 1 

𝑚𝛿(𝑇1,1) 𝑚𝛿(𝑇1,2) 𝑚𝛿(𝑇1,3) 𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 

𝑚𝛿(𝑇1,1) 𝑚𝛿(𝑇1,1)1 𝜙1 𝜙2 𝑚𝛿(𝑇1,1)2 

𝑚𝛿(𝑇1,2) 𝜙3 𝑚𝛿(𝑇1,2)1 𝜙4 𝑚𝛿(𝑇1,2)2 

𝑚𝛿(𝑇1,3) 𝜙5 𝜙6 𝑚𝛿(𝑇1,3)1 𝑚𝛿(𝑇1,3)2 

𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 𝑚𝛿(𝑇1,1)3 𝑚𝛿(𝑇1,3)3 𝑚𝛿(𝑇1,3)3 𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 

*Please note that the element 𝑖𝑗 in the table represent the multiplication of the 

elements 1𝑗 × 𝑖1, e.g., 𝑚𝛿(𝑇1,1) × 𝑚𝛿(𝑇1,1) = 𝑚𝛿(𝑇1.1)1 

 

From Eq. (6.4), 𝐾 =  ,17.  

From Eq. (6.3): 

𝑚1,2
𝛿 (𝑇1,3) =

 ,26

1 −  .17
=  .31 

The same steps are repeated for the other mass functions and presented in Table 6.9. Finally, the new 

results obtained from the combination of the two experts are used to be combined with the BBAs from the 

third expert matrix. The results are presented in Table 6.9. 

Table 6.9 Mass function combinations from the experts 

 

Focal sets of the criteria 

Combined mass from 

experts 1 and 2 

Combined mass from 

experts 1, 2 and 3 

𝑚𝛿(𝐴) 

𝑚1,2
𝛿 (𝑇1.1) 0.31 0.49 

𝑚1,2
𝛿 (𝑇1.2) 0.29 0.40 
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𝑚1,2
𝛿 (𝑇1.3) 0.15 0.05 

𝑚1,2
𝛿 (𝑇1.1, 𝑇1.2, 𝑇1.3) 0.25 0.06 

V. Pignistic probability transformation 

Then, the pignistic mass function is found by Eq. (6.5): 

𝑤1,2,3
𝛿 (𝑇1,1) = 𝑚1,2,3

𝛿 (𝑇1,1) +
𝑚1,2,3
𝛿 (𝑇1,1, 𝑇1,2, 𝑇1,3)

3
=  . 5 +

 . 6

3
=  . 7 

The steps are repeated for the other mass functions and found to be: 

𝑤1,2,3
𝛿 (𝑇1,2) =  .42 

𝑤1,2,3
𝛿 (𝑇1,3) =  .51 

Note that the three mass functions on the pignistic level sum to one. These pignistic mass functions 

represent the relative ―believed weights‖ of the three criteria under modeling fidelity after the reliability 

discounting and transformation. The same steps are repeated for all the criteria. Then, the weights need to 

be evaluated with respect to the top-level goal: the trustworthiness. As illustrated previously, this can be 

done easily by multiplying the weight of the daughter attribute by the weight of the upper parent attributes 

in each level. For simplicity reasons, only the weights of the ―leaf‖ attribute with respect to the top level 

attribute i.e., trustworthiness, are presented in Table 6.10 and 6.11. Note that the weights of the 27 leaf 

attributes with respect to the top goal, sum to one ∑ 𝑊𝑖 = 1
27
𝑖 . 

6.5.2.2. Evaluation of the attributes scores 

The next step for evaluating the level of trustworthiness is to evaluate the attributes score for the 

hazard group, given the scoring guidelines in Appendices A-B of the appended paper V. Some information 

regarding the risk assessment process is extracted from the PRA report to support the trustworthiness 

assessment. 

 The heights (water levels) at the plant‘s platform at which the water can lead to a failure of a 

specific element were defined. 

 The water flowrate that would result in a given water height at the NPP platform in a defined 

interval of time was predicted. 

 The flow-rate was multiplied by a safety factor of 130%. 

 The ―return period‖ for each flowrate was obtained from the data of the millennial flooding 

flowrate of the river of interest, and the data were extrapolated to assess the frequencies of 

extreme flowrates. 

 The river flooding is considered as a predictable phenomenon and the probability of failure of 
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transition into the emergency state (i.e., normal shutdown and cooling with steam generator, 

residual heat removal system, etc.) is assumed to be the intrinsic probability of failure. 

 It is assumed that river overflow is the only source of external flooding. 

 A combined hydraulic/hydrologic method is adopted, given the special hydrological and 

physical characteristics of the basin.  

 It is assumed that once the water reaches the bottom of the equipment, the equipment fails. 

 It is assumed that failing to close the valves (ensuring the volumetric protection sealing-water 

proofing) causes the total loss of Emergency Feedwater System (EFWS).   

 It is assumed that clogging inevitably occurs if the flooding occurs. 

 The analysis and model calculation for this hazard group is taken with a specific cutoff error 

of 1  ;14. 

Based on the excerptions from the report, it can be seen that: 

 In this example, the risk analysis and assessment steps follow the IAEA recommendations. 

 The calculation of flowrates and flow frequencies are calculated using solid deterministic 

models. However, extrapolation of the data to obtain the frequencies of floods with extreme 

flowrates is still doubtful. 

 The river overflow is a predictable phenomenon and does not happen suddenly. However, the 

river overflow is not the only source of flooding. For example, a rupture in the river dikes 

might also lead to sudden, unpredictable flooding. 

 The application of a combined hydraulic/hydrologic method on the flooding studies of 

nuclear sites allows a more realistic evaluation of the flooding level and to estimate more 

precisely the return periods. 

 The assumption that the water will fail the equipment directly if it touches its bottom level is 

conservative. 

 Feedback data show that clogging due to river flooding has occurred before in the nuclear 

industry (see, for example, USNRC General Electric Advanced Technology Manual for more 

information [103]). However, claiming that each flooding would surely lead to clogging is 

still questionable and needs to be studied in details, taking into account the different 

influencing parameters (hydraulic, geometrical and topographical properties) of the area (see 

[104]). 
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 In case of failing to close the valves ensuring the volumetric protection, the probability that 

water will go back through the drainage system is not identified and assumed to be one 

(𝑃 = 1), though there are no relevant calculations. Moreover, once the water enters the 

physical protection locations, the safety-related equipment is assumed to be lost. Both 

assumptions are conservative to increase the safety margin. 

Based on the above observations, the leaf attributes in Figure 6.1 can be evaluated. For example, 

quality assurance attribute is evaluated to be five (𝑇1,3,4,2 = 5), since the PRA is conducted following the 

IAEA recommendations. The accuracy of the calculation is evaluated to be five (𝑇1,3,2 = 5), since the 

cutoff error is apparently very low. The combined hydraulic/hydrologic models used for the flooding 

studies are able to capture the special hydrological and physical characteristics of the basin, which makes 

them suitable for the study. Hence, a score of four (𝑇1,2,2 = 4) is given for the suitability of the model. The 

assumptions presented above are mostly conservative and unrealistic. Therefore, a score of one (𝑇1,3,3,1 =

1) is given for the plausibility of the assumptions. The other attributes are scored in the same way. The 

results are represented in Tables 6.10 and 6.11. The level of trustworthiness for the external flooding is, 

then, calculated by Eq. (6.1): 𝑇𝑒𝑥𝑡 = ∑ 𝑊𝑖 ∙ 𝐴𝑖
27
𝑖<1  = 3.26 . 

 

 

Table 6.10 level-3 leaf attributes weights 𝑊 and scores 𝑆 for external flooding hazard group 

𝐴𝑡𝑡 MS IoA RM S HU Cv AoC NH AR EK YE NE Ac In AD 

𝑊 0.01

2 

0.02

6 

0.02

5 

0.15

8 

0.07

0 

0.02

5 

0.01

2 

0.02

2 

0.03

2 

0.05

4 

0.03

4 

0.01

7 

0.10

5 

0.10

5 

0.06

5 

𝑆𝑐𝑜𝑟𝑒 2 2 3 4 3 4 5 2 2 3 3 4 3 3 3 

 

Table 6.11 level-4 leaf attributes weights 𝑊 and scores 𝑆 for external flooding hazard group 

𝐴𝑡𝑡 Pl VL Ag QA LoG NoA LoD C Co V T Ac 

𝑊 0.037 0.029 0.025 0.066 0.006 0.005 0.004 0.017 0.011 0.009 0.011 0.017 

𝑆𝑐𝑜𝑟𝑒 1 4 4 5 4 4 4 3 3 3 3 3 

 

The trustworthiness for internal events hazard group (𝑇𝑖𝑛𝑡) was calculated in the same way and, the 

result is 𝑇𝑖𝑛𝑡 = 4.414. These results confirm the expectations, where the PRA for internal events is 

considered relatively mature and well established [19] in contrast to the PRA of external hazards which, is 

considered less mature with several limitations [36]. 

6.5.2.3. Determining the probability of trust in the PRA results 
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In this step, the decision maker is asked to assign a probability that represents their belief that the risk 

assessment model output is correct, based on the certainty equivalent approach presented in Sect. 6.4.2. 

The results given by the experts are given in Table 6.12. The data in Table 6.12 are extrapolated and fitted 

to a function, as shown in Figure 6.4. As illustrated in Figure 6.4, the expert exerts a risk neutral behavior.   

Table 6.12 Probability of trust given the level of trustworthiness 

Trustworthiness Probability of trust 

1 0.05 

2 0.50 

3 0.75 

4 0.90 

5 1.00 

 

 

Figure 6.4 Fitted probability of trusting the PRA given the trustworthiness 

Then, the probability that the decision maker trusts each hazard group PRA given their 

trustworthiness is calculated from the fitted model in Figure 6.4. The probability of trust for the external 

flooding 𝑝𝑒𝑥𝑡 is found to be 𝑝𝑒𝑥𝑡 =  .783. The probability of trust for the internal events 𝑝𝑖𝑛𝑡 is found 

to be 𝑝𝑖𝑛𝑡 =  .957. 

6.5.2.4. Multi-Hazards risk aggregation the level of trustworthiness 

The level of trustworthiness is integrated with the PRA results for both hazard groups following Eq. 

(6.6). The results are presented in Figure 6.5-6.6, respectively. As can be seen from Figure 6.5 (a), which 

represents the risk analysis results considering only the parametric uncertainty in the analysis, most of the 

mass of the risk distribution concentrates in the narrow interval of ,4.626 × 1 ;11, 7.738 × 1 ;6-. After 
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integrating the level of trustworthiness, however, the interval increases to ,3. 19 × 1 ;6, 2.169 × 1 ;1- 

(Figure 6.5 (b)). The mean risk value for external flooding considering the trustworthiness is 1. 88 ×

1 ;1 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) ;1 , compared to 1.589 × 1 ;6 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) ;1  without considering it. For 

internal events, a similar effect is seen in Figure 6.6 (the mean risk value is 2.149 × 1 ;2 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙

𝑦𝑒𝑎𝑟) ;1 considering the trustworthiness compared to 3.322 × 1 ;8 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) ;1  without 

considering it). It is, then, seen that considering the level of trustworthiness leads to a larger spread-out of 

the probability distribution of the risk. 

 

Figure 6.5 Updated risk estimates after considering the level of trustworthiness for external flooding (a) original 

risk estimate from the PRA, (b) Risk estimates after integrating the level of trustworthiness 

Figure 6.6 Updated risk estimates after considering the level of trustworthiness for internal events (a) original 

risk estimate from the PRA, (b) Risk estimates after integrating the level of trustworthiness 

 

6.5.2.5. Multi-Hazards risk aggregation 
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Finally, the overall risk given the level of trustworthiness can be calculated using Eq. (6.8). The 

results are presented in Figure 6.7. The empirical probability density function of the risk is obtained 

through a Monte-Carlo simulation of 1 5 samples. The mean value of the total risk from the two hazard 

groups considering the level of trustworthiness is found to be 1.3 3 × 1 ;1 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) ;1 

compared to 1.622 × 1 ;6 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) ;1  without considering it. Considering the level of 

trustworthiness in the analysis means that we are accounting for the disbelief, shortcoming, and lack of 

knowledge in the analysis, which leads to a broader spread-out of the distributions. The increase of the 

spread-out of probability distribution of risk leads to a higher mean value of risk. The aggregation of the 

risks from the two hazard groups considering the level of trustworthiness results in a more meaningful 

result as it takes into account the fact that the PRA model of the two hazard groups is based on different 

levels of trustworthiness. 

 

Figure 6.7 Results of the MHRA, (a) conventional aggregation, (b) considering the level of trustworthiness 

6.6. Conclusion 

In this chapter, we have presented a framework for MHRA considering trustworthiness. A framework 

for evaluating the level of trustworthiness is first developed. The framework consists of two main attributes, 

i.e., the strength of knowledge and modeling fidelity. The strength of knowledge attribute covers the 

explicit knowledge that can be documented, transferred or explained. The modeling fidelity attribute 

covers the suitability of the tool and the model construction process. The two attributes are broken down 

into sub-attributes and, finally, leaf attributes. The total trustworthiness is calculated using a weighted 

average of the attributes, where the weights are calculated using DST-AHP method, in which the AHP 
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method is used to calculate the relative weights of the attributes using experts‘ elicitations, whereas the 

DST method is used to account for the uncertainty in the elicitation. 

A MHRA method is, then, developed to aggregate the risk from different hazard groups with different 

levels of trustworthiness, based on a ―weighted posterior‖ method. An application to a case study of a NPP 

shows that the developed method allows aggregating risk estimates with different degrees of maturity and 

realism from different risk contributors.  
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Chapter 7 Conclusion and future work 
7.1. Conclusion 

The objective of risk assessment is to provide informative support to DM [35], [36], [5], [3], [34]. In 

risk assessment, we perform quantitative and qualitative measures of risk to ensure that it is maintained 

under the allowed safety limit. The quantitative evaluation of risk is done by MHRA, which includes 

aggregating the risk indexes from different contributors to arrive at a risk metric that can be compared to 

the safety criteria to support DM. On one hand, in MHRA, the risk indexes from different contributors 

might have different degrees of realism, which, in turn, results from differences in characterizations, e.g., 

of uncertainty, background knowledge, conservatism, etc. [19]. On the other hand, the current practice of 

MHRA consists of a simple arithmetic summation of the risk indexes from the different contributors 

without considering the aspects that lead to the difference in the degrees of realism [19]. MHRA must, 

therefore, consider their different uncertainties [19] and the confidence on the outcomes that is relevant to 

support DM [3]. 

In this thesis, we focus on enhancing the description and evaluation of risk for a more assured practice 

of RIDM. In particular, we have provided a methodological framework for MHRA and the assessment of 

the level of trustworthiness, which a risk assessment is based upon. The following specific contributions 

have been attained: 

1. Important factors contributing to the trustworthiness of risk assessment have been identified; 

2. An integrated hierarchical framework has been developed for systematically organizing these factor 

for the assessment of the trustworthiness of risk outcomes; 

3. A technique based on DST-AHP has been adapted to consider the assessors subjectivity in the 

assessment process; 

4. A MHRA technique based on Bayesian model averaging has been developed to integrate the 

trustworthiness of individual hazard groups‘ risk outcomes for informed decision making. 

The developed framework provides a systematic way to evaluate the trustworthiness in risk 

assessment outcomes and integrate it in the results of risk aggregation to overcome the shortcomings of 

conventional MHRA. From a practical point of view, the framework also provides systematic and practical 

procedures that facilitate the application to real cases and overcomes the problem of subjectivity in experts‘ 

judgments. The application of the developed framework to real life case studies demonstrates the 
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feasibility and reasonableness of the approach, paving the way for its potential applicability to inform 

risk-based decision making.  

7.2. Discussion 

The framework in Chapter 6 was developed by considering different models to evaluate the factors 

relevant to trustworthiness (Chapters 2-5). Detailed definitions of the attributes in the hierarchical 

framework have been introduced and their assessment have been illustrated (see for example Table 2.1 and 

Tables 6.1-6.4) to check feasibility in practice. 

The attributes have been elicited in two ways in an effort to ensure completeness: deductive and 

inductive reasoning. The deductive reasoning was based on literature survey, expert elicitation and deep 

reasoning: a large number of candidate attributes are collected and, then, screened based on their relevance 

to trustworthiness. The inductive reasoning was based on deducting the elements needed to construct the 

risk assessment model. The most important and representative attributes have, then, been studied 

individually to understand their effect on trustworthiness and to study the possibility of a more granular 

and comprehensive evaluation that covers all possible sub-attributes (Chapters 4-5).  

The relative importance (weights) and scores of the attributes in the framework are assessed based on 

experts‘ elicitation. Several factors affect the consistency and quality of experts‘ judgments, e.g., lack of 

prior knowledge on the problem, subjectivity of judgments and delicacy of the subject, and the fact that 

experts make judgments not only on the criteria of their specialty, but also about all other criteria [105]. To 

ensure the quality and consistency of experts‘ judgments, a rigorous evaluation procedure has been 

introduced along with predefined evaluation protocols. The procedural steps introduced allow improving 

the quality of the information provided to select the experts needed to make the judgments, as well as the 

quality of information required to assess the attributes. In addition, a behavioral and a mathematical 

aggregation technique has been introduced to consider the uncertainty in the experts‘ judgments and enhance 

the quality and consistency in their judgments (Chapter 6). The evaluation protocols were established based 

on technical reports (Chapters 2-6), literature, and experts‘ knowledge, so that the consistency of the 

evaluation can be ensured to the maximal degree. Although the subjectivity in the evaluation cannot be 

eliminated, the developed methodology is an attempt to enhance its consistency and quality through a 

systematically organized evaluation process. 

7.3. Future work 

The framework presented in the thesis has been shown feasible through the application to real case 
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studies. However, there are still issues that need to be worked out. For example, the assessment of some 

factors was conducted semi-quantitatively, using evaluation guidelines, but remaining subjective at large. 

Efforts should be devoted in enhancing the assessment guidelines and developing rigorous enumerating 

(assessment) protocols to further reduce the assessors‘ subjectivity.  

Also, the evaluation process is carried out in a semi-quantitative way, where the attributes are 

evaluated qualitatively and the verbal expressions are, then, mapped into scores based on predefined 

guidelines [48]. Mapping these verbal descriptions into numeric numbers must be treated with more 

cautions. 

Another issue that needs to be addressed in the future is that the reduced order-model is based on the 

fundamental assumption that the risk assessment model is correct (no model structural uncertainty). The 

reduced order model should be enhanced to consider the fact that the importance of the basic events 

depends on the structure of the risk assessment model itself. Finally, the output of the overall framework of 

risk aggregation is a risk distribution that accounts for the subjectivity in the analysis. The result cannot be 

used directly for comparison to the conventional single value-based safety criteria adopted in the current 

practice. Therefore, future work is needed for developing new safety criteria that correspond to risk 

estimates that consider trustworthiness, as well as developing guidelines for decision making support in the 

light of the outcomes of the developed framework. 
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Abstract:  

Risk assessment provides information to support Decision Making (DM). Then, the confidence that 

can be put in its outcomes is fundamental, and this depends on the accuracy, representativeness and 

completeness of the models used in the risk assessment. Some sort of quantitative measure must be 

provided to assess the credibility and trustworthiness of the results obtained from such models for DM 

purposes.  

The present paper proposes a four-levels, top-down, hierarchical tree to identify the main attributes 

and criteria that affect the level of trustworthiness of models used in probabilistic risk assessment. The 

level of trustworthiness is broken down into two attributes (Level 2), three sub-attributes (Level 3), one 

―leaf‖ attribute (Level 3), and seven basic ―leaf‖ sub-attributes (Level 4). On the basis of this hierarchical 

decomposition, a bottom up, quantitative approach is employed for the assessment of model 

trustworthiness, using tangible information and data available for the basic ―leaf‖ sub-attributes (Level 4). 

The analytical hierarchical process (AHP) is adopted for evaluating and aggregating the sub-attributes. 

The approach is applied to a case study concerning the modeling of the Residual Heat Removal 

(RHR) system of a nuclear power plant (NPP), to compute its failure probability. The relative 

trustworthiness of two mathematical models of different complexity is evaluated: a Fault Tree (FT) and a 

Multi-States Physics-based Model (MSPM). The feasibility and reasonableness of the approach are 

demonstrated, paving the way for its potential applicability to inform DM on safety-critical systems. 

Keywords:  

Risk assessment, Risk-Informed Decision Making (RIDM), Strength of Knowledge, Model 

Trustworthiness and Credibility, Fault tree, Multi-States Physics-Based Model (MSPM), Analytical 

Hierarchical Process (AHP), Residual Heat Removal (RHR) System, Nuclear Power Plant (NPP). 

mailto:tasneem-adeeb.bani-mustafa@centralesupelec.fr


120 

 

1. Introduction 

Risk assessment is based on models that represent the functional life and physical behavior of (safety-

critical) systems and processes of interest. These models are conceptual constructs (translated into 

mathematical forms), built on a set of assumptions (hypotheses) made on the basis of the available 

knowledge. In this sense, the risk assessment outcomes are conditional on the available knowledge. Then, 

the qualitative risk insights and quantitative risk indices drawn from the risk assessment may have a more 

or less solid foundation, depending on the validity of the hypotheses made, which in turn depends on the 

supporting knowledge. 

In general terms, risk describes the future consequences (usually seen in negative, undesirable terms 

with respect to the planned objectives) potentially arising from the operation of given systems and 

activities, and the associated uncertainty (INSAG 2011). Risk should, then, be qualitatively described and 

quantitatively assessed in order to compare it with predefined safety criteria, for further guidance to risk-

informed decision making (RIDM) (Dezfuli et al. 2010); (NRC 2010); (Eiser et al. 2012). 

Risk assessments rely on the use of complex models to represent systems and processes, and provide 

predictions of safety performance metrics (Aven & Zio 2013). These models are (interpreted and 

simplified) conceptual constructs (translated into mathematical forms) built on a set of assumptions 

(hypotheses).  

In recent times, there have been a vivid discussion on the fundamental concept of ―risk‖ and related 

foundational issues on its assessment: (see, e.g., (Aven 2013a); (Aven 2016); (Cox & Lowrie 2015)). From 

a general perspective, it is understood that the outcomes of risk assessments (i.e., the undesirable 

events/scenarios, consequences and the description of uncertainty about these) are conditioned on the 

background knowledge and information available on the system and/or process under analysis (Bjerga et 

al. 2014); (Zeng et al. 2016), including assumptions and presuppositions, phenomenological 

understanding, historical system performance data and expert statements used (Flage & Aven 2009); (Aven 

2013b) (Veland & Aven 2015); (Berner & Flage 2016); (Bani-mustafa et al. 2018).  Then, the risk indices 

may have a more or less solid foundation, depending on the validity of the hypotheses made: poor models, 

lack of data or simplistic assumptions are examples of potential sources of (model) uncertainty ―hidden in 

the background knowledge‖ of a risk assessment (Berner & Flage 2016). The modeling of a system or 

process needs to balance between two conflicting concerns: (i) accurate representation of the phenomena 

and mechanisms in the system or process and (ii) definition of the proper level of detail of the description 

of the phenomena and mechanisms, so as to allow the timely and efficient use of the model. Differences 

between the real world quantities and the model outputs inevitably arise from the conflict of these two 

concerns (Paté-Cornell 1996); (Bjerga et al. 2014); (Danielsson et al., 2016). Since (i) the importance 

placed on modeling and simulation is increasingly high within safety-critical system engineering contexts 

and (ii) the fundamental value of a risk assessment lies in providing informative support to (high-

consequence) decision making (DM) (Simola & Pulkkinen 2004); (EPRI 2012); (Eiser et al. 2012); 

(Zweibaum & Sursock, 2014), the confidence that can be put in the accuracy, representativeness and 

completeness of the models is fundamental and a satisfactory level of assurance must be provided that the 
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results obtained from such models are credible and trustworthy for the decision-making purposes for which 

they are employed. Moreover, in some contexts where the system of interest is subject to multiple hazards 

(e.g., a Nuclear Power Plant (NPP) exposed to floodings and earthquakes risks), a Multi-Hazards Risk 

Aggregation (MHRA) process is required to obtain a final risk metric that can inform decision making. 

However, risk estimates for different (risk) contributors are typically obtained using different models (i.e., 

in practice, different PRAs), each one having its own level of maturity and relying on its background 

knowledge. This inconsistency might be problematic, as MHRA is often carried out by a simple arithmetic 

summation of the risk estimates from different contributors, ignoring the possibly different levels of 

knowledge, which the risk estimates are based on (EPRI 2015). Another situation, where the use of risk 

models with different credibility might be problematic, is that of choosing between the implementation of 

two different sets of risk reduction measures. For example, in a purely RIDM, a decision maker would 

always choose the option leading to the lower level of risk; however, his/her decision could change if 

he/she considered the level of trustworthiness, which the corresponding risk estimates are based on. For all 

these reasons, the confidence, credibility and trustworthiness (resp., model uncertainty) that is associated 

with model predictions (and that reflects the amount and the strength of the knowledge available on the 

problem of interest), must be accurately and quantitatively assessed  (Aven & Zio 2013); (Bjerga et al. 

2014); (Flage & Aven 2015). 

Within this context, the objective of the present paper is to propose a four-levels, top-down, 

hierarchical tree-based decision-making approach to assess the relative trustworthiness of different models 

used in a given risk assessment. On the other hand, it is out of the scope of the present paper to propose a 

general framework to integrate the level of trustworthiness in Risk Informed Decision Making (RIDM) 

process.  In this framework, the level of trustworthiness is divided into two attributes (level 2), four sub-

attributes (level 3) and seven basic ―leaf‖ sub-attributes (level 4). The alternative models whose 

trustworthiness and credibility is to be assessed all at the bottom of the structure. On the basis of this 

hierarchical decomposition, the level of trustworthiness is, then, calculated by resorting to a bottom-up, 

quantitative approach. The basic ―leaf‖ attributes represent tangible attributes that can be directly and 

quantitatively evaluated using data and information available (e.g., past knowledge, experts judgments, 

historical records, etc.). In the present study, the Analytical Hierarchical Process (AHP) is employed for 

evaluating and aggregating (in weighted fashion) the sub-attributes. 

The proposed approach has been applied to assess the trustworthiness of two models (of different 

complexity and level of detail) of a Residual Heat Removal (RHR) System of the  Nuclear Power Plant 

(NPP): the two models are used to estimate the failure probability of the safety system of interest. The first 

model is based on a classical Boolean logic-based Fault Tree (FT). This approach employs components’ 

failure rates that are simply based on field data and/or expert judgment. The model does not consider 

possible dependencies existing between the states of degradation of different components (e.g., a valve and 

a pump) nor the interaction between physical and environmental parameters and the mechanisms of 

components’ degradation (Lin, 2016). On the other hand, the second approach is based on a Multi-States 

Physics-based Model (MSPM), which takes into account multiple time-dependent components’ 
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degradation states, the effects of physical and environmental parameters on the mechanisms of 

degradation, and the dependencies between the degradations of components (Unwin et al., 2011); (Lin et 

al., 2013); (Lin et al. 2015); (Lin et al., 2016).  

A review of the approaches proposed in the literature to assess the trustworthiness and credibility of a 

model is presented in Section 2. In Section 3, a hierarchical tree-based decision making framework for 

assessing model trustworthiness is presented. In Section 4, the proposed framework is applied to a case 

study concerning the RHR system of a NPP. Finally, in Section 5, we discuss the results and provide some 

conclusions. 

2. Assessing the trustworthiness and credibility of risk assessment models: a critical review of 

literature 

In this section, we survey some approaches proposed in the open literature to assess the 

trustworthiness and credibility of mathematical models. 

Few methods have been proposed to assess the confidence (i.e., the credibility and trustworthiness) 

that is associated with engineering model predictions and that reflects the amount and the strength of the 

knowledge available on a generic system, or process of interest. In the literature, the trustworthiness of a 

method or a process is often measured in terms of its maturity. The concept of a model maturity goes back 

to the 1970s: at the time, it was used to assess the maturity of a function of an information system 

(Oberkampf et al., 2007); (Paulk et al., 1993); (Zeng et al. 2016).  Later, the Software Engineering Institute 

(SEI) developed a framework (the so-called Capability Maturity Model (CMM)) to assess the maturity of a 

software development process, in the light of its quality, reliability and trustworthiness (Herbsleb et al., 

1997). Recently, the CMM model has been extended and a Prediction Capability Maturity Model (PCMM) 

has been developed to evaluate and assess the maturity of modeling and simulation efforts (Oberkampf et 

al. 2007). Other examples of maturity assessment approaches have been developed in different domains, 

such as master data maturity assessment, enterprise risk management and hospital information system 

(Zeng et al. 2016). In (Di Maio et al., 2015) and (Zeng et al. 2016) a hierarchical framework based on the 

analytical hierarchical process (AHP) has been developed to assess the maturity and prediction capability 

of a prognostic method for maintenance DM purposes. Finally, a framework for assessing the credibility of 

models and simulation (M&S) is proposed by (Nasa 2013). In this framework, eight factors are used to 

assess the credibility of Models & Simulation (M&S) and are categorized in three groups: (i) M&S 

development including verification and validation; (ii) M&S operations, including input pedigree, results 

uncertainty and results robustness; (iii) supporting evidence, including the use history, M&S management 

and people qualifications. This framework seems plausible and covers important elements. However, three 

main issues should be considered: first, the approach is abstractly presented, leading to omit some 

important elements that fall under the main attributes of this framework. For example, while the model 

focuses on the ―input pedigree‖ represented by the input data, it ignores a very important element, i.e., 

model assumptions, that can be also a part of M&S development. Second, while the authors claim that 

there is no need for weighting the elements, as there is no numerical aggregation required, this would lead 

to a misconception, since the elements are not equally important in practice. For example, at a first glance, 
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one would consider ―use history‖ as important as ―validation‖, but the attribute ―validation‖, which checks 

the accuracy of the model’s representation of the real system, may be considered more important than ―use 

history‖ as using a model for a long time does not necessarily guarantee that it gives good results and, thus, 

better informed decisions (e.g., a model could be adopted because of its simplicity or because its use is 

motivated by an ―established tradition‖ within a given community). 

In the more specific field of ―strength of knowledge‖ assessment in risk assessment models, both 

qualitative and semi-quantitative approaches have been proposed. In (Flage & Aven 2009), a ―crude‖ 

qualitative, direct grading of the strength of knowledge that supports risk assessment based on 

(mathematical) models is introduced. The authors try to classify the strength of knowledge to {minor, 

moderate, significant}, with respect to the following elements (Flage & Aven 2009); (Berner & Flage 

2016); (Aven 2013b); (Veland & Aven 2015); (Bani-mustafa et al. 2018):   

1. phenomenological understanding of the problem and availability of precise and well-understood 

predicting models for the physical phenomena of interest; 

2. availability of reliable data; 

3. reasonability of assumptions made (i.e., the assumptions do not exhibit large simplifications); 

4. agreement (consensus) among experts (i.e., low value ladenness). 

The strength of knowledge is, then, classified according to the following criteria (Flage & Aven 

2009); (Berner & Flage 2016); (Aven 2013b); (Veland & Aven 2015); (Bani-mustafa et al. 2018):  

1. if none of the previously mentioned components is met, then the knowledge is ―weak‖; 

2. if the ―requirements‖ are partially met, then the strength of knowledge is considered 

―intermediate‖; 

3. if all ―requirements‖ are met, then, the knowledge is considered ―strong‖. 

In (Aven 2013b) a more detailed, semi-quantitative approach (namely the ―assumption deviation 

risk‖) has been introduced. This approach is based on the identification of all the main assumptions on 

which the analysis is based. Then, the assumptions are converted into uncertainty factors and a rough 

evaluation of the deviation from the conditions defined by the assumptions is carried out. Finally, a score is 

assigned to each deviation that reflects the risk related to the deviation and its implications on the 

occurrence of given events and their consequences. Notice that the score captures all the components of the 

risk concept, i.e., the deviation from the assumptions made with the associated consequences, the 

uncertainty of this deviation and consequences, and the strength of knowledge that these are based on 

(Aven 2013b); (Berner & Flage 2016). 

In (Berner & Flage 2016), the authors embrace, apply, test and adjust the perspectives of (Flage & 

Aven 2009) and (Aven 2013b)  to develop a general and systematic framework for treating (uncertain) 

assumptions in risk assessment models. Also, this methodology for assessing the importance of 

assumptions is based on evaluating the basic elements of the risk description mentioned above and 

previously developed and adopted by (Aven 2013b). The evaluation places an assumption in one of six 

―settings‖, each providing guidelines for characterizing the corresponding uncertainty. In practice, these 

guidelines and strategies are based on the precept that the effort that should be exerted for characterizing 
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the uncertainty associated to an assumption and the effect on it of the potential deviations, should increase 

with the importance and the criticality of the assumption.  

Also in (Bjerga et al. 2014) the effect and importance of ―structural‖ assumptions, approximations and 

simplifications on risk assessment model outputs (Aven & Zio 2013) is studied by means of different 

approaches, including subjective and imprecise probabilities and semi-quantitative scores (reflecting the 

degree of uncertainty associated to an assumption and the sensitivity of the model output to such 

assumption). The analysis serves as an input to the decision makers, to understand which assumptions are 

unacceptable and need ―remodeling‖. 

Finally, Lopez-Droguett and Mosleh discuss uncertainty in model predictions arising from model 

parameters and the model structure. They argue that different evidence in evaluating model uncertainty can 

be considered, such as: comparing the results of the model predication to the actual measurements, 

qualitative or subjective evaluation of the model credibility and applicability (Droguett & Mosleh 2008). In 

particular, for cases in which no model exists to address the particular problem of interest, and the analysis 

rely mainly on the subjective assumptions that the model is partially applicable to the problem, two main 

attributes define model uncertainty: model Credibility and model Applicability (Lopez Droguett & Mosleh, 

2014). Model credibility refers to the quality of the model in estimating the unknown in its intended 

domain of application and is defined by a set of attributes related to the model-building process and 

utilization procedure (conceptualization and implementation, which are in turn broken down into other 

sub-attributes). On the other hand, model applicability represents the degree to which the model is suitable 

for the specific situation and problem (represented by the conceptualization and intended use function 

attributes) (Lopez Droguett & Mosleh, 2014).  

3. Hierarchical tree-based decision making approach for assessing the trustworthiness of risk 

assessment models 

In section 3.1 below, we present the four levels, top-down tree used to characterize the trustworthiness 

(of a risk assessment model) by decomposing it into sub-attributes (e.g., number of model’s assumptions, 

quantity of relevant data available, etc.) that can be quantified by the analysts; in Section 3.2, we describe a 

bottom-up procedure, based on the analytical hierarchal process (AHP), to assess the model 

trustworthiness by evaluating and aggregating the sub-attributes (identified as ―leaf‖ attributes). 

3.1. Hierarchical tree for model trustworthiness characterization: abstraction and 

decomposition 

Many factors (attributes) affect the trustworthiness and credibility of analyses and models (for risk 

assessment in particular), and several studies and literature reviews have been made in order to identify 

them. Some of these are summarized as follows:  (i) phenomenological understanding of the problem; (ii) 

availability of reliable data; (iii) reasonability of the assumptions; (iv) agreement among the experts; (v) 

level of detail in the description of the phenomena and processes of interest; (vi) accuracy and precision in 

the estimation of the values of the model’s parameters; (vii) level of conservatism; (viii) amount of 

uncertainty and others (see e.g., (Flage & Aven 2009); (Berner & Flage 2016); (Aven 2013a); (Veland & 

Aven 2015); (IAEA, 2006); (Bjerga et al. 2014); (Zeng et al. 2016); (Oberkampf et al. 2007); (EPRI 2012); 



125 

 

(EPRI 2015); (Bani-mustafa et al. 2018)). Some of these attributes (criteria), are not tangible and cannot be 

measured directly: as a consequence, other sub-attributes must be identified, which can be measured and/or 

subjectively evaluated. To this aim, on the basis of the critical literature survey presented in Section 2, we 

propose a method for model trustworthiness characterization and decomposition, which is based on the 

hierarchy tree shown in Figure 1. 

As mentioned above, many factors can be found in the literature that characterize the level of 

trustworthiness. Those factors can be categorized into two main groups: (i) ―strength of knowledge‖; (ii) 

―modeling fidelity‖, which embody the ability of a model of representing the reality and the degree of 

implementing correctly the model. In the ―strength of knowledge‖, among the four sub-elements proposed 

in (Flage & Aven 2009), two were found to be more relevant to the context of interest i.e., data and 

assumptions. In the latter, it is argued that including more details about a problem is more representative 

and realistic, and hence more trustworthy. For example, there are different levels of PRA treatment that are 

chosen, relying on alternative decisions (Paté-Cornell 1996). On the other hand, implementing the model 

correctly from a pure trustworthiness point of view, without considering a costs-benefits reasoning, 

requires avoiding approximation. In accordance, a hierarchical tree for models’ trustworthiness is proposed 

in Figure 1. 

 

 

Figure 1 A hierarchical tree-based ―decomposition‖ of the level of trustworthiness and credibility of a 

mathematical model 

 

The model trustworthiness, represented by T (Level 1), is characterized by two attributes: modeling 

fidelity, represented by 𝐹 = 𝑇1 and strength of knowledge, represented by 𝐾 = 𝑇2  (Level 2). The 

modeling fidelity (𝐹 = 𝑇1), measures the adequacy of the model representation of the phenomenon and the 



126 

 

level of detail adopted in the model description (referred to as modeling validity in some literatures (Aven 

& Heide 2009)).On the other hand, the strength of knowledge (𝐾 = 𝑇2) measures how solid the 

assumptions, data and information (which the model relies on) are (Flage & Aven 2009). These two 

attributes are in turn decomposed into sub-attributes (Level 3). In particular, the modeling fidelity 𝐹 =

𝑇1 is defined by the level of detail, represented by 𝐷 = 𝑇11 (Level 3) and by the number of approximations, 

represented by 𝐴𝑝 = 𝑇12. Concerning the strength of knowledge 𝐾 = 𝑇2, among the four sub-attributes 

proposed in Flage & Aven (2009) (see Section 2), two are found to be more relevant to the context indeed, 

i.e. data and assumptions. Thus, attribute 𝐾 = 𝑇2 is here defined by the quality of assumptions represented 

by 𝑄𝐴 = 𝑇21 and by the quality of data represented by 𝑄𝐷 = 𝑇22. Note that the number of approximations 

𝐴𝑝 = 𝑇12 is considered as a basic attribute, since it can be measured directly: thus, it is not further broken 

down into other sub-attributes. The other three attributes of Level 3 are instead broken down into more 

basic ―leaf‖ attributes that can be measured directly by ―inspection‖ of the model whose trustworthiness 

we want to assess. In particular, the level of detail D = T11 is characterized in terms of the number of 

equations and correlations, namely Q = T111, the number of model parameters, namely Mp = T112, and the 

number of dependency relations included, namely Dr = T113. The overall quality of the assumptions 

QA = T21 is measured by the number of assumptions made As = T212, and by their impact I = T212 (which 

can be assessed, e.g., by sensitivity analysis). Finally, the quality of the data QD = T22 is described in 

terms of the amount of data available, namely Ad = T221 and by the consistency of the data itself, 

namely C = T222. Precise definitions of the attributes are given in Table 1 for the sake of clarity.  

Table 1 Definition of the attributes used to characterize the model trustworthimness 

L

evel 

Attributes Description 

L
ev

el
 S

 =
 2

 Modeling fidelity 

𝐹 = 𝑇1 

Measures how close the model is to reality, i.e., the adequacy 

of the representation of the phenomena and processes of interest: 

the higher the modeling fidelity, the higher the trustworthiness of 

the model. 

Strength of 

knowledge 𝐾 = 𝑇2 

Represents the level of understanding of the phenomena and 

the solidity of the assumptions, data and information, which the 

model relies on: the higher the strength of knowledge, the higher 

the trustworthiness of the model. 

L
ev

el
 S

 =
 3

 

Level of detail 

𝐷 = 𝑇11 

Measures the level of sophistication of the analysis by 

quantifying to which level the ―elements‖ and aspects of the 

phenomenon, process or system of interest are taken into account in 

the model: the higher the level of detail, the higher the 

trustworthiness of the model. 

Number of 

approximations 𝐴𝑝 = 𝑇12 

Measures the number of approximations that the analyst 

introduces in order to facilitate the analysis: it affects the modeling 

fidelity. The lower the number of model approximations the higher 

the modeling fidelity. 

Quality of 

assumptions 𝑄𝐴 = 𝑇21 

 

In some studies, experts are obliged to formulate some 

assumptions, which might be due to the lack of data and 

information, to the complexity of the problem or to lack of 

phenomenological understanding. The quality of those assumptions 

is an indication of the strength of knowledge: the higher the quality 

of the assumptions, the higher the trustworthiness of the model. 
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Quality of data 

 𝑄𝐷 = 𝑇22 

Represents the availability of sufficient, accurate and 

consistent background data with respect to the purposes of the 

analysis: the higher the quality of the data, the higher the 

trustworthiness of the model. 

L
ev

el
 S

 =
 4

 

Number of equations 

and correlations  𝑄 = 𝑇111 

The number of equations and correlations used in modeling is 

an indication of the level of detail, hence of the modeling fidelity: 

the higher the number of equations and correlations, the higher the 

trustworthiness of the model. 

Number of model 

parameters  𝑀𝑝 = 𝑇112 

The number of parameters introduced in the model is a 

measure of the level of detail (e.g., the number of components 

transition rates represents the level of discretization adopted to 

describe the failure process of a component or a system): the higher 

the number of model parameters, the higher the trustworthiness of 

the model. 

Number of 

dependency relations 

 𝐷𝑟 = 𝑇113 

The larger the number of dependency relations that are taken 

into account, the more detailed and trustworthy the model. 

Number of 

assumptions  𝐴𝑠 = 𝑇211 

The larger the number of high quality assumptions, the higher 

the trustworthiness of the model. 

