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Jérôme Faure
Directeur de recherche, CNRS (LOA) Directeur de thèse
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Chapter 1

Introduction

Contents
1.1 The pump-probe technique and temporal scales in condensed matter . . . . 3

1.2 Context and motivation of the thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Humankind has created the abstract concept of time as a way of tracking and ordering events
into past, present and future. Therefore, the notion of time is deeply rooted in our understanding
of the natural world. In an attempt to explain what time is, we could define it as a measure
of change, or more precisely as the period needed for anything to develop from a state A to a
state B. This gives rise to the obvious question: what is then the shortest period of time we
can measure? Is there a limit at which changes start to become significant? From a physical
point of view, this challenging question found an answer in quantum mechanics and the theory
of relativity. The minimum imaginable interval of time is given by the Planck time [1], which
sets an order of magnitude of the duration of the shortest changes in nature. It is given by three
physical constants, the Planck constant h̄, the gravitational constant G and the speed of light c:

tP =

√
h̄G
c5 = 5.39 ·10−44s (1.1)

This value is, of course, far away from what we could ever be able to perceive or even detect.
To the human eye, the window of time to perceive dynamical processes in nature is limited to a
fraction of a second, somewhere around 50ms. Within this temporal resolution we are able to
detect and describe "by eye", for example, the wing motion of large birds. Faster wing beats,
such as those of hummingbirds (around 80 beats per second), are out of reach and so we need
to make use of fast shutter cameras to be able to fully describe the wing motion during flight.

Another example for which a fast detection can be useful is shown in a beautiful experiment
performed by Xu et al. with a high-speed video camera. Figure 1.1 shows a series of snapshots
of the fall of a liquid drop collected at 47000 fps. These short time scales permit to describe the
drop geometry and how the impact of the drop against the flat surface is influenced by external
factors, such as the environmental pressure [2].

The drop arrives in all cases with the same spherical geometry to the flat substrate, which
finally covers its surface after about 2.5ms. The largest changes happen between a third and a
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Figure 1.1: Time lapse of a falling drop on a substrate at different environmental pressures
collected at 47000 fps [2].

half of a millisecond, shorter than the blink of an eye. The fast detection of this simple process
allows to precisely measure the threshold pressure at which the drop splashes after the impact,
to P = 38.4 kPa. This discovery, as well as being interesting for its own sake, might also find
applications in industrial processes such as ink-jet coating.

Material scientists, on their side, are mostly interested in the atomic dynamics in matter,
which are by far much faster processes. For instance, the atomic motion in crystals has typical
time scales given by the speed of sound in solids, on the order of 1000m/s, with atomic length
scales of few Ångstroms. According to these numbers, the temporal resolution required to
detect the dynamical processes should be on the order of 100 fs, i.e., 10−13 seconds.

The development of femtosecond laser pulses in the 1980s has enabled scientists to access
these time scales to explore the ultrafast dynamics of the structure of matter. First indirectly
from time resolved spectroscopic techniques, and then followed by direct structural techniques
such as diffraction. In order to detect the atomic motion from diffracted beams, sufficiently short
incident wavelengths are necessary, which are only achievable either from electron (λ ∼ pm)
or hard X-ray (λ ∼ Å) sources. The first electron diffraction pattern generated from a pulsed
electron source was reported by Mourou and Williamson in 1982 [3] followed one year later by
the first stroboscopic electron diffraction experiment performed by Ischenko et al. in a gaseous
sample [4]. These works set the beginning of the molecular movie era. The time resolved
diffraction scheme permits the study of out-of-equilibrium photoinduced processes such as non-
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thermal melting, structural phase transitions, coherent atomic vibrations or chemical reactions.
In the past decades, tremendous progress have been achieved thanks to the pioneering works
of A. Zewail, who was awarded the Nobel prize in chemistry in 1999 [5, 6]. An important
work which pushed the limits of temporal resolution below picosecond was performed by
R. J. D.Miller and co-workers with further progress in the development of ultrafast electron
sources [7, 8]. In the X-ray domain, the development of table-top X-ray plasma sources
[9] allowed temporal resolutions of few hundreds of femtoseconds. The first experiments
monitoring the dynamics of solids at these time scales was reported at the Laboratoire d’Optique
Apliquée (LOA) [10, 11]. On the other hand, large scale facilities such as synchrotrons in slicing
mode [12, 13] or X-ray free electron lasers (FELs) are the other type of sources able to achieve
the subpicosecond time resolution [14].

1.1 The pump-probe technique and temporal scales in con-
densed matter

The study of structural dynamics relies on pump-probe diffraction experiments (also known as
time resolved diffraction techniques). In a first step, a laser beam known as the pump, impinges
on the sample and triggers a cascade of photoinduced processes. A second diffracting beam
of either electrons or X-rays, known as the probe, takes a snapshot of the diffraction pattern
at different times after the pump initiation (a frame of the movie). A comparison between
snapshots allows to draw the followed pathway until full relaxation.

Generally, the arrival of the optical pump prompts electrons to high energy bands, resulting
in an out-of-equilibrium electron distribution. Within the first tens to hundred femtoseconds,
the electron population thermalizes via electron-electron scattering, leading to a very high
electron temperature. This process is followed by electron-phonon scattering in hundreds of
femtoseconds and phonon-phonon scattering in picosecond time scales, eventually leading to
a rise of the lattice temperature. The increase of temperature in the lattice is finally released
by heat diffusion, a longer process that takes from nanoseconds to microseconds, depending on
the sample geometry. This avalanche of events is well understood within the two temperature
model, presented in this thesis in section 2.2.1. When the energy of the pump is low enough,
the structural dynamics of the system is usually reversible. In this case, a possible observation
following photoexcitation is coherent atomic vibrations such as optical phonons. A good
example of this mechanism has been measured in bismuth by time resolved X-ray diffraction
[15, 16] in which the optical pump activates coherent atomic motion belonging to the A1g
optical phonon. Another possible response after excitation is photoinduced stress at high
incident energies resulting in lattice strain waves propagating through the sample within tens
of picoseconds [17, 18]. In a wider range of time scales, we might find structural phase
transitions such as the monoclinic to rutile crystal structures observed in vanadium dioxide in
few picoseconds [19, 20, 21], or the charge density wave (CDW) phase transition in blue bronze
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or transition-metal dichalcogenides materials, occurring in several hundreds of femtoseconds
[22, 23, 24]. The time scales of these processes may vary since they usually depend on the
properties of the material under study and the excitation fluence. Irreversible processes such as
thermal and non-thermal melting, on the other hand, have been reported in organic materials,
indium antimonide, bismuth, silicon or in gold at high incident fluence with time scales from
few hundreds of femtoseconds to picoseconds [10, 11, 25, 26, 27, 28]. On longer time scales,
as already mentioned, we can find heat diffusion as the lattice cools down. This process greatly
depends on the sample geometry. In the case of nanomembranes, for example, the characteristic
time scale of heat diffusion can exceed a fewmicroseconds [29]. Figure 1.2 presents a schematic
time arrow with the time scales corresponding to the different photoexcited processes.

Figure 1.2: Temporal scales of different photoinduced processes.

1.2 Context and motivation of the thesis
The understanding of the physical mechanisms behind photoinduced structural phase transitions
has become a central question in the ultrafast community. Systems displaying strong cooperation
between the different degrees of freedom (charge, spin, orbitals and lattice) are of particular
interest. The main questions regarding this type of phase transitions can be listed as follows:

What is the main driving force in a phase transition?

How strong is the coupling between the different degrees of freedom?

What are the different time scales associated to each degree of freedom and their coupling?

Does the understanding of the dynamics help us to better comprehend the basic physics
of the phase transition?
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Time resolved experiments, with their capability to follow the dynamics within the relevant time
scales in solids, are the ideal techniques to shed light on these questions. A good example of a
cooperative structural phase transition is found in charge density wave (CDW) systems. CDWs
are stable macroscopic quantum states in low dimensional materials, that can only occur by the
coupling between electronic and lattice subsystems.

When a metallic system undergoes a transition to the CDW phase, a gap opening emerges in
its electronic structure accompanied by a lattice distortion. The latter results in the emergence
of new spots in diffraction, known as satellite reflections. Their intensity is directly linked to
the order parameter of the phase transition.

Optical excitation can result in the suppression of the CDW phase, as can be inferred from
the satellite intensity decrease. Various relaxation pathways in this transition have been pro-
posed. In some cases, these pathways have been attributed to mechanisms that are different
from those observed at thermal equilibrium [30]. A good evidence of the increasing inter-
est in these systems is reflected in the large amount of research works in the transition-metal
dichalcogenides [23, 24, 31, 32, 33, 34, 35]. These compounds present high intensity satellite
reflections that, from an experimental point of view, have a great advantage in terms of detec-
tion. One of the "drawbacks" of the transition-metal dichalcogenoides is their complex phase
diagrams where several CDW phases might be present, depending on the elements that from
compound. Therefore, studies on materials with relatively simpler phase diagrams might
give a more straightforward picture of the photoinduced phase transition into the metallic
state. Possible candidates with less complex phase diagrams are blue bronzes (K0.3MoO3) and
Rare-Earth Tritelluride compounds (RTe3).

This thesis is based on a collaboration between LOA and Laboratoire de Physique des
Solides (LPS). Both laboratories are widely recognized for their expertise in ultrafast sources
and solid state physics, respectively. The development of the first compact ultrafast electron
diffraction (UED) setup in France at LOA opened the possibility to study the out-of-equilibrium
structural dynamics of a well known topic at LPS: the CDW phase transition of the RTe3 com-
pounds. At the starting time of the work presented here (mid 2016), the structural dynamics
of the photoinduced phase transition in RTe3 compounds was poorly known, the collaboration
between LOA and LPS thus provided the perfect conditions to study this matter.

The scope of this thesis was threefold:
First of all, we tested the capabilities of the recently developed UED setup at LOA. To

do so, we performed a series of pump-probe experiments on a perfect silicon single crystal
nanomembrane and discovered the large influence of multiple scattering effects on the time
resolved diffracted intensities, an aspect that was pointed out before by other research groups
but never studied in detail [29, 33].

The second and central aim of this thesis is focused on the study of the photoinduced phase
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transition of GdTe3 by UED. I thus addressed several questions:

• What are the main differences between the thermal equilibrium and photoinduced phase
transitions?

• On which time scales does lattice dynamics take place?

• What is the response of the system to different excitation fluences?

• How does the initial temperature of the lattice influence the dynamics of the CDW?

Here, several challenges had to be faced. In particular, the preparation of suitable samples for the
UED setup and the means to detect the low intensity satellite reflections. Another challenging
aspect of the work presented here was its very timeliness, as a large number of high quality data
was published on the topic as I was performing these experiments [36, 37, 38, 39, 40] (some of
them still on arXiv).

The last aim of the thesis is to understand the dynamics of the structural phase transition
on Nb3Sn, a material that displays a martensitic phase transition driven by lattice distortive
displacements. In this case, we centered our attention on the main differences between the
structural transition at thermal equilibrium and after photoexcitation with temporal resolutions
of several picoseconds. The experiments were performed in the CRISTAL beamline at SOLEIL
synchrotron.

1.3 Outline
The thesis is divided in six chapters:

• Chapter two serves as an introduction to the theory of diffraction in the two existing
formulations: kinematical and dynamical theories of diffraction. A brief comparison
between X-ray and electron diffraction is given and then followed by the signatures of
different photoinduced processes in a diffraction pattern.

• In chapter three, I introduce the experimental setups used in the development of my thesis.
Firstly, I describe the ultrafast electron diffraction DC gun developed at LOA. The second
part is devoted to the description of the CRISTAL beamline at SOLEIL Synchrotron
where I performed two experiments with the LUTECE group from LPS.

• In chapter four, I present the results obtained in the UED setup on a high-quality silicon
crystal nanomembrane from which we demonstrated that dynamical diffraction effects
play an important role in time resolved electron diffraction.

• In chapter five, I show the time resolved electron diffraction results from nanomembranes
of GdTe3. Here, I shall give an analysis of the dynamics of the CDW at different incident
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fluences and explore the implications of different initial sample temperatures, as a way of
bringing more light to the conflicting interpretations given in the literature.

• Chapter six presents the results from time resolved X-ray diffraction experiments in
SOLEIL in the structural phase transition in Nb3Sn. Here, I compare the structural phase
transition at thermal equilibrium with the results from the photoexcited phase transition.

• To conclude, the main results of this work are summarized and followed by a discussion
of its limitations and future perspectives.
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The discovery of X-rays by Röntgen in 1895 led to scientific breakthroughs in several fields,
from medicine to solid state physics and crystallography. In the case of the latter and thanks to
the works of Laue, Ewald and specially W. L. and W.H. Bragg, with the use of X-ray diffraction
it became possible to identify the structures of inorganic and organic crystals. Probably, one
of the most famous milestones of X-ray diffraction was the discovery of the helical structure of
DNA [41]. Furthermore, diffraction served as a support for the early theories of wave-particle
duality of light, which was demonstrated as well with electrons as confirmed independently by
G. Thomson and C.Davidson [42] corroborating the predictions from de Broglie.

This chapter serves as a brief introduction to basic notions of crystalline structures and
diffraction. The description of kinematical and dynamical theory of diffraction is introduced
along with the temperature effects in the diffraction patterns, followed by a description of the
repercussions of the photoexcitation in the lattice and the diffraction pattern. Main bibliography
covering in depth X-ray diffraction and crystalline structures can be found in [43, 44]. The
lecture notes from S. Ravy [45] are particularly useful for those topics1. Electron diffraction
and dynamical theory of diffraction are well described in [46] and especially in [47]. A good
introduction of time resolved diffraction can be found in [48].

1Indeed, a good reason to start learning french.
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2.1 Crystal structures and diffraction theories
We can imagine a solid crystal as an ensemble of ordered atoms, ions or molecules periodically
arranged in the three dimensions of space. The smallest cell that can be used to create the
entire crystal by translations is known as the unit cell. The crystal structure can be classified
into 14 lattice types known as the Bravais lattices. Figure 2.1 shows the scheme of a Body
Centered Cubic (BCC) crystal, with the atomic positions in the unit cell located at r1 = (0,0,0)
and r2 = (1/2,1/2,1/2):

Figure 2.1: Schematic of a BCC crystal. The atomic positions in the unit cell are denoted by
the ®r j and the position of each unit cell is given by ®R.

The atomic positions within the unit cell are given by:

r j = x ja+ y jb+ z jc

with a,b,c the unitary cell vectors and j the type of atom. The position of each unit cell in the
ensemble of the crystal is defined by :

Rn = ua+ vb+wc

with u,v,w integers.
In 1912, W.H. andW. L. Bragg (father and son) developed their famous law of diffraction; a

simple, yet powerful geometrical approachwidely used until now. While studying the interaction
of a Zincblende sample and X-rays [49], they realized that certain reflections appeared in their
detection screen and seemed to move when the crystal sample was rotated. They imagined the
crystalline structure as a set of parallel planes with interplanar distances d ≥ λ, which could
reflect the X-rays as a mirror reflects light [50]. The appearance of such spots would only be
possible if the reflected waves were interfering constructively, i.e., when the path difference
between two set of waves was an integer of the incident wavelength λ (see figure 2.2):

nλ = 2d sinθB (2.1)
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Figure 2.2: Schematic representa-
tion of Bragg’s law. The path dif-
ference between two incident wave
fronts of equal phase is given by the
interplanar distance and the angle
of incidence.

with n an integer, d the distance between the reflecting planes and θB the scattering angle (Bragg
angle).

The resulting diffracted wave is what we term nowadays as a Bragg reflection. The position
of such peaks in the detection screen corresponds to the interplanar distances in real space
known as Miller planes. Real and reciprocal spaces in a crystal are related from their lattice
parameters by:

a∗ = 2π
b× c

a · (b× c)
b∗ = 2π

c×a
a · (b× c)

c∗ = 2π
a×b

a · (b× c)
where (a∗,b∗,c∗) are the reciprocal unitary vectors, which fulfill the following relations:

a∗ ·a = b∗ ·b = c∗ · c = 2π
a∗ ·b = a∗ · c = b∗ ·a = b∗ · c = c∗ ·a = c∗ ·b = 0

(2.2)

In this way, we can define a reciprocal lattice vector by:

ghkl = h a∗+ k b∗+ l c∗

which satisfies:

|ghkl | =
2π
dhkl

with units of inverse length (usually in Å−1). Each family of planes in real space with an
interplanar distance d is associated to the shortest reciprocal vector perpendicular to these planes.
Figure 2.3 shows a scheme of the interplanar distances in real space (left) and the corresponding
reciprocal space (right). With the relations given in 2.2, it is possible to demonstrate that a
reciprocal lattice vector satisfies the condition ghkl ·Ruvw = 2π n when n = (hu+ kv+ lw) integer.

Another equivalent geometrical description of the diffraction process was described by
P. Ewald. Figure 2.4 depicts the scheme of the Ewald construction in 2D; consider the center
of real space located at the point of incidence in the sample, and draw a sphere of radius 2π/λ,
i.e., the incident wavevector. We can find the center of reciprocal space lying on the sphere at
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Figure 2.3: Schematic representation of the interplanar distances d along the crystallographic
[010] direction and the related scattering wavevectors g in reciprocal space.

θ = 0. The condition of constructive interference for the scattered wavesvector from the crystal
takes place when the difference between incident and reflected wavevectors coincides with a
reciprocal lattice vector (also known as the Laue condition):

∆k = k′−ki = ghkl

Schematically, when this condition is fulfilled g lies on the surface of the Ewald sphere, so

Figure 2.4: Schematic of the Ewald sphere with the radius given by the incident wavevector.
The origin of real space is located at the point of incidence in the sample (blue rectangle) and
O′ denotes the center of reciprocal space.

that only those wavevectors satisfying |ghkl | < 4π/λ are accessible in diffraction. This geomet-
rical approach explains one of the main differences between electron and X-ray diffraction; in
contrast to X-ray diffraction, high energy electrons with several keV have wavelengths of few
picometers, leading to a smaller curvature of the Ewald sphere and thus to a larger number of
spots intersecting its surface.
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Bragg’s law and the Ewald construction can only offer geometrical information on the
position of the diffracted peaks but they do not provide a quantitative information of their
intensities. When the interaction between the incoming electromagnetic wave and the crystal
potential is weak, the probability of the incident beam to suffer two consecutive scattering events
is really small. In this case, the kinematical theory of diffraction provides a suitable description
of the process. The resulting diffracted intensities in this framework are much weaker than the
intensity of the incident wave, as shown schematically in figure 2.5.

Figure 2.5: Schematic of kinematically (left) and dynamically (right) scattered intensity. In
the kinematical case, the sample presents some domains, reducing the scattered intensity, and
thus a weak intensity is diffracted. In the dynamical case the sample is a perfect single crystal,
the diffracted beams are re-scattered into the incident beam multiple times through the sample
thickness (z = L), resulting in a strong diffracted peak.

The theoretical description of diffraction departs from this formalism when the interactions
between the incident wave and the crystal potential are strong. This is the case when the crystal
potential is set by a perfect crystal. In the case of electrons, the incident beam is strongly
affected by the Coulomb field of the atoms in the crystal. Therefore, the resulting diffracted
intensity suffers multiple scattering events while traversing the thickness of the crystal gaining
intensity as it propagates. As a result, it becomes comparable or even stronger than the incident
intensity.

Figure 2.5 shows a schematic of both diffraction processes along with the expected diffracted
intensities. Note that kinematical (dynamical) theory is not inherent of X-ray (electron) diffrac-
tion. Diffracted intensities from high quality single crystals will always be described by
dynamical theory of diffraction. On the other hand, diffracted beams from samples with low
crystal quality or with small thicknesses can be appropriately described within the kinematical
framework in both techniques. In the following sections, a description of both theories is given.
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2.1.1 Kinematical theory of diffraction
The scattered intensities predicted in the kinematical framework depend on two factors, namely
the structure factor F(∆k) which depends on the atomic positions in a single unit cell and their
scattering power, and the shape factor S(∆k)which depends on the external shape of the crystal,
and thus on the number of probed unit cells:

S(∆k) =
N∑
n

e−i∆k·Rn (shape f actor) (2.3)

F(∆k) =
n∑
j

fat(∆k)e−i∆k·rj (structure f actor) (2.4)

Supposing a crystal formed by N ×N ×N unit cells, the scattering amplitude from the shape
factor is given by:

S(∆k) =
N∑

u=1

N∑
v=1

N∑
w=1

e−i∆k·Rn =

N∑
u=1

e−i2π∆kx u
N∑
v=1

e−i2π∆ky v
N∑

w=1
e−i2π∆kz w (2.5)

where every term is a geometric sum of the form
∑N

u=1 e−i2π∆kx u = e−iπ(N+1)∆kx sin(πN∆kx)
sin(π∆kx)

so that
the intensity becomes:

I(∆k) = F F∗(∆k)S S∗(∆k) = F(∆k)2
sin2(πN∆kx)

sin2(π∆kx)

sin2(πN∆ky)
sin2(π∆ky)

sin2(πN∆kz)

sin2(π∆kz)
(2.6)

Then, the diffracted peaks display a shape of the form sin2(N x)/sin2(x) as depicted by the
blue line in figure 2.6 with their width determined by the number of probed cells N and the
intensity by the structure factor, which is given by:

F(∆k) =
∑

j

f je−i∆k·rj =
∑

j

f je−2iπ(∆kxaj+∆kybj+∆kzcj ) (2.7)

where f j is the scattering form factor of an atom j and r j denotes the atomic position in the
unit cell.

The structure factor gives information on the intensities and possible extinctions of the
Bragg peaks. For instance, in the case of a BCC lattice, as the one shown in figure 2.1, the
atomic positions can be fully described by the translation of two vectors: (0,0,0) and (1⁄2, 1⁄2, 1⁄2).
The structure factor for any (hkl) plane becomes thus:

FBCC
hkl =

∑
j

f j
(
1+ e−iπ(h+k+l))
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We will find a maximum at those reflections satisfying (h+ k + l) = 2n, whereas it will be
extincted for (h+ k + l) = n.

Finally, the form factor f j represents the scattering power of the atom. It depends on the
number of electrons of the atom (Z), the scattering angle and the type of electromagnetic
interaction, which in the case of X-ray diffraction is defined by:

fx,j(∆k) =
∫

ρe,j(r)e−i∆k·rd3r =

{
Z, ∆k −→ 0
0, ∆k −→∞

(2.8)

where ρe,j is the atomic electron density. The analytical approximation of the form factor fx is
given by [44]:

fx,j(∆k) =
4∑
i

ai,je−bi, j
(

∆k
4π

)2

+ c (2.9)

where ai ,bi and c are the resulting constants obtained from theoretical calculations, tabulated
in the International tables of crystallography [51]. The scattering form factor for electron
diffraction, can be converted from the X-ray form factor by the Mott formula [47]:

fel(∆k) =
2m2

e

h̄2 γ
1
∆k2 (Z − fx(∆k)) (2.10)

with γ the relativistic mass correction factor. Figure 2.6 shows the resulting diffracted intensity
of a crystal with the different factors intervening in the scattering process.

Figure 2.6: Total diffracted intensity (blue) of a crystal with N=10 unit cells.
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The Debye-Waller effect and Thermal Diffuse Scattering

Up to now we have described the diffraction from a crystal by considering a static crystal lattice.
In reality, atoms are never fixed at a given position, but instead they vibrate as a consequence
of thermal fluctuations. This even applies at T = 0K due to the quantum uncertainty principle,
known as the zero-point fluctuations. The effect of such vibrations on the intensities of the Bragg
peaks can be developed by considering the position of a nth atom as the sum of a time averaged
position Rn and a fluctuating term in time: R(t) = Rn+un(t) 2. The more the temperature of the
lattice increases, the larger the thermal fluctuations, affecting then the intensity of the diffracted
peaks. Considering the fluctuating term, the structure factor becomes:

F(∆k,t) =
∑

n

f (∆k)e−i∆k·(Rn+un(t))

So that the intensity of the diffracted beam reads:

I(∆k) =
〈
F(∆k,t)F(∆k,t)∗

〉
=

〈∑
n

f (∆k)e−i∆k·(Rn+un)
∑

m

f ∗(∆k)ei∆k·(Rm+um)
〉

=
∑

n

∑
m

f (∆k) f ∗(∆k)ei∆k·(Rm−Rn)
〈
ei∆k·(u∆km−u∆kn )

〉 (2.11)

where 〈...〉 denotes temporal average and un = u∆kn is considered for convenience, with the latter
defined as a component of the displacement parallel to ∆k. By considering small displacements
with equal positive and negative probabilities, it is possible to approximate the last term of the
above equation with the Baker-Hausdorff theorem3:

〈eix〉 = e−
1/2〈x2〉

whence:

I(∆k) =
∑

n

∑
m

f (∆k) f ∗(∆k)ei∆k·(Rm−Rn) e−
1/2∆k2〈u2

∆km
〉 e−

1/2∆k2〈u2
∆kn
〉 e∆k2〈u∆knu∆km 〉 (2.12)

From translation geometry we can rewrite 〈u2
∆kn
〉 = 〈u2

∆km
〉 = 〈u2

∆k〉, and by defining M =
(∆k)2〈u2

∆k〉/2 it leads to:

I(∆k) =
∑

n

∑
m

f (∆k)ei∆k·Rme−M f ∗(∆k)ei∆k·Rne−M

+
∑

n

∑
m

f (∆k)ei∆k·Rme−M f ∗(∆k)ei∆k·Rne−M
[
e∆k2〈u∆knu∆km 〉 −1

] (2.13)

2For simplicity, we consider one type of atom located at each lattice point.
3Demonstration of this approximation can be found in [52].
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where

M =
1
2
(∆k)2〈u2

∆k〉 =
1
2

(4π
λ

)2
sin2θ〈u2

g〉 = BT

( sinθ
λ

)2
(2.14)

is the Debye-Waller factor, with BT = 8π2〈u2
g〉. The first term of equation 2.13 accounts for

the elastic scattering giving rise to the sharp diffracted Bragg peaks. The effect of the Debye-
Waller factor tends to decrease the intensity with increasing temperatures (larger displacements)
without changing the width of the peak. On the other hand, the term enclosed in brackets on the
second part of equation 2.13 increases with increasing temperature, due to larger displacements
with temperature. It arises from short distances in the crystal, resulting thus in a considerably
diffused scattering in comparison to the diffracted Bragg peaks. This is the reason why it is
known as thermal diffuse scattering, usually seen as a background signal in the diffraction
patterns.

By inspecting the Debye-Waller factor M we can make a straight observation: large ∆k
will display weaker intensities at high temperatures4. An example of this effect is shown in
figure 2.7, which shows the measured [h00] X-ray Bragg reflections of an aluminum sample at
different lattice temperatures [53].

Considering the case of a monoatomic cubic crystal within the Debye approximation and as
a collection of harmonic oscillators, it is possible to demonstrate (see [44] or [52] for a detailed
development) that the mean squared displacement averaged over all modes:

〈u2〉 =
9h̄2T2

mAkBθ
3
D

∫ θD/T

0

[ 1
eξ −1

+
1
2

]
ξdξ (2.15)

with mA the average mass of the unit cell and where the Debye function is introduced as:

φ(x) =
1
x

∫ x

0

ξ

eξ −1
dξ

with x = h̄ωD/kBT = θD/T , θD the Debye temperature and ξ = h̄ω/kBT . We can express the
factor BT given in equation 2.14 by:

BT = 8π2〈u2〉 =
6h2

mAkBθD

(φ(θD/T)
θD/T

+
1
4

)
The φ(θD/T) integral varies from 1 to 0.6 between θD/T ∼ 0 and θD/T = 2, respectively.

4Note that the loss of Bragg peak intensity with temperature does strictly apply to the case of kinematical
diffraction. As we will see in the following section, in the case of dynamical diffraction the intensities of the
diffracted peaks do not necessarily decrease with temperature.
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Figure 2.7: Diffracted intensities of the [h00] aluminum Bragg peaks as a function of the sample
temperature. Image from [53].

2.1.2 Dynamical theory of diffraction
In order to illustrate the electron scattering processes under the dynamical framework, the
derivation of the scattered amplitudes and its application to the two beam approximation in
electron diffraction will be explained in the following. Results derived from a larger number of
interacting beams will be presented in chapter 4 along with the experimental data.

The crystal potential can be viewed as the superposition of all atomic potentials, and thus
described as the Fourier series of the crystal lattice. Following the notation in [47] the crystal
potential is defined as:

V(r) =
∑
g,0

Ugeig·r+U00 (2.16)

where g denotes the reciprocal lattice vector of the diffracted beam and U00 the static average
crystal potential.

When the electron enters the crystal potential, its kinetic energy is altered due to the
interaction with the average crystal potential U00, thus from the energy conservation law:

h̄2

2m
(k2

i − k2) =U00 (2.17)

with ki the electron wavevector in vacuum and k in the crystal.
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The electron wavefunction inside of the crystal potential is then defined by:

Ψ(r) =
∑

g
φg(z)ei(k+g)·r (2.18)

where φg(z) is the Fourier coefficient corresponding to the scattered amplitude associated to g
through the sample.

By introducing the above quantities into the Schrödinger equation:

−
h̄2

2m
∇2
Ψ(r)+V(r)Ψ(r) = EΨ(r) (2.19)

considering ei(k+g)·r = ei[(kx+gx)·x+(ky+gy)·y+kz ·z]5 and by inserting the Fourier development of
Ψ(r) andU(r), the solution to the Schrödinger equation becomes aftermultiplying by 2m

h̄2 e−i(k+g)·r

and integrating on r:

(2kxgx +g
2
x +2kygy +g2

y)φg(z)−
∂2φg(z)
∂z2 − i2kz

∂φg(z)
∂z

+
2m

h̄2

(∑
g′,g

φg′(z)Ug−g′

)
= 0 (2.20)

The summation enclosed in parenthesis in the first term of the solution is known as the "deviation
parameter" or "excitation error" sg, which depends on sample orientation. Following the same
notation as in figure 2.8 we can retrieve the relation for the deviation vector in 1D:

s =
−g2

x −2kxgx

2k
=

k2
x −(gx + kx)

2

2k

Figure 2.8 a) depicts a schematic of a portion of the Ewald sphere and the reciprocal lattice plane

Figure 2.8: Schematic of the deviation parameter. a) geometry for s = 0 (Bragg condition) and
b) after rotating the sample by θ+ δ. For convention, s < 0 in this case. Image taken from [47].

