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Résumé étendu

Introduction La télédétection en milieu maritime (au dessus de la surface) a des applications diverses dont l'intérêt est indéniable : surveillance de l'espace maritime (lutte contre les activités clandestines, protection de l'environnement), océanographie, suivi des glaces de mer etc.

Parmi les systèmes d'observations possibles, le radar (Radio Detection and Ranging) est particulièrement utilisé pour faire de la détection, ou de l'imagerie. Les avantages du radar actif sur un capteur optique passif par exemple, sont sa capacité à fonctionner de jour comme de nuit, et son insensibilité relative aux conditions météorologiques (les ondes radar traversent la couverture nuageuse). Plusieurs plateformes peuvent être utilisées : côtier (sur une falaise), bateau, aéroporté, satellitaire etc.

La caractéristique majeure de la télédétection en milieu maritime est la présence du signal rétrodiusé par la mer, qu'on appelle clutter de mer (reectivité complexe de la mer). Le clutter de mer est un signal utile lorsque la nalité est l'étude de la mer, mais un bruit pour la détection ou l'imagerie de cibles, en raison de son caractère complexe et imprévisible (voir gure 1).

Figure 1 Séries temporelles de la rééctivité complexe de la mer (clutter de mer) enregistrées par le radar en bande C de l'Ifremer, en polarisation HH.

Une compréhension et description profondes de la nature du clutter de mer sont souhaitables quelle que soit la nalité recherchée. De nombreux travaux ont donc été menés depuis plusieurs décennies, et certains modèles ont gagné leurs lettres de noblesse pour la nalité détection : les modèles statistiques. Ces types de modèles décrivent le clutter de mer par une distribution de probabilité. Si on note Ψ t la rééctivité complexe de la mer, et z t = |Ψ t | 2 l'intensité, la K distribution [17] a été utilisée pour modéliser l'intensité. Elle se déduit théoriquement en considérant que la surface de la mer est constituée d'une population de i diuseurs discrets, telle que le nombre de diuseurs suit une loi binomiale négative et telle que la phase de chaque diuseur est uniformément répartie sur [0, 2π[, et en faisant tendre le nombre de diuseurs vers l'inni. Ce modèle de diuseurs discrets est une marche aléatoire [5].

La force de cette approche statistique directe est qu'elle permet par exemple de rapidement obtenir des algorithmes de détection. En revanche, c'est une approche statique dans le sens où si elle modélise la distribution de probabilité de z t quel que soit t xé, elle n'apporte aucune connaissance sur la corrélation entre z t 1 et z t 2 pour t 1 = t 2 , ce qui mène à supposer de manière non-appropriée que diérents échantillons du clutter de mer sont indépendants.

Nous pensons qu'un modèle dynamique serait préférable pour décrire le clutter de mer, puisqu'il est lui-même fondementalement dynamique.

Un tel modèle a récemment été développé par T. R. Field [4]. Il représente le clutter de mer par des processus aléatoires décrits par des équations diérentielles stochastiques (EDS). Le modèle de Field est une extension dynamique de la K distribution/marche aléatoire puisqu'il arme toujours que z t est K-distribué pour tout t, mais qu'il prend en compte la dépendance temporelle du clutter de mer grâce aux EDS. Le modèle de Field hérite donc des avantages de la K distribution, mais en repousse les limites en proposant une solution à son problème de staticité.

Nos travaux de recherche se placent dans le cadre général de la télédétection en milieu maritime. Nous proposons d'étudier et de développer le modèle de Field an de le transformer en cadre et outil utilisables dans le traitement de séries temporelles du clutter de mer. Les applications principalement visées sont la détection et l'imagerie Radar à Synthèse d'Ouverture (RSO).

Dans la section 2, nous présentons quelques élements de calcul stochastique, en particulier les équations diérentielles stochastiques. Dans la section 3, nous introduisons le modèle de Field pour le clutter de mer en montrant son lien avec la marche aléatoire. Dans la section 4, nous résolvons des équations de Fokker-Planck pour obtenir des expressions analytiques de probabilités de transition, et proposons de les utiliser comme outil de synchronisation de données. Dans la section 5, nous estimons les paramètres du modèle de Field pour le clutter de mer (par maximum de vraisemblance, et moments) en faisant une hypothèse d'observabilité de la surface équivalente radar de la mer (SER). Dans la section 6, nous adaptons les EDS du modèle de Field pour y inclure une cible, et estimons les paramètres de la cible par maximum de vraisemblance. Dans la section 7, nous travaillons sur la non-observabilité de la SER de la mer en pratique (en écho à la section 5). Nous montrons qu'il est possible de l'estimer à partir de données observables, puis reprenons l'estimation des paramètres du clutter en proposons une séquence d'estimateurs applicable à des données réelles. La section 8 conclut.

N.B : L'organisation de ce résumé suit celle de la thèse. La section 1, que nous clôturont ici, correspond à l'introduction et au chapitre 1. Les sections 2 à 7 correspondent respectivement aux chapitres 2 à 7, et la section 8 correspond à la conclusion. 2 Calcul stochastique Dans cette section, nous présentons quelques notions de calcul stochastique nécessaires pour comprendre le modèle de Field et nos travaux. Soit X t un processus aléatoire (famille ii de variables aléatoires indexée par t ∈ R + ). Une équation diérentielle stochastique (EDS) pour X t est de la forme : dX t = µ(X t )dt + σ(X t )dW t ,

où W t est un mouvement brownien. On appelle µ la dérive et σ la volatilité. La dénition rigoureuse des EDS fait appel au calcul d'Itô (voir [11] ou [8] par exemple). Cependant, on peut avoir une bonne intuition de cette notion en sachant résoudre une EDS par le schéma d'Euler-Maruyama.

Soit [0, T ] un intervalle et t 0 = 0 < t 1 < • • • < t N = T une subdivision de [0, T ]. Le schéma d'Euler-Maruyama s'écrit :

X t i = X t i-1 + µ(X t i-1 )(t i -t i-1 ) + σ(X t i-1 )(W t i -W t i-1
).

(

) 2 
Par dénition du mouvement brownien, W t i -W t i-1 est une variable aléatoire gaussienne de variance ∆t = t i -t i-1 . On voit que sur un incrément de temps ∆t, la dérive correspond à un incrément déterministe, comme une équation diérentielle ordinaire, tandis que la volatilité correspond à un incrément aléatoire. Si X t i-1 est xé, le schéma d'Euler-Maruyama implique que :

X t i -X t i-1 ∼ N (∆tµ(X t i-1 ), ∆tσ(X t i-1 ) 2 ), (3) 
i.e. que l'incrément X t i -X t i-1 est une variable aléatoire gaussienne centrée en ∆tµ(X t i-1 ) et de variance ∆tσ(X t i-1 ) 2 . La probabilité de transition du processus X t entre t i-1 et t i est donc approximativement :

p(X t i = x | X t i-1 = y) ≈ 1 2π∆tσ(y) 2 exp - 1 2 
(x -(y + µ(y)∆t)) 2 ∆tσ(y) 2 .

(

Cette approximation n'est valable que pour t i -t i-1 susament petit.

Le schéma d'Euler-Maruyama peut donc être utilisé à deux ns. La première est de résoudre numériquement une EDS en simulant de multiples trajectoires. Pour ça, il faut répéter l'équation (2) de t 0 à t N pour simuler une trajectoire, puis réitérer pour générer d'autres trajectoires. Celles-ci seront diérentes car les incréments browniens W t i -W t i-1 changeront d'une trajectoire à l'autre. Comme le montre l'équation (4), le schéma d'Euler-Maruyama peut aussi être utilisé pour approximer les probabilités de transition de X t .

On peut montrer que les probabilités de transitions exactes de X t sont solutions de l'équation de Fokker-Planck [13] :

∂p ∂t = - ∂ ∂x [µ(x)p] + 1 2 ∂ 2 ∂x 2 [σ 2 (x)p], (5) 
où p = p(x, t) dépend de sa variable de distribution, du temps, et implicitement de la condition initiale. L'équation de Fokker-Planck est une équation aux dérivées partielles.

Pour obtenir par exemple p(X t i = x | X t i-1 = y), il faut imposer une distribution de Dirac δ y à t = 0 (condition initial déterministe), calculer la solution, puis l'évaluer au temps t i -t i-1 .

A partir de l'équation de Fokker-Planck, il est également possible d'obtenir la distribution stationnaire/asymptotique en imposant ∂p ∂t = 0 dans l'équation (5) et en la résolvant. La solution stationnaire est alors valide pour tout t et se dénote p(X t = x).

La notion de probabilité de transition est essentielle pour comprendre les sections 4 à 7.

iii 3

Modèle de Field

Le modèle de Field se construit sur la marche aléatoire. On suppose qu'au temps t, il y a N t diuseurs qui contribuent à la rééctivité complexe, où N t suit un modèle de population Birth-Death-Immigration d'espérance N . La rééctivité complexe au temps t est donc (marche aléatoire) :

Ψ ( N ) t = Nt n=1 a N 1/2 e iφ (n) t = N t N 1/2 Nt n=1 a N 1/2 t e iφ (n) t . (6) 
Dans l'équation (6), l'amplitude a des diuseurs est supposée constante. Les phases φ

(n) t des diuseurs sont indépendantes pour diérents n, et elles suivent les EDS :

dφ (n) t = B 1/2 dW (n) t φ (n) 0 = ∆ (n) , (7) 
où ∀ n, ∆ (n) est uniformément distribuée sur [0, 2π[ et où B est une constante positive. En prenant a = 1 (normalisation) et dans la limite d'un nombre de diuseurs inni ( N → +∞), on obtient :

Ψ t = lim N →+∞ N t N 1/2 lim N →+∞ Nt n=1 1 N 1/2 t e iφ (n) t . (8) 
Dans le modèle de Field, le clutter de mer est donc représenté par le produit : Dans le modèle de Field, x t et γ t sont solutions des EDS [4] : Le modèle de Field est paramétrisé par trois paramètres constants : A, B et α. A (Hz) est l'inverse du temps de corrélation de x t , tandis que B est l'inverse du temps de corrélation de γ t . On sait empiriquement que x t évolue beaucoup plus lentement que γ t , ce qui implique qu'en pratique :

Ψ t = x 1/2 t γ t , (9) 
       dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x) t dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I) t , (10) où W 
(x) t , W ( 
A B. (11) 
iv α, quant à lui, est l'inverse de la variance stationnaire de x t . On sait empiriquement (voir [17]) que le temps de corrélation de x t est de l'ordre de la seconde et celui de γ t de l'ordre de la dizaine de milliseconde. On peut donc considérer que des ordres de grandeur représentatifs sont A = 1 Hz et B = 100 Hz.

Il est important de noter que pour caractériser la réectivité complexe Ψ t de la surface de la mer, trois processus sont nécessaires, x t , γ (R) t et γ (I) t , malgré que Ψ t soit bidimensionnel. 4 Inférences sur le clutter de mer Dans cette partie, nous présentons une contribution de notre recherche ciblant les radars à synthèse d'ouverture (RSO) [2], [10], [9]. Les RSO, aéroportés ou satellitaires, sont utilisés pour créer des images radars haute résolution de la terre ou de la mer. Pour ce faire, le RSO survole une zone et exploite le mouvement du porteur pour créer une antenne synthétique de grande dimension qui améliore la résolution en azimuth, grâce à un processus d'intégration de diérents pulses. Cette technique fonctionne grâce au fait que chaque point au sol qui est illuminé par le radar, l'est depuis une série de positions successives selon des points de vue diérents. Si le RSO permet d'obtenir des images de bonne qualité sur les zones terrestres, ce n'est pas toujours le cas pour les zones maritimes du fait du mouvement de la mer pendant le processus d'intégration, ce qui crée un ou [6], [7]. Nous n'avons pas travaillé strictement sur le RSO, mais plutôt considéré la situation plus générale d'un capteur mobile qui eectue des mesures du clutter de mer à des temps et positions diérentes (voir gure 2). Puisque le ou présent dans les images RSO de la mer s'explique par le mouvement de celle-ci, et donc par la variation de sa reéctivité pendant le processus d'intégration, nous proposons de synchroniser les diérentes mesures grâces aux probabilités de transitions des diérents processus aléatoires impliqués dans le clutter de mer. Si on considère par exemple v les deux premières mesures, on peut projeter la mesure au temps t 1 sur le temps t 2 grâce à la probabilité de transition. On obtient :

X(u 1 ) t 1 , X(u 2 ) t 2 → p X (u 1 ) t 2 = x | X (u 1 ) t 1 = X(u 1 ) t 1 , X(u 2 ) t 2 . (12) 
Nous avons posé et résolu les équations de Fokker-Planck associées respectivement à x t et γ (R) t (l'équation de Fokker-Planck de γ (I) t est identique à celle de γ (R) t ). Pour x t , nous avons prouvé que les probabilités de transitions vers le futur sont :

p(x t = x|x 0 = y) = +∞ n=0 αL α-1
n (αy)n! Γ(n + α) e -Ant e -αx (αx) α-1 L α-1 n (αx), (13) où les L α-1 n sont les polynômes de Laguerre et Γ la fonction gamma. Pour γ (R) t , nous avons prouvé que les probabilités de transitions vers le futur sont gaussiennes :

p γ (R) t = x|γ (R) 0 = y = 1 √ 2πv(t) e -1 2 (x-my (t)) 2 v(t) , (14) 
de moyenne :

m y (t) = ye -Bt/2 , (15) 
et de variance :

v(t) = 1 -e -Bt 2 . (16) 
Par homogénéité des processus x t et γ t , nous avons que ∀h > 0, p(

x t+h = x|x h = y) = p(x t = x|x 0 = y) et que p γ (R) t+h = x|γ (R) h = y = p γ (R) t = x|γ (R) 0
= y . De plus, nous avons également montré que par application de la formule de Bayes, les probabilités de transitions vers le futur sont identiques à celles vers le passé, i.e. :

p(x t-h = y|x t = x) = p(x h = y|x 0 = x) p(γ (R)

t-h = y|γ (R) t = x) = p(γ (R) h = y|γ (R) 0 = x). (17) 
Nous avons réalisé des simulations numériques avec le schéma d'Euler-Maruyama. En simulant de nombreuses trajectoires partant de la même condition initiale déterministe, nous obtenons des probabilités de transition numériques que nous comparons aux probabilités de transitions analytiques. Des simulations sont représentées gure 3 pour γ (R) t , avec la condi- tion initiale déterministe γ (R) 0 = 2. Les distributions analytiques et numériques concordent presque parfaitement. Nous observons la diusion progressive des probabilités de transition (variance qui augmente), jusqu'à la distribution asymptotique. Ceci permet d'armer que la prédiction sur la valeur future du clutter de mer étant donnée sa valeur présente devient de plus en plus imprécise quand l'échéance de la prédiction s'éloigne. Des simulations et observations similaires ont été faites pour x t .

Estimation des paramètres du clutter de mer

Nous avons noté dans la section 3 que le modèle de Field était paramétrisé par trois paramètres : A et α pour la SER x t , et B pour le speckle γ t . Nous nous intéressons ici à l'estimation de ces trois paramètres à partir de séries temporelles de x t , z t = |Ψ t | 2 et γ t .

Comme montré ci-dessous, l'estimation de α se fait sous l'hypothèse que le clutter de mer est ergodique, tandis que celle de A et B se fait par maximum de vraisemblance. 

Estimation de α

Il est possible de montrer que la distribution stationnaire (voir section 2) de x t est :

p(x t = x) = α α x α-1 e -αx Γ(α) , [START_REF] Balleri | Maximum likelihood estimation for compoundgaussian clutter with inverse gamma texture[END_REF] et que var(x t ) = 1/α pour tout t. On suppose observer une série temporelle x i aux temps t i = i∆t, avec i allant de 0 à n. En supposant que le processus aléatoire x t est ergodique, on obtient l'estimateur suivant pour α :

αx = 1 n∆t n-1 i=0 (x i -1) 2 ∆t -1 . ( 19 
)
On propose un autre estimateur de α à partir d'une série temporelle de l'intensité z t . Pour ça, on note que dans le modèle de Field, la distribution stationnaire de z t est :

p(z t = x) = 2b (ν+1)/2 x (ν-1)/2 Γ(ν) K ν-1 (2 √ bx). (20) 
En utilisant les relations entre les moments d'une variable aléatoire K-distribué (voir [17] p 110), on obtient l'estimateur :

αz = 2 n-1 i=0 z i ∆t 2 n-1 i=0 (z i -1) 2 ∆t - n-1 i=0 z i ∆t 2 . (21) 
Nous comprendrons à la section 7 en quoi avoir les deux estimateurs αx et αz est utile. vii 5.2

Estimation de A et B

Pour estimer A et B, nous utilisons le principe du maximum de vraisemblance, qui consiste à maximiser la vraisemblance d'une série temporelle par rapport au paramètre recherché.

Un processus aléatoire qui est solution d'une EDS (1) est un processus de Markov. Cette propriété peut être utilisée pour montrer que la vraisemblance (c'est à dire la distribution jointe) d'une série temporelle Xt i pour i allant de 0 à n s'écrit :

L = p(X t 0 = X0 ) N i=1 p(X t i = Xi | X t i-1 = Xi-1 ). (22) 
Le premier terme p(X t 0 = X0 ) est la distribution stationnaire pour la première valeur observée, tandis que les autres correspondent aux diérentes transitions. La vraisemblance est donc connue pour peu que la distribution stationnaire et les probabilités de transition le soient. Or, les probabilités de transition de x t et γ (R) t ont été calculées à la section 4. De plus, la distribution stationnaire de x t est donnée par l'équation [START_REF] Balleri | Maximum likelihood estimation for compoundgaussian clutter with inverse gamma texture[END_REF], et celle de γ (R) t

(ou γ (I) t ) est simplement : p γ (R) t = x = p γ (I) t = x = 1 √ π e -x 2 . ( 23 
)
Pour estimer A, on suppose α connu et on calcule la vraisemblance de la série temporelle xi , i = 0, 1, . . . , n. C'est une fonction de A qu'on maximise numériquement par rapport à A lorsque les probabilités de transition exactes (équation ( 13)) sont utilisées. En utilisant l'approximation du schéma d'Euler-Maruyama (voir section 2), on peut maximiser la vraisemblance analytiquement. Le paramètre estimé est alors solution du polynôme :

-

n i=1 α(x i-1 -1) 2 4x i-1 A 2 - n 2 A + n i=1 α(x i -xi-1 ) 2 4x i-1 ∆t = 0. (24) 
Nous avons testé une autre approximation plus élaborée que le schéma d'Euler-Maruyama, que nous appelons approximation de Nowman (voir [12]) mais qui s'est révélée sans grand intérêt pour x t . En eet, ses performances sont similaires à celles de l'approximation d'Euler-Maruyama mais sa complexité est supérieure.

Pour estimer B, nous pouvons également utiliser les probabilités de transition exactes de γ (R) t (équation (14)). Dans ce cas ci, elles sont strictement égales à l'approximation de Nowman, et la vraisemblance peut être maximisée analytiquement par rapport à B. Le B estimé est solution du polynôme suivant :

n 2 Y 3 - n i=1 γ(R) i-1 γ(R) i Y 2 + - n 2 + n i=1 γ(R) 2 i + γ(R) 2 i-1 Y - n i=1 γ(R) i-1 γ(R) i = 0, (25) 
tandis qu'en utilisant le schéma d'Euler-Maruyama, il est solution de :

-

n i=1 γ(R) 2 i-1 ∆t 4 B 2 - n 2 B + n i=1 γ(R) i - γ(R) i-1 2 ∆t = 0. (26) 
Nous avons testé numériquement la performance de nos estimateurs. Par exemple, pour A, nous avons considéré que sa valeur pouvait se situer entre 0.1 et 10 Hz. Pour chaque valeur dans {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nous avons généré N = 1000 trajectoires de la SER (avec viii α = 1), de durée 1 s chacune et avec ∆t = 0.001 s. On obtient N estimées Ã1 , Ã2 , . . . , ÃN , à partir desquelles le biais b(A) et l'écart type d'estimation σ(A) sont calculés. Les résultats sont représentés gure 4. On observe une croissance du biais et de l'écart type en fonction de A, et que les probabilités de transitions exactes donnent des meilleurs résultats que les approximations. Un travail similaire a été fait pour B, en considérant cette fois que sa valeur pouvait se situer entre 10 et 1000 Hz.

Malgré les meilleurs résultats des probabilités exactes observés à la gure 4, une analyse plus approfondie nous amène en fait à considérer que l'approximation d'Euler-Maruyama peut être utilisée de manière tout à fait satisfaisante, que ce soit pour A ou pour B. En eet, la diérence entre les estimées par les probabilités exactes et l'approximation d'Euler-Maruyama sont très faibles devant l'écart à la vraie valeur du paramètre. Il y a une très forte corrélation (trajectoire à trajectoire) de ces estimées, qui suggère qu'elles exploitent aussi bien l'une que l'autre l'information sur le paramètre contenue dans la trajectoire.

Dans le cadre d'un travail collaboratif avec Randolf Altmeyer (Université Humboldt de Berlin), nous avons proposé une méthode d'estimation alternative pour les paramètres A et B, basées sur l'analyse de la volatilité intégrée [START_REF] Aït-Sahalia | High-Frequency Financial Econometrics[END_REF] des processus x t et γ (R) t . La méthode est signicativement plus simple que le maximum de vraisemblance mais donne des résultats similaires. Ces travaux sont en annexe de la thèse. x Prise en compte de la présence d'une cible

Modèle avec cible

Il est possible d'inclure la présence d'une cible dans le modèle de Field. Deux modèles ont été proposés dans [4]. Dans le modèle Homodyned K (HK), la réectivité de la cible est une constante complexe ajoutée au clutter de mer. Si on dénote Ψ (HK) t la réectivité totale, on a :

Ψ (HK) t = Ψ (R) c + iΨ (I) c + x 1/2 t γ t , (27) 
où Ψ c = Ψ (R) c

+ iΨ (I) c est la réectivité de la cible. Le modèle Generalized K (GK), quant à lui, fait varier la réectivité de la cible avec la SER x t (see [4] p 71) :

Ψ (GK) t = Ψ (R) c + iΨ (I) c ηx t + x 1/2 t γ t , (28) 
où η est un facteur de couplage.

Nous avons montré dans les deux cas (HK et GK) qu'il était possible de réécrire les équations (10) 

  dx t dR t dI t   =      A(1 -x t ) -A+B 2 R t -Ψ (R) c + A Rt-Ψ (R) c 2xt 1 -1 2α -A+B 2 I t -Ψ (I) c + A It-Ψ (I) c 2xt 1 -1 2α      dt +       2Axt α 1/2 0 0 Rt-Ψ (R) c x 1/2 t A 2α 1/2 Bxt 2 1/2 0 It-Ψ (I) c x 1/2 t A 2α 1/2 0 Bxt 2 1/2          dW (x) t dW (R) t dW (I) t    . (29) 
Dans le cas GK, en notant de nouveau Ψ (GK) t = R t + iI t , nous avons montré que :

  dx t dR t dI t   =     A(1 -x t ) ηΨ (R) c A(1 -x t ) + R t -Ψ (R) c ηx t -A+B 2 + A 2xt 1 -1 2α ηΨ (I) c A(1 -x t ) + I t -Ψ (I) c ηx t -A+B 2 + A 2xt 1 -1 2α     dt +      2Axt α 1/2 0 0 Rt-Ψ (R) c ηxt x 1/2 t A 2α 1/2 + ηΨ (R) c 2Axt α 1/2 Bxt 2 1/2 0 It-Ψ (I) c ηxt x 1/2 t A 2α 1/2 + ηΨ (I) c 2Axt α 1/2 0 Bxt 2 1/2         dW (x) t dW (R) t dW (I) t    . (30) 

Estimation des paramètres de cible

Pour estimer le paramètre complexe Ψ c , nous avons supposé que trois séries temporelles étaient observées :

(x, R, Ĩ) = xk , Rk , Ĩk , k = 0, 1, . . . , n , xi où les mesures sont faites aux temps t k et où ∀k, t k -t k-1 = ∆t est une constante. La vraisemblance de (x, R, Ĩ) est alors :

L x, R, Ĩ; Ψ c = p ∞ Ψc n k=1 p (k) Ψc , (31) avec 
p ∞ Ψc = p Ψc ((x t 0 , R t 0 , I t 0 ) = (x 0 , R0 , Ĩ0 ))

= p ∞ Ψc (x 0 , R0 , Ĩ0 )

et p (k) Ψc = p Ψc (x t k , R t k , I t k ) = (x k , Rk , Ĩk ) | (x t k-1 , R t k-1 , I t k-1 ) = (x k-1 , Rk-1 , Ĩk-1 ) . ( 33 
)
Les distributions stationnaires/asymptotiques p ∞ Ψc peuvent être obtenues assez simplement à partir de celles de γ (R) Ψc , nous utilisons de nouveau le schéma d'Euler-Maruyama, qui permet d'approximer les probabilités de transition du processus (x, R, Ĩ) par des gaussiennes multidimensionnelles.

t , γ ( 
Nous avons montré qu'il était alors possible de maximiser la vraisemblance relativement à Ψ c . Dans le cas HK, on obtient des estimateurs de la forme :

Ψ(R) c, M L = f HK (x, R) Ψ(I) c, M L = f HK (x, Ĩ), (34) 
et dans le cas GK :

Ψ(R) c, M L = f GK (x, R) Ψ(I) c, M L = f GK (x, Ĩ). (35) 
Nous avons comparé numériquement les résultats des estimateurs par maximum de vraisemblance avec ceux d'estimateurs beaucoup plus simple basé sur la propriété E[Ψ t ] = 0 et supposant l'ergodicité de Ψ t :

Ψc, e = 1 

Certains résultats sont représentés gure 5. Dans les deux cas, HK et GK, nous avons simulé 1000 trajectoires de 1 s avec ∆t = 0.001 s en incluant une cible

Ψ c = Ψ (R) c = √ 10, et estimé Ψ (R) c
en utilisant les deux estimateurs (maximum de vraisemblance et ergodicité). La gure 5, représente sous forme d'un scatter plot les diérentes estimations en fonction du numéro de trajectoires. Nous voyons visuellement que l'estimateur par maximum de vraisemblance n'est pas meilleur que celui basé sur l'ergodicité pour le cas HK, tandis qu'il est bien meilleur dans le cas GK, à ceci près qu'il génère quelques données aberrantes.

Dans le cadre de notre travail collaboratif avec Randolf Altmeyer (Université Humboldt de Berlin), nous avons proposé une méthode d'estimation de Ψ c alternative, basées sur l'analyse de la volatilité intégrée [START_REF] Aït-Sahalia | High-Frequency Financial Econometrics[END_REF] de x t R t I t . La méthode est signicativement plus simple que le maximum de vraisemblance. Ses résultats sont équivalents à ceux du maximum de vraisemblance dans le cas GK, mais moindres dans le cas HK. Ces travaux sont en annexe de la thèse. Non-observabilité de x t

Nous avons présenté le modèle de Field dans la section 3 et expliqué que la reéctivité complexe de la surface de la mer est décrite grâce aux trois processus x t , γ (R) t et γ (I) t via l'équation :

Ψ t = x 1/2 t γ (R) t + iγ (I) t . ( 37 
)
Dans les sections 4 à 6, nous avons supposé que les séries temporelles de x t , γ 

xt = 1 B∆tN k∈∆t |∆ k Ψ| 2 , (38) 
où N est le nombre de timesteps dans la fenêtre ∆ t , c'est à dire le nombre d'incréments |∆ k Ψ| moyennés pour calculer xt . En faisant glisser la fenêtre ∆ t , on peut estimer x t pour tout t. Le problème de l'estimateur xt est qu'il n'est pas calculable en pratique parce que B n'est pas connu. Pour estimer B, on doit proposer un autre estimateur que le maximum de vraisemblance BML obtenu section 5 puisque x t , donc γ t , n'est pas observé.

Nous avons montré qu'il était pertinent de proposer l'estimateur suivant pour B :

BΨ = 1 m∆tN m i=1 k∈∆ i |∆ k Ψ| 2 , (39) 
où quelque soit i, ∆ i est une fenêtre centrée en t i et qui contient N incréments, et où m est le nombre de fenêtres. BΨ est calculable directement à partir de données observables, contrairement à BML . On obtient l'estimateur suivant (calculable sans connaître B) :

xt = 1 BΨ ∆tN k∈∆ |∆ k Ψ| 2 . ( 40 
)
Il s'ensuit l'estimateur suivant pour γ t :

γt = Ψ t x1/2 t . (41) 
Le seul degré de liberté laissé à l'utilisateur pour calculer xt est N , le nombre d'incréments par fenêtres. En s'appuyant sur [3] et sur des simulations numériques, nous avons montré que xiv le nombre optimal d'incréments (au sens de la minimisation de l'erreur moyenne quadratique) pouvait être approché par la formule suivante :

N opt = 0.64 12(α + 1) A∆t

1/2 , (42) 
qui dépend de A et α (inconnus, à estimer) et de ∆t (connu). Nous avons également proposé un autre estimateur de x t , plus simple et basé sur la série temporelle d'intensité {z t k , k = 0, 1, . . . , n}, avec z t k = |Ψ t k | 2 pour tout k :

xt = 1 N k∈∆t z t k . ( 43 
)
La gure 6 représente un exemple de trajectoire de x t simulée numériquement, comparée aux trois estimateurs proposés. Nous observons que xt et xt sont meilleurs que xt . Puisque seul xt est calculable en pratique (ici nous connaissions le vrai B puisque la trajectoire a été simulée), nous ne retenons que cet estimateur. Bien que xt et BΨ soient calculables à partir de Ψ t , il existe toujours un couplage (circularité) entre l'estimation de x t et celles de A et α, en raison du fait que la taille des fenêtres N opt dépend de A et α (à estimer). Nous proposons d'utiliser dans un premier temps l'estimateur αz (equation ( 21)) pour α (calculable à partir de données observées) et la valeur par défaut A = 5 Hz pour calculer N opt . Des premières estimations de x t et γ t sont alors calculées avec les équations [START_REF] Elfouhaily | A unied directional spectrum for long and short wind-driven waves[END_REF] et [START_REF] Elfouhaily | A critical survey of approximate scattering wave theories from random rough surfaces[END_REF]. A partir de xt , il est possible d'obtenir des estimations plus nes de A et α en calculant respectivement ÃML (estimateur par maximum de vraisemblance, section 5) et αx . On peut alors recalculer N opt avec ÃML et αx , recalculer xt et γt et réiterer.

La séquence d'estimateurs correspondante est représentée gure 7. Nous avons testé numériquement cette séquence d'estimateurs sur des trajectoires de Ψ t simulées avec des paramètres connus, et observé certains résultats qui ont nécessité une analyse approfondie. D'une part, nous avons remarqué qu'il était nécessaire de sous-échantillonner xt avant de calculer ÃML , en raison d'un phénomène de lissage lié à l'utilisation d'une fenêtre glissante pour le calcul de xt . D'autre part, la qualité de l'estimation ne peut pas uniquement être mesurée à la capacité des estimateurs à retrouver les vrais paramètres utilisés pour faire les simulations. Les estimateurs par maximum de vraisemblance sont par dénition optimaux dans le sens où ils maximisent la fonction de vraisemblance de xt et γt , et expliquent donc mieux les trajectoires observées en termes de probabilités de transition que n'importe quels autres estimateurs (y compris les vrais paramètres). Cette conclusion est consubstantielle à la non-observabilité de la factorisation de Ψ t par x t et γ t , et à la subjectivité de sa factorisation par xt et γt .

Conclusion

La télédétection en milieu maritime doit inévitablement s'accomoder de la présence du signal réechi par la mer, le clutter de mer, qui s'apparente à du bruit. Une connaissance ne de celui-ci est souhaitable quelque soit la nalité (détection, imagerie etc). Dans cette thèse, nous avons étudié le modèle de Field [4], qui a l'avantage de décrire le clutter de mer en termes de densités de probabilités, comme la K distribution qui était préalablement connue, tout en modélisant la dynamique du processus grâce au formalisme des équations diérentielles stochastiques.

Dans un premier temps, nous avons introduit les notions d'équation diérentielle stochastique, d'équation de Fokker-Planck et de probabilités de transition. Nous avons ensuite xvi présenté le modèle de Field en expliquant qu'il dérive du modèle de la marche aléatoire (population de diuseurs discrets) mais prend en compte la dimension temporelle grâce à un modèle de population pour le nombre de diuseurs et à des équations diérentielles stochastiques pour la phase des diuseurs.

Nous avons posé et résolu les équations de Fokker-Planck de x t et de γ t pour calculer leurs probabilités de transition vers le futur et le passé. Nous avons suggéré qu'il était possible d'utiliser ces probabilités de transition pour synchroniser des observations faites à des positions et temps diérents, comme c'est le cas dans l'imagerie Radar à Synthèse d'Ouverture (RSO). Ces résultats ont été publiés [15].

Nous avons montré qu'il était possible d'estimer les paramètres du modèle de Field, A, B et α, à partir de séries temporelles de x t pour A et α, et de γ t pour B. Nous avons obtenu deux estimateurs pour α, qui exploitent l'hypothèse d'ergodicité du clutter de mer, et des estimateurs par maximum de vraisemblance pour A et B. Ces résultats ont été également publiés [14].

Nous avons ensuite pris en compte la présence d'une cible, et montré qu'il était possible d'estimer les paramètres de la cible par maximum de vraisemblance en utilisant le schéma d'Euler-Maruyama pour approximer les probabilités de transitions présentes dans la fonction The general topic of our research is remote sensing in a maritime environment. Maritime surveillance, which we have just put forward, is a good example of a motivated application related to that topic. We can cite other ones like air space surveillance from a boat, oceanography, or sea ice monitoring. Amongst the possible types of sensors, we are interested in active radars (Radio Detection and Ranging). Radars emit electromagnetic waves with wavelengths which can range from a few millimeters to tens of meters depending on the type of radar. The radar waves interact with the environment (where the meaning is no longer ecological but refer to the surroundings of the radar), which scatters part of the waves in all directions. If a receiver located somewhere records the scattered waves in form of a digital signal, it is possible to process the signal in order to learn about the environment by inversion. Some radars are also able to produce images. If the RMS Titanic had been equipped with a radar (which was not possible since they have been mostly invented during World War II), it may have detected the iceberg and dodged it, saving thousands of lives in 1912, and millions of tears in 1997. The advantage of radars over e.g. optical sensors is that radar waves can penetrate through clouds (relevant if emitted from an airplane or a satellite). That the system is active is also an advantage since it can work day and night.

The particularity of radar remote sensing in a maritime environment, is that the sea surface receives and scatters part of the emitted radar waves (radar waves cannot penetrate deep into water). The contribution of the sea is therefore inevitably present in the recorded signals. If it is the sea itself which is studied, this is of course desirable. However, if the aim is to detect a boat, the sea surface contribution should ideally be ltered out.

The sea surface, despite some structure, is complex, dynamic, chaotic, unpredictable.

It has been shown that the radar echo from the sea surface, the reectivity, has a fractal dimension proportional to that of the sea surface [START_REF] Berizzi | Fractal Analysis of the Signal Scattered from the Sea Surface[END_REF]. This is a demonstration of the fact that the dynamic nature and unpredictability of the sea surface is transmitted to its reectivity.

For this reason, the sea surface reectivity is called sea clutter. The sea clutter carries information about the sea surface, which can be used to estimate the wind intensity, or sea surface waves with long wavelengths [START_REF] Gini | Texture Modeling and Validation Using Recorderd High Resolution Sea Clutter data[END_REF]. However, it is noise in the detection problem.

Since we must free ourselves of the hope that the sea will ever rest , we have to cope with the presence of sea clutter and develop signal processing algorithms accordingly. To do so, a good understanding and characterization of its features is necessary.

A rst approach is based on electromagnetic theory (starting from Maxwell's equations) and aim at giving analytical expressions for the radar waves scattered by the sea surface, in terms of integrals over the surface. Traditionally, it leads to the Stratton-Chu equations [START_REF] Stratton | Electromagnetic Theory[END_REF], [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance[END_REF], which is a coupled system of integral equations for the electric and magnetic eld. In practice, the system cannot be solved analytically for the sea surface. One either has to use numerical methods to solve the system [START_REF] Rylander | Computational Electromagnetics[END_REF], or to make approximations to simplify the equations, which leads to asymptotic models [START_REF] Pinel | Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic Models[END_REF] like the Kircho (tangent plane) approximation. However, from a signal processing point of view, both methods are quite limited. On one hand, numerical methods require very large computational power and time to solve the equations and obtain time series of sea clutter. On the other hand, asymptotic models usually include a statistical model for the sea surface (for example a power spectrum), which represents the sea surface at xed time but not its motion. Consequently, the temporal correlation of the sea clutter is lost.