Impact of assumptions  

 𝐼 = 𝑇212 

It quantifies how much assumptions can affect the model 

results (and it can be assessed by sensitivity analysis). The higher 

the impact of the assumptions, the lower the trustworthiness of the 

model. 

Consistency of data 

 𝐶 = 𝑇221 

 

It is an indication of how suitable and representative the data 

are for a specific process or system. The consistency of data relies 

on the sources of the data. For example, if we are collecting data 

about the failure of a safety system’s pump from different power 

plants, we should first understand whether the power plants are of 

the same type, whether the plants work at the same power level and 

whether the pumps have the same work function and capacity. 

The consistency of the data used is an indication of the quality 

of data, hence of the strength of knowledge: the higher the 

consistency, the higher the strength of knowledge and the 

trustworthiness of the model. 

Amount of data 

 𝐴𝑑 = 𝑇222 

The higher the amount of data available, the stronger the 

knowledge. For example, the number of years of experience of a 

particular component in a plant can be sometimes considered an 

indication of the amount of data available. In any domain, a higher 

number of years’ experience means a higher number of scenarios 

covered and hence a larger amount of data. The higher the amount 

of data, the higher the trustworthiness of the model. 

 

Some considerations are in order with respect to the hierarchical decomposition described above. 

There is no claim that the approach proposed is comprehensive and complete, since other attributes may 

affect model credibility and, hence, trustworthiness. For example, an increase in the number of parameters 

of a model, on one side, increases the level of details that the model is capable to capture but, on the other 

side, it may leave room for additional errors and uncertainties in its estimated parameters (which are not 

included in the present formulation). As specified before, the constituting attributes have been selected on 

the basis of an accurate and critical literature review of works treating the subject (see Section 2). Also, 

guidelines have been developed to provide a quantitative (or semi-quantitative) evaluation of such 

elements. These guidelines have been developed on the basis of the experience and knowledge of EDF 
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experts (see Appendix A). So, the contribution has to be considered a first attempt of a systematic 

framework to address the evaluation of model trustworthiness and to give a structure to expert judgment on 

this, which is absolutely inevitable in this type of analysis. 

3.2. Analytical hierarchical process (AHP) for model trustworthiness quantification 

Given the hierarchical tree in Figure 1, the assessment of model trustworthiness is carried out within a 

multi-criteria decision analysis (MCDA) framework (Xu & Yang 2001); (Triantaphyllou & Shu 1998). In 

this setting, we suppose, in all generality, that a system, process or phenomenon of interest for a risk 

assessment can be represented by different mathematical models of possibly different complexity and level 

of detail, 𝑀1, 𝑀2, . . 𝑀𝑙 , . . , 𝑀𝑛. The task (i.e., the MCDA problem at hand) is to rank these alternative 

models with respect to their trustworthiness, in relation to the particular risk assessment problem of interest 

to support MCDA. In the present paper, the Analytical Hierarchy Process (AHP) proposed by (Saaty & 

Vargas 2012) is adopted to this aim. However, other MCDA approaches could be used. 

In this approach, the top goal, i.e., the decision problem considered (in this case, the model 

trustworthiness), is placed at the first level of the hierarchy and, then, decomposed into several sub-

attributes distributed over different levels according to their degree of tangibility. Finally, the bottom level 

in the hierarchal tree-based AHP model contains the different alternatives that need to be evaluated with 

respect to the top goal (i.e., in this case the level of trustworthiness) (Saaty 2008); (Zeng et al. 2016). 

Through pairwise comparisons among the elements and the attributes of the same level, the alternative 

solutions, i.e., models, can be ranked with respect to the decision problem in the top level (i.e., the model 

trustworthiness) (Saaty 2008); (Zio et al., 2003). A good feature of the method is that it can be helpful in 

group-decision-making (Saaty 2008), and in situations that involve mixed quantitative and qualitative 

factors (Alexander 2012). 

The AHP model for model trustworthiness assessment is represented in Figure 1. The first step 

required to assess the model trustworthiness by AHP is the determination of the so-called inter-level 

priorities (in practice, weights that represent the importance of attributes in the same level relative to their 

parent attribute) for each attribute, sub-attribute, basic ―leaf‖ sub-attribute and alternative solution i.e., 

𝑊(𝑇𝑖), 𝑊(𝑇𝑖𝑗), 𝑊(𝑇𝑖𝑗𝑘), and 𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘), respectively. Notice that in practice, each weight represents the 

relative contribution of an attribute of a given level to the corresponding ―parent‖ attribute of the upper 

level: for example, weight W(𝑇𝑖𝑗𝑘) quantifies the contribution of basic ―leaf‖ sub-attribute 𝑇𝑖𝑗𝑘 (of Level 

4) in the representation and definition of sub-attribute 𝑇𝑖𝑗 (of Level 3); instead, weight 𝑊(𝑀𝑙, 𝑇𝑖𝑗𝑘) is the 

weight of the 𝑙 − 𝑡ℎ model with respect to the basic ―leaf‖ sub-attribute 𝑇𝑖𝑗𝑘. 

The weights 𝑊(𝑇𝑖), 𝑊(𝑇𝑖𝑗) and 𝑊(𝑇𝑖𝑗𝑘) are calculated using pairwise comparison matrices: in 

particular, one pairwise comparison matrix is constructed for the attributes at the second level 𝑆 = 2, one is 

constructed for each ―set‖ of sub-attributes at level 𝑆 = 3 that fall under the same ―parent‖ attribute in the 

upper level 𝑆 = 2, and one is constructed for each ―set‖ of basic ―leaf‖ attributes at level 𝑆 = 4 that fall 

under the same ―parent‖ sub-attribute in the upper level 𝑆 = 3. The comparison matrix is a (𝑛 × 𝑛) square 

matrix, to be filled by experts, where n is the number of elements being compared. Attributes in each level 

are compared to each other with respect to their contribution in defining their ―parent‖ attribute in the 
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upper level. For example, a (3 × 3) matrix is constructed to compare the basic sub-attributes 𝑄 = 𝑇111, 

𝑀𝑝 = 𝑇112 and 𝐷𝑟 = 𝑇113 (Level 4), with respect to their ―parent‖ sub-attribute 𝐷 = 𝑇11 (Level 3).  

Typically, experts use a scale from 1 to 9 to evaluate the strength (i.e., the contribution) of each criteria 

with respect to the other; for example, the scale suggested by Saaty (2008) used to carry out a qualitative 

comparison between two attributes A and B, is the following: 

1: A and B are equally important, 

2: A is slightly more important than B, 

3: A is moderately more important than B, 

4: A is moderately-plus more important than B, 

5: A is strongly more important than B, 

6: A is strongly-plus more important than B, 

7: A is very strongly more important than B, 

9: A is extremely more important than B. 

Another possibility is to define a scale of only the odd numbers between 1and 9 and use the even 

numbers to facilitate the judgment for intermediate situations (Zio 1996). See (Saaty 2008) and (Zio 1996) 

for more details.  

A pairwise comparison matrix is made for each group of attributes in the same level (say, s) that falls 

under the same upper attribute in the upper level (s-1).  The weight of each attribute is, then, determined by 

solving an eigenvector problem, where the normalized principal eigenvector provides the weights vector. 

For more details on how to calculate the weights of attributes, see (Saaty 2008); (Saaty & Vargas 2012); 

(Alexander 2012). Notice that the weights obtained should be normalized to sum to 1 as follows: 

 ∑ 𝑊(𝑇𝑖) = 1,
𝑛𝑇
𝑖=1  where 𝑛𝑇 is the number of attributes under the ―top‖ attribute T (i.e., model 

trustworthiness); ∑ 𝑊(𝑇𝑖𝑗) = 1,
𝑛𝑇𝑖

𝑗=1
 where 𝑛𝑇𝑖

 is the number of sub-attributes under attribute 𝑇𝑖; 

∑ 𝑊(𝑇𝑖𝑗𝑘) = 1,
𝑛𝑇𝑖𝑗

𝑘=1
 where 𝑛𝑇𝑖

 is the number of basic ―leaf‖ sub-attributes under sub-attribute  𝑇𝑖𝑗.  

For the tangible basic leaf sub-attributes 𝑇𝑖𝑗𝑘, a quantitative evaluation 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
 can be given by direct 

inspection and analysis of the models. Instead, if the basic leaf sub-attributes cannot be given a direct 

numerical evaluation (or if the analyst does not feel confident in carrying out this task), the scaling system 

explained above (i.e., scores from 1 to 9) can be adopted to provide a (semi-quantitative) relative 

evaluation of the leaf attributes  𝑇𝑖𝑗𝑘 with respect to the risk models 𝑀𝑙 available (guidelines are provided 

in Appendix A of this paper for relatively evaluating the basic leaf sub-attributes). The corresponding inter-

level weights 𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘) can, then, be obtained as 
𝑇𝑀𝑙,𝑇𝑖𝑗𝑘

∑ 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
𝑛
𝑙=1

. Note that the weights 𝑊(𝑀𝑙 , 𝑇𝑖𝑗𝑘) are thus 

normalized, i.e., ∑ 𝑊(𝑀𝑙, 𝑇𝑖𝑗𝑘) = 1n
𝑙=1 , where n is the number of models. 

Finally, the normalized trustworthiness  𝑇(𝑀𝑙) of a model 𝑀𝑙 is evaluated using a weighted average 

of the leaf attributes, as indicated in eq. (4): 

  𝑇(𝑀𝑙)  = ∑ ∑ ∑ 𝑊(𝑇𝑖) ∗ 𝑊(𝑇𝑖𝑗) ∗ 𝑊(𝑇𝑖𝑗𝑘) ∗
𝑇𝑀𝑙,𝑇𝑖𝑗𝑘

∑ 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
𝑛
𝑙=1

𝑛𝑇𝑖𝑗

𝑘=1

𝑛𝑇𝑖

𝑗=1
𝑛T
𝑖=1   (1) 

where 𝑇𝑀𝑙,𝑇𝑖𝑗𝑘
 is the numerical value that the basic ―leaf‖ sub-attribute 𝑇𝑇𝑖𝑗𝑘

 takes with respect to 
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model 𝑀𝑙, (for example, for attributes Q = 𝑇111 variable 𝑇𝑀𝑙,𝑇111
 equals the number of equations and 

correlations contained in 𝑀𝑙), 𝑛 is the number of models to be compared, 𝑛𝑇, 𝑛𝑇𝑖
, and 𝑛𝑇𝑖𝑗 are defined 

above. 

After obtaining the weight for each criterion with respect to the corresponding upper level criteria, a 

―global‖ weighting for each criterion with respect to the top goal T can also be obtained by 

multiplying its weight by the weights of its upper parent elements in each level: for example, the 

―global‖ weight of basic ―leaf‖ sub-attribute  𝑇𝑖𝑗𝑘 with respect to the ―top‖ attribute (goal) T is given 

by  𝑊(𝑇𝑖𝐽𝑘).  𝑊(𝑇𝑖𝑗).   𝑊(𝑇𝑖) =   𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇𝑖𝑗𝑘). For example, in the hierarchy tree Figure 1, the 

―global weighting‖ of the ―consistency of data‖ (denoted by 𝑇221) with respect to level of 

trustworthiness is obtained by multiplying its weight by the weight of quality of data (denoted by 𝑇22)  

by the weight of strength of knowledge (denoted by 𝑇2):  𝑊(𝑇221).𝑊(𝑇22).𝑊(𝑇2) = 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇221). 

The trustworthiness 𝑇(𝑀𝑙) can then be expressed directly as a function of the ―global‖ weights of the 

leaf attributes with respect to the top goal T: 

   T(Ml)  = ∑ ∑ ∑  Wglobal(Tijk)
TMl,Tijk

∑ TMl,Tijk
n
l=1

nTij

k=1

nTi

j=1
nT
i=1   (2) 

Several considerations need to be made on the proposed approach. Clearly, there is no claim that the 

trustworthiness assessment method is comprehensive and complete. Attributes similar to those considered 

here have been already proposed and adopted in relevant works of literature: see, e.g., Flage & Aven 

(2009); Aven (2013b), where the strength of knowledge is assessed in terms of ―phenomenological 

understanding‖, availability of reliable data‖, ―agreement among peers‖ and ―reasonability of 

assumptions‖, but there are other attributes that affect the level of trustworthiness as well.  

In addition, the enumeration of some model leaf attributes (e.g., approximations, assumptions, 

formulas…) may be an ―artifact‖ of presentation or interpretation, in absence of a protocol rigorously 

constructed to this aim. On the other hand, the following aspects should be considered. First, such a type of 

evaluation has been already used for evaluating some attributes in some relevant models e.g., evaluation of 

phenomenological understanding, availability of reliable data, reasonability of assumptions and agreement 

among peers, demonstrating the feasibility (Flage & Aven, 2009). Second, the issue of enumerating model 

assumptions and evaluating their quality have already been treated in several papers: see, e.g., (Aven, 

2013b); ; (Boone et al., 2010). Then, most importantly, notice that the ―direct enumeration‖ is not the only 

way to provide numerical values TMl,Tijk
 for the basic ―leaf‖ attributes TTijk

with respect to the model 𝑀𝑙. 

As mentioned above, if the analyst does not feel confident in ―counting‖ assumptions, formulas and 

correlations, he/she may resort to semi-quantitative scale (e.g., scores from 1 to 9), in order to provide a 

relative evaluation of a ―leaf‖ attribute TTijk
with respect to the different risk models 𝑀𝑙’s available (see for 

example the enumerating protocols in Appendix A, based on technical reports and experts’ feedback).  

4. Case study 

In this section, the hierarchical tree-based framework is applied to a case study concerning the 

modeling of the residual heat removal (RHR) system of a nuclear power plant (NPP). In section 4.1, the 

system is described; in section 4.2, the characteristics of the two models used to represent the system (i.e. 
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the Fault Tree-FT and the Multi-States Physics-Based Model-MSPM) are presented in some detail; finally, 

in section 4.3, the proposed approach is applied to evaluate the trustworthiness of the two models. 

4.1. The system 

The Residual Heat Removal (RHR) system of a typical PWR reactor is taken as reference. The RHR 

is mainly used to remove the decay heat (residual power) from the reactor cooling system and fuel during 

and after the shutdown, as well as supplementing spent fuel pool cooling in the shutdown cooling mode for 

some types of reactors (NRC 2010). As illustrated in Figure 2, the main components of the RHR system 

are: pumps, heat exchangers, diaphragms, and valves. According to previous studies, it was found that 23% 

of RHR system failures are due to pumps failures, 58% are due to valves failures, while the rest of RHR 

system failures are due to other components’ failures (Coudray & Mattei 1984). 

 

Figure 2 Schematic diagram of the RHR 

4.2. Models considered 

Two models have been considered for evaluating the reliability (resp., the failure probability) of the 

RHR system: a Fault Tree (FT) model (Section 4.2.1) and a Multi-State Physics-based Model (MSPM) 

(Section 4.2.2). 

4.2.1.  Fault Tree (FT) Model 

The Andromeda software has been used for the analysis of the RHR’s components failure modes and 

criticalities (importance analysis). The analysis is based on a logical framework for understanding the 

different possible ways in which the components and the system can fail. The failure probabilities used in 

the FT analysis are based on field experience feedback.. 

4.2.2.  Multi-State Physics-based Model (MSPM) 

Physics-based model (PBM) and multi-state model (MSM) are often used to describe the degradation 

processes of components and systems. Physics-based modeling aims to develop an integrated mechanistic 

description of the component/system life, consistent with the underlying degradation mechanisms (e.g. 

wear, stress corrosion, shocks, cracking, fatigue, etc.) by using physics knowledge and related 
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mathematical equations. Multi-state modeling is built on material science knowledge, degradation and/or 

failure data from historical collection or degradation tests, to describe the degradation processes in a 

discrete way (Gorjian et al., 2010); (Di Maio et al., 2015). 

In general, MSM is able to describe the evolution of degradation in time, in terms of a range of states 

from ―perfect functioning‖ to ―complete failure‖. Since the degradation process is influenced by many 

factors, there are difficulties in estimating the transition rates required for the analysis of the degradation 

processes, especially for highly reliable components and systems (Di Maio et al., 2015). It is also difficult 

to define precisely the states and the transitions between states in MSMs, due to the imprecise 

discretization of the degredation process and to data insufficiency (Lin et al., 2015). Accordingly, a 

combination of the two models, namely the Multi-State Physics-based Model (MSPM), has been proposed, 

in which the state transition rate estimates are also based on physical models rather than operational data 

(Unwin et al., 2011). Then, the whole process of transition and degradation can be described 

comprehensively by MSPM (Di Maio et al., 2015). 

 

In the present analysis of the case study, the main critical components were taken into account (i.e. 

pump, diaphragm, breaker, motor, contactor and valve). The MSM was used to model the pump, breaker, 

motor and contactor, while the PBM model was used to model the valve and diaphragm, taking into 

account the degradation dependency of the valve on the pump. 

Figure 3 illustrates this setting. Three states were considered for the pump, including the fully 

functioning state, a degradation state corresponding to external leakage and the failure state. The breaker 

was modeled by a continuous-time homogeneous Markov model, taking into account the perfectly 

functioning and the failed states, and four types of failures were taken into account. Similarly a 

continuous-time homogeneous Markov model was developed for the analysis of the contactor and the 

motor, and four and two types of failures were taken into account for each, respectively. 

On the other hand, the valve is subject to thermal fatigue that causes cracks or propagation of 

manufacturing defects, which are described by physical models and the related physical variables, such as 

Figure 3 MSPM analysis: models of RHR components 
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the coefficient of thermal expansion of the material, the modulus of elasticity, the Poisson ratio of the 

material, the elastoplastic strain concentration factors, the number of alternating cycles, etc. The crack 

initiation takes place when the amplitude of variation of the critical temperature Δ𝑇𝑙𝑖𝑚 is exceeded, while 

the failure due to propagation of defects takes place when a specific number of cycles (operation demands) 

is exceeded. It should be noted that the total number of cycles executed over a period of time is calculated 

considering the degradation dependency of the valves on the degradation of the pump. In other words, 

when calculating the number of cycles executed by the valve, it is multiplied by a factor > 1 to consider the 

degradation dependency on the other components.  Furthermore, the cavitation and the erosion are taken 

into account for analyzing the degradation and failure of the diaphragm. Different physical parameters are 

considered such as pressure, stress, dimension and other material-based characteristics. A threshold value 

at which the failure takes place is taken into account. More details about the system and the corresponding 

models cannot be reported here due to confidentiality reasons. 

The results of MSPM and FT (using Andromeda software) are given in Table 3. The analysis shows 

similarities results in the first eight years. A difference between the two results starts to appear in the tenth 

year, showing a more rapid decline in the reliability values obtained by MSPM. 

Table 3 Values of reliability 

Time (years) 0 1 2 3 4 5 6 7 8 9 1

0 
Reliability 

(FT) 

1 0

.779 

 

0

.607 

 

0

.473 

 

0

.369 

 

0

.288 

 

0

.224 

 

0

.175 

 

0

.143 

 

0

.107 

 

0.

083 

 

Reliability 

(MSPM) 

1 0

.775 

 

0

.603 

 

0

.469 

 

0

.366 

 

0

.285 

 

0

.222 

 

0

.173 

 

0

.135 

 

0

.105 

 

0.

060 
 

4.3. Evaluation of model trustworthiness 



134 

 

The analysis is carried out through two main steps: the first is an ―upward‖ evaluation of the weight 

of each element in the hierarchy tree with respect to the top goal of model trustworthiness; the second is a 

―downward‖ assessment of the model trustworthiness by means of a numerical evaluation of the basic 

―leaf‖ elements for both FT and MSPM models, as shown in Figure 4. 

With respect to the weights evaluation, experts were asked to fill the pairwise comparison matrices, in 

order to evaluate the importance of each attribute (criteria). As the experts were considered equally 

qualified, the weights obtained by solving the eigenvector problem of the pairwise comparison matrixes 

filled by the experts, were averaged. By way of example and only for illustration purposes, Table 4 shows 

a pairwise comparison matrix of the ―leaf‖ sub-attributes Q = T111,  Mp = 𝑇112 and Dr = 𝑇113 of level s= 

4. The attributes relative importances with respect to the parent attribute (level of detail) have been 

evaluated using the 1-9 scaling. 

  

Figure 4 Hierarchical tree-based AHP model for the assessment of the trustworthiness of risk assessment 

models 
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Table 4 Pairwise comparison matrix for ―leaf‖ sub-attributes (Q, Mp and Dr) with respect to the ―parent‖ D 

(level of detail) 

 Q Mp Dr 

Q 1 3 1 

Mp 1/3 1 1/3 

Dr 1 3 1 

By solving the eigenvector problem for this matrix, we obtain the flowing weights: 𝑊111 = 0.46, 

𝑊112 = 0.21, 𝑊113 = 0.32. Note that the weights of the three attributes in the example sum to one: 

∑ 𝑊11𝑘
3
𝑘=1 = 1.Table 5 shows the weighting factors obtained: in particular, the weights of each attribute 

with respect to the corresponding ―upper level‖ parent (i.e., 𝑊(𝑇𝑖), 𝑊(𝑇𝑖𝑗) 𝑎𝑛𝑑 𝑊(𝑇𝑖𝑗𝑘)) as well as the 

―global‖ weight 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝑇𝑖𝑗𝑘) with respect to top goal T are given. 

Table 5 Attributes weighting factors calculated using the AHP method 

Parameter Symbol Level Weight Global weight 

Model trustworthiness T  S1 1.00 1.00 

Modeling fidelity F (𝑇1) S2  0.35     0.35    

Number of approximations Ap (T12) S3  0.54     0.19    

Level of detail D (T11) S3  0.46     0.16    

Number of equations and correlations Q (T111) S4  0.46     0.07    

Number of model parameters Mp (𝑇112) S4  0.21     0.03    

Number of dependency relations  Dr (𝑇113) S4  0.32     0.05    

Strength of knowledge K (𝑇2) S2  0.65     0.65    

Quality of data QD (𝑇22) S3  0.51     0.33    

Amount of data Ad (𝑇221) S4  0.60     0.20    

Consistency of data C (𝑇222) S4  0.40     0.13    

Quality assumptions QA (𝑇21) S3  0.49     0.32    

Number of assumptions As (𝑇211) S4  0.20     0.06    

Impact of the assumptions I (𝑇212) S4  0.80    0.25 
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The second step consists in an ―upward‖ calculation, for the evaluation of the basic ―leaf‖ attributes 

for each model. Actually, based on the data, information and knowledge available and used in the risk 

assessment analysis, two types of trustworthiness analysis have been implemented: one has been 

performed through a direct quantitative evaluation of the leaf attributes (e.g., for Mp (𝑇112) the number of 

model parameters are counted, for each model); the second is based on a semi-quantitative evaluation of 

the leaf attributes carried out through comparing the two models to each other and to the state of the art, 

and then, assigning a relative score (1-9) for each leaf attribute. 

In order to do that, scaling guidelines have been defined based on several EDF’s technical reports, 

(Burns 1980) and the feedback of experts, and scores of 1-9 have been defined (see Appendix A for 

details). Actually, we do not claim that those guidelines are complete and comprehensive, but they are 

sufficient for the context of the work. Relying on the guidelines of Appendix A, the data and technical 

reports used to perform the risk assessment, the relative score evaluation was performed for both FT and 

MSPM models: the results are reported in Appendixes B and C, respectively. In passing, notice that the 

evaluation of the attribute ―Impact of the assumptions‖ (𝐼 = T212) is made as follows: a scale is given for 

each assumption and the scores are, then, averaged over all the assumptions.  

On the basis of the relative scores selected, the trustworthiness evaluation was performed for both 

models, as illustrated in Table 6: the level of trustworthiness was found to be 0.4427 for Ft (M1) and 

0.5573 for MSPM (M2). 
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We have applied the same method also to evaluate the models trustworthiness T using the direct 

quantification of the leaf attributes. The results are reported in Table 7. Table 8 shows all results. 

Table 6 Comparison between FT and MSPM trustworthiness (relative scores) 

Parameter  

Symbol 

 

Level 

 

Weight 

Global 

weight 

Fault Tree MSPM 

Score Weighted 

score 

Score Weighted 

score 

Model trustworthiness T  S1 1.00 1.00 - 4.65 - 5.85 

Modeling fidelity F (𝑇1) S2  0.35     0.35    - 1.51 -  2.37 

Number of 

approximations 
Ap (T12) S3  0.54     0.19    

6 
1.13 

7 
1.32 

Level of detail D (T11) S3  0.46     0.16    - 0.38 - 1.04 

Number of equations 

and correlations 
Q (T111) S4  0.46     0.07    

3 
0.22 

8 
0.60 

Number of model 

parameters 

Mp 

(𝑇112) 

S4  0.21     0.03    
3 

0.10 
7 

0.24 

Number of 

dependency relations  
Dr (𝑇113) S4  0.32     0.05    

1 
0.05 

4 
0.21 

Strength of 

knowledge 
K (𝑇2) S2  0.65     0.65    

- 
3.14 

 - 
3.49 

Quality of data QD (𝑇22) S3  0.51     0.33    - 2.06  - 2.25 

Amount of data Ad 

(𝑇221) 

S4  0.60     0.20    
5 

0.99 
8 

1.59 

Consistency of data C (𝑇222) S4  0.40     0.13    8 1.06 5 0.66 

Quality assumptions QA (𝑇21) S3  0.49     0.32    - 1.08  - 1.23 

Number of 

assumptions 
As (𝑇211) S4  0.20     0.06    

5 
0.32 

6 
0.38 

Impact of the 

assumptions 

I 

(𝑇212) 

S

4 

 

0.80    

0.

25 
3 

0.76 3.

33 0.85 
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Table 7 Comparison between FT and MSPM trustworthiness (direct quantification) 

Parameter  

Sy

mbol 

 

L

evel 

 

Wei

ght 

G

lobal 

weight 

Fault Tree MSPM 

S

core 

Weight

ed score 

S

core 

Weight

ed score 

Model 

trustworthiness 

T  S

1 

1.0

0 

1.

00 
- 

58.45 
- 

113.59 

Modeling 

fidelity 

F 

(𝑇1) 

S

2 

 

0.35    

 

0.35    
- 

1.67 
-  

2.66 

Number of 

approximations 

Ap 

(T12) 

S

3 

 

0.54    

 

0.19    
7 

1.32 
7 

1.32 

Level of detail D 

(T11) 

S

3 

 

0.46    

 

0.16    
- 

0.35 
- 

1.34 

Number of 

equations and 

correlations 

Q 

(𝑇111) 

S

4 

 

0.46    

 

0.07    1 

0.07 

9 

0.67 

Number of state 

rates and parameters 

Mp 

(𝑇112) 

S

4 

 

0.21    

 

0.03    
8 

0.27 

1

8 0.61 

Number of 

dependency relations  

Dr 

(𝑇113) 

S

4 

 

0.32    

 

0.05    
0 

0.00 
1 

0.05 

Strength of 

knowledge 

K 

(𝑇2) 

S

2 

 

0.65    

 

0.65    
- 

56.78 
 - 

110.93 

Quality of data QD 

(𝑇22) 

S

3 

 

0.51    

 

0.33    
- 

55.76 
 - 

109.89 

Amount of data Ad 

(𝑇221) 

S

4 

 

0.60    

 

0.20    

2

75 54.70 

5

49.15 109.23 

Consistency of 

data 

C 

(𝑇222) 

S

4 

 

0.40    

 

0.13    
8 

1.06 
5 

0.66 

Quality 

assumptions 

QA 

(𝑇21) 

S

3 

 

0.49    

 

0.32    
- 

1.02 
 - 

1.04 

Number of 

assumptions 

As 

(𝑇211) 

S

4 

 

0.20    

 

0.06    
4 

0.25 
3 

0.19 

Impact 

(Sensitivity analysis) 

I 

(𝑇212) 

S

4 

 

0.80    

0.

25 
3 

0.76 

3

.33 0.85 

 

Table 8 Summary of models trustworthiness using relative scores and direct measures 

 Fault Tree MSPM 

Normalized Trustworthiness (relative 

scores measures (1-9)) 

0.44 0.56 

Normalized Model Trustworthiness 

(direct measures) 

0.34 

 

0.66 

 

 

5. Discussion and Conclusion 

In this work, we have developed a hierarchical tree-based decision making framework to assess the 

relative trustworthiness of risk models. The approach is based on the identification of specific attributes 

that are believed to affect the trustworthiness of the model. This is obtained through a hierarchical-tree 

based ―decomposition‖ of the model trustworthiness into sub-attributes. The AHP method has been used to 

perform a weighted aggregation of the attributes to evaluate the model trustworthiness. The method has 

been applied to a case study involving the Residual Heat Removal (RHR) system of a Nuclear Power Plant 

(NPP). Two models of different complexity (i.e., FT and MSPM) have been considered to evaluate the 

system reliability and the trustworthiness of such models has been compared. 

FT trustworthiness has been found to score 4. 65 out of 9, whereas MSPM has scored 5.85 or 0.34 and 
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0.66, respectively, by normalized direct measures of ―leaf‖ attributes.  The two results confirm the 

expectation that MSPM provides more trustworthy risk estimates than FT, due to the fact that it takes into 

account components failure dependency relations and time dependency of the degradation affecting the 

component.  

Clearly, there is no claim that the trustworthiness assessment approach proposed is comprehensive 

and complete, as there exist other factors that affect the level of trustworthiness, which were not considered 

here. The method was, rather, a first attempt to systematically evaluate the models’ relative trustworthiness. 

Obviously, it impossible to remove completely subjectivity and expert judgment is still present, the method 

provided is an attempt to cast such expert judgment in a systematic and structured framework. Also, further 

studies should be performed to define the scaling guidelines for attributes evaluation and study how to 

integrate the level of trustworthiness in RIDM. 
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Appendix A: Method used to translate the hierarchical tree attributes into a semi-quantitative scale  

The following table presents the guidelines adopted in this paper to translate the attributes of the 

hierarchical tree into a semi-quantitative scale. Such guidelines are defined based on discussions and 

suggestions provided by EDF analysts, with relevant experience in the problem ad case study at hand. 

Table A.1 A semi-quantitative scale for the hierarchical tree attributes 

Parameter  Translation  “real number → scale 1/9” 

Number of 

approximations 

Low number of approximation and low believed effect of their aggregate on 

the outputs: 9 

few approximations with low effect of their aggregate: 7 

moderate number of approximations with acceptable effect of their effect on 

the outputs: 5 

high number of approximations with high effect of their aggregate on the 

outputs: 3 

High number of approximations with sever effect of their aggregate on the 

outputs: 1 

The even number are left for the intermediate cases 

Number of equations 

and correlations 

1-2 equations : 1 

3 equations : 2 

4 equations or 1 (Boolean logic equation) : 3 

5 equations : 4 

6 equations : 5 

7 equations : 6 

8 equations : 7 

9 equations : 8 

>9 equations : 9 

Number of state rates 

and model parameters 

0-2: 1 

3-5: 2 

6-8: 3 

9-11: 4 

12-14: 5 

15-17: 6 

18-20: 7 

21-23: 8 

>32: 9 

Number of dependency 

relations considered  

0 dependency relations considered :  1 

1%-12.5% of the failures rates are considered dependent on the failure of other 

components:  2 

13.5%-25%:  3 
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26%-37.5%:  4 

38.5%-50%:  5 

51%-62.5%:  6 

63.5%-75%:  7 

76%-88.5%:  8 

>88.5% All components failures are dependent on other components failures :  

9  

Consistency of data The expert should give a score between 1-9 evaluating of the consistency of 

data, taking into account the source of data, its compatibility and relevance to 

the components that need to be analyzed. 

As in the case study the data is collected from the same type of reactors 900 

Mwe, it is highly consistent: the consistency is given a score of 8. 

However, we cannot guarantee a perfect consistency, as the information about 

a specific component might be collected from other components that are 

similar but slightly different: e.g., the failure rate of RHR pumps is calculated 

taking into account failures of all pumps in the reactor. 

Amount of data  

(Number/amount of 

sources) 

The following classification is adopted according to the suggestions of EDF 

experts: 

> 25 reactor years of experience :  1 

25-50:   2 

51-100:  3 

101-175:  4 

176-275:  5 

276-400:  6 

401-550:  7 

551-725:  8 

Over 725:  9 

Number of assumptions  Directly related to the actual number of assumptions used. 

Impact (Sensitivity 

analysis and indications) 

The impact is related to the assumptions. The difference between the values of 

failure rate with and without the assumption should be estimated. A score 

between 1-9 is given for each assumption, and the final score is then averaged 

over all assumptions. 

 

1. No repairs: assuming no component repairs, at time 500, we obtain a 

probability of failure which is 500 times higher as compared to the case when 

the repair is considered (Figs 9-12 (Lin, 2016)) 

2. One directional dependency: assuming only one-direction dependency 

of the valve degradation from the degradation and vibration of the pump, 
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decreases the valve reliability of about 3 times (Figs 9-21(Lin, 2016)) 

3. Human error: In case of human error (omission in closing the manual 

valve), we obtain a probability of failure of RHR which is 1.096 times higher. 

Nevertheless, the human error probability is very small. 

4. No random shocks: assuming no random shocks results in a relative 

difference in the failure rate of the components. in particular, there is a 

reduction of (-2.99%-19823.08%) with respect to the case with the random 

shocks (Table II  (Lin, 2016)) 
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Appendix B: Trustworthiness attributes evaluation for Fault Tree (FT) M1  

Table B.1 Trustworthiness attributes evaluation for Fault Tree (FT) 

Parameter  Direct 

score 

Relative 

score 

Note 

Number of 

approximations 

7 6 7 minimal cut sets 

Number of equations and 

Number of correlations 

1 3 1 equation (Boolean logic): failure probability based 

on ―rare event‖ approximation 

Number of model 

parameters 

8 3 8 failure rates for 8 basic events 

Number of dependency 

relations  

0 1 No dependency relations considered 

Amount of data  

(Number/amount of 

sources) 

275 5 EDF internal reports on data collected between 1980 

and 1992, or 275 years reactor for each component. 

Consistency of data 8 8 The data are collected from application of SAFO 

(OMF-reliability-centered-maintenance-feedback 

computer assisted collection on 7 CP1-CP2 sites and 

report on data. 

As this data is collected from the same type of 

reactors  900 MWe it is highly consistent.  

On the other hand, we cannot guarantee a ―perfect‖ 

consistency, as the information about a specific 

component might be collected from other, similar 

but possibly different, components: e.g., the failure 

rate of RHR motor operated valves is calculated 

taking into account failures of all motor operated 

valves in the reactor. 

Number of assumptions  4 5 1. No repairs 

2. No dependency relations between 

components and failure mechanisms 

3. Human error 

4. No random shocks 

Impact of the assumptions 

(average of the impact of 

the different assumptions 

considered)  

3 Avg: 3 

 

 

 

3  

Based on the sensitivity analysis performed by (Lin, 

2016) and the analysis performed using Risk 

Spectrum Software by EDF 

1. No repairs: assuming no component repairs, 

at time 500, we obtain a probability of failure which 
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is 500 times higher as compared to the case when 

the repair is considered (Figs 9-12  (Lin, 2016)) 

2. No directional relation considered 

3. Human error: In case of human error 

(omission in closing the manual valve) we obtain a 

probability of failure of RHR which is 1.096 times 

higher. Nevertheless, the human error probability is 

very small. 

4. No random shocks: assuming no random 

shocks results in a relative difference in the failure 

rate of the components. in particular, there is a 

reduction of (-2.99%-19823.08%) with respect to the 

case with the random shocks (Table II  (Lin, 2016)) 
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Appendix C: Trustworthiness attributes evaluation for Multi-State Physics-based Model (MSMP) M2 

 

Table C.1 Trustworthiness attributes evaluation for Multi-State Physics-based Model (MSMP) 

Parameter  Direct 

score 

Relative 

score 

Note 

Number of approximations 7 7 No relevant approximation 

Number of equations and Number 

of correlations 

9 8 4 multi-state models 

3 physical equations for valve and diaphragm 

behavior 

2 threshold equations for 𝐷𝑣 and 𝐷𝐷 (denote 

respectively: the number of cycles of solicitation of 

the valve over time and the thickness loss of the pipe 

over time) 

Number of model parameters 18 7 -5 transitions rates in the multi-state model 

- 11 parameters for physical equations for the valve 

and diaphragm  

- 2 parameters for the modeling of number of cycles 

and thickness loss 

(18 parameters in total) 

Number of dependency relations  1 4 1 dependency relation considered between the valve 

and the pump 

Amount of data 549.15 8 -Pump : 621.95 years reactor 

-Breaker: 420 Years reactor   

-Contactor : 528.21 years reactor  

- Motor  : 626.42 years reactor  

Consistency of data 5 5 The data are collected from internal technical reports: 

-Pump 621.95 years reactor (PWR 900 MWe, PWR 

1300 MWe, PWR N4) 

PWR 900: 2 

PWR 1300, N4: 2 

-Breaker 420 Years reactor (PWR1300 MWe, CPY) 

CPY: 18 

PWR 1300:19 

-Contactor 528.21 years reactor (1300 MWe, CPY, 

PWR N4) 

CPY: 26 

PWR 1300: 48 

PWR N4-1400: 29 
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- Motor 626.42 years reactor (900 MWe, 1300 MWe, 

Palier PWR N4) 

CPY: 43 

PWR 1300: 36 

PWR N4-1400: 34 

Even though the data collected in EDF internal 

reports comes from different sources with different 

types of reactors, it is still consistent as the different 

components are very similar. 

Number of assumptions  3 6 1. No repairs  

2. 1 directional dependency: the dependency of 

the valve degradation on the pump degradation and 

vibration 

3. No random shocks 

Impact of the assumptions (average 

of the impact of the different 

assumptions considered) 

3.3333 Avg: 10/3 

3  

 

 

 

 

 

6 

 

 

 

 

 

1 

 

Based on the sensitivity analysis performed by (Lin, 

2016): 

1. No repairs: assuming no component repairs, 

at time 500, we obtain a probability of failure which 

is 500 times higher as compared to the case when the 

repair is considered (figs 9-12 (Lin, 2016)) 

2. One directional dependency: assuming only 

one direction dependency of the valve degradation on 

the degradation and vibration of the pump decreases 

the valve reliability of about 3 times (Figs 9-21 (Lin, 

2016)) 

3. No random shocks: assuming no random 

shocks results in a relative difference in the failure 

rate of the components. in particular, there is a 

reduction of (-2.99%-19823.08%) with respect to the 

case with the random shocks (Table II  (Lin, 2016)) 
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Abstract 

Multi-Hazards Risk Aggregation (MHRA) aggregates risk over different risk contributors and provides 

a final risk index that permits the comparison with safety guidelines to support Decision Making (DM). 

The risk contributors assessment are conditional on many factors e.g., background knowledge, 

conservatism, sensitivity that are believed to determine the level of maturity of analysis and hence, realism 

of risk contributors indexes. Aggregation of risk contributor‟s values that are not identical in their degrees 

maturity and realism would lead to mathematically inconsistent and physically meaningless result that 

misinform the decision making. Hence, the difference in maturity, and the sources of heterogeneity that 

cause such differences, should be taken into account for supporting a reliable and accurate representation 

of risk in respect of DM.  

In this paper, we propose a hierarchical framework to evaluate the level of maturity of risk contributors 

in the light of DM. The framework consists of four attributes that are believed to affect greatly the level of 

maturity of risk analysis i.e., uncertainty, conservatism, knowledge and sensitivity that are believed to 

affect the level of realism in the assessment of risk contributors. The knowledge attribute is in turn, broken 

down into five further sub-attributes i.e., availability of data, consistency of data, data reliability, 

experience, and value ladenness. Analytical Hierarchy Process (AHP) is adopted in this paper for the 

application of the framework and assessing the level of maturity. Reduced-Order Model technique is used 

to enable the application of the framework on real world complex problems. Then, the maturity level is 

integrated in MHRA by developing a two-dimensional risk aggregation method. Scoring protocols for 

evaluating the attribute were prepared to simplify the application of the framework and to reduce the 

subjectivity of the assessors. Finally, a numerical case study for the MHRA of a Nuclear Power Plant 

(NPP) is carried out to show the applicability and the plausibility of the methods. Please note that it is out 

of the context of this paper to show in details how to employ the maturity index in the process of DM. 

Keywords 

Probabilistic Risk Assessment (PRA), Risk Informed Decision Making (RIDM), Multi-Hazards Risk 

Aggregation (MHRA), Strength of Knowledge (SoK), Level of Conservatism, Uncertainty, Sensitivity 

Analysis, Nuclear Power Plant (NPP), Reduced Order Models. 

 

1. Introduction 
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Risk can be defined as the possible harm that might occur to human or environment, and it needs to be 

considered in terms of both magnitude of detriment and its likelihood (INSAG 2011). In risk assessment 

we perform quantitative and qualitative measures of risk to ensure that it is maintained under the allowed 

safety limit. Risk assessment is based mainly on conceptual frameworks and qualitative assessment of risk 

that represents different systems and processes. The conceptual frameworks are in turn, built on a set of 

assumptions that are translated into quantitative assessments through representing them in mathematical 

forms, to provide measures and predictions of safety performance (Bjerga et al., 2014); (NRC 2010); 

(Eiser et al., 2012).  

Recently there has been a great focus on risk and the developing a conceptual framework of risk as it is 

believed that risk interpretation play a vital role in Decision Making (DM) and therefor disasters reduction 

(Eiser et al. 2012). Actually, it is believed that in order to control and reduce risk, a comprehensive 

understanding of risk and the context of DM is required (Eiser et al. 2012). However, having a 

comprehensive understanding of risk requires knowing the risk, understanding it and having the ability to 

acknowledge it to help the decision maker to comprehend it (Simola & Pulkkinen 2004). Moreover, 

experts emphasize that relying solely on the numerical values of PRA as input value can be misleading for 

DM, as it does not capture or the important aspects related to DM (EPRI 2015). 

