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Abstract 

Lung cancer is the main cause of death by cancer worldwide. Despite the variety of available 

treatments, including surgery, chemotherapy, radiotherapy, and immune therapy, the average 

5-year survival is 60%. One of the underlying reasons is a very high variability in patients’ 

susceptibility to treatment, explained by genetic background and since recently – our 

microbiota. The term microbiota includes bacteria, archaea, fungi, viruses and protists that 

inhabit our organism. The studies in animal models show that the gut microbiota (focused on 

bacteria) has a crucial role in host’s responsiveness to therapy through the stimulation of 

immune system. In this light, several “communication axes” between the gut and distal tumour 

sites have started to develop, including the “gut-lung” axis. However, the resident microbiota 

in the lungs that could directly influence the tumour response and interact with the gut 

microbiota has been scarcely characterised. To enable further development of the idea of the 

“gut-lung-lung cancer” axis, we included 18 non-small cell lung cancer (NSCLC) patients 

eligible for surgery and analysed the microbiota from four different lung samples (non-

malignant, peritumoural and tumour tissue and bronchoalveolar lavage fluid; BAL), saliva and 

faeces by high-throughput sequencing. We also analysed several immune markers, as 

lymphocytic tumour infiltrate, Th and neutrophil profiles and cytokines in BAL and blood, and 

inflammatory markers in faeces along with short-chain fatty acids. Focusing first on the lungs, 

we show that BAL microbiota represents a significantly distinct community compared to lung 

tissue microbiota by providing detailed characterisation of the four different lung samples. 

Since tumours in lower lobes are reported as the ones with the worse prognosis, we investigated 

how the lobe location affected the microbiota composition. Peritumoural tissue and BAL 

microbiota were identified as the most affected in both abundance and diversity, and tumour as 

the least affected. However, phylum Firmicutes, previously reported as elevated in chronic 

obstructive pulmonary disease compared to controls, was found more abundant in microbiota 

from lower lung lobes. Therefore, we propose that both increase in Firmicutes and extensive 

changes in peritumoural tissue could be associated to increased aggressiveness of the lower 

lobe tumours. Next, we show that the presence of metastatic lymph nodes (LN), negative 

prognostic marker in NSCLC, significantly influence the local tissue microbiota in relation to 

its respiratory profile. We reported that anaerobic bacteria were more abundant within the 

tumour in the presence of metastatic LN, and aerobic bacteria within the one without it. 
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Moreover, exactly inverse was observed for the same bacteria in extratumoural tissues. Along 

with migratory hypothesis depending on the bacterial preference for growth conditions shaped 

by tumour’s features, we propose several biomarkers for detection of metastatic LN that might 

facilitate their detection without imposing LN biopsy. Finally, we showed that BAL microbiota 

is the most associated to the local immune response and independent of the presence of 

metastatic LN. Future research will focus on the exploration of the interaction between the lung 

microbiota, systemic immunity and the gut microbiota. 

 Key words: non-small cell lung cancer, lung microbiota, immune response, metastatic 

lymph nodes, tumour lobe 
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Résumé 

Le cancer du poumon est la principale cause de décès par cancer dans le monde. En dépit de la 

variété de traitements disponibles, tels que la chirurgie, la chimiothérapie, la radiothérapie et 

l’immunothérapie, la survie moyenne à 5 ans est de 60 %. L’une des raisons sous-jacente est 

une très grande variabilité de réponse au traitement, expliquée par les antécédents génétiques 

du patient et depuis peu par son microbiote. Le terme « microbiote » regroupe les bactéries, les 

archées, les champignons, les virus et les protistes qui colonisent notre organisme. Des études 

utilisant des modèles animaux montrent que le microbiote intestinal joue un rôle crucial dans 

la réponse de l’hôte au traitement, via la stimulation du système immunitaire. Dans ce contexte, 

plusieurs « axes de communication » entre le site intestinal et les sites tumoraux distaux 

commencent à émerger, y compris l’axe « intestin-poumon ». Cependant, le microbiote 

pulmonaire, qui pourrait directement influencer la réponse tumorale et interagir avec le 

microbiote intestinal, est pour l’heure peu caractérisé. Afin de développer cette idée d’un axe 

« intestin, poumon et cancer du poumon », nous avons inclus dans notre étude 18 patients 

atteints d’un cancer du poumon non à petites cellules (CBNPC) admissibles à la chirurgie. Nous 

avons analysé leurs microbiotes par séquençage à haut débit à partir de quatre échantillons 

différents de poumon (tissu sain, tissus péritumoral et tumoral et fluide de lavage broncho-

alvéolaire LBA) mais également à partir d’échantillons de salive et de fèces. Nous avons 

également analysé plusieurs marqueurs immunitaires (infiltration lymphocytaire des tumeurs, 

profils Th et neutrophiles, cytokines dans le LBA et le sang), des marqueurs inflammatoires et 

enfin les acides gras à chaînes courtes dans les fèces. Une caractérisation détaillée de ces quatre 

types d’échantillons de poumons nous a permis de montrer que le microbiote du LBA présente 

une communauté nettement distincte de celle du tissu pulmonaire. Les tumeurs des lobes 

inférieurs prédisant le plus mauvais pronostic, nous avons décidé d’étudier le lien entre 

l’emplacement des tumeurs et la composition du microbiote. Les microbiotes du tissu 

péritumoral et du LBA ont été identifiés comme étant les plus impactés en terme d’abondance 

et de diversité ; la tumeur est quant à elle moins impactée. Cependant nous avons observé que 

le phylum des Firmicutes, décrit comme étant élevé dans les maladies pulmonaires obstructives 

chroniques, est plus abondant dans le microbiote des lobes inférieurs du poumon. Par 

conséquent, nous pouvons émettre l’hypothèse que l’augmentation des Firmicutes et les 

variations importantes du microbiote dans le tissu péritumoral pourraient être associés à une 

agressivité accrue des tumeurs du lobe inférieur. Nous avons ensuite démontré que la présence 
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de ganglions lymphatiques (GL) métastatiques, marqueur d’un pronostic négatif dans le 

NSCLC, influence considérablement le microbiote local de par le profil respiratoire du 

tissu. Nous avons en effet observé que les bactéries anaérobies étaient plus abondantes dans les 

tumeurs en présence de LN métastatiques. Les bactéries aérobies sont quant à elles plus 

représentées dans les tumeurs sans GL métastatiques. Nous avons cependant observé la 

situation inverse dans les tissus extratumoraux. L’hypothèse avancée est celle d’une migration 

bactérienne en fonction des préférences de conditions de croissance, directement liées aux 

caractéristiques de la tumeur. Ceci nous permet de proposer plusieurs biomarqueurs pour la 

détection de GL métastatique, facilitant ainsi leur détection sans imposer de biopsie. Enfin, nous 

montrons que le microbiote du LBA est d’avantage associé à la réponse immunitaire locale et 

est indépendant de la présence de GL métastatique. Les recherches à venir porteront sur 

l’exploration de l’interaction entre le microbiote pulmonaire, l’immunité systémique et le 

microbiote intestinal. 

 Mots clés : cancer du poumon non à petites cellules, microbiote pulmonaire, réponse 

immunitaire, ganglions lymphatiques métastatiques, lobe tumoral 
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Introduction 

According to the World Health Organisation (WHO), lung cancer (LC) is the world’s first cause 

of death by cancer with approximately 1,761,000 registered deaths and 2,093,876 new cases in 

2018 (International Agency for Research on Cancer 2019). It is classified into two main groups: 

small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Even though SCLC 

has worse prognosis and very high lethality, it accounts for ~5% of LC cases. NSCLC is 

therefore more frequent, with prognosis dependent on underlying mutations, histological type 

and degree of aggressiveness (Molina et al. 2008). In NSCLC, the leading prognostic tool is 

tumour staging based on TNM classification, dividing tumours into different stages depending 

on their size (T), metastatic changes on lymph nodes (N) and distant metastasis (M) (Goldstraw 

et al. 2016). More advanced stages, especially if including metastatic changes, are associated 

with worse outcome and significantly shorter overall survival (Planchard et al. 2019). 

So-called “escape” mutations were considered as the major way of cancer to evade host’s 

immune response. This means that cancer cells accumulate various mutations due to high 

turnover, lack of tumour suppressors and exterior mutagenic factors (e.g. smoke, alcohol) until 

they become unrecognisable to host’s immune system (Dunn et al. 2002). However recently, 

this exclusively intrinsic approach has begun to loosen up, and cancer research has adopted 

more of a systemic approach. Several factors are now recognised to influence cancer 

surveillance, such as nutrition, physical activity, life style (Molina et al. 2008), to the most 

recent one – microbiota. Microbiota represents a consortium of bacteria, fungi, viruses and 

protozoa (Marsland, Trompette, and Gollwitzer 2015), but is most often used to refer only to 

bacteria (in this manuscript as well). Except in the gastrointestinal system, as the most studied, 

microbiota resides on the skin and within other host’s cavities (urogenital tract, oropharyngeal 

area, etc.). With the increasing recognition of functions performed by the gut microbiota and 

their crucial role for the host, the gut microbiota is frequently considered as a “forgotten organ”. 

With the bacterial mass of 2 kg, 1-10-fold more cells and 100-fold more genes than in human 

cells, this “organ” assures host’s homeostasis by nutriment degradation, precursor and vitamin 

synthesis, but also by stimulation of the immune system (Bashiardes et al. 2017; Flint et al. 

2012; García-Castillo et al. 2016; Kamada et al. 2013; Kau et al. 2011; Sender, Fuchs, and Milo 

2016; Zeng et al. 2016). Gut microbiota was recognised as the underlying factor of immune 

system development in early age (Gensollen et al. 2016; Thaiss et al. 2014), and its dysbiosis 

was associated to several immune disorders, such as asthma (Kalliomäki and Isolauri 2003). It 
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is now known that commensal bacterial cells constantly prime the immune system, maintaining 

the “stand by” state that will respond more readily to foreign antigens, but also maintaining the 

“cool-down” mechanisms that will prevent overreaction (Curotto de Lafaille, Lafaille, and 

Graça 2010; Mazmanian et al. 2005; Noverr and Huffnagle 2004). This feature of commensal 

microbiota was recognised in the cancer treatment, leading to emerging of “gut-lymph” theory 

(Samuelson, Welsh, and Shellito 2015). It suggests that commensal bacteria in the intestines 

could stimulate anti-tumour immunity not only locally, but also systemically. This could happen 

through migration of bacterial cells, their products or primed immune cells to distal location 

through the lymphatic system or circulation. At the distal location, e.g. tumour bed, these factors 

could either stimulate anti-tumour response (same as in the gut), or already primed immune 

cells could directly exert their anti-tumour effect. The basis of this theory lies in several studies 

in animal models, where animals raised in germ-free (GF) conditions or treated with antibiotics 

did not respond to classical chemotherapy with cyclophosphamide or neoadjuvant immune 

checkpoint inhibitor therapies (Daillère et al. 2016; Routy, Le Chatelier, et al. 2018; Sivan et 

al. 2015; Viaud et al. 2013). On the contrary, introduction of selected bacterial strains in these 

animals restored response to therapy and even had anti-tumour effect if administered without 

chemotherapy (Sivan et al. 2015). These studies opened a huge field of interest into 

oncomicrobiotics, bacteria that could be used as an anti-cancer drug and improve immune 

surveillance (Routy, Gopalakrishnan, et al. 2018). 

The increased interest in the features of microbiota and interaction with the host led to 

establishment of the Human Microbiome Project (HMP), aiming to obtain a complete 

characterisation of the human microbiome by joint forces of the worldwide scientists. However, 

not all microbiota were initially included, as for example microbiota of the lungs (Proctor 2011), 

decreasing the general interest in its study. Another inconvenience to exploration of the lung 

microbiota has been the difficulty of its sampling due to techniques’ invasiveness. This based 

most of the studies on bronchoalveolar lavage fluid (BAL) obtained by the bronchoscopy, but 

with accompanying risk of contamination by the upper airways due to the passage of 

bronchoscope (Bassis et al. 2015; Beck, Young, and Huffnagle 2012; Charlson et al. 2011). So 

far, most of the studies investigating lung microbiota consider chronic-obstructive pulmonary 

disease (COPD) (Banerjee, Khair, and Honeybourne 2004; Einarsson et al. 2016; Erb-

Downward et al. 2011; Moghaddam 2011; Sze et al. 2015), asthma (Gollwitzer and Marsland 

2014; Huang et al. 2011), and cystic fibrosis (Fodor et al. 2012; Garg et al. 2017) (often routine 

bronchoscopy that simplifies sampling). But finally, the past few years were marked with the 
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first studies on lung cancer microbiota and its association with environmental factors (Yu et al. 

2016) or increased inflammation in the lower airways (Segal et al. 2016). Even though certain 

studies already evoked the “magical” influence of the gut microbiota on response to lung cancer 

(Schuijt et al. 2016), the scientific community warned that it is first necessary to study the effect 

of the local lung microbiota before being able to evoke the new-established “gut-lung” axis 

(Dickson and Cox 2017). 

In an attempt to be the first to provide a more complete vision of the lung microbiota in lung 

cancer, its association to local and systemic immunity, and finally, with the gut microbiota, we 

performed a clinical trial in NSCLC patients with and without neoadjuvant chemotherapy 

before surgery. In the scope of this thesis, only a group without neoadjuvant therapy will be 

addressed. 

Our work has provided the first results on composition of the lung microbiota in NSCLC 

patients based on samples with different origin (BAL, non-malignant tissue, peritumoural 

tissue, and tumour), their difference between upper and lower lobes, but also their 

connexion to local immune response and presence of metastatic lymph nodes. 

We have shown that BAL microbiota consists of a unique microbiota and that the bias in 

sampling of either BAL or tissue microbiota has been justified. Next, we have shown that the 

varying characteristics between the three tissues are visible only when putting the analysis “into 

perspective”, such as the factor of tumour lobe’s location or presence of metastatic lymph nodes 

(LN). Moreover, we have shown that tumour and extratumoural tissues have inverse 

abundances of aerobic and anaerobic genera depending on the metastatic status of LN. Finally, 

we have shown that BAL is the only sample whose genera are associated with protumoural and 

antitumoural markers of both immune cell phenotypes in BAL and with tumour infiltrating 

lymphocytes. 

The manuscript begins with bibliographic background organised in four parts. First part 

introduces the problematic of lung cancer (types, staging), its connection to local and systemic 

immune response as well as risk factors. Since gut microbiota is the most explored and 

characterised microbiota in the terms of host interactions and the basis of microbiota-against-

cancer approach, second part provides the essential knowledge on this matter. The third part 

introduces lung microbiota and its so-far known characteristics and interaction with immune 

system. Final part discusses the gut-lung axis in the form of the published review. Following 

the bibliographic overview, current results are presented as articles that answer to hypotheses 

and objectives. The manuscript ends with general discussion of the results and perspectives.
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1 Lung cancer 

1.1 Epidemiology 

Lung cancer (LC) is a leading cause of death by cancer worldwide, responsible for 1,761,007 

or 18.4% deaths in 2018 according to the World Health Organisation (WHO) (Figure 1) 

(International Agency for Research on Cancer 2019). It is also the most frequent cancer in men 

and the third most frequent in women (International Agency for Research on Cancer (IARC) 

2014). Its poor survival rates post-diagnosis are due to its late and very often accidental 

detection, when the success rate of clinical intervention is significantly reduced. In average, the 

5-year relative survival rate for non-small cell lung cancer, as the most common type, (NSCLC) 

is about 60% (Goldstraw et al. 2016). 

1.2 Lung cancer types 

LC exists in many histological types (Figure 2), each linked to various aetiology, developmental 

patterns and prognoses (Mur et al. 2018). Three major groups of LC are small cell lung cancer 

(SCLC) (10-15% of lung cancers), NSCLC (80-85%) and lung carcinoid tumours (fewer than 

5%)(American Cancer Society 2016). Since SCLC were not included in this study due to the 

dispersive nature of this type of cancer, the focus will be mostly on NSCLC. 

Figure 1 Estimated number of deaths in 2018 worldwide, all cancers, both sexes, all ages 

(adapted from International Agency for Research on Cancer 2019) 
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There are three major types of non-small cell lung cancer: 

 Adenocarcinoma 

 Squamous cell lung carcinoma (epidermoid carcinoma) 

 Large cell lung carcinoma 

 Other (sarcomatoid carcinoma/salivary gland tumour/unclassified carcinomas) 

1.2.1 Adenocarcinoma 

Adenocarcinoma (ADK) accounts for about 40% of LC (Zappa and Mousa 2016) and is the 

most common histological type of NSCLC (Pallis and Syrigos 2013). It develops from early 

versions of “gland” cells (the name “adeno”), and can often (but not always) be distinguished 

from other tumour types by excessive mucus production at tumour site. It is often localised in 

the outer parts of the lung and tends to grow slower than other tumour types. It is more common 

in women than in men (Nagy-Mignotte et al. 2011), and is the most common type of lung cancer 

seen in non-smokers (American Cancer Society 2016; Nagy-Mignotte et al. 2011). 

1.2.2 Squamous cell carcinoma (epidermoid carcinoma) 

Squamous cell carcinoma (SCC) accounts for 25-30% of LC (Zappa and Mousa 2016). Unlike 

adenocarcinoma, SCC origins from early versions of squamous cells, forming the thin 

monolayer on the inside of the airways that separates alveolar lumen from blood vessels. These 

tumours are mostly located in the central part of the lungs, near the main bronchus. It is often 

found in men of age and the history of smoking is strongly related to its development. SCC is 

a slow-growing tumour that develops late metastasis, which makes it suitable for treatment by 

surgical resection (Popper 2016). However, this tumour type does not show high sensitivity to 

chemoradiotherapy (Xue et al. 2016). 

Figure 2 Prevalence of various histological types of lung cancer (adapted from LUNGevity 

Foundation site) 
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1.2.3 Large cell carcinoma 

Large cell carcinoma accounts for 5-10% of LC (Zappa and Mousa 2016). It is characterised 

by large, poorly differentiated cells that tend to grow and spread quickly. Certain subtypes can 

be similar to small cell LC, e.g. large cell neuroendocrine carcinoma. It can appear anywhere 

in the lung without site-specific affinity (American Cancer Society 2016). 

1.3 Lung cancer staging 

Staging system involves the assessment of cancer spreading by attributing different degrees to 

three main characteristics: size and extent of the main tumour (T), the spread to nearby lymph 

nodes (N), and the spread (metastasis) to distant sites (M). Therefore, the staging system is also 

called the TNM system, and is defined by the American Joint Committee on Cancer (Goldstraw 

et al. 2016). 

Stages range from 0 to IV, 0 being the earliest stage (also called the carcinoma in situ). 

Likewise, within the stage an earlier letter/number designates a lower sub-stage. Interestingly, 

cancer stage seems to be more important than its proper type, since same stages of different 

cancer types show similar outlook and are often treated in the same way (American Cancer 

Society 2016; Novello et al. 2016). For example, 5-years survival rate following surgery is 

~90% for stage IA1 as the least aggressive stage, and ~12% for stage IIIC as the more advanced 

(Asamura et al. 2008; Goldstraw et al. 2016). 

1.4 Tumour and immunity 

In 2001, with a profounded update in 2011, Hanahan and Weinberg (Hanahan and Weinberg 

2011) presented an intuitive descriptive of a multistep initiation, transformation and progression 

of normal cells towards a tumorigenic profile under the name “Hallmarks of cancer” (Figure 

3). Our immune system is designed to meet up to these changes by close surveillance of our 

body (by e.g. dendritic cells (DC)) that can elicit anti-tumour response (so called “elimination” 

phase). However, certain tumour cells are able to evade this “cleaning” phase, either by reduced 

surface recognition molecules or by producing immunosuppressive cytokines (Dunn et al. 

2002). These surviving cells begin to expand in a dynamic equilibrium with the immune system; 

cells with genetic changes that result in recognisable epitopes are eliminated by the immune 

system, others continue to propagate (Bashiardes et al. 2017; Hanahan and Weinberg 2011). 

When tumour is no more recognised by immune system, it enters the “escape” phase (Dunn et 
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al. 2002) characterised also by its accentuated immunosuppressive nature: recruitment of  

regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) to cancer site 

(Bashiardes et al. 2017). 

NSCLC also belongs to this group of tumours that create an immune-privileged 

microenvironment based on immunosuppression. The production of immunosuppressive 

cytokines by tumour cells induces an increase in the frequency and suppressive capacity of 

Tregs (Ju et al. 2009; Koyama et al. 2008), but also the expression of suppressive surface 

molecules. One such molecule is the programmed cell death-1 (PD-1) receptor on CD8+ T cells, 

which binds its programmed cell death protein 1 ligand (PD-L1) in the tumour bed (Yannelli et 

al. 2009; Zhang et al. 2010), leading to the abrogation of anti-tumour response. Furthermore, 

NSCLC tumour cells have a possibility to affect DC cells, “upstream” of the final response, by 

the inhibition of their maturation and hence the induction of the adequate immune reaction 

(Perrot et al. 2007; Tabarkiewicz et al. 2008). These DCs produce higher amounts of 

transforming growth factor β (TGFβ) and are therefore strong inducers of Tregs (Dumitriu et 

al. 2009).  

Interleukin (IL)-17 was recognised as another important factor in a progression of NSCLC. 

Secreted by CD4+ T helper (Th) Th17 cells, macrophages and CD8+ T cells (Rouvier et al. 

1993), IL-17 is shown to stimulate production of, among others, IL-6, IL-8, IL-18, tumour 

necrosis factor α (TNFα) and vascular endothelial growth factor (VEGF) (Numasaki et al. 2003; 

Tartour et al. 1999). These cytokines favour Th2 immune profile that in tumour environment 

stimulates angiogenesis and tumour progression (Nam et al. 2008; Numasaki, Lotze, and Sasaki 

Figure 3 Hallmarks of cancer (adapted from Hanahan and Weinberg, 2011) 
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2004; Wang et al. 2009). In addition, IL-6 has been identified to play essential role in lung 

cancer by promoting chronic obstructive pulmonary disease (COPD)-like inflammation (Ochoa 

et al. 2011). The role of IL-17 (and the whole Th17 set) in the lung tumour immunology was 

subject for a long and a complex debate, since several studies reported positive effect on effector 

cytotoxic T cell generation and induction of an anti-tumour response (Kryczek et al. 2009; 

Martin-Orozco et al. 2009; Muranski et al. 2008). However, the recent metastudy analysing the 

results of 6 lung cancer cohorts (total nb. of participants = 479) associated elevated IL-17 

concentrations with significantly reduced overall and disease free survival, respectively, siding 

increased production of IL-17 and Th17 profile with negative effect on lung tumour progression 

(Wang et al. 2017).   

Figure 4 Overview of the basic Th profiles and their stimulating/producing cytokines 

(adapted from Russ et al. 2013). Naïve CD4+ Th are stimulated by the antigen-presenting cells 

(APC) to differentiate into one of the six current mature Th profiles. Except the signal from the 

APC, differentiation requires environmental signals such as the presence of certain cytokines. 

Both stimulate expression of specific transcription factors responsible for differentiation and 

development of final Th subset with a set of its respective produced cytokines. 

As a reminder, CD4+ helper T cells are divided into different profiles dependent on the secreting 

cytokines and function: Th1, Th2, Th9, Th17, and Treg (Figure 4). Until recently, studies in 

lung cancer considered only the Th1/Th2 ratio as the major indicator of the balance between 

pro and antitumour response (Duan et al. 2014). Long-lasting dogma classified Th1 cells, 

producing IL-2 and interferon gamma (IFNγ), in antitumour response profile, while Th2 have 

been considered as a part of protumoural reponse, producing IL-4, IL-5, IL-6, IL-10, and IL-

13. The balance between Th1 and Th2 in peripheral blood was shown to differ between healthy 



Literature overview  Lung cancer 

15 

 

controls and lung cancer patients (Ito et al. 2005). The increase of concentration of Th2 

cytokines was suggested to shift balance into immunosuppressive profile (Becker 2006; Pinto 

et al. 2006), which as a consequence creates more tumorigenic environment (Green et al. 2010; 

Krohn et al. 2011) and higher relapse rate (Hong et al. 2013; Liang et al. 2011; Wei et al. 2003).  

However, the ratio Th17/Treg started to increase attention, due to the reported tumour-

influencing nature of these two cell sets (Marshall et al. 2016). First, it is important to say that 

both sets share common progenitor, expressing both retinoic acid-related orphan receptor 

gamma t (RORγt) and fork-head box protein 3 (FOXP3) genes, and chemokine receptors CCR6 

and CCR4 (Duan et al. 2014). TGFβ was found as a central element that differentiates the two 

cell types. The presence of IL-1β, IL-6 and low dose of TGFβ stimulates common progenitor 

to differentiate into Th17 cell set by stimulating the expression of RORγt genes. The 

differentiation itself is stimulated by DCs activated by microbes (Crome et al. 2009). On the 

other hand, the presence of retinoic acid stimulates the production of TGFβ, and both have the 

potential to inhibit RORγt expression (i.e. Th17 development), favouring FOXP3 expression 

and differentiation towards Treg cell set (Peck and Mellins 2010). However, it has been reported 

that Tregs can convert to Th17 in the presence of inflammatory signals, such as IL-1β, IL-6, 

IL-21, IL-23 (Duan et al. 2014).  

Th17/Treg balance is particularly interesting in lung cancer due to overexpression of TGFβ by 

lung cancer cells. Therefore, they favour Treg differentiation, associated with immune 

suppression and decreased anti-tumour response (Ju et al. 2009). This is also supported by the 

studies reporting that higher Th17/Treg ratio was negatively correlated with the tumour stages, 

and higher TGFβ with the cases of metastases (Duan et al. 2014; Roberts and Wakefield 2003). 

1.5 Risk factors for lung cancer 

Even though genetic predisposition to mutations and consequentially development to lung 

cancer were described first, other factors like pollution, tobacco, alcohol, infections, hormones 

and immune competence of the host are now also recognized as factors that can increase the 

risk of lung cancer development (Plottel and Blaser 2011; Zong, Cao, and Wang 2012). 

1.5.1 Smoking 

Smoking is still recognized as the primary risk factor for lung cancer development. Its 

malefaction lies in the components of the smoke that act as DNA adducts, favouring 

carcinogenesis (Ahrendt et al. 2000; Lim et al. 2016; Nagy-Mignotte et al. 2011). Another 
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consequence of smoke particle inhalation and extensive heat production is the development of 

chronic inflammation that is thought to be an underlying cause of 25% of lung cancers (Balkwill 

and Mantovani 2012; Hanahan and Weinberg 2011; Mur et al. 2018; Walser et al. 2008). As 

reported in the study of Berger et al. (2016) on smokers without COPD, the elevated forced 

oscillation (as a measurement of respiratory function) was elevated in smokers and significantly 

associated with two-fold higher lymphocyte and neutrophil counts and higher pro-inflammatory 

markers (IL-8, eotaxin, fractalkine). This distal airway dysfunction lines up with similar 

observations reported in patients with established COPD and could add to understanding of 

higher risk of COPD development in smokers and its progression to cancer (Cho et al. 2011; 

Palucka and Coussens 2016). 

1.5.2 Chronic inflammation 

Although in general population smoking is considered, and presented, as one of the most 

influential factors to lung cancer development, it is interesting that only 10-15% of smokers 

develop cancer (but 90% of cancer cases consider smokers) (García-Castillo et al. 2016; 

Houghton 2013; Pevsner-Fischer et al. 2016). Chronic inflammation is considered to be a true 

culprit, already shown in the clinical research as the one increasing the risk of neoplasm (Greer 

and O’Keefe 2011; Louis, Hold, and Flint 2014). Proinflammatory cytokines in the tumour bed 

induce production of reactive oxygen species (ROS) by macrophages, which damage DNA, 

obstruct repair mechanisms, stimulate pro-tumorigenic pathways such as mediated by nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-kB) transcription factor 

(Francescone, Hou, and Grivennikov 2014; Klaunig, Kamendulis, and Hocevar 2010). All this 

leads to the increased genetic instability (Elinav et al. 2013) and creates a favourable 

environment for tumour progression. 
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2 Microbiota and connection to lung cancer 

2.1 What is microbiota? 

Although most often used as a synonym for “bacteria”, “microbiota” is a much broader term 

that includes bacteria, archaea, fungi, viruses and protists that inhabit our organism in different 

types of commensal relationship (Hassan, El-khattouti, and Tandon 2013; Plottel and Blaser 

2011). The gather of their genes is therefore called the “microbiome” (Clemente et al. 2012). 

Its impressive size that surpasses human genome up to 100 times and is closely related to host’s 

homeostasis is appropriately called the “second genome” or “the forgotten organ” (Arslan 2014; 

Dietert and Dietert 2015; Schwabe and Jobin 2013). 

2.2 Gut microbiota – a role model 

Gut microbiota is without a doubt the most extensively studied microbiota in humans. 

Containing more than 100 trillion microbes, it is one of the most complex and the most abundant 

ecosystems. In its balanced state, Firmicutes and Bacteroidetes are the two dominant phyla, 

while other less abundant are Actinobacteria, Fusobacteria and Verrucomicrobia (Belizário 

and Napolitano 2015). However, their balance can be gravely different between individuals, 

depending on their diet, life habits, origin, genetics, which has been already extensively studied 

(Figure 5) (Arumugam et al. 2011; Bäckhed et al. 2012; Eckburg et al. 2005; Segata et al. 2012; 

Zoetendal, Rajilic-Stojanovic, and de Vos 2008). 

Figure 5 The factors with a direct influence on the gut microbiota (adapted from Cerdá et 

al. 2016) 
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2.2.1 Diet and immunity 

Gut microbiota is known to have many different roles essential for its host’s homeostasis; 

hydrolysis of dietary compounds, synthesis of vitamins, stimulation of immune system, control 

of pathogen colonization, development of intestinal barrier, and regulation of fat storage as only 

some of them (Bashiardes et al. 2017; Flint et al. 2012; García-Castillo et al. 2016; Kamada et 

al. 2013; Kau et al. 2011; Zeng et al. 2016). 

Following the studies on the mucosal immunity (Fujimura et al. 2014; Noverr et al. 2004, 2005), 

gut microbiota was found to be responsible for the maturation of the overall immune system. 

In GF animals, the immune system was underdeveloped and with pronounced 

immunosuppressive character. This was however reversible by colonization with conventional 

microbiota (Chung et al. 2012). Even though certain genera or species were correlated to the 

production of cytokines, regulation of systemic inflammation or metabolic pathways, it was 

suggested that the microbial functionary groups sharing same metabolic roles could have much 

greater importance than e.g. genera with similar taxonomical classification (Blander et al. 2017; 

Schirmer et al. 2016).  

Anaerobic fermentation of non-digestible polysaccharides, such as dietary fibre, is one of the 

most extensively studied roles of gut microbiota and also its importance in maintaining gut-host 

homeostasis (Zoetendal et al. 2008). Through fermentation and carbohydrate hydrolysis, 

colonic bacteria produce carbon dioxide, methane, hydrogen and short-chain fatty acids (SCFA) 

that can affect gut barrier stability, inflammation and gut hormone regulation (Slavin 2013). 

Among fermentation products, it is important to emphasize the role of three SCFAs: acetate, 

propionate and butyrate. In human caecum, they are found in 70:20:10 ratio, respectively (Lloyd 

and Marsland 2017). They are produced in majority from the members in the genera 

Bacteroides, Bifidobacterium, Lactobacillus, Coprococcus, Methanobrevibacter, and families 

Clostridiaceae and Lactobacillaceae. SCFAs, and especially butyrate, are used by colonocytes 

as energy source and thus are extremely important for the maintenance of the gut barrier 

(Meijer, de Vos, and Priebe 2010). Furtherly, they are shown to have anti-inflammatory 

properties, to inhibit biofilm formation and pathogens activity, and decrease tendency of type-

2-diabetes development (Belizário and Napolitano 2015; Le Chatelier et al. 2013; Corrêa-

Oliveira et al. 2016). SCFAs are also reported to influence function, maturation and fate of 

immune cells (Atarashi et al. 2013; Le Poul et al. 2003; Vinolo et al. 2011). They are ligands 

of surface receptors found on immune cells, G-protein coupled receptor 41 (GPR41), GPR43 
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and GPR109a (Maslowski et al. 2009; Smith et al. 2013; Trompette et al. 2014). Moreover, 

butyrate was found to be a very potent inhibitor of histone deacetylase, which stimulates 

maturation of Treg cells via expression of FOXP3 gene, exerting anti-inflammatory properties  

(Kim et al. 2007). Also, uniquely butyrate showed to inhibit proliferation of intestinal stem cells 

and progenitor cells during mucosal injury, which might prevent tumorigenic transformation 

under inflammatory conditions (Kaiko et al. 2016). Since butyrate is approximately used as 

80% of energy source for colonocytes, it is not a surprise that it promotes colonic oxygen 

consumption by stabilizing transcription factor hypoxia-inducing factor 1 (HIF-1), which is 

responsible for transcription of a set of anti-tumorigenic genes (Kelly et al. 2015). 

A variety of other bacterial metabolites are found to be similar to metabolites produced by 

human cells (Wikoff et al. 2009) and are thought to be one of the key components for 

microbiota-host interaction. This chemical mimicry, especially of signalling molecules, could 

represent one of the bases for future therapeutic usage (microbiome-biosynthetic gene therapy) 

(Cohen et al. 2017). 

Gut microbiota has also been implied in the direct interaction with cancer (Figure 6), both in 

the preventive and promoting aspect. Those will be discussed in the following two chapters, 

with the accent on the proposed and established mechanisms.

 

Figure 6 Modulation of hallmarks of cancer by microbial-derived signals (adapted from 

Fulbright, Ellermann, and Arthur 2017) 
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2.2.2 Gut microbiota for cancer 

2.2.2.1 High-protein and unbalanced diet 

Except fibres, high-protein diet also increases colonic fermentation (Louis et al. 2014). 

Fermentation of aromatic amino acids produces phenols, indoles, p-cresol and phenylacetic acid 

that could act as bioactive metabolites (Rajilić-Stojanović 2013; Schwabe and Jobin 2013). 

Ammonium, also a product of protein fermentation, has been proven to be carcinogenic in low 

concentration, as well as N-nitroso compounds inducing nitrogen alkylation of the DNA (Louis 

et al. 2014). 

In anaerobic conditions, nitrate, sulphates and organic compounds replace oxygen as electron 

acceptor. Therefore, sulphate-reducing bacteria that compete for hydrogen have an important 

impact on cross-species interaction and changes in diversity. In normal population, they are 

found in low concentrations, but their higher abundance can be harmful (Louis et al. 2014; 

Rajilić-Stojanović 2013). The product of sulphate reduction is hydrogen sulphide, which 

inhibits oxidation of butyrate. It is toxic for colonocytes, proinflammatory, inhibits mucus 

production and is genotoxic (generation of free radicals) (Louis et al. 2014; Ridlon, Kang, and 

Hylemon 2006). 

2.2.2.2 Disruption of barrier 

Intestinal barrier with its mucosal layer, tight junctions between colonocytes, constant microbe 

monitoring by M-cells and secretion of multiple anti-microbial molecules represents a real 

anatomical separation with intestinal lumen (Schwabe and Jobin 2013). Its disruption leads to 

translocation of microbes or their products into systemic circulation and could trigger 

inflammatory response (Belizário and Napolitano 2015; Garrett 2015; Logan, Jacka, and 

Prescott 2016). The disruption could be caused by local inflammation, infection or defect genes 

(Garrett 2015; Schwabe and Jobin 2013). The deficiency of dietary fibres could also create a 

dysbiosis with proliferation of mucus-degrading bacteria. This showed to lead to thinning of 

the mucus layer with increased adhesion of the intestinal bacteria to colonocytes, and increased 

susceptibility to different pathogen colonisation, such as Citrobacter infection (Desai et al. 

2016). In already established tumours, this secondary inflammation was shown to enhance 

intestinal tumour progression (Grivennikov et al. 2012; Huber et al. 2012) or increase a risk of 

its development in inflammatory bowel disease (IBD) patients (Ekbom 1991). 
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2.2.2.3 Microbial products 

To find their place within this vast intestinal ecosystem, many microbes have developed various 

mechanisms that would give them selective advantage in competition and survival. One of these 

mechanisms are the DNA-damaging proteins, which cause genome instability and lead to 

mutations (Garrett 2015). There are many examples of bacteria with oncogenic potential, 

amongst others genotoxic Escherichia coli, Enterococcus faecalis, Bacteroides fragilis, 

Fusobacterium nucleatum (Arthur et al. 2012; Francescone et al. 2014; Kostic et al. 2013; 

Ohtani 2015; Schwabe and Jobin 2013; Sheflin, Whitney, and Weir 2014; Wu et al. 2009). 

Fusobacterium nucleatum, a commensal from the oral cavity (Han and Wang 2013) already 

linked with certain pathogenic conditions (Lagier et al. 2012; Témoin et al. 2012), was recently 

connected to pathogenesis of colon adenocarcinoma. On its surface, F. nucleatum expresses 

adhesin FadA, which engages with E-cadherin on epithelial cells and stimulates their 

proliferation (Rubinstein et al. 2013), therefore is a potent stimulator of tumour cell growth. 

The other mechanism is realised through the effect on immune cells. Interaction of Fap2 protein 

of F. nucleatum with T-cell immunoreceptor with immunoglobulin and immunoreceptor 

tyrosine-based inhibitory motif domains (TIGIT), which is an inhibitory receptor on natural 

killer (NK) and cytotoxic T (Tc) cells, inhibits tumour-killing properties of this two cell sets 

essential for identifying and destroying precancerous and malignant cells (Bashiardes et al. 

2017; Gur et al. 2015). In animal models and clinical studies, F. nucleatum was also positively 

correlated to enrichment with tumour-associated macrophages (TAMs) and MDSCs, both with 

immunosuppressive and protumorigenic roles (Kostic et al. 2013). 

2.2.2.4 Loss of diversity 

High diversity of the gut microbiota is the virtue of a healthy, balanced intestinal environment. 

Loss of diversity was proposed to reflect the state of dysbiosis (Bäckhed et al. 2012) and was 

shown to be directly connected to inflammation, as seen in IBD, Crohn’s disease and colorectal 

cancer (CRC) (Brown et al. 2013; Clemente et al. 2012; Fulbright et al. 2017; Sartor and 

Mazmanian 2012). 

2.2.2.5 Neoangiogenesis 

Gut microbiota was found essential for normal development of the intestinal vascular system 

(Stappenbeck, Hooper, and Gordon 2002). Interestingly, it was seen that during infection, toll-

like receptors (TLRs) activated by bacterial lipopolysaccharide (LPS) promote angiogenesis, 

with the effect even more pronounced in the presence of damage-associated molecular patterns 

(DAMPs). Both are proposed to be a possible reason of microbial contribution to 
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neoangiogenesis seen in the tumour microenvironment, either directly by the colonising 

bacteria or pathogen-associated molecular patterns (PAMPs) and DAMPs within the 

microenvironment (Fulbright et al. 2017; Osherov and Ben-Ami 2016). 

2.2.2.6 Microbiota-induced Th17 inflammation 

Th17 immune response is crucial in maintenance of the homeostasis of intestinal epithelium, 

and is driven by commensal microbiota and its products (reviewed in Bingula et al. 2017). 

However, it is also associated with protumorigenic activity and worse prognosis in CRC 

(Grivennikov et al. 2012). CRC murine models showed that colonisation with enterotoxigenic 

Bacteroides fragilis stimulates Th17-driven inflammation and cancer development (Housseau 

et al. 2016; Wu et al. 2009). Intestinal commensal Alistipes showed similar effect by enhancing 

the production of IL-6 and signal transducer and activator of transcription 3 (STAT3) activation 

(Moschen et al. 2016). Adversely, inhibition of IL-17 signalling axis reduced STAT3 promotion 

of inflammation and tumorigenesis (Housseau et al. 2016; Wu et al. 2009), confirming the 

application of Th17 signalling in CRC development and progression (Fulbright et al. 2017). 

2.2.3 Gut microbiota against cancer 

Over several decades, the cancer treatment gravitated towards more case-adapted and 

personalised approach. The currently used treatment includes surgery, radiotherapy, 

chemotherapy, and since recently immunotherapy and hormonal therapy (Bashiardes et al. 

2017). Each of these is focused on “rectification” of immune response or eradication of the 

consequences of its failed activity. While some can truly bring instant salvation in certain cases 

(e.g. surgery), others are not always applicable or silently fail after first success, often leaving 

only palliative treatment. Furthermore, in certain cases the applied therapies have no effect 

whatsoever (e.g. chemotherapy, immunotherapy), leaving the physicians with no explication or 

solutions (Haslam and Prasad 2019; Prelaj et al. 2019). 

Recently, certain studies started to search the answer in the giant ecosystem within our 

intestines – the gut microbiota. Even though as early as in 1920s, the intravesicular injection of 

bacillus Calmette-Guérin (derived from strain Mycobacterium bovis) into patients with 

superficial bladder cancer resulted in antitumour response and increased survival (Herr and 

Morales 2008), it was not until the 21st century that the answer to this irregularity in response 

to cancer therapy was connected and partially explained by our lifetime companions. 
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2.2.3.1 How does it work? 

The proposed mechanism by which various microbiota elicit antitumour response lies in 

activation and stimulation of the immune system and possible similarity between bacterial and 

tumour epitopes, causing cross-reactivity (Zitvogel et al. 2016). LPS, flagellin, peptidoglycans 

or other microbial molecules that could serve as PAMPs are the ones behind priming and 

activation of the immune cells (Mogensen 2009; Ranf 2016).  

Different bacteria could therefore indirectly induce antitumour response as seen in Clostridia 

spores found within solid tumours (Morrissey, O’Sullivan, and Tangney 2010). Those or alike 

could induce TNFα secretion, which vasoactive effect was shown to facilitate further entry of 

the bacteria into the tumour environment, led to CD8+ T cell activation and enhanced tumour 

surveillance (Leschner et al. 2009; Stern et al. 2015). Tumour colonisation by bacteria was also 

suggested as a result of the gut barrier disruption and bacterial translocation (Balzan et al. 2007). 

Further, several studies in animal models investigated the role of balanced or dysbiotic gut 

microbiota on chemotherapy effectiveness, investigating the reason behind the effect of non-

responding patients. Their results have opened a new area on importance of the gut microbiota 

– host relation through the interaction with the immune system, and have provided a new way 

of thinking in clinical therapeutic design. The following paragraphs summarise the most 

important discoveries of these studies. 

2.2.3.2 Gut microbiota in chemotherapy 

Chemotherapy is a non-selective cancer treatment, most often based on alkylating agents that 

act as DNA adducts, which are genotoxic and induce apoptosis in fast proliferating cells 

(tumour cells, but also some types of normal cells). Following apoptosis or necrosis, a liberation 

of tumour DNA and other internal proteins serves as immunogenic marker, stimulating T cell 

immunity and antitumour response (Alcindor and Beauger 2011). The following studies 

addressed the most commonly used drugs: platinum-based compound (still the most common 

in LC treatment) oxaliplatin, and cyclophosphamide (CTX) (Bracci et al. 2007). CTX was also 

shown to affect tumour environment by inducing reduction in Treg, and stimulating Th1 and 

Th17 (Routy, Le Chatelier, et al. 2018; Schiavoni et al. 2011). 

The study of Iida et al. (2013) examined the effect of oxaliplatin on subcutaneous tumour (EL4 

lymphoma, MC38 colon carcinoma and B16 melanoma) in different murine models. 

Conventional mice showed tumour regression and had improved survival, while in GF or 

antibiotic-treated mice this effect was much weaker. They found that TLR agonists, coming 
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from the commensal microbiota, promote ROS generation by the tumour-infiltrating myeloid 

cells causing cell death. Oxaliplatin alone functions on the same principle, but as explained, 

without microbiota the effect was more modest. Conventional mice with defect TLR signalling 

had the same response as GF/antibiotic-treated mice, and the other way around, GF mice 

administered with LPS showed a full response. The study also looked at the efficacy of the 

combination of intratumour CpG-oligonucleotides and anti-IL-10R antibody. Conventional 

mice showed retarded tumour growth and prolonged survival by rapid induction of intra-

tumoral haemorrhagic necrosis dependent on TNFα, while this mechanism was significantly 

impaired in antibiotic-treated mice. In conventional mice, the therapy also induced higher 

production of IL-12 by tumour-infiltrating myeloid cells and IFNγ in tumour-infiltrating T and 

NK cells. These factors negatively correlated with the genus Lactobacillus and positively with 

Gram-negative bacteria (genera Alistipes, Ruminococcus etc.). In the genus Lactobacillus, there 

were L. murinum, intestinalis and fermentum, previously reported for their anti-inflammatory 

effects. Gavage of the mice with L. fermentum attenuated TNF production, while Alistipes 

shahii reconstituted TNF response in antibiotic-treated mice. 

Viaud et al. (2013) evaluated the potential connection between gut microbiota and CTX in anti-

tumour response stimulation. They demonstrated that treatment with CTX disrupted the 

intestinal barrier and induced a severe reduction within the Firmicutes phylum (Clostridium 

cluster XIVa, Roseburia, Coprococcus and unclassified Lachnospiraceae, facilitating the 

translocation of the certain Gram-positive bacteria into mesenteric lymph nodes and spleen. 

Several cultivated bacteria included L. johnsonii, L. murinus and Enterococcus hirae. These 

bacteria induced “priming” of specific subset of “pathogenic” Th17, normally responsible for 

the anti-bacterial response, and activation of Th1 memory cells that exerted antitumor 

responses. GF or antibiotic-treated mice did not show the priming effect of Th17 in the spleen 

and therefore had impaired antitumor responses, and adoptive transfer of mature Th17 cells 

only partially restored the initial antitumor effect. 

Following this discovery, Daillère et al. (2016) investigated the effect of oral supplementation 

with these bacteria, positively correlating with productive antitumor response (Viaud et al. 

2013), in sarcoma bearing mice treated with CTX. They found that Enterococcus hirae 

translocated from the small intestine to secondary lymph organs increased intratumour 

CD8/Treg ratio thus stimulating tumour eradication, failed by other species like L. johnsonii or 

other. Additionally, they identified another species from the Porphyromonadaceae family, 

Barnesiella intestinihominis, which accumulated in the colon, were able to induce 
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polyfunctional CD4+ Th1 and CD8+ Tc1 effector cells and stimulate infiltration of IFNγ-

producing γδT cells into tumour. Both were addressed as potent “oncobiotics” that could 

ameliorate standard chemotherapeutical treatment. 

2.2.3.3 Gut microbiota in immunotherapy 

The big success in the understanding of the tumour – immune system interaction in cancer 

treatment were the antibodies that “unleashed” the suppressed immune system by inhibiting the 

immune checkpoints, to let the immune system fight the cancer on its own. The two currently 

used therapies include anti-PD-1/anti-PD-L1 antibodies, preventing inactivation of antitumor 

CD8+ cytotoxic T lymphocytes within the tumour, and anti-CTLA-4 (cytotoxic T lymphocyte 

antigen 4), which enables priming and activation of antitumor cells in lymph nodes (Brahmer 

and Pardoll 2013). Despite the initial overwhelmingness by this new approach, the percent of 

non-responders and developed resistance has been very high (~80%) as well as the number of 

autoimmune responses (Prelaj et al. 2019). 

Sivan et al. (2015) looked at efficacy of anti-PD-L1 therapy on melanoma in genetically 

identical C57BL/6 mice coming from two different facilities. First, in two mice groups the 

spontaneous tumour growth was significantly different, but cohousing or faecal transfer 

eliminated this effect. Sequencing of faecal microbiota identified significantly different 

microbial population between two mice groups. 257 taxa were different between groups, but 

genus Bifidobacterium was the only significantly correlated with productive antitumor T cell 

responses. Secondly, they tested the effect of anti-PD-L1 therapy in both mice groups, with 

larger tumours (LT) and smaller tumours (ST). The group ST, naturally enriched with 

Bifidobacterium, completely inhibited tumour growth with therapy administration. 

Interestingly, the ST group without treatment had almost equal tumour size as the LT group 

with treatment. Further, the authors showed that in LT group either treatment with anti-PD-L1 

or oral gavage with Bifidobacterium equally reduced tumour growth. Moreover, the 

combination of two had been significantly the most efficient, with the effect similar to ST group 

with only anti-PD-L1. The closer immunological analysis showed that the main effect was not 

exerted on effector cells, but on the more upstream level, i.e. DC priming. 

Matson et al. (2018) looked at microbiota in stool of patients with metastatic melanoma before 

the anti-PD-1 therapy and correlated their clinical response with microbiota composition. They 

identified Bifidobacterium longum, Collinsella aerofaciens and Enterococccus faecium as more 

abundant in responders. The ratio of total nb. of “beneficial” and “non-beneficial” OTUs was 

calculated for each patient, and they showed that all patients with the ratio over 1.5 had 
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belonged to responders. Further, they showed that GF mice with stool transferred from 

responders had improved tumour surveillance mediated by elevated tumour antigen specific 

CD8+ T cell response and more efficient anti-PD-1 therapy. Conversely, in mice with the stool 

from non-responders the therapy was completely ineffective. Their findings reinforced previous 

studies and suggested a new, simple way of possible use of “beneficial”-“non-beneficial” 

bacteria ratio in prediction of PD-1 efficacy in treatment of metastasis. 