5Here, we consider that gz ∼ 0 since for high energetic electrons the curvature of the Ewald sphere is highly
reduced, so g ⊥ z.
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in 1D in symmetric condition i.e., at Bragg condition. By rotating the incident wavevector by
an angle of θ+ δ the Ewald sphere is deviated by s from the reciprocal lattice plane, as depicted
in figure 2.8 b). Thus, as its name suggests, the deviation vector gives information on how far
we are from diffraction condition, i.e., sg = ∆k−g.

The second term of equation 2.20 can be neglected when considering a slowly varying beam
along the sample thickness. Finally, the last term can be rewritten by considering the "extinction
distance" parameter, which is related to the crystal potential by:

1
ξg−g′

= −
2m

h̄2kz
Ug−g′ (2.21)

The extinction distance is the period of oscillation of intensity for the diffracted beams (this
definition becomes clearer in the simple case of the two-beam approximation shown in the
following).

The solution of the Schrödinger equation leads then to a system of coupled differential
equations known as the Howie-Whelan equations:

∂φg

∂z
= isgφg(z)+

∑
g′,g

i
2ξg−g′

φg′(z) (2.22)

The simplest picture of dynamical theory of diffraction can be explained by considering
only two interacting beams, known as the two-beam approximation, with the incident electron
beam φ0 and a diffracted beam φg. By imposing the condition of intensity conservation
|φ0 |

2 + |φg |
2 = 1 and boundary conditions φ0(z = 0) = 1 , φg(z = 0) = 0, the solutions of the

scattered amplitudes become:

φ0(z) = eiπzsg

[
cos

(
πz

√
1
ξ2

g
+ s2

g

)
−

iξgsg√
1+ ξ2

g s2
g

sin

(
πz

√
1
ξ2

g
+ s2

g

)]
(2.23)

φg(z) = eiπzsg

[
i√

1+ ξ2
g s2

g

sin

(
πz

√
1
ξ2

g
+ s2

g

)]
(2.24)

and their respective intensities:

Ig =
1

(1+ ξ2
g s2

g)
sin2

(
πz

√
1
ξ2

g
+ s2

g

)
(2.25)

I0 = 1− Ig (2.26)
The expressions for the intensities become particularly simple at the exact Bragg condition,

where the deviation parameter becomes sg = 0, so that the intensities of the transmitted and
diffracted beams are simplified to:



2.1. Crystal structures and diffraction theories 21

Figure 2.9: Pendellösung effect in
the two-beam approximation. The
intensities of diffracted (blue) and
transmitted (orange) are calculated
over a thickness of 150 nm. The ex-
tinction distance ξ = 50 nm corre-
sponds to the period of extinction of
the diffracted beam.

Ig = φgφ
∗
g = sin2

(πz
ξg

)
(2.27)

I0 = φ0φ
∗
0 = cos2

(πz
ξg

)
(2.28)

In this case, the intensities only depend on the thickness of the sample. More precisely, at
z = 0 and at z = nξg, with n integer, the intensity of the diffracted beam Ig = 0 and of the direct
beam I0 = 1. On the other hand, the diffracted intensity reaches its maximum (Ig = 1) when
the thickness of the sample fulfills the condition z = ξg(2n+1)

2 , and consequently the transmitted
beam is extincted (I0 = 0), as shown in figure 2.9 for an extinction distance of ξg = 50 nm.
This situation is analogous to a system of two coupled harmonic oscillators, also referred

as the Pendellösung effect, transferring energy from one to another along the thickness of the
sample. Furthermore, the full rocking curves as a function of sg highlight the importance of
the thickness in their shapes. To illustrate it, figure 2.10 shows the rocking curves for a given
extinction distance of ξg = 50 nm and at four different thicknesses. We can clearly observe
that as the thickness of the sample is increased, the distance between the fringes in the rocking
curves decreases. Note that the envelope (black dotted line) is constant for all thicknesses, as
expected from the first factor in equation 2.25. It is interesting to remark that as the thickness of
the sample is reduced and ξg >> z, the rocking curves recover the kinematical shape, as shown
in figure 2.10 a).

Electron microscopists rely on the dynamical fringe pattern to accurately measure the
thickness of the samples by convergent beam electron diffraction (CBED) technique [54]. Figure
2.11 shows a typical CBED diffraction pattern of an aluminum foil of thickness z = 100 nm in
nearly two beam condition [55], with the right diffracted spot corresponding to the (220) Bragg



22 Chapter 2. Introduction to diffraction theory

Figure 2.10: Rocking curves of the dynamically diffracted Bragg peak assuming ξ = 50nm and
different thicknesses a) z = 12 nm, b) z = 50 nm, c) z = 90 nm, d) z = 125 nm.

peak and the left to the transmitted beam. Below the CBED pattern a scheme of the profile lines
is depicted highlighting the Si distances and the Bragg angle, which is defined from the distance
to the center of the transmitted beam. Notice the complementarity in their intensities. When
the diffracted pattern is close to the two-beam condition, it is possible to relate the "interfringe"
distance with the thickness of the sample from the following linear relation [55, 56]:(

Si

ni

)2

= −
1

ξ2
g n2

i

+
1
t2 (2.29)

In this case Si denotes the deviation parameter of the ith minimum from the exact Bragg position
and ni (ni = 1,2,3,4) the position. The thickness is retrieved from the intercept of the linear fit.
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Figure 2.11: Up: CBED diffraction pattern of an aluminium foil in two-beam condition for the
(220) Bragg peak [55]. Bottom: Simulated line profiles for an extinction distance of ξg = 100 nm
and a thickness of 150 nm. The green curve represents the transmitted beam whereas the red
curve is the diffracted peak.

Temperature effects in dynamical diffraction

We have seen that in the kinematical theory of diffraction, the effects of the temperature increase
can be accounted for by the Debye-Waller effect, leading always to a decrease of the intensities.
In the case of dynamically diffracted beams, the effects of temperature on the intensities are
more complex since the crystalline potential as well as the extinction distance are subjected to
the temperature changes (see equation 2.21). This can be easily shown by introducing another
definition of the extinction distance, which reads [47, 46]:

ξg =
πV
λFg

(2.30)

where V stands for the volume of the unit cell, λ the de Broglie electron wavelength and Fg the
structure factor corresponding to the scattered g wavevector. Thus, when we take into account
the Debye-Waller factor, the extinction distance becomes:

ξ′g =
πV

λFge−M = ξgeM (2.31)

In certain cases, the relation between thickness and extinction distance may lead to the
non-intuitive result of a larger intensity of the diffracted beam at higher lattice temperatures.
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Figure 2.12: Simulated rocking curves for a 70 nm thick sample with two different extinction
distances.

This effect is represented in figure 2.12, in which the rocking curves have been simulated for
a constant thickness of 70 nm and with two different extinction distances: ξg = 95 nm and
ξ′g = ξgeM = 100 nm with M = 0.05, which results in a higher intensity at the exact Bragg
condition.

2.2 Time resolved diffraction
This section introduces diffraction considering the optical pump excitation, which allows to
study matter as it relaxes back to the equilibrium state. First the two-temperature model that
describes the temporal relaxation of the electrons and lattice is presented. In order to perform
successful experiments, it is necessary to keep the excited volumematched to the probed volume.
Therefore, the difference in the penetration depth from the pump and probe beams is discussed,
followed by a more general comparison between electron and X-ray probes. Finally, the possible
structural changes that the optical excitation may induce in the solid and the expected signatures
in the diffracted pattern are discussed.

2.2.1 Two-temperature model
The two-temperaturemodel is a phenomenologicalmodel that describes the relaxation dynamics
of a photoexcited system by considering two coupled subsystems formed by electrons and
phonons with distinct temperatures Te and Tl , respectively [57]. The strength of the coupling
between both dictates the temporal evolution of their temperatures until reaching thermal
equilibrium. When the pulse width is shorter or comparable to the electron-phonon energy
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transfer time, a non-equilibrium between electrons and phonons is achieved. Since the electron
heat capacity is smaller than that of the lattice, the absorption of the laser pulse energy increases
its temperature by several thousands of Kelvin while the lattice remains unaffected for the first
tens of femtoseconds. After photoexcitation, the electronic system follows a rapid thermalization
through electron-electron scattering transferring the energy to the phonons via electron-phonon
coupling, which ultimately increases the lattice temperature by few tens of Kelvin depending
on the laser incident energy. The temporal evolution of the temperature of both electrons and
lattice can be modelled by considering a system of coupled non-linear differential equations
describing the energy balance between both subsystems [57]:

Ce(Te)
∂Te

∂t
= K∇2Te −G(Te −Tl)+ f (r,t)

Cl
∂Tl

∂t
= G(Te−Tl)

(2.32)

where Ce(Te) is the electron heat capacity which depends linearly on the electron temperature
(Ce = γeTe, with γe the electron heat capacity constant), K is the thermal conductivity, f (r,t)
the heat source term due to the laser pulse:

f (z,t) = −

√
4 ln2
π

(1−R)Finc

w δL
exp

(
−

z
δL
−4 ln2

( t −2w
w

)2)
(2.33)

which corresponds to a gaussian profile with a full width half maximum w, propagating along
the sample thickness z with an incident fluence Finc, with reflectivity R and penetration depth
δL . The electron-phonon coupling constant G is defined by:

G ∼ π2mnv2
s /6τep (2.34)

with m the electron mass, n the electron density, vs the sound velocity and τep the electron-
phonon collision time, which is proportional to 1/Te (this assumption is valid when Te and Tl

are larger than the Debye temperature θD). Once the energy is transferred from the electron
subsystem to the phonon bath within the first hundreds of femtoseconds, the lattice returns
to the ambient temperature by heat diffusion. Experimentally, the temporal evolution of the
temperatures can be accurately determined from ultrafast optical experiments, as reflectivity or
transmissivity.

As the intensity of the laser pulse is increased, the amount of deposited energy on the system
increases leading to longer electron relaxation times [58]. The temporal scales of the relaxation
processmight depend, on the other hand, on the strength of electron-phonon coupling. Materials
displaying a strong electron-phonon coupling, i.e., large values of G, result in a faster relaxation
of the process [59].

Although this model is generally suitable to describe non-equilibrium dynamics of metallic
systems, some other systems as for instance magnetic samples, need a third degree of freedom
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to fully describe the laser induced demagnetization dynamics: the spin. In this case, the
description turns into a three temperature model accounting for electrons, spins and lattice
[60]. The three temperature model has been also applied to more complex systems as high
temperature superconductors [61].

2.2.2 Pump and probe penetration depths

One of the most important factors to consider in time resolved diffraction is the penetration
depths of the pump and probe, which should be matched to ensure that the measured signal
comes from a homogeneously excited volume. The majority of experimental setups are based
on lasers with wavelengths lying in the visible range, which results in penetration depths of few
tens of nanometers in solid state samples, depending on the material characteristics. Following
the Beer-Lambert law, the intensity of the laser beam decreases exponentially as it propagates
through the material:

I = I0e−αL

with α the attenuation constant and L the material thickness. The attenuation constant is
inversely proportional to the penetration depth and so it can be linked as well to the extinction
coefficient by:

δ =
1
α
=

λ

4πκ(λ)
(2.35)

where λ is the wavelength and N = n+ iκ the refractive index6.
In the case of electron diffraction, the condition of equally probed and excited volumes is

easily fulfilled, since the large scattering cross section of electrons reduces considerably their
elastic mean free path in the solid [63]:

Λe =
A

ρNoσ
(2.36)

with A the atomic weight, σ the cross section in units of events/e−/(atom/cm2), No the
Avogadro number, ρ the material density. Typically, for samples with low atomic number, the
elastic mean free path of an electron beam is on the order of ∼ 100 nm for electron energies of
100 keV.

For X-ray diffraction the situation is quite different; X-rays provided by synchrotron radiation
with energies of few keV have penetration depths as large as few microns in specular reflection,
being thus several orders of magnitude larger than the optical pump depth. Performing a diffrac-
tion experiment in such conditions would hinder the dynamics of the photoexcited volume. This
problem can be overcome by working at low angles of incidence or grazing incidence (see figure

6Appendix D gives the calculation of laser penetration depths from reflectivity measurements and optical
conductivity [62], which is used to estimate penetration depths in chapter 5.
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Figure 2.13: Schematic of the grazing incidence geometry in a pump-probe X-ray diffraction
experiment.

2.13), which are about 1◦ to 3◦ above the critical reflection angle θc.

2.2.3 X-rays or electrons?
The choice of electrons or X-rays as a probe beam greatly depends on the focus of the study and
the sample type. One of the fundamental differences between electron and X-ray diffraction
arises from their interaction with matter; electrons interact strongly with the atomic potential
formed by the crystal, X-ray beams undergo a much weaker scattering process from the com-
paratively diffuse electron density of the atoms. This results in electron beam cross-sections
(σe) of the order of ∼ 106 times larger than that one in X-ray beams (σX) [64]. Therefore,
the electron beam flux necessary to obtain diffraction patterns with sufficiently good quality is
highly reduced with respect to X-ray beams. In contrast, the inelastic scattering suffered by
electrons within the sample is several orders of magnitude lower than that of X-rays, which
makes electrons less damaging than X-rays [64]. Specifically in the case of biological samples
this becomes an important factor. Another notorious difference between both probing beams
is their wavelengths; as we have seen before, they determine the radius of the Ewald sphere
and consequently the number of detected diffracted peaks is significantly larger in the case of
electron with respect to X-ray diffraction.

Now, when considering the extra dimension of time into this comparison we find other
essential differences. Electron bunches, as charged particles, are strongly affected by Coulomb
repulsion effects, leading to unwanted beam divergence, which affects the spatial coherence
and temporal resolution of the probing beam. On the other side, and as we have just seen, the
penetration depths of electrons and X-rays are quite different. Electron diffraction is constrained
to the study of thin samples (or surface dynamics in the case of reflectivity geometry) that become
particularly challenging when the experiments are performed in the time resolved domain: the
sample surface should be as large as the transverse size of the electron beam, i.e., few hundreds
of micrometers. The preparation of samples with such geometrical characteristics in a free-
standing fashion and with sufficient crystalline quality becomes of great difficulty. Moreover,
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the presence of dynamical effects pushes the limits to reduce even more the sample thicknesses
in order to avoid the complex interpretation of the dynamics with multiple scattering processes
involved. On the opposite extreme, we find that the large penetration depths of X-rays along
with the lower cross-section limits the experimental geometries to the reflection geometry at
low angles of incidence (which ultimately limits the temporal resolution) or to the transmission
geometry through thin film samples (which results in low diffraction intensities).

Finally, while electron diffraction can be easily performed in table-top experiments with
temporal resolutions down to few hundreds of femtoseconds with fairly high intensities, time
resolved X-ray diffraction usually requires the use of large scale facilities. Although table-top
X-ray plasma sources by laser irradiation on solid targets have demonstrated to achieve temporal
resolutions of the same order of magnitude [11], they are compromised by mechanical noise
and a beam flux on sample of 106 photons/s, requiring long pump-probe measurements that can
go up to weeks in the case of low diffracting samples [65]. Fast advances in temporal resolution
and number of photons per bunch (with an average flux of 1012 photons/pulse in the case of
European XFEL for instance [66]) are met in X-ray free electron laser facilities. Although FELs
present promising outlooks, they have the main disadvantage of being large facilities. Only five
of them are available to users nowadays (LCLS, European XFEL, SwissFEL, PAL-FEL and
SACLA) limiting the allocation time for beamtimes to few experiments.

2.2.4 Photoinduced structural changes in the diffraction peaks
The arrival of the pump laser on the sample can have distinct effects on the structure that will be
directly reflected on the diffraction pattern. Figure 2.14 shows the relation between real space
changes and its signatures in the diffraction intensity.

The effects of lattice expansion or compression will shift the position of the diffracted
peaks towards smaller or larger scattering wavevectors, respectively. Other possible structural
changes after pump arrival is photoinduced disorder, divided in two kinds; first kind disorder
which corresponds to thermal fluctuations as described by the Debye-Waller effect (depicted in
figure 2.14 d)), or disorder of second kind, which implies long range correlated changes of the
structure (figure 2.14 e)). Both types of disorder will tend to decrease the diffracted intensity,
but while first kind maintains the width of peak constant, the second kind disorder will tend
to broaden the Bragg peaks. The width of the diffracted peaks keeps information of the grain
size and thus the crystal quality over the long range (provided the beam coherence length is
sufficiently large) known as the correlation length ξ:

FWHM =
1
ξ

The arrival of the pump pulse can trigger the excitation of coherent phonons. This coherent
motion of atoms leads to atomic displacements in the crystallographic direction of the phonon
and, contrary to the Debye-Waller effect, it will change the intensity of only certain Bragg peaks.
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Figure 2.14: Real space (left) and corresponding diffracted intensity (right). a) Original crystal
lattice, b) lattice compression, c) lattice dilatation, d) thermal disorder (kinematical diffraction),
e) planar disorder.

The intensity changes as a function of delay time will present a damped oscillatory intensity
with the frequency of the excited mode. In the particular case of thin films, the pump excitation
can generate coherent acoustic modes that propagate along the thickness of the sample [67],
also known as breathing modes. An example of this coherent phonon excitation is shown in
figure 2.15 measured on a graphite sample by UED [68]. Time resolved diffraction becomes
particularly useful when studying structural phase transitions. Systems displaying such phase
transitions will give rise to the appearance/disappearance of diffracted peaks. As we will see,
that is the case of the experiments presented in chapters 5 and 6.

The last possible photoinduced effects deal with irreversible processes, in which the strong
intensity of the incident pump melts the crystal structure and thus the diffracted spots vanish
completely [26, 69]. This type of experiments have another degree of complexity, since a new



30 Chapter 2. Introduction to diffraction theory

Figure 2.15: Coherent excitation of the thin film breathing mode in graphite. The c-axis lattice
constant exhibits oscillatory dynamics in addition to simple expansion following photoexcita-
tion. The measured frequency of 0.2 THz corresponds to a sample thickness of 10 nm. The
overall c-axis expansion is linear in excitation fluence as shown in the inset. Image from [68].

region of the sample has to be probed at every pump pulse.
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This chapter is devoted to the description of the experimental setups employed for the
results presented in following chapters. The first part describes the main characteristics and
performance of the ultrafast electron diffraction setup installed and developed at LOA. The
second part serves as an illustration of a typical picosecond time resolved X-ray diffraction in a
synchrotron beamline.

3.1 Experimental setup for UED
Figure 3.1 shows an image of our experimental UED setup at LOA with the three main compo-
nents of the experiment: the electron chamber (1) connected to the sample and detector chamber
(2) and the black box enclosing the CCD camera (3).

A more detailed scheme is shown in figure 3.2. The experiment relies on a commercial
Ti:Sapphire regenerative amplifier (COHERENT, Legend Elite Duo) that delivers pulses with a
FWHMof 30-35 fs centered at a wavelength of 800 nmwith an energy of 1mJ per pulse at 1 kHz
repetition rate. The output beam from the compressor is divided into two arms: one dedicated
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Figure 3.1: Picture of the experimental UED setup at LOA.

to the electron pulse generation by tripling its frequency, and the other to the excitation pump for
the sample. The delay between pump and probe pulses is set by a delay stage with a maximum
temporal range of 2 ns. The size of the pump beam at the sample can be adjusted with a lens
to a maximum FWHM of about 1mm at the sample position. The experiments are performed
by taking two images per delay time; an image with the pump illuminating the sample and
another with the pump blocked by the mechanical beam-blocker, so that the recorded intensity
changes can be relatively compared (see section 3.1.5). Apart from the main components for
electron acceleration and detection, the experimental system is equipped with two main beam
diagnostics. By placing flip mirrors (noted as FM in figure 3.2) it is possible to adjust the size
and position of the beam at crucial sites, at the photocathode and at the sample virtual positions.
Moreover, a beam pointing system monitors continuously the beam position to optimize the
pointing stability by piezo-actuated mirrors. This system allows to correct any possible thermal
drifts that may arise during long acquisition experiments.
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Figure 3.2: Schematic of the experimental setup. FM stands for flip mirrors and THG for third
harmonic generation.



34 Chapter 3. Experimental setups

3.1.1 DC electron gun
The compact DC accelerator installed in the experimental setup was designed and developed
by O. J. Luiten’s group at Eindhoven University [70].

Figure 3.3 shows a scheme of the DC gun design with its main components: the inner
conductor, the insulating cone, the photocathode and the anode. The chamber enclosing the DC
gun is maintained under a pressure of 2·10−6 mbar.

Figure 3.3: 3D design of the DC electron gun. Image taken from [70].

The frequency-tripled pulses of the laser enter the chamber through an optical aperture
allowing back-illumination of the photocathode which is clamped to the aluminum cylinder.
The latter is connected to a high voltage supply (Matsusada, AU-100) delivering voltages down
to -100 kV. In order to insulate the chamber from the accelerating structure, a PEEK (a vacuum
compatible insulatingmaterial) insulating cone covers the inner conductor. The grounded anode
is perforated with an aperture of 1.6 cm diameter and located at a distance of 1.1 cm from the
cathode. Finally, a solenoid (not shown in the figure) collimates the resulting electron beam.

A more detailed description of the design and operation of the DC gun can be found in
reference [70].

3.1.1.1 Third Harmonic Generation and Photocathode

The laser frequency output from the compressor is tripled by a set of non-linear crystals as
depicted in Figure 3.4. The 800 nm laser wavelength is focused on a barium borate (BBO)
crystal for second harmonic generation followed by a calcite plate to compensate group velocity
delay between the 800 nm and 400 nmwavelengths. To tune the laser intensity, a dual waveplate
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is inserted before the second BBO crystal that finally generates third harmonic centered at
266 nm. A few dichroic mirrors positioned after the last BBO reflects only the contribution of
the UV 266 nm.

Figure 3.4: Third harmonic generation (THG) set, adapted from [71].

The generated UV beam with a pulse duration of 120 fs is then focused onto a 15 nm
gold coated fused silica substrate (with 2 nm Cr to ensure adherence of the gold film) with
a FWHM of 40 µm. To extract electrons from the photocathode, the incident photon has to
trigger the photoemission process. The photoemission process is divided in three main steps;
(1) absorption of the photon energy by an electron, (2) drift of the electron to the surface of the
metal overcoming the surface potential, i.e., the work function of the material, and (3) finally
escaping from the surface. The effective work function of the photocathode depends on the
applied acceleration voltage following the Schottky effect [72]:

φe f f = φw f −φSchottky = φw f − e

√
eFa

4πε0
= φw f −0.037947

√
Fa[MV/m]

with φw f = 4.61 eV the work function of gold, ε0 the vacuum permittivity, e the elementary
charge and Fa the applied field. For example, an applied voltage of -50 kV results in an effective
workfunction of 4.52 eV, which is below the incident photon energy (4.65 eV), ensuring single-
photon photoemission process [73].

The back-illumination of the photocathode has the advantage of an easier alignment proce-
dure although it limits the working acceleration voltages to 55 keV. Above this value, the gun
started to arc and the photocathode has shown clear signs of damaging. Possible reasons that
might induce damage in this type of photocathodes is the reduced thickness of the deposited
gold coating which needs to be sufficiently thin to allow photoemission. Surface roughness
and impurities in the thin film also increase the probability of inducing electrical breakdowns.
Because of this limitation, all the experiments presented in the thesis were performed with
absolutes values of the voltage below 50 kV.
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3.1.1.2 Temporal resolution

One of the most important characteristics of a pump probe diffraction experiment is its temporal
resolution. Capturing ultrafast structural dynamics requires electron pulses with a temporal
duration below 1 ps. Indeed, the electron bunch duration is the most limiting factor for the
temporal resolution, which is given by:

σresol =

√
σ2

e− +σ
2
laser +σ

2
α

where σe− denotes the electron bunch duration, σlaser the duration of the optical pump and σα
the difference of arrival time arising from different angles of incidence and velocity mismatch
between pump and probe. The latter is negligible in the case of transmission geometry, and so
the temporal resolution is greatly dependent on the electron pulse duration. The electron beam
temporal duration is mainly dominated by space-charge effects. Coulomb repulsion effects
inherent to charged particle beams broaden the pulses up to several picoseconds depending on
the number of electrons contained in the bunch. As a way of reducing the space-charge effects,
different parameters can be tuned to achieve temporal resolutions below 1 ps:

- the laser intensity on the photocathode.

- the electron acceleration voltage.

- the distance between the photocathode and the sample.

The first parameter can be adjusted by reducing the laser intensity at the photocathode: the
yield of photoemitted electrons will be proportional to the number of incident photons. In the
case of this setup, the intensity of the third harmonic is tuned by changing the position of the
waveplate in the set of third harmonic generation. See section 3.1.3 and Appendix A for more
details. Secondly, since higher energy of the electron bunches reduce the space-charge effects,
an increase of the electron velocity can considerably shorten the pulse duration. This effect
can be directly observed in the results shown in Figure 3.5, which presents beam dynamics
simulations performed with the General Particle Tracer (GPT) code [74].

Finally, within the electron beam propagation its longitudinal spatial dimension will tend to
elongate requiring a short distance between the cathode and the sample to achieve the shortest
temporal resolution. The minimum attainable distance (considering the anode and the solenoid)
is 40mm.

In order to estimate the duration and spatial dimensions of the pulse, particle tracer simula-
tions with the GPT code [74] are implemented with the beam characteristics listed in table 3.1
and by considering an initial energy spread given by the difference between the laser energy and
the workfunction of gold, i.e. ∆ε ∼0.13 eV. The results provided by the simulation are depicted
in figure 3.5.
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Parameter Value

Laser spot size (FWHM) 40µm
Laser pulse duration (FWHM) 120 fs

Laser wavelength 266 nm
Photocathode - solenoid distance 18 mm
Photocathode - sample distance 40 mm

Table 3.1: Parameters used in the particle tracer (GPT) simulations.

These results clearly show that the duration of the electron pulse is largely influenced by
the number of electrons contained in the bunch as well as the acceleration voltage, where the
shortest pulse duration is achieved at higher accelerations voltages in bunches containing few
thousands of electrons.

Figure 3.5: FWHM temporal duration of the electron pulses at the sample position as a function
of the number of electrons at different acceleration voltages. Results are obtained from GPT
simulations with values listed on table 3.1 .

3.1.1.3 Spatial resolution

Detection of structural dynamics at the atomic level requires, along with a short temporal
resolution, sufficiently short probing wavelengths and a spatial coherence covering several unit
cells.

The de Broglie wavelength of electrons accelerated to voltages in the range of V = [10
-100] keV is λ = [12.3 - 3.9] pm, calculated with λ = h/

√
2me · eV + (eV)2/c2, where h is the

Planck constant, me the electron mass at rest,V the acceleration voltage, e the elementary charge
and c the speed of light. These values are sufficiently small to probe interplanar distances, which
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are usually on the order of several Angstroms. The resulting momentum transfer is given by the
Bragg law:

g =
4π · sinθ

λ

where g is the scattering wave vector and θ the Bragg angle. If we consider for example an
electron beam of 40 keV energy, the diameter of the detector of d = 40mm and a distance
between the sample and the detector of L = 28 cm, we obtain a maximum momentum transfer
of g = 7.3 Å−1.

While short electron wavelengths ensure the probability of scattering from the atomic
planes, the transverse coherence length of the electron beam will finally dictate the quality of
the diffraction pattern. The coherence length represents the maximum resolvable distance in
the sample in which the electron wave functions are in phase. It is inversely proportional to the
angular spread σθ of the beam, following the relation:

L⊥ =
λ

2πσθ
(3.1)

Amore commonly used parameter in electron beam accelerators is the transverse normalized
emittance which describes the parallelism and focusability of the beam. Hence, it is used as a
parameter of the beam quality. It is defined as [75] [76]:

εn,x =
1

mc

√
〈σ2

x 〉〈σ
2
px 〉 − 〈σx σpx 〉

2 (3.2)

where x is the transverse position and px the transverse momentum. The sample is placed at the
waist of the electron beam where the covariance term in equation 3.2 becomes zero resulting
in a normalized transverse emittance of εn,x =

σxσpx

mc , where σx is the RMS bunch radius, and
σpx the RMS transverse momentum spread. The effects from the space-charge will not only
tend to elongate longitudinally the electron beam, but also transversely as shown in Figure 3.6,
which represents the GPT results obtained for the FWHM of the transverse size as a function
of the number of electrons and beam energy. It is important to point out that due to the large
transverse size that the electron beam acquires (several hundreds of µm), the dimensions of the
samples of study should have a comparable surface of at least 100× 100 µm2, with a thickness
of less than 100 nm to ensure transmission of the electrons through the sample.

The transverse coherence length in terms of its normalized transverse emittance at the
sample position becomes [75, 77] :

L⊥ =
h̄

mec
σx

εn,x
(3.3)

The GPT results lead to a normalized transverse emittance of εn,x ∼ 0.007mm·mrad at
the sample position. This value along with the spotsize given in Figure 3.6 finally result in a
coherence length of the order of L⊥ = 5 nm, meaning that the diffraction pattern reflects coherent
interference from, for example, 10 unit cells with a lattice parameter of 5 Å each.

It should be noted that apart from the source characteristic coherence length, the reciprocal
space resolution will ultimately depend on the sample quality [75, 77, 78], ∆g = 2πσpeak/L

λ ,
where σpeak denotes the RMS width of the diffracted peak and L the distance between the
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Figure 3.6: GPT simulation results for the beam size at the sample position at different electron
energies.

sample and the detector. Defects on the crystal lattice, presence of domains or the grain size
will enlarge the Bragg width degrading proportionally our spatial resolution. In order to get
an estimation considering sample quality effects, we have recorded a diffraction pattern of a
monocristalline silicon sample (considered as a nearly perfect crystal) oriented along the [001]
crystal axis. Figure 3.7 shows a Voigt fit of the (220) Bragg peak, giving a value of σpeak =
119.8 µm, resulting on a reciprocal space resolution of ∆g ∼ 0.053 Å−1, i.e., ∆g/g = 0.015.