As an example of how risk assessment is performed, the safety of French nuclear reactors is essentially 

based on a deterministic approach, supplemented by the Probabilistic Safety Assessment (PSA). PSA has 

been widely applied in various industries, e.g., nuclear, aerospace, defense, etc. Moreover, in 1995, NRC 

recommended in its final policy statement to increase the use of PSA in nuclear regulatory activities to the 

extent supported by the state of the art (NRC, 1995). A PSA is a systematic conceptual and mathematical 

tool that evaluate risks associated with a complex engineering systems such as Nuclear Power Plants 

(NPP) to support DM (Karanki et al., 2009) and even more, the robustness of this decision is now, a matter 

of the quality of PSA (IAEA 2006). 

PSA provides an overall quantitative and qualitative view of safety including both equipment and 

operators behavior by mainly: (i) identifying accidental scenarios leading to undesired consequences; (ii) 

assessing the probability of occurrence of these scenarios (Duménigo et al. 2008). Usually, different hazard 

groups (classification of hazard by its nature) are involved in a PSA (e.g., PSA of nuclear power plants 

usually involves hazard groups like fire, internal flooding, etc.). However, to make risk-informed decisions 

based on the results of PSA, Multi-Hazard Risk Aggregation (MHRA) is required: all relevant information 

on risk from different contributors is combined, arriving at an integrated risk index (EPRI 2015). Usually, 

risk-informed decisions are made by comparing the integrated risk index (e.g., core damage frequency, 

large early release frequency, risk increase, etc.) to safety goals and quantitative acceptance criteria. 

Currently, most MHRAs are conducted by a simple arithmetic summing over the individual risk 

indexes for different hazard groups (EPRI 2015). For example, in current PSAs for Nuclear Power Plants 

(NPPs) in France, an overall risk index is computed by summing over the risk indexes of hazard groups 

like internal events, fire, external flooding, etc., which, permits comparing the overall risk index to safety 

goals and acceptance guidelines for Risk-Informed Decision Making (RIDM) (EPRI 2015). A main 
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criticism for the summation-based MHRA method is that it ignores the heterogeneities in the nature of the 

hazard groups, the degree of realism and the trust we have on the knowledge possessed over each one. 

Take again the PSA of nuclear power plants as an example. Among the hazard groups, the PSA model has 

been developed for internal events for many years, while relatively recently, the PSA for hazard groups like 

external flooding has started to be investigated (EPRI 2015). Therefore, we have more trust that the PSA 

for internal events is more realistic than for external flooding. Also, through the operation of US NPP, fire 

has been considered as a great contributor to the total risk, which might be due to the importance of the fire 

risk or/and due to the fact that it is characterized as immature and less realistic compared to some other 

initiating events; such as the internal events (Siu et al. 2015). The different levels of realism, which result 

from the difference in knowledge that supports the risk assessments, must be taken into account as they 

affect the risk-informed decisions based on the results of risk analyses (Aven 2013b).  

Other sources of heterogeneity is the level of conservatism of the models, which, is based on the origin 

of the initiating events (EPRI 2015). In particular, for external hazards, due to the lack of data (testing, 

physical models, etc.), conservative assumptions are made regarding the impact of the hazards on the 

installation (EPRI 2015). Similarly, for the evaluation of the frequency of these hazard, studied at extreme 

levels of intensity, it is often difficult to establish a result in which we can have a great confidence. 

Additionally, many other key aspects are believed to influence the process of risk aggregation and RIDM 

such as: the interpretation of uncertainty and sensitivity analysis, value ladenness of the analysts and 

decision makers (), different natures of explicit and implicit knowledge, level of details and sophistication 

of risk analysis, etc., (EPRI 2012); (Zweibaum & Sursock, 2014). Actually, the aggregation over these 

hazards groups without considering the sources of heterogeneity and levels of realism and hence, trust that 

we possess for each hazard group, leads to a mathematically inconsistent and physically meaningless result 

(EPRI 2015). Nevertheless, these challenging aspects require drawing more attention on developing new 

PSA-supporting tool that allows pragmatically addressing them in order to help in risk-informed decision 

making (RIDM), especially, that the risk analysis cannot lead to a decision without the decision maker‟s 

judgment that reflects his subjectivity and preferences (Paté-Cornell, 1996). 
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Figure 1 Risk informed decision making process, factors influencing decision making, and RIDM weaknesses 

In this paper, we develop a MHRA supporting tool that considers the heterogeneities in the different 

contributors leading to different degrees of realism. The realism on a risk model is evaluated based on the 

concept of maturity. Maturity of a PSA is defined in this paper as the degree to which a PSA is correctly 

implemented in a way to reflect the available knowledge. The rest of this paper is organized as follows. In Sect. 

2, we present a hierarchical framework for assessing the maturity of PSA and we develop evaluation (scoring) 

protocols to facilitate the process of assessment. Then, in Sect. 3, we develop an MHRA method that considers 

the maturity of the PSAs for different hazard groups. Section 4 applies the developed methods on a numerical 

case study. Finally, in Sect 5, we give a conclusion on the paper and we discuss the potential future work.  

 

2. A hierarchical framework for PRA maturity assessment 

In this section we discuss the different factor that are believed to affect the level of maturity of 

probabilistic risk analysis. In sect 2.1 we discuss the importance of introducing an index to evaluate the 

level of maturity and we mention some the factor that are introduced in the literature and believed to affect 

the level of maturity of risk analysis. In Sect 2.2 we propose four attributes for evaluating the level of 

maturity and we demonstrate their effect on the maturity and propose scoring protocols for the evaluation 

of the attributes. 

2.1. Framework development  

As illusrtated previously, many factors are believed to affect the the suitability of risk definition and 

risk aggergation. Emphasis is paid in the literature on importance of communicating these factor for better 

informing decision making (Flage & Aven 2009); (EPRI 2012); (Aven 2013b); (EPRI 2015); (Veland & 

Aven 2015). Some of these factors are: (i) background knowledge; (ii) level of uncertainty; (iii) level of 

conservatism; (iv) importance measures; (v) level of details and sophistication of the analysis; (vi) 

accuracy and precision in the estimation of the values of the model‟s parameters; (vii) level of sensitivity; 

(viii), and others (IAEA, 2006); (Flage & Aven 2009); (EPRI 2012); (Aven 2013a); (Aven 2013b); (Bjerga 

et al. 2014); (EPRI 2015); (Veland & Aven 2015); (Aven 2016); (Berner & Flage 2016).  
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In particular, MHRA includes aggregating risk from different contributor that have different degrees 

of realism, which in turn result from differences in characterizations e.g., of uncertainty, background 

knowledge, conservatism, etc. (EPRI 2015). Hence, MHRA needs to account for the these characterization 

and the different degrees of “realism” in the analysis of each risk contributors, (IAEA, 2006); (EPRI 2012); 

(EPRI 2015). Otherwise, the aggregation process would be mathematically inconsistent and physically 

meaningless results that misinform DM (EPRI 2015). 

In this paper, we focus on communicating the factors that affects the degrees of realism in risk 

contributors, though a metric referred to as “level of maturity”. The level Maturity of a PRA is expresses in 

this paper, the degree to which PRA is correctly implemented in a way that makes best use of the available 

knowledge to best represent the reality. In this section, we review the most relevant elements for mature 

risk assessment of PSA from literature, and develop a hierarchical framework for maturity assessment 

based on these elements. 

2.2. Attributes elicitation and evaluation 

In this section, four elements i.e., uncertainty, conservatism, knowledge and sensitivity (IAEA, 2006); 

(Flage & Aven 2009); (EPRI 2012); (EPRI 2015); (Aven 2016); (Berner & Flage 2016) relevant to the 

level of maturity and Risk-Informed Decision-Making (RIDM) are reviewed and discussed. In this review, 

we argue the importance of these attributes in determining the level of realism of probabilistic risk analysis 

and we propose evaluation protocols that are based on solid argument presented in the same sections. The 

overall hierarchical representation of the framework is illustrated in Figure 2.  

 

 

 

2.2.1 Uncertainty 

Uncertainty is defined as the imperfection of knowledge on the real value of a variable or its 

variability (Riesch 2013). Uncertainty is an important source of differences between the reality and the 

model predications (Bjerga et al., 2014). Hence, uncertainty affects greatly the credibility of PRA (Ferdous 

et al. 2013), (Abdo et al. 2017). This means that it reflects directly the level of maturity of the PRA and it 

should be addressed in its evaluation. 

Figure 2 Level of maturity framework 
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2.2.1.1 Uncertainty classification 

Uncertainty can be classified relatively into different levels, depending on the degree of knowledge 

imperfection (Walker et al. 2003). For example, Wynne (1992) distinguishes four types of uncertainties 

depending on the level of knowledge: “Risk” where the system behavior is well known and quantifiable; 

“uncertainty” where the system parameters are known but the probability distributions are unknown; 

“ignorance” where the unknowns are unknown and finally; “indeterminacy” which underlies the 

indeterminacy in scientific knowledge construction with link to the tacit social knowledge. Walker et al. 

(2003) suggests three dimensions for uncertainty classification for uncertainty-based decision support 

purposes: the “location” where the uncertainty manifests itself within the model complexity, the “level” of 

uncertainty, which is, demonstrated by a spectrum between deterministic knowledge and absolute 

ignorance and finally, the “nature” of uncertainty which illustrates the type of uncertainty (epistemic or 

aleatory). The level of uncertainty is, further, classified into five progressive levels: determinism, statistical 

uncertainty, scenario uncertainty, recognized ignorance and total ignorance (Walker et al. 2003). 

Spiegelhalter and Riesch (2011) identify, within the spirit of Walker et al. (2003), five progressive levels of 

uncertainty for model-based risk analysis, each corresponds to a score are presented in Table 1. 

Table 1 Uncertainty levels descriptions and scores with respect to the level of maturity 

Level Description Score 

Level 1 

(uncertainty 

about the 

outcome) 

This level of uncertainty manifests itself when the model and the 

parameters are known, and the analysis predicts a certain outcome with 

a probability 𝑃 (e.g., the uncertainty about the outcome in most 

traditional mathematical and philosophical problems of probability 

theory) 

 

5 

Level 2 

(uncertainty 

about the 

parameters 

The model is known but its parameters are not. If the parameters are 

known then the model would predict an outcome with probability 𝑃 and 

exhibit an uncertainty of level one. This type of uncertainty arises due to 

lack of empirical information on the model parameters (e.g. input 

parameters related to Large Break in Primary Circuit of a Nuclear Power 

Plant that has never occurred) 

4 

Level 3 

(uncertainty 

about the 

model) 

It reflects the likelihood of the competing models‟ abilities to reflect 

reality. This type of uncertainty is due to the model structure itself and 

the computer implementation of the model (Walker et al. 2003) 

3 

Level 4 

(uncertainty 

about the 

acknowledged 

limitations and 

This level covers any known limitations in understanding and modelling 

abilities, which arises from the inevitable assumptions and 

simplifications made such as: data extrapolations, limitation in the 

computations, and any aspects that we are aware that they have been 

omitted. 

2 
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implicit 

assumptions-

unmodeled 

uncertainty) 

 

Level 5 

(Uncertainty 

about unknown 

inadequacies) 

It is the unrecognized uncertainty or as it was referred to by Donald 

Rumsfeld the “unknown unknowns”, which corresponds to the 

unforeseen events, unmodeled and unmodlable uncertainty. This type of 

uncertainty are usually acknowledged by brainstorming of the possible 

scenarios, or by the introduction of what so called „fudge factors‟. 

1 

Whilst this classification seems to be too crude and simple to be correct, it satisfactorily covers, at 

least from this problems‟ perspectives, the three dimensions defined by Walker et al. (2003) i.e., 

“location”, “level” and “nature” of uncertainty. For example, the definition of Level 1 of uncertainty, 

refers to the aleatoric nature of uncertainty, while Levels 2-5 cover the epistemic nature of uncertainty. 

Also, where the five levels vary progressively from the known to the unknown-unknown, they 

simultaneously refer to its location i.e., parameter, model and context of uncertainty. Moreover, the 

applicability and handleability of this method makes it a better choice to serve the context of this work. 

 

2.2.2 Conservatism of analysis  

Conservatism in PRA refers to desire of cautiousness by overestimating the risk. The conservatism in 

PRA arises from different considerations and perspectives such as the concerns regarding the lack of 

knowledge about the nature and magnitude of the hazard (Viscusi et al., 1997). This leads to the 

implementation of the concept of “Better safe than sorry”, Samuel Lover, which is further translated to the 

preference of overestimating the risk rather than underestimating it. For example, selecting risk estimate 

that exceeds the mean of value of the probability distribution at the 95
th
 percentile, which, means that there 

is a 95% probability that the risk is over estimated and 5% is underestimated (Perhac Jr 1996). 

Although the conservatism is usually anticipated to increase safety, some counter-arguments still exist 

on its influence on safety margin (Perhac Jr 1996). It has been argued that conservatism cannot be advised 

only from a risk-aversion point of view, and that the cumulative effects of conservatism on decision-

making, regulations and risk management are unacceptable (Perhac Jr 1996), (Viscusi et al., 1997). In 

particular, the effect of conservatism is not taken into account from a firm empirical sense (Viscusi et al., 

1997), which might be, in some contexts, perceptive for the analysts by giving a false assurance of safety, 

leading to worst consequences of risk (Whipple 1987). In fact, the overall effect of conservatism on safety 

(whether that conservatism is protective or not), depends greatly on the assumptions made, and the context 

of decision making (Whipple 1987). 

Viscusi et al. (1997) argue that though conservative risk estimates increases the risk magnitude, the 

implications of this increase on the safety is still a matter of the decision-makers‟ actions. They have 

showed through a cost-benefit based study (number of lives saved per unit cost) that unlike conservative 

assessment the mean parameter approach would result in enhanced judgment policies that would enhance 
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the safety. This can be explained by the shift of prioritization of decision maker. Moreover, recent studies 

conclude and explicitly recommend that conservatism should be avoided in the light of some decision 

making contexts like: comparing options and studying the effects of potential risk reducing measures 

(Aven 2016). The degree of conservatism should be complied with the decision contexts and requirements 

of the PRA. Otherwise, it might reduce the maturity level and sometimes mislead the decision maker. 

2.2.2.1 Conservatism classification  

All of the arguments mentioned in the previous section, lead to question how to classify of levels of 

conservatism in the light of the maturity and its consequences on safety. At a first glance, classifying the 

levels of conservatism depending on the level of knowledge seems plausible, especially that conservatism 

represents a practical act performed to deal with uncertainties and lack of knowledge. However, this is not 

valid considering its implication on safety, where other aspects should be taken into account aside from 

strength of knowledge e.g., the context of decision making. Aven (2016), highlights the conservatism in 

risk analysis as a multi-dimensional concept, reinforcing the former arguments of experts about the real 

effect on safety (mentioned in Sect. 2.2). This is done by firstly addressing the meaning of conservatism, 

secondly relating it to the strength of knowledge and thirdly evaluating its usefulness in the context of 

decision-making. In this vision, he compares conservative risk indexes (i.e., based on conservative 

assumptions) to three cases: (I) risk indexes based on best estimate assumptions; (II) risk indexes based on 

true value parameters (III) risk indexes based on true value parameters with a defined confidence 

statement. Then, for these cases (I-III), he defines the possible states of knowledge on which the 

assumptions or risk parameters are based and finally, the possible contexts of decision, and tries to relate it 

to the consequences on safety (Aven 2016). Hereafter, we extend the work of Aven (2016) and define three 

main types of risk index estimates: (i) best judgment estimates (based on best judgment of assumptions and 

parameters); (ii) true value with a high confidence (based on strong knowledge); (iii) true value with a low 

confidence (based on weak knowledge). Then, for two context of decision making, i.e., comparing 

alternatives and comparing the risk indexes to acceptance limit, we compare the three defined estimate 

types (i-iii) to the conservative estimates (based on conservative assumptions) and give scores for each 

possible scenario with respect to level of maturity and safety. In other words, we are comparing the 

estimates that are based on assumptions chosen to be conservative (for cautiousness reasons) to those 

estimates that are based on the best judgment or true values of assumptions and parameters. Figure 3-5 

illustrate the different score for each corresponding scenario. 
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Figure 3 Evaluation of the conservatism in the light of level of maturity (conservatism VS Best estimate) 

 

Figure 4 Evaluation of the conservatism in the light of level of maturity (conservatism VS True value/weak 

knowledge) 

True value (low 

confidence, 𝑃 ≤ 90%) 
based on weak 

knowledge 
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Figure 5 Evaluation of the conservatism in the light of level of maturity (conservatism VS True 

value/strong knowledge) 

2.2.3 Knowledge 

Knowledge is the second top tier of the four levels knowledge-hierarchy (DIKW hierarchy). It is the 

yield of a combination of data, information, experience and judgment to be used in decision-making (Aven 

2013a). Knowledge manifests itself in three main forms; explicit and implicit, and tacit (Davies 2015). 

It is said that “You can't manage what you can't measure." Peter Drucker. To best employ knowledge, 

one should be able to state its level. This led experts in safety and risk assessment to emphasize the 

importance of considering the background knowledge on which risk assessment is based, especially for 

Risk-Informed Decision-Making (RIDM) purposes (Aven 2013a), (Aven 2013b), (Aven & Krohn 2014), 

(Berner & Flage 2016), (Askeland et al., 2017), (Aven 2017), (Khorsandi & Aven 2017). This argument is 

visibly manifested in the new risk perspectives, which considers strength of knowledge in addition to the 

traditional elements i.e., scenarios, likelihood and consequences (Aven 2013b), (Aven & Krohn 2014), 

(Bjerga & Aven 2015), (Aven & Ylönen 2016). For these reasons, evaluating strength of knowledge should 

be considered in evaluating the models‟ credibility and maturity. 

2.2.3.1 Knowledge evaluation 

Different attributes can be considered to evaluate the strength of knowledge such as, the amount of 

data and information, its suitability and usefulness, the human cognition regarding a specific phenomenon, 

the experience on the technology and of the analysts etc. There are however two main methods on which 

most of the strength of knowledge assessment approaches are based, in safety and risk assessment: a semi-

quantitative approach for evaluating the Strength of knowledge (Goerlandt & Montewka 2014), and the 

assumption deviation risk by (Aven 2013b). In the earlier, the authors identify four main criteria for 

evaluating the strength of knowledge: the phenomenological understanding, the reasonability and realism 

of assumptions, the availability of reliable and relevant data and the agreement among peers (Goerlandt & 

True value (high 

confidence, 𝑃 ≥ 90%) 
based on strong 

knowledge 
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Montewka 2014). Based on the degree of fulfilling the criteria, the strength of knowledge is classified 

crudely to minor; moderate; and significant. The later method is based mainly on evaluating the criticality 

of the main assumptions on which probabilistic risk assessment is based, by evaluating the deviation from 

assumption, the uncertainty of this deviation and the strength of knowledge on which the former are based. 

Accordingly, the number of assumptions and the criticality of deviation from assumption, indicates the 

strength of knowledge on which the probabilistic risk assessment is based (Aven 2013b). However, one 

should not forget that in addition to the explicit properties of knowledge, it has also implicit and tacit 

properties (Davies 2015), and although it cannot be directly stated or documented, it contributes to the 

individual and organizational performance (Talisayon 2009). Obviously, in Flage and Aven (2009) the 

reasonability of assumptions and agreement among peers, are partially related to the implicit and tacit 

knowledge. However, this framework does not cover convincingly the assessment of tacit knowledge (e.g., 

agreeing on an assumption or assessment does not necessarily make it good), hence, the carriers of implicit 

and tacit knowledge (assessors) should rather be themselves evaluated.  

In fact, several researches have emphasized on the importance of evaluating the value ladenness and 

confidence in experts‟ judgment. For example, Zio (1996) points to the fact that expert‟s judgment is 

subject to inevitable bias that lead experts that have the same background knowledge, to make different 

judgment, and he defines few attributes that are believed to affect the experts‟ judgment such as, the 

personal interest, the personal knowledge, the degree of independence, the experience etc. Other aspects 

such the situational limitations, choice space, agreement among peers and stake holders are included as 

well to assess the quality and robustness of assumptions on which, are made by the assessors, and the 

analysis are based (Boone et al., 2010), (Van Der Sluijs et al. 2005), (Kloprogge et al., 2011). Above all, 

one can argue that there are many other attributes that could be used to better represent the level of 

knowledge. However, Flage and Aven (2009) method in evaluating the strength of knowledge seems very 

plausible and relevant to the context of this problem except that it doesn‟t take into account the assessment 

of the experts who make the assumptions and the reasoning of the analysis, neither the availability of 

trustable predicting models. In this paper, we adjust and expand Flage's and Aven's (2009) method in Table 

2, and add a new main attribute i.e., value ladenness of the assessor to the framework, to be adapt to the 

context of this paper.  

Table 2 Level of knowledges' attributes evaluation guidelines 

 Score 1 3 5 

Data 

availability 

(A) 

Amount of 

data/field data 

(Sc3,1) 

No data or the data are so 

limited and (can extracted 

only from the same type 

of NPPs) 

The data are available 

and can be extracted 

from any other NPP 

The data are Available in 

abundance (can be extracted 

easily from so many sources 

and places worldwide) 

Data 

consistency 

(Co) 

Source of data 

(Sc3,2) 

The data are extracted 

from other sources that is 

not related directly to the 

technology (not the exact 

same type of component) 

Other NPPs of the same 

type and technology 

Field data from the same power 

plant, and related to the same 

type of components 
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Quality and 

reliability of 

data (Q) 

Quality of Data 

(Sc3,3) 

Based 

on 

experts 

elicitati

on 

Data are 

calculated 

using 

statistical 

models 

Data are both assumed 

and calculated using 

computer physical and 

mathematical models 

Data are 

extracted 

using 

computer 

mathematica

l and 

physical 

models 

The data are 

measured 

precisely and 

accurately, and 

then modeled 

Quality of 

assumptions 

(Sc3,4) 

Represents strong 

simplifications 

Represents moderate 

simplifications 

Represents reasonable 

simplifications 

Experience 

(E) 

Phenomenologic

al understanding 

(Sc3,5) 

The   phenomena   

involved   are   not   well   

understood 

The phenomena 

involved are understood 

but not completely 

The phenomena involved are 

very well understood 

Experience and 

knowledge 

regarding the 

hazard group 

(Sc3,6) 

No experience at all Experienced such an 

event in other industries 

This event is quite common and 

we have a wide experience in 

Availability of 

models (Sc3,7) 

Models are non-existent 

or known to give poor 

predictions. 

The models used are 

believed to give 

predictions with 

moderate accuracy 

The models used are known to 

give predictions with the 

required accuracy 

Value 

ladenness of 

the analysts 

(VL) 

Agreement 

among peers 

(Sc3,8) 

There is strong 

disagreement among 

experts 

There is slight 

agreement among 

experts 

There is broad agreement 

among experts 

Expert years in 

experience in the 

field and 

performance 

measure (Sc3,9) 

has quite short experience 

in risk assessment of 

NPPs 

It is his specialty and he 

practiced through 

training courses 

regarding the same type 

of NPPs 

Expert in this domain (long 

experience) 

2.2.4 Sensitivity 

A mathematical model might embrace errors due to the lack of the knowledge regarding the input 

parameters or due the numerical methods used to solve the model (Cacuci et al., 2003). The effects held by 

such errors are very important and need to be evaluated as it reflects the range of the trustworthiness and 

validity of the model. This is, done by sensitivity analysis (Cacuci et al., 2003).  

Sensitivity analysis is generally used to determine how a dependent variable can be changed and 

affected by the change of the input independent variable (Cacuci et al., 2003). This is usually used to 

determine the critical control points and to prioritize additional data collection (Christopher Frey & Patil 

2002). Moreover, it is implemented to provide the comprehensive understanding needed for a reliable use 

of the model, through highlighting and quantifying its most important features (Cacuci et al., 2003), as 

well as verifying and validating it (Christopher Frey & Patil 2002). 
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In safety and risk assessment, sensitivity analysis can be useful in many ways. In particular, 

sensitivity analysis complements the risk analysis to inform decision-making (Borgonovo & Cillo 2017), 

where it helps to identify the uncertain inputs that contributes to the uncertainty in the outputs and 

consequently, affect the decision making process (Zio & Pedroni 2012). For example, in PRA of Nuclear 

Power Plants (NPPs), sensitivity analysis is required to study the impact of different model basic events‟ 

probabilities on the decision (Reinert & Apostolakis 2006). Also, the importance of an assumption in a risk 

prediction model can be evaluated through altering the input parameters or the background knowledge 

related to the given assumption, which helps in identifying the critical assumptions and the risk of their 

deviations (Goerlandt & Montewka 2014). Furthermore, sensitivity analysis is recommended in the 

practice of risk assessment to reduce -in some cases- the unnecessary conservatism (NRC 2011). From 

these perspectives, sensitivity analysis is considered an indispensable tool for evaluating model credibility 

and maturity. 

2.2.4.1 Sensitivity evaluation 

Flage and Aven (2009) suggested integrating the sensitivity concept as a main component of the 

uncertainty in order to have a holistic picture of the uncertainty beyond the concept of the probability. A 

rough semi-quantitative evaluation of sensitivity has been introduced with three levels of classification: 

significant sensitivity, moderate sensitivity and minor sensitivity. The simplicity of this method makes it 

very helpful in the context of decision making, as it gives an indication on the associated consequences and 

implications of parameters‟ deviations. On the other hand, it doesn‟t show how to apply the sensitivity 

analysis, neither how to translate it into a sensitivity level. For this reasons, we suggest to complement 

Flage and Aven (2009) by using a one-at-a-time index and then, converting it into a relative scores that 

represents the sensitivity levels suggested by Flage and Aven (2009). 

In one-at-a-time method the sensitivity index 𝑆, measures the average of relative change in the 

dependent (output) variable 𝑌(𝑥𝑖) by altering one input (𝑥): 

 𝑆 =
1

𝑛
∑ |

𝑌(𝑥𝑖+1)−𝑌(𝑥𝑖)

𝑌(𝑥𝑖)
|𝑛

𝑖=1   (1) 

where 𝑥𝑖 is the input parameter, 𝑛 is the number of times that the analyst would apply the sensitivity 

measures by altering one input by an estimated suitable value e.g., ±20%, ±SD (standard deviation) 

(Hamby 1994) or ±4SD (Downing et al., 1985). However, we are considering a ±50% altering parameter 

in this study to represent more clearly the sensitivity of parameters, as we are more concerned with PSA 

models that have a linear relation with the basic events (each basic event is unique and appears only one 

time in a given minimal cutset). 

In this kind of analysis converging from (0) indicates the insensitivity of the model, while diverging 

from (0) indicates its sensitivity. After applying these analysis, the results need to be converted into 

discrete scores (e.g., 1: minor, 2: moderate, 3: significant (Goerlandt & Montewka 2014)) that indicate 

their levels. A sensitivity score (1-5) is assigned for the sensitivity index relying on the degree that the 

index converge or diverge from 0 as illustrated in Error! Reference source not found..   

Table 3 Scores representation of the sensitivity measure 

Interval S: ≤0.10 S : 0.10-0.25 S: 0.25-0.45 S: 0.45-0.70 S: ≥0.70 
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Level of 

sensitivity 

1 2 3 4 5 

Score 5 4 3 2 1 

 

3. PRA maturity assessment 

In this section we implement the developed framework through Analytical Hierarchy Process (AHP) 

method and we develop a method for evaluating the level trustworthiness of the overall risk analysis.  

The evaluation process is carried out through two main steps. In the first step (Sect. 3.1), we evaluate 

the maturity attribute for each risk contributor on the required level i.e., the level of risk parameters, the 

level of hazard group etc. Then, we aggregate the maturity attributes scores for the overall hazard group. 

Finally in Sect 3.2, we aggregate the overall risk considering the levels of maturities of each hazard group. 

 

3.1. Evaluation of the level of maturity for a single hazard group 

For each criterion and sub-criterion defined in Figure 1, a semi-quantitative evaluation is carried out 

by assigning a relative score from 1 to 5, based on a set of pre-defined scoring criteria as illustrated in Sect. 

2.2.1-2.2.4. The next step is to aggregate the scores of different attributes (criteria) to assess the overall 

maturity of a risk contributor. In this paper, the maturity level is calculated as a weighted average of the 

scores of the attributes. 

 𝑚𝑖 = ∑ ∑ 𝑤𝑖 . 𝑤𝑖,𝑗 . 𝑆𝑐𝑖,𝑗
𝑛𝑑
𝑖=1

𝑁𝑝

𝑗=1
 (2) 

where 𝑚𝑖 is the level of maturity for the 𝑖-th hazard group that need to be evaluated,  𝑤𝑖,𝑗, 𝑆𝑐𝑖𝑗 and 𝑤𝑖 are 

respectively the weight and the score the 𝑗-th sub-attribute in the 𝑖-th attribute, and the weight of the 𝑖-th 

attribute. 𝑁𝑝 is the total number of attributes and 𝑛𝑑 is the number of sub-attributes related to the 𝑖-th 

evaluation criterion. The relative weight of each attribute 𝑤𝑖  and sub-attribute 𝑤𝑖,𝑗 should be evaluated. In 

this paper, we adopt Analytical heretical Process (AHP) as will be shown later in the case study. Where, 

pairwise comparison matrixes are developed for each group of daughter attributes (fall under the same 

parent attribute) to compare their relative importance in defining their parent attribute. Experts were asked 

to fill the constructed pairwise matrixes. A score of 1 was given to the equally important attributes, and a 

score of 5 was given when the first attribute is extremely more important than the other one. The weight of 

each attribute is, then, determined by solving an eigenvector problem, where the normalized principal 

eigenvector provides the weights vector. However, it is out of the context of this paper to show in details 

how to apply AHP method (for more information on AHP method see (Saaty 2008); (Saaty & Vargas, 

2012)). 

After constructing the AHP hierarchy and determining the relative weight of the attributes, Eq. 2 can 

be applied to determine the level of maturity. However, evaluating the level of maturity abstractly on the 

level of hazard group is not realistic, where PRAs of complex systems and their hazard groups embrace, 

often, multiple PRA elements that have different levels of maturity and need to be evaluated separately. In 

this light, we borrow in this work the idea of Bani-Mustafa et al. (2018), where the PRA model needs to be 

deconstructed into its constituting atomic elements. The PRA model is then reduced by taking into account 
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the most important atomic elements and then accounting to their contribution in building the model as the 

following (for more details, see (Bani-Mustafa et al. 2018)): 

 Calculate the risk 𝑅𝑂𝑖
 for each operation state 𝑂𝑖 

 Rank 𝑅𝑂𝑖
 in descending order 

 From the descending-order list, find the number of operation states 𝑛𝑂 that correspond to the 

amount of risk that needs to be assessed e.g., 80% of the risk 

 At each operation state in the reduced order PRA model, calculate the risk 𝑅𝑂𝑖.𝑆𝑖
 for each 

scenario 𝑆𝑖 

 Rank 𝑅𝑂𝑖.𝑆𝑖
 in descending order 

 From the descending-order list, find the number of scenarios 𝑛𝑂,𝑆 that correspond to the 

amount of risk that needs to be assessed e.g., 80% of the risk on this operation state 

 At each operation state at each scenario in the reduced order PRA model, calculate the risk 

𝑅𝑂𝑖.𝑆𝑖,𝑀𝐶𝑆𝑖
,  for minimal cutset 𝑀𝐶𝑆𝑖 

 Rank 𝑅𝑂𝑖.𝑆𝑖,𝑀𝐶𝑆𝑖
 in descending order 

 From the descending-order list, find the number of minimal cutsets  𝑛𝑂,𝑆,𝑀𝐶𝑆  that correspond 

to the amount of risk that needs to be assessed e.g., 80% of the risk on this operation state 

 At each minimal cutsets in the reduced-order PRA model, identify the related basic 

events 𝐵𝐸𝑞 

 Calculate the risk contribution of each scenario at a given operation state to the reduced-order 

overall risk. 

Assuming that the risk on reduced-order model is expressed by elementary reduced-order models, which 

represent the risk for each scenario at a given operation state, the weight of each elementary risk model can 

be expressed by: 

 𝑊𝑙  = 
𝑅𝑙 

∑ 𝑅𝑙
𝑛𝑙
𝑙=1

  (3) 

where 𝑅𝑙 is the risk of elementary reduced-order model and 𝑛𝑙 is the number of elementary reduced-order 

models and expressed by 𝑛𝑙 = 𝑛𝑂 × 𝑛𝑆. 

 Calculate the weight 𝑊𝑙,𝑞 of each basic event in a given elementary reduced-order model by: 

 𝑊𝑙,𝑞 =
𝐼𝑙,𝑞 

∑ 𝐼𝑙,𝑞
𝑛𝑙,𝑞
𝑞=1

   (4) 

where 𝑛𝑙,𝑞 is the number of basic events in the 𝑙-th elementary reduced-order model, 𝐼𝑙,𝑞 is the Fussell-

Vesely importance measures of the 𝑞-th basic event in the 𝑙-th elementary reduced-order model. 

 Evaluate the maturity on each basic event by: 

 𝑚𝑙,𝑞 = ∑ ∑ 𝑤𝑖 . 𝑤𝑖,𝑗 . 𝑆𝑐𝑖,𝑗,𝑙,𝑞
𝑛𝑑
𝑗=1

𝑁𝑝

𝑖=1
  (5) 

where 𝑚𝑙,𝑞 is the level of maturity for the 𝑞-th basic event in the 𝑙-th elementary reduced-order model, 𝑤𝑖,𝑗 

and 𝑆𝑐𝑖,𝑗,𝑙,𝑞 are respectively the weight and the score of the 𝑗-th sub-criterion in the 𝑖-th evaluation criteria 

for the 𝑞-th basic event in the 𝑙-th elementary reduced-order model. 
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 Evaluate the maturity 𝑚𝑖  for the total hazard group by: 

 𝑚𝑖 = ∑ ∑ 𝑊𝑙 .𝑊𝑙,𝑞. 𝑚𝑙,𝑞
𝑛𝑙,𝑞

𝑞=1
𝑛𝑙
𝑙=1  (6) 

3.2. Risk aggregation considering maturity levels 

In this paper, we adopt the perspectives of (Aven 2013b) that when characterizing risk, not only the 

probability index estimated by PRA, but also the knowledge that supports the PRA should be taken into 

account. Hence, in this paper, we use a tuple (𝑅𝑖 , 𝑚𝑖) to quantify the risk associated with hazard group 𝑖, 

where 𝑅𝑖 and 𝑚𝑖  are respectively the risk index and is the maturity level of the 𝑖-th hazard group PRA 

model, evaluated based on the method presented in Sect. 2. 

A two-stage aggregation method is, then, developed for MHRA considering maturities of hazard 

groups. Suppose we have 𝑛 hazard groups with the risk tuple (𝑅𝑖 ,𝑚𝑖), 𝑖 = 1,2,⋯ , 𝑛 . The overall risk 

can, then, be represented as a risk tuple (𝑅,𝑀) and computed in two steps: 

Step 1: Aggregation of risk indexes. Risk indexes are aggregated following the summation rule: 

 𝑅 = ∑ 𝑅𝑖
𝑛ℎ
𝑖=1  (7) 

where 𝑅 is the risk index after considering all the hazard groups. The physical meaning of 𝑅 is the 

aggregated risk index, when we have complete confidence on each of the hazard group. 

Step 2: Determine the maturity of the aggregated risk assessment: 

In this paper we present two different possibility for aggregating and presenting the overall maturity 

of PRA model. 

In the first suggestion, the maturity can be as well represented for the overall framework by applying 

a weighted average the maturities from each hazard group, considering the risk contribution for each 

hazard group: 

 𝑀 = ∑ 𝑊𝑖 . 𝑚𝑖
𝑛ℎ
𝑖=1 = ∑ ∑ ∑ 𝑊𝑖 .𝑊𝑙 .𝑊𝑙,𝑞 .𝑚𝑙,𝑞

𝑛𝑙,𝑞

𝑞=1
𝑛𝑙
𝑙=1

𝑛ℎ
𝑖=1   (8) 

where 𝑊𝑖 is weight of the hazard group and calculated as the following: 

 𝑊𝑖 =
𝑅𝑖

∑ 𝑅𝑖
𝑛ℎ
𝑖=1

 (9) 

 

In the second suggestion, we borrow the aggregation idea from (Oberkampf et al., 2007). The approach, 

recommends computing and presenting a set of three maturity scores. These scores consist of the 

minimum, average and maximum scores over all the hazard-group maturity-scores being aggregated, as the 

following: 

 𝑀 = [𝑀𝑚𝑖𝑛, 𝑀𝑎𝑣𝑔, 𝑀𝑚𝑎𝑥] = [min𝑖=1,2,…𝑛 𝑚𝑖 ,
1

𝑛
∑ 𝑚𝑖

𝑛
𝑖=1 , max𝑖=1,2,…𝑛 𝑚𝑖] (10) 

where 𝑀 is the maturity triplet level of the PRA considering all the hazard groups, 𝑚𝑖 is the maturity score 

of the 𝑖-th hazard group, 𝑛 is the number of hazard group considered in the risk assessment model. 

The aggregated risk, denoted by the quadruple (𝑅,𝑀𝑚𝑖𝑛,𝑀𝑎𝑣𝑔, 𝑀𝑚𝑎𝑥), can, then, be used to support risk-

informed decision making. Suppose we are considering the risk of a specific event. Instead of directly 

comparing 𝑅 to the acceptance threshold, the maturity level should also be considered: when maturity level 
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is low, a larger safety margin is required; while when maturity level is high, a risk close to its threshold 

value might be accepted. The relationship between maturity level and the required safety margin should be 

determined, based on the severity of the consequence of the event. 

Another possibility is, to represent the maturity as a vector of maturity attributes, which can be useful, as it 

allows the decision maker to know the weakness points in the analysis that leads to low maturity and ask 

the analyst to enhance the modeling and make further investigations if possible. The maturity of the hazard 

group is therefore, represented by: 

 𝑚𝑖 = (𝑆𝑐1, 𝑆𝑐2, … 𝑆𝑐𝑁𝑝
)  (11) 

where 𝑆𝑐𝑁𝑝
 is calculated using a weighted average of the basic events in the reduced-order model of the 

given hazard group by: 

 𝑆𝑐𝑁𝑝
= 

1

𝑛
∑ ∑ ∑ 𝑊𝑙 .𝑊𝑙,𝑞 . 𝑆𝑐𝑗,𝑙,𝑞

𝑛𝑑
𝑗=1

𝑛𝑙,𝑞

𝑞=1
𝑛𝑙
𝑙=1   (12) 

where 𝑆𝑐𝑗,𝑙,𝑞 is the 𝑗-th sub-criteria score for the 𝑞-th basic event in the 𝑙 elementary reduced-order model. 

The maturity level 𝑀 is represented by a vector of the scores average over all hazard group and calculated 

by: 

 𝑀 = (
1

𝑛
∑ 𝑆𝑐1

𝑛
=1 ,

1

𝑛
∑ 𝑆𝑐2

𝑛
=1 , …

1

𝑛
∑ 𝑆𝑐𝑛

𝑛
=1 )  (13) 

 𝑀 = [

𝑆𝑐1 
𝑆𝑐2

⋮
𝑆𝑐𝑁𝑝

] =
1

𝑛
∑

[
 
 
 
𝑆𝑐1,  

𝑆𝑐2.

⋮
𝑆𝑐𝑁𝑝,]

 
 
 

𝑛
=1   (14) 

 

4. Case study 

In this section, we apply the developed framework on a case study of two hazard groups in NPPs. The 

level of maturity assessment framework is, then, applied on the BEs and the total level of maturity for the 

overall hazard group is calculated by aggregating the BEs‟ maturities. The needed data and information 

that supports the model development were found in the technical reports provided by EDF, which are not 

mentioned here for confidentiality reasons. 

4.1 Description of the hazard groups 

In this case study, we consider two hazard groups PRAs, i.e., external flooding and internal events 

that were developed using Risk Spectrum Professional software by Electricité De France (EDF). 

In PRA of NPP, “External flooding” refers to the overflow of water due to naturally induced external 

causes, e.g., tides, tsunamis, dam failures, etc. (IAEA, 2003). 

“Internal events” refer to undesired events that might lead to loss of important components and 

consequently systems and that originate within the NPP itself (EPRI, 2015), such as structural failures in 

the components, safety systems operation errors, etc. (IAEA Safety Standards Series, 2009). 

4.2 Evaluation of the level of maturity for external flooding hazard group 

As illustrated in Sect. 3.2, the assessment needs to be carried out at the level of small risk 
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contributors. Hence, we first start by deconstructing the PRA model for each hazard group into their 

constituting atomic elements. The model is then, reduced to most important elements following the 

approach suggested in Bani-Mustafa et al. (2018). 

Following the procedure in Sect 3.2, only one operation state i.e.,  𝑛𝑂 = 1 is found to cover more than 

80% of the risk. Similarly, only one scenario  𝑛1.𝑆 = 1  is found to cover more than 90% of the risk at this 

operation state.  

At operation state 𝑂1, and scenario  𝑆1,1, five minimal cutsets 𝑛1.1.𝑀𝐶𝑆 = 5 are found to cover more 

than 80% of this risk of  𝑆1,1. Notice that the basic events are then, identified for the five corresponding 

minimal cutsets as presented in Table 4. 

  

Table 4 Basic events included in the reduced-order model 

Symbol Basic event 

BE1 External flooding with water level A inducing a loss of offsite power 

BE2 Loss of auxiliary feedwater system due to the failure to close the isolating valve 

BE3 Loss of component cooling system because of clogging 

BE4 Failure of all pumps of the Auxiliary feedwater (AFW) system 

BE5 Failure of the turbine of AFW system 

BE6 Failure of the Diesel Generator A 

BE7 Failure of the Diesel Generator B 

BE8 Failure of the common diesel generator 

BE9 Failure of pumps 1 and 2 of AFW system 

BE10 Failure of pumps 2 and 3 of AFW system 

 

The levels of maturity for the basic events in Table 4 need to be evaluated using the developed 

method in Sect 3.2. In the following, we illustrate in detail how to apply the developed framework on a 

basic event namely “External flooding with water level A inducing a loss of offsite power” (BE1). For the 

other basic events, we directly give the results in Table 6.. 