Vétizou et al. (2015) addressed different type of immune checkpoint inhibitor, the therapy with 

anti-CTLA-4 antibodies, ipilimumab. They tested ipilimumab efficacy on established sarcoma 

in specific-pathogen free (SPF) and GF mice and observed that in GF mice therapy had no 

effect. Antibiotics administered to SPF mice however abrogated the ipilimumab efficacy, 

pointing to the responsibility of the gut microbiota. Ipilimumab induced inflammatory changes 

in the intestines, observed as increased cell death and proliferation of intestinal epithelial cells 

(IEC). Authors identified CD4+ and CD8+ T cells (including intraepithelial lymphocytes (IEL)) 

responsible for IEC apoptosis in the presence of microbial TLR agonists, and concluded that 

ipilimumab compromised the IEC-IEL balance. Ipilimumab also induced rapid 

underrepresentation of Bacteroidales and Burkholderiales and relative increase of 

Clostridiales. Further, oral gavage of antibiotic-treated SPF mice with qPCR identified species 

Bacteroides thetaiotaomicron, Bacteroides fragilis (Bf) and Burkholderia cepacia, or 

combination of the last two recovered the response to anti-CTLA-4 antibody. In GF mice, Bf 

induced Th1 response in tumour-draining lymph nodes and promoted maturation of DCs, both 

restoring anti-CTLA-4 response. Moreover, these bacteria reconstituted intestinal barrier 

damaged by anti-CTLA-4 therapy in antibiotic-treated mice. This supported the fact that overall 

efficacy of therapy was highly dependent on microbiota composition, affecting IL-12 and IL-

10 levels, reported the authors. To conclude, they also performed faecal transfer from patients 

before therapy and followed tumour growth in mice, which corresponded to patient’s response 

to therapy. 

  



Literature overview  Microbiota and connection to lung cancer 

27 

 

2.3 Lung microbiota in sickness and health 

2.3.1 Environment of the lower airways 

Vocal cords have been considered as a limit between upper and lower airways, and even though 

they are characterised by continuous mucosal layer, these two parts are both anatomically and 

functionally very different (Kronenberger and Meyers 1994; Shaker and Hogan 2000; Wu and 

Segal 2017). Pulmonary epithelium is composed of one thin layer of squamous cells, among 

which there are ciliated columnar mucus-secreting goblet cells and cells secreting surfactants, 

mutually connected in tight junctions. In healthy lungs, mucus production is at low rate and 

form a protective layer enough to maintain homeostasis (disables microbial adherence to cells) 

(Radicioni et al. 2016). On their surface, cells have pattern recognition receptors (PRRs) such 

as TLR that serve to recognize PAMPs from viruses, bacteria, fungi, protozoa, and intracellular 

parasites (Lambrecht and Hammad 2012). As a response, the cells excrete multiple 

antimicrobial peptides such as surfactant protein A, lysozyme, lactoferrin, defensins, 

complement components (Iwasaki, Foxman, and Molony 2017; Rogan et al. 2006). Another 

role of the epithelium lies in cilia that with their synchronised movements facilitate the 

clearance of particulates towards upper airways, where they are terminally removed by 

coughing (Lloyd and Marsland 2017; Radicioni et al. 2016). 

2.3.2 Lungs are not sterile 

The biggest common worldwide project for the research of the microbiota, The Human 

Microbiome Project (HMP), included nares and oral cavity as the sites of the research interest, 

but interestingly, not the lower airways (Proctor 2011). Therefore, until today the knowledge 

about lung microbial composition and its interaction with the host’s physiology and immune 

system remains scarcely explored (Huang et al. 2015; Segal et al. 2013, 2016; Sze et al. 2015). 

There have been also other inconveniences, as the difficulty of sampling, low biomass of the 

samples and consequentially, the high risk of contamination by upper airways while sampling 

(100 to 10,000 times less of 16S rRNA gene copies in lungs) (Bassis et al. 2015; Charlson et 

al. 2011). The three sample types are most commonly found across the studies of lung 

microbiota: tissue, bronchoalveolar lavage fluid (BAL) and sputum. The one the least ethically 

acceptable (so, the rarest) but representing the lowest contamination risk is the tissue, initially 

obtained from lung transplantation patients. Sputum is the sample with the highest 

contamination risk but the easiest to obtain. Therefore, the most studies are realised on BAL 

that represents an acceptable compromise; direct sampling of the lower airways lung microbiota 
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by lobe washing, but with bronchoscope passing through the airways (Bassis et al. 2015; 

Bernasconi et al. 2016; Dickson et al. 2016; Dickson, Martinez, and Huffnagle 2014; Hilty et 

al. 2010). 

Lungs are an extremely voluminous hollow system of connected branching tubes with constant 

changes in gradients of oxygen and carbon dioxide tension. This creates rather selective 

pressure on microbial communities that might exist in lower airways (Lieberman et al. 2013). 

Under healthy conditions, there is a constant turnover of bacterial communities in the lower 

airways, as reported both by culture-dependant and independent techniques (Venkataraman et 

al. 2015). The theory of adapted island model suggests that the upper airways are the source of 

microbial diversity of lower airways, and that this diversity decreases with furthering from the 

central bronchus towards more distant lung parts. It was brought up by Dickson et al. (2015) in 

the study including 15 healthy volunteers whose microbiota was sampled by BAL in different 

lung parts. In these subjects, the BAL microbiota of the upper lobes resembled more the 

microbiota of the upper respiratory tract than the BAL microbiota from lower lobes. Further, 

the authors have suggested that lung microbiota in healthy subjects is more influenced by the 

rate of immigration and elimination than by the local growth conditions. Those, they say, have 

more importance in the cases of advanced lung diseases.  

Lung microbiota by its composition was clearly distinct from other microbiota such as oral, 

nasal, skin, vagina or stool microbiota (Yu et al. 2016). Likewise, Proteobacteria was reported 

as the dominant phylum in the tissues with average relative abundance of 60%. Although lung 

is the highly aerated organ, the reports of co-occurring anaerobes and aerobes in culture-

independent studies suggest that biofilms might play a very important role in the lower airways 

microbiota (Costerton et al. 1994; J W Costerton, Stewart, and Greenberg 1999) and also in 

potential pathogenicity as seen in the case of Pseudomonas aeruginosa (Whitchurch et al. 

2002). 

2.3.3 Resident lung immunity 

Postnatal exposure to different air microbes by either inhalation or aspiration is irreplaceable 

for proper education and maturation of lung immune system. It is also important for proper 

structure development as seen in germ-free (GF) animals that had smaller lungs and decreased 

number of matured alveoli than conventional animals (Ho Man, de Steenhuijsen Piters, and 

Bogaert 2017).  



Literature overview  Microbiota and connection to lung cancer 

29 

 

As effective gas exchange is essential for human life, the maintenance of immune balance in 

the lung is of exceptional importance (Ho Man et al. 2017). This homeostasis is maintained by 

tissue resident cells that at the same time create tolerance and ensure rapid responses against 

invading pathogens. This includes members of both adaptive and innate immunity, such as 

alveolar macrophages, DCs, memory T lymphocytes but also Tregs and γδT cells (Lloyd and 

Marsland 2017). Following the encounter with antigen, the additional antigen-specific 

lymphocytes can be recruited to the lung through expression of lung-homing chemokine 

receptors 4 (CCR4) and CCR8 (on e.g. Th2 cells) (Cho et al. 2016; Lloyd et al. 2000). 

  

Figure 7 Homeostasis and dysbiosis in the lung epithelium (adapted from Mao et al. 2018). 
Proposed homeostasis (left part of the figure) includes dynamic interplay between the commensal microbiota and 

local immunity (alveolar macrophage, lung DCs, several lymphocytic subtypes), maintaining a state of tolerance 

by decreasing inflammation and controlling local bacterial population through sIgA. A non-commensal microbiota 

introduces dysbiotic state, activating the PRRs and the NF-κB cascade, inducing inflammation. Here, SCFA 

produced by local bacteria or delivered through circulation (produced e.g. in the gut) might have an anti-

inflammatory role. CXCLs – chemokine (C-X-C motif) ligands, DC – dendritic cell, GPR43 – G-protein coupled 

receptor 43, LPS –lipopolysaccharide, SCFA – short-chain fatty acid, TNFα – tumour necrosis factor α 

Commensal airway microbiota stimulates production of secretory immunoglobulin A (sIgA) 

that maintains constant dynamic balance between eliminated and colonised microbiota. Its 

deficiency leads to increased inflammation against commensal microbiota that could induce 

tissue damage (Richmond et al. 2016). Commensal microbiota is also directly responsible for 

phenotype of certain immune cells. For example, the stimulation of PD-1/PD-L1 expression by 

microbiota is directly connected to formation of inducible Tregs (Gollwitzer et al. 2014). These 

cells reside in the lung since birth, and are crucial in the maintenance of lung immune 

homeostasis (Lloyd and Hawrylowicz 2009). They are defined as CD4+CD25+FOXP3+ cells, 

and even though their major secretion product is immunosuppressive IL-10, their phenotype is 

influenced by the local cytokine milieu and infection status (Curotto de Lafaille et al. 2010; 

Krishnamoorthy et al. 2012; Morita et al. 2015). In allergy, their production of IL-10 is 
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responsible for amelioration of symptoms due to their immunosuppressive effect (Kearley et 

al. 2005; Lewkowich et al. 2005). However, in the case of the local infection by respiratory 

syncytial virus, they were reported to express GATA binding protein 3 (GATA3) gene (marker 

of Th2) and to produce Th2 cytokines. Therefore, instead of their immunosuppressive activity, 

Tregs contributed to Th2 mediated response and pathology in asthma (Krishnamoorthy et al. 

2012). All this characterises lung homeostasis as a fine tuned environment of delicate 

equilibrium between resident microbiota and immunity (Figure 7). 

2.3.4 Infection and inflammation 

In health, lungs are a poor source of nutrients and therefore harbour rather low number of 

bacteria (Dickson et al. 2016). However, when our natural barriers, described earlier, do not 

suffice to eliminate potentially harmful particles or microbes, we talk about infection. Infection 

is accompanied by inflammatory response that, even though it clears its cause, leaves the tissue 

in the changed state by influencing local gas tensions, temperature or pH and could, therefore, 

create more favourable growth conditions for various bacteria (Dickson, Erb-Downward, and 

Huffnagle 2014; Mur et al. 2018). For example, mucus production is a common co-occurrence 

of inflammation, serving as a potential nutrient source (Dickson et al. 2016). 

Furthermore, the immune system finds itself in immunocompromised state, meaning that 

surface markers for PAMP recognition (such as TLRs on e.g. macrophages or epithelial cells) 

or different genetic modification within cells might not return immediately to the same 

expression level as before the infection (Didierlaurent et al. 2008; Netea et al. 2016). This leads 

to the higher susceptibility of the lungs for recurrent infection. To illustrate, in the mouse model 

of COPD (model of inflammatory lung state that could mimic post-infection), exposure to LPS 

(mimics a new infection by bacteria) induced tissue damage and further altered microbiome 

causing diversity decrease (Yadava et al. 2016). Another example considers Mycobacterium 

tuberculosis, the pathogen responsible for pulmonary tuberculosis. The studies showed that 

persistent infection induced the production of TNFα and IFNγ, leading to inflammation and 

pulmonary fibrosis (Dheda et al. 2005). Furthermore, in certain cases lung cancer developed 

from this infection site “scars”, identifying the infection with M. tuberculosis as a risk factor 

for the development of lung cancer (Cukic 2017; Pallis and Syrigos 2013). 

Although having a curative objective, the administration of antibiotics can also have a 

potentially indesirable effect on the community balance and infection. Its disturbance of the 

microbial communites, while clearing the target organisms, can lead to propagation of certain 
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surviving commensals that could become opportunistic pathogens or can clear a niche for 

pathogens already residing in the lung. Both ends up in the same process of infection and 

induces inflammatory response (Lloyd and Marsland 2017). Hospital pneumonia lies on this 

mechanism (Rello et al. 2009). 

2.3.5 Age 

Although at the moment very little is known about how does immune senescence affect lung 

responses, it is certain that lung habitat changes with age (Marsland and Gollwitzer 2014). The 

lungs become more susceptible to infections and inflammatory responses, as shown by the 

studies on COPD or pulmonary fibrosis (Lloyd and Marsland 2017). The role of the resident 

lung microbiota, as well as its “aging”, remains unknown for the moment. 

2.3.6 Vices: smoking and alcohol 

Previously, both alcohol and smoking have been acknowledged as strong risk factors for head 

and neck cancer (Vogtmann and Goedert 2016), as well as their synergistic effect for increasing 

the risk of lung cancer (Ahrendt et al. 2000). However, little is known about their interaction 

with lung microbiota. 

Interestingly, even though smoking stays one of the main risks for lung cancer development, at 

the moment it seems that it does not directly influence the microbiota of the lower airways 

(Morris et al. 2013; Segal et al. 2013), unlike the one of the upper airways (Charlson et al. 2010; 

Wu et al. 2016). Nevertheless, more research is necessary, and future studies might identify 

smoking as a cofactor that will influence the disease and consequentially, microbial 

composition, rather than the cause of this modification. 

Another vice causing local damage and inflammation is alcohol. The malice lies in the enzyme 

alcohol dehydrogenase, which converts alcohol to carcinogen acetaldehyde (Ahrendt et al. 

2000). This enzyme and its high activity were noted in several microbial groups, amongst other 

in Neisseria, bacterial genus from the class Betaproteobacteria, a commensal found in oral 

mucosa (Muto et al. 2000). Therefore, high alcohol consummation could lead to overproduction 

of this and other carcinogenic metabolites that could descend into the lung and induce tissue 

damage and subclinical inflammation. 

2.3.7 Microaspiration and pneumotypes 

Microaspiration occurs in all individuals but is elevated in certain diseases such as COPD, 

asthma or lung infections, inducing the subclinical lung inflammation (Cvejic et al. 2011; 
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Huang et al. 2015; Koh et al. 2007; Morse et al. 2004; Segal et al. 2013; Segal, Rom, and 

Weiden 2014; Sze et al. 2012, 2015; Sze, Hogg, and Sin 2014; Teramoto et al. 1999). It has 

been suggested that the cause of inflammation lies in the enrichment of the lower airways with 

supraglottic taxa. In the study of BAL microbiota from 29 asymptotic healthy subjects, Segal 

et al. (2013) detected two distinct pneumotypes. Pneumotype BPT (background predominant 

taxa) was characterised by low community richness and rRNA gene concentration, and 

associated with decreased production of proinflammatory cytokines, as TNFα, IL-6, and 

granulocyte-macrophage colony-stimulating factor (GM-CSF). On the other hand, pneumotype 

SCT (supraglottic-characteristic taxa) had higher relative abundance of SCT such as Veillonella 

and Prevotella, significantly higher lymphocyte and neutrophil count and produced NO 

quantities. Other studies found similar results, with addition of Rothia, Streptococcus, and 

Porphyromonas to SCT pneumotype (Erb-Downward et al. 2011; Morris et al. 2013; Segal et 

al. 2013, 2016; Sze et al. 2012). 

2.3.8 Chronic obstructive pulmonary disease (COPD) 

COPD is a collective term for multisystemic inflammatory state that includes chronic bronchitis 

and emphysema (airway obstruction with disappearance of small airway sacs in the peripheral 

regions) (Houghton 2013). In 2016, there were 251 million cases worldwide with 3.17 million 

deaths the year before (WHO 2019). The underlying factor for COPD development in the 

western world is smoking, but also pollution and exposure to various particles. 

Figure 8 Vicious circle hypothesis in chronic obstructive pulmonary disease (adapted from 

Sethi and Mammen 2017) 

Unlike smoking (Morris et al. 2013; Segal et al. 2013), COPD exerts distinct changes on 

microbial composition of the lower airways. One of the reasons is certainly its effect on 
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underlying lung architecture and activity of mucociliary surfaces (Wu and Segal 2017). As 

discussed in 2.3.4 Infection and inflammation, airways obstruction with increased mucus 

production could introduce pockets of increased temperature and decreased oxygen tension, 

which selectively favour the growth of microbes (Schmidt et al. 2014; Worlitzsch et al. 2002). 

Although results between studies tend to be inconsistent due to different sampling methods 

(tissue, BAL, sputum) (Sze et al. 2014), there is a consensus that acute exacerbations (episodes 

of crisis that worsen patient’s state) are in 75% of cases connected to viral or bacterial infection, 

or a combination (Han et al. 2012). This intertwined cause-consequence relation between 

inflammation and bacterial colonisation has been explained by the vicious cycle hypothesis 

(Figure 8) (Mammen and Sethi 2017). Culture-dependent analyses have identified some of 

these bacteria that are already known as pathogens: Streptococcus pneumoniae, Haemophilus 

influenzae and Moraxella catarrhalis (Hirschmann 2000). Culture-independent studies based 

on BAL samples found that lungs of COPD patients were enriched by genera Pseudomonas, 

Corynebacterium, Prevotella, Staphylococcus, Streptococcus, Veillonella, Haemophilus and 

Neisseria (Erb-Downward et al. 2011; Sze et al. 2014). Sputum also showed to be indicative, 

since COPD severity correlated with differences in abundance of Streptococcus pneumonia. 

The difference was also significant in the overall genus Streptococcus when comparing healthy 

subjects and ones with COPD (Cameron et al. 2016). 

2.3.8.1 Chronic inflammation to lung cancer 

Even though a role of inflammation in lung cancer does not naturally come first to mind, the 

development of lung cancer is closely related to chronic inflammation. In the situation of lung 

tissue injury or recognition of the foreign epitopes, there is an infiltration of inflammatory cells 

(Schmidt et al. 2014). However, for one reason or another, there is no resolution of 

inflammation, and the prolonged excretion of proinflammatory factors in the end leads to 

excessive tissue destruction. In the same time, the factors responsible for tissue remediation, as 

cytokines and chemokines that stimulate cell proliferation, angiogenesis and tissue remodelling 

in response to tissue injury, send survival signals to damaged or deregulated cells. All this 

creates a perfect environment for mutagenesis and metastasis (Cho et al. 2011; Palucka and 

Coussens 2016). Several studies already established the link between COPD and lung cancer 

development (Houghton 2013; Melkamu et al. 2013). Therefore, the role of lung microbiota in 

lung cancer was suggested as one of the important issues for consideration (Mur et al. 2018). 
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2.3.9 Lung cancer and microbiota 

2.3.9.1 Egg or chicken 

The question is simple – is the change in lung microbiota the cause of lung cancer development, 

or does the lung cancer development cause the change in surrounding microbiota. The answer 

is less simple, and it will probably rest highly dependent on each case (Blumberg and Powrie 

2012; Francescone et al. 2014). 

The colonisation of tumours by bacteria has already been suggested (Chanudet et al. 2007; 

Hooper et al. 2007). Growing, solid tumours stimulate neo-angiogenesis that results in leaky 

and irregular organisation, possibly enabling bacterial entry into the tumour to stimulate 

immune response (Bashiardes et al. 2017). However, in the same time the defective blood 

supply compromises drug delivery (Dang et al. 2002) and in itself is also not sufficient for 

oxygen needs of rapidly proliferating tumour cells (Vaupel, Mayer, and Höckel 2004). This 

leads to the creation of necrotic and hypoxic environment in the centre with increased activity 

of lactate dehydrogenase, which lowers pH by lactate production (Wouters et al. 2003). These 

particular conditions might furtherly favour colonisation and replication of anaerobic 

acidophilic bacteria (Baban et al. 2010). In addition, genetic transformation of tumour cells 

might stimulate the expression of certain epitopes that could serve as bacterial adhesion points 

not present in normal cells (García-Castillo et al. 2016; Garrett 2015; Khan, Shrivastava, and 

Khurshid 2012), facilitating tumour colonisation.  

Both negative effect of this colonisation with direct role in carcinogenesis have already been 

well documented in other sites (e.g. Helicobacter pylori, Fusobacterium nucleatum) (Gur et al. 

2015; Wroblewski, Peek, and Wilson 2010) and in different models (Schwabe and Jobin 2013; 

Sears and Garrett 2014), as well as the immune-stimulating properties of e.g. anaerobic 

Clostridium spores, enhancing tumour surveillance (Van Dessel, Swofford, and Forbes 2015). 

However, for the moment the involvement of lung bacteria in lung cancer development or 

suppression remains a mystery. 

2.3.9.2 Microbiota in lung cancer 

Until today, microbiota in lung cancer patients has been poorly studied. Unlike in asthma or 

COPD, routine bronchoscopy that could give direct possibility of microbiota assessment is not 

a common practice. Moreover, as discussed in the chapter 2.3.8.1 Chronic inflammation to lung 

cancer, until recently lung cancer was not associated with an inflammatory state nor was it 

treated as an outcome of infection with specific pathogen, therefore no true need was seen to 
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examine the microbiota within the tumour, or in the tumour environment. Similarly, the 

sampling methods that remain invasive and therefore difficult to realise (lung tissue or tumour 

samples) contributed to small number of studies of this type (discussed in the chapter 2.3.2 

Lungs are not sterile). 

Table 1 The studies identifying a significant difference in abundance of lung microbiota 

in lung cancer (adapted from Mao et al., 2018)). ↑: Microbiota increases in LC compared to 

controls, ↓: Microbiota decrease in LC compared to controls. 

 

The studies performed on microbiota from BAL remain the most common (Table 1). Even 

though for the moment without a direct connection with the disease, certain pathogenic bacteria 

belonging to Gram-negative bacilli (H. influenzae, Enterobacter sp., Escherichia coli) and 

Gram-positive Mycobacteria were identified in LC patients (Laroumagne et al. 2011). Another 

study compared BAL microbiota between LC patients and patients with benign biomasses as 

controls (Lee et al. 2016). They identified two phyla, Firmicutes and TM7, and two genera, 

Veillonella and Megasphaera, as more abundant in LC patients. The authors showed that these 

two genera together can predict LC with accuracy of 0.888. What is interesting is that TM7 was 

also reported as elevated in certain studies on COPD, making it a potential microbial candidate 

for transition of COPD to LC (Mao et al. 2018). The authors also observed that the ratio between 

Firmicutes and Bacteroidetes was significantly higher in smokers than in non-smokers, 

suggesting that smoking might be the cofactor of microbial modification during the already 

established disease. Comparing BAL microbiota between the tumour lobe and contralateral 

lobe, Liu et al. (2018) noted significant decrease in diversity in the tumour lobe, as well as 

increased abundance of genera Streptococcus and Neisseria. 

At the moment, only two studies have analysed microbiota of the non-malignant tissue paired 

tumour (Peters et al. 2019; Yu et al. 2016). Yu et al. (2016) defined the core microbiota found 

in 80% of non-malignant tissue samples as members of the phyla Proteobacteria, Firmicutes, 

Bacteroidetes and Actinobacteria. Interestingly, at the genus level, five genera determined as 

core microbiota belonged to the phylum Proteobacteria: Acinetobacter, Pseudomonas, 

Ralstonia and two other from families Comamonadacea and Oxalobacteraceae. When 

comparing with tumour tissue, the observed alpha diversity in non-malignant samples was 
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higher than in tumour tissue. The analysis by tumour histology indicated that adenocarcinoma 

had significantly increased phylogenetic diversity compared to squamous cell carcinoma, the 

increase in abundance of genus Thermus and the decrease in Ralstonia. Interestingly, Peters et 

al. (2019) associated higher diversity in non-malignant tissue with decreased recurrence-free 

and  disease-free survival, while no link was seen with tumour microbiota. 

Lung microbiota was also analysed in sputum samples of healthy subjects and LC patients. LC 

patients showed significant decrease in the abundance of phyla Synergistetes and Spirochaetes 

compared to healthy controls (Hosgood et al. 2015). Another retrospective study identified 

Streptococcus viridis as the only significantly more abundant in patients who developed lung 

cancer (Cameron et al. 2017) 

In 2015, a paper was published on salivary microbiota demonstrating that LC patients had the 

increased abundances of genera Capnocytophaga, Selenomonas, Veillonella and Neisseria 

compared to healthy controls. Results on Capnocytophaga and Veillonella were furtherly 

confirmed by qPCR. Moreover, the combination of these two genera yielded a receiver 

operation characteristic (ROC) value of 0.86 and 0.80 in distinguishing healthy subjects from 

patients with squamous cell and adenocarcinoma, respectively. 

Regardless of the sample source, certain bacterial genera appear significant in several studies, 

such as Granulicatella, Streptococcus and Veillonella (Cameron et al. 2017; Hosgood et al. 

2015; Lee et al. 2016; Liu et al. 2018; Yan et al. 2015). In addition, genera Streptococcus and 

Granulicatella are facultative anaerobes, while Veillonella is an obligate anaerobe (Mur et al. 

2018), which could suggest the existence of biofilms and their potential role in LC. These 

findings confirm the hypothesis that lung cancer is accompanied by the specific changes in local 

microbiota. However, further studies are necessary to clarify this interplay and also to better 

characterise the changes depending on the location of sampling (tumour, adjacent tissue, non-

malignant tissue, alveolar lumen, sputum, saliva).  

2.3.9.3 Lung microbiota, Th17 and tumorigenesis 

The ambiguous role of IL-17 was already addressed in the section “Tumour immunology” from 

the immune aspect. When observing its relation with microbiota, the implication in both 

protumoral inflammation and antitumoral response were described and were depending on the 

models of lung cancer (Chang et al. 2014; Cheng et al. 2014; Jin et al. 2019; Segal et al. 2016) 
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It was already evidenced in healthy subjects that the presence of supraglottic taxa in the lower 

airways was associated to subclinical inflammation marked by higher presence of Th17 

phenotype and upregulation of IL-17 (Segal et al. 2016). 

In COPD patients, nontypeable Haemophilus influenza (ntHI) induced secretion of epithelial 

IL-17C that increased neutrophilic infiltration and inflammation, promoting tumorigenesis 

(Jungnickel et al. 2017). Same authors demonstrated that exposure to combination of smoking 

and ntHI induced translocation of bacterial factors that promoted proliferation of LC and 

metastatic growth (Jungnickel et al. 2015). Similarly but this time directly with cytokine 

producers, another study showed that ntHI-induced Th17 cells could promote angiogenesis and 

LC cell proliferation (Chang et al. 2014). 

Study of Jin et al. (Jin et al. 2019) investigated the interaction between LC and host microbiota 

using the mouse model with activated KRAS (Kirsten ras oncogene homolog) gene expression 

and loss of P53 gene to simulate mutation frequently associated with ADK. They showed that 

local commensal microbiota stimulated production of IL-1b and IL-23 from myeloid cells, 

which induced proliferation and activation of γδT cells and their secretion of inflammatory 

cytokines including IL-17, to promote tumour inflammation and progression. Adversely, SPF 

mice treated with antibiotics showed suppressed tumour growth in both early and late stages. 

Likewise, antibody neutralisation of IL-17A significantly decreased neutrophil influx, tumour 

growth and IL-1b expression. 

Completely opposite results were seen in the study of Cheng et al. (Cheng et al. 2014) on mouse 

model, where intact commensal microbiota were responsible for γδT cell response against LC. 

Mice treated with antibiotics were more prone to develop both B16/F10 melanoma and Lewis 

lung carcinoma, with more numerous and larger tumour foci in the lungs, and showing a 

defective γδT cell response. Transfer of normal γδT cells or injection of IL-17 rectified the 

aberrant antitumour response. 
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3 Review: The gut-lung axis and lung cancer 

Review Article 

Desired turbulence? Gut-lung axis, immunity and lung cancer 

Rea Bingula,1 Marc Filaire,1,2 Nina Radosevic-Robin,3 Mathieu Bey,4 Jean-Yves Berthon,4 

Annick Bernalier-Donadille,5 Marie-Paule Vasson,1,6 Edith Filaire1,7,8 

 Published in Journal of Oncology, 17 September 2017 

The importance of gut microbiota in modulating host’s immune and cancer response (see 

chapter 2.2.3 Gut microbiota against cancer) yielded in extensive research of communication 

between gut microbiota and different organs, called axes. Recently, a new axis has been 

proposed, named the “gut-lung axis”. Based on multiple indices that modification of a diet or 

exposure to certain particles changes the immune response in the lungs, and vice versa, the axis 

theory proposed the communication between these two compartments through lymphatic and 

blood circulation.  

To approach these two very different microbiota, discuss their interaction with and through the 

immune system, and address its potential application in lung cancer, we wrote a review article 

entitled “Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer”. Its objective was 

to provide an overview of the current knowledge of the matter, which would then serve to guide 

the thesis research in the most pertinent direction for the scientific community. 

The review addressed the current knowledge in the composition of the gut, rhino-oropharyngeal 

and lung microbiota in healthy subjects, and reported changes in COPD and lung cancer for 

lung microbiota. Next, it addressed the interaction between the mucosal immune system and 

the local microbiota, taking into account the influence of both bacterial cells and their products. 

Finally, the review considered the bidirectional concept of the gut-lung axis in the context of 

cancer, based on previously proposed lymph theory and the theory of the cancer-immunity 

cycle.
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Abstract 

The microbiota includes different microorganisms consisting of bacteria, fungi, viruses and 

protozoa distributed over many human body surfaces including the skin, vagina, gut, and 

airways, with the highest density found in the intestine. The gut microbiota strongly influences 

our metabolic, endocrine, and immune systems, as well as both the peripheral and central 

nervous systems. Recently, a dialogue between the gut and lung microbiota has been 

discovered, suggesting that changes in one compartment could impact the other compartment, 

whether in relation to microbial composition or function. Further, this bidirectional axis is 

evidenced in an, either beneficial or malignant, altered immune response in one compartment 

following changes in the other compartment. Stimulation of the immune system arises from the 

microbial cells themselves, but also from their metabolites. It can be either direct or mediated 

by stimulated immune cells in one site impacting the other site. Additionally, this interaction 

may lead to immunological boost, assisting the innate immune system in its anti-tumour 

response. Thus, this review offers an insight into the composition of these sites, the gut and the 

lung, their role in shaping the immune system and, finally, their role in the response to lung 

cancer. 

 

Key words: Intestinal microbiota, lung microbiota, dysbiosis, immunotherapy, probiotics  
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1. Introduction 

The microbiota is a consortium of different microorganisms that includes bacteria (microbiota), 

fungi (mycobiota), viruses and protozoa [1] residing on the skin, and in the oral, pulmonary, 

urogenital and gastrointestinal (GI) cavities – with the gastrointestinal having the highest 

density of microbiota. Weighing approximately 1.5 kg, microbial residents in the GI tract 

outnumber human cells 10-fold and genome size 100-fold. Their functional importance for the 

host is undeniable involving functions that range from breaking down complex dietary 

polysaccharides [2] to competing with pathogens, and modulating the mucosal and immune 

system in general [3]. Gut dysbiosis is now considered to be an underlying cause for a wide 

range of GI diseases, and an emerging number of non-GI conditions such as obesity and 

cardiovascular disease, as well as a range of psychiatric disease [4,5]. Recent studies have also 

reported the effects that the intestinal microbiota exerts on the lungs. This has been referred to 

as the ‘‘gut-lung axis”, which in most cases is mediated by inflammation involving the 

translocation of bacteria and bacterial products across the GI tract barrier and into blood vessels 

[6]. However, data on this topic is scarce. Studies of the lung microbiota and its interconnection 

with other systems and organisms are an emerging field, which is rapidly accumulating 

evidence to demonstrate that the lungs are not in fact sterile, but contain distinct microbial 

communities [7]. Moreover, it appears that chronic lung diseases such as cancer are linked to a 

dysbiotic airway microbiota, and commonly occur alongside GI disorders [8,9]. Likewise, 

individuals with irritable bowel syndrome sometimes have impaired lung function [10]. This 

leads us to the conclusion that the axis between lung and gut can be considered bidirectional. 

In this review we give an overview of the composition of both the gut and the lung, and describe 

the interaction between the immune system and microbiota using the intestinal tract as an 

example. In the case of the lungs we are still only able speculate about any similarity. We also 

examine immune stimulation of the gut to observe the effects on lung immunity, inflammation 

and lung cancer, and finally, we discuss how these two sites might “cooperate” to achieve a 

productive immune and anti-cancer response. 

2. Gut microbiota 

The evolution of an individual’s microbiota begins at birth, with its composition becoming 

relatively stable after the age of two and remaining so throughout life. The GI tract is populated 

by more than 1,000 bacterial species. At the level of the phylum, the composition of the 

microbiota is similar in most healthy people. Over 90% of bacterial cells are Firmicutes and 
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Table 1 Most frequently detected bacteria in GI tract and respiratory system of healthy volunteers, or from healthy tissue samples. Results from different 

studies are presented by the taxa level in which they were originally detected, in order of decreasing abundance where possible. If the sampling, analysis method, 

or result was specific for a certain study, the reference was added adjacent to the corresponding information. 

 
Sample source 

Phylum Order or family Genus or species Reference 
Analysis method 

G
I 

tr
a
c
t 

faeces 

Firmicutes (79.4% of sequences), Bacteroidetes (16.9%), 

Actinobacteria (2.5%), Proteobacteria (1%), 

Verrucomicrobia (0.1%) b 

 

Faecalibacterium, Ruminococcus, Eubacterium, Dorea, 

Bacteroides, Alistipes, Bifidobacterium a 

Bacteroides (vulgatus), Roseburia (intestinalis), 

Ruminococcus (bromii), Eubacterium (rectale), 

Coprobacillus (sp.), Bifidobacterium (longum), 

Clostridium (leptum, coccoides) b 

Tap et al. [11] 

qPCRa,  

16S sequencingb 

O
ra

l 

c
a
v

it
y
 

saliva Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, 

TM7, Spirochaetes 

Pasteurellaceae (5.8%), Enterococcaceae 

(2.6%), Veillonellaceae (2.0%), 

Burkholderiales (1.2%), Lactobacillales 

(1.1%) 

Neisseria and Streptococcus (70% of sequences), 

Haemophilus (9.2 %), Leptotrichia (2.1%), Actinomyces 

(1.9%), Abiotrophia (1.8%), Atopobium (1.6%), Gemella 

(1.6%), Arthrobacter (1.0%) 

Lazarevic et al. 

[103] 
16S sequencing 

N
o

se
 

swab 

Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, 

Fusobacteria 

Staphylococcaceae, Lachnospiraceae [49] 

Propionibacteriaceae, 

Corynebacteriaceae [104] 

 
Charlson et al. [104] 

Lemon et al. [49] 16S sequencing 

O
ro

p
h

a
ry

n

x
 

swab Dominated by Firmicutes, Proteobacteria, and 

Bacteroidetes, Fusobacteria, Actinobacteria, TM7, and 

SR1 follow (oropharynx was richer and less variable than 

the nostril microbiota) 

Streptococcaceae, Lachnospiraceae, 

unclassified group of Clostridia [49] 

Streptococcaceae, Veillonellaceae, 

Fusobacteriaceae, Neisseriaceae [104] 

 
Charlson et al. [104] 

Lemon et al. [49] 16S sequencing 

E
so

p
h

a
g

u
s biopsy 

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, 

Fusobacteria, TM7 
 

Streptococcus (mitis, thermophiles, parasanguis), 

Prevotella (pallens), Veillonella (atypica, dispar), Rothia 

(mucilaginosus), Megasphaera (micronuciformis), 

Granulicatella (adiacens), Gemella, TM7, Actinomyces 

(odontolyticus), Bacteroides, Clostridium, Haemophilus, 

Bulleidia (moorei) 

Pei et al. [105] 

16S sequencing 

L
u

n
g
 

BALa, brushingb 
Actinobacteria, Firmicutes, and Proteobacteriaa [106] 

Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, 

Fusobacteria b [7] 

Streptococcaceae, Veillonellaceae, 

Prevotellaceae, Micrococcaceae, 

Neisseriaceae, Porphyromonaceae, 

Lachnospiraceae, Actynomicetaceae, 

Fusobacteriaceaea [104] 

Pseudomonas, Streptococcus, Prevotella, Fusobacterium, 

Haemophilus, Veillonella, Porphyromonasa [62] 

Prevotella, Veillonella, other Firmicutes, other 

Bacteroidetes, Streptococcus, Haemophilus, Neisseria, 

Fusobacterium, other Actinobacteria, Staphylococcus, 
other Proteobacteria, Corynebacterium b [7] 

Charlson et al. [104] 

Erb-Downward et 

al. [62] 

Hilty et al. [7] 

Pragman et al. [106] 16S sequencing 

 Abbreviations: BAL = bronchoalveolar lavage. 
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Bacteroidetes, followed by Actinobacteria, Proteobacteria and Verrucomicrobia, together 

constituting 99% of the overall commensal microbiota [11]. Around 60 species have been 

identified as the “core” microbiota, mostly bacteria from the Bacteroides, Bifidobacterium, 

Eubacterium, Ruminococcus, Faecalibacterium genera, as well as a few others [11]. A 

summary overview of the most prevalent human GI microbiota is shown in Table 1. 

Strongly correlating to long-term diet [12], different enterotypes can also be identified through 

a variation in the levels of one of the three most abundant genera: Bacteroides (enterotype 1), 

Prevotella (enterotype 2) and Ruminococcus (enterotype 3), which is often less clearly 

distinguished [13]. 

The impact of the GI microbiota on host mucosal immunity 

The microbiota is now considered key to the proper development, maturation and reactivity of 

the immune system [6,14]. Microorganisms serve as an inexhaustible source of microorganism-

associated molecular patterns (MAMPs) as well as pathogen-associated molecular patterns 

(PAMPs). The two are recognizable on the host’s cells through pattern-recognition receptors 

(PRRs), which include toll-like receptors (TLRs) and nucleotide-binding receptors (NODs) 

[15]. TLRs are conserved receptors of the innate immune system that recognize MAMPs and 

PAMPs among other molecules, evoking different immunological reactions depending on the 

type of the cell, ligand and the receptor itself (some of the most common pairs are shown in 

Figure 1A). TLRs, which are in direct contact with the intestinal lumen, are found not only in 

intestinal epithelial cells (IECs) but also on immune cells within the lamina propria, such as 

macrophages, dendritic cells (DCs), B cells, T cells and stromal cells. In IECs, TLR activation 

by microbial ligands results in epithelial cell proliferation and the expression of antimicrobial 

peptides, and secretion of immunoglobulin A (IgA) produced by plasma cells in lamina propria, 

into the gut lumen [16], as well as the expression of antimicrobial peptides. All of the above 

lead to enhanced intestinal barrier function and limit the possibility of microbial breach. 

Interestingly, some of the TLRs, such as TLR2 and TLR4, are inhibited by IEC’s intracellular 

Toll-interacting protein (TOLLIP) (Figure 1B) when the signal comes from the intestinal lumen, 

which suggests a selective inflammatory response reserved to microbes that have breached the 

intestinal barrier [16]. NOD-like receptors, or nucleotide-binding domain, leucine-rich repeat 

containing proteins (NLRs), are cytoplasmatic equivalents of TLRs that detect bacterial PAMPs 

entering the mammalian cell (Figure 1B). They are especially important in tissues where TLRs 

are expressed at low levels e.g. in GI tract epithelial cells where the cells are in constant contact 
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with the microbiota, and the expression of TLRs must be down-regulated to avoid over-

stimulation [17]. 

 
Figure 1 Interaction of the microbiota and intestinal mucosa. A) Microorganisms in the 

intestine provide pathogen-associated molecular patterns (PAMPs) that serve as ligands for different 

Toll-like receptors (TLRs) on the luminal or basolateral surface of the intestinal epithelial cells (IECs). 

B) TLRs stimulation activates a signalling cascade resulting in transcription factor activation and gene 

transcription, enhancing the cell barrier and further stimulating the immunological cells in the lamina 

propria. This cascade can be inhibited by toll-interacting protein (TOLLIP). *Inhibition seen only for 

TLR2 and TLR4 [16]. C) Commensal bacteria and their derivatives (e.g. short-chain fatty acids 

(SCFAs)) directly stimulate IECs (B) or can be phagocytosed by DCs and macrophages in lamina 

propria, carried to mesenteric lymph nodes (MLN) where they prime naïve B and T cells to mature and 

differentiate. B cells become plasma cells and produce IgA that is secreted into the intestinal lumen 

(sIgA). T cells profile into Th17 and Th1, with proinflammatory tendency, activating additional 

effectory cells as neutrophils, resulting in bacterial clearance. There is also differentiation to Treg cells 

having anti-inflammatory properties and controlling inflammation. 

Commensal microorganisms can enter intestinal lamina propria in several ways: through an 

opening in the barrier as a result of injury, or through active sampling by DCs or M cells. In 

any case, microorganisms in the lamina propria are either phagocytosed and eliminated by 

macrophages [18], or engulfed by DCs (along with B cells, both are considered the 

“professional” antigen presenting cells (APCs)) and are carried live to the mesenteric lymph 

nodes (Figure 1C). Recognition of infected apoptotic cells and bacteria results in the 

upregulation of interleukin 6 (IL-6), which drives the differentiation of proinflammatory T-

helper-IL-17-producing (Th17) cells. Th17 cells primarily produce two main members of the 
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IL-17 family, IL-17A and IL-17F which are involved in the recruitment, activation, and 

migration of neutrophils [19], with granulocytes playing an important role in bacterial 

clearance. Commensal-bearing DCs also induce the production of protective secretory 

immunoglobulin A (sIgA) in activated B cells (Figure 1C) [20], i.e. plasma cells. This sIgA is 

then distributed across all mucosal surfaces through the recirculation of activated B and T cells. 

Commensal bacteria also directly promote the expression of factors involved in the induction 

of IgA+ B cells (Figure 1C) [21], their survival and, interestingly, production of the more 

resistant form of sIgA, exerting its stability and antimicrobial properties [22]. Through this 

constant “priming” across several layers, microbiota maintains the immune system’s readiness 

and reactivity, making it more capable of a quick and effective response when needed.  

Specific populations of commensal bacteria e.g. Bacteroides fragilis, Bifidobacterium infantis, 

Clostridium cluster IV and XIVa, also induce so-called regulatory T cells (Tregs), a subset of 

forkhead box P3 positive (FoxP3+) CD4+ T-helper lymphocytes that maintain gut homeostasis 

by stimulating the production of anti-inflammatory cytokine IL-10 [23]. These cells serve as a 

kind of counterbalance to Th17 response, controlling the scope of its reaction and 

proinflammatory cytokine production. Thus, depletion of Tregs leads to the abnormal 

expansion of CD4+ Th cells, resulting in robust IL-17 and interferon gamma (IFN) responses 

in the colonic lamina propria, to produce intestinal inflammation. 

To understand more precisely which commensal microbiota has this immunostimulatory effect, 

the well-known Bifidobacterium probiotic group was tested for its ability to induce the full 

maturation of human peripheral blood mononuclear cells (PBMCs) into DCs. Twelve 

Bifidobacterium strains descending from 4 probiotic species (Bifidobacterium longum, B. 

breve, B. bifidum, and B. animalis subsp. lactis) were tested, and each was induced to full 

maturation into DCs but using different Th preferences (Th1 or Th17), depending on the type 

of Bifidobacterium strain with which they were incubated. Also, cell-free culture supernatants 

were poor inducers of maturation [24], leading us to conclude that live bacterial cells are 

necessary to induce efficient maturation and antigen presentation in DCs with this type of 

bacteria. 

Likewise, introducing probiotic strains such as Bifidobacterium lactis into healthy elderly 

volunteers with fully developed immune systems, resulted in a significant increase in the 

proportion of mononuclear leukocytes, the phagocytic capacity of mononuclear and 

polymorphonuclear phagocytes, and the tumoricidal activity of NK cells [25], highlighting the 
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importance of this specific immune-boosting species whose presence directly impacts immune 

status. 

Immunity and inflammation are not necessarily affected by bacterial cells, but may be 

influenced by bacterial products. Bacterial products that have a significant effect on overall host 

status surely included short chain fatty acids (SCFAs), by-products of the microbial 

fermentation of dietary fibre. Amongst others, Bacteroides, Bifidobacterium, 

Propionibacterium, Eubacterium, Lactobacillus, Clostridium, Roseburia, Prevotella are all 

remarkable SCFA producers [26]. Fermentation and SCFA production are thought to inhibit 

the growth of pathogenic organisms by reducing luminal pH [27]. The most abundant SCFAs 

are acetate, propionate (found mostly in the small and large intestines) and butyrate (found 

mostly in the caecum and colon), which are primarily derived from carbohydrates [28]. SCFAs 

have their specific receptors both on leukocytes and on endothelial cells. Known as two 

formerly orphan G protein-coupled receptors, GPR41 is found in a wide range of tissues 

including in neutrophils, while GPR43 is shown to be highly expressed in immune cells [29]. 

GPR109a, the third receptor found in the colon epithelium and immune cells, is butyrate-

specific, and closely associated with the anti-inflammatory effect [30]. Butyrate is one of the 

most important SCFAs with members of the Firmicutes phylum as major butyrate producers, 

harbouring genes for the acetyl-CoA pathways. Other than as the main energy source for the 

intestinal epithelium and its role in barrier integrity [31,32] following selective transport into 

the colon epithelium, butyrate manifests broad anti-inflammatory activities such as immune cell 

activation, proliferation, migration, adhesion, cytokine expression, and cancer cell apoptosis 

[14,30]. These are mostly attributed to its function as a histone deacetylase (HDAC) inhibitor. 

HDAC inhibition influences the acetylation not only of histones (FoxP3 locus in Tregs, 

important for their maturation) [33], but also of major transcription factors such as nuclear 

factor kappa-light-chain-enhancer for activated B cells (NF-κB), or signal transducer and 

activator of transcription 3 (Stat3) [34,35], major proinflammatory pathway factors affecting 

the proinflammatory cytokine secretion profile in immune cells [36] and decreasing the 

proliferation and apoptosis of tumour cells [37]. 

As mentioned previously, changes to the gut microbiota are related to, for example, changes in 

diet, antibiotic administration, chemotherapy, and a person’s general immune status. Whether 

with a transient or permanent effect, these changes often lead to dysbiosis, with an altered ratio 

of beneficial bacterial species (e.g. Lactobacillus sp., Faecalibacterium prausnitzii, etc.) and/or 

an overgrowth or population shift of other species [14]. In this event, expanded indigenous 
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microorganisms (now potential opportunistic pathogens), may also produce DNA-damaging 

superoxide radicals and genotoxins in significant concentrations and induce innate immune 

mediated proinflammatory pathways [38], directly damaging cells, and promoting malignant 

transformation by inducing chromosomal and microsatellite instability, CpG island 

methylation, epigenetic alterations, and post-translational modifications, which weaken the 

immune response and increase the risk of cancer [39]. 

Apart from the direct pathological effect, an absence of the appropriate microbial composition 

in the immune system’s early development has more far-reaching effects. This is evident from 

studies on mice reared in germ-free (GF) conditions. These animals have impaired GI-driven 

immune development, characterized by smaller Peyer’s patches, fewer CD8αβ intraepithelial 

lymphocytes, underdeveloped isolated lymphoid follicles, a lack of primed T cells, lower levels 

and impaired production of mucosal IgA antibodies, and active IL-10-mediated inflammatory 

hyporesponsiveness [40,41]. Also, mice with colitis-associated cancer (CAC) that lacked 

microbiota were unable to process pro–IL-1β and pro–IL-18 (interleukins in this case necessary 

for a desirable inflammatory reaction) into their mature forms, resulting in increased tumour 

burden [42]. That said, we can see that the composition of “healthy” microbiota is crucial to the 

proper development of the immune system’s basic structures. Unless fully developed, their 

ability to exchange information and their reactions to the “outside” world are compromised. 

This state could be characterised as similar to anergy: the signal is present but the immune 

system does not respond, as exemplified in the case of CAC mice.  

3. Lung microbiota 

The human respiratory tract is the primary and continuous entry portal for numerous 

microorganisms and particles, such as viruses, bacteria, or fungi. These are primarily airborne, 

but can also be transferred through saliva. Below the vocal cords, the human airways harbour 

bacteria and other microbes in rich surroundings [43] that are distinct in composition from the 

microbiota seen at other sites (in the nasal and oral cavity, gut, skin, and vagina). Despite being 

less populated compared to the GI tract, the lung microbiota includes a range of 

microorganisms, mostly seen through the use of bronchoalveolar lavage (BAL) fluid, or tissue 

samples. Since lung microbiota exploration has rather young and non-uniform protocols, it is 

crucial to bear in mind that the type of sample (lavage, tissue), sampling method, and possibility 

of cross-contamination during sampling between distinct parts of the airway, influence final 

results [44,45]. Therefore, due to the paucity of overall studies in this field, one must be careful 
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to take detailed methodology and its possible advantages and disadvantages into account. 

Studies that analyse lung tissue acquired through sterile surgical explant have also been carried 

out, and they all report that the lower respiratory tract contains a microbiome that is distinct 

from, but related to, that of the upper airways [46]. 

In 2014 Dickson et al. [47] proposed an adapted island model for lung biogeography, suggesting 

that more distal lung bacterial communities are less rich and more dissimilar to their upper 

respiratory tract source community. Here, microbial composition is determined by the rate of 

microbial immigration into the airways, their rate of elimination (e.g. by coughing or immune 

defences), and the rate at which different community members are reproduced [48]. 

Temperature, oxygen tension, pH, nutrient density, local anatomy, and host defence are 

spatially heterogeneous across the airways and the lungs, all of which affect local 

microbiological growth conditions. 

Starting with the upper respiratory airways, the nostril is dominated by Firmicutes and 

Actinobacteria; Firmicutes, Proteobacteria, and Bacteroidetes are prevalent in the oropharynx 

[49]. In the lung the most common phyla consistently observed are Bacteroidetes, Firmicutes 

and Proteobacteria. The nasal microbiota seems to more closely resemble that of the skin than 

that of the lungs and contributes little to lung communities [50]. The coming years are likely to 

bring the development of new methods able to minimize cross-contamination (as seen for 

endoscopy [51]), which is the biggest problem in lower respiratory tract sampling that, along 

with metagenomic analysis (of both cultivable and non-cultivable  bacteria), will yield more 

precise results in terms of the bacterial population found at certain airway depths. An overview 

of different studies investigating the composition of the respiratory system microbiota is 

presented in Table 1. 