A second approach is based on fractal analysis of sea clutter. It summarizes the complexity of sea clutter with mainly one quantity: the fractal dimension, which has the merit of being computable directly from time series. For example, it is shown in [START_REF] Berizzi | Fractal Analysis of the Signal Scattered from the Sea Surface[END_REF] that under some conditions, the fractal dimension of sea clutter is equal to the fractal dimension of the sea surface minus one. To our best knowledge, [START_REF] Lo | Fractal characterisation of sea-scattered signals and detection of sea-surface targets[END_REF] was one of the rst papers on the subject of fractal analysis of sea clutter, and it proposed to use it for target detection. For more on the subject, see e.g. [START_REF] Lo | Fractal characterisation of sea-scattered signals and detection of sea-surface targets[END_REF], [START_REF] Berizzi | Fractal Analysis of the Signal Scattered from the Sea Surface[END_REF], [START_REF] Berizzi | Sea-wave fractal spectrum for SAR remote sensing[END_REF], [START_REF] Martorella | On the Fractal Dimension of Sea Surface Backscattered Signal at Low Grazing Angle[END_REF], [START_REF] Luo | The Fractal Properties of Sea Clutter and Their Applications in Maritime Target Detection[END_REF], [START_REF] Jayaprakash | Small Target Detection Within Sea Clutter Based on Fractal Analysis[END_REF]. Fractal analysis certainly has valuable information to provide, but one of its drawback it that it does not have predictive power.

A third approach is statistical analysis and describes the sea clutter in terms of probability distributions. Statistical models have the advantage of oering (some) predictability power and lead quickly to target detection (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]). A rst model is the Gaussian model for sea clutter (also called Rayleigh). It can be derived analytically by considering that the sea surface is approximated by a constant population of discrete scatterers. This is known as the random walk model [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF], here with xed step number (i.e. number of scatterers in the population). Under some assumptions, it can be proven that, as the number of scatterers goes to innity, the joint distribution of the real and imaginary parts of the sea clutter becomes Gaussian, the modulus of the clutter becomes Rayleigh-distributed and the squared modulus of the clutter becomes exponential-distributed. It was soon observed that the Gaussian model was a bit simplistic, and more advanced models were proposed.

One has particularly gained respectability: the K distribution [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF], which is a probability distribution for the squared modulus of the sea surface complex reectivity (sea clutter).

The letter K refers to the modied Bessel function of the second kind. Physically, it comes again from an approximation of the sea surface by discrete scatterers. However, it allows for the population to uctuate randomly, i.e. the number of discrete scatterers contributing to the scattered signal is itself a random variable (following a negative binomial distribution). This is known as the random walk model with uctuating step number. The K distribution is then obtained by making the average number of scatterers go to innity. Allowing for step number (population) uctuations is a way to modulate the local average power of the sea clutter and accounting for longer timescale phenomena (swell for example). Note that the K distribution has been extensively validated by real data (again see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] and references therein).

Even though its development was motivated physically by the presence of two time scales (the Gaussian clutter, and the local modulation of the power), it is a bit misleading to talk about time for the K distribution. Indeed, it is a static model, in the sense that it is valid for any xed time t. If t is arbitrary and z t denotes the squared modulus of the sea clutter at time t, then z t ∼ K distribution. However, if one takes two dierent times t 1 and t 2 , then the K distribution is unable to express the correlation between z t 1 and z t 2 , which could for example be represented by the joint distribution of z t 1 and z t 2 . The staticity may be the most notable limit of the K distribution.

A dynamic extension of the K distribution has been developped by T. R. Field [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF],

referred to as Field's model hereafter. It is also based on the random walk model, except that it models the dynamics of the scatterers (not only their one time distributions). Field's model is promising for two reasons: rst, it is an extension to the K distribution and as such inherits all its advantages, and second it is dynamic and therefore relevant to model a dynamic phenomenon (sea clutter are, for example by looking at numerical schemes to solve them. However, their rigorous denition is based on Itô integration theory of stochastic processes (see [START_REF]Stochastic Dierential Equations: An Introduction with Applications[END_REF], [START_REF] Laleuf | Processus et intégrales stochastiques[END_REF], [START_REF] Gall | Mouvement brownien, martingales et calcul stochastique[END_REF]) and requires notions which are relatively advanced compared to the usual notions of the signal processing community. We can cite an example in which the motion of the sea surface has revealed problematic:

Synthetic Aperture Radar imaging (SAR) [START_REF] Bamler | SAR Data Acquisition and Image Formation[END_REF], [START_REF] Massonet | Imaging with Synthetic Aperture Radar[END_REF], [START_REF] Maitre | Processing of Synthetic Aperture Radar (SAR) Images[END_REF]. In SAR, a radar is xed on an airplane or a satellite and emits radar waves toward the ground or sea. Because the radar has a large aperture in the direction of ight, every point is revisited multiple times by the radar as the satellite or airplane passes by. SAR algorithms exploit this fact by integrating the measures made at dierent positions, and as a consequence dramatically improve the azimut resolution of the radar image. If this technique as proven useful on land, there is evidence that it is not as adequate over the sea because of the motion of the sea surface during the integration, causing a blurring eet [START_REF] Mccandless | Synthetic Aperture Radar Marine User's Manual[END_REF], [START_REF] Kanevsky | Radar Imaging of the Ocean Waves[END_REF]. This example is a strong motivation for the following work, because it is directly related to the dynamicity of the sea surface and therefore of the sea clutter.

In this thesis, we propose to study Field's model from a remote sensing and signal processing perspective with a broad view, not limited to SAR. We aim at clarifying it by giving more details than [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] does, and work our way toward making it an applicable and profitable tool for sea clutter time series analysis. For example, we compute the probability of transition from z t 1 to z t 2 and explain that it can be used to infer z t 2 given that only z t 1 is observed. Taking into account a current observation to infer a future one was not possible with the K distribution because of its staticity. Generally speaking, we have an engineer approach, in the sense that mathematical rigour has sometimes to be set aside for making progress. Bearing this in mind, we explain how Field's model represents the sea clutter and derive results which are necessary to interpret and analyse data in the light of Field's model.

In the rst chapter, we introduce basic electromagnetism theory and explain the general situation of radar remote sensing of the sea surface. We dene classical vocabulary from the radar world, and present sea clutter. In the last section, we detail the random walk model/K distribution.

The second chapter is a mathematical parenthesis, where we dene all the notions necessary to understand stochastic dierential equations, and more generally to understand the rest of the thesis. It may seem overburdened, but we think that, at times, precise denitions are helpful if not indispensable. Besides stochastic dierential equations, we dene a second important concept at the heart of our work: transition probabilities.

At this point, we know what sea clutter, the random walk model and stochastic dierential equations are. We are in a place where it is possible to introduce Field's model, which is the purpose of the third chapter. We present it in a dierent, hopefully more pedagogic way than it is in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]. We explain that in Field's model, the complex reectivity Ψ t (sea clutter) can be factorized as

Ψ t = x 1/2
t γ t , where x t is the radar cross section and γ t the (complex) speckle. Both solve dierent SDE, parameterized by two parameters A and α for x t and one parameter B for γ t . The model has essentially two timescales carried respectively by x t (slow local power modulation) and γ t (fast phase decoherence), and which are retrieved in the fact that A B. In the fourth chapter, we introduce and solve the Fokker-Planck equations for x t and γ t , to get their transition probabilities. Using numerical simulations, we illustrate the progressing spreading (diusion) of the transition probability starting from a dirac initial condition. We also compute the transition probabilities of other processes related to the sea clutter, such as z t = |Ψ t | 2 . In this chapter, the transition probabilities are viewed as a mean to predict future (or past) values of the sea clutter given a present time observation. We argue that this opens the possibility of synchronizing measurements made at dierent possitions and times, as this is the case in Synthetic Aperture Radar imaging.

In the fth chapter, we derive maximum likelihood estimators of A and B from nite duration discrete time series of x t and γ t respectively, and ergodicity-based estimators for α. We use numerical simulations to assess and compare the performance of the estimators. The maximum likelihood estimation of A and B requires transition probabilities to compute the likelihood functions. Naturally, we use the exact transition probabilities obtained in the fourth chapter, but also compare the results to two approximations. In particular, we show numerically that using Gaussians to approximate the transition probabilities is completely satisfying in our context.

In the sixth chapter, we adapt Field's model to account for the presence of a target either with constant reectivity (homodyned K scattering, HK), or with a reectivity modulated by x t (generalized K scattering, GK). In both cases, we derive SDE for the sea + target reectivity, and use Euler-Maruyama's scheme to approximate the transition probabilities.

We compute the likelihood of a time series and derive maximum likelihood estimators for the target parameters, which are tested and approved numerically. We show that the maximum likelihood approach to estimating the target parameter is especially valuable in GK scattering.

In the seventh chapter we address an issue which was disregarded so far: the nonobservability of x t , and therefore γ t , since in practice a radar can observe Ψ t but not x t and γ t separately. Using the timescale dierence between x t and γ t , we derive an estimator for x t based on observable data. To connect with the fth chapter, a sequence of estimators for A, B, α (clutter parameters), x t (radar cross section) and γ t (speckle) is proposed and tested numerically. We show that bayesian estimation of the clutter parameters is straightforward and we explicit two methods based on Field's model for target detection.

Finally, we conclude and give directions for future research.

Chapter 1

Sea clutter

In this chapter, we dene the sea clutter and present the random walk model. The term sea clutter is truly used for the rst time in section 1.2.6 and refer to the radar signal scattered by the sea surface. Since radar waves are electromagnetic waves (EM waves), we rst present some basic elements of electromagnetism in section 1.1. In section 1.2, we introduce the general context of radar remote sensing of the sea surface and dene the complex reectivity.

In section 1.2.6, we see with real data that the sea surface complex reectivity looks like noise at rst sight, hence the term sea clutter. We present the Stratton-Chu equations for the scattered electromagnetic eld. Because we have a signal processing point of view, we choose to discard them due to their relative complexity compared to other models. Once we have observed the stochastic nature of the sea surface reectivity and renamed it sea clutter, we present the random walk model in section 1.3. It is the rst building block toward a fully dynamic stochastic model as exposed in chapter 3 (Field's model).

Basics of Electromagnetism

In this section, we introduce elements of electromagnetic theory which are useful to understand the physical basis of radar remote sensing: Maxwell's equations, polarization for plane EM waves, and the scattering cross section for spherically decaying EM waves. Only monochromatic EM waves are mentionned. Refer to [START_REF] Griths | Introduction to Electrodynamics[END_REF] for a detailed account of the basics of electromagnetism.

Maxwell's equations

Let E be the electric eld and B the magnetic induction. Maxwell's equations form a coupled systems of dierential equations for E and B:

∇ • E = ρ 0 , (1.1) ∇ • B = 0, (1.2) 
∇ × E = -∂ B ∂t ,

(1.3) ∇ × B = µ 0 J + ε 0 ∂ E ∂t . (1.4)
∇ is the nabla operator, ρ is the density of electric charge (charge per unit volume), J is the density of electric current (current per unit area), 0 is the electric permittivity of free space, and µ 0 is the magnetic permeability of free space. c is the speed of light in free space (c = 299 792 458 m/s). There is a well-known relation:

c = 1 √ µ 0 0 . (1.5)
In a material, it is convenient to dene D = 0 E the electric displacement ( 0 being the permittivity of the medium) and H = 1 µ 0 µ B the magnetic eld (µ 0 µ being the permittivity of the medium) . Then the macroscopic Maxwell's equations can be written:

∇ • D = ρ, (1.6) 
∇ • B = 0, (1.7) 
∇

× E = - ∂ B ∂t , (1.8) 
∇ × H = J + ∂ D ∂t .

(1.9)

Polarization

A special solution of the Maxwell's equations is the plane monochromatic wave propagating in some direction z. In the orthonormal basis ( x, y, z), the electric eld is represented by

E x E y E z      E x (z, t) = E 0x cos(ωt -kz + φ x ) E y (z, t) = E 0y cos(ωt -kz + φ y ) E z (z, t) = 0.
(1.10)

In complex notation: -kz+φy) .

E x (z, t) = E 0x e i(ωt-kz+φx) E y (z, t) = E 0y e i(ωt
(1.11)

If φ x is used as a reference phase, this can be further denoted:

E x (z, t) E y (z, t) = E 0 e i(ωt-kz+φx) V x V y .
(1.12)

V x V y is the normalized Jones vector. Table 1.1 gives well-known examples of Jones vector, with the corresponding polarization. We will mostly refer to linear polarization in this thesis.

However, there is no loss of generality since it is always possible to decompose an elliptically polarized EM wave into a sum of two linearly polarized waves. Two directions for linear polarization are usually referred to in radar remote sensing (section 1.2): horizontal (H) and vertical (V). They are represented in gure 1.1.

If the EM wave propagate in the n direction ( n = z above), it can be shown that E = E x E y E z , B = B x B y B z (complex representations) and the direction prop- agation n (for example z above) are related by:

B = 1 c n ∧ E.
(1.13)

Polarization state

Normalized

Jones vector Representation

Horizontal linear

1 0 Vertical linear 0 1 Linear at +45 • 1 √ 2 1 1
Linear at -45 It means in particular that E and B lie in the plane perpendicular to n, such that only two coordinates are necessary to describe them. It also means that B is determined by E and k, so we only need to care about E.

• 1 √ 2 1 -1 Right circular 1 √ 2 1 i Left circular 1 √ 2 1 -i

Power and energy

One can compute the power transported by an EM wave in a vacuum by introducing the Poynting vector:

S = E ∧ B µ 0 . (1.14)
S has the unit of Watts/m 2 . It gives the instantaneous (oscillates at the time scale of the EM wave) power per unit surface transported by the EM wave, in the direction of propagation.

For directions other than the direction of propagation, one shall multiply equation (1.14) by the cosine of the angle between the direction of propagation and the direction of computation of the ux. For a plane linearly polarized monochromatic wave propagating in free space, the time average (over one oscillation period) of the amplitude of the Poynting vector is:

S = 1 2η 0 |E m | 2 , (1.15) 
where η 0 = cµ 0 is the impedance of the transmission medium (vacuum here), and where the electric eld is assumed to be:

E( r, t) = E m cos(ωt -k. r -φ) u. (1.16)
u is the polarization direction, and k is the wave vector, which points in the propagation direction. Equation (1.15) gives the transmitted power per unit surface area, in Watts/m 2 .

We now want to dene the notion of scattering cross section. To do so, we consider an emitter which emits spherical monochromatic EM waves. We assume that the emitter is at a distance R from an object, and that R is large enough to allow us to locally approximate the EM waves by linearly polarized plane waves. The object is illuminated by the EM waves and scatters it. A part of the scattered waves are scattered back to the receiver. For simplicity, we consider that the receiver and emitter are at the same distance from the object. The total power received by an object of surface s oriented perpendicular to the wave propagation direction:

P r = s 2η 0 R 2 |E m | 2 .
(1.17)

The R 2 coecient is for the geometric decay of the spherical wave, but locally, we use equation (1.15) for the average power carried by a plane wave. Figure 1.2 illustrates very well why the received power evolves as 1 R 2 . This attenuation, for spherical waves, is purely geometric and corresponds to the spreading of the constant total power (or intensity) over the surface of a sphere, which grows as R 2 . If the object scattered all the power isotropically, then the backscattered power per unit surface would be:

Π s = 1 4πR 2 P r = 1 η 0 8πR 4 s|E m | 2 . (1.18)
Then s can be retrieved by:

s = η 0 8πR 4 Π s |E m | 2 .
(1. [START_REF] Bamler | SAR Data Acquisition and Image Formation[END_REF] In equation (1.19), s is the surface of the object projected perpendicular to the direction of propagation of the incident waves. For objects which scatter the EM waves anisotropically, we cannot relate directly the surface of the object to the incident and scattered elds, but we can dene the scattering cross section as:

σ = η 0 8πR 4 Π s |E m | 2 .
(1.20)

Because the object is anisotropic, Π s and therefore σ depend on the scattering direction. σ is the surface that the scattering object should have, if the received power had been scattered isotropically by it. We shall put equation (1.20) in a more familiar form. It is often assumed that we start directly with the incident power per unit surface (without mentioning the emitted EM wave and its spherical spreading). In our case, the incident power per unit surface is:

Π i = 1 2η 0 |E m | 2 R 2 .
(1.21)

In terms of Π i , the scattering cross section can be written:

σ = 4πR 2 Π s Π i .
(1.22)

A radar system (introduced in the next section) emits electromagnetic waves with some linear polarization u. Let denote E in the incident electric eld. The backscattered EM waves have arbitrary polarization, but the receiver projects the waves on some observation polarization v. Let denote E re the received electric eld. The scattering cross section is then:

σ( u, v) = 4πR 2 E re . v E in . u . (1.23)
For homogeneous surfacic objects, and in particular if they are large (such as the sea surface), it is useful to dene the scattering cross section per unit surface of the object:

σ surf ( u, v) = σ( u, v) A , (1.24) 
where A is the area of the object.

The scattering cross section of an object depends on many parameters: the geometry of acquisition (see also gure 1.7), the polarization, the frequency, the shape and nature of the object etc.

Radar remote sensing of the sea surface

In this section, we present qualitatively the main situation of interest in this thesis: radar remote sensing of the sea surface. We expose the most important features of radar systems from our time series signal processing point of view. The general situation is represented in gure 1.3: a radar emits EM waves towards its surrounding environment, which scatters part of the EM waves to a receiver. The scattered signal contains information about the environment. The challenge is to process the signal correctly to extract that information.

It is an act of remote sensing of the environment, which is usually done from the coast, a plane, or a satellite when the sensed environment is the sea surface (gure 1.3).

Radar acquisition chain

One can distinguish two types of radar congurations: monostatic and bistatic radars [START_REF] Skolnik | Radar Handbook. Electronic engineering series[END_REF].

Only the monostatic conguration appeared in gure 1.3. In both cases, there is an emitter, which emits electromagnetic waves (EM waves) toward the object under study, and a receiver, which can receive the direct propagation of the emitted signal (which is of limited interest), and the EM waves scattered by the object. This second contribution is what we are interested

Coastal radar

Satellite radar

Airborne radar

Figure 1.3: Coastal, airborne, and satellite radars. Extracted from [16].

in. In the monostatic conguration, the emitter and receiver are at the same position, while they are at dierent positions for the bistatic conguration. Figure 1.4 represents the dierent components of a bistatic radar acquisition chain in a maritime environment, where the scattering `objects' can be the sea and/or a boat (possibly a whale, and emerged submarine etc. This is left to the reader's imagination). We will consider that the nal product of this chain is the received signal.

Considerable work has been, and can still be done on each of the yellow and green boxes. We will clarify the relation between the transmitted and received signals through Field's model, and thanks to its simplicity, we will show that it leads to developments in the postprocessing phase (blue box). We will often simulate numerically what can be interpreted as the received signal, i.e. the output of the acquisition chain. 

Geometry of acquisition

The basic geometry of acquisition of a monostatic radar is represented in gure 1.5. The antenna (upper left) is rectangular and emits EM waves in all directions but anisotropically.

In the direction given by the angles yx and zx , the antenna gain is ([16] p 27):

σ x (y x , zx ) = S X sinc π d z λ 0 k y sinc π d y λ 0 k z .
(1.25) d y and d z are the dimensions of the antenna in the ŷx and ẑx directions, S x = d y d z is the area of the antenna, λ 0 is the carrier wavelength and k y and k z are given by: k y = cos(y x ) sin(z x ) k z = sin(y x ).

(1.26)

Equation (1.25) denes the radiation pattern. Though in theory this equation gives a non zero power in all directions, in practice we consider that only the region for which the gain relative to the maximum is greater than -3 dB, equivalent to a factor 0.707. It denes the ellipse-like region in gure 1.5, called the footprint. The size of the footprint is ∆d r in the x direction and ∆d az in the ŷ direction. ∆d r and ∆d az are respectively the ground range resolution and azimutal resolution. In gure 1.5, θ i is the incidence angle and π 2 -θ i is the grazing angle. It will be noticed in section 1.2.6 that the characteristics of the EM waves scattered by the sea surface depend on the grazing angle.

The emitted signal

We have seen in the previous section that the EM waves emitted by a radar is spatially spread according to some radiation pattern. In a solid angle where the radiation pattern is almost constant, the power of the EM waves decays geometrically as 1 R 2 , like spherical waves.

If a large R is xed, the EM waves received by an object have decayed like a spherical wave, Figure 1.5: Geometry of radar acquisition featuring the antenna footprint and azimutal and ground range resolution. Extracted from [16].

but are locally plane and linearly polarized (section 1.1.2). In the direction of polarization, the electric eld is simply E(t) (one dimensional). At emission, the polarization is usually either H or V. E(t) is not stricly monochromatic (i.e. a sinusoid). However, it is usually narrowband, i.e. its frequency content is centered around a carrier frequency f 0 and has a spread ∆f such that ∆f f 0 . Norms exist, which dene frequency bands for radar waves.

A commonly used norm is the Institute of Electrical and Electronics Engineers (IEEE) norm, depicted in table 1.2. Various wave forms are typically used: truncated sinus, chirp, frequency-modulated continuous-wave (FMCW) etc. A pulse is one short group of waves, with a sinus or chirp (or else) waveform. For example, the truncated sinus reads (in complex notations):

E sin, f 0 X (t) = E 0 e j2πf 0 t 1 -T X 2 , T X 2 (t), (1.27) 
where 1 is the indicator function, and T X is the pulse duration. The chirp reads:

E chirp, f 0 , ∆f X (t) = E 0 e j2π f 0 + ∆f 2T X t t 1 -T X 2 ,
T X 2

(t).

(1.28)

The instantaneous frequency of the chirp is the derivative of its instantaneous phase (over 2π), i.e.:

f (t) = f 0 + ∆f T X t.
(1.29)

Therefore, the chirp in equation ( the chirp is much lower in real application. For example, for satellite remote sensing, [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data[END_REF] quotes a value of 5.3 GHz for f 0 , a frequency modulation rate of 0.5 MHz/µs, and a pulse duration of 40 µs. The resulting ∆f is: ∆f = 0.5.10 6 × 40.10 -6 = 20 MHz, (1.30) which is only a small fraction of the carrier f 0 = 5.3 GHz. The advantage of using a chirp, is that for equal T X , it can lead to much better range resolution that the sinus waveform by use of matched ltering (see [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data[END_REF]). The number of pulses per second that a radar emits is the pulse repetition frequency (PRF). The order of magnitude of the pulse duration T X is tens of µs (10 -6 s), while the order of magnitude of the PRF is 1000 Hz for satellite and airborne applications (see [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data[END_REF]), i.e. one thousand pulses per second.

When the phase of subsequent pulses is controlled, the radar is said to be coherent.

Otherwise, it is incoherent.

The received signal

The complex reectivity Let us denote E X (t) the emitted signal (a pulse, or a sequence of pulses for example), which corresponds to the component of the electric eld along its direction of polarization. At reception, we choose an observation polarization direction, usually either H or V. Since there are two options at emission (H or V) and two at reception (H or V), there are four channels:

HH, VV, VH, HV, where the rst letter is for emission and the second for reception. Under the narrowband approximation, it is assumed that the received signal is in the form:

E R (t) = Ψ(t)E X (t -τ ).
(1.31) Ψ(t) is a complex coecient which accounts for phase and amplitude changes. It is called the complex reectivity. The reectivity depends on the chosen emission and reception polarizations. Therefore, it should ideally be written with a subscript or a superscript to indicate which channel it is for: Ψ(t) (HH) , Ψ(t) (HV ) etc. τ is the delay. It is a fundamental assumption of this thesis that the scattered signal is of the form of equation (1.31). Ψ(t) evolves much slower than E X (t), which, insides a pulse, oscillates at the frequency of the carrier. Physically, Ψ(t) corresponds to the slow (compared to the carrier wave) variation of the scattering object reectivity. It remains approximately constant over a pulse duration.

If we consider one chirp centered at time t c , we have:

E X (t) = E chirp, f 0 , ∆f X (t -t c ), (1.32) 
and

E R (t) = Ψ(t c )E chirp, f 0 , ∆f X (t -t c -τ ). (1.33) 
Let us consider a train of n + 1 chirps where the k-th chirp is centered at time t k :

E X (t) = n k=0 E chirp, f 0 , ∆f X (t -t k ).
(1.34)

Under the assumption that the delay of the k-th pulse is τ k , the scattered signal is:

E R (t) = n k=1 Ψ(t k )E chirp, f 0 , ∆f X (t -t k -τ k ).
(1.35)

Equation (1.35) is even a strongest statement than equation (1.31), but we adopt it as well.

It says that the chirps are all delayed by the some constant, or average τ , and that each of them is multiplied by some complex coecient Ψ(t k ). We write Ψ(t k ) = Ψ t k to synchronize with the notations adopted from chapter 3 on. The discrete time series {Ψ t k , k = 0, 1, . . . , n} is the object of study of our thesis. In fact, Ψ t k is retrieved only if the radar is coherent (pulse to pulse phase is controlled). If the radar is incoherent, we can retrieve only |Ψ t k |.

The need for an adequate statistical model of Ψ t when it is for the complex reectivity of the sea surface is further explained in section 1.2.6.

What is the average modulus of Ψ t ? We understand that the average modulus of Ψ t is much lower than one, i.e. the scattered wave has much weaker amplitude than the emitted wave. This is due to the geometric spreading of the energy described in section 1.1.3, the atmospheric attenuation, and the scattering characteristics of the object (the sea surface for us, and possibly a boat). In section 1.1.3, we dened the concept of scattering cross section for monochromatic waves, which we now call the radar cross section (RCS). The RCS is proportional to the average scattered power (equation (1.22)). It is important to mention that it is dependent to both the incident and observation directions. In gure 1.7, the incident EM wave propagates locally (close to the scattering object) in the direction rx .

It is polarized linearly in the plane ( ĥi , vi ). It is then scattered in all directions, but we only observe the eld scattered around the direction -r r . The RCS of the scattering object depends on rx and rr , the illumination and observation directions σ = σ(r x , rr ). The average value of Ψ t is proportional to the RCS: waves [16].

Ψ t ∝ σ(

The Doppler eect

If the scattering object and radar have a relative motion, the scattered waves may be subject to the famous Doppler eect. Due to the low velocities (relative to the speed of light) involved in radar remote sensing of the sea surface, we can neglect relativistic eects and make the galilean approximation.

Assume that the radar and the object have a relative motion given by the velocity vector V and that their relative position vector is r = -r(t) u r ( u r points from the object to the radar). We have: dr(t) dt = V . u r .

(1.37)

For a monostatic radar, the time derivative of the delay τ is:

dτ dt = 2 V . u r c 0 , (1.38) 
where the 2 factor is due to account for the round trip of the EM waves. If a element of wave is emitted at time t and another one at time t + δt, then the dierence in their travel times is: 

δτ ≈ dτ dt δt = 2 V . u r c 0 δt. ( 1 
dτ dt T c , (1.40) 
so the pulse duration at reception is:

T R = T c + 2 V . u r c 0 T c = ρ Doppler T c , (1.41) 
with ρ Doppler = 1 + 2 V . ur c 0

. Therefore, if V . u r is negative (radar and object getting closer), the pulse is compressed. We now look at the frequency of the oscillations within the pulse. At emission, two successive peaks are separated by the time interval T 0 = 1/f 0 . At reception, they are received with a delay dierence of:

dτ dt T 0 , (1.42) 
such that the apparent period at reception is:

T D = T 0 + 2 V . u r c 0 T 0 .
(1.43)

The apparent frequency at reception is therefore:

f D = 1 T 0 + 2 V . ur c 0 T 0 = f 0 1 + 2 V . ur c 0 = f 0 c 0 c 0 + 2 V . u r .
(1.44)

If the radar and the object are getting closer, the denominator is reduced and the frequency f D is larger than f 0 (and inversely if they are drifting apart). Figure 1.8 illustrates these two components of the Doppler eect: pulse compression (or dilatation) and frequency shift.

We will see in section 1.3 that it is relevant to approximate the sea surface by a population of discrete scatterers. In the case of airborne or satellite radar remote sensing, the uniform motion of the aircraft or satellite relative to the scatterers implies a large Doppler shift of the scattered wave frequency, while for a coastal radar, this shift (due to the radar motion) is zero. The motion of the scatterers themselves also come into play and explains that the scattered wave spectrum spreads around its mean value. 

Synthetic Aperture Radar imaging

Now that we are a bit accustomed with the basic radar theory, we can move to the subject of synthetic aperture radar imaging (SAR imaging). Our presentation is extremely concise. We aim at giving an idea of how it works, essentially because it could be one possible application of the work developped in this thesis (see chapter 4). For readers interested in the theory of SAR imaging, see [START_REF] Maitre | Processing of Synthetic Aperture Radar (SAR) Images[END_REF], [START_REF] Massonet | Imaging with Synthetic Aperture Radar[END_REF], [START_REF] Bamler | SAR Data Acquisition and Image Formation[END_REF]. Uncountably many other books exist on the topic and the reader could refer to any of them.

Synthetic Aperture Radar (SAR) imaging consists in creating a radar image using algorithms to dramatically improve the azimut resolution. It can be used for airborne and satellite radar remote sensing, i.e. when the platform is moving relative to the scene. In section 1.2.2 and gure 1.5, we saw that the antenna emits radar waves mainly in preferred directions (due to the radiation pattern) which makes a footprint of size ∆d r in ground range and ∆d az in azimut. Improving the range resolution (slant range or ground range) is immediate: T X being the duration of a pulse, any two objects separated in ground range by more than T X 2c 0 sinθ i can be distinguished (we remind that θ i is the incidence angle). It is possible to do better than that using matched ltering, if for example the pulse is a chirp. However, it is more complicated to improve the azimut resolution ∆d az . We can do it though using SAR, which makes use of the fact that due to the width ∆d az of the radiated beam, a point P of the environment is illuminated for some time, and receives and scatters back several subsequent pulses. Roughly speaking, integrating theses pulses can lead to a dramatic compression of ∆d az into a new azimut resolution dr az . dr az is obtained synthetically (integration of the pulses) and corresponds theoretically to the azimut resolution of a radar with a much narrower aperture than the true radar. We can understand why the name synthetic aperture radar. The geometry of acquisition for an airborne radar is represented in gure 1.9. The radar radiates to the lower right relative to the direction of ight ŷ.

For the sake of the presentation, we go back and write a pulse as: E X (t) = µ(t)e j2πf 0 t , (1.45) in order to put the carrier wave e j2πf 0 t in factor and let the pulse have an arbitrary waveform.

In baseband, it is simply: E X (t) = µ(t), (1.46) where we keep the same notation E X for simplicity. It is immediate that equations (1.27) and (1.28) can be rewritten in the form of equation (1.45). The received signal is: E R (t) = Ψµ(t -τ )e j2πf 0 (t-τ ) = Ψµ(t -τ )e j2πf 0 t e -j2πf 0 τ = E X (t -τ )e -j2πf 0 τ , (1.47) or in baseband:

E R (t) = Ψµ(t -τ )e -j2πf 0 τ = E X (t -τ )e -j2πf 0 τ . (1.48)
Ψ is the complex reectivity of the object taken at a relevant time. Let P = (x P , y P , 0) be an observed point, and (0, V X t, h) the coordinates of the radar as a function of t. Under the locally at Earth approximation, the distance between the radar and P is:

r(t) = x 2 P + (y P -V X t) 2 + h 2 = r 2 0 + (y P -V X t) 2 , (1.49) 
with r 2 0 = x 2 P + h 2 0 , the distance of closest approach (gure 1.9). If a pulse (number k) is emitted at time t k , from equation (1.48) the received signal in basedband is:

E R (t k + t + τ (t k )) = Ψ t k E X (t k + t)e -j2πf 0 τ (t k ) . (1.50)
We take the reectivity at time t k but it could be taken at time t k + τ (t k )/2 if τ (t k ) is not negligible relative to the time scale of the reectivity. The delay now depends on t k and we have:

τ (t k ) = 2r(t k ) c 0 , (1.51) 
such that:

E R (t k + t + τ (t k )) = Ψ t k E X (t k + t)e -j 4π λ 0 r(t k ) .
(1.52)

We assume that y P = 0, in which case r 0 is reached at t = 0. We have r(t) = r 2 0 + V 2 X t 2 . The second order expansion of r(t k ) gives:

r(t k ) ≈ r(0) + ∂r ∂t (0)t k + 1 2 ∂ 2 r ∂t 2 (0)t 2 k .
(1.53)

Since we have: 

∂r ∂t (t) = V 2 X t V 2 X t 2 + r 2 0 = V 2 X t r(t) (1.54) ∂ 2 r ∂t 2 (t) = V 2 X r(t) -∂r ∂t (t)V 2 X t r(t)
r(t k ) ≈ r 0 + 1 2 V 2 X t 2 k r 0 .
(1.56)

Injecting (1.56) into (1.52), we get:

E R (t k + t + τ (t k )) = Ψ t k E X (t k + t)e -j 2π λ 0 V 2 X t 2 X r 0 -j 4π λ 0 r 0 .
(1.57)

We will not go further in the theory in this short introduction to SAR. What matters is to notice that we arrive at an expression for the phase history contained in the exponential of equation (1.57). SAR algorithms assume a constant reectivity Ψ t k and make use of this phase history to obtain an accurate azimut resolution (indeed we obtain a chirp signal in the azimut direction to which we can apply matched ltering). Doing so, if the antenna length is L, the achievable azimut resolution is:

∆dr az = L 2 .
(1.58)

For satellite radars, ∆d az is in order of kilometers, while ∆dr az is in order of meters.

Notice that for simplicity we have completely ignored the Doppler eect.

There are dierent algorithm for reconstructing SAR images. A famous SAR algorithm is the Range Doppler Algorithm (see [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data[END_REF] We think that the most instructive way to understand the particularities of radar remote sensing of the sea surface is to plot actual time series. The most striking feature is that it looks like noise. That is why the reectivity of the sea surface is from now called sea clutter. Of course, seeing it like noise may be mathematically convenient, but in reality the sea surface has structures at all time and length scales, which evolve, interact, exchange energy etc. The swell is an example of structured motion which cannot be considered as noise but is deterministic. Whether a signal should be considered as noise is an interesting question and depends on its complexity and on the scale of observation.

The real and imaginary parts of the sea clutter are not obviously correlated from gure 1.11. Because the complex reectivity is observed (with its real and imaginary parts, or modulus and phase), gure 1.11 is representative of what a coherent radar may record.

Figure 1.12 represents the modulus of the complex reectivity for the four channels, which is representative of what an incoherent radar could measure. There is no obvious correlation between dierent channels.

Sea clutter depends on many parameters. Amongst others, it depends on the carrier frequency f 0 , the emission and reception polarizations, and the geometry of acquisition (orientation and grazing angle). Qualitatively, the sea surface is a superposition of many structures from the centimeter level (capillary waves) to the kilometer level, as evidenced by the large scale waves visible in the Mediterranean sea in gure 1.10. The point of view that we adopt is to consider that the EM waves are mainly scattered by discrete scatterers, which is the point of view adopted in [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] and in the random walk model presented in the next section. We will not precise what the scatterers are, but we need to remember that the population of scatterers are a priori dierent for dierent channels, f 0 and orientation and grazing angles. If the footprint of the radar is large enough, many scatterers will contribute to the reectivity. Since the sea surface is dynamic, the scatterers move, appear, disappear, leading to an unpredictable sea clutter. For electromagnetic scattering by discrete scatterers, see [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF], [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] and [START_REF] Mishchenko | Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering[END_REF].

The Stratton-Chu equations

In the previous section, we have seen with real data that the sea surface reectivity looks unpredictable and gives noise-like time series, hence the term clutter. In this section, we see that we can derive a theoretical expression of the eld scattered by the sea surface in terms of an integral over the surface. We encourage the reader to refer to [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance[END_REF] chapter 17 in priority, and to [START_REF] Tsang | Scattering of Electromagnetic Waves: Numerical Simulations[END_REF] and [START_REF] Pinel | Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic Models[END_REF].

Scalar scattering

It is easier to present the problem for scalar scattering and then admit the equations for vector scattering. Let S(t) denote the sea surface, its height being h = h(x, y, t). Consider a problem which is independent of one of the three spatial dimensions. For example, the surface may be corrugated such that h = h(x, t), and the sources may be innite in the y direction. In that case, the scattering problem is 2D, which implies that if the electric eld is monochromatic and horizontal, we have in baseband:

E = E(x, z) y = E(x, z) h, (1.59) 
h being a unitary vector dened in gure 1.2. Let r be the position vector. It can then be proven that E is solution of the Helmoltz equations:

∇ 2 E( r) + k 2 1 E( r) = ξ( r) above the surf ace (1.60) ∇ 2 E( r) + k 2 2 E( r) = 0 below the surf ace, (1.61) 
where ξ( r) is the source and

k 2 1 = ω 2 c 2 , k 2 2 = ω 2 c 2 s
with c s the speed of light in the sea.