As shown in Eq. (5), the level of maturity of a basic event is evaluated as a weighted average over the 

maturity attributes and sub-attributes illustrated in Figure 5. Hence, the weights of the maturity attributes 

and sub-attributes need to be determined. AHP method is adopted in this paper for this purpose (Saaty 

2008). Two pairwise matrixes are constructed and filled by experts. The first is a 4 × 4 comparison matrix, 

constructed for evaluating the weights 𝑊𝑖 (relative importance) of the attributes under level of maturity  in 

defining their “parent” attribute i.e., level of maturity. The second is 5 × 5 comparison matrix constructed 

for comparing the weights 𝑊𝑖,𝑗 (relative importance) of the strength of knowledge “daughter” attributes 

(i.e., sub-attributes under the strength of knowledge). For more illustration on AHP method and pairwise 

comparison matrixes see (Saaty 2008). The results are presented in Table 5. Notice that, the weights are 

evaluated only once and used for the evaluation of all the basic events.  

The next step for evaluating the level of maturity is to assess the attributes and sub-attributes 

presented in Figure 1 for BE1 in the light of the guidelines presented in Sect. 2. In this basic event, the 

probability was calculated by extrapolating the probability distributions based on observed data to the 
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extreme water flowrate (i.e., flowrates that have never occurred). In more details, the following steps were 

performed:  

 Height at which different events (failures of specific elements) take places where defined. 

 The water flowrate was predicted for the given heights at the NPP platform ensuring to cover 

each flowrate that can lead to the given water height at the platform. 

 The flowrate was multiplied by safety factors. 

 The “return period” (the period on which you can have a flood with a given flowrate) were 

obtained by the same law that was used to estimate the millennial flooding flowrate of the 

river of interest. 

 The return periods for flowrates of interest were then, calculated by extrapolating the 

flooding data curves toward extreme values (at low probabilities) of flow at the platform of 

the power plant. 

 The frequencies (frequency =1/period de retour) were then, calculated rounded, mean values 

obtained by the law for the flowrates of the Millennial Flood. 

 The frequency of each interval is chosen to be the maximum frequency at the whole height 

interval. 

 No uncertainty analysis was taken into account for estimation the frequencies of the critical 

heights. 

 Due the basin special characteristics, the analysts are forced to consider the “theory of 

renewal” (combining two statistical models of occurrence of events and their magnitude 

together). 

Comments:  

 Experts have confidence in the calculation used to convert the heights into flowrates because 

they are based on solid deterministic models. 

 Experts have doubts on extrapolating the frequency to the extreme flowrates. 

 This result is also to be considered with caution since they are based on the current limited 

models and knowledge. 

 Multiplying the flowrates by safety and augmentation factors is considered conservative. 

 The characteristics of the river basin are special in view of the evolution of the distributions 

of extreme floods, which opens more room for uncertainty. 

 Used the renewal approach is considered conservative. 

 High uncertainty is presented in the analysis. 

 

From the previous arguments, one can notice that there is uncertainty about the acknowledged 

limitations and implicit assumptions (unmodeled uncertainty). This meets Level 4 of uncertainty, which 

leads the analysts to assign a score of (2) From Table 1.  

For the conservatism attribute, it is not possible in this case to consider the conventional acceptance 

criteria (e.g., acceptable core meltdown of 10−4) since we are considering only one hazard group. 
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Accordingly, experts were asked to assign an artificial value for the acceptable external flooding 

probability, in order to compare it to the estimated external flooding risk value of our model of interest. 

Now, since the analysis of the external flooding probability is based on hydrodynamic model then it is 

considered to be realistic but with low level of confidence. From figure 4, since we are comparing the risk 

metric to an acceptance criteria, it was found that the conservative estimates are misinforming. A score of 2 

was assigned for the conservatism. 

The sensitivity of this basic event is calculated by Eq.1. The basic events probability is altered by 

50%. Which leads to the total change in the model output by 50% (since this basic event appears in each 

minimal cutset and has a Fussell-Vesely importance measure of 1). From Table 3, this corresponds to a 

level 4 of sensitivity, which in turn, corresponds to a score of 2 in the light of maturity. 

The same way of reasoning was adopted for evaluating the scores of knowledge attributes. The results 

are shown in Table 5. The maturity attributes scores are then, aggregated by Eq. 5. The level of maturity 

for BE1 is found to be 2.15. 

 

    Table 5 Assessment of level-3 knowledge “leaf” attributes (BE1 ) 
 

Attribute U C S     K 

Sub-attribute - - - A Co QD QA Ph Ex AM P PM 

𝑊𝑖 0.30 0.15 0.15     0.40 

𝑊𝑖,𝑗  - - - 0.25 0.06 0.17 0.17 0.10 0.05 0.10 0.05 0.05 

Score 2 2 1 1 5 3 2 3 5 3 5 5 

 

The same steps are repeated for all the basic events and presented in Table 6. The final step before 

evaluating the overall level of maturity for external flooding hazard group 𝑚𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑, is to determine the 

weights of each basic event, in a given elementary model and the corresponding elementary model by Eq.3 

and Eq. 4. 

From Eq. 3, the weight of the elementary model is: 𝑊1  = 
𝑅𝑙 

∑ 𝑅𝑙
1
𝑙=1

= 1 

From Eq. 4, the weight of the basic event in the given elementary model is: 𝑊1,1 =
𝐼𝑙,1 

∑ 𝐼𝑙,𝑞
𝑛𝑙,𝑞
𝑞=1

= 0.320 

The same procedure are repeated for each basic event and the results are presented in Table 6. Finally, the 

overall level of maturity is evaluated by Eq. 6. The level of maturity is found to be 𝑚𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑 = 2.45. 

 

Table 6 Knowledge assessment and aggregation over the basic events 

BE BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10 

𝑚𝑙,𝑞 
2.150 1.488 2.690 3.948 4.002 4.002 4.038 3.962 3.908 3.908 

Il,q
 

1.000 0.9020 0.553 0.182 0.141 0.127 0.121 0.045 0.028 0.028 

Wl,q 0.320 0.289 0.177 0.058 0.045 0.041 0.039 0.014 0.009 0.009 
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𝑊𝑙,𝑞 × 𝑚𝑙,𝑞 0.688 0.429 0.476 0.230 0.180 0.163 0.156 0.057 0.035 0.035 

 

The same steps are repeated for the internal events hazard groups and the maturity was found to 

be 𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 3.87. 

Finally, for risk maturity aggregation, we adopt the first technique presented in Sect. 3.3 where the 

risk is represented as a risk tuple (𝑅,𝑀). Please note that the risk presented here after are artificial and the 

real number that provided by EDF are not presented for some confidentiality reasons.  

External flooding risk tuple: (𝑅𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑, 𝑚𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑) = (1.5−5, 2.45) 

External flooding risk tuple: (𝑅
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

, 𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) = (1. 2−7, 3.87) 

First, by Eq. 7 the total risk is calculated arithmetically 𝑅 = 1.512−5. Then the level of maturity is 

calculated by Eq. 8. Two variables need to be considered, the level of maturity 𝑚𝑖 of a given hazard group, 

and its corresponding weight (relative importance). The hazard group weight is calculated by Eq.9 and 

found to be 𝑊𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑 = 0.992 and 𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0.008. Finally, the overall maturity is found to be 2.462 and 

the risk tuple is (1. 512−5, 2.45). 

4.3 Results and discussion 

As expected, the level of maturity for internal events (𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 3.87) is higher than that for external 

flooding (𝑚𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑 = 2.45). This mean that the analysis and the results of the internal events are more 

realistic than these for external flooding. This can be explained by the fact that unlike external flooding, 

risk analysis for internal events hazard group in NPP has been performed for all power plants all over the 

world, which in turn, created the opportunity to develop solidly the appropriate models, level of details and 

base knowledge required for realistic evaluations (EPRI 2015). This lead to a relatively well 

established highly mature PRAs (EPRI, 2012). On the other hand, as seen in the example above: 

most of the risk is contributed by BE1, BE2 and BE3 (they have relatively high importance measures), 

which corresponds respectively to: (1) “external flooding with water level A inducing a loss of offsite 

power”; (2) “loss of auxiliary feedwater system due to the failure to close the isolating valve”; (3) “loss of 

component cooling system because of clogging”. The three basic events probabilities are obtained based 

on relatively, low level of knowledge, high misinforming conservatism and high uncertainty. For example, 

BE1 the probability of this basic event is calculated by extrapolating the distributions based on observed 

data to the extreme water flowrate (i.e., flowrates that have never occurred) and that the probabilities of 

floods were taken as mean values without considering the uncertainty analysis. In addition, the 

characteristics of the river basin are special in view of the evolution of the distributions of extreme floods, 

which opens more room for uncertainty. 

The overall risk is represented by (𝑅,𝑀) = (1. 512−5, 2.45). Most of the risk and level of maturity in this 

tuple is on account of external flooding hazard group, which in turn, explains the low level of maturity on 

the overall risk. 

 

5. Conclusions 
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In this paper, we have proposed a method for evaluating qualitatively the different degrees of realism 

and maturity in risk contributor‟s analysis. In this framework, we tried to focus on the attributes that are 

believed and emphasized in the literature to affect the level of realism and maturity of analysis, and most 

importantly, the process of decision making. The framework is based on four main attributes: uncertainty, 

conservatism, strength of knowledge and sensitivity. The strength of knowledge attribute, was further 

broken into five sub-attributes (data availability, data consistency, source of data, quality and reliability of 

data, experience and value ladenness of the analysts. Analytical Hierarchy Process (AHP) is adopted to 

apply the framework, where pairwise comparison matrixes were built to estimate the relative weights of 

the attributes. An assessment protocols were developed to facilitate the process of attributes evaluation for 

a given problem. In addition, the reduced order model approach in (Bani-mustafa et al. 2018) is adopted to 

evaluate the maturity on the level of constituting elements (basic events), which in turn, leads to a more 

relevant and accurate results. Finally, the developed framework was applied on two hazard groups in 

Nuclear Power Plants (NPP); namely, external flooding and internal events. The application of the 

framework on the case study, has showed its operability. The level of maturity of external flooding is 

𝑚𝑒𝑥𝑡−𝑓𝑙𝑜𝑜𝑑 = 2.45 and for internal events 𝑚𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 3.87. The results of the application correspond to 

expectations, where the of internal events‟ PRAs practice is more well established and more mature 

compared to external flooding. The overall risk is found to be (1. 512−5, 2.45). The low level of maturity 

for the overall risk is due to low maturity of external flooding that contributes highly to the overall risk. 

This in fact, emphasize the importance of accounting for the level of maturity of a given hazard group 

where it can be informing for the decision maker in contexts where an option needs to be chosen, or for 

doing further analysis to enhance the maturity before making a decision. 

A potential limitation of the developed approach is the subjectivity of the analysts who are evaluating 

the relative importance (weights) as well as the scores of the maturity attributes. In addition, we do not 

pretend that the framework itself is complete in terms of the attributes and factors that affect the level of 

maturity. However, it still stands a good starting point for overcoming the heterogeneity in the maturity 

level of the hazards group that in turn lead to mathematical inconsistent and physically non-meaningful 

results. Finally, please note that it is out of the context of this paper to show in details the process of 

Decision Making (DM) given this maturity index. 
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Abstract 

In quantitative risk assessment, assumptions are typically made, based on best judgement, 

conservative, or (sometimes) optimistic judgments. Best judgment and optimistic assumptions may result 

in failing to meet the quantitative safety objectives, whereas conservative assumptions may increase the 

margins which the objectives are met with but result in cost-ineffective design or operation. In the present 

paper, we develop an extended framework for evaluating the criticality (risk) that deviations from the 

assumptions made in the risk assessment lead to a reduction of the safety margins. The framework is, then 

applied within the quantitative risk assessment of a Nuclear Power Plant (NPP) exposed to external 

flooding. Compared to previous works on the subject, we consider also conservative assumptions and 

introduce decision flow diagrams to support the classification of the criticality of the assumptions made. 

We find that the framework provides a solid decision basis and that the decision flow diagrams facilitate 

the standardization of the evaluation of the assumption deviation effects on risk assessment.  
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1. Introduction 

Making assumptions is an inevitable part of quantitative risk assessment (QRA) process. An 

assumption can be defined generally as “a fact or statement (such as a proposition, axiom […], postulate, 

or notion) taken for granted” (Merriam-Webster). Other definitions, from the scientific literature and more 

specific to the risk assessment context, include “conditions/inputs that are fixed in the assessment but 

which are acknowledged or known to possibly deviate to a greater or lesser extent in reality” (Berner & 

Flage, 2016 p. 46) and the following, which relies on the definition of defaults (Suter et al., 2007 pp. 134-

135): 

“Defaults are functional forms or numerical values that are assigned to certain models or parameters 

in risk assessment, based on guidance and standard practice, in the absence of good data. […] Assumptions 

are equivalent to defaults but are derived for a specific assessment rather than being taken from guidance. 

They may be complex, implying functional forms or sets of parameters. […] Ad hoc assumptions must be 

individually justified.” 

The latter definition restricts assumptions to having a quantitative format, whereas the former 

definitions allow also for qualitative assumptions and highlight the potential, or even expected, non-true 

nature of assumptions. Some examples of types of assumptions in risk assessment are: 

1. The number of people exposed to a hazard 

2. The reliability of a safety barrier 

3. The behavior of people leading up to or following an accidental event. 

The first two types of assumptions concern directly risk model parameters. If 𝑁 and 𝑝 denote the 

number of people exposed to the hazard and the reliability of the safety barrier, respectively, then the 

assumptions specify the numerical values of 𝑁 and 𝑝. If time-dependent, the assumptions specify 

functional forms 𝑁(𝑡) and 𝑝(𝑡) for a time index t. The last assumption is likely to be more qualitative in 

nature, e.g. assuming that all people involved in the accidental event follow the emergency preparedness 

plan. Transforming this qualitatively formulated assumption into a quantitative format is less 

straightforward. 

Risk assessment assumptions are typically of best judgement or conservative. Best judgement 

assumptions are here understood as reflecting the best knowledge on the matter, e.g. a realistic “best 

estimate” of a risk model parameter, whereas conservative assumptions come from lack of knowledge on 

the matter or conscious simplification of its analysis, and define conditions or values that are in some sense 

„unfavorable‟, „protective, with respect to the current knowledge and lack of. Optimistic assumptions are 

also possible, but are typically rare in risk assessment, from the safety perspectives. With reference to the 

above three example assumptions, a best judgement assumption would amount to considering that the 

number of people exposed to a hazard at a given workplace is equal to the number of employees: the actual 

number could deviate, e.g. due to the absence from work by some employees or due to the presence of 

visitors, but nonetheless, if forced to specify a single value, the number of employees would be perhaps the 

best justifiable choice. A conservative assumption would be that a specific safety barrier will always fail, 

i.e., reliability equal to zero, 𝑝 = 0. An optimistic assumption would be that in case of an accident, all 
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people involved would behave according to some emergency preparedness plan. 

For best judgement and optimistic assumptions, deviations of the actual conditions could cause the 

safety objectives to be actually unmet. With regards to this, the concept of assumption deviation risk 

assessment was coined by Aven (2013) to address this type of “risk” situation to evaluate different 

intensities of deviations, their associated probabilities of occurrence, the effect of the deviations on the 

consequences and an overall strength of knowledge judgement for these three attributes. Assumption 

deviation risk assessment, thus, goes beyond sensitivity analysis, which tends to be focused on “what if” 

questions, as discussed by Khorsandi & Aven (2017). In the case of conservative assumptions, on the other 

hand, deviations might decrease the margins for meeting the objectives. 

In the present paper, we take the recently suggested method for evaluating the risk from assumptions 

deviations by (Khorsandi & Aven, 2017) and apply it to the external flooding risk assessment of a nuclear 

power plant (NPP). In doing this, we extend the overall methodology to evaluate also the risk of deviations 

from conservative assumptions and introduce decision flow diagrams for the quantitative evaluation. We 

find that the proposed extensions provide a more solid decision making basis than focusing only on best 

judgement assumptions and that the decision flow diagrams facilitate a standardization of the evaluation of 

the risk from assumptions deviations. 

Works closely related to the present paper include the already mentioned papers by Aven (2013), 

introducing the concept of assumption deviation risk, and by Khorsandi & Aven (2017), presenting how to 

integrate an assumption deviation risk assessment as part of a quantitative risk assessment (QRA). Berner 

& Flage (2016) also build on the assumption deviation risk concept and develop a framework comprising 

six classes of uncertain assumptions, which is used to prescribe strategies for treating these assumptions 

both in the risk assessment (Berner & Flage, 2016) and in the subsequent risk management (Berner & 

Flage, 2017).  

The remainder of the paper is organized as follows. In Section Error! Reference source not found., 

we describe the extended method. Then, in Section Error! Reference source not found., we present the 

application to the case study. In Section Error! Reference source not found., we offer a discussion of 

some conclusions. 

 

2. Extended framework for the evaluation of assumptions deviations 

In this section, we extend the original work of Khorsandi and Aven (2017) for a more comprehensive 

assessment of the criticality (risk) of assumptions deviations. In Sect. 2.1, we present the extended 

framework and compare it to the original one. In Sect. 2.2, the detailed implementation of the framework is 

described. 

2.1. The assessment framework 

In this section, the original work of Khorsandi and Aven (2017) is extended considering multiple 

contexts of decision-making and multiple types of assumptions. We assume that each assumption 𝐴𝑠𝑖 

affects the numerical values of some parameters in the Probabilistic Risk Assessment (PRA) model. The 

factor that links the assumptions to the numerical parameters is called “juncture” in this paper. The 
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criticality (𝐶) of an assumption deviation quantifies its risk impact in terms of the likelihood of the 

deviation, the severity of its influence on the decision making considered and the strength of the 

knowledge supporting the assumption. Three levels of criticality are defined with their corresponding 

settings: 

1. Very critical (𝐶 = 1): The assumption is made based on weak knowledge and the confidence on 

the assigned value of the model parameters is low. The deviation is very likely to happen. 

Besides, the assumption deviation has severe influence on the decision making and might lead to 

exceedance of the safety limit. Further analysis and justification of the assumption is required. 

2. Not very critical (𝐶 = 2): The assumption is made based on a moderate level of knowledge. The 

assumption deviation is likely to happen, but the risk metric remains within the safety limits 

even after considering such assumption deviation. The assumption can be trusted to support 

decision making if the risks of the deviation from other assumptions are all not critical (𝐶 = 3). 

Further analysis and justification of the assumption is needed only when multiple other 

assumptions are also in this state. 

3. Not critical (𝐶 = 3): The assumption made is based on strong knowledge. An assumption 

deviation is unlikely to happen or, if it happens, it does not affect the decision making. The 

assumption can be trusted and decisions can be made based on the current assumption. 

To evaluate the criticality of the assumptions deviations, six criteria are considered, as shown in Figure 1:

 

Figure 1 Criteria for evaluating the criticality of assumption deviation. 
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1. Type of assumption (𝐴): Assumptions made in PRA can be classified into different types. For 

example, EPRI (2015) distinguishes three types of assumptions: conservative assumptions, best 

judgment assumptions and approximations. Conservative assumptions are made out of cautiousness 

and tend to overestimate the risk rather than underestimate it; best judgment assumptions are believed 

to represent expected scenarios, given the available knowledge; approximations are assumptions that 

are made for reducing the complexity of the models (EPRI 2006). Deviations in different types of 

assumptions might lead to different influences on the PRA. In our framework, three types of 

assumptions are considered: 

i. Optimistic assumption (𝐴1): the assumption is judged by peers to underestimate the risk when 

compared to reality 

ii. Best judgment (𝐴2): the assumption is judged by peers as representative of reality (realistic) 

iii. Conservative assumption (𝐴3): the assumption is judged by peers to overestimate the risk 

when compared to reality (pessimistic). 

2. Context of the decision making (𝐷𝑀): Risk metrics are used to support decision making in different 

contexts (EPRI 2015). In this paper, we distinguish between two contexts of decision making: 

comparison to safety objectives, where by the risk metrics are compared to quantitative safety goals 

and criteria (EPRI 2015), and comparison of alternatives, where by the risk metrics of different 

alternatives are compared in order to make a choice among the alternatives. The criticality of 

assumptions deviations varies from one context to another, where, in comparing risk metric to a safety 

goal, only the deviation toward critical scenarios need to be considered. On the other hand, for 

comparing alternatives in terms of their risks, all the deviation scenarios need to be considered, since 

a conservative assumption might lead to a higher risk metric and hence, lead the decision maker to 

make a wrong decision by choosing another alternative that has a higher risk in reality but appears 

lower due to the different levels of conservatism in the analysis.  

3. Belief in deviation  (𝐵) measures the realism of an assumption and is expressed by the likelihood of 

assumption deviation. The likelihood is assigned by the experts following the criteria defined in 

Khorsandi and Aven (2017), i.e., what could cause the assumption to deviate in reality; what are the 

key drivers of those causes; etc. 

4. Amount of deviation from reality (𝐷) refers to the amount of deviation between the assumed 

parameter value and the true value. It is assigned by experts and expressed in percentage. 

5. Strength of knowledge  (𝐾)  refers to the strength of the background knowledge that supports the 

evaluation of the belief in deviation and the amount of deviation. 

6. Margin of deviation  (𝜇) refers to the degree to which an assumption may deviate before the deviation 

changes the decisions made based on the results of risk assessment, e.g., the violation of the 

acceptance criteria or the change of the prioritization of different options. This margin is calculated 

analytically (see Sect. 2.2.8) and expressed in percentage. 
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The logical combination of the six criteria yields different levels of criticality. Decision flow diagrams are 

introduced in this paper to capture the logical relationship between the six criteria and the criticality of 

assumptions deviations (see Sect. 2.2.9). A comparison between the original assessment framework in 

Khorsandi and Aven (2017) and the extended framework is made in Figure 2. It can be seen that the 

original work of Khorsandi and Aven (2017) is adjusted and extended to include an additional context of 

decision making (comparing alternatives) and also a new type of assumption (conservative assumptions). 

Accordingly, new criteria are added or adjusted to integrate the new decision context and type of 

assumption in the assessment of the assumption deviation risk. As to the presentation of the assumption 

deviation risk, the radar plot in Khorsandi and Aven (2017), which presents the contributing factors to the 

assumption deviation risk individually, is replaced with an overall integrated metric for assumption 

deviation risk, i.e., the criticality (𝐶). These extensions make it possible for the extended framework to 

provide a more comprehensive description of the risk from assumptions deviations. 
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2.2. Implementation of the framework  

As shown in Figure 3, nine main steps are needed for applying the developed framework to assess the 

criticality of assumptions deviations. The nine steps are discussed in details in sub Sect. 2.2.1-2.2.9.  

 

Figure 3 Procedure for applying the developed framework for assumption deviation criticality (risk) assessment. 

2.2.1. Identify critical assumptions 

In the first step, the assumptions made in the PRA are identified. The assumptions might be made due 

to lack of understanding and knowledge about a phenomenon or as an attempt to reduce the modeling 

details and complexity (EPRI 2006), (EPRI 2015). The type of each assumption (𝐴) is determined by 

expert judgment, making reference to the definitions in Sect 2.1. 

2.2.2. Identify the model parameters affected by the assumption of interest 

As mentioned in Sect 2.1, in this paper, we assume that there is a juncture that connects numerically 

an assumption to one or more parameters in the PRA model. Without losing generality, let us assume that 

the PRA model is represented by:  

 𝑅 = 𝑓(𝑝1, 𝑝2, … 𝑝𝑚, … 𝑝𝑛),  (1) 

where 𝑅 is the risk metric and 𝑝1, 𝑝2, … 𝑝𝑚, … 𝑝𝑛 are the model parameters (e.g., failure probabilities). 

The juncture can be conceptually represented as Figure 11, where 𝐴𝑠 represents a set of assumptions. The 

second step, then, involves identifying the model parameters affected by each assumption, as shown in 

Figure 11.  
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2.2.3. Assess the belief in assumption deviation 

The belief in deviation is evaluated as the subjective probability assigned by experts that the 

assumption deviates from the actual conditions. The assigned value is conditional on the available 

background knowledge, including experts‟ individual expertise. It should be noted that the aim of 

evaluating the belief in deviation is not to assign a precise value for the probability of deviation. Rather, it 

aims at expressing the experts‟ beliefs , based on the available knowledge, on how likely the assumption 

might be deviating from reality (Khorsandi and Aven 2017). Such a step can be regarded as a tool for 

making good use of experts‟ individual expertise by reflecting their implicit knowledge that cannot be 

directly stated or documented.  

To determine the value of 𝐵, the likelihood (𝑙) needs to be evaluated by experts first, following the 

considerations recommended by Khorsandi and Aven (2017): What could cause the assumption to deviate? 

What are the key drivers of those causes? Has a similar deviation occurred in the past? What evidence is 

available for supporting the potential for a deviation? 

Then, the value of  𝐵 is determined based on the likelihood (𝑙): 

a. 𝐵 = 1, 𝑖𝑓 0 ≤ 𝑙 ≤ 20% 

b. 𝐵 = 2, 𝑖𝑓 20% < 𝑙 ≤ 30% 

c. 𝐵 = 3, 𝑖𝑓 30% < 𝑙 ≤ 100% 

2.2.4. Evaluate the amount of believed deviation from the true value 

The amount of believed deviation is evaluated as the relative distance between the assumed 

parameter value and the true value believed by experts, as expressed by Eq. (2). Similar to the belief 

in deviation, the believed deviation 𝐷 is evaluated by experts and represents the experts‟ belief on how 

severe the deviation could be. The value assigned to 𝐷 takes a positive sign (+) if the assumption is 

believed to deviate towards dangerous scenarios and a negative sign (−) if it is deviating towards safe 

scenarios: 

 𝐷 =
  ; 

 
 (2) 

where 𝐷 is the amount of believed deviation, 𝑝  is the parameter value believed true by the experts, and 𝑝 

is the parameter value as assumed in the analysis. 

Figure 4 Representation of connections between assumptions and model parameters. 
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2.2.5. Evaluate the strength of knowledge 

The assigned belief (likelihood) and amount of deviation are conditional on the background 

knowledge available, and on the individual expertise and points of view of the experts who made the 

assessment. Therefore, the strength of knowledge on which the assessment is based is highly relevant and 

is explicitly considered in both the original and extended framework. In this paper, we use the method 

proposed by Flage and Aven (2009) for evaluating the strength of knowledge. This approach is mainly 

based on the evaluation of four criteria: (i) reasonability and realism of assumptions; (ii) phenomenological 

understanding; (iii) availability of reliable data and information; (iv) agreements among peers. In addition, 

we take into account a fifth criteria, suggested by Khorsandi and Aven (2017): (v) the level of expertise 

and competence of the experts. A score of 1-3 is given for each criterion, corresponding to three levels, i.e., 

weak, moderate and strong, respectively. 

A weighted average of the five criteria scores 𝑘𝑖 , 𝑖 = 1,2,… 5, is used to calculate the overall 

knowledge score 𝑆𝐾: 

 𝑆𝐾 = ∑ 𝑤𝑖 ⋅ 𝑘𝑖
5
𝑖<1 , (3) 

where 𝑤𝑖 is the weight of criterion 𝑘𝑖. Obviously, the five criteria are not equally important in defining the 

strength of knowledge. To handle this, the Analytical Hierarchy Process (AHP) (Saaty 2008) is used to 

determine the weights of the strength of knowledge criteria. A good feature of the method is that it can be 

helpful in group decision-making (Saaty 2008). Experts are asked to fill pairwise comparison matrixes that 

represent the relative importances of the five criteria in defining the knowledge. The eigenvector problem 

is, then, solved and the weights are found by normalizing the principal eigenvector. The calculated weights 

from the experts are, then, averaged to give the final weights shown in Table 1. 

Table 1 Strength of knowledge criteria and their weights. 

Attribute Weight 

Reasonability and realism of assumptions (𝑘1) 0.13 

Availability of reliable data and information 

(𝑘2) 
0.13 

Phenomenological understanding (𝑘3) 0.42 

Agreement among peers (𝑘4) 0.16 

Level of expertise and competence of the 

experts (𝑘5) 
0.16 

The strength of knowledge denoted by 𝐾, is, then, calculated based on the value of 𝑆𝐾:  

 𝐾 = 1,  if 1 ≤ 𝑆𝐾 ≤ 1.6 

 𝐾 = 2,  if 1.6 < 𝑆𝐾 ≤ 2.3 

 𝐾 = 3, if 𝑆𝐾 > 2.3 

2.2.6. Determine the context of decision 

In the original work of Khorsandi and Aven (2017), only one context of decision making was 

considered, i.e., comparing a risk metric to a specific safety objective. In this sense, only assumptions 

deviations toward dangerous scenarios need to be considered. In the practice of risk management, however, 

we often need to compare alternatives in terms of their risks. In this case, all the deviation scenarios need 
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to be considered, since a conservative assumption might lead to a higher risk metric, which again leads the 

decision maker to prefer other alternatives; in other words, it gives a “false alarm” of high risk. For more 

illustration, take the example in Figure 5. In this example, the decision maker is comparing two 

alternatives, 𝐴1 and 𝐴2, and he/she prefers to choose the alternative with the lower risk. At a first glance, 

the decision maker would choose 𝐴1 as it has the lowest risk metric value (the blue solid line). However, a 

second look shows that the value of 𝑅2 (in the meshed filling) is lower than that of 𝑅1, when the true 

condition is used in the calculation rather than a conservative assumption.  

 

Hence, it is important to identify the context of decision making when implementing the extended 

framework. In this paper, two decision making contexts are distinguished, namely, comparing a risk metric 

to a safety objective (𝐷𝑀1) and comparing two alternatives (𝐷𝑀2).  

2.2.7. Define the safety objective 

The safety objective needs to be identified considering the given decision context, as shown in Figure 

3. The safety objective represents a numerical value whose exceedance by the risk metric would lead to 

changes in the results of the risk-informed decision making. The safety objective is dependent on the 

context of the decision making. For the decision context 𝐷𝑀1, the safety objective is identified as the 

threshold that the risk metric should not exceed. On the other hand, if the decision context is 𝐷𝑀2, the 

assessor needs to choose the alternative with the lowest risk metric value. Therefore, the (higher) risk 

metric value of another alternative is defined as the safety objective under this decision making context. 

2.2.8. Identify the margin of deviation 

Next, the margin of deviation (𝜇) needs to be calculated. This margin represents the maximum 

tolerable assumption deviation before the risk-informed decision is changed. As shown in Figure 11, 

different assumptions might affect one or more model parameters, or, the other way around, a model 

parameter might be affected by one or more assumptions. In this paper, we calculate the margin of 

deviation one assumption at a time, to reduce the complexity of the analysis. Assume that the assumption 

of interest 𝑎𝑖 affects model parameters 𝑝1, 𝑝2, … 𝑝𝑚. Then, we assume that the influence of the assumption 

 

 
 

𝑅1,𝑡𝑟𝑢𝑒 𝑐𝑜𝑛 

𝑅2,𝑡𝑟𝑢𝑒 𝑐𝑜𝑛 

 𝑅1,𝑎𝑠𝑠 

 𝑅2,𝑎𝑠𝑠 

 

 

 

Figure 5 Comparing the risk related to two alternatives taking into account the risk metric value based on the assumption 

made and the true condition. 
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deviation on the 𝑝1, 𝑝2, … 𝑝𝑚 can be modeled by: 

 {

𝑝1́ = (1 + 𝜇)𝑝1
𝑝2́ = (1 + 𝜇)𝑝2

⋮
𝑝�́� = (1 + 𝜇)𝑝𝑚

  (4) 

where 𝑝𝑖,́  𝑖 = 1, 2,…𝑚, are the deviated model parameters and 𝜇 represents the amount of deviation in the 

model parameters due to the deviation in the assumption. Then, the deviated risk metric �́� is calculated by 

 �́� = 𝑓(𝑝1́, 𝑝2,́ … 𝑝�́�, 𝑝𝑚:1…𝑝𝑛)  (5) 

The value of 𝜇 can be calculated by solving the following equation: 

 
𝑎𝑟𝑔
𝜇 𝑓 ((1 + 𝜇) ∙ 𝑝1, (1 + 𝜇) ∙ 𝑝2, … (1 + 𝜇) ∙ 𝑝𝑚,  𝑝𝑚:1, … 𝑝𝑛) = 𝑅 ℎ  (6) 

In Eq. (6), 𝑅 ℎ is the safety objective defined in Sect. 2.2.7, i.e.: 

 𝑅 ℎ = {
𝑅𝑙𝑖𝑚, 𝑖𝑓 𝑡𝑒 𝑑𝑒𝑐𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑖𝑠 𝐷𝑀1

𝑅2, 𝑖𝑓 𝑡𝑒 𝑑𝑒𝑐𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑖𝑠 𝐷𝑀2
  (7) 

where 𝑅𝑙𝑖𝑚 and 𝑅2 represent the safety limit objective and the risk metric value of the alternative being 

compared, respectively. 

2.2.9. Evaluate the overall criticality based on the decision flow diagrams 

The criticality of an assumption deviation measures its influence on the risk-informed decision 

making and, hence, on the safety of the system. As defined in Sect. 2.1, the criticality of the assumption 

deviation depends on both the severity of the influence and the likelihood of the deviation. Four scenarios 

are distinguished to quantify the severity of the influence of the assumption deviation: 

a. failures in meeting the established objectives, i.e., the magnitude of deviation is larger the deviation 

margin, leading to the exceedance of the safety limit; 

b. success in meeting the established objectives i.e., the magnitude of deviation is lower than the 

deviation margin, or the deviation is occurring towards lower amounts of risk due to conservatism in 

the assumption; 

c. Altering the different prioritization when comparing two or more alternatives, i.e., the risk metric 

based on unrealistic assumptions is higher or lower than what it would be based on the true 

conditions, leading to the mischoice among the different alternatives. 

d. Unchanging the prioritization when comparing two or more alternatives, i.e., the risk metric based on 

unrealistic assumptions is higher or lower than what it would be based on the true conditions, leading 

to misranking the different alternatives. 

Considering the scenarios defined above and the likelihood of deviation, decision flow diagrams are built 

in Figure 6-8 for evaluating the criticality of assumption deviation risk. It should be noted that in these 

figures, the difference between the margin of deviation 𝜇 and the amount of deviation 𝐷, denoted by ∆𝜇, is 

calculated and used to measure the safety margin for a given assumption deviation: 

 ∆𝜇 = 𝜇 −  𝐷  (8) 
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Figure 6 Criticality assessment decision flow diagram for decision context 𝐷𝑀1 and assumptions of types 𝐴1 and 𝐴2. 



190 

 

 

Figure 7 Criticality assessment decision flow diagram for decision context 𝐷𝑀1 and assumptions of type 𝐴3.
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Figure 8 Criticality assessment decision flow diagram for decision context 𝐷𝑀2 and assumptions of types 𝐴1, 𝐴2  and 𝐴3. 

Following the steps in Sects. 2.2.1-2.2.7, the criticality 𝐶 can be evaluated using the decision flow 
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diagrams in Figures 6-8. Take the case in Table 2 as an illustrative example. In this example, the assessor 

assigns a 90% probability of deviation, meaning that he or she is almost sure that the assumption deviates 

from reality. The amount of the believed deviation is evaluated to be 20%. The two values are assigned 

based on strong knowledge, i.e., 𝑘 = 3, which means that the assessment is judged to be credible to a 

certain degree and can be trusted. The difference between the deviation margin and the amount of the 

believed deviation is 40%. This logically means that we are sure to be under the safety limits even though 

the real condition deviates from the assumption. However, as the decision context in this example is 𝐷𝑀1 

and the type of assumption is 𝐴2, the decision flow diagram in Figure 6 is chosen for evaluating 𝐶. It can 

be seen from Figure 6 that in this case, we have 𝐶 = 3, meaning that the assumption can be trusted and that 

decisions can be made based on the current assumption, as the assumption deviation risk is judged to be 

low. 

Table 2 An example of a classification of assumptions deviation risk. 

Criteria Assessment  

Type of assumption (𝐴𝑖) Best judgment 

Context of decision making (𝐷𝑀𝑖) Comparing the risk metric to a risk limit 

Likelihood of deviation (𝑙) 90% 

Amount of believed deviation (𝐷) 20% 

Strength of knowledge (𝐾) Strong 

Margin of deviation (𝜇) 60% 

 

3. Case study 

In this section, we apply the developed framework on a case study of real PRA models for the 

external flooding hazard groups in an NPP. The PRA models were developed by Electricité de France 

(EDF). The needed data and information that supports the model development were found in the technical 

reports provided by EDF, which are not mentioned here for confidentiality reasons.  

3.1. Description of the PRA model 

PRA models are used for investigating undesired events and quantifying their likelihoods and 

consequences. Similar to all analytical models, PRA models are conditional on the models‟ assumptions 

(EPRI 2015). The assumption made are mainly: (i) assumptions made in case of lack of information and 

understanding of some phenomena or risk-related aspects; (ii) assumptions made for reducing the 

complexity of the model and to make it operational (these assumptions are also called approximations in 

(EPRI 2015)). The PRA model for external flooding is chosen because it is less mature compared to the 

PRA model of other hazard groups and involves many assumptions. 

External flooding is a naturally induced hazard that might be caused due to different initiating events, 

such as river overflows, dam failures and snow melts (IAEA 2003), (IAEA 2011). The PRA model 

developed by EDF is a combination of fault trees and event trees, evaluated under different scenarios, e.g., 

water levels and operation states. The model structure and the probabilities of basic events (BEs) are, in 

turn, related to specific assumptions made by experts. The original external flooding PRA model is of a 

large scale (i.e., it includes three operation states, thousands of BEs and several thousand Minimal Cut Sets 

(MCS), and a large number of assumptions). A reduced-order model has been constructed in Bani-Mustafa 
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et al. (2018) to represent the original model with less complexity, i.e., less BEs and less MCSs. In this 

paper, we consider the reduced-order model in Bani-Mustafa et al. (2018) for assumption deviation risk 

assessment. In this reduced order model, only one operating state (Normal Shutdown with cooling using 

Steam Generator-NS/SG) that contributes to 86% of the risk metric value is considered. In this operating 

state, one scenario (water levels) whose risk contribution is 98.7% is considered. Given the operating state 

and scenario considered, 5 MCSs that contribute to 80.1% of the risk are considered. The corresponding 

MCSs and BEs of the reduced-order model are presented in Tables 3-4. 

Table 3 Reduced-order model constituents (Bani-Mustafa et al. 2018). 

Operating state Scenarios MCS 

𝑁𝑆/𝑆𝐺 Water level A 

MCS1={BE1, BE2, BE3} 

MCS2={BE2, BE3, BE4} 

MCS3={BE3, BE5, BE6, BE7, BE8} 

MCS4={BE2, BE3, BE7, BE9} 

MCS5={ BE2, BE3, BE6, BE10} 
 

Table 4 Basic events included in the reduced-order model (Bani-Mustafa et al. 2018). 

Symbol Basic event 

BE1 External flooding with water level A inducing a loss of offsite power 

BE2 Loss of auxiliary feedwater system due to the failure to close the 

isolating valve 

BE3 Loss of component cooling system because of clogging 

BE4 Failure of all pumps of the Auxiliary feedwater (AFW) system 

BE5 Failure of the turbine of AFW system 

BE6 Failure of the Diesel Generator A 

BE7 Failure of the Diesel Generator B 

BE8 Failure of the common diesel generator 

BE9 Failure of pumps 1 and 2 of AFW system 

BE10 Failure of pumps 2 and 3 of AFW system 

Taking the rare-event approximation, the total risk metric 𝑅𝑅𝑒𝑑 of the reduced-order PRA model can 

be calculated by: 

 𝑅𝑅𝑒𝑑 = ∑ ∑ ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑖,𝑗,𝑘

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗

𝑘<1

𝑛𝑆,𝑅𝑒𝑑,𝑖

𝑗<1

𝑛𝑂,𝑅𝑒𝑑

𝑖<1  (9) 

where  𝑛𝑂,𝑅𝑒𝑑 is the number of operation states in the reduced order model, 𝑛𝑆,𝑅𝑒𝑑,𝑖 is the number of 

scenarios in the reduced-order model, 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗 is the number of minimal cutsets in the reduced-order 

model, 𝑃𝐵𝐸,𝑞   are the probabilities of the basic events in the reduced-order model. As shown in Bani-

Mustafa et al. (2018), using the reduced-order model allows reproducing approximately 68% of the total 

risk contribution.  

3.2. Evaluation of assumption deviation risk 

3.2.1. Identifying critical assumptions 

The critical assumptions in the PRA model of external flooding are identified following the 

procedures in Sect. 2.2 and listed in Table 5. The assumption deviation risks for the assumptions in Table 5 

need to be evaluated using the developed method in Sect 2. In the following, we illustrate in detail how to 

apply the developed framework on one conservative assumption, namely “the clogging accompanying 
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some floods is unpredictable and unfilterable”. For the other assumptions, we directly give the 

classification results in Sect. 3.2.8. 

Table 5 List of the assumptions related to the reduced-order model of the external flooding hazard group. 