Figure 3.7: (220) Bragg peak from a 70 nm monocristalline membrane of silicon [001] and the
corresponding line profile Voigt fit (marked in inset with a red line). The diffraction pattern was
measured with an electron beam energy of 45 keV.
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3.1.2 Sample holder

The sample holder consists of a piece of copper with 5 apertures. Four of them are used to
place the TEM grids holding the thin sample sections under study, whereas the fifth is a large
aperture for electron beam alignment. The TEM grids are clamped with a thin holed copper
plate screwed to the main copper body (see figure 3.8, front size). The sample holder is then
mounted to the rotation and translation stage which permits to align the sample and adjust the
angle of incidence between the incoming electron beam and the sample surface.

Figure 3.8: Front side and back side of the sample holder.

Crystalline samples undergoing structural phase transitions are of great interest in UED. An
extensive number of materials are subjected to such transitions with critical temperatures below
room temperature. For this purpose, the experimental setup has a liquid Nitrogen cold finger
that extends down to the chamber and connects with a braided copper wire to the sample holder.
The temperature of the sample can be monitored by connecting a type K thermocouple in the
junction between the copper bride and the sample holder. The minimum registered temperature
with this cooling system reaches 150K.

3.1.3 Detection system

In order to detect the scattered electrons from the sample under study, a set of two microchan-
nel plates (MCP) in Chevron configuration (consisting of two biased MCP detectors) and an
alluminized phosphor plate (P43), are placed in the second vacuum chamber at a distance of
L = 28 cm from the sample.

MCPs are widely used as image amplification devices of charged particles. It is composed
by arrays of miniature electron multipliers tubes with a diameter of 10 µm, see figure 3.9. Their
working mechanism relies on secondary electron emission within the microchannel tubes, in
which an incident electron produces a cascade of δ secondary electrons giving an overall gain
of G = 107 in the case of a Chevron configuration at 1 kV [79].
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As the voltage of theMCP detector is increased, the number of counts recorded will increase
exponentially. Furthermore, it is worth mentioning that this will also lead to an exponential
increase of the noise on the images. This background noise usually results from ion-feedback
instabilities when operating at high voltages or a high background pressure, effects that are well
known in MCP amplifiers [80]. Since high background pressure could also lead to damages in
the device, the chamber pressure is maintained at 10−7 mbar. Figure 3.10 shows an example of
the intensity increase of the unfocused electron beam, plotting the maximum number of counts
recorded as a function of the MCP voltage. The top left inset shows the mean value of the
intensity in a small region of interest of 100x100 pixels (marked in low right inset) showing
that the same effect is present in the background signal.

Figure 3.9: a) Schematic of a multiple channel plate showing the array of electron multipliers,
b) schematic of a single electron multiplier tube. Images taken from [79].

Since MCP have a large detection efficiency of low energy electrons (50 to 85 %) the first
MCP plate is coated with 200 nm of aluminum and connected to a -90V voltage to reduce as
much as possible the contribution of low energy electrons without limiting the detection of high
energy electrons. Low energy electrons, usually arising from inelastic scattering processes,
contribute to the background signal which lowers considerably the signal to noise ratio of low
intensity diffraction spots.

The diffracted signal amplified at the MCP and the phosphor plate set is subsequently
demagnified and recorded with an air cooled CCD camera (Andor, iKon-M) with arrays of
1024x1024 pixels, allowing an spatial resolution of 40 µm per pixel. To counterbalance any
contribution from the ambient light or reflected pump light from the sample holder, a green
band pass filter is placed in front of the camera chip to selectively transmit the phosphor plate
545 nm signal.

A homemade AND gate collects the signal from the delay pulse generator with the repetition
rate of the laser and the exposure time of the camera shutter. The output of the AND box is sent
to the voltage trigger of the MCP.

One of the main advantages of using MCP detectors consist in their compactness and their
large detecting area; the plates have a diameter of 40mm allowing the detection of several
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Figure 3.10: Maximum number of counts of the electron beam as a function of the MCP input
voltage. Top inset shows the average number of counts for the background (corresponding to
the region highlighted in the red square in the bottom inset).

diffraction orders. Moreover they are inexpensive electron detection systems. On the other
hand, and as mentioned before, their detection efficiency of high energy electrons is lower in
comparison to low energy electrons; it falls down to 10-60% for energies ranging from 2 keV to
50 keV. The Chevron configuration with a high input voltage on the MCP and Phosphor plates
(up to 2 kV and 5 kV respectively) and gating the MCP with the camera shutter improves the
signal to noise ratio.

Detector calibration: Temporal resolution

As seen in previous sections, a high charged beam does not only increase the diffraction intensity,
but also elongates transversely and longitudinally the electron bunches, and consequently its
duration. In order to have a direct estimation of the temporal resolution, we have calibrated the
detection system by measuring the charge of the beam and simultaneously the number of counts
on the detector.

The current of the electron beam was measured as a function of the laser intensity with a
Faraday cup placed at the sample position and connected to a picoammeter (Keithley Series
6400) with a resolution of ±0.5 pA which corresponds to ± 590 electrons . Figure 3.11 shows
the resulting maximum number of detected counts as a function of the number of electrons in
the bunch. With the purpose of better estimating the maximum number of counts, the beam spot
on the detector is fitted by a Voigt function along the vertical and horizontal axes after averaging
over five consecutive images. Figure 3.11 clearly illustrates the linear relation between both
parameters, with the value of the slope given by the linear fit m = 1.642± 0.016.
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Figure 3.11: Number of electrons contained in the bunch and number of maximum counts in the
detector, measured for 30 keV electron energy and 1 kV input on the MCP detector. The error
bars in the number of counts are calculated from the standard deviation from the five collected
images.

With the results from the fit shown in figure 3.11 it is possible to have a relation between the
number of electrons and the number of counts, giving us the possibility of a direct estimation of
the electron pulse duration with the GPT simulation results. The resulting conversion of number
of electrons into number of counts is shown in figure 3.12. Further details on the parameters
and the procedure followed are given in Appendix A.

Figure 3.12: Electron pulse duration at the sample position as a function of the number of counts
at maximum intensity on the detector for 30 keV electrons. The pulse duration is extracted from
the GPT simulation results shown in figure 3.5.
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3.1.4 Spatio-temporal pump-probe overlap
The spatio-temporal overlap between the electron beam probe and the pump is carried out by
means of transient electric field effect [81]. A copper TEM grid with 400 mesh is placed at the
sample position and imaged with the uncollimated electron beam. To ensure spatial overlap, the
pump beam is focused on the position of the copper grid approximately from the chamber’s view
port. The arrival of a laser pulse of about 100mJ/cm2 initiates a multiphoton photoemission
process on the grid surface generating a high density electron cloud. The Coulomb interaction
between this electron cloud and the electron probe beam will lead to a space charge effect which
deforms the image of the TEM grid, as shown in figure 3.13.

Figure 3.13: Unfocused images of the copper TEM grid at different pump-probe delays, the
shadow corresponds to the region with high density of charged particles created by the arrival
of intense pump pulse.

The effect of the transient electric field generated on the TEM grid is shown at different
delay stage positions for the pump. As observed in the figure, this effect lasts for several
picoseconds. An analysis of the RMS image changes as a function of the delay line position
allows to accurately set the temporal pump-probe overlap with a precision of 500 fs [82].

3.1.5 Pump probe scan procedure
Diffraction scans on low diffracting samples can take up to several hours during which laser
power drifts are unavoidable. As a way of correcting these fluctuations, the scans are performed
by taking two diffracted patterns per delay time; an image with the pump illuminating the
sample followed by a second image with the pump blocked. This procedure allows us to
relatively compare both diffracted images and correct any possible laser fluctuations. As a way
of illustrating the procedure, figure 3.14 shows the integrated intensity per position of the delay
line on the direct electron beam (i.e., without sample) for one hour.
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Figure 3.14: Top: Integrated intensity of the direct beam with pump (red) and without pump
(blue). Bottom: relative intensity changes between images taken with and without pump, I0
stands for the intensity recorded without pump.

The energy of the beam is 35 keV with 10000 electrons and each image is recorded with 1
second exposure time. As in the case of a regular scan, two images were taken at every position
of the delay line; the blue curve depicts the integrated intensity of the direct beamwith the pump
beam blocked whereas the red curve represents the integrated intensity with the pump. During
the length of the scan, intensity changes of the order of 5% are clearly visible. By normalizing
the intensity of the pumped image with respect to the unpumped one, these changes are flattened
with a RMS of 1.7% in the intensity, shown in green in figure 3.14. Thus, the lowest achievable
sensitivity of intensity changes ∆I/I0 is limited to this RMS value.

3.2 Synchrotron based X-ray diffraction: CRISTAL beam-
line at Soleil

Since the early 1950s, the development of synchrotrons as large scale facilities has opened the
door to the research of matter at the molecular and atomic scale in a vast number of fields;
ranging from biology to condensed matter physics. With the recent progress in time resolved
techniques, the possibility to study matter under out-of-equilibrium conditions became a reality.

In this section I give a brief introduction to a typical experimental setup for pump probe
X-ray diffraction. The description is based on the CRISTAL beamline in Soleil Synchrotron, a
third generation synchrotron located in France.
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Figure 3.15: Schematic overview of the synchrotron main components.

3.2.1 Synchrotron X-ray radiation in SOLEIL

In a first step, electrons emitted from an electron gun are accelerated in a 16 meter linear
accelerator (LINAC) reaching energies up to 100MeV. The resulting beam is then inserted into
a first ring called the Booster, which further accelerates the electron beam to an energy of
2.75GeV. Finally, the accelerated electrons are injected into the storage ring with a diameter of
113m, in which they circulate with a period of 1181.4 ns. The high energy beam is subjected
to deflection and oscillation in bending magnets and undulators or wigglers. This process will
ultimately control their trajectory or make them oscillate, resulting in a loss of energy into high
energy photons by means of synchrotron radiation. The energies of the resulting photons range
from Terahertz to hard X-ray energies. Each of the 29 beamlines in SOLEIL has optical systems
that select and shape the beam into the desired wavelengths suitable for various experimental
techniques. Figure 3.15 shows a scheme of the main parts of the synchrotron.

The beamline CRISTAL works within the hard X-ray range, with energies between 4 keV
and 30 keV. A monocrystalline silicon monochromator, Si(111), permits to selectively choose
the wavelength of interest with an energy resolution of ∆E/E = 10−4 and a maximal photon
flux of 1013 photons/s in the case of 8 keV. Further technical details are given in [83].

3.2.2 Pump probe diffraction in CRISTAL

The inherent pulsed structure of the synchrotron X-ray beams allows to perform time resolved
experiments. SOLEIL has four different operational modes for such experiments: hybrid mode,
single bunch mode, 8 bunch mode and the low alpha mode. All of them feature an isolated
bunch, i.e. a bunch that is separated from its first neighbours by at least 147 ns. The number of
emitted photon per isolated pulse at a beamline depends on the current carried by the isolated
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bunch. The CRISTAL beamline has the following performances:

• Hybrid mode (5mA + 445mA, 5mA in the isolated bunch) // Pulse duration: 62 ps
FWHM // 3.7e5 ph/pulse in a bandwidth ∆E/E = 2.4e-4

• Single-bunch mode (1×15 mA, 15mA in the isolated bunch) // Pulse duration: 93 ps
FWHM // 1.1e6 ph/pulse in a bandwidth ∆E/E = 2.4e-4

• 8-bunchmode (8×12.5mA, 12.5mA in an isolated bunch) // Pulse duration: 87 ps FWHM
// 9.1e5 ph/pulse in a bandwidth ∆E/E = 2.4e-4

• Low-alpha mode (67 µA + 18mA, 67 µA in the isolated bunch) // Pulse duration: 12 ps
FWHM // 4700 ph/pulse in a bandwidth ∆E/E = 2.4e-4

The experimental results discussed in chapter 6 were obtained with the last two modes.
A 6-circle diffractometer inKappa geometry is installed at the beamline. It allows controlling

the orientation of the sample along four angular degrees of freedom and three translations. The
accuracy of the sample positioning is of 1.5 10−3 degrees in the case of the rotations and 1.0 µm
for the translations. The detector arm of the diffractometer can be rotated around both a vertical
axis (azimuthal angle) and a horizontal axis perpendicular to the incident X-ray beam (elevation
angle). This peculiarity of the diffractometer enables pump-probe diffraction experiments in
grazing incidence.

The beamline is equipped with a cryostat that can lower the sample environmental temper-
ature down to 5K. The cryostat has three windows, a top silica window for the pump beam
entrance and two Kapton windows for the entrance and exit of the scattered X-ray beam. An
image and a scheme of the experimental setup in the time-resolved configuration are shown in
figures 3.16 and 3.17.

The laser system source for the pump pulses has a repetition rate of 1 kHz delivering 5mJ
per pulse with a central wavelength of 800 nm with a pulse duration of 35 fs.

The illuminated area on the sample is 3.5×1.0mm2 by the pump beam and 1.7×0.5mm2

by the X-ray beam with one degree incidence with respect to the sample surface. Since the
penetration depth of 8 keV X-rays is much larger than the 800 nm pump beam, the experiment is
performed in grazing incidence, i.e. the angle between the probe beam and the sample surface
does not exceed αi = 2◦, translated into a penetration depth of few tens of nanometers. In this
way, we ensure that the probed volume matches the photoexcited volume.

The laser and X-ray pulses are synchronized on the 352MHz signal that runs the RF cavities
of the synchrotron. The temporal overlap is achieved with a fast photodiode which is sensitive
to both X-rays an IR photons (G7096-03 model from Hamamatsu). The spatial overlap is
established with a fluorescent card and monitored with a camera.

The detection system consists of a 2D hybrid pixel detector, the XPAD3.2. It was developed
by the collaboration between SOLEIL, the European synchrotron radiation facility (ESRF)
in France, and the Centre de Physique des Particules de Marseille (CPPM). The detector is
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Figure 3.16: Schematics of the pumpprobe experimental setup inCRISTALbeamline at SOLEIL.

Figure 3.17: Experimental hutch at CRISTAL in time resolved diffraction mode.
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divided into 8 main modules, each of them composed by 7chips of 120x80 pixels bonded to
a 500 µm silicon sensor. The entire area of the detector becomes then 560x960 pixels, with a
size of 130x130 µm2 per pixel. In the time resolved experiments, the detector is triggered by an
external signal in order to synchronize it with the incoming pulses. The number of counts per
pixel per second in the triggered mode is reduced to few photons/pixel/s, meaning that several
images must be collected per delay time in order to get sufficient intensity.

The temporal resolution of the pump-probe diffraction in CRISTAL allows us to study
the structural dynamics in the picosecond range with a reciprocal spatial resolution of ∆Q ∼
5·10−4 Å−1. At these temporal time scales, we can mainly have access to structural phase
transitions, thermal processes or strainwave propagation. Chapter 6 presents the results obtained
on a second order structural phase transition performed at CRISTAL.
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The use of ultrafast electron diffraction in pump-probe experiments has proven to be very
efficient for studying the dynamics of photoinduced phase transitions by measuring the relative
changes of the diffraction pattern following photoexcitation [20, 21, 23, 69, 84]. Indeed, in
the case of a structural phase transition, the change in the crystal symmetry can be monitored
through the appearance/disappearance of Bragg peaks [21, 23].

However, a wealth of additional information is contained in the diffraction pattern, e.g.,
lattice heating can be estimated through the change of the Bragg peak intensity due to the
Debye-Waller effect. Quantitative analysis mostly relies on the use of kinematical diffraction
theory, which assumes that the scattering potential of the crystal lattice is a small perturbation, so
that the probing electrons undergo a single elastic scattering event, leading to a weak diffracted
intensity compared to the incident electron beam. This theory gives satisfactory results when
applied to the case of polycrystalline samples where the grain size is only a few nanometers
[21, 85]. It led to quasi-direct measurements of the lattice temperature with subpicosecond
resolution in several materials [8, 85]. However, as high quality single crystal samples adapted
to UED experiments are becoming available, kinematical theory does not appear sufficient to
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explain all experimental results. Several UED studies on high quality crystals, such as silicon
[29] and graphite [86], have reported large photoinduced changes of the Bragg peak intensity
that cannot be explained by kinematical theory. The authors proposed that multiple scattering
of the electrons must be at play but no quantitative analysis was performed to fully confirm this
hypothesis.

In electron microscopy, multiple scattering is taken into account in the framework of dy-
namical diffraction theory [46, 47]. In high quality crystals, multiple scattering needs to be
considered due to the very high elastic scattering cross section of electrons. Despite this, little
attention has been given to these effects in time-resolved electron diffraction experiments. To
our knowledge, multiple scattering was considered in detailed only in [87] in a UED experiment
in reflection geometry designed to study surface dynamics. In this chapter we show that multiple
scattering completely dominates the dynamics of the diffraction pattern in the commonly used
transmission geometry.

4.1 Sample description and silicon properties
The samples presented in this chapter were fabricated by M.G. Lagally’s group from University
ofWisconsin-Madison. They consist of a grid of single crystal silicon nanomembranes oriented
along the [001] crystallographic axis thinned out of a silicon wafer as shown in figure 4.1.
The area of each membrane is 350× 350µm2 with a thickness of 70 nm± 2 nm, which was
characterized by convergent beam electron diffraction [56] at the CEMES laboratory in Toulouse
(see Appendix C for details). Their high quality, reduced thickness and large surface, make
these samples the perfect candidates for ultrafast electron diffraction.

The crystalline structure of silicon is arranged in a diamond cubic lattice with a lattice
parameter of a = 5.431 Å at T = 300K. From a diffraction point of view, it is interesting to keep
in mind the value of its structure factor. The diamond unit cell is described by two FCC cells
with atomic positions located at (000), (01
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Figure 4.1: Optical microscope image
of the free standing 70 nm membranes
of single crystal silicon on a silicon
wafer matrix. The size of each mem-
brane is 350 µm × 350 µm.
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resulting in a structure factor of:

Fhkl = fSi(1+ eiπ(h+k)+ eiπ(k+l)+ eiπ(h+l)+ eiπ(h+k+l)/2[1+ eiπ(h+k)+ eiπ(k+l)+ eiπ(h+l)])

= fSi[1+ eiπ(h+k+l)/2][1+ eiπ(h+k)+ eiπ(k+l)+ eiπ(h+l)]

where fSi is the atomic form factor of silicon. Therefore, diffraction occurs for those planes
which fulfill the following conditions:

– h+ k + l = 4n and all h,k,l even

– h+ k + l = 4n+1 and all h,k,l odd.

with n integer. In the case of our sample, oriented along the [001] axis, l = 0, so diffraction
condition occurs with h+ k = 4n, where h, k are both even, resulting in a structure factor of
Fhkl = 8 fSi, which is the maximum attainable value in this structure. This means that the
intensity of our diffracted peaks can only decrease after pump arrival. As we will see, this is
quite different to what we have measured.

The electronic band structure of monocristalline silicon, on the other side, is characterized
by an indirect bandgap of Eg = 1.12 eV and a direct bandgap along the Γ point of about 3 eV
as shown in figure 4.1. In order to excite electrons from the conduction band to the valence
band, the energy of the pump beam should be comparable to the direct bandgap, hence in our
experiments we work with a pump wavelength of λ = 400nm, i.e., h̄ω ∼ 3 eV.

Some other relevant parameters of silicon which will be used in the chapter (related to
thermal, optical or elastic properties) are listed in the table below.

Parameter Value

Lattice parameter a(Å) 5.43
Debye temperature θD (K) 645

Density ρ (g/cm3) 2.33
Absorption coefficient α (cm−1) 2·105

Stiffness constant C11(dyn/cm2) 16.60 ·1011

Penetration depth δ (nm) 50

Table 4.1: Silicon thermal, optical and elastic values. Note: values given for the absorption
coefficient and the penetration depth correspond to a wavelength of λ = 400nm.

Expected lattice dynamical response
Before discussing the experimental results, the expected response of the lattice following pho-
toexcitation is reviewed. It can be divided into:



54 Chapter 4. Multiple scattering effects demonstrated in UED with free standing Si nanomembranes

Figure 4.2: Calculated electronic band
structure of silicon, adapted from [88].
Red, blue and green arrows represent the
schematic excitation and relaxation path-
ways after pump arrival.

• Carrier excitation upon pump arrival cre-
ating two subsystems of hot electrons and
holes (red arrows in figure 4.2).

• Carrier thermalization via
electron-electron scattering within the
first 100 fs, leading to an increase of the
electronic temperature [89].

• Relaxation of excited carriers through
electron-phonon coupling causing an in-
crease of the lattice temperature (blue ar-
rows) [85, 90]: electrons (holes) relax to
the bottom (top) of the conduction (va-
lence) band.

• Excitation of longitudinal acoustic modes
propagating along the thickness of the
sample [29].

• Further lattice temperature increase re-
sults from electron hole pair recombina-
tion through the gap, via Auger recombi-
nation [91] (green arrow).

• Long thermal diffusion process in a scale
of ∼ 100 µs [29].

Thus, the expected lattice dynamics will display in the diffracted pattern the effects of lattice
temperature increase and the presence of excited coherent modes.

The lattice temperature increase can be estimated from the following relation [85]:

∆T = Fabs

(
1−

Eg

hv

) 1
Lρ

1
Cv

(4.1)

where Eg denotes the band gap energy, L the thickness of the sample, ρ the material density
and Cv the heat capacity, with Fabs the absorbed fluence given by:

Fabs = Finc(1−R)(1− e−αL)(1+Re−αL)

where α is the absorption coefficient, R = 0.5 the reflectivity. The estimated lattice temperature
increase from equation 4.1 results in ∆T =280K. The lattice temperature increase after Auger
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recombination becomes:
∆T = Fabs

1
Lρ

1
Cv

(4.2)

Ab initio calculations [92] performed by our collaborator B. Arnaud from Université du
Mans, confirmed this value. By assuming that the number of electron-holes pairs remains
constant after their relaxation to the top of the valence band and bottom of the conduction band
[93], respectively, the temperature lattice increase was derived from:∫ Tl,max

Tl,0
CV (Tl)dTl = ∆E(Te,max)−∆E(Tl,max)

where ∆E(Te,max) = Fabs
v
L = 2690 K , being v = a3/4 the volume of the primitive cell and L

the thickness of the membrane. The specific heat Cv(Tl) per unit cell was calculated from the
phonon spectrum of silicon, leading to a lattice temperature increase of ∆Tl ∼ 240K, in good
agreement with the estimated value above.

Additional lattice heating occurring from Auger recombination through the band gap is
known as the dominant recombination mechanism [91]. The number of initial excited carriers
can be estimated from:

nexc0 =
Fabs

Lh̄ω
= 1.8 ·1021 cm−3

with L the thickness of the sample and h̄ω the energy of the pump pulse. The dynamics of
the excited carriers is governed by the following equation dnexc/dt = −(Ce +Ch)n3

exc where Ce

and Ch are the Auger coefficients for electrons and holes respectively. Following Dziewior and
Schmid [94], we used Ce +Ch = 3.8 · 10−31 cm6s−1, and solving the equation from the excited
carriers:

nexc(t) =
nexc0(

1+ t/τ

) 1/2

where
τ =

1
2Cn2

exc0

and
C = Ce +Ch

We find that the 94% of the Auger recombination occurs within the first 100 ps. Therefore, at
this time delay we estimate a lattice temperature increase of ∆Tl = 460K. After Auger recombi-
nation, the system reaches a metastable state as heat diffusion occurs on the microsecond time
scale for our sample geometry. This results are in agreement with those obtained by Harb et al.
in a polycrystalline silicon sample [95].

Under the precedent assumptions, a decrease of the Bragg peak intensities is expected
through the well known Debye-Waller effect (see section 2.1.1); the lattice temperature increase
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results in atomic vibrations characterized by a mean-squared displacement < u2 >, which in the
case of a cubic crystal within the Debye model becomes [44]:

< u2 >=
9h̄2∆T2

mAkBΘ
3
D

∫ ΘD
T

0

[ 1
eξ −1

+
1
2

]
ξdξ

where mA is the atomic mass andΘD the Debye temperature. The diffracted intensity of a given
(hkl) Bragg peak at a certain temperature Tl reads:

Ihkl(Tl) = Ihkl(T0)e−
1
2<u2>g2

hkl = Ihkl(T0)e−M

with T0 = 300K the initial lattice temperature, ghkl the scattering vector corresponding to the
(hkl) plane and M the Debye-Waller factor.

Figure 4.3: Left: Mean squared displacement of a single silicon atom as a function of the
temperature. Right: Relative intensity of the Bragg peaks as a function of the temperature. The
dashed line indicates ∆T = 460 K .

By assuming a lattice temperature increase of ∆Tl =460K, the intensity of the first order
diffracted peaks, i.e., the (220) peaks should decrease by about 10% (see figure 4.3). Further-
more, temperature increase leads to thermal expansion of the lattice parameter. Considering
the linear thermal expansion coefficient of silicon given by [96] κ = 2.6 · 10−6 K−1, an increase
of ∆Tl = 460K leads to a lattice parameter change of da/a = κ∆Tl = 0.12%, which is in any
case, below our experimental resolution, as shown in chapter 4.

Finally, optical excitation of acoustic coherent modes are expected as reported in the work
of M.Harb et al. [29]. In their experimental results, the authors observed clear oscillations
in the time resolved curves arising from the excitation of transverse and longitudinal acoustic
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modes, characterized by sound velocities of vT =

√
C44
ρ = 5850m/s and vL =

√
C11
ρ = 8440m/s,

respectively.

Summarizing, following photoexcitation, we expect to observe a decrease of the Bragg
peaks intensities due to lattice heating. Contrary to these expectations, and as shown in our
experimental results, we observed a giant photoinduced response with an unexpected increase
of the diffraction intensities, which, as we have seen, is in contradiction to the Debye-Waller
effect.

4.2 Experimental results

All the experimental results presented here were obtained at room temperature with a different
set of incident fluences ranging F ∈ [4−12]mJ/cm2 and an electron energy of U= 45 keV. The
charge of the electron bunch beam is <1 fC, resulting in a temporal resolution of ∼300 fs and
an electron spot size of 150 µm. The pump spot size at the sample is adjusted to a FWHM =
500 µm to ensure homogeneous excitation of the nanomembranes.

4.2.1 Bragg dynamics on nanosecond time scale

We start by analyzing the photoexcited response of the (2-20) Bragg peak and the transmitted
electron beam on the nanosecond time scale. The sample was oriented so that the Bragg
condition was fulfilled for the (2-20) peak. The left side of figure 4.4 shows the relative
changes of the integrated intensity of the Bragg and direct peak as a function of the delay time
between pump and probe at different incident fluences1. The right side shows the corresponding
diffraction pattern before pump excitation.

The first paramount observation is the intensity of the diffracted Bragg peak, which is of
the same order of magnitude as the transmitted beam. This clearly violates the kinematical
diffraction assumptions, in which the diffracted intensity should be several orders of magnitude
weaker than the transmitted beam. Moreover, the intensity changes on the Bragg peak become
positive after photoexcitation and increase with incident fluence. On the contrary, and as seen
before, the expected dynamics pointed rather to an increase of the lattice temperature manifested
in the diffraction pattern by a decrease of the Bragg peak intensities due to the Debye-Waller
effect. On the other hand, the transmitted beam shows the opposite behaviour; larger negative
intensity changes for higher incident fluences.

The dynamics of the peaks can be fitted by the phenomenological function involving three

1I0 stands for the integrated intensity of the peaks with the pump beam blocked.
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Figure 4.4: Left: Temporal dynamics of the relative Bragg intensities (blue) and the direct
beam (green) as a function of the incident fluence. Right: Diffraction pattern with the (2-20)
peak in Bragg condition. The direct beam is referred as the (000).

processes of the form:
∆I
I0
= A1(1− e−t/τ1)H(t)+ A2

(
1−

1√
1+ (t − t0)/τ2

)
H(t − t0)+ A3(e−t/τ3 −1)H(t − t0) (4.3)

where H(t) accounts for the Heaviside function centered at t0 = 0. Under the assumptions made
for the photoexcitation and relaxation processes, the first term accounts for electron-phonon
scattering with a typical time scale of τ1 =5± 1 ps. The second term accounts for the dynamics
of Auger recombination which takes the form of the solution to the equation dnexc

dt = −Cn3
exc,

resulting in a time constant of τ2 = 53± 5 ps and followed by a slower cooling process with
τ3 = 450 ± 50 ps. Note that we impose that the second and third processes occur after the first
process through the use of the Heaviside function H(t − t0) with t0 = 2τ1.

Although this phenomenological model fits accurately the temporal dynamics of the Bragg
and the transmitted peaks, the mechanism behind the intriguing large positive changes of the
Bragg peak remains unexplained. In order to get further insights, we have performed pump-
probe scans at different angles of incidence between the electron beam and the sample.

4.2.2 Bragg dynamics at different angles of incidence
Firstly, we start by analyzing the dynamics of the symmetric diffraction pattern, i.e., the sample
is oriented normal to the electron beam, as shown in figure 4.5. Strikingly, the behaviour at this
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angle of incidence is opposite to the one presented in figure 4.4. The relative intensity ∆I/I0 of
all Bragg peaks starts with a sharp decrease on the picosecond time scale which is followed by
a slower roll-off and further decrease on the 10 ps time scale. The transmitted electron beam,
on the other hand, shows an increase of the intensity with similar time scales.

Figure 4.5: Result of a pump-probe scan with incident fluence F = 12mJ/cm2 showing the
relative intensity changes of various Bragg peaks ∆I/I0 and the corresponding diffraction
pattern.

Figure 4.6 illustrates the integrated intensity changes at different angles of incidence between
the electron beam and the normal to the surface. The top graph shows the direct beam whereas
the (2-20) peak is depicted in the bottom. These results highlight the importance of sample
orientation; it can lead to changes of ∆I/I0 from -40% to +60% depending on the angle of
incidence. Moreover, the intensity of the transmitted beam decreases or increases in a manner
that is complementary to the Bragg peak intensity.