Green's theorem, which can be derived itself from Gauss's theorem, states that for two scalar functions φ and ψ, and for a surface S enclosing a volume V , it holds:

S (φ( r)∇ψ( r) -ψ( r)∇φ( r)) . dS = V φ( r)∇ 2 ψ( r) -ψ( r)∇ 2 φ( r) dV.
(1.62)

We remind that by denition, Green's function G 0 ( x, x ) solves:

∇ 2 G 0 ( x, x ) + k 2 1 G 0 ( x, x ) = δ( x -x ), (1.63) 
where δ is the Dirac distribution. We denote E( r) the total eld (scattered + incident) at r (position of the receiver), and E in the incident eld. It can be shown, using Green's theorem and the denition of Green's function that:

E( r) = E in ( r) + S(t) (G 0 ( r, x )∇ E( x ). n( x ) -E( x ) n( x ).∇ G 0 ( r, x )) dS( x ).
(1.64)

We insist that S(t) is the sea surface over which we integrate to compute the scattered eld in equation (1.64). It is dierent from the surface S (enclosing the volume V ) of equation (1.62). n( x ) is the normal to the surface at x (point on the surface). We write ∇ to specify that the gradient is taken relative to the primed variable. Equation (1.64) is not explicit, since the gradient of E at the surface is required to compute E. In practice, several steps and approximations are needed to obtain an explicit expression for E( r) (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance[END_REF] p 503-504).

Vector scattering

A similar approach, based on the 3D Green's theorem, holds in the general case of 3D scattering, which is valid for electromagnetic scattering by the sea surface. We will obtain the famous Stratton-Chu equations, which form a coupled system for the total electric and magnetic elds (scattered + incident), denoted E( r, t) and B( r, t) respectively. They are again in baseband, but we allow a slow dependence in time as for the reectivity in section 1.2.4. The Stratton-Chu equations [START_REF] Stratton | Electromagnetic Theory[END_REF] yield:

E( r, t) = E in ( r) + S(t) [iω n( x ) ∧ B( x )G( r, x ) + n( x ) ∧ E( x ) ∧ ∇ G( r, x ) + n( x ). E( x )∇ G( r, x )]dS( x ) (1.65) B( r, t) = B in ( r) - S(t) [iωµ 0 0 n( x ) ∧ E( x )G( r, x ) -n( x ) ∧ B( x ) ∧ ∇ G( r, x ) -n( x ). B( x )∇ G( r, x )]dS( x ). (1.66)
is the ratio of the squared wavenumber in the atmosphere (k 1 ) and sea (k 2 ):

= k 2 2 /k 2 1 .
It is in fact assumed that k 1 = ω 2 0 µ 0 (the atmosphere is approximately vacuum). G is the 3D Green's function, which solves the 3D equivalent of equation (1.63). Solving the Stratton-Chu equations is not easy, and one often has to make approximations (see [START_REF] Pinel | Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic Models[END_REF] or [START_REF] Elfouhaily | A critical survey of approximate scattering wave theories from random rough surfaces[END_REF] for an advanced survey), or to use numerical methods [START_REF] Rylander | Computational Electromagnetics[END_REF]. If it was straightforward to solve the Stratton-Chu equation, we would still need to know S(t), or equivalently the function h(x, y, t) which describes the sea surface height as a function of time and horizontal coordinates. In practice, it is very challenging. The sea surface is an interface between the atmosphere and the sea and knowing it exactly would require to solve the complete oceanatmosphere uid dynamics. Using stereo imaging techniques, we can now measure (to some extent) the sea surface topography S(t) simultaneously with its radar reectivity (see [START_REF] Benetazzo | Stereo imaging and X-band radar wave data fusion: An assessment[END_REF]).

It is a promising breakthrough for a better understanding of the sea surface reectivity as a function of S(t).

A simpler point of view is to describe it by a spectrum , Elfouhaily [START_REF] Elfouhaily | A unied directional spectrum for long and short wind-driven waves[END_REF], see also [START_REF] Mobley | Modeling Sea Surfaces: A Tutorial on Fourier Transform Techniques[END_REF]). It models well the idea that the sea surface is a superposition of waves of a range of wavelengths, from capillary waves (centimeters) to swell waves (hectometers) and beyond (see gure 1.13). It is legitimate to ask ourselves if we really need to know the exact time series of the sea surface reectivity (or scattered eld). In fact, we still have a time series signal processing point of view, and from this perspective, starting from the Stratton-Chu equations does not seem very relevant or ecient. We prefer to start from a much simpler model, the random walk model, which leads to statistical distributions of the sea clutter readily exploitable in signal processing of a time series.

The random walk model

We have introduced the complex reectivity in section 1.2.4. In section 1.2.6, we saw that the complex reectivity of the sea surface looked like noise. Even though it looks so, it does not mean that there is no structure in sea clutter. In this section, we present the random walk model. We will see that building on the discrete scatterers point of view, it leads to probability distributions for the sea clutter (or functions of it) at a xed time t. For this whole section, refer to [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF] chapters 1 to 4 and [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF], [START_REF] Jakeman | On the statistics of K-distributed noise[END_REF], [START_REF] Jakeman | Generalized K distribution: a statistical model for weak scattering[END_REF], [START_REF] Jakeman | Non-gaussian models for the statistics of scattered waves[END_REF] to a lesser extent.

Sketch of proof and the K distribution

From now on, we see the reectivity as a random process, i.e. a time series of random variables. We denote it Ψ t . In practice, each t corresponds to a pulse to which a reectivity Ψ t is attributed. This should lead to a discrete time series with timestep 1

P RF

(Pulse Repetition Frequency) since the pulses cannot be innitely close. In theory, we imagine that the reectivity exists for all t ≥ 0 (continuous time).

The random walk model starts from the fundemental idea that the reectivity is a sum of contributions over a population of independent scatterers, i.e. ∀t ≥ 0:

Ψ t = Nt n=1 a (n) t e iφ (n) t .
( 

Ψ t = lim N →+∞ Nt n=1 a (n) t N 1/2 e iφ (n) t .
( 

a 2 = E[a (n) 2 t ],
(1. [START_REF] Jakeman | Signicance of K Distributions in Scattering Experiments[END_REF] where E is the mathematical expectation (ensemble average). A good surprise is that knowing the whole distribution of a (n) t is not necessary, a 2 is enough. Let z t = |Ψ t | 2 be the intensity. We consider now the two most common cases for N t . The rst case is N t = E[N t ], i.e. there is a constant number of scatterers. In that case, it is shown in [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF] that ∀t, z t follows an exponential distribution:

p(z t = z) = 1 a 2 e -z a 2 .
(1.70)

This case is usually called Gaussian because the real and imaginary parts of the reectivity R t = Re(Ψ t ) and I t = Im(Ψ t ) follow a joint Gaussian distribution:

p(R t = R, I t = I) = 1 π a 2 e - (R 2 +I 2 ) a 2
.

(1.71)

The second usual case considers that ∀t, N t is negative binomial distributed:

p(N t = N ) = N + α -1 N ( N /α) N (1 + N /α) N +α , (1.72) with N = E[N t ].
In that case, we can show that z t is K-distributed:

p(z t = z) = 2z α-1 2 Γ(α) α a 2 α+1 2 K α-1 2 αz a 2 , (1.73)
where K is a modied Bessel function of the second kind and a = E[a

(n) t ]
. Also, when N t follows a negative binomial distribution, the variance is written as:

var N t N = 1 N + 1 α , (1.74) 
such that the asymptotic variance of N t / N is 1/α as N → +∞. When α → +∞, the variance goes to 0 and we get back to the Gaussian case. The K distribution is therefore usually prefered for the reectivity of the sea surface. It is more general and empirically conrmed than the Gaussian model [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]. It is interesting to note that the random walk model can be used in lots of dierent contexts. We simply quote Jakeman and Ridley in [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF] (see also [START_REF] Jakeman | Signicance of K Distributions in Scattering Experiments[END_REF] where several other applications are cited, such as stellar scintillation etc):

It (the random walk model) is an essentially exact model for light scattering by small particles. [...] the model is equally relevant to microwave scattering from raindrops or electron scattering from atomic defects, and it will be demonstrated in later chapters that it also provides a good representation for many aspects of scattering by continuous systems, such as rough surfaces and turbulent media.

An undeniable strengh of the random walk model is that it leads to probability distributions, like the K distribution for the intensity z t , which can be used directly for example for target detection (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] 

f 1 (Ψ t 1 )f 2 (Ψ t 2 )...f n (Ψ tn ) , (1.76) 
i.e. any moment with more than one time? Even more generally, how do we compute joint distributions with more than one time (from which moments can be computed), e.g.

p(z t 1 = z 1 , z t 2 = z 2 )? In the same vein, we will see later on (for example chapter 4) that transition probabilities, for example:

p(z t 2 = z 2 | z t 1 = z 1 ), (1.77) 
are very important, and cannot be computed with the random walk model left alone. In general, the random walk model as in [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF] and presented in the present section, cannot solve these problems related to dynamics. This is the rst limitation. One can partially dodge the problem by specifying correlation times and designing ad hoc numerical procedures for simulating individual trajectories of the process (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] chapter 5). However, there is a much more satisfying and powerful framework: Field's model, presented in chapter 3.

A second limitation is of course its simplicity. We can question the axioms of the random walk model at the light of what the sea surface really is. Is the discrete scatterers model relevant? If so, are the scatterers independent? These questions will be even more pervasive under Field's model (see section 3.2.3).

Aim of the thesis

We have come to the point where the reader can understand the raison d'être of this thesis.

Be it for oceanography, maritime surveillance or other purposes, there is a need for a good sea clutter model. Computations of the sea clutter through integrals over the sea surface (Stratton-Chu equations) are very limited to have `statistical knowledge' of the sea clutter.

The random walk model, which reduces the sea surface to a family of point scatterers with random amplitudes and phases, is much more tractable and leads quickly to probability densities for various quantities such as the intensity. However, it is essentially static and lacks deepness to account for the dynamics of the sea clutter. Understanding these dynamics is not only inherently attractive: it has implications in terms of signal processing and applications for radar imagery or target detection (chapters 4 to 7). We propose to explore Field's model [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF], which expresses the reectivity of a random medium (e.g. the sea surface) as a solution to a stochastic dierential equation. Radar remote sensing of the sea surface is one example of electromagnetic scattering from a random medium. The random walk model, and Field's model, are not specic to the sea surface (remember the glittering stars). This is one of their weakness (lack of specicity)

but also one of their strength. Indeed, all the results presented in this work not only apply to sea clutter, but potentially to the complex reectivity of any dynamic random medium.

Of course, this holds within the limits of applicability of the model.

Chapter 2

Elements of stochastic analysis

Before introducing the model proposed by T. R. Field for the sea (or any random medium) clutter, which is a stochastic model, it is necessary to dene some mathematical notions.

We present in this chapter the concepts and tools that will be mainly used throughout this thesis. In section 2.1, we present dierent types of stochastic processes and dene several modes of convergence for random variables and random processes. In section 2.2, we dene Itô's integral of a stochastic process and stochastic dierential equations. We introduce basic numerical schemes to solve them. In section 2.3, we focus on the concept of transition probabilities since it is a recurrent topic in chapters 3, 4 and 5. In section 2.4, we dene the covariation of processes and basic results about volatility estimation from a time series, which will be usefull in chapter 7. We briey compare the maximum likelihood and volatility-based estimators in section 2.5. Section 2.6 presents the Wiener-Khinchin theorem, and section 2.7 concludes.

We think that the reader could either skip (or skim) parts of this chapter and come back to them when he needs to, or read the whole chapter linearly and keep in mind that every notions and results which are presented are useful to the understanding of the remaining of this thesis. In particular, section 2.1 includes a lot of denitions. A reader familiar with the brownian motion, martingales, Markov processes etc can skip this part. Section 2.2 is quite technical with the objective to present rigorously stochastic dierential equations.

The reader uninterested in mathematical considerations can jump directly to section 2.2.3 which, by the way of Euler-Maruyama's scheme, gives meaning and intuition on stochastic dierential equations. The remaining sections are more short and digestible.

Stochastic processes

In this section, we need to dene some fundemental concepts without which we will not be able to work with stochastic dierential equations. We dene mostly brownian motions, (semi)martingales, Markov processes and stochastic convergence. These are fundemental because stochastic dierential equation requires Itô integration with respect to a brownian motion. Itô integration requires a limiting procedure, for which one must have dened convergence. We will also see that a solution to a stochastic dierential equations is a Markov process, and a semimartingale. These are two important results, some consequences of which are given in section 2.3 and 2.4.

Gaussian processes

As a preliminary step, we remind a few denitions that can be found in any textbook about probability theory.

Denition 2.1. Let (Ω, F, P) be a probability space (i.e. a measurable space with a positive measure P such that P(Ω) = 1 ) and (E, E) a measurable space. A random variable is an F-measurable application from Ω to E:

X : Ω → E ω → X(ω)
The application is said to be F-

mesurable if ∀ B ∈ E, X -1 (B) ∈ F.
In this rst denition, the space E and its σ-algebra E are not specied. When E = R with its Borel σ-algebra B(R), we say that X is a real-valued random variable or one-dimensional random variable or simply random variable where it is implicit that it is real-valued. When E = R n with its Borel σ-algebra B(R n ), we say that X is a random vector. We remind that the Borel σ-algebra of a topological space is the σ-algebra generated by its topology. Denition 2.2. Let (Ω, F, P) be a probability space and X 0 a real-valued random variable.

X 0 is a Gaussian random variable of mean µ and variance σ 2 if its law has the density probability (or distribution):

f µ,σ : R → R x → f (x) = 1 σ √ 2π e -1 2 ( x-µ σ ) 2
We remind that the law of a random variable X is the direct image by X of the probability measure P. It is usually denoted P X . It is a probability measure on the measurable space (E, E), and by denition ∀ B ∈ E, P X (B) = P(X -1 (B)) = P(X ∈ B). Random variables or random vectors which have a density probability relative to Lebesgue's measure are said to be absolutely continuous. In this thesis, we stay exclusively in the absolutely continuous framework. In that case, if X is an R n -valued random vector with probability density x → f (x), x ∈ R n , and g a measurable application from R n to R m , we can compute any probability of g(X) by direct integration:

P(g(X) ∈ B) = P(X ∈ g -1 (B)) = g -1 (B) f (x)dλ n (x), (2.1)
where B ∈ B(R m ), and λ n is Lebesgue measure on R n . We can extend the concept of a Gaussian random variable to that of a Gaussian random vector: Denition 2.3. (Gaussian random vector) Let X be a random vector,

X : Ω → R n ω → X(ω) with X(ω) = X 1 (ω) X 2 (ω) . . . X n (ω) . X is a Gaussian random vector if ∀ a = a 1 a 2 . . . a n ∈ R n , the random variable n i=1 a i X i is a Gaussian random variable. The expectation of X is m X = E[X 1 ] E[X 2 ] . . . E[X n
] and its covariance matrix Σ X is:

Σ X =      Var(X 1 ) Cov(X 1 , X 2 ) . . . Cov(X 1 , X n ) Cov(X 2 , X 1 ) . . . • • • . . . . . . . . . . . . . . . Cov(X n , X 1 ) • • • • • • Var(X n )      . (2.
2)

It holds that for a Gaussian vector X, m X and Σ X determine entirely the law of X. If Σ X is invertible (i.e. non singular), X is absolutely continuous and we have:

p X (x 1 , x 2 , ..., x n ) = 1 (2π) n |Σ X | exp - 1 2 (x -m X ) Σ -1 X (x -m X ) , (2.3) 
where x = x 1 x 2 . . . x n and |Σ X | = det(Σ X ).

We can generalize the concept of Gaussian vector to dene that of a Gaussian (stochastic) process. A stochastic process X = (X t ) t∈T with T a subset of R + , is a collection of random variable (or vector), i.e. ∀ t ∈ T , X t is a random variable from (Ω,

F, P) to (R n , B(R n )).
The notation T is chosen for the interval because most of the time T is simply the interval [0, T ] where T ∈ R + , or [0, T [ if T = +∞ = R + . When the interval is not specied, we may use the notation (X t ) t , or even simply X t (especially from chapter 4 on).

Denition 2.4. (Gaussian process) A process X = (X t ) t∈T where X t takes values in R n is Gaussian if ∀ k ∈ N and ∀ t 1 , t 2 , ..., t k ∈ T , the vector X t 1 X t 2 . . . X t k is a Gaussian vector. It is a centered Gaussian process if also ∀ t ∈ T , E[X t ] = 0.

The Brownian motion

We now turn to one of the basic components of stochastic dierential equations, and therefore of the model for the sea clutter we use throughout this thesis: the brownian motion. There are several equivalent denitions to dene the brownian motion. We rst dene a R-valued brownian motion. Let K be the covariance function of a process X. We assume that T = R + .

By denition: ii. X 0 = 0 a.s. and ∀ 0 ≤ s < t, X t -X s is independent of σ(X r , r ≤ s) (σ-algebra generated by the random variables X s for s ≤ t) and follows the law N (0, t -s),

K : (R + ) 2 → R (s, t) → K(s, t) ≡ Cov(X s ,
iii. X 0 = 0 a.s. and ∀ 0 = t 0 ≤ t 1 ≤ ... ≤ t p , the increments X t i -X t i-1 with i = 1, 2, . . . , p are independent and X t i -X t i-1 follows the law N (0, t i -t i-1 ).

The abbreviation a.s. means almost surely, or with probability one. Therefore, a brownian motion is a continuous stochastic process (i.e. continuous trajectories) which starts a.s. from 0, with increments X t -X s independent from the past and which are Gaussian distributed with mean 0 and variance t -s. It is the essential properties to get an intuition of what a brownian motion is.

Denition 2.6. (Multidimensional Brownian Motion) A multidimensional brownian motion or k-dimensional brownian motion, is a vector-valued stochastic process:

B t = B (1) t B (2) t . . . B (k) t (2.4) 
such that for all i = 1, 2, . . . , k, (B (i) t ) t is a brownian motion, and such that for all i = j, (B (i) t ) t and (B (j) t ) t are independent stochastic processes. The independence property required in denition 2.6 means that for all i = j, for all random vector V i , V j extracted from (B

(i) t ) t , (B (j) t ) t respectively, V i and V j are independent.
The brownian motion has many properties that we cannot enumerate. Refer to [START_REF] Breton | Processus stochastique[END_REF] and [START_REF] Mörters | Brownian Motion[END_REF] for precise statements. We shall cite at least one key properties of the brownian motion: its trajectories are continuous, but a.s., its trajectories are nowhere dierentiable. The brownian motion is therefore irregular at all scales. A.s., a brownian motion trajectory has Haussdor dimension 3/2.

Let C(R + , R) be the space of continuous functions from R + to R. A R-valued process X can be seen as an application:

X : Ω → C(R + , R) (2.5) ω → X(ω)
where X(ω) is the whole trajectory t → X t (ω) = X(t, ω). One can endow C(R + , R) with a topology dened by the uniform convergence over all compact sets. It is then possible to dene the Borel σ-algebra on C(R + , R) which becomes a measurable space. We dene the Wiener measure W on C(R + , R) as the image measure of P by the application B where B is a brownian motion. One can show that W does not depend on the brownian motion, i.e. if B is another brownian motion, then for all measurable set A of the space C(R + , R) we have P((B t ) t ∈ A) = P((B t ) t ∈ A). The law of a brownian motion is therefore unique and we can dene a canonical brownian motion (see [START_REF] Gall | Mouvement brownien, martingales et calcul stochastique[END_REF] p 25). That is why we alternatively speak of a brownian motion or of the brownian motion.

Markov processes

There are many dierent ways to dene a Markov process (X t ) t depending on the required level of abstraction. There are at least 4 possibilities: discrete time or continuous time, discrete or continuous state space, the state space being the measurable space (E, E) in which X t takes its values for all t. We consider here only continous time and continuous state space (R or R n ). Let X and Y be random variables (or vectors) dened on a probability space (Ω, F, P), and A a Borel set. We dene:

P(X ∈ A|Y ) = E[I A (X)|Y ], (2.6)
where I A is the indicator function of the set A, and E[I A (X)|Y ] is the conditional expectation of I A (X) with respect to Y . We think that it is useful to precise this by giving a denition. This denition is not comprehensive to have a good understanding of conditional expectation, but should be enough for the use we make of it (see [START_REF] Lacaux | Probabilités. cours de probabilités, deuxième année option Ingénierie Mathématique[END_REF] for a detailed exposition).

Let (Ω, F, P) be a probability space and L 2 (Ω, F, P) the space of squared-integrable measurable applications from Ω to R. It is a Hilbert space, and if U, V ∈ L 2 (Ω, F, P), the scalar product reads:

< U, V >= E[U V ] (2.7)
and denes a corresponding norm, and thus distance on L 2 which is thusly a metric space. Denition 2.7. (Conditional expectation) Let X ∈ L 2 (Ω, F, P) and B a sub-σ-algebra of F. We name conditional expectation of X relative to B the orthogonal projection of X on the sub-space L 2 (Ω, B, P). We denote it E[X|B].

For any two random variables U and V , the conditional expectation of U with respect to V , E[U |V ] is a random variable, not just a number or vector like the usual expectation of a random variable. E[U |V ] can be thought of as the projection of the random variable U on a subspace of random variables which `takes into account' the random variable V . In this subspace, it is the closest random variable to U .

If Y is a random variable on (Ω, F, P) we set:

E[X|Y ] = E[X|σ(Y )], (2.8) 
where we recall that σ(Y ) is the σ-algebra generated by Y (next denition). If we have several random variables Y 1 , Y 2 , . . . , Y n , then:

E[X|Y 1 , ..., Y n ] = E[X|σ(Y 1 , ..., Y n )].
( Denition 2.9. (Markov process) Let X = (X t ) t∈T be a stochastic process with values in (E, E). We say that X is a Markov process if ∀ s < t and ∀ A ∈ E, it holds:

P(X t ∈ A|X u , u ≤ s) = P(X t ∈ A|X s ).
(2.10)

This denition, from [START_REF] Gallardo | Mouvement brownien et calcul d[END_REF] chapter 3, enables us to dene a bunch of concepts like transition kernels, semi-groups, Markov-Feller processes, innitesimal generator etc. We do not need such a formalism. We turn to a more simple denition of a Markov process (see [START_REF] Garcia-Palacios | Introduction to the theory of stochastic processes and brownian motion problems[END_REF] for example). First, we assume that we are in the framework of absolute continuity, i.e. all extracted random vectors X t 1 , X t 2 , . . . , X t k from the stochastic process (X t ) t are absolutely continuous with respect to the Lebesgue measure of the space they live in (R kn if for all t X t lives in R n ). Denition 2.10. (Joint distribution) Let X 1 , X 2 , ..., X n be a R n -valued random vector. If it is absolutely continuous with respect to Lesbegue measure λ n , its joint distribution is a function:

p : R n → R + (2.11) (x 1 , ..., x n ) → p(X 1 = x 1 , ..., X n = x n )
such that for all measurable set A in B(R n ):

P( X 1 , X 2 , ..., X n ∈ A) = A p(X 1 = x 1 , ..., X n = x n )dλ n (x 1 , ..., x n ). (2.12) Denition 2.11. (Conditional probabilities) Let Y = (Y t ) t∈T be a random process. Let us choose k times t 1 < t 2 < • • • < t k for which we impose the condition Y t 1 = y 1 , ..., Y t k = y k , where y i ∈ R n for all i. For m times t k+1 < t k+2 • • • < t k+m , we dene the joint distribution of Y t k+1 , Y t k+2 , ..., Y t k+m given the condition Y t 1 = y 1 , ..., Y t k = y k by p(Y t k+1 = y k+1 , ..., Y t k+m = y k+m | Y t 1 = y 1 , ..., Y t k = y k ) = p(Y t 1 = y 1 , ..., Y t k+m = y k+m ) p(Y t 1 = y 1 , ..., Y t k = y k ) . (2.13)
This last denition is of course the Bayes formula. We can now give a much simpler and intuitive denition of a Markov process for continuous time and taking its values in R n .

Denition 2.12. (Markov process) Let Y = (Y t ) t∈T be an absolutely continous stochastic process. We say that Y is a Markov process if ∀ k ∈ N, ∀t 1 < t 2 < ... < t k , we have:

p(Y t k = y k | Y t 1 = y 1 , ..., Y t k-1 = y k-1 ) = p(Y t k = y k | Y t k-1 = y k-1
).

(2.14) Let t 0 be the time origin of the process (often taken at 0). If it is also true that ∀s < t:

p(Y t = y | Y s = x) = p(Y t 0 +t-s = y | Y t 0 = x), (2.15) 
then we say that Y is a homogeneous Markov process.

Denition 2.12 means that a Markov process depends only on the most recent past. The memory of the past before the most recent past is unimportant. From now on, we shall think of notations like p(X = x) as the `probability that the random variable X takes the value x', though since is not strictly accurate.

Martingales

In this section, we will dene the notion of martingale. The main interest of introducing martingales in this thesis comes from its use to dene Itô integrals of stochastic process. In particular, solutions to stochastic dierential equations are semimartingales in the general case, and martingales if the drift vanishes. These properties will be useful in section 2.4. We have to dene a bunch a words that are necessary for a proper denition of Itô integral.

Denition 2.13. (Filtration) Let (Ω, F, P) be a probability space. A ltration is an increasing family (F t ) 0≤t≤+∞ of sub-σ-algebras of F.

If s ≤ t, all F s -measurable set is also F t -measurable, and a F s -measurable application X : Ω → E is also F t -measurable. Denition 2.14. (Canonical ltration of a process) Let (X t ) t≥0 be a stochastic process dened on the probability space(Ω, F, P). We call canonical ltration (understood `relative to (X t ) t≥0 ') the ltration on (Ω, F, P) dened by:

F t = σ(X s , s ≤ t).
(2.16)

A probability space (Ω, F, P) endowed with a ltration (F t ) 0≤t≤+∞ is a ltered probability space.

Denition 2.15. (Progressive σ-algebra) Let (Ω, F, (F t ) 0≤t≤+∞ , P) be a ltered probability space. The progressive σ-algebra is the class P of set of Ω × R + dened by:

P = {A ⊆ Ω × R + |∀ t ≥ 0, A ∩ (Ω × [0, t]) ∈ F t × B[0, t]}.
(2.17)

We now dene a few adjectives that we can use to qualify a stochastic process and to dene the important notion of semimartingale. Denition 2.16. (Measurable process) Let X = (X t ) t≥0 be a stochastic process dened on the probability space (Ω, F, P). X can be seen as an application:

X : Ω × R + → E (ω, t) → X t (ω)
where E is a measurable space (R or R n for us). We say that X is a measurable process if it is a measurable application relative to the σ-algebra on E and to the product σ-algebra

F × B(R + ) on Ω × R + .
Denition 2.17. (Adapted process) Let X = (X t ) t≥0 be a stochastic process dened on the ltered probability space (Ω, F, (F t ) 0≤t≤+∞ , P). We say that X is adapted (understood `relative to

(F t ) 0≤t≤+∞ ') if ∀ t ≥ 0, the random variable X t is F t -measurable.
Denition 2.18. (Progressive process) Let X = (X t ) t≥0 be a stochastic process dened on the ltered probability space (Ω, F, (F t ) 0≤t≤+∞ , P), and P the progressive σ-algebra on Ω × R + . We say that X is progressive or progressively measurable if it is measurable relative to P. It is equivalent to saying that for all t, the mapping:

X : Ω × [0, t] → E (ω, s) → X s (ω) is measurable relative to F t × B([0, t]) where B([0, t]) is the Borel σ-algebra on [0, t].
We now assume that our stochastic processes takes values in R.

Denition 2.19. (Martingale) Let (Ω, F, (F t ) 0≤t≤+∞ , P) be a ltered probability space.

Let X = (X t ) t≥0 be a stochastic process, adapted to (F t ) 0≤t≤+∞ . We assume that ∀ t ≥ 0,

X t ∈ L 1 (Ω, F, P). Then X is a martingale if: ∀ 0 ≤ s < t, E[X t |F s ] = X s .
(2.18) Denition 2.20. (Finite variation process) Let f : R + → R be a function. The variation

of f on [0, t] is sup {∆t} { n-1 k=0 |f (t k+1 ) -f (t k )|} taken on all subdivisions ∆ t of [0, t]. f has nite variation if ∀ t ≥ 0, sup {∆t} { n-1 k=0 |f (t k+1 ) -f (t k )|} < +∞. Let (A t
) t be a stochastic process. We say that A is a nite variation process if a.s., the trajectory t → A t has nite variation.

Denition 2.21. (continuous semimartingale) Let (X t ) t be a continuous and adapted process. It is a semimartingale if there exists a decomposition of X:

∀ t ≥ 0, X t = A t + M t , (2.19)
where (M t ) t is a continuous local martingale and (A t ) t an adapted, continuous, nite variation on compacts of R + process, with A 0 = 0.

Semimartingales are very important in the theory of stochastic dierential equations, because their solutions are precisely semimartingales (see proposition 2.2). The nite variation process correspond to a process which variations are limited: it will come from the deterministic component of the stochastic dierential equations (drift), while the volatility part of the stochastic dierential equations, which is the true innovation compared to ordinary dierential equations, has innite variation over any interval. This is due to the presence of the brownian motion and its innite variation. We will not dene local martingales since it requires another notion, stopping times, which is not necessary in this work. We just add that all martingales are in particular local martingales.

Convergence and stochastic Landau notations

We rst dene the most classical type of convergence for sequences of random variables.

Convergence is needed to dene Itô integral in the next section, as well as limit theorems for volatility-based estimators in section 2.4. Let (X n ) n∈N be a sequence of random vectors and X a random vector taking values in (R n , B(R n )), all dened on the probability space (Ω, F, P).

Denition 2.22. (Convergence in distribution)

We say that (X n ) n∈N converges in dis- tribution to X if ∀ A ∈ B(R n ), lim n→+∞ P(X n ∈ A) = P(X ∈ A).
(2.20)

A must be a continuity set of X, i.e. P(X ∈ ∂A) = 0 where ∂A is the boundary of A. For n = 1, the denition is given in terms of the cumulative distribution functions. Convergence in distribution is denoted X n d -→ X. It is also called weak convergence because it is the weakest type of convergence we will dene. Denition 2.23. (Convergence in probability) We say that (X n ) n∈N converges in prob-

ability to X if ∀ > 0: lim n→+∞ P( X n -X ≥ ) = 0, (2.21) 
where . is any norm on R n . Convergence in probability is denoted X n P -→ X.

Denition 2.24. (Almost sure convergence) We say that (X n ) n∈N converges almost

surely to X if P( lim n→+∞ X n (ω) -X(ω) = 0) = 1. (2.22)
Almost sure convergence is denoted X n a.s.

--→ X.

Denition 2.25. (Convergence in mean) We say that (X n ) n∈N converges in the p-th

mean to X, where p ≥ 1, if ∀ n ∈ N, E[ X n p ] exists, if E[ X p ] exists, and if lim n→∞ E[ X n -X p ] = 0. (2.23) Convergence in mean is denoted X n L p -→ X, because it is a convergence in the normed space L p of random vectors Y such that: E[ Y p ] 1/p = Ω Y (ω) p dP(ω) 1/p < ∞. (2.24)
The left-hand side of equation (2.24) denes the L p norm of Y .

We dened 4 types of convergence, and there is a well-known hierarchy between them: almost sure implies probability which implies distribution. In parallel, p-th mean implies probability which implies distribution. We understand why convergence in distribution is called weak convergence. There exists at least another type of convergence: stable convergence (see [12], [START_REF] Jacod | On continuous conditional gaussian martingales and stable convergence in law[END_REF]), which is in between convergence in probability and convergence in distribution. The denition is a bit tricky so we will skip it but it is useful for convergence theorems in the context of volatility estimation (section 2.4 and appendix A).

Finally, we dene stochastic Landau notations, which will sometimes turn out to be useful. Denition 2.26. (Little o) Let (X n ) n∈N and (δ n ) n∈N be two sequences of random variables.

We write

X n = o P (δ n ) if: X n δ n P - → 0.
(2.25) Denition 2.27. (Big O) Let (X n ) n∈N and (δ n ) n∈N be two sequences of random variables.

We write

X n = O P (δ n ) if ∀ > 0, ∃M > 0 such that: P X n δ n > M < .
(2.26)

Stochastic Dierential Equations

We are now in a position to dene Itô integrals of stochastic processes and stochastic differential equations. To arrive at a proper deniton of stochastic dierential equations, one has no choice but to dive more into abstract denitions. We do not want to dodge this difculty and give here a detailed theoretical derivation. However, once stochastic dierential equations are well dened, one can rely on Euler-Maruyama numerical scheme only (section 2.2.3) to both solve them and get a very good intuition of what they mean. Some portions of this section may therefore be seen as only temporarily relevant and may then be ignored in the rest of the thesis.

Itô integral

We present here a construction of Itô's integral limited to the case where we integrate relative to a brownian motion. We wish to keep the presentation short and clear. A more general presentation would show that one can integrate processes not only relative to brownian motions, but any process in a subclass of martingales (see [START_REF] Laleuf | Processus et intégrales stochastiques[END_REF]). From now on, our presentation mimics that of Oksendal in [START_REF]Stochastic Dierential Equations: An Introduction with Applications[END_REF]. Let (B t ) t≥0 be a brownian motion and F t = σ(B s , s ≤ t) its canonical ltration. There is a link between σ-algebra and information, explicited by the following proposition (see [START_REF]Stochastic Dierential Equations: An Introduction with Applications[END_REF] chapter 3).

Proposition 2.2. Let h : Ω → (R, B(R)). h is F t -measurable if and only if it is the almost sure limit of a sum of functions of the form:

g 1 (B t 1 )g 2 (B t 2 )...g k (B t k ), (2.27) 
where the functions g i are continuous and bounded, and where ∀ i, t i ≤ t.

Therefore, to evaluate a F t -measurable application, one only need the values of the brownian motion (B t ) t≥0 before time t! This will help us understand F t -measurability conditions. Denition 2.28. (Space V) We dene V as a class of processes dened by f ∈ V ⇔ f veries the 3 following conditions:

i. (t, ω) → f (t, ω) is a measurable process, ii. ω → f (t, ω) is F t -measurable, iii. E T 0 f (s, ω) 2 ds < +∞.
We can then dene the stochastic integral of f ∈ V. To do so, we approximate f by an elementary processes in V. An elementary process can be written:

H t (ω) = H(t, ω) = n-1 k=0 Z k (ω)I ]t k ,t k+1 ] (t). (2.28) If it is in the class V, then we can show that ∀k, Z k (ω) is F t k -measurable.
We dene the stochastic integral of such a process H in the following way: Denition 2.29. (Itô integral of an elementary process) Let H ∈ V be an elementary process as in equation (2.28). The Itô integral of H between 0 and t is dened as:

t 0 H s dB s = n-1 k=0 Z k (B t k+1 ,t -B t k ,t ), (2.29)
where B t k ,t must be understood as B min(t k ,t) .

We now dene the Itô integral of any stochastic process in V thanks to the 2 following propositions.

Proposition 2.3. (Itô isometry) Let H(t, ω) be an elementary process in V. Then it holds:

E T 0 H(t, ω)dB t 2 = E T 0 H(t, ω) 2 dt . (2.30)
This can be written more simply:

T 0 H(s, ω)dB s ) 2 L 2 (Ω) = H 2 L 2 T (B) .
(2.31) T 0 H(s, ω)dB s is a random variable, so the left-hand side of equation (2.31) is just the L 2 -norm of this random variable. However, H is a process and the right-hand side is the norm of a process which we dene as:

H 2 L 2 T (B) = E T 0 H(t, ω) 2 dt . (2.32)
The next proposition gathers three propositions in one.

Proposition 2.4. The three following statements are true:

i. Let f ∈ V. It holds that ∃(h n ) n∈N a sequence of bounded processes of V such that E[ T 0 (f -h n ) 2 ds)] = f -h n 2 L 2 (B) n→+∞ ----→ 0.
ii. Let f ∈ V be a bounded process. It holds that ∃(h n ) n∈N a sequence of bounded and continuous processes of

V such that E[ T 0 (f -h n ) 2 ds)] = f -h n 2 L 2 (B) n→+∞ ----→ 0.
iii. Let f ∈ V be a bounded and continuous process. It holds that ∃(h n ) n∈N a sequence of elementary processes of V such that E[

T 0 (f -h n ) 2 ds)] = f -h n 2 L 2 (B) n→+∞ ----→ 0.
This proposition asserts that for every process f of V, there is a sequence (h n ) n∈N of elementary processes of V which converges to f in the sense of the norm . L 2 T (B) . One can show that Itô isometry ensures that T 0 h n dB t is a Cauchy sequence and converges in the L 2 (Ω) norm sense to a random variable.