𝐴𝑠𝑖 Description Type 
Affected 

basic event 

𝐴𝑠1 
It is assumed that failure to close the isolating valves for volumetric 

protection sealing-water proofing causes the total loss of EFWS 
Conservative BE2 

𝐴𝑠2 If the floods occur, the clogging is certain (𝑃 = 1) Best judgment BE3 

𝐴𝑠3 
If the river flooding is accompanied with clogging, then, it is 

unpredictable and unfilterable 
Conservative BE3, BE4 

𝐴𝑠4 
Clogging leads to failure of Essential Services Water System (RRI 

component cooling system) 
Best judgment BE3, BE4 

𝐴𝑠5 

It is assumed that probabilities of a given level of flood can be 

calculated by extrapolating the distributions based on observed data 

to the extreme water flowrate (i.e., flowrates that have never 

occurred) and that the probabilities of floods can be taken as mean 

values 

Best judgment 
BE1 

 

𝐴𝑠6 
It is assumed that once the water reaches the bottom of an equipment, 

the equipment fails 
Conservative BE2-BE10 

𝐴𝑠7 
It is assumed that once the water level exceeds the height of the 

barriers, the water will enter and fill the building 
Best judgment BE2-BE10 

𝐴𝑠8 
It is assumed that unit 1 cannot get help from unit 2 and vice versa, or 

from the safeguard system shared between the two units 
Conservative BE8 

𝐴𝑠9 
It is assumed that the river flood can be predicted using statistical 

models 
Optimistic BE1 

𝐴𝑠10 

It assumed that once the river flood is predicted, the probability of 

failing to transit into the state of “repli: under control” (i.e., normal 

shutdown and cooling with steam generator, normal shutdown and 

cooling with residual heat removal system etc.) is the intrinsic failure 

probability that is considered in normal cases 

Best judgment 
BE1 

 

3.2.2. Identification of model parameters affected by the assumption of interest 

The model parameters in the PRA model are the probabilities of the basic events in the event tree. As 

the clogging can lead to the loss of component cooling system (CCS) or the loss of the pumps in the 

auxiliary feedwater system, the assumption 𝐴𝑠3 is related to the two basic events BE3 and BE4, as 

presented in Table 5. 

3.2.3. Assessment of the belief in deviation 

Experts from EDF are invited to assess the belief in deviation. In this assumption, the probability that 

the clogging is not detected and filtered is 1 (𝑃 = 1), while in reality, the clogging is usually detectable and 

can be filtered, which means that the true value of this probability is less than 1 (𝑃 < 1), leading to a lower 

risk than the value calculated using the assumed model parameters. Therefore, the experts think that this 

assumption is very conservative, indicating that the assumption deviation might reduce the value of the 

risk metric. 

Some observations can also help the expert to better understand the assumption and evaluate the 

belief in deviation, as shown in Table 6. 

Table 6 Assessment of the belief in deviation 
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Aspects Assessment 

What could cause the assumption to deviate? The amount of precipitation can usually be predicted. Hence, if the 

river flooding is caused by precipitation, then, it can be predicted. 

Unless it is due to barrier rupture, the river level usually increases 

gradually and can be seen and noticed easily. 

If there is heavy precipitation, the operators would pay more 

attention to the water filters on the river and clean the filters to 

make sure that the water intake is not clogged. 

What are the key drivers of those causes? The fact that the river level increases is a gradual process. 

The fact that the operators are able to clean the clogging if it occurs. 

Has a similar deviation occurred in the past? Yes. 

What evidence is available for supporting the 

potential for a deviation? 

The feedback reports show that a clogging has occurred before and 

that operators were able to see it and manage it. 

Based on the analysis illustrated in Table 4, the belief in deviation was assigned to be 70%. Therefore, 

we have  𝐵 = 3. 

3.2.4. Evaluate the amount of believed deviation from the true value 

Experts in EDF are asked to evaluate, based on their beliefs, the amount of assumption deviation from 

the true values. The experts have assigned the amount of deviation in percentage to be 𝐷 = −50%, 

meaning that the experts believe that the assumption is conservative and deviating towards a higher risk.  

3.2.5. Evaluate the strength of knowledge 

The strength of knowledge has been evaluated as indicated in Sect. 2.2.6. The strength of knowledge 

attributes are evaluated separately, as shown in Table 8. 

Table 7 Strength of knowledge criteria and weights. 

Attribute Weight Score 

Reasonability and realism of assumptions (𝑘1) 0.13 1 

Availability of reliable data and information (𝑘2) 0.13 2 

Phenomenological understanding (𝑘3) 0.42 1 

Agreement among peers (𝑘4) 0.16 1 

Level of expertise and competence of the experts (𝑘5) 0.16 2 

 

The overall knowledge score 𝐾 is calculated using Eq. (3): 

 𝐾 = ∑ 𝑤𝑖 . 𝑘𝑖
5
𝑖<1 = 1.29 

Then, based on the criteria defined in Sect. 2.2.5, we have 𝐾 = 1. 

3.2.6. Determine the context of decision making and define the safety objective 

The context of the decision making in this case study is to compare a risk metric to a safety limit. The 

risk limit for core meltdown varies between 1 × 10;5 and 1 × 10;4 (Knochenhauer & Holmberg 2012). 
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As the flooding events are usually site-specific (IAEA 2009), the contribution of the external flooding 

hazard group to core meltdown also varies from one NPP to another. Moreover, we consider only a part of 

the external flooding PRA model in this case study (through the reduced-order model). Accordingly, for 

illustration purposes, we artificially set the safety limit of the considered PRA model to be 𝑅𝑙𝑖𝑚 =

1.6 × 10;8. 

3.2.7. Identify the margin of deviation 

As the assumption 𝐴𝑠3 affects the basic events 𝐵𝐸3, 𝐵𝐸4, the vector of basic events‟ probabilities 

related to the assumption are P𝑚 = (𝑝𝐵𝐸3, 𝑝𝐵𝐸4). Accordingly, the deviated risk function can be expressed 

using Eq. (5):  

 𝑅 =́ 𝑅 ℎ = 𝑅𝑙𝑖𝑚 = 𝑓(𝑝1, 𝑝2, �́�𝐵𝐸3 , 𝑝𝐵𝐸4́ , 𝑝5, … 𝑝10)

= 𝑓(𝑝1, 𝑝2, (1 + μ) ∙ 𝑝3, (1 + μ) ∙ 𝑝4, 𝑝5…𝑝10) 

The solver in Microsoft Excel is used to solve Eq. (6), with 𝑅𝑙𝑖𝑚 = 1.603 × 10;8. The resulted margin of 

deviation is 𝜇𝐴𝑠3  = 26.40%. The margins of deviation for the remaining assumptions are calculated in a 

similar way, as presented in Table 8 next in Sect. 3.2.8. 

3.2.8. Evaluate the overall criticality based on the decision flow diagram 

As illustrated in Sect. 2, the overall criticality of assumptions deviation is assigned based on the 

decision flow diagrams in Figure 6-8. For the assumption of interest (𝐴𝑠3), the belief (likelihood) in the 

deviation is assigned to be 70% (level 3). The difference between the deviation margin and the amount of 

believed deviation is 76.40%. The strength of knowledge is assessed to be 𝐾 = 1. For an acceptance-

criteria decision-context, this means that we believe that we are under the safety limit, and the deviation is 

not considered critical and can be accepted. On the other hand, our belief is based on weak knowledge, 

which makes it less credible. Following the decision flow diagram in Figure 6, the criticality of this 

assumption is 𝐶 = 2. Accordingly, the assumption is not very critical and listed in the “waiting list”, which 

means that it is accepted unless there are other criteria and information on other assumptions deviations 

that change the evaluation. 

The same steps are repeated for each assumption. The scores and the evaluation corresponding to each 

criterion for each assumption are presented in Table 8 together with their final criticality scores.   

Table 8 Assumption-deviation criticality and criticality criteria assessment 

𝐴𝑖 Type 𝐵𝐸s 𝑙𝑖 ∶  𝐵𝑖  𝐷𝑖  𝜇𝑖 ∆𝜇𝑖 𝐾𝑖 𝐶𝑖 

1 Conservative BE2 95%:3 -90%     1 2 

2 Best judgment BE3 30%:2 90% 35.11% -54.89% 2 1 

3 Conservative BE3, BE4 70%:3 -90% 26.40% 116.40% 1 2 

4 Best judgment BE3, BE4 5%:1 5% 26.40% 21.40% 3 3 

5 Best judgment BE1 50%:3 50% 24.22% -25.78% 3 1 
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6 Conservative BE2-BE10 90%:3 -70% 20.38% 90.38% 1 2 

7 Best judgment BE2-BE10 40%:3 30% 20.38% -9.62% 2 1 

8 Conservative BE8 20%:1 -30% 869.95% 899.95% 1 2 

9 Optimistic BE1 40%:3 30% 24.22% -5.78% 2 1 

10 Best judgment BE1 5%:1 5% 24.22% 19.22% 3 3 

  

As shown in Table 8, the different assumptions have three levels of criticality i.e., 1; 2; 3 (very 

critical; not very critical; not critical). The corresponding actions that need to be taken by decision makers 

and analysts are respectively:  

(i) The deviation is very likely to happen. Besides, the assumption deviation has severe influence on 

the decision making and might lead to exceedance of the safety limit. Further analysis and 

justification of the assumption is required. 

(ii) The assumption can be trusted to support decision making if the risks of the deviation from other 

assumptions are all not critical (C=3). Further analysis and justification of the assumption is 

needed only when multiple other assumptions are also in this state. 

(iii) An assumption deviation is unlikely to happen or, if it happens, it does not affect the decision 

making. The assumption can be trusted and decisions can be made based on the current 

assumption. 

4. Discussion and conclusions 

In this paper, we have extended the approach of Khorsandi and Aven (2017) for evaluating 

assumptions deviations in probabilistic/quantitative risk assessments. The extended framework covers a 

new context of decision making very relevant in practice, namely, that of comparing alternatives (rather 

than comparing a single alternative against a safety objective) and an additional type of assumptions, 

namely, conservative assumptions (rather than just the best judgment type of assumptions). An integrated 

metric, the criticality of assumption deviation, is defined and evaluated based on the extended framework 

through the use of decision flow diagrams. The developed framework is applied to a case study of a PRA 

model of the external flooding hazard group of an NPP. The implementation of the framework has shown 

its feasibility and its ability to cover different types of assumptions and to provide a more complete 

evaluation of the assumption deviation. 

The use of decision flow diagrams has both pros and cons. The pros are that these diagrams facilitate a 

standardized assumption deviation risk assessment, increasing both the transparency and efficiency of the 

assessment. These are desirable attributes in case of peer review of the assessment and considering the 

large number of assumptions typically involved in PRAs. A con of such diagrams are that they give a 

“mechanical” assessment procedure where the assessment is based on strict rules rather than the use of 

overall judgements. Another possible limitation of the current research that need to be addressed in the 

future is that it analyzes the deviation risk for one assumption at a time and, thus, fails to take into account 

the deviation risk for several assumptions simultaneously.  
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Abstract 

In this paper, we develop a new quantitative method to assess the Strength of Knowledge (SoK) of a risk 

assessment. A hierarchical framework is first developed to conceptually represent the SoK in terms of 

three attributes (assumptions, data, phenomenological understanding), which are further broken down in 

sub-attributes and “leaf” attributes to facilitate their assessment in practice. The hierarchical framework, is, 

then, quantified in a top-down bottom-up fashion for assessing the SoK. In the top-down phase, a reduced-

order risk model is constructed to limit the complexity and number of basic elements considered in the 

SoK assessment. In the bottom-up phase, the SoK of each basic element in the reduced-order risk model is 

assessed based on predefined scoring guidelines and, then, aggregated using a weighted average of “leaf” 

attributes , where the weights are determined based on the Analytical Hierarchical Process (AHP). The 

strength of knowledge of the basic events is in turn, aggregated using a weighted average to obtain the SoK 

for the whole risk assessment model. The developed methods are applied to a real-world case study, where 

the SoK of the Probabilistic Risk Assessment (PRA) models of a Nuclear Power Plants (NPP) is assessed 

for two hazards groups, i.e. external flooding and internal events. 

Keywords 

Strength of Knowledge (SoK), Probabilistic Risk Assessment (PRA), Risk-Informed Decision 

Making (RIDM), Multi-Hazards Risk Aggregation (MHRA), Event Tree (ET), Nuclear Power Plant 

(NPP). 
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EDF: Electricité De France 

EUROSTAT: EUROPEAN STATISTICS 
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1. Introduction 

In PRA, models are developed to calculate some probabilistic indexes for risk characterization (Flage & 

Aven 2009). These probabilistic indexes, believed to be objective but with unknown values, express the 

irreducible “aleatory uncertainty” in the related systems and processes (Helton & Burmaster 1996), 

(Helton et al., 2004), (Flage & Aven 2009). However, since these indexes are calculated by the developed 

“model of the world” (Apostolakis 1990), they are conditioned on the knowledge on the problem. Lack of 

knowledge will result in additional uncertainty in the PRA results, known as “epistemic uncertainty” 

(Helton & Burmaster 1996), (Helton et al., 2004), (Flage & Aven 2009). It is well-accepted in the risk 

assessment community that epistemic uncertainty needs to be properly quantified and taken into account in 

PRA. Since epistemic uncertainty depends on the Strength of Knowledge (SoK), quantifying the 

knowledge that supports risk modeling and assessment is an indispensable task in probabilistic risk 

assessment (PRA) (Askeland et al., 2017), (Aven 2017b). In fact, some experts even propose to use 

“uncertainty”, instead of “probability”, as a main component of risk and interpret the probability as 

knowledge-based expressions of uncertainty (Flage & Aven 2009), (Aven 2013a), (Aven 2013b), (Aven & 

Krohn 2014). Beyond that, other experts insist on using the term “characterizing” rather than “measuring” 

when talking about risk metrics like the Core-Damage Frequency (CDF), in order to highlight the belief 

that the metrics obtained from PRA models provide only a representation of the state of knowledge (EPRI 

2015). 

However, the existing works on epistemic uncertainty quantification and propagation (for example, 

including but not limited to subjective probability, imprecise probability, evidence theory, possibility 

theory, etc.) aim at developing mathematical frameworks to represent the epistemic uncertainty in the input 

and then propagate the uncertainty to quantify the epistemic uncertainty in the output. For example, in 

imprecise probability, the epistemic uncertainty is represented using probability intervals and propagated 

following the rules of probability theory. How to determine the probability intervals for the input 

parameters, however, is not fully addressed in these methods. With respect to this problem, the assessment 

of SoK is a critical step, as the epistemic uncertainty is directly related to the SoK. In fact, quantifying the 

SoK is even more important in risk-informed decision making. For example, in the current multi-hazards 

risk aggregation methods, the aggregation is done by a simple arithmetic summation of risk from different 

contributors and the final results are compared to quantitative safety goals and acceptance criteria to 

support decision making. However, this simple arithmetic summation does not take into account the fact 

that the risk estimates from different contributors are based on different degrees of knowledge and 

therefore, might have different degrees of realism (EPRI 2015). Another example is that when the decision 

maker needs to choose among different alternatives based on the estimated risk, simply choosing the 

alternative with a lower risk estimate without considering the degree of knowledge might not be the right 

choice. 

SoK of a risk assessment model refers to the level of knowledge that supports the model. It affects the trust 

one has on the results obtained by the risk assessment and the decisions that are based on them (Aven 
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2013b), (Bani-Mustafa et al., 2017b). For example, in the risk assessment of Nuclear Power Plants (NPPs), 

the SoK of an external flooding risk model may be relatively low, due to the fact that the phenomena 

involved are not so well-understood and the data are limited: then, it is expected that conservative 

decisions would be taken even if the risk assessments were to yield optimistic results (EPRI 2015). The 

importance of considering SoK in risk assessment has led researchers to formulate frameworks in which 

risk is described not only by traditional elements (like scenarios, likelihoods and consequences (Aven 

2012)), but also by elements directly related to knowledge (Montewka et al. 2014), (Aven 2012), (Aven & 

Ylönen 2016), (Aven 2013b), (Bjerga & Aven 2015). For example, in the Data-Information-Knowledge-

Wisdom (DIKW) hierarchy in (Aven 2013a): the SoK is explicated to complement the two traditional risk 

dimensions of consequence and uncertainty (Aven 2017b). 

Only very few works, however, directly address the issue of how to evaluate the SoK of a risk assessment 

model. A semi-quantitative approach for evaluating the SoK is proposed by Goerlandt and Montewka 

(2014), based on four criteria: (i) phenomenological understanding and availability of trustable predicting 

models; (ii) reasonability and realism of assumptions; (iii) availability of reliable and relevant data and 

information; (iv) agreement/disagreement among peers. Three levels of SoK are identified based on the 

degree that the previous criteria are satisfied. Aven (2013b) considers the SoK that supports the 

determination of probability intervals used in Norway national risk assessment (NRA) and a risk analysis 

concerning a Liquefied Natural Gas (LNG) plant. In Aven and Ylönen (2016), safety regulations of the oil 

& gas and nuclear industries have been enhanced by assessing the SoK which probabilities of risk 

acceptance criteria are based on. Bjerga and Aven (2015) develop an adaptive risk management plan for 

the oil and gas industry, where the SoK that supports the estimation of probability intervals is assessed and 

represented as an additional dimension of a risk matrix. In Montewka et al. (2014a), a qualitative 

description of uncertainty in maritime-based risk analysis and decision making is presented by developing 

a two-dimensional scoring system taking into account the SoK. Berner and Flage (2016) consider the risk 

assessment of lifting riserless light well intervention equipment on the Norwegian continental shelf and 

assess the SoK on which important assumptions of risk assessment are based. Askeland et al. (2017) adapt 

the assessment framework in Flage and Aven (2009) and apply it on security risk assessment, where a fifth 

criterion, i.e., knowledge scrutinization, is added to the four criteria defined by Flage and Aven (2009) for 

SoK assessment. The SoK is, in turn, classified into three levels, i.e. weak, strong and medium (Askeland 

et al., 2017). More examples of the SoK evaluation of the risk assessment models by semi-quantitative 

models can be found in (Abrahamsen et al., 2016), (Aven 2017a), (Berner and Flage, 2016), (Khorsandi & 

Aven 2017), (Haouzi et al. 2013). 

Another method proposed for SoK assessment is the assumption deviation risk method, whose standpoint 

is that poor assumptions are main sources of weak knowledge and, hence, efforts should be made for 

evaluating the solidity of assumptions on which risk analysis is based (Aven 2013b); (Berner and Flage, 

2016). The method identifies the criticality of assumptions by assigning crude risk scores for the main 

assumptions of the risk assessment model, which cover: (i) the possible deviation from the assumptions 
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and the associated consequences; (ii) the uncertainty of this deviation; (iii) the background knowledge that 

supports the assumptions. Similarly, Berner and Flage (2016) define guidelines to treat the uncertainty 

associated with six typical settings that correspond to different levels of assumptions deviations. In 

addition to this method, Berner and Flage (2016) identifies three other approaches for treating uncertain 

assumptions: (i) law of total expectation; (ii) interval probability; (iii) crude SoK and sensitivity 

categorization. In the law of total expectation method works for scenarios with strong knowledge and 

historical data where, a probability distribution is introduced to express the belief on different assumptions. 

In the case of weak knowledge, on the other hand, interval probability technique can be applied, where the 

assessors are asked to assign the minimum and maximum values of assumptions and their corresponding 

believed probability. In the crude SoK and sensitivity categorization method, the criticality of assumption 

is assessed by assessing the strength of knowledge on which the assumptions are made, as well as the 

dependency of risk assessment on this assumption.  

Goerlandt and Reniers (2016) propose to assess and visualize uncertainty in risk assessment through 

probability-consequence diagrams, in which the assumption deviation risk is visualized along with a 

segmented strength-of-evidence assessment. Khorsandi and Aven (2017) emphasize the importance of 

integrating the assumption deviation risk in quantitative risk assessment in order to provide a complete 

representation of the risk and apply the method to a case study from the offshore industry. Aven (2017b) 

suggests using the assumption deviation risk method as a complement to the quantitative risk assessment, 

to improve traceability of the results and perform a more responsible RIDM. 

As seen from the above, most of the existing methods are qualitative in nature, wherein the assessment is 

done based on some crudely defined scoring criteria, which limits the practical application. In practice, 

however, a quantitative evaluation of SoK is needed for operationally supporting RIDM. Also, many SoK 

attributes are difficult to evaluate directly and, yet, their evaluation is carried out directly by simple scoring 

based on a plain description of the attributes, which can be difficult and imprecise in practice. To make a 

quantitative evaluation feasible, the high-level attributes need to be broken down into more tangible sub-

attributes. Besides, the SoK cannot be evaluated directly on the entire risk assessment model: rather, a 

feasible approach should consider the SoK of the basic and most relevant elements. Compared to the 

existing methods, the contributions of this paper include: (i) A hierarchical framework is developed to 

conceptually represent the SoK and break it down into tangible sub-attributes and “leaf” attributes to 

facilitate the assessment in practice; (ii) Detailed scoring guidelines are given for evaluating the bottom-

level attributes in the SoK assessment framework; (iii) A top-down bottom-up approach is developed for 

the practical evaluation of the SoK supporting the PRA model. More specifically, the work in this paper is 

rather an attempt to support RIDM by “measuring what we know instead of what we don’t know”. This 

work is directed towards supporting risk-based decision making by giving indices on the state of 

knowledge on which the risk assessment is based. Hence, the main goal of this paper is to develop a 

framework that measures practically the concept of “strength of knowledge” that has been introduced 

recently by some colleagues and accepted and used by others for supporting the risk assessment (Milazzo 



205 

 

& Aven 2012), (Aven 2013b), (Montewka et al., 2014), (Goerlandt & Montewka 2015), (Valdez Banda et 

al. 2015), (Berner & Flage 2016a), (Berner & Flage 2016b), (Goerlandt & Reniers 2016). The paper aims 

to complement and formulate in a practical way the previous attempts developed for evaluating the SoK 

supporting the RIDM.  

However, it should be noted that although SoK is an important contributor to the trust in the PRA results, it 

is not the only contributor. Other factors, e.g., the quality of the modeling process, also need to be 

considered if one wants a complete evaluation of the PRA trustworthiness. The current work focuses on 

the SoK, i.e., how much we know about the system and processes related to risk. The specific focus is on 

complementing and formulating, in a practical way, the previous attempts for evaluating the SoK 

supporting the RIDM (Milazzo & Aven 2012), (Aven 2013b), (Montewka et al., 2014), (Goerlandt & 

Montewka 2015), (Valdez Banda et al. 2015), (Goerlandt & Reniers 2016), (Berner & Flage 2016a), ( 

Berner and Flage, 2016). 

In this paper, we propose a quantitative assessment of SoK. A hierarchical framework is developed in 

Section 2 to conceptually describe SoK and relate it to its major contributors. The framework is, then, 

developed into a top-down and bottom-up method for SoK assessment (Section 3), considering the 

essential constituents of the risk assessment model. In Section 4, a case study of two hazard-group in 

Probabilistic Risk Assessment (PRA) models of a Nuclear Power Plant (NPP) is presented. Finally, the 

paper is concluded in Section 5 with a discussion. 

2. A hierarchical framework for SoK assessment 

In this section, we construct a conceptual framework to describe the SoK that supports a PRA. The main 

attributes that contribute to the SoK are identified from the literature and organized hierarchically based on 

the framework proposed in Flage and Aven (2009), but adjusted and expanded to include more 

contributors and facilitate the practical implementations. In Sect 2.1, we illustrate the development of the 

framework. In Section 2.2, we formally present the framework and define its attributes.  

2.1 Framework development  

In this section, we survey the attributes typically considered in existing works for SoK assessment and 

argue the importance of including specific criteria in defining the strength of knowledge and finally, 

organize them in a hierarchical framework for practical assessment. 

Let’s take the PRA models as an example to illustrate our arguments. Different steps need to be followed 

to construct and operate correctly a PRA model, as shown in Figure 1 (Stamatelatos et al. 2011), (NRC 

1983).  
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Figure 1 Typical PRA process flow (Stamatelatos et al. 2011), (NRC 1983). 

Now, let’s take each step and elicit the different knowledge required for successfully implementing each 

step. The required knowledge is summarized in Table 1. Please note that since we are not concerned about 

the quality of the analysis in this work, some steps in Figure 1 are not relevant and, therefore, not 

considered in Table 1, such as model evaluation, PRA selection, etc. 

  

Objective definition System familiarization 
Success criteria 

definition 

Initiating events 
identification 

Accident sequence 
development 

PRA selection Model evaluation 

Uncertainty analysis Data collection and 

Parameters estimation 
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Table 1 PRA’s typical steps requirements 

Objective Requirements for achieving the objectives (required knowledge) 

Objectives definition: The 

defined objectives need to be 

unambiguous and clearly 

defined and understood by the 

risk analyst 

 

 The objectives are defined based on widely accepted quality 

standards for implementing PRA 

 Sufficient data and information are available to support the 

definition of the objectives (Explicit knowledge, in forms of data, 

information and understanding) 

 Availability of experts who have sufficient experience in the 

domain and low value-ladenness and are able to elicit unexpected 

and unexperienced hazards leading to initiating events (implicit 

knowledge in forms of phenomenological understanding provided 

by reliable experts with low value ladenness) 

System familiarization: 

The analysts need to be familiar 

with system structure and 

understand the functional 

principle 

 

 The technology of the systems is very mature and the functional 

principles of the system are well-understood (explicit and implicit 

knowledge in the form of phenomenological understanding) 

 There are abundant design and operation manuals to support the 

analysis (explicit knowledge in forms of data and industrial  

evidence) 

 Availability of experts who have sufficient experience in the 

domain understanding of the problem and the related systems, and 

low value-ladenness (implicit knowledge in forms of 

phenomenological understanding provided by reliable experts with 

low value ladenness) 

Success criteria definition: All 

the possible success and failure 

criteria of the missions and 

systems need to be identified 

and clearly defined 

 There are abundant technical reports that allow the understanding 

of different the systems and the backup systems (explicit knowledge 

in forms of data and phenomenological understanding) 

 There is abundant detailed past experience operation, transient, 

incidents and accident reports (explicit knowledge in forms of data 

and phenomenological understanding) 

 The analysts have access to related technical reports and a good 

understanding of functional principles of the system (explicit 

knowledge in forms of data and explicit and implicit in forms of 

phenomenological understanding) 

 The availability of experts who have sufficient experience and low 

value-ladenness (implicit knowledge in forms of phenomenological 

understanding and solid assumptions provided by reliable experts 

with low value ladenness) 
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Initiating events identification: 

All possible events that might 

lead to an abnormal operation or 

to an accident should be clearly 

defined 

 There are abundant detailed past experience reports about different 

initiating events (explicit knowledge in forms of data) 

 The analysts have a good understanding of the interconnections 

between systems and the dependency on system failures (implicit 

knowledge in forms of phenomenological understanding) 

 The analysts have access to related technical reports and a good 

understanding of functional principles of the system (explicit 

knowledge in forms of data and explicit and implicit in forms of 

phenomenological understanding) 

 The process of identifying initiating events follows well-accepted 

quality control guidelines for PRA 

 Availability of experts who are able to elicit unexpected and 

unexperienced hazards leading to initiating events (implicit 

knowledge in forms of phenomenological understanding) 

 The completeness of the identification process is verified by peer 

review of qualified experts (implicit knowledge in form of 

agreement among experts) 

 The availability of experts who have sufficient experience and low 

value-ladenness (implicit knowledge in forms of phenomenological 

understanding provided by reliable experts with low value 

ladenness) 

Accident sequence development: 

The possible abnormal-operation 

progressions are well understood 

and clearly defined, and cover 

all the possible scenarios 

 The evolution sequence is known and well represented (explicit and 

implicit knowledge in forms of phenomenological understanding) 

 The functional principles of the system are well-understood 

(explicit and implicit knowledge in forms of phenomenological 

understanding) 

 The environment and phenomena surrounding and that might affect 

the system are well-understood (explicit and implicit knowledge in 

forms of phenomenological understanding) 

 The availability of detailed abnormal activities reports that allow 

understanding the sequential development of an activity (explicit 

knowledge in forms data) 

 The availability of experts with sufficient experience that allow 

developing thoroughly the different scenarios of any abnormal 

activity (implicit knowledge in forms of phenomenological 

understanding and solid assumptions provided by reliable experts 

with low value ladenness) 
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Data collection and parameters 

estimation: The data needed for 

parameters estimation and 

model evaluation are complete 

and clearly represented 

 The operation, maintenance, and failure reports are available 

(Explicit knowledge in from of data) 

 The abundance of highly reliable data for the estimation of input 

parameters (Explicit knowledge in from of reliable data) 

 Availability of credible models to calculate the model parameters 

 The process of data collection and representation follows quality 

control guidelines that ensure its reliability and quality (Explicit 

knowledge in from of reliable data) 

 

It can be seen from Table 1 that two forms of knowledge appear in PRA: explicit knowledge, which refers 

to all types of knowledge that can be explicitly transferred, including data, documented established theory 

and explanation of phenomena and any kind of undocumented but transferable data, information and 

phenomenological understanding; and the implicit knowledge that is owned by the individuals to support 

the risk assessment but cannot be transferred (Davies 2001). The knowledge in Table 1 can also be 

categorized into four aspects: “data” for input parameters, hazards, initiating events and accidents 

sequences; “understanding of phenomena” related to the function of the systems, their interrelations, and 

the surrounding environment; “expert’s past experience and knowledge” that allow predicting the 

inexperienced hazards, unknown parameters and “assumptions” regarding the development of the 

scenarios and construction of the model.  

In fact, the four aspects, i.e., data, understanding of phenomena, expert experience and assumptions have 

long been considered in the literature as the main contributors to the SoK. For example, Nowakowski et 

al., (2014) argue that unlike the traditional Greek perspectives of knowledge as being justified true belief, 

the risk analysis propositions are in the form of assumptions and phenomenological understanding shaped 

by history (data) and present. Also, a well-accepted conceptual framework was defined by Flage and Aven 

(2009) comprised of four components: the inter-alia assumptions and presuppositions (solidity of 

assumptions), historical field data (availability of reliable data), understanding of phenomena and 

agreement among experts. However, since the “agreement among experts” are more related to the 

construction of the model and making assumptions (either assumptions on model structure or assumptions 

on parameter values), it is considered in this work as a sub-attribute of the “solidity of assumptions” and 

extended to cover further value-ladenness of the assessors. The first three components in (Flage and Aven, 

2009) are, then, adopted as the top-level attributes of our conceptual hierarchical framework for SoK. In 

the following subsections, we elaborate on these three attributes by surveying their contributing elements 

one by one. 

2.1.1 Solidity of assumptions  

In risk analyses, assumptions are inevitably made by experts because of incomplete knowledge, data, 

information and understanding of the phenomena involved, for simplifying the analysis when necessary 

(Kloprogge et al., 2011). These assumptions might be in different forms, such as assumptions made by 
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experts about the values of input parameters, the environmental conditions surrounding the system of 

interest, the scenarios, and consequences in a model. In fact, the assumptions considered can be understood 

as related to any kind of input or conditions that are assumed and acknowledged to possibly deviate from 

reality (Berner and Flage, 2016). Such assumptions are part of the background knowledge that supports the 

analysis. Simple assumptions compose a source of uncertainty “hidden in the background knowledge” of 

the risk assessment (Berner and Flage, 2016). The SoK that supports risk assessment, therefore, depends 

on the solidity of the assumptions made (Boone et al. 2010).  

Few methods have been proposed for evaluating the quality of assumptions and treating the uncertain 

assumptions in risk assessment. Numeral Unit Spread Assessment Pedigree (NUSAP) is proposed to 

directly assess the quality of assumptions for complex problems (Van Der Sluijs et al. 2005), (Boone et al. 

2010), (Kloprogge et al., 2011), (De Jong et al., 2012). This method allows analyzing the strength, 

importance and potential value-ladenness of assumptions through a pedigree diagram. The pedigree allows 

the evaluation of assumptions given seven criteria: (i) plausibility; (ii) inter-subjectivity peers; (iii) inter-

subjectivity stakeholders; (iv) choice space; (v) influence situational limitations; (vi) sensitivity to view 

and interests of the analyst (vii) and influence on results. Three scores are defined in the pedigree, ranging 

from zero to two (0-2); each, one correspond to a degree of fulfillment of the criterion. The scheme covers 

clearly some social and value-ladenness aspects affecting the assumptions, as well as their implication on 

the results (Van Der Sluijs et al. 2005), (Boone et al. 2010), (Kloprogge et al., 2011), (De Jong et al., 

2012). However, it does not cover explicitly the subjectivity and knowledge of the experts who make the 

assumptions. In Zio (1996) various criteria are defined for evaluating the value-ladenness and confidence 

in experts’ judgments, such as the source of information, the degree of non-biasedness, the degree of 

independence, and the personal interests etc. These factors should also be considered when evaluating the 

solidity of assumptions. 

We group the aforementioned contributing factors into three categories, i.e. quality (solidity) of 

assumptions, the sensitivity of assumptions and value-ladenness. Quality (solidity) of assumptions refers to 

the degree to which the assumptions are realistic and reasonable and affects greatly the solidity of 

assumptions and their effectiveness in supporting the risk assessment (Berner and Flage, 2016). Value 

ladenness refers to the degree of the inevitable bias by the assessors who make the assumptions, due to 

their subjectivity, personal perceptions, external limitations, etc. (Zio 1996), (Kloprogge et al., 2011). This 

attribute is directly connected to the quality of assumptions, since they are made by the assessor. It might 

be argued that the value-ladenness affect other attributes of the strength of knowledge, as the other 

attributes are in form of explicit knowledge that can be documented and transferred “objectively” without 

being affected by the expert’s subjectivity, unlike the “assumptions” that are made based on expert’s 

judgment and greatly affected by subjectivity. Finally, the sensitivity of assumptions considers the degree 

to which the models’ output varies if the assumptions are changed into the alternative ones (Stirling 1999), 

(Saltelli et al. 2013). Hence, it is related to the model output and not the strength of knowledge supporting 

the model input. Therefore, it is not considered in our developed framework. In particular, the value-
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ladenness is further expanded into seven sub-attributes to cover the most important factors that affect the 

expert’s judgment (Zio 1996): (i) the personal knowledge; (ii) the sources of information; (iii) the non-

biasedness; (iv) the relative independence; (v) the past experience; (vi) the performance measure; (vii) the 

agreement among peers. Detailed descriptions of these attributes can be found in Section 2.2. 

2.1.2 Availability of reliable data 

Data is considered the bottom tier of the DIKW hierarchy as defined in (Hey 2004), (Aven 2013a). When 

processed, data yield information that becomes knowledge when combined with experience and judgment 

(Kidwell et al., 2000), (Rowley & Hartley 2017). Thence, the amount of data available is a natural measure 

of the strength of knowledge. However, having a large amount of data alone does not necessarily indicates 

strong knowledge, as the available data might be of low quality. Some expert might prefer few data of high 

reliability over large amount of data of low reliability. In other words, the reliability of data is also very 

important for supporting PRA. In Flage and Aven (2009), apart from the availability of data, the reliability 

of data is also identified as an essential element for evaluating the SoK. Hence, both availability and 

reliability of data are considered in the developed framework for SoK assessment, as shown in Figure 2. 

Data availability can be assessed qualitatively. For example, Flage and Aven (2009) quantify the degree of 

the availability of data verbally: data are not available, much data are available etc. Data availability can 

also be quantified quantitatively by numerical indicators related to the amount of data. For example, failure 

data are collected from different components and over various time intervals: the data collection time 

interval and the number of components from which the data is collected, can, then, be regarded as 

numerical indicators of data availability.   

Data reliability refers to the representativeness of the data in the context of the purpose that they are used 

for (Morgan & Waring 2004). Various attributes have been defined in the literature for evaluating data 

reliability. For example, in computer science, data reliability is evaluated by its completeness, accuracy, 

and consistency (Roth 2009). Tests are made to verify whether the data meet the “Generally Accepted 

Government Auditing Standards” (GAGAS), with respect to three aspects:  

(i) Sufficiency: referring to the “completeness” of the data in the context of supporting the finding. 

(ii) Competence: referring to the closeness of data to reality (“accuracy”) and also the validity, 

completeness, and non-alteration of data. 

(iii) Relevance: referring to the logical and sensible relationship of the data to the finding it supports 

(“consistency”), as well as the age of the data (“timeliness”). 

A survey of 39 articles conducted by Chen et al. (2014) identifies main attributes of data reliability 

(referred as data quality in their paper) as completeness, accuracy, timeliness, validity, periodicity, 

relevance, reliability, precision, integrity, confidentiality, etc. Among them, completeness, accuracy, and 

timeliness have been most frequently used in testing data reliability (Chen et al. 2014). To assess the 

reliability of statistical data, EUROPEAN STATISTICS (EUROSTAT) recommends six attributes, i.e., 

relevance, accuracy, timeliness, comparability, coherence, accessibility and clarity (Bergdahl et al. 2007). 

International Atomic Energy Agency (IAEA) identifies relevance, timeliness, accuracy, and completeness 
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as main attributes for data reliability in the nuclear industry (IAEA 1991). Six attributes, i.e., completeness, 

uniqueness, timeliness, validity, accuracy, consistency, are recommended in the Data Management 

Association’s (DAMA) white paper for evaluating data reliability (DAMA 2013). 

In general, choosing different data reliability attributes is an organization and context-wise task (DAMA 

2013). In this paper, we identify the following five attributes for assessing data reliability, based on the 

literature review above and their relevance to the SoK of risk assessment: (i) completeness; (ii) timeliness; 

(iii) validity; (iv) accuracy; (v) consistency and relevance. Most of these attributes are considered by 

different organizations due to their importance (IAEA 1991), (Bergdahl et al. 2007), (DAMA 2013). The 

completeness of data is obviously a very important issue to ensure that the data can fulfill its purpose and 

do not cause misleading. The timeliness guarantees that the data are up to date and keep up with the 

development in the technology and the measuring techniques. The validity ensures that data are collected 

and stored in a managed and standardized way to keep its integrity and facilitate access without errors. The 

accuracy of data ensures that the data are of value in representing reality and do not lead to 

misinformation. Finally, the consistency and relevance of data are very important to ensure that they are 

collected from relevant and consistent sources in a way that is suitable for the desired purpose. Detailed 

descriptions of these attributes can be found in Section 2.2. 

2.1.3 Understanding of phenomena 

In this study, understanding of phenomena refers to the comprehension of the events, phenomena and 

system’s functionality that are involved in the risk modeling and assessment. The more the phenomena are 

understood, the more knowledge for supporting the risk assessment. As illustrated before, knowledge in 

risk analysis is characterized in the form of assumptions and phenomenological understanding shaped by 

history and present to predict the future (Nowakowski et al. 2014). Phenomenological understanding has 

been identified by many researchers as an important constituent of SoK that is needed to support risk 

assessment (Flage & Aven 2009), (Goerlandt & Montewka 2014), (Nowakowski et al. 2014). However, 

few existing works have focused on its assessment. For example, Flage and Aven (2009) evaluate it 

crudely by introducing verbal expressions such as “not well understood”, “well understood”, “not 

available”, “much available” etc. However, this kind of evaluation seems very crude since it doesn’t 

overcome the intangibility of this attribute. The attribute itself is intangible and difficult to be evaluated 

directly without breaking it down to more tangible attributes. 

In general, a comprehensive understanding of a phenomenon requires a correct and complete explanation 

of it (Kelp 2015). So, having a documented explanation of the phenomena, phenomenon-related 

application experience and abundant experts in the related field can help to understand the phenomenon. 

This means that the experience gained related to a given phenomenon, the documented pieces of evidence, 

the application related to the phenomena and the understanding gained by individuals can be indications on 

the understanding of phenomena. Accordingly, we propose four sub-attributes to evaluate the level of 

phenomenological understanding: (i) number of industrial evidence; (ii) number of academic evidence; 
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(iii) number of experts involved; (iv) number of years of experience in the domain. A detailed description 

of these sub-attributes can be found in Sect 2.2. 

2.2 The developed framework 

In this section, we present the framework developed, based on the review in Section 2.1. As shown in 

Figure 2, the SoK, denoted by   (Level 1), represents the solidity of background knowledge that supports 

a risk model. A high value of   indicates that the model is well supported and, therefore, its results are 

trustable. The SoK is characterized by three level-2 attributes: solidity of assumptions    , availability and 

reliability of data ( ), and understanding of the phenomena     . The attribute   measures the plausibility, 

objectivity and sensitivity of the assumptions upon which the model is based;   measures the amount and 

reliability of data that support the model evaluation; and     measures the degree of comprehension of the 

phenomena involved in the risk assessment.  