In this case, since the scans were taken on a much shorter temporal range, the fits were
performed by neglecting the last term in equation 4.3. The effect of the angle of incidence on
the time constants is only marginal with values of τ1 = 3−5 ps being shorter when the peak is
out of Bragg condition. The second time constant remains τ2 = 59 ps for all cases. Only the
curve with θB + δθ results in longer time decays with τ1 = 18 ps. Overall, this shows that the
angle of incidence does not play an important role in the temporal dynamics of the diffracted
Bragg peaks.
The signature of excitation of coherent acoustic modes can be observed in the temporal evolution
of the intensity of the (400) Bragg peak, whichwas clearly visible only at certain angles as shown
in figure 4.7. Although the scans were not taken in a sufficiently long range, it is possible to
discern a first period with T∼17 ps. Considering a strain pulse bouncing back and forth between
the Si-film edges, its velocity can be calculated from the thickness of our sample and the period
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Figure 4.6: Photo-induced dynam-
ics for various angles of incidence.
The blue curve is obtained when the
sample is exactly at the Bragg angle
for the (2-20) peak; the other curves
are obtained by tilting the sample by
steps of δθ = 0.26◦. The incident flu-
ence is F = 12mJ/m2 with an elec-
tron energy of 45 keV. Top: dynamics
of the direct beam. Bottom: dynam-
ics of the Bragg peak.
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of oscillation by v = 2L
T resulting in a value of v ∼ 8235m/s, which is in close agreement with

the longitudinal acoustic mode of silicon with v = 8440m/s [43].

Figure 4.7: Photo-induced dynam-
ics for various angles of incidence
on the (400) Bragg peaks. Note that
the angles of incidence are those cor-
responding to the (2-20) Bragg, as in
figure 4.6. The incident fluence is
F = 12mJ/m2 with an electron en-
ergy of 45 keV.

4.2.3 Rocking curve scans
The precedent results show the need of study in more depth the behaviour of the sample as
a function of the incidence angle. To do so we have performed rocking scans, which consist
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in tilting the sample around its center of rotation. The sample was mounted in a way that the
(h+ k) planes were lying horizontally on the diffraction pattern. For the purpose of comparing
equilibrium and photoexcited states, we chose the temporal range in which the lattice dynam-
ics are in the quasi-equilibrium state due to the long thermal diffusion process (of the order
of ∼100 µs) involved in the relaxation. Accordingly, the delay line was fixed at a delay time
between pump and probe of 150 ps, and the sample was scanned from ∆θ ∼ −0.5◦ to ∆θ ∼ 2.5◦.2

Figure 4.8 shows the diffraction pattern at different angles of incidence. In the same way
as in figure 4.6, the intensity of the diffracted peaks are strongly dependent on the angle of
incidence between the electron beam and the surface plane.

Figure 4.8: Static diffraction patterns at different angles of incidence acquired with an electron
beam energy of 45 keV on a 70 nm silicon membrane. ∆θ = 0◦ is assigned to the symmetric
pattern.

As the angle of incidence is increased, new planes come into the Bragg condition. Remark-
ably, the intensity of the transmitted beam is of the same order of magnitude as the peaks at
Bragg condition, as clearly seen at ∆θ = 0.86◦ and ∆θ = 1.7◦. These effects are the primary
signature of multiple scattering in a dynamical diffraction process.

Figure 4.9 depicts the rocking curve of the (2-20) peak at equilibrium (i.e., at 300K, blue
curves) and in the photoexcited state (red curves) taken 150 ps after the arrival of the pump
pulse, i.e., after thermalization of the sample has occurred. Rocking curves are shown at two

2Here we consider ∆θ = 0◦ as the symmetric diffraction pattern.
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Figure 4.9: Left: Experimental rocking curves for the (2-20) peak taken with 45 keV electrons, at
equilibrium T = 300K (blue curve) and in the photoexcited state (red curve), taken at t = 150 ps
delay with an incident fluence of F= 12mJ/cm2. Right: Same but using 30 keV electrons as a
probe. The rocking curves were normalized relative to the equilibrium case.

different electron energies. We plot the Bragg peak intensity I(s), where s is the amplitude of
the deviation vector s = ∆k− g and g the lattice reciprocal vector corresponding to the (2-20)
peak. Figure 4.9 clearly shows that the shape and magnitude of the rocking curve change upon
photoexcitation. However, there is no angular shift of the rocking curve upon photoexcitation,
so we can assure that lattice expansion and sample distortion are not the main mechanisms
taking place. In addition, the results of figure 4.9 summarize and clarify the surprising features
of figure 4.4: for 45 keV electrons, the intensity change is positive at the Bragg angle, whereas it
is negative for most off-Bragg cases. For 30 keV electrons, the behavior is quite different: here
the intensity change is always negative after photoexcitation. The shape of these rocking curves,
by departing from the usual sin2x/x2 line shape of kinematical theory, indicates that dynamical
effects are dominating the physics of electron diffraction, even at equilibrium, presenting the
oscillatory fringe pattern characteristic of multiple scattering.

Another way of corroborating the presence of multiple scattering effects, is by plotting
the intensities of all diffracted and transmitted peaks as a function of the angle of incidence,
as shown in figure 4.10. The intensity of the transmitted beam is strongly dependent on the
diffracted peaks, showing a complementary fringe pattern with respect to the Bragg peaks.
Furthermore, the shape of the transmitted curve displays a clear asymmetry around the θB(2-
20); this effect is another characteristic of dynamical effects arising from inelastic scattering
(known as anomalous absorption or simply absorption) [46, 97].
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Figure 4.10: Integrated intensity of the diffracted peaks as a function of the angle of incidence,
at equilibrium (left) and after photoexcitation at 150 ps time delay with an incident fluence of
F= 12mJ/cm2 (right). The sample is 70 nm, the diffraction pattern was recorded with an
electron energy of 45 keV.

4.3 Discussion

As seen in chapter 2, dynamical diffraction is characterized by the strong interaction between
the atomic potential and the electrons, which due to the charged particle nature of the beam,
are much stronger than the X-ray-crystal interactions (usually described in terms of kinematical
diffraction). Contrary to the simple two-beam approximation presented in section 2.1.2, our
experimental data clearly shows the presence of other strongly diffracted beams. This becomes
evident in figure 4.10 where the intensity of the (2-20) Bragg peak is influenced by other
Bragg peaks as the (400), (040) and (440). The diffracted intensity of the (2-20) Bragg peak is
transferred back and forth between several beams along the thickness of the sample. In order to
properly fit our data, we have therefore to consider several beam solutions for the Howie-Whelan
equations 2.22.

Moreover, the presence of inelastic scattering increases the background signal on the
diffracted (2-20) peak, also apparent from the asymmetry of the transmitted beam around
the Bragg angle θB(2-20). The absorption factors in dynamically diffracted intensities are usu-
ally modelled by considering the crystal potential as a complex value (and so, the extinction
distance). The imaginary part of the extinction distance becomes then the absorption distance
[46, 47, 97]. Since other effects might contribute as well to the increase of the background
signal, we will use instead a phenomenological gaussian background to model the experimental
(2-20) rocking curves [54].
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Simulated dynamical diffraction rocking curves
In order to simulate the rocking curves in the equilibrium and photoexcited states, we have solved
the Howie-Whelan equations which describe the evolution of the scattered wave intensities
during the propagation of the electron beam into the sample with the form [46, 98]:

∂φg

∂z
= isgφg+

∑
g′,g

i
2ξg−g′

φg′ (4.4)

Here, φg is the amplitude of the scattered wave in diffraction peak corresponding to vector
g, z the thickness of the sample, sg the deviation error which depends on the crystal orientation
and ξg−g′ the extinction distance. As seen before, the extinction distance is directly related to
the crystal scattering potential by the following relation:

ξg−g′ =
1
λ

2h̄2

meUg−g′
(4.5)

where Ug is the Fourier component corresponding to g, which describes the entire crystal
potential as V(r) =

∑
gUgeig·r. In our case, we extracted the Ug matrix for the silicon potential

from the code JEMS [99].
To account for the changes of the intensity in the photoexcited curves, we have simply

considered the Debye-Waller factor M in the crystal scattering potential as [100, 101]:

V ′(r) = V(r)e−M =
∑

g
Ugeig·re−M

Therefore, the influence of temperature changes in the crystal potential increases the extinction
distance (see equation 2.31), which ultimately determines the intensity of the diffracted beam.
This mechanism is responsible for the non-intuitive intensity increase with temperature.
The system of N coupled differential equations can be written in matrix form:

dΦ
dz
= iMΦ (4.6)

where Φ is a column vector of length N and M is a N ×N matrix that can be decomposed as

M =
©«

0 0 0 · · ·

0 sg1 0 · · ·

0 0 sg2 · · ·
...

...
. . .

ª®®®®¬
+
γme

2πh̄2λ

©«
0 U−g1 U−g2 U−g3 · · ·

Ug1 0 Ug1−g2 Ug1−g3 · · ·

Ug2 Ug2−g1 0 Ug2−g3 · · ·
...

...
. . .

ª®®®®¬
where γ = 1+E/mc2 is the Lorentz factor of an electron with kinetic energy E .
The left matrix is diagonal and its elements are the amplitudes of the deviation vectors for each
diffraction peak sg−g′. The right matrix is composed of the Fourier amplitudes Ug−g′ . This is an
eigenvalue problem and the solution is found by diagonalizing matrix M . If D is the diagonal
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matrix in the basis of eigenvectors and C is the matrix for changing basis, we have M =CDC−1

and the solution of the problem is given by

Φ(z) = CeiDzC−1
Φ(0)

This general solution allows us to compute the amplitude of the various diffracted peaks
φg(L) at the output of the crystal, z = L. We modelled the experiment considering N = 26
beams, including all (220), (400), (440), (620) peaks and a few higher order peaks as well.
Such a high number of beams was necessary to ensure the convergence in the shape of the (220)
rocking curve. Note that there are no free parameters in this model.
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Figure 4.11: Simulated rocking curves via dynamical diffraction theory with the parameters
from the experimental rocking curves without background contribution.

Figures 4.11 and 4.12 show the results of the calculations with the experimental electron
energies and thickness parameters. The experimental trends are well reproduced: the shapes of
the calculated rocking curves are similar to the experimental ones. In particular, the signs of
the relative intensity changes are well reproduced.

It is important to point out that the results given directly by the Howie-Whelan equations
(considering only the real part of the crystalline potential) do not consider the influence of
anomalous absorption or thermal diffuse scattering [102], as seen in figure 4.11, which generally
gives rise to a background intensity in the rocking curves. Experimentally, the background signal
may arise from many factors, such as inelastic scattering (on phonons, plasmons, defects...),
surface contamination or surface amorphization. Because of the difficulty of modeling all these
effects, we turn to a phenomenological approach and model the background using a simple
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Figure 4.12: Modelled rocking curves via dynamical diffraction theory with the parameters
from the experimental rocking curves considering a phenomenological background.

gaussian distribution. We were able to obtain a quantitative fit of the experimental data using
the following function:

I(s) = AIdyn+Be−s2/σ2

where Idyn is given by dynamical theory (no free parameters) and A, B andσ are free parameters.
The presented model allowed us to simulate quite accurately the shapes of the experimental
rocking curves at equilibrium and photoexcited states at the different electron energies, as shown
in figure 4.12.

4.4 Results on a 30 nm thickness sample
In order to test the robustness of our interpretation, we performed measurements on a 30 nm
sample at 30 keV with an incident fluence of 12mJ/cm2. Figure 4.13 shows the rocking curve
including the intensities of several diffracted peaks in a range from ∆θ = −2.5◦ to ∆θ = 2.5◦.
As in the previous sample, the intensity of the transmitted beam is strongly dependent on the
intensities of the diffracted peaks, which have as before, an intensity of the same order of
magnitude.

The estimated lattice temperature increase from equation 4.2, results in ∆T = 650K. The
measured and simulated rocking curves of the (2-20) at equilibrium and after photoexcitation
are displayed in figure 4.14 considering a photoexcited lattice temperature of∆T = 450K, which
is somewhat smaller than the estimated lattice temperature increase. The shapes and intensities
of the curves are well reproduced. At the exact Bragg condition the intensity of the photoexcited
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Figure 4.13: Rocking curve scans of a 30 nm sample at 30 keV electron beam energy, at
equilibrium (left) and photoexcited (right) at a time delay of 100 ps. Note: In the photoexcited
curves, a reflection of the pump beam in the sample holder gives rise to artifact in the intensity
at ∆θ ∼ −1◦.

curve shows a slight increase, whereas it shows a decrease for other s , 0. The oscillatory fringe
pattern of the rocking curve displays a larger distance between fringes than in the case of the
70 nm sample, as expected from the dynamical behaviour of the diffracted intensity (see section
2.1.2).

In light of these results, we can undoubtedly assign the observed intensity changes to the
presence of multiple scattering effects. The proposed model, accounting for several interacting
beams and lattice temperature increase, fits accurately the shapes of the rocking curves before
and after photoexcitation. The final temperature estimation from our model, underestimates
the temperature increase in comparison to the values obtained from equation 4.2. This fact
most probably arises from obviating absorption effects in the model (usually accounted within
the imaginary part of the crystal potential), which in our case has been regarded with a phe-
nomenological gaussian background. Another possibility that could explain the discrepancy on
the calculated temperatures could be related to an imperfect spatial pump-probe overlap on the
sample.



68 Chapter 4. Multiple scattering effects demonstrated in UED with free standing Si nanomembranes

0.05 0.00 0.05
s (nm 1)

L = 30nm
E = 30keV

Model
Equilibrium
Photoexcited

0.05 0.00 0.05
s (nm 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d 
In

te
ns

ity
 (a

.u
)

Data
Equilibrium
Photoexcited

Figure 4.14: Rocking curve scans of a 30 nm sample at 30 keV electron beam energy at a time
delay of 100 ps, at equilibrium (blue curve) and photoexcited (red curve). The results from the
model after photoexcitation consider a value of ∆T=450K.

4.5 General behaviour
Finally, and as a way of summarizing our observations figure 4.15 shows the different non
intuitive behaviors of dynamical diffraction effects. Figure 4.15 a) shows the evolution of the
(220) peak at the Bragg angle, s = 0, as a function of thickness. The diffracted intensity
oscillates along propagation in the sample which is one of the main feature of dynamical
diffraction. Interestingly, the diffracted intensity in the high temperature case (red curve) shows
a different behavior, indicating that the relative intensity changes are also expected to change
sign depending on the sample thickness.

Note that for small thicknesses, one recovers kinematical theory and ∆I/I < 0, i.e., the
diffracted intensity is smaller at higher temperatures. Figure 4.15 b) shows a similarly complex
behavior when the electron energy is varied. This indicates that the relative intensity ∆I/I has
a varying amplitude and sign depending on the energy of the probing electrons.
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Figure 4.15: Results of dynamical diffraction theory including N=26 beams. a) Intensity of
the (220) peak at the Bragg angle, I220 (s=0) for varying sample thicknesses, assuming 45 keV
electrons. b) Intensity of the (220) peak at the Bragg angle, I220 (s=0) for varying electron
energy, assuming a 70 nm thickness.

4.6 Conclusions and perspectives

Under the observations from the experimental data and simulations shown in this chapter, it is
possible to conclude that the ultrafast response of the Bragg peak intensity within the dynamical
diffraction framework is greatly dependent on the sample quality, thickness and the electron
energy. While the results and simulations shown in the chapter were performed on silicon
membranes, we can anticipate that multiple scattering processes are always present in the case
of high quality samples with thicknesses comparable to the extinction distance. As a general
rule, dynamical diffraction should be considered when L > ξg/3 [102]. The presence of such
effects in time resolved experiments might hinder the interpretation of the structural dynamics.
Dynamical effects, in turn, could potentially be used to obtain new information on the dynamics
of the crystal potential after photoexcitation. Although, it requires to precisely know the crystal
potential in the equilibrium state, which is not easily available for complex materials.

The rocking curve measurements performed in our UED setup are analogous to the con-
vergent beam electron diffraction technique, which instead of rocking the sample it relies on a
beam with a certain angle of convergence. This technique within an ultrafast framework has
promising outlooks, since it can accurately measure not only the thickness of the sample but
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also the presence of crystal defects or lattice strain at the nanoscale and so, their evolution on
time [103].
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Dynamics of the charge density wave phase
transition in GdTe3
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Charge density wave (CDW) phases are broken symmetry states characterized by a period-
ically ordered charge density concomitant to a periodic lattice distortion (PLD) and by a gap
opening at the Fermi level in low-dimensional systems. The theoretical model that describes
this type of phase transition was proposed by Peierls in 1955 in a linear metallic chain [104].
This model was the first approach that considered a coupling between electrons and lattice. Ex-
perimentally, the CDW state has clear electronic and structural features that reveal its existence
in real materials under the probe of different techniques. Below a critical temperature, such a
state manifests itself by a band gap opening in ARPES, the appearance of satellite reflections
in diffraction, an increase of the resistivity in transport measurements or by a dip in the R(ω)
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reflectivity curves. A myriad of low-dimensional materials undergo a CDW phase transition:
from the quasi-one-dimensional materials as blue bronze (K0.3MoO3) or NbSe3 to quasi-two-
dimensional layered compounds such as TaS2 or the rare earth tritellurides (RTe3, where R
stands for the rare earth element).

CDW systems have gathered great attention in the time-resolved community due to these
characteristic structural and electronic signatures. Tracking their evolution after photoexcitation
allows to probe the phase transition in the relevant time scales. In the specific case of time
resolved diffraction, the out-of-equilibrium dynamics of the CDW state can be followed from
the intensity changes of the satellite reflections. A non-trivial open question about the triggering
mechanism of the CDW formation relies on the respective contributions of electronic and lattice
degrees of freedom. Indeed, the CDW transition involves the simultaneous transformation of
the electronic and crystalline structures, but so far, it has not been clear which one is the main
driving force, how they are entangled and what is the strength of the electron-phonon coupling
[105]. Out-of-equilibrium experiments might shed some light on this matter and improve the
understanding of how the phase transition develops.

One of the quasi-two-dimensional materials most representative of a CDW state are the
RTe3, a family of compounds extensively studied statically in the past decade [106, 107, 108].
This layered system shows a Peierls instability with a fairly simple electronic structure. Most
of the compounds display a unidirectional CDW with a period that is incommensurate with the
underlying atomic lattice, i.e., its period is an irrational fraction of the lattice period. The role
of the rare earth ion acts as a chemical pressure factor [109], giving rise to different critical
temperatures and even the presence of a second CDW depending on the rare earth ion. Recent
studies in 2019 in the ultrafast diffraction domain have opened new questions on the mechanisms
behind its dynamics and their possible relation to photoinduced topological defects [36]. By
now, some of them are only accessible from arXiv [39, 40].

The chapter is divided as follows: in section 5.1, I introduce basic concepts to the under-
standing of the CDW emergence and characteristics of the RTe3 compounds. A description
of the crystal and electronic structures of the RTe3 family of compounds is given in section
5.2 along with a brief review of recent experimental results on these compounds. In section
5.3, I describe the sample preparation procedure and section 5.4 is devoted to the experimental
results obtained in GdTe3 with the UED setup at LOA. Finally, a discussion with possible
interpretations is given and main conclusions are drawn.

5.1 Charge density wave phase transition
The theoretical description of the CDW phase transition is based on the mean-field approxi-
mation, which makes use of a statistical treatment to overcome the N-body problem. In this
framework, an electron is described in a potential constituted by the surrounding electrons and
the underlying lattice. In order to understand the basics of the CDW formation, I briefly intro-
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duce the Peierls mechanism and three important aspects involved: Fermi surface nesting, the
susceptibility instability and the Kohn anomaly. Theoretical and experimental reviews covering
the topic in depth can be found in [105, 110, 111, 112] and in several books [113, 114, 115].

5.1.1 The Peierls transition

As its name suggests, a CDW state is characterized by a periodically varying electron density
which is concomitant to a periodic modulation of the underlying lattice, with a period that is
related to the Fermi wavevector kF [113]. In order to picture the mechanism as described by
Peierls [104], imagine the simple case of a monoatomic metallic linear chain with a lattice
spacing a between ions and one free electron per ion. Peierls realized that such system would
become unstable against a lattice distortion such that the periodicity of the chain is doubled to
2a, leading to a periodically distorted lattice of the form:

u(x) = ∆u sin(2kF x) (5.1)

where ∆u denotes the amplitude of the distortion and kF = π/2a the Fermi wavevector. The
conduction electrons will tend to screen the new potential created by the displaced ions, resulting
in a modulated charge density which is described as:

ρ(x) = ρ0(r)[1+ ρ1 cos(2kF x+φ)] (5.2)

where ρ0 describes the unmodulated charge density and φ the phase of the modulation with
respect to the ion lattice.

The new periodicity introduced in the system results in a new Brillouin zone leading to a
gap opening at the Fermi level. Figure 5.1 depicts the electronic energy along with the lattice
distortion and electron density above and below the transition temperature. Above a critical
temperature, the electronic dispersion mimics to that of a free electron gas, with a constant
charge density along the atomic chain. As the temperature decreases, the linear atomic chain
dimerizes and consequently the charge density is modulated. The gap opening in the energy
spectrum results in a lowering of the energies of the filled one-electron states of the conduction
band, while empty states are raised in energy. As we will see later, the gain in electron energy
is larger than the cost of the elastic energy required to distort the lattice, and so the CDW state
remains stable.

Susceptibility

As seen above, the spatial perturbations arising from the lattice distortion lead to an instability
of the conduction electrons in a one-dimensional system. A way of describing the response of
a free electron gas to an external periodic potential is given by the linear response function:
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Figure 5.1: Left: Electron energy dispersion curves above the transition temperature T > TCDW

without lattice distortion. Right: The same below the transition temperature T < TCDW with
the distorted lattice and the 2∆ gap opening at the Fermi level and at kF = ±π/2a.

ρind(q) = χ(q)φ(q) (5.3)

where ρind(q) and φ(q) are the Fourier components of the induced charge density and the
potential, respectively:

φ(r) =
∫

q
φ(q)eiq·rdq (5.4)

ρind(r) =
∫

q
ρind(q)eiq·rdq (5.5)

with χ(q) the Lindhard function, which describes the electronic susceptibility of the conduction
band:

χ(q) =
∫

ddk
2πd

fk − fk+q

εk − εk+q
(5.6)

where d stands for the dimension and fk = f (εk) is the Fermi function. The value of the
susceptibility is largely influenced by the energy bands. By analyzing equation 5.6 we find that
the largest changes in the susceptibility appear for a pair of electron and hole states which have
the same energy. In the case of a one-dimensional electron gas, this condition is fulfilled in the
vicinity of the Fermi level with q = 2kF .
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Figure 5.2: Fermi surface topology in different dimensions. The yellow shaded areas represent
the nesting of states due to a translation of the Fermi surface by a wavevector q = 2kF , image
from [116].

By considering a linear dispersion relation εk − εF = h̄νF(k − kF) around the Fermi level,
where vF stands for the Fermi velocity, the susceptibility in 1D results in:

χ1D(q) = −e2n(εF) ln
���q+2kF

q−2kF

��� (5.7)

where n(εF) is the density of states at the Fermi level. Figure 5.2 depicts the topology of the
Fermi surface in the different spatial dimensions and figure 5.3 shows the result of the corre-
sponding susceptibility function.

Figure 5.3: Susceptibility as a function of the
wavevector at different dimensions [113].

The divergence of the susceptibility in 1D
is a direct consequence of the Fermi surface
topology. In the case of a 1D system, the
Fermi surface consists of two parallel sheets:
one formed of filled states and one of empty
states, depicted in blue and yellow in figure
5.2, respectively. The excitation of an electron
with wavevector −kF into an empty state lo-
cated at +kF can be performed by a translation
of q = 2kF . This condition is perfectly fulfilled
in the case of a 1D system, and that is why it
is known as perfect nesting. The singularity in
the susceptibility results in an instability of the
electron gas leading to the formation of the pe-
riodically varying electron density and the gap
opening. As the dimensions are incremented,
the number of available nesting wavevectors
decreases (a line in 2D or a dot in 3D), so the
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nesting becomes partial or "imperfect" and accordingly, the singularity in the susceptibility
curve is lost (see figure 5.3).

Although this purely electronic picture would look as the only CDW transition mechanism,
in real materials the instability of the susceptibility is very fragile and it needs to be assisted
by a strong electron-phonon coupling for the transition to develop [117]. Indeed, other ways
to repopulate the empty bands is via phonon scattering through the electron-phonon interaction
[118], leading to the Kohn anomaly.

The Kohn anomaly

The divergence at q = 2kF alongwith an electron-phonon interaction, results in a renormalization
of the phonon spectrum, known as the Kohn anomaly [119]. This translates into a softening of
the acoustic phonon mode (ω→ 0) when the temperature of the system approaches a critical
value T → Tc. The Kohn anomaly gives rise to the periodic lattice distortion with q = 2kF

wavevector, which itself constitutes the nesting wavevector in the Fermi surface.
In order to find the renormalized phonon spectrum, we introduce the energy of the system

given by the Fröhlich Hamiltonian, which accounts for electron-phonon coupling neglecting
Coulomb interactions [112]:

H = Hel +Hph +Hel−ph =
∑

k

εka†kak +
∑

q

h̄ωqb†qbq +
∑
k,q

gqa†k+qak(b†−q + bq) (5.8)

where εk =
h̄2 k2

2m is the free electron energy, a†k and ak are the electron creation and annihilation
operators in state k (spin is not considered), b†q and bq the phonon creation and annihilation

operators with wavevector q and frequency ωq and gq = i
(

h̄
2Mωq

)1/2
|q |Vq the electron-phonon

coupling constant, and Vq is the Fourier component of the potential set by the lattice displace-
ment. The renormalized phonon frequency is obtained from the equation of motion1:

h̄2 ÜQq = −[[Qq,H],H] (5.9)

where ÜQq is the second time derivative of the position coordinate.

ÜQq = −ω
2
q Qq −g

(2ωq

Mh̄

)1/2
ρq (5.10)

with ρq =
∑

k a†k+qak and assuming that g is independent of the wavevector q. By making use
of the linear response function in equation 5.3 and the ionic potential g(2Mωq/h̄)

1/2 Qq, the

1The Hamiltonian in normal coordinates and momenta is given by:

Hph =
∑
q

PqP−q
2M

+
Mω2

q

2
QqQ−q and Hel−ph = ρq

∑
q

(2Mωq

h̄

) 1/2

Qq
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equation of motion becomes:

ÜQq = −
[
ω2

q + χ(q,T)
2g2ωq

Mh̄

]
Qq = ω

2
ren,q Qq (5.11)

where ωren,q is the renormalized phonon frequency and with the susceptibility of the system at
a finite temperature given by [113, 115]:

χ(q,T) = −e2n(εF)ln
1.14ε0

kBT
(5.12)

here ε0 is an arbitrary cutoff energy, usually taken as the Fermi energy εF . Therefore, the
renormalized phonon frequency at a finite temperature finally yields:

ω2
ren,2kF

= ω2
2kF −

2g2ω2kF

h̄
n(εF)ln

(1.14ε0
kBT

)
(5.13)

whereω2
2kF

denotes the normal state phonon frequency. At the phase transition the renormalized
frequency tends to zero, ω2

ren,2kF
= 0, leading to a frozen lattice distortion with wavelength of

λ0 = 2π/2kF , which defines the mean-field transition temperature:

kBT MF
CDW = 1.14ε0e−1/λ (5.14)

with the dimensionless electron-phonon coupling expressed as λ = g2n(εF )
h̄ω2kF

.
This is the same formalism that describes BCS superconductivity, thus we are dealing with

a second order phase transition with the complex order parameter described by:

∆ = |∆|eiφ = g
(
〈b2kF 〉+ 〈b

†

−2kF
〉

)
= g

(2Mωq

h̄

) 1/2

Qq (5.15)

where |∆| and φ represent the amplitude and phase of the order parameter, respectively. The
displacement of the lattice in terms of the order parameter becomes:

〈u(x)〉 = ∆u cos(2kF x+φ) (5.16)

with

∆u =

(
2h̄

Mω2kF

)1/2
|∆|

g
(5.17)

In this way the lattice strain energy as a function of the order parameter is defined as:

Elatt =
1
2

Mω2
2kF∆u2 =

h̄ω2kF |∆|
2

g2 (5.18)
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On the other hand, the electronic energy gain of the system as a function of the order parameter
(considering the weak coupling limit with εF >> ∆) is given by [113]:

Eelec =
n(εF)

2

[
|∆|2 ln

(2εF

|∆|

)]
(5.19)

The stability of the system in the CDW state becomes possible by compensation of the
elastic energy cost Elatt ∝ |∆|

2 by the gain of the electronic energy Eelec ∝ −|∆|
2 ln|∆|.

5.1.2 Collective excitations: Amplitudons and Phasons
Due to the complex nature of the order parameter, excitations of the phase φ and the amplitude
|∆| are expected [113]. These excitations or fluctuations inherent to the CDW phase are known
as phasons (phase modes) and amplitudons (amplitudemodes), respectively. They are described
within the Ginzburg-Landau formalism in the long range wavelength fluctuation limit.

The phase mode represents spatio-temporal fluctuations of the electron density modulation
phase with respect to the ionic positions. These modes give rise to an acoustic branch in the
phonon spectrum. As a main difference with respect to the amplitude mode, it can propagate in
space.

The amplitude mode, on the other hand, accounts for the fluctuations of the ionic displace-
ments ∆u, which is proportional to the amplitude of the order parameter |∆|, as seen in equation
5.17. The resulting frequency dispersion of the mode corresponds in this case to an optic
branch.

Figure 5.4 shows a simple schematic representation of the ionic positions and the modulated
electronic density in both modes, related to their respective frequencies, which in the case of an
incommensurate CDW, are given by:

ωφ =
( m
m∗

) 1/2

vFq

ωA =
(
λω2

2kF +
1
3

m
m∗

v2
Fq2

) 1/2
(5.20)

where m∗ denotes the CDW effective mass, or Fröhlich normalized mass [112], given by:

m∗ = m0

(
1+

4∆2

h̄2ω2kF

)
(5.21)
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Figure 5.4: Schematic of the collective excitations present on the CDW along with their
respective phonon branches; acoustic in the case of the phason (green) and optic in the case of
the amplitudon (orange). Black circles and lines represent the equilibrium distorted chain.