Denition 2.30. (Itô integral of a process in

V) Let f ∈ V. Let (h n ) n∈N be a sequence of elementary processes of V which converges to f in the sense of the norm . L 2 T (B) . Then the Itô integral of f over [0, T ] is dened as: T 0 f dB t = lim n→+∞ T 0 h n dB t , (2.33)
where the limit is taken in the L 2 (Ω) norm sense.

We can actually show that T 0 h n dB t is a uniform in t Cauchy sequence for t ∈ [0, T ], and that as a result, T

0 h n dB t converges in norm L 2 (Ω) uniformily in t for t ∈ [0, T ].
We can generalize a bit the denition 2.30 by changing the third condition in the denition 2.28 of V. To do so, we dene a new class of processes: W.

Denition 2.31. (Space W) We dene W as a class of processes dened by f ∈ W ⇔ f veries the 3 following conditions:

i. (t, ω) → f (t, ω) is a measurable process, ii. ω → f (t, ω) is F t -measurable, iii. P( T 0 f (s, ω) 2 ds < +∞) = 1.
Since the third condition in denition 2.31 is weaker than the third condition in the denition 2.28, we have V ⊂ W. We can now dene the Itô integral of a process in W.

The only dierence with the Itô integral of a process in V as dened previously is that now, all convergence properties are in probability, not in norm L 2 (Ω), which is the 2-th mean convergence that we dened in denition 2.25. Therefore, convergence is in a weaker sense when dealing with processes in W.

Denition 2.32. (Itô integral of a process in W) Let f ∈ W. Let (h n ) n∈N be a sequence of elementary processes of W which converges in probability to f . Then the Itô integral of f over [0, T ] is dened as:

T 0 f dB t = lim n→+∞ T 0 h n dB t , (2.34) 
where the limit is taken in probability.

The existence of the sequence (h n ) n∈N in denition 2.32 is ensured by a proposition similar to proposition 2.4 with V replaced by W and convergence in the norm . 2 L 2 (B) (i.e. 2-th mean convergence) replaced by convergence in probability. Uniform convergence for t ∈ [0, T ] still holds.

In conclusion, we dened the Itô integral of a process over any interval [0, T ] as a limit of a sequence of random variables, either taken in the 2-th mean convergence sense or in the convergence in probability sense. We now extend the denition of the Itô integral of a stochastic process to that of a random linear operator (see [START_REF] Gliklikh | Global and Stochastic Analysis with Applications to Mathematical Physics[END_REF] chapter 6).

Denition 2.33. (Itô integral of a random linear operator) Let

A : [0, T ] × Ω → L(R k , R n ) be a random linear operator (for xed (t, ω), A(t, ω) is an n × k matrix). Let B t = B (1) t B (2) t . . . B (k) t be a k-dimensional brownian motion. Let t (n) i = i T n such that t (n) 0 < t (n) 1 < • • • < t (n) n is a subdivision of [0, T ].
The Itô integral of the random linear operator A with respect to (B t ) t is dened as the following limit:

T 0 A(t)dB t = lim n→+∞ n-1 i=0 A(t (n) i ) B t (n) i+1 -B t (n) i . (2.35)
We must make a few remarks to enlighten denition 2.33. Please note that this denition makes sense only if the limit exists, and if we specify which kind of limit we take. Also, if it exists, T 0 A(t)dB t is an n-dimensional random vector. According to [START_REF] Gliklikh | Global and Stochastic Analysis with Applications to Mathematical Physics[END_REF], if A is adapted with respect to the ltration generated by (B t ) t , and if the n × k coecients A j i of A verify:

P T 0 A j i (s, ω) 2 ds < +∞ = 1, (2.36) 
then the limit exists in L 2 (Ω), and a fortiori exists in probability.

Stochastic dierential equations

Now that we have dened Itô's integral of a stochastic process, we are in a position to dene stochastic dierential equations, which are at the heart of this thesis. We are using them to model the dynamics of the sea surface reectivity.

Denition 2.34. (Itô process) Let (X t ) t be a n-dimensional stochastic process. We say that (X t ) t is an Itô process if there exists (a t ) t a n-dimensional stochastic process, (A t ) t a random linear operator and (B t ) t a k-dimensional brownian motion such that for all t:

X t = X 0 + t 0 a s ds + t 0 A s dB s , (2.37) 
with X 0 = X t=0 . We require that the trajectories of (a t ) t are almost surely of nite variation over compact of R + and that (A t ) t is adapted to the ltration generated by (B t ) t and satises equation (2.36).

Note that the term t 0 a s ds is just the time integral of (a t ) t where integration is carried trajectory wise.

Denition 2.35. (Stochastic dierential of an Itô process) Let (X t ) t be a n-dimensional

Itô process such that:

X t = X 0 + t 0 a s ds + t 0 A s dB s . (2.38) 
We rewrite equation (2.38):

dX t = a t dt + A t dB t .
(2.39)

dX t is called the stochastic dierential of X t .
It is manifest in denition 2.35 that the dierential notation of a stochastic process is just an other way of writing the integral equation (2.38). We now give two important properties of stochastic dierentials.

Proposition 2.5. (Itô product rule) Let X and Y be two one-dimensional Itô processes such that:

dX t = a (1) 
t dt + b (1) 
t dB t , dY t = a (2) t dt + b (2) t dB t . (2.40)
Then XY has the following dierential:

d(X t Y t ) = X t dY t + Y t dX t + b (1) t b (2) t dt, (2.41)
which can be written in integral notation:

X t Y t = t 0 X s a (2) s ds + t 0 X s b (2) s dB s + t 0 Y s a (1) s ds + t 0 Y s b (1) s dB s + t 0 b (1) s b (2) s ds. (2.42)
The reader should know that actually for any two semimartingales X, Y :

d(X t Y t ) = X t dY t + Y t dX t + d X, Y t , (2.43) 
where X, Y t is the quadratic covariation of X and Y . We will introduce the notion of quadratic variation later, in section 2. 4 Proposition 2.6. (Itô formula) Let X = X (1) X (2) . . . X (n) be a n-dimensional

Itô process such that:

dX t = a t dt + A t dB t , (2.44) 
where B t is a k-dimensional brownian motion, and f :

(R + × R n ) → R p a C 2 application. We denote f = f 1 f 2 . . . f p . The process Y t = f (t, X t ) is a p-dimensional process. It holds that the u-th component Y (u) t veries: dY (u) t = ∂f u ∂t (t, X t )dt + n i=1 ∂f u ∂x i (t, X t )dX (i) t + 1 2 n i,j=1 ∂ 2 f u ∂x i ∂x j (t, X t ) k l=1 A l i (t)A l j (t)dt. (2.45)
A l i (t) is the coecient of A t at the i-th row and l-th column. It is manifest that equation (2.45) is component wise for f , such that we can consider that f takes values in R without loss of generality. Formula (2.45) can then be stated in a somewhat more compact and general form, using again the quadratic variation. Indeed, let f :

(R + × R m ) → R a C 2 function. Let Y t = f (t, X t ). Then: dY t = ∂f ∂t (t, X t )dt + n i=1 ∂f ∂x i (t, X t )dX (i) t + 1 2 n i,j=1 ∂ 2 f ∂x i ∂x j (t, X t )d X (i) , X (j) t .
(2.46)

It is immediate that these two formula are equivalent with:

d X (i) , X (j) t = k l=1 A l i (t)A l j (t)dt. (2.47) 
Please note that Itô formula is applicable for applications which take values in C p .

Finally, we dene stochastic dierential equations.

Denition 2.36. (Stochastic dierential equation) Let a : R + × R n → R n and A :

R + ×R n → L(R k , R n
) be two measurable applications (with respect to the Borel σ-algebras).

Let B = B (1) B (2) . . . B (k) be a k-dimensional brownian motion. Let Z be a ndimensional random vector. A stochastic dierential equation is an equation of the following form:

dX t = a(t, X t )dt + A(t, X t )dB t , X 0 = Z, (2.48) 
which in integral form becomes:

X t = Z + t 0 a(s, X s )ds + t 0 A(s, X s )dB s .
(2.49)

We say that the stochastic process X t (n-dimensional) is a diusion process.

a is called drift and is often denoted µ instead of a. A is the volatility and is often denoted σ or Σ instead of A. In this thesis, we need to work only with homogeneous stochastic dierential equations, for which the drift and volatility do not depend explicitely on time. If X t is solution to such a stochastic dierential equation, we write:

dX t = µ(X t )dt + σ(X t )dB t . (2.50)
We often leave the initial condition unspecied. Moreover, for homogeneous stochastic differential equations, we may impose the initial condition at any time t 0 ≥ 0. It is not obvious that a stochastic dierential equation like equation (2.50) has a solution. There are theorems specially dedicated to that matter and answering the question: under which conditions does a stochastic dierential equation have a solution, and only one?. We do not need to trouble about that here. We redirect the reader to [START_REF]Stochastic Dierential Equations: An Introduction with Applications[END_REF] and [START_REF] Laleuf | Processus et intégrales stochastiques[END_REF] (or any textbook on stochastic dierential equations). Amongst the conditions in these theorems, we usually require that the initial condition Z be independent of the σ-algebra σ(B s , s > t 0 ) if the initial condition is imposed at t 0 . Also, to have unicity, we require that the solution is adapted to the σ-algebra generated by the initial condition Z and the brownian motion. From now on, we will always assume that there is a unique solution to all the stochastic dierential equations we work with. Also we now use the acronym SDE in place of stochastic dierential equation.

Theorem 2.1. (Markov property of a diusion process) Let (X t ) t be the solution to the SDE (2.48). Then it holds that (X t ) t is a Markov process. If the SDE is homogeneous, then it holds that (X t ) t is a homogeneous Markov process (see denition 2.12).

Theorem 2.1 is of the utmost importance. Since we will encounter only homogeneous SDE, our diusion processes will always be homogeneous Markov processes. We demonstrate in section 2.3 why this is such a useful property for parameter estimation.

Theorem 2.2. (semimartingale property of a diusion process) Let (X t ) t be the solution to the SDE (2.48). Then it holds that (X t ) t is semimartingale (denition 2.21).

More precisely,

A t = X 0 + t 0 µ(X s )ds (2.51)
is a nite variation process and

M t = t 0 σ(X s )ds (2.52)
is a martingale. Proposition 2.7. (Expectation of a diusion process) Let t 0 A(s)dB s be the Itô integral of a random linear operator with respect to a k-dimensional brownian motion (see denition 2.33). Then:

E t 0 A(s)dB s = 0. (2.53)
In particular, let (X t ) t be a diusion process such that:

X t = X 0 + t 0 µ(s, X s )ds + t 0 σ(s, X s )dB s .
(2.54)

Then:

E[X t ] = E[X 0 ] + E t 0 µ(s, X s )ds .
(2.55) Proposition 2.7 means that the expectation of a diusion process is related to the drift µ of its SDE, but not its volatility σ.

Numerical schemes

In the introduction of this chapter, we advised readers uninterested in the mathematics behind stochastic dierential equations (SDE) to jump directly here to understand what they are. A SDE can be written:

dX t = µ(X t )dt + σ(X t )dB t , (2.56)
where B t is a brownian motion. µ is called the drift, and σ the volatility. If we set σ = 0, equation (2.56) becomes:

dX t = µ(X t )dt, (2.57) i.e. dX t dt = µ(X t ), (2.58) 
which is just an ordinary dierential equation. In that case, Euler's scheme states that the increment of X t over an interval ∆t can be approximated by:

∆X t ≈ µ(X t )∆t, (2.59) 
where ∆X t = X t+∆t -X t . If the initial condition X 0 is deterministic, there is nothing random in equation (2.57) and its solution is a unique trajectory. Now for a SDE, the increment over ∆t can be approximated by the Euler's Maruyama scheme which states that:

∆X t ≈ µ(X t )∆t + σ(X t )∆B t , (2.60) 
where ∆B t ∼ N (0, ∆t). To the deterministic increments µ(X t )∆t, we now add a random increment which is normally distributed, with mean zero and variance ∆t. Even with a deterministic initial condition, X t is now a random process due to the random increments:

there are innitely many possible trajectories. In terms of vocabulary, the solution of a SDE is called a diusion process.

Solving analytically a SDE is in most cases impossible. To be more explicit, to solve equation (2.56), one must dene a probability space (Ω, F, P) and nd the solution stochastic process dened on Ω. It means that one must determine the trajectories X t (ω) for all ω ∈ Ω.

To remediate to our inability to solve SDE analytically, we use numerical schemes. We refer the reader to [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Dierential Equations[END_REF] for a gentle introduction to numerical resolution of SDE, and to [START_REF] Kloeden | Numerical Solution of Stochastic Dierential Equations[END_REF] for a more advanced presentation. We now use nD in place of n-dimensional. We dene here two dierent numerical schemes: Euler-Maruyama scheme in the general case of a multidimensional SDE (1D included), and Milstein scheme for 1D processes. Euler-Maruyama's scheme, dened now, is just the repetition of the approximation in equation (2.60) for many intervals.

Denition 2.37. (Euler-Maruyama scheme) Let [0, T ] be a nite time interval and

t 0 = 0 < t 1 < • • • < t N = T a subdivision of [0, T ]. Let X t be a multidimensional diusion
process. The Euler-Maruyama scheme reads:

X t i = X t i-1 + µ(X t i-1 )(t i -t i-1 ) + σ(X t i-1 )(B t i -B t i-1
).

(2.61)

By denition of a brownian motion, B t i -B t i-1 is a vector of independent and centered Gaussian distributed random variable, of variance ∆t = t

i -t i-1 . If X t i-1 is xed (deterministic),
Euler-Maruyama scheme states that:

X t i -X t i-1 ∼ N (∆tµ(X t i-1 ), ∆tσ(X t i-1 )σ(X t i-1 ) ), (2.62) 
i.e. the increment X t i -X t i-1 is a multivariate Gaussian variable with expectation ∆tµ(X t i-1 ) and covariance matrix ∆tσ(X t i-1 )σ(X t i-1 ) .

How would Euler-Maruyama go in practice? First assume t i -t i-1 = ∆t for all i. To generate one trajectory (which is, somehow, an approximation to the trajectory X t (ω) for some ω), we generate a starting value according to the distribution of X t 0 , and we generate a series of N n-dimensional brownian increments B t i -B t i-1 with normal distribution N (0, ∆tI). We use equation (2.61) with these increments to iteratively compute X t i for all i. To generate many trajectories and numerically see the statistical behaviour of the process, one must repeat this procedure many times to generate many trajectories. Applying this scheme to the SDE:

dX t = dB t , (2.63)
with the initial condition X 0 = 0, we obtain the trajectories of the brownian motion B t , which are represented in gure 2.1. We see that all the possible realizations of the process start at X 0 = 0 and spread out at t increases. Similar behaviour holds for all diusion processes and explains why we talk about diusions : the trajectories diuse away from the initial condition as t increases (for a deterministic initial condition). 

X t i = X t i-1 + µ(X t i-1 )(t i -t i-1 ) + σ(X t i-1 )(B t i -B t i-1 ) + 1 2 σ(X t i-1 ) dσ dx X t i-1 )((B t i -B t i-1 ) 2 -∆t . (2.64)
Milstein scheme is Euler-Maruyama scheme with a correction term which provides it with better convergence properties than Euler-Maruyama scheme. Indeed, it has strong order of convergence 1, while Euler-Maruyama scheme has strong order of convergence 1/2 [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Dierential Equations[END_REF]. Its denition is easy only for 1D SDE and becomes much more tricky for dimensions strictly greater than 1. The simulation of trajectories with Milstein scheme is straightforward, as with Euler-Maruyama scheme.

We will use Euler-Maruyama's scheme to simulate numerical trajectories everytime this is possible. However, Milstein scheme will be necessary to simulate trajectories of the process denoted x t in the subsequent chapters.

Transition Probabilities

From now on, we will write X t for a process (X t ) t . It is an annoying habbit in the literature and we decide to adopt it because it lightens the notations.

Maximum-Likelihood parameter estimation

The maximum-likelihood parameter estimation is classicaly used in signal processing and machine learning and need not be introduced (see e.g. [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF]). However, it is almost systematically presented for independent random variables. For example, let Y 1 , Y 2 , . . . , Y n be independent and identically distributed random variables according to some probability density f λ (y) parameterized by λ. By independence, the likelihood of an observation Ỹ1 , Ỹ2 , . . . , Ỹn is simply:

L( Ỹ1 , Ỹ2 , . . . , Ỹn ; λ) = n i=1 f λ ( Ỹi ). (2.65) 
If the Y i are not independent, it is not true anymore that the likelihood is given by equation (2.65). If the Y i correspond to the X t i of a diusion process with constant timestep t i -t i-1 = ∆t, and if ∆t is small, independence is false. Using the Markov property of such diusion processes, we show now that the likelihood is essentially a product of transition probabilities (equation (2.68)), which replace the stationary probabilities f λ ( Ỹk ) of equation (2.65). Thus, for maximum likelihood parameter estimation of diusion processes, the important concept is that of transition probabilities.

Let us consider a diusion process X t , solution to a SDE:

dX (λ) t = µ λ (X (λ) t )dt + σ λ (X (λ) t )dW t .
(2.66)

X (λ) t is a n-dimensional stochastic process, µ is a n-dimensional vector, σ is a n × k matrix (operator) and W t is a k-dimensional brownian process.
The initial condition X 0 is left unprecised. More importantly, we consider that there is a parameter λ = λ 1 λ 2 . . . λ l ∈ R l which parameterize the process. Assume that a particular trajectory of X t is observed at discrete times t 0 < t 1 < ... < t N and yields X0 , X1 , ..., XN .

Since X t is a Markov process (dependence upon the most recent past), its joint probability density function associated is:

p λ (X t 0 = X0 , ..., X t N = XN ) = p λ (X t 0 = X0 , ..., X t N -1 = XN-1 )p λ (X t N = XN | X t 0 = X0 , ..., X t N -1 = XN-1 ) = p λ (X t 0 = X0 , ..., X t N -1 = XN-1 )p λ (X t N = XN |X t N -1 = XN-1 ).
(2.67) By recurrence, the joint probability density function, that we call likelihood, is:

L(λ) = p λ (X t 0 = X0 ) N i=1 p λ (X t i = Xi | X t i-1 = Xi-1 ). (2.68)
Improperly speaking, it is the `probability' that we observe the sequence X0 , X1 , . . . , XN if the parameter is λ. Maximum likelihood estimation (ML) consists in maximizing L with respect to λ, which yields the estimated parameter. The ML estimator is: λ = argmax λ L(λ).

(2.69)

In practice, we express the optimality conditions:

           ∂L(λ) ∂λ 1 ( λ) = 0 ∂L(λ) ∂λ 2 ( λ) = 0 . . . ∂L(λ) ∂λ l ( λ) = 0. (2.70)
The solutions to this system are extrema of L(λ). It should be noted that if several solutions exist, one should in theory verify which one maximizes the likelihood. This procedure will be applied several times in this thesis, for estimating the sea clutter parameters, but also the target parameters when there is a target (e.g. a boat) in addition to the clutter. To express the system of equations (2.70), one must have the expression of the likelihood in equation (2.68), which in turn requires the initial probability p λ (X t 0 = X0 ) and the transition probabilities p λ (X t i = Xi | X t i-1 = Xi-1 ). For illustrative purposes, we represent the rst values of one trajectory of a diusion process in gure 2.2.

The Fokker-Planck equation

It is possible to derive an equation, called the Fokker-Planck equation, which solution is p λ (X t 0 = X0 ) for some initial conditions (stationary distribution) and p λ (X t i = Xi | X t i-1 = Xi-1 ) for some other initial conditions (dirac distribution). The Fokker-Planck equation is a partial dierential equation. We will not prove it rigorously but choose to present it as a special case of a more general equation (the master equation).

We rst present the Fokker-Planck equation for 1D processes. Let X t be a real-valued diusion process. We show briey the important steps that lead to the Fokker-Planck equation. For detailed and rigorous presentations, refer to chapter 4 of [START_REF] Garcia-Palacios | Introduction to the theory of stochastic processes and brownian motion problems[END_REF], or to [120]. The rst result which holds for Markov process is the Chapman-Kolmogorov equation. Proposition 2.8. (Chapman-Kolmogorov equation) Let t 1 < t 2 < t 3 and X t be a Markov process. It then holds:

p(X t 3 = x 3 | X t 1 = x 1 ) = R p(X t 3 = x 3 | X t 2 = x 2 )p(X t 2 = x 2 | X t 1 = x 1 )dx 2 .
(2.71)

The next step is to get the master equation. To do so, we developp the transition probability for short time increments in the following way:

p(X t = x | X t 0 = x 0 ) ≈ δ(x -x 0 )[1 -a (0) (x 0 , t)∆t] + W t (x|x 0 )∆t, (2.72)
with ∆t = t -t 0 . W t (x|x 0 ) is a transition probability from x 0 to x per unit time. The coecient 1 -a (0) (x 0 , t)∆t corresponds to the probability that no transition occurs (i.e. x = x 0 ). Proposition 2.9. (master equation) Let X t be a Markov process. Let t 0 , x 0 be xed, and p(x, t) = p(X t = x | X 0 = x 0 ). Assume that the transition probability per unit time W t (x|x 0 ) is time-homogeneous i.e. W t (x|x 0 ) = W (x|x 0 ). Then it holds:

∂p(x, t) ∂t = R [W (x|x )p(x , t) -W (x |x)p(x, t)]dx .
(2.73)

The next step is Kramers-Moyal expansion of the master equation.

Proposition 2.10. (Kramers-Moyal expansion) Let X t be a Markov process. Starting from its master equation, one can show that:

∂p(x, t) ∂t = +∞ m=1 (-1) m m! ∂ m ∂x m [a (m) (x, t)p(x, t)], (2.74) 
with a (m) (x, t) = R r m W (x; r)dr and W (x; r) = W (x + r|x).

Finally, there is a theorem called Pawula theorem (see [120] section 4.3), which states that one cannot truncate the Kramers-Moyal expansion in an arbitrary way. To ensure positive transition probabilities p(x, t) one must either keep only the rst term, the rst two terms, or the whole series. For homogeneous diusion processes, only the rst two terms remain (the others vanish exactly, such that no approximation is made), which yields the Fokker-Planck equation.

Theorem 2.3. (1D Fokker-Planck equation) Let X t be a 1D homogeneous diusion process, solution to the SDE:

dX t = µ(X t )dt + σ(X t )dW t , (2.75) 
Then its density function (x, t) → p(X t = x) is solution to the following partial dierential equation:

∂p(X t = x) ∂t = - ∂ ∂x [µ(x)p(X t = x)] + 1 2 ∂ 2 ∂x 2 [σ 2 (x)p(X t = x)].
(2.76) Equation (2.76) is Kramers-Moyal expansion of the master equation of X t , truncated after the rst two terms. The Fokker-Planck equation is also called Kolmogorov forward equation.

To solve this equation, one must dene an initial condition x → p(X 0 = x), which is the distribution of the initial condition X 0 of the SDE.

Theorem 2.4. (nD Fokker-Planck equation) Let X t be a nD homogeneous diusion process, solution to the SDE:

dX t = µ(X t )dt + σ(X t )dW t .
(2.77)

µ = µ 1 µ 2 .
. . µ n is a vector valued application on R n , and

σ =      σ 1 1 σ 2 1 . . . σ k 1 σ 1 2 . . . • • • . . . . . . . . . . . . . . . σ 1 n • • • • • • σ k n      (2.78)
is a n × k matrix-valued application on R n , and

W t = W (1) t W (2) t . . . W (k) t is a k- dimensional brownian motion. Let (x, t) → p(X t = x) for x = x 1 x 2 . . . x n ∈ R n ,
be the distribution of X t . Then the n-dimensional Fokker-Planck equation is the following partial dierential equation:

∂p(x, t) ∂t = - n i=1 ∂ ∂x i [µ i (x, t)p(x, t)] + 1 2 n i=1 n j=1 ∂ 2 ∂x i ∂x j [Σ ij (x, t)p(x, t)] , (2.79) 
with Σ = σσ (n × n matrix-valued application on R n ).

As for the 1D case, equation (2.79), if solved, gives the distribution x → p(X t = x) of X t for all t. However, to solve it, one must specify an initial condition, i.e. x → p(X 0 = x). We give two very important special cases now. Proposition 2.11. Deterministic initial condition Let X t be a nD homogeneous diusion process. Assume that X 0 = x 0 where x 0 ∈ R n . The initial condition for the corresponding Fokker-Planck equation is the distribution δ x 0 . It then holds that:

p(X t = x) = p(X t = x | X 0 = x 0 ). (2.80)
This result seems obvious, but it is truly a result that the distribution of X t which starts from a deterministic (Dirac distributed) condition x 0 , corresponds to the transition probability p(X t = x | X 0 = x 0 ) (see [START_REF] Gallardo | Mouvement brownien et calcul d[END_REF] p 171). Proposition 2.12. Stationary initial condition Let X t be a nD homogeneous diusion process. The stationary (no time dependence) Fokker-Planck equation is:

0 = - n i=1 ∂ ∂x i [µ i (x, t)p(x, t)] + 1 2 n i=1 n j=1 ∂ 2 ∂x i ∂x j [Σ ij (x, t)p(x, t)] .
(2.81)

Let us denote x → p ∞ (x) the solution of equation (2.81), which we call stationary distribution. Now assume that X 0 is distributed according to the stationary solution: x → p(X 0 = x) = p ∞ (x). Then it holds that ∀t:

p(X t = x) = p ∞ (x).
(2.82) Proposition 2.12 says that if the process X t is initially distributed according to the stationary distribution, it stays so for all subsequent times. The stationary distribution is also called asymptotic distribution. The rationale is that for homogeneous diusion processes X t like we consider, whatever the initial condition X 0 , the distribution of X t converges to p ∞ (x) as t → +∞ (see [120] section 6.1). This result justies that we use the symbol `∞'. It is not true that all diusion processes have stationary distribution. For example, the simplest of all:

dX t = dB t (2.83)
does not! Indeed, its solution for the initial condition X 0 = 0 is X t = B t ∼ N (0, t), which does not converge as t → +∞. Another way to see it is to notice that its stationary FPE:

0 = 1 2 ∂ 2 ∂x 2 p ∞ (x) (2.84) 
implies that p ∞ (x) = ax + b, which cannot hold since it is required that p ∞ is normalized (integral equal to one).

One reason why we introduced the Fokker-Planck equation is for the purposes of section 2.3.1. Indeed, for maximum likelihood (ML) parameter estimation in the case of Markov processes, we needed to know p λ (X t 0 = X0 ) and the transition probabilities p λ (X 

t i = Xi | X t i-1 = Xi-1 ) (see

Approximate transition probabilities

How do we get transition probabilities if we cannot solve analytically the FPE? We answer this question in this section because in practice, it is very unlikely that we manage to solve the FPE. A rst solution would be to solve it numerically. Though literature exists on the subject ( [START_REF] Vanaja | Numerical solution of a simple Fokker-Planck equation[END_REF], [START_REF] Zorzano | Numerical solution for Fokker-Planck equations[END_REF], [START_REF] Zhang | Numerical method for the nonlinear Fokker-Planck equation[END_REF], [START_REF] Zorzano | Numerical solution of two dimensional Fokker-Planck equations[END_REF], [START_REF] Kumar | Solution of Fokker-Planck equation by nite element and nite dierence methods for nonlinear systems[END_REF], [START_REF] Pichler | Numerical Solution of the FokkerPlanck Equation by Finite Dierence and Finite Element MethodsA Comparative Study[END_REF]), we consider another simpler option which works well for parameter estimation. If the sampling frequency is high (small ∆t), we can approximate very easily the transition probabilities using Euler-Maruyama's scheme.

Consider a diusion process X t solution of the SDE:

dX t = µ(X t )dt + σ(X t )dW t .
(2.85)

For small ∆t, one can advocate Euler-Maruyama scheme (section 2.2.3):

X t i = X t i-1 + µ(X t i-1 )(t i -t i-1 ) + σ(X t i-1 )(W t i -W t i-1
).

(2.86)

We remind that this scheme is dened in the general case of a n-dimensional SDE driven by a k-dimensional brownian motion. Assume that X t i-1 is xed at the deterministic value x i-1 . Then equation (2.86) becomes:

X t i = x i-1 + µ(x i-1 )(t i -t i-1 ) + σ(x i-1 )(W t i -W t i-1
).

(2.87)

The only stochastic term in the right-hand side of equation (2.87) is

W t i -W t i-1
, which is a k-dimensional random vector with distribution N (0, ∆tI) (I is the identity matrix) from the properties of brownian motion. It is then immediate from equation (2.87) that under the condition

X t i-1 = x i-1 , X t i has a multivariate Gaussian distribution N (x i-1 + µ(x i-1 )∆t, ∆tσ(x i-1 )σ(x i-1 ) ) with ∆t = t i -t i-1 .
The approximate transition probability using Euler-Maruyama scheme is:

p X t i = x | X t i-1 = y ≈ 1 (2π) n/2 |∆tσ(y)σ(y) | 1/2 × exp - 1 2 (x -(y + µ(y)∆t)) ∆tσ(y)σ(y) -1 (x -(y + µ(y)∆t)) .
(

The advantage of equation (2.88) is that it is particularly simple since the transition probability is always Gaussian. Analytical minimization of the likelihood function (in the context of ML estimation) becomes possible (see chapter 5 and 6). The disadvantage is that it works only for small ∆t. In particular, the application of transition probabilities in chapter 4 cannot be reduced to this approximation. There are other ways to approximate the transition probabilities. We shall rst cite Milstein scheme, in replacement of Euler-Maruyama's scheme, and Aït-Sahalia analytical approximation, based on the expansion of the transition probabilities in Gram-Charlier series (see [7], [START_REF] Dargatz | Bayesian Inference for Diusion Processes with Applications in Life Sciences[END_REF] chapter 6, and [START_REF] Kendall | Kendall's Advanced Theory of Statistics[END_REF] for the Gram-Charlier series).

Volatility Estimation

We are now going to introduce the last important notions that will be required mostly in chapter 7, where volatility estimation is used to estimate parameters. We have seen that a SDE can be written:

dX t = µdt + ΣdW t , (2.89) 
where µ is the drift and Σ is the volatility. The drift and volatility are not symmetric.

Under certain conditions, it is possible to make the drift disappear by a change of probability measure (P on the space Ω). It is quite delicate to estimate the drift and it requires long trajectories [START_REF] Reiÿ | Statistics of stochastic processes[END_REF]. On contrary, the volatility is somewhat more objective than the drift and can be estimated easily. In this section, we explain how we can do so. Estimating the volatility is useful because it enables in turn to estimate volatility parameters (see chapter 7).

To be more precise in the terms, we are going to introduce integrated volatility estimation, by opposition to spot volatility (see [8]). The rst step is to dene the covariation of two random processes.

Denition 2.39. (Covariation of two real-valued random processes) Let ∆ = (t k ) k be a subdivision of R + and X t , Y t be two real-valued random processes. Let |∆| = sup k∈N (t k+1t k ). We call covariation of X and Y the following limit (in probability):

X, Y t = lim |∆|→0 k∈N (X t k+1 ∧t -X t k ∧t )(Y t k+1 ∧t -Y t k ∧t ), (2.90) 
where t k ∧ t = min(t k , t) is used to stop the sum at time t.

One can restrict to a bounded interval [0, T ] instead of R + . In that case we choose the subdivision t

(n) i = i T n
, and the covariation is:

X, Y t = lim n→+∞ n-1 k=0 (X t k+1 -X t k )(Y t k+1 -Y t k ).
(2.91)

The covariation is a bilinear operator which maps two processes onto one process.

Notation: The quadratic covariation of a process X t with itself is called quadratic variation of X t and is denoted X t .

Denition 2.40. (Covariation of two n-dimensional random processes) Let ∆ = (t k ) k be a subdivision of R + and X t , Y t be two n-dimensional random processes. Let |∆| = sup k∈N (t k+1 -t k ). We call covariation of X and Y the following limit (in probability):

X, Y t = lim |∆|→0 k∈N (X t k+1 ∧t -X t k ∧t )(Y t k+1 ∧t -Y t k ∧t ) . (2.92) X, Y t in equation (2.92) is a n × n matrix. If X, Y
(i,j) t denotes its i-th row, j-th column coecient, then:

X, Y (i,j) t = X i , Y j t , (2.93) 
i.e. it is the covariation of the i-th component of X t and the j-th component of Y t .

One may wonder under which conditions the covariation between two processes exists.

All we need to know here is that it exists for any two semimartingales, and thus for any two diusion processes. We now prove that the covariation of any process with a nite variation process is always zero.

Proposition 2.13. (Covariation with a nite variation process) Let X t , A t be two real-valued stochastic processes such that A t has nite variation (see denition 2.20). Let V t be the variation of A t . Then ∀t ≥ 0, X, A t = 0. Indeed, let ∆ be a subdivision of R + :

k∈N

(X t k+1 ∧t -X t k ∧t )(A t k+1 ∧t -A t k ∧t ) ≤ k∈N |X t k+1 ∧t -X t k ∧t ||A t k+1 ∧t -A t k ∧t | ≤ sup {k∈N} {|X t k+1 ∧t -X t k ∧t |} k∈N |A t k+1 ∧t -A t k ∧t | ≤ sup {k∈N} {|X t k+1 ∧t -X t k ∧t |}V t |∆|→0 ---→ 0.
(2.94)

That sup {k∈N} {|X t k+1 ∧t -X t k ∧t |} |∆|→0
---→ 0 is not obvious. However, it is true if we assume that X t is a cadlàg process (trajectories are continuous from the right, and admit a limit from the left). To justify that, see [12] proposition 5.

Proposition 2.14. (Covariation of brownian motions) Let W (1) t , W

(2) t be two independent brownian motions. Then it holds:

i. W (i) , W (i) t = t for i = 1, 2,
ii. W (1) , W (2) t = 0.

Proposition 2.15. (Covariation of integrated processes) Let X t , Y t be two real-valued processes which are the Itô integrals of the processes σ

(1)

t , σ (2) 
t respectively:

X t = t 0 σ (1)
s dW (1) s ,

(2.95)

Y t = t 0 σ (2)
s dW (2) s .

(2.96)

Then we have:

X, Y t = t 0 σ (1)
s σ (2) s d W (1) , W (2) s .

(2.97)

For us, W (1) , W (2) t is always either t

(if W (1) t = W (2) t ) or 0 (if W (1) t and W 
(2) t are independent). We have now all the results to state the main results to compute covariations in the framework of diusion processes.

Proposition 2.16. Let W (j) t for j = 1, 2, . . . , k be k independent brownian motions. Let X t and Y t be two Itô processes whose stochastic dierentials are:

dX t = µ (X) dt + k j=1 σ (X) j dW (j) t dY t = µ (Y ) dt + k j=1 σ (Y ) j dW (j)
t .

(2.98)

Then by the bilinearity of the quadratic covariation and by proposition 2.15, we have: Proposition 2.17. Let X = X (1) X (2) . . . X (n) be a n-dimensional Itô process with stochastic dierential:

d X, Y t = k j=1 σ (X) j σ (Y ) j dt. ( 2 
dX t = µdt + ΣdW t , (2.101) 
where

W t = W (1) t W (2) t . . . W (k) t is a k-dimensional brownian motion. Σ is a n × k matrix.
Σ l i denotes its i-th row and l-th column coecient. Then, the quadratic variation of X veries:

d X t = ΣΣ dt = σdt. (2.102)
It is a n × n matrix whose i-th row, j-th column coecient is: 

σ ij dt = d X (i) , X (j) t = k l=1 Σ l i Σ l j dt. ( 2 
dY t = µ(Y t )dt + Σ(Y t )dW t . (2.104) 
Let σ = ΣΣ . If σ ij is the i-th row, j-th column coecient of σ and Y (k) the k-th coordinate of Y , then:

Y (i) , Y (j) t = t 0 σ ij (Y s )ds.
(2.105)

Y (i) , Y (j)
t is the quadratic covariation of Y (i) and Y (j) . Let t

(n) k = k t n be a subdivision of [0, t] into n pieces.
Then by denition:

Y (i) , Y (j) t = lim n→+∞ n-1 k=0 (Y (i) t k+1 -Y (i) t k )(Y (j) t k+1 -Y (j) t k ).
(2.106)

It holds from equations (2.105) and (2.106) that: We wish to distinguish between two terms: volatility estimation and volatility-based estimation. In short, volatility estimation consists in writing equation (2.107). The integral of the squared-volatility is estimated by the sum in the right-hand of equation (2.107). To be more specic, this is integrated volatility estimation, by opposition to spot volatility (see [8], and chapter 7 section 7.4.1). In both cases, it is the volatility itself which is estimated.

n-1 k=0 σ ij (Y t k )∆t ≈ n-1 k=0 (Y (i) t k+1 -Y (i) t k )(Y (j) t k+1 -Y (j) t k ), (2.107 
Besides volatility estimation (integrated or spot), we call volatility-based estimation the estimation of parameters relying on volatility estimation.