The three attributes of level-2 are further decomposed into sub-attributes (Levels 3 and 4) to assist their 

evaluation in practice. Please note that the breaking-down is designed in such a way that the sub-attributes 

in the same level of the hierarchy are independent and mutually exclusive. Detailed definitions of the 

attributes are given in Table 2 and Table 3. Detailed guidelines for the evaluation of the attributes at the 

bottom levels of the framework are defined in Appendices A-C. 
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Table 2 Definition of SoK attributes (Level 3) 

Attribute Definition 

Value ladenness of the 

analyst  𝑉𝐿 =  12  

The degree to which the presumed values and beliefs that are taken as 

facts, and the assumptions made by experts are affected by the personal 

points of view, bias, subjectivity, and external or personal limitations 

The sensitivity of 

assumption  𝑆 =  13  

The degree to which the models’ output varies with assumptions 

Amount of available data 

   =  21  

The quantity of data that supports the modeling and analysis 

Reliability of data  𝑅 =

 22  

The degree to which the available data is complete, accurate and error-free, 

consistent, valid and representative of reality 

Years of experience  𝑌𝐸 =

 31  

The amount of experience (measured in years) regarding a specific 

phenomenon 

Number of experts involved 

 𝑁𝐸 =  32  

The number of experts who are explicitly or implicitly involved in 

understanding the phenomena and the risk analysis 

Academic studies on the 

phenomena   𝐸 =  33  

The number of academic resources, i.e., articles, books, etc., available in 

relation to the phenomena of interest 

Industrial evidence and 

applications on the 

phenomena  𝐼𝐸 =  34  

The number of industrial applications and reports related to the specific 

phenomena or events of interest 

Table 3 Definition of SoK attributes (Level 4) 

Attribute Definition 

Personal knowledge    =  121  The level of analysts’ knowledge and relevance to the problem 

Source of information  𝑆𝐼 =  122  The degree of solidity, relevance, and confidence of the experts’ source of 

information and knowledge 

Unbiasedness and plausibility 

 𝑈 =  123  

The experts’ degree of objectivity and unbiasedness towards personal 

interest, or an intentional or non-intentional tendency towards a specific 

subject in the analysis 

Relative independence  𝑅𝐼 =  124  The degree of independence of the analysts from limitations or external 

pressures 

Past experience   𝐸 =  125  The experts’ degree of experience in the related domain and more 

specifically, in the specific problem under analysis 

Performance measures   𝑀 =  126  The experts’ degree of professionalism, skills, and competencies, past 

fulfillment of assigned missions and level of achievement 

Agreement among peers   =  127  The degree to which the assumptions made by different experts are 

consistent 
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Completeness  𝐶 =  221  The degree to which the collected data contains the needed information 

for the risk modeling and assessment 

Consistency  𝐶𝑜 =  222  The degree of homogeneity of data from different data sources 

Validity  𝑉 =  223  The degree to which the data are collected from a standard collection 

process and satisfy the syntax of its definition (documentation related) 

Accuracy and conformity   𝑐 =

 224  

The degree to which data correctly reflects the reality about an object or 

event 

Timeliness  𝑇 =  225  The degree to which data are up-to-date and represent reality for the 

required point in time 

 

3. A top-down bottom-up method for SoK assessment 

In this section, we present a top-down bottom-up method to facilitate the practical implementation of the 

framework proposed in Figure 2 for the evaluation of the SoK supporting risk assessment models. In 

Section 3.1, we give an overview of the SoK assessment method. In Section 3.2, we show how to break 

down the risk model into the basic elements of a reduced-order model. Section 3.3 presents the evaluation 

of relative importance (weights) of SoK attributes using pairwise comparison matrices of Analytical 

Hierarchy Process (AHP) (Saaty 2008). Finally, in Section 3.4, we illustrate how to aggregate the SoK of 

the basic elements to evaluate the SoK of the total risk assessment model. 

3.1 Procedural steps of the top-down bottom-up method  

For the purpose of illustration, we consider the Probabilistic Risk Assessment (PRA) models used in the 

nuclear industry. Specifically, we refer to the widely applied event tree models. The events probabilities in 

the event tree model are calculated by fault tree models. The risk index considered is the probability of 

occurrence of a given consequence (e.g. the probability of core damage in a NPP). For each combination 

of operation state and scenario, a dedicated risk assessment model (in this case, an event tree) is developed 

and the total risk index is calculated by summing the values of the risk indexes calculated for each 

individual risk model: 

 𝑅 = ∑ ∑ 𝑅   
    

  1
  
  1 ,  (1) 

where    is the number of operation states (O),      is the number of accident sequences (scenarios, S) that 

are considered in operation state   and can lead to the given consequence of interest. Each 𝑅    in Eq. (1) 

quantifies the risk contribution specific to scenario   (e.g., medium flood level) in operation state   (e.g., 

emergency shutdown).  

The risk models for calculating the specific risk index contribution 𝑅    are characterized by initiating 

events (IEs), basic events (BEs) and their combinations in minimal cut sets (MCSs). Please note that the 

initiating events in the PRA model are basic events that trigger the abnormal activity, so it will be treated 

hereafter as a basic event. Taking the rare-event approximation, 𝑅     can be calculated by (Zio 2007): 
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 𝑅   = ∑ ∏            

        

  1
, (2) 

where          is the number of minimal cut sets in the risk model for operation state   and scenario  , 

𝑀𝐶𝑆  is the  -th minimal cutset and       is the occurrence probability of the  -th basic event in 𝑀𝐶𝑆 .  

For the following illustration of the SoK assessment procedure, it can be considered that the four elements 

O, S, MCS and BE fully define the PRA model, as shown in Figure 3. We refer to these four elements as 

the “constituting elements” of the model. 

 

  

In Figure 3, let us imagine that the PRA model is a box (cuboid). The box is divided into several cuboids, 

each representing a given operation state. Each operation state cuboid is further broken down into smaller 

cuboids that represent the scenarios. The scenario cuboids are in turn broken into smaller cuboids, each 

representing a MCS. Finally, the MCS cuboids are broken down into the smallest constituting cuboids 

(known as the basic atomic elements) that represent the basic events. The idea behind this is to facilitate 

the process of SoK evaluation by decomposing the PRA model into the smallest constituting elements, 

here called the atomic elements. As illustrated in Figure 3, the atomic elements of the PRA model are the 

basic events. 

Figure 3 Atomic elements of a PRA model 
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To assess the SoK of the PRA model, all the four atomic elements must be considered. In practice, 

however, PRA models are very complex: they contain many scenarios and operation states, combined in 

large and complex fault trees and event trees, that consist of thousands of BEs and MCSs (RELCON AB 

2005). For such complex risk assessment models, it is not practical to consider all atomic elements for 

evaluating the SoK. To address this problem, we develop a top-down bottom-up method for SoK 

assessment, as shown in Figure 4. A reduced-order model for Eq. (1) is developed first, in order to limit the 

number of atomic elements that need to be analyzed. The model allows the assessment of SoK for most 

basic atomic elements and, then, calculating it for the other constituting elements. A detailed discussion on 

how to construct the reduced-order model is given in Section 3.2. Then, the SoK supporting each atomic 

element in the reduced-order model is assessed by a weighted average of the scores for the attributes in 

Figure 2. The weights are evaluated using the pairwise comparison matrices of the Analytical Hierarchy 

Process (AHP), as illustrated in Section 3.3. Finally, the SoK of each element is aggregated to evaluate the 

SoK of the entire PRA model, which is discussed in details in Section 3.4.  

 

 

3.2 Reduced-order PRA model construction 

In PRA models, most of the contribution to the total risk is provided by a small number of basic elements 

(known as “Pareto principle”) (Koch 2011). The rest of the basic elements might be in large number but 

contribute little to the total risk. To make feasible the SoK assessment, the PRA model is transformed into 

a reduced-order model that consists of the most important “atomic elements”, in order to reduce the 

number of elements that need to be analyzed. 

The procedure for constructing the reduced-order model is made of three steps. Firstly, the number of 

operation states    is reduced to the        most relevant; to do this: 

 Calculate the risk 𝑅  
 for each operation state: 

 𝑅  
= ∑ 𝑅   

    

  1            ,  (3) 

where 𝑅    is calculated by (2). 

Figure 4 Procedural steps of the developed method 
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 Rank 𝑅  
        in descending order. 

 Find the minimal         so that: 

 
∑    

      
   

 
     (4) 

where   is the fraction of total risk that is represented by the operation states kept in the reduced-order 

model (in the case study in Section 4, we choose  =    ). 

 Keep only the first, most contributing operation states, i.e., those with  =   ⋯        ; operation 

states with  >        are eliminated. 

The second step is to define the reduced number of scenarios          for each operating state   in the 

reduced-order model, where  =   ⋯        :  

 Calculate the risk 𝑅   ,           by (2). 

 Rank 𝑅    in descending order,         . 

 Find the minimal          so that: 

 
∑     

        
   

    
     (5) 

where 𝑅  
 is calculated by (3) and   is the fraction of total risk provided by the scenarios in the reduced-

order model (in the case study in Section 4, we choose  =    ). 

 Keep only scenarios for  =   ⋯          ; scenarios with  >          are eliminated. 

 Repeat the procedures for  =   2 …         . 

Finally, the number of minimal cut sets          is tailored to             ,  =   ⋯          =

  ⋯            

 Calculate 𝑅      by: 

 𝑅     = ∏                
 

          
            

1           

,  (6) 

 Rank 𝑅      in descending order. 

 Find the minimal              so that: 

 
∑       

            
   

    
  ,  (7) 

where 𝑅      is calculated by (6) and   is the fraction of total risk given by the minimal cutsets contained in 

the reduced-order model (in the case study in Section 4, we choose  =    ). 

 Keep only minimal cut sets for  =   ⋯              ; minimal cut sets with  >              are 

eliminated. 

Taking the rare-event approximation, the total risk of the reduced-order PRA model can be calculated by: 
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 𝑅   = ∑ ∑ ∑ ∏                

            

  1

        

  1

      

  1    (8) 

Only the events that are contained in the reduced-order model (9) are considered when assessing the SoK. 

Note that from (4), (5) and (7), the reduced order risk 𝑅    accounts for a portion        of the total 

risk 𝑅. From (8), the risk index of the reduced-order PRA model can be viewed as the sum of   =

∑         
      

  1  risk index values 𝑅       =   ⋯      where 𝑅      is known as the “elementary risk 

model” and calculated by the corresponding individual risk model, composed of MCSs and BEs at a given 

operation state and a given scenario, as shown in (9)  

 𝑅     = ∑ ∏               

          

  1    (9) 

In (9), 𝑅      is the risk index of the  -th “elementary reduced-order risk model”, where            is the 

number of MCSs in the  -th individual reduced-order risk model. In other words, the “individual reduced-

order risk model” represents the risk model at a given operation state and a given scenario. 

3.3 SoK assessment for the basic events 

The assessment of SoK starts from determining the SoK for each basic event. The total SoK for the 

reduced PRA model is evaluated as a weighted average of the BEs’ SoK, as will be illustrated later in 

section 3.4. As illustrated previously, the SoK is evaluated as a weighted average of the attributes scores 

presented in Figure 2, where the attribute scores are evaluated based on the scoring guidelines presented in 

the Appendixes: 

  = ∑ ∑ ∑ 𝑊  𝑊   𝑊        
    

  1

   

  1
  
  1    (10) 

In Eq. (10),  𝑊  𝑊   and 𝑊    are respectively the weights of the 2
nd

, 3
rd

 and 4
th
 level attributes in the 

hierarchical tree of Figure 2,      is the score of the “leaf” attributes, while   ,     and      are 

respectively the number of attributes in the 2
nd

, 3
rd

 and 4
th
 levels. Letting         denote the knowledge 

score for the  -th leaf attribute in the bottom level, Eq. (10) can be simplified as: 

   = ∑ 𝑊                
     

  1
   (11) 

where      =    is the number of leaf attributes in the assessment framework of Figure 2,         is 

evaluated based on the guidelines in Appendices A-C, 𝑊         is the global weight of the  -th “leaf” 

attribute with respect to the top level goal and is calculated by: 

 𝑊        = {
 𝑊  𝑊                                      

 𝑊  𝑊   𝑊                           
,  (12) 

Note that the global weights 𝑊          =   2 …        of the leaf attributes sums to one: 

∑ 𝑊        =  
     

  1
. 
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As shown in Appendices A-C,         is between 1 and 5, with a high value indicating strong knowledge. 

From Eqs. (10) and (11), it is obvious that also           and a large value indicates strong knowledge 

on the corresponding BE. 

Given the assessment framework developed in Figure 2, the AHP (Saaty 2008) is adopted for evaluating 

the relative importance (weights) 𝑊 , 𝑊   and 𝑊    in Eq. (12), due to its capability of considering both 

quantitative and qualitative evaluations of attributes and factors (Alexander 2012), (Saaty 2008). The AHP 

method is used for decreasing the complexity of the comparison process for decision-making purposes, as 

it allows comparing only two criteria (or alternatives) at a time and, then, computing the “overall” relative 

importance of a criterion in a group of criteria. In addition, it allows gauging and enhancing the rationality 

and consistency of the expert’s evaluation for the criteria, by measuring the consistency of the pairwise 

comparison matrices. Then, the local relative importance of different alternatives are compared with 

respect to given criteria and finally, the decision is made based on the overall relative importance of each 

alternative (Mu & Pereyra-Rojas 2017). However, since there are no alternatives to be compared in this 

work, pairwise comparison matrices are only needed for deriving the criteria (attributes) weights. 

Pairwise comparisons are performed to determine the relative importance (weights) of different attributes 

(criteria) by comparing their contributions in defining their “parent” attribute (Saaty & Vargas 2012), 

(Saaty 2008), (Zio 1996). In the application of the method to the case study of the following Section 4, 

three experts were invited to fill pairwise comparison matrixes. The evaluation scale of Saaty (2008) and 

Zio (1996) was slightly modified, and a scale of 1-5 was chosen to compare the importance of the 

attributes with each other. In this scale, two alternatives A and B are compared as the following: 

1: A score of (1) is given if A and B are equally important, 

2: A score of (2) is given if A is slightly more important than B, 

3: A score of (3) is given if A is moderately more important than B, 

4: A score of (4) is given if A is strongly more important than B, 

5: A score of (5) is given if A is extremely more important than B. 

Each expert is asked to fill individually the pairwise comparison matrices, as illustrated above. For each 

given matrix, the weight of each attribute can, then, be determined by solving the eigenvector problem and 

normalizing the principal eigenvectors (for details, see (Saaty 2008), (Saaty & Vargas 2012), (Mu & 

Pereyra-Rojas 2017)). A good approximation to multiply the elements in each row and, then, the  -th root 

of this product (  is the matrix size) is taken to represent the weight. The output of the row is eventually, 

normalized with the other row’s outputs. For more details on AHP and deriving the weights from pairwise 

comparison matrices, see: (Coyle 2004), (Saaty 2013). 

It should be noted that the consistency of the pairwise comparison matrix should be checked by calculating 

the consistency ratio (CR): 



222 

 

 𝐶𝑅 =
  

  
,  (13) 

where RI represents the consistency index of a randomly generated matrix and its value can be taken from 

Table 1 of Saaty and Tran (2007), and CI is the consistency index which is calculated by (14): 

 𝐶𝐼 =
    –  

  1
   (14) 

where      is the maximum eigenvalue and   is the order of the matrix and represents the number of 

attributes being compared (Saaty 2008), (Zio 1996). Saaty’s acceptance criteria of consistency is adopted 

(Saaty 2008): when 𝐶𝑅      , the comparison matrix is consistent, otherwise it is not and the experts are 

demanded to revise their evaluations (Zio 1996) (Alonso & Lamata 2006), (Saaty & Tran 2007). After 

checking the consistency of the matrices and obtaining the weights of the attributes from each expert, the 

final weight of each attribute is calculated by averaging the weights obtained from the experts. 

As illustrated in Sect 3.2, the PRA model is deconstructed to its constituting elements and then, the number 

of constituting elements is reduced. In this reduced order PRA model, the most basic element is the “basic 

event”, where a minimal cutset consists of a group of “basic events”. On the other hand, a given scenario 

mathematically consists of a group of minimal cutsets. Finally, a given operation states consist of a group 

of scenarios. Accordingly, the assessment of the SoK starts with the evaluation of the BEs in the reduced-

order model of Eq. (8). The SoK of the BEs is denoted by     and evaluated as in Eq. (11) by a weighted 

average of the leaf attributes scores. We take the generic  -th BE as an example to illustrate step by step 

the evaluation of the SoK assessment method. For the sake of simplicity, we dropped the   subscripts in 

the symbols: 

     = ∑ 𝑊                
     

  1
  (15) 

3.4 Aggregation of the SoK 

Once the SoKs of the basic events in the reduced-order models are evaluated, they can be aggregated to 

evaluate the total SoK for the PRA model. Let          represent the SoK of the  -th BE in the  -th 

reduced-order model. The aggregation of          should consider the difference in the atomic elements’ 

(i.e., BEs, MCs, Scenarios, etc.) contribution to the total risk. Different importance measures can be used 

to evaluate the contribution of the basic events. For example, as the reduced-order risk model is 

constructed by the BEs in the MCSs, the weights of the BEs can be calculated based on Fussell-Vesely 

importance measures (Zio 2007): 

 𝑊      =
        

∑        
     
   

,  (16) 

where 𝐼       is the Fussell-Vesely importance measure value of the corresponding  -th BE in the 

elementary risk model  . Remember that the “elementary reduced-order risk model” represents the risk 

model at a given operation state and a given scenario, and it is composed of the sum of MCSs (computed 

by the BEs) in this scenario, as illustrated in Eq.(9). 
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The SoK for the  -th elementary reduced-order risk model, denoted by     is calculated by a weighted 

average of knowledge scores on its basic events by: 

   = ∑  𝑊              
     

  1 ,  (17) 

The importance of the reduced-order model is evaluated by its contribution to the total risk: 

 𝑊 = 
      

∑       
  
   

,  (18) 

where 𝑅      is the risk index value of the  -th “elementary reduced-order model” and is calculated by (9). 

To calculate the total SoK      of the reduced-order risk model, the knowledge indexes   s of the 

individual reduced-order risk models are further aggregated by considering their contributions: 

     = ∑ 𝑊   
  
  1 ,  (19) 

The index      is, then, used to represent the SoK of the entire PRA of a specific hazard group: its value is 

between   and    with a high value indicating that there is strong knowledge in support of the PRA model 

and its risk outcomes. 

4. Case study 

In this section, we apply the developed framework to a case study of real PRA models for two hazard 

groups in NPPs. The reduced-order model is constructed first for each hazard group. The SoK assessment 

framework is, then, applied on the BEs and the total SoK is obtained by aggregating the BEs’ SoKs. 

Finally, a comparison is made on the SoKs of the two PRA models to provide some conclusions to relevant 

RIDM. 

4.1 Description of PRA models 

In this section, we consider a case study extracted from PRA models of two hazard groups, i.e., external 

flooding and internal events provided by Electricité De France (EDF). Both PRA models were developed 

using the Risk Spectrum Professional software. 

In all generality, “external hazards” refer to undesired events originating from sources outside the NPP, 

such as external flooding, external fires, seismic hazards etc. (IAEA 2010). In this paper, we consider a 

particular external hazard, i.e., external flooding, that is caused by the overflow of water due to naturally 

induced external causes, e.g., tides, tsunamis, dam failures, snow melts, storm surges, etc. (IAEA 2003). 

The “external flooding” PRA model considered in this paper is a combination of event trees and fault trees 

that are constructed to evaluate the risk of external flooding in different water level conditions (scenarios). 

The total risk index of external flooding is, then, calculated by summing the risk indexes at each water 

level. The PRA model of external flooding is complex and has a large scale, including three operation 

states, thousands of BEs and several thousands of MCSs. 
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“Internal events” refer to undesired events that originate within the NPP itself and can cause initiating 

events that might lead to loss of important systems and, eventually, a core meltdown (EPRI 2015). Major 

internal events include componenets, systems or structural failures, safety systems operation, and 

maintenance errors, etc. (IAEA Safety Standards Series 2009). Internal events might also lead to other 

initiating events like turbine trip and Loss of Coolant Accidents (LOCAs). In nuclear PRA, internal events 

are considered a well-established and understood hazard group (EPRI 2012), and highly mature PRA 

models are available for their characterization. The internal events PRA model considered in this paper is 

based on a combination of event trees and fault trees that are constructed for evaluating the risk over 

different internal events (e.g., loss of offsite power, loss of auxiliary systems). The risk index of the entire 

internal events hazard group is, then, calculated by summing the risk indexes (i.e., minimal cut sets at a 

given operation state and scenario) of the individual internal events. Similarly to the PRA model of 

external flooding, the PRA model of internal events is complex and has a large scale, also containing three 

operation states, few thousands of BEs and several thousands of MCSs. 

4.2 Reduced-order model construction 

The first step in the developed SoK assessment method is the reduced-order model construction. Here, we 

only show in details how to construct the reduced-order risk assessment model for the external flooding 

PRA model. For the internal events PRA model, the reduced-order model can be constructed in a similar 

way. 

In this paper, we set the fractions of the risk to be  =  =  =    . From Eq. (4), we found that only one 

out of six operation states (NS/SG-normal shutdown with cooling using steam generator-NS/SG) is needed 

for the reduced-order model, which contributes to     of the total risk index. Therefore, we have    =  . 

Similarly, based on Eq. (5), only one out of ten scenarios (water levels) is needed for the reduced-order 

model, whose risk contribution is        Hence, we have    =  . Based on Eq. (7), given the operation 

states and scenarios of interest, 5 out of 3102 MCSs already contribute to       of the risk at the given 

operation state and scenario. Thus, we have      =  . Then, a reduced-order model can be constructed 

using the atomic elements in Table 4. The definitions of BEs in the MCSs of Table 4 can be found in Table 

5. An illustration example on the pathway of the first minimal cut sets is given in Figure 5. Assuming the 

rare-event approximation, the risk index of interest, i.e., the probability of core meltdown, can be 

calculated using the MCSs and the BEs in Table 4, following Eqs. (4), (5), (7) and (8). The constructed 

reduced-order risk model can reconstruct                 =         of the total risk 𝑅. 

Table 4 Reduced-order model constituents 

Operating state Scenarios MCS 

𝑁𝑆/𝑆𝐺 Water level A 

MCS1={BE1, BE2, BE3} 

MCS2={BE2, BE3, BE4} 

MCS3={BE3, BE5, BE6, BE7, 

BE8} 

MCS4={BE2, BE3, BE7, BE9} 
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MCS5={ BE2, BE3, BE6, BE10} 

 

Table 5 Basic events included in the reduced-order model 

Symbol Basic event 

BE1 External flooding with water level A inducing a loss of offsite power 

BE2 Loss of auxiliary feedwater system due to the failure to close the 

isolating valve 

BE3 Loss of component cooling system because of clogging 

BE4 Failure of all pumps of the Auxiliary feedwater (AFW) system 

BE5 Failure of the turbine of the AFW system 

BE6 Failure of the Diesel Generator A 

BE7 Failure of the Diesel Generator B 

BE8 Failure of the common diesel generator 

BE9 Failure of pumps 1 and 2 of AFW system 

BE10 Failure of pumps 2 and 3 of AFW system 
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Figure 5 Illustration of a MCS in an individual reduced-order model 

 

 

 

4.3 Knowledge assessment of basic events 

In this section, we show how to assess the SoK for the BEs in Table 5. As shown in Eq. (11), the SoK of 

the basic event is evaluated as a weighted average over the SoK of the 19 leaf attributes in Figure 2. 

Hence, the first step of applying the SoK assessment framework is to determine the global weights of the 

“leaf” attributes. It should be noted that these weights are the same for all basic events. Hence, this step 

needs to be done only once. Take the “leaf” attribute  31 (years of experience) as an example. From Figure 

2, it can be seen that  31 shares the same parent with the other three attributes  32,  33 and  34. To 

identify its global weight, a     pairwise matrix needs to be constructed by experts to compare the 

importance of the three attributes with respect to their parent attribute. The results of the pairwise 

comparison matrix is given in Table 6. In this matrix, the score 𝑆1 2 =   in the first raw, means that YE is 

more important that NE. 

Table 6 Pairwise comparison matrix for the assumptions daughter attributes of  1 (expert 1) 

A YE NE AE In 𝑊 

YE 1 4 1 1 0.318 

NE 1/3 1 1/3 1/3 0.092 

AE 1 3 1 1 0.295 

In 1 3 1 1 0.295 

After constructing the pairwise comparison matrix, the consistency of the matrix needs to be checked. The 

maximum eigenvalue of the matrix is     =     2; the consistency index for the matrix ( =    is, then, 

calculated according to Eq. (14) to be 𝐶𝐼 =    2 . From Table 1 in Saaty and Tran (2007), the random 
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index is 𝑅𝐼 =0.89. The consistency ratio is, then, found by Eq. (13) to be 𝐶𝑅 =      : since 𝐶𝑅     , the 

consistency of the matrix is accepted. The weight of each attribute is, then, found by normalizing the 

principal eigenvector, following the instructions in Section 3.3. The weight of the parent attribute  3 

(understanding of phenomena) was found to be 𝑊3 =      . The global weight for  31 of the leaf 

attributes can, be determined using Eq. (12):  31 = 𝑊3 𝑊31 =        The experts were asked to repeat the 

same steps. The weights obtained for each leaf attribute from each expert were then averaged. The results 

are presented in Tables 7-8. 

Then, the SoK for the “leaf” attributes, i.e.,         in Eq. (11) is determined following the assessment 

guidelines in Appendices A-C. Here, we give an illustrating example on how to evaluate the SoK of the 

basic event BE2. The first leaf attribute, i.e., quality of assumptions  11, is evaluated based on the 

guidelines in Appendix A.1. In this basic event, the loss of equipment is calculated by assuming that as 

long as the water reaches the bottom of each equipment, a failure is caused. This assumption is based on 

extrapolating some data to extreme values, and it is conservative. Therefore, this assumption was judged 

by the experts to lie between two cases with score 1 and score 3 in Table A.1: an inter-level score of 2 was 

given by the experts. Take the amount of data  21 as another example: the number of years of experience 

on BE2 is 10 years; therefore, from Appendix B.1, the SoK score of  21 is assessed by the experts to be 1. 

The rest of the leaf attributes are assessed similarly and the results are given in Table 7 and Table 8. Then, 

from Eq. (11) we found    =        for BE2. The procedures are repeated for each BE; the resulting 

   s are given in Table 9. 

Table 7 Assessment of level-3 knowledge “leaf” attributes (BE2 ) 

Attribute QA AD YE NE AE IN 

𝑊         0.3234 0.0587 0.1190 0.0630 0.1190 0.1190 

Score 2 1 5 5 5 5 

 

Table 8 Assessment of level-4 knowledge “leaf” attributes (BE2 ) 

Attribute PK SI U RI PE PM P C Co V Cu Ac 

𝑊         0.0203 0.0134 0.0177 0.0144 0.0179 0.0186 0.0221 0.0148 0.0110 0.0147 0.0139 0.0190 

Score 5 5 4 4 5 5 4 5 5 3 4 3 

 

4.4 Knowledge Aggregation 

Finally, the    s in Table 9 are aggregated for the SoK of the entire model. For this, the SoK of the 

individual reduced-order risk models    need to be calculated first by Eqs. (16) and (17), with the Fussell-

Vesely (FV) importance measures for the BEs also given in Table 9. In this case study, we have  =   for 

the external events. The resulted    from Eqs. (16) and (17) is   = 2   . Then, the total SoK for external 

flooding, denoted by        , is calculated based on the reduced-order model using Eqs. (18) and (19). In 
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this case study, since we have only one individual risk model, using Eqs. (18) and (19) leads to        =

   1 = 2   . 

Table 9 Knowledge assessment and aggregation over the basic events 

BE BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10 

FV
 

0.9020 1.0000 0.5530 0.1820 0.1410 0.1270 0.1210 0.0450 0.0277 0.0277 

𝑊      

= 𝑁𝐹𝑉 

0.2885 0.3199 0.1769 0.0582 0.0451 0.0406 0.0387 0.0144 0.0089 0.0089 

    1.6582 3.6595 2.9006 3.2178 3.7778 3.7778 3.0102 3.7778 3.2178 3.2178 

𝑊      

         

0.4784 1.1705 0.5131 0.1873 0.1704 0.1535 0.1165 0.05437 0.0285 0.0285 

*(FV): Fussell-Vesely  

*(NFV): Normalized Fussell-Vesely 

4.5 Results and discussion 

The same steps were repeated on the internal events PRA model. We directly present the final SoK for the 

internal events PRA model:        =     . The SoK for both hazard groups are graphically illustrated in 

Figure 6. In Figure 6, we also illustrate the risk indexes (probability of core meltdown) evaluated for the 

two hazard groups (note that the values of the risk indexes are scaled due to confidentiality reasons). It can 

be seen from the Figure 6 that the SoK on the internal events is higher than that on external flooding: this 

means that we are surer of the risk index value calculated with the PRA model of internal events, than of 

that for the external flooding hazard group.  

In fact, these results confirm expectations, as the internal events hazard group has been well studied in 

nuclear PRAs and mature models are available, whose parameters have relatively low uncertainty (EPRI 

2015). On the other hand, the PRAs for external flooding is generally considered less mature (EPRI 2012) 

and several limitations have been pointed out in the current external flooding PRA models. For example, 

the flood frequencies are obtained by extrapolating the fitted historical data (usually limited) to the design 

basis flood levels, which results in high uncertainty (EPRI 2012). In particular, the probability of extreme 

floods is very low (IAEA 2003) and flooding events are very site-specific (IAEA 2009). Hence, very few 

data are available for risk modeling, which limits the SoK for external flooding. The low occurrence 

probability of external flooding and the lack of operating experience and data related to them makes it very 

difficult also to predict and estimate their consequences, which adds to the uncertainties in the risk analysis 

as it limits the SoK of the PRA model used (IAEA 2003). Specifically, in the case study considered, a 

large fraction of the risk contribution (69% of the reduced-order risk for external flooding) is due to three 

basic events i.e., BE1, BE2, and BE3. As shown in Table 9, two of them (BE1, BE3) have quite low SoK, 

which limits the SoK of the entire PRA model. 
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Figure 6 Representation of hazard groups levels of risk and SoK 

1. Conclusions 

In this paper, we have proposed a new method for implementing a quantitative evaluation of the SoK of 

risk assessment models. The underlying conceptual framework has been developed based on a thorough 

literature review. The framework is based on three main attributes (assumptions, data, and 

phenomenological understanding), which are further decomposed into more tangible sub-attributes and 

“leaf” attributes for quantification. Detailed scoring guidelines are defined for the evaluation of the leaf 

attributes. In order to facilitate the application of the knowledge evaluation framework in practice, a top-

down bottom-up approach is proposed, where a reduced-order model is constructed in the top-down phase 

to reduce the complexity of the analysis, and the SoKs are evaluated and aggregated hierarchically in the 

bottom-up phase. The application of the framework on a real case study of PRA models for two hazard 

groups, i.e., external flooding and internal events in NPP, has shown its operability. The results of the case 

study are consistent with the expectations of industrial practice, where the SoK of external flooding is 

lower than that of internal events, for which more data and information (i.e., strong knowledge) are 

available.  

A potential limitation of the developed method is that we are assuming that the risk assessment model 

itself is complete in covering all the possible scenarios. The SoK on model structure and model uncertainty 

(Droguett & Mosleh 2008), (Droguett 1999) is not considered in this paper. For a more comprehensive 

knowledge assessment, further studies are needed to extend the developed method to consider 

completeness and comprehensiveness, including model uncertainty in the PRA model (Droguett & Mosleh 

2008), (Droguett 1999). Also, as the weights of the attributes in the framework are subjectively evaluated, 

formal expert judgment elicitation methods should be used for evaluating the weights. Finally, the 

evaluation framework and method do not pretend to be complete but they stand as a starting point for a 

practical assessment of the SoK of risk assessment models. 
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Appendix A: Evaluation guidelines for leaf attributes under Solidity of Assumptions  𝑲𝟏  

Table A.1 Scoring guidelines for quality of assumptions (Boone et al.,2010)  

    Score 

Attribute 
1 3 5 

Quality of 

assumptions  11 

 

 11 =   if the ssumption is not 

realistic (over conservative or 

over optimistic), or the 

available information is not 

sufficient for assessing the 

quality of the assumptions 

 11 =   if the assumption 

is based on existing 

simple models and 

extrapolated data 

 11 =   if the 

assumption is plausible: 

it is grounded on well-

established theory or 

abundant experience on 

similar systems, and 

verified by peer review 

Note: If multiple assumptions are involved in the assessment, the final score for  11 is obtained by 

averaging the scores of all the assumptions. 

Table A.2 Scoring guidelines for the value-ladenness of the assessors 

Score 

Attribute 
1 3 5 

Personal 

knowledge 

(educational 

background) 

 121 

 121 =   if all of the 

experts hold academic 

degrees from other 

domains 

 121 =   if less than two 

thirds of the experts hold 

academic degrees in the same 

field 

 121 =   if over two 

thirds of the experts 

hold academic degrees 

in the same field 

Sources of 

information  

 122 

 122 =   if experts can 

only access academic 

information source or 

only industrial 

information source 

 122 =   if experts can access 

fully industrial information 

source and partially academic 

information source 

 122 =   if experts can 

fully access both 

academic and industrial 

information sources 

Unbiasedness and 

plausibility 

 123 

 123 =   if the expert 

team is very conservative 

or optimistic 

 123 =   if the expert team is 

slightly 

conservative/optimistic 

 123 =   if as a team, 

the experts are 

unbiased: the biases of 

the experts can 

compensate one 

another 

Relative 

independence  124 

 124 =   if over three 

quarters of the experts 

are highly influenced by 

mangers and 

stakeholders 

 124 =   if less than one 

quarter of experts might be 

influenced by the mangers and 

stakeholders 

 124 =   if all experts’ 

decisions are highly 

independent 
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Past experience 

 125 

 125 =   if the experts’ 

experience is less than 5 

years 

 125 =   if the experts’ 

experience is between 10-15 

years 

 125 =   if the experts’ 

experience is more than 

20 years 

Performance 

measure 

 126 

 126 =   if the 

performance of the 

experts are not evaluated 

by external peers 

 126 =   if the external peers 

generally acknowledge the 

experts’ performance but raise 

some slight concerns 

 126 =   if the external 

peers endorse the 

experts’ performance 

and  approve them  

Agreement among 

peers 

 127 

 127 =   if some experts 

hold strongly conflicting 

views on the assumptions 

 127 =   if some experts 

questions on the assumptions, 

but do not have strongly 

conflicting views 

 127 =   if most of the 

experts agree on the 

assumptions 

Table A.3 Scoring guidelines for assumption sensitivity 

Score 

Attribute 
1 3 5 

Sensitivity of 

assumptions  13 

 13 =   if the 

assumption greatly 

influences the final 

result 

 13 =   if the 

assumption greatly 

influences the results in 

a major step in the 

calculation 

 13 =   if the 

assumption has little or 

no impact on the results 

of risk analysis 

Note: The score here is related to the impact of the sensitivity on the SoK 
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Appendix B: Evaluation guidelines for leaf attributes under Availability and Reliability of Data  𝐊𝟐  

Amount of data  21 is measured by a numerical metric, Years of Experience (YoE), defined by the number 

of related events recorded during a specific period. 

YoE =length of the data collection period (in years) × sample size of the data 

The amount of data is scored based on the criteria in Table B.1. 

Table B.1 Scoring guidelines for Amount of available data  21 

Value of YoE Score  

< 50 1 

50-199 2 

200-499 3 

500-999 4 

>1000 5 

 

Completeness of data refers to the degree to which the collected data contains the needed information. For 

components and systems, data completeness is characterized by the following criteria (IAEA 1991): 

1. The data should contain baseline information, which covers the design data and conditions of 

a component at its initial state. 

2. The data should contain the operating history, which covers the service conditions of systems 

and components including transient and failure data. 

3. The data should contain the maintenance history data, which covers the components 

monitoring and maintenance data. 

For more details on how each of the previous attributes is identified, see (IAEA 1991). However, it should 

be noted that the completeness features are defined differently depending on the problem. For example, 

data required for quantifying to a component failure frequency is different from that for quantifying a 

natural event. General scoring guidelines for evaluating  221 are given, based on the degree to which 

criteria are satisfied, as shown in Table B.2. 
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Table B.2 scoring guidelines for data reliability  

Score 

Attribute 
1 3 5 

Completeness 

 221 

 221 =   if the data fail 

to contain the necessary 

information required in 

developing the risk 

assessment model (in the 

light of the completeness 

characteristics defined 

above) 

 221 =   if the data contain 

to an acceptable degree the 

necessary information 

required in developing the 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 

 

 221 =   if the data contain 

all the necessary information 

required in developing the 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 

 

 

The validity of data is evaluated by the following criteria: 

1. The integrity of data is carefully managed.  

2. Databases are well organized and formatted in a common way, and easily retrieved and manipulated. 

3. Data should be collected and entered in the database by well-trained maintenance personnel, and 

modern computer techniques should be used for data storage, retrieval, and manipulation. 

4. The data collection and entering process should include an appropriate quality control mechanism. 

Based on the four criteria the evaluation guidelines of  223 can be defined in Table B.3. 

Table B.3 scoring guidelines for data reliability 

Score 

Attribute 
1 3 5 

Validity

 223 

 223 =   if none of the 

validity criteria (illustrated 

above) is fulfilled 

 223 =   if the validity 

criteria (illustrated above) are 

partially fulfilled 

 223 =   if all of the validity 

criteria (illustrated above) are 

fulfilled 

 

Accuracy measures how close the estimated or measured value is compared to the true value. Accuracy is 

determined by random and systematic errors in the measurements (Popek 2017). Since the data involved in 

nuclear PRA are mostly related to the number of failures or degradations and are usually collected digitally 

from different sources, systematic errors in the data are very small. This means that the accuracy of data is 

primarily determined by the random errors. Since the error margin of the confidence interval is widely 

accepted as a good indicator of the random errors, it can be used as a measure of the data accuracy. Error 

factor may be defined based on the upper and lower bounds of confidence interval:  

   𝑜    𝑐 𝑜 = √
𝑈 

𝐿 
 



238 

 

where 𝑈  and 𝐿  are the upper and the lower bounds of confidence intervals. The accuracy of data is, then, 

scored based on the value of error factors, following the guidelines in Table B.4.Table B.4 scoring 

guidelines for data reliability  

Table B.4 scoring guidelines for data accuracy 

Score 

Attribute 
1 3 5 

Accuracy

 224 

 224 =   if the error factor 

is greater than 10 

 224 =   if the error factor is 

between 2-10 

 224 =   if the error factor is 

less or equal to 2 

The rest of the “leaf” attributes of the reliability of data are evaluated following the guidelines in Table 

B.5. 

Table B.5 scoring guidelines for data reliability 

Score 

Attribute 
1 3 5 

Consistency 

and 

relevance 

 222 

 222 =   if the data are 

not from the same type of 

power plant, or have 

different characteristics 

compared to the system 

under investigation, e.g., 

different component or 

model 

 222 =   if the data are from 

the same power plant with the 

same type of component and 

the same characteristics of the 

system under investigation 

but from different 

manufacturers 

 221 =   if the data are from 

the same power plant with 

the same type of components 

and the components have the 

same characteristics and the 

same manufacturer 

Timeliness 

 225 

 225 =   if the data has 

never been updated 

 225 =   if the data has been 

updated a few years ago (10 

years and more) 

 225 =   if the data are up-

to-date and are updated 

routinely 
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Appendix C: Evaluation guidelines for leaf attributes under Understanding of Phenomena  𝐊𝟑  

 Table C.1 Scoring guidelines for Phenomenological understanding’s leaf attributes 

Score 

Attribute 1 3 5 

Years of experience 

(human experience on 

the phenomenon) 

 31 

 31 =   if the 

phenomenon is new to 

human being, and no 

theories about the 

phenomenon have been 

developed yet or the 

theories are incapable to 

explain well the 

phenomenon (e.g. black 

holes) 

 31 =   if the 

phenomenon has been 

investigated for 

moderate years of 

experience with few 

theories that are 

consistent with 

preexisting ones but still, 

do not explain 

holistically the 

phenomena (e.g. nuclear 

physics) 

 31 =   if the 

phenomenon has been 

investigated for a long 

time and well-

established theories 

have been developed 

to explain the 

phenomenon, which 

have been proved by 

many evidences (e.g. 

classical physics) 

Number of experts 

involved in the analysis 

 32 

 32 =   if there is no 

experts related to this 

domain (the assessors 

involved are not expert in 

this domain) or the experts 

are unreliable  

 32 =   if there is a 

moderate number of 

experts of acceptable 

reliability (two experts) 

or a low number of 

experts of high 

reliability 

 32 =   if there is a 

sufficient number of 

highly reliable experts 

(more than two 

experts) 

Academic studies on the 

phenomena (measured 

by the number of articles 

and books published on 

the subject) 

 33 

 33 =   if no or limited 

published articles supports 

the understanding of the 

phenomenon (e.g. Einstein 

electromagnetic waves) 

 33 =   if a moderate 

amount of the published 

articles supports the 

understanding of the 

phenomenon (e.g. 

nuclear energy) 

 33 =   if a large 

amount of the 

published articles 

supports the 

understanding of the 

phenomenon (e.g. 

kinetic energy) 

Industrial pieces of 

evidence and 

applications on the 

phenomena (measured 

by the number of 

applications on available 

on this subject) 

 34 

 34 =   if no or few 

industrial applications and 

reports support the 

understanding of the 

phenomenon (e.g. 

autonomous vehicles) 

 34 =   moderate 

amount of industrial 

applications and reports 

support the 

understanding of the 

phenomenon (e.g. 

machine learning) 

 34 =   if a large 

amount of industrial 

applications and 

reports support the 

understanding of the 

phenomenon (e.g. 

airplanes) 
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Abstract 

In this paper, we develop a new method for Multi-Hazards Risk Aggregation (MHRA). A hierarchical 

framework is first developed for evaluating the trustworthiness of the risk assessment. The evaluation is 

based on two main attributes (criteria), i.e., the strength of knowledge supporting the assessment and the 

fidelity of the risk assessment model. These two attributes are further broken down into sub-attributes and, 

finally, leaf attributes. The trustworthiness is calculated using a weighted average of the leaf attributes, in 

which the weights are calculated using the Dempster Shafer Theory-Analytical Hierarchy Process (DST-

AHP). Risk aggregation is, then, performed by a “weighted posterior” method, considering the level of 

trustworthiness. An application to the risk aggregation of two hazard groups in Nuclear Power Plants 
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1. Introduction 

In Risk-Informed Decision-Making (RIDM), risk metrics are first calculated through Multi-Hazards 

Risk Aggregation (MHRA) by combining all the relevant information on risk from different contributors 

(hazard groups) and, then, used to support Decision-Making (DM) (EPRI 2015). A fundamental criticism 

of the current practice is that the aggregation is conducted by a simple arithmetic summation of the risk 

metrics from different hazard groups, without considering the heterogeneity in the degrees of maturity and 

realism of the risk analysis for each hazard group (EPRI 2015). For example, in Nuclear Power Plants 

(NPP), the Probabilistic Risk Assessment (PRA) for internal events has been developed for many years and 

considered relatively mature compared to external events (EPRI 2015) or to fire (Siu et al. 2015). Simply 

adding up the risk indexes can be misleading because it does not consider any information on the trust in 

the risk indexes calculated for each hazard group. This is a real problem as the results of the PRAs to be 

aggregated often involve different hazard groups with different levels of realism and trustworthiness.  