Equilibrium collective excitations probed by diffraction

In diffraction, the presence of a the CDW state results in the appearance of satellite spots
around the main Bragg reflections, with a wave vector Q = 2kF . As the temperature of the
system is increased, fluctuations of the amplitude and phase modes have large implications in
the diffraction intensities. Giuliani [120] and Overhauser [121] shown theoretically the effects
of such fluctuations on the diffraction intensities. In their works, they defined the equilibrium
structure factor taking into consideration both phase and amplitude fluctuations, resulting in
[120]:

F(q) =
∑

G

∞∑
n=−∞

δ
(
q−

[
G+nQ

] )
J2

n (q ·A)F
φ
n F A

n (5.22)

where G stands for the reciprocal lattice vector, q represents the electron scattering wavevector,
Q the wavevector of the distortion, A the distortion amplitude of the CDW (termed as ∆u in
equation 5.1), Jn is the Bessel function of the first kind and order n, which assigns n = 0 for
Bragg peaks and n = 1 for first-order satellites. This term sets the influence of the distortion
amplitude in both Bragg and satellite peaks intensity, since J2

1 and J2
0 are out of phase (see

figure 5.5).
Finally, the last two terms in equation 5.22, correspond to the collective modes attenuation

factors being:

Fφ
n = exp

(
−n2〈δ2

φ〉
)

F A
n = exp

(
−(n2− |n|)〈δ2

A〉
)

where the terms 〈δ2
i 〉 arise from the fluctuations of the phase and the amplitude and n sets the

order of the satellite reflection.
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Figure 5.5: Squared of the Bessel functions for n= 0 (assigned to Braggs) and n= 1 (satellites).

Thus, the intensity of the Bragg reflections, with n = 0, in the presence of a CDW will be
proportional to:

Ibragg ∝ |J2
0 (q ·A)|

2

This implies that large lattice distortions (i.e., large A) decreases the intensity of the Bragg
reflections. In the case of first order satellite reflections with n = 1, the intensity becomes:

Isat ∝ |J2
1 (q ·A)F

φ
1 |

2

from which we can clearly observe that its intensity only depends on phase fluctuations and
not on amplitude fluctuations (since F A

n=1 = 1 in the case of first order satellites). Note that in
this model the authors consider that the fluctuations are time-independent. Moreover, it is worth
noticing the influence of the lattice distortion A, that also tends to decrease as the temperature
raises. In this way, a smaller lattice distortion reduces the structure factor even if the phase
fluctuations are not present.

Out-of-equilibrium collective excitations probed by diffraction

In the case of time resolved experiments, where the time dependency has to be considered,
the photoexcitation of the amplitude mode gives rise to oscillations in the diffraction satellite
intensities with a frequency given by ωA, usually on the order of few THz. This behaviour can
be well explained within the phenomenological time-dependent Ginzburg-Landau formalism,
as shown experimentally by Huber et al. where the order parameter of the phase transition is
given by the amplitude of the lattice distortion [22]:

V(x) =
1
2
(ηe−t/τ −1)x2+

1
4

x4

with x the order parameter, η a fluence dependent parameter η ∝ F, and τ the temporal decay
of the satellite intensity. The potential energy of the system at equilibrium (η = 0) displays a
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Peierls barrier as depicted in the schematic of figure 5.6. As the incident fluence is increased,
the shape of the double well changes up to η ∼1, where the Peierls barrier collapses.

The amplitude mode fluctuations as a function of the time, can be described by the equation
of motion within the Peierls barrier. By considering the Ginzburg-Landau potential V(x), it
becomes:

1
ω2

DW

∂2

∂t2 x−
(
1−ηe−t/τ

)
x+ x3+

2γ(t)
ωDW

∂

∂t
x = 0 (5.23)

where ωDW represents the angular frequency of the motion in the double-well (ωDW ∼ ωAM)
and a phenomenological damping parameter γ(t) = γassym(1−e−t/τR) considering the relaxation
times from pump-probe reflectivity curves. Although the authors could not fully confirm the
origin of this damping mechanism they pointed out to a strong time-dependent electron-phonon
or phonon-phonon coupling.

The influence of the phase mode fluctuations is expected at longer time scales due to their
lower excitation energies, and so they are not considered in the phenomenological model. At
long time scales, the phason mode contributes to a satellite intensity decrease, as in the case of
the equilibrium fluctuations shown the precedent subsection.

Figure 5.6: Temporal evolution
of the satellite reflection intensity
as a function of the incident flu-
ence measured by Huber et al.
in K0.3MoO3. The solid lines
represent fits within a displacive
model which agrees to the dy-
namics resulting from equation
5.23. The schematic on the right
side represents the potential en-
ergy of the Peierls barrier as a
function of the excitation param-
eter η ∝ F. Figure adapted from
[22].
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5.2 The Rare-Earth Tritelluride family

5.2.1 Crystal and electronic structures

The crystalline structure of the RTe3 compounds (here R stands for the rare earth element) is
arranged in an orthorombicCmcm space group (No. 63), nearly tetragonalwith lattice parameters
of a ∼ c ∼ 4.3 Å and b ∼ 25.5 Å [122]. The unit cell consists of a set of stacked Te bi-layers
sandwiched between corrugated RTe insulating slabs [106], as shown in figure 5.7. The
interlayer bonds between Te nets located at b/2 of the unit cell are weakly bonded by Van der
Waals forces [123], here a glide plane (which corresponds to a symmetry operation of a mirror
reflection on the b axis and an in-plane translation of c/2) sets the weak orthorhombicity of the
crystal structure. The Te layers host a unidirectional incommensurate CDW with a preferred
ordering direction along the c-axis originated from the small anisotropy between the in-plane
lattice parameters (a/c ∼ 0.99).

Figure 5.7: Top view
(left) and side view (right)
of the unmodulated unit
cell. Black lines high-
light the unit cell. The
crystal structure is gen-
erated with VESTA soft-
ware [124] from the X-ray
data published by Malli-
akas et al. [125].

The electronic structure is dominated by the presence of the 5px and 5pz orbitals within the
square-planar Te layers. The weak interaction of the electrons gives rise to a simple electronic
structure that is well described within a 2D tight-binding model [107, 126]. Figure 5.8a) shows
the real space in-plane cell in which the Te plane is oriented 45◦ with respect to the a,c axis.
The Te px and pz orbitals form linear chains perpendicular to each other, conferring a quasi 1D
character to the Fermi surface. In reciprocal space, the resulting Fermi surface has a diamond
shape within two different unit cells; a 3D Brillouin zone defined by the rare-earth atoms and a
2D Brillouin zone from the Te plane (see figure 5.8). Since its shape is mostly dominated by
the Te orbitals, it is qualitatively the same for all the family compounds. Below the transition
temperature, a nesting vector with QCDW ∼ 2/7c∗ opens a bandgap at the tip of the diamond
[107, 127, 128, 129]. The slight curvature of the bands leads to an imperfect nesting, so that
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the material does not become insulating but it coexists with the metallic phase. Figure 5.9
shows the TbTe3 (Tc = 330K) Fermi surface measured with ARPES at two temperatures. At
T = 100K, the band dispersion (cut on the Fermi surface highlighted by the red line) clearly
shows the opening of the bandgap with ∆ ∼250meV.

Figure 5.8: a) Real space in plane atomic positions represented along with the Te 5px (red) and
5pz (blue) orbitals, with the Te net oriented 45◦ with respect to the ac axis. b) Schematic of the
reciprocal space showing the 3D (orange) and 2D (green) Brillouin zones. Red and blue lines
represent the FS arising from the Te 5pz and 5px orbitals, respectively.

Figure 5.9: Measured equilibrium Fermi surface and energy band dispersion (cuts taken at the
highlighted line in red in A and A’) of TbTe3. At 300K (A and B) and at 100K, well below the
transition temperature (A’ and B’). Image adapted from [129].
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The rare earth ion has a key function on the structure as it sets the lattice parameters andmost
importantly, the transition temperature of the CDW phase. It can be seen as a chemical pressure
parameter (an increasing lattice parameter leads to a decreasing chemical pressure) [109, 130],
which allows to present the phase diagram as a function of temperature and the rare earth
element, as shown in figure 5.10. In this way, the lightest ion (La) displays the largest lattice pa-
rameters with a = 4.39 Å and c = 4.41 Å leading to an anisotropy ratio of a/c = 0.45%, whereas
the heaviest (Tm), will display the shortest lattice constants with a = 4.27 Å and c = 4.28 Å
that corresponds to ∼ 0.2% anisotropy (room temperature values) [125]. Note that compounds
with reduced anisotropy (heavier ions), result in a second CDW phase along the a-axis with a
Tc2 < Tc1 coexisting with the one along the c-axis, see figure 5.10. The transition temperatures
to the CDW phase are decreasing with the atomic mass of the rare-earth ion in the case of
Q1 whilst they increase in the case of Q2. The rather large transition temperatures of these
compounds, allow to perform studies at room temperature.

Figure 5.10: Phase diagram as a function of the temperature and the lattice parameter a. The
transition temperatures for the CDW oriented along the c axis increases with increasing lattice
parameter, whereas the transition temperature of the CDW along the a axis decreases. Graph
from [122].

5.2.2 Recent literature review and motivation
Although the Peierls picture with the Fermi surface nesting as the main driving force inducing
the phase transition has been widely accepted in RTe3 materials [128], Johannes and Mazin
argued theoretically that in real 2D materials the Fermi surface nesting itself can not predict the
ordering direction. On the contrary, a strong q-dependent electron-phonon coupling triggers the
phase transition [117]. Experimentally, the combination of different time resolved techniques
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probing each degree of freedom involved in the transition (lattice and electrons) and with their
capability to follow the transition in time scales as short as few hundreds of femtoseconds are
promising candidates to reveal the role of the lattice in the phase transition.

The understanding of the physical scenario ruling the photoinduced phase transition in these
compounds has lead to an intense research during the last decade. Three main techniques with
different sensitivities have been used to probe the dynamics at the electronic and structural
levels unveiling the temporal dynamics of each degree of freedom.

Time resolved ARPES experiments with high sensitivity to the electronic structure, showed
partial suppression of the gap after photoexcitation followed by a recovery of the order of
few picoseconds depending on the incident excitation fluence. This temporal response to
photoexcitation is common in several compounds of the RTe3 family; on TbTe3 [131], CeTe3
[62], DyTe3 and HoTe3 [132] and LaTe3 [36]. An example of the temporal evolution of the gap
in TbTe3 is shown in figure 5.11 [129] with the upper band associated to the CDW gap (shown
in black in figure 5.11).

Figure 5.11: Left: Time resolved photoelectron intensity around the Fermi level of TbTe3 with
the black line corresponding to the conduction band (CB) and the blue line to the Te band.
Right: Variations of the CB band (black line) and Te band (blue). The oscillations on the CB at
t < 1 ps correspond to the CDW amplitude mode. Adapted figures from [129].

On the other hand, time resolved reflectivity experiments are sensitive not only to changes in
the electronic structure, but also to lattice changes through coherent generation of phonons. This
type of experiments shows a slowing down of the CDW gap relaxation as a function of the inci-
dent fluence on LaTe3 with values of the recovery times ranging from hundred of femtoseconds
to few picoseconds [36]. Interestingly, results from Yusupov et al. showed as well a slowing
down in the relaxation of the reflectivity curves with increasing temperatures (also reported by
Chen et al. [133], see figure 5.12) accompanied by a softening the of amplitude mode at T∼Tc.
Moreover, their experimental results pointed to a coupling between the amplitude mode and
an optical phonon mode at a similar frequency [134], this effect is further discussed in section
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Figure 5.12: Measured relaxation time in reflectivity curves as a function of the sample
temperature reported by a) Yusupov et al. [135] and b) Chen et al. [133]. Dashed lines
mark the transition temperatures of each material. Adapted figures.

5.5. Later, a double pump-probe reflectivity experiment hinted toward the role of topological
defects in the CDW dynamics of TbTe32. More precisely, the authors suggest that domain walls
likely annihilate after a delay time of few picoseconds [135].

Critical slowing down: The results presented in figure 5.12 reveal an interesting effect at
the onset of a phase transition that merits some mention. Critical slowing down is a universal
behaviour observed in phase transitions of any type. When a system is subjected to a perturbation
that pulls it away from its equilibrium state, the temporal recovery to that initial state will slow
down, becoming most noticeable when the perturbation is performed close to a critical point.
This is exactly what we observe in figure 5.12. Zong et al. have recently applied this concept
in the decay times measured on LaTe3 by various techniques [38].

The most interesting aspect of this phenomenon which occurs in complex systems is its
universality in a wide variety of fields [136]. Critical slowing down has been observed in
economy [137] before economical crises, in nature before climate changes [138], population
collapse in ecosystems [139] or even in psychology before or after a depression episode [140].
Although the arrival of a "tipping point" before a drastic change is difficult to predict, themajority
of these publications claim the possibility of detecting early warnings of "catastrophic" changes
by studying critical slowing down.

Finally, ultrafast diffraction represents the probe which is only sensitive to the crystal
structure. The increasing interest on these compounds in the diffraction community is reflected
in the numerous publications with different proposed scenarios in the past years. All of these
works present a similar behaviour on the CDW dynamics: the photoexcited satellite peaks
undergo a fast suppression of the intensity followed by a slow recovery that increases with

2The experiment was also performed on other compounds (2H-TaSe2 and K0.3MoO3) showing similar effects
and indicates that it is a universal response in CDW systems.
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fluence [36, 37, 108, 141]. The temporal evolution of the satellite reflections has opened new
questions concerning the main structural mechanisms behind the photoinduced phase transition.
Although the results are qualitatively the same, the controversy arises in the interpretation of
the observed dynamics. Han et al. [141] and Trigo et al. [37] assign the CDW dynamics to
changes of the order parameter (amplitude of the distortion) in CeTe3 and SmTe3, respectively.
Zong et al. (LaTe3) interpret their results as the emergence of a high density of photoinduced
topological defects [36]. And finally, Moore et al. underline the role of lattice strain and
coupling of the CDW amplitude mode to optical phonons in TbTe3 [108].

At this point, it is interesting to note a main difference between both diffraction techniques.
While UED measurements did not reveal any oscillatory behaviour of the satellite intensities,
time resolved X-ray diffraction measurements detected the coherent excitation of the amplitude
mode [37, 108]. This fact could arise either from the differences in temporal resolutions of each
technique or from the different satellites under study. In UED, in transmission geometry, we
are restricted to the observation of the (h0l) planes, so that information of the b∗ axis can not be
retrieved.

Out-of-equilibrium CDW phase: Here, it is worth mentioning as well some striking results
recently uploaded to arXiv: the photoinduced emergence of a hidden CDW phase in the com-
pounds LaTe3 [39] and CeTe3 [40]. The astonishing aspect of these results is that at thermal
equilibrium, light compounds of the RTe3 family have never shown the presence of a second
CDW phase (c.f. figure 5.10). Both studies point to the formation of topological defects as the
mechanism favouring the emergence of this transient non-equilibrium CDW phase.

With respect to the above-mentioned controversies, the goal of our experimental measure-
ments was to provide a better understanding of the physical mechanisms behind the CDW
dynamics. For this purpose, we performed a series of pump probe diffraction experiments on
thin films of GdTe3 at different incident fluences. We extended the temporal window of the scans
to hundreds of picoseconds and analyzed the dynamics of the phase transition by looking at the
effects of photo-excitation on the Bragg peaks and satellites intensities. Moreover, we investi-
gated the implications of the initial conditions by analyzing two different initial temperatures
on the sample, demonstrating that this has large effects on the CDW dynamics.
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5.3 Sample preparation

Bulk GdTe3 samples were grown by self-flux technique under purified argon atmosphere at
the Néel Institute in Grenoble by P. Lejay [142]. The preparation of suitable thin films for the
UED setup at LOA was performed with an ultramicrotome (Leica EM UC7) at Laboratoire des
Solides Irradies (LSI). This technique allowed me to cut thin sections down to 30 nm. A pair
of diamond knives can be fitted in the ultramicrotome, each of them used in different steps.
Firstly a trimming diamond knife with an inclination of 45◦ is used to shape the sample into a
trapezoid block (flat pyramid, see figure 5.13). At this point, it is important to stress the main
difficulty when preparing this type of samples: the dimensions of our electron probe are fairly
large when compared to the beam of a regular electron microscope. Accordingly, the surface
of the flat pyramid should be on the order of ∼ 300 µm×300 µm.

Figure 5.13: First steps to prepare sample sections. The bulk sample is glued on the sample
holder and with a trimming knife it is shaped into a trapezoid block. The surface of the flat area
should be on the order of ∼ 300 µm×300 µm. Image taken from [143].

In a second step, a 35◦ knife provided with a small water container is fitted into the
ultramicrotome and thewater level is adjusted to create a perfectly flat surface. These samples are
highly sensitive to surface oxidation, requiring a fast operation during the sectioning process. In
order to get a "fresh" surface I usually cut a first section of∼100 µm and discard it. Subsequently,
by adjusting the feed of the ultramicrotome to few tens of nm, the sample is sectioned into a
single thin film which remains floating on the water surface. With the help of an eye lash the
section is taken as far as possible from the knife blade to avoid damaging and retrieved with a
Perfect loop tool (see figure 5.15).

Finally, the water drop containing the sample section is placed on the dull side of a copper
TEM grid, which is in turn placed on an absorbing paper to remove it (see figure 5.15). The
TEM grids containing the sections are then stored in a vacuum vessel to avoid degradation from
surface oxidation until is needed for experiments.
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Figure 5.14: Left: Picture of an ultramicrotome with a 35◦ diamond knife. Right: Sketch of the
knife with the water container filled with the floating sections. Adapted figure from [144].

Figure 5.15: Left: Sketch of the Perfect loop tool containing the water drop and the sample
sections, ready to be deposited on the TEM grid [144]. Right: Optic microscope image of a
GdTe3 section with an area of a ∼ 500 µm×500 µm and 50nm thickness.

Figure 5.16 shows the diffraction pattern of an ultramicrotomed 50 nm TbTe3 sample ob-
tained with a TEM at 300 keV electrons prepared by a coworker. The positions of the satellites
along the c-axis are highlighted by the red arrows on the diffraction image. The intensity ratio
between the satellite peaks and the k + l = 2n+1 Bragg peaks is of the order 30% (depending
on the diffraction order). Although RTe3 compounds belong to the Cmcm space group, we
can observe forbidden reflections with h+ l = 2n+1. This effect has been already observed in
several electron diffraction experiments [36, 39, 122, 130, 141], and their appearance is believed
to result from stacking disorder along the b crystallographic axis [130].

By the use of the ultramicrotome I prepared both materials TbTe3 (Tc = 330 K) and GdTe3
(Tc = 377 K) in thin films. Although TbTe3 is a better known material with extensive char-
acterization in the literature, we finally chose to perform the pump probe experiments on the
neighbouring GdTe3 compound since it presents a higher transition temperature. Consequently,
the intensity of the satellites (which is proportional to the order parameter) is higher, requiring
shorter exposure times to collect good quality diffraction patterns.

It is worth mentioning that the characteristics of our probe along with the high sensitivity of
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Figure 5.16: TEMdiffraction pattern with 300 keV of an ultramicrotomed sample of TbTe3 along
the [010] axis at room temperature. Line profile of the (3 0 L) plane; satellites are marked by
red arrows in the diffraction pattern.

these samples to oxidation, make the preparation very difficult. Several trials were necessary to
obtain the samples presented in the following section which aremonocristalline with nanometric
thickness and mm2 surface.

5.4 Experimental results

The pump probe experiments presented in this section were performed on GdTe3 samples
(Tc = 377K) with a thickness of L∼50 ± 2 nm at 155K. The repetition rate was set to 1 kHz, at
41 keV electron energy and a pump wavelength of λ = 800nm. At every time step five images
were collected and averaged, each of them recorded with an exposure time of 3 s. The pene-
tration depth of the pump pulse can be estimated from the reflectivity and optical conductivity
values reported by Sacchetti et al. [145], leading to a value of δdepth ∼ 41 nm (see appendix D),
so that we ensure quasi-uniform energy deposition along the thickness of the sample.

We start by reviewing the characteristics of the diffraction pattern at equilibrium conditions.
Figure 5.17 shows the static diffraction pattern along the [010] crystallographic axis. Red arrows
point to the position of the first order satellites appearing along the c-axis.
A line profile, which is taken at the position highlighted by the red box in the diffraction pattern
is plotted on the right side of the figure. The satellites are centered at QCDW = (1,0,δ) where
δ ∼ ±2/7 and with an intensity of 20% of the (1,0,0) Bragg peak. The line profile of the Bragg
reflection and both satellite peaks is well fitted by the sum of three Lorentzian functions.
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Figure 5.17: Static electron diffraction pattern of a 50 nm GdTe3 sample collected at 41 keV.
Red arrows point to the positions of the satellites with QCDW = (±1,0,±δ) where δ ∼ 2/7. Left:
Line profile of the (1, 0, 0) Bragg peak and the neighbouring satellites (blue dots). The blue
dashed lines are Lorentzian fits of each peak and the solid red line represents the complete fit.

Note that contrary to the silicon diffraction patterns shown in chapter 4, in this case it is
necessary to use of a beam blocker due to the large intensity difference between the direct and
diffraction peaks. We observe that first diffraction orders are about 50 times weaker that the
direct beam, as shown in figure 5.18. This large intensity difference between the direct and
diffraction peaks confirms that the measured diffraction patterns can be described within the
kinematic diffraction regime. This is probably due to the sample quality that is inferior than
industrial silicon wafers.

Figure 5.18: Line profile of the unblocked
direct beam along the (0,0,l) direction. The
inset shows a zoom of the highlighted region.

Now we turn our attention to the diffraction patterns of the photoexcited state. Figure
5.19 shows the diffraction pattern shortly after photoexcitation with an incident fluence of
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Figure 5.19: Left: Diffraction pattern after pump arrival at t = 5 ps with an incident fluence of
3.5mJ/cm2. Right: Corresponding line profile of the (1, 0, 0) Bragg peak, the intensity of the
satellites is suppressed to the background level.

F= 3.5mJ/cm2. The arrival of the excitation beam triggers the phase transition into the high
symmetry state inferred from the satellite intensity suppression, clearly seen in the line profile.

Finally figure 5.20 presents the normalized difference between diffraction patterns with
pump and without pump (at a time delay t = 5 ps and at a fluence of 3.5mJ/cm2). The red arrows
are pointing to the position of the satellites. The intensity difference of the Bragg peaks and the
satellites is negative after the pump arrival. On the other hand, the background signal reveals
a slight positive intensity that increases at high scattering wave vectors, mostly due to thermal
diffuse scattering.

Figure 5.20: Diffraction pattern after pump arrival at t = 5 ps with an incident fluence of
3.5mJ/cm2.
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It is important to point out that we do not observe the presence of new satellite reflections
emerging along the a∗ crystallographic axis at any pump fluence. This is in contrast to what
was recently observed by Kogar et al. in LaTe3 [39] and by Zhou et al. in CeTe3 [40].

5.4.1 Bragg peak dynamics
In this section, I present the experimental results obtained at an initial sample temperature of
Ti = 155K under pump excitation fluences ranging from 0.5 to 3.5mJ/cm2. The time delays
between pump and probe were typically measured in a range between -10 ps and 140 ps, with
a time step between consecutive shots of few hundreds of femtoseconds. The curves of the
temporal relative changes are the result of binning between two or three consecutive points
(depending on the scan) in order to increase the signal to noise ratio.

Here, I retrieve the dynamical information of the lattice by analyzing the intensity changes
of the Bragg reflections. The relative intensity changes of the (k + l) = 2n Bragg peaks are
presented in figure 5.21, which result from an average of the integrated intensity over thirty
Bragg peaks. The temporal intensity decrease can be well described by a single exponential
decay of the form:

∆I/I0 = A(1− e−t/τ) ·H(t)

where I0 is the integrated intensity of the peak without pump, A the amplitude of the decay and
τ the time decay constant. H(t) is the Heaviside function centered at t = 0 ps.

Figure 5.21: Relative inten-
sity changes of the Bragg
peaks, averaged over 30
Bragg peaks, as a function of
the delay time between pump
and probe at four different
fluences. The initial sam-
ple temperature is Ti =155K.
The solid lines are resulting
from a single exponential de-
cay fit.

The intensity of the Bragg reflections decreases with a typical time scale of τ = 6 ps showing
a weak dependence on incident fluence (see figure 5.22 a)). Following this intensity decay, the
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Figure 5.22: a) Decay times extracted from the fit. b) Intensity ratio averaged over several
Bragg peaks and measured after the system has reached the quasi-equilibrium state.

system is brought into a quasi-equilibrium state, inferred from the constant intensity ratio of the
Bragg peaks, which lasts as long as the temporal length of the scan, i.e., more than 125 ps.

While the time decay constant τ does not show a clear dependence with the incident
fluence, the amplitude of the intensity decreases from I/I0 = 98% to I/I0 = 90% as shown in
figure 5.22 b), suggesting that the Bragg dynamics are directly related to the lattice temperature
increase. Scans taken within our temporal limit of the delay line reveal no relaxation of the
process up to 2 ns. The fact that the relative intensity remains constant at those time scales
implies that the lattice temperature evolves slowly due to the long thermal diffusion process,
owing to the free-standing sample geometry. Note that figure 5.22 displays the average of the
decay constants and the amplitudes of 30 Bragg peaks. The difference in the intensity changes
between Bragg peaks along a∗ and c∗, i.e., (h, 0, 0) and (0, 0, l) respectively, is shown in figure
5.23.

Figure 5.23 a) shows the integrated intensity changes at low fluence while 5.23 b) at the
highest fluence, for three different Bragg peaks: (00-4), (-400) and (400) in green, blue and red,
respectively.

This suggests that the intensity changes depend on the crystallographic axis, pointing to an
anisotropic Debye-Waller effect. Figure 5.24 depicts the difference in intensity ratio between the
(00-4), (-400) and (400) Bragg peaks at all studied fluences, with the intensity ratios measured
after lattice thermalization. Here, we can clearly observe that the (4,0,0) and (-4,0,0) reflections
present different values in their intensities, although they belong to the same crystallographic
direction. A plausible explanation for this effect is related to residual multiple scattering ef-
fects. Since these effects may occur, we could not obtain quantitative information on the lattice
anisotropy.
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Figure 5.23: Comparison between the intensity changes of orthogonal Bragg peaks: (± 400)
and (00-4), with incident fluences of a) F= 0.8mJ/cm2 and b) F= 3.5mJ/cm2, and initial
temperature Ti =155K.

Figure 5.24: Intensity changes ratio I/I0 where I is the intensity after full decay. The sample
initial temperature is Ti =155K.

5.4.2 Lattice temperature and Debye Waller effects
We have seen in section 2.1.1 that there is an intrinsic relation between the intensity ratio, lattice
temperature and the scattering wave vector of the diffraction peak, given by the Debye-Waller
equation:

I = I0e−M (5.24)

where M = 1
2Q2

hkl 〈u
2〉 = 1

2

(
4π
λ

)2
sin2θ〈u2〉 is the Debye-Waller factor with Qhkl the scattering

wave vector corresponding to the (hkl) Miller plane and 〈u2〉 is the mean-squared amplitude
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of the atomic displacement. Figure 5.25 shows the logarithm of the intensity ratio after the
sample has reached the thermal quasi-equilibrium state I(t � 6 ps) and before photoexcitation
I0 as a function of sin2θ/λ2 from several Bragg peaks for all studied incident fluences. Dashed
lines are linear fits of the data3. These results undoubtedly confirm that the arrival of the pump
induces an increase of the lattice temperature, being higher with stronger incident fluences, as
expected.

Figure 5.25: Logarithm of the intensity ratio after the quasi-equilibrium is reached I(t = 75 ps)
and before photoexcitation (I0) as a function of the squared of the wavevector. As expected from
Debye-Waller theory, log(I/I0) vs. sin2θ/λ2 follows a linear trend (dashed lines).

In the case of isotropic vibration the Debye-Waller factor becomes M = BT

(
sinθ
λ

)2
with

BT =
8π
3 〈u

2〉. In this way, the lattice temperature increase after pump arrival ∆T can be easily
extracted from the slope of the linear fit [44, 147]:

b =
−log(I/I0)(

sinθ/λ
)2 =

8π2

3
〈u2〉 =

6h̄2∆T
mAkBΘ

2
D

(5.25)

where mA = 8.96 · 10−22 g represents the average mass of GdTe3 and ΘD = 144K the Debye
temperature, measured by Banerjee et al. with X-ray diffraction [148]. Here, we consider that
the anisotropy between the crystallographic axis a and c is marginal, so that the Debye-Waller

3Note that the intercept of the fit is finite. Results from the same analysis performed in bismuth by a different
group lead to a similar behaviour [146]. Effects from residual dynamical effects on the diffraction process could
potentially result in a non-zero intercept when plotting log( II0 ) vs sin2θ/λ2.
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factor can be treated as isotropic and that the difference in atomic masses is small, so that we
can approximate to a monoatomic solid. This approximation accurately fits the data at low
incident fluences, where the intensity ratio at similar sin2θ/λ2 is closely the same. As the
incident fluence is increased above 1.9mJ/cm2, we can clearly notice a higher dispersion of the
ln(I/I0) from the linear fit. This is considered in the following to calculate the error bars in the
temperature estimation.

The results of the lattice temperature based on this calculation are plotted in figure 5.26,
where the lattice temperature at the quasi-equilibrium state is defined as Tq.e. = Ti + ∆T, with
Ti=155K. The red dots show the experimentally estimated lattice increase using equation 5.25.
Along with the points retrieved experimentally, we plot the estimated temperature increase
from absorbed heat (gray line) showing an excellent agreement with the results obtained from
equation 5.25. The lattice temperature from absorbed heat is calculated from:

∆T =
Qabs

mCl
=

Finc(1−R)
ρδdepth Cl

(5.26)

with Qabs the absorbed energy, ρ = 0.014mol/cm3 the molar density, δdepth ∼41 nm the pene-
tration depth, R(λ = 800nm) =0.7 the reflectivity coefficient [145] and Cl ∼ 99.5 J/K·mol the
lattice heat capacity [106].

Figure 5.26: Lattice temperature estimation at the quasi-equilibrium state (Tq.e. =Ti+∆T,
Ti=155K) from the Debye-Waller effect (red dots) and from heat absorption (gray line) at the
quasi-equilibrium state. The black dashed line marks the transition temperature of GdTe3 [122].