The ecological determinants of the lung microbiota (immigration, elimination, and regional 

growth conditions) change during acute and chronic lung disease, as seen in chronic obstructive 

pulmonary disease (COPD) (often a precancerous inflammatory state) and lung cancer (Table 

2) [7,44]. Whether the observed dysbiosis is a cause, consequence or simply a co-evolving 

factor, still needs to be elucidated, but its likely role will be individually connected to the 

pathology and its aetiology. However, it is known that smouldering inflammation (caused by 

lung injury, pathogen colonization, or intrinsic factors) is often a common starting point that 

leads to subsequent cancer development [52]. 
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The microbial factors that may be responsible for lung cancer development are still not well 

known, unlike the many genetic predispositions and mutations that underlie the different types 

of lung cancer [53]. This is why, for now, it is possible to correlate the non-genetic development 

of lung cancer with the well characterized development of COPD, a chronic inflammatory state 

where initial lung injury, whatever its cause, creates an opening for microbial dysbiosis and 

colonization, thus worsening the overall condition and often leading to the cancer state. 

Inflammation of the lung is associated with a loss of epithelial integrity and results in the 

“leakage” of serum proteins into the airways [54]. Formyl peptides, cleavage products of 

bacterial or mitochondrial proteins, as well as other bacterial products, serve as powerful 

chemoattractants for both the neutrophils and monocytes that emigrate from alveoli [55]. 

Although essential in pathogen clearance and having a tumoricidal effect [56], neutrophil influx 

and degranulation in the airways and lung parenchyma contribute to chronic inflammation, 

parenchymal lung damage, and progressive small airway obstruction, due to the loss of alveolar 

attachments and lung elasticity [57], as explained by Sethi’s vicious circle hypothesis [58]. In 

vitro, their enzymes, serine proteinases (elastase, cathepsin G and proteinase 3), and defensins 

markedly affect the integrity of the epithelial layer, decreasing the frequency of the ciliary beat, 

increasing mucus secretion, and inducing the synthesis of epithelium-derived mediators such 

as neutrophil chemoattractant chemokine IL-8 from respiratory epithelial cells [59]. 

Obstruction of the lumina with mucus introduces pockets of increased temperature and 

decreased oxygen tension, selectively favouring the growth of well-known disease-associated 

microbes [60,61]. This dysbiotic shift can be characterized by a move away from the 

Bacteroidetes phylum, often to Proteobacteria (e.g. Pseudomonas aeruginosa, Haemophilus 

influenza, Moraxella catarrhalis) [62,63], and sometimes to Firmicutes (e.g. Streptococcus 

pneumoniae, Staphylococcus aureus) [44]. The same growth effect was observed with a 

generation of intra-alveolar catecholamines and inflammatory cytokines [64]. If airway 

colonization becomes persistent, it further promotes chronic inflammatory response, affecting 

the elastase-anti-elastase balance in the lung, which was shown to vary 80-fold with changes to 

the airway bacterial load [65]. A higher bacterial load consequently induces higher overall IL-

8 and other blood circulating inflammatory cytokine levels, greater inflammation, oxidative 

stress and greater forced expiration volume (FEV) decline [66]. 

Lung microbiota was also shown to vary according to clinical endpoints. In non-malignant lung 

tissue from advanced stage cancer, alpha diversity had increased, whilst it had decreased in the 

tumour lung tissue. Also, the interaction between the upper and lower airways involving the  



Literature overview   Review: The gut-lung axis and lung cancer 

  

5
0
 

 

Table 2 Most frequently detected bacteria in the lung of patients suffering from their respective diseases. Results from different studies were 

presented by the taxa level in which they were originally detected, in order of decreasing abundance where possible. If the sampling, analysis 

method, or result was specific for a certain study, the reference was added adjacent to the corresponding information. 

Lung 

Disease 

Sample 

source 
Phylum Order or family Genus or species Reference 

Analysis 

method 

COPD 

BALa, 

sputumb,  
lung tissuec 

Proteobacteria (44%) and Firmicutes 

(16%) followed by Actinobacteria (13%), 
with Bacteroidetes, Fusobacteria, 

Tenericutes, SR1 incertae, TM7, and 
Synergistetes identified in lower 

proportions (<3%) b,d [107] 

Increase in Proteobacteria (sometimes 
Firmicutes), decrease in Bacteroidetes and 

Firmicutes c,d [44] 

In moderate COPD mostly Actinobacteria 
and Proteobacteria 

In severe COPD mostly Actinobacteria and 

Firmicutesa,d [106] 

Proteobacteria, Bacteroidetes, Firmicutes, 

Actinobacteria, Fusobacteriab,d [7] 

 

Haemophilus influenza, Pseudomonas aeruginosa, Moraxella 
catarrhalis, Streptococcus pneumoniae b,f [107] 

Significant increases of Streptococcus pneumoniae, Klebsiella 

pneumoniae and Pseudomonas aeruginosa b,e [63] 

Streptococcus, Abiotrophia, Rothia, Tropheryma, Actinomyces, 

Peptostreptococcus, Serratia, Capnocytophaga, Leptotrichia, 

Kingella, Dysgonomonasa,d [106] 

Significant abundance of Pseudomonas and Haemophilus a,d [62] 

Prevotella, Haemophilus, Streptococcus, Neisseria, other 

Proteobacteria, Veillonella, other Firmicutes, other 
Bacteroidetes, Fusobacterium, other Actinobacteria, 

Staphylococcus b,d [7] 

Erb-Downward et 

al. [62] 
Garcia-Nuñez et al. 

[107] 

Hilty et al. [7] 
Sze et al. [44] 

Wu et al. [63] 

Pragman et al. [106] 
16S 

sequencingd, 

qPCR/DGGEe,  
bacterial 

culturef 

Lung 

cancer 

Sputuma, 

salivab 

 

Flavobacteriales, Burkholderiales, 

Campylobacterales, Spirochaetales 

(more abundant) and Bacteroidales 

(less abundant)b,d [67] 

Veillonellaceae significantly 
overexpressed whereas 

Lachnospiraceae underexpressedb,d 

[67] 

Actinomyces spp., Peptostreptococcus spp., Eubacterium lentum, 

Veillonella parvula, Prevotella spp., Bacteroides spp., 
Lactobacillus jenseniia,c [108] 

Capnocytophaga, Selenomonas, and Veillonella were found to 

be more abundant in both SCC and ACb,d [67] 

Rybojad et al. [108] 

Yan et al. [67] anaerobic 
culturec,  

16S 

sequencingd 

 Abbreviations: COPD = chronic obstructive pulmonary disease; BAL = bronchoalveolar lavage; DGGE = PCR-denaturing gradient gel electrophoresis; SCC = small cell carcinoma; AC = adenocarcinoma. 
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microbial population present in lung cancer is clearly shown in the study carried out by Yan et 

al. [67]. The study showed that there is a high degree of specificity in patients with either small 

cell carcinoma (SCC) or adenocarcinoma (AC), compared to controls based on bacteria isolated 

from saliva (Table 2). 

As mentioned above, IL-6 and IL-8 are cytokines that become elevated during inflammatory 

stress. They are involved in tumorigenesis by acting directly on lung epithelial cells to stimulate 

the NF-κB-1 pathway [68]. Additionally, IL-6 and IL-8 are expressed by premalignant or 

senescent lung cancer cells [69]. They may act in an autocrine and/or paracrine fashion to 

stimulate cancer cell proliferation [70], migration, and invasion [71]. In bronchoalveolar 

carcinoma, tumour cells were a main source of IL-8 and the presence of an increased number 

of neutrophils in BAL fluid was correlated with the IL-8 level in BAL, and associated with a 

poor outcome [72]. In a case study carried out by Pine et al. [73], increased levels of both serum 

IL-6 and IL-8 were associated with lung cancer, but only the IL-8 level was associated with 

lung cancer risk several years prior to diagnosis. 

To summarize, the appearance of dysbiosis or malignancy is likely the product of a dynamic 

interaction between various immune, microbial, and environmental factors. At least one of these 

acts as an initiator but others often readily follow. This is why it remains difficult to reach any 

conclusions regarding the true aetiology of disease and what might be the best intervention and, 

more importantly, prevention approach. 

4. A bidirectional concept of the gut-lung axis 

Recently, we have reached a greater understanding of microbial influence on the complex and 

interconnected axis between gut and lung. This stems from the simple fact that ingested 

microorganisms can access both sites – from gastrointestinal tract microbiota that enter the lung 

through aspiration [74] to the more “internal” influence, which shows improved lung function 

and pathogen clearance following the transplantation of faecal microbiota [6]. 

This interaction can be mediated in different ways – by the microbiota and its products, or via 

immune cells (Figure 2). According to the “gut-lymph” theory of Samuelson et al. [14], there 

are sufficient macrophages and other immune cells in the intestinal submucosa or the 

mesenteric lymph nodes that contain a majority of translocating bacteria. Surviving bacteria, 

cell wall fragments, or the protein parts of dead bacteria escaping with the cytokines and 

chemokines produced in the gut, travel along the mesenteric lymphatic system to the cisterna 
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chyli, and subsequently enter the systemic circulation. Access to pulmonary circulation may 

lead to DC and macrophage activation as well as the priming of T cells and their differentiation.  

 

Figure 2 Proposed pathways of the gut-lung interaction. Microbiota and its products that enter 

intestinal mucosa (blue arrows) are phagocytosed and transferred to mesenteric lymph nodes (MLN) by 

antigen presenting cells (APC), where they stimulate priming of the T and B cells. Once activated, with 

the expression of proper homing receptors, these cells can migrate back to the original site (intestinal 

mucosa) (black dashed arrow), or to distal locations such as the lung epithelium and lung nodes through 

lymphatic and blood circulation. There, they can directly act on their target or continue to stimulate 

other immune cells. On the other hand, bacterial products from the intestinal mucosa or surviving 

bacteria can also reach the lung by blood or lymphatics to stimulate the immune system in the same way 

as they would have done in the intestinal tract. Depending on the tissue pre-stimulation, type of stimulus, 

and local and general immunological status, the result can be either positive, as effective bacterial 

clearance or anti-tumour activity, or over-inflammatory response, promoting further tissue damage, 
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pathogen colonization, and tumour progression. The same schema is proposed in the other sense, 

beginning with the lung mucosa and finishing with distal effect on the gut. Although not known for the 

moment, there is also a possibility that bacterial products of the lung microbiota can exert their effect in 

the intestinal mucosa, being delivered in the same way as explained above. 

Another way to influence the pulmonary region is through the migration of immunological 

cells. As previously mentioned, translocated microorganisms and their parts within the lamina 

propria are transferred to the mesenteric lymph nodes by antigen presenting cells (APCs), and 

used for priming naive B and T cells. Activated B cells capable of producing antigen-specific 

immunoglobulins, i.e. plasma cells, will not only produce immunoglobulins in situ, but will 

reach draining lymph nodes and other mucosal tissues, thereby spreading immunological 

“information”. The constitutive entry of antigen at steady-state stimulates inflammasome 

conversion of pro-IL-1β and pro-IL-18 into active form, in other words it switches off our innate 

ability to produce IL-10 and other anti-inflammatory molecules leading to DC migration to 

local lymph nodes, and the priming and differentiation of T cells. The latter can subsequently 

migrate out of the gut-associated lymphatic tissue (GALT) and reach both mucosal and 

peripheral non-mucosal tissues, including the bronchial epithelium, thus modifying the 

immunological response which is dependent on the induced cell profile (to Th1, Th2, etc.) 

[75,76], and improving the immunological response against pulmonary pathogens [77]. 

Although this theory explains the unilateral interaction, it is reasonable to speculate that this 

axis works in precisely the same way when it originates in the lung mucosa and lung lymph 

nodes (Figure 2). Further, lung DCs in vitro have the option to imprint the expression of gut-

homing integrin α4β7 and CCR9 (lung-homing integrin is CCR4 [78]) on co-cultured T cells 

in vitro, and on adoptively transferred cells in vivo, which guides their migration to the GI tract 

[79]. 

4.1. Influence of the gut microbiota on the lung 

The composition of “healthy”, or rather balanced, gut microbiota is shown to have a serious 

influence on the effectiveness of lung immunity. GF mice, devoid of their intestinal microbiota 

during the development of their immune system, show impaired pathogen clearance in the lung, 

which results in their growth and dissemination [41]. At this stage, it is also important to 

consider that the lungs of these mice are also germ-free [80], devoid of all microbiota that might 

normally play a role in stimulating lung immunity. Modified alveolar architecture also results, 

and thus both factors modify the response to pathogen infection. The same observations were 

made as with the infection of GF animals, when wild phenotypes were treated with antibiotics, 

thus disturbing the intestinal homeostasis, after they had been challenged with bacterial or viral 
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microorganisms [81,82]. If animals had been boosted with lipopolysaccharide (LPS) following 

antibiotic treatment, they were better able to cope with the lung infection and consequently had 

reduced mortality. Population studies followed these findings with respect to the importance of 

preserving gut microbiota, showing that increased use of penicillins, cephalosporins, 

macrolides and quinolones correlated with an increased risk of lung cancer in humans [83]. 

Here we can speculate that various antibiotic treatments eradicate the bacterial populations 

required for effectively priming T lymphocytes with anti-tumour properties, while at the same 

time making room for other opportunistic pathogens to colonize both the gut and the lung. 

Interestingly, modified gut microbiota not necessarily characterized as dysbiotic may also 

influence immune response efficiency, as seen in obese mice. These mice had an impaired 

expression of cytokines in their lungs (IFNα, IFNβ, IL-6, TNFα) and significantly decreased 

mRNA of IFNγ, interleukin 2 receptor subunit beta (IL-2RB) and perforin 1 (Prf1). All the 

criteria were improved following daily supplementation with a probiotic strain of Lactobacillus 

gasseri [84].  

Nutrition may also impact microbial development and the composition of our respiratory tract 

microbiota [85]. A high-fibre diet in mice has been shown to increase SCFA circulating blood 

levels (but no traces in the lung itself), and has been shown to be responsible for increased 

protection against allergic inflammation in the lung (reduced inflammatory cell infiltration), 

followed by a change in the intestinal and, to a lesser extent, the airway microbiota [86]. 

The above-mentioned findings clearly show how important the overall composition of the 

intestinal microbiota is for a productive immunological response in the lung. Lack of an 

appropriate stimulus during the developmental phase, as during infection, will disable a quick 

and effective immune reaction, resulting in pathogenic colonisation, increased susceptibility to 

infection, damage, the possible development of cancer, and increased mortality. At the same 

time, just one single strain, bacterial part or product can turn the tables and provide the boost 

needed to stimulate the correct immune response. 

4.2. Influence of the lung microbiota on the gut 

Unlike the local and systemic influence of intestinal microbiota, the influence of lung 

microbiota, its products, and their circulation are yet to be properly assessed. One study reported 

that non-absorbable tracer deposited into the nasal cavity of mice can be found in the GI tract a 

short time later [87]. Also, Sze et al. [43] showed that, in mice, even acute exposure to a single 

dose of intratracheal LPS disrupts the airway microbiota, leading to translocation of these 
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bacteria into the bloodstream. Within 24 hours the caecal microbiota is also disturbed, leading 

to a sharp increase in the total bacterial load. It still remains unclear as to whether this effect is 

due to the direct interaction of translocated pulmonary and residential intestinal microbiota via 

immune cell or cytokine mediation, or to microbial products that reach the gut. 

4.3. Microbiota and cancer via the immune system 

Due to a number of genetic alterations resulting in the loss of normal cellular regulatory 

processes, cancer cells express neoantigens that are tumour-specific and distinguish tumour 

cells from healthy cells. The importance of the gut microbiota in anti-cancer response has been 

described by Chen et al. [88] through the concept of a cancer-immunity cycle. The cancer-

immunity cycle starts with the capture of neoantigens from cancer cells by DCs. For an anti-

cancer response to take place, this must be accompanied by another signal, such as 

proinflammatory cytokines, factors released by dying cancer cells or by gut microbiota 

components. The goal here is to reduce peripheral tolerance to tumour antigens. Following 

processing, DCs present captured neoantigens to T cells, thus resulting in their priming and 

activation to create effector T cells against cancer-specific antigens. At this point, the balance 

between T effector and T regulatory cells is crucial in determining the nature of the immune 

response. The now activated T effector cells travel to the tumour site, invade the tumour bed 

and, by recognizing specific tumour antigens, bind and kill cancer cells. Problems arise when 

tumour antigens are not detected, meaning that DCs and T cells treat antigens as ‘self’ rather 

than foreign. In this case, a Treg response rather than an effectory response results. Homing of 

T cells to tumour may not be correct either. T cells may be inhibited from infiltrating the tumour, 

or (more importantly) factors in the tumour microenvironment may suppress any effector cells 

that are produced. There are two main negative regulators of T cell responses: checkpoints in 

lymphoid organs (CTLA-4), and immunostats within the tumour beds (PD-L1:PD-1). 

Programmed cell death ligand 1 (PD-L1) is a molecule expressed on tumour cells or on tumour-

infiltrating immune cells, which binds programmed cell death protein 1 (PD-1) expressed on 

effector CD8+ T lymphocytes, blocking the secretion or production of the cytotoxic mediators 

needed to kill tumour cells within the tumour beds. Cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4), expressed on Tregs, acts as the major negative regulator of the priming 

and activation of effector CD8+ T cells inside the lymphoid organs, by binding its CD80 and 

CD86 ligands on APCs. The presence of these suppressive factors explains the limited activity 

of previous immune-based therapies. The goal of current cancer immunotherapy, using anti-

PD-L1:PD-1 and anti-CTLA-4 antibodies, is to initiate or reinitiate a self-sustaining cycle of 
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cancer immunity, enabling it to amplify and propagate without creating an unrestrained 

response. 

To create a higher response to neoantigens, the immune system’s peripheral tolerance must be 

reduced. It is already known that the commensal microbiota induces the generation of CD4+ T 

cells against their own antigens [89] thereby limiting the systemic dissemination of commensal 

bacteria [90]. The same antigen cross-reactivity effect, or super antigen-driven response, 

accounts for T cell-dependent tumour regression. As suggested by Viaud et al. [36], and based 

on recent studies by Iida et al. [91] and Viaud et al. [92] in mice, Th17 cells and memory Th1 

cells elicited against commensal bacteria might preferentially accumulate in an inflammatory 

tumour microenvironment, already primed by bacterial products or ligands for PRRs. Based on 

these studies, Zitvogel et al. [93] explain the long-range effect of microbiota through two signal 

hypotheses. Signal 1 hypothesis suggests a phenomenon of antigen mimicry or cross-reactivity. 

That is, certain microbial antigens from the bacterial species that pass the intestinal barrier and 

are used for T cell priming could closely resemble tumour antigens, thus promoting better 

immune system reactivity and anti-tumour response, i.e. immunosurveillance. In signal 2 

hypothesis, by interacting with PRRs after passing the intestinal barrier, microbiota can 

stimulate the production of a diverse palette of cytokines and interferons, and determine 

whether it will elicit a proinflammatory, immunostimulatory or immunosuppressive response. 

Also, there is some evidence that commensal-specific Tregs are capable of switching to effector 

inflammatory Th17 cells after sensing the disruption of the mucosal barrier. Because microbial 

products, metabolites, effectory cells, and cytokines are able to travel, this stimulation is not 

necessarily confined to just the gut. 

Observing these effects, it is interesting to speculate that at least a transient disruption of 

intestinal barrier functions and microbiota translocation is a primary factor in shaping the 

relationship between the gut microbiome, the immune system, and cancer. 

4.4. Probiotics and the lung 

Probiotics, best known in nutritional therapy, are defined as “live microorganisms, which, when 

administered in adequate amounts, confer a health benefit on the host” [94]. In the intestine 

they mainly refer to the genera Lactobacillus and Bifidobacterium, and include many different 

strains such as L. paracasei, L. rhamnosus, L. acidophilus, L. johnsonii, L. fermentum, L. 

reuteri, L. plantarum, B. longum, B. breve, B. bifidum, B. animalis subsp. lactis, etc. The same 

genus does not necessarily involve the same characteristics, due to the great genomic 

differences between species and also within the different strains of the same species [95]. 
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Although the first evidence of probiotic influence on lung cancer was seen in 1985 [96], 

probiotics only recently re-emerged in the field of lung oncology as a possible new therapy, and 

is already showing highly promising results. Using different mouse lung cancer models, 

conventional therapies (a combination of platinum-based agents with paclitaxel, gemcitabine, 

vinorelbine, or docetaxel, which all have high toxicity [97]) were combined with specific 

probiotic strains or, conversely, the antibiotic eradication of microbiota, to assess the effect of 

chemotherapy. 

In a lung adenocarcinoma viral model, when vancomycin was used to eradicate gram-positive 

bacteria it compromised the efficacy of cyclophosphamide (CTX)-based chemotherapy, and 

correlated with a reduced intratumoural CD8+ T effector/ FoxP3+ regulatory T cell ratio [98]. 

Likewise, in mice treated with cisplatin combined with an antibiotic cocktail of vancomycin, 

ampicillin, and neomycin, tumour size was larger than that found in mice receiving a single 

treatment of cisplatin [99]. Taking these examples, we can readily conclude that the presence 

of conventional intact microbiota is crucial for effective chemotherapy. 

On the other hand, feeding mice orally with L. acidophilus (Lewis lung cancer model) treated 

with cisplatin decreases the size of tumours and improves the survival rate. Enhanced anti-

tumour response is also achieved through upregulation of IFNγ, granzyme B (GzmB), and Prf1 

expression [99] following probiotic supplementation. 

Recently, there was considerable interest in evaluating the role of gut microbiota in lung cancer 

therapy using immune checkpoint inhibitors. One of the first studies of this principle was done 

using a mouse melanoma model, but is readily applicable to other cancer types, as shown in the 

study. Here, oral administration of a Bifidobacterium cocktail (B. bifidum, B. longum, B. lactis 

and B. breve) on its own improved tumour control to the same degree as PD-L1–specific 

antibody therapy (checkpoint blockade) [100]. When the two treatments were combined it 

virtually abolished tumour outgrowth. Improvement was seen in immune responses upstream 

of T cells, at the level of host DCs. Their augmented function enhanced CD8+ T cell priming 

and accumulation in the tumour microenvironment. The percentage of MHC IIhi DCs was also 

increased. With Bifidobacterium treatment, 760 genes were upregulated, including cytokine-

cytokine receptor interaction, CD8+ T cell activation and costimulation, DC maturation, antigen 

processing and cross presentation, the chemokine-mediated recruitment of immune cells to the 

tumour microenvironment, and type I interferon signalling.  
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Vétizou et al. [101] reported that the oral feeding of GF mice with Bacteroides fragilis induced 

Th1 immune responses in tumour-draining lymph nodes and promoted the maturation of 

intratumoural DCs. This was, as the authors suggest, due to the cross-reactivity of the bacterial 

and tumour epitopes, which led to the restoration of the therapeutic response of GF tumour 

bearers to CTLA-4 antibody treatment. Antibody therapies such as this prevent inactivation of 

the CD8+ T cells by binding to the CTLA-4. Daillère et al. [102] noted that Enterococcus hirae 

and Barnesiella intestinihominis specific-memory Th1 cell immune responses selectively 

predicted longer progression-free survival in advanced lung cancer patients treated with chemo-

immunotherapy. Both strains represent valuable "oncomicrobiotics" improving the efficacy of 

the most common alkylating immunomodulatory compound. 

To summarize, as scientists delve deeper, the beneficial effects of probiotics on the immune 

system continue to emerge. As seen, certain strains have the power and ability to stimulate anti-

tumour response or to simply stimulate the immune system to show lower tolerance, thus 

promoting higher reactivity and tumour eradication. The future objective is to find the optimum 

probiotic cocktail that may one day completely substitute conventional therapies, thereby 

obtaining equal or better success, and lowering toxicity, one of the biggest problems in cancer 

treatment. 

5. Conclusion 

The importance of the gut microbiota and its composition has long been recognized, for 

digestion as well as for overall wellbeing. Recently, the presence of the lung microbiota and the 

role it plays, in health and in disease, has been receiving attention. The lung and gut microbiota, 

both continually reseeded through interaction with the environment, modulate our local and 

systemic immunity. More than simply two distinct microbiota, they are now seen as functioning 

in dialogue, altering previous ideas of airway sterility and the existence of a “barrier” between 

the two compartments, due to their perceived distance or functional differences. By providing 

stimulating signals through its epitopes or products (such as SCFA butyrate), the gut microbiota 

directly enhances the intestinal barrier. Likewise, it stimulates the priming and maturation of T 

and B cells, ensuring improved microbial clearance and mucosal protection through antibodies. 

This effect is not only retained in the intestinal system but is spread along other mucosal 

surfaces by means of lymphatic and blood circulation, influencing distal site immune response. 

So, even though the antigen was introduced in the gut, an immunological response can also be 

elicited in the lung, although there was no direct prior contact with the antigen, and vice versa. 
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Bacteria and their products that go through the first immunological barrier also reach distal sites 

through the lymphatic system and blood, and modulate the immune response at the remote site. 

The site where the first encounter between the immune system and microbial antigens took 

place is also important, since it influences reactivity and the influx of these cells into other 

tissues. Applying prebiotics to target a specific microbial group could be a good way to restore 

“healthy” microbial composition, which will consequently increase intestinal barrier function 

and stimulate the immune system. The relevance of natural microbial support in chemotherapy 

effectiveness or replacement has already been demonstrated. In future, further discoveries will 

surely be made in this new and exciting area of research, adding to the complexity of, but also 

clarifying the reasons behind, this axis; opening ideas to new or enhanced therapies based on 

the natural behaviour of the organism; increasing longevity; and decreasing therapeutic side-

effects or the effects of disease itself. 
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Several studies on microbiota and cancer models in animals (Daillère et al. 2016; Sivan et al. 

2015; Vétizou et al. 2015; Viaud et al. 2013) introduced a new aspect in cancer treatment, 

emphasizing the importance of the balanced gut microbiota and presence of specific genera to 

stimulate anti-cancer response in different cancers. However, translational application is still 

not met, since the mentioned studies in animal models are quite recent. Additional 

inconvenience is that in humans apart from the best-described gut microbiota, the connexion 

between microbiota and immune response is still in its early research phase. Moreover, 

interaction with cancer is at the moment based on direct cause-consequence relations as seen in 

Fusobacterium nucleatum (Rubinstein et al. 2013; Yu et al. 2017), while other distant effects 

of bacteria or their products on cancer are not known. Despite being the leading cause of death 

by cancer (International Agency for Research on Cancer (IARC) 2014; International Agency 

for Research on Cancer 2019), lung cancer belongs to one of the poorly characterised cancers 

in terms of local microbiota and consequentially, in interaction of local microbiota and tumour 

immune response. Interestingly however, the link between distant microbiota as of the gut with 

the local lung immune response was already evoked in the form of the “gut-lung” axis theory, 

suggesting that gut microbiota could be crucial in host’s response to lung cancer. Despite the 

tackling idea of the “magic probiotic”, leading scientists in the field have warned that first it is 

necessary to better characterise the local microbiota of the lung and its interaction with the host 

(Dickson and Cox 2017). Therefore, before passing to the development of interventional 

approach in human subjects based on previous studies in animals, it was necessary to further 

investigate and understand concomitant factors in the host’s response to lung cancer.  

As the thesis project, we designed a clinical trial including NSCLC patients eligible for surgical 

resection of the tumour. Several objectives were set: 

 (i) to characterise the gut, lung and upper airway microbiota in these patients, 

(ii) to evaluate the homogeneity/heterogeneity between different microbiota within the 

same subject/group of patients, and 

(iii) to evaluate the impact of the microbiota composition on immune and inflammatory 

status of the patient (evaluated in the gut, blood, lung). 

To meet these objectives, we included 18 patients and retrieved samples of blood, saliva, faeces 

and four lung samples (BAL, non-malignant tissue, peritumoural tissue and tumour) at hospital 

admission and during surgery. Saliva, faeces and four lung samples were used for DNA 

extraction and the analysis of microbiota by 16S RNA gene sequencing and qPCR. To limit the 
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risk of contamination of BAL by upper airways, the washing was performed directly on the 

excised lobe. Also fresh faecal samples were used for microbiological enumeration of 

functional bacterial groups and frozen faeces was used for SCFA dosage. Immune status was 

evaluated by characterisation of the tumour infiltrating lymphocytes, phenotyping of the Th 

lymphocytes and neutrophil subtypes in BAL and blood, by cytokine dosage in blood and 

dosage of inflammatory and antibacterial markers in faeces. Each patient also provided one-

week nutrition survey before intervention to be used as a help in interpreting other results (such 

as SCFA quantities). Other clinical and demographic information were also collected, such as 

living area, smoking history, or profession. 

Our first hypothesis has been that the lung microbiota differs depending on the sampling 

location, even between samples in histological proximity, as peritumoural and tumour tissue. 

The samples chosen for analysis have different physiological functions and/or architecture, but 

also different interaction with the immune system. BAL represents microbial population of the 

bronchial lumen, therefore mostly bacterial population with planktonic characteristics, or on 

the contrary, associated to biofilms or mucus excreted by alveolar cells. Non-malignant tissue 

taken on the opposite lobe side from the tumour should represent a sample with normal lung 

architecture of small alveoli and single-layered lung epithelium, resembling to a “sponge”. 

Depending on the histological type, tumour could vary from highly dense tissue, as in SCC, to 

one enriched in mucus, as in certain types of ADK. Increased mucus production could directly 

serve as a nutriment for mucinolytic bacteria (Flynn et al. 2016) and favour the growth of certain 

bacterial groups. Finally, peritumoural tissue refers to the tissue surrounding the tumour 

separated based on differing histological characteristics. Even though by architecture 

peritumoural tissue resembles to non-malignant tissue, its proximity to tumour makes it exposed 

to various products excreted by tumour cells and to possible invasion of tumour cells themselves 

(Dou et al. 2018). Another important aspect is the role of the peritumoural tissue, i.e. the tumour 

microenvironment (TME), on direct tumour suppression or stimulation by different means, such 

as composition of the extracellular matrix, production of growth factors, etc. (Valkenburg, De 

Groot, and Pienta 2018). Both could directly (changes in tissue architecture) or indirectly 

(immune response against tumour cells) influence the local microbiota. 

Next, we have hypothesised that there would be several factors potentially discriminating for 

both immune system and microbiota in the six samples (saliva, faeces and 4 lung samples). First 

is the histological type of the tumour, already reported to alter salivary microbiota of lung 

cancer patients (Yan et al. 2015) but also to change alpha diversity within tumour tissue (Yu et 
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al. 2016). Except direct impact on microbiota as explained in the previous paragraph, different 

histological types are characterised by different immunogenicity, immunosuppressive nature 

and genetic background (Busch et al. 2016), meaning that they will not equally stimulate 

immune system. Consequently, influx and profile of the immune cells to the tumour bed will 

vary, and therefore also the interaction with the local microbiota. This genuine nature of the 

tumour and local immune status could reflect on systemic markers, and so on the intestinal 

immune status. Accordingly, gut microbiota could also vary between different tumour types. 

However, in this study type, it could not be discerned whether this change is a consequence of 

a disease, a concomitant factor or result of the change in the immune balance. 

The second important factor is smoking status. Cigarette smoke has several undesirable effects 

on the respiratory system, such as inhalation of the hot air and precipitation of potentially 

carcinogenic particles. Both damage epithelial cells and impair airway clearance, inducing local 

and systemic inflammation (Çolak et al. 2019), therefore changing the local growth conditions 

of resident microbiota and disturbing the immune homeostasis. Since upper airways are first 

affected by the smoke, smoking-related changes in microbiota have already been reported (Wu 

et al. 2016) but interestingly, not in the lower airways (Segal et al. 2013). However, it is possible 

that not all microbiota of the lung is equally sensitive to smoking effects due to the discussed 

reasons. Therefore, this was one of the hypothesis to verify. Further, smoking was reported to 

alter gut microbiota both in healthy individuals (Stewart et al. 2018) and in lung cancer patients 

(Zhang et al. 2018; Zhuang et al. 2019), clearly showing the remote-site effect. 

Mentioning the entry of the smoke from upper airways towards the lower ones brings us to 

another important factor – tumour location. Lungs are organised in five lobes, two on the left 

side (upper and lower) and three on the right side (upper, middle and lower). Interestingly, 

lower overall survival and worse prognosis were associated to tumours in lower lobes, and 

especially in the lower left lobe (Kudo et al. 2012). It has been previously suggested by the 

adapted island model of the lung biogeography from healthy subjects that lung microbiota is 

different between the lobes (Dickson et al. 2015). The model considers the principal bronchus 

as the source of the lung microbial communities, whose richness decreases proportionally to 

increase in the distance from the bronchus. Therefore, upper lobes should be richer than lower 

lobes, but contralateral lobes should have similar characteristics. However, the study that 

compares contralateral BAL (i.e. from the left and right lobe), one with cancer and one without 

it, shows that this is not true in lung cancer (Liu et al. 2018). It is clear here that tumour presence 



Thesis objectives and hypotheses   

68 

modifies microbial composition, and that further studies including lung cancer patients are 

necessary. 

We have concentrated on another important factor with crucial prognostic role in NSCLC 

treatment, the tumour staging. We have hypothesised that the tumour stage, withholding several 

important tumour characteristics as size and metastatic dissemination (TNM classification 

(Goldstraw et al. 2016)), will have an important impact on multiple parameters followed by this 

project. The higher the stage, the worse the overall prognosis for the patient. However, stage is 

determined by the combination of the three elements (T- tumour size, N – mediastinal and 

ipsilateral lymph nodes metastasis, M – distant metastasis) and can therefore sometimes 

represent genuinely different tumours. For example, a very large tumour without metastatic 

lymph nodes could belong to the same stage as a small tumour but with metastatic lymph nodes. 

For the purpose of the study of microbiota, we have decided to observe these elements 

separately and define the hypothesis that each of the elements could individually influence our 

microbial communities. Since patients with distant metastasis are not included in the study due 

to the difference in the treatment procedure (not operable), we considered other two elements 

– tumour size and metastatic lymph nodes. Depending on the diameter, tumour could be more 

or less oxygenated due to the often very leaky and insufficient vascularisation for larger 

tumours, with consequentially different degree of inner necrosis (Wouters et al. 2003). As 

discussed in the chapter 2.3.9.1 Egg or chicken, this could favour the colonisation of anaerobic 

bacteria that could either contribute to tumour progression with lactate production or inversely, 

increase the tumour immunogenicity (Baban et al. 2010; Damgaci et al. 2018; Van Dessel et al. 

2015). Larger tumours could also block bronchial passages and create microaerobic or 

anaerobic pockets again favouring changes in microbial composition or pathogen colonisation. 

Metastatic lymph nodes are, on the other hand, a sign of higher tumour aggressiveness and a 

leaky vasculature enabling dissemination of the tumour cells to proximal lymph nodes 

regardless of the tumour size. This suggests in the same time the invasive nature of the tumour 

but also the “allowing” surroundings enabling the spread of tumour cells. According to Dr. 

Bissell (Bissell and Hines 2011), the tumour environment has a tremendous role in deciding 

tumour’s development and fate. In our concrete situation, this could refer to certain bacteria in 

the tumour environment that e.g. bind different cellular integrins cells (Garrett 2015; Khan et 

al. 2012), occupying the sites for metastatic diapedesis of tumour cells. Since presence of 

metastatic lymph nodes has been important negative prognostic marker for overall survival 

regardless of tumour size (Liu, Chen, and Xu 2017), it has been prioritised in our analysis. 
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It is known that cancer patients, especially with more advanced cancer stages, often report 

weight loss without particular change in diet. This phenomenon called cachexia is explained by 

voracious cancer cells that can uptake the most of the host’s energy obtained through digestion, 

or by different cytokines produced by the host as a response to cancer that modify host’s 

metabolism (Barton 2001). Changes in the gut microbiota related to presence of cancer, as well 

as application of probiotics in fighting cachexia have been considered but the current conclusion 

insists on further research (Bindels and Thissen 2016). Therefore, our hypothesis considering 

the effect of tumour stage on lung microbiota was extended also to the gut microbiota, 

accompanied with the patient’s documentation on weight stability and nutritional survey for 

personalised approach. 

Finally, the theory of the gut-lung axis implicates that certain elements with intestinal origin, 

such as bacteria or their products, prime immune cells situated in mesenteric lymph nodes. 

Those are afterwards recruited to distant sites where they could exert improved efficacy 

(Bingula et al. 2017). In our case, this could be characterised by an improved lung tumour 

infiltration with immune cells. However, it is important to keep in mind that there are three 

general tumour immune types; immune-inflamed, immune-excluded and immune-desert 

tumours (Chen and Mellman 2017). Simplified, immune-inflamed tumours are well infiltrated 

and immunogenic, while immune-desert tumours are poorly infiltrated and poorly 

immunogenic. Finally, immune-excluded tumours are often immunogenic but with certain 

intrinsic element, such as elevated expression of PD-1, that inhibits immune cell infiltration and 

activity. Intuitively, one type could pass to another, for example immune-inflamed tumour that 

after intervention of the immune system keeps only low immunogenic cells could become 

immune-desert. Nevertheless, inverse is also possible. Better priming of the immune cells by 

e.g. inducing cross-reactivity between tumour cells and bacterial epitopes, could turn an 

immune-desert tumour to immune-inflamed. Therefore, our hypothesis has been that gut, but 

also lung microbiota, will vary depending on the immune type of the tumour.  

To summarise, the discussed hypotheses include only the initial, principal hypotheses that will 

be further developed with the progress in analyses. The major hypotheses mostly include factors 

with both local and systemic influence on the host, and therefore to its microbiota and immune 

system. This was the underlying reason to approach patients from different angles (microbiota 

from three sites, local and systemic immune and inflammatory markers by different techniques, 

bacterial products, nutrition, and demographic data). The objectives and hypotheses answered 

at the moment will be discussed in the chapter “Results” and “General discussion”.



   

70 

 

 

 

 

 

 

 

 

 

Materials and methods



Materials and methods   Article: Study protocol 

71 

Article: Study protocol 

Study Protocol 

Characterisation of Gut, Lung and Upper Airways Microbiota in Patients 

with Non-Small Cell Lung Carcinoma: Study Protocol for Case-Control 

Observational Trial 

Rea Bingula, MS,1 Marc Filaire, Prof, MD,1,2 Nina Radosevic-Robin, MD,3 Jean-Yves Berthon, 

PhD,4 Annick Bernalier-Donadille, PhD,5 Marie-Paule Vasson, Prof,1,6 Emilie Thivat, PhD,7,8 

Fabrice Kwiatkowski, MS,7,8 Edith Filaire, Prof 1,4 

 Published in Medicine the 14th December 2018 

The majority of the studies exploring the lung microbiota by high-through put sequencing use 

commercially available kits for microbiota isolation that are not specifically designed for lung 

samples (e.g. MoBio PowerSoil or Qiagen’s QIAampStoolMinikit). Since lung samples differ 

significantly in quality (very fibrous tissue) and bacterial number from faeces or soil, these kits 

might not be the best adapted nor with the optimal DNA yield (filtration columns, etc.). 

Therefore, we have decided to create a “lung microbiota isolation” protocol, based on HMP 

protocol for gut microbiota isolation and previously compared in performance with other 

commercially available kits (Costea et al. 2017; Mcinnes 2010). The final optimised version of 

the protocol, including the study design, all used materials and methods have been published 

under the running title “Characterisation of gut, lung, and upper airways microbiota in patients 

with non-small cell lung carcinoma”. Only the part of the project considering patients eligible 

for surgery without chemotherapy has been considered in this thesis manuscript, and its 

synthetic overview is shown in the Figure 9. 
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Figure 9 Synthetic overview of the study protocol 
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Abstract 

Background. Several studies have confirmed the important role of the gut microbiota in the 

regulation of immune functions and its correlation with different diseases, including cancer. 

While brain-gut and liver-gut axes have already been demonstrated, the existence of a lung-gut 

axis has been suggested more recently, with the idea that changes in the gut microbiota could 

affect the lung microbiota, and vice versa. Likewise, the close connection between gut 

microbiota and cancer of proximal sites (intestines, kidneys, liver, etc.) is already well 

established. However, little is known whether there is a similar relation when looking at world’s 

number one cause of death from cancer – lung cancer. 

Objective. Firstly, this study aims to characterise the gut, lung and upper airways (UAs) 

microbiota in patients with non-small cell lung cancer (NSCLC) treated with surgery or 

neoadjuvant chemotherapy plus surgery. Secondly, it aims to evaluate a chemotherapy effect 

on site-specific microbiota and its influence on immune profile. To our knowledge, this is the 

first study that will analyse multi-site microbiota in NSCLC patients along with site-specific 

immune response. 

Methods. The study is a case-controlled observational trial. Forty NSCLC patients will be 

divided into two groups depending on their anamnesis: (i) Pchir, patients eligible for surgery, 

or (ii) Pct-chir, patients eligible for neoadjuvant chemotherapy plus surgery. Composition of 

the UAs (saliva), gut (faeces) and lung microbiota (from broncho-alveolar lavage fluid (BALF) 

and three lung pieces: “healthy” tissue distal to tumour, peritumoural tissue and tumour itself) 

will be analysed in both groups. Immune properties will be evaluated on the local (evaluation 

of the tumour immune cell infiltrate, tumour classification and properties, immune cell 

phenotyping in BALF; human neutrophil protein (HNP) 1-3, β-defensin 2 and calprotectin in 

faeces) and systemic level (blood cytokine and immune cell profile). Short-chain fatty acids 

(SCFAs) (major products of bacterial fermentation with an effect on immune system) will be 

dosed in faecal samples. Other factors such as nutrition and smoking status will be recorded for 

each patient. We hypothesise that smoking status and tumour type/grade will be major factors 

influencing both microbiota and immune/inflammatory profile of all sampling sites. 

Furthermore, due to non-selectivity, the same effect is expected from chemotherapy. 

Abbreviations:  

ANSM - The French National Agency for Medicines and Health Products Safety (Agence 

nationale de sécurité du médicament et des produits de santé); BAL - broncho-alveolar lavage; 
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BALF – broncho-alveolar lavage fluid; BMI – body mass index; CIFRE - Industrial Research 

Training Agreements grant (Convention industrielle de formation par la recherché); CRP – C-

reactive protein; CT – chemotherapy; ELISA – enzyme-linked immunosorbent assay; FDR – 

false discovery rate; GF – germ-free; GI – gastrointestinal; HBSS – Hank’s balanced salt 

solution; HNP – human neutrophil peptide; ICI – immune checkpoint inhibitor; IL – interleukin; 

MCLB – mammalian cell lysis buffer; NSCLC – non-small cell lung cancer; OTU – outer 

taxonomic unit; Pchir – patient surgery, fr. “patient chirurgie” ; Pct-chir – patients 

chemotherapy plus surgery, fr. “patient chimiothérapie – chirurgie”; qPCR – quantitative 

polymerase chain reaction ; SCFAs – short-chain fatty acids; UAs – upper airways. 

1 Introduction 

The microbiota is a consortium of different microorganisms that includes bacteria (microbiota), 

fungi (mycobiota), viruses and protozoa residing on the skin and in the oral, pulmonary, 

urogenital and gastrointestinal (GI) cavities, with the GI tract having the highest density of 

microorganisms. The functional importance of the microbiota to the host is undeniable, 

involving functions that range from the breakdown of complex dietary polysaccharides to 

competing with pathogens and modulating the mucosal and immune system in general.1 Gut 

dysbiosis is now considered to be an underlying cause of a wide range of GI diseases and an 

emerging number of non-GI conditions such as obesity and cardiovascular disease, as well as a 

range of psychiatric diseases.2 Recently, an emerging number of studies began to address the 

relation between gut microbiota and the lung. This relation has been referred to as the “gut-lung 

axis”. The basis of this axis theory lies in the “gut-lymph” theory of Samuelson et al.3 The 

theory says that the large numbers of macrophages and other immune cells are present in the 

intestinal submucosa or mesenteric lymph nodes, where the majority of translocating bacteria 

are also found. If not eliminated by this first line defence, surviving bacteria, cell wall fragments 

or the protein fractions of dead bacteria escape with the cytokines and chemokines produced in 

the gut, travel along the mesenteric lymphatic system to the cisterna chyli, and subsequently 

enter the circulatory system. Thereby they have access to pulmonary circulation, which may 

lead to the local activation of dendritic cells and macrophages as well as T cell priming and 

differentiation. Another way to influence the pulmonary region might be through the migration 

of immune cells themselves, after priming and activation at the first site of antigen encounter, 

i.e. the gut mucosa. Although this theory explains the unilateral interaction, it is reasonable to 

speculate that this axis works the same way when it originates in the lung mucosa and lung 

lymph nodes.4 Moreover, nutrition can also affect both immune response and composition of 
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our respiratory tract microbiota.5 In mice, high-fibre diet increased protection against allergic 

inflammation in the lung (reduced inflammatory cell infiltration), followed by a change in the 

gut and, to a lesser extent, the airway microbiota.6 The study also reported an increase in blood 

levels of circulating SCFAs, one of the major products of bacterial fermentation responsible of 

intestinal barrier integrity and known for its anti-inflammatory properties. However, no traces 

were found in the lung itself. On the contrary to allergic inflammation, a lack of an appropriate 

stimulus during the developmental phase of an immune response, as during infection, will 

disable a quick and effective immune reaction. This could result in undesirable consequences 

such as pathogen colonisation, increased susceptibility to infection, tissue damage, possible 

development of cancer and increased mortality.7,8 Therefore, it is clear that there is a complex 

network of distinct and precise stimuli that are required for executing a correct immune 

response. According to the gut-lung axis theory, these stimuli can originate in the gut, 

explaining the observed protective effect in the lung. Taking a huge step forward, the study of 

Routy et al. (2018)9 evaluated the role of gut microbiota in responsiveness to anticancer 

treatment by immune checkpoint inhibitors (ICI) (PD-1/PD-L1). They showed that non-small 

cell lung cancer (NSCLC) patients that received antibiotic treatment (ATB) during 2 months 

prior to therapy had significantly decreased overall and progression-free survival. Similarly, 

ATB treatment was a predictor of ICI resistance, independent from other prognostic markers. 

When faecal microbiota transfers using the stool from NSCLC patients responding or not 

responding to therapy were performed, inoculated germ-free (GF) mice showed the same 

phenomenon during ICI therapy against MCA-205 tumours. Mice receiving ICI therapy that 

were inoculated with a responder’s stool showed delayed tumour growth and accumulation of 

antitumour lymphocytes in the tumour microenvironment. The stool of NSCLC patients 

responding to ICI therapy was found to be enriched in phylum Firmicutes, as well as distinct 

genera such as Akkermansia, Ruminococcus, Alistipes, etc. In further experiments with GF 

mice, Akkermansia muciniphila proved to be sufficient to restore ICI therapy responsiveness, 

both when inoculated alone or with the stool from non-responding NSCLC patients, rectifying 

the response. Likewise, it was the only species that induced reactivity from patient-derived Th1 

and Tc1 in vitro, and that correlated with progression-free survival. Looking at these results, it 

is evident that the gut microbiota plays a crucial role in the host’s homeostasis and that its fine-

tuned composition counts for much more than was previously thought. However, data on this 

topic remain scarce but directed to a promising field of a new anti-lung cancer approach that 

the world population is yearning for.10 Unlike the local and systemic influence of the gut 
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microbiota, the influence on and of the lung microbiota and its products has yet to be properly 

assessed, both in health and disease.11  

Therefore, to help to elucidate this new and extremely interesting field, we have decided to 

conduct a case-control observational study in patients with NSCLC. The study will include two 

groups of patients: i) group Pchir, with patients eligible for treatment by surgery, and ii) group 

Pct-chir, with patients eligible for a combined treatment consisting of neoadjuvant platinum-

based chemotherapy followed by surgery. 

The objectives of this study are:  

(i) to characterise the gut, lung and upper airway microbiota in these patients; 

(ii) to evaluate the homogeneity/heterogeneity between different microbiota within the 

same subject/group of patients;  

(iii) to evaluate the impact of the microbiota composition on immune and inflammatory 

status of the patient (evaluated in the gut, blood, lung); 

(iv) to evaluate the effect of chemotherapy on the site-specific microbiota (UAs, lung, 

gut). 

While group Pchir will have only one time point for sample collection, group Pct-chir will have 

multiple time points. The latter will enable follow-up on changes in microbiota and immune 

markers relative to the treatment progression. 

2 Methods and Analyses 

2.1 Ethics approval and dissemination  

This protocol has been approved by the Committee for the Protection of Persons (CPP) Sud-

Est VI, Clermont-Ferrand, France, and The French National Agency for Medicines and Health 

Products Safety (ANSM) (study ref. 2016-A01640-51). Because of the invasiveness of the 

sampling techniques, the requested control group was not approved by the CPP. The study was 

accompanied by amendment approved by ANSM in June 2018. The current protocol is entitled 

“Protocol MICA V3”, and presents an up-to-date version and the version in use. This study is 

registered with the Clinical Trials under ID: NCT03068663. The study’s official name is: 

Characterisation of the microbiota (gut, lung and upper airways) in patients with non-small cell 

lung carcinoma: exploratory study (acronym: MICA). Written informed consent is obtained 

from all patients before enrolment in the study. The results are planned for presentation at 

conferences and publication in peer-reviewed journals in early 2019. All samples will be 
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preserved for 15 years according to the practice of the sponsoring institution (Centre Jean 

Perrin). Samples will be available to other investigators if they want to perform complementary 

studies that consider NSCLC after additional consent obtained from patient. However, because 

of French regulations regarding patient information files, patients’ data will not be available. 

2.2 Study outcomes 

As its primary outcome, this study will characterise the lung and UAs microbiota in two groups 

of 20 patients with NSCLC. Group Pchir will include patients eligible for surgery without 

chemotherapy. Group Pct-chir will include patients eligible for surgery after platinum-based 

chemotherapy. UAs microbiota will be evaluated from saliva, while lung microbiota will be 

evaluated from (i) three lung explants: “healthy” lung tissue, tumour and peritumoural tissue, 

and (ii) broncho-alveolar lavage fluid (BALF) from the tumour’s proximity (same lobe). 