Relation between maximum likelihood and volatility

Volatility-based estimation works for high sampling frequencies (small ∆t). Under this hypothesis, the drift increment of a SDE can be neglected because it has order ∆t while the volatility increment has order ∆t 1/2 . We want to show that maximum likelihood and volatility-based estimation have some connection. We think that volatility-based estimation is a simplied version of ML estimation when the parameter to be estimated is in the volatility. Let us consider again the SDE:

dY t = µ(Y t )dt + Σ λ (Y t )dW t , (2.108) 
which is now 1D for simplicity. The squared-volatility σ λ = Σ 2 λ depends on a parameter λ.

Equation (2.107) becomes: 

n-1 k=0 σ λ (Y t k )∆t - n-1 k=0 (Y t k+1 -Y t k ) 2 = 0. ( 2 
Y t k+1 -Y t k = Σ λ (Y t k )∆W t k , (2.110) 
where ∆W t k ∼ N (0, ∆t). We get:

Y t k+1 ∼ N (Y t k , σ λ (Y t k )∆t). (2.111) 
Therefore, the transition probability from Y t k to Y t k+1 reads:

p(Y t k+1 | Y t k ) = 1 2π∆tσ λ (Y t k ) e -1 2 
( Y t k+1 -Y t k ) 2 ∆tσ λ (Y k ) , (2.112) 
and the likelihood of the time series Y = {Y 0 , Y 1 , . . . , Y n } can be approximated by:

L(Y, λ) = n-1 k=0 1 2π∆tσ λ (Y t k ) e -1 2 
( Y t k+1 -Y t k ) 2 ∆tσ λ (Y k )
.

(2.113)

Taking the natural logarithm, we get the log-likelihood:

l(Y, λ) = - 1 2 n ln(2π∆) - 1 2 n-1 k=0 ln(σ λ (Y k )) - 1 2 n-1 k=0 Y t k+1 -Y t k 2 ∆tσ λ (Y k ) . (2.114)
To obtain the maximum likelihood estimator, we must maximize l(Y, λ) with respect to λ.

To do so, we express the optimality condition:

∂l ∂λ (Y, λ) = 0.
(2.115)

If we express this condition from equation (2.114) and multiply it by -2∆t, we get:

n-1 k=0 σ λ (Y t k ) σ λ (Y t k ) ∆t - n-1 k=0 Y t k+1 -Y t k 2 σ λ (Y t k ) σ 2 λ (Y t k ) = 0, (2.116) 
where σ λ = ∂σ λ ∂λ . The λ which solves equation (2.116) is the maximum likelihood estimator of λ, using Euler-Maruyama's scheme to approximate the transition probabilities and neglecting the drift. We see a strong resemblance between equation (2.116) and equation (2.109), which attests to the link between the volatility-based and maximum likelihood estimators. Equations (2.116) and (2.109) are not identical, but they become so if σ λ does not depend on the state Y t . It seems that volatility-based estimation is a dumbed down version of maximum likelihood.

Wiener-Khinchin theorem

In this section, we introduce quickly the Wiener-Khinchin theorem since it is a classical tool for relating the spectral content of a stationary signal (realization of a stationary random process) to its correlation properties.

Let x : t → x(t) be a deterministic stationary signal. The autocorrelation function of x is the even function dened as:

G(τ ) = lim T →+∞ 1 T T 0 x(t)x(t + τ )dt, (2.117)
for τ ∈ R. We can typically think of x(t) as one realization of a stochastic process. For a pulsation ω ∈ R (not to be mistaken with an element of the probability space Ω), we set:

xT (ω) = T 0 x(t)e -iωt dt, (2.118) 
and

S(ω) = 1 2π lim T →+∞ 1 T |x T (ω)| 2 .
(2.119) This is the denition of the power spectral density (PSD) of the signal x(t).

Theorem 2.5. (Wiener-Khinchin) For a signal x(t) with autocorrelation function G(τ )

and PSD S(ω), it holds:

S(ω) = 1 2π R G(τ )e -iωτ dτ, (2.120) 
and

G(τ ) = R S(ω)e iωτ dω.
(2.121)

The Wiener-Khinchin theorem states that the autocorrelation function and the PSD are equivalent under the Fourier transform. Let us now consider a stochastic process X t . If Xt = x(t) is one realization of the process, we can apply the Wiener-Khinchin theorem to it. Under the assumption that X t is stationary, we dene its autocorrelation function as:

G(τ ) = X t X t+τ .
(2.122)

If we further assume that it is ergodic, then: 

G(τ ) = X t X t+τ = lim T →+∞ 1 T T 0 Xt Xt+τ dt := G(τ ), (2.123 
S(ω) = 1 2π R G(τ )e -iωτ dτ = 1 2π R G(τ )e -iωτ dτ = S(ω).
(2.124)

The last equality holds because since for any realization Xt we have G(τ ) = G(τ ), the PSD of Xt ends up being independent of the particular trajectory.

To sum up, if we have a process X t whose autocorrelation function G(τ ) = X t X t+τ is known, the PSD S(ω) is independent of the trajectory and it holds:

S(ω) = 1 2π R X t X t+τ e -iωτ dτ, (2.125) 
and

X t X t+τ = R S(ω)e iωτ dω.
(2.126)

In this thesis, the Wiener-Khinchin theorem is only used in chapter 5, section 5.5, in an attempt to dene a spectrum-based estimator for one of the parameters of the stochastic model for the sea clutter (introduced in chapter 3).

Conclusion

In this chapter, we placed ourselves in a purely mathematical framework and introduced many notions with the degree of rigour that seemed necessary to us for a good understanding of the rest of the thesis. The brownian motion was introduced in section 2.1 and we understood its special place amongst continuous stochastic processes, its main property being that it has independent Gaussian increments. It served as a base to dene stochastic dierential equations in section 2.2, since SDE are driven by a brownian motion (or a martingale more generally). Stochastic processes which are solutions to SDE are called diusion processes and we have seen that they are both martingales and Markov processes. We saw in section 2.3 that their transition probabilities are solutions of the Fokker-Planck equation, but can be approximated for small ∆t using Euler-Maruyama's scheme. Thanks to the Markov property of diusion processes, transition probabilities can be used to compute the likelihood of a time series, in conjunction with the asymptotic distribution of the process, and carry out parameter estimation. We introduced quadratic covariations in section 2.4. We saw that it relates to the volatility of diusion processes, and that volatility estimation can be used for parameter estimation. We argued in section 2.5 that volatility-based estimation is a simplied version of maximum likelihood estimation. Finally, Wiener-Khintchin theorem was presented in section 2.6.

In the next chapter, we introduce Field's model, expressed in terms of SDE, for the electromagnetic eld scattered by a random medium.

Chapter 3

Field's model for the sea clutter

In chapter 1, section 1.2.6, we dened the sea clutter as being the noise-like signal that we get from illuminating the sea surface with a radar (see gure 1.11). It was not precised whether the radar is in monostatic or bistatic conguration, what polarization is used etc.

We assume now that a radar is indeed emitting electromagnetic waves onto a patch of the sea surface, and that this one scatters back part of the waves to a receiver located possibly anywhere. It includes both the monostatic and bistatic congurations, and any polarization (in particular any of the HH, VV, HV, VH polarizations).

At the end of chapter 1, we presented the random walk model for the sea clutter. We explained that the random walk model (section 1.3) does not account for the dynamics of the clutter. It expresses the reectivity as:

Ψ t = lim N →+∞ Nt n=1 a (n) t N 1/2 e iφ (n) t = lim N →+∞ N t N 1/2 lim N →+∞ Nt n=1 a (n) t N 1/2 t e iφ (n) t = x 1/2 t γ t , (3.1) 
where N is the average number of scatterers, and N t the actual number of scatterers at time t. That t appears can be misleading: t is frozen in equation (3.1), it is a non-explicited variable. In equation (3.1), we have purposely factorized Ψ t in two factors:

x 1/2 t = lim N →+∞ N t N 1/2 , (3.2) 
and

γ t = lim N →+∞ Nt n=1 a (n) t N 1/2 t e iφ (n) t . (3.3)
x t (radar cross section) and γ t (speckle) are solutions to stochastic dierential equations (SDE) in Field's model. They are presented in detail respectively in sections 3.1 and 3.2.

The factorization of the sea surface reectivity has been used before, such as in [START_REF] Gini | Texture Modeling and Validation Using Recorderd High Resolution Sea Clutter data[END_REF], where

x t is called texture and does not correspond to a population model, but is a sum of cosines (cyclostationarity) to account for the cyclic motion of the sea surface. In [START_REF] Gini | Texture Modeling and Validation Using Recorderd High Resolution Sea Clutter data[END_REF], the second factor, γ t , is also called speckle and has the same statistics as in Field's model, at the exception that it does not solve a SDE.

We explained that if N t follows a negative binomial distribution and the phases are uniform over [0, 2π[, z t = |Ψ t | 2 follows the K distribution. In chapter 2, we introduced mathematical notions and most particularly we dened stochastic dierential equations (SDE). A stochastic process X t may therefore be determined by a SDE:

dX t = µ(X t )dt + σ(X t )dW t , (3.4)
where W t is a brownian motion. It almost goes without saying that a SDE dictates the dynamics of its solution. This can be easily intuited thanks to Euler-Maruyama scheme for example (section 2.2.3): an increment over a small interval ∆t is a Gaussian random variable with mean µ(X t )∆t and variance σ(X t ) 2 ∆t, or the transition probability over a small time interval is approximately Gaussian (section 2.3.3). Expressing Ψ t as the solution of a SDE would therefore solve our problem of modelling the dynamics of the sea clutter. This is precisely the work done by Field in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] and presented here.

The presentation of Field's model in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] is not always very clear, in terms of vocabulary, notations, notions, and proofs. In this chapter, we propose a more detailed presentation of the model. It is already part of the actual work done during the thesis because it goes beyond pure bibliography, unlike chapters 1 and 2.

In section 3.1, we focus on the process for the number of scatterers, N t , and show how Field shows that its asymptotic normalized counterpart, x t = lim N →+∞ Nt N , is solution of a SDE. In section 3.2, we derive the SDE for the reectivity when the number of scatterers is constant but goes to innity

(N t = N → +∞), i.e. lim N →+∞ Nt n=1 a (n) t N 1/2 t e iφ (n)
t . Based on equation (3.1), these two terms constitute the random walk model augmented with SDE for the dynamics, which is exactly Field's model. In section 3.3, we show that Field's model is a generalization of the K distribution, and nally in section 3.4 we summarize the chapter.

The stochastic population of scatterers

If we analyse equation (3.1), we see essentially three stochastic processes whose dynamics should or could be specied via a SDE: N t , a (n) t and φ

(n) t . This section is dedicated to N t : the number of scatterers contributing to the reectivity at time t. In the case of the sea surface, we will not study who the scatterers are. They may be crests of waves, or points which are geometrically well located for an optical reection of the incident waves. The existence of a population of scatterers (identied as small localized areas of the sea surface contributing strongly to the backscattered signal) is somewhat acknowledged in [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] as early in the book as chapter 2 (before the random walk model). There is empirical evidence (see p 31 of [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]) that the scatterers are dierent for dierent polarizations: HH, VV, HV, VH.

A crucial hypothesis in what follows is that N → +∞: we assume that the number of scatterers contributing to the sum is very large. In the context of radar remote sensing of the sea surface, this hypothesis is questionable when the illuminated area becomes small (high resolution radars). Mathematically, it is interesting to consider the limit N → +∞ to ensure the continuity of Ψ t . It is a necessary condition to obtain a model of stochastic dierential equations driven by brownian motions. If this hypothesis is removed, Ψ t becomes a jump process and Field's model [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] as described in this chapter breaks down.

The linear Birth-Death-Immigration model

In Field's model, N t is a N-valued stochastic process: it is a single population model. On the general subject of population models, we highly recommend [START_REF] Matis | Stochastic Population Models: A Compartmental Perspective[END_REF]. Field, in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] chapter 7, uses a linear Birth-Death-Immigration (BDI) population model (see [START_REF] Matis | Stochastic Population Models: A Compartmental Perspective[END_REF] chapter 5 for the theory). Let P N (t) = P(N t = N ) be the probability that the population is N at time t. The linear BDI model states that between t and t + ∆t, where ∆t is small, there is:

1. either a birth with probability λ∆tN 2. or a death with probability µ∆tN 3. or an immigration with probability ν∆t 4. or nothing happens with probability 1 -∆t (ν + (λ + µ)N ).

The birth and death rates (proportional to N ) can be understood quite easily. Immigration may be more delicate to interpret, since it is a constant positive rate independent of the population N . From a mathematical point of view, it is necessary to have immigration to make sure that there exists an equilibrium. In a Birth-Death population model, N = 0 is an absorbing state and given some initial condition it is almost sure that N reaches zero (extinction). Adding immigration enables the population to increase again when N = 0 is reached [START_REF] Matis | Stochastic Population Models: A Compartmental Perspective[END_REF]. The four possible transitions of the population over a time interval ∆t (birth, death, immigration or nothing) are summed up in gure 3.1. If a transition time step h is considered such that h ∆t, the number of the scatterers between t and t + h can change a lot due to multiple births, deaths and immigration, as illustrated in gure 3.2. For more clarity, the scatterers are represented as static. The motion is taken into account when the speckle is studied in section 3.2. which is equivalent to

P N (t + ∆t) -P N (t) ∆t = (ν +λ(N -1))P N -1 (t)-(ν +(λ+µ)N )P N (t)+µ(N +1)P N +1 (t). (3.6)
Taking the limit for ∆t → 0, we get:

dP N (t) dt = (ν + λ(N -1))P N -1 (t) -(ν + (λ + µ)N )P N (t) + µ(N + 1)P N +1 (t).
(3.7) Equation (3.7) corresponds to equation (7.1) in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]:

dP N (t) dt = G N -1 P N -1 (t) -(G N + R N )P N (t) + R N +1 P N +1 (t), (3.8) 
with:

G N = ν + λN R N = µN. (3.9)
λ is the birth rate, µ is the death rate and ν is the immigration rate. G N and R N are respectively the generation and recombination rates.

If N t is stationary, then dP N (t) dt = 0 and it is shown in [START_REF] Matis | Stochastic Population Models: A Compartmental Perspective[END_REF] section 5.3.2 that in that case, the stationary (or asymptotic or equilibrium) distribution of N t is: 

P N (t) = N + α -1 N p α (1 -p) N , ( 3 
p α = 1 1+ N /α (1 -p) N = N /α 1+ N /α , (3.11) 
P N (t) = N + α -1 N N /α N 1 + N /α N +α , (3.12) 
which is precisely the negative binomial distribution of section 1.3. N = E[p(N t = N )] is the average number of scatterers. In what follows, we propose a formal presentation following that of [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] and using the Kramers-Moyal expansion (proposition 2.10). If the demonstration is too technical or unclear, the reader can jump directly to equation (3.26).

Equation (3.8) is the starting point to get a SDE for x t . In the general case where G N and R N depend on time, it can be rewritten:

dP (N, t) dt = -[G(N, t)P (N, t) -G(N -1, t)P (N -1, t)] + [R(N + 1, t)P (N + 1, t) -R(N, t)P (N, t)] , (3.13) 
with P (N, t)

= P N (t), G(N, t) = G N (t) (generation rate) and R(N, t) = R N (t) (recombina- tion rate
). Now by Taylor expansion (with respect to N ), this can be rewritten:

dP (N, t) dt = +∞ n=1 (-1) n n! ∂ n ∂N n [G(N, t)P (N, t)] + +∞ n=1 1 n! ∂ n ∂N n [R(N, t)P (N, t)] .
(3.14) Equation (3.14) may not be rigourous as it is. We have expanded by Taylor series the functions G(N, t)P (N, t) and R(N, t)P (N, t) with respect to N . This hardly makes sense as P (N, t) is dened on N. However, we admit it formally for the presentation since it is implicitely used by Field in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]. We use it to identify the coecients of the Kramers-Moyal expansion of P (N, t) as functions of the generation and recombination rates. We remind that the Kramers-Moyal expansion for P (N, t) reads (see section 2.3.2):

∂P (N, t) ∂t = +∞ n=1 (-1) n n! ∂ n ∂N n [a (n) (N, t)P (N, t)], (3.15) 
written

∂P (N, t) ∂t = +∞ n=1 - ∂ ∂N n [D (n) (N, t)P (N, t)] (3.16)
by Field (equation 7.4 in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]). By identication with equation (3.8), it is immediate that:

D (n) (N, t) = 1 n! [G(N, t) + (-1) n R(N, t)].
(3.17)

We could have postulated equation (3.17) 

∂P (x, t) ∂t = +∞ n=1 1 N n-1 - ∂ ∂x n [D (n) (x N , t)P (x, t)]. (3.18)
We now go back to the special case where G(N, t) = λN + ν and R(N, t) = µN , i.e. the linear BDI population model. The rst term (n = 1) is:

1 N 0 - ∂ ∂x [D (1) (x N , t)P (x, t)] = - ∂ ∂x [(G(x, t) -R(x, t))P (x, t)] , (3.19) 
with

G(x, t) = λx N + ν R(x, t) = µx N . (3.20)
Reminding that N = ν µ-λ , we easily show that:

1 N 0 - ∂ ∂x [D (1) (x N , t)P (x, t)] = - ∂ ∂x (ν(1 -x)P (x, t)) . (3.21)
This term does not depend on N . The second term of the Kramers-Moyal expansion is:

1 N - ∂ ∂x [D (2) (x N , t)P (x, t)] = - ∂ ∂x 1 2 G(x N , t) + R(x N , t) , (3.22) 
which can be shown to be: 

1 N - ∂ ∂x [D (2) (x N , t)]P (x, t) = 1 2 ∂ ∂x 2 x(λ + ν) + ν N P (x, t) .
∂ ∂t p(x t = x) = - ∂ ∂x [ν(1 -x)p(x t = x)] + ∂ 2 ∂x 2 [λxp(x t = x)] .
∂ ∂t p(x t = x) = - ∂ ∂x [A(1 -x)p(x t = x)] + ∂ 2 ∂x 2 A α xp(x t = x) . (3.26)
The stationary distribution of the process x t is the solution to:

0 = - ∂ ∂x [A(1 -x)p(x t = x)] + ∂ 2 ∂x 2 A α xp(x t = x) . (3.27)
The solution is a gamma-distribution (see [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] p 49):

p(x t = x) = α(αx) α-1 e -αx Γ(α) (3.28)
for x ≥ 0, 0 otherwise. We generally do not feature the indicator function to lighten the notations. The reader shall remember that x t is always ≥ 0.

We 

dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x) t , (3.29) 
for some 1D brownian motion W (x) t . This is the rst brick of Field's model for the sea clutter! A necessary step to arrive at equations (3.26) (Fokker-Planck equation for p(x t = x)) and (3.29) (stochastic dierential equation driven by a brownian motion for x t ) is the limiting procedure:

lim

N →+∞ N t N . (3.30) 
Without it, the population could not be quantied as a continous random variable and we would neither have a FPE nor a SDE. The second hypothesis is that the population follows a linear BDI model. 

λ(N ) = λ 0 N -λ 1 N s+1 (3.31)
if N < ( λ 0 λ 1 ) 1/s , 0 otherwise. ( λ 0 λ 1 ) 1/s is the N such that λ(N ) = 0, i.e. no more births. In absence of immigration, it would the maximum number of scatterers. The death rate µ(N ) is:

µ(N ) = µ 0 N + µ 1 N s+1 . (3.32)
s is an integer ≥ 1. The immigration rate, ν, remains the same. [START_REF] Matis | Stochastic Population Models: A Compartmental Perspective[END_REF] chapter 7 shows that such a nonlinear BDI population veries the following (Kolmogorov) equation:

dP (N, t) dt = (ν + λ(N -1)) P (N -1, t) -(ν + λ(N ) + µ(N )) P (N, t) + µ(N + 1)P (N + 1, t), (3.33) 
which is equivalent to

dP (N, t) dt = G N -1 P (N -1, t) -(G N + R N )P (N, t) + R N +1 P (N + 1, t) (3.34) 
with G N = ν +λ(N ) and R N = µ(N ). The generation and recombination rates are therefore: 

G N = ν + (λ 0 N -λ 1 N s+1 )I [0,Nm] R N = µ 0 N + µ 1 N s+1 . ( 3 
G N = ν + (λ 0 N -λ 1 N s+1 ) R N = µ 0 N + µ 1 N s+1 . (3.36)
It is hard to continue analytically for a simple reason: in general, we do not know the expression of N as a function of the parameters λ 0 , λ 1 , µ 0 , µ 1 and ν. Scouting out a little bit actually convinces us that there is little hope that the nonlinear BDI leads to an interesting result for x t . Let x = N N . For example, the rst term of the Kramers-Moyal expansion of P (x, t) = P (x N , t) N is:

- ∂ ∂x [(G(x, t) -R(x, t))P (x, t)] = - ∂ ∂x ν + (λ 0 -µ 0 ) N x -(λ 1 + µ 1 ) N s+1 x s+1 .
(3.37)

How do we let N → +∞ and make sure that this rst term does not explode? It seems necessary that λ 0 -µ 0 → 0 and λ 1 + µ 1 → 0. This is equivalent to µ 0 → λ 0 (or λ 0 → µ 0 ) and λ 1 → 0 and µ 1 → 0. But if λ 1 and µ 1 go to zero, we just go back to the linear BDI model! And making µ 0 go to λ 0 is simply the way we made N go to innity in the linear BDI case! Another method to modify the population model consists in directly postulating a SDE for x t , as suggested in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] chapter 10. One would then have to make sure that x t remains positive. This is ensured for x t in equation (3.29) because at x t = 0, the volatility vanishes and the drift is A, which is stricly positive. Therefore, x = 0 is a barrier that x t never crosses. A way to nd such a SDE is to postulate a stationary distribution for x t dierent than equation (3.28), nd which FPE it is the stationary solution of (which could be hard!)

and obtain the corresponding SDE.

In complete generality, there is no certainty that x t = lim N →+∞ Nt N is a diusion process, i.e. solution to a SDE (cf. [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] chapter 7 and [START_REF] Jakeman | Distinguishing population processes by external monitoring[END_REF]).

The speckle

We started the previous section by stating that there are 3 stochastic processes in the random walk model whose dynamics could be specied via a SDE: N t , a = a = 1 is constant ([48] chapter 6). This assumption is relaxed in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] chapter 10 or [START_REF] Feng | Stochastic Dierential Equation Theory Applied to Wireless Channels[END_REF] and in this section, where a (n) t = a n depends on the scatterer. Therefore, we never specify dynamics for the amplitudes a (n) t . Equation (3.1) can be written:

Ψ t = x 1/2 t lim N →+∞ Nt n=1 a n N 1/2 t e iφ (n)
t .

(3.38)

We now wish to derive a SDE for:

γ t = lim N →+∞ N n=1 a n N 1/2 e iφ (n) t . (3.39)
γ t is called the speckle. This is the name chosen to refer to γ t , but it may not correspond exactly to what is usually referred to as speckle. For example, there is no space variable here since the processes, like γ t , correspond to the time evolution of one resolution cell. Since:

γ t = lim N →+∞ N n=1 a n N 1/2 e iφ (n) t = lim N →+∞ Nt n=1 a n N 1/2 t e iφ (n) t , (3.40) 
such a SDE would complete the dynamics of Ψ t , since the SDE of x t is already known.

The speckle corresponds to a constant population of scatterers ( N , though it is increased to innity). Its importance lies in the fact that the phases φ In the next section, we present a rst model for the phases where the scatterers have independent brownian motion. We account for the situation where a deterministic translational motion aects all the scatterers in section 3.2.2.

Speckle without Doppler

The rst case for which we want a SDE for γ t is the case where the phases are given by the SDE:

dφ (n) t = B 1/2 dW (n) t φ (n) 0 = ∆ (n) , (3.41) 
where ∀ n, ∆ (n) is uniformily distributed over [0, 2π[ and B is a positive constant.

Independence is always assumed for the phases: for i = j, φ has variance B∆t, which goes to +∞ as t → +∞. However, we understand that the wrapped phase has uniform distribution over [0, 2π[ for stationary distribution, even though there is no SDE for the wrapped phase since it is a jump process. There is no Doppler in the phase model (3.41), in the sense that the scatterers do not have a common component of deterministic translation due to a rectilinear motion of the radar for example (as in satellite or airborne acquisitions). The case where there is such a translational motion is treated in the next section.

To derive the SDE of the speckle γ t in the no Doppler case, we rely largely on the paper by Feng, Field and Hayking [START_REF] Feng | Stochastic Dierential Equation Theory Applied to Wireless Channels[END_REF] appendices B, C, D. We follow their lead but it would be pointless to give all the details. Instead, we focus on the important steps to understand where the model could be modied. Let

ε (N ) t = N k=1 a k e iφ (k) t (3.42)
be the nite random walk over N scatterers which have phases φ

(1) t , φ (2) 
t , ..., φ (N ) t respectively.

We assume that we know the stochastic dierentials of the phases. The stochastic dierentials will be given by equation (3.41) ultimately, but for now on we stay general. We can compute the dierential dε (N ) t by application of Itô formula (proposition 2.6) with:

f : R N → C (φ (1) , φ (2) , ..., φ (N ) ) → f (φ (1) , φ (2) , ..., φ (N ) ) = N k=1 a k e iφ (k) .

(3.43)

Itô formula gives:

dε (N ) t = N j=1 ∂f ∂φ (j) dφ (j) t + 1 2 N j,l=1 ∂ 2 f ∂φ (j) ∂φ (l) d φ (j) , φ (l) t , (3.44) 
since f does not depend explicitely on time. From the expression of f , the second order derivative ∂ 2 f ∂φ (j) ∂φ (l) are zero for j = l, which yields:

dε (N ) t = N j=1 ∂f ∂φ (j) dφ (j) t + 1 2 ∂ 2 f ∂φ (j) 2 d φ (j) , φ (j) t = N j=1
ia j e iφ (j) t dφ

(j) t + 1 2 (-1)a j e iφ (j) t d φ (j) , φ (j) t = N j=1 a j idφ (j) t - 1 2 d φ (j)
, φ (j) t e iφ (j) t .

(3.45)

Now we use the SDE (3.41) for the phases dynamics: we quit generality and enter deep into Field's assumptions. Since d φ (j) , φ (j) t = Bdt, we get:

dε (N ) t = N j=1 ia j B 1/2 dW (j) t e iφ (j) t - 1 2 Bdt N j=1 a j e iφ (j) t ⇔ dε (N ) t = - 1 2 Bε (N ) t dt + V (3.46) with V = N j=1 ia j B 1/2 dW (j)
t e iφ (j) t (same notations as in [START_REF] Feng | Stochastic Dierential Equation Theory Applied to Wireless Channels[END_REF]). There is nothing to do with

-1 2 Bε (N )
t dt: it is directly interpreted as a part (or the whole) of the drift of a SDE for dε

(N ) t .
It is V which causes problem and must be transformed to a more friendly form. V can be written into real and imaginary parts:

V = B 1/2 i N j=1
a j cos(φ

(j) t )dW (j) t - N j=1
a j sin(φ

(j) t )dW (j) t . (3.47) 
These real and imaginary part (disregarding the constant factor B 1/2 ) can be written:

N j=1 a j cos(φ (j) t )dW (j) t = N j=1 a 2 j cos 2 (φ (j) t ) 1/2 N j=1 a j cos(φ (j) t )dW (j) t N j=1 a 2 j cos 2 (φ (j) t ) 1/2 = σ c dW (c) t , (3.48) 
with

   σ 2 c = N j=1 a 2 j cos 2 (φ (j) t ) dW (c) t = N j=1 a j cos(φ (j) t )dW (j) t N j=1 a 2 j cos 2 (φ (j) t ) 1/2 . (3.49)
where W

(c) t is a brownian motion. The main property used here, is that dW

(c) t is indeed
the stochastic dierential of a brownian motion. This is true by independence of the W (j) t . Similarly, we can show that:

N j=1 a j sin(φ (j) t )dW (j) t = σ s dW (s) t , with    σ 2 s = N j=1 a 2 j sin 2 (φ (j) t ) dW (s) t = N j=1 a j sin(φ (j) t )dW (j) t N j=1 a 2 j sin 2 (φ (j) t ) 1/2 . (3.50)
where W

(s) t is a brownian motion. V can now be rewritten:

V = B 1/2 σ i σ c σ dW (c) t - σ s σ dW (s) t , (3.51) 
with

σ 2 = σ 2 c + σ 2 s = N j=1
a 2 j .

(3.52)

In complete generality for N , one cannot go further. However, [START_REF] Feng | Stochastic Dierential Equation Theory Applied to Wireless Channels[END_REF] shows that:

lim N →+∞ W (c) t , W (s) t t = 0 lim N →+∞ σc σ 2 = lim N →+∞ σs σ 2 = 1 2 .
(3.53)

From the rst equality, he deduces the independence of W (c) t and W

(s) t for innite N (using [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]). If the a j are independent of N , then σ explodes as N → +∞ (unless we impose some decaying condition on the sequence {a j , j ∈ N}, which is not relevant). It is also assumed that sup j∈N (a j ) < +∞. To prevent the explosion of σ, we normalize the a j by N 1/2 , which is exactly what we do in equation 3.39 when we dene the speckle γ t . Thus, σ 2 becomes:

σ 2 = 1 N N j=1 a 2 j , (3.54) 
and has a nite limit for N → +∞. We can deduce that as N → +∞, V becomes:

V = B 1/2 σ √ 2 -dW (s) t + idW (c) t = B 1/2 σdξ t , (3.55) 
where

ξ t = 1 √ 2 (-W (s) t + iW (c) t ) (3.56)
is a complex brownian motion. We remind that:

γ t = lim N →+∞ N j=1 a j N 1/2 e iφ (j) t = lim N →+∞ ε (N ) t N 1/2 , (3.57) 
From equations (3.46) and (3.55), we get the following SDE for the speckle:

dγ t = - 1 2 Bγ t dt + B 1/2 σdξ t . (3.58)
This is the second main SDE of Field's model, together with the SDE (3.29) for x t . Field makes the additional assumption that σ = 1, Which has the eect of normalizing the reectivity (see section 3.3). Contrary to Field in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF], we prefer to rewrite equation (3.58) in the form of two real-valued SDE rather than one complex valued SDE. It gives: 

dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I) t . ( 3 
ξ t = 1 √ 2 (W (R) t + iW (I) t ).
(3.60)

We see immediately that

W (R) t = -W (s) t and W (I) t = W (c)
t , hence the independence.

Speckle with Doppler

We presented the Doppler eect in section 1.2.4. We have seen that if the relative velocity between the radar and object is V , and if u r is unitary and points from the object to the radar, then when an EM wave of frequency f 0 is emitted toward the object, the received frequency is:

f D = f 0 c 0 c 0 + 2 V . u r = f 0 + c 0 c 0 + 2 V . u r -1 f 0 = f 0 + f doppler , (3.61) 
with f doppler = c 0 c 0 +2 V . ur -1 f 0 . Let ω 0 = 2πf doppler . The phase of the reectivity in baseband (i.e. after multiplication of the received complex signal by e -i2πf 0 t ) is: t .

φ (j) t = -ω 0 t + constant.
(3.65)

We have shown in complete generality with respect to the phase model that:

dε (N ) t = N j=1 a j idφ (j) t - 1 2 d φ (j) , φ (j) t e iφ (j) t .
(3.66)

Since we still have φ (j) , φ (j) t = Bdt, we get:

dε (N ) t = N j=1 a j i -ω 0 dt + B 1/2 dW (j) t - 1 2 Bdt e iφ (j) t = N j=1 a j e iφ (j) t -iω 0 - 1 2 B dt + N j=1 ia j B 1/2 dW (j) t e iφ (j) t = N j=1 a j e iφ (j) t -iω 0 - 1 2 B dt + V. (3.67) 
We now let N → +∞. Since we have seen that lim N →+∞ V = B 1/2 σdξ t (upon normalization of the a j by N 1/2 ), we get:

dγ t = (-ω 0 i - 1 2 B)γ t dt + B 1/2 σdξ t . (3.68)
This is equation (8.60) in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] (in which σ = B = 1). If we reexpress equation (3.68) in real and imaginary parts and make the assumption σ = 1, we get:

   dγ (R) t = -1 2 Bγ (R) t + ω 0 γ (I) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t -ω 0 γ (R) t dt + 1 √ 2 B 1 2 dW (I)
t .

(3.69)

In the rest of the thesis, we will not use equation (3.69). One of its major limitations is that it assumes that the scatterers are continuously illuminated in time by the source.

In practice, this is not true at the light of the way radar systems work (emission of short pulses).

Remarks on the phase model and time scales

Increments in the phase are directly proportional to increments in the position of the scatterer (more precisely the distance). If the increments of the distance between t and t + ∆t are Gaussian random variables with variance proportional to ∆t, we obtain the phase model of the previous section:

dφ (n) t = B 1/2 dW (n) t .
Therefore, the phase model used all over this thesis implies that the scatterers physically move by Gaussian jumps and independently of one another. This is a much stronger restriction than what the random walk model was assuming, namely uniform phase distribution over [0, 2π[ at xed time t.

Theoretically, a brownian motion evolves at all scales (see section 2.1.2), and so the phase itself φ

(n) t evolves at all time scales. In reality, this is not physically possible, and even if is was, the narrowband approximation which we used in section 1.2.4 to dene the reectivity would then collapse. This must be understood as a limit of modelling the sea clutter (reectivity) with SDE. The variations for very short timescales should not be taken into account. This sets a limitation for using Field's model with high-frequency time series.

If very nely sampled time series of Ψ t could be recorded (for exemple with ∆t = 10 -5 s rather than the 10 -3 s quoted in chapter 1), it could become irrelevant to use Field's model for very short transitions.

3.3 Field's model as a generalization of the K distribution

x t , γ (R) t
and γ

(I) t are stationary processes in Field's theory. They have the following probability densities valid for all t (see chapter 4, see [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] and [START_REF] Roussel | Forward and backward probabilistic inference of the sea clutter[END_REF]):

p(x t = x) = α α x α-1 e -αx Γ(α) p γ (R) t = x = p γ (I) t = x = 1 √ π e -x 2 , (3.70) 
which do not depend on A nor B.

In this section, we explicit the connection between Field's model [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] and the usual K distribution (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]) and observe that Field's model is in agreement with it.

Let

Ψ (C) t = CΨ t , (3.71) 
be the reectivity of Field's model, Ψ t , multiplied by a constant C. The reader will soon understand why we do that. The intensity, i.e. the squared amplitude of the reectivity, is:

|Ψ (C) t | 2 = |CΨ t | 2 = C 2 x t (γ (R) 2 t + γ (I) 2 t ) (3.72)
be the intensity. It can be written:

|Ψ (C) t | 2 = C 2 z t , (3.73) 
where z t = |Ψ t | 2 is the intensity of Field's model. From the rst equation of (3.70), we have:

p(C 2 x t = x) = ( α C 2 ) α x α-1 e -α C 2 x
Γ(α) .

(3.74) This is the gamma distribution for the RCS as expressed in equation (4.24) p 109 of [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF],

with b = α C 2 and ν = α where b and ν are usually referred to as the scale and shape parameters respectively. We now understand that with C = 1 (Field's model), this gamma distribution would have only one parameter, which is not the general case. It is somewhat more intuitive to work with C 2 rather than b since:

E[C 2 x t ] = C 2 . (3.75)
From the second equation of (3.70):

√ 2γ (R) t ∼ √ 2γ (I) t ∼ N (0, 1), (3.76) 
and by independence of γ (R) t and γ

(I) t , ( √ 2γ (R) t ) 2 + ( √ 2γ (I) t ) 2 ∼ χ 2 2 , (3.77) 
from which we obtain:

p γ (R) 2 t + γ (I) 2 t = x = e -x ⇔ p u(γ (R) 2 t + γ (I) 2 t ) = x = e -x u u (3.78)
for all u ≥ 0. Then,

p(C 2 z t = x) = +∞ 0 p(C 2 x t = u)p(C 2 z t = x | C 2 x t = u)du = +∞ 0 ( α C 2 ) α x α-1 e -α C 2 x Γ(α) e -x u u du = 2b (ν+1)/2 x (ν-1)/2 Γ(ν) K ν-1 (2 √ bx).
(3.79)

We have retrieved the K distribution for the intensity (see equation (4.26) p 109 of [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]). Field's model is a generalization of the K distribution in the sense that it provides a dynamics extension to it.