Various factors contributing to the trustworthiness of risk analysis have been discussed in the 

literature, including the strength of background knowledge, conservatism, plausibility and realism of 

assumptions, uncertainty, level of sophistication and details in the analysis, value-ladenness of the 

assessors, experience, number of approximations and assumptions made in the analysis, etc. (EPRI 2012), 

(EPRI 2015). Communicating these factors to the decision maker can better inform decision making (Flage 

& Aven 2009), (EPRI 2012), (Aven 2013b), (EPRI 2015), (Veland & Aven 2015). For this, some experts 

propose a broad representation of risk that highlights uncertainties rather than probability (Flage & Aven 

2009), (Aven, 2013b), (Aven and Krohn, 2014). In Aven (2013a), the risk is described in terms of events, 

consequences, uncertainty (𝐴, 𝐶, 𝑈) and a structure is presented for linking the elements of a Data-

Information-Knowledge-Wisdom hierarchy to this perspective. In (Flage and Aven, 2009), the authors 

apply the concept of uncertainty as the main component of risk, whereas the probability is regarded as an 

epistemic-based expression of uncertainty. Their argument is that for decision making purposes, a broad 

and comprehensive representation of risk is required to cover the events, consequences, predictions, 

uncertainty, probability, sensitivity, and knowledge. In addition, they propose a simple and practical 

method to classify uncertainty factors and evaluate the background knowledge given the following criteria: 

the inter-alia assumptions and presuppositions (solidity of assumptions), historical field data (availability 

of reliable data), understanding of phenomena, and agreement among experts.  

Some attempts are also found in the literature that focus on treating the uncertain assumptions as an 
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implication of new risk perspectives. Aven (2013b) proposed a method for assessing the assumption 

deviation risk by three elements: (i) the degree of the expected deviation of the assumption from reality 

and its consequences (ii) a measure of uncertainty of the deviation and consequences; (iii) the knowledge 

on which the assumptions are based. Berner and Flage (2016) summarize four approaches for treating 

uncertain assumptions: (i) law of total expectation; (ii) interval probability; (iii) crude strength of 

knowledge and sensitivity categorization; (iv) assumption deviation risk. In this work, they extend the 

method in Berner and Flage (2015) that evaluates the assumption deviation risk based on three criteria: 

belief in the deviation from the assumption, sensitivity of the risk index and its dependency on the 

assumption, and SoK on which the assumptions are made. Six settings are identified for the corresponding 

scenarios resulting from the three criteria. Guidance for treating the uncertainty related to the deviation of 

assumptions is given for each setting. Finally, an application of Numeral Unit Spread Assessment Pedigree 

(NUSAP) is proposed for analyzing the strength, importance, and potential value-ladenness of assumptions 

through a pedigree diagram. The pedigree diagram uses seven criteria for evaluating the quality of 

assumptions: (i) plausibility; (ii) inter-subjectivity peers; (iii) inter-subjectivity stakeholders; (iv) choice 

space; (v) influence of situational limitations; (vi) sensitivity to view and interests of the analyst (vii) and 

influence on results (Van Der Sluijs et al. 2005), (Boone et al. 2010), (Kloprogge et al., 2011), (De Jong et 

al., 2012).  

In addition, some attempts are found in the literature for directly evaluating the trustworthiness and 

other relevant quantities. In Bani-Mustafa et al. (2017), the trustworthiness of risk assessment models is 

evaluated through a hierarchical tree that covers the different factors including modeling fidelity, SoK, 

number of approximations, amount and quality of data, quality of assumptions, number of model 

parameters, etc. Trustworthiness is also measured in the literature in terms of maturity and credibility. For 

example, in Model and Simulation (M&S) and information system, a capability maturity model is used to 

assess the maturity of a software development process in the light of its quality, reliability, and 

trustworthiness (Paulk et al. 1993). A predictive capability maturity model has been developed to assess the 

maturity of M&S efforts through evaluating representation and geometric fidelity, physics and material 

model fidelity, code and solution verification, model validation and uncertainty quantification, and 

sensitivity analysis (Oberkampf et al., 2007). In (Zeng et al. 2016), a hierarchical framework has been 

developed to assess the maturity and prediction capability of a prognostic method for maintenance decision 

making purposes. The hierarchical tree covers different attributes that are believed to affect the prediction 
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capability of prognostic methods and the trustworthiness of the results. In (Nasa 2013), a framework is 

proposed for assessing the credibility of M&S through eight criteria: (i) verification; (ii) validation; (iii) 

input pedigree; (iv) results uncertainty (v) results robustness; (vi) use history; (vii) M&S management; 

(viii) people qualification. In (Bani-Mustafa et al., 2017), the trust of the model is evaluated based on the 

level of maturity of the risk assessment model through four main criteria: (i) uncertainty; (ii) knowledge; 

(iii) conservatism; (iv) sensitivity. The quality of M&S is assured by the American Society of Mechanical 

Engineers (ASME) through verification and validation (Schwer 2009). Verification is concerned with 

evaluating the accuracy of the computational model in representing the conceptual and mathematical 

model, and validation is concerned with evaluating the accuracy of the model in representing reality 

(Schwer 2009). 

As seen from the discussions above, there are a number of works concerned with the realism and 

trustworthiness of risk assessment. These works, however, discuss the contributors to trustworthiness 

separately: different frameworks cover different aspects of the trustworthiness based on different 

terminologies. A unified and complete framework that covers all the factors contributing to trustworthiness 

is lacking. Besides, the current state of the art only focuses on the evaluation of trustworthiness but does 

not consider how to integrate the trustworthiness into the results of risk assessment, neither does it show 

how to aggregate the risk of different contributors with different levels of trustworthiness. 

In this work, we define the trustworthiness of risk assessment as a metric that reflects the degree of 

confidence in the background knowledge that supports the PRA, as well as in the suitability, 

comprehensiveness and completeness of the PRA model formulation and implementation in a way that 

reflects, to the best possible, reality. With this, the objective is, then, to provide a new approach for MHRA 

considering trustworthiness. Compared to the existing works, the contributions of the current work include:  

(i) a unified framework is developed for the evaluation of trustworthiness in risk assessment; 

(ii) a method is developed to integrate the trustworthiness in the result of the risk assessment of a 

single hazard group;  

(iii) an approach is developed for MHRA considering the trustworthiness of risk assessment.  

The rest of this paper is organized as follows. In Section 2, we present a hierarchical framework for 

assessing the trustworthiness of PRA models and in Section 3 we show how to apply it in practice. In 

Section 4, we show how to aggregate the risks considering trustworthiness. Section 5 applies the developed 

methods to a case study from the nuclear industry. Finally, in Section 6, we conclude this paper and discuss 
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the potential future work. 

2. A hierarchical framework for assessing the trustworthiness of a risk model 

As illustrated previously, various factors have been discussed in the literature in relation to the 

trustworthiness of risk assessment. In this paper, we only focus on some of the most relevant factors. For 

example conservatism, uncertainty, level of sophistication and details in the analysis, experience, number 

of approximations and assumptions made in the analysis are identified in (EPRI 2012) and (EPRI 2015) as 

fundamental factors that influence the realism and trustworthiness of a risk analysis. Background 

knowledge that supports the risk assessment is also widely accepted as an essential contributor to the 

trustworthiness (Flage & Aven 2009), (Aven 2013a), (Aven 2013b), (EPRI 2012), (EPRI 2015), (Bani-

Mustafa et al., 2018). The assumptions that are inevitably made because of incomplete knowledge or for 

simplifying the analysis (Kloprogge et al., 2011) are considered crucial for the suitability of risk 

representation and hence, the trustworthiness of its analysis (Boone et al. 2010), (Kloprogge et al., 2011), 

(De Jong et al., 2012), (Berner & Flage 2016). The conservatism is also identified as a pivotal contributor 

to the realism, maturity, and trustworthiness of risk assessment (Aven 2016), (Bani-Mustafa et al., 2017). 

Sensitivity analysis is also needed for a comprehensive description of risk (Flage & Aven 2009), (Bani-

Mustafa et al., 2017). Other factors for evaluating the credibility of M&S include verification, validation, 

input pedigree, result uncertainty, result robustness, use history, M&S management and people 

qualification (Nasa 2013). 

The factors mentioned above are included in the trustworthiness assessment framework proposed in 

this paper. Other relevant factors are also considered, for a complete representation of trustworthiness. The 

trustworthiness of risk assessment is defined in this paper as the degree of confidence that the background 

knowledge is strong enough to support the PRA and that the PRA model is suitable, correctly and robustly 

made to make the best use of the available knowledge in order to reflect to the best, reality. Obviously, the 

background knowledge that supports a risk assessment affects significantly the trustworthiness of its 

results (Flage & Aven 2009), (Aven 2013a), (Aven 2013b), (Bani-Mustafa et al., 2018). However, having a 

strong background knowledge is not sufficient to ensure the trustworthiness in the results: the fidelity of 

the modeling should be also verified. This gives rise to a technically adequate and mature model that is 

known for its high quality and representativeness of reality (Oberkampf et al., 2007), (Nasa 2013), (Zeng 

et al. 2016). In addition, the modeling process should follow a high quality and thorough application 

procedure, in order to have trustworthy risk analysis results (IAEA 2006), (Oberkampf et al., 2007), 



246 

 

(Schwer 2009), (Nasa 2013), (Zeng et al. 2016). Hence, the suitability of the selected model and the 

quality of its application are considered as relevant attributes in the proposed framework. In fact, since the 

risk metrics are calculated as a result of modeling and simulation, it is intuitive to understand that the 

trustworthiness of the risk assessment results can be affected by: the suitability of the selected model, the 

comprehensiveness and correctness of the application of the model, as well as the background knowledge 

that supports the modeling and analysis. Besides, having results that are highly sensitive to changes in the 

input is an indication that the assessment is less trustworthy, as the results might be dramatically affected 

by even a small change in the input parameters and assumptions (Flage & Aven 2009), (Bani-Mustafa et 

al., 2017). Accordingly, the robustness of the results is regarded as another factor that affects the 

trustworthiness of risk analysis. In this framework, we use the acronym SoK to represent the strength of 

the background knowledge that supports the risk assessment and the term “modeling fidelity” to represent 

the suitability of the selected model, the quality of its application and the robustness of the results, as 

shown in Figure 1. These two top-level attributes are further decomposed into more tangible sub-attributes. 

It should be noted that in general, knowledge includes explicit knowledge, which can be documented 

and transferred directly, and implicit knowledge, which is possessed by individuals and cannot be 

documented or transferred directly. The SoK defined in Figure 1 only concerns the explicit knowledge, 

whereas implicit knowledge is mostly related to the construction and application of the model. Hence, 

implicit knowledge is viewed as related to the modeling fidelity. The background knowledge is evaluated 

in Flage and Aven (2009) considering: (i) availability of reliable data; (ii) phenomenological 

understanding; (iii) quality and plausibility of assumptions; (iv) agreement among peers. In Bani-Mustafa 

et al. (2018), the background knowledge is evaluated by (i) the solidity of assumptions; (ii) the availability 

of reliable data; (iii) the understanding of phenomena. Each attribute is further broken down into more 

tangible sub-attributes that define it. For example, the reliability of data is evaluated by its completeness, 

consistency, validity, accuracy, and timeliness (Bani-Mustafa et al., 2018). 

The quality of assumption is evaluated in the literature by different factors. For example, in an 

application of Numeral Unit Spread Assessment Pedigree (NUSAP), the quality of assumptions is 

evaluated by (i) plausibility; (ii) inter-subjectivity peers; (iii) inter-subjectivity stakeholders; (iv) choice 

space; (v) influence situational limitations; (vi) sensitivity to view and interests of the analyst (vii) and 

influence on results (Van Der Sluijs et al. 2005), (Boone et al. 2010), (Kloprogge et al., 2011). In this 

paper, we group these factors into three main categories (Bani-Mustafa et al., 2018): (i) quality of 
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assumptions; (ii) value-ladenness; (iii) sensitivity. Value ladenness is, in turn, considered as an independent 

variable that affects the quality of the assumptions and is evaluated using seven main criteria (i) the 

personal knowledge; (ii) the sources of information; (iii) the non-biasedness; (iv) the relative 

independence; (v) the past experience; (vi) the performance measure; (vii) the agreement among peers (Zio 

1996), (Bani-Mustafa et al., 2018). 

Nevertheless, some of the SoK attributes are more related to the implicit knowledge and affect the 

construction and formulation of the modeling process and, hence, they are considered under modeling 

fidelity and not under SoK. For example, the quality and solidity of assumptions are more related to 

modeling fidelity, since they affect the formulation of the model. Also, since assumptions are made by 

experts and inevitably affected by their subjectivity, agreement among peers is considered as a sub-

attribute under solidity of assumptions.  

In this paper, only the availability of reliable data and phenomenological understanding from (Flage & 

Aven 2009) are considered for evaluating the SoK. As said earlier, the quality and solidity of assumptions 

are treated under modeling fidelity. Finally, we add another attribute to cover the data and information 

related directly to the known hazards. The known potential hazards attributes are next broken down into 

three sub-attributes that cover: the number of documented known hazards, the accident analysis report and 

the expert's knowledge about the hazards. The data and phenomenological understanding attributes are 

further broken into sub-attributes and leaf attributes (illustrated in Figure 1) according to the framework 

proposed in (Bani-Mustafa et al., 2018).  

Other factors related to the suitability of the model and quality of application are also found in the 

literature. Examples of these factors are: conservatism, level of sophistication and details in the analysis, 

experience, number of approximations and assumptions made in the analysis, sensitivity, results 

robustness, use history, level of details and verification (Paté-Cornell 1996), (Flage & Aven 2009), (EPRI 

2012), (Nasa 2013), (EPRI 2015), (Aven 2016), (Bani-Mustafa et al., 2017). These attributes are allocated 

in the hierarchy according to their relevance to the modeling fidelity and categorized in three groups, i.e., 

suitability of selected model, quality of the application and robustness of the results, whereas other 

attributes have been added to complement the overall framework for the trustworthiness of the risk 

assessment. The overall hierarchical framework is presented in Figure 1, and detailed definitions of the 

attributes, sub-attributes and “leaf” attributes are given in Table 1-4. 
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Table 1 Definition of trustworthiness attributes (Level 1) 

Attribute Definition 

Modeling fidelity (𝑀𝐹 = 𝑇1) The degree of confidence that the selected PRA model is technically adequate for 

describing the problem of interest and that the model is implemented in a trustable 

way so that the results can reasonably represent reality, relative to the decision 

making involved 

The strength of knowledge 

(𝑆𝑜𝐾 = 𝑇2) 

The amount of high-quality explicit knowledge that is available to support the PRA 

 

Table 2 Definition of trustworthiness attributes (Level 2) 

Attribute Definition 

Robustness of the results (𝑅𝑜𝑅 =

𝑇1,1) 

The capability of the PRA results to remain unaffected by small variations in model 

parameters or model assumptions 

Suitability of the model (𝑆𝑜𝑀 =

𝑇1,2) 

The technical adequacy of the tool, maturity and ability to model the problem of 

interest 

Quality of application (𝑄𝐴𝑝 =

𝑇1,3) 

The degree to which the analysis is implemented with the minimum required levels of 

details and modeling adequacy that have the degree of quality, suitable for supporting 

the application of interest 

Knowledge of potential hazards and 

accident evolution 

processes (𝑃𝑜𝐻 = 𝑇2,1) 

The availability of documentation and knowledge of abnormal events, accidents and 

their evolutions, from similar systems 

Phenomenological understanding 

(𝑃 = 𝑇2,2) 

The knowledge that supports the comprehension of the system functionality and the 

related phenomena 

Data (𝐷 = 𝑇2,3) The amount and quality of data needed for estimating the model parameters 

 

Table 3 Definition of trustworthiness attributes (Level 3) 

Attribute Definition 

Model sensitivity (𝑀𝑆 = 𝑇1,1,1) The degree to which the model output varies when one or several parameters change 

Impact of assumptions (𝐼𝑜𝐴 =

𝑇1,1,2) 

The degree to which the model output varies when one or several assumptions 

change 

 

Robustness of the model (𝑅𝑜𝑀 =

𝑇1,2,1) 

The capability of the model to keep its performance when applied to a different 

problem settings 

Suitability of the model for the 

problem (𝑆 = 𝑇1,2,2) 

The ability to capture all the important details and characterizations of the problem 

of interest 

Historical use (𝐻𝑈 = 𝑇1,2,3) The degree of confidence gained in this method by the long historical usage 

Conservatism (𝐶𝑣 = 𝑇1,3,1) The intentional acts for overestimating the risk by making conservative assumptions 

out of cautiousness 

The accuracy of calculations 

(𝐴𝑐𝐶 = 𝑇1,3,2) 

The degree of the voluntarily accepted error in the calculation, e.g., significant 

figures, simulation errors, and cutoff errors 
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Quality of assumptions (𝑄𝑜𝐴 =

𝑇1,3,3) 

The degree to which the assumption is valid, representing reality and supporting the 

model 

Verification (𝑉𝑟 = 𝑇1,3,4) The degree of assurance that the analysis maintains the requirements of quality 

control standards and obtains the acceptance from different analysts 

Level of sophistication (𝐿𝑜𝑆 =

𝑇1,3,5) 

The degree of treatment of the problem, and amount of effort and details invested in 

the problem given its requirement (requirement and complexity) 

Number of known hazards (𝑁𝐻 =

𝑇2,1,1) 

The documented experience on known hazards that might affect the system of 

interest 

 

Availability of accident analysis 

reports (𝑁𝐻 = 𝑇2,1,2) 

The availability of technical reports that cover thoroughly the different sequences of 

any abnormal activity, incident or accident in the time frame and the progressions of 

each phase 

Experts knowledge about the hazard 

(𝑁𝐻 = 𝑇2,1,3) 

The undocumented experience possessed by experts on known hazards 

Years of experience (𝑌𝐸 = 𝑇2,2,1) The amount of experience (measured in years) regarding a specific phenomenon 

Number of experts involved 

(𝑁𝐸 = 𝑇2,2,2) 

The number of experts who are explicitly or implicitly involved in understanding the 

phenomena and the risk analysis 

 

Academic studies on the phenomena 

(𝐴𝐸 = 𝑇2,2,3) 

The number of academic resources, i.e., articles, books, etc., available about the 

phenomena of interest 

Industrial evidence and applications 

on the phenomena (𝐼𝐸 = 𝑇2,2,4) 

The number of industrial applications and reports related to the specific phenomena 

or events of interest 

Amount of available data (𝐴𝐷 =

𝑇2,3,1) 

The amount of data that are needed to evaluate the model parameters 

Reliability of data (𝑅𝐷 = 𝑇2,3,2) The degree to which the properties of data satisfy the requirements of risk analysis 

 

Table 4 Definition of trustworthiness attributes (Level 4) 

Attribute Definition 

The plausibility of assumptions (𝑃𝑙 =

𝑇1,3,3,1) 

The degree of realism of the statements made in the analysis, in cases of lack of 

knowledge or to facilitate the problem solution 

Value ladenness of assessors (𝑉𝐿 =

𝑇1,3,3,2) 

The experts’ degree of objectivity, professionalism, skills and competencies, past 

fulfillment of assigned missions and level of achievement 

Agreement among peers (𝐴𝑔 = 𝑇1,3,4,1) The degree of resemblance between the peers on the analysis and assumptions made, if 

they were asked to perform the analysis separately 

Quality assurance (𝑄𝐴 = 𝑇1,3,4,2) The degree of following the standards in the process of implementing the analysis 

Level of granularity (𝐿𝑜𝐺 = 𝑇1,3,5,1) The depth of analysis and subdivision of the problem constituting elements 

Number of approximations (𝑁𝑜𝐴 =

𝑇1,3,5,2) 

The intentional simplifications made to facilitate the modeling 

Level of details (𝐿𝑜𝐷 = 𝑇1,3,5,3) The degree with which the important contributing factors are captured in the modeling 

compared to the requirement of the analysis (e.g., the dependency among components) 

Completeness (𝐿𝑜𝐷 = 𝑇2,3,2,1) The degree to which the collected data contain the needed information for the risk 
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modeling and assessment 

Consistency (𝐿𝑜𝐷 = 𝑇2,3,2,2) The degree of homogeneity of data from different data sources 

Validity (𝐿𝑜𝐷 = 𝑇2,3,2,3) The degree to which the data are collected from a standard collection process and 

satisfy the syntax of its definition (documentation related) 

Timeliness (𝐿𝑜𝐷 = 𝑇2,3,2,4) The degree to which data correctly reflect the reality of an object or event 

Accuracy (𝐿𝑜𝐷 = 𝑇2,3,2,5) The degree to which data are up-to-date and represent reality for the required point in 

time 

3. Evaluation of the level of trustworthiness  

In this section, a bottom-up method for evaluating the level of trustworthiness is developed in Section 

3.1. Then, a combination of Dempster Shafer Theory (DST) and Analytical Hierarchy Process (AHP) are 

used in Section 3.2 to determine the weights of the attributes/sub-attributes in the method proposed in 

Section 3.1. 

3.1. Evaluation of the trustworthiness 

In this framework, five levels of trustworthiness are defined with their corresponding settings: 

1. Strongly untrustworthy (𝑇 = 1): represents the minimum level of trustworthiness and, therefore, 

the decision maker has the lowest confidence in the result of the PRA. The analysis is made 

based on weak knowledge and/or nonrealistic analysis, leading to an estimated value that might 

be far from the real one. Further analysis and justifications need to be implemented on the risk 

analysis to enhance its trustworthiness. Otherwise, the risk assessment is not considered 

representative and one should not rely on its results to support any kind of decision making. 

2. Untrustworthy (𝑇 = 2): represents a low level of trustworthiness and, therefore, the decision 

maker has low confidence in the results of the PRA. At this level, the analysis is made based on 

relatively weak knowledge and/or nonrealistic analysis, leading to unrealistically estimated risk 

values. Further analysis and justifications need to be implemented on the risk analysis to enhance 

its trustworthiness. The decision maker can use the results with caution and only as a support for 

decision making. 

3. Moderately trustworthy (𝑇 = 3): represents a moderate level of trustworthiness and, therefore, 

the decision maker has an acceptable level of confidence in the results of the PRA. The analysis 

is made based on relatively moderate knowledge and/or relatively realistic analysis. The decision 

maker can rely cautiously on the model output to make the decision. 
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4. Trustworthy (𝑇 = 4): represents a high level of trustworthiness and, therefore, the decision 

maker has quite high confidence in the results of the PRA. The analysis is made on a relatively 

high level of knowledge and realistic analysis. The decision maker can rely confidently on the 

models output to make decisions. 

5. Highly trustworthy (𝑇 = 5): represents the maximum level of trustworthiness. At this level, the 

PRA model outputs accurately predict the risk index with a proper characterization of parametric 

uncertainty. The decision maker can rely on the models output to support decision making 

involving severe consequences, e.g., loss of human lives. 

In practice, the trustworthiness of risk assessment might be between two of the five levels defined 

above: for example, 𝑇 =  2.6 means that the level of trustworthiness is between untrustworthy and 

moderately trustworthy. 

In this paper, the level of trustworthiness of risk assessment is evaluated using a weighted average of 

the “leaf” attributes in Figure 1.  

 𝑇 = ∑ 𝑊𝑖 ∙ 𝐴𝑖
𝑛
𝑖   (1) 

where 𝑊𝑖 is the weight of the leaf attribute that measures its relative contribution to the trustworthiness of 

risk assessment; 𝐴𝑖 is the trustworthiness score for the i-th leaf attribute, evaluated based on the scoring 

guidelines presented in the Appendixes; 𝑛 is the number of the leaf attributes (in Figure 1, we have 𝑛 =

27). The weights 𝑊𝑖  are determined based on Dempster Shafer-Analytical Hierarchy Process (DST-AHP) 

(Dezert et al., 2010), as discussed in Section. 3.2.  

3.2. Dempster Shafer Theory - Analytical Hierarchy Process (DST-AHP) for trustworthiness 

attributes weight evaluation 

The weights of the different attributes in Figure1 can be determined using the AHP method to 

compare their relative importance with respect to the trustworthiness of risk assessment (Saaty 2008). AHP 

is used because it can decrease the complexity of the comparison process, as it allows comparing only two 

criteria at a time, rather than comparing all the criteria simultaneously, which could be very difficult in 

complex problems. It should be noted that since there are no alternatives to be compared, pairwise 

comparison matrixes of AHP are only used for deriving the attributes (criteria) weights.  

To consider the fact that experts are subjective, not fully reliable and might have conflicting 

viewpoints, and the incomplete knowledge of the experts, Dempster-Shafer-Analytical Hierarchy Process 
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(DST-AHP) is used. This allows combining multiple sources of uncertain, fuzzy and highly conflicting 

pieces of evidence with different levels of reliability (Dezert et al. 2010), (Jiao et al. 2016). In this method, 

the assessors are asked to identify the focal sets that comprise of a single or group of criteria. The experts 

determine the criteria contained in the focal sets in such a way that they are able to compare them (the 

focal sets), given their knowledge. Then, pairwise comparison matrices are constructed for the focal sets. 

Using focal sets instead of single criteria allows taking into account the partial uncertainty between 

possible criteria. The basic belief assignments (BBA) of the corresponding focal sets are derived from the 

pairwise comparison matrices. The BBAs from different experts are combined using the DST fusion rule. 

The weights for each criterion are assumed to be BBA of the corresponding focal element (single 

criterion), and are derived based on the maximum belief-plausibility principle in Dempster-Shafer theory, 

or on the maximum subjective probability obtained by probabilistic transformations using the transferable 

belief model (Dezert et al. 2010), (Dezert & Tacnet 2011), (Jiao et al. 2016). Again, note that in this work, 

this method is applied only to derive the relative weights of the criteria, rather than using it to rank 

alternatives. Similar ideas have been used in Tayyebi et al. (2010), Ennaceur et al. (2011). The procedure 

for calculating the weights of the leaf attributes based on DST-AHP is presented below. 

I. Constructing pairwise comparison matrices 

First, the experts are asked to construct pairwise comparison matrices (also known as knowledge 

matrices) to compare the relative importance of the sub-attributes in the same level of the hierarchy with 

respect to their parent attribute. For example, the pairwise comparison matrix for the attribute modeling 

fidelity is a 3 × 3 matrix: 

[

1 𝑀𝐹12 𝑀𝐹13

𝑀𝐹21 1 𝑀𝐹23

𝑀𝐹31 𝑀𝐹32 1
] 

where the columns correspond to the pairwise comparisons of the daughter attributes: suitability of the 

selected model, quality of the application, and robustness of the results, respectively. The element 𝑀𝐹𝑖𝑗 is 

assigned by assessing the relative importance of attribute 𝑖 to attribute 𝑗 following the scoring protocols in 

(Saaty 2008). 

Compared to conventional AHP comparison matrices, the expert is free to choose, based on his/her 

belief, the elements of the pairwise comparison matrix. These elements can be focal elements that 

represent a single criteria, e.g., *𝐴+ or a distinct group of criteria, e.g., *𝐴, 𝐵+ that are comparable favorably 

(to the best of expert's knowledge) to the universal set that contains all the criteria, which allows 
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accounting for the uncertainty in the judgment (Beynon et al. 2001), (Ennaceur et al. 2011), (Jiao et al. 

2016). For example, the expert can choose a focal set of *𝑆𝑜𝑀, 𝑄𝐴𝑝+ if he/she believes that it can be 

compared favorably to the universal set *𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅+; i.e., the set of *𝑆𝑜𝑀, 𝑄𝐴𝑝+ can be compared to 

*𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅+ (the sub-attributes SoM, QAp, RoR were defined in Table 1-4). Then, the expert is asked 

to fill the pairwise comparison matrices to represent his/her belief in the relative importance of a given set 

(of one or multiple attributes) compared to the others. Favoring the universal set *𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅+ over 

*𝑆𝑜𝑀, 𝑄𝐴𝑝+, means that the universal set contains an element that is not contained in the other set, and at 

the same time it is more important than the elements of the other set, i.e., 𝑅𝑜𝑅 is more important than 𝑆𝑜𝑀 

and 𝑄𝐴𝑝. Finally, as in the conventional AHP method, the consistencies of the matrixes need to be tested 

and the assessors are asked to update their results if the consistency is lower than the required value (Saaty 

& Vargas 2012).  

II. Computing the weights 

In this step, the weights are derived using the conventional AHP technique, according to which the 

normalized principal eigenvector of the matrix represents the weights. A good approximation for solving 

the eigenvector problem in case of high consistency is to normalize the columns of the matrix and, then, 

average the rows for obtaining the weights. For more details on AHP and deriving the weights from 

pairwise comparison matrices, the reader might refer to (Saaty 2013). Please note that, as mentioned 

earlier, the weights derived from the pairwise comparison matrices are assumed to be the BBA of the 

associated focal sets. 

III. Reliability discounting 

Usually, multiple experts are involved in evaluating the weights. Each expert is regarded as an 

evidence source. Reliability of an evidence source represents its ability to provide correct measures of the 

considered problem (Jiao et al. 2016). Shafer’s reliability discounting is often used to consider the 

reliability of the source information in DST-AHP (Shafer 1976): 

 𝑚𝛿(𝐴) = {
𝛿 ∙ 𝑚(𝐴)      ∀𝐴 ⊆ Θ,  A ≠ Θ

(1 − 𝛿) + (𝛿) ∙ 𝑚(Θ),   A = Θ
  ,  𝛿 ∈ ,0,1- (2) 

where Θ represents the complete set of criteria, 𝐴 is the focal element in the power set 2Θ, 𝑚(𝐴) is the 

BBA for 𝐴, 𝑚𝛿(𝐴) is the discounted BBA, 𝛿 is the reliability factor. A value of 𝛿 = 1 means that the 

source is fully reliable and a value of 𝛿 = 0 means that the source is fully unreliable. The reliability factor 

of the experts is determined by the decision maker, based on their previous knowledge and experience.  
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IV. Combination of experts opinions 

Next, Dempster’s rule of combination (Shafer 1976) is used to combine two independent pieces of 

evidence assigned by different experts. The discounted BBAs from different experts are combined by (Jiao 

et al. 2016): 

 𝑚1,2
𝛿 (𝐶) = (𝑚1

𝛿 ⊕ 𝑚2
𝛿)(𝐶) = {

                           0                               𝐶 = 𝜙,
1

1−𝐾
∙ ∑ 𝑚1

𝛿(𝐴) ∙ 𝑚2
𝛿(𝐵) 𝐴∩𝐵=𝐶≠𝜙 𝐶 ≠ 𝜙,

 (3) 

where 𝑚1,2
𝛿 (𝐶) is the new BBA resulting from the combination of the two discounted BBA 𝑚1

𝛿(𝐴) and 

𝑚2
𝛿(𝐵) of the two experts. 𝐾 is the conflict factor in the opinions of experts and given by: 

 𝐾 = ∑ 𝑚1
𝛿(𝐴) ∙ 𝑚2

𝛿(𝐵)𝐴∩𝐵=𝜙  (4) 

V. Pignistic probability transformation 

The belief functions resulted from the discounting and combination are defined for focal sets (might 

contain one or multiple leaf attributes). To obtain the weights of each leaf attribute, the masses (𝑚1,2
𝛿 (𝐶)) 

assigned to the focal sets need to be transformed into masses for the basic elements. In this paper, the 

transferable belief model proposed by (Smets & Kennes 1994) is used for the transformation. In this 

method, the masses 𝑚1,2
𝛿 (𝐶) on the credal level are converted to the pignistic level using the insufficient 

reason principle (Smets & Kennes 1994), (Aregui & Denœux 2008): 

 𝑤(𝑥) = ∑
𝑚(𝐶)

1−𝑚(𝜙)

1𝐶(𝑥)

|𝐶|
, ∀𝑥 ∈ 𝛩𝐶⊆𝛩,𝐶≠𝜙   (5) 

where 𝑤(𝑥) denotes the belief assignment of a single element (𝑥) on the pignistic level, 1𝐶 is the indicator 

function of 𝐶: 1𝐶 = 1, 𝑖𝑓 𝑥 ∈ 𝐶 𝑎𝑛𝑑 0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒. |𝐴| is the length of A (the number of elements in the 

focal set). The mass functions obtained from the pignistic probability transformation represent the relative 

“believed weights” of the attributes. 

After obtaining the local weights of the leaf attributes with respect to their parent attribute, the global 

weights with respect to the top-level attribute, i.e., the trustworthiness, need to be determined. This can be 

done by multiplying the weight of the daughter attribute by the weights of the upper parent attributes in 

each level. For example, the “global weight” of the historical use with respect to the trustworthiness, 

denoted by 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝐻𝑈), is calculated by:  

 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝐻𝑈) = 𝑤(𝐻𝑈) × 𝑤(𝑆𝑜𝑀) × 𝑤(𝑀𝐹)   

where 𝑤(𝐻𝑈), 𝑤(𝑆𝑜𝑀) 𝑎𝑛𝑑 𝑤(𝑀𝐹) are the local weights of the historical use, the suitability of the 

model, and the modeling fidelity. For simplicity reasons, hereafter the global weights for the leaf attributes 

are denoted by 𝑊𝑖 and in the framework of Figure 1, we have 𝑖 = 1,2, ⋯ ,27. 
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4. Evaluation of the risk considering trustworthiness levels 

In this section, the “weighted posterior” method (Groen & Mosleh 1999) is used for integrating the 

risk index with the trustworthiness of the PRA for a single hazard group (Section 4.1). In Section 4.2, a 

structured methodology is developed for determining the weights in the Bayesian “weighted posterior” 

model. Finally, MHRA considering the level of trustworthiness is discussed in Section 4.3. 

4.1. Evaluation of the risk of a single hazard group 

After evaluating the level of trustworthiness for the PRA of a given hazard group, the next question is 

how to integrate the estimated risk from the PRA with the level of trustworthiness. In this paper, we 

develop a Bayesian averaging model for integrating the trustworthiness based on the “weighted posterior” 

method (Groen & Mosleh 1999). Let us consider two scenarios: the risk assessment is trustable, denoted 

by 𝐸𝑇, and its complement, i.e., the risk assessment is not trustable (𝐸𝑁𝑇). The risk after the integration 

can, then, be calculated as: 

 𝑅𝑖𝑠𝑘|𝑇 = 𝑃(𝐸𝑇) ∙ Risk|𝐸𝑇 + (1 − 𝑃(𝐸𝑇)) ∙ Risk|𝐸𝑁𝑇  (6) 

where 𝑅𝑖𝑠𝑘|𝑇 is the estimation of risk after considering the trustworthiness of the PRA; 𝑃(𝐸𝑇) is the 

subjective probability that 𝐸𝑇 will occur and is dependent on the trustworthiness of the risk assessment; 

Risk|𝐸𝑇 is the estimated risk from the PRA. Due to the presence of epistemic (parametric) uncertainty in 

the analysis, Risk|𝐸𝑇 is often expressed as a subjective probability distribution of the risk index. Risk|𝐸𝑁𝑇 

is an alternate distribution of the risk when the decision maker thinks the PRA is not trustable. In this 

paper, we assume Risk|𝐸𝑁𝑇 is a uniform distribution in [0,1], indicating no preference on the value of the 

risk index. Similar models have been used in literature to consider unexpected events in risk analysis 

(Kaplan & Garrick 1981). For example, Kazemi and Mosleh (2012) developed a similar model to calculate 

the default risk in similar scenarios considering the unexpected events. 

The following steps summarize how to use Eq. (6) to evaluate the risk given the trustworthiness of the 

risk assessment: 

i. The risk distribution Risk|𝐸𝑇 is evaluated for each hazard group using conventional PRA 

considering the parametric uncertainty propagation. 

ii. The level of trustworthiness of PRA of the corresponding hazard group is assessed, using the 

procedures in Section 3. 

iii. The subjective probability of trusting the PRA is determined by the detailed procedures described 
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in Section 4.2. 

iv. The level of trustworthiness is integrated in the risk using Eq. (6). 

4.2. Determining the probability of trusting the PRA 

The probability 𝑃(𝐸𝑇) in Eq. (6), which represents the decision maker’s belief that the risk 

assessment results are correct and accurate, needs to be elicited from the decision makers. The elicitation 

process needs to be organized and structured to ensure the quality of the elicitation.  

Different methods can be found in the literature for the assessment of a single probability using 

experts elicitation, such as probability wheels, lotteries betting, etc. (Jenkinson, 2005). In this work, we 

choose the “certainty equivalent gambles” for the elicitation. Before presenting the procedure for this 

method, some general recommendations need to be followed to ensure the quality of the elicitation process 

(Jenkinson, 2005): 

i. Background and preparation: uncertain events need to be defined clearly. 

ii. Identification and recruitment of experts: The experts who are conducting the elicitation are 

chosen carefully with low-value ladenness, and a preference of being both substantively and 

normatively skilled. 

iii. Motivating experts: the purpose and use of the work need to be explained to the experts, to 

motivate them for the elicitation. 

iv. Structuring and decomposition: the dependencies and functional relationships need to be first 

identified by the client and agreed on and modified by the experts if necessary.  

v. Probability and assessment training: the experts need to be trained to elicit probabilities. 

vi. Probability elicitation and verification: the expert needs to elicit the probabilities paying 

caution to zero values, cognitive biases, etc. After making the elicitation, the expert needs to 

make a summary of the elicitation and verify its adequacy. 

Then, a “certainty equivalent gamble” is designed to elicit the probability of trust: 

i. The elicitor informs the decision maker about the definition of the different levels of 

trustworthiness and their physical meaning, based on the definitions in Section 3.1. 

ii. The decision maker is asked to compare two scenarios: (1) he/she participates in a gamble 

(given the information from the PRA model) where he/she wins $1,000 if an accident occurs 

and $0 if the accident does not occur; (2) he/she wins $𝑥 for sure. 

iii. The experts exchange information between them and discuss. 
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iv. Suppose that a PRA was conducted and predicted that the consequences occur for sure, and 

the trustworthiness of the PRA is one of the five levels defined in Section 3.1. Then, for each 

level of trustworthiness, the elicitor varies the value of 𝑥 until the decision maker feels 

indifferent between the two scenarios. 

v. The probability of trust at the current level of trustworthiness is, then, calculated by: 

 𝑝 =
𝑥

1000
  (7) 

where 1000 here represents the $1000 that the expert gains if the accident occurs (the model prediction 

is correct). 

vi. The elicitor fits a suitable function to the five data points, in order to determine the 

probability of trust for trustworthiness levels between the defined levels. The shape of the 

fitted function should be determined based on the assessors’ behavior towards taking risk in 

trusting a low fidelity PRA: 

 A convex function should be chosen if the assessor is risk-averse, meaning that the 

decision maker trusts only the PRA with high levels of trustworthiness. 

 A linear function is chosen if the assessor is risk neutral. 

 A concave function is chosen if the assessor is risk-prone, meaning that although a PRA 

might not have a very high level of trustworthiness, the decision maker is willing to 

assign a high probability of trust to it. 

The risk assessor can eventually use this function to estimate the probabilities of trust for each hazard 

group.   

4.3. MHRA considering trustworthiness levels 

The main steps for MHRA considering trustworthiness are presented in Figure 2. Trustworthiness in 

the PRA of each single group is evaluated and integrated into the risk estimate for the corresponding 

hazard group first. After the integration, the risk is expressed as a subjective distribution on the probability 

that a given consequence will occur. Then, the estimated risk from different hazard groups is aggregated. 

This step can be done by simply adding the risk distributions from different hazard groups, as shown in Eq. 

(8), where 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙 is the total risk considering the level of trustworthiness; (𝑅𝑖𝑠𝑘𝑖|T) is the risk from the 

hazard group 𝑖 given the level of trustworthiness; 𝑛 is the number of hazard groups. Monte-Carlo 

simulations can be used to approximate the distribution of 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙. 
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 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑅𝑖𝑠𝑘𝑖|T)𝑛
𝑖=1   (8) 

5. Case study 

In this section, we apply the developed framework to a case study for two hazard groups in the 

nuclear industry: the external flooding and internal events hazard groups. The PRA models of the two 

hazard groups were developed and provided by Electricité De France (EDF) (Bani-Mustafa et al., 2018). 

The level of trustworthiness is, then, assessed for each hazard group (Section 5.2). The risk distributions 

from each hazard group are, then, recalculated considering the level of trustworthiness. Finally, the risk is 

aggregated from the two hazard groups (Section 5.3).  

5.1. Description of the PRA model 

The two hazard groups considered in this framework are external flooding and internal events. The 

external flooding refers to the overflow of water that is caused by naturally induced hazards such as river 

overflows, tsunamis, dam failures and snow melts (IAEA, 2003), (IAEA, 2011). The internal events refer 

to any undesired event that originates within the NPP and can cause initiating events that might lead to 

abnormal states and eventually, a core meltdown (EPRI, 2015). Examples of internal events include 

structural failures, safety systems operation and maintenance errors, etc. (IAEA, 2009). In this case study, 

the risk analysis is provided by EDF (Bani-Mustafa et al., 2018), in which bow-tie models are used to 

assess the probability of core damage frequency (CDF). In the original work of EDF, the uncertainty 

propagation was implemented, but only the mean values of the probability distributions of the risk were 

considered in MHRA and used for comparison to the safety criteria. However, due to confidentiality 

reasons, real values cannot be presented. Instead, we disguise the risk distribution, considering also the 

parametric uncertainty for illustration purposes, as shown in Figure 3.  

Figure 2 Main steps for MHRA considering the trustworthiness of the PRA 

Single hazard group risk assessment considering trustworthiness 
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Figure 3 Probability distribution of the risk considering parametric uncertainty: (a) external flooding risk, (b) internal events 

5.2. Evaluation of level of trustworthiness 

5.2.1. Evaluation of the attributes weights 

As illustrated in Section 3, the first step for evaluating the level of trustworthiness is to determine the 

relative importances (weights) of the trustworthiness attributes. The weights of the attributes are evaluated 

using the DST-AHP technique. Here, for explanation purposes, the sub-attribute “modeling fidelity” (𝑇1) is 

taken as an example to illustrate how to obtain local weights through pairwise comparisons and DTS-AHP. 