Following bacterial DNA extraction, microbiota will be analysed by qPCR and 16S ribosomal 

rRNA gene sequencing using the Illumina MiSeq platform.  

Secondary outcomes of this study are set as follows: 

i) to study the effect of neoadjuvant chemotherapy on microbiota by evaluating:  

a. the variation of the proportion of the phylum Firmicutes (as the phylum 

is highly represented in all of the different types of samples considered 

in this study),4  

b. the variation of the proportion of the bacterial genera per phylum in 

different types of samples (faeces, saliva, BALF, lung 

tissue/peritumoural tissue/tumour),  

c. the concordance of genera between sample locations (e.g. saliva vs. 

BALF, healthy lung tissue vs. peritumoural tissue vs. tumour); 

by qPCR and 16S rRNA gene sequencing; 

ii) to study the homogeneity/heterogeneity between lung, upper airways and gut 

microbiota for each and between both groups (evaluated by 16S rRNA gene 

sequencing and qPCR) and between different time points (group Pct-chir), 

iii) to evaluate immune/inflammatory status: 

a. in the gut: by dosing β-defensin 2, human neutrophil peptides HNP1-3, 

calprotectin (ELISA) and SCFAs (gas liquid chromatography) 

b. in plasma: by dosing plasmatic cytokines (Luminex), C-reactive protein 

(CRP) (ELISA) and immune cell phenotyping (flow cytometry) 
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c. in the lung: by immune cell phenotyping (flow cytometry) and 

characterisation of immune infiltrate in lung tumour biopsies obtained 

during the operation (by immunohistochemistry). 

2.3 Patient recruitment 

The study pre-considers all patients diagnosed with NSCLC and presented before the Thoracic 

Oncologic Committee of the Jean Perrin Centre, Clermont-Ferrand, France. Inclusion criteria 

are presented in Table 1. Inclusion in the study is consecutive and parallel for both groups. A 

written informed consent is obtained from each patient participating in the study before 

inclusion. Depending on their diagnosis, patients are included in one of the two groups: Pchir 

(patients eligible for surgery only), or Pct-chir (patients eligible for surgery after neoadjuvant 

platinum-based chemotherapy). 

Table 1 Inclusion and exclusion criteria for patients 

Inclusion criteria Exclusion criteria 

 NSCLC patient with an indication of 

surgery or neoadjuvant chemotherapy 

plus surgery 

 >18 and <80 years of age 

 BMI <29.9 

 not-treated with antibiotics, corticoids or 

immunosuppressive drugs for at least the 

past 2 months 

 signed written consent before enrolment 

in the study 

 affiliated with the Social Security System 

 cognitive difficulties 

 refusal or inability to give clear consent to 

participate 

 acute digestive or pulmonary infections in 

the past 2 months (requiring antibiotic 

treatment) 

 inflammatory intestinal pathologies 

 colostomy 

 partial or complete gastrectomy 

 previous oesophageal surgery 

 previous otorhinolaryngeal cancer treated by 

radiotherapy or surgery 

 inability to conform to the study’s 

requirements 

 deprivation of a right to decide by an 

administrative or juridical entity 

 ongoing participation or participation in 

another study <1 month ago 

 ground-glass opacity 
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2.4 Patient and public involvement 

Neither patients nor the Patient Committee were involved in the design of this study. If desired, 

patients can be informed of the study’s results by the investigator or physician. 

2.5 Trial design and timeline 

This study is a case-control observational trial. Recruitment into the study started in May 2017 

and will end in May 2019. The estimated complete duration of the study is 29 months, with an 

average follow-up period per patient of 1.5 and 3.5-4.5 months for the Pchir and Pct-chir 

groups, respectively. Intermediary analyses will take place after obtaining all samples from half 

of the patient quota (n = 20) regardless of the group, without interruption of the further 

recruitment to the study. 

The trial design is presented in Figure 1. Eligible patients meet official study personnel 

at an outpatient appointment (Visit 1) where all the details of the protocol are thoroughly 

explained. At this visit, patients give their written consent to participate in the study. Depending 

on their clinical diagnosis, they are assigned to one of the two groups (Pchir or Pct-chir). Each 

patient is given a protocol summary, sampling instructions and corresponding number 

(depending on inclusion group) of tubes for saliva, boxes for faecal samples with anaerobic 

atmosphere generation bags and templates for a 7-day nutritional survey. Other information is 

also recorded, such as smoking status and history, weight or diet modifications in the last 

several months/years, cohabitation or interaction with animals in their childhood/present, the 

environment in which patients grew up/spent their life (countryside/city), exposure to certain 

pollutants, e.g. related to their profession, etc. This information will serve for better 

understanding of the individual’s inflammatory status and microbial characteristics. 

As presented in Figure 1, group Pchir has sampling concentrated around one event – 

surgery. At hospital admission (D-1 before surgery), samples of saliva, blood and faeces are 

collected together with the nutritional survey patients made during the preceding week (D-7 to 

D-1). BALF and lung tissue samples are collected during the surgery (D0) from the excised 

lobe. 
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Figure 1 Study flowchart. BALF – broncho-alveolar lavage fluid; CT – chemotherapy; D – day; 

Pchir – the group of patients undergoing surgery; Pct-chir – the group of patients undergoing 

chemotherapy and surgery. *performed as a part of patient’s standard medical care if decided by 

his/her physician. 

Group Pct-chir (Figure 1) has sampling concentrated around three events: 

i) 1st chemotherapy cycle (CT1) - the day of CT1, samples of saliva, blood and faeces are 

collected together with nutritional surveys patients made during the preceding week 

(same as D-1 for Pchir group). After sample retrieval, patients continue with their 

medical care procedure. Optionally, in the days preceding the CT1 as the part of their 

standard medical care, patients can undergo bronchoscopy. In this case, a part of 

retrieved liquid (BALF) is taken for microbiota characterisation and immune cell 

profiling. 

ii) 2nd chemotherapy cycle (CT2) - CT2 is usually 3 weeks after CT1. The day of CT2, 

only saliva, faeces and nutritional surveys are retrieved. After sample retrieval, patients 

continue with their medical treatment.  

iii) Surgery - The time elapsed between CT2 and surgery is about 1 month, depending on 

the patient’s overall health status. The sampling for surgery is exactly the same as for 

group Pchir. At hospital admission (D-1 before surgery), samples of saliva, blood and 

faeces are collected together with nutritional surveys patients made during the preceding 

week (D-7 to D-1). BALF and lung tissue samples are collected during the surgery (D0) 

from the excised lobe. 
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The strong point of this trial is that study participation does not modify the patient’s standard 

care treatment in any way. Invasive intervention, such as sampling of the lung tissue, is done 

during operation on the lung already removed from the patient. BALF sampling during 

operation is performed directly on the dissected lobe, posing no additional inconvenience for 

the patient and drastically minimising UAs contamination, which is an important advantage to 

this study’s concept. Likewise, sampling of the BALF at CT1 for group Pct-chir is done in the 

scope of a standard care procedure by bronchoscopy and it is not imposed by the study. 

However, the latter is also an inconvenience because there will be patients from group Pct-chir 

who will not undergo bronchoscopy with BALF sampling since it is not prescribed by his/her 

physician. Another thing to consider is also the difference in sampling technique of BALF. 

Sampling of BALF at CT1 for group Pct-chir is done by bronchoscopy, while sampling during 

surgery is done directly on the excised lobe for both groups. Therefore, the first BALF has a 

higher risk of contamination by UAs, while the second BALF (during operation) should have 

no UAs contamination and better represent luminal microbiota specific of the tumour lobe. This 

will be taken into account during data interpretation, and if necessary, each time point will be 

characterised for itself. 

In conclusion, in the group Pct-chir, the effect of chemotherapy on the microbiota of 

saliva and faeces and immune parameters of blood and faeces will by systematically assessed. 

Chemotherapy’s effect on immune parameters and microbiota in BALF will be assessed only 

if obtained data in quantity and quality will permit it (as explained above). When talking of 

lung tissue, “healthy” lung tissue, taken at distance from the tumour, will be considered as a 

control12 tissue for comparison with peritumoural and tumoural tissue, as well as with BALF. 

Also, characterisation will be done respective to the tumour type where possible (sufficient 

patient number with the same tumour type). 

A demanded control group for the study was not authorised by the Ethics Committee, 

due to the invasiveness or evident inability to realise certain sampling steps (bronchoscopy, 

lung tissue sampling). Therefore, the focus will be on characterisation of the site-related 

microbiota and its connection to local and systemic immunity in NSCLC respective of the 

treatment group (Pchir or Pct-chir). Likewise, the question is whether there is an initial 

difference between group Pchir and group Pct-chir (before CT1), and what its nature is. Equally, 

how does chemotherapy modify group Pct-chir, and whether it becomes more alike or different 

from group Pchir regarding its different properties (microbial taxa ratios, inflammatory 

properties) when followed in time (from CT1 to surgery). Furthermore, obtained results 
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considering microbiota composition and abundance, where possible, will address similar 

studies13–16 only in a descriptive matter and the same will be done with immune parameters.17–

21 

2.6 Sampling and data recording 

2.6.1 Nutritional survey 

The dietary habits are evaluated for each patient for the 7 days preceding chemotherapy (Pct-

chir) and/or surgery (Pchir and Pct-chir). At Visit 1 (see Figure 1), all participants receive a 

detailed verbal explanation, written instructions and the survey with an example. They are asked 

to maintain their usual dietary habits during the survey period and to record as accurately as 

possible the amount, type and preparation of food and fluid consumed. If they consume 

commercial and ready meals, they are also asked to note brand names. The quantity of food or 

drink can be expressed in either precise measures (weight) or in common household measures, 

such as cups, tablespoons, etc. In the case of any questions or ambiguities, patients are 

encouraged to contact the study personnel. These data will help to estimate each patient’s 

overall nutritional status and help to explain the microbiological analysis of faecal samples 

following the survey, as well as the patient’s immune and inflammatory status. We anticipated 

that the patients might change their dietary habits during the chemotherapy duration, which is 

why recording was requested before each chemotherapy treatment and surgery, and during one 

week. The primary objective is to use what was recorded as complementary data to the faecal 

microbiota analysis (sampled the day after the end of each survey), to better explain the 

longitudinal modification of microbiota, if any. This is due to the fact that faecal microbiota 

can overcome significant changes in only a few days relative to a diet change.22 

2.6.2 Saliva 

At Visit 1, after recording any evidence of oral health problems or injuries, each patient receives 

a tube for saliva collection (Sarstedt). It is necessary to fill the tube with a minimum of 1 mL 

of saliva (designated on the tube) on an empty stomach by the passive drooling method on the 

morning of hospital admission for the chemotherapy session (Pct-chir) and/or surgery (Pchir, 

Pct-chir) (Figure 1). The sample is stored at -80°C for later bacterial DNA extraction and 

metagenomic sequencing. 

2.6.3 Blood 

Blood sampling is done following the patient’s admission to hospital, in the day/hours 

preceding the prescribed clinical treatment, depending on the group (Figure 1). 10 mL of fresh 
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blood are collected in EDTA treated tubes, where 500 μL of whole blood is immediately used 

for immune cell phenotyping by flow cytometry. The remainder is centrifuged for 10 min 2,000 

x g at 4°C to obtain plasma, which is then aliquoted and stored at -80°C for further analyses 

(cytokine/interleukin analysis by Luminex, CRP dosage by ELISA). 

2.6.4 Faeces 

At Visit 1, each patient receives a sampling box, an anaerobic atmosphere generation bag 

(GENbag anaer, Biomérieux) and detailed printed instructions on how to handle the samples at 

his/her home. Faecal samples are collected following the 1-week nutritional survey (i.e. on the 

day of chemotherapy before the drug infusion or the day preceding surgery). In brief, sampling 

is done directly into the sampling box, and after removing the protective foil and placing the 

anaerobic atmosphere generation bag in the box, the box is closed firmly and placed in the cold 

(+ 4°C). Patients are asked if they have the ability to transport the sample in an insulated bag to 

preserve cold conditions. If there is no such possibility, the study personnel supplies the patient 

with the requested bag. The sampling should be done within 12 hours preceding the hospital 

admission and sample retrieval. Therefore, patients are asked to do the sampling the morning 

of hospital admission if possible. If there are any problems, the patient is asked to contact the 

protocol personnel to ensure that the sample is processed in time. On reception, the sample is 

aliquoted 3 x 1 g for bacterial DNA extraction, and 2 x 5-10 g (depending on availability) for 

dosage of faecal calprotectin, β-defensin 2, HNP1-3 (ELISA) and SCFAs (gas liquid 

chromatography). Aliquots are stored immediately at -80°C until analysis. Approximately 1 g 

of fresh sample is used for bacterial culture of the main functionary groups of microorganisms 

(total anaerobic bacteria, mucin-degrading bacteria, lactic acid producing bacteria, sulphate-

reducing bacteria and Enterobacteriaceae). 

2.6.5 Lung tissue and BALF 

Only for group Pct-chir, BALF is sampled at inclusion to the study. This sample is taken as a 

part of patient’s standard care protocol if decided by his/her physician, and is not taken as an 

additional sample for this study. BAL is performed by routine bronchoscopy procedure. 

Sampling of lung tissue and BALF during surgery is performed for both groups, after partial or 

complete pneumonectomy. The removed lung tissue is placed in a sterile vessel and the tumour 

position is determined by palpation. A piece of healthy lung distal to the tumour, with a 

minimum size of 1 cm x 1 cm x 1 cm, is then clamped. The clamp is left in place during the 

following procedure. The stich on the bronchus is cut away and using a sterile syringe the lung 
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is inflated through the bronchus. Lavage is performed by instilling 2 x 40 mL of sterile 

physiological saline. After each instillation, the maximum amount of liquid inside the bronchus 

is retrieved (8-10 mL in total), poured into a sterile 50 mL tube and placed immediately on ice, 

designated as “BALF”. At the end, the clamped wedge is cut off and designated as “healthy 

lung”. A slice of the tumour, with a minimal weight of 400 mg, containing the tumour cross-

section is excised along with peritumoural tissue, after which the two are separated based on 

histological difference. All tissues are frozen first in liquid nitrogen and then placed at -80°C 

for long-term storage until DNA extraction. The mirror piece of the excised tumour slice is 

stored in paraffin and later analysed by immunohistochemistry for characterisation of tumour 

infiltrate. 3 mL of BALF are immediately used for immune cell analysis by flow cytometry and 

the remainder is stored at -80°C for later DNA extraction. 

2.7 Methods and Analyses 

Saliva, “healthy” lung, peritumoural and tumour tissue, BALF and faecal samples will be used 

for bacterial DNA extraction, followed by qPCR and 16S rRNA gene sequence analysis to 

establish microbial profiles. Fresh faeces samples will be used for bacterial culture, and frozen 

aliquots for dosage of faecal calprotectin, β-defensin 2, HNP1-3 (ELISA) and SCFAs (gas 

liquid chromatography). BALF and plasma samples will both be analysed by flow cytometry 

(immune cell phenotyping), while plasma will also be used for cytokines (Luminex) and CRP 

(ELISA) dosage. Tumour tissue stored in paraffin will be used for the analysis of immune 

infiltrate by immunohistochemistry. Each procedure is explained in detail in the following 

sections. 

2.7.1 Nutritional status 

Nutritional data for each patient will be analysed using the Nutrilog 2.3 software package, a 

computerised database (Proform) that calculates food composition from the French standard 

reference.23 

2.7.2 Cytokines 

Stored plasma will be analysed for cytokines corresponding (but not restricted) to the following 

profiles: Th1, Th2, Th17, Treg. Samples will be analysed using Luminex kits: HSTCMAG-

28SK, HTH17MAG-14K and TGFBMAG-64K-01 (Merck Millipore). Analyses will be 

conducted by the phenotyping service of CREFRE, Toulouse, France. 
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2.7.3 Evaluation of tumour immune infiltrate 

Immunohistochemistry will be performed on tumour tissue using the specific antibodies to 

detect subpopulations of immune cells as follows: cytotoxic T-lymphocytes (anti-CD8, clone 

SP16, ThermoFisher Scientific), regulatory T-lymphocytes (anti-FoxP3, clone SP97, 

ThermoFisher Scientific), B-lymphocytes (anti-CD20, clone SP32, Cell Marque). The immune 

response checkpoint axis PD-1–PD-L1 will be assessed by anti-PD-1 (clone NAT105, Cell 

Marque) and anti-PD-L1 (clone 28-8, Abcam). All staining will be performed by a fully 

automated, standardised procedure (Benchmark XT, Ventana/Roche). The number of lymphoid 

cells expressing each antigen, except PD-L1, will be determined within 5 consecutive x40 

microscopic fields, starting from the invasive front toward the tumour centre, used as a 

parameter reflecting the tumour’s quantity of a given immune cell subpopulation. PD-L1 will 

be assessed for both immune and tumour cells and reported as the percentage of each population 

expressing the antigen. 

2.7.4 Immune cell phenotyping 

Immune cell phenotyping will be performed on fresh samples of blood (0.5 mL) and BALF (3 

mL) by flow cytometry. Leukocytes will be obtained after haemolysis (solution of 155 mM 

NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA) for 15 min at room temperature, followed by 10 min 

centrifugation at 600 x g. Before centrifugation, BALF will be filtered through a porous gauze 

to eliminate mucus and reduce the viscosity. Lymphocyte subpopulations will be phenotyped 

using the following antibodies: anti-CD3-VioBlue, anti-CD4-APC-Vio770, anti-CD25-APC, 

anti-CD127-VioBright FITC, anti-CD183 (CXCR3)-PE-Vio770, anti-CD294 (CRTH2)-PE, 

anti-CD196 (CCR6)-PE-Vio615, anti-CD15-FITC, anti-CD62L-PE, anti-CD11b-PE-Vio770 

and Viobility 405/520 fixable dye, all purchased from Miltenyi Biotec. T lymphocytes CD4+ 

will be characterised as CD3+CD4+ cells. Subpopulations of T lymphocytes CD4+ will be 

characterised as follows: Th1 as CD3+CD4+CD183+, Th2 as CD3+CD4+CD294+, Th17 as 

CD3+CD4+CD196+, Treg as CD3+CD25+CD127- and neutrophils as CD15+CD11b+CD62L+/ 

CD15+CD11b-CD62L+ for “tethering” form, and CD15+CD11b+CD62L- for active form. Due 

to high debris background in BALF samples, utilisation of the Viability dye is essential and 

utilisation of intracellular dyes is excluded. The data will be acquired using LSRII, BD 

Biosciences. 
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2.7.5 Inflammatory/antimicrobial markers and short chain fatty acids (SCFAs) 

analysis 

Faecal samples will be analysed for calprotectin (kit Calprest NG, Eurospital, with an 

adaptation on BEP2000 (Siemens)), β-defensin 2 (β Defensin 2 ELISA Kit, Immundiagnostik, 

Bensheim), and HNP1-3 (human HNP1-3 ELISA Kit, Hycult biotech). All three markers will 

be measured in the Laboratory of Functional Coprologie, GH Pitié-Salpêtrière, Paris. C-reactive 

protein will be measured in plasma by CRP human ELISA kit (Enzo Life Sciences). SCFA 

concentration will be dosed after water extraction of acidified faecal samples using gas liquid 

chromatography (Nelson 1020, Perkin-Elmer) in the Commensals and Probiotics-Host 

Interactions Laboratory, Micalis Institute, INRA UMR 1319, France. 

2.7.6 DNA extraction 

DNA extraction on all samples will be performed in batches to reduce the possibility of 

manipulation errors between extractions.  

a) Sample pre-treatment 

Lung tissue. Lung tissue will be taken directly from liquid nitrogen, broken into smaller pieces 

with a mortar and pestle, and homogenised in Hank’s balanced salt solution (HBSS) (Sigma-

Aldrich) in gentleMACS M tubes (Miltenyi Biotec). The ratio of buffer volume:sample weight 

will be determined for each sample, and adapted volume will be used for each of the following 

steps. The programs used will be those adapted for lung and tumour tissue (Miltenyi Biotec). 

The homogenate obtained will be treated with collagenase D (Sigma-Aldrich) (2 mg/mL final 

concentration) at 37°C for 15 min, followed by 10 min at 2,000 x g at room temperature (RT). 

The pellet will be resuspended in 2-5 mL (depending on the initial sample weight) of 

mammalian cell lysis buffer (MCLB),24 and repeatedly vortexed for 5 min at RT. The reaction 

will be stopped with adding an equal volume of neutralisation buffer.24 After two washes with 

PBS (Sigma) (2,000 x g for 10 min), the pellet will be used for DNA extraction using the 

adapted protocol of Godon et al.25  

Saliva and BALF. Saliva and BALF will first be brought to RT and vortexed. 1 mL of saliva 

and 5 mL of BALF will be used for DNA extraction. Whole BALF will be used for extraction, 

to minimise the loss of bacterial communities.26 BALF will be centrifuged (7,000 x g, 10 min) 

and 3 mL of MCLB will be added to the pellet, while saliva will be treated directly with 1 mL 

of MCLB. Both will be vortexed for 5 min at RT, followed by addition of neutralisation buffer. 
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DNA extraction will be performed directly on the pellet after centrifugation at 7,000 x g for 10 

min at RT and a washing step (PBS).  

Faeces. Faecal samples will have no pre-treatment and extraction will begin directly on frozen 

samples.  

b) DNA extraction 

DNA extraction will be performed by using the adapted protocol of Godon et al.,25 i.e. 

International Human Microbiome Standards Standard Operating Protocol for Fecal Samples 

(IHMS SOP) 07 V1. Briefly, 4 M guanidine thiocyanate and 10% N-lauroyl sarcosine will be 

added directly on frozen samples or pellets for 10 min at RT. After the addition of 5% N-lauroyl 

sarcosine and homogenisation by vortexing, the samples will be incubated for 1 hr at 70°C. All 

of the samples will be transferred to Lysing Matrix B tubes (MPBio) and homogenised using 

FastPrep®-24 Instrument (MPBio), 4 x 45 s at 6.5 m.s-1. Between each cycle, the samples will 

be cooled on ice for 2 min. One micro-spoon of polyvinylpolypyrrolidone will be added to each 

tube, followed by vortexing and centrifugation for 3 min at 18,000 x g. The supernatant will be 

removed and placed in a new 2 mL tube and the pellet will be washed with TENP and 

centrifuged for 3 min at 18,000 x g, and the new supernatant will be added to that which was 

harvested previously. The pooled tube will be centrifuged for 1 min at 18,000 x g and the 

supernatant will be transferred to a new 2 mL tube. One volume of isopropanol will be added 

to the supernatant, gently mixed by turning the tube and incubated for 10 min at RT. After 

centrifugation for 5 min at 18,000 x g, the pellet will be resuspended in 0.1 M phosphate buffer, 

pH 8, and 5 M potassium acetate and incubated overnight at 4°C. The samples will then be 

centrifuged for 30 min at 18,000 x g and 4°C. The supernatant will be transferred to a new 2 

mL tube, and after the addition of RNase (final concentration 40 μg/mL), incubated at 37°C for 

30 min. Nucleic acids will be precipitated with absolute ethanol and 3 M sodium acetate, 

followed by centrifugation at maximum speed for 3 min. The pellet will be washed with 70% 

ethanol, dried and resuspended in 100 μL of TE buffer. DNA quality and concentration will be 

estimated by agarose gel electrophoresis and nanodrop (NanoDrop ND-1000) measurement, 

respectively. 

Considering the low biomass samples, background controls have been made throughout the 

sampling and extraction process. The physiological serum used to perform BAL is first sampled 

with the same syringe that is afterward used for lavage from the same vessel containing 

physiological serum. This sample is used as a “negative sampling control”. During the DNA 

extraction, miliQ water is used as a “negative background control” sample, treated will all the 
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reagents and passing all the procedures along with the real samples. These “negative” samples 

will be analysed along with the real samples. 

All the reagents used in DNA extraction and sample pre-treatments were either autoclaved, 

filtered through 20µm filters or purchased sterile. All the tools and pipettes were thoroughly 

washed and disinfected between extractions of different sample types, to minimise the transfer 

from high biomass samples. Also, DNA extraction from lung tissue samples (three samples per 

patient) was randomised (each extraction “batch” never contained only one sample type from 

different patients or all the samples from the same patient), to minimise the “batch” effect. 

2.7.7 Molecular analyses of microbiota  

16S rRNA gene sequencing. The genomic DNA from saliva, faeces, BALF, “healthy” lung, 

peritumoural and tumoural tissue, and negative controls will be analysed by sequencing of the 

bacterial 16S rRNA gene by DNAVision, Belgium, using Illumina MiSeq technology. After 

PCR amplification of the targeted region V3-V4, libraries will be indexed using the NEXTERA 

XT Index kit V2. The sequencing is carried out in paired-end sequencing (2 x 250 bp) by 

targeting an average of 10,000 reads per sample. Software used for bioinformatic analysis will 

be QIIME (Quantitative Insights Into Microbial Ecology), with a cut-off value of 5,000 reads 

per sample for analysis. For each sample the following will be determined: 

a) alpha and beta diversity,  

b) comparison of alpha diversities based on a two-sample t-test using non-parametric 

(Monte Carlo) method,  

c) statistical significance of sample groupings using distance matrices (Adonis method),  

d) comparison of OTU frequencies across sample groups (comparison is performed at 

OTU, Phylum, Class, Order, Family and Genus level) 

Multiple comparisons will be realised, both between different grouping criteria and between 

samples. 

Considering the low taxonomic levels (Species), sequencing is best used as an indicative tool 

for further analyses by qPCR.  
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qPCR. In our study, qPCR will be done in two phases: 

a) Pre-16S sequencing analysis 

In this phase, qPCR will have two purposes: (i) to confirm and further characterise the bacterial 

functionary groups in faeces evaluated by bacterial culture (providing the information of viable 

bacteria inside specific functionary group); and (ii) to quantify pathogens/commensals in 

respiratory and intestinal system, known to be implicated in tumourigenesis/pro or anti-

inflammatory reactions27–32 using specific primers.  

qPCR will provide information of absolute quantity of taxa/species of interest in each sample, 

which is information that cannot be obtained by sequencing (only relative abundance). 

b) Post-16S analysis 

In our study, the sequencing has the purpose of sample “screening”. It will give us an idea of 

the composition of the microbial communities from different sites and originating from 

different conditions (patient with tumours eligible for chemotherapy/surgery) based on 

minimum of 5,000 reads. However, sequencing stays a technique to determine relative 

abundance. Therefore, once the overall composition of each sample is determined, we will 

proceed with: 

1. quantification of the specific outer taxonomic units (OTUs)/taxa we determine as 

relevant in either relative or normalised abundance not analysed during pre-16S 

analyses 

2. enlarging the primer list specific for the new discovered OTUs of interest 

The current list of primers optimised for our study is shown in Table 2. Each primer couple is 

tested for specificity on 60 referent species. QPCR will be done using the Rotor-Gene Q 

machine (Qiagen). Additional primer couples will be tested and optimised if found necessary, 

as explained. 
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Table 2 The current list of qPCR primer couples 

Target group  Primer sequence (5’ – 3’) Reference 

Total bacteria 
F CGGTGAATACGTTCCCGG 

Furet et al., 2009 33 
R TACGGCTACCTTGTTACGACTT 

Bacteroidetes 
F AACGCTAGCTACAGGCTTAACA 

Dick & Field, 2004 34 
R ACGCTACTTGGCTGGTTCA 

Actinobacteria 
F TACGGCCGCAAGGCTA 

Trompette et al., 2014 6 
R TCRTCCCCACCTTCCTCCG 

Firmicutes 
F GGAGYATGTGGTTTAATTCGAAGCA 

Guo et al., 2008 35 
R AGCTGACGACAACCATGCAC 

Gammaproteobacteria 
F CMATGCCGCGTGTGTGAA 

Mühling et al., 2008 36 
R ACTCCCCAGGCGGTCDACTTA 

Bacteroides/Prevotella 

(Bacteroidales) 

F CCTWCGATGGATAGGGGTT 
Layton et al., 2006 37 

R CACGCTACTTGGCTGGTTCAG 

Lactobacillus/Leuconostoc/ 

Pediococcus 

F CGCCACTGGTGTTCYTCCATATA 
Furet et al., 2009 33 

R AGCAGTAGGGAATCTTCCA 

Blautia genus 

 

F GTGAAGGAAGAAGTATCTCGG Kurakawa et al., 2015 38 

 R TTGGTAAGGTTCTTCGCGTT 

Veillonella genus 
F GRAGAGCGATGGAAGCTT 

Tana et al., 2010 39 
R CCGTGGCTTTCTATTCC 

Neisseria genus 
F CTGTTGGGCARCWTGAYTGC 

Yan et al., 2015 40 
R GATCGGTTTTRTGAGATTGG 

Fusobacterium genus 
F AAGCGCGTCTAGGTGGTTATGT Dalwai et al., 2007 41 

 R TGTAGTTCCGCTTACCTCTCCAG 

Bacteroides thetaiotaomicron 
F GACCGCATGGTCTTGTTATT 

Haugland et al., 2010 42 
R CGTAGGAGTTTGGACCGTGT 

Bilophila wadsworthia 
F CGTGTGAATAATGCGAGGG 

McOrist et al., 2001 43 
R TCTCCGGTACTCAAGCGTG 

Akkermansia muciniphila 
F CAGCACGTGAAGGTGGGGAC 

Collado et al., 2007 44 
R CCTTGCGGTTGGCTTCAGAT 

Escherichia coli 
F CATGCCGCGTGTATGAAGAA 

Huijsdens et al., 2002 45 
R CGGGTAACGTCAATGAGCAAA 

Faecalibacterium prausnitzii 
F GGAGGAAGAAGGTCTTCGG Ramirez-Farias et al., 

2008 46 R AATTCCGCCTACCTCTGCACT 

Blautia (Ruminococcus) gnavus F GGACTGCATTTGGAACTGTCAG Le Leu et al., 2015 47 
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R AACGTCAGTCATCGTCCAGAAAG 

Ruminococcus torques 
F GCTTAGATTCTTCGGATGAAGAGGA 

Le Leu et al., 2015 47 
R AGTTTTTACCCCCGCACCA 

Bifidobacterium bifidum 

 

F CCACATGATCGCATGTGATTG Malinen et al., 2005 48 

 R CCGAAGGCTTGCTCCCAAA 

Enterococcus hirae 
F GGCATATTTATCCAGCACTAG 

Daillère et al., 2016 49 
R TAGCGTACGAAAAGGCATCC 

Pseudomonas aeruginosa 
F CCAGCCATGCCGCGTGTGTGA 

Silva-Junior et al., 2016 50 
R GTTGGTAACGTCAAAACAGCAAGG 

Streptococcus pneumonia 
F ACGCAATCTAGCAGATGAAGCA 

Chien et al., 2013 51 
R TCGTGCG TTTTAATTCCAGCT 

Haemophilus influenza 

 

F AGCGGCTTGTAGTTCCTCTAACA 
Fukumoto et al., 201552 

R CAACAGAGTATCCGCCAAAAGTT 

Fusobacterium nucleatum 
F CAAGCGGTGGAGCATGTG 

Fukumoto et al., 201552 
R CTAAGATGTCAAACGCTGGTAAGG 

Moraxella catarrhalis 
F GGTGAGTGCCGCTTTTACAAC 

Fukumoto et al., 201552 
R TGTATCGCCTGCCAAGACAA 

Klebsiella pneumoniae 
F CGGGCGTAGCGCGTAA 

Fukumoto et al., 201552 
R GATACCCGCATTCACATTAAACAG 

 

2.7.8 Statistical analysis plan 

General information. This study is exploratory and main outcomes address the description of 

microbiota characteristics in lung cancer patients. Three microbiota are concerned (gut, lung 

and saliva) and data are collected at different times in patients treated by neoadjuvant 

chemotherapy (group Pct-chir). For other patients (group Pchir), different microbiota are 

sampled at only one time point, at surgery. 

In patients treated by chemotherapy, analysis of variations of microbiota induced by 

chemotherapy will be possible by evaluation of changes in proportions over time. On the other 

hand, the analysis of microbiota with/without previous chemotherapy will only be descriptive, 

as the design is not compatible with a non-biased comparison of both groups. 

Sample size. The sample size calculation is based on the study of Montassier et al., 2015,53 

where the abundance of the principal phylum Firmicutes in faecal microbiota decreased by 

approximately 30%, with an FDR-corrected p-value of 0.0002. Considering these results, 20 
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patients in the chemotherapy group should allow us to detect a similar variation in our samples, 

at least in the faecal microbiota. For group balance, the same sample size of 20 was retained for 

the surgery-only group. 

Description of patients’ characteristics. Patients’ characteristics will be described using 

standard distribution parameters: counts, range, mean/median, confidence intervals, standard 

deviation/interquartile range for quantitative parameters and, for categorical ones, counts and 

frequencies. This description will also be made by treatment group (Pchir/Pct-chir). 

Description of microbiota. Microbiota characteristics consist in several hierarchical steps 

including: 

• Phylum: four main phyla are found in both lung and intestinal microbiota (Firmicutes, 

Bacteroidetes, Actinobacteria and Proteobacteria). Firmicutes are supposed to represent ~80% 

of the intestinal microbiota biomass54 and ~40% of the lung microbiota.55 The proportion of 

each component will be described by its proportion of the biomass in %. 

• Main classes of bacteria per phylum: these classes gather bacteria that share important 

characteristics and functions (e.g. Bacilli, Clostridia, Gammaproteobacteria, etc.). 

Composition of the microbial communities from different sites and originating from different 

conditions will be quantified (alpha and beta diversity, relative proportions).  

• Inside classes, description by order, family and genus level will be performed when 

contributory on a biological plan.  

Heterogeneity between microbiota will be studied. The comparison of proportions of phyla, or 

by other taxonomic level will be performed to evaluate if specific adaptation characterises the 

three microbiota and their components. ANOVA will be used to perform inter-patient 

comparisons. FDR correction will be applied when analyses are conducted within phyla. 

Comparison of microbiota before/after chemotherapy. This comparison will be performed 

for each site-specific microbiota. Proportions of main phyla will be compared using ANOVA 

(mixed model) to check if an independent chemo-effect can be objectivised, adjusting on 

patients and phyla (without FDR correction). 

Comparisons of taxonomic levels below phylum before/after chemotherapy will be performed 

on relevant components with an FDR correction. These comparisons will be performed on both 

alpha and beta diversity. Univariate paired parametric or non-parametric tests (Student t-test, 

Mann-Whitney U-test, etc.) will be used here. 
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Comparison of microbiota between the two treatment groups. These comparisons will use 

the same tests as in the previous paragraph, except tests will not be paired. 

Relationship between inflammatory status and microbiota. Several cytokines will be 

measured in blood samples. Each result will consist in a concentration of cytokine. The 

relationship between microbiota and inflammation will be tested using Pearson (or Spearman 

rank) correlation coefficient, using FDR correction. 

Tumoural immune infiltration. Immune reaction will be described by percentage by 

lymphocyte type. These proportions will be compared to corresponding microbiota 

characteristics: e.g. lung microbiota and lung tumour. Statistical association between these 

parameters will be tested as in the previous paragraph. 

Complementary analyses. Complementary analyses will be performed if particular biological 

issues can be better described.  

All statistical analyses will be performed using R-software version 3.5.0 or later (R-Project, 

GNU GPL). Tests will be two-sided and the significance threshold is set at 0.05, after FDR 

correction where needed (as for the analyses concerning taxonomic ranks below phylum). Data 

may be missing due to possible loss of follow-up between inclusion and end of study. A 

description of the missing data and associated reasons will be given. 

2.7.9 Data monitoring committee 

A data monitoring committee is not needed in this study since this is an observational trial and 

there are no intervention or security risks for patients. 

3 Discussion 

What is known. Lung cancer is a leading cause of death by cancer worldwide, responsible for 

1,761,007 or 23.1% deaths in 2018 according to the WHO.56 It is also the most frequent cancer 

in men and the third most frequent in women.56 While well characterised regarding its aetiology, 

morphological and molecular properties,57–59 much less is known regarding its relationship with 

lung microbiota, and almost nothing regarding its connection to distant sites such as the gut and 

gut microbiota. This lack of studies is self-explanatory when one knows that not so long ago 

lungs were considered sterile except in case of infection.55,60 Recently, however, there is an 

emerging idea of more “systemic” influence of the gut microbiota, and its connection to the 

immune system beyond the local effect.3,60–62 A few teams made a huge leap in elucidating the 
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role of the gut microbiota in chemotherapy and anticancer treatment, including lung cancer.63–

67 

What is new. Based on these studies and the questions unanswered, we designed a case-control 

observational trial underlining a multi-aspect approach to the patient. In each of our subjects, 

we decided to characterise the microbiota of different sites (UAs, gut, and lung microbiota), in 

parallel with immune profile characterisation (local and systemic) while taking into account the 

patient’s life style (nutrition, smoking status, profession, etc.). Examination of these factors in 

patients undergoing chemotherapy before surgery enables a direct follow up of these parameters 

correlated with the treatment phase (to our knowledge, this has never been reported for lung 

cancer before). Moreover, lung microbiota at surgery is sampled in two ways: by performing 

broncho-alveolar lavage (BAL) directly on the excised lung lobe (to eliminate possible UAs 

contamination and obtain the maximal microbial concentration for analysis), and by sampling 

lung tissue at 3 sites: “healthy” tissue distal to tumour (used as a control tissue),12 peritumoural 

tissue, and tumour itself. This enables sampling of both luminal and tissue/cell-bound bacteria 

which, according to known studies, do not share the same microbial composition.26 To our 

knowledge, at present there is no study of lung cancer that examines the microbiota of 

peritumoural tissue, and even less in 4 different lung sample types. Also, no study performed 

BAL directly on the tumour lobe without passing through the UAs.  

Choice of analyses. As previously reported, certain bacterial species can modify our immune 

responses differently, such as Faecalibacterium prausnitzii or on the other hand Fusobacterium 

nucleatum, as well as the whole cluster (Clostridia cluster XIV).68,69 Therefore, tumour 

lymphocyte infiltration and lymphocyte composition in the broncho-alveolar lavage fluid 

(BALF) will be examined and closely looked at for its relationship with sampled microbiota. 

Likewise, each tumour is characterised according to the TNM stage classification70 and 

histological properties. Tumour architecture, localisation in the lung, and disease severity are 

expected to dynamically interact with microbial composition in situ and immune profile, as 

seen in similar pathologic states of the lung (obstruction of the normal lung architecture, 

creation of anaerobic thermal pockets in the case of bronchial obstructiveness, immunogenicity 

of the tumour, promotion of neutrophil recruitment, inflammation).12,15,71–73 Difference of the 

microbiota composition between tumour samples of adenocarcinoma and squamous cell 

carcinoma has already been evidenced by Yu et al.15 Interestingly, salivary microbiota is also 

proven to correlate with NSCLC type.74 Therefore, similar analysis direction will be taken with 

our salivary and lung samples. 
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As mentioned, intestinal microbiota has both local and systemic influence on its host. 

According to the gut-lung axis theory,4 bacteria or their products might have systemic effects, 

and therefore, have an effect on the lung microbial composition and immune response. For this 

reason, faecal microbiota will be characterised, as well as faecal SCFAs concentrations (known 

products of bacterial fermentation and immune modulators/protectors of the intestinal 

barrier).75 SCFAs might be potential mediators of the gut’s “long-distance” influence by direct 

effect on the target site or indirectly via gut/circulating immune system stimulation. As 

intestinal microbiota is shown to adapt very quickly to the changes in nutrition, as well as its 

influence on SCFAs concentrations,22,76 nutritional records before each faecal sampling will be 

taken into account. We will not only determine the composition of faecal microbiota, but also 

its “quality” and influence on intestinal health by dosage of bacteriocins (HNP1-3, β-defensin 

2), and calprotectin as inflammatory marker.75 Broad-spectrum cytokine profiling and immune 

cell phenotyping in the blood will be used to evaluate systemic immune status. This holds 

particular importance as connection to circulating IL-6 and IL-8 was previously reported in 

lung cancer,77,78 but also to intestinal SCFA concentrations.79 

As explained, group Pct-chir will enable follow-up on multi-site microbiota and immune status 

during different treatment phases (Figure 1). Since the biggest problem of chemotherapy, 

despite its efficacy against tumour cells, is its non-selectivity (effecting epithelial layers and 

mucosae),80–82 we expect to see changes in all three types of microbiota – salivary, faecal and 

lung, as all are closely related to epithelial and mucosal layers. Similarly, immune 

characteristics should be altered following the chemotherapy and above-mentioned changes in 

microbiota (but also vice versa – the affected immune system will change its interaction with 

microbiota, thus modifying it). Finally, we could hypothesise that different initial properties of 

the tumour (why the patient is prescribed chemotherapy or not in the first place) might divide 

two patient profiles (Pchir vs. Pct-chir 1st time point) regarding both multi-site microbial and 

immune/inflammatory characteristics.  

Final word. To conclude, our results will be one of the first to give a better understanding of 

the close and intense interaction between the microbiota of different, yet communicating sites 

and their interaction with the immune system in patients suffering from lung cancer (the world’s 

number one cause of death by cancer).83 The strength of this study design is data collection 

through multiple non-invasive techniques that can be incorporated into the standard medical 

care and treatment of the patients. Another strong point is a multi-site approach towards each 

patient: lifestyle, nutrition, immune status, and microbial composition are assessed using 
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different and complementary techniques (e.g. faecal microbiota will be assessed by techniques 

of molecular biology via qPCR and sequencing, but also by bacterial culture, and in the aspect 

of individual’s nutrition). The main limitation is lack of the “healthy” control group, not 

authorised by Ethics Committee because of the invasiveness of the sampling techniques for 

healthy subjects. Therefore, previously published data on healthy subjects and similar cohorts 

will be addressed only in a descriptive matter, while we will focus more on relational aspects 

(e.g. interaction between site-specific immunity and its microbiota). 

We hope that our results will help in setting the basis for developing more personalised or 

“alternative” approaches in lung cancer treatment, better characterisation of patient’s status and 

diagnosis, as well as in finding ways of improving chemotherapy tolerance and effectiveness 

(complementary prebiotics, probiotics or symbiotics). 
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Even though studies on lung cancer microbiota started to emerge several years ago, the 

characteristics of the lung microbiota originating from different sample types are still not well 

documented. The major problem of lung microbiota research is the fact that sampling methods 

and target samples are not uniform across the studies, meaning that the majority of the 

microbiota analysis is based on BAL, followed by tissue, saliva and sputum in varying 

frequency. Even though it was previously suggested that the lung microbiota from BAL and 

lung tissues harbours different communities, so far no study explicitly considered this subject. 

Moreover, analysis of the microbiota in lung cancer implies tissues with distinct roles, 

interactions and immunity, such as peritumoural and tumour tissue. 

Therefore, in this study we provide detailed characteristics of the microbiota from four different 

lung samples: BAL, non-malignant, peritumoural tissue and tumour, with the addition of saliva 

as the sample of oral microbiota. We show that BAL indeed represents a unique microbiota 

based on differential abundance analysis and on beta diversity. Simultaneously, we confirm that 

BAL form a clear cluster of lung microbiota with the other lung tissues samples when put in 

the perspective of the oral microbiota. Next, since lobe position was suggested as important 

factor influencing the microbiota composition (adapted island hypothesis), and in the same 

time, lower lobe tumours have been associated to worse prognosis in NSCLC, we examined the 

influence of the tumour position in upper or lower lobes on analysed microbiota. We show that 

all analysed microbiota, except the one from the tumour, have significantly different abundance 

especially in the phyla Bacteroidetes and Actinobacteria. Moreover, we show that peritumoural 

tissue microbiota is the most sensitive to lobe location, with significantly increased resemblance 

to BAL microbiota when found in upper lobes. Since tumour is known for its potential to 
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directly modify its microenvironment, we propose that this observed change in peritumoural 

tissue microbiota actually reflects the changes in microenvironment (adhesive sites, 

extracellular matrix rearranging, immune stimulation). Finally, we show that phylum 

Firmicutes, previously reported as elevated in progressed lung malignancies, is elevated in 

abundance in all lung tissues from lower lobes when compared to upper lobes. This might be a 

potential microbial indicator of increased aggressiveness of lower lobe tumours, but will need 

further confirmation and analysis of its association with the immune system.  
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Abstract 

Background. While well characterised on its molecular base, non-small cell lung cancer 

(NSCLC) and its interaction with local microbiota remain scarcely explored. Moreover, current 

studies vary in source of lung microbiota, from bronchoalveolar lavage fluid (BAL) to tissue, 

introducing potentially differing results. Therefore, the objective of this study was to provide 

detailed characterisation of the oral and multi-source lung microbiota of direct interest in lung 

cancer research. Since lung tumours in lower lobes (LL) have been associated with decreased 

survival, characteristics of the microbiota in upper (UL) and lower tumour lobes have also been 

examined. 

Methods. Using 16S rRNA gene sequencing technology, we analysed microbiota in saliva, 

BAL (obtained directly on excised lobe), non-malignant, peritumoural and tumour tissue from 

18 NSCLC patients eligible to surgical treatment. We provided detailed taxonomy, diversity 

and core analysis for each microbiota, with analysis of differential abundance on all 

taxonomical levels (zero-inflated binomial general linear model with Benjamini-Hochberg 

correction) between samples and lobe location. 

Results. Diversity and differential abundance analysis showed clear separation of oral and lung 

microbiota, but more important, of BAL and lung tissue microbiota. Phylum Proteobacteria 

dominated tissue samples, while Firmicutes was more abundant in BAL and saliva (with class 

Clostridia and Bacilli, respectively). However, stratification between lobes showed increased 

abundance of Firmicutes in LL lung microbiota, with decrease in Proteobacteria. Also, clades 

Actinobacteria and Flavobacteriia showed inverse abundance between BAL and extratumoural 

tissues depending on the lobe location. While tumour microbiota seemed the least affected by 

location, peritumoural tissue showed the highest susceptibility with markedly increased 

similarity to BAL microbiota in UL. Differences between the three lung tissues were however 

very limited. 

Conclusions. Our results confirm that BAL harbours unique lung microbiota and emphasize 

the importance of the sample choice for lung microbiota analysis. Further, limited differences 

between the tissues indicate that different local tumour-related factors, as tumour type, stage or 

associated immunity, might be the ones responsible for microbiota-shaping effect. Finally, the 

“shift” towards Firmicutes in LL might be a sign of increased pathogenicity, as suggested in 

similar malignancies, and connected to worse prognosis of the LL tumours. 
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Trial registration. ClinicalTrials.gov ID: NCT03068663. Registered February 27, 2017. 

https://clinicaltrials.gov/ct2/show/NCT03068663 

1 Introduction 

Despite the advancements in its detection and treatment, lung cancer (LC) is still the leading 

cause of death by cancer worldwide [1]. Non-small cell lung cancer (NSCLC) is diagnosed in 

85-90% of LC cases and presents the most frequent type of lung cancer. Unlike small cell lung 

cancer, NSCLC is operable in 20-25% of cases. This concerns mostly early stage tumours (stage 

I and II), sometimes locally advanced disease (stage III) and rarely oligometastatic disease 

(stage IV). Other treatments, such as chemotherapy, radiotherapy and until recently 

immunotherapy, are often associated with surgery as neoadjuvant or postoperative treatment. 

Even though surgery is recognised as the most effective initial treatment of NSCLC, the 5-year 

survival rates remain however low (~90% for stage IA1, and ~12% for stage IIIC)[2,3]. 

Therefore, the tumour staging is used as the important prognostic tool based on tumour size, 

lymph node invasion and metastatic status [2]. Curiously, tumour lobe location has also been 

associated to tumour’s aggressiveness, with tumours in lower lobes (LL) showing worse term 

and 5-year survival after resection than the ones in upper lobes (UL), still without a clear 

explanation [4–6].  

Increasing interest in the interaction between host and its microbiota revealed its potential 

implication in health and disease, but also in tumour immunology and physiology [7–11]. 

Unlike local and systemic effects of the gut microbiota, the lung microbiota and its effects 

remain scarcely explored, being only recently accepted as the one of the resident microbiota 

(and not only present during infection)[12,13]. Since, emerging number of studies turned to its 

exploration, notably in the context of cystic fibrosis, asthma and chronic obstructive pulmonary 

disease (COPD), interstitial lung disease, and lung transplantation [14–19]. Despite its impact 

on global cancer-related death, lung cancer studies were left surprisingly few-numbered and 

started to emerge only a few years back. However, they confirmed that lung microbiota interacts 

with local immunity and modifies tumour properties. The microbial dysbiosis in antibiotic-

treated or germ-free animals influenced growth of injected lung tumour cells [20,21] while 

usage of penicillin, cephalosporins, or macrolides showed to increase risk of lung cancer in 

human subjects [22]. In lung cancer patients, lung microbiota from bronchoalveolar lavage fluid 

(BAL) enriched with supraglottic taxa was associated with pro-inflammatory profile and 

stimulation of Th17 cells with protumourigenic effect [23–25], and also exhibited different 
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abundance and metabolic profiles compared to the one of healthy subjects [26,27]. 

Interestingly, salivary microbiota was also found to show cancer specific profile, with genera 

Veillonella and Capnocytophaga more abundant in saliva of lung cancer patients [28]. At the 

present, only two studies analysed lung tissue microbiota in lung cancer. One found increased 

alpha diversity in non-malignant tissue compared to tumours as well as in adenocarcinoma 

compared to squamous cell carcinoma [29], while the other showed association between 

increased diversity of the non-malignant tissue (but not tumour) and decreased recurrence-free 

and disease-free survival [30]. Among studies on lung microbiota, those on BAL are the most 

numerous, since it remains the sample with acceptable ratio of contamination risk by upper 

airways, precision in lung microbiota sampling and invasiveness. However, this has been a 

potential source of contradictory information since varying characteristics of BAL and tissue 

microbiota, as a result of samples’ different nature, have been previously suggested [18]. 