The expectation of the non-normalized intensity C 2 z t is:

E[C 2 z t ] = C 2 E[z t ] = C 2 E x t γ (R) 2 t + γ (I) 2 t = C 2 E[x t ]E γ (R) 2 t + γ (I) 2 t = C 2 .
(3.80)

We have used independence of x t and γ

(R) 2 t + γ (I) 2 t
, and the fact that E[

x t ] = 1 and E[γ (R) 2 t + γ (I) 2 t
] = 1 from equations (3.70) and (3.78). We have our interpretation for C: C 2 is the average intensity of the observed reectivity. In Field's model, C = 1 and we have:

E[z t ] = 1. (3.81)
Mathematically speaking, Field's model is normalized because σ 2 dened in equation (3.54) is taken to be one. One way to have this is to choose constant amplitudes equal to 1 for all scatterers, i.e. a n = 1 for all n in equation (3.38). Taking a n = C for all n yields the above non-normalized reectivity.

Summary of Field's model

In this section, we wish to summarize Field's model in one page. Field's model starts from the random walk model for the complex reectivity of a random medium (e.g. the sea surface). The complex reectivity, Ψ t , is also called clutter. It is dened as:

Ψ t = lim N →+∞ Nt n=1 a n N 1/2 e iφ (n) t , (3.82) 
i.e. the limit of the random walk model when N becomes innite, for a random number of scatterers N t with expectation N . To ensure a constant mean power during the limiting procedure, the amplitude of the scatterers, a n , are normalized by N . Equation (3.82) can be rewritten:

Ψ t = lim N →+∞ N t N 1/2 lim N →+∞ Nt n=1 a n N 1/2 t e iφ (n) t .
(3.83)

We denote x t = lim N →+∞ Nt N . x t is the RCS (radar cross section) in Field's model, it it positive real-valued. We denote γ t = lim N →+∞

Nt n=1 an N 1/2 t e iφ (n)
t . γ t is the speckle, it is complex-valued. The reectivity is simply:

Ψ t = x 1/2 t γ t .
(3.84)

The dynamics of the RCS x t are determined by those of N t . In Field's model, N t is a linear Birth-Death-Immigration population model. We can show that x t is solution to the following stochastic dierential equation :

dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x) t , (3.85) 
where W (x) t is a brownian motion, and A and α are two constants coming from the population model.

The dynamics of the speckle γ t are determined by those of the phases φ

(n) t . It is assumed that for each scatterer, the dynamics of the phase is given by: dφ Field's model is a generalization of the `static' random walk model (section 1.3 or [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]) when the number of scatterers is negative binomial for innite number of scatterers. As such, the distribution of z t = |Ψ t | 2 is a K distribution for all t in Field's model. In addition, it provides the temporal structure of the reectivity through stochastic dierential equations.

(n) t = B 1/2 dW (n) t φ (n) 0 = ∆ (n) , ( 3 
dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I) t , (3.87 
Field's model is a bridge between the two preceding chapters since it expresses the sea clutter (chapter 1) in terms of SDE, and as such places it in the framework of stochastic analysis (chapter 2). In the next chapters, we will make developments based on Field's model for the sea clutter, and show that it can provide new tools for the statistical analysis of sea clutter time series and target detection.
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Chapter 4

Forward and backward probabilistic inference of the sea clutter One objective of this thesis is to explore the possibilities of Field's model for synthetic aperture radar imaging (SAR). The unknown behaviour of the sea surface is a problem in SAR imaging because it is based on temporal integration. The synthetic aperture (or antenna) is obtained by the motion of the sensor which illuminates the same point (x, y) of the sea surface (Earth's surface more generally) for about 0.5 -1 seconds in the satellite case (see [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data[END_REF]). It is well known that the sea clutter typically decorrelates over shorter durations [START_REF] Ward | Maritime surveillance radar. I. radar scattering from the ocean surface[END_REF], [START_REF] Farina | High resolution sea clutter data: statistical analysis of recorded live data[END_REF]. The issue is that the integration, which works for static surfaces due to our knowledge of the reectivity's phase history (assuming constant amplitude), does not work anymore for the sea surface. Indeed, the sea clutter evolves not only because of the space interval but also because of the time interval. Both the phase and amplitude evolve in a pretty unpredictable way. Traditional SAR imaging of the sea surface is therefore problematic, with a blurring eect due to the motion of the surface during the integration interval (see [START_REF] Mccandless | Synthetic Aperture Radar Marine User's Manual[END_REF], [11], [START_REF] Kanevsky | Radar Imaging of the Ocean Waves[END_REF]). This is the rationale for what is presented in this chapter. Our idea is that Field's model can give information about the reectivity's history, which might be usable at some step of the SAR algorithm and could lead to a new concept of a distribution of SAR images. where t is the time parameter and u the position of the sensor. Of course, for any u 1 , u 2 , there is a spatial correlation between X (u 1 ) t and X (u 2 ) t , which starts from 1 if u 1 = u 2 and decreases as |u 1 -u 2 | increases. This dependency is not treated in this paper. We only make the hypothesis that for all u, the X (u) t are described by the same model (Field's model, [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF],

chapter 3). Our objective is to understand the time dependency only, in order to compensate it independently for each of the measures

X(u 1 ) t 1 , X(u 2 ) t 2 , . . . , X (un) 
tn and bring them together to a common time. Therefore, in this chapter, we will not refer to the space parameter u. We denote simply X t the sea clutter process from any arbitrarily chosen point of view, and Xt its measures (or realizations). To synchronize the measures, we make probabilistic inferences, based on transition probabilities (see section 4.1).

As explained in section 1.3, statistical models are generally used to describe the sea clutter (Rayleigh distribution, K distribution etc) [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF]. These models provide a probability density for the sea clutter X t that is valid at any xed time t. They are static in the sense that they do not precisely model the time dependency of the sea clutter and cannot help us synchronizing the data (unless in a trivial way). On contrary, the SDE representation of the sea clutter presented in chapter 3 (Field's model) is helpful as explained below. We remind that Field's model states that the complex reectivity is:

Ψ t = x 1/2 t (γ (R) t + iγ (I) t ), (4.1) 
with

       dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x) t dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I) t . (4.2) 
In this chapter, we treat systematically several observables: the speckle, the RCS, the intensity and the real reectivity (real part of the complex reectivity). The imaginary part of the reectivity is shown to have the same properties as its real part. One reason is that we cannot say yet what observable is the most important for SAR imaging. One dierent reason is that SAR imaging is not the only motivation for this chapter. The method could nd applications in dierent settings. For each of these observables, we give mathematical expressions of the transition probabilities from present to future and from present to past which enable respectively forward and backward `probabilistic inferences'.

In section 4.1, we introduce vocabulary and notations to dene what is meant by forward and backward probabilistic inferences, in relation with conditioned probabilities and Markov processes. In section 4.2, we solve the Fokker-Planck equations of the speckle and the RCS, to obtain their transition probabilities, from which we derive also the transition probabilities of the intensity and real part of the reectivity. We explain how transition probabilities for the full complex reectivity can be obtained. Numerical simulations are systematically made and give numerical distributions which match the analytical distributions. In section 4.3, we show that reversal of the conditioned probabilities gives identical formula. All previous results, which were valid for forward probabilistic inferences, extend to backward probabilistic inferences. Section 4.4 is a discussion of the applicability of our results to address the problem of carrying measures of the sea clutter from dierent points of view to the same time, i.e. synchronizing. Section 4.5 concludes.

Forward and backward probabilistic inferences

The speckle and RCS are solutions to SDE given by equation (4.2). A SDE is in the following form:

dX t = µ(X t , t)dt + σ(X t , t)dW t X 0 = ξ 0 (4.3)
where (W t ) t is a brownian motion, also called Wiener process, and ξ 0 is the initial condition which can be for a time dierent from 0. µ is called the `drift' and σ is called the `volatility'.

Under the conditions of Itô's theorem of existence and unicity of the solutions, there exists a unique solution denoted (X t ) t≥0 . We assume that it is real-valued. Let s, t ∈ R + such that s < t and x ∈ R. The transition probability is the probability measure A → p(X t ∈ A|X s = x) where A belongs to the Borel σ-algebra, also denoted p(X t ∈ .

|X s = x). It should be understood that p(X t ∈ A|X s = x) is an intuitive notation for E[1 A (X t )|X s = x],
which is a conditional expectation (section 2.1.3). If the volatility and drift do not depend explicitely The observables we work with: speckle, RCS, intensity and real and imaginary reectivities, complex reectivity, are all homogeneous processes. In addition, the speckle, RCS and complex reectivity are Markov processes. This Markov property is very important. If they were not Markov, the transition probabilities would not simply depend on the observation X s = x but would depend on the whole past {X s = x s , s ≤ s}.

The transition probabilities are probabilities of a random variable conditioned by another one, and can be dened from the formalism of conditional expectations. We will refer to them sometimes as transitional and sometimes as conditioned probabilities. It is assumed, for tractability, that for any observable X t , random vectors X t 1 X t 2 . . . X tn extracted from the process are absolutely continuous. The same assumption is made if extracted vectors mix up dierent observables. Dening conditioned probabilities in the most general case is not trivial and care should be taken when dealing with them. However, their calculus rules are quite gentle in the end. In particular, p(X t ∈ . |X s = x) is absolutely continuous with a distribution denoted y → p(X t = y|X s = x).

An important result will be used: transformations and conditioning are commutative.

More specically, let X denote a R n valued random vector and G a C 1 -dieomorphism between appropriate subsets of R n . Let Y denote a R m -valued random vector and y ∈ R m .

We are again in the framework of absolute continuity. From what was said above, we can consider a random vector denoted cond(X) with the distribution p(cond(X) = x) = p(X = x | Y = y). Commutativity of conditioning and transformations is expressed by the relation:

p(G(X) = x|Y = y) = p(G(cond(X)) = x). (4.5)
This result is used in sections 4.2 and 4.3 to compute the conditioned probability of products of independent random variables, which is a special case where we take G : (x, y) → (xy, x)

and then integrate to obtain the conditioned probability of the rst component. We think that most physicists would never ask themselves such questions, so if these results are obvious we encourage the reader to skip the corresponding developments.

Besides the mathematical complications, p(X t = y|X s = x) can simply be thought of as the `probability' that X t is equal to y knowing that X s is equal to x (with some abuse of terminology). Knowing p(X t = y|X s = x) enables what we refer to as a probabilistic inference, i.e. a statement of the form given its value at time s, the sea clutter has a probability p to be in the interval [a, b] at time t. From the deterministic measure X s = x, we can infer the distribution of the possible values for X t . Since s < t, it is a forward probabilistic inference. Using Bayes's formula, we can return the conditioned probability to obtain the backward probabilistic inference p(X s = x|X t = y) (see section 4.3).

Present to future transition probabilities

Present to future transition probabilities are of the form p(X t = x|X s = y) where s ≤ t.

Analytical expressions can be obtained solving the Fokker Planck (a.k.a Kolmogorov forward) equations. In what follows when solving the Fokker Planck equations (FPE), `p' refers to p(X t = x|X 0 = y) in the time-dependant case, and to p(X ∞ = x) = p(X t = x) in the stationary case. We remind that by homogeneity, p(X t = x|X s = y) = p(X t-s = x|X 0 = y). In this section, the FPE are expressed and solved for the speckle γ t and the RCS x t only.

We remind from section 2.3.2 that for a SDE dX t = µ(X t )dt + σ(X t )dW t , (4.6) the density function (x, t) → p(X t = x) is solution to the following partial dierential equation:

∂p(X t = x) ∂t = - ∂ ∂x [µ(x)p(X t = x)] + 1 2 ∂ 2 ∂x 2 [σ 2 (x)p(X t = x)]. (4.7) 
The case p(X t = x|X 0 = y) correspond to the deterministic initial condition X 0 = y. 

∂p ∂t = B 4 
∂ 2 p ∂ 2 x + 1 2 B ∂x p ∂x . (4.8)

Stationary probability

The stationary FPE for γ (R) t reads:

0 = B 4 
∂ 2 p ∂ 2 x + 1 2 B ∂x p ∂x , (4.9) 
which can also be written ([120] section 5.2):

--

1 2 Bx p + ∂ ∂x B 4 p = 0 ⇔ -1 2 Bx B/4 B 4 p = ∂ ∂x B 4 p ,
the solution of which reads [120]:

p(x) = C B/4 exp x 0 -1 2 Bu B/4 du ⇔ p(x) = C B/4 e -x 2 .
where

C ∈ R is a constant. Using R p(x)dx = 1, this constant is given by C = B 4 √ π . Finally,
the stationary distribution is:

p γ (R) ∞ = x = p γ (I) ∞ = x = 1 √ π e -x 2 . (4.10)
It is a centered Gaussian random variable of variance 1/2. Since the unconditioned physical speckle is stationary, we have for all t ≥ 0: = y , which is solution to the FPE (4.8) with the initial distribution p = δ y . The Fokker-Planck equation for an Ornstein-Ulhenbeck process is solved p 100 of [120] using the Fourier transform. ∀ x ∈ R, ∀ t > 0, the solution is given by a Gaussian distribution:

p γ (R) t = x = p γ (I) t = x = p γ (R) ∞ = x .
p γ (R) t = x|γ (R) 0 = y = 1 √ 2πv(t) e -1 2 (x-my (t)) 2 v(t) , (4.12) 
with expectation:

m y (t) = ye -Bt/2 , (4.13) 
and variance:

v(t) = 1 -e -Bt 2 . 
(4.14)

The expectation starts from y at t = 0 and exponentially decays towards 0 as t → +∞. The variance starts from 0 at t = 0 (Dirac distribution) and increases toward 1 2 as t → +∞.

Therefore, there is a progressive increase in the uncertainty which nonetheless remains nite as we draw away from the initial condition.

We use the Euler-Maruyama method for solving numerically the SDE for γ (R) t as described in section 2.2.3. Normalized time-dependent histograms are computed from 10000 simulated trajectories. The results depicted in gure 4.2 show a very accurate agreement between the observed numerical histograms and the analytical distributions given by equation (4.12). We observe the predicted behaviour: exponential decay of the mean of the trajectories toward 0 and progressive increase of their variance toward 1 2 . We can better understand the link between conditioned probabilities and forward probabilistic inferences. For t = 0.001 s for example, the distribution is almost centered at the measure y = 2 and has a much smaller variance than the asymptotic distribution. We have more constraints on what the measure of γ (R) 0.001 is likely to give than if no measure is taken into account, in which case the asymptotic distribution is the best guess. We have performed a Kolmogorov-Smirnov test to quantify the adequation between the numerical and analytical distributions at the three times represented on the right part of gure 4.2: 0.001 s, 0.02 s and 0.1 s. The results are gathered in Table 4.1. The rst raw represents the D statistic (maximum distance between the numerical and analytical cumulative density functions) and the second is the p-value. The meaning of the p-value is as follows. Let H 0 be the null hypothesis, which states that the numerical distribution is generated from the analytical one. The p-value is the probability that under H 0 , the D statistic is greater or equal than the observed D. For example, at t = 0.001 s there is 95.6 % chance that under H 0 , the distance between the numerical and analytical distributions is at least 0.016. We cannot reject the null hypothesis and thus the test is positive. The same holds for t = 0.02 s and t = 0.1 

d(x t ) = A(α -xt )dt + (2Ax t ) 1 2 dW (x)
t .

(4.15)

The FPE reads:

∂p ∂t = 1 2 ∂ 2 2Axp ∂ 2 x - ∂A(α -x)p ∂x ⇔ ∂p ∂t = A ∂ ∂x p + x ∂p ∂x -A -p + (α -x) ∂p ∂x ⇔ ∂p ∂t = A ∂p ∂x + A ∂p ∂x + x ∂ 2 p ∂x 2 + Ap -A(α -x) ∂p ∂x ⇔ ∂p ∂t = Ax ∂ 2 p ∂x 2 + A(2 -α + x) ∂p ∂x + Ap. (4.16) 
From now on, we assume A = 0. If A = 0, the distribution remains identical to the initial condition. If the latter is deterministic (i.e. p(x, 0) = δ x 0 (x)), we have ∀ t ≥ 0, p(x, t) = δ x 0 (x), which means that the RCS remains constant and equal to x 0 .

Stationary probability

The stationary (asymptotic) distribution is solution to:

0 = Ax ∂ 2 p ∂x 2 + A(2 -α + x) ∂p ∂x + Ap. (4.17)
It is given p 49 of [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] by:

p(x ∞ = x) = x α-1 e -x Γ(α) 1 [0,+∞[ (x), (4.18) 
where Γ denotes the usual gamma function, and 1 the indicator function. Proceeding to the inverse transform x t → xt /α, we get: Transition probabilities

p(x ∞ = x) = α(αx) α-1 e -αx Γ(α) 1 [0,+∞[ (x).
x 0 is the RCS at time t = 0, whose distribution is given by equation ( 4 to gain insight into the solution we are looking for, and make the following transformation:

p(x, t) = x α-1 p(x, t). We get:

x α-1 ∂ p ∂t = Ax ∂ 2 x α-1 p ∂x 2 + A(2 -α + x) ∂x α-1 p ∂x + Ax α-1 p = Ax ∂ ∂x (α -1)x α-2 p + x α-1 ∂ p ∂x + A(2 -α + x) x α-1 ∂ p ∂x + (α -1)x α-2 p +Ax α-1 p = Ax (α -1)(α -2)x α-3 p + 2(α -1)x α-2 ∂ p ∂x + x α-1 ∂ 2 p ∂x 2 +A(2 -α + x) x α-1 ∂ p ∂x + (α -1)x α-2 p + Ax α-1 p = x α-1 Ax ∂ 2 p ∂x 2 + x α-1 (2A(α -1) + A(2 -α + x)) ∂ p ∂x + x α-1 1 x A(α -1)(α -2) + 1 x A(2 -α + x)(α -1) + A p ⇔ x α-1 ∂ p ∂t = x α-1 Ax ∂ 2 p ∂x 2 + x α-1 A(α + x) ∂ p ∂x + x α-1 Aαp ⇔ ∂ p ∂t = Ax ∂ 2 p ∂x 2 + A(α + x) ∂ p ∂x + Aαp. (4.20) 
To obtain the solution of the FPE, we use the separation of variables p(x, t) = X(x)T (t). The `prime' symbol refers to derivation with respect to t when it comes after `T ' and with respect to x when it comes after `X '. We get:

T (t)X(x) = AxT (t)X (x) + A(α + x)T (t)X (x) + AαT (t)X(x) (4.21) ⇔ T (t) T (t) = AxX (x) + A(α + x)X (x) + AαX(x) X(x) . (4.22) 
Thus ∃λ > 0 such that:

T (t) = -λT (t) AxX (x) + A(α + x)X (x) + AαX(x) = -λX(x) ⇔ T (t) = c λ e -λt xX (x) + (α + x)X (x) + (α + λ A )X(x) = 0, (4.23) 
where c λ ∈ R + . We get inspiration from the exponential decay of the asymptotic distribution as x → +∞ and make the transformation X(x) = z(x)e -x . We note that:

X (x) = z (x)e -x -e -x z(x) X (x) = z (x)e -x -2z (x)e -x + z(x)e -x . (4.24) 
Injecting these derivatives into the second equation of (4.23) gives: For n 1 , n 2 ∈ N, n 1 F n 2 refers to the hypergeometric function. For more about these functions, refer to [6]. Therefore, the general solution is:

xe -x (z (x) -2z (x) + z(x)) + (α + x)e -x (z (x) -z(x)) + α + λ A e -x z(x) = 0 ⇔ xz (x) + (-2x + (α + x)) z (x) + x -(α + x) + α + λ A z(x) = 0 ⇔ xz (x) + (α -x)z (x) + λ A z(x) = 0.
X(x) = d 1 L α-1 λ A (x)e -x + d 2 U - λ A , α, x e -x , (4.27) 
with d 1 , d 2 ∈ R.

There is an interesting application of the generalized Laguerre functions at section 13.2 of [15]. The resolution of Schrödinger's equation for the hydrogen atom in spherical coordinates using separation of variables gives a Laguerre dierential equation for the radial part. It is not explicit in this reference but the conuent hypergeometric function of the second kind is discarded because U (a, b, 0) = ∞ if Re(b) > 1 [6], which is unacceptable in their context.

In our problem, we cannot discard it since p(x ∞ = 0) = +∞ for α ≤ 1. Again from the asymptotic distribution, we impose an exponential decay for x → +∞ which leads to a discretization of the possible values of λ.

From [6], U (-λ A , α, x) ∼ x λ A for x → +∞, so d 2 U (-λ A , α, x)e -x ∼ d 2 e -x x λ
A for x → +∞, which means that ∀λ, it decays exponentially. However,

1 F 1 (-λ A , α, x) ∼ e x x -λ A -α for x → +∞ if λ A / ∈ N, in which case: d 1 L α-1 λ A (x)e -x ∼ d 1 Γ( λ A + α) Γ( λ A + 1)Γ(α) x -λ A -α . (4.28)
The decrease is only polynomial for x → +∞. It turns out that for λ ∈ AN, i.e. for -λ A ∈ -N, we get [6]: c n e -Ant e -x x α-1 L α-1 n (x). It is well known that {L α-1 n , n ∈ N} is a family of orthogonal polynomial [38]. If α -1 > -1, ∀n, m ∈ N:

If λ A ∈ N, 1 F 1 (-λ A , α-1, x) is a polynomial and L α-
U - λ A , α, x = U (-n, α, x) = (-1) n n!L α-1 n (x).
L α-1 n , L α-1 m e -x x α-1 = +∞ 0 L α-1 n (x)L α-1 m (x)e -x x α-1 dx = Γ(n + α) n! δ n,m . (4.32) 
Using (4.32), we compute the c n coecients:

p(., t), L α-1 k = +∞ 0 +∞ n=0 c n e -Ant e -x x α-1 L α-1 n (x)L α-1 k (x)dx = +∞ n=0 +∞ 0 c n e -Ant e -x x α-1 L α-1 n (x)L α-1 k (x)dx = c k e -Akt Γ(k + α) k! ⇔ c n = p(., t), L α-1 n e Ant n! Γ(n + α)
At t = 0 and with the Dirac initial condition p(x, 0) = δ αy (x), the c n coecients reduce to:

c n = δ αy , L α-1 n n! Γ(n + α) = L α-1 n (αy)
n! Γ(n + α) .

(4.33)

Replacing the c n coecients in (4.31) by their expression (4.33), we obtain that ∀ x ∈ R and ∀ t > 0: We have removed the indicator function because it is always implicit that the distributions of positive random variable, such as x t , have support in R + . We use Milstein scheme (denition 2.38) for solving numerically the SDE for x t as the Euler-Maruyama method revealed itself insucient: it generated negative values, which is impossible for the RCS, and ended the computation. Normalized time-dependent histograms are computed from 10000 simulated trajectories. In gure 4.3, we observe the progressive variance increase of the conditioned distributions, as well as their convergence toward the asymptotic distribution as t → +∞.

p(x t = x|x t = αy) = +∞ n=0 L α-1 n (αy)n! Γ(n + α) e -Ant e -x x α-1 L α-1 n (x)1 [0,+∞[ (x). 
It illustrates again the dierence between p(x t = x|x 0 = y) and p(x t = x), which is asymptotically distributed. There is a gain in using the distribution p(x t = x|x 0 = y) rather than p(x t = x) to infer the future measure xt .

In gure 4.3, one can also note that there is an accurate agreement between the numerical and analytical distributions. However, oscillations appears in the analytical solution for t close to 0, which can be due to the fact that we were able to compute the sum in (4.35) up to n = 150 only. That is the approximate limit of Python for computing n! and Γ(n + α).

To go beyond, one could maybe approximate the ratio n! Γ(n+α) which should evolve much more slowly than n! and Γ(n + α) since n! = Γ(n + 1). Another issue is the computing time for evaluating the Laguerre polynomials for large n. Though we have proved a formula for the transition probability of x t , we have somewhat reinvented the wheel! Indeed, x t is a Cox-Ingersoll-Ross process. It has been shown that its transition probabilities can be written analytically [START_REF] Feller | Two Singular Diusion Problems[END_REF]:

p(x t = x|x 0 = y) = ce -cx-cδy x yδ α-1 2 I α-1 (2c xyδ), (4.36) 
with c = α 1-e -At and δ = e -At , and where I α-1 is the modied Bessel function of the rst kind of order α -1. This result is merely cited in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] p 63, we will not try to prove the equivalence of equations (4.35) and (4.36). It could be interesting to look into [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] to nd elements to prove the equivalence. We did numerical simulations in the same way as those represented in gure 4. 3 

p(x 1/2 ∞ = x) = p(x ∞ = x 2 )2x = 2α α x 2α-1 e -αx 2 Γ(α) . (4.37)
We compute p(R ∞ = x) as the distribution of the product of 2 independent random variables:

p(R ∞ = x) = p x 1/2 ∞ γ (R) ∞ = x = R + p(x 1/2 ∞ = u)p γ (R) ∞ = x/u 1 u du = 2α α √ πΓ(α) R + u 2α-2 e -( x u ) 2 +αu 2 du. (4.38) 
Transition probabilities

R t = x 1/2 t γ (R) t
is the product of the square-root of the RCS and the speckle. We will show that we can compute p R t = x|x 0 = y, γ 

= x|x 0 = y) = p(g(x t ) = x|x 0 = y) = p(x t = x 2 |x 0 = y)2x ⇔ p(x 1/2 t = x|x 0 = y) = +∞ n=0 2αL α-1 n (αy)n! Γ(n + α) e -Ant xe -αx 2 (αx 2 ) α-1 L α-1 n (αx 2 ). (4.39)
By independence of the processes x t and γ (R) t and from the properties of conditioned probabilities in the framework of absolute continuity:

p x 1/2 t = x|x 0 = y, γ (R) 0 = z = p x 1/2 t = x, x 0 = y, γ (R) 0 = z p x 0 = y, γ (R) 0 = z = p x 1/2 t = x, x 0 = y p γ (R) 0 = z p(x 0 = y)p γ (R) 0 = z = p x 1/2 t = x, x 0 = y p(x 0 = y) = p x 1/2 t = x|x 0 = y , (4.40) 
which is very intuitive. Similarly, p γ

(R) t = x|x 0 = y, γ (R) 0 = z = p γ (R) t = x|γ (R) 0 = z .
Again by commutativity of transformations and conditioning, we can compute

p x 1/2 t γ (R) t = x|x 0 = y, γ (R) 0 = z (4.41)
as the distribution of the product of 2 independent random variables: 

p x 1/2 t γ (R) t = x|x 0 = y, γ (R) 0 = z = +∞ 0 p γ (R) t = x/u | x 0 = y, γ (R) 0 = z p x 1/2 t = u | x 0 = y, γ (R) 0 = z 1 u du ⇔ p R t = x | x 0 = y, γ (R) 0 = z = +∞ 0 1 2πv(t) e -1 2 ( x u -mz (t)) 2 v(t) +∞ n=0 2αL α-1 n (αy)n! Γ(n + α) e -Ant e -αu 2 (αu 2 ) α-1 L α-
R t = x 1/2 t γ (R)
t . As for x t , oscillations appear for short times since the sum (4.35) must be truncated approximately at n = 150. We observe a dierence between the transition probabilities of x t and γ (R) t on one side, and those of R t on the other side. x t was conditioned only by x 0 and γ

(R) t by γ (R) 0 , but R t is conditioned by x 0 and γ (R) 0 , not just R 0 . It is more constraining since R 0 = x 1/2 0 γ (R) 0 .
We observed numerically that the transition probabilities cannot depend only on R 0 but must depend on both x 0 and γ (R) 0 . For example, the conditions x 0 = 1, γ (R) 0 = 2 and x 0 = 4, γ (R) 0 = 1 give dierent transitional probabilities even though in both cases R 0 = 2. Physically, this is explained by the dierence between the dynamics of the speckle and the RCS, which evolve on dierent timescales. The same remark holds in the next section for the intensity. 

Distributions of the intensity

The intensity z t is dened by z

t = |Ψ t | 2 = x t γ (R) 2 t + γ (I) 2 t
. In this section, we derive its transition probabilities.

Stationary probability

The stationary distribution of the intensity is the classical K distribution as shown below.

Equation (4.10) states that γ (R) 

∞ ∼ γ (I) ∞ ∼ N (0, 1/2), i.e. √ 2γ (R) ∞ ∼ √ 2γ (I) ∞ ∼ N (0, 1). Since γ (R) ∞ and γ (I) ∞ are independent, 2γ (R) 2 ∞ + 2γ (I) 2 ∞ ∼ χ 2 2 . We get: p 2γ (R) 2 ∞ + 2γ (I) 2 ∞ = x = 1 2 e -x/2 ⇔ p γ (R) 2 ∞ + γ (I) 2 ∞ = x = e -x (4.43) x ∞ and γ (R) 2 ∞ + γ (I) 2 ∞ are independent
p(z ∞ = x) = p x ∞ γ (R) 2 ∞ + γ (I) 2 ∞ = x = R + p(x ∞ = u)p γ (R) 2 ∞ + γ (I) 2 ∞ = x u 1 u du = R + α(αu) α-1 e -αu Γ(α)
e -x/u u du. = p(x ∞ = u) we get (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] p 109):

p(z ∞ = x) = 2α α+1 2 x α-1 2 Γ(α) K α-1 (2 √ αx), (4.44) 
where K is the modied Bessel function of the second kind.

Transition probabilities

We know from section 4.2.1 that ∀x ∈ R, ∀t > 0:

     p γ (R) t = x|γ (R) 0 = z = 1 √ 2πv(t) e -1 2 (x-mz (t)) 2 v(t) p γ (I) t = x|γ (I) 0 = w = 1 √ 2πv(t) e -1 2 (x-mw (t)) 2 v(t) (4.45) 
with:

     v(t) = 1-e -Bt 2 m z (t) = ze -B 2 t m w (t) = we -B 2 t . (4.46) Let X = 1 √ v(t)   cond γ (R) t cond γ (I) t   where cond γ (R) t and cond γ (I) t are independent ran- dom variables such that p cond γ (R) t = x = p γ (R) t = x|γ (R) 0
= z and p cond γ

(I) t = x = p γ (I) t = x|γ (I) 0 = z . Then E[X] = 1 √ v(t) m R (t) m I (t)
and from the independence of cond γ (R) t and cond γ (I) t

, Γ X = 1 0 0 1 where Γ X is the covariance matrix of X. We apply theorem 1.3.4 p 22 of [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF], with n = 2 and a non-centrality coecient δ:

δ(t) = 1 v(t) m R (t) m I (t) 1 v(t) m R (t) m I (t) = 1 v(t) (m R (t) 2 + m I (t) 2 ) = 2e -Bt (z 2 + w 2 ) 1 -e -Bt .
We obtain:

p 1 v(t) cond γ (R) t 2 + cond γ (I) t 2 = x = 1 2 e -x+δ(t) 2 0 F 1 1, 1 4 δ(t)x .
We can express this result with the modied Bessel function of the rst kind I 0 dened as:

I 0 (z) = +∞ n=0 1 4 z 2 n n!Γ(n + 1)
.

(4.47)

Upon replacing z = δ(t)x we get:

I 0 ( δ(t)x) = +∞ n=0 1 4 δ(t)x n n! 2 = 0 F 1 1, 1 4 δ(t)x such that p 1 v(t) cond γ (R) t 2 + cond γ (I) t 2 = x = 1 2 e -x+δ(t) 2 I 0 δ(t)x .
Let g be the function:

g : R → R x → v(t)x
We have cond γ

(R) t 2 + cond γ (I) t 2 = g 1 v(t) cond γ (R) t 2 + cond γ (I) t 2
and we obtain:

p cond (γ t ) 2 = x = 1 2v(t) e - x v(t) +δ(t) 2 I 0 δ(t)x v(t) , with cond (γ t ) 2 = cond γ (R) t 2 + cond γ (I) t 2 
. We also introduce the notation

γ 2 t = γ (R) 2 t + γ (I) 2 t .
We dene cond(x t ) as a random variable such that p(cond(x t ) = x) = p(x t = x|x 0 = y), for example solution to the RCS for x t in equation (4.2) with a Dirac-distributed initial condition. cond(x t ) and cond (γ t ) 2 are independent, from what we get: z and w take part in the expression of δ(t) only, in which only the value z 2 + w 2 must be known. Consequently, one can state that

p cond (x t ) cond (γ t ) 2 = x = +∞ 0 p cond (γ t ) 2 = x/u p (x t = u) 1 u du ⇔ p z t = x|x 0 = y, γ (R) 0 = z, γ (I) 0 = w = +∞ 0 1 2v(t) e - x v(t)u +δ(t) 2 I 0 δ(t)x v(t)u +∞ n=0 αL α-1 n (αy)n! Γ(n + α) e -Ant e -αu (αu) α-1 L α-1 n (αu) 1 u du.
p z t = x|x 0 = y, γ (R) 2 0 + γ (I) 2 0 = u = +∞ 0 1 2v(t) e - x v(t)u +δ(t) 2 I 0 δ(t)x v(t)u +∞ n=0 αL α-1 n (αy)n! Γ(n + α) e -Ant e -αu (αu) α-1 L α-1 n (αu) 1 u du, (4.49) 
where u = z 2 + w 2 . Equation (4.49) is an exact analytical expression of the distribution of z t which is explicit and relatively easy to evaluate numerically. Assuming that the RCS is constant, we get x t = 1 or p(x t = x) = δ 1 (x). Replacing this expression in (4.49) gives after calculations:

p(z t = x|x t = s) = 1 (1 -e -Bt )s e - x+z 0 e -Bt (1-e -Bt )s I 0 4e -Bt z 0 x (1 -e -Bt ) 2 s 2 = 1 (1 -e -Bt )s e - x+z 0 e -Bt (1-e -Bt )s I 0 2e -B t 2 (1 -e -Bt )s √ xz 0 ,
which is formula 8.53 p 63 of [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]. Equation (4.49) is therefore a generalization of this formula for RCS varying in time according to Field's model. (I) t using the Euler-Maruyama method. The intensity was then computed using the relation

z t = x t γ (R) 2 t + γ (I) 2 t = x t γ 2 t .
The initial conditions were: 

x 0 = 1, γ (R) 0 = 1, γ ( 

Distributions of the complex reectivity

We can express the transition probabilities of the complex reectivity Ψ t , or more precisely of a non-ambiguous representation of it. If we choose the RCS and speckle coordinate system (the most simple one):

Ψ t ∼ = x t γ (R) t γ (I) t . (4.50)
We emphasize that three coordinates are necessary to fully `understand' the reectivity. Indeed, we could think that R t I t is a good representation of Ψ t since Ψ t = R t + iI t . However, R t and I t are not diusion processes: they do not solve SDE in the form dX t = µ(X t )dt + σ(X t )dW t . Yet, a SDE can be written for them but the drift and volatility will not depend on R t (resp. I t ) uniquely, but on two processes, for example x t and γ (R) t (resp.

x t and γ (I)

t ) since R t = x 1/2 t γ (R) t .
This fact can also be compared to what we noticed for the transition probabilities of z t and R t (or I t ): there is an ambiguity if we condition one of these by only one observed value. To get rid of the ambiguity, we require the observation of x t , as seen in equations (4.42) and (4.49). Therefore, three diusion processes are required to describe the dynamics of Ψ t which explains equation (4.50). There is some latitude regarding the choice of the coordinate system, since for example:

Ψ t ∼ = x t R t I t (4.51) is a dierent possible representation of Ψ t . By independence of x t , γ (R) t , γ 
(I) t , we now feel free to write directly (see the few lines which led to equation (4.40)):

p x t , γ (R) t , γ (I) t = (x, y, z) | x 0 , γ (R) 0 , γ (I) 0 = (x , y , z ) = p (x t = x | x 0 = x ) p γ (R) t = y | γ (R) 0 = y p γ (I) t = z | γ (I) 0 = z . (4.52)
From equations (4.12) and (4.36), we get:

p x t , γ (R) t , γ (I) t = (x, y, z) | x 0 , γ (R) 0 , γ (I) 0 = (x , y , z ) = 1 2πv(t) e - 1 2v(t) [(y-m y (t)) 2 -(z-m z (t)) 2 ] ce -cx-cδx x x δ α-1 2 I α-1 (2c √ xx δ). (4.53) 
We wish to compare numerical distributions and the analytical distribution (4.53), and to represent them in a way similar to what was done previously (gure 4.2 to 4.6). For graphical representability purposes, we set x t = 1, i.e. we make the hypothesis of a constant RCS. In that case, the initial condition x 0 = x must be x 0 = 1 and the transition probability for x t is a Dirac distribution: 

p (x t = x | x 0 = x ) = δ 1 . ( 4 
p γ (R) t , γ (I) t = (y, z) | γ (R) 0 , γ (I) 0 = (y , z ) = 1 2πv(t) e - 1 2v(t) [(y-m y (t)) 2 -(z-m z (t)) 2 ] ,
which is simply a 2D Gaussian distribution. To illustrate the progressive spreading (increasing variance) and the concordance between numerical simulations and the analytical 

Present to past transition probabilities

At the stage we have reached, we are able to perform forward probabilistic predictions (present to future) for x t , γ

(R) t , γ (I) 
t , R t , I t , z t and the complex reectivity, or vector process

x t γ (R) t γ (I) t
. Let X t denote any of these and assume that a measure Xt = x is made at time t. In section 4.2, we derived forward conditioned probabilities of the type p(X t = x|X 0 = y) for the RCS and speckle, and p(X t = x|Y 0 = y, Z 0 = z) for the real (and imaginary) reectivity and the intensity. To answer the question what was the value of X t-h knowing that X t = x or that Y t = y, Z t = z ?, we must reverse the conditions to obtain p(X t-h = y|X t = y) or p(X t-h = x|Y t = y, Z t = z), the distribution of X t-h conditioned by measures located in the future relative to t -h. The resulting distributions can be used to make backward probabilistic inferences (present to past). In the remaining of this section, we treat the RCS and speckle together, then the real (and imaginary) reectivity, the intensity, and the complex reectivity in dierent sections.