These results confirm that the lattice temperature remains below the critical temperature
after photoexcitation. Despite this fact, we have seen in figure 5.19 that the satellite reflec-
tions disappear below the background level at the highest incident fluence, suggesting that the
photoinduced transition is not purely thermal.
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5.4.3 Satellite dynamics

Figure 5.27: Relative intensity changes of
the (00-4) Bragg peak (orange dots) and
the averaged satellite peaks (blue dots, see
text) at an incident fluence of 3.5mJ/cm2.

Quite differently to the dynamics of the Bragg
peaks, the satellite reflections present a bi-
exponential decay and recovery behaviour. Fig-
ure 5.27 shows the intensity changes of the
(00 − 4) Bragg peak (in orange) compared to
that of the satellite peaks (in blue) with an
excitation fluence of F = 3.5mJ/cm2. To en-
hance the signal to noise ratio, I averaged
the intensity of four satellite reflections with
the same Q2 value (QCDW = (1,0,±δ), and
QCDW = (−1,0,±δ)). The dynamical response
of the satellite reflections to the laser ex-
citation is described by an instantaneous in-
tensity decrease, followed by a slower recov-
ery to the quasi-equilibrium state. At this
point, the intensity ratio remains constant up
to the end of the scan, in the same man-
ner as the intensity of the Bragg reflec-
tion.

The photoinduced intensity changes of the satellite reflections as a function of the incident
pump fluence are shown in figure 5.28, where the dashed black line marks the background
level. Figure 5.28 b) shows a zoom of the dynamics up to 40 ps. At all studied fluences,
the photoexcitation induces a large intensity drop within the first picoseconds, followed by a
recovery whose characteristic time increases linearly with the pump fluence, leading finally to a
quasi-equilibrium state that lasts for several tens of picoseconds. The partial intensity recovery
indicates the reformation of the CDW implying that the lattice temperature remains below the
critical temperature of GdTe3, in agreement with the results obtained from the Debye-Waller
analysis on the Bragg peaks.

We can clearly observe in figure 5.28 that at large incident pumpfluenceswithF ≥ 1.9mJ/cm2,
the intensity of the satellite peaks is suppressed down to the background level, suggesting that
the system has transited into the high symmetry phase. We can therefore define an experimental
"critical fluence" Fc corresponding to the fact that the satellite peaks disappear in the back-
ground noise for F ≥ Fc. Figure 5.29 shows the minimum intensity reached after pump arrival
(dark blue) with the critical fluence value marked by the red dashed line at Fc = 1.9mJ/cm2. In
the same figure, Iq.e. illustrates the intensity changes after reaching the quasi-equilibrium state
(light blue dots) which decreases linearly with the incident fluence. As we will see in section
5.4.5, the peak width exhibits a similar critical fluence onset.
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Figure 5.28: a) Relative intensity changes of the satellites at different incident fluences, b)
zoom of first 40 ps. Solid lines are the best fits to the data and the black dashed line marks the
background level.

Figure 5.29: Intensity ratios at the minimum of the satellite intensity (dark blue) and at t > 40 ps
(light blue). The dashed black line marks the background level and the red dashed line the
critical fluence threshold.

The temporal intensity changes of the satellite reflections can be described by considering
both decay and recovery processes convoluted with the probe beam [149]:

∆I/I0(x) = F(t) ∗G(t,σ) =
∫ ∞

0
F(x− t0)G(x,σ)dx



100 Chapter 5. Dynamics of the charge density wave phase transition in GdTe3

where F represents a decay and recovery function of the form:

F(t) = A1(1− e−t/τ1)+ A2(1− e−t/τ2)

and G(t, σ) represents the electron probe beam temporal distribution:

G(t,σ) =
1

σ
√
(2π)

e−t2/σ2

where τ1 stands for the temporal decay constant, τ2 is the temporal recovery of the process and
σ the r.m.s. width of the probe beam to consider the temporal resolution.

The amplitude of the intensity changes is accounted in the variables A1 and A2. The fits
are performed with σ constrained to [0,2] ps, which represents the temporal resolution of the
probe, τ1 is constrained between [0,5] ps and τ2 between [0,10] ps. The decay time constants
extracted from the fits are shown in figure 5.30 a) and the recovery time constants in 5.30 b).
The error bars result from the standard deviation of the four averaged satellites.

Figure 5.30: Time constants extracted from the bi-exponential fits on the satellites dynamics
as a function of the incident fluence: a) Time constants corresponding to the probe temporal
resolution σ (light blue) and τ1 corresponding to the system response decay (dark blue). b)
Recovery time constants extracted from the fits, showing a clear linear increase with fluence.

The temporal decay of the dynamics is extremely fast, being limited by the temporal resolu-
tion of our probe (σ). In order to confirm this result, a set of experimental datawas collectedwith
an electron bunch containing few thousands of electrons with a temporal resolution of ∼ 400 fs.
The time decay in this case resulted in values of the same order as the temporal width of the
electron beam. Time resolved X-ray diffraction experiments performed by Trigo et al. in SmTe3
[37] with a temporal resolution <80fs, showed time decays of the order of ∼ 200 fs, which con-
firms again that in our case the decay time is limited by the resolution of our probe. As shown in
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figure 5.30 a), we do not observe a clear influence of the incident fluence on the temporal decays.

On the other hand, the recovery time constants showvalueswhich arewell above the temporal
resolution, allowing us to study the recovery process. As inferred from the results shown in
figure 5.28, the increment of the incident fluence has a direct impact on the recovery time scales:
the CDW recovery slows down linearly from 1 ps to 8 ps with increasing fluence (see figure
5.30 b)). Notice that at high fluences, the recovery times of the CDW are similar to the τdecay

of the Bragg peaks, which means that the lattice temperature is already thermalized. This slow
down seen in the recoveries is a typical signature of systems displaying a phase transition at
temperatures close to the critical value, also known as critical slowing down. Our experimental
results are in agreement with other UED studies performed on other compounds [36, 40]. Time
resolved reflectivity measurements have shown the same behaviour of the recovery processes as
a function of sample temperature measured by Yusupov et al. [134] and Chen et al. [133]. It is
worth mentioning that in the case of reflectivity, and as pointed out by the authors in [134, 133],
the recovery time can be theoretically related to the gap size as τrecovery ∝ 1/∆ [150, 151],
leading thus to slower recoveries as the system approaches the Tc.

5.4.4 Scans at different initial temperatures
In these experimental data sets, we demonstrate that the initial sample temperature is a key factor
in the CDW dynamics, notably on their intensity changes and recovery times. For this purpose,
I have performed a set of scans with an initial temperature of Ti = 295K, a value which is closer
to the critical temperature of our sample with Ti / Tc ∼ 0.8. Here, I present the results from two
different fluences F = 0.8mJ/cm2 and F = 1.2mJ/cm2. In this way we are able to compare how
the system responds to a similar excitation level under different initial temprature conditions.
Figure 5.31 shows the Bragg dynamics for each pump fluence and initial sample temperature.

Figure 5.31: Bragg peak intensity changes at two different initial temperatures and at two
incident fluences a) F= 0.8mJ/cm2 and b) F= 1.2mJ/cm2.
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Figure 5.32: Lattice temperature estimation at the thermal quasi-equilibrium state, for two
different initial temperatures. The procedure to estimate the lattice temperature is the same as
the one presented in figure 5.25.

By comparing the intensity changes of the Bragg peaks in figure 5.31 we can observe
that there is no significant disparity between the scans taken at low initial temperature and at
room temperature. Following the same procedure as in section 5.4.2 we calculate the lattice
temperature increase. At F = 0.8mJ/cm2 the temperature increase for both initial temperatures
is ∆T ∼ 35 K , and at F =1.2mJ/cm2 the lattice temperature increase is ∆T ∼ 50 K . Figure 5.32
depicts the resulting values (green dots) which are again in good agreement with the estimated
temperatures from heat absorption (gray line). Note that the incident pump energy is sufficiently
low to maintain the lattice temperature below the transition temperature. Surprisingly, the
response on the satellites is clearly different, as shown in figure 5.33.

Figure 5.33: CDW peak intensity changes at two different initial temperatures and at two
incident fluences a) F= 0.8 mJ/cm2 and b) F= 1.2 mJ/cm2. As in figure 5.28, the curves are
resulting from an average over four satellite peaks with the same Q2 wave vector.
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Although the incident photoexcitation is the same in both scans, the CDW recovery to
the quasi-equilibrium state is slower when the system is initially closer to the transition
temperature. This is in qualitative agreement with the aforementioned reflectivity results from
Yusupov et al. [134] and Chen et al. [133], where the relaxation times slow down when the
system is closer to the critical temperature. Figure 5.34a) depicts the recovery times of the
satellite peaks at the two initial conditions: room temperature (green) and low temperature (red).
Those taken at a higher initial temperature (i.e., at room temperature), present a recovery time
of about 3.5 ps longer than when the system is initially further from the transition temperature.
This suggests that the out-of-equilibrium dynamics of the CDW are strongly influenced not only
by the effect of the laser excitation but also by the initial temperature. In light of these results,
we plot in figure 5.34b) the time constants of the CDW recovery times as a function of the ratio
Tq.e./Tc.

Figure 5.34: a) Recovery times of the satellite reflections as a function of the fluence at different
initial lattice temperatures, b) recovery times as a function of the quasi-equilibrium and critical
temperatures ratio.

From figure 5.34 b) we can conclude that the recovery time increases with higher Tq.e..

5.4.5 Long-range order

Overall, the satellite intensity evolution presented in section 5.4.3 is in excellent agreement with
those reported by Zong et al. on LaTe3 with a similar UED setup [36]. In our case, we extended
the temporal range to ∼ 125 ps, giving extra information on the long living quasi-equilibrium
state.

The physical scenario proposed by Zong et al. involves the emergence of photoinduced
topological defects. On the contrary, Trigo et al., in a time resolved X-ray diffraction, explicitly
states that the dynamics of the CDW are not influenced by the presence of such defects. The
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origin of the controversy arises from the satellite peak shape, which shows large width changes
in the former whereas it remains constant in the latter.

In diffraction, the FWHMof the Bragg reflections contains information on the crystal quality
[44]. In the particular case of a CDW peak, they represent the long-range order, i.e., the covered
distance at which the CDW maintains its periodicity, also known as correlation length. Within
the Fukuyama-Lee-Rice theory [152, 153], the correlation length arises from phase fluctuations
of the form e〈i[φ(x)−φ(0)]〉 which Fourier transform corresponds to a Lorentzian function. Thus
the correlation length is inversely proportional to the FWHM of the diffraction peak:

ξ =
1

FWHM
(5.27)

When the temperature of the sample is decreased towards the critical value Tc (with T>Tc),
the correlation length is:

ξ ∝
1(

T −Tc
)γ (5.28)

with γ = 2/3 for systems in three dimensions with a complex order parameter within the XY
universality class. At equilibrium conditions, the thermal evolution of the CDW peak leads to
an enlarged correlation length (narrowed FWHM) as the temperature decreases towards Tc, as
demonstrated by X-ray diffraction in TbTe3 [109]. On the microscopic level, the increase of ξ
can be understood as growth and nucleation of domains.

To take into consideration this last fact in our experimental data, I analyze in the following
the FWHM temporal changes at all studied fluences. The peak profiles were taken along the a
crystallographic axis by projecting the intensity of a ROI of 29×3 pixels containing the satellite
reflection (see inset in figure 5.35). Note that the width of the peak is not given by a rocking
curve but it is rather a projection on the Ewald sphere. The fit of the profile is performed by
adding a Pseudo-Voigt function to a linear function that accounts for the background. We start
by analyzing the satellite shape at equilibrium conditions at the different initial temperatures Ti.

Figure 5.35 depicts the equilibrium profiles after background subtraction at two different
initial temperatures: Ti = 155K and Ti = 295K. These profiles clearly demonstrate that the
satellite width at equilibrium increases when T∼Tc.

In the following, we compare the steady state satellite peak widths. Figure 5.36 shows the
normalized peak profiles after background subtraction at negative time delays for four different
incident fluences. Interestingly, the FWHM of the equilibrium profiles present broadening at
high incident fluences. Every scan was collected with the same number of electrons per bunch
and chronologically disordered with respect to the increasing fluence, so that we can discard
sample deterioration with time. The reason for this slight broadening might be cumulative
heating. Indeed, because of the slow time scale of heat dissipation, the sample does not fully
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Figure 5.35: Peak shape of the (-10δ) satellite peak at equilibrium (at negative time delays and
with the pump beam blocked) at Ti =155K (cyan) and at Ti =295K. Inset: selected ROI around
the satellite peak, the profile corresponds to the intensity integrated along the vertical axis.

relax between two laser shots, leading eventually to a residual cumulative heating. This observed
effect in the FWHM implies that there is a slight deviation in the estimated lattice temperature
increase in section 5.4.2. Nevertheless, at this millisecond time scale we can consider that the
temperature remains well below Tc.

Figure 5.36: Peak shape of the (-10δ) satellite peak in the steady state (at negative time delays)
for different incident fluences.

We now turn to the dynamics of the CDW peak width after photoexcitation. Figure 5.37
shows the satellite intensity profiles at several delay times at equilibrium and at the photoexcited
state. The blue dots correspond to the equilibrium profile (collected with the pump beam
blocked) while the red dots correspond to the photoexcited profile. We can clearly observe that
at low fluence (F = 0.8mJ/cm2, left column), the FWHM does not present evident changes at
any delay time, while its intensity is decreased without full recovery up to 138 ps. On the other
hand, at high incident fluence (F = 3.5mJ/cm2, right column), shortly after the pump arrival,
the FWHM clearly broadens with respect to the equilibrium profile. Here, it is interesting
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to notice that at negative delays (figure 5.37e)) the photoexcited and equilibrium profiles do
not completely match, which confirms that the system does not reach full thermal relaxation
between consecutive pump pulses at high fluences.

Figure 5.37: Line profiles of the (-10δ) satellite peak at equilibrium (blue) and after pho-
toexcitation (red) at different time delays. Left column: F = 0.8mJ/cm2. Right column:
F= 3.5mJ/cm2.

The complete dynamics of the FWHM are shown in figure 5.38 a): at low fluence, below the
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critical value F < Fc, the FWHM shows small changes ∆w/w0 < 8%, that quickly recover to the
initial values. On the other hand, above the critical value F > Fc the peak broadens significantly
without full relaxation to initial values within the temporal range of the scan. This is clearly seen
in figure 5.38 b) in which dark blue dots represent the maximum relative changes (averaged over
four points around the maximum) and light blue dots represent the FWHM changes after the
recovery time (averaged over the last twenty points of the curves). The error bars are calculated
from their standard deviation.

Figure 5.38: a) Relative FWHM changes at different incident fluence. Curves are vertically
shifted for clarity. b) Relative changes of the FWHM at the maximum (averaged over the four
points around the maximum) and after the time recovery (averaged over the last twenty points
of each curve in a)).

The temporal decay and recovery time constants of the relative peak widths follow the
dynamics of the CDW peak intensities. Figure 5.39 summarizes and displays the recovery
times of both intensity and FWHM, which increase linearly with incident fluence. In order to
compare directly the temporal traces of both parameters, figure 5.40 depicts the intensity and
FWHM temporal changes. While the temporal constants are on the same order, the relative
changes to initial values are quite different. Below the critical fluence, the relative changes of
the peak width present a fast increase followed by a complete relaxation to initial values, whilst
the intensity of the peak does not fully recover. Experimentally, the fact that the peak width
presents small differences after the recovery time, might be related to the finite coherence length
of the probe (∼5 nm). On the other hand, above the critical fluence, neither the intensity nor the
FWHM return to their initial values.

In summary, we have observed that both initial lattice temperature Ti and incident fluences
have strong implications on the satellite peak widths. At equilibrium conditions, the FWHM
of the satellite peak widths is broader when T∼Tc. In the steady state, we have observed slight
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Figure 5.39: Recovery times of the CDW peak width and intensity as a function of the incident
fluence. At F= 0.5mJ/cm2 no changes of the peak width are observed.

Figure 5.40: Temporal evolution of the intensity and FWHM changes at a) F = 0.8mJ/cm2 and
b) at F = 2.5mJ/cm2.

broadening at higher fluences, probably due to cumulative heating effects. Finally, the temporal
dynamics of the intensity and width have similar time scales.

5.5 Discussion
In this chapter we have shown a series of pump-probe electron diffraction experiments at
different excitation energies and at different initial conditions. An extensive analysis of the
Bragg reflections intensities has allowed us to retrieve information on the state of the main
lattice after photoexcitation. The temperature of the quasi-equilibrium state Tq.e. has been
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estimated from the Debye-Waller effect and from laser heat absorption, both results are in good
agreement. At all incident fluences, the quasi-equilibrium temperature satisfies Tq.e.<Tc. The
typical time to reach Tq.e. is τthermal ∼6 ps and shows a weak temporal dependence on incident
fluence. Our experiments, performed at two different initial lattice temperatures (shown in
section 5.4.4), have demonstrated that the lattice temperature increase is similar under the same
incident fluence.

On the other hand, the satellite peak intensities, inherent to the CDWdynamics, present a fast
decay (∼1 ps) and a clear slowing down of the recovery times. The dynamics is closely related
to the Tq.e. as shown with the results starting at higher initial temperatures. This behaviour
is consistent with the universal critical slowing down in phase transitions. For fluences Fc ≥

1.9mJ/cm2, the intensity of the satellite is decreased to the background level suggesting that,
although the lattice is below the Tc = 377K, the system transits to the high symmetry state by
photoexcitation.

Finally, an analysis of the satellite reflection profiles have shown that the width of the satellite
peaks is broader at thermal equilibrium with initial temperature Ti ∼Tc. After photoexcitation,
the width of the CDW peak increases, witnessing the loss of long range order. The temporal
dynamics of the CDW peak width follows the one of the intensity.

In light of these results, the chronology of the photoexcitation and relaxation processes can
be summarized as follows: (1) electron excitation is followed by fast electron-phonon coupling.
This creates a large disorder in the system resulting in the decrease of the satellite intensity and
an increase of the FWHM in t∼1.5 ps→ (2) Lattice temperature increase (inferred from Bragg
peak intensity loss) and partial reformation of the satellite intensity in few picoseconds→ (3)
lattice temperature stabilization at Tq.e.. The temporal relaxation of the CDW with respect to
the lattice thermalization depends on two critical values Fc and Tc.

Several possible mechanisms could be responsible for our experimental observations, listed
in the following categories:

a) Lattice strain

b) CDW amplitude suppression and phase fluctuations

c) Loss of long range order due to:

c1) Domain nucleation and growth
c2) Photoinduced topological defects: CDW dislocations or vortex
c3) Pinning of the CDW on crystal impurities

d) Strong mixing with photoexcited optical modes

In the following I review one by one the possible effects in the diffraction signal from the
different mechanisms listed above:
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a) Lattice strain.
We have seen in the phase diagram of the RTe3 family that the lattice parameters play an
important role in the transition to the CDW state. Since our sample is a thin film, we could
argue that the arrival of the laser pulse may trigger coherent breathing oscillations along the b
crystallographic axis, perpendicular to the Te nets containing the CDW, and thus perturbing the
CDW formation. Such a mechanism have been already observed in 1T-TaSeTe [33], another
layered CDW compound. Thin films of layered materials usually respond to the laser excitation
by coherent breathing oscillations launched from photoinduced pressure as demonstrated in
several metals by Thomsen et al. in reflectivity measurements [67]. In our diffraction results,
such acoustic oscillations are present in the lattice planes perpendicular to the probing beam,
which can not be observed in transmission geometry. Despite this geometrical constraint, such
a compression and expansion along the stacking axis should induce a stretching of the a and c
lattice parameters.

A study of the peak positions of all Bragg peaks did not reveal any presence of lattice
changes within our spatial resolution that could support this interpretation.

b) CDW Amplitude suppression and CDW phase fluctuations.
Time resolved X-ray diffraction experiments have shown in several CDW systems that the laser
excites coherently the amplitude mode of the CDW [22, 37] on a sub-picosecond time scale
(see figure 5.6). The frequency of the amplitude mode in the RTe3 compounds is νAM ∼ 2THz,
which tends to soften at T ∼ Tc or with increasing pump excitation. Our temporal resolution
does not allow us to measure the amplitude mode oscillations, so that a decrease of the distorted
amplitude can only be retrieved from the loss of the satellite intensity accompanied by an
increase of the Bragg peak intensity (see equation 5.22). The latter was not appreciable in our
data sets, probably masked by the background level.

On the other hand, and as we have seen in section 5.1.2 at thermal equilibrium, the changes
of the CDW peak intensity (not accompanied by an increase of the Bragg peak intensity) are
a clear signature of excitation of phason modes. Vibrational excitations of the phase (phason
mode) weaken the satellite reflections analogously to the Debye-Waller effect resulting from
phonon scattering in the Bragg peaks. Considering that these phase modes are lower energy
excitations than the amplitude mode, we can expect them to appear at longer temporal scales.
Most likely after lattice thermalization, at the quasi-equilibrium state.

Accordingly, the loss of intensity on the satellite peaks at short temporal time scales can
be attributed to a reduction of the CDW amplitude (and so the lattice distortion). At longer
time scales, i.e., after the lattice temperature is stabilized in the quasi-equilibrium state, we
attribute the intensity loss to an increase of the phason population and a partial reformation
of the lattice distortion, i.e., the order parameter is not fully recovered.

c) Loss of long range order.
Loss of long range order in theCDWleads to broadening of the FWHMof the satellite reflections,
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clearly apparent at high initial temperature (Ti ∼Tc) and at high incident fluence (F ≥ Fc). Phase
transitions at thermal equilibrium are characterized by the presence of topological defects or
domains when the temperature approaches the critical value T ∼ Tc. This is exactly what we
observe at high excitation fluences and at higher initial sample temperature, where the FWHM
of the satellite peak does not fully recover to original values at any time delay.

As a consequence, we assign the presence of topological defects to higher lattice tempera-
tures, similarly to what is observed at thermal equilibrium. This suggests that, if topological
defects are the key in the slower relaxation process, they are not only photoinduced by the
pump, but also intrinsically linked to the lattice temperature. Whether these defects are
dislocations or vortex, as discussed by Zong et al. [36], can not be distinguished in our
diffraction experiments. Most likely, we observe multiple domain nucleation followed by
a growth of these domains. Domain growth at long time delays has been demonstrated
experimentally in 1T-TaS2 by Laulhé et al. [24].

The fact that the dynamics of the FWHM and the intensity follow similar time scales could
point to a relation between the order parameter and the correlation length. Indeed, Dicarlo et
al. in an experimental study on CDW pinning on crystal impurities on NbSe3, found a direct
relation between the amplitude of the CDW distortion and the correlation length of the form
[154]:

ξ ∝ ∆2

d) Mixing with phonon modes.
Finally, mixing of the CDW amplitude with optical modes is a possible mechanism explaining
the observed satellite dynamics. The works performed by Yusupov et al. showed in a pump
probe reflectivity experiment that the sample temperature plays a crucial role on the amplitude of
the CDW state, mostly driven by couplings of the amplitude mode with excited optical phonons
[134]. In their experiments, they have shown that when the system crosses a critical temperature
(termed as Tcr in the figure) the intensity associated to the CDW in the reflectivity curves is
highly decreased, implying that the gap of the CDW is reduced. TbTe3 is a neighbouring
compound of GdTe3 (see figure 5.10), so we can expect similar behaviour in our material. The
critical fluence observed in our experimental results in a temperature of the lattice of T∼250K,
in close agreement with the Tcr value given by Yusupov et al.. They assigned this response to
a strong coupling between the amplitude mode and the 1.75 THz phonon, as clearly shown in
figure 5.41. The mixing of the two modes strongly disturbs the Te ion displacements (i.e. the
amplitude mode) by introducing other displacements corresponding to the 1.75 THz phonon.

This could potentially lead to CDW gap renormalization by the 1.75 THz mode, present-
ing a smaller order parameter even though the system is below the critical temperature
T <Tc. These results have been supported experimentally by Lavagnini et al. by Raman
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Figure 5.41: Phonon intensity map as
a function of the sample temperature
in TbTe3. The color map, circles and
triangles are the experimentally re-
trieved frequencies while black lines
result from calculations. Mode mix-
ing is evident between the amplitude
mode (whose frequency is ν = 2.2 THz
at low T) and the 1.75 THz mode at in-
termediate temperatures and with the
2.6 THz phonon at low temperatures.
Figure from [134].

spectroscopy [155]. In our experimental results we do not observe the presence of any
oscillation, so that we can not conclude in this respect.

Extrapolating these interpretations to our data, we can assign the possible reviewed mecha-
nisms to different time scales. At low incident fluences F < Fc, the lattice distortion is reduced
(and so the order parameter) in a time scale below our temporal resolution (i.e., t<1 ps). Disor-
der induced by the pump generates multiple domains which nucleate before the system reaches
the quasi-equilibrium state (i.e.,before 6 ps). At this point, the order parameter is practically
recovered and the loss of intensity at long time delays can be associated to a high population
of phasons. As the incident fluence is increased, the order parameter is largely reduced, being
fully suppressed for F > Fc. The recovery time of the CDW is similar to the time the system
needs to reach the quasi-equilibrium state. At these conditions, the thermal increase prevents
the system to recover both the initial amplitude and the long range order within the time range
of the scans.

In conclusion, the energy energy difference ∆E of the system can be divided into three main
contributions: the lattice (with its dynamics encoded in the intensity of the Bragg peaks), the
amplitude and the phase of the CDW (with their dynamics encoded in the intensity and width
of the satellite peaks). Similarly to the scenario proposed by Lee et al. [30], figure 5.42 shows
a schematic of the temporal energy difference of the system divided into the three parts.

Figure 5.42: Schematic of the temporal energy changes at the lattice and CDW levels with ∆
denoting the amplitude of the CDW and phi the phase.
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5.6 Conclusion and perspectives
The presence of topological defects in CDW phase transitions at thermal equilibrium has been
widely discussed theoretically and experimentally [135, 156]. In the case of photoinduced
phase transitions probed by diffraction, their appearance is still under debate and several groups
probing different compounds do not reach an agreement [30, 34, 36, 37].

Our results performed at different initial temperatures showed that the slowing down in the
CDW relaxation is mostly related to the lattice temperature rather than to the density of absorbed
photons, whichwe havemaintained constant by pumping at the same incident fluences, as shown
in section 5.4.4. This suggests that, if topological defects are the key in the slower relaxation
process, they are not only photoinduced by the pump, but also intrinsically linked to the
lattice temperature. The results given by Zong et al. on LaTe3 could also reflect this effect,
since their experiments were performed at a higher repetition rate of 5 kHz. As we have seen
in our experimental results (notably in figure 5.36) such repetition rates are seemingly too high
for a complete heat evacuation of the thin films at high incident fluences. A possible way of
excluding laser heating effects might be verified by performing time resolved experiments with
a pump wavelength of the same order as the CDW gap and the optical mode, i.e., a few THz.
Moreover, direct imaging by means of time-resolved STM or electron imaging on thin films
could further enlighten this scenario.

From optical measurements on several RTe3 compounds [134] one thing seems to be cer-
tain: the photoexcitation triggers the appearance of optical lattice modes that couple to the
charge-density state, which likely affects the lattice distortion. This scenario fits well with the
interpretations given by Trigo et al. and Moore et al. [37, 108]. Time resolved reflectivity
and diffraction experiments (with sufficiently short temporal resolution) at different incident
fluences and temperatures could confirm the strength of this coupling.

Finally it is important to point to further investigations on sample geometry. All the
reflectivity results in literature are performed on bulk samples, which makes it difficult to
directly compare to our experimental results on free-standing thin films. Moreover, pump-
probe reflectivity experiments performed in transmission geometry could reveal if the presence
of acoustic modes within the thin films are affecting anyhow the amplitude mode related to the
CDW state.
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Displacive phase transition of Nb3Sn
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A15 phases have attracted the scientific attention since the 1960s due to their particular
structural and electronic properties. Around 45 of the A3B compounds with this structure
(with A a transition element) are superconductors of potential interest [157]. Amongst them,
Nb3Sn and V3Si are the most representative alloys. Two of their most noticeable features are a
structural phase transition from a cubic symmetry Pm3n to a tetragonal P42/mmc at a certain
temperature Tm ∼ 45K and the superconducting transition occurring at lower temperatures at
Tc ∼ 18K [158]. For several years, until the discovery of the cuprates in 1984, these compounds
held the largest superconducting temperatures [159].

The structural phase transition, also known as amartensitic phase transition, is a diffusionless
phase transition associated with a lattice distortion at constant volume of the unit cell. The study
of the relation between the structural transition and the superconducting state has been a central
question for many years in the scientific community [158]. The martensitic phase transition,
was also proposed theoretically as a triggering mechanism of a CDW likely in competition
with the superconducting state [160]. Despite the extensive investigations performed in these
compounds during the 1970s and 1980s, the discovery of the perovskite cuprates shifted the
attention from the A15 structures leaving some remaining open questions; as for example, what
is the relation between the martensitic transition and the plausible appearance of a CDW state
[161].

The development of time resolved techniques is turning back the interest on the A15 struc-
tures. In the particular case of the superconducting phase, terahertz pump-probe reflectivity has
recently revealed the appearance of the hidden competing CDW state only accessible by non-
thermal photoexcitation [162, 163]. The dynamics of the structural phase transition remains
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however unknown. Time resolved X-rays sources as synchrotrons are well suited to perform
this kind of studies.

In this chapter, I briefly introduce the structural and electronic properties of Nb3Sn, a
sample on which we have performed a series of pump-probe X-ray diffraction experiments in
the CRISTAL beamline at SOLEIL. In section 6.2, the experimental results are presented and
compared with the phase transition at thermal equilibrium. Section 6.3 gives a summary and
future work to be performed.

6.1 Nb3Sn properties
The crystal structure of Nb3Sn at high temperature presents a cubic structure belonging to
the space group Pm3n (No.223) with lattice parameter a = 5.282 Å [164]. The unit cell in the
cubic phase is composed by two Sn atoms and six Nb atoms. The latter forms orthogonal
1-dimensional chains located at the faces of the cubic cell with an interatomic separation within
the chains (intrachain) of a/2. On the other hand, the Sn atoms are located at the BCC sites of
the unit cell as shown in figure 6.1.

Figure 6.1: Unit cell of Nb3Sn in the cubic phase.