Therefore, there has been an increasing necessity to characterise the ground differences between 

different lung microbiota in NSCLC patients to enable better comprehension of the obtained 

results depending on the initial lung sample. 

With the primary objective to fill this “missing link”, this cross-sectional pilot study analysed 

lung microbiota from four different samples in 18 NSCLC patients eligible for surgery without 

neoadjuvant therapy. The analysed samples were BAL, non-malignant tissue, peritumoural 

tissue and tumour, as each should represent different architectural and physiological 

characteristics. Unlike in previous studies, BAL was obtained by direct sampling from the 

excised lobe without passing through the upper airways, to decrease aforementioned risk of 

contamination. In addition, salivary microbiota was characterised for each patient and used as 

an extra-pulmonary sample (to put in perspective the relation with and between lung samples). 

As a second objective, we investigated whether tumour location in the UL or LL yields 

significant changes in these microbiota. 

2 Methods and patients 

 Patient recruitment and study design 

All patients were enrolled in a prospective, study, approved by the CPP Sud Est VI Ethics 

Committee and registered at ClinicalTrials.gov (NCT03068663) [31].Written informed consent 

was obtained from all patients before enrolment in the study and any study procedure.  
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Patients diagnosed with primary NSCLC eligible for surgical treatment with or without 

neoadjuvant therapy and presented before the Thoracic Oncologic Committee of the Jean Perrin 

Centre (Clermont-Ferrand, France) were preconsidered for inclusion to the study. Inclusion 

criteria were: age between 18 and 80 years, body mass index (BMI) < 29.9, no antibiotics, 

corticoids, immunosuppressive drugs or underwent pulmonary infections for at least the past 2 

months, as well as no previous airway surgery or cancer treatment. Only patients included into 

the group of patients eligible for surgery without chemotherapy were taken into account in this 

manuscript. 

At inclusion, patients received the tube for saliva collection and were asked to bring it with 

them the day of their hospital admission for surgery. Sampling of the lung was performed during 

the surgery immediately after excision of the tumour lobe, representing no additional 

inconvenience for patient apart its standard medical procedure. Detailed inclusion/exclusion 

criteria, the study flowchart as well as detailed design and power calculation were previously 

published [31]. 

 Sampling 

2.2.1 Saliva 

Any evidence of oral health problems or injuries were recorded for each patient at inclusion. 

Each patient received a tube for saliva collection (Sarstedt) that he or she filled with minimum 

of 1 mL of saliva (designated on the tube) on an empty stomach by the passive drooling method 

on the morning of hospital admission for the surgery. Patients were asked to keep the sample 

stored on cold. Upon reception by the study personnel, the sample was stored at -80°C until 

DNA extraction. 

2.2.2 Lung tissue and BAL 

Sampling of lung tissue and BAL during surgery was performed immediately after partial or 

complete pneumonectomy. The removed lung or lung lobe was placed in a sterile vessel and 

the tumour position was determined by palpation. First, a piece of non-malignant lung distal to 

the tumour (opposite side of the lobe) with an average size of 1 cm3 was clamped. The clamp 

was left in place until the end of the following procedure. Using a sterile syringe the excised 

lung was inflated through the main bronchus. Bronchoalveolar lavage was performed by 

instilling 2 x 40 mL of sterile physiological saline into the bronchus. After each instillation, the 

maximum amount of liquid inside the bronchus was retrieved (8-10 mL in total) into 50 mL 

tube (designated as “BAL”). Then, the clamped wedge of non-malignant tissue was cut off and 
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designated as LUNG.DP (“distal piece”). Further, a pie-slice of the tumour (cross-section) was 

excised with its peritumoral tissue, after which the two were separated based on macroscopic 

histological difference. Tumour tissue sample was designated as “LUNG.T” and peritumoral 

tissue sample as “LUNG.PT”. The tissues were snap-frozen in liquid nitrogen and then placed 

at -80°C for long-term storage until DNA extraction. BAL was stored directly at -80°C. 

 DNA extraction and negative controls 

DNA was extracted as previously described [31]. Saliva and BAL (cellular BAL) volume used 

for DNA extraction were 1 and 5 mL, respectively. Initial tissue weights ranged from 377 ± 

236 mg for LUNG.PT, to 1.441 ± 1.016 g and 1.346 ± 0.899 g for LUNG.DP and LUNG.T. 

Even though the initial weight between tissue samples was significantly different (p = 0.001), 

there was no difference in final concentration of DNA/g of sample (p = 0.895). DNA extraction 

from lung tissue samples (three samples per patient) was randomised (each extraction group 

never contained only one sample type or all samples from the same patient) to randomise the 

manipulation effect. 

Since the lung samples are considered as a low biomass samples, background controls were 

made throughout the sampling and extraction procedure. Negative sampling control was 

collected for each BAL and consisted of physiological serum collected with syringe used for 

instillation from the same liquid recipient. During the DNA extraction, milliQ water was used 

as a negative background control and underwent same procedure as the real samples. All 

controls were sequenced and analysed. Reagents used in DNA extraction and sample pre-

treatments were either autoclaved, filtered through 20 µm filters or purchased sterile. All tools 

and pipettes were thoroughly washed and disinfected before and after each extraction cycle or 

between different extraction steps.  

 16 ribosomal RNA (16S rRNA) gene sequencing 

DNAVision (Belgium), using Illumina MiSeq technology, performed 16S ribosomal rRNA 

gene sequencing. Following the PCR amplification of the targeted region V3-V4, libraries were 

indexed using the NEXTERA XT Index kit V2. The sequencing was carried out in paired-end 

sequencing (2 x 250 bp) by targeting an average of 10,000 reads per sample. Next, sample 

sequences were clustered into OTUs based on 97% sequence similarity. This was performed 

with software QIIME (Quantitative Insights Into Microbial Ecology). Further microbiota 

analyses were done on generated “raw” OTU table, taxonomy and Newick formatted 

phylogenetic tree provided by DNAVision. 
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 Sequence processing and microbiota analysis 

Microbiota analysis and visualisation were done with RStudio 3.5.2. [32] (packages “phyloseq” 

[33], “vegan” [34], ”microbiome” [35], “ggplot2” [36], “DESeq2”[37],”metacoder”[38]). 

Raw OTU table was filtered to keep only kingdom Bacteria for further analysis. The total of 

26 negative controls (sampling and background) had in average 21 detected OTU with average 

of 4 reads/OTU and did not belong to more abundant OTUs in samples. These OTU counts 

were subtracted from corresponding samples, i.e. negative sampling control (physiological 

serum for washing) from corresponding BAL sample, and negative extraction controls from the 

samples in the extraction group. Samples were processed in two batches with controlled 

randomisation of all sample types and patients, including clinical data, so that both batches were 

equally diverse. Therefore, only OTUs present in all samples of one batch and not present in all 

samples of the other were excluded from further processing as a consequence of unequal 

extraction efficiency (and not of contamination). These preprocessing did not alter any of the 

measures, and have left the data virtually unchanged. Next, OTU present in at least 10 % of the 

lung samples and 20% of saliva samples or having more than 50 overall counts (for each group) 

were kept for further processing (in our case, this was equivalent of keeping the OTUs with 

minimal average abundance of 0.001% in either of groups). Only samples with more than 1000 

reads were included in analysis. This excluded 6 samples (without preference for certain factor): 

2 BAL, 3 peritumoural tissues (LUNG.PT) and 1 tumour (LUNG.T). Average read number of 

final sample groups was 39,083 ± 9,697 (mean ± SD) for saliva, 17,046 ± 14,879 for BAL, 

13,352 ± 12,909 for LUNG.DP, 13,039 ± 11,394 for LUNG.PT and 5,846 ± 4,505 for LUNG.T 

For analysis of alpha and beta diversity, samples were rarefied at 1195 reads with 100 iterations. 

Observed OTU number, Shannon diversity index and Faith’s phylogenetic diversity were used 

for alpha diversity characterisation (“phyloseq”). Groups’ beta diversity was calculated based 

on weighted (importance of abundance and quality) and unweighted (importance of absence or 

presence of OTUs) UniFrac distances using function adonis (“vegan”) with 999 permutations 

and presented with non-metric multidimensional scaling (NMDS). Core microbiota clustering 

was based on Bray-Curtis distance and NMDS method. 

Taxonomic trees (“metacoder”) representing relative abundance of taxa within each sample 

group were based on arithmetic mean of relative abundance calculated from unrarefied OTU 

table for each group. Input for trees representing differential abundance was calculated by 

DESeq function using zero-inflated method of negative binomial general linear model 
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(significant coefficient difference calculated by Wald’s test) and Benjamini-Hochberg (BH) 

correction for multiple comparison with 0.05 threshold (“DEseq”). The model was used on 

unrarefied taxon counts. 

Difference in alpha diversity and paired UF distances was calculated by Kruskal-Wallis or Man-

Whitney U test with BH correction for multiple comparison with 0.05 threshold of significance. 

 Managing missing data – paired/unpaired tests 

Total of six lung samples were excluded from the study due to insufficient number of reads 

(<1000). Excluded samples did not origin from only one specific tissue, only one patient or 

exclusively belonged to one criteria. Therefore, preservation of strictly paired analysis would 

exclude an important number of other related samples. For this reason, analysis were unpaired 

if not specified otherwise. 

3 Results 

 Participant characteristics 

The total of 18 patients eligible to surgical treatment without neoadjuvant therapy was included 

in the study. Microbiota was analysed in 17 saliva and 68 lung samples, where 16 patients 

provided all 5 different samples (1 saliva plus 4 lung). For the analysis relative to the location 

of the tumour lobe, patients were grouped into two groups: 1st group with tumour in upper lobes 

(UL), and 2nd group with tumour in middle and lower lobes (LL) (share same descending 

bronchus). Patients with LL tumour had significantly lower predicted diffusing capacity of the 

lung for carbon monoxide (DLCO) than patients with tumours in UL (p = 0.034). Other clinical 

parameters showed no significant difference. Patients’ characteristics (total and per lobe 

location group) and final sample number used in analysis after exclusion of samples with less 

than 1000 reads are shown in Table 1. 
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Table 1 Characteristics of patients included in the study 

 Total  Upper lobe T Lower lobe T p 

Total no. of patients 18  10 8  

Male/female 13/5  8/2 5/3  

Age (years) 68 ± 8  65 ± 9 72 ± 6 0.061 

BMI 25 ± 3  25 ± 4 25 ± 3 0.859 

T in upper/middle/lower lobe 10/2/6  10/0/0 0/2/6  

ADC/SCC/carcinoid 11/5/2  6/2/2 5/3/0  

Stage I/II/III 8/2/8  5/2/3 3/0/5  

Tumour size (cm) 3.7 ± 2.3  3.6 ± 2.4 3.9 ± 2.4 1 

Smoker/ex-smoker/never-smoker 2/14/2  0/9/1 2/5/1  

Pack-year (smokers, ex-smokers) 31 ± 20  31 ± 21 33 ± 20 0.823 

FEV1 (% of expected value) 98 ± 11  95 ± 8 101 ± 14 0.408 

DLCO (% of expected value) 74 ± 16  81 ± 13 64 ± 16 0.034 

FEV1/FVC (% of expected value) 96 ± 10  95 ± 11 98 ± 10 0.630 

Final no. of samples (statistics)      

Saliva 17  10 7  

BAL 15  8 7  

LUNG.DP 17  10 7  

LUNG.PT 14  9 5  

LUNG.T 16  9 7  

ADC – adenocarcinoma; BAL – bronchoalveolar lavage fluid, BMI – body mass index; DLCO - diffusing capacity of the 

lung for carbon monoxide; FEV1 – forced expiratory volume per second;  FVC – forced vital capacity; LUNG.DP – non-

malignant tissue, LUNG.PT – peritumoural tissue, LUNG.T – tumour, SCC – squamous cell carcinoma; T – tumour 

 Beta diversity identifies BAL as a unique sample 

Microbiota was analysed in saliva, bronchoalveolar lavage fluid (BAL), non-malignant Distal 

Piece (LUNG.DP), Peritumoural Tissue (LUNG.PT) and Tumour (LUNG.T). As expected, 

saliva showed a clear separation from the four lung samples (BAL and tissues) with significant 

difference in beta diversity based on both weighted (wUF) and unweighted (uwUF) UniFrac 

distances (Fig. 1A). Furthermore, lung samples showed significant separation based on both 

wUF and uwUF. The three lung tissues were all significantly different from BAL, with 

peritumoural tissue showing the least significant dissimilarity (wUF) compared to other two 

(Fig. 1A). There was, however, no significant difference between tissues. Looking at samples’ 

position in NMDS (Fig. 1A), it was visible that BAL creates a clear cluster with lung tissues 

vs. salivary microbiota, but that from lung samples it is the one closest to saliva.  

The four lung samples shared similar average values of observed OTU number (~120) as well 

as phylogenetic (~15) and Shannon diversity indexes (~3.5) (Fig. 1B, C, D). Although, 

compared to saliva, lung microbiota showed higher variance, all lung samples showed 

significantly higher phylogenetic diversity and higher number of observed OTUs (latter 

significant only for tumour) compared to salivary microbiota. However, in Shannon diversity 

saliva and lung samples were found around the same level (~3.5) (Fig. 1D). 
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Figure 1 Diversity of the salivary and four lung microbiota. a Beta diversity of salivary and 

lung microbiota represented by non-metric multidimensional scaling (NMDS) based on weighted (wUF) 

and unweighted (uwUF) UniFrac distances. Alpha diversity of saliva and four lung samples assessed by 

b number of observed OTUs, c Faith’s phylogenetic diversity, and d Shannon diversity. Statistical 

significance of difference in beta diversity was assessed with adonis function (vegan) with 999 

permutations. Statistical significance of difference in alpha diversity was assessed with Kruskal-Wallis 

(KW) followed by, where appropriate, Man-Whitney U test with BH correction for multiple comparison. 

*: p ≤ 0.05, **: p ≤ 0.01. BAL - bronchoalveolar lavage fluid, LUNG.DP - non-malignant distal piece, 

LUNG.PT - peritumoural tissue, LUNG.T - tumour. 

 Proteobacteria and Firmicutes (class Clostridia) dominate lung 

samples 

13 phyla, 29 classes (27 in BAL), 87 families (85 in BAL and tumour), and from 112 to 115 

genera were detected in each of the lung samples. In saliva on the contrary, there were 10 phyla, 

17 classes, 26 orders, 49 families and 68 genera. Composition of each sample is shown in Figure 

2A in a form of a taxonomic tree with indicated average relative abundance of taxa next to 

taxon’s name (> 0.001 %) and the number of samples in which they were detected (numbers 

within branches). The most abundant phyla and genera in each sample are synthetically 

presented in Figure 2B and 2C, respectively. The saliva tree was the least complex from all the 

trees, heavily dominated by the phylum Firmicutes (53.7%) and belonging genus Streptococcus 

(32.7%) (Fig. 2A,C). Other phyla as Bacteroidetes, Actinobacteria, Proteobacteria and 

Fusobacteria followed with decreasing abundance (Fig. 2B). Except Streptococcus, additional 
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11 genera had abundance higher than 1%, including Prevotella, Veillonella, Neisseria, 

Porphyromonas, and Actinomyces as the top five.  

 

Figure 2 Relative abundance and prevalence of the four lung and salivary microbiota. a 

Each tree represents the taxonomical composition of one sample type. The colour and node size 

correspond to taxon abundance. All taxa with abundance higher than 0.001% are shown, and 

percentage is noted for all taxa with abundance higher than 0.01%. Number of samples within 

which the taxon was detected is noted within branches. Maximal number of samples is 17 for 

saliva and non-malignant tissue, 16 for tumour, 15 for BAL, and 14 for peritumoural tissue 
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(Table 1). Synthetic presentation of the most abundant taxa was provided on b phylum and c 

genus level. BAL - bronchoalveolar lavage fluid, LUNG.DP - non-malignant distal piece, 

LUNG.PT - peritumoural tissue, LUNG.T - tumour. 

In the lung samples, two dominating phyla were Proteobacteria and Firmicutes, but with 

varying abundance ratio depending on the sample. So, phylum Firmicutes was the most 

abundant in BAL, in peritumoural tissue two phyla were equally abundant, while 

Proteobacteria dominated non-malignant tissue and tumour (Fig. 2A,B). Phyla Bacteroidetes 

and Actinobacteria were found in lower abundance in all lung samples (~10% each). 

Interestingly, while high abundance of phylum Firmicutes in saliva was almost entirely due to 

members of the class Bacilli, in lung samples it is due to class Clostridia, introducing one of 

fundamental differences between these two microbiota. Moreover, Clostridia was the most 

abundant class in all lung samples except the tumour, where it shared the highest abundance 

with the class Alphaproteobacteria. Compared to saliva, the whole phylum Proteobacteria was 

more developed in lung samples, containing additional large class of Alphaproteobacteria, but 

lacking Epsilonproteobacteria (detected in saliva).  

On the genus level, there was no extensive prevalence by one genus as seen in saliva, but rather 

a group of representatives with different taxonomic origin (Fig. 2A, C). In the three lung tissues, 

Pseudomonas, Clostridium, Kocuria, Acinetobacter and Sphingomonas were the five most 

abundant genera, but in BAL, those were Pseudomonas, Blautia, Streptococcus, 

Capnocytophaga and Acinetobacter (Fig. 2C). Interestingly, two highly abundant genera in 

tissues, Clostridium (~15%) and Kocuria (~5%) were found in very low abundance in BAL. 

Inverse was seen for Capnocytophaga, that seemed to be a BAL-related genus (~5%), with a 

very low presence in saliva and absence in tissue samples. Furtherly, BAL was the only lung 

sample that had higher abundance of so-called supraglottic taxa, as Streptococcus, Prevotella 

and Veillonella, compared to other tissue samples. The abundance was also slightly higher in 

peritumoural tissue, supporting potentially increased similarity between BAL and peritumoural 

tissue seen in beta diversity (Fig. 1A). 

 Whole phyla and classes significantly different between lung 

samples and saliva, but also between BAL and tissues 

Figure 3A shows difference in taxa abundance between samples. Taxa with significant 

difference are coloured, with a colour scale representing log2 fold change in abundance between 

compared sample pair. 
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Figure 3 Differential abundance between lung and salivary microbiota and their core 

composition. a Coloured nodes and branches in each tree represent the taxa with significantly different 

abundance between two compared microbiota. The colour intensity is proportional to log2-fold change 

in abundance in the favour of the sample with the same colour. Taxa names are shown in the common 

legend tree below comparisons. Statistical significance was assessed by zero-inflated general linear 

model using Wald’s test (DESeq), with p-value threshold of α ≤ 0.05 after BH correction. b Core 

microbiota determined as OTUs present in 100% of each sample for one sample type. The colour 

represents relative abundance on transformed log4 scale. c Average value of sum of abundances of the 

core OTUs and of other OTUs per each subject in each sample types. 

The first row (Fig. 3A) shows taxa with significantly different abundance between saliva and 

each of the four lung samples. Compared to saliva, all lung samples had significantly higher 

abundance in whole classes of Alphaproteobacteria, Deltaproteobacteria, Cytophagia, 
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Sphingobacteriia, [Saprospirae], and Acidimicrobiia, but also in whole phyla such as 

Cyanobacteria, Acidobacteria, Nitrospirae, Verrucomicrobia and Planctomycetes (latter not 

seen for BAL). Similarly, phyla Synergistetes, Spirochaetes, Fusobacteria and TM7 (not in 

BAL), classes Epsilonproteobacteria and Erysipelotrichi were significantly more abundant in 

saliva than in any of lung samples. On the other hand, multiple descending members of several 

higher taxa were not strictly more present in only one sample type. This particularly concerned 

members in the classes from the principal phyla Proteobacteria, Firmicutes, Bacteroidetes and 

Actinobacteria. Significantly more abundant in saliva samples were orders Neisseriales 

(Betaproteobacteria), Pasteurellales (Gammaproteobacteria, contains Haemophilus), 

Lactobacillales (Bacilli, contains Streptococcus) and families Veillonellaceae (Clostridia), 

Flavobacteriaceae (Flavobacteriia), Prevotellaceae, Porphyromonadaceae (both 

Bacteroidia), Actinomycetaceae and Corynebacteriaceae (both Actinobacteria). Conversely, 

from the same higher taxa, significantly more abundant in lung samples were orders 

Burkholderiales (Betaproteobacteria), Pseudomonadales, Legionellales, Xanthomonadales, 

Enterobacteriales (both Gammaproteobacteria), Bacillales, Turicibacteraceae (both Bacilli), 

and families Ruminococcaceae, Lachnospiraceae (both Clostridia), Bacteroidaceae 

(Bacteroidia), Propionibacteriaceae, Dietziaceae and Bogorellaceae (Actinobacteria). 

Second row in Figure 3A shows significant difference in abundance between BAL and the three 

lung tissues. With a few pair-reserved exceptions, pattern was highly similar between 

comparisons. Also, it was visible that most of the differences indicated significantly increased 

abundance in BAL compared to tissues. In BAL, significantly higher abundance was seen in 

phylum Fusobacteria, classes Clostridia and Bacilli (genera Streptococcus, Veillonella, 

Roseburia, Oribacterium, Phascolarctobacterium, Parvimonas, and Megasphera), orders 

Pasteurellales (Haemophilus) and Desulfovibrionales, families Actynomicetaceae, 

Flavobacteriaceae (Capnocytophaga), and genera Atopobium, Porphyromonas, Neisseria, and 

Rothia. Adversely, the three tissue microbiota had only a few taxa with significantly higher 

abundance compared to BAL. Those were the whole phylum Acidobacteria, families 

Acetobacteraceae and Clostridiaceae (genus Clostridium), and genus Perlucidibaca.  

However, there were differences in taxa that could be observed only between certain BAL-

tissue pairs. Interestingly, the highest number of individual differences was seen in comparison 

between BAL and tumour microbiota. Here, only genus Coprococcus was significantly more 

abundant in BAL, while genus Kocuria, orders Bdellovibrionales, Myxococcales, Rickettsiales, 

and class [Saprospirae] were all significantly more abundant in tumour. Considering non-
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malignant tissue microbiota, only family Dietziaceae was more abundant, while orders 

Bifidobacteriales and Erysipelotrichales were significantly more abundant in BAL. 

Interestingly, tumour and non-malignant tissue had important number of similar differences in 

comparison to BAL. While BAL had higher abundance of genera Blautia, Granulicatella, 

Ruminococcus, Oscillospira, Prevotella, and Mezorhizobium, more abundant in both tumour 

and non-malignant tissue were phylum Cyanobacteria and family [Weeksellaceae]. On the 

contrary, peritumoural tissue did not share any of theses differences with BAL as did the other 

two tissues. In individual differences, genus Kocuria was the only significantly more abundant 

in peritumoural tissue, and inversely, only Staphylococcus was more abundant in BAL. 

There were, however, no significant differences between three tissues.  

 Core OTUs in lung samples mostly members of phylum 

Proteobacteria 

Core microbiota was determined as OTUs detected in 100% of samples in each group (Fig. 3B). 

The highest number of core OTUs was observed in saliva, with the total of 36. Two-fold less 

was seen in non-malignant tissue (16), peritumoural tissue (14) and tumour (14), and four-fold 

less in BAL (9). 75% of core OTUs in saliva belonged to phylum Firmicutes, with as high as 

17/20 OTUs from genus Streptococcus, while additional 15% was from the phylum 

Actinobacteria (especially genus Actinomyces). In lung samples, 70% of the core OTUs 

belonged to the phylum Proteobacteria (1/3 from class Alphaproteobacteria) and other 30% to 

Firmicutes. Core OTUs were mostly shared between different lung sample types, especially 

between tissues. OTUs corresponding to genus Variovorax and unclassified members of 

families Bradyrhyzobiaceae, Burkholderiaceae, and Bacillaceae were detected in all four lung 

microbiota, while OTUs for genera Pseudomonas, Clostridium and Propionibacterium were 

only common in all lung tissue microbiota. Even though 30% of lung core OTUs belonged to 

Firmicutes, only one OTU corresponded to genus Streptococcus and was a part of BAL core 

microbiota. This was also the only core OTU shared between saliva and lung samples, i.e. only 

BAL, which were otherwise clearly distinct. Within core microbiota (Fig. 3B), certain OTUs 

were uniquely associated with species, such as OTUs for Rothia mucilaginosa, 

Propionibacterium acnes, Staphylococcus epidermidis, Prevotella melaninogenica, 

Variovorax paradoxus, Veillonella parvula (OTU 518743) and Veillonella dispar (other two 

OTUs). In average (Fig. 3C), core microbiota represented 62% of relative abundance in saliva, 
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against only 22% seen in BAL. In the tissues, the core microbiota represented around half of 

the total abundance, ranging from 42% to 50% of abundance. 

 Microbiota in lower lobes with higher abundance of Firmicutes and 

the diversity of peritumoural tissue as the most influenced by 

location 

Next, we examined whether there is a significant difference between lung microbiota associated 

to the tumour lobe relative to its location. Two groups have been considered: upper lobes (UL) 

vs. middle/lower lobes (LL). Interestingly, only peritumoural tissue microbiota showed 

significantly different beta diversity between two locations in both wUF and uwUF (Fig. 4A, 

B). Moreover, difference in beta diversity between UL peritumoural tissue and BAL was not 

significant, unlike the one in LL (in UL: wUF p = 0.17, uwUF p = 0.073, vs. in LL: wUF p = 

0.004, uwUF p = 0.002). To confirm this observation, for comparison we selected exclusively 

distances between each two samples originating from the same patient (Fig. 4D, E), i.e. paired 

distances. Indeed, in UL peritumoural microbiota was significantly more similar to both saliva 

and BAL, manifested as shorter distances compared to ones in LL (Fig. 4D,E: “distance to 

SALIVA”, “distance to BAL”). We next looked at the paired distances between the three tissue 

samples (Fig. 4D,E: “distance to LUNG.DP”). The paired distance between non-malignant 

tissue and the other two tissues, respectively, was inverse depending on the lobe location. In 

UL, there was an increased similarity between non-malignant tissue and tumour, and in LL, 

between non-malignant and peritumoural tissue. However, paired distance between 

peritumoural tissue and tumour remained unchanged (Fig. 4D,E: “distance to LUNG.PT”), 

suggesting a potentially balanced change or exchange of the microbiota maintaining the 

distance (and the difference) on the same level. This was inverse to observed by beta diversity 

including the totality of distances between tissue samples (not only between paired samples), 

showing that peritumoural tissue and tumour are compositionally different in the UL, 

significant for both wUF and uwUF (Fig. 4C). In the LL however, the difference was not 

significant (p = 0.077, R2 = 0.173). So, based on overall microbiota composition, peritumoural 

tissue microbiota was significantly more similar to BAL microbiota in UL, but to tumour 

microbiota in LL. 
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Figure 4 Diversity and predominant taxa in lung samples from upper and lower tumour 

lobes. Beta diversity found significantly different between peritumoural tissue from upper and lower 

lobes based on both a weighted (wUF) and b unweighted (uwUF) UniFrac distances. c Significantly 

different beta diversity based on wUF between peritumoural tissue and tumour in the upper lobe. d 

Weighted and e unweighted UF distances between samples coming from the same patient (i.e. paired 

distances) compared between upper and lower tumour lobes. The facet name represents the referent 

sample (e.g. “distance to BAL”) to which were calculated the distances noted on x-axis (e.g. “from 

LUNG.T”). Smaller distance indicates increased similarity. Alpha diversity for four lung samples 

between upper and lower tumour lobe assessed by f Faith’s phylogenetic diversity, g number of observed 

OTUs, and h Shannon diversity. i Most abundant phyla in each of the microbiota samples if the tumour 

is found in upper or lower lobes. Significance of difference in beta diversity was assessed with adonis 

function (vegan, 999 permutations). Statistical significance in alpha diversity and paired distances was 

assessed with Kruskal-Wallis followed by, where appropriate, Man-Whitney U test with BH correction 
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for multiple comparison. *: p ≤ 0.05, **: p ≤ 0.01. BAL - bronchoalveolar lavage fluid, LUNG.DP - 

non-malignant distal piece, LUNG.PT - peritumoural tissue, LUNG.T - tumour. 

Both BAL and peritumoural tissue varied in alpha diversity depending on lobe location, unlike 

non-malignant tissue and tumour. BAL in LL had significantly lower phylogenetic diversity 

and number of observed OTUs (Fig. 4F,G) compared to UL BAL, and a tendency seen for 

Shannon diversity (Fig. 4H). Inversely, LL peritumoural tissue had significantly increased 

Shannon diversity (Fig. 4H), with tendency in phylogenetic diversity and number of OTUs. 

In LL, there was a marked decrease in abundance of Proteobacteria and increase in phylum 

Firmicutes in each of the lung samples (Fig. 4I). Therefore, in LL tumour and non-malignant 

tissue had equal abundances in Proteobacteria and Firmicutes (~35%), while BAL and 

peritumoural tissue were both dominated by Firmicutes (56% and 45%, respectively). 

 Actinobacteria and Flavobacteriia show inverse abundance 

between BAL and extratumoural tissues depending on the lobe 

location, while tumour microbiota remains unchanged 

Tumour location in UL or LL significantly influenced the microbial abundance in each of the 

analysed sample types, but not in the same manner (Fig. 5). As suggested by diversity results, 

microbiota of the peritumoural tissue seemed to be the most influenced by the lobe location. 

The changes were limited to members of three major phyla: Firmicutes, Actinobacteria and 

Bacteroidetes, and candidate phylum TM7. More precisely, in UL peritumoural tissue more 

abundant were class Erysipelotrichi and families Gemellaceae, Streptococcaceae, 

Ruminococcaceae, Lachnospiraceae and Veillonellaceae (all phylum Firmicutes), phylum 

TM7, classes Bacteroidia (phylum Bacteroidetes) and families Actinomycetaceae and 

Bifidobacteriaceae (phylum Actinobacteria). This abundance pattern was very similar to 

pattern of initial comparison between BAL and each of lung tissue samples (Fig. 2A). This 

could add to the results of beta diversity suggesting that UL peritumoural tissue was more 

similar to BAL then it was in LL. On the other hand, LL peritumoural tissue was enriched with 

three classes from phylum Bacteroidetes (Flavobacteriia, Sphingobacteriia and Cytophagia), 

and with families Clostridiaceae (genus Clostridium) and Micrococcaceae (genus Kocuria) 

from phylum Firmicutes and Actinobacteria, respectively. 
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Figure 5 Differential abundance between upper and lower tumour lobes in salivary and 

lung microbiota. Each tree represents taxa with significantly different abundance relative to sample’s 

origin (for lung) in the upper or lower tumour lobe. For saliva, the comparison shows the significant 

difference in salivary microbiota between patients with tumour either in upper or lower lobe. Coloured 

nodes and branches represent the taxa with significantly different abundance and the intensity is 

proportional to log2-fold change in abundance in the favour of the lobe noted with the same colour. 

Statistical significance was assessed by zero-inflated general linear model using Wald’s test (DESeq), 
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with p-value threshold of α ≤ 0.05 after BH correction. Bar chart shows the relative abundance of taxa 

noted in the taxonomical trees. BAL - bronchoalveolar lavage fluid, LUNG.DP - non-malignant distal 

piece, LUNG.PT - peritumoural tissue, LUNG.T - tumour. 

Compared to number of affected taxa in peritumoural tissue, both BAL and non-malignant 

tissue were less influenced by the lobe location, while tumour seemed to be almost entirely 

unaffected (Fig. 5). Moreover, phylum Firmicutes and class Bacteroidia, harbouring the most 

differences in peritumoural tissue, were not found significantly different in either non-

malignant tissue or BAL. Instead, in UL non-malignant tissue was enriched with the phylum 

Fusobacteria and only a few other lower taxa without involvement of the whole clade (order 

Gemellales, families Actinomycetaceae and Pseudomonadaceae). Interestingly, in both non-

malignant and peritumoural tissue phylum Actinobacteria (genus Kocuria) and class 

Flavobacteriia (genus Chryseobacterium) were significantly more abundant in LL, while in 

BAL these same two taxonomic groups were significantly more abundant in UL, opposite from 

the two issues. As seen from the relative abundance (Fig. 4I, Fig. 5), rather than moving from 

the common starting point, the abundances were inverse between samples (e.g. Actinobacteria 

in UL for BAL vs tissues was 19.06 vs ~5%, and in LL was 4% vs ~13%, respectively). Further, 

in UL BAL, genus Neisseria and family Sinobacteraceae (both Proteobacteria) were more 

abundant along with the mentioned two clades of Actinobacteria and Flavobacteriia. In LL 

BAL, more abundant taxa were more dispersed between taxonomic groups and included the 

whole phylum Cyanobacteria, several taxa from the phylum Proteobacteria (orders 

Rhodospirillales, Myxococcales), and two genera with their orders, Staphylococcocus (phylum 

Firmicutes) and Georgenia (phylum Actinobacteria). 

Even though importance was given to log2 fold change of abundance, certain taxa held however 

high impact on the overall composition of the samples due to their higher relative abundance 

(Fig. 5, Additional file: Fig. 1). This was particularly true for three genera, Clostridium, Kocuria 

and Pseudomonas. In peritumoural tissue, genus Clostridium (phylum Firmicutes) ranged from 

3% in UL vs 38% in LL, in  non-malignant tissue genus Pseudomonas (Gammaproteobacteria) 

represented 18% in UL vs 2% in LL lobes, and genus Kocuria (phylum Actinobacteria) ranged 

from 0.5% and 0.2% in UL to 12% and 15% in LL in peritumoural and non-malignant tissue, 

respectively.  

Finally, saliva samples, as the extrapulmonary sample with no direct physical connection to the 

tumour location as lung microbiota, also showed significantly different abundance profile 

relative to tumour lobe location.  If tumours were found in LL, saliva was significantly enriched 
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in class Bacilli and families Enterobacteriaceae, Moraxellaceae (both Gammaproteobacteria) 

and Propionibacteriaceae (Actinobacteria). Curiously, no taxa were detected as significantly 

more abundant if tumour was found in UL. 

 Stratification between lobes defines differences between BAL and 

tissues and confirms similarity of BAL and peritumoural tissue in 

upper lobes 

Stratification of samples by lobe location also revealed or defined differences between samples 

(Fig. 6). Between saliva and the four lung samples there was little change, since these samples 

were initially already very different (Fig. 3). Only in UL, there was no more difference in 

phylum Nitrospira, and orders Neisseriales and Haemophilus between BAL and saliva 

(difference significant for all other saliva vs lung comparisons in both lobes, including LL 

BAL). Also, the individual difference between lobes (Fig. 5, Fig. 4I) resulted in significantly 

higher abundance of Actinobacteria in UL BAL, but inversely, significantly lower abundance 

of Actinobacteria in LL BAL compared to saliva (Fig. 6). Comparing saliva and the three lung 

tissues, only taxa Spirochaetes, Sphingobacteria and TM7 showed changes relative to the lobe 

location. Phylum Spirochaetes was significantly more abundant in saliva only when compared 

to UL non-malignant and UL peritumoural tissue (otherwise, no significant difference). Class 

Sphingobacteria was significantly more abundant in all lung tissues when compared to saliva, 

except in UL peritumoural tissue. This was interesting because neither UL nor LL BAL showed 

this difference, once again adding to similarity of BAL and peritumoural tissue in UL. Lastly, 

TM7 was significantly more abundant in both UL and LL non-malignant tissue compared to 

saliva. But in UL, TM7 was also more abundant in tumour, while in LL this was true for 

peritumoural tissue (other comparisons no significant difference). Despite these changes and 

stratification by location, saliva was still predominantly abundant in Firmicutes, Fusobacteria, 

Epsilonproteobacteria, Erysipelotrichi Prevotella and Neisseria clade, while lung samples 

dominated in abundance of Proteobacteria, Acidobacteria, Nitrospirae, Verrucomicrobia, 

Cyanobacteria, and the rest of Bacteroidetes. 
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Figure 6 Comparison of abundance between salivary and lung microbiota relative to 

tumour lobe location. Two parts of the figure represent comparison in abundance between samples 

linked to upper (U) lobes in the upper part of the figure and to lower (L) lobes in the lower part of the 

figure. Coloured nodes and branches represent taxa with significantly different abundance between the 

two compared samples. The colour intensity is proportional to log2-fold change in abundance in the 

favour of the sample with the same colour. Statistical significance was assessed by zero-inflated general 

linear model using Wald’s test (DESeq), with p-value threshold of α ≤ 0.05 after BH correction. BAL - 

bronchoalveolar lavage fluid, L – lower lobe, LUNG.DP - non-malignant distal piece, LUNG.PT - 

peritumoural tissue, LUNG.T – tumour, U – upper lobe. 
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Unlike the comparison between saliva and lung samples, the aspect of lobe location induced 

much more developed and varying differences between BAL and tissues. Following the 

individual inverse difference observed in Fig. 5, in UL, Flavobacteriia and Actinobacteria were 

significantly more abundant in BAL, while in LL they were more abundant in the tissues. Also, 

the two phyla, Nitrospirae and Cyanobacteria (which between UL BAL and saliva showed no 

difference) were consequently more abundant in tissues only in UL, while there was no 

difference with BAL in LL. Interestingly, differences in phyla TM7 and Acidobacteria came in 

pair. The significantly increased abundance of TM7 in BAL was accompanied with increased 

abundances of Acidobacteria in the tissues, otherwise no difference was seen in either of them. 

In UL, this was seen in tumour, while in LL this was seen for peritumoural and non-malignant 

tissue. Observing the trees, it was visible that the highest number of differences was found 

between UL tumour and BAL, including large portion of detected taxa within Proteobacteria, 

especially Alphaproteobacteria, as more abundant in tumour. Even though other comparisons 

included a few members of Proteobacteria, the count was not as important as in UL tumour. 

Further, differences between UL BAL and extratumoural tissues were quite similar, except of 

the involvement of Firmicutes in peritumoural tissue. While in UL differences were scarce, in 

LL the pattern is as the one seen in comparison to other tissues. This is in accordance to Fig. 5, 

where significantly higher abundance of Firmicutes was detected in UL peritumoural tissue 

compered to LL. This could be, therefore, one of the major factors behind increased similarity 

between BAL and peritumoural tissue in UL. Detailed individual differences between BAL and 

tissues can be found in Additional file 1: “Additional explanation of differences between lung 

samples”. 

Finally, several significant differences were noted between tissues (Fig. 6). They are, however, 

few numbered. Curiously, in both locations, more difference was found between tumour and 

peritumoural tissue, than between tumour and non-malignant tissue (none and one in UL and 

LL, respectively). Differences were also found between two extratumoural tissues. 

Interestingly, in each location, several detected differences between tissues addressed same 

taxa. Therefore, in UL, class Cytophagia, family Exiguobacteraceae and Clostridiaceae were 

the least abundant in peritumoural tissue compared to other two tissues, while in LL family 

Microbacteriaceae had significantly lowest abundance in tumour. In overall, differences were 

dispersed within four most abundant phyla and considered mostly endpoint taxa. Also, three 

tissues were more similar in LL than in UL. Detailed individual differences between the tissues 
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can be found in Additional file 1: “Additional explanation of differences between lung 

samples”. 

4 Discussion 

Following the last advancement on the interaction between gut microbiota, immune system and 

the tumour environment [8–11], there has been a growing interest in studying this concept in 

other physiological environments involving extraintestinal tumours. However, before exploring 

the effect of the gut microbiota, there has been an increasing necessity to investigate the effect 

of the local microbiota on the tumour as well [39]. Despite the emerging number of studies on 

the lung microbiota in different malignancies [14,40–43], its involvement in lung cancer is in 

its promising beginnings [23,27,29,30,44]. However, for the moment there is still no study 

considering the ground difference between different lung samples and their microbiota, while 

it is suggested that those could harbour microbiota with varying characteristics [18], and 

therefore, have diverging interactions with local immunity and tumour. 

This study is, to our knowledge, the first to characterise the lung microbiota originating from 

four different lung samples (BAL, non-malignant tissue, peritumoural tissue and tumour), 

accompanied with the characterisation of salivary microbiota in NSCLC patients. We 

hypothesised that samples’ nature, “architecture”, physiological functions and environment, 

will influence characteristics of associated lung microbiota. Therefore, BAL should represent 

“planktonic” bacterial population found within the bronchial lumen or associated to biofilms or 

mucus [45], sampled along due the hydrodynamic force of the instilled liquid. Non-malignant 

tissue from the same lobe but taken on the opposite side from the tumour should represent a 

sample with a normal lung architecture, with well-defined small alveolar spaces and single-cell 

epithelial layer. In majority, it should harbour the “normal” biofilm, mucus and cell-associated 

lung microbiota. On the contrary, tumour represents a tissue with disrupted architecture, 

varying in form and obstruction degree relative to its type and grade [2]. Tissue modelling could 

also involve overproduction of the mucus as seen in certain subtypes of adenocarcinoma [46], 

but also different reaction of the immune system [47]. Finally, peritumoural tissue represents a 

non-malignant tissue in the direct contact with the tumour, separated as based on different 

histological properties. In literature it is addressed as tumour microenvironment and harbours 

different roles in stimulation or suppression of tumour metabolism [48]. Therefore, we 

presumed that its characteristics would be different both from the distal non-malignant tissue 

and the tumour. Except the number of different lung samples, the particularity of this study is 
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also in the way of obtaining BAL. It was obtained directly on the excised lobe containing 

tumour without using the bronchoscope, to minimise contamination risk of upper airways and 

increase the precision in characterisation of “true” BAL microbiota in the tumour proximity. 

We reported that the four lung samples significantly clustered versus oral microbiota based on 

beta diversity, a confirmation of a previous result in healthy subjects that lung microbiota is 

distinct from other communities [29]. Salivary microbiota had several lower alpha diversity 

metrics compared to lung microbiota, as well as high dominance of genus Streptococcus and 

overall phylum Firmicutes. Along with its homogenous core microbiota (again prevalence of 

Streptococcus OTUs) that represented almost ¾ of total relative abundance per patient, this 

indicated its inter-subject stability and lower complexity compared to the one of the lung 

samples. In addition, the significant difference in abundance including the majority of the taxa 

detected in samples clearly placed the four lung samples versus oral microbiota. We identified 

typically oral taxonomic groups more abundant in saliva in all comparisons, such as 

Fusobacteria, Spirochaetes, Synergistetes, Erysipelotrichi, Epsilonproteobacteria, Bacilli and 

Neisseriales, most of them in concordance with previous literature [49,50]. On the other hand, 

phyla Acidobacteria, Cyanobacteria, Nitrospira, Verrucomicrobia and Planctomycetes were 

detected as strictly lung-associated (detected in each lung sample) with no representatives in 

saliva. 

Next, we showed that BAL microbiota, even though undoubtedly belonging to lung microbiota 

cluster, had significantly different features from tissues. First, multidimensional representation 

of the beta diversity placed BAL samples on the side of the lung cluster towards salivary 

microbiota. Even though presence of more abundant salivary taxa was very limited in both 

tissue samples and BAL, Streptococcus, Prevotella and Veillonella (the three most abundant 

genera in saliva) were found elevated in BAL compared to tissue samples. It was previously 

suggested that these and other typically oral bacteria are found in low abundance in healthy 

lungs, due to their constant elimination [51]. Since BAL represents microbiota of the bronchial 

lumen, which undergoes constant influx of upper airways particles by respiration and is also 

the first “space” influenced by microaspiration [52], those could explain increased presence of 

these supraglottic taxa in BAL compared to the lung tissues. The same reasoning could explain 

the pattern of significant differences between samples. Indeed, taxonomic groups significantly 

more abundant in saliva when compared to lung microbiota highly corresponded to groups 

significantly more abundant in BAL when compared to lung tissues. Second, lung samples had 

Proteobacteria and Firmicutes as the two most abundant phyla, however with different ratios. 
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While BAL was dominated by Firmicutes, almost twice as abundant as Proteobacteria, lung 

tissues were dominated by Proteobacteria (as previously reported [29]), or at best, had equal 

abundance of the two (peritumoural tissue). Here it is however important to note that the high 

abundance of phylum Firmicutes in lung samples was due to members of the class Clostridia, 

unlike in saliva, where it was due to highly abundant class Bacilli. This emphasises one of the 

essential differences between oral and lung microbiota often omitted by selective presentation 

of only phylum or genus level. Third feature was that BAL did not differentiate from lung 

tissues only by difference in taxa abundance, but also by the presence of BAL-specific bacteria, 

such as genus Capnocytophaga, or absence of tissue specific-bacteria, such as genus Kocuria 

or Clostridium. The two latter genera were, however, detected in BAL, but with relative 

abundance 175-fold and 520-fold lower (~0.03%), respectively, than in the tissues. This 

detection is possibly due to their presence in host’s cells during the DNA extraction, since 

cellular BAL was used for BAL analysis [45]. Lastly, no differences in alpha diversity metrics 

were detected between four lung samples, suggesting two different but equally “rich” lung 

microbiota populations. All this supports the hypothesis that BAL indeed represents a unique 

lung microbiota in lung cancer and that concerns of diverging results due to different samples 

have been justified [18]. 

Conversely to our hypothesis, lung tissues “as-they-are” did not show significant differences in 

abundance or diversity. Although increased diversity of non-malignant tissue versus tumour 

has been previously suggested [29], we did not find any difference. This could be due to the 

fact that our study group was more balanced in patients with less and more advanced tumour 

stages. In referenced study, the majority of subjects had tumours in stages I and II, manifesting 

decreased diversity compared to higher stages according to authors.  

We also reported that the existence of the core OTUs and that these were mostly shared between 

lung tissues and partially with BAL, consisting in the majority of the members of 

Proteobacteria. Interestingly, one of the core OTUs was uniquely associated to species 

Variovorax paradoxus, ambiguous aerobic organism found in many niches, also in oral 

microbiome, and known for its potent biofilm creation [53,54]. It was detected as the core OTU 

in all four lung samples, while conversely, it was not found in saliva (where it was originally 

detected). This could suggest its potential role in biofilm creation in lower airways and would 

be an interest topic for future verification and investigation of potential role in pathogenesis of 

lung cancer [55]. 
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Even though still under debate, several studies connected lower lobe tumours with worse 

prognostics [5,56,57]. Therefore, we examined the characteristics of the lung, but also salivary 

microbiota, if the tumour was found in upper or lower lobes. Indeed, we noted several changes 

in alpha and beta diversity but they were focused on changes in BAL and peritumoural tissue 

(with lower and higher alpha diversity, respectively, in LL compared to UL). We reported that 

in all four lung samples, lower lobes had decreased abundance of phylum Proteobacteria into 

favour of Firmicutes. Increased abundance of phylum Firmicutes was previously seen in BAL 

of LC patients compared to patients with benign-mass lesions [44], but also in patients with 

COPD [18]. In our study, 62% of patients in the LL were diagnosed with Stage III tumours, 

against 30% in the UL. Even though this stays a small study, this finding supports that “shift” 

from Proteobacteria to Firmicutes might have a role in lung cancer progression. 

We showed that location significantly influenced the abundance of two clades, Actinobacteria 

and Flavobacteriia, in the inverse manner between BAL and extratumoural tissues. While both 

are more abundant in UL BAL, their abundance in UL extratumoural tissues was 2-10 fold 

lower, with exact inverse situation in LL. Both genus Chryseobacterium sp. (Flavobacteriia) 

and Kocuria rhizophila (Actinobacteria) detected as more abundant in LL tissues have been 

previously reported as uncommon human pathogens [58,59]. However, their increased presence 

selectively in LL tissues and their important overall abundance (~4% and 12%, respectively) 

suggest that there might be an important communication between different lung environments 

depending on local conditions or malignancy status, influencing preferential bacterial growth 

in one type of considered environment. 

Interestingly, we found that salivary microbiota was also susceptible to the tumour lobe 

location. All differences considered taxa elevated in case of LL tumours and included families 

previously associated with bacterial exacerbations and infections (Moraxellaceae, members of 

Bacilli as Streptococcus, Staphylococcus, etc.) [60] or pulmonary complications 

(Propionibacteriaceae, Enterococcaceae)[61–63]. However, these taxa were not found 

elevated in LL lung microbiota. This, however, does not exclude their implication in malignant 

changes or being its consequence, and will be interesting topic for further consideration. 

Finally, we found that peritumoural tissue showed higher similarity to BAL in UL both in beta 

diversity and in abundance, while in LL it shared characteristics with other tissue samples. 

Moreover, we found that alpha diversity of peritumoural tissue increased in LL to the level of 

other tissues, while the ones of BAL decreased. Peritumoural tissue is the tissue in the direct 

contact and interaction with the tumour. In the history of cancer research, the role of 
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extracellular matrix (ECM) surrounding tumour has been extensively studied [64]. Tumour 

cells are found to be able to directly influence the rearranging of connective units (such as 

collagen) and degradation of ECM to create tumour-permissive environment and enabling 

metastatic progression (Altinay 2016) [65,66]. In our case, it is possible that the observed 

changes in peritumoural tissue composition reflect certain remodelling of ECM, which could 

therefore be either more or less permissive for microbial attachment. 

Curiously, of all samples, tumour was almost completely uninfluenced by location. Rather than 

from the outside, it is possible that intratumoural conditions, such as oxygen availability, 

density, necrosis and other factors  [67,68] independent of the external conditions are more 

likely to be the influencing ones. This is, however, a matter for further research. 

The major strongpoint of this study is the analysis of the microbiota from four different lung 

samples covering the major physiologically different environments in NSCLC patient that has 

not been characterised previously, with the addition of saliva as the sample of oral microbiota. 

The representation using taxonomical trees also gives better insight into sample’s composition, 

especially important in characterisation of this type of still scarcely defined microbiota. 