Distributions of the speckle and RCS

Reversing the present to future probabilities for the speckle, equation (4.12), and for the RCS, equation (4.35), is straightforward as shown below. Let X t denote either the speckle or the RCS. We can write the transition probabilities in the following way:

p(X t-h = y|X t = x) = p(X t = x, X t-h = y) p(X t = x) = p(X t = x|X t-h = y)p(X t-h = y) p(X t = x) = p(X t = x|X t-h = y)p(X ∞ = y) p(X ∞ = x) , (4.55) 
where we have used Bayes formula. We have also used absolute continuity and the fact that the physical process is asymptotically distributed at any time t.

In the case of the speckle, the asymptotic distribution is given by formula (4.10) from which: We also remind that by homogeneity of the Markov process γ (R)

p(γ (R) ∞ = y) p(γ (R) ∞ = x) = e -(y 2 -x 2 ) .
t , p(γ (R) t = x|γ (R) t-h = y) = p(γ (R) h = x|γ (R) 0 = y) = 1 √ 2πv(h) e -1 2 (x-m(h)) 2 v(h)
with v(h) = 1-e -Bh 2 and m(h) = ye -Bh/2 . After some calculations, we can show that:

p(γ (R) t-h = y|γ (R) t = x) = 1 2πv(h) e -1 2 (x-ye -Bh/2 ) 2 v(h) e -(y 2 -x 2 ) = 1 2πv(h) e -1 2 (y-xe -Bh/2 ) 2 v(h) ⇔ p(γ (R) t-h = y|γ (R) t = x) = p(γ (R) h = y|γ (R) 0 = x).
(4.57)

In the case of the RCS, the asymptotic distribution is given by formula (4.19) from which:

p(x ∞ = y) p(x ∞ = x) = y x α-1
e -α(y-x) .

(4.58)

Using the forward transition probabilities (4.35) and the homogeneity of the process x t , we obtain:

p(x t-h = y|x t = x) = +∞ n=0 αL α-1 n (αy)n! Γ(n + α) e -Ant e -αx αxy x α-1 L α-1 n (αx)e -α(y-x) = +∞ n=0 αL α-1 n (αx)n! Γ(n + α) e -Ant e -αy (αy) α-1 L α-1 n (αy) ⇔ p(x t-h = y|x t = x) = p(x h = y|x 0 = x) (4.59)
Formula (4.57) and (4.59) show that for the speckle and the RCS, the same formula hold for backward and forward probabilistic inferences.

Distributions of the real (and imaginary) reectivity

In section 4.2.3, we have obtained the distribution of R h conditioned by (x 0 = y, γ

(R) 0 = z),
which is the same as the distribution of R t conditioned by (x t-h = y, γ (R)

t-h = z). We would like to obtain the distribution of R t-h conditioned by (x t = y, γ (R) t = z). To do so, we rst reverse the conditioning of the couple x t , γ (R) t :

p x t = z, γ (R) t = w|x t-h = x, γ (R) t-h = y = p x t = z, x t-h = x, γ (R) t = w, γ (R) t-h = y p x t-h = x, γ (R) t-h = y = p (x t = z, x t-h = x) p γ (R) t = w, γ (R) t-h = y p(x t-h = x)p γ (R) t-h = y = p(x t = z|x t-h = x)p γ (R) t = w|γ (R) t-h = y .
We have used the independence of the processes x t and γ (R) t in the second equality. Similarly, we can show that:

p x t-h = z, γ (R) t-h = w|x t = x, γ (R) t = y = p(x t-h = z|x t = x)p γ (R) t-h = w|γ (R) t = y . Since p(x t-h = z|x t = x) = p(x h = z|x 0 = x) = p(x t = z|x t-h = x) (4.60) and p γ (R) t-h = w|γ (R) t = y = p γ (R) t = w|γ (R) t-h = y , (4.61) 
we get: 

p x t-h = z, γ (R) t-h = w|x t = x, γ (R) t = y = p x t = z, γ (R) t = w|x t-h = x, γ (R) t-h = y . ( 4 
p R t-h = x|x t = y, γ (R) t = z = p R h = x|x 0 = y, γ (R) 0 = z (4.63)
Formula (4.63) along with formula (4.42) enables backward probabilistic inferences of the real (and imaginary) reectivity.

Distributions of the intensity

In section 4.2.4, we have obtained the distribution of z h conditioned by

(x 0 = y, γ (R) 2 0 + γ (I) 2 0 = u), (4.64) 
which by homogeneity is the same as the distribution of z t conditioned by

x t-h = y, γ (R) 2 t-h + γ (I) 2 t-h = u . (4.65)
We would like to obtain the distribution of z t-h conditioned by (x t = y, γ

(R) 2 t + γ (I) 2 t = u).
To do so, we reverse the conditioning of the random vector

x t , γ (R) t , γ (I) t . By mutual independence of x t , γ (R) t and γ 
(I) t , we can show that: Formula (4.49) resulted from transformations that implicitely led from p x t = . , γ (R) t = . , γ

p x t = x, γ (R) t = y, γ (I) t = z|x t-h = u, γ (R) t-h = v, γ (I) t-h = w = p(x t = x|x t-h = u)p γ (R) t = y|γ (R) t-h = v p γ (I) t = z|γ (I) t-h = w = p(x t-h = x|x t = u)p γ (R) t-h = y|γ (R) t = v p γ (I) t-h = z|γ (I) t = w = p x t-h = x, γ (R) t-h = y, γ (I) t-h = z|x t = u, γ (R) t = v, γ ( 
(I) t = . |x t-h = y, γ (R) t-h = z, γ (I) t-h = w (4.67) to p x t γ (R) 2 t + γ (I) 2 t = . |x t-h = y, γ (R) 2 t-h + γ (I) 2 t-h = u . (4.68)
It is not explicit since the transformations were applied to the marginal distributions

p x t = . |x t-h = y, γ (R) t-h = z, γ (I) t-h = w , (4.69) p γ (R) t = . |x t-h = y, γ (R) t-h = z, γ (I) t-h = w , (4.70) 
etc. This approach was justied by the commutativity between conditioning and transformations.

Similarly, the distribution

p x t-h γ (R) 2 t-h + γ (I) 2 t-h = . |x t = y, γ (R) 2 t + γ (I) 2 t = u (4.71)
will be obtained from the same transformations applied to 

p x t-h = . , γ (R) t-h = . , γ (I) t-h = . |x t = u, γ (R) t = v, γ ( 
p z t-h = x|x t = y, γ (R) 2 t + γ (I) 2 t = u = p z h = x|x 0 = y, γ ( 

Distributions of the complex reectivity

As for R t and z t , we can reverse the transition probabilities of the vector process

x t γ (R) t γ (I) t (representation of Ψ t ) directly: p x t-h , γ (R) t-h , γ (I) t-h = (x, y, z) | x t , γ (R) t , γ (I) t = (x , y , z ) = p x h , γ (R) h , γ (I) h = (x, y, z) | x 0 , γ (R) 0 , γ (I) 0 = (x , y , z ) . (4.74) 
Formula (4.73) along with formula (4.49) enables backward probabilistic inferences of the complex reectivity in the coordinate system x t γ (R) t γ (I) t . It was assumed that we can actually measure the starting values in practice. Measuring it gives a condition X t = y that we can project forward to time X t+h or backward to time X t-h , with h > 0.

Discussion

The assumption is justied directly for some quantities: the radar which observes the sea surface records a time series of the complex-valued reectivity Ψ t . Taking the real and imaginary parts respectively gives R t and I t , and taking the squared-modulus gives z t . The phase θ t can also directly be obtained by taking an argument of Ψ t . However, the RCS x t is not directly observed. Fayard and Field provide formula to optimally estimate it from increments of z t and of the phase θ t [START_REF] Fayard | Optimal inference of the scattering cross-section through the phase decoherence[END_REF]. Once the time series of x t has been obtained from this algorithm, γ 

t 1 +h = . |X (u 1 ) t 1 = X(u 1 ) t 1
, which has an increasing variance with h as seen for example in gure 4.3. This is represented in gure 4.9 by the two solid blue lines diverging from X(u 1 ) t 1 . The variance increases until it reaches a maximum value of 1/α for h = +∞ (see formula (4.19) of the asymptotic distribution). The expectation converges toward 1 as h → +∞. Those are asymptotic values which are not reached if h is not too large. We saw in gure 4.3 that for A = 1 Hz and α = 1, the asymptotic distribution is not reached for h = 0.25 s but it is reached for h = 0.5 s. In the example of gure 4.9, the projection of the deterministic measure X(u 1 ) t 1 at the time reference t = 0.25 s is a random variable with the distribution p X (u 1 )

t 1 +0.25 = . |X (u 1 ) t 1 = X(u 1 ) t 1
, whose variance is smaller than the asymptotic variance 1/α = 1 and expectation dierent from the asymptotic expectation 1. This distribution is our best guess of what the measure of the RCS from position u 1 at the reference time t 3 would be. In the same way, projecting forward X(u 2 )

t 2
to the time t 3 = 0.25 s would give a distribution which would be our best guess of what the measure of the RCS from position u 2 would be at the reference time t 3 . The above explanations apply as well for backward projection. Backward projection of the measures X(u 4 ) t 4 and X(u 5 ) t 5 are made using formula (4.59). For example, the measure X(u 5 ) t 5 projected backward by a timestep h gives the distribution p X (u 5 )

t 5 -h = . |X (u 5 ) t 5 = X(u 5 ) t 5
, whose variance is again increasing with h. We wish to emphasize two points. First, each of the random processes X 

(u i ) t for i = {1, 2, 3, 4, 5}
{ X(u 1 ) t 3 , X(u 2 ) t 3 , X(u 3 ) t 3 , X(u 4 ) t 3 , X(u 5 ) t 3 } where X(u i ) t 3
is the projection of X(u 1 ) t 1 at time t 3 . Of course here, X(u 3 )

t 3 = X(u 3 ) t 3 .
The series of deterministic measures from dierent positions and times transformed into a series of probabilistic measures (random variables) from dierent positions at the same time. It can be noted that the choice of synchronization time is arbitrary. t ) and x t . The test was positive and we concluded that the numerical schemes that we use are precise enough. We did not make the test for the other processes like R t (or I t ) and z t for numerical reasons. The test was already computationally demanding for x t due to the expression of its transition probabilities. The KS-test requires to integrate (numerically) the transition probabilities since it compares cumulative distributions. For R t for example, it would require an additional integration as evidenced by equation (4.42), which is not realistic. We think that it is sucient to notice that the KS-test `validated' the transition probabilities of x t , γ (R) t , γ (I) t , and that all the other processes can be derived from them.

Conclusions

This chapter gives mathematical expressions for the forward and backward transition probabilities of the sea surface speckle, the RCS (texture), the real and imaginary parts of the reectivity, the intensity, and the complex reectivity represented in the (x t , γ (R) t , γ (I) t ) coordinate system. We solved the Fokker-Planck equations of the speckle and RCS to obtain their transition probabilities: equation (4.12) for the speckle and equations (4.35) and (4.36) for the RCS. From these, we computed the transition probabilities of the real and imaginary parts of the reectivity and the intensity (formula (4.42) and (4.49)). We also obtained equation (4.53) for the transition probabilities of the complex reectivity. Numerical simulations systematically reveal an accurate t between the analytical and numerical distributions, which were corroborated by Kolmogorov-Smirnov tests. They also illustrate how the initial deterministic measure progressively transforms into an asymptotically distributed random variable with increasing time (see section 4.2). Using the rules of calculus of conditioned probabilities, we reversed the conditioning to obtain backward transition probabilities: formula (4.57), (4.59), (4.63), (4.73) and (4.74).

A series of deterministic measures of the complex reectivity from dierent positions and times can then be processed to get a series of probabilistic measures of the speckle, RCS, real (and imaginary) reectivity, intensity and complex reectivity from dierent positions at the same time (synchronization).

All of the formula obtained here depend on three parameters which control the SDE of the RCS and the speckle and have not been estimated yet: α, A and B. The next chapter is dedicated to the estimation of these parameters by maximum likelihood.

Chapter 5

Estimation of the parameters of Field's model for the sea clutter

We remind that the non-normalized complex reectivity of the sea clutter is (section 3.3):

Ψ (C) t = Cx 1/2 t γ t .
(5.1)

The normalized complex reectivity (C = 1) is (Field's model):

Ψ t = x 1/2 t γ t .
(5.2)

The processes x t (RCS) and γ t = γ 

       dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x) t dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I)
t .

(5.3)

Three constants parameterize the equations in (5.3): α, A for the RCS, and B for the speckle. We explained in section 4.4 that A and B are inverse of the autocorrelation times of x t and γ t respectively. We will explain the parameter α in section 5.1. The goal of this chapter is to estimate these parameters.

Many dierent methods for estimating the parameters of SDE exist in the literature (maximum likelihood, method of moments, etc) [START_REF] Nielsen | Parameter estimation in stochastic dierential equations: an overview[END_REF]. For A and B, we choose maximum likelihood estimators, and for α, we choose an ergodicity-based estimator (moment). We think that these choices are not completely arbitrary but are adequate given the meaning of the parameters. α is the inverse of the stationary variance of x t , so using ergodicity to estimate it is obvious and simple. A and B parameterize dynamics, so they appear in transition probabilities and therefore in likelihood functions (equation (2.68)). Since we have already computed transition probabilities in the previous chapter for a dierent purpose, tackling parameter estimation and using maximum likelihood is very natural.

Even if we limit ourselves to maximum likelihood for A and B, there is some freedom for computing the transition probabilities implied in the likelihood (equation (2.68)). The best option seems to be analytical expressions if they are available, but it might require numerical minimization. A more simplistic approach is to use the Euler approximation, in which case the transition probability is approximated by Gaussian densities from which

Estimation of C

We know from section 3.3 that C 2 is the average power of the reectivity, i.e.:

E[|Ψ (C) t | 2 ] = C 2 .
(5.4)

By ergodicity we have:

lim T →+∞ 1 T T 0 |Ψ (C) t | 2 dt = E[|Ψ (C) 0 | 2 ] = C 2 .
(5.5)

We want to estimate C 2 from a discrete time series Ψ (C) i with i ranging from 0 to n, i.e. {Ψ (C) i , i = 0, 1, . . . , n}. From now and until the end of this chapter, we assume a constant timestep ∆t. The measurements {Ψ (C) i , i = 0, 1, . . . , n} are therefore made at times {t i , i = 0, 1, . . . , n} with t i -t i-1 = ∆t for all i. We make the approximation:

C 2 = lim T →+∞ 1 T T 0 |Ψ (C) t | 2 dt ≈ 1 t n tn 0 |Ψ (C) t | 2 dt ≈ 1 n∆t n-1 i=0 |Ψ (C) i | 2 ∆t.
(5.6) Therefore, the ergodicity-based estimator for C (assumed positive) is:

C = 1 n∆t n-1 i=0 |Ψ (C) i | 2 ∆t 1/2 . (5.7)
In practice, given the time series {Ψ (C) i , i = 0, 1, . . . , n}, we would compute C and work on the normalized time series {Ψ (C) i / C, i = 0, 1, . . . , n}. From now on, we make the approximation that this is the true trajectory, i.e.:

Ψ (C) i / C ≈ Ψ (C) i /C. (5.8)
Field's model does indeed assume that C = 1. Our purpose in this section was just to show that it is possible in principle to estimate C, and we now go back to Field's model.

Estimation of α

Estimation of α from x t

According to section 3.3, the stationary distribution of x t is:

p(x t = x) = α α x α-1 e -αx Γ(α) .
(5.9)

From the properties of the gamma distribution, it holds that ∀ t:

E[x t ] = 1 var(x t ) = 1 α .
(5.10) Therefore, α is the inverse of the stationary variance of x t . We assume that the RCS is ergodic, or more precisely:

lim T →+∞ 1 T T 0 (x t -1) 2 dt = E[(x 0 -1) 2 ] = 1 α , (5.11) 
To compute α from a discrete time series x i with i ranging from 0 to n and constant timestep ∆t, we make the approximation:

1 α = lim T →+∞ 1 T T 0 (x t -1) 2 dt ≈ 1 t n tn 0 (x t -1) 2 dt ≈ 1 n∆t n-1 i=0 (x i -1) 2 ∆t.
(5.12) Therefore, the ergodicity-based estimator for α (from x t ) is:

αx = 1 n∆t n-1 i=0 (x i -1) 2 ∆t -1 . (5.13)

Estimation of α from z t

We have seen in section 3.3 that in Field's model, for all t the intensity z

t = |Ψ t | 2 is K- distributed. More precisely, p(z t = x) = 2b (ν+1)/2 x (ν-1)/2 Γ(ν) K ν-1 (2 √ bx), (5.14) 
with b = ν = α. It is known that for the K distribution, the n-th moment is given by (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] p 110):

z n t z t n = n! Γ(n + ν) Γ(ν)ν n .
(5. 15) where . is another notation for E [.]. For n = 2, we have:

z 2 t = z t 2 2 Γ(2 + ν) Γ(ν)ν 2 = z t 2 ν(ν + 1) ν 2 = 2 z t 2 1 + 1 ν .
(5.16) Therefore,

var(z t ) = z 2 t -z t 2 = z t 2 1 + 2 ν .
(5.17)

If we isolate ν = α, we get:

α = 2 z t 2 var(z t ) -z t 2 .
(5.18)

By the hypothesis of ergodicity, we assume that:

z t = lim T →+∞ 1 T T 0 z t dt ≈ 1 n∆t n-1 i=0 z i ∆t (5.19) var(z t ) = lim T →+∞ 1 T T 0 (z t -z t ) 2 dt ≈ 1 n∆t n-1 i=0 (z i -1) 2 ∆t.
(5.20)

The estimator for α from z t is:

αz = 2 n-1 i=0 z i ∆t 2 n-1 i=0 (z i -1) 2 ∆t - n-1 i=0 z i ∆t 2 .
(5.21)

Over the estimator given by equation (5.13), αz has the advantage that it does not require x t . In practice, x t is not directly observed but must be estimated, unlike z t which is actually observed. For the problem of the observability of x t , see chapter 7. The moment-based estimator αz has been reported in [118] section 5.6, as well as in [141] chapter 9 equation (9.46). In [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF], it also accounts for noise. We cite two more estimators presented in [START_REF] Redding | Estimating the Parameters of the K distribution in the Intensity Domain[END_REF].

First, it is possible to dene a maximum-likelihood estimator for α. If we observe z = {z 0 , z 1 , . . . , z n } at times t 0 < t 1 < • • • < t n , and if we assume that the z t i are independent for dierent i, then the likelihood of z as a function of α is:

L(z, α) = n i=0 2α (α+1)/2 z (α-1)/2 i Γ(α) K α-1 (2 √ αz i ).
(5.22)

By numerical maximization of L(z, α) with respect to α, we obtain the ML estimator of α, denoted αML .

Another estimator is given further in section 5.7 of [START_REF] Redding | Estimating the Parameters of the K distribution in the Intensity Domain[END_REF]: the normalized logarithm estimator. We denote it αlog . It is explained in [118] that it satises the implicit equation:

ln z -ln z = ln αlog -Ψ (0) (α log ) + ln L -Ψ (0) (L) .

(5.23)

Ψ (0) is the digamma function, and L is a parameter of a more general (than ours) expression of the K distribution proposed in [START_REF] Redding | Estimating the Parameters of the K distribution in the Intensity Domain[END_REF]. By correspondence, we have L = 1. Equation (5.23) must be solved numerically to get αlog .

Numerical experiments

To assess the estimators of α ( αx , αz , αML and αlog ), we do numerical simulations. α is dimensionless and we know that its value typically ranges from 0.1 to +∞. This range can be found in [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] p 110-111. Indeed, α being the shape parameter of the K distribution, it has already been estimated from real data. We choose to explore the range α ∈ [0.1, 10].

The performance of αx (based on x t ) are much better than those of αz , αML and αlog (based on z t ). For that reason, we present the performances of αx rst and separately.

For each value of α in {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we simulate N = 1000 trajectories of x t . To do so, we solve numerically the SDE in equation (5.3) using Milstein's scheme for x t . See denition 2.38 for Milstein's scheme, and [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Dierential Equations[END_REF] for an introduction to numerical simulation of SDE. The more simple Euler-Maruyama scheme is not used for x t because it raises numerical issues. Indeed, it could generate negative values, which is absurd since the RCS is always positive. That Milstein's scheme is more performant stems from the fact that is has a strong order of convergence of 1, while Euler-Maruyama's scheme has a strong order of convergence of 1/2 [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Dierential Equations[END_REF].

In our experiments, the simulation timestep, ∆t, should ideally be smaller than the measurement timestep ∆t quoted above. Consequently, the generated trajectories are evaluated at times tk for k = 0...mn, where m is the decimation ratio. Then, for the estimation stage, they are downsampled (i.e decimated) to the times t i for i = 0...n, with t i = tmi . A realistic value for ∆t is 0.001 s since the Pulse Repetition Frequency is about 1 kHz for satellite and airborne applications [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data[END_REF]. Consequently, we choose ∆t = 10 -5 s leading to a decimation ratio m = 100. Note that we have veried that ∆t = 10 -5 s is small enough: changing it to ∆t = 10 -7 s does not alter the results presented here but it requires a much longer computing time.

For every of the N simulated trajectories at xed α, we obtain N estimates α1 , α2 , ..., αN from the downsampled trajectories (i.e. trajectories with timestep equal to 0.001 s), where α is either of the estimators αx , αz , αML and αlog . Then, the estimation bias b(α) and (unbiased) standard deviation σ(α) are computed:

b(α) = 1 N N i=1 (α i -ᾱ), (5.24) σ2 (α) = 1 N -1 N i=1 (α i -ᾱ) 2 .
(5.25) Figure 5.1 represents the estimation bias and standard deviation of αx for 1000 trajectories for dierent durations of the trajectories and values of A. We see that even with 300 s, the standard deviation is substantial compared to the true value of α. The estimation of α requires a much longer observation of the sea surface than the estimation of A (see section 5.2), due to its dierent physical meaning and mathematical expression. A is the inverse of a decorrelation time and therefore a time series 1/A s long (order of magnitude) is sucient to have a satisfying estimation of A. α is the variance of x t for any t. To estimate it satisfactorily, one ought to average enough independent realizations of x t , which is approximated using the ergodic hypothesis, i.e. by averaging over one trajectory. However, two values xt 1 and xt 2 of one trajectory constitute roughly two independent realizations of the same random variable only if t 2 -t 1 is large enough. The correlation between x t 1 and x t 2 can be shown to be corr(x t 1 , x t 2 ) = e -A(t 2 -t 1 ) , which gives a correlation of 0.05 if A(t 2 -t 1 ) = 3, in which case we can assume that x t 1 and x t 2 are independent. Figure 5.1 illustrates the fact that the standard deviation and bias of the estimators look alike for A = 1 Hz, T = 300 s, and A = 10 Hz, T = 30 s. This makes sense since both these congurations give approximately 100 independent realizations of the same random variable. The resemblance is even more striking for A = 1 Hz, T = 30 s, and A = 10 Hz, T = 3 s.

Numerical simulations showed us that αz , αML and αlog are not performant at all for du- rations as short as 300 s (and A = 1 Hz). In particular, they generate a lot of extreme values, or even negative ones. We choose a duration of 1200 s to assess them. Due to computer limitations, we set ∆t = ∆t = 10 -3 s. For each value of α in {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we simulate 1000 trajectories of x t and γ t (using Milstein's scheme for x t and Euler-Maruyama's scheme for γ t ) from which we compute z t = x t |γ t | 2 , from which αz , αML and αlog are com- puted. For comparison, αx is also computed. αML and αlog are found by numerical search (see section 5.1.2) over the space {0.01, 0.02, 0.03, . . . , 14.99, 15}. For all trajectories, we set A = 1 Hz and B = 100 Hz.

The estimation bias and standard deviation as a function of true α are represented in gure 5.2. There is a very clear hierarchy, especially for α > 5. From the best to the worst estimator for α, we have: αx , αz , αML and then αlog . For low α, the performance are similar, though αML is very biased for α = 0.1. The bias of αx and αz are low, and grow linearly as α increases, suggesting very little statistical eect. It reaches 0.08 at α = 10 for αz , which may be negligible compared to the standard deviation at that same value. For αML and αlog , the bias is much larger and some large value are reached occasionally, suggesting a non-negligible statistical eect. Figure 5.3 represents the rst 50 estimations of α with the four estimators.

Though some correlation between the estimators seems to exist, it is not absolutely clear.

We will use again the estimation of α in chapter 7. Only αx and αz shall be kept from now, in particular because αz is the best of the z t -based estimators of α, while αx is the only x t -based estimator of α, and the best overall. 

Maximum Likelihood estimation of A and B

In this section, we propose to estimate A and B by maximum likelihood. From radar data, one can already note that the speckle variation timescale is 10 ms while the RCS variation timescale is about 1 s [START_REF] Ward | Maritime surveillance radar. I. radar scattering from the ocean surface[END_REF], [START_REF] Farina | High resolution sea clutter data: statistical analysis of recorded live data[END_REF]. Therefore, the corresponding orders of magnitude of A and B are A = 1 Hz and B = 100 Hz. In a real data situation, we would have access to the complex-valued time series C Ψt . As already stated, by ergodicity estimation of C we consider that we start from the normalized reectivity Ψt . Using the dierence between the slow dynamics of x t and fast dynamics of γ (R) t , γ (I) t , one can retrieve x t (see [START_REF] Fayard | Optimal inference of the scattering cross-section through the phase decoherence[END_REF]) and then γ (R) t and γ (I) t . We therefore assume that we observe three discrete time series: xi , γ(R) i , γ(I) 

L(A, α) = p(x t 0 = x0 ) n i=1 p(x t i = xi | x t i-1 = xi-1 ), (5.26) 
and the likelihood function for the speckle is:

L(B) = p γ (R) t 0 = γ(R) 0 n i=1 p γ (R) t i = γ(R) i | γ (R) t i-1 = γ(R) i-1 .
(5.27)

We will assume that α is known. The optimality conditions (see section 2. (5.29)

The only dierence between equations (2.70) and (5.28) we take the log before maximizing in (5.28), which is equivalent since the log is strictly increasing. In this section, we compare three dierent models for the transition probabilities of x t and γ (R) t : the Euler approximation, Nowman's approximation and the exact transition probabilities.

Euler's approximation

Euler's approximation relies on the discretization method of Euler-Maruyama, which enables both to simulate numerical trajectories (i.e. solve numerically the SDE) and to have an analytical discrete-time approximation of our continuous-time process. In Euler's approximation, the drift and volatility of the SDE are assumed constant over the interval [t i-1 , t i ] (see denition 2.37). Applied to the SDE of x t , i.e. the rst equation of (5.3), and assuming a constant timestep ∆t, Euler-Maruyama's scheme gives:

x t i ≈ x t i-1 + A(1 -x t i-1 )∆t + 2A α x t i-1 1 2
N (0, ∆t).

(5.30)

Applying Euler-Maruyama's scheme to the second equation of (5.3), we get:

γ (R) t i ≈ γ (R) t i-1 - 1 2 Bγ (R) t i-1 ∆t + 1 √ 2 B 1 2 N (0, ∆t).
(5.31)

From equations (5.30) and (5.31), we get the following transition probabilities:

       p(x t i = xi | x t i-1 = xi-1 ) = √ α √ 4πx i-1 A∆t e - α(x i -A∆t-(1-A∆t)x i-1 ) 2 4A∆tx i-1 , p γ (R) t i = γ(R) i | γ (R) t i-1 = γ(R) i-1 = 1 √ πB∆t e -( γ(R) i -γ (R) i-1 (1-B∆t/2) ) 2 
B∆t .

(5.32)

We inject these expressions in the corresponding likelihood functions (5.26) and (5.27).

Using (5.26) and assuming that we know α, we express the condition ∂ ln L ∂A ( Ã, α) = 0 to estimate A. We also express the condition ∂ ln L ∂B ( B) = 0. à and B are the values of A and B which maximize the likelihood. After some calculations, it is possible to show that à and B are the roots of two second-order polynomials (see appendix C):

   -n i=1 α(x i-1 -1) 2 4x i-1 A 2 -n 2 A + n i=1 α(x i -x i-1 ) 2 4x i-1 ∆t = 0 -n i=1 γ(R) 2 i-1 ∆t 4 B 2 -n 2 B + n i=1 γ(R) i -γ (R) i-1 2 ∆t = 0.
(5.33)

For both A and B, the discriminant of the polynomial is always positive and there is only one positive root (no ambiguity). Ã and B are therefore easily found analytically without numerical minimization of the likelihood function.

Nowman's approximation

Nowman's approach [START_REF] Nowman | Gaussian Estimation of Single-Factor Continuous Time Models of The Term Structure of Interest Rates[END_REF][START_REF] Phillips | Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance[END_REF] is applicable to SDE with a linear drift, i.e. of the form: dX t = κ(µ -X(t))dt + σ(X t )dW t , (5.34) where κ and µ are two constants. This is precisely the case for the SDE of x t and γ (R) t , hence our interest in this approach. In the case of a linear drift, the solution to the SDE (5.34) can be expressed as follows:

X t i = X t i-1 e -κ∆t + µ(1 -e -κ∆t ) + t i t i-1 σ(X s )e -κ(t i -s) dW s . (5.35)
Nowman assumes that the volatility is constant over the time interval: ∀s ∈

[t i-1 , t i ] σ(X s ) = σ(X t i-1
), in which case:

X t i = X t i-1 e -κ∆t + µ(1 -e -κ∆t ) + η t i ,
(5.36) with:

η t i = σ(X t i-1 ) t i t i-1
e -κ(t i -s) dW s .

(5.37)

We can show that E(η t i ) = 0 and E(η

2 t i ) = σ(Xt i-1 ) 2 (1-e -2κ∆t )
2κ from which we make the approximation:

η t i ∼ N 0, σ(X t i-1 ) 2 1 -e -2κ∆t
2κ .

(5.38)

Combining (5.36) and (5.38), we get:

X t i = X t i-1 e -κ∆t + µ(1 -e -κ∆t ) + N 0, σ(X t i-1 ) 2 1 -e -2κ∆t
2κ .

(5.39)

The transition probabilities are again Gaussian but the drift has been completely resolved.

For x t and γ (R) t , we get:

         p(x t i = xi | x t i-1 = xi-1 ) = √ α √ 2πx i-1 (1-e -2A∆t ) e -1 2 
α ( xi -1+e -A∆t (1-x i-1 ) ) 2 xi-1 (1-e -2A∆t )
p γ (R)

t i = γi (R) | γ (R) t i-1 = γ(R) i-1 = 1 √ π(1-e -B∆t ) e -( γi (R) -γ (R) i-1 e -B∆t/2 ) 2 
1-e -B∆t .

(5.40)

Then, we inject these expressions in the corresponding likelihood functions (5.26) and

(5.27). The conditions ∂lnL ∂A ( Ã, α) = 0 and ∂lnL ∂B ( B) = 0 lead to third-order polynomials depending on X = e -Ã∆t and Y = e -B∆t/2 :

       nX 3 -n i=1 α(x i -1)(x i-1 -1)
xi-1

X 2 + -n + n i=1 α(x i -1) 2 +α(x i-1 -1) 2 xi-1 X -n i=1 α(x i -1)(x i-1 -1) xi-1 = 0 n 2 Y 3 -n i=1 γ(R) i-1 γ(R) i Y 2 + -n 2 + n i=1 γ(R) 2 i + γ(R) 2 i-1 Y -n i=1 γ(R) i-1 γ(R) i = 0.
There is only one real root for each of these two polynomials (the other two being complex conjugates). Thus à and B are determined analytically without ambiguity nor the need for numerical minimization. In this regard, Nowman's approximation is very similar to Euler's approximation, but it remains formally better since the drift is exactly solved.

Exact transition probabilities

The transition probabilities of x t and γ (R) t can be obtained by solving their respective Fokker-Planck equations (see [120]). γ (R) t is an Ornstein-Uhlenbeck process and its Fokker-Planck equation is easily solved by Fourier transform and method of characteristics ([120], chapter 5). In the particular case of γ (R) t , it gives (see chapter 4): (5.43)

p γ (R) t+∆t = x|γ (R) t = y = 1 √ 2πv(∆t) e -1 2 (x-m(∆t)) 2 v(∆t) , ( 5 
Replacing x, y, t, t + ∆t by γ(R) i , γ(R) i-1 , t i-1 , t i respectively, we obtain the same expression as the second equation of (5.40). This is not surprising since Nowman's method resolves the drift and then assumes locally a constant volatility. From (5.3), we see that the constant volatility assumption is actually always true for γ (R) t .

x t is a Cox-Ingersoll-Ross process. It has been shown that its transition probabilities can be written analytically ( [START_REF] Feller | Two Singular Diusion Problems[END_REF] and [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] p 63): Maximization of the likelihood function is achieved numerically by gradient descent applied to -ln(L(A, α)), α being xed.

p(x t+∆t = x|x t = y) = ce -cx-cδy x yδ α-1 2 I α-1 (2c xyδ),

Numerical experiments for A and B

To assess the ability of a method to estimate the parameters, we simulate many trajectories of x t and γ (R) t with known parameters and then try to retrieve them. To do so, we solve numerically the SDE in equation ( 5.3) using Euler-Maruyama's scheme for γ (R)

t , γ (I) t and
Milstein's scheme for x t (see section 2.2.3). The remarks made for α about the simulation timestep ∆t and `observed' timestep ∆t still hold: the trajectories are simulated with ∆t = 10 -5 s and sampled at ∆t = 10 -3 s before estimation. To estimate A and B (with order of magnitude around 1 Hz and 100 Hz respectively), a duration of 1 s is sucient leading to t n = t 1000 = 1 s. The estimations of A and B are completely independent since A requires only the trajectory of the RCS and B requires only the trajectory of the speckle. However, the estimation of A does require α, and for simplicity we set its value to 1. We remind that the estimation of α was in section 5.1.2, and that we observed that long trajectories were necessary to estimate it correctly.

Simulations for A

For the numerical simulations, the true values of A range in the interval [0.1, 10] Hz. For each value of A in {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we generate N = 1000 trajectories of the RCS (with α = 1) of duration 1 s. We obtain N estimates Ã1 , Ã2 , . . . , ÃN from which the estimation bias b(A) and (unbiased) standard deviation σ(A) are computed. 

Simulations for B

For the numerical simulations, the true values of B range in the interval [10,1000] Hz. For each B in {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} Hz, we generate N = 1000 trajectories of γ (R) t of duration 1 s. We obtain N estimates B1 , B2 , . . . , BN from which we compute the estimation bias b(B) and standard deviation σ(B). 

Notational remarks

In section 5.1, for the estimators of C and α, we made use of a time series, for example {x i , i = 1, 2, . . . , n} (RCS). αx was then expressed as a function of it. Since the time series is random, αx is also random: it is an estimator. However, in section 5.2, we used an observed trajectory (one realization) {x i , i = 1, 2, . . . , n} to estimate A. à was then an estimate, based on the trajectory x. This was for presentational clarity, especially when writing the likelihood functions, but we shall immediately think of the trajectory as being random and consider that à and B are random variable, i.e. estimators.

Joint estimation of A and α

In section 5.2, we assumed that α was known for the estimation of A. Simultaneous estimation of A and α can be done using for example the Berndt Hall Hall Hausman (BHHH) algorithm or more advanced techniques [START_REF] Berndt | Estimation and inference in nonlinear structural models[END_REF], [START_REF] Mai | On Optimization Algorithms for Maximum Likelihood Estimation[END_REF]. We will not explore these for two reasons.