On cooling down, the crystal structure undergoes a large softening in all lattice modes,
which is particularly prominent for shear waves (acoustic) propagating along the [110] direction
with [1-10] polarization. The softening becomes maximal at a Tm ∼45K, which varies between
40K and 50K depending on stoichiometric conditions on the sample [158]. At this point, the
crystal becomes unstable and accommodates in the tetragonal phase with space group P42/mmc
(No.131).

Along with the acoustic phonon softening, the transition to the tetragonal phase arises with
a dimerization of the Nb atoms within the linear chains and a weak distortion of the cubic phase.
These atomic distortions correspond to an optical phonon with symmetry Γ12, as pointed by the
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Figure 6.2: Lattice parameter measured as a function of the temperature. TM corresponds to
the temperature at which the crystal transits to the tetragonal phase. Figure from [164]

blue arrows in figure 6.1. The maximum atomic displacement of the Nb atoms in the chains
corresponds to a δ = 0.00315 Å at T = 4K, as reported by Shirane and Axe [165]. The distorted
lattice results in a lattice parameter ratio in the tetragonal phase of a/c = 1.0062 [164, 165].
This type of structural transition is known as martensitic. In the particular case of Nb3Sn, the
volume of the unit cell in the cubic phase is maintained constant through the transition to the
tetragonal phase, so that the following condition is fulfilled:

V = a3
0 = a2c (6.1)

where a0 is the lattice parameter of the cubic cell and a,c the lattice parameters of the tetragonal
phase. Both parameters are related by the tetragonal strain [166]:

ε = a0/c−1

Figure 6.2 shows the lattice parameters as a function of the temperature measured by Shirane
et al. at the cubic and tetragonal phase [165].

The electronic bands of these structures have a strong 1-dimensional character arising from
the Nb linear chains. The electronic density of states in the cubic phase presents a singularity
of the d-bands from the Nb atoms near the Fermi level, as shown in figure 6.3 a). Labbé
and Friedel proposed theoretically that the origin of the structural instability was behind this
electronic singularity. A splitting of the density of states into two sub-peaks (a break of the
d-band degeneracy) leads to an electronic gain at the vicinity of Fermi level. This electronic
rearrangement favours the tetragonal structural phase against the cubic structure.

At the Tm transition temperature, the distances between Nb atoms is altered in such a way
that the chain along the [100] direction tends to stretch (contract) the atomic distances while
the other two chains along [010] and [001] tend to contract (stretch), fulfilling the conditions of
constant volume through the transition. The degeneracy of the bands in the tetragonal phase is
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thus "broken" raising the electronic energy and the density of states at the Fermi level. Figure
6.3 illustrates a sketch of the band degeneracy in both phases [167].

Figure 6.3: Electronic d bands from the Nb atoms in the linear chains in a) the cubic phase and
b) the tetragonal phase. Image taken from [167].

Although several compounds of the A15 family have similar density of states at the Fermi
level, their critical temperatures to the superconducting state are largely different, as an example
Nb3Au presents a Tc = 11.5K, while Nb3Ir Tc = 1.7K. This observation suggests that the
superconducting properties of these compounds can not only be explained by the density of
states itself [168].

6.2 Experimental results

On a first experiment we characterized the structural phase transition at equilibrium conditions
and compared it later with the time resolved measurements. The measurements were performed
with an X-ray energy of 8 keV (λ = 1.55Å). The sample is oriented along the [110] crystallo-
graphic axis, coincident with the vertical axis of the diffractometer. The measurements were
performed at grazing geometry with an angle of incidence αi = 1◦, resulting in a X-ray pene-
tration depth of δX ∼ 100 nm. A schematic of the diffraction geometry is given in figure 6.4.
The blue shaded region corresponds to the Ewald sphere, {XY Z} axis represent the laboratory
framework centered at the sample position, the crystallographic direction perpendicular to the
surface is highlighted in red. We have performed a series of scans by turning the sample around
the azimuthal angle φ (i.e., the normal to the surface). The vertical and horizontal position of the
diffracted peak can be retrieved from the angles δ and γ, respectively. The detector was located
at a distance of 780mm from the sample, resulting in an spatial resolution of 9.5mdeg/pixel.

In order to cool down the sample we used a Helium cryostat; the temperature control
was given by the Helium flow together with a heating wire connected to a PID controller. The
minimummeasured temperature at the sample position was T = 16K, well below the martensitic
phase transition temperature Tm reported in literature. The cryostat was mounted on the 6-circle
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Figure 6.4: Schematic of the experimental grazing geometry.

diffractometer of the beamline. Detection of the Bragg reflections was achieved with the 2D
pixel XPAD detector (detailed description in chapter 3).

6.2.1 Martensitic phase transition at equilibrium
We start by analyzing the equilibrium behaviour of the material. This will serve as a basis
for comparison with the time resolved experiments presented later. We performed a series of
rocking scans around the azimuthal angle φ (see figure 6.4) at different sample temperatures.
As a way of correcting any possible intensity loss arising from contraction at low temperatures,
we have carefully adjusted the vertical position of the sample at every temperature. Due to a
"miscut" of the sample, there is a small deviation of about 5◦ between the [110] and the vertical
axis. This makes the indexation of the peak very difficult in grazing incidence. Nevertheless,
the Bragg angle can be easily retrieved from the δ and γ angles from the relation:

cos(2θB) = cos δ cosγ (6.2)

Considering a lattice parameter a = 5.285 Å, the most plausible reflection is of the type (201)
or equivalent reflections with the same norm. When lowering the temperature phase, several
splittings are possible due to the presence of different variants in the sample. Knowing that
there is no preferred direction in the cubic phase, the contraction/dilatation which appears at low
temperature can be observed along the three equivalent directions: {a+ δ,a+ δ,a− 2δ}, {a+
δ,a−2δ,a+δ} or {a−2δ,a+δ,a+δ}. As a consequence, the (201) Bragg reflection would then
split in three peaks, in principle: (2+2dq,0,1− dq),(2−2dq,0,1+ dq,0) and (2− dq,0,1− dq)
with dq = ∆a/a. A detailed calculation of the possible splitting geometry of the (201) reflection



120 Chapter 6. Displacive phase transition of Nb3Sn

is given in Appendix E.

Figure 6.5 depicts the resulting rocking curves at different temperatures. The curves are
vertically shifted for clarity. The evolution of the Bragg reflection shows a loss of intensity
accompanied by a large broadening until T = 35K. Below this temperature the emergence of a
second reflection at higher azimuthal angles becomes evident. In the following and as a way to
distinguish both reflections, each of them is referred as φ1 and φ2, as marked in figure 6.5. The
emergence of reflection φ2 can result either from a splitting of the cubic reflection or by surface
domain contribution, as discussed later.

Figure 6.5: Equilibrium rocking curves of
the (210) Bragg reflection measured at graz-
ing incidence and at different temperatures.
Curves are vertically shifted for clarity. Be-
lowT= 35K, a second reflection emergeswith
constant FWHM and its position evolves to-
wards higher azimuthal angles.

The experimental results are fitted by a single Pseudo-Voigt fit for temperatures T ≥ 35K
and a double Pseudo-Voigt for T < 35K. The resulting parameters are presented in figure 6.6.

Figure 6.6: Fit parameters of the rocking scans at equilibrium temperatures: a) FWHM, b)
maximum intensity (height parameter) and c) center.
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Interestingly, the FWHM of reflection φ1 (figure 6.6 a)) shows an exponential increase,
that ceases with the emergence of the second reflection φ2 at T = 35K. On the other hand, the
width corresponding to φ2 remains constant. The intensity of the Bragg reflection φ1 displays
a fast drop down to 35K that partially recovers at lower temperatures. The intensity gain of
the second reflection φ2 remains constant (see figure 6.6 b)). Finally, figure 6.6 c) depicts the
thermal evolution of the positions of each Bragg reflection. The position of the cubic reflection
φ1 presents a tip at T = 35K followed by a constant value, whereas the position of φ2 increases
continuously up to the lowest measured temperature.

The width broadening observed in reflection φ1 is likely a consequence of the appearance
of new domains in the tetragonal phase. A closer inspection of the detector images reveals a
clear splitting along the vertical direction of the image. Figure 6.7 shows the detector images
at the position of reflection φ1. At T =37K the Bragg reflection presents an obvious change in
shape followed by a splitting which evolves along the vertical axis, pointed by the red arrows.

Figure 6.7: Detector images (linear scale) corresponding to the peak located at φ1 in the rocking
curve. The white cross marks the position of the high temperature Bragg reflection, used as the
origin to retrieve the vertical and horizontal positions. Red arrows point to the position of the
emergent peaks after splitting at T= 37K. Color maps are normalized to the maximum of each
image for clarity.

The position of the center of mass of each reflection allows us to extract the corresponding
lattice parameters from the Bragg law and the angular relation given by equation 6.2.

The behaviour of the second reflection at φ2 on the detector images is shown in figure 6.8.
Note here that in contrast to peak φ1, the azimuthal angles vary with decreasing temperature,
with their corresponding value given in each image. The peak in this case does not present
further splitting or large displacements along the vertical or horizontal positions.
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Figure 6.8: Detector images corresponding to the peak located at φ2 in the rocking curve. In
this case the color map scale is the same for all images.

Figure 6.9 shows the calculated lattice parameters retrieved from the center of mass of the
peaks in φ1 on the detector images. The position of the peaks highlighted by arrows in figure 6.7
gives rise to an increment and a decrease of the lattice parameters, as expected from literature
(see figure 6.2). On the other hand, the center of mass corresponding to φ2 depicted in figure
6.8 shows little changes. Since we have some uncertainty on the indexation of the peak, we rely
on the position of φ1 to retrieve the lattice parameter.

Figure 6.9: Calculated lattice parameters from the images on the detector. The error bars
correspond to the spatial resolution given by the pixel size.

These lattice parameter values point to a transition temperature of our sample of Tm = 39K,
in close agreement with the values reported in literature.

The lattice parameters retrieved from φ1 satisfy the constant volume condition in both phases:
in the cubic phasewith ac = 5.2801±0.0012 Å andVc = 147.202± 0.095 Å3, and in the tetragonal
phase with at = 5.2854± 0.0012 Å, ct = 5.2723± 0.0012 Å and Vt = 147.284± 0.064 Å3. The
tetragonal values are measured at 20K.
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6.2.2 Time resolved structural phase transition with 75 ps temporal reso-
lution

After the analysis of the thermal evolution of the phase transition, we have performed a series
of pump-probe measurements with a temporal resolution of 75 ps, given by the 8-bunch filling
mode of the Synchrotron. The laser beam impinged the sample perpendicularly to its surface
with a spot size on the sample of 3.1mm by 2.1mm. The X-ray beam footprint was ∼1.7mm
along the incident beam direction and 0.5mm in the perpendicular direction. The penetration
depth of the laser at this wavelength (λ = 800 nm) is estimated to be δlaser ∼ 40 nm.

In this case, we have increased the X-ray angle of incidence to αi = 1.5◦, yielding to
a penetration depth of δX−ray ∼ 150nm. This difference of penetration depths results in a
mismatch between the excited and probed volumes, so we may expect some contributions from
the unexcited volume in the time resolved measurements.

In a first step, we havemeasured the influence of the pump excitation on reflection φ1. Figure
6.10 shows the temporal evolution of the Bragg reflection intensity at three different incident
fluences. The relative intensity changes are calculated from the intensity value measured at
negative time delays:

I/I0 =
I(t)

I(−2.5ns)

Figure 6.10: Relative intensity changes as a function of the time delay at constant φ angle
(φ = φ1) and at a sample temperature of T= 20K.

The intensity of the Bragg reflection displays a large increase within the first 4.5 ns. The
relaxation time to initial values decreases with decreasing incident fluence, showing a typical
time scale of 150 ns for the lowest fluence F = 0.875 mJ/cm2. The large relative intensity in-
crease displayed in the curves is associated to a transition into the cubic phase. Indeed, the
images in the detector display a merging of the diffracted spots into a single spot, as expected
in this phase transition. Considering the probed depth of 150 nm and taking into account the
typical heat diffusivity in solids (10−6m2s−1), we can assign the observed dynamics to a heat
diffusion process.
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In order to extract the full information of the dynamics of both Bragg reflections, we
performed a series of rocking curves collected at different time delays. The position of the
delay line was randomly generated as a way of preventing any possible artifacts from laser
thermal drifts or fluctuations. Each rocking curve was collected with a step of ∆φ = 0.015◦ and
an exposure time of 3 s per time delay step. Figure 6.11 shows the intensity maps of the rocking
curves below the transition temperature at T = 25K and at two different incident fluences: a)
F= 0.16mJ/cm2 and b) F= 0.7mJ/cm2. In both cases the position of the peak located at

Figure 6.11: Rocking curves at T= 25K as a function of the time delay between pump and
probe for incident fluences a) F= 0.16mJ/cm2 and b) F= 0.7mJ/cm2.

φ1 remains constant, while the position of the second reflection located at φ2 shows a strong
sensitivity to photoexcitation. A closer inspection of their dynamics is presented in figures 6.12
and 6.13. Every rocking curve was fitted by two Pseudo-Voigt functions, one corresponding to
each peak φ1 and φ2, and a linear function to account for the background. The resulting fits
are depicted in figures 6.12 and in 6.13. At both incident fluences, the largest changes of the
peak position are observed in reflection φ2. Within the first 1.5 ns after pump excitation, the
center of φ2 shifts towards lower angles with a maximum displacement of ∆φ = 0.04◦ at 4 ns
and a typical relaxation time t > 10 ns. Surprisingly, the FWHM of both peaks present a large
broadening after photoexcitation with a maximum difference of 0.04◦ at 1.5 ns and a relaxation
time to initial values with a typical time of 10 ns.



6.2. Experimental results 125

Figure 6.12: a) Experimental time resolved rocking curves (dots) collected at a sample tem-
perature of T = 25K and an incident fluence of F = 0.16mJ/cm2 with their corresponding fits
(lines), b) width peak values resulting from the fits and c) center position of both reflections.
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Figure 6.13: a) Experimental time resolved rocking curves (dots) collected at a sample tem-
perature of T = 25K and an incident fluence of F = 0.7mJ/cm2 with their corresponding fits
(lines), b) width peak values resulting from the fits and c) center position of both reflections.
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In a next step we lowered the temperature to T = 16K while keeping an incident fluence of
F = 0.7mJ/cm2. The dynamics of the curves after pump arrival displays again a shift in position
of the φ2 reflection and a broadening of the FWHM. At this temperature, the temporal evolution
of the position and of the FWHM reach their maximum changes at 1 ns in a similar trend as
observed at higher lattice temperature under the same incident fluence.

Figure 6.14: a) Experimental time resolved rocking curves (dots) collected at a sample temper-
ature of T=16K and an incident fluence of F = 0.7mJ/cm2 with their corresponding fits (lines),
b) width peak values resulting from the fits and c) center position of both reflections.

This interesting increase of the FWHM after photoexcitation is not observed at thermal
equilibrium. An increase of the lattice temperature induced from photoexcitation should lead,
on the contrary, to a narrower FWHM as observed in figure 6.6 a). This effect might be
originated by photoinduced disorder or a hysteresis effect.

An analysis of the detector images at φ1 reveals a similar behaviour of the peak position as
observed at thermal equilibrium, which suggest that the lattice parameter changes upon pump
arrival.
From the experimental results presented in this section we can conclude that:
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• At these temporal scales, the dynamics of the phase transition is dominated by thermal
effects: the intensity and position of the Bragg peaks as a function of the time present a
similar behaviour as at thermal equilibrium. The estimated lattice temperature increase
induced by the pump is ∆T ∼ 10K for an incident fluence of F = 0.7,mJ/cm2.

• The FWHM of the reflections present a large broadening after photoexcitation, opposite
to what we observed at thermal equilibrium. We could attribute this difference to a large
disorder induced by the pump or to a hysteresis effect.

6.2.3 Time resolved structural phase transition with 15 ps temporal reso-
lution

The results presented before motivated us to perform a second study with a better temporal
resolution. In this case, the pump probe scans were implemented in the low-alpha mode with a
temporal resolution of 15 ps. Due to the complexity of the reflection studied before, we analyzed
the dynamics of the (200) Bragg peak.

The expected position of the new reflections appearing in the tetragonal phase can be
retrieved by considering the splitting of a wave vector belonging to the (h00) direction. We start
by calculating the position of the cubic reflection in grazing incidence. Consider a wavevector
Qh00 at 45◦ from the [110] crystallographic direction (i.e., perpendicular to the sample surface):

Qh00 =
1

dh00
√

2
©«
−1
1
0

ª®¬
with dh00 the interplanar distance. The rocking curves are performed around the vertical axis
y, so that we can apply a rotation of the form:

Q′h00 =<y(ϕ) ®Qh00

where<y(ϕ) is the rotation matrix and ϕ the azimuthal angle:

<y(ϕ) =
©«

cosϕ 0 sinϕ
0 1 0

−sinϕ 0 cosϕ

ª®¬
In this way the position of the Bragg peak is defined in terms of the azimuthal angle as:

Q′h00 =
1

d
√

2
©«
−cosϕ

1
sinϕ

ª®¬
The diffraction condition is fulfilled when the wave vector intercepts the Ewald sphere, so we
can calculate its position on the detector as the intersection between two spheres of radius
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R1 = 1/λ and center C1 = (0,0,0), and a second sphere with radius R2 = | |Q′h00 | | and centered at
C2 = (1/λ,0,0):

1
λ2 =

(
qx +

1
λ

)2
+ q2

y + q2
z (6.3)

By replacing Q′h00 in equation 6.3, we find the azimuthal angle:

cosϕ = −
λ

d
√

2
(6.4)

(6.5)

On the other hand, the vertical and horizontal positions of the Bragg on the detector are given
by:

sinδ = λqy =
λ

d
√

2
(6.6)

tanγ =
qz

1
λ − qx

=
1

d
√

2
sinϕ

1
λ − cosϕ

(6.7)

with d200 = a/2, a = 5.29 Å and λ = 1.756 Å, we find:(
δ = 28◦
γ = 28◦

)
These values are in agreement with the detected position. Upon cooling we expect changes of
the lattice parameter on the order of ∆a . 0.02 Å, so that the deviation on the azimuthal angle
becomes:

∆ϕ . 0.11◦

As expected from this small deviation, we did not observe the emergence of a clear new reflection
on the rocking curves on cooling. Instead, the (200) Bragg peak presented a large broadening.

At this point we lowered the temperature of the sample to 10K and performed a series of
rocking scans at different time delays with an incident fluence of 0.63mJ/cm2. Figure 6.15
shows the rocking curves at different time delays with an angle of incidence of α = 1◦.

The best fit of the rocking curves is found with two Pesudo-Voigt functions. Their centers
are separated by ∆φ = 0.11◦ as expected in this Bragg reflection. The increase of the peak
width in this case, can be explained by an increase of the intensity or position of one of the
Pseudo-Voigt profiles. The most noticeable results are seen in the position of the peak on the
detector. After pump arrival the Bragg reflection shifts vertically, a direct consequence of a
decrease of the lattice parameter. Figure 6.16 shows the intensity difference in the detector
images at every time delay.

The changes of the center of mass on the detector images are clearly shifting towards higher
vertical angles. No changes along the γ angle are evident, as shown in figure 6.17.
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Figure 6.15: Rocking curves at different time delays at T= 10K and F=0.63mJ/cm2.

Figure 6.16: Detector images of the integrated rocking curve at different times delays. The
sample temperature was T= 10K and the incident fluence F= 0.63mJ/cm2. Every image is a
result after subtracting the image at negative time delays with t = -1 ns.
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Figure 6.17: Changes of the center of mass along the vertical (∆δ) and horizontal (∆γ) of the
detector images.

With the purpose of investigating the changes of the Bragg reflection position after photoex-
citation, we performed a pump probe scan at a constant φ = −35.32◦ at different temperatures
and at two incident fluences1. Figure 6.18 presents the relative changes of the lattice parameter
at two incident fluences and for three different temperatures. Following the center of mass of
the Bragg spot in the detector images, we find that the vertical position increases with typical
time scale of 1 ns without full relaxation within the length of the scan.

Figure 6.18: Changes on the vertical center of mass retrieved from the detector images at differ-
ent sample temperatures and at two incident fluences: a) F= 0.63mJ/cm2 and b)F= 0.9mJ/cm2.

The temporal dynamics of the peak position suggest again heat diffusion as the main mechanism

1Note here that we do not explicitly calculate the lattice parameter, since we are measuring on the side of the
rocking curve; corresponding to the position at which a "shoulder" in the rocking curve appears.
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after photoexcitation. In light of these results, we observe that the lattice is more sensitive to
changes on the incident fluence rather than on sample temperature.

6.3 Conclusions and future work
In this chapter, I presented preliminary results performed in Nb3Sn, a compound that displays
a martensitic phase transition from cubic to tetragonal structure at Tm = 39K. Pump probe X-
ray diffraction scans were performed on the tetragonal phase and compared to the equilibrium
structural transition. The temporal dynamics of the position and intensity changes follows a
similar behaviour as observed in thermal equilibrium, with typical time scales characteristic of
thermal diffusion. Interestingly, the arrival of the pump broadens the peak width, differently to
what was observed at thermal equilibrium. This effect could be related to a thermal hysteresis
effect or to a large induced disorder after photoexcitation.

In both experiments we have observed that the lattice is more sensitive to large incident
fluences rather than initial sample temperature. At this temporal resolutions and incident
fluences, we did not detect any oscillation that could be related to the acoustic phonon related
to the phase transition.

Further experiments on this compound are recommended. In particular, pump probe diffrac-
tion experiments with a temporal resolution of at least 1 ps could reveal photoinduced coherent
oscillations arising from the phonon softening associated to this transition. In order to facilitate
the studies in grazing incidence, new samples with perfect [110] orientation are required. It
is worth mentioning that there are certain reflections that only exist in the tetragonal phase,
as for instance the (300). Provided that the X-ray flux is high enough (since the intensity of
this reflection is rather low) an experiment on this reflection would provide more insightful
information on the photoinduced phase transition. Time resolved reflectivity experiments to
complement the diffraction measurements are recommended as well.
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7.1 Summary
The experimental work presented in this thesis was centered around the dynamics of out-of-
equilibrium structural phase transitions. Two experimental approaches were followed. On the
one hand, I studied the martensitic phase transition on Nb3Sn at SOLEIL Synchrotron, and on
the other hand I investigated the photoinduced charge density wave phase transition on GdTe3
with the UED experimental setup at LOA.

The first part was dedicated to an introduction to time-resolved diffraction and the description
of the experimental setups employed to reveal the structural dynamics of phase transitions. In
particular, the characteristics of the CRISTAL beamline at SOLEIL were introduced and the
main capabilities of the UED setup at LOA were analyzed in chapter 3. In the latter, the spatio-
temporal resolutions of the resulting electron bunches, estimated by GPT simulations, resulted
in a minimum pulse length of 300 fs with a spatial coherence of 5 nm. These parameters are
found to be optimal for pump-probe diffraction studies.

The first results obtained with this experimental setup were presented in chapter 4. The UED
experimental setup at LOA proved an ideal tool to perform pump-probe scans on single crystal
silicon nanomembranes. In these experiments we observed a giant photoinduced response on
the Bragg peaks’ intensities. The relative intensity changes presented a stunning increase of the
order of ∆I/I ∼ 60%, with large sensitivity to the angle of incidence. These values were surely
impossible to explain within the kinematical theory of diffraction. Further experiments as a
function of the angle of incidence complemented with simulations revealed that multiple scat-
tering of the incident electron beam was responsible for this puzzling response. Indeed, when
high quality samples are under study, dynamical diffraction effects may lead to the unexpected
Bragg peak intensity dynamics. Under certain conditions of thickness and electron energies,
lattice heating following photoexcitation results in the non-intuitive increase of the Bragg peak
intensities, in contradiction with the well-known Debye-Waller effect. We reiterated the study
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on another sample with a different thickness, which confirmed our interpretation. We thus
demonstrated that a quantitative interpretation of phenomena occurring in high quality crystals
requires multiple electron scattering effects to be taken into account.

The second part of this thesis was devoted to the study of the photoinduced structural
phase transition of the CDW state in GdTe3, presented in chapter 5. These experiments were
performed with the UED experimental setup at LOA. The main aim of this study was to answer
the following questions:

• On which time scales does lattice dynamics take place?

• What is the response of the system to different excitation fluences?

• How does the initial temperature of the lattice influence the dynamics of the CDW?

• How can our results resolve conflicting interpretations existing in the literature?

Our experimental results showed evidence of an increase of the lattice temperature after pump
arrival with a typical time scale of 6 ps. We observed that for all studied fluences, the lattice
temperature never exceeded the critical temperature Tc. For more than 125 ps, we could observe
that the Bragg peaks’ relative intensity was not changing, which led us to infer the persistence
of a quasi-equilibrium state. We ascribed this phenomenon to a long heat diffusion process.

Concerning the first two questions, the observed dynamics of the CDW diffraction peaks
showed a fast decay, limited by our temporal resolution. At high incident fluence, the intensity
of the satellite peak was reduced to the background level, suggesting that the system transits to
the metallic phase by optical excitation. Interestingly, this photoinduced transition occurs below
the critical temperature. On the other hand, the relaxation to the initial CDW state presented a
slowing down from 2 ps to 8 ps. These values were directly proportional to the incident fluence,
in good agreement with previous results reported in literature on another RTe3 compound.

Experiments performed at two different sample temperatures revealed that when the system
is initially at T∼Tc, the relaxation dynamics of the CDW tends to slow down with respect to the
low initial temperature. These interesting results in combination with an analysis performed
on the CDW correlation lengths suggest that if topological defects are the key in the slower
relaxation process, they are not photoinduced by the pump but inherent to the lattice temperature.
This interpretation, if proven true, may resolve the ongoing debate about the role of topological
defects in the dynamics of charge density waves. Most likely, the slowing down in the relaxation
of the CDW state is a consequence of an increase of the lattice temperature. Such an effect
would prevent both the nucleation of domains and the complete recovery of the order parameter.

The last part of this thesis presented preliminary results on the photoinduced martensitic
structural phase transition in Nb3Sn performed by X-ray pump-probe diffraction at SOLEIL.
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The capabilities of the beamline with a temporal resolution of several picoseconds, were well
suited to study the martensitic phase transition on Nb3Sn. The sample was firstly characterized
at thermal equilibrium while cooling down the sample. These measurements served as a
basis for comparison with the photoinduced phase transition. Two studies were carried out
at two different temporal resolutions of 75 ps and 15 ps, respectively. In both cases, laser
excitation triggered distinctive changes on the lattice structure (inferred from the Bragg peak
position) related to the structural phase transition. The position and intensities of the diffracted
peaks showed similar changes to those observed at thermal equilibrium with temporal time
scales that pointed to thermal diffusion as the main mechanism behind the structural dynamics.
Interestingly, the changes of the peak width presented the opposite behaviour, a broadening that
could not be simply explained by lattice temperature increase, but pointed rather to either a
hysteresis effect or to photoinduced disorder.

7.2 Future work
There are several paths to improving and furthering the studies presented in this manuscript.
The main experimental improvement that could be performed on the UED experimental setup
at LOA is an enhancement of the signal to noise ratio (SNR) of the detection scheme. Indeed,
while the inherent properties of the DC gun would allow for a certain SNR, the system itself
is strongly limited by the detection system (currently multi-channel plates) when measuring
low diffracting samples. An effective way of improving the SNR without compromising the
temporal resolution is based on the installation of a more efficient electron detector, such as
sCMOS (scientific Complementary Metal Oxide Semiconductor) camera or a phosphor screen
with a cooled intensified charge-coupled device (iCCD). In order to extend the capabilities of
this setup to the study of structural phase transitions with very low critical temperatures, it would
be interesting to install a cryostat. Such an improvement would furthermore allow to perform
studies at several initial temperatures, necessary to investigate other interesting phenomena as
critical slowing down.

With respect to the structural dynamics in the photoinduced CDW to metallic phase transi-
tion, there are still some questions to be answered. Firstly, how does the sample geometry affect
the temporal dynamics? So far, all the transient reflectivity experiments present in literature are
performed on bulk samples. With the purpose of comparing the temporal time scales measured
in UED, it is necessary to perform time-resolved reflectivity studies on thin films. Particularly,
it would be worth investigating the presence of photoinduced coherent acoustic modes prop-
agating along the thickness of the sample to verify whether it has or not implications on the
relaxation of the order parameter. Furthermore, temperature and fluence dependent studies are
recommended to reveal the strength of the coupling between the CDW amplitude and optical
phonons. It has been proven in literature that the amplitude mode of the CDW couples to other
optical phonons with a strength that depends on the sample temperature. This coupling may
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result in a renormalization of the order parameter [134]. To my knowledge, so far there are
no results as a function of both the incident fluence and temperature that could provide more
information to this matter. These studies should be performed in time-resolved reflectivity and
compared preferably with time-resolved electron diffraction with a temporal resolution below
100 fs. Secondly, heating effects from the pump on the observed behaviour have not been
ruled out, and THz pump-probe spectroscopy would thus provide enlightening complementary
results. While trying to answer the questions mentioned in the previous section, we opened up
a new one. We did not observe the emergence of a second transient CDW phase, differently
to what has been recently reported on lighter compounds of the RTe3 family. This transient
CDW phase in lighter compounds has never been observed at thermal equilibrium conditions.
Consequently, it opens the question on whether it depends on the compound under study or if
it occurs in all the RTe3 family. Thus, further experimental and theoretical studies on different
compounds are needed to shed more light on this astonishing effect.

Finally, concerning the studies performed on the structural phase transition on Nb3Sn,
complementary measurements should be carried out. An attempt to conduct time-resolved
reflectivity measurements was not possible due to the low reflecting sample, most likely due
to surface roughness. These experiments could directly detect the phonon softening associated
with the displacive martensitic phase transition. To do so, a pristine sample surface is required.
As a way of furthering these studies, time-resolved diffraction with a temporal resolution below
1 ps should be performed, ideally on a diffraction spot belonging to the [110] crystallographic
axis, i.e., the direction which presents the largest softening in the transition, or on a forbidden
Bragg reflection in the cubic phase, for example the (300). These experiments would con-
firm whether the photoinduced transition follows an order-disorder path as may suggest our
experimental results, or if in contrary, it follows a displacive process as observed at thermal
equilibrium.