Moreover, this study reports higher numbers of detected OTUs as well as diversity indexes than 

previously suggested for saliva, non-malignant tissue, tumour and BAL [26,29,30]. The reason 

could be due to the higher quality of obtained samples (only 6 from 85 samples lower than 1000 

reads) and direct sampling of the BAL in the excised lobe. Also, the observed study group and 

stratification by tumour lobe location were well balanced in various clinical and demographic 

factors, minimising result’s bias.  

The major drawback of this study is a low number of subjects, due to strict inclusion criteria 

for the overall study. The limiting factor was also the decision to obtain BAL directly from the 

excised lobe to improve the precision in characterisation, but disabling the possibility of 

sampling the complementary non-tumour lobe or to perform similar in controls due to 

difference in technique. 

5 Conclusion 

To our knowledge, this is the first trial that studied oral and lung microbiota from both BAL 

and three different tissue samples in 18 NSCLC patients. We confirmed that oral and lung 

microbiota are significantly different both in diversity and in taxonomy. However, we showed 

that BAL indeed represents a unique microbiota compared to three different tissue microbiota 
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(from non-malignant, peritumoural and tumour tissue). We found that location of the tumour in 

upper or lower lobes influenced both oral, BAL and extratumoural microbiota with detection 

of Firmicutes as dominating phylum, but surprisingly, not the one of the tumour. Moreover, 

few differences were found between tissues, suggesting that these are not conditioned by lobe 

location and turning attention to other factors for future consideration, such as tumour type, 

aggressiveness or metastatic changes. Finally, the most intensive changes in microbiota relative 

to location were seen in peritumoural tissue, possibly reflecting changes in tumoural ECM. Our 

findings are the first to give essential characteristics and differences within lung microbiota of 

NSCLC and their susceptibility to tumour lobe location, proposing several possible 

implications of microbiota in pathology of lung cancer and suggesting potential research 

directions for better understanding of the lung microbiota-cancer interaction. 
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Additional explanation of differences between lung samples (Main manuscript: 

Fig. 6) 

Except mentioned characteristics, non-malignant tissue and BAL shared similar differences 

between locations, unlike other two tissues. Peritumoural tissue and BAL were more different 

in lower (LL) than in upper lobes (UL), seen by significantly increased abundance of members 

of class Bacteroidia, Coriobacteriia, overall phylum Firmicutes and orders Pasteurellales, 

Bifidobacteriales in LL BAL than in LL peritumoural tissue, not seen in UL. On the other hand, 

tumour and BAL were more different in UL and represented the richest comparison tree in 

tissue vs. BAL category (Main manuscript: Fig. 6). Classes Alphaproteobacteria, Cytophagia, 

[Saprospirae] and orders Myxococcales, Bdelovibrionales and Turicibacterales were 

significantly more abundant in UL tumour than in BAL, and no difference was seen in LL. On 

the contrary, phylum Fusobacteria and class Gammaproteobacteria were both more abundant 

in UL BAL than in tumour (no diff. in LL).  

Additionally, genera Acinetobacter and Dietzia were more abundant in non-malignant tissue 

than in peritumoural tissue, while no differences were detected between non-malignant tissue 

and tumour in UL. Conversely, several taxa were different between UL peritumoural tissue and 

tumour, including family Lachnospiraceae and genera Actinomyces, Dialister and Prevotella 

more abundant and Sediminibacterium, Phenylobacterium and family Myxococcales less 

abundant in UL peritumoural tissue. In LL, the differences were very few. Genus 

Bifidobacterium was significantly less abundant in LL peritumoural tissue in the three tissues 

and family Microbacteriaceae in tumour. In addition, class Erysipelotrichi was significantly 

more abundant in LL tumour than in LL peritumoural tissue. 
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Inverse abundance pattern of tumour and extratumoural lung microbiota 

between non-small cell lung cancer patients with or without metastatic 

lymph nodes: a cross-sectional clinical study 

Rea Bingula1, Edith Filaire1,4, Jérémie Talvas1, Jean-Yves Berthon4, Marie-Paule Vasson1,6, 

Annick Bernalier-Donadille5, Nina Radosevic-Robin3, Marc Filaire1,2 

 Submitted to BMC Microbiome the 25th October 2019 

Presence of metastatic lymph nodes (LN) is one of the most important negative prognostic 

markers in NSCLC, characterised by significantly shorter overall survival and increased 

recidivism. We investigated if this important feature for patient’s outcome is significantly 

associated to local lung microbiota composition, based on four different samples (BAL, non-

malignant, peritumoural and tumour tissue). Further, we examined if these two endpoints 

(presence or absence of the lymph node metastasis) influence local immunity by investigating 

the composition of the tumour immune infiltrate and Th cell phenotypes in BAL. Finally, we 

investigated if this immune response is associated to different lung microbiota. 

We show that in the presence of metastatic lymph nodes all lung microbiota samples have 

increased abundance of the phylum Firmicutes, while diversity metrics show lower values for 

the two extratumoural tissue microbiota. We identify 31 genera with inverse patterns in the 

abundance between tumour and extratumoural tissues, and between patients with and without 

metastatic LN. Moreover, we show that this inversion is closely related to bacterial respiratory 

profile. More precisely, identified anaerobic genera are significantly more abundant within the 

tumours with metastatic lymph nodes, while aerobic bacteria are more abundant in the 

extratumoural tissues. However, exactly inverse is observed for these same genera in patients 

without metastatic LN. Therefore, we propose that bacteria “migrate” between the tissues 

towards the more favourable growth conditions, since tumour environment drastically changes 

with its progression (increased hypoxia, necrosis, lactate production, lower pH). Moreover, we 

identify several potential biomarkers in each tissue that might facilitate or improve detection of 

the LN metastases without imposing LN biopsy. Finally, we show that BAL microbiota does 

not change significantly between these endpoints, but that it is the only one with significant 

association with either protumoural or antitumoural immune markers in BAL and in the tumour.  
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Abstract 

Background. Lung cancer is the leading cause of death by cancer worldwide. In non-small cell 

lung cancer (NSCLC) as the most common type, metastatic changes on lymph nodes (LN) are 

associated with shorter survival and worse prognosis. Unlike in other cancers, interaction of 

lung microbiota with various origin and lung cancer is not well documented. To investigate the 

relation between lung microbiota, local immune response and metastatic LN, we conducted an 

observational cross-sectional study in 17 NSCLC patients. Lung microbiota was analysed in 

bronchoalveolar lavage fluid (BAL) (direct washing of the excised lobe) and three tissues: non-

malignant, peritumoural and tumour tissue. Accompanying immune status was assessed as 

tumour infiltrating lymphocytes and T helper and neutrophil profiles in BAL. 

Results. We found that phylum Firmicutes replaced Proteobacteria as dominating in tumour 

and peritumoural tissue in the presence of metastatic LN. Next, anaerobic genera were 

significantly more abundant in tumours with metastatic LN, while aerobic genera were 

significantly more abundant in extratumoural tissues. However, the inverse was noted in 

patients without metastatic LN. 8 genera from three tissues were identified as promising 

prognostic biomarkers of the presence of the metastatic LN (combined AUC of 86.1%, 90.6% 

and 92.9% per tissue, respectively). From the four analysed lung communities, only BAL 

microbiota had high association with local immune response (both intratumoural and in the 

BAL). Moreover, genera positively associated with either anti-tumour or pro-tumour markers 

shared the same taxonomic lineage as identified anaerobic (mostly order Clostridiales) and 

aerobic tissue genera (mostly class Alphaproteobacteria), respectively. 

Conclusions. We evidenced a close connection between metastatic status of LN and tissue lung 

microbiota (extratumoural and tumoural) in NSCLC patients, but also the one between BAL 

microbiota and local profile of immune cells. Our findings encourage further investigation of 

the interaction between lung microbiota from multiple sites and tumour immunity and 

environment. Also, the potential clinical application in detection of the metastatic LN through 

bacterial pattern in NSCLC patients will require confirmation on larger patient population. 

Trial registration. ClinicalTrials.gov ID: NCT03068663. Registered February 27, 2017. 

https://clinicaltrials.gov/ct2/show/NCT03068663 

 Key words: 



Results Article 2: Lung microbiota and metastatic lymph nodes 

145 

Lung microbiota, lung cancer, non-small cell lung cancer, metastatic lymph nodes, 

bronchoalveolar lavage, tumour, lung tissue, non-malignant tissue, peritumoural tissue 

1 Background 

Lung cancer is a leading cause of death by cancer worldwide, the 1st most frequent cancer in 

men and the 3rd most frequent in women [1]. It is markedly more frequently diagnosed in older 

populations (over 65 years), with non-small cell lung cancer (NSCLC) counting for 85-90% of 

all lung cancer cases [2].  

The genetic aetiology of NSCLC is already extensively described [3], but the link between lung 

cancer and lung microbiota remains scarcely explored [4], despite the growing interest for 

cancer-microbiota interaction and the emergence of the gut-lung axis theory [5–7] in the last 

decade. The reason partially lies in the long-lasting perception of NSCLC principally, but not 

exclusively, as a direct consequence of gene alteration due to various external or internal factors 

[2]. Recently, however, a clear connection was established between chronic inflammation and 

lung cancer development in the studies of chronic obstructive pulmonary disease (COPD) [8,9]. 

Moreover, as well as the role of microbiota in these pathologies [10–14], the role of lung 

microbiota in lung cancer was suggested as one of the important questions to consider [15]. 

Several animal models have recently proved that the presence, absence or dysbiosis (e.g. due 

to antibiotics) of lung microbiota could influence both lung tumour growth [16,17] and immune 

response in the tumour bed [18]. Moreover, a connection was found between enrichment of the 

lower airways by oral or supraglottic taxa and increased inflammation and Th17 recruitment in 

lung cancer patients that could stimulate pathways involved in tumour progression [19–21]. 

The studies involving human subjects remain, however, a few numbered, with the invasiveness 

of the sampling methods as the major inconvenience for lung microbiota research. So far, most 

of the studies on lung microbiota were done on asthmatic or COPD patients by analysis of 

sputum or bronchoalveolar lavage fluid (BAL) obtained by bronchoscopy [5,10,14,22], often 

used in a routine patient follow-up. Even though these techniques are less invasive than tissue 

sampling and therefore more readily performed, they have a higher risk of contamination of 

already low biomass samples by upper airways microbiota [23,24]. Also, BAL is likely to 

represent lung microbiota found within bronchia that might differ from lung microbiota of the 

lung tissue. In current studies on lung cancer microbiota [21,25–30], only two included analysis 

of tissue samples. Consequently, microbiota of the tumour and non-malignant tissue in NSCLC 
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and its connection to tumour-specific or local immune response have still not been entirely 

investigated.  

In NSCLC treatment, metastatic changes on lymph nodes (LN) are a major prognostic factor 

[31,32], and are defined by TNM classification (i.e. tumour staging) [33]. The presence of 

metastatic changes on LN has been related to a significant decrease in overall survival and 

response to therapy [33], and is therefore directly implicated in cancer progression and 

outcome. However, characterisation of the lung microbiota in the light of metastatic LN 

changes has still not been addressed. This knowledge could yield a better understanding of the 

tumour microbiological environment and potential involvement in metastatic behaviour of the 

tumour. 

To broaden insight into both of these matters, we conducted a cross-sectional pilot study in 

17 NSCLC patients with primary non-metastatic lung tumours eligible for surgery as a part of 

our project [34]. As the first objective, this study determined whether the difference in clinical 

tumour stage based on metastatic changes in LN was accompanied by an underlying difference 

in the lung microbiota of various origins (BAL, tumour, peritumoural tissue, non-malignant 

“healthy” tissue). The second objective of the study was to investigate the connection between 

these microbiota and the local immune response (tumour lymphocytic infiltration, immune cell 

phenotypes in BAL) in these patients. 

2 Results 

2.1 Study population 

Eighteen patients were prospectively included in the study. Ultimately, lung samples were 

obtained from seventeen patients, which were kept for further analysis. Following the post-

resection TNM classification by a pathologist (Table 1), the patients were divided into two 

groups for the purpose of this study: Stage I,II patients without metastatic LN, and Stage III 

patients with metastatic LN. The groups’ characteristics are presented in Table 2. Body mass 

index (BMI) was the only characteristic that differed significantly between the two groups and 

corresponded to reported weight loss from Stage III patients. The Chi-square test showed that 

both groups were balanced in terms of tumour location, smoking status, tumour type and sex 

(data not shown).  
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Table 1 Post-surgical TNM classification 

pTx pNx Tumour type 

Tumour size 

(cm) 

Stage 

group 

T1 N0 carcinoid 3.0 I,II 

T1 N0 ADK 2.5 I,II 

T1 N0 ADK 0.6 I,II 

T1 N0 ADK 1.7 I,II 

T2 N0 ADK 4.5 I,II 

T2 N0 ADK 3.8 I,II 

T2 N0 ADK 3.0 I,II 

T2 N0 SCC 4.0 I,II 

T3 N0 carcinoid 5.0 I,II 

T2 N2 ADK 3.0 III 

T2 N2 ADK 3.0 III 

T2 N2 ADK 2.4 III 

T3 N1 ADK 2.0 III 

T4 N1 ADK 2.3 III 

T4 N1 SCC 8.0 III 

T4 N1 SCC 9.5 III 

T4 N2 SCC 7.0 III 

ADK – adenocarcinoma; SCC – squamous cell carcinoma 

Table 2 Characteristics of patients 

included in the study 

Tumour stage: Stage I, II Stage III p 

Total no. of patients 9 8  

Stage I/II/III 7/2/0 0/0/8  

ADK/SCC/carcinoid 6/1/2 5/3/0  

Male/female 6/3 6/2  

Smoker/ex-smoker/never-

smoker 

2/7/1 0/7/1  

Pack-year (smokers and ex-

smokers) 

32 ± 23 31 ± 20 0.809 

Age (years) 66 ± 10 71 ± 4 0.358 

BMI 26.4 ± 3.6 23.6 ± 1.8 0.038 

FEV1 (% of expected value) 96 ± 8 100 ± 15 0.606 

 

2.2 Lung microbiota and tumour stages 

2.2.1 Diversity differed relative to Stage group, with domination of phylum 

Firmicutes in tumour (LUNG.T) and peritumoural tissue (LUNG.PT) of 

Stage III patients 

Four lung samples characterised throughout the study were: BAL, non-malignant Distal tissue 

Piece (LUNG.DP), Peritumoural Tissue (LUNG.PT) and Tumour (LUNG.T). 

Tumour and non-malignant tissue had significantly different beta diversity between Stage 

groups (Fig. 1a, 1b) based on weighted (wUF) and unweighted UniFrac (uwUF) distance, 

respectively. Even though initially no differences were observed between tissue samples (data 

not shown), tumour and peritumoural tissue (two closest tissues by sampling location) were 

significantly different in Stage I, II (uwUF, Fig. 1c), while tumour and non-malignant tissue 

(two most distant tissues by sampling location) were significantly different in Stage III (uwUF, 

Fig. 1d). 
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Figure 1 Characterisation of the microbiota in lung samples. Beta diversity (presented by 

NMDS) in (a) tumour (LUNG.T) between Stage I,II (N = 8) and Stage III (N = 8) based on wUF, (b) 

non-malignant tissue (LUNG.DP) between Stage I,II (N = 9) and Stage III (N = 8) based on uwUF, (c) 

Stage I,II between tumour (LUNG.T) (N = 8) and peritumoural tissue (LUNG.PT) (N = 7) based on 

uwUF, (d) Stage III between LUNG.T (N = 8) and LUNG.DP (N = 8) based on uwUF. Alpha diversity 

was analysed between Stage I,II and Stage III for each sample type: (e) phylogenetic diversity, (f) 

observed OTUs, (g) Shannon diversity index. Alpha diversity was also analysed between samples within 

each Stage group, and the only significant result was in Shannon index for Stage III between LUNG.T 

and LUNG.PT (g). (h) Relative abundance relative to the sample type and Stage group in the phylum, 

class and genus level. (e-h) Sample numbers were in Stage I,II: LUNG.T (N = 8), LUNG.PT (N = 7), 

LUNG.DP (N = 9), BAL (N = 8), and in Stage III: LUNG.T (N = 8), LUNG.PT (N = 7), LUNG.DP (N 

= 8), BAL (N = 7). Difference in beta diversity was tested by adonis function (vegan) based on 999 

permutations. Difference in alpha diversity between Stage groups was tested by unpaired Wilcoxon test 

and between sample types within group by Kruskal-Wallis with BH correction for multiple comparison. 
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BAL – bronchoalveolar lavage fluid; LUNG.DP – non-malignant distal piece, LUNG.PT – peritumoural 

tissue; LUNG.T – tumour. *: p < 0.05, **: p < 0.01 

Inversely, BAL was initially different from each tissue sample (all differences at least p < 0.05 

based on both wUF and uwUF) (data not shown). However, in within-group analysis there was 

no significant difference between BAL and peritumoural tissue for both groups in wUF 

(Stage I,II: p = 0.069, R2 = 0.125; Stage III: p = 0.174, R2 = 0.117) and only in Stage III for 

uwUF (Stage I,II: p = 0.027, R2 = 0.117; Stage III: p = 0.082, R2 = 0.135). Interestingly, in 

Stage III increased similarity was observed between BAL and tumour (uwUF p = 0.061, R2 = 

0.126; Stage I,II: uwUF p = 0.001, R2 = 0.199).  

Several alpha diversity metrics (Fig. 1e-g) were significantly lower in Stage III patients both in 

non-malignant and peritumoural tissue. Inversely, in Stage III, both in BAL and tumour, 

Shannon diversity showed tendency for higher values (Fig. 1g). In addition, in Stage III, tumour 

had significantly higher Shannon diversity than peritumoural tissue (Fig. 1g). 

Fig. 1h represents the relative abundance of microbiota in phylum, class and genus level, 

respective to the sample type and tumour stage group. In Stage I,II, the lung tissue samples 

were dominated by two phyla: Proteobacteria (~50%, especially classes Alphaproteobacteria 

and Gammaproteobacteria) and Firmicutes (~30%, class Clostridia). Phyla Actinobacteria 

(class Actinobacteria) and Bacteroidetes (class Bacteroidia) followed. In stage III, however, 

tumour and peritumoural tissue were dominated by phylum Firmicutes (~44%) and 

Proteobacteria was the 2nd most abundant (~37%). In non-malignant tissue, there was no 

difference in dominating phyla between stages. However, in Stage III abundance of 

Proteobacteria was lower in favour of Actinobacteria (~17%).  

At the genus level (Fig. 1h), tissue samples shared dominating genera. Clostridium 

(Firmicutes), Pseudomonas (Gammaproteobacteria), Kocuria (Actinobacteria), Bacteroides 

(Bacteroidetes) Sphingomonas (Alphaproteobacteria), Acinetobacter (Gammaproteobacteria) 

and Blautia (Firmicutes) were among the more abundant genera in both groups. Interestingly, 

the Clostridium genus, which in Stage I,II was balanced in abundance with either Pseudomonas 

or Kocuria depending on the tissue, was ~2-fold more abundant in Stage III and representing 

the most abundant genus (~30%). 

In Stage I,II (Fig. 1h), BAL was dominated by Firmicutes (~45%, class Clostridia), followed 

by almost equal abundances of Proteobacteria (~20%, class Gammaproteobacteria), 

Actinobacteria (~16%, class Actinobacteria) and Bacteroidetes (~16%, class Flavobacteriia). 
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In Stage III, however, Proteobacteria (~36%, classes Alphaproteobacteria and 

Gammaproteobacteria) was more abundant than Bacteroidetes and Actinobacteria. Even 

though in Stage I,II Capnocytophaga (~9%) was the most abundant genus, followed by 

Pseudomonas, Streptococcus and Blautia (~6% each), Stage III was dominated by 

Pseudomonas (~15%), Blautia (~8%) and Streptococcus (~6%). Interestingly, Clostridium, 

found as most abundant in lung tissues, was not in the first 50 most abundant genera in BAL in 

either of the groups. 

2.2.2 Anaerobic and aerobic bacteria showed inverse abundance profiles between 

tumour and extratumoural tissue 

Figure 2 shows only taxa on the levels of class and genus whose abundance was significantly 

different between two Stage groups. Difference in abundance is presented as log2-fold change. 

Within each bar there is a significance level and beside the bar is a number representing the 

rank of importance of the difference as reported by random forest algorithm. BAL samples were 

non-significantly different on selected taxonomic ranks, so they were excluded from graphics. 

Figure 2 Differential abundance 

of lung tissue microbiota between 

Stage groups. (a) Differential 

abundance on the class level. (b) 

Differential abundance on the genus 

level. Asterisk within the bars 

represents the adjusted significance 

(BH) of differential abundance tested 

by Wald’s test of significance of 

coefficients in a negative binomial 

general linearized model 

(microbiomeSeq). Sample numbers 

were in Stage I,II: LUNG.T (N = 8), 

LUNG.PT (N = 7), LUNG.DP (N = 9), 

and in Stage III: LUNG.T (N = 8), 

LUNG.PT (N = 7), LUNG.DP (N = 8). 

The numbers beside the bars are ranks 

of importance of the detected 

difference, as detected by random forest 

classifier. Following full taxa names 

are corresponding order (4 letters) and 

phylum (1 capital letter). Orders: Acti – 

Actinomycetales, Bact – Bacteroidales, 

Burk – Burkholderiales, Caul – 

Caulobacterales, Clos – Clostridiales, 

Cori – Coriobacteriales, Desu – 
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Desulfovibrionales, Erys – Erysipelotrichales, Flav – Flavobacteriales, Lact – Lactobacillales, Ocea – 

Oceanospirillales, Rhiz – Rhizobiales, Rhod – Rhodospirillales, Sphi – Sphingobacteriales, Turi – 

Turicibacterales. Phyla: A – Actinobacteria, B – Bacteroidetes, F – Firmicutes, P – Proteobacteria 

(classes aP – Alphaproteobacteria, bP – Betaproteobacteria, gP – Gammaproteobacteria, dP – 

Deltaproteobacteria). [Prevotella] is from the family Paraprevotellaceae, and Prevotella from 

Prevotellaceae. [Ruminococcus] is from the family Lachnospiraceae, and Ruminococcus from 

Ruminococcaceae. BAL – bronchoalveolar lavage fluid; LUNG.DP – non-malignant distal piece, 

LUNG.PT – peritumoural tissue; LUNG.T – tumour. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p 

< 0.0001 

The eye-catching feature was that the log2 profiles showed strong similarities for peritumoural 

and non-malignant tissue, and were inverse to tumour for each shared taxa (Fig. 2a, 2b). This 

was observed both on class and genus level. Classes Sphingobacteriia, Flavobacteriia and 

Actinobacteria were significantly more abundant in non-malignant and/or peritumoural tissue 

of Stage III patients, but less abundant in Stage III tumour (Fig. 2a). Tumour had two unique 

differences: classes TM7-3 and Acidobacteria. TM7-3 ranked as the most important difference 

(random forest), more abundant in Stage III (0% vs 0.13%), while Acidobacteria was more 

abundant in Stage I,II. Likewise, two unique differences could be found in peritumoural tissue: 

Nitrospira (1st ranked by random forest) more abundant in Stage III, and Erysipelotrichi 

(2nd ranked) more abundant in Stage I,II. 

The total of 31 genera were found significantly different between stages (Fig. 2b), with the 

highest number in non-malignant tissue. Markedly, an exclusive polarity was seen between the 

“lower” and “upper” part of the figure when observing higher taxonomic levels of listed genera 

(Fig. 2b – abbreviations next to the genus name). The “upper” part included listed genera from 

[Prevotella] to Collinsella), which were more abundant in Stage III tumour and, inversely, in 

peritumoural/non-malignant tissue of Stage I,II patients. They belonged to orders Clostridiales 

and Turicibacterales (phylum Firmicutes), Bacteroidales (Bacteroidetes), Coriobacteriales 

(Actinobacteria), Burkholderiales (Betaproteobacteria), Oceanospiralles 

(Gammaproteobacteria) and Desulfovibrionales (Deltaproteobacteria). Conversely, the 

“lower” part of the figure included genera from orders Actinomycetales (Actinobacteria), 

Rhodospirillales, Rhizobiales and Caulobacterales (Alphaproteobacteria), Sphingobacteriales 

and Flavobacteriales (Bacteroidetes) and Erysipelotrichales (Firmicutes). 
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Figure 3 Relative abundance of genera and 

their respiratory profiles in lung tissues 

relative to Stage group. Genera from Fig. 2b were 

analysed for difference in relative abundance between 

tissue samples within each Stage group. The test used 

was Kruskal-Wallis with BH correction for multiple 

comparison. Outline of individual facets represents 

respiratory profile of given bacteria. facANaerobe – 

facultative anaerobe. [Prevotella] is from the family 

Paraprevotellaceae, and Prevotella from 

Prevotellaceae. [Ruminococcus] is from the family 

Lachnospiraceae, and Ruminococcus from 

Ruminococcaceae. BAL – bronchoalveolar lavage 

fluid; LUNG.DP – non-malignant distal piece, 

LUNG.PT – peritumoural tissue; LUNG.T – tumour. 

*: p < 0.05, **: p < 0.01, ***: p < 0.001 

We could see that not all of the classes or phyla 

detected in Fig. 2a were found in genera from Fig. 

2b. This was because certain classes, such as TM7-

3, do not have classified genera. However, on the 

family level, F16 from the phylum TM7 was also 

1st ranked as the most important difference in 

tumour (data not shown).  

For 31 significantly different genera between 

stages (Fig. 2b), we looked more closely at 

relative abundance for each of these in the three 

tissues and their biological properties (respiratory 

type, motility) (Fig. 3). Despite not being 

significantly different between stages for each 

tissue (Fig. 2b), the majority of genera followed 

the inversion principle (if more abundant in 

tumour, less abundant in peritumoural/non-

malignant tissue, and vice versa) (Fig. 2b). 

Depending of the sense of inversion, we 

deciphered two main groups with mutually 

inverse abundance change between Stage groups 

(Fig. 3). The first group contained genera that 
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were more abundant in tumour in Stage I,II (low in peritumoural/non-malignant tissue), but in 

Stage III were, inversely, more abundant in peritumoural/non-malignant tissue (low in tumour). 

This involved mostly genera in the first part of the Figure 3 (from [Eubacterium] to 

Sphingobacterium), and included Chryseobacterium and Kocuria with higher part in overall 

abundance (Fig. 3). Moreover, these bacteria had in majority aerobic or facultative anaerobic 

respiration (red and green outline, Fig. 3). The second group involved genera that in Stage I, II 

were more abundant in peritumoural/non-malignant tissue (low in tumour), but in Stage III were 

more abundant in tumour. This included mostly genera in the middle of Figure 3 (from 

Desulfovibrio to Halomonas) with higher abundant Lactobacillus, Faecalibacterium, 

Ruminococcus and Prevotella (Fig. 3). Considering the respiratory metabolism, all bacteria in 

this group were obligate anaerobes. Interestingly, in both groups, certain genera in peritumoural 

tissue had the same abundance or with very little change in both Stage groups (e.g. Prevotella 

or Azospirillum). Also, certain genera did not entirely follow the principle of inverse change in 

abundance (Fig. 3, from Anaerostipes until Odoribacter). Nevertheless, the pattern and 

respiratory profile of these genera were more similar to the second than to the first group (i.e. 

anaerobic). Finally, we also looked at active motility organs in these bacteria, but we found that 

only 25% possessed flagella with no difference depending on the group.  

2.2.3 Combination of genera as potential biomarkers of metastatic lymph nodes 

We used receiver operating characteristic (ROC) analysis to assess genera from Figure 3 as 

potential biomarkers in determination of metastatic LN (Fig. 4). In each tissue, several genera 

already individually showed high percentage of area under the ROC curve (AUC), especially 

Dorea and Coprococcus in peritumoural tissue with 90.9% and 89.8%, respectively. However, 

a combination of several genera in each tissue increased this already high percentage. Genera 

Parabacteroides, Ruminococcus (family Ruminococcaceae), and Oscillospira in non-

malignant tissue (LUNG.DP), Dorea, Coprococcus and Lachnospira in peritumoural tissue 

(LUNG.PT), and Dialister and [Ruminococcus] (family Lachnospiraceae) in tumour 

(LUNG.T), represented the combinations with the highest predictive power of 86.1%, 92.9% 

and 90.6% AUC per tissue, respectively. 
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Figure 4 Potential biomarkers for metastatic lymph nodes in three lung tissues. ROC 

analysis was performed on individual genera detected as significantly different between Stage groups 

for each tissue in Fig. 2b. Genera with AUC higher than 80% were included for combination analysis. 

Only combinations with highest AUC percentage were selected and presented in the Figure for each 

lung tissue along with individual curves. BAL – bronchoalveolar lavage fluid; LUNG.DP – non-

malignant distal piece, LUNG.PT – peritumoural tissue; LUNG.T – tumour; AUC – area under the curve 

2.3 Tumour-infiltrating lymphocytes and microbiota 

2.3.1 Stage groups without difference in tumour-infiltrating lymphocytes (TILs) 

Composition of the tumour lymphocytic infiltrate was evaluated by quantity of CD8+ 

(cytotoxic), FOXP3+ (regulatory, Treg) and PD-1+ T lymphocytes, as well as of CD20+ B 

lymphocytes. In addition, expression of an important immune checkpoint marker, PD-L1, was 

evaluated both on tumour-infiltrating lymphocytes and tumour cells. No significant difference 

was seen between tumour stages in any of the TIL subpopulations (Fig. 5a), or in their ratios, 

CD8+/CD20+ and CD8+/FOXP3+ (Additional file 1: Figure 1a). Both groups equally consisted 

of high- and low-infiltrated tumours. PD-1 and PD-L1 markers were expressed only in a few 

tumours and did not co-occur in the same tumour nor were they associated with one of the Stage 

groups (data not shown).  

2.3.2 BAL microbiota with the most associations to tumour-infiltrating 

lymphocytes (TILs) 

We next examined the association of microbiota in the tumour or its surroundings with the 

TILs. Eighteen genera significantly correlated with at least one immune marker (Fig. 5b, 

Additional file 1: Figure 1b). Correlation profiles were very similar between individual immune 

markers but not between samples. Surprisingly, not tumour but BAL microbiota showed the 

highest number of significant correlations with TILs (Fig. 5b). Genera Dietzia, Clostridium, 

Coprococcus, Ruminococcus, Akkermansia, Oscillospira, Bacteroides, Collinsella, and 

[Prevotella] had significant positive and Haemophilus and Mesorhizobium significant negative 
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correlation with each of TILs’ subgroups. On the contrary, correlations in tissue microbiota 

were mostly negative, and did not follow the trend in BAL. The exception was a significant 

positive correlation for Dietzia seen in non-malignant tissue, similar to BAL. Otherwise, in 

non-malignant tissue, Lactobacillus was significantly negatively correlated, and in tumour 

significant positive correlation was only with Sediminibacterium and Rhizobium. 

Figure 5 TILs in tumour stages and 

correlation with lung microbiota. (a) 

Difference in no. of tumour-infiltrated 

lymphocytes (TILs) relative to the tumour 

stage. (b) Spearman’s correlation between 

microbiota of four lung samples with two TILs 

ratios and their individual markers. Colour 

represents correlation coefficient. Showed 

significance levels are adjusted p-values based 

on BH correction. Only genera with at least one 

significant entry are presented. Sample 

numbers for correlation were: LUNG.T (N = 

16), LUNG.PT (N = 14), LUNG.DP (N = 17), 

BAL (N = 15). TILs – tumour infiltrated 

lymphocytes. Following full taxa names are 

corresponding order (4 letters) and phylum (1 

capital letter). Orders: Acti – Actinomycetales, 

Bact – Bacteroidales, Clos – Clostridiales, 

Corio – Coriobacteriales, Flav – Flavobacteriales, Lact – Lactobacillales, Past – Pasteurellales, Pseu 

– Pseudomonadales, Rhiz – Rhizobiales, Sapr – Saprospirales, Verr – Verrucomicrobiales. Phyla: A – 

Actinobacteria, B – Bacteroidetes, F – Firmicutes, P – Proteobacteria (classes aP – 

Alphaproteobacteria, gP – Gammaproteobacteria), V – Verrucomicrobia. [Prevotella] belongs to the 

family Paraprevotellaceae. BAL – bronchoalveolar lavage fluid; LUNG.DP – non-malignant distal 

piece, LUNG.PT – peritumoural tissue; LUNG.T – tumour. *: p < 0.05, **: p < 0.01 

Interestingly, bacteria that positively correlated with an increased count of TILs’ in BAL 

belonged to phyla Firmicutes (order Clostridiales), Actinobacteria (orders Coriobacteriales, 

Actinomycetales) and Bacteroidetes (order Bacteroidales). Inversely, negatively-correlating 

genera were mostly from phyla Proteobacteria (classes Alphaproteobacteria and 

Gammaproteobacteria) and Bacteroidetes (orders Saprospirales and Flavobacteriales).  

Furthermore, certain genera that negatively correlated with individual markers showed 

significant positive correlation with ratios (Additional file 1: Figure 1b). This was, however, 

not due to true stimulation of the immune response but rather due to less negative correlation 

with one of the markers, and was not taken as a relevant result. 
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2.4 Phenotyping of BAL immune cells and their association to lung 

microbiota 

2.4.1 Th17 higher in BAL of Stage III patients 

Next, we looked at difference in percentage of helper T lymphocytes (Th) and 

polymorphonuclear neutrophil (N) subtypes between Stage groups in samples of BAL. 

Neutrophil subtypes showed no significant difference between the two Stage groups (Fig. 6a). 

In CD4+ Th, the only difference was observed for Th17 cells (Fig. 6b), found significantly 

higher in the Stage III group, although overall percentage remained low in both groups. 

Consequently, both ratios Th1/Th17 and Treg/Th17 were lower in Stage III (Treg/Th17 

significantly) (Fig. 6c). Interestingly, the positive correlation between Treg and Th17 was 

present in the Stage III group, with the similar tendency in Stage I,II group (Fig. 6d). 

2.4.2 Pro and anti-tumour markers show medium to strong correlation with BAL 

microbiota 

Similarly, as with the tumour immune infiltrate, we examined the association of immune cells 

in BAL and microbiota from lung samples. All four samples were analysed, but only BAL 

showed a clear clustering and significant correlations. Figure 6e therefore shows association 

between genera in BAL and BAL immune cells with at least one correlation higher than R = 

0.4. 

We could decipher three groups of associations: group 1, from Oscillospira to Ruminococcus, 

group 2, from Haemophilus to Atopobium, and group 3, from Novosphingobium until 

WAL_1855D (Fig. 6e). Genera from group 1 positively correlated with Th1, Th2, Th1/Th17, 

Th1/Treg, Th1/Th2 and inactive circulating and tethering neutrophils (N). These markers are 

most often considered as a part of anti-tumour response [35]. Inversely, they were negatively 

correlated with Treg, Th17, activated N and Th17/Treg ratio (significantly for genus Roseburia 

and Bacillus), considered as markers of pro-tumour response [35]. Group 3 was the exact 

opposite of group 1, while group 2 was found in between. Similar to group 1, group 2 had 

positive associations with Th1-associated markers, but had negative associations with Th2 and 

circulating N (as in group 3). 

Markedly similar to associations observed with TILs, association groups with immune cells in 

BAL divided genera by their higher taxonomic levels. So, genera in group 1 belonged 

principally to phyla Firmicutes (order Clostridiales) and Bacteroidetes (Bacteroidales), while 



Results Article 2: Lung microbiota and metastatic lymph nodes 

157 

in group 3, 12 of 18 genera were from phylum Proteobacteria. The additional six genera were 

from either phylum Firmicutes or Bacteroidetes (but orders Saprospirales and 

Flavobacteriales). Group 2 was again in between, with members from phyla Actinobacteria, 

Firmicutes, Proteobacteria and Fusobacteria.  

 

Figure 6 Immune phenotypes in Stage groups and correlation with microbiota in BAL. a 

Comparison of neutrophil subpopulations in BAL between Stage groups. b Comparison of CD3+CD4+ 

helper T cells in BAL between Stage groups. c Comparison of Th ratios between Stage groups in BAL. 

d Spearman’s correlation between percentage of Th17 and Treg in BAL relative to Stage group. In 

subfigures a, b and c, the test used was unpaired Man-Whitney with BH correction for multiple group 

comparison. e Heatmap represents Spearman’s correlation between immune profiles in BAL with genus 

level of the microbiota in BAL. Colour represents correlation coefficient. Showed significance levels 

are adjusted p-values based on BH correction for multiple comparison. Only genera with R > 0.4 

(considered as medium strong correlation) are presented. Number of samples: BAL (N = 14). Following 

full taxa names are corresponding order (4 letters) and phylum (1 capital letter). Orders: Acti – 

Actinomycetales, Baci – Bacillales, Bact – Bacteroidales, Bifi – Bifidobacteriales, Burk – 

Burkholderiales, Clos – Clostridiales, Corio – Coriobacteriales, Flav – Flavobacteriales, Fuso – 

Fusobacteriales, Lact – Lactobacillales, Past – Pasteurellales, Pseu – Pseudomonadales, Rhiz – 
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Rhizobiales, Rhod – Rhodospirillales, Sapr – Saprospirales, Sphi – Sphingobacteriales. Phyla: A – 

Actinobacteria, B – Bacteroidetes, F – Firmicutes, Fu – Fusobacteria, P – Proteobacteria (classes aP 

– Alphaproteobacteria, bP – Betaproteobacteria, gP – Gammaproteobacteria). BAL – bronchoalveolar 

lavage fluid; LUNG.DP – non-malignant distal piece, LUNG.PT – peritumoural tissue; LUNG.T – 

tumour. N – neutrophils. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 

3 Discussion 

Even though lung cancer is the leading cause of death from cancer worldwide [1], its connection 

to lung microbiota and the interaction of lung microbiota and lung cancer immunology remains 

largely unexplored. This is, to our knowledge, the first study in NSCLC analysing lung 

microbiota between stages based on metastatic LN. Moreover, lung microbiota was analysed 

for the first time in four different samples: BAL as a sample of alveolar “planktonic” 

microbiota, and three tissue samples harbouring different physiology: tumour, peritumoural 

tissue (tissue in direct contact with tumour and with increasing importance in deciding tumour 

progression) [36,37] and non-malignant tissue. In addition, in our study, BAL was not obtained 

by bronchoscopy but by direct instillation of physiological serum into the dissected lung, 

limiting upper airways contamination and giving a possibility of true sampling of the microbiota 

in tumour proximity. 

We showed that each Stage group revealed differences between and within samples’ 

community compositions (Fig. 1). Beta diversity differed significantly between Stage groups 

both in tumour and non-malignant tissue. Consequently, peritumoural tissue was 

compositionally more similar to non-malignant tissue in Stage I,II, and inversely, to tumour and 

BAL in Stage III. We also observed that the Stage III group had lower alpha diversities in 

peritumoural and non-malignant tissue compared to Stage I,II, with no change in the other two 

samples. Lung tissues were dominated by phylum Proteobacteria in Stage I,II, but in Stage III, 

tumour and peritumoural tissue were dominated by Firmicutes. Yu et al. [27] also identified 

Proteobacteria as the dominant phylum in non-malignant lung tissue in lung cancer patients. 

However, in their study, the alpha diversity of non-malignant tissue was higher in more 

advanced stages, which is the inverse of our finding. This could be because they analysed stages 

using the base TNM classification [33], which classifies patients into stages depending on the 

overall TNM score and not exclusively based on metastatic LN as we performed. In our study, 

BAL samples were dominated by phylum Firmicutes without difference relative to Stage group. 

Interestingly, the study of Lee et al. [25] found abundance of phylum Firmicutes increased in 

BAL of lung cancer patients compared to those with benign mass lesions. In addition, we 

observed phylum Firmicutes as dominant in tumour and peritumoural tissue of Stage III 
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patients, two samples significantly more similar to BAL in this group. Looking at these 

findings, the shift towards phylum Firmicutes might be associated with advancement of lung 

cancer. 

We identified classes and genera for each lung tissue sample with significant difference in 

abundance between two tumour stage groups (Fig. 2). Interestingly, in tumour, the 1st ranked 

class by the importance of difference was class TM7-3, more abundant in Stage III. This class 

is from the candidate phylum TM7, previously reported as increased both in COPD and lung 

cancer [38] and could be implicated in tumour progression. Looking at both analysis on the 

class and genus level, we noted the consistent inversion of differential abundance profiles 

between tumour vs. peritumoural/non-malignant tissue. In Stage III, genera more abundant in 

tumour were less abundant in peritumoural/non-malignant tissue, and it was the inverse in Stage 

I,II. Interestingly, members in each of these “inversion groups” mostly belonged to the same 

higher taxonomic levels, but on the contrary, these higher levels were not shared between 

“inversion groups”.  

Next, we divided identified genera into two “abundance change” hypotheses depending on their 

abundance in tissues and stages. Interestingly, each hypothesis gathered members that belonged 

to one of the major respiratory profiles. The first hypothesis included aerobic bacteria, more 

abundant in Stage I, II tumour and scarcely or not present in the other two tissues, and inversely, 

in Stage III genera more abundant in peritumoural and non-malignant tissue with lower 

abundance in tumour. The second hypothesis involved anaerobic genera, more abundant in 

peritumoural and non-malignant tissue in stage I, II. Those in Stage III have increased 

abundance in tumour, and decreased abundance in the other two tissues compared to Stage I,II. 

We hypothesise that aerobic bacteria from the first group are more abundant in Stage I,II tumour 

tissue due to increased protection from the immune system and increased availability of 

nutrients [39]. Low-grade tumours are still well oxygenated and could sustain aerobic bacteria. 

However, with stage advancing and/or tumour growth, the supply of oxygen and nutrients 

becomes insufficient for tumour cells, inducing hypoxia and necrosis within the tumour centre, 

accompanied by increased lactate production and acidification [40,41]. The aerobic bacteria 

that are not able to live in these conditions “leave” the tumour, i.e. move to peritumoural and 

non-malignant tissue. Even though only ¼ of detected genera (Fig. 3) had active motility organs 

(flagella), the literature suggests another means of motility, such as “gliding” or attachment on 

eukaryotic cells [42,43] that could support this “migration”. In this study, we analysed only a 

captured moment and we have no insight into microbial evolution and changes following 
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development of the tumour. However, in multiple examples genera were still completely absent 

in one group (0%) but present in the other (Fig. 3). Rather than only changing a balance between 

microbiota proportions (saying that microbiota already previously existed in the tissues before 

the change in abundance), our results of beta diversity on uwUF (based on presence/absence of 

OTUs) support the hypothesis that certain bacteria might “migrate” between tissues. Also, in 

certain genera, peritumoural tissue has much smaller oscillations between two Stage groups 

compared to non-malignant tissue and tumour, which could be due to its position in the middle 

of this “migratory” pathway. For the second group, we suggest that anaerobic bacteria could 

reside inside the biofilms in the non-malignant and peritumoural tissue, which protects them 

from toxic oxygen exposure. The suggestion of biofilm importance in lung microbial 

co-location of aerobes and anaerobes, as well as in pathogenesis of lung diseases was previously 

suggested [15,44–46]. The majority of anaerobic bacteria from the second hypothesis ferment 

glucose to produce lactate [47,48], but also other acids such as butyric, acetic or propionic (e.g. 

Faecalibacterium, Odoribacter, Ruminococcus, Bifidobacterium) [49,50]. Since tumour cells 

are proposed to influence glucose delivery of the host to the tumour bed [51], this could be the 

true chemotactic target of both aerobic and anaerobic bacteria. Once tumour environment 

becomes sufficiently hypoxic, anaerobic bacteria could “migrate” from the surrounding biofilm 

into the tumour bed. The tumour-targeting anaerobic bacteria were already described in the 

context of bacteria-mediated tumour therapy (BMTT). Innate principles of BMTT are based 

either on stimulation of CD8+ T cells through bacterial epitopes, resulting in enhanced tumour 

surveillance (seen in anaerobic Clostridium spores), or on direct antitumour effect through 

nutrient competition with tumour cells (e.g. strains of Clostridium, 

Bifidobacterium and Salmonella) [39]. On the other hand, tumour acidification and hypoxia 

impair activation and anti-tumour response of immune cells [52], and, as mentioned, anaerobic 

bacteria contribute to lactic acid production and acidification. This hypothesis corresponds to 

our finding, where anaerobic microbiota was enriched within the tumour of more advanced 

stages characterised by metastatic nodes. 

From genera in Fig. 3 we identified several potential biomarkers (Fig. 4) that, interestingly, all 

belonged to anaerobic bacteria from the second abundance change hypothesis. Moreover, all 

except Parabacteroides belonged to order Clostridiales from the phylum Firmicutes. In each 

tissue, the AUC percentage of combined genera was high, showing that, potentially, any of the 

tissues could serve as an indicator of metastatic LN presence, improve disease follow-up, and 
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could limit the necessity of node sampling and analysis. However, selected genera need 

confirmation of quantitative analysis (such as qPCR) and larger study population. 

Looking at local immune profiles (TILs, BAL immune cells), the only observed difference was 

in percentage of Th17 cells, significantly elevated in BAL of the Stage III group. Consequently, 

the Treg/Th17 ratio, to which high importance in lung cancer immunity was recently 

attributed [53], was lower. Even though certain studies reported Th17 cytokines to affect 

effector cytotoxic T cell generation and thus stimulate anti-tumour response [54,55], a 

meta-study analysing the results of 6 lung cancer cohorts (total no. of participants = 479) sided 

elevated Th17 cytokines with significantly reduced overall and disease free survival, 

respectively [56]. In our study, the parallel could be drawn with higher levels found in the 

Stage III group characterised by metastatic lymph nodes as a marker of elevated tumour 

aggressiveness. 

In this study, we exposed first results on relation of different lung microbiota with TILs and 

immune cells in BAL. Assessment of the association between four lung microbiota with both 

TILs and immune cells in BAL showed surprisingly similar results. In both analyses, only 

microbiota from BAL showed clear correlation profiles for multiple markers and correlating 

genera mutually corresponded between the two analyses. Genera from phyla Firmicutes 

(especially order Clostridiales), Actinobacteria and Bacteroidetes (class Bacteroidia) showed 

positive correlation with anti-tumour markers (TILs: CD8+ T lymphocytes, CD20+ B 

lymphocytes, FOXP3+ Tregs; in BAL Th1, Th2, Th1/Treg, Th1/Th17, Th1/Th2 ratios and 

inactive forms of neutrophils) [35]. Several genera in this group were already described for their 

potential in stimulating antitumoural immunity, such as Akkermansia, Bifidobacterium, 

Lactobacillus [57,58]. On the contrary, genera from BAL that were positively correlated with 

an immunosuppressive profile, particularly with BAL immune cells (Treg, Th17, Th17/Treg, 

activated neutrophils) [35] belonged mostly to phyla Proteobacteria (classes 

Alphaproteobacteria and Gammaproteobacteria) and Bacteroidetes (classes Flavobacteriia, 

Sphingobacteriia, Saprospirae). Conversely to the first group, genera from this group such as 

Haemophilus, Streptococcus, Staphylococcus, Pseudomonas were previously associated with 

lung pathologies (as COPD) and negative or immunosuppressive impact on the host [10,14].  

Interestingly, many BAL genera that positively correlated with anti-tumour markers in BAL 

belonged to the same taxonomic lineage as the group of anaerobic genera with increased 

abundance in Stage III tumours (therefore decreased in non-malignant and peritumoural tissue), 

and vice versa for negatively-correlated genera. Although representing a sample of 
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inter-bronchial microbiota, BAL genera were significantly associated both with immune 

markers within tumour and in BAL. Surprisingly, however, microbiota of the tissues, including 

tumour, showed poor association with immune characteristics from both TILs counts and BAL 

immune profiles. Further research will be necessary to determine the exact reason for this, since 

the answer is certainly very complex interplay between microbial, immunological and tumour 

properties.  

The major limitation of this study is the small number of patients due to the strict inclusion 

criteria. In this study design, we were not able to perform a longitudinal study following tumour 

progression and co-occurring microbiota modification. It would also be interesting to look at 

the absolute numbers of both immune cells and specific bacteria to complete these quality based 

data. This will be a perspective for future research. 

4 Conclusion 

To our knowledge, this is the first study in NSCLC patients that analysed lung microbiota from 

four different samples (BAL, non-malignant tissue, peritumoural tissue and tumour) and their 

relation with local immune response depending on the presence of metastatic lymph nodes. We 

showed that BAL microbiota was that most associated with both intra and extra-tumour immune 

response, while lung tissues’ microbiota changed relative to presence of metastatic lymph 

nodes. We also identified several biomarkers in lung tissues that could help improve patient’s 

diagnosis and prognosis. These findings need further confirmation in larger cohorts and 

additional research on interaction of various lung microbiota and lung cancer with its potential 

use in diagnostics. 

5 Materials and methods 

5.1 Patient recruitment 

Patients pre-considered for inclusion in the study were patients diagnosed with primary NSCLC 

eligible for surgical treatment without neoadjuvant platinum-based chemotherapy and 

presented before the Thoracic Oncologic Committee of the Centre Jean Perrin, 

Clermont-Ferrand, France. Inclusion criteria were: age between 18 and 80 years, body mass 

index (BMI) < 29.9, no administration of antibiotics, corticosteroids, and immunosuppressive 

drugs or no history of lung infection in at least the past 2 months as well as no previous airways 

surgery/cancer treatment. Detailed inclusion/exclusion criteria are available elsewhere [34]. 

Each patient was attributed a number at inclusion that was used for subsequent analyses. 
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5.2 Study design 

The study was concentrated around two points: inclusion and surgery. During an outpatient 

appointment preceding surgical intervention, eligible patients gave their written informed 

consent to participate in the study. The sampling of blood and lung tissues and fluid was done 

the day before surgery and during surgery, respectively. Lung sampling was performed on 

excised lobe during the operation and, therefore, posed no additional inconvenience for the 

patient. Four different lung samples were chosen as each represents a distinct microbiota 

relative to the lung physiology of the sample’s origin. A study flowchart as well as detailed 

design and power calculation were previously published [34]. 