I. Constructing pairwise comparison matrices 

As shown in Section 3, the first step in the DST-AHP technique is to construct the pairwise 

comparison matrix.  Take the daughter attributes of modeling fidelity as an example. In this example, a 

4 × 4 pairwise comparison matrix is constructed in Table 5. 

Table 5 Pairwise comparison matrix (knowledge matrix) for comparing modeling fidelity “daughter” attributes 

Modeling fidelity *𝑇1,1+ *𝑇1,2+ *𝑇1,3+ Θ = *𝑇1,1, 𝑇1,2, 𝑇1,3+ 

*𝑇1,1+ 1 0 0 1/2 

*𝑇1,2+ 0 1 0 5/2 

*𝑇1,3+ 0 0 1 4 

*𝑇1,1, 𝑇1,2, 𝑇1,3+ 2 2/5 1/4 1 

Please note that the zeros that appear in the matrix indicate that there is no need to compare the 

individual criteria directly: they are compared indirectly through comparing the individual criteria 

to the universal set Θ (Dezert et al. 2010). 

𝑇1,1 represents the Quality of application, 𝑇1,2 represents the Suitability of the model, 𝑇1,3 

represents the robustness of the results  

In this matrix, the expert has considered four groups of focal sets: three for individual criteria and one 

Risk Risk 
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containing all the criteria in order to consider the uncertainty in the evaluation. Choosing focal sets like 

this means that to the best of their knowledge, the experts believe that the aforementioned focal sets can be 

favorably compared to the universal set Θ. 

II. Computing the weights 

In the previous example, the expert was asked to fill the pairwise comparison matrix to express 

his/her preference of a criterion over another. In this step, the weights of the focal sets are derived using the 

conventional AHP technique, where the normalized principal eigenvector of the matrix represents the 

weights. This can be directly done by normalizing each column in the matrix individually and, then, 

averaging the elements in each row to obtain that weight. 

 

Table 6 Normalized pairwise comparison matrix (knowledge matrix) of modeling fidelity “daughter” attributes 

Modeling fidelity *𝑇1,1+ *𝑇1,2+ *𝑇1,3+ Θ = *𝑇1,1, 𝑇1,2, 𝑇1,3+ Weight (BBA) 

*𝑇1,1+ 0.33 0 0 0.06 0.10 

*𝑇1,2+ 0 0.71 0 0.31 0.26 

*𝑇1.3+ 0 0 0.8 0.5 0.32 

*𝑇1,1, 𝑇1,2, 𝑇1,3+ 0.67 0.29 0.2  0.13  0.32 

III. Reliability discounting 

After computing the BBA for each expert matrix, the weights need to be discounted based on the 

reliability of each expert. For illustration purposes, the reliability 𝛿 of the expert who made the assessment 

is assumed to be 0.60. From Eq. (2), the discounted weights are found as the following: 

𝑚0.60(𝑇1,1) = 0.6 × 0.10 = 0.06 

Similarly, for 𝑚0.60(𝑇1,2) = 0.16, & 𝑚0.60(𝑇1,3) = 0.19. 

Finally, 𝑚0.60(Θ) is found as the following: 

𝑚0.60(Θ) = (1 − 0.60) + 0.6 × 0.32 = 0.59 

Please note that the BBAs (weights) sum to one before and after the discounting. 

IV. Combination of experts opinions 

In this case study, three experts have been invited to evaluate the weights; their assigned BBAs are 

summarized in Table 7 (the BBAs are calculated following the steps in Section 3.2). 

Table 7 Discounted basic belief assignment from the three experts 

Focal sets of the Expert 1 Expert 2 Expert 3 
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criteria 𝑚𝛿(𝐴) 𝑚𝛿(𝐴) 𝑚𝛿(𝐴) 

*𝑇1,1+ 0.06 0.16 0.02 

*𝑇1,2+ 0.16 0.24 0.38 

*𝑇1,3+ 0.19 0.24 0.46 

*𝑇1,1, 𝑇1,2, 𝑇1,3+ 0.59 0.36 0.14 

The combination of the experts judgments is conducted sequentially. Table 8 shows the procedures for 

combining the judgments of the first two experts. 

Table 8 Dempster's rule of combination matrix 

         Expert 2 

Expert 1 

𝑚𝛿(𝑇1,1) 𝑚𝛿(𝑇1,2) 𝑚𝛿(𝑇1,3) 𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 

𝑚𝛿(𝑇1,1) 𝑚𝛿(𝑇1,1)1 𝜙1 𝜙2 𝑚𝛿(𝑇1,1)2 

𝑚𝛿(𝑇1,2) 𝜙3 𝑚𝛿(𝑇1,2)1 𝜙4 𝑚𝛿(𝑇1,2)2 

𝑚𝛿(𝑇1,3) 𝜙5 𝜙6 𝑚𝛿(𝑇1,3)1 𝑚𝛿(𝑇1,3)2 

𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 𝑚𝛿(𝑇1,1)2 𝑚𝛿(𝑇1,3)2 𝑚𝛿(𝑇1,3)2 𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3)1 

*Please note that the element 𝑖𝑗 in the Table represent the multiplication of the 

elements 1𝑗 × 𝑖1, e.g., 𝑚𝛿(𝑇1,1) × 𝑚𝛿(𝑇1,1) = 𝑚𝛿(𝑇1.1)1; 𝑚𝛿(𝑇1,1) ×
𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) = 𝑚𝛿(𝑇1.1)2 

 

From Eq. (4), 𝐾 = 0,17.  

From Eq. (3): 

𝑚1,2
𝛿 (𝑇1,3) =

0,26

1 − 0.17
= 0.31 

The same steps are repeated for the other mass functions and presented in Table 9. Finally, the new 

results obtained from the combination of the two experts are further recombined with the BBAs from the 

third matrix. The results are presented in Table 9. 

 

Table 9 Mass function combinations from the experts 

 

Focal sets of the criteria 

Combined mass from 

experts 1 and 2 

Combined mass from 

experts 1, 2 and 3 

𝑚𝛿(𝐴) 

𝑚1,2
𝛿 (𝑇1,1) 0.15 0.05 

𝑚1,2
𝛿 (𝑇1,2) 0.29 0.40 

𝑚1,2
𝛿 (𝑇1,3) 0.31 0.49 

𝑚1,2
𝛿 (𝑇1,1, 𝑇1,2, 𝑇1,3) 0.25 0.06 
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V. Pignistic probability transformation 

Then, the pignistic mass function is found by Eq. (5): 

𝑤1,2,3
𝛿 (𝑇1,1) = 𝑚1,2,3

𝛿 (𝑇1,1) +
𝑚1,2,3

𝛿 (𝑇1,1, 𝑇1,2, 𝑇1,3)

3
= 0.05 +

0.06

3
= 0.07 

The steps are repeated for the other mass functions and found to be: 

𝑤1,2,3
𝛿 (𝑇1,2) = 0.42 

𝑤1,2,3
𝛿 (𝑇1,3) = 0.51 

Note that the three mass functions on the pignistic level sum to one. These pignistic mass functions 

represent the relative “believed weights” of the three criteria under modeling fidelity after the reliability 

discounting and transformation. The same steps are repeated for all the criteria. Then, the weights need to 

be evaluated with respect to the top-level goal: the trustworthiness. As illustrated previously, this can be 

done easily by multiplying the weight of the daughter attribute by the weight of the upper parent attributes 

in each level. For simplicity reasons, only the weights of the “leaf” attribute with respect to the top level 

attribute i.e., trustworthiness, are presented in Tables 10 and 11 (see Section 5.2.2). Note that the weights 

of the 27 leaf-attributes with respect to the top goal sum to one ∑ 𝑊𝑖 = 127
𝑖=1 . 

5.2.2. Evaluation of the attributes scores 

The next step is to evaluate the attributes score for the hazard group, given the scoring guidelines in 

Appendixes A-B. Some information regarding the risk assessment process is extracted from the PRA report 

to support the trustworthiness assessment: 

 The heights (water levels) at the plant’s platform at which the water can lead to a failure of a 

specific element were defined. 

 The water flowrate that would result in a given water height at the NPP platform in a defined 

interval of time was predicted. 

 The flow-rate was multiplied by a safety factor of 130%. 

 The “return period” for each flowrate was obtained from the data of the millennial flooding 

flowrate of the river of interest and the data were extrapolated to assess the frequencies of 

extreme flowrates. 

 The river flooding is considered as a predictable phenomenon and the probability of failure of 

transition into the emergency state (i.e., normal shutdown and cooling with steam generator, 
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residual heat removal system, etc.) is assumed to be the intrinsic probability of failure. 

 It is assumed that river overflow is the only source of external flooding. 

 A combined hydraulic/hydrologic method is adopted, given the special hydrological and 

physical characteristics of the basin.  

 It is assumed that once the water reaches the bottom of the equipment, the equipment fails. 

 It is assumed that failing to close the valves (ensuring the volumetric protection sealing-water 

proofing) causes the total loss of Emergency Feedwater System (EFWS).   

 It is assumed that clogging inevitably occurs if the flooding occurs. 

 The analysis and model calculation for this hazard group is taken with a specific cutoff error 

of 10 −14. 

Based on the excerptions from the report, it can be seen that: 

 In this example, the risk analysis and assessment steps follow the IAEA recommendations. 

 The calculation of flowrates and flow frequencies are calculated using solid deterministic 

models. However, extrapolation of the data to obtain the frequencies of floods with extreme 

flowrates is still doubtful. 

 The river overflow is a predictable phenomenon and does not happen suddenly. However, the 

river overflow is not the only source of flooding. For example, a rupture in the river dikes 

might also lead to sudden, unpredictable flooding. 

 The application of a combined hydraulic/hydrologic method on the flooding studies of 

nuclear sites allows a more realistic evaluation of the flooding level and to estimate more 

precisely the return periods. 

 The assumption that the water will fail the equipment directly if it touches its bottom level is 

conservative. 

 Feedback data show that clogging due to river flooding has occurred before in the nuclear 

industry (see, for example, USNRC General Electric Advanced Technology Manual for more 

information (NRC 2011)). However, claiming that each flooding would surely lead to 

clogging is still questionable and needs to be studied in details, taking into account the 

different influencing parameters (hydraulic, geometrical and topographical properties) of the 

area (see (Gschnitzer et al., 2017)). 

 In case of failing to close the valves ensuring the volumetric protection, the probability that 
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water will go back through the drainage system is not identified and assumed to be one 

(𝑃 = 1), though there are no relevant calculations. Moreover, once the water enters the 

physical protection locations, the safety-related equipment is assumed to be lost. Both 

assumptions are conservative to increase the safety margin. 

Based on the above observations, the leaf attributes in Figure 1 can be evaluated. For example, quality 

assurance attribute is evaluated to be five (𝑇1,3,4,2 = 5), since the PRA is conducted following the IAEA 

recommendations. The accuracy of the calculation is evaluated to be five (𝑇1,3,2 = 5), since the cutoff error 

is apparently very low. The combined hydraulic/hydrologic models used for the flooding studies are able to 

capture the special hydrological and physical characteristics of the basin, which makes them suitable for 

the study. Hence, a score of four (𝑇1,2,2 = 4) is given for the suitability of the model. The assumptions 

presented above are mostly conservative and unrealistic. Therefore, a score of one (𝑇1,3,3,1 = 1) is given for 

the plausibility of the assumptions. The other attributes are scored in the same way. The results are 

represented in Tables 10 and 11. The level of trustworthiness for the external flooding is, then, calculated 

by Eq. (1): 𝑇𝑒𝑥𝑡 = ∑ 𝑊𝑖 ∙ 𝐴𝑖
27
𝑖=1  = 3.260. 

Table 10 level-3 leaf attributes weights 𝑊 and scores 𝑆 for external flooding hazard group 

𝑨𝒕𝒕 

MS IoA RM S HU Cv 

Ao

C 

NH AR EK YE NE Ac In AD 

𝑾 0.01

2 

0.02

6 

0.02

5 

0.15

8 

0.07

0 

0.02

5 

0.01

2 

0.02

2 

0.03

2 

0.05

4 

0.03

4 

0.01

7 

0.10

5 

0.10

5 

0.06

5 

𝑺𝒄𝒐𝒓𝒆 2 2 3 4 3 4 5 2 2 3 3 4 3 3 3 

 

Table 11 level-4 leaf attributes weights 𝑊 and scores 𝑆 for external flooding hazard group 

𝑨𝒕𝒕 Pl VL Ag QA LoG NoA LoD C Co V T Ac 

𝑾 0.037 0.029 0.025 0.066 0.006 0.005 0.004 0.017 0.011 0.009 0.011 0.017 

𝑺𝒄𝒐𝒓𝒆 1 4 4 5 4 4 4 3 3 3 3 3 

 

The trustworthiness for internal events hazard group (𝑇𝑖𝑛𝑡) was calculated in the same way and, the 

result is 𝑇𝑖𝑛𝑡 = 4.414. These results confirm the expectations that the PRA for internal events is considered 

relatively mature and well established (EPRI 2015) in contrast to the PRA of external hazards, which is 

considered less mature with several limitations (EPRI 2012). 

5.3. Risk assessment considering the level of trustworthiness 

5.3.1. Determining the probability of trust in the PRA results 
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In this step, the decision maker is asked to assign a probability that represents the belief that the risk 

assessment model output is correct (hereafter called probability of trust), based on the certainty equivalent 

approach presented in Section 4.2. In this example, we assume that the decision maker exerts a risk-prone 

behavior and generates the results in Table 12. The data in Table 12 are extrapolated and fitted to a 

function, as shown in Figure 4.   

Table 12 Probability of trust given the level of trustworthiness 

Trustworthiness Probability of trust 

1 0.05 

2 0.50 

3 0.75 

4 0.90 

5 1.00 

 

 

Figure 4 Fitted probability of trust in the PRA given the trustworthiness 

Then, the probability that the decision maker trusts each hazard group PRA given their 

trustworthiness is calculated from the fitted model in Figure 4. The probability of trust for the external 

flooding 𝑝𝑒𝑥𝑡 is found to be 𝑝𝑒𝑥𝑡 = 0.783. The probability of trust for the internal events 𝑝𝑖𝑛𝑡 is found to 

be 𝑝𝑖𝑛𝑡 = 0.957.  

5.3.2. Risk assessment of a single hazard group considering the level of trustworthiness 

The level of trustworthiness is integrated with the PRA results for both hazard groups following Eq. 

(6). The results are presented in Figures 5 and 6, respectively. As illustrated in Figure 5, the mean risk 

value considering the trustworthiness is 1.088 × 10−1 for external flooding compared to 1.589 × 10−6 



267 

 

without considering the level of trustworthiness. For internal events, the mean risk value is 2.149 × 10−2 

considering the trustworthiness compared to 3.322 × 10−8 without considering it for internal events, as 

illustrated in Figure 6. It can be seen from the Figures that considering the level of trustworthiness will 

lead to a larger spread out of the probability distribution of the risk. This comes out as a result of 

accounting for the disbelief in the risk analysis that reflects the ignorance about the real value of risk. 

Hence, the spread of the risk distribution becomes wider, leading to a higher mean value of the risk. 

 

 

Figure 5 Updated risk estimates after considering the level of trustworthiness for external flooding (a) original 

risk estimate from the PRA, (b) Risk estimates after integrating the level of trustworthiness 

 

 

 

Figure 6 Updated risk estimates after considering the level of trustworthiness for internal events (a) original risk estimate 

from the PRA, (b) Risk estimates after integrating the level of trustworthiness 
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5.3.3. Multi-Hazards risk aggregation 

Finally, the overall risk given the level of trustworthiness can be calculated using Eq. (8). The results 

are presented in Figure 7. The empirical probability density function of the risk is evaluated through a 

Monte-Carlo simulation of 105 samples. As a comparison, the MHRA is also conducted using the 

conventional methods by adding the risk indexes from the two hazard groups directly, without considering 

the trustworthiness, as shown in Figure 7 (a). The mean value of the total risk from the two hazard groups 

considering the level of trustworthiness is found to be 1.303 × 10−1 compared to 1.622 × 10−6 without 

considering the level of trustworthiness. Considering the level of trustworthiness in the analysis means that 

we are accounting for the disbelief, shortcoming, and lack of knowledge in the analysis, which leads to a 

broader spread-out of the distributions. The increase of the spread-out of probability distribution of risk 

leads to a higher mean value of risk. The aggregation of the risks from the two hazard groups considering 

the level of trustworthiness results in a more meaningful result, as it takes into account the fact that the 

PRA model of the two hazard groups is based on different levels of trustworthiness. 

 

 

Figure 7 Results of the MHRA, (a) conventional aggregation, (b) considering the level of trustworthiness 

6. Discussion and conclusion  

In this paper, we have presented a framework for Multi-hazards Risk Aggregation (MHRA) 

considering trustworthiness. A framework for evaluating the level of trustworthiness is first developed. The 
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framework consists of two main attributes, i.e., strength of knowledge and modeling fidelity. The strength 

of knowledge attribute covers the explicit knowledge that can be documented, transferred or explained. 

The modeling fidelity attribute covers the suitability of the tool and the model construction process. The 

two attributes are broken down into sub-attributes and, finally, leaf attributes. The total trustworthiness is 

calculated using a weighted average of the attributes, where the weights are calculated using DST-AHP 

method.  

A MHRA method is, then, developed to aggregate the risk from different hazard groups with different 

levels of trustworthiness, based on a “weighted posterior” method. An application to a case study of a NPP 

shows that the developed method allows aggregating risk estimates with different degrees of maturity and 

realism from different risk contributors. 
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Appendix A: Evaluation guidelines for leaf attributes under modeling fidelity (𝑻𝟏) 

Appendix A.1: Attributes under “robustness of the results attributes” 

Table A.1.1 Scoring guidelines for robustness of the results 

Score 

Attribute 
1 3 5 

Model sensitivity 𝑇111 

𝑇111 = 1 if the ensemble 

of model parameters 

greatly influence the 

final result 

𝑇111 = 3 if the ensemble 

of model parameters 

moderately influence the 

results 

𝑇111 = 5 if the ensemble 

of model parameters 

have little or no impact 

on the results of risk 

analysis 

Impact of the assumptions 

𝑇112 

𝑇112 = 1 if the 

assumption greatly 

influences the results of 

risk analysis 

𝑇112 = 3 if the 

assumption moderately 

influences the results of 

risk analysis 

𝑇112 = 5 if the 

assumption has little or 

no impact on the results 

of risk analysis 

 

Appendix A.2: Attributes under “suitability of the selected model” 

Table A.2.1 Scoring guidelines for suitability of the selected model 

Score 

Attribute 
1 3 5 

Robustness of the model 

𝑇121 

𝑇111 = 1 if the model 

doesn’t show the 

capability of performing 

under different settings 

or when exerting, 

deliberately, some 

variations in the 

assumptions and 

parameters 

𝑇111 = 3 if the model  

show the capability of 

performing moderately  

under different settings 

or small deliberate 

variations in the 

assumptions and 

parameters 

𝑇111 = 5 if the model  

show the capability of 

performing under 

different settings or 

when exerting, 

deliberately, large 

variations in the 

assumptions and 

parameters 

Suitability of the tool 𝑇122 

𝑇122 = 1 if the selected 

model is not usually 

used for achieving 

objectives similar to the 

required ones or it is not 

suitable for the problem 

settings and cannot 

capture all the important 

𝑇122 = 3 if the selected 

model is usually used 

for achieving objectives 

similar to the required 

ones or it is suitable for 

the problem settings but 

doesn’t capture entirely 

the important aspects of 

𝑇122 = 5 if the selected 

model is usually used 

for achieving objectives 

similar to the required 

ones and it is suitable 

for the problem settings 

in a way that captures 

entirely the important 
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aspects of the problem the problem aspects of the problem 

in a way that makes it 

suitable to represent 

reality 

Historical use 𝑇123 

𝑇123 = 1 if the selected 

tool is new or has never 

proved its successful use 

before, or if it is a new 

version of the tool that is 

quite different from the 

old one 

𝑇123 = 3 if the selected 

tool is a new updated 

version of a tool that has 

proved its successful use 

before 

𝑇123 = 5 if the selected 

tool is quite common 

tool that has proved its 

successful use in 

different problem 

settings, or if it is a 

slightly updated version 

of an old common one 

that proved it successful 

use 

 

Appendix A.3: Attributes under “quality of application” 

Conservatism: 

In this setting, the conservatism is evaluated in the light of three criteria:  (i) types of risk index 

estimates (best judgment, true value with a high confidence and true value with a low confidence); (ii) 

context of decision making; (iii) the effect of conservatism on the perception of the problem compared to 

best or true estimates or true and consequently decision making assumptions and parameters. Figure A.1-3 

illustrate the different score for each corresponding scenario. 
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Figure A.3.1 Evaluation of the conservatism in the light of the level of maturity (conservatism VS Best estimate) 

 

Figure A.3.2 Evaluation of the conservatism in the light of the level of maturity (conservatism VS True 

value/weak knowledge) 

True value (low 

confidence, 𝑃 ≤ 90%) 

based on weak 

knowledge 
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Figure A.3.3 Evaluation of the conservatism in the light of the level of maturity (conservatism VS True 

value/strong knowledge) 

 

Table A.3.1 Scoring guidelines for the quality of the application  

    Score 

Attribute 
1 3 5 

The accuracy of the 

calculation 𝑇132 

 

𝐾131 = 1 if the setting of 

accuracy is chosen to be low 

and high degree of error is 

accepted in the calculations. 

For example, the cutoff error 

(the chosen value of parameters 

at which lower values are 

ignored) is set to be large, and 

a low number of trials are 

performed 

𝐾131 = 3 if the setting of 

accuracy is chosen to be 

acceptable with a 

tolerable degree of 

errors. For example, the 

cutoff error is set to be 

quite low and a sufficient 

number of trials are 

performed 

𝐾131 = 5 if the setting of 

accuracy is chosen to be 

high and errors are 

conservatively accepted 

in the calculations. For 

example, the cutoff  error 

is set at to be small, and a 

high number of trials are 

performed 

Table A.3.2 Scoring guidelines for quality of assumptions (Boone et al.,2010)  

    Score 

Attribute 
1 3 5 

True value (high 

confidence, 𝑃 ≥ 90%) 

based on strong 

knowledge 
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Plausibility of 

assumptions 𝑇1331 

 

𝐾1331 = 1 if the assumption is 

not realistic (over conservative 

or over optimistic), or the 

available information is not 

sufficient for assessing the 

quality of the assumptions 

𝐾1331 = 3 if the 

assumption is based on 

existing simple models 

and extrapolated data 

𝐾1331 = 5 if the 

assumption is plausible: 

it is grounded on well-

established theory or 

abundant experience on 

similar systems, and 

verified by peer review 

Note: If multiple assumptions are involved in the assessment, the final score for 𝑇1331 is obtained by 

averaging the scores of all the assumptions. 

 

Table A.3.3 Scoring guidelines for the value-ladenness of the assessors 

Score 

Attribute 
1 3 5 

Personal knowledge 

(educational 

background) 

𝑇13321 

𝑇13321 = 1 if all of the 

experts hold academic 

degrees from other 

domains 

𝑇13321 = 3 if less than two 

thirds of the experts hold 

academic degrees in the same 

field 

𝑇13321 = 5 if over two 

thirds of the experts 

hold academic degrees 

in the same field 

Sources of information  

𝑇13322 

𝑇13322 = 1 if experts can 

only access academic 

information source or 

only industrial 

information source 

𝑇13322 = 3 if experts can 

access fully industrial 

information source and 

partially academic information 

source 

𝑇13322 = 3 if experts 

can fully access both 

academic and industrial 

information sources 

Unbiasedness and 

plausibility 

𝑇13323 

𝑇13323 = 1 if the expert 

team is very conservative 

or optimistic 

𝑇13323 = 3 if the expert team 

is slightly 

conservative/optimistic 

𝑇13323 = 5 if as a team, 

the experts are 

unbiased: the biases of 

the experts can 

compensate one 

another 

Relative independence  

𝑇13324 

𝑇13324 = 1 if over three 

quarters of the experts 

are highly influenced by 

mangers and 

stakeholders 

𝑇13324 = 3 if less than one 

quarter of experts might be 

influenced by the mangers and 

stakeholders 

𝑇13324 = 5 if all 

experts’ decisions are 

highly independent 

Past experience 

𝑇13325 

𝑇13325 = 1 if the experts’ 

experience is less than 5 

years 

𝑇13325 = 3 if the experts’ 

experience is between 10-15 

years 

𝑇13325 = 5 if the 

experts’ experience is 

more than 20 years 
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Performance measure 

𝑇13326 

𝑇13326 = 1 if the 

performance of the 

experts are not evaluated 

by external peers 

𝑇13326 = 3 if the external 

peers generally acknowledge 

the experts’ performance but 

raise some slight concerns 

𝑇13326 = 5 if the 

external peers endorse 

the experts’ 

performance and  

approve them  

*Please note the value-ladenness score is calculated by averaging the scores over all the attributes in this table. 

Table A.3.4 Scoring guidelines for leaf attributes under verification 

    Score 

Attribute 

1 3 5 

Agreement among 

peers 

𝑇1341 

𝑇1341 = 1 if some 

experts hold strongly 

conflicting views on the 

assumptions 

𝑇1341 = 3 if some experts 

questions on the assumptions, 

but do not have strongly 

conflicting views 

𝑇1341 = 1 if most of 

the experts agree on the 

assumptions 

Quality assurance 

𝑇1342 

𝑇1341 = 1 if the analysis 

does not follow the 

quality standards and 

recommendations set by 

the PSA community e.g., 

ASME standards, NRC 

regulatory guides, IAEA 

recommendations 

𝑇1341 = 3 if the analysis 

follows moderately the quality 

standards and 

recommendations set by the 

PSA community e.g., ASME 

standards, NRC regulatory 

guides, IAEA 

recommendations 

𝑇1341 = 5 if the 

analysis follows 

entirely and 

conservatively the 

quality standards and 

recommendations set 

by the PSA community 

e.g., ASME standards, 

NRC regulatory guides, 

IAEA 

recommendations 

 

Table A.3.5 Scoring guidelines for leaf attributes under the level of sophistication 

    Score 

Attribute 

1 3 5 

Level of granularity 

𝑇1351 

𝑇1341 = 1 if the level of 

analysis is performed 

abstractly and coarsely 

on the level of systems or 

level  the level of large 

components 

𝑇1341 = 3 if the analysis is 

performed in to a sufficiently 

fine level that regards the 

small components of a system 

or a small factors of a problem 

𝑇1341 = 1 if the level 

of analysis is zoomed 

in to the level of 

component’s small 

constituting parts e.g., 

considering the small 

constituting parts of a 
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manual (i.e., valve, the 

body, bonnet, ports 

etc.) when building the 

physical model for 

calculating the failure 

rate of a manual valve 

Number of 

approximations 

𝑇1352 

𝑇1342 = 1 if there is a 

large number of 

approximations and the 

aggregate of the 

approximations affects 

significantly  the output 

𝑇1342 = 3 if there is a 

moderate number of 

approximations or the 

aggregate of the 

approximations affects 

moderately the output 

𝑇1342 = 5 if there is a 

low number of 

approximations and the 

aggregate of the 

approximations does 

not affect, or affects 

insignificantly  the 

output 

Level of details 

𝑇1353 

𝑇1353 = 1 if most of the 

relevant contributing 

factors (including those 

that are not evident in the 

model construction 

requirements) that affect 

the estimates are not 

captured in modeling 

process compared to a 

complete realistic 

modeling e.g., the 

dependency among 

components in 

calculating the failure of 

a given component, 

environmental and 

thermal effect on 

components, level of the 

PH 

𝑇1353 = 3 if most of the 

relevant contributing factors 

(including those that are not 

evident in the model 

construction requirements) that 

estimates are captured in the 

modeling process compared to 

a complete realistic modeling 

e.g., considering the 

dependency among 

components in calculating the 

failure of a given component, 

environmental and thermal 

effect on components, level of 

the PH 

𝑇1353 = 3 if all 

relevant contributing 

factors (including those 

that are not evident in 

the model construction 

requirements) that 

affect the estimates are 

captured in modeling 

process compared to a 

complete realistic 

modeling e.g., 

considering the 

dependency among 

components in 

calculating the failure 

of a given component, 

environmental and 

thermal effect on 

components, level of 

the PH 

 

Appendix B: Evaluation guidelines for the strength of knowledge (𝑻𝟐) leaf attributes 

Appendix B.1: Attributes under “Known potential hazards” 
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Table B.1.1 Scoring guidelines for leaf attributes under known potential hazards 

Score 

Attribute 
1 3 5 

Number of known 

hazards 

𝑇211 

𝑇211 = 1 if there is only a 

few number of known 

relevant hazards that are 

considered in the analysis 

𝑇211 = 3 if there is a 

moderate number of 

known relevant hazards 

that are considered in the 

analysis 

𝑇211 = 5 if there is a 

high number of 

known relevant 

hazards that are 

considered in the 

analysis 

Availability of accident 

reports 

𝑇212 

𝑇212 = 1 if there is no past 

experience and technical 

reports that explain and 

cover in details the timing, 

causes and different 

sequences of abnormal 

activities, incident or 

accident 

𝑇212 = 3 if there is only 

a few past experience 

and technical reports that 

explain and cover in 

details the timing, causes 

and different sequences 

of abnormal activities, 

incident or accident, or if 

there is abundancy of 

reports that covers 

accidents without details 

𝑇212 = 5 if there is 

abundancy of past 

experience and 

technical reports that 

explain and cover in 

details the timing, 

causes and different 

sequences of 

abnormal activities, 

incident or accident 

Experts knowledge 

about hazards 

𝑇213 

𝑇213 = 1 if the expert has 

a low experience in such a 

type of analysis and  

hazards, as well as other 

types of problem, in a way 

that prevents him from 

imagining new unknown 

types of hazards 

𝑇213 = 3 if the expert 

has a moderate degree of 

experience in such a 

type of analysis and 

hazards, as well as other 

types of problem, in a 

way that allows him to 

imagine new unknown 

types of hazards 

𝑇213 = 5 if the expert 

has a high degree of 

experience in such a 

type of analysis and 

hazards, as well as 

other types of 

problem, in a way that 

allows him to imagine 

most of the unknown 

types of hazards 

 

Appendix B.2: Attributes under “phenomenological understanding” 

Table B.2.1 Scoring guidelines for phenomenological understandings’ leaf attributes 

Score 

Attribute 
1 3 5 
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Years of experience 

(human experience on 

the phenomenon) 

𝑇221 

𝑇221 = 1 if the 

phenomenon is new to a 

human being, and no 

theories about the 

phenomenon have been 

developed yet or the 

theories are incapable to 

explain well the 

phenomenon (e.g., black 

holes) 

𝑇221 = 3 if the 

phenomenon has been 

investigated for 

moderate years of 

experience with few 

theories that are 

consistent with 

preexisting ones but still, 

do not explain 

holistically the 

phenomena (e.g., nuclear 

physics) 

𝑇221 = 5 if the 

phenomenon has been 

investigated for a long 

time and well-

established theories 

have been developed 

to explain the 

phenomenon, which 

have been proved by 

many evidences (e.g., 

classical physics) 

Number of experts 

involved in the analysis 

𝑇222 

𝑇222 = 1 if there is no 

experts related to this 

domain (the assessors 

involved are not expert in 

this domain) or the experts 

are unreliable  

𝑇222 = 3 if there is a 

moderate number of 

experts of acceptable 

reliability (two experts) 

or a low number of 

experts of high 

reliability 

𝑇222 = 5 if there is a 

sufficient number of 

highly reliable experts 

(more than two 

experts) 

Academic studies on the 

phenomena (measured 

by the number of articles 

and books published on 

the subject) 

𝑇223 

𝑇223 = 1 if no or limited 

published articles supports 

the understanding of the 

phenomenon (e.g., 

Einstein electromagnetic 

waves) 

𝑇223 = 3 if a moderate 

amount of the published 

articles supports the 

understanding of the 

phenomenon (e.g., 

nuclear energy) 

𝑇223 = 5 if a large 

amount of the 

published articles 

supports the 

understanding of the 

phenomenon (e.g., 

kinetic energy) 

Industrial pieces of 

evidence and 

applications on the 

phenomena (measured 

by the number of 

applications available on 

this subject) 

𝑇224 

𝑇224 = 1 if no or few 

industrial applications and 

reports support the 

understanding of the 

phenomenon (e.g., 

autonomous vehicles) 

𝑇224 = 3 moderate 

amount of industrial 

applications and reports 

support the 

understanding of the 

phenomenon (e.g., 

machine learning) 

𝑇224 = 5 if la arge 

amount of industrial 

applications and 

reports support the 

understanding of the 

phenomenon (e.g., 

airplanes) 

 

Appendix B.3: Evaluation guidelines for leaf attributes under “Data” 

Amount of data 𝑇231 is measured by a numerical metric, Years of Experience (YoE), defined by the 
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number of related events recorded during a specific period. 

YoE =length of the data collection period (in years) × sample size of the data 

The amount of data is scored based on the criteria in Table B.3.1. 

Table B.3.1 Scoring guidelines for Amount of available data 

Value of YoE Score  

< 50 1 

50-199 2 

200-499 3 

500-999 4 

>1000 5 

 

Completeness of data refers to the degree to which the collected data contains the needed information. For 

components and systems, data completeness is characterized by the following criteria (IAEA 1991): 

1. The data should contain baseline information, which covers the design data and conditions of 

a component at its initial state. 

2. The data should contain the operating history, which covers the service conditions of systems 

and components including transient and failure data. 

3. The data should contain the maintenance history data, which covers the components 

monitoring and maintenance data. 

For more details on how each of the previous attributes is identified, see (IAEA 1991). However, it 

should be noted that the completeness features are defined differently depending on the problem. For 

example, data required for quantifying to a component failure frequency is different from that for 

quantifying a natural event. General scoring guidelines for evaluating 𝑇2321 are given, based on the degree 

to which criteria are satisfied, as shown in Table B.3.2. 

 

Table B.3.2 scoring guidelines for data reliability  

Score 

Attribute 
1 3 5 

Completeness 

𝑇2321 

𝑇2321 = 1 if the data fail 

to contain the necessary 

information required in 

developing the risk 

𝑇2321 = 3 if the data contain 

to an acceptable degree the 

necessary information 

required in developing the 

𝑇2321 = 5 if the data contain 

all the necessary information 

required in developing the 

risk assessment model (in the 
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assessment model (in the 

light of the completeness 

characteristics defined 

above) 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 

 

light of the completeness 

characteristics defined above) 

 

 

The validity of data is evaluated by the following criteria: 

1. The integrity of data is carefully managed.  

2. Databases are well organized and formatted in a common way, and easily retrieved and manipulated. 

3. Data should be collected and entered in the database by well-trained maintenance personnel, and 

modern computer techniques should be used for data storage, retrieval, and manipulation. 

4. The data collection and entering process should include an appropriate quality control mechanism. 

Based on the four criteria the evaluation guidelines of 𝑇2323 can be defined in Table B.3.3. 

Table B.3.3 scoring guidelines for data validity 

Score 

Attribute 
1 3 5 

Validity 

𝑇2323 

𝑇2323 = 1 if none of the 

validity criteria (illustrated 

above) is fulfilled 

𝑇2323 = 3 if the validity 

criteria (illustrated above) are 

partially fulfilled 

𝑇2323 = 5 if all of the 

validity criteria (illustrated 

above) are fulfilled 

 

Accuracy measures how close the estimated or measured value is compared to the true value. 

Accuracy is determined by random and systematic errors in the measurements (Popek 2017). Since the data 

involved in nuclear PRA are mostly related to the number of failures or degradations and are usually 

collected digitally from different sources, systematic errors in the data are very small. This means that the 

accuracy of data is primarily determined by random errors. Since the error margin of the confidence 

interval is widely accepted as a good indicator of the random errors, it can be used as a measure of the data 

accuracy. Error factor may be defined based on the upper and lower bounds of confidence interval:  

𝑒𝑟𝑟𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = √
𝑈𝑙

𝐿𝑙
 

where 𝑈𝑙 and 𝐿𝑙 are the upper and the lower bounds of confidence intervals. The accuracy of data is, then, 

scored based on the value of error factors, following the guidelines in Table B.3.4 scoring guidelines for 

data reliability  
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Table B.3.4 scoring guidelines for data validity 

Score 

Attribute 
1 3 5 

Accuracy 

𝑇2325 

𝑇2325 = 1 if the error factor 

is greater than 10 

𝑇2325 = 3 if the error factor is 

between 2-10 

𝑇2325 = 5 if the error factor 

is less or equal to 2 

 

The rest of the “leaf” attributes of the reliability of data are evaluated following the guidelines in 

Table B.3.5. 

Table B.3.5 scoring guidelines for data reliability 

Score 

Attribute 
1 3 5 

Consistency  

𝑇2322 

𝑇2322 = 1 if the data are 

not from the same type of 

power plant, or have 

different characteristics 

compared to the system 

under investigation, e.g., 

different component or 

model 

𝑇2322 = 3 if the data are from 

the same power plant with the 

same type of component and 

the same characteristics of the 

system under investigation 

but from different 

manufacturers 

𝑇2322 = 5 if the data are from 

the same power plant with 

the same type of components 

and the components have the 

same characteristics and the 

same manufacturer 

Timeliness 

𝑇2324 

𝑇2324 = 1 if the data has 

never been updated 

𝑇2324 = 3 if the data has been 

updated a few years ago (10 

years and more) 

𝑇2324 = 5 if the data are up-

to-date and are updated 

routinely 
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Appendix VI :  

Synthèse de thèse 
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Synthèse de thèse 

L'objectif de l'évaluation des risques est de fournir un support d’informations pour la prise de décision [35], 

[36], [5], [3], [34]. Dans l’évaluation de risque, nous effectuons des mesures quantitatives et qualitatives du 

risque pour s’assurer qu'il reste dans la limite autorisée. L’évaluation quantitative du risque est effectuée par 

l’agrégation des risques multiples (MHRA), qui implique l'agrégation des indices de risque des contributeurs 

(de risque) pour arriver à une métrique de risque qui peut être comparée aux critères de sûreté pour aider à la 

prise de décision. D’un côté, en MHRA, les indices de risques des différents contributeurs peuvent avoir 

différents degrés de réalisme, qui résultent des différences dans leurs caractérisations, comme par exemple, 

leur incertitude, niveau de connaissance, conservatisme, etc. [19]. D’un autre côté, la pratique actuelle de la 

méthode MHRA consiste à effectuer une sommation arithmétique simple des indices de risque des différents 

contributeurs, sans considérer les aspects qui conduisent à la différence des degrés de réalisme [19]. La 

méthode MHRA doit donc considérer les différences d’incertitudes [19] et de degré de confiance dans les 

résultats (de l’évaluation de risque) qui sont pertinents pour soutenir la prise de décision [3]. 

Cette thèse de doctorat aborde le problème de l'agrégation de risques multiple (MHRA), qui vise à agréger les 

risques estimés pour différents contributeurs. La pratique actuelle de la MHRA est basée sur une sommation 

arithmétique simple des estimations de risques. Cependant, ces estimations sont obtenues à partir de modèles 

EPS (Estimation Probabiliste de risque) qui présentent des degrés de réalisme différents liés à différents 

niveaux de connaissances. En ne prenant pas en compte ces différences, le processus MHRA pourrait conduire 

à des résultats trompeurs pour la prise de décision (DM). Dans cette thèse, un cadre structuré est proposé afin 

d’évaluer le niveau de réalisme et de confiance dans les évaluations de risques et de l’intégrer dans le 

processus de MHRA. Ces travaux ont permis :  

(i) Une identification des facteurs contribuant à la fiabilité de l'évaluation des risques. Leurs criticités 

sont analysées afin de comprendre leur influence sur l’estimation des risques ; 

(ii) Un cadre hiérarchique intégré est développé pour évaluer la confiance et le réalisme de 

l'estimation de risque, sur la base des facteurs et des attributs identifiés en (i) ;  

(iii) Une méthode basée sur un modèle réduit est proposée pour évaluer efficacement la fiabilité de 

l'évaluation des risques dans la pratique. Grâce à cette méthode, le nombre d'éléments pris en 

compte dans l'évaluation initiale des risques peut être limité ; 

(iv) Une technique qui combine la théorie de Dempster-Shafer et le processus de hiérarchie analytique 

(DST-AHP) est appliquée au modèle développé. Cette technique permet d’évaluer le niveau de 

réalisme et confiance -dans l’analyse de risque- en utilisant une moyenne pondérée des attributs: 

la méthode AHP est utilisée pour calculer le poids des attributs et la méthode DST est utilisée 

pour tenir compte de l'incertitude subjective dans le jugement des experts dans l'évaluation des 

poids ; 
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(v) Une technique de MHRA est développée sur la base d'un modèle de moyenne bayésienne afin de 

surmonter les limites de la pratique actuelle de MHRA qui néglige le réalisme et confiance dans 

l'évaluation de chaque contributoire de risque ; 

(vi) Le modèle développé est appliqué sur des cas réels de l'industrie des centrales. 

Le modèle développé fournit un moyen systématique pour évaluer la fiabilité des résultats de l'évaluation des 

risques et pour les l’intégrer dans l'agrégation des risques afin de combler les lacunes de la MHRA 

conventionnelle. D'un point de vue pratique, l’approche prévoit également des procédures systématiques et 

pratiques pour faciliter son application sur des problématiques réelles et résoudre le problème de la subjectivité 

des jugements des experts. L'application du modèle développé sur des problématiques réelles démontre la 

faisabilité et le caractère raisonnable de l'approche, ouvrant la voie à son applicabilité pour aider la prise de 

décision basée sur les risques. 