Appendix A

Charge measurements and detector
calibration

As shown in section 3.1.3, the charge contained in the electron bunchwasmeasured as a function
of the third harmonic beam intensity impinging the photocathode. In this appendix I give more
details and information about the parameters used during the calibration.

The beam charge measurements were performed with a repetition rate of 5 kHz to enhance
the signal. The number of electrons per pulse is directly given by Ne =

I
Rep.Rate =

Q
e , being I the

measured current, Q the charge of the bunch and e the electron charge.
In the case of the images recorded on the CCD, the repetition rate was lowered to 1kHz

(the actual value that is used when performing experiments). The MCP voltage was maintained
to 0.93 kV, the phosphor plate to 5 kV and the electron energy to 35 keV, the current on the
solenoid was maintained to I = 0.98A (V= 6.1V). We took five images of the electron beam per
waveplate angle and averaged them. It is interesting to notice that as the number of electrons
rises in the electron bunch the number of counts becomes more unstable, giving rise to a non
negligible standard deviation as shown in figure A.2, this value was used to compute the error
bars in the fit presented in figure 3.11 in section 3.1.3 .

Figure A.1 shows an image of the direct beam and the corresponding Voigt fits of the vertical
and horizontal line profiles. The fits were performed with the VoigtModel function from Python
Lmfit package, information about the function and parameters can be found in [169].

In order to estimate the number of electrons as a function of the number of counts in the
detector, I used the maximum of the fit curve, i.e. the height parameter, since values of the
FWHMcould not be easily fitted, as shown in figureA.4, indeed the FWHMof the electron beam
should decrease as the number of electrons decreases. This effect might be due to a focusing
effect since the current of the solenoid was maintained constant. Moreover, the variation of the
FWHM is around 2pixels in the entire series of data points, this small variations are limited
by the spatial resolution of the detector. Effects in the FWHM of the beam as a function of
the number of electrons contained in the bunch will be much more notorious in the case of
unfocused electron beam. Because of this, the number of counts at the maximum might be a
more appropriate estimation in the case of a collimated beam.

Figure A.3 shows the measured number of electrons and the corresponding maximum of
counts on the detector as a function of the waveplate angle. Similar trends are followed in
both, current and number of counts, as expected from the resulting quantum efficiency from the
photoemitted electrons at the photocathode.
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Figure A.1: Image recorded on the camera of the focused electron beam and its corresponding
vertical and horizontal line profiles fitted with a Voigt function.

Figure A.2: Maximum number of counts at each image as a function of the waveplate angle. Note
that the deviation in the number of counts increases as the current of the bunch is incremented.
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Figure A.3: Number of measured electrons with the Faraday cup and the corresponding
averaged height from the Voigt fit as a function of the waveplate angle.

Figure A.4: Number of electrons as a function of the FWHM (given in pixels) of the focused
direct beam.





Appendix B

Effects of electron beam size on the
diffraction patterns

The size of the electron beam can be easily adjusted with the telescope in the beamline and
monitored at the virtual focal plane of the photocathode. Figure B.1 shows the changes of the
electron beam at a distance of D = 8.6mm between lenses in the telescope and at D = 9.45mm,
corresponding to an electron FWHM size of ∼ 73µm and ∼ 50 µm, respectively. The images of
the direct electron beam seen on the camera (left), the diffracted signal from a polycrystalline
aluminum sample (center) and the laser spot of the third harmonic recorded on the virtual plane
of the photocathode.

Figure B.1: Images of the direct electron beam (left), diffracted electron beam on a polycrys-
talline aluminium sample (center) and of the third harmonic laser spot (right, in log scale) as
a function of the distance between the telescope lenses. The upper row corresponds to a third
harmonic beam size of ∼ 73 µm whereas the lower row correspond to ∼ 53 µm.

The effect of the electron beam size in the spatial resolution is clearly seen in the diffracted
images of the polycrystalline sample; the larger the beam the lower the quality of the diffraction
pattern. As seen in section 3.1.1.3, an increasing size of the electron beam will increase
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its emittance and thus lower the coherence length, resulting in lower intensities and broader
diffracted spots or rings.



Appendix C

Static CBED measurements on 70 nm
silicon nanomembranes

In order to measure the thickness of the nanomembranes by the CBED technique, a section
of one of the samples was sectioned and deposited on a TEM grid, as shown in figure C.1.
Figure C.2 shows the measured (left) and simulated (right) CBED diffraction patterns of (400)
diffraction spot at 300 keV. The fringe pattern shown in figure C.3 was obtained from a line
profile of the measured diffraction pattern and compared with the simulated CBED. Figure
C.3 depicts the line profiles of the (400) and transmitted electron beam. The simulations
were performed for several thicknesses between 30 nm and 130 nm. Best accordance between
simulation and measurements is achieved between 69 nm and 70 nm, with an accuracy of 1 nm.

Figure C.1: Section of the silicon nanomen-
brane deposited on a TEM grid for CBED mea-
surements.
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Figure C.2: Excess (400) and deficiency (000) lines of the silicon at 300 keV, measured (left)
and simulated by JEMS (right). Red and blue lines correspond to the line profiles showed in
C.3.

Figure C.3: Comparison between simulated (red) and measured (blue) line profiles for a
thickness of 70 nm.



Appendix D

Laser penetration depths from optical
conductivity values

The penetration depth of the laser into the material can be estimated from optical measurements,
as the reflectivity and attenuation coefficient. It is obtained from the Beer-Lambert law, which
states that the intensity of an electromagnetic wave in a material decreases exponentially as:

I = I0e−αL

with α the attenuation constant and L the material thickness.
The attenuation constant is inversely proportional to the penetration depth and so it can be

linked to the extinction coefficient by:

δ =
1
α
=

λ

4πκ(λ)

where λ is thewavelength and N = n+iκ the refractive index. The imaginary part of the refractive
index can be obtained from the optical conductivity value. From the complex dielectric function:

ε = ε′+ iε′′ = ε′+ i
σλ

2πc

and the refractive index relation:
N2ε0 = ε

The imaginary part as a function of the conductivity:

κ =
σλ

4πε0cn

The reflectivity of the material can be expressed from Fresnel equation:

R =
���1−N
1+N

���2 = (1−n)2+ κ2

(1+n)2+ κ2

Finally combining the above equations the imaginary part of the refractive index becomes:

κ4+ κ2+
R+1
R−1

σλ

2πε0c
κ+

σ2λ2

16π2ε2
0c2
= 0

with two possible imaginary and real solutions, where only one of them has physical meaning.





Appendix E

Relation between the physical angles and
the Q vector in grazing incidence geometry

Let us consider the Q201 reflection in the laboratory frame, with the y axis vertical, parallel to
the (1-10) axis of the sample and the q110 and q001 defining the surface:

®Q201 =
1

d201

©«
sinα sin β

cosα
sinα cos β

ª®¬
with d201 =a/

√
5, a = 5.29 Å and the angles α = 50.76◦ and β = 63.4◦ (see figure). We have

now to rotate the sample with the φ angle around the [h-h0] direction normal to the surface (see
figure E.1 a)). We use the rotation matrix<y(ϕ) to get the new position ®Q′201 :

®Q′201 =<y(ϕ) ®Q201

with

<y(ϕ) =
©«

cosϕ 0 sinϕ
0 1 0

−sinϕ 0 cosϕ

ª®¬
By turning ϕ the wave vector crosses the Ewald sphere, so that:

1
λ2 =

(
qx +

1
λ
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+ q2

y + q2
z

We get:

sin(ϕ+ β) = −
λ

2d
1

sinα
(E.1)

sinδ = λqy =
λ

d
cosα (E.2)

tanγ =
qz

1
λ − qx

=
sinα cos(β−ϕ)

d/λ− sinα sin(β+ϕ)
(E.3)

For the Q201 reflection, there are three different possible variants (see figure E.1 c)):

©«
2+2dq, 0, 1− dq
2− dq, 0, 1+2dq
2− dq, 0, 1− dq

ª®¬
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Figure E.1: a) Grazing incidence geometry with the Nb3Sn sample orientation. The rotation
around the φ angle is used in order to intersect the (201) reflection on the Ewald sphere. b)
Angular configuration with the section of the reciprocal lattice defined by the detector. c) The
three possible variants observable in Nb3Sn at low temperature.
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with dq = ∆a
a . We can see that the variation in δ corresponds to the variations of the lattice

parameter perpendicular to the surface since:

sin(δ+ dδ) = λ(q1−10+ dq1−10) (E.4)
sinδ+ dδ cosδ ≈ λq1−10+λdq1−10 (E.5)

dδ =
λ

cosδ
dq1−10 (E.6)

As a conclusion, the two peaks in δ seen at ϕ1 mainly correspond to an expansion-dilatation of
the lattice perpendicular to the surface, i.e. along the (1-10) direction.

The peak at ϕ2 remains however not clear. Although that this contribution is clearly related
to the phase transition, the absence of any shift in δ but two peaks in φ is not very compatible
with the bulk phase transition described here. The absence of change of correlation length close
to Tc could be explained by the appearance of the phase transition occurring on very thin layer
on the surface, that is, a distortion within the surface and not in the bulk of the sample.





Résumé en français

Lorsqu’un matériau traverse un changement entre deux états electroniques et/ou structurales,
on dit qu’il subit une transition de phase. Les transitions de phase sont le résultat d’un stimulus
externe tel qu’un changement de température, de pression ou même d’une excitation optique.
Les techniques pompe-sonde reposent sur ce dernier stimulus, dans lequel une courte impulsion
optique (la pompe) déclenche une cascade de processus hors équilibre dans les électrons et
le réseau. Au niveau du réseau cristallin, tous les événements suivis de l’excitation optique
peuvent être directement mesurés par la diffraction des impulsions d’électrons ou de rayons
X (la sonde). La courte durée temporelle de la sonde permet d’observer la dynamique de la
structure en suivant l’intensité, la position et la forme des pics de Bragg dans des échelles de
temps aussi courtes que quelques centaines de femtosecondes.

Mon travail de thèse était consacré à l’étude de la dynamique structurale des transitions
de phase par diffraction résolue en temps des électrons et des rayons X. Plus précisément, ce
manuscrit présente des études sur deux composés présentant une transition de phase structurale:
GdTe3 et Nb3Sn. Afin de comprendre leur dynamique structurale hors équilibre, j’ai réalisé
des expériences pompe-sonde par diffraction d’électrons au Laboratoire d’Optique Appliquée
(LOA) et par diffraction de rayons X au Synchrotron SOLEIL avec mon groupe du Laboratoire
de Physique des Solides (LPS).

Motivation et objectifs principaux: La compréhension des mécanismes physiques impliqués
dans les transitions de phases structurales photoinduites est devenue une question centrale
dans la communauté de l’ultrarapide. Les systèmes présentant une forte coopération entre les
différents degrés de liberté (charge, spin, orbitales et réseau) sont particulièrement intéressants.
Les principales questions concernant les transitions de phase qui ont lieu dans ces systèmes
peuvent être énumérées comme suit :

• Quel est le principal propulseur de la transition de phase?

• Quelle est la force du couplage entre les différents degrés de liberté ?

• Quelles sont les différentes échelles de temps associées à chaque degré de liberté et leur
couplage ?

• Est-ce que la compréhension de la dynamique nous aide à mieux comprendre la physique
de base de la transition de phase ?

Les expériences résolues en temps, avec leur capacité à suivre la transition de phase dans les
échelles de temps pertinentes, sont les techniques idéales pour éclairer ces questions. Un bon
exemple de transition de phase structurale coopérative se trouve dans les matériaux présentant
une onde de densité de charge (ODC). Les ODC sont des états quantiques macroscopiques
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stables à basse température dans des matériaux de faible dimension, qui ne peuvent se produire
que par le couplage entre les electrons et le réseau cristallin.

Lorsqu’un système métallique subit une transition vers la phase ODC à une certain tem-
perature Tc, une ouverture dans la bande d’énergie électronique apparaît accompagnée d’une
distorsion dans le réseau. Cette distortion donne une nouvelle periodicité qui, en diffraction,
se traduit par l’émergence de nouveaux pics de diffraction, appelés réflexions satellites. Leur
intensité est directement liée au paramètre d’ordre de la transition de phase.

L’excitation optique peut entraîner la suppression de la phase ODC. En diffraction, cela
peut être directement déduit de la suppression de l’intensité du satellites. Différentes voies de
relaxation dans cette transition ont été proposées. Dans certains cas, ces voies ont été attribuées
à des mécanismes qui sont différents de ceux observés à l’équilibre thermique [30]. Une bonne
preuve de l’intérêt croissant pour ces systèmes se reflète dans la grande quantité de travaux de
recherche sur les dichalcogénures des métaux de transition [23, 24, 31, 32, 33, 34, 35]. Ces com-
posés présentent des réflexions satellites de haute intensité qui, d’un point de vue expérimental,
ont un grand avantage en termes de détection. Un des "inconvénients" de ces composés est leur
complexe diagramme de phase, dans lequel plusieurs phases ODC peuvent être présentes selon
le composé. Par conséquent, les études sur des matériaux ayant des diagrammes de phase
relativement simples pourraient donner une image plus directe de la transition de phase
photoinduite vers l’état métallique. Les candidats possibles avec des diagrammes de phase
moins complexes sont les bronzes bleus (K0,3MoO3) et les composés de tritelluride de terre rare
(RTe3).

Cette thèse est encadré dans une collaboration entre le LOA et le LPS. Les deux laboratoires
sont largement reconnus pour leur expertise dans le domaine des sources ultra-rapides et de la
physique de l’état solide, respectivement. Le développement du premier dispositif expérimental
compact de diffraction électronique ultrarapide (DEU) en France au LOA a ouvert la possibilité
d’étudier la dynamique structurale hors équilibre d’un sujet bien connu au LPS: la transition
de phase ODC dans les composés RTe3. Au début des travaux présentés ici (mi 2016), la
dynamique structurale de la transition de phase photoinduite dans les composés RTe3 était peu
connue, la collaboration entre le LOA et le LPS a donc donné les conditions idéales pour étudier
ce sujet.

L’objectif de cette thèse était triple:
Tout d’abord, nous avons testé les capacités de l’experience de diffraction d’electrons ultra-

rapide récemment développée au LOA. Pour ce faire, nous avons réalisé une série d’expériences
de pompe-sonde sur des nanomembranes monocristallines de silicium de haute qualité. Lors
de la réalisation de ces expériences, nous avons découvert la grande influence des effets de dif-
fusion multiples sur les intensités diffractées résolues dans le temps, un aspect qui a été suggéré
précédemment par d’autres groupes de recherchemais qui n’a jamais été étudié en détail [29, 33].
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Le deuxième et principal objectif de cette thèse est centré sur l’étude de la transition de
phase photoinduite de GdTe3 avec l’experience DEU. J’ai ainsi abordé plusieurs questions :

• Quelles sont les principales différences entre l’équilibre thermique et les transitions de
phase photoinduites ?

• Sur quelles échelles de temps la dynamique du réseau a-t-elle lieu ?

• Quelle est la réponse du système aux différentes fluences d’excitation ?

• Comment la température initiale du réseau influence-t-elle la dynamique de l’ODC?

Ici, il a fallu relever plusieurs défis. En particulier, la préparation d’échantillons appropriés
pour la mise en place de l’experience DEU et les moyens de détecter les réflexions de satellite
de faible intensité. Un autre aspect difficile du travail présenté ici était son actualité, car un
grand nombre de données de haute qualité ont été publiées sur le sujet pendant que je réalisais
ces expériences [36, 37, 38, 39, 40] (certaines d’entre elles sont encore sur arXiv).

Le dernier objectif de la thèse est de comprendre la dynamique de la transition de phase
structurelle sur Nb3Sn, un matériau qui présente une transition de phase martensitique induite
par des déplacements déformants du réseau. Dans ce cas, nous avons centré notre attention
sur les principales différences entre la transition de phase structurelle à l’équilibre thermique et
après photoexcitation avec des résolutions temporelles de plusieurs picosecondes. Les expéri-
ences ont été réalisées dans la ligne de faisceaux CRISTAL du synchrotron SOLEIL.

Résultats principaux: La première partie de la thèse est consacrée à une introduction à la
diffraction en temps résolu et à la description des dispositifs expérimentaux utilisés pour révéler
la dynamique structurelle des transitions de phase. En particulier, les caractéristiques de la ligne
de lumière CRISTAL à SOLEIL ont été présentées et les principales capacités du dispositif
expérimental DEU développé au LOA sont analysées dans le chapitre 3. Dans ce dernier, les
résolutions spatio-temporelles des faisceaux d’électrons, estimées par des simulations GPT, ont
permis d’obtenir une longueur temporelle d’impulsion minimale de 300 fs avec une cohérence
spatiale de 5 nm. Ces paramètres se sont avérés optimaux pour les études de diffraction pompe-
sonde. Les premiers résultats obtenus avec ce dispositif expérimental sont présentés au chapitre
4, suivis d’une deuxième étude présentée au chapitre 5.

Les effets de la diffusion multiple observés dans la diffraction résolue en temps.
Le dispositif expérimental DEU s’est révélé être idéal pour effectuer des expériences pompe-
sonde sur des nanomembranes de silicium monocristallin. Les échantillons ont été préparés par
nos collaborateurs Max Lagally et Shelley Scott à l’université du Wisconsin. Ces nanomem-
branes ont une épaisseur de 70 nm et une surface de 300 µm × 300 µm avec une haute qualité
cristalline. Dans les diagrammes de diffraction à l’équilibre et à certains angles d’incidence
entre la surface de l’échantillon et le faisceau d’électrons entrant, nous avons observé que
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l’intensité du pic de diffraction (220) montrait une intensité comparable au pic direct, c’est-
à-dire le pic (000). Après l’excitation optique avec une fluence de F = 12mJ/cm2, nous avons
observé une réponse photoinduite géante sur l’intensité du pic de Bragg, avec une augmenta-
tion étonnante de l’ordre de ∆I/I ∼ 60%. Cette augmentation a également montré une grande
dépendance avec l’angle d’incidence. Ces valeurs étaient certainement impossibles à expliquer
dans le cadre de la théorie cinématique de la diffraction. Afin d’expliquer nos observations,
j’ai réalisé d’autres expériences complementaires en fonction de l’angle d’incidence (rocking
curves). Ces résultats complétés par des simulations ont révélé que la diffusion multiple du
faisceau d’électrons incident était responsable de cette réponse surprenante. En effet, lorsque
des échantillons de haute qualité sont mesurés, les effets dynamiques de la diffraction peuvent
conduire à l’augmentation inattendue de l’intensité du pic de Bragg. Dans le contexte de la
théorie dynamique de la diffraction et dans certaines conditions d’épaisseur et d’énergie des
électrons, le chauffage du réseau après la photoexcitation entraîne une augmentation d’intensité
non intuitive, en contradiction avec l’effet Debye-Waller. Nous avons réitéré l’étude sur un
autre échantillon d’épaisseur différente, ce qui a confirmé notre interprétation. Nous avons ainsi
démontré que dans les expériences de diffraction résolues en temps sur des cristaux de haute
qualité, il est impératif de prendre en compte les effets de diffusion multiples pour donner une
interprétation quantitative.

Transition de phase ODC-metallique photoinduite dans le composé GdTe3.
La deuxième partie de cette thèse a été consacrée à l’étude de la transition de phase structurale
dans GdTe3, présentée dans le chapitre 5. Ces expériences ont été réalisées aussi avec le disposi-
tif expérimental DEU au LOA. Le composé GdTe3 est un matériau quasi-2D qui possède une
structure orthorombique avec a ∼ c� b et qui présente une transition de phase metallique-ODC
aux températures inférieures à Tc ∼377K [122]. La modulation du réseau correspondant à l’état
ODC apparaît le long de l’axe cristallographique c. Nos résultats expérimentaux ont montré la
preuve d’une augmentation de la température du réseau après l’arrivée de la pompe avec une
échelle de temps typique de 6 ps. En analysant les pics de Bragg du réseau principal, nous
avons observé que pour toutes les fluences étudiées (entre F = 0.5mJ/cm2 et F = 3.5mJ/cm2),
la température du réseau n’a jamais dépassé la température critique Tc. Après la diminution
initial de l’intensité et pendant plus de 125 ps, nous avons observé que l’intensité relative des
pics de Bragg ne changeait pas, ce qui nous a conduit à déduire la persistance d’un état de
quasi-équilibre. D’autre part, la dynamique observée des pics de diffraction correspondant a
l’etat d’ODC a montré une décroissance de l’intensité très rapide, limitée par notre résolution
temporelle. Pour des fluences incidentes élevées (F>1.9mJ/cm2), l’intensité du pic du satellite a
été réduite au niveau du bruit de fond, ce qui suggère que le système passe à la phase métallique
par excitation optique. Il est important de souligner ici que cette transition photoinduite se
produit en dessous de la température critique, elle est donc considérée comme une transition de
phase non thermique. D’autre part, nous avons observé que la relaxation vers l’état initial de
l’ODC était variable, allant de 2 ps à 8 ps. Ce ralentissement vers l’etat intial était proportionnel
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à la fluence incidente, en bon accord avec les résultats précédents rapportés dans la littérature
sur un autre composé de la même famille LaTe3 [35]. Ce ralentissement a été considéré comme
le résultat de l’apparition de défauts topologiques photo-induits, ce qui est en contradiction avec
l’interprétation donnée par Trigo et al. [37] qui ont étudié le composé SmTe3. Afin de mieux
comprendre cet effet, j’ai réalisé des expériences à deux températures d’échantillon différentes.
Ces derniers résultats ont révélé que lorsque le système est initialement à T∼Tc, la dynamique
de relaxation de l’ODC a tendance à ralentir par rapport à la relaxation lorsque la température
initiale est basse T<Tc. Ces intéressantes observations, combinés à une analyse effectuée sur
les longueurs de corrélation d’ODC, suggèrent que si les défauts topologiques sont la clé du
processus de lente relaxation, ils ne sont photoinduits par la pompe mais aussi inhérents à la
température du réseau. Cette interprétation, si elle s’avère vraie, pourrait résoudre le débat en
cours sur le possible rôle des défauts topologiques photo-induits dans la dynamique des ondes
de densité de charge. Il est très probable que le ralentissement de la relaxation vers l’état ODC
soit la conséquence d’une augmentation de la température du réseau. Un tel effet empêcherait
à la fois la croissance des domaines ODC et la récupération complète du paramètre d’ordre. À
la vue de nos résultats, il est recommandé de procéder à de futures expériences pompe-sonde
à plusieurs températures d’échantillon. Ces expériences, de préférence avec une résolution
temporelle plus courte (de l’ordre de 100 fs ou moins), donneraient plus d’informations sur les
mécanismes à l’origine de défauts topologiques.

Transition de phase structurale dans le composé Nb3Sn.
La dernière partie de cette thèse présente des résultats préliminaires sur la transition de phase
martensitique structurelle photoinduite dans le composé Nb3Sn. Ce matériau montre deux
transitions de phase distinctes: une transition de phase structurale d’une structure cubique à
une structure tétragonale (connue sous le nom de transition de phase martensitique) et une
phase supraconductrice apparaissant à une température critique inférieure. Dans nos études,
nous nous sommes concentrés sur la transition de phase martensitique à l’équilibre thermique
et après photoexcitation. Ces experiences on été réalisée par diffraction résolue en temps de
rayons X dans la ligne de lumière CRISTAL à SOLEIL. Les caractéristiques de CRISTAL
avec une résolution temporelle de plusieurs picosecondes, étaient bien adaptées pour étudier
cette transition de phase. L’échantillon a d’abord été caractérisé à l’équilibre thermique en
refroidissant largement en dessous de la température critique (Tc ∼39K). Ces mesures ont servi
comme référence pour comparaison avec la transition de phase photoinduite. À l’équilibre
thermique, le pic de Bragg mesuré a montré une diminution de l’intensité suivie d’un "splitting"
très évident à la température de transition. De plus, la largeur de chaque pic de Bragg après le
"splitting" était plus petite à T∼Tc. Pour les mesures pompe-sonde, deux études ont été réalisées
avec deux résolutions temporelles différentes de 75 ps et 15 ps, respectivement. Dans les deux
cas, l’excitation laser a déclenché des changements distincts sur la structure du réseau ("splitting"
du pic de Bragg) liés à la transition de phase structurale. La position et les intensités des pics de
diffraction ont montré des changements similaires à ceux observés à l’équilibre thermique avec
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des échelles de temps temporelles qui indiquaient la diffusion thermique comme le principal
mécanisme derrière la dynamique structurelle. Il est intéressant de noter que les changements
de la largeur du pic ont présenté le comportement opposé, un élargissement qui ne pouvait pas
être simplement expliqué par l’augmentation de la température du réseau, mais qui indiquait
plutôt un effet d’hystérésis ou un désordre photoinduit. Au vu de ces résultats, nous proposons
des études avec des résolutions temporelles plus courtes pour s’assurer que la transition de
phase photoinduite suit une voie différente de la transition de phase à l’équilibre thermique.
D’autres techniques en temps résolu, comme la réflectivité pompe-sonde, sont recommandées
pour compléter les données de diffraction.
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Titre : Études de la dynamique structurale des transitions de phase par diffraction des électrons et des rayons
X résolue en temps.
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densité de charge

Résumé : L’application d’une perturbation externe à
certains matériaux (tels que la température, la pres-
sion ou la lumière) provoque souvent l’émergence
de nouvelles propriétés macroscopiques dont l’ori-
gine se situe au niveau atomique. Par conséquent,
une étude détaillée de la dynamique atomique de-
vient essentielle pour la compréhension de processus
tels que les transformations chimiques ou les tran-
sitions de phase. Dans le cas particulier des tran-
sitions de phase structurales, la symétrie du cristal
est soumise à une transformation entre deux états
différents à une valeur critique. Les échelles de temps
typiques de la dynamique structurale sont de l’ordre
de quelques centaines de femtosecondes à plusieurs
picosecondes. Le développement des impulsions la-
ser femtoseconde a permis aux chercheurs d’accéder
aux échelles de temps nécessaires pour explorer la
dynamique structurale ultra-rapide. Plus précisément,
la diffraction résolue en temps s’est révélée être une
technique idéale pour suivre et dévoiler les voies
hors équilibre suivies par le réseau après une courte
impulsion laser. Cette thèse présente des études
expérimentales réalisées par des techniques de dif-
fraction d’électrons et de rayons X résolues en temps
sur deux transitions de phase structurelles différentes.
Dans une première partie, nous démontrons les
capacités du montage expérimental de diffraction
d’électrons ultra-rapide (DEU) développé au Labora-
toire d’Optique Apliquée. Nos résultats expérimentaux

réalisés sur des échantillons monocristallins de haute
qualité sont présentés ainsi qu’une étude quantitative
des implications des effets de diffraction dynamique
dans les expériences DEU. Dans une deuxième
partie, nous présentons un ensemble d’expériences
de diffraction d’électrons pompe-sonde réalisée sur
GdTe3, un composé appartenant à la famille des tri-
tellurides de terres rares qui présente un état d’onde
de densité de charge. L’arrivée d’une excitation op-
tique déclenche la transition de phase de manière
non thermique. La dynamique de relaxation est ca-
ractérisé par un ralentissement qui augmente avec
la fluence incidente ainsi qu’avec la température
initiale de l’échantillon. Ces résultats éclairent les
interprétations controversées actuelles concernant
l’émergence de défauts topologiques photo-induits.
Dans une troisième partie, nous présentons des
expériences de diffraction des rayons X en temps
résolu réalisées à la ligne CRISTAL du synchro-
tron SOLEIL. Dans ce cas, nous avons étudié le
composé A15 Nb3Sn, qui présente une transition
de phase d’une symétrie cubique à une symétrie
tétragonale à l’équilibre thermique. Les résultats de
notre expérience pompe-sonde mettent en évidence
une réponse différente du réseau par rapport à la tran-
sition d’équilibre thermique, ce qui encourage les fu-
tures recherches sur la dynamique structural de ce
matériau.



Title : Study of the structural dynamics of phase transitions using time resolved electron and X-ray diffraction.
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materials

Abstract : The application of an external perturba-
tion in certain materials (such as temperature, pres-
sure or light) often gives rise to the emergence of new
macroscopic properties with their origin at the atomic
level. Therefore, a detailed study of the atomic dyna-
mics becomes essential to the understanding of pro-
cesses such as chemical transformations or phase
transitions. In the particular case of structural phase
transitions, the symmetry of the crystal undergoes a
transformation between two different states at a given
critical value. The typical time scales of the structural
dynamics occur on the order of few hundreds of fem-
toseconds to several picoseconds. The development
of femtosecond laser pulses has enabled scientists to
access the required time scales to explore the ultra-
fast dynamics of the lattice structure in the relevant
time scales. More precisely, time-resolved diffraction
has proven to be an ideal technique to track and unveil
the out-of-equilibrium pathways followed by the lattice
after a short laser pulse. This thesis presents expe-
rimental studies performed by time-resolved electron
and X-ray diffraction techniques on two different struc-
tural phase transitions. In a first part, we demons-
trate the capabilities of the ultrafast electron diffrac-
tion (UED) experimental setup developed at Labora-
toire d’Optique Apliquée. Our UED experimental re-

sults performed on high quality single crystal samples
are presented along with a quantitative study of the
implications of dynamical diffraction effects in UED
experiments. In a second part, we present a set of
pump-probe electron diffraction experiments perfor-
med on GdTe3, a compound belonging to the rare-
earth tritellurides family which presents a charge den-
sity wave state. The arrival of an optical excitation trig-
gers the phase transition non-thermally with the out-
of-equilibrium relaxation dynamics of the charge den-
sity wave state characterized by slowing down that
increases with incident fluence as well as with initial
sample temperature. These results shed more light
on current controversial interpretations involving the
emergence of photoinduced topological defects. In
a third part, we present time resolved X-ray diffrac-
tion experiments performed at CRISTAL beamline at
SOLEIL synchrotron. In this case we have studied
the A15 compound Nb3Sn, which displays a displa-
cive phase transition evolving from cubic to tetragonal
symmetry at thermal equilibrium. Our pump-probe re-
sults present evidence of a different lattice response
with respect to the thermal equilibrium transition, en-
couraging future investigations on the dynamics of this
material.
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