5.3 Sampling of lung tissue and BAL 

The detailed procedure was previously published elsewhere [34]. Briefly, immediately after 

partial or complete pneumonectomy, the lobe was washed by instillation of sterile physiological 

serum (2 x 40 mL) directly to the bronchus to obtain BAL fluid (retrieved 8-10 mL in total). 

Furthermore, a non-malignant piece distal to the tumour was excised from the same lobe and 

designated as LUNG.DP. Tumour and peritumoural tissue were excised together as a pie-slice, 

to sample both the surface and centre of the tumour. Carefully, peritumoural tissue was cut off 

from the tumour slice based on its histological qualities. The tumour tissue sample was 

designated as LUNG.T and the peritumoural tissue sample as LUNG.PT. Tissue samples were 

immediately snap-frozen in liquid nitrogen and stored at -80°C until DNA extraction. 3 mL of 

BAL were used for immune cell phenotyping, while the rest was directly stored at -80°C until 

DNA extraction. 

5.4 Tumour immune infiltrate 

Immunohistochemistry was performed on deparaffinised tumour tissue using the specific 

antibodies to detect subpopulations of immune cells as follows: cytotoxic T-lymphocytes 

(anti-CD8, clone SP16, ThermoFisher Scientific, dilution 1:200), regulatory T-lymphocytes 

(anti-FOXP3, clone SP97, ThermoFisher Scientific, dilution 1:100), B-lymphocytes (anti-

CD20, clone SP32, Cell Marque, dilution 1:100). The immune response checkpoint axis PD-1– 

PD-L1 was assessed by anti-PD-1 (clone NAT105, CellMarque, dilution 1:50) and anti-PD-L1 

(clone 28-8, Abcam, dilution 1:50). All staining was performed by a fully automated, 

standardised procedure (Benchmark XT, Ventana/Roche). The number of lymphoid cells 

expressing each antigen, except PD-L1, was determined on five consecutive high-pass filter 

(HPF) (×400) fields (Nikon Eclipse Ci microscope), starting from the invasive front toward the 
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tumour centre as previously described [59]. It was used as a parameter reflecting the tumour’s 

quantity of a given immune cell subpopulation. The five-field average was used for statistical 

analysis. PD-L1 was assessed for both immune and tumour cells and reported as the percentage 

of each population expressing the antigen. 

5.5 BAL immune cell phenotyping 

Leukocytes were obtained after haemolysis from fresh blood and BAL as previously 

described [34]. Leukocytes were phenotyped by flow cytometry (LSRII, BD Biosciences) with 

the following antibodies: anti-CD3-VioBlue, anti-CD4-APC-Vio770, anti-CD25-APC, 

anti-CD127-VioBright FITC, anti-CD183 (CXCR3)-PE-Vio770, anti-CD294 (CRTH2)- PE, 

anti-CD196 (CCR6)-PE-Vio615, anti-CD15-FITC, anti-CD62L-PE, anti-CD11b-PE-Vio770 

and Viobility 405/520 fixable dye, all purchased from Miltenyi Biotec. Antibodies were used 

in dilution 1:10 and viability dye in 1:50. 

Granulocyte and lymphocyte population was obtained as a percentage of overall leukocytes 

gated on SSC/FSC plot. In the lymphocyte population, CD3+CD4+ helper T lymphocytes 

subpopulation was characterised as follows: Th1 as CXCR3+, Th2 as CRTH2+, Th17 as CCR6+ 

and Treg as CD25+CD127-. In the granulocyte population, neutrophil subpopulations were 

characterised as follows: circulating neutrophils as CD15+CD62L+CD11b-, transient 

“tethering” form as CD15+CD62L+CD11b+, and activated neutrophils as CD15+CD62L-

CD11b+. Neutrophil subtypes are presented as percentage of CD15+ granulocytes. Both 

lymphocyte and neutrophil gating strategy is shown in Additional file 1: Figure 2. 

Compensations and controls used the FMO (Fluorescence Minus One) procedure with 

corresponding antibody isotypes. The phenotyping of Th lymphocytes was based on previously 

published gating strategy but without viability marker [60]. The program used was Kaluza 

Analysis 2.1 (Beckman Coulter).  

5.6 DNA extraction and negative controls 

DNA was extracted as previously described [34]. Lung tissue samples (three samples per 

patient) were randomised so that as each extraction group never contained only one sample type 

or all samples from the same patient to alleviate the bias of manipulation. All samples were 

extracted in two batches. 

Since the study involves low biomass samples, background controls were performed throughout 

the sampling and extraction procedure. The control sample of physiological serum used for 
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BAL was taken from the same vessel and with the same syringe used for lavage afterwards. 

During the DNA extraction, miliQ water was used as a negative background control, treated 

with all the reagents and passing all the procedures along with the real samples. All controls 

were sequenced and analysed along with the samples. All the reagents used in DNA extraction 

and sample pre-treatments were either autoclaved, filtered through 20 µm filters or purchased 

sterile. All the tools and pipettes were thoroughly washed and disinfected between extractions 

of different sample types or between different extraction steps.  

5.7 16S ribosomal RNA (16S rRNA) gene sequencing 

16S ribosomal RNA gene sequencing was performed by DNAVision, Belgium, using Illumina 

MiSeq technology. After PCR amplification of the targeted region V3-V4, libraries were 

indexed using the NEXTERA XT Index kit V2. The sequencing was carried out in paired-end 

sequencing (2 x 250 bp) by targeting an average of 10,000 reads per sample. Sample sequences 

were clustered to OTUs based on 97% sequence similarity. The software used was QIIME 

(Quantitative Insights Into Microbial Ecology). The generated “raw” OTU table, taxonomy and 

Newick formatted phylogenetic tree provided by DNAVision were used for further 

bioinformatics analyses. 

5.8 Sequence processing and microbiota analysis 

Microbiota statistical analysis and visualisation were performed using RStudio [61] (packages 

“phyloseq” [62], “vegan” [63], ”microbiome” [64], “microbiomeSeq” [65], “ggplot2” [66], and 

“pROC” [67]). 

The “raw” OTU table obtained from DNAVision contained two kingdoms, Bacteria and 

Archaea. Only Bacteria were kept for further analysis. Furthermore, the OTU counts of each 

BAL sampling control (physiological serum taken at the sampling of BAL) were subtracted 

from its corresponding sample. Likewise, the OTU counts of each or multiple extraction 

controls were subtracted from samples corresponding to extraction. Mean read no. of 26 

negative controls was 86, with average of 21 OTUs detected per control, which gives an average 

of 4 reads/detected OTU. None of these OTUs belonged to more represented OTUs in true 

samples, and had mostly lower counts than in negative controls. Since samples were extracted 

in two batches (with complete randomisation of all sample types), OTUs with 0 count in each 

sample of one batch and detected in each sample of the other batch were excluded from further 

analysis. Detected OTUs represented marginal count values and left virtually unchanged data. 

Only OTUs present in at least 10% of the samples or having more than 50 overall counts were 
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kept for further processing (in our case, this was equivalent to keeping the OTUs with minimal 

average abundance of 0.001%). Only samples with more than 1,000 reads were included in the 

analysis. This excluded 6 samples: in the Stage I,II group 1 BAL, 2 peritumoural tissues and 1 

tumour, and in the Stage III group 1 BAL and 1 peritumoural tissue. Average read number of 

final sample groups was 17,046 ± 14,879 (mean ± SD) for BAL, 13,352 ± 12,909 for non-

malignant tissue, 13,039 ± 11,394 for peritumoural tissue and 5,846 ± 4.505 for tumour. 

For diversity analyses, samples were rarefied at 1,195 reads (min. read no. of samples) with 

100 iterations. Alpha diversity was estimated by observed OTU number, Shannon diversity and 

Faith’s phylogenetic diversity. Analysis of beta diversity (compositional distance between 

samples or groups of samples) was performed on weighted (more importance on difference in 

abundance) or unweighted (importance of presence/absence of OTUs) UniFrac distances using 

Adonis function (“vegan”) with 999 permutations and presented with 2D non-metric 

multidimensional scaling (NMDS).  

Relative abundance was calculated from the unrarefied OTU table. Differential abundance 

between tumour stages for each sample type was determined with the adapted Deseq procedure 

(“microbiomeSeq”) using modelling of abundances as negative binomial distribution (mean 

depends on sample specific size factor and concentration of given OTU in a sample). This 

procedure starts with the non-rarefied OTU table, followed by log-relative transformation and 

Wald’s test to test significance of coefficients in a negative binomial general linearized model 

based on sample estimates. Additional output variables of this procedure is a rank of importance 

of the detected significant difference, as detected by random forest classifier. Significance 

threshold was 0.05 after Benjamini-Hochberg (BH) correction. 

Taxa detected as significantly different between tumour stages within respective samples were 

next compared between samples (inside the same stage) by non-paired Kruskal-Wallis test with 

BH correction. 

Receiver operating characteristic (ROC) analysis was done on normalised OTU counts with 

general linear model fit. pROC package was used for AUC calculation and plot [67]. 

5.9 Statistical methods for non-microbial or mixed analysis 

All statistical analyses and graphics were done using RStudio [61] (package “ggpubr” [68]). 

The tests used were nonparametric (Man-Whitney, Kruskal-Wallis) and 2-sided with the 

significance threshold at 0.05 with BH correction for multiple comparison (if not specified 
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otherwise). Data are shown as boxplots (aligned or dispersed points) with the central line 

representing median, box ends as first and third quartiles, and error bars as minimum and 

maximum (higher and lower non-outlier observations) if not specified otherwise. The 

Chi-square test was used to examine balance of factors such as smoking, sex, tumour type etc. 

between two Stage groups. 

Spearman’s correlation was used to determine the association between microbial taxa and 

environmental variables. Relative transformation of the OTU table was done prior to analysis 

and BH correction was applied both for grouping variables and taxa. The significance threshold 

was 0.05. 

5.10  Managing missing data – paired/unpaired tests 

Due to an insufficient number of reads, 6 lung samples were excluded from the analysis, leaving 

62 lung samples overall. Since the excluded samples belonged to different patients and different 

tissues (no pattern), keeping a strictly paired analysis approach would drastically impact the 

group size. Therefore, the analyses comparing different lung tissue within the same tumour 

stage were unpaired. 

In only one patient (Stage I,II) immune cells in BAL were not phenotyped. Patient was therefore 

excluded only from the paired analysis that included BAL immune profiling and association 

with BAL microbiota. 

6 Declarations 

6.1 Ethics approval and consent to participate 

This study (and its amendment in June 2018) was approved by the Ethics Committee (Comité 

de protection des personnes (CPP) Sud-Est VI), Clermont-Ferrand, France, and the French 

National Agency for Medicines and Health Products Safety (ANSM) (study ref. 2016-A01640-

51). The study was registered with the Clinical Trials (clinicaltrials.gov) under ID: 

NCT03068663. Because of the invasiveness of the sampling techniques, the requested control 

group was not approved by the CPP. Written informed consent was obtained from all patients 

upon inclusion in the study.  

6.2 Consent for publication 

Not applicable. 
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6.3 Availability of data and material 

According to the practice of the sponsoring institution (Centre Jean Perrin), all samples will be 

preserved for 15 years. The datasets generated and/or analysed during the current study are 

confidential but are available from the corresponding author on reasonable request and after the 

data sharing process is brought into compliance with GDPR (Regulation (EU) 2016/679 of the 

European Parliament and of the Council of 27 April 2016). 

6.3.1 Data sharing 

This statement is intended to clarify Centre Jean Perrin’s position on data sharing with regards 

to applicable regulatory frameworks. 

6.3.1.1 European regulatory framework 

De-identified study data are considered as personal data within the meaning of Regulation (EU) 

2016/679 of the European Parliament and of the Council of 27 April 2016, known as « GDPR ». 

As a result, their transfer places further processors in the scope of GDPR (Art. 2 and 3) and is 

notably subject to 

 precise information of study subjects (Art. 14),  

 prior identification of further processors and signature of a transfer agreement (Chapter 

V),  

 data protection impact assessment (Art. 35). 

6.3.1.2  French regulatory framework 

In addition to GDPR, the transfer of this data by Centre Jean Perrin is a processing in itself that 

is subject to Chapter IX and XII of the updated Law n°78-17 of 6 January 1978. Within the 

framework of this law, the data processing is permitted by Centre Jean Perrin’s conformity to 

the MR-001 Code of conduct (Délibération n° 2018-153 du 3 mai 2018 portant homologation 

d'une méthodologie de référence relative aux traitements de données à caractère personnel mis 

en œuvre dans le cadre des recherches dans le domaine de la santé avec recueil du consentement 

de la personne concernée). 

In its last update from May 2018, MR-001 was updated to allow transfer to reviewers within 

certain conditions (Article 2.4).  

These conditions can be summarised as follow: 
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The access to study data by an independent mandated reviewer can only be granted through 

an interface chosen by the data processor (i.e. Centre Jean Perrin, in this context) for the sole 

purpose of re-analysis or for any other purpose supported by a strong rational and a project 

synopsis describing why access to the this study’s data (study acronym: MICA)  is necessary. 

The data processor shall ensure: 

 That the chosen sharing platform cannot allow extraction of the data; 

 To grant specific personal and differentiated authorizations to access the data; 

 That the users be reliably identified 

 That state of the art cryptography and security measures are used; 

 That an audit trail of accesses is used; 

 When data is transferred outside of the EU, that applicable transfer contracts are 

established; 

 That study subjects are informed on the data recipients; 

 That the data is used for the sole purpose of reproducing published results; 

 That the data is cleaned from any directly identifying data and that the principle of data 

minimization is applied (i.e. limiting the transfer to data used in the publication). 

6.3.1.3 Study Data sharing 

As a result, for this trial (acronym: MICA), Centre Jean Perrin can share individual participant 

data that underlie the results reported in the article under the following conditions: 

 Limitation to the data processing to the purpose of independent review of the 

published results; 

 Prior minimization of the data (i.e. restriction to data strictly adequate, relevant 

and limited to the purpose of the independent review of results); 

 Prior identification of the reviewer and authorization from Centre Jean Perrin for a 

personal access; 

 Following the signature of a transfer agreement with Centre Jean Perrin, in 

conformity with the European Commission’s Standard Contractual Clauses; 
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Access to study data will be assessed, upon written detailed request sent to the project manager 

Emilie THIVAT: emilie.thivat@clermont.unicancer.fr, from 6 months until 5 years following 

article’s publication. 
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8 Additional files 

Additional file 1.pdf – contains two figures: 

 Figure 1. TILs ratio in tumour stages and correlation with lung microbiota. – Additional 

figure showing TILs ratio relative to Stage group (Fig. 1a), and its association to lung 

microbiota (Fig. 1b). 

 Figure 2. Gating strategy for phenotyping of T helper lymphocytes and granulocytic 

neutrophils in bronchoalveolar lavage fluid. – additional figure illustrating the gating 

strategy on the representative BAL sample. 
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1 Discussion 

In the history of the research, we could say that the progress of one field was never linear and 

different scientific branches never developed simultaneously. One crucial advancement in the 

area opens the door into a new and unexplored world, with numerous possibilities and offering 

answers to all the problems. The scientific community has already been marked with the 

decades of genomics, proteomics, metabolomics, but every next questioned the “divinity” of 

the previous. At some point however, there were researchers who were capable to see beyond 

the “mainstream” movement, trying to put the things in perspective, beginning to understand 

the organism is a puzzle requiring all its pieces in the right place to maintain its homeostasis. 

This encouraged the new approach in the research, which then started to use all the developed 

tools to fill in the missing pieces and enable seeing the final picture. In this context began the 

studies of the microbiota, starting to connect the intestinal homeostasis or dysbiosis with host’s 

wellbeing, biological paraphrase of “we are what we eat”. Even though the last decade could 

definitely be called the decade of the microbiota, this new “divinity” was well intertwined with 

other crucial domains, as immunity, physiology and genetics. The interaction of the gut 

microbiota with local mucosa, mesenteric lymph nodes and successively, distal immune 

disorders, opened a vast field for research, discussion and potential application of bacteria in 

the treatment of the major modern world problem, cancer (Daillère et al. 2016; Sivan et al. 

2015; Vétizou et al. 2015; Viaud et al. 2013). Lung cancer, with leading incidence and mortality 

worldwide (International Agency for Research on Cancer 2019), is definitely recognised as the 

issue with the heaviest impact on the quality of life but also on the social care system. One of 

the reasons is its late and mostly accidental discovery in already advanced stages in aged 

population, which will too often give into the side effects of adjuvant therapies, surgery or 

tumour itself. Therefore, the stimulation of the anticancer effect or improvement of the therapy 

by resident microbiota draw the attention of the medical circles. However, as these 

advancements are based on animal models and are of relatively recent dates, the studies 

including human subjects remain a few, with additional inconvenience – low knowledge of the 

effect of the local, in this case, lung microbiota.  

Inspired by the idea of the gut-lung axis (discussed in the published review (Bingula et al. 

2017)), the purpose of this thesis project was to characterise NSCLC patients through 

multidirectional approach, which would provide essential and currently missing knowledge 
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crucial for better understanding of communication between major factors implicated in the axis 

and later development of interventional research. This included characterisation of the 

microbiota of the lung, gut and saliva, and its association both with local (intratumoural, 

extratumoural, intestinal) and systemic (blood) immune response with regard to microbial 

products (as SCFA) and accompanying nutrition status.  

Due to multiple possible research axes in this project, we have first decided to concentrate on 

the lung region, since it is less explored compared to the gut. We have first focused on the 

characterisation of different lung microbiota (tumour, peritumoural and non-malignant tissue, 

and BAL), their relation to salivary microbiota and the impact of the location of the tumour 

lobe (Article 1). Second, we wanted to address the direct clinical application of our research. 

So, we have investigated whether there is an interaction between the presence of metastatic 

lymph nodes (as one of the major prognostic factors for NSCLC), different lung microbiota and 

local immunity (Article 2). Further research axes will be discussed in Conclusion and 

perspectives. 

 BAL represents unique lung microbiota and is only marginally more similar to 

saliva than are the lung tissues 

Since its beginnings, the investigation of the lung microbiota has been accompanied by several 

inconveniences. One of the major remained the choice of the lung sample that would well 

represent the lung communities but that would not be too invasive for the patient. Therefore, 

BAL was and still is the most frequent sample type in studies of the lung microbiota, including 

lung cancer (Laroumagne et al. 2011; Lee et al. 2016; Liu et al. 2018; Tsay et al. 2018; Wang 

et al. 2019). However, it has been previously suggested that lung microbiota found in BAL and 

in lung tissues do not share same characteristics (Sze et al. 2012), due to different physiology 

of samples.  

We have shown for the first time that BAL microbiota harbours distinct microbiota 

compared to lung tissue while including up to three different tissue samples (non-

malignant, peritumoural and tumour tissue) (Article 1). BAL represented a unique sample 

based on both beta diversity and on differential abundance analysis. Firmicutes was the most 

abundant phylum, conversely to Proteobacteria in lung tissue samples. Furthermore, looking 

separately characteristics of microbiota in either upper (UL) or medium/lower lobes (LL), we 

identified whole clades with inverse abundance between BAL and extratumoural tissue 
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microbiota, such as Flavobacteriia and Actinobacteria, confirming the initial premise of two 

distinct microbial communities. 

Since in our study design BAL was obtained directly on the excised lobe for the first time, 

we had the opportunity to estimate if BAL from UL was more similar to saliva (as a 

representative of upper airways microbiota) than if it was from LL. Following the theory of the 

adapted island model of the lung biogeography (Dickson et al. 2015), upper lobes should share 

more similar community composition with upper airways, and show increased richness 

compared to LL. However, we have not found a significant difference in distance when 

comparing saliva with BAL from lower or upper tumour lobe, despite slightly increased 

abundance of typically oral taxa in the UL (as Veillonella or Prevotella). This could be either 

due to tumour presence influencing the microbiota properties, as previously suggested (Liu et 

al. 2018) or because of different sampling approach that importantly lowered the upper airways 

contamination. On the contrary, both richness and diversity were significantly lower in the LL 

BAL. Since these did not change in tumour and non-malignant tissue, there are several possible 

reasons. First that the BAL is more sensitive to distance from the central bronchus than the 

tissues, causing lower richness in LL according to the island hypothesis (Dickson et al. 2015). 

Second, since upper lobes of the lung are more expanded than the lower lobes during slow 

inspiration, more inspired air will enter the lower lobes than the upper lobes (Chang and Yu 

1999). This could suggest more dynamic environment in the LL than in the UL, limiting the 

establishment of richer community, unlike in the upper airways. This will remain the subject 

for further research. 

 Peritumoural tissue microbiota as a potential indirect marker of modification of the 

tumour environment 

It has been demonstrated that tumour progression is not only related to tumour itself, but also 

to its environment. The remodelling of the ECM under tumour-producing factors to enable 

tumour progression has already been reported (Altinay 2016) (Figure 10), but also the 

repressive features of the environment on the tumour (Bissell and Hines 2011). However, no 

study so far examined whether peritumoural tissue harbours microbiota that differs from the 

one in the tumour or non-malignant tissue in the case of NSCLC. 
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Figure 10 Modification of the extracellular matrix (ECM) promotes cancer progression 

(adapted from Altinay 2016). (A) normal structure of the extracellular matrix. (B) Under pathological 

conditions, there is an excesive generation of activated fibroblasts that contribute to overproduction of 

ECM and deregulation of ECM modelling enzymes. Due to the delicate equilibrium between the local 

cells and ECM, these changes stimulate epithelial cellular transformation and hyperplasia, creating a 

stiffened matrix. (C) In addition to local cells, immune cells recruited to the tumour site further promote 

local inflammation, accompanied by neoangiogenesis facilitating tumour propagation due to the leaky 

tumour vasculature. (D) Metastases that survived in the circulation, extravasate at distant site and 

express ECM remodelling enzymes to create a local metastatic niche that will furtherly promote survival 

and proliferation of cancer cells. 

We are the first to include peritumoural tissue in characterisation of the lung microbiota 

(Article 1), showing that it is the sole lung tissue sample with significant changes in richness 

and in alpha and beta diversity relative to the lobe location. We reported that peritumoural tissue 

from UL had increased similarity to BAL (seen in beta diversity and its higher portion of 

phylum Firmicutes) while in LL it demonstrated same features as other two tissues. We 

proposed that this could actually reflect different type of modifications of the ECM, influencing 

both adhesive properties and the tissue’s architecture (Altinay 2016; Bissell and Hines 2011; 

Quail and Joyce 2013) and directly modifying local conditions for bacterial growth. In the 

pathogenicity of NSCLC, tumours from lower lobes have been associated with decreased 

overall survival, but still without clear explanation (Kudo et al. 2012; Riquet et al. 2016). Our 

discovery could indicate the indirect detection of subtle differences in the tumour environment 

that could be connected either to its increased aggressiveness, or these differences could enable 
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growth of different types of microbiota that might enable or disable cancer progression (e.g. 

occupying adhesive sites and enabling metastatic progression). 

 Lower lobes and presence of metastatic lymph nodes marked by higher abundance 

of the phylum Firmicutes 

Several studies have already reported the increase of phylum Firmicutes in the lung microbiota 

when comparing control group to the malignant one. This observation has been of especial 

interest in COPD (Sze et al. 2012) since studies have shown that COPD could lead to 

development of the lung cancer but also that both diseases are based on clinical or subclinical 

inflammation creating the mutual “reasoning” ground (Houghton 2013; Melkamu et al. 2013). 

We are the first to report that the lung microbiota based on four different sample types 

had higher average abundance of the phylum Firmicutes if the tumour was found in the 

lower lung lobes (Article 1). Moreover, we noted the increase of Firmicutes in lung tissues if 

the patient was diagnosed with metastatic changes in the local lymph nodes (Article 2). 

Both of these results are in concordance with the previous findings connecting this shift with 

advanced disease state or its presence as mentioned in the previous paragraph. In our study, this 

“shift” was mostly due to significantly higher relative abundance of the genus Clostridium. 

However, the more precise determination of involved species as well as the absolute quantity 

and the implication in tumour immunology remains the subject for the future research. 

 Metastatic lymph nodes stratify tissue microbiota as tumour versus extratumoural 

tissues in an inverse pattern corresponding to bacterial respiratory profiles 

Tumour staging is the main prognostic tool in NSCLC and serves in the choice of the 

appropriate treatment (Goldstraw et al. 2016).  It is based on TNM classification that includes 

the information of patient’s tumour size, involvement of the metastatic changes on the 

ipsilateral and mediastinal lymph nodes (LN), and occurrence of distal metastasis. The presence 

of metastatic changes drastically worsens the prognosis compared to e.g. patients with larger 

tumours but without metastatic changes, since their presence has been associated to shorter 5-

year and overall survival (Goldstraw et al. 2016; Planchard et al. 2019). 

We are the first to show that the tissue lung microbiota shows specific and inverse pattern 

between tumour and extratumoural tissues depending on the lymph node metastatic 

status (Article 2). Moreover, we have showed that this pattern was closely related to 

bacterial respiratory profiles. As the advantage over previous studies, we had three different 
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types of the lung tissue, non-malignant, peritumoural and tumour tissue, and therefore the 

possibility to better characterise the microbial communities within and in the immediate and 

general vicinity of the tumour. 31 genera had significantly different abundance in at least one 

of the tissues between patients with and without LN metastasis. Curiously, genera appearing in 

non-malignant and peritumoural tissue seemed to have the opposite abundance pattern from the 

tumour. It means that if one genus detected in extratumoural tissues was significantly more 

abundant in patients with metastatic LN than in the ones without, this same genus showed 

exactly the opposite if it was detected in the tumour (Article 2, Figures 2 and 3). Although not 

all 31 genera had significantly inverse abundance for each tissue, they all showed the same 

tendency to follow this general pattern. Even more striking was the fact that genera with higher 

abundance in the tumours from patients with normal LN and in extratumoural tissues from 

patients with metastatic LN all had aerobic respiratory profile and belonged mostly to phylum 

Proteobacteria. Conversely, the genera with the inverse pattern had anaerobic respiratory 

profile and belonged in the majority to the phylum Firmicutes. The inverse abundance distinct 

respiratory profiles and less changing abundance in the peritumoural tissue led to the hypothesis 

of the “migratory” bacteria. Looking into the tumour physiology, smaller and non-aggressive 

tumours are often well oxygenated, with sufficient blood and nutrient supply while providing 

increased protection from the immune system due to decreased immunogenicity or 

immunosuppression (Van Dessel et al. 2015). Tumour cells can also produce different factors 

that centre glucose delivery to tumour cells (Schwartsburd 2019). These conditions could 

provide excellent environment for aerobic bacteria. However, with tumour development and 

growth, there is an increased rate of lactic acid production due to its anaerobic metabolism, 

growing hypoxic conditions and insufficient blood supply by defect neoangiogenic vessels 

(Fadaka et al. 2017; Wouters et al. 2003). This environment becomes hostile for aerobic bacteria 

that “move out” of the tumour to its surroundings. On the other hand, anaerobic bacteria, 

previously suggested to inhabit biofilms within the lungs (Costerton et al. 1994; J. W. Costerton, 

Stewart, and Greenberg 1999; Mur et al. 2018; Whitchurch et al. 2002), are attracted by this 

changing environment, and “move inside” the tumour. Here, they could feed, among other, on 

necrotic tumour cells, while being protected from the immune system by acidic pH inhibiting 

immune activity (Damgaci et al. 2018). Even though only 25% of detected genera had active 

motility organs, alternative ways of bacterial taxis have been described previously, including 

“gliding” or attachment to host’s cells (Mauriello et al. 2010; Youderian 1998). Therefore, it is 

possible that there is a dynamic exchange between extra and intratumoural environment 
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depending on the varying growth conditions and that it could be of great importance for our 

understanding of tumour-microbiota interaction. 

The metastatic status of the LN nodes is determined by their direct biopsy, either before surgery 

by transbronchial echoendoscopy or during surgery. In our study, we have been able to identify 

several biomarkers in each lung tissue that could indicate the involvement of the 

metastatic LN without the direct necessity of their biopsy. This remains to be confirmed by 

the qPCR as the more common technique but could, if validated, immensely facilitate the 

correct diagnosis in NSCLC patients. 

 BAL microbiota not sensitive to presence of metastatic lymph nodes, but the most 

associated to immune phenotypes in BAL and tumour-infiltrating lymphocytes 

It has been previously shown that the increased abundance of supraglottic taxa in BAL 

correlates with increased inflammatory status in the lungs of lung cancer patients seen by the 

change in Th17 profile (Segal et al. 2016). However, no study so far evaluated the association 

between intratumoural immunity and lung microbiota. 

We are the first to show that BAL microbiota is associated both with anti and 

proinflammatory immune profile in the BAL and with tumour infiltrating lymphocytes 

(TILs) (Article 2). Unlike tissues, BAL microbiota showed no significant difference in the 

abundance relative to involvement of the metastatic LN. However, this was the only microbiota 

that showed a significant association with local immunity. We found that members of phylum 

Proteobacteria positively correlated with protumour markers (Chraa et al. 2019) as activated 

neutrophils, Th17, Treg in BAL and with lower infiltration rate of the tumour. On the other 

hand, members mostly from the phylum Firmicutes positively correlated with the antitumour 

markers as Th1, Th2, inactive forms of neutrophils (Chraa et al. 2019) in BAL and with higher 

lymphocyte infiltration rate of the tumour. Several of the detected genera have been previously 

reported to have similar effect on immune response. E.g. Akkermansia, Bifidobacterium and 

Lactobacillus were detected as genera with antitumour effect  (Bashiardes et al. 2017; Naito, 

Uchiyama, and Takagi 2018), and Haemophilus, Streptococcus, Staphylococcus, and 

Pseudomonas as associated with lung pathologies (as COPD) and negative or 

immunosuppressive impact on the host (Erb-Downward et al. 2011; Sze et al. 2015). 
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2 Conclusion 

The lung cancer is the first cause of death by cancer worldwide and the cancer with the highest 

incidence in 2018 along with the breast cancer (International Agency for Research on Cancer 

2019). From two major subtypes, NSCLC takes up to 80-85% of overall cases of lung cancer 

and hits in majority the older population (Takayuki et al. 2018). While its genetic base is already 

well characterised (Aisner and Marshall 2012), the interaction between NSCLC and lung 

microbiota counts its first studies. Even though last decade was marked by the growing interest 

in the lung microbiota, especially in COPD, asthma and cystic fibrosis (Mao et al. 2018; 

O’Dwyer, Dickson, and Moore 2016), lung cancer seemed to stay in the shadow of interest. 

However, this started to change following the recent research in animal models, showing that 

gut microbiota could influence both tumour growth and host’s response to chemotherapy (Iida 

et al. 2013; Routy, Le Chatelier, et al. 2018; Sivan et al. 2015; Vétizou et al. 2015). These 

findings evoked the idea of the gut-lung axis, the hypothesis of immune stimulation of the host 

by certain intestinal commensal bacteria to increase its antitumour activity in the lung (Bingula 

et al. 2017; Budden et al. 2016; Hauptmann and Schaible 2016; Marsland et al. 2015). 

Nevertheless, before considering the axis and its distal effect, it was first necessary to 

investigate the local effect of the lung microbiota (Dickson and Cox 2017). Here, there have 

been multiple challenges, starting with the ethics of the lung sampling in human subjects 

focusing the majority of studies to analysis of BAL (Mao et al. 2018). Finally, many issues 

remained unanswered, from the basic difference between different lung samples and its 

implication in the studies’ conclusions to deeper investigation of tumour-microbiota interaction. 

We have shown for the first time that lung microbiota from BAL and lung tissues harbours 

different characteristics, and that they all represent true lung samples compared to saliva as a 

sample of oral microbiota. Moreover, we have characterised for the first time the microbiota 

from four different lung samples, BAL, non-malignant, peritumoural and tumour tissue, and 

also placing it in perspective of the tumour lobe location. We have shown that the latter 

influenced the most the microbiota from BAL and peritumoural tissue, while tumour was the 

least affected. We have also proposed that these changes seen in peritumoural tissue could 

reflect the modification of tumour’s vicinity and influence its aggressiveness. 

Next, we have shown that tumour and extratumoural tissue have inverse abundance pattern 

relative to the involvement of the metastatic lymph nodes. Furthermore, this pattern was closely 
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related to bacterial respiratory profiles, identifying aerobic bacteria as the more present in 

tumours without metastatic lymph nodes and in extratumoural tissues with metastatic nodes, 

and exactly inverse for anaerobic bacteria. We proposed that these two bacterial groups 

“switch” places relative to the benefit of the tumour microenvironment, as richness in 

nutriments, protection from the immune system and favourable respiratory conditions. Among 

these genera we identified potential biomarkers that could add to more accurate and easier 

clinical diagnosis of lymph node metastases. Finally, we reported the association between local 

extra and intratumoural immune response and BAL microbiota, identifying members of phylum 

Proteobacteria as associated with protumoural profile and members of phylum Firmicutes as 

associated to antitumoural immune profile. However, this was independent of metastatic lymph 

node status. 

Our findings are among the first that consider lung microbiota in NSCLC and that are 

significantly adding to the overall understanding of the local dynamics between the microbiota, 

lung tumour and immunity. Except showing the underlying difference between different lung 

microbiota, we also demonstrated the dissimilarity in the association with the immune response. 

Our results will, however, need confirmation in the larger number of subjects, especially for the 

verification of the potential biomarkers. 
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3 Perspectives 

Even though we have begun to unveil the mystery of the lung microbiota and its implication in 

the lung cancer, many questions still remain unanswered. As our next objective, we will 

concentrate to the effect of the metastatic lymph nodes to the rest of the host. This will implicate 

the analysis of the immune profiles (as already described in BAL) and cytokines in blood, and 

of course, the investigation of characteristics of faecal microbiota and SCFA as its products for 

each case. In the scope of the clinical application, we will seek to confirm our discovery of 

potential biomarkers by developing the absolute quantification with qPCR, to establish the fast 

and precise technique for detection of metastatic lymph nodes from any tissue biopsy in the 

tumour lobe. 

The immunology of the tumour has become an important factor for consideration when it comes 

to the choice of the appropriate therapy or prognostics. This is explained by the fact that each 

tumour belongs to the one of the essential cancer-immune phenotypes, harbouring specific 

characteristics that influence its interaction with its environment (Chen and Mellman 2017). 

Since we have observed in our study (Article 2) very heterogeneous counts of TILs and no 

association to tumour microbiota, it is possible that this might be the discriminating factor. Gut 

microbiota will also be included in the analysis, since it has been proposed as the initial 

“stimulator” of the tumour infiltration by anti-tumour immune cells in animal models (Daillère 

et al. 2016; Routy, Le Chatelier, et al. 2018; Sivan et al. 2015; Viaud et al. 2013). 

Regarding bacterial products, we have dosed the SCFA in the faeces, but according to the 

literature, this represents only 5% of the total produced SCFA in the intestines (den Besten et 

al. 2013). Even if this is a good indicator of functionary bacterial groups along with the results 

of enumeration from fresh faeces, it will be interesting to dose SCFA in blood. This would 

allow us to have insight into the absorbed part, even if it is present in a small amount (Cummings 

et al. 1987), that might reach the environment of the lung tumour and play the role in immune 

response as previously suggested (Bingula et al. 2017). 

The important perspective of this project is also to complete the group of NSCLC patients that 

underwent chemotherapy treatment before surgery. This group will enable us to follow the 

changes in the gut and salivary microbiota and immune markers during the therapy, with 

surgery as the final point with collection of the lung samples. The chemotherapy side effects 

due to its non-selectivity, as the disruption of the mucosa and membranes and other fast 
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proliferating cells, has been one of the major problems in treated population (Yu 2013). 

However, patients do not react in the same manner, but unfortunately, nor does the tumour, as 

previously reported (Busch et al. 2016; Catacchio et al. 2018). In animal models, faecal 

transplantation from responding patients has already been proved as an effective solution (Sivan 

et al. 2015; Vétizou et al. 2015), indicating that gut microbiota is the one gravely influencing 

the patient’s susceptibility to therapy. Therefore, the objective will also be to try to identify the 

differences between these patients’ subgroups in order to try to influence the non-responders. 

Considering the lung tumour and lung microbiota, it will be interesting to correlate the degree 

of tumour response to therapy, as tumour retraction, immune infiltration or degree of necrosis, 

with both lung and gut microbial factors. 
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1 Contexte et problématique 

Selon l'Organisation Mondiale de la Santé (OMS), le cancer du poumon est la première cause 

de décès par cancer au monde, avec environ 1 761 000 décès enregistrés et 2 093 876 nouveaux 

cas en 2018 (International Agency for Research on Cancer, 2019). La classification se fait en 

deux groupes principaux : le cancer bronchique à petites cellules (CBPC) et le cancer 

bronchique non à petites cellules (CBNPC). Bien que le CBPC ait un moins bon pronostic et 

un taux de létalité très élevé, il ne représente qu’environ 5 % des cas de cancer du poumon.  

Le CBNPC est donc plus fréquent et son pronostic dépend des mutations sous-jacentes, du type 

histologique et du degré d'agressivité (Molina et al., 2008). Dans le CBNPC, le principal outil 

de pronostic est la stadification des tumeurs d'après la classification TNM. Elle permet de 

classer les tumeurs en différents stades selon leur taille (T), les changements métastatiques sur 

les ganglions lymphatiques (N) et la métastase à distance (M) (Goldstraw et al., 2016). Les 

stades les plus avancés, en incluant notamment les changements métastatiques, sont associés à 

de moins bons résultats aux traitements et à une survie globale beaucoup plus courte (Planchard 

et al., 2019). Jusqu’alors, les mutations dites "d'évasion" étaient considérées comme la 

principale voie pour le cancer d’échapper à la réponse immunitaire de l'hôte. En effet, les 

cellules cancéreuses accumulent diverses mutations dues à leur taux élevé de renouvellement, 

à l'absence de suppresseurs de tumeurs et à des facteurs mutagènes extérieurs (p. ex. fumée, 

alcool) jusqu'à ce qu'elles deviennent non identifiables par le système immunitaire de l'hôte 

(Dunn et al., 2002). 

Cependant, cette approche exclusivement intrinsèque commence à s'assouplir et la recherche 

sur le cancer adopte depuis peu une approche plus systémique. Plusieurs facteurs sont 

maintenant reconnus comme ayant une influence sur l’immuno-surveillance du cancer, tels que 

la nutrition, l'activité physique, le mode de vie (Molina et al., 2008), et plus récemment - le 

microbiote.  

Le microbiote regroupe un consortium de bactéries, champignons, virus et protozoaires 

(Marsland et al., 2015), mais ce terme est le plus souvent utilisé dans la littérature pour désigner 

uniquement les bactéries (ce qui est également le cas dans ce manuscrit). Le microbiote du 

système gastro-intestinal est le plus étudié, mais il existe aussi des microbiotes résidant sur la 

peau et dans les autres cavités corporelles de l’hôte (tractus urogénital, zone oropharyngée, 
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etc.). Une reconnaissance accrue des fonctions qu’il exerce et son rôle crucial pour l’hôte font 

que le microbiote intestinal est souvent considéré comme un "organe oublié".  

Avec une biomasse bactérienne de 2 kg, 1 à 10 fois plus de cellules que celles qui constituent 

notre corps et 100 fois plus de gènes que le génome humain, cet "organe" assure : l’homéostasie 

de l'hôte par la dégradation des nutriments, la synthèse de précurseurs et de vitamines, mais 

aussi la stimulation du système immunitaire (Bashiardes et al., 2017; Flint et al., 2012; García-

Castillo et al., 2016; Kamada et al., 2013; Kau et al., 2011; Sender et al., 2016; Zeng et al., 

2016). Le microbiote intestinal a été reconnu comme étant le facteur sous-jacent du 

développement du système immunitaire en bas âge (Gensollen et al., 2016; Thaiss et al., 2014), 

et sa dysbiose a été reconnue comme étant le facteur sous-jacent de plusieurs troubles 

immunitaires, comme l'asthme (Kalliomäki & Isolauri, 2003). On sait maintenant que les 

cellules bactériennes commensales stimulent constamment le système immunitaire, en 

maintenant un état de " veille " qui permettra de répondre plus efficacement à des antigènes 

étrangers, mais aussi en maintenant des mécanismes de " refroidissement " qui empêcheront 

une réaction excessive (Curotto de Lafaille et al., 2010; Mazmanian et al., 2005; Noverr & 

Huffnagle, 2004).  

Cette caractéristique du microbiote commensal a été reconnue dans le traitement du cancer, ce 

qui a conduit à l'émergence de la théorie « intestin-lymphe » (Samuelson et al., 2015). Il suggère 

que les bactéries intestinales commensales pourraient stimuler l'immunité anti-tumorale non 

seulement localement, mais aussi de façon systémique. Ceci est possible grâce à la migration 

de bactéries, de leurs métabolites ou de cellules immunitaires stimulées vers l'emplacement 

distal via le système lymphatique. Au niveau du site distal, par exemple le lit de la tumeur, ces 

facteurs pourraient soit stimuler la réponse antitumorale (comme dans l'intestin), soit des 

cellules immunitaires déjà stimulées pourraient exercer directement leur effet antitumoral. La 

base de cette théorie repose sur plusieurs travaux menés sur des modèles animaux. Dans ces 

études, des animaux élevés dans des conditions exemptes de germes (GF) ou traités avec des 

antibiotiques n'ont pas répondu à la chimiothérapie classique avec du cyclophosphamide ou à 

la thérapie utilisant des inhibiteurs de point de contrôle immunitaire (Daillère et al., 2016; 

Routy, Le Chatelier, et al., 2018; Sivan et al., 2015; Viaud et al., 2013). En revanche, 

l’administration de souches bactériennes sélectionnées chez ces animaux a rétabli la réponse au 

traitement et a même eu un effet antitumoral si elles étaient administrées sans chimiothérapie 

(Sivan et al., 2015).  
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Ces études ont ouvert un vaste champ d'intérêt sur les oncobiotiques, des bactéries qui 

pourraient être utilisées comme médicaments anticancéreux et améliorer la surveillance 

immunitaire (Routy, Gopalakrishnan, et al., 2018). 

Récemment, un nouvel axe "intestin-poumon" a été évoqué. De multiples observations 

suggèrent que la modification d'un régime alimentaire (associée à une modification du 

microbiote) ou l'exposition à certaines particules modifient la réponse immunitaire dans les 

poumons. La communication inverse est également possible. Sur cette base, la théorie de l'axe 

suggère une communication entre ces deux compartiments via la circulation lymphatique et 

sanguine. Afin d’aborder ces deux microbiotes très différents, de proposer une connexion basée 

sur la recherche à travers le système immunitaire, et d’aborder son application potentielle dans 

le cancer du poumon, nous avons écrit un article de synthèse intitulé "Desired Turbulence ? 

Gut-Lung Axis, Immunity, and Lung Cancer" (les auteurs dans l’ordre : Rea Bingula, 

Marc Filaire, Nina Radosevic-Robin, Mathieu Bey, Jean-Yves Berthon, Annick Bernalier-

Donadille, Marie-Paule Vasson, Edith Filaire), publié dans Journal of Oncology, 17 

septembre 2017. 

Cet article a porté sur les connaissances actuelles concernant la composition du microbiote 

intestinal, rhino-oropharyngé et pulmonaire chez les sujets en bonne santé. Il a fait état de 

modifications du microbiote pulmonaire dans le cadre de la Bronchopneumopathie Chronique 

Obstructive (BPCO) et dans le cancer du poumon. Il a ensuite fourni une proposition détaillée 

d'intéractions entre le système immunitaire de la muqueuse intestinale et le microbiote local, en 

tenant compte de l'influence des cellules bactériennes et de leurs métabolites. Cet article a 

également porté sur le concept bidirectionnel de l'axe intestin-poumon dans le cadre du cancer, 

fondé sur la « théorie de la lymphe » exposée précédemment, et incluant la théorie du cycle 

cancer-immunité. 

L'intérêt accru pour les caractéristiques du microbiote et de son intéraction avec l'hôte a conduit 

à la mise en place du Projet sur le Microbiome Humain (Human Microbiome Project - HMP). 

Ce projet vise à obtenir une caractérisation complète du microbiome humain grâce à la 

coopération de scientifiques du monde entier. Cependant, le microbiote pulmonaire n’a pas été 

initialement inclus dans ce projet (Proctor, 2011), ce qui a encore limité l'intérêt qu’on a pu lui 

accorder. Une autre difficulté rencontrée dans ce travail est liée à l'échantillonnage, en raison 

du caractère invasif des techniques employées. La plupart des études utilisent comme 

échantillon le liquide de lavage broncho-alvéolaire (LBA) obtenu par bronchoscopie, avec un 

risque de contamination par les voies respiratoires supérieures (Bassis et al., 2015; Beck et al., 
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2012; Charlson et al., 2011). Jusqu'à présent, la plupart des études portaient sur le microbiote 

pulmonaire dans le cadre de le BPCO (Banerjee et al., 2004; Einarsson et al., 2016; Erb-

Downward et al., 2011; Moghaddam, 2011; Sze et al., 2015), d'asthme (Gollwitzer & Marsland, 

2014; Huang et al., 2011) et de la mucoviscidose (Fodor et al., 2012; Garg et al., 2017). En 

effet, dans le cadre de ces pathologies, une bronchoscopie de routine est souvent pratiquée ce 

qui simplifie le prélèvement d’échantillons de microbiote pulmonaire.  

Ces dernières années ont été marquées par les premières études du microbiote pulmonaire dans 

le cas de cancer du poumon. Ces travaux ont mis en évidence une première intéraction entre le 

microbiote pulmonaire et des facteurs environnementaux (Yu et al., 2016) et une seconde entre 

le microbiote pulmonaire et une inflammation accrue des voies respiratoires inférieures (Segal 

et al., 2016).  

Même si certaines études évoquaient déjà l'influence "magique" du microbiote intestinal sur la 

réponse au cancer du poumon (Schuijt et al., 2016), la communauté scientifique a précisé qu'il 

fallait d'abord étudier l'effet du microbiote pulmonaire local avant de pouvoir évoquer le nouvel 

axe "intestin-poumon" (Dickson & Cox, 2017). 
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2 Objectifs et hypothèses 

Avant d’élaborer une approche interventionnelle chez l’Homme basée sur des études 

antérieures chez l'animal, il est tout d’abord nécessaire d'étudier et de comprendre les facteurs 

coexistants dans la réponse de l'hôte au cancer du poumon. Pour ce projet de thèse, nous avons 

conçu un essai clinique incluant des patients atteints de CBNPC admissibles à une résection 

chirurgicale des tumeurs. Plusieurs objectifs ont été fixés : 

i) caractériser le microbiote de l'intestin, des poumons et des voies respiratoires 

supérieures chez ces patients 

ii) évaluer l'homogénéité/hétérogénéité entre différents microbiotes dans le même 

sujet/groupe de patients 

iii) évaluer l'impact de la composition du microbiote sur l'état immunitaire et 

inflammatoire du patient (évalué dans l'intestin, le sang et les poumons) 

Afin d’atteindre ces objectifs, nous avons inclus dans cette étude 17 patients et nous avons 

prélevé des échantillons de sang, de salive et de selles. Lors de l’admission et au cours des 

interventions chirurgicales, nous avons également prélevé quatre échantillons pulmonaires 

(Lavage Broncho Alvéolaire (LBA), tissu non cancéreux, tissus péri-tumoral et tumoral). Les 

échantillons salivaires, fécaux et pulmonaires (de 4 types) ont été utilisés pour l'extraction 

d'ADN et l'analyse du microbiote par qPCR et séquençage du gène de l'ARN 16S. Afin de 

limiter le risque de contamination du LBA par les voies aériennes supérieures, le lavage a été 

effectué directement sur le lobe excisé. Des échantillons de selles fraîches ont été utilisés pour 

le dénombrement microbiologique des groupes fonctionnels bactériens. Celles-ci ont également 

été congelées et utilisées ultérieurement pour doser les Acides Gras à Chaines Courtes (AGCC). 

L'état immunitaire a été évalué par la caractérisation de l’infiltration intra-tumorale en 

lymphocytes, par le phénotypage des lymphocytes Th et des sous-types de neutrophiles dans le 

LBA et le sang, par le dosage des cytokines dans le sang et par le dosage des marqueurs 

inflammatoires et antibactériens dans les selles. Chaque patient a également fourni une enquête 

nutritionnelle une semaine avant l'intervention chirurgicale afin d’aider à interpréter d'autres 

résultats (comme les quantités d'AGCC). D'autres renseignements cliniques et démographiques 

ont également été recueillis, comme le lieu de résidence, les antécédents de tabagisme ou la 

profession. 
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Notre première hypothèse a été que le microbiote pulmonaire diffère selon le lieu de 

prélèvement, même entre des échantillons proches histologiquement, comme les tissus 

péritumoraux et tumoraux. Les échantillons choisis pour l'analyse ont des fonctions 

physiologiques et/ou une architecture différente, mais aussi des intéractions différentes avec le 

système immunitaire. Le LBA est représentatif de la population microbienne de la lumière 

bronchique, donc principalement une population bactérienne aux caractéristiques 

planctoniques, ou au contraire, associée aux biofilms ou mucus excrétés par les cellules 

alvéolaires. Le tissu non cancéreux représentera quant à lui, un échantillon avec une architecture 

pulmonaire normale faite de petites alvéoles et d'épithélium pulmonaire monocouche.  

Selon le type histologique la tumeur peut varier, allant d'un tissu très dense comme dans le 

carcinome épidermoïde, à un tissu enrichi en mucus, comme dans certains types 

d'adénocarcinomes. L'augmentation de la production de mucus pourrait directement servir de 

nutriment aux bactéries mucinolytiques (Flynn et al., 2016) et ainsi favoriser la croissance de 

certains groupes bactériens. Enfin, l’échantillon de tissu péritumoral, sera considéré comme un 

échantillon bien distinct car il possède des caractéristiques histologiques différentes. Même si, 

de par son architecture, le tissu péritumoral ressemble à un tissu non cancéreux, sa proximité 

avec la tumeur le rend exposé à diverses substances excrétées par les cellules tumorales et à une 

invasion possible des cellules tumorales elles-mêmes (Dou et al., 2018).  

Un autre aspect important est le rôle du tissu péritumoral, c'est-à-dire du microenvironnement 

tumoral (MET), sur la suppression ou la stimulation directe de la tumeur de diverses manières: 

par la modification de la composition de la matrice du MET, par la production de facteurs de 

croissance, etc. (Valkenburg et al., 2018). Ces deux évènements pourraient directement (avec 

des changements dans l'architecture des tissus) ou indirectement (avec une réponse immunitaire 

contre les cellules tumorales) influencer le microbiote local.  

Nous avons ensuite émis l'hypothèse qu'il y aurait plusieurs facteurs potentiellement 

discriminants pour le système immunitaire et le microbiote dans les six échantillons prélevés 

(salive, selles et les quatre échantillons pulmonaires).  

Le premier facteur est le type histologique de tumeur ; il a déjà été démontré que le type 

histologique modifie le microbiote salivaire des patients atteints de cancer du poumon (Yan et 

al., 2015), mais également l’alpha diversité dans les tissus tumoraux (Yu et al., 2016). Les 

différents types histologiques vont avoir un impact direct sur le microbiote tel qu'expliqué dans 

le paragraphe précédent. Ils sont aussi caractérisés par une immunogénicité, une nature 



Résumé de thèse en français  Objectifs et hypothèses 

7 

 

immunosuppressive et un fond génétique différents (Busch et al., 2016), ce qui signifie qu'ils 

ne stimuleront pas de la même manière le système immunitaire. Par conséquent, l'afflux et le 

profil des cellules immunitaires vers le lit tumoral varient, de même que l'intéraction avec le 

microbiote local. La nature de la tumeur et la situation immunitaire locale pourrait se refléter 

sur les marqueurs systémiques, et donc sur l'état immunitaire intestinal. Par conséquent, le 

microbiote intestinal peut aussi varier selon le type de tumeur. Cependant, dans ce type d'étude, 

il n'a pas été possible de déterminer si ce changement est la conséquence d'une maladie, d'un 

facteur concomitant ou le résultat d’un changement dans l'équilibre immunitaire. 

Le deuxième facteur important est le statut tabagique du patient. La fumée de cigarette présente 

plusieurs effets indésirables sur le système respiratoire, comme l'inhalation d'air chaud et la 

précipitation de particules potentiellement cancérigènes. Ceci endommage les cellules 

épithéliales et altèrent la clairance des voies respiratoires, induisant une inflammation locale et 

systémique (Çolak et al., 2019). En résulte une modification des conditions locales de 

croissance pour le microbiote et une perturbation de l'homéostasie immunitaire. Les voies 

respiratoires supérieures sont affectées par la fumée, et des changements de microbiote liés au 

tabagisme ont déjà été rapportés (Wu et al., 2016). Fait intéressant, il n’a pas été observé de 

changements dans les voies respiratoires inférieures (Segal et al., 2013). Ainsi, il est possible 

que les microbiotes des différents sites pulmonaires ne soient pas sensibles de la même manière 

aux effets du tabagisme. Cette hypothèse sera vérifiée dans ce travail. De plus, il a été observé 

que le tabagisme modifiait le microbiote intestinal, tant chez les personnes en bonne santé 

(Stewart et al., 2018) que chez les patients atteints de cancer du poumon (Zhang et al., 2018; 

Zhuang et al., 2019), ce qui montre clairement l'effet du tabagisme au niveau systémique. 

Un autre facteur important est l'emplacement de la tumeur. Les poumons sont organisés en cinq 

lobes, deux du côté gauche (supérieur et inférieur) et trois du côté droit (supérieur, moyen et 

inférieur). Il est intéressant de noter que des taux de survie globale plus faibles et un pronostic 

plus défavorable ont été associés à des tumeurs dans les lobes inférieurs, et particulièrement 

dans le lobe inférieur gauche (Kudo et al., 2012). Le modèle insulaire adapté à la biogéographie 

pulmonaire des sujets sains suggère déjà que le microbiote pulmonaire est différent entre les 

lobes (Dickson et al., 2015). Ce modèle décrit la bronche principale comme étant la source des 

communautés microbiennes pulmonaires, dont la richesse diminue proportionnellement à 

l’éloignement de ce site. Par conséquent, les lobes supérieurs devraient être plus riches en 

microorganismes que les lobes inférieurs, mais les lobes controlatéraux devraient avoir des 

caractéristiques similaires. Cependant, l'étude qui compare le LBA controlatéral (c'est-à-dire du 
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lobe gauche et du lobe droit), l'un cancéreux et l'autre non, montre que ce n'est pas le cas pour 

le cancer du poumon (Liu et al., 2018). Il est évident que la présence de tumeurs modifie la 

composition microbienne et que d'autres études incluant des patients atteints de cancer du 

poumon seront nécessaires. 

Nous nous sommes ensuite concentrés sur un autre facteur important ayant un rôle pronostique 

crucial dans le traitement du CBNPC : la stadification de la tumeur. Plus le stade est élevé, plus 

le pronostic global pour le patient est mauvais. Cependant, le stade est déterminé par la 

combinaison des trois éléments dans la classification TNM : la taille de la tumeur T, la présence 

de métastases au niveau des ganglions lymphatiques médiastinaux et ipsilatéraux N, et la 

présence de métastases distantes M (Goldstraw et al., 2016).  

Un même stade peut donc parfois représenter des tumeurs véritablement différentes. Par 

exemple, une très grosse tumeur sans ganglions lymphatiques métastatiques pourrait appartenir 

au même stade qu'une petite tumeur mais avec des ganglions métastatiques. Pour les besoins de 

l'étude du microbiote, nous avons décidé d'observer séparément ces éléments et de définir 

l'hypothèse que chacun d'entre eux pourrait influencer individuellement nos communautés 

microbiennes.  

Étant donné que les patients présentant des métastases à distance ne sont pas inclus dans l'étude 

en raison de la différence dans la procédure de traitement (non opérable), nous avons considéré 

deux autres éléments : la taille de la tumeur et la présence de ganglions lymphatiques 

métastatiques. Selon le diamètre, la tumeur peut être plus ou moins oxygénée en raison d'une 

vascularisation souvent très fuyante et insuffisante pour les tumeurs de plus grandes tailles, 

avec par conséquent un degré de nécrose interne différent (Wouters et al., 2003). Ceci 

favoriserait la colonisation de bactéries anaérobies qui pourraient soit défavorablement 

diminuer le pH par production de lactate, soit, favorablement augmenter l'immunogénicité 

tumorale (Baban et al., 2010; Damgaci et al., 2018; Van Dessel et al., 2015). Des tumeurs plus 

grosses pourraient également bloquer les voies bronchiques et ainsi créer des poches micro-

aérobies ou anaérobies. Ceci favoriserait les changements dans la composition microbienne ou 

la colonisation par des agents pathogènes. 

La présence de ganglions lymphatiques métastatiques est, en revanche, le signe d'une plus 

grande agressivité tumorale et d'une fuite vasculaire permettant la dissémination des cellules 

tumorales aux ganglions lymphatiques proximaux quelle que soit la taille de la tumeur. 

L’existence de ces ganglions lymphatiques métastatiques dénote le caractère invasif de la 
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tumeur et signale également un microenvironnement "permettant" la propagation des cellules 

tumorales. Selon le Dr Bissell (Bissell & Hines, 2011), l'environnement tumoral joue un rôle 

énorme dans le développement et le devenir de la tumeur. Dans le cadre de notre étude, certaines 

bactéries de l'environnement tumoral pourraient par exemple occuper les sites d’adhésion de 

différentes intégrines cellulaires (Garrett, 2015; Khan et al., 2012). L’occupation de ces sites 

inhiberait la diapédèse métastatique des cellules tumorales. La présence de ganglions 

lymphatiques métastatiques étant un marqueur important de pronostic négatif pour la survie, et 

ce quelle que soit la taille de la tumeur (Liu et al., 2017). Elle a été priorisée dans notre analyse. 

On sait que les patients atteints de cancer, en particulier lors de stade avancé de la maladie, 

signalent souvent une perte de poids sans changements particuliers dans leur alimentation. Ce 

phénomène appelé cachexie s'explique, d’une part par la présence de cellules cancéreuses 

voraces qui peuvent capter la majeure partie de l'énergie de l'hôte obtenue par digestion, et 

d’autre part par différentes cytokines, qui produites par l'hôte en réponse au cancer peuvent 

modifier son métabolisme (Barton, 2001). Des changements au niveau du microbiote intestinal 

liés à la présence du cancer, ainsi que l'utilisation de probiotiques dans la lutte contre la cachexie 

ont été envisagés, mais il reste nécessaire de poursuivre les recherches dans ces domaines 

(Bindels & Thissen, 2016). Par conséquent, notre hypothèse concernant l'effet du stade tumoral 

sur le microbiote pulmonaire s'est également étendue au microbiote intestinal (en tenant compte 

des informations sur la stabilité pondérale du patient et de leur étude nutritionnelle pour une 

approche personnalisée). 

Enfin, la théorie de l'axe intestin-poumon implique que certains éléments d'origine intestinale, 

comme les bactéries ou leurs métabolites, amorceraient les cellules immunitaires situées dans 

les ganglions mésentériques. Ces cellules immunitaires seraient ensuite recrutées par des sites 

éloignés où elles pourraient agir avec plus de performance (Bingula et al., 2017). Dans notre 

cas, cette performance accrue pourrait être caractérisée par une meilleure infiltration des 

cellules immunitaires dans les tumeurs pulmonaires. Cependant, il est important de garder à 

l'esprit qu'il existe trois types généraux de tumeurs : les tumeurs immuno-inflammées (angl. « 

immune-inflamed »), les tumeurs immuno-exclues (« immune-excluded ») et les tumeurs 

immuno-désertes (« immune-desert ») (Chen & Mellman, 2017). Sommairement, les tumeurs 

immuno-inflammées sont bien infiltrées et immunogènes et les tumeurs immuno-désertes sont 

mal infiltrées et peu immunogènes. Les tumeurs immuno-exclues sont quant-à-elles souvent 

immunogènes mais avec certains éléments intrinsèques, comme l'expression du PD-1 (Death 

Domain Protein-1), qui inhibent l'infiltration et l'activité des cellules immunitaires. 
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Théoriquement, il serait possible de passer d’un type d’immunité tumorale à l’autre. Par 

exemple une tumeur immuno-inflammée qui, après intervention du système immunitaire, ne 

conserve que des cellules faiblement immunogènes pourrait devenir immuno-déserte. L’inverse 

est également possible : un meilleur amorçage des cellules immunitaires pourrait transformer 

une tumeur immuno-déserte en une tumeur immuno-inflammée grâce à une réactivité croisée 

entre les cellules tumorales et les épitopes bactériens. Par conséquent, notre hypothèse a reposé 

sur le fait que le microbiote intestinal, mais aussi le microbiote pulmonaire, varierait selon le 

type immunitaire tumoral. 

Les hypothèses avancées seront développées plus en détail au fur et à mesure de l'avancement 

des analyses. Les hypothèses exposées comprennent des facteurs ayant une influence à la fois 

locale et systémique sur l'hôte, et donc sur son microbiote et son système immunitaire. C'était 

la raison sous-jacente pour laquelle il fallait aborder les patients sous différents angles 

(microbiote de trois sites, marqueurs immunitaires et inflammatoires locaux et systémiques par 

différentes techniques, métabolites bactériens, nutrition et données démographiques). Les 

objectifs et les hypothèses que nous allons vérifier seront discutés dans les chapitres "Résultats" 

et "Discussion générale". 

  



Résumé de thèse en français  Résultats principaux 

11 

 

3 Résultats principaux  

Study Protocol 

Characterisation of Gut, Lung and Upper Airways Microbiota in Patients with Non-

Small Cell Lung Carcinoma: Study Protocol for Case-Control Observational Trial 

Rea Bingula, MS, Marc Filaire, Prof, MD, Nina Radosevic-Robin, MD, Jean-Yves Berthon, 

PhD, Annick Bernalier-Donadille, PhD, Marie-Paule Vasson, Prof, Emilie Thivat, PhD, Fabrice 

Kwiatkowski, MS, Edith Filaire, Prof 

 Publié dans Medicine le 14 Décembre 2018 

La majorité des études explorant le microbiote pulmonaire par séquençage à haut débit utilisent, 

pour l'isolement du microbiote, des kits commerciaux qui ne sont pas spécialement adaptés aux 

échantillons pulmonaires (exemple : MoBio PowerSoil ou QIAamp Stool Minikit de Qiagen). 

Étant donné que les échantillons pulmonaires diffèrent significativement en qualité (tissu très 

fibreux) et en niveau de populations bactériennes par rapport aux fèces ou au sol, ces kits ne 

sont pas les mieux adaptés et leur rendement final est insuffisant (utilisation de colonnes de 

filtration, etc.). C'est pourquoi nous avons décidé de mettre au point un protocole d'"isolement 

du microbiote pulmonaire", basé sur le protocole du Human Microbiome Project pour 

l'isolement du microbiote intestinal ; protocole dont la performance à précédemment été 

comparée à d'autres kits disponibles sur le marché (Costea et al., 2017; Mcinnes, 2010). La 

version finale optimisée du protocole, comprenant la conception de l'étude, et le matériel et les 

méthodes utilisés ont été publiés dans l’article suivant : "Caractérisation du microbiote de 

l'intestin, des poumons et des voies respiratoires supérieures chez les patients atteints de cancer 

du poumon non à petites cellules" publié dans Medicine le 14 décembre 2018. Seule la partie 

du projet concernant les patients admissibles à la chirurgie sans chimiothérapie sera présentée 

dans ce rapport de thèse, et son aperçu synthétique est présenté en Figure 1.
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Figure 1 Aperçu synthetique d’étude 
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Article 1 

Research Article 

Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, 

peritumoural and tumour tissue in non-small cell lung cancer patients: cross-sectional 

clinical trial 

Rea Bingula, Edith Filaire, Ioana Molnar, Eve Delmas, Jean-Yves Berthon, Marie-Paule 

Vasson, Annick Bernalier-Donadille, Marc Filaire 

 Soumis dans BMC Respiratory Research le 05 Décembre 2019. 

Introduction 

Même si des études portant sur le microbiote du poumon cancéreux ont commencé à émerger 

il y a plusieurs années, les caractéristiques du microbiote pulmonaire provenant de différents 

types d'échantillons ne sont pas encore bien documentées. Le principal problème de la recherche 

sur le microbiote pulmonaire provient de différentes méthodes d’échantillonnage qui sont à 

l’origine de l’hétérogénéité des échantillons cibles d'une étude à l'autre. Ainsi la majorité des 

études actuelles portant sur le microbiote du poumon ont été réalisées sur le LBA, les tissus, la 

salive et les expectorations à fréquence variable. Bien qu'il ait déjà été suggéré que le microbiote 

pulmonaire provenant du LBA et des tissus pulmonaires abrite des communautés différentes 

(Sze et al., 2012), aucune étude n’a encore été réalisée sur ce sujet. De plus, l'analyse du 

microbiote dans le cadre de cancer du poumon implique des tissus ayant des rôles, des 

intéractions et une immunité distincte, comme les tissus péritumoraux et tumoraux. Par 

conséquent, l'objectif de cette étude était d’une part, de fournir une caractérisation détaillée du 

microbiote pulmonaire oral et d’autre part, d’obtenir de nouvelles données innovatrices dans ce 

domaine. Puisque les tumeurs pulmonaires des lobes inférieurs (LL) ont été associées à une 

diminution de la survie, les caractéristiques du microbiote des lobes supérieurs (UL) et 

inférieurs ont également été examinées. 

Matériels et méthodes 

À l'aide de la technologie de séquençage du gène 16S de l'ARNr, nous avons analysé le 

microbiote dans la salive, le LBA (obtenu directement sur le lobe excisé), les tissus non 

cancéreux, péritumoraux et tumoraux de 18 patients CBNPC admissibles à un traitement 

chirurgical. Nous avons fourni : une taxonomie détaillée, la diversité et les principaux groupes 
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bactériens pour chaque microbiote, avec analyse de l'abondance différentielle à tous les niveaux 

taxonomiques entre les échantillons et en fonction de la localisation des prélèvements dans les 

poumons (modèle linéaire général binomial « zero-inflated » avec correction Benjamini-

Hochberg). 

Résultats, doscussion et conclusion 

Nous démontrons que le LBA représente un microbiote unique en comparaison avec les autres 

échantillons pulmonaires. Ce résultat est basé sur l'analyse de l'abondance différentielle et sur 

la Bêta diversité. Simultanément, nous confirmons que les échantillons de LBA forment un 

groupe distinct avec les autres échantillons de tissus pulmonaires lorsqu'ils sont placés dans la 

perspective du microbiote salivaire. La position du lobe est un facteur important influençant la 

composition du microbiote (hypothèse du modèle insulaire adapté à la biogéographie 

pulmonaire) et en même temps, les tumeurs du lobe inférieur ont été associées à un pronostic 

moins favorable chez les CBNPC. Sur cette base, nous avons fait le choix d’examiner 

l'influence de la position du lobe supérieur ou inférieur sur le microbiote analysé. Nous 

montrons ainsi que tous les microbiotes analysés, à l'exception du microbiote tumoral, ont une 

abondance significativement différente, en particulier dans les phyla Bacteroidetes et 

Actinobacteria. De plus, nous montrons que le microbiote du tissu péritumoral est le plus 

susceptible au changement selon son emplacement, avec une ressemblance significativement 

accrue au microbiote du LBA lorsqu'il se trouve dans les lobes supérieurs. Puisque la tumeur 

est connue pour son potentiel à modifier directement son microenvironnement, nous faisons 

l’hypothèse que ce changement observé dans le microbiote des tissus péritumoraux reflète en 

fait les changements du microenvironnement (sites adhésifs, réarrangement de la matrice 

extracellulaire, stimulation immunitaire). Enfin, nous montrons que le phylum des Firmicutes, 

précédemment signalé comme étant un phylum abondant dans les tumeurs pulmonaires 

évolutives, est également élevé en abondance dans tous les tissus pulmonaires des lobes 

inférieurs par rapport aux lobes supérieurs. Il pourrait s'agir d'un potentiel indicateur microbien 

d'une agressivité accrue des tumeurs du lobe inférieur, mais il faudra toutefois confirmer cette 

hypothèse en incluant notamment davantage les caractéristiques du système immunitaire. 
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Article 2 

Research Article 

Inverse abundance pattern of tumour and extratumoural lung microbiota between non-

small cell lung cancer patients with or without metastatic lymph nodes: a cross-sectional 

clinical study 

Rea Bingula, Edith Filaire, Jérémie Talvas, Jean-Yves Berthon, Marie-Paule Vasson, Annick 

Bernalier-Donadille, Nina Radosevic-Robin, Marc Filaire 

 Soumis dans BMC Microbiome le 25 Octobre 2019 

Introduction 

La présence de ganglions lymphatiques métastatiques (LN) est l'un des marqueurs de pronostic 

négatif les plus importants dans le CBNPC (Goldstraw et al., 2016). Il est caractérisé par un 

temps de survie beaucoup plus court et par un taux de récidive accru. Nous avons cherché à 

savoir si cette caractéristique importante pour le devenir du patient est associée de façon 

significative à la composition locale du microbiote pulmonaire. Nous nous sommes basés sur 

l'analyse du microbiote pulmonaire de quatre échantillons différents (LBA, tissus non 

cancéreux, péritumoraux et tumoraux). De plus, nous avons examiné si ces deux paramètres 

(présence ou absence de métastases ganglionnaires) influencent l'immunité locale en étudiant 

la composition de l'infiltrat immunitaire tumoral et les phénotypes des lymphocytes Th dans le 

LBA. Enfin, nous avons cherché à savoir si cette réponse immunitaire est associée à différents 

microbiotes pulmonaires. 

Matériels et méthodes 

Le microbiote pulmonaire a été analysé en LBA (lavage direct du lobe excisé) et dans trois 

tissus (tissus non cancéreux, péritumoraux et tumoraux) par séquençage du gène de l'ARN 

ribosomal 16S, suivi par l'analyse biostatistique en RStudio. Le statut immunitaire a été évalué 

en dénombrant les lymphocytes infiltrant les tumeurs (marqueurs de l'expression des CD8, 

CD20, FOXP3, PD-1 et PD-L1) et en déterminant les profils des lymphocytes T-Auxiliaires et 

les neutrophiles dans le LBA. Dans la population lymphocytaire, la sous-population de 

lymphocytes T-Auxiliaires CD3+CD4+ a été caractérisée comme suit : Th1 avec marqueur 

CXCR3+, Th2 avec marqueur CRTH2+, Th17 avec marqueur CCR6+ et Treg avec marqueurs 

CD25+CD127-. Dans la population de granulocytes, les sous-populations de neutrophiles ont 
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été caractérisées comme suit : neutrophiles circulants avec marqueurs CD15+CD62L+CD11b-, 

forme transitoire avec marqueurs CD15+CD62L+CD11b+, et neutrophiles activés avec 

marqueurs CD15+CD62L-CD11b+. Toutes les analyses statistiques ont été réalisées avec 

RStudio. 

Résultats, doscussion et conclusion 

Nous montrons qu'en présence de ganglions lymphatiques métastatiques, tous les échantillons 

de microbiote pulmonaire présentent une abondance accrue du phylum des Firmicutes, tandis 

que les mesures de diversité montrent des valeurs plus faibles pour les deux microbiotes des 

tissus extratumoraux. Nous avons identifié 31 genres bactériens présentant des schémas 

inverses d’abondance entre les tissus tumoraux, extratumoraux, et entre les patients avec et sans 

ganglions lymphatiques métastatiques. De plus, nous montrons que cette inversion est 

étroitement liée au profil respiratoire bactérien. Plus précisément, les genres anaérobies 

identifiés sont significativement plus abondants dans les tumeurs à ganglions lymphatiques 

métastatiques, alors que les bactéries aérobies sont plus abondantes dans les tissus 

extratumoraux. Cependant, nous observons exactement le phénomène inverse pour ces mêmes 

genres bactériens chez les patients ne présentant pas de ganglions lymphatiques métastatiques. 

Nous avançons donc l’hypothèse que les bactéries "migrent" entre les tissus vers des conditions 

de croissance plus favorables, car l'environnement tumoral change fortement en fonction de sa 

progression (hypoxie accrue, nécrose, production de lactate, pH faible). De plus, nous 

identifions plusieurs biomarqueurs potentiels dans chaque tissu qui pourraient faciliter ou 

améliorer la détection des métastases des ganglions lymphatiques sans imposer de biopsie. 

Enfin, nous montrons que le microbiote du LBA ne change pas de façon significative en 

fonction du stade tumoral, mais qu'il est le seul à présenter une association significative avec 

les marqueurs immunitaires protumoraux ou antitumoraux dans le LBA et dans la tumeur. 
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4 Discussion, conclusion et perspectives 

4.1 Discussion 

En raison des multiples axes de recherche possibles dans ce projet, nous avons d'abord décidé 

de nous concentrer sur la région pulmonaire, moins explorée que la région intestinale. C'est 

pourquoi nous nous sommes focalisés dans un premier temps sur la caractérisation des 

différents microbiotes pulmonaires (tumeur, tissu péritumoral et non cancéreux, et LBA), leur 

relation avec le microbiote salivaire et l'impact de la localisation du lobe tumoral (Article 1). 

Dans un second temps, afin d’envisager une application clinique directe de notre recherche, 

nous avons donc cherché à déterminer s'il existe une intéraction entre : la présence de ganglions 

lymphatiques métastatiques (l'un des principaux facteurs pronostiques du CBNPC), différents 

microbiotes pulmonaires et l'immunité locale (Article 2). D'autres axes de recherche seront 

abordés dans « Conclusion et Perspectives ». 

 Le LBA représente un microbiote pulmonaire unique. Il n’est que sensiblement plus 

semblable à la salive que les tissus pulmonaires. 

Depuis le début des recherches portant sur l'étude du microbiote pulmonaire, plusieurs 

inconvénients sont apparus. L'un des plus importants reste le choix de l'échantillon pulmonaire 

qui représenterait correctement les communautés pulmonaires, mais qui ne serait pas trop 

invasif pour le patient. Par conséquent, le LBA était et demeure le type d’échantillon le plus 

fréquemment utilisé dans les études portant sur le microbiote pulmonaire en général et dans les 

cas de cancer du poumon (Laroumagne et al., 2011; Lee et al., 2016; Liu et al., 2018; Tsay et 

al., 2018; Wang et al., 2019). Cependant, il a déjà été suggéré que le microbiote pulmonaire 

présent dans le LBA et dans les tissus pulmonaires ne partagent pas les mêmes caractéristiques 

(Sze et al., 2012), en raison de la physiologie différente des échantillons.  

Nous sommes les premiers à avoir montré que le LBA abrite un microbiote distinct de celui du 

tissu pulmonaire, en incluant dans nos analyses jusqu'à trois échantillons de tissus différents 

(tissu non cancéreux, péritumoral et tumoral) (Article 1). Le LBA représente un échantillon 

unique, en se basant à la fois sur la Bêta diversité et sur l'analyse de l'abondance différentielle. 

Dans le LBA, les Firmicutes représentent le phylum le plus abondant. En revanche, les 

Protéobactéries sont plus abondantes dans les échantillons de tissus pulmonaires. De plus, en 

examinant séparément les caractéristiques du microbiote dans les lobes supérieurs (UL) ou 
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moyens/inférieurs (LL), nous avons identifié des clades entiers avec une abondance inverse 

entre le LBA et le microbiote des tissus extratumoraux, tels que les Flavobacteriia et les 

Actinobacteria, confirmant l’hypothèse initiale de deux communautés microbiennes distinctes. 

Étant donné que dans notre plan d'étude, le LBA a été obtenu pour la première fois directement 

sur un lobe excisé, nous avons eu l'opportunité d'estimer si le LBA des lobes supérieurs était 

plus semblable à la salive (représentant du microbiote des voies respiratoires supérieures) que 

celui des lobes inférieurs. Selon la théorie du modèle insulaire adapté de la biogéographie 

pulmonaire (Dickson et al., 2015), les lobes supérieurs devraient avoir une composition en 

communautés bactériennes plus semblable à celle des voies respiratoires supérieures. Ils 

devraient également présenter une richesse accrue par rapport aux lobes inférieurs. Cependant, 

nous n'avons pas constaté de différence significative dans la distance (Bêta diversité) entre la 

salive et le LBA du lobe tumoral inférieur ou supérieur, malgré une légère augmentation de 

l'abondance des taxons typiquement oraux des lobes supérieurs (tels que les genres Veillonella 

ou Prevotella). Une explication de ce résultat pourrait être soit la présence de tumeurs qui 

influenceraient les propriétés du microbiote, comme l’ont suggéré précédemment (Liu et al., 

2018), soit à une approche d'échantillonnage différente qui a considérablement réduit la 

contamination des voies aériennes supérieures.  

Nous avons au contraire observé une richesse et une diversité significativement plus faibles 

dans le LBA des lobes inférieurs. Ces deux éléments sont similaires dans les tissus tumoraux et 

non cancéreux ; plusieurs raisons sont possibles. Premièrement, le LBA est plus sensible à la 

distance de la bronche centrale que les tissus, ce qui entraîne une plus faible richesse dans les 

lobes inférieurs selon l’hypothèse du modèle insulaire adapté à la biogéographie pulmonaire 

(Dickson et al., 2015). Deuxièmement, comme les lobes supérieurs du poumon sont plus dilatés 

que les lobes inférieurs pendant l'inspiration lente, une quantité d’air plus importante pénètre 

dans les lobes inférieurs que dans les lobes supérieurs (Chang & Yu, 1999). Nous pouvons 

avancer l’hypothèse d’un environnement plus dynamique dans les lobes inférieurs que dans les 

lobes supérieurs, ce qui limiterait l'établissement d'une communauté bactérienne plus riche, 

contrairement aux voies aériennes supérieures. Ceci fera l'objet de recherches plus 

approfondies. 
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 Microbiote des tissus péritumoraux comme potentiel marqueur indirect d’une modification de 

l'environnement tumoral 

Il a été démontré que la progression de la tumeur n'est pas seulement liée à la tumeur elle-même, 

mais aussi à son environnement. Des travaux ont permis d’observer une progression tumorale 

par remodelage de la Matrice Extra Cellulaire (MEC) sous l’influence de facteurs tumorogènes 

(Altinay, 2016) (Figure 2). D’autres travaux ont également démontrés les caractéristiques 

répressives de l'environnement sur la tumeur (Bissell & Hines, 2011). Cependant, aucune étude 

n'a jusqu'à présent examiné si les tissus péritumoraux contenaient des microbiotes qui diffèrent 

de ceux de la tumeur ou des tissus non cancéreux dans le cas du CBNPC. 

 

Figure 2 La modification de la MEC favorise la progression du cancer (adapté d'Altinay 

2016). 
(A) structure normale de la MEC. (B) Dans des conditions pathologiques, il existe une production excessive de 

fibroblastes activés qui contribuent à la surproduction de MEC et à la dérégulation des enzymes responsables de 

la modification de la MEC. En raison d’un fragile équilibre entre les cellules locales et la MEC, ces changements 

stimulent la transformation cellulaire épithéliale et l'hyperplasie, créant une matrice plus rigide. (C) En plus des 

cellules locales, les cellules immunitaires recrutées sur le site de la tumeur favorisent l'inflammation locale, 

accompagnée d'une néoangiogénèse facilitant la propagation de la tumeur en raison de la fuite du système 

vasculaire. (D) Les métastases qui se sont maintenues dans la circulation, s’extravasent au niveau d’un site distal 

et expriment les enzymes de modification de la MEC pour créer une niche métastatique locale qui favorisera 

davantage la survie et la prolifération des cellules cancéreuses. 

Nous sommes les premiers à inclure le tissu péritumoral dans la caractérisation du microbiote 

pulmonaire (Article 1), montrant ainsi qu'il s'agit du seul échantillon de tissu pulmonaire 

présentant des changements significatifs de richesse et d’Alpha et Bêta diversité en fonction de 

la localisation du lobe. Nous avons signalé que les tissus péritumoraux des lobes supérieurs 
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présentaient une similarité accrue avec ceux du LBA (observés en Bêta diversité et avec une 

présence plus élevée du phylum des Firmicutes). Les tissus péritumoraux des lobes inférieurs 

présentent quant-à-eux les mêmes caractéristiques que les deux autres tissus. Nous avons 

suggéré que ceci reflète en fait différents types de modifications de la MEC, influençant à la 

fois les propriétés adhésives et l'architecture des tissus (Altinay, 2016; Bissell & Hines, 2011; 

Quail & Joyce, 2013) et modifiant directement les conditions locales de croissance des 

bactéries. Dans la pathogénicité du CBNPC, les tumeurs des lobes inférieurs ont été associées 

à une diminution de la survie globale, mais sans explication claire (Kudo et al., 2012; Riquet et 

al., 2016). Notre découverte pourrait indiquer que la détection indirecte de différences subtiles 

dans l'environnement de la tumeur pourraient être liées soit à son agressivité accrue, soit au 

développement de différents types de microbiotes qui pourraient permettre ou non la 

progression du cancer (par exemple l'occupation de sites d’adhésion et la progression 

métastatique). 

 Lobes inférieurs et présence de ganglions lymphatiques métastatiques marqués par une plus 

grande abondance du phylum des Firmicutes 

Plusieurs études ont déjà mis en évidence l'augmentation du phylum des Firmicutes dans le 

microbiote pulmonaire en comparant un groupe témoin à un groupe cancéreux. Cette 

observation a été d'un intérêt particulier pour le BPCO (Sze et al., 2012) puisque des études ont 

montré que cette pathologie pouvait conduire au développement du cancer du poumon mais 

aussi que les deux maladies sont basées sur une inflammation clinique ou subclinique créant 

ainsi une base mutuelle de « réflexion » (Houghton, 2013; Melkamu et al., 2013). 

Nous sommes les premiers à signaler que le microbiote pulmonaire, basé sur l’analyse de quatre 

types d'échantillons différents, présente une abondance moyenne plus élevée de 

l’embranchement des Firmicutes si la tumeur se situe dans les lobes inférieurs (Article 1). De 

plus, nous avons observé une augmentation des Firmicutes dans les tissus pulmonaires si le 

patient présentait des changements métastatiques au niveau des ganglions lymphatiques locaux 

(Article 2). Ces deux résultats concordent avec ceux décrits dans le paragraphe précédent, qui 

établissait un lien entre ce "déplacement" et l'état avancé de la maladie ou de sa présence. Dans 

notre étude, ce "déplacement" était principalement dû à une abondance relative 

significativement plus élevée du genre Clostridium. Cependant, la détermination plus précise 

des espèces impliquées, leur quantité absolue et l'implication de facteurs immuns tumoraux 

feront l’objet de futures recherches. 
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 Les ganglions lymphatiques métastatiques séparent le microbiote du tissu tumoral et du tissu 

extratumoral selon un schéma inverse correspondant aux profils respiratoires bactériens 

La stadification tumorale est le principal outil de pronostic du CBNPC et sert également au 

choix du traitement approprié (Goldstraw et al., 2016).  Elle est basée sur la classification TNM 

qui inclut l'information sur la taille de la tumeur, l'implication des changements métastatiques 

sur les ganglions lymphatiques ipsilatéraux et médiastinaux, et l'apparition de métastases 

distales. La présence de changements métastatiques aggrave considérablement le pronostic par 

rapport aux patients présentant des tumeurs plus importantes mais sans changements 

métastatiques, puisque leur présence a été associée à une survie globale raccourcie de 5 ans 

(Goldstraw et al., 2016; Planchard et al., 2019). 

Nous sommes les premiers à montrer que le microbiote pulmonaire tissulaire présente une 

configuration spécifique et inverse entre les tissus tumoraux et extratumoraux en fonction du 

statut métastatique des ganglions lymphatiques (Article 2). De plus, nous avons montré que ce 

schéma était étroitement lié aux profils respiratoires bactériens. Contrairement aux études 

précédentes, nous avons pu bénéficier de trois types différents de tissus pulmonaires (non 

cancéreux, péritumoraux et tumoraux) nous permettant ainsi de mieux caractériser les 

communautés microbiennes dans et à proximité immédiate de la tumeur. 31 genres bactériens 

présentaient une abondance significativement différente dans au moins un des tissus entre les 

patients avec et sans métastases des ganglions lymphatiques. Curieusement, si un genre 

bactérien détecté dans les tissus extratumoraux était significativement plus abondant chez les 

patients présentant des ganglions lymphatiques métastatiques, ce même genre montrait 

exactement des proportions inverses s'il était détecté dans la tumeur (Article 2, figures 2 et 3). 

Bien que les 31 genres bactériens n'aient pas tous une abondance significativement inverse pour 

chaque tissu, ils ont tous montré la même tendance à suivre ce schéma général. Une observation 

encore plus frappante est que les genres bactériens présentant une plus grande abondance dans 

les tumeurs des patients à ganglions lymphatiques normaux et dans les tissus extratumoraux des 

patients à ganglions lymphatiques métastatiques avaient tous un profil respiratoire aérobie et 

appartenaient principalement au phylum des Protéobactéries. Inversement, les genres 

bactériens présentant un schéma inverse avaient un profil respiratoire anaérobie et appartenaient 

en majorité au phylum des Firmicutes. L’observation d'une abondance inverse des profils 

respiratoires distincts et l'abondance moins fluctuante dans le tissu péritumoral ont conduit à 

l'hypothèse des bactéries "migrantes". En examinant la physiologie de la tumeur, on constate 

que les tumeurs plus petites et non agressives sont souvent bien oxygénées, avec un apport 
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suffisant en sang et en nutriments, tout en offrant une protection accrue contre le système 

immunitaire de par leur immunogénicité réduite ou à l’immunosuppression (Van Dessel et al., 

2015). Les cellules tumorales peuvent également produire différents facteurs qui leur 

permettent un apport et une administration directe en glucose (Schwartsburd, 2019). Ces 

conditions pourraient fournir un excellent environnement pour les bactéries aérobies. 

Cependant, au cours du développement et de la croissance des tumeurs, on observe un taux 

accru de production d'acide lactique en raison : de son métabolisme anaérobie, de conditions 

hypoxiques croissantes et d'un apport sanguin insuffisant par des vaisseaux néoangiogéniques 

défectueux (Fadaka et al., 2017; Wouters et al., 2003). Cet environnement devient par 

conséquent hostile pour les bactéries aérobies qui se retirent de la tumeur et se déplacent. 

D'autre part, les bactéries anaérobies, déjà connues pour être présentes dans des biofilms 

pulmonaires (Costerton et al., 1999; Costerton et al., 1994; Mur et al., 2018; Whitchurch et al., 

2002), sont attirées par ce milieu favorable et s’installent ainsi au sein de la tumeur. On pourrait 

penser qu’elles trouvent dans cet environnement une source de nutriments grâce aux cellules 

tumorales nécrotiques, tout en étant protégées du système immunitaire par un pH acide inhibant 

l'activité immunitaire (Damgaci et al., 2018). Même si seulement 25% des genres bactériens 

détectés ont des organes de motilité actifs, d'autres méthodes de mouvements bactériens 

provoqués par un stimulus (taxies) ont été décrites précédemment, notamment le "glissement" 

ou l'attachement aux cellules de l'hôte (Mauriello et al., 2010; Youderian, 1998). Il est donc 

possible qu'il y ait un échange dynamique entre l'environnement extra et intratumoral en 

fonction des conditions de croissances variables et qu'il soit d'une grande importance pour notre 

compréhension de l'intéraction tumeur-microbiote. 

Le statut métastatique des ganglions lymphatiques est déterminé par biopsie directe, soit avant 

l'intervention chirurgicale par écho-endoscopie transbronchique, soit durant l'intervention. 

Dans notre étude, nous avons pu identifier plusieurs biomarqueurs dans chaque tissu 

pulmonaire qui pourraient indiquer l'implication des ganglions lymphatiques  métastatiques 

sans qu’une biopsie soit directement nécessaire. Cela reste à confirmer par qPCR, technique 

courante de biologie moléculaire qui pourrait, si elle est validée, faciliter grandement le 

diagnostic chez les patients atteints de CBNPC. 
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 Le microbiote du LBA n’est pas sensible à la présence de ganglions lymphatiques métastatiques, 

mais il est le plus associé aux phénotypes immunitaires dans le LBA et aux lymphocytes 

infiltrant les tumeurs 

Il a déjà été démontré que l'abondance accrue des taxons supra-glottiques dans le LBA est en 

corrélation avec l'augmentation de l'état inflammatoire dans les poumons des patients atteints 

de cancer du poumon. Ceci est observé par le changement du profil Th17 (Segal et al., 2016). 

Cependant, aucune étude n'a jusqu'à présent évalué l'association entre l'immunité intratumorale 

et le microbiote pulmonaire. 

Nous sommes les premiers à montrer que le microbiote du LBA est associé à la fois au profil 

immunitaire anti et pro-inflammatoire du LBA et aux lymphocytes infiltrant les tumeurs (TILs) 

(Article 2). Contrairement aux tissus, le LBA n'a montré aucune différence significative dans 

l'abondance quant à l'implication des ganglions lymphatiques métastatiques. Cependant, c'est 

le seul microbiote qui a montré une association significative avec l'immunité locale. Nous avons 

constaté que les taxons de l'embranchement des Protéobactéries étaient positivement corrélés 

avec les marqueurs protumoraux (Chraa et al., 2019) tels que les neutrophiles activés, les Th17, 

les Treg dans le LBA et avec une infiltration moindre de la tumeur. D'autre part, la plupart des 

taxons de l'embranchement des Firmicutes étaient positivement corrélés à des marqueurs 

antitumoraux tels que Th1, Th2, les formes inactives de neutrophiles (Chraa et al., 2019) dans 

le LBA et avec une infiltration plus élevée de la tumeur. Plusieurs des genres détectés ont déjà 

été signalés comme ayant une action similaire sur la réponse immunitaire. Par exemple, 

Akkermansia, Bifidobacterium et Lactobacillus ont été détectés comme des genres bactériens 

ayant un effet antitumoral (Bashiardes et al., 2017; Naito et al., 2018). Les genres Haemophilus, 

Streptococcus, Staphylococcus et Pseudomonas sont quant-à-eux associés à des pathologies 

pulmonaires (BPCO) ayant un impact négatif ou immunosuppressif sur l'hôte (Erb-Downward 

et al., 2011; Sze et al., 2015). 

4.2 Conclusion 

Le cancer du poumon est la première cause de décès par cancer dans le monde et il s’agit 

également du cancer ayant la plus forte incidence en 2018 avec le cancer du sein (International 

Agency for Research on Cancer, 2019). Avec deux sous-types principaux, le CBNPC représente 

jusqu'à 80 à 85 % de l'ensemble des cas de cancer du poumon et touche en majorité une 

population âgée (Takayuki et al., 2018). Bien que sa base génétique soit déjà bien caractérisée 
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(Aisner & Marshall, 2012), l'intéraction entre le CBNPC et le microbiote pulmonaire ne font 

l’objet que d’études très récentes. Même si la dernière décennie a été marquée par un intérêt 

croissant pour le microbiote pulmonaire, en particulier le BPCO, l'asthme et la fibrose cystique 

(Mao et al., 2018; O’Dwyer et al., 2016), le cancer du poumon reste encore peu exploré. 

Cependant, la situation évolue grâce à de récentes recherches portant sur des modèles animaux, 

et montrant que le microbiote intestinal peut à la fois influencer la croissance tumorale et la 

réponse de l'hôte à la chimiothérapie (Iida et al., 2013; Routy, Le Chatelier, et al., 2018; Sivan 

et al., 2015; Vétizou et al., 2015). Ces résultats évoquent l'idée de l'axe intestin-poumon, 

l'hypothèse d'une stimulation immunitaire de l'hôte par certaines bactéries intestinales pour 

augmenter l’activité antitumorale dans les poumons (Bingula et al., 2017; Budden et al., 2016; 

Hauptmann & Schaible, 2016; Marsland et al., 2015). Néanmoins, avant de considérer l'axe et 

son effet distal, il a d'abord fallu étudier l'effet local du microbiote pulmonaire (Dickson & Cox, 

2017). Les défis ont été multiples, à commencer par l'éthique de l'échantillonnage pulmonaire 

chez les sujets humains. La majorité des études ont porté sur l'analyse des LBA (Mao et al., 

2018). Enfin, de nombreuses questions sont restées sans réponses, comme l’implication que 

peut engendrer la différence fondamentale entre les différents échantillons pulmonaires dans 

les conclusions des études menées, ou l'étude approfondie de l'intéraction tumeur-microbiote. 

Nous avons montré pour la première fois que le microbiote pulmonaire provenant du LBA et 

des tissus pulmonaires présente des caractéristiques différentes, et qu'ils représentent tous de 

véritables échantillons pulmonaires en comparaison à l’échantillon de microbiote oral qu’est la 

salive. De plus, nous avons caractérisé pour la première fois le microbiote de quatre échantillons 

pulmonaires différents (LBA, tissus non cancéreux, péritumoraux et tumoraux) et nous avons 

également placé nos observations avec la perspective de la localisation du lobe tumoral. Nous 

avons montré que c'est ce dernier paramètre qui a le plus influencé le microbiote des LBA et 

des tissus péritumoraux, tandis que la tumeur était la moins concernée. Nous avons également 

avancé l’hypothèse que les changements observés dans les tissus péritumoraux pourraient 

refléter la modification de la proximité de la tumeur et pourrait influencer son agressivité. 

Nous avons ensuite montré que l'abondance des tissus tumoraux et extratumoraux est 

inversement proportionnelle à celle des ganglions lymphatiques métastatiques. De plus, ce 

schéma était étroitement lié aux profils respiratoires bactériens, identifiant les bactéries aérobies 

comme étant les plus présentes dans les tumeurs sans ganglions lymphatiques métastatiques et 

dans les tissus extratumoraux avec ganglions métastatiques. Le schéma inverse a été observé 

pour les bactéries anaérobies. Nous avons avancé l’hypothèse que ces deux groupes bactériens 
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se délocalisent selon le microenvironnement tumoral, soit la richesse en nutriments, la 

protection contre le système immunitaire et des conditions respiratoires favorables. Parmi ces 

genres bactériens, nous avons identifié des biomarqueurs potentiels qui pourraient contribuer à 

un diagnostic clinique plus précis et plus facile des métastases ganglionnaires. Enfin, nous 

avons signalé l'association entre la réponse immunitaire extra et intratumorale locale et le 

microbiote du LBA, identifiant le phylum des Protéobactéries comme étant associés au profil 

protumoral et le phylum des Firmicutes comme étant associés à un profil antitumoral. Ces 

observations étaient indépendantes du statut métastatique des ganglions lymphatiques. 

Nos résultats sont parmi les premiers à tenir compte du microbiote pulmonaire dans le CBNPC 

et ils contribuent de façon significative à la compréhension globale de la dynamique locale entre 

le microbiote, la tumeur pulmonaire et l'immunité. En plus de montrer la différence sous-jacente 

entre les différents microbiotes pulmonaires, nous avons également démontré la dissimilarité 

de l'association avec la réponse immunitaire. Nos résultats devront toutefois être confirmés avec 

un plus grand nombre de sujets, en particulier pour la vérification des biomarqueurs potentiels. 

4.3 Perspectives 

Bien que nous ayons initié les recherches sur le microbiote pulmonaire et son implication dans 

le cancer du poumon, de nombreuses questions demeurent sans réponses. Un prochain objectif 

sera de nous focaliser sur l'effet des ganglions lymphatiques métastatiques sur l’ensemble de 

l'hôte. Ceci impliquera l'analyse des profils immunitaires (comme déjà décrit dans le LBA), des 

cytokines dans le sang, et bien sûr, de l'étude des caractéristiques du microbiote fécal et de la 

production d’AGCC. Dans le cadre de l'application clinique, nous chercherons à confirmer 

notre découverte de biomarqueurs potentiels en développant la quantification absolue par 

qPCR, afin de disposer d’une technique rapide et précise pour la détection des ganglions 

lymphatiques métastatiques à partir d’une biopsie de tissu dans le lobe tumoral. 

L'immunologie de la tumeur est devenue un facteur important à prendre en considération dans 

le choix du traitement approprié ou dans l’établissement du pronostic. Ceci s'explique par le 

fait que chaque tumeur appartient à l'un des phénotypes essentiels de l'immunité cancéreuse, 

présentant des caractéristiques spécifiques qui influencent son intéraction avec son 

environnement (Chen & Mellman, 2017). Comme nous l’avons observé dans notre étude 

(Article 2), il est possible que des numérations très hétérogènes de lymphocytes infiltrant les 

tumeurs ainsi qu’aucune association avec le microbiote tumoral soit un facteur discriminant. Le 
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microbiote intestinal sera bien entendu inclus dans l'analyse, puisqu'il a été décrit comme 

"stimulateur" initial de l'infiltration tumorale par les cellules immunitaires antitumorales dans 

des modèles animaux (Daillère et al., 2016; Routy, Le Chatelier, et al., 2018; Sivan et al., 2015; 

Viaud et al., 2013). 

En ce qui concerne les métabolites bactériens, nous avons dosé les AGCC dans les fèces, mais 

selon la littérature, cela ne représente que 5% du total des AGCC produits au niveau intestinal 

(den Besten et al., 2013). Même s'il s'agit d'un bon indicateur des groupes fonctionnels 

bactériens et des résultats de dénombrement des selles fraîches, il sera intéressant de doser les 

AGCC dans le sang. Cela nous permettrait d'avoir un aperçu de la partie absorbée, même si elle 

est présente en petite quantité (Cummings et al., 1987), qui pourrait atteindre l'environnement 

de la tumeur pulmonaire et jouer le rôle dans la réponse immunitaire comme suggéré 

précédemment (Bingula et al., 2017). 

Une perspective importante de ce projet est également de compléter le groupe de patients 

CBNPC qui ont subi un traitement de chimiothérapie avant la chirurgie. Ce groupe nous 

permettra de suivre l'évolution du microbiote intestinal et salivaire et les marqueurs 

immunitaires au cours de la thérapie, la chirurgie étant le point final de la collecte des 

échantillons pulmonaires. Les effets secondaires de la chimiothérapie dus à sa non-sélectivité, 

comme la perturbation de la muqueuse, des membranes et d'autres cellules à prolifération 

rapide, ont été l'un des problèmes majeurs de la population traitée (Yu, 2013). Cependant, les 

patients ne réagissent pas de la même manière, mais malheureusement, la tumeur non plus, 

comme cela a déjà été démontré (Busch et al., 2016; Catacchio et al., 2018). Chez les modèles 

animaux, la transplantation fécale de patients ayant répondu au traitement s'est déjà avérée être 

une solution efficace (Sivan et al., 2015; Vétizou et al., 2015), indiquant que le microbiote 

intestinal est celui qui influence le plus la sensibilité du patient au traitement. Par conséquent, 

l'objectif sera également d'essayer d'identifier les différences entre les sous-groupes bactériens 

présents chez ces patients afin d'essayer d'influencer les non-répondants. Compte tenu de la 

tumeur pulmonaire et du microbiote pulmonaire, il sera intéressant de corréler le degré de 

réponse tumorale au traitement, comme la rétraction tumorale, l'infiltration immunitaire ou le 

degré de nécrose, avec les facteurs microbiens pulmonaires et digestifs. 
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