The rst one is that they require to compute the derivative of the likelihood function (with exact transition probabilities) with respect to α, which has no closed-form expression due to the Bessel function in equation (5.44). The derivative with respect to A is very tedious but tractable. The second reason is that α can be estimated as explained previously without any knowledge on A. A more natural and meaningful method to estimate both α and A emerges: i use the ergodic estimator (equation (5.13)) to estimate α and get αx ii estimate A using Euler's approximation or the exact transition probabilities, with α replaced by αx .

We set α = 1 and A = 1 Hz. As previously, we generate 1000 trajectories of a xed duration T and estimate α and A as explained for each of the trajectories. We compute the estimation bias and standard deviation of α and A as a function of the duration T , for a duration between 10 and 1000 s. Figure 5.6 represents the results of this simulation. At known α, the estimation of A was satisfying even with 1 s long trajectories (section 5.2.4). However, when α must also be estimated, a longer trajectory is necessary as evidenced here. If the trajectory is too short, the error on α is large, and as a consequence so is that on A. Surprisingly, the bias and standard deviation curves of A and α superimpose perfectly suggesting a correlation between their respective estimators. 5.4 Discussion on the performance of the estimators

Errors on x t from errors on the estimated A

We saw in section 5.2, that using the exact transition probabilities in the maximum likelihood function is better than using Euler's approximation for at least three dierent reasons: it removes the bias, it reduces the variance (almost by a factor 2 for A = 10 Hz, see gure 5.4), and we know a priori that it should be better. However, using the most complete model is not always necessary. We will show in this section that using Euler's approximation is sucient to estimate A. We use numerical simulations to convert an error made on the estimated parameter into an error made on the RCS x t . We argue that the estimation is ultimately limited by the information carried in the trajectory that we use (sampling rate and duration).

Let us assume that an error δA is made on the estimation of A, i.e. Ã = A + δA. To convert it into errors on the RCS, we generate numerically trajectories of the RCS with the parameter A using Milstein's scheme. Its order of convergence is higher than Euler-Maruyama's but it follows the same principle: rst we generate a series of brownian increments ∆W tk , k = 1, 2, . . . , 100n, second we compute the corresponding series of the RCS x(A) = x tk (A), k = 1, 2, . . . , 100n starting from an arbitrary initial condition x t0 . Using the exact same brownian increments and initial condition, we can regenerate the trajectory with the estimated parameter and we obtain x(A + δA) = x tk (A + δA), k = 1, 2, . . . , 100n. The trajectories x(A) and x(A + δA) are expected to be identical for small δA. Figure 5.7 represents the results of this method applied to the RCS in the case where α is known and equal to 1. We generate 1000 trajectories of the RCS, x(i) (A), i = 1, 2, . . . , 1000, 1 s long each and save the brownian increments used to generate them. A is estimated from each trajectory, which gives Ãi , i = 1, 2, . . . , 1000. The estimation is carried out using the exact transition probabilities (unbiased estimation) and Euler's approximation. For the latter, we remove the bias by indirect inference [START_REF] Phillips | Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance[END_REF]: our previous simulations already gave us the bias for A = 1 Hz. The trajectories are regenerated with the estimated parameters, which gives x(i) ( Ãi ), i = 1, 2, . . . , 1000. Finally, we compute the mean standard deviation between the trajectories:

σ est = 1 1000 1000 i=1 σ i (5.45) with σ 2 i = 1 100n -1 100n k=1 x (i) tk (A) -x (i) tk ( Ãi ) 2 .
(5.46)

The lower part of Figure 5.7 shows the standard deviation between the original and regenerated trajectories, with a true parameter A = 1 Hz. We plot only the rst 100 values to clearly show the correlation. They are pretty much the same for the trajectories regenerated with Euler's estimation of the parameter A, and those regenerated with the estimation of the parameter using the exact transition probabilities (see section 5.2). In these simulations, the mean standard deviation is 6.9.10 -3 for Euler's approximation and 6.77.10 -3 for the estimation based on the exact transition probabilities. The standard deviation of the dierence between the regenerated trajectory using Euler's estimation and the estimation based on exact transition probabilities (black curve) is much smaller, with an average of 9.2.10 -4 . This can be summed up by the upper part of gure 5.7: for both estimations, the regenerated trajectories are much closer together than they are to the original trajectory. Figure 5.8 conrms this: it shows that the estimated parameters are highly correlated when plotted as a function of trajectory number. It follows immediately that the regenerated trajectories will be very close, as well as all our comments about gure 5.7. The estimations have been debiased for Euler's estimation by indirect inference, i.e. by an established bijection between the estimated value and the bias, based on the results in gure 5.4 (top). However, this was not necessary due to the very low bias at A = 1 Hz. Our interpretation is that the error on the estimation of A in our conguration (1 s long time series sampled at 1 ms) is mainly due to the statistical peculiarity of the trajectory, not the choice between Euler's approximation or the exact transition probabilities or maybe any other estimation method. The time series is one short sampled chunk of one time-continuous and of innite duration realization of the random process, and therefore carries only limited information that may be almost completely used in a method as simple as Euler's approximation.

Out of curiosity, we compared the standard deviations of Figure 5.7 to the typical measurement standard deviation of a satellite radar sensor. The RCS is normally in units of a surface, generally m 2 . Taking the decimal logarithm and multiplying by 10 gives the RCS expressed in dBm 2 . Antony et al. [14] have shown that the post-calibration radiometric accuracy (or measurement standard deviation) of the TerraSAR-X and TanDEM-X satellite systems is of 0.25 dBm 2 for a target 43.5 dBm 2 . By denition, x t is the ratio of the observed sea-surface RCS (expressed as surfaces) to its mean value, we can show that the measurement standard deviation of x t corresponding to 0.25 dBm 2 for a target of 43.5 dBm 2 is 4.73.10 -5 , much smaller than 6.9.10 -3 and 6.77.10 -3 . Our estimation, regardless of the used method, is not within radiometric accuracy when converted into sea-clutter units.

RMSE after bias correction

In section 5.2, we express ML estimators and numerically compute their bias and standard deviations to measure how well they perform. In the previous section, we focused on A and noticed that Euler's approximation and the exact transition probabilities yield almost identical estimations on a trajectory to trajectory basis (gure 5.8). We set A = 1 Hz, i.e. the reference value quoted for A. At such a value, the bias is almost zero for Euler's approximation, and its standard deviation almost identical to that of the exact transition probabilities estimator (see gure 5.4), so it is not surprising that both estimator perform equally well.

However, it is not as easy to draw conclusions for B. Figure 5.5 shows that for example for B = 1000 Hz, the bias of Euler's estimator is -350 Hz while that of the exact transition probabilities estimator is 0 Hz. For the standard deviation, Euler's is half that of the exact transition probabilities estimator! How can we draw a conclusion from this observation? We think that the relevant measure of performance is the root mean square error after debiasing.

First, let us explicit the debiasing procedure. We explicit it using the notation B but it is general for any parameter. So let B be the real value of the parameter (deterministic). Let B(B) be an estimator of B (random variable). For example, it can be the ML estimator with Euler's approximation, for a 1 s long trajectory of γ (R) t sampled at 0.001 s. The expectation of the estimator is: where b is the bias function. The standard deviation of the estimator is:

E[ B(B)] = B + b(B), (5.47 
σ(B) = E ( B(B) -E[ B(B)]) 2 1/2 = E ( B(B) -B -b(B)) 2 1/2 .
(5.48)

The bias b(B) and standard deviation σ(B) as dened in equations (5.47) and (5.48) are what we represented in gures 5.4 for A and 5.5 for B (more precisely, we represent estimations of the estimation bias and standard deviation). The RMSE for the biased estimator B(B) is:

rmse(B) = E B(B) -B 2 1/2 . 
(5.49)

Since B = E[ B(B)] -b(B), the squared RMSE can be decomposed: rmse(B) 2 = E B(B) -B 2 = E B(B) -E[ B(B)] + b(B) 2 ⇔ rmse(B) 2 = E ( B(B) -E[ B(B)]) 2 + b(B) 2 + 2b(B)E ( B(B) -E[ B(B)]) ⇔ rmse(B) 2 = σ(B) 2 + b(B) 2 .
(5.50)

The RMSE is therefore a measure of distance between the estimator and the true parameter which takes into account both the bias and standard deviation of the estimator. (5.52)

The bias corrected estimator is simply:

B(B) -b(B) = B(B).
(5.53)

If B(B) = E B(B) , then equation (5.51) is: E B(B) = B(B) + b( B(B)), (5.54) 
the solution of which is B(B) = B. In that case, we obtain the exact value of B. However, since B(B) takes values around its expectation E B(B) according to its standard deviation σ(B), the corrected bias is most likely never exactly b(B). Therefore, the standard deviation of the estimator induces errors in the estimated bias, such that the bias corrected estimator has variance greater than the unbiased estimator. This is a crucial remark since if perfect bias correction was possible, then only the standard deviation of the biased estimator would matter. In that case, we would deduce that Euler's approximation ML estimator is the best for B from gure 5.5. Instead, it is important to be aware that there is a bias/standard deviation interaction in the bias correction, which leads to an unbiased estimator B(B) of unknown standard deviation. Since the bias correction that leads to B(B) is the best we can do, we can now dene the rmse of B(B):

rmse( B(B)) = E B(B) -B 2 1/2 . 
(5.55) Equation (5.55) is the correct measure for the performance of the estimator. We have done new numerical simulations to compute the RMSE of Euler's approximation and exact transition probabilities ML estimators for both A and B. For A, the range of values goes from 0.1 Hz to 10 Hz with a step of 0.9 Hz from 0.1 to 1 Hz and then steps of 1 Hz from 1 to 10 Hz. For B, the range of values goes from 10 Hz to 1000 Hz with a step of 90 Hz from 10 to 100 Hz and then steps of 100 Hz from 100 to 1000 Hz. For each value, 1000 trajectories are simulated (of x t for A and of γ (R) t

for B) and the parameters are estimated. The bias is corrected according to the above procedure and the RMSE is then computed. is the same as its standard deviation since it is unbiased. However, the RMSE of the Euler's approximation estimator is greater than its standard deviation due to the imperfectness of the bias correction. The increase is exactly such that it reaches the standard deviation of the other estimator. We can now conclude that Euler's approximation and the exact transition probabilities are equally good for estimating B. 

Spectrum-based estimation of B

It has been suggested by an anonymous reviewer of our publication [START_REF] Roussel | Estimation of the parameters of stochastic dierential equations for sea clutter[END_REF] that the bandwidth of z t may be used to estimate B. The intuition is that the bandwith of the intensity is dictated by that of the speckle squared |γ t | 2 since the speckle has dynamics much faster than those of the RCS x t . As a consequence, the high-frequency content would depend mostly on γ t and therefore of B. In this section, we follow this trail to see if it indeed provides a new way to estimate B. Field in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] chapter 8 shows that:

z τ z 0 = 1 + 1 α e -Aτ 1 + e -Bτ . (5.56) 
In the present context, . is a classical notation for the mathematical expectation E. If both positive and negative τ are considered and if we develop equation (5.56), we get:

z τ z 0 = 1 + e -B|τ | + 1 α e -A|τ | + 1 α e -(A+B)|τ | .
(5.57)

By Wiener-Khinchin theorem (see chapter 2 section 2.6), the power-spectral density (PSD) of z is: S z (ω) = 1 2π R z τ z 0 e -iωτ dτ.

(5.58)

Since it holds that for all a, R e -a|τ | e -iωτ dτ = 2a a 2 +ω 2 , we have:

S z (ω) = 1 2π δ 0 + B π (B 2 + ω 2 ) + 1 α A π (A 2 + ω 2 ) + 1 α A + B π ((A + B) 2 + ω 2 ) , (5.59) 

Conclusion

In this chapter, we took advantage of our previous results to address the issue of estimating the three parameters of Field's model (equation 5.3): A, B and α. α is estimated using the ergodic property of the sea clutter (section 5.1) either from x t (equation (5.13)), or from z t (equation (5.21)). The estimator from x t , αx , is better if x t is observed. In practice, only z t is observed so the estimator from z t , αz , is very useful (see chapter 7). A and B are estimated by maximum likelihood (section 5.2). We address the issue of estimating x t from observable quantities in chapter 7, section 7.1. We also show in chapter 7 that if x t has to be estimated, the estimation of A is more tricky. We compared three methods for the estimation of A and B (section 5.2). Euler's approximation assumes a constant drift and volatility over small intervals, it leads to an explicit formula for the estimator. Nowman's approximation resolves the drift but assumes constant volatility over small intervals, and leads also to an explicit formula. In contrary, using the exact transition probabilities makes no assumption but does not lead to an explicit formula.

It requires numerical minimization. It was observed in section 5.2 that Nowman's method has the same performance as Euler's, so this method was discarded straight away for estimating A in the rest of the chapter. For estimating B, we remind that it is strictly the same as using the exact transition probabilities due to the fact that γ t has constant volatility. Finally, we have also proposed a convenient joint estimation of A and α (section 5.3).

Throughout the chapter, we used numerical simulations to compare the respective performance of our estimators, in connection with the specicities of the application. In our application, the specicities were the numerical values of the timestep and the duration of the time series, as well as realistic values for the parameters. We quoted that A is around 1 Hz, B is around 100 Hz, and α is around 1 (sections 5.2 and 5.1.2). We showed that even though using the exact transition probabilities gives the best results, Euler's approximation is sucient provided that the estimator is debiased by indirect inference. In practice, there is indeed a strong correlation between these two estimations as a function of the trajectory (gure 5.8) which suggests that it is the trajectory itself which limits the performance of the estimation due to its limited information about the parameters.
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Chapter 6

Estimation of target parameters in sea clutter Detecting the presence of a coherent scatterer (target) in a time-evolving random medium by remote sensing can be challenging, in particular if the eld scattered by the dynamic random medium (clutter), which is unpredictable in nature, has a mean power of the same order of magnitude as the eld scattered by the target. It is also a signicant concern with many real life applications. One striking example is that of a small boat on the sea surface.

Detecting the boat (coherent scatterer) into a strong sea clutter (random medium) by radar is still challenging due to the dynamics of the sea surface [START_REF] Crisp | The state-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery[END_REF]. It is also of high value for maritime surveillance concerns. A slightly dierent example is the detection of a boat (or other oating objects) from underwater by sonar, in the context of submarines or underwater autonomous vehicles surfacing [START_REF] Karoui | Automatic Sea-Surface Obstacle Detection and Tracking in Forward-Looking Sonar Image Sequences[END_REF]. In this case, the clutter comes from the reection of the sonar waves with the sea surface, bubbles generated by breaking waves, or even algae.

Target detection based on the random walk model can be found in [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] chapter 6. As explained, in section 1.3, this model cannot describe precisely the dynamics of the clutter, contrary to Field's model [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]. It is therefore natural to think that Field's model may provide new insights for target detection.

We remind that in absence of a target, Field's model describes the (normalized) complex reectivity of a random medium (e.g. the sea surface) as the product:

Ψ t = x 1/2 t γ t (6.1) 
of the square root of the radar cross section (RCS) x t and the speckle γ t . If there is a target, the reectivity becomes:

Ψ (target) t = x 1/2 t γ t + Ψ c,t (6.2) 
where Ψ c,t is the time-dependent reectivity of the target. We consider for this chapter that the target is present during the whole duration of the trajectory and focus on two models for its reectivity, Homodyned K (HK, constant target) and Generalized K (GK, constant multiplied by the RCS), see [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] chapter 9 and [141] p 112. For HK and GK scattering, the target is parameterized by two parameters.

The HK and GK models have not been initially developed for target detection, but for weak scattering. Weak scattering happens when the scatterers in the random walk do not have a phase with uniform distribution over [0, 2π[ but have it distributed close to some mean value [START_REF] Jakeman | Generalized K distribution: a statistical model for weak scattering[END_REF]. It is equivalent to adding a bias in the random walk and can be relevant to the general case of diusion by a phase screen (see also JakemanRidley2006). Therefore, the work presented here is applicable also in very dierent contexts, for example to estimate weak scattering of laser by a layer of turbulent atmosphere [START_REF] Barakat | Weak-scatterer generalization of the k-density function with application to laser scattering in atmospheric turbulence[END_REF].

In this chapter, we derive the stochastic dierential equations (SDE) for Ψ (target) t and estimate the target parameters by maximum likelihood (ML) under the assumption that the clutter parameters A, B and α are known and that x t is observed. In section 6.1, we use Field's model and Itô calculus to derive the SDE of the clutter plus target for HK and GK scattering. In section 6.2, we derive analytical approximations for the transition probabilities in HK and GK scattering using Euler-Maruyama scheme. We then show that maximum likelihood estimation of the target is possible using these transition probabilities and leads to explicit formula. In section 6.3, we assess the performance of the maximum likelihood estimator using numerical simulations of the SDE we derived in section 6.1 as compared to a simple ergodicity-based estimator. We assign numerical values to the constants of the model based on the sea surface application. Section 6.4 is a discussion about the limits and advantages of our approach, as well as its implications in terms of decision theory. Finally, we conclude in section 6.5.

Because Field's model describes the complex reectivity of an arbitrary random medium, the results of this chapter are not limited to target estimation in sea clutter: they may concern target parameter estimation in any random medium.

In appendix A.2, we derive volatility-based estimators for Ψ c . In HK scattering, volatilitybased estimation has lesser performance (compared to ML), and in GK scattering the performance is similar. As for A and B in the previous chapter, the volatility-based estimators are eventually inoperative. Despite the non-observability of x t which degrades the sampling frequency (chapter 7), its poor performance for HK scattering forces us to dismiss the volatility-based estimators. However, we again recommend to read the appendix after this chapter due to its striking simplicity compared to the derivations of the ML estimators.

SDE of the clutter plus target

In [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF], chapter 9, the SDE of the clutter plus target are expressed in polar coordinates, which yields heavy expressions. In this section, we derive the SDE of the clutter plus target (coherent scatterer) in cartesian coordinates (real and imaginary parts) since it is a more convenient coordinate system for target estimation. Two models for the target reectivity are considered: Homodyned K scattering and Generalized K scattering (see [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] p 70-71 and see sections 6.1.2 and 6.1.3). It will be evidenced in equations (6.10) and (6.14) that HK and GK scattering encompass the cases of Rice, Rayleigh and K distribution scattering. Rice scattering is recovered when there is a target and the RCS x t is constant, Rayleigh scattering is recovered when there is no target and the RCS is constant, and K distribution scattering is recovered when there is no target but still a varying RCS.

We rst remind that Field's model for the complex reectivity

Ψ t = x 1/2 t γ (R) t + iγ (I) t
(clutter) can be expressed as the set of three SDE:

       dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x) t dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I) t . (6.3) 
The three constant parameters A, B and α have been estimated in chapter 5.

SDE of the real and imaginary parts of the clutter

As a preliminary step, we derive the SDE of the in-phase (real part) component, denoted R

t , and quadrature phase (imaginary part) component, denoted I

(cl) t , of the clutter only.

We have R 

(cl) t = x 1/2 t γ (R
ds t = ∂f ∂x (x t )dx t + 1 2 ∂ 2 f ∂x 2 (x t )d x t . (6.4) 
d x t is the stochastic dierential of the quadratic variation of x t (see section 2.4). We get:

ds t = 1 2x 1/2 t A(1 -x t )dt + 2 A α x t 1 2 dW (x) t - 1 8x 3/2 t 2A α x t dt = A 2 1 s t -s t dt + A 2α 1/2 dW (x) t - A 4αs t dt. (6.5) 
Thus we obtain:

ds t = A 2 1 s t 1 - 1 2α -s t dt + A 2α 1/2 dW (x) t . (6.6) 
From Itô's product law (proposition 2.5), we get:

dR (cl) t = s t dγ (R) t + γ (R) t ds t + d s, γ (R) t ⇔ dR (cl) t = s t dγ (R) t + γ (R) t ds t , (6.7) 
where we have used that s, γ (R) t , the quadratic variation at time t of the processes s t and γ (R) t , is zero by independence of x t and γ (R) t . Using equation (6.7), the second equation in (6.3), and equation (6.6), we get:

dR (cl) t = - 1 2 Bγ (R) t s t dt + s t √ 2 B 1 2 dW (R) t + A 2 1 s t 1 - 1 2α -s t γ (R) t dt + γ (R) t A 2α 1/2 dW (x) t
which gives after factorization: 

dR (cl) t = - A + B 2 s t γ (R) t + Aγ (R) t 2s t 1 - 1 2α dt + γ (R) t A 2α 1/2 s t B 2 1/2 dW (x) t dW (R) t . ( 6 
  dx t dR (cl) t dI (cl) t   =     A(1 -x t ) -A+B 2 R (cl) t + AR (cl) t 2xt 1 -1 2α -A+B 2 I (cl) t + AI (cl) t 2xt 1 -1 2α     dt +      2Axt α 1/2 0 0 R (cl) t x 1/2 t A 2α 1/2 Bxt 2 1/2 0 I (cl) t x 1/2 t A 2α 1/2 0 Bxt 2 1/2         dW (x) t dW (R) t dW (I) t    .
(6.9)

Homodyned K scattering

In Homodyned K (HK) scattering, the reectivity of the target is a complex constant added to the reectivity of the clutter. We denote Ψ (HK) t the total reectivity and we have:

Ψ (HK) t = Ψ (R) c + iΨ (I) c + x 1/2 t γ t , (6.10) 
where

Ψ c = Ψ (R) c + iΨ (I) c
is the reectivity of the target. It is constant in both phase and amplitude. For simplicity, we denote R t , I t the real and imaginary parts of Ψ (HK) t . We omit voluntarily the superscript (HK) to lighten the notation. It is very straightforward to obtain the SDE of R t and I t in the case of HK scattering.

Indeed, from (6.10) we get:

R t = Ψ (R) c + R (cl) t ; dR t = dR (cl) t I t = Ψ (I) c + I (cl) t ; dI t = dI (cl) t . (6.11) 
Therefore, we have directly from equation (6.9):

  dx t dR t dI t   =      A(1 -x t ) -A+B 2 R t -Ψ (R) c + A Rt-Ψ (R) c 2xt 1 -1 2α -A+B 2 I t -Ψ (I) c + A It-Ψ (I) c 2xt 1 -1 2α      dt +       2Axt α 1/2 0 0 Rt-Ψ (R) c x 1/2 t A 2α 1/2 Bxt 2 1/2 0 It-Ψ (I) c x 1/2 t A 2α 1/2 0 Bxt 2 1/2          dW (x) t dW (R) t dW (I) t    . (6.12) 
The SDE obtained for HK scattering, equation (6.12), can also be written in the more compact form:

  dx t dR t dI t   = β (HK) Ψc (x t , R t , I t ) dt + Σ (HK) Ψc (x t , R t , I t )    dW (x) t dW (R) t dW (I) t    . (6.13) 
Vector β

(HK) Ψc and matrix Σ (HK) Ψc are respectively the drift and volatility in the case of HK scattering.

Generalized K scattering

In Generalized K (GK) scattering, the reectivity of the target is modulated by the RCS x t (see [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] p 71):

Ψ (GK) t = Ψ (R) c + iΨ (I) c ηx t + x 1/2 t γ t , (6.14) 
where η is a constant coupling factor. Physically, it means that the reectivity of the target,

Ψ (R) c + iΨ (I) c
x t , varies proportionally as the number of scatterers which contribute to the clutter. Similarly to section 6.1.2, R t and I t denote now the real and imaginary parts of Ψ (GK) t respectively. From equation (6.14), we get:

R t = Ψ (R) c ηx t + R (cl) t ; dR t = Ψ (R) c ηdx t + dR (cl) t I t = Ψ (I) c ηx t + I (cl) t ; dI t = Ψ (I) c ηdx t + dI (cl) t . (6.15) 
Again we derive the SDE for R t and that of I t will follow immediately. From equations (6.15), (6.9) and ( 6.3), we get:

dR t = ηΨ (R) c A(1 -x t ) - A + B 2 R (cl) t + AR (cl) t 2x t 1 - 1 2α dt + R cl t x 1/2 t A 2α 1/2 + ηΨ (R) c 2Axt α 1/2 Bxt 2 1/2 dW (x) t dW (R) t . (6.16) 
Replacing R

(cl) t = R t -Ψ (R)
c ηx t in equation (6.16) and applying the same procedure for I t , we get the following system of coupled SDE that describe GK scattering:

  dx t dR t dI t   =     A(1 -x t ) ηΨ (R) c A(1 -x t ) + R t -Ψ (R) c ηx t -A+B 2 + A 2xt 1 -1 2α ηΨ (I) c A(1 -x t ) + I t -Ψ (I) c ηx t -A+B 2 + A 2xt 1 -1 2α     dt +      2Axt α 1/2 0 0 Rt-Ψ (R) c ηxt x 1/2 t A 2α 1/2 + ηΨ (R) c 2Axt α 1/2 Bxt 2 1/2 0 It-Ψ (I) c ηxt x 1/2 t A 2α 1/2 + ηΨ (I) c 2Axt α 1/2 0 Bxt 2 1/2         dW (x) t dW (R) t dW (I) t    . (6.17) 
The SDE obtained for GK scattering, equation (6.17), can also be written in the more compact form:

  dx t dR t dI t   = β (GK) Ψc (x t , R t , I t ) dt + Σ (GK) Ψc (x t , R t , I t )    dW (x) t dW (R) t dW (I) t    . (6.18) 
Vector β

(GK) Ψc and matrix Σ (GK) Ψc are respectively the drift and volatility in the case of GK scattering.

Maximum likelihood estimation of Ψ c

Let Ψ c = Ψ (R) c

+ iΨ (I) c be the target constant. We know from section 6.1 that the target reectivity is simply the target constant Ψ c for HK scattering, and is the target constant times the RCS and the coupling factor, i.e. Ψ c ηx t for GK scattering. In both cases, our aim is to estimate Ψ c . It is also assumed that there is always a target, since even the absence of target constant to be estimated can be seen as the special case Ψ c = 0.

We assume in this section that we observe three discrete time series:

(x, R, Ĩ) = xk , Rk , Ĩk , k = 0, 1, . . . , n ,
where measurements are made at times t k . We also assume for simplicity that ∀k,

t k -t k-1 = ∆t is a constant.
As explained in chapter 2 section 2.3.1, the maximum likelihood (ML) estimation consists in maximizing the likelihood function with respect to some parameter, namely Ψ c here. The likelihood can be written:

L x, R, Ĩ; Ψ c = p ∞ Ψc n k=1 p (k) Ψc , (6.19) 
with

p ∞ Ψc = p Ψc ((x t 0 , R t 0 , I t 0 ) = (x 0 , R0 , Ĩ0 )) (6.20) 
= p ∞ Ψc (x 0 , R0 , Ĩ0 ) and p (k) 
Ψc = p Ψc (x t k , R t k , I t k ) = (x k , Rk , Ĩk ) | (x t k-1 , R t k-1 , I t k-1 ) = (x k-1 , Rk-1 , Ĩk-1 ) . (6.21)
p ∞ Ψc is the stationary (asymptotic) distribution of the process (x t , R t , I t ). It accounts for the initial value at time t 0 and it is implicit that it is evaluated at (x 0 , R0 , Ĩ0 ). p (k) Ψc is the transition probability between times t k-1 and t k . L x, R, Ĩ; Ψ c is therefore the joint probability (density) of the observed initial value and of the n transitions occuring from t 0 to t n . We assume that the parameters of the clutter, i.e. A, B, C and α are known. In that case, for a given observed trajectory, L x, R, Ĩ; Ψ c depends only on Ψ c . Maximizing it with respect to Ψ c yields the estimated target constant Ψc .

Instead of maximizing directly the likelihood function L, we choose to maximize its logarithm:

l x, R, Ĩ; Ψ c = ln L x, R, Ĩ; Ψ c (6.22) = ln p ∞ Ψc + n k=1 ln p (k)
Ψc .

If x, R, Ĩ are xed, i.e. a time series is observed, the necessary conditions of optimality are: 

∂l ∂Ψ (R) c ( Ψ(R) c, M L , Ψ(I) c, M L ) = 0 ∂l ∂Ψ (I) c ( Ψ(R) c, M L , Ψ(I) c, M L ) = 0. ( 6 

Asymptotic distribution

Let Ψ

(HK) t = Ψ (R) c + iΨ (I) c + x 1/2 t γ t . At xed RCS x t = x, the random variable (R t , I t ) is a
bivariate Gaussian distribution (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] equation (4.12)):

p Ψc ((R t , I t ) = (R, I) | x t = x) = 1 πx exp - (R -Ψ (R) c ) 2 + (I -Ψ (I) c ) 2 x . (6.24) 
In that case, (R 2 t + I 2 t ) 1/2 follows the so-called Rice distribution. From equation (6.24) and the asymptotic distribution of x t (e.g. equation (4.19)), we get:

p ∞ Ψc (x, R, I) = 1 πx exp - (R -Ψ (R) c ) 2 + (I -Ψ (I) c ) 2 x × α α x α-1 e -αx Γ(α) . (6.25) 

Approximate transition probabilities

Deriving the transition probabilities requires some tedious calculus. Exact transition probabilities could be derived by solving the Fokker-Planck equation associated with (6.12) (see [120] for a detailed account of the Fokker-Planck equation). In practice, it is rarely possible to solve it analytically. Instead, if the time dierence ∆t between t k-1 and t k is small enough, one can approximate the transition probability by a multivariate Gaussian distribution. The starting point is Euler-Maruyama's scheme applied to the SDE (6.13):

  ∆x t ∆R t ∆I t   = β (HK) Ψc (x t , R t , I t ) ∆t + Σ (HK) Ψc (x t , R t , I t )    ∆W (x) t ∆W (R) t ∆W (I) t    ⇔   x t+∆t R t+∆t I t+∆t   =   x t R t I t   + β (HK) Ψc (x t , R t , I t ) ∆t + Σ (HK) Ψc (x t , R t , I t ) ∆t 1/2   n x n R n I   , (6.26) 
where n x n R n I T is a vector of independent standard Gaussian random variables.

It follows that:

p (k) Ψc ≈ 1 (2π) 3/2 σ (HK) Ψc ∆t 1/2 exp - 1 2 (v k -µ k ) T σ (HK) Ψc ∆t -1 (v k -µ k ) , (6.27) 
with

         v k = xk Rk Ĩk µ k = xk-1 Rk-1 Ĩk-1 + β (HK) Ψc xk-1 , Rk-1 , Ĩk-1 ∆t σ (HK) Ψc = Σ (HK) Ψc Σ (HK) Ψc . (6.28) 
Indeed, to get the transition probability, we x x t R t I t = xk-1 Rk-1 Ĩk-1 . Thus, the only random part in the right hand side of equation (6.26) is the Gaussian vector

n x n R n I . σ (HK)
Ψc is referred to as the squared volatility. It is a positive denite symmetric matrix in the non degenerate case. We have directly:

σ (HK) Ψc =     2Axt α A(Rt-Ψ (R) c ) α A(It-Ψ (I) c ) α A(Rt-Ψ (R) c ) α A 2α (Rt-Ψ (R) c ) 2 xt + Bxt 2 A 2α (Rt-Ψ (R) c )(It-Ψ (I) c ) xt A(It-Ψ (I) c ) α A 2α (Rt-Ψ (R) c )(It-Ψ (I) c ) xt A 2α (It-Ψ (I) c ) 2 xt + Bxt 2     . (6.29)
We have very simply that:

σ (HK) Ψc ∆t = Σ (HK) Ψc 2 ∆t 3 = ∆t 3 AB 2 x 3 t 2α . (6.30) 
We can then invert σ (HK) Ψc and we get after some calculations (see appendix D.1):

σ (HK) Ψc ∆t -1 =     (Rt-Ψ (R) c ) 2 +(It-Ψ (I) c ) 2 2B∆tx 3 t + α 2A∆txt -Rt-Ψ (R) c B∆tx 2 t -It-Ψ (I) c B∆tx 2 t -Rt-Ψ (R) c B∆tx 2 t 2 B∆txt 0 -It-Ψ (I) c B∆tx 2 t 0 2 B∆txt     . (6.31)
Note that in equation (6.27), σ (6.29). Using (6.22), (6.25) and (6.27), we have:

(HK) Ψc ∆t -1 must be evaluated at t = t k-1 , i.e. [x t , R t , I t ] = [x k-1 , Rk-1 , Ĩk-1 ] respectively in equation
l x, R, Ĩ; Ψ c = ln α α xα-1 0 e -αx 0 πx 0 Γ(α) - ( R0 -Ψ (R) c ) 2 + ( Ĩ0 -Ψ (I) c ) 2 x0 -n ln (2π) 3/2 σ (HK) Ψc ∆t 1/2 + n k=1 Φ k (6.32) with Φ k = - 1 2 (v k -µ k ) T σ (HK) Ψc ∆t -1 (v k -µ k ). (6.33) 
If we express the rst optimality condition in (6.23), we get after some calculations (see

appendix D.1): ∂l ∂Ψ (R) c ( Ψ(R) c, M L , Ψ(I) c, M L ) = 0 ⇔ - 2 Ψ(R) c, M L -R0 x0 + n k=1 Ψ(R) c, M L -Rk-1 B∆tx k-1 - w 2 k 2x 2 k-1 -2γ 2 k + 2γ k w k xk-1 + n k=1 Rk -Rk-1 B∆tx k-1 2γ k - w k xk-1 = 0, (6.34) 
with

w k = xk -xk-1 -A∆t(1 -xk-1 ) γ k = A+B 2 -A 2x k-1 1 -1 2α . (6.35) 
We see that equation (6.34) depends only on x t and the real part R t of the reectivity. It gives a condition on

Ψ(R) c, M L only. It is then straightforward to get the estimation of Ψ (R) c : Ψ(R) c, M L = -2 R0 x0 + n k=1 Rk-1 B∆tx k-1 - w 2 k 2x 2 k-1 -2γ 2 k + 2γ k w k xk-1 -n k=1 Rk -Rk-1 B∆tx k-1 2γ k -w k xk-1 n k=1 1 B∆tx k-1 - w 2 k 2x 2 k-1 -2γ 2 k + 2γ k w k xk-1 - 2 x0 (6.36) 
The estimator for Ψ 

ML estimation of Ψ c in GK scattering

As seen below, the estimator for Ψ c in the GK scattering case is obtained by the same procedure as for HK scattering.

Asymptotic distribution

Let Ψ

(GK) t = Ψ (R) c + iΨ (I) c ηx t + x 1/2 t γ t . At xed RCS x t = x, the random variable (R t , I t )
is a bivariate Gaussian distribution (see [START_REF] Ward | Sea Clutter: Scattering, the K distribution and Radar Performance. 20[END_REF] equation (4.12)):

p Ψc ((R t , I t ) = (R, I) | x t = x) = 1 πx exp - (R -Ψ (R) c ηx) 2 + (I -Ψ (I) c ηx) 2 x . (6.37) 
From equation (6.37) and the asymptotic distribution of x t (equation (4.19)), we get:

p ∞ Ψc (x, R, I) = 1 πx exp - (R -Ψ (R) c ηx) 2 + (I -Ψ (I) c ηx) 2 x × α α x α-1 e -αx Γ(α) . (6.38) 

Approximate transition probabilities

To derive approximate transition probabilities, we dodge the complications of the Fokker-Planck equation again and compute Gaussian approximations. If we apply Euler-Maruyama's scheme to (6.18), we get:

  ∆x t ∆R t ∆I t   = β (GK) Ψc (x t , R t , I t ) ∆t + Σ (GK) Ψc (x t , R t , I t )    ∆W (x) t ∆W (R) t ∆W (I) t    ⇔   x t+∆t R t+∆t I t+∆t   =   x t R t I t   + β (GK) Ψc (x t , R t , I t ) ∆t + Σ (GK) Ψc (x t , R t , I t ) ∆t 1/2   n x n R n I   , (6.39) 
where n x n R n I is a vector of independent standard Gaussian random variables.

It follows that:

p (k) Ψc ≈ 1 (2π) 3/2 σ (GK) Ψc ∆t 1/2 exp - 1 2 (v k -µ k ) σ (GK) Ψc ∆t -1 (v k -µ k ) , (6.40) 
with

         v k = xk Rk Ĩk µ k = xk-1 Rk-1 Ĩk-1 + β (GK) Ψc xk-1 , Rk-1 , Ĩk-1 ∆t σ (GK) Ψc = Σ (GK) Ψc Σ (GK) Ψc . (6.41) 
Again, to get the transition probability, we xed x t R t I t = xk-1 Rk-1 Ĩk-1 .

Thus, the only random part in the right hand side of equation (6.39) is the Gaussian vector

n x n R n I .
The squared volatility σ (GK) Ψc is also a positive denite symmetric matrix in the non degenerate case. We have directly:

σ (GK) Ψc =     2Axt α A(Rt+Ψ (R) c ηxt) α A(It+Ψ (I) c ηxt) α A(Rt+Ψ (R) c ηxt) α A 2α (Rt+Ψ (R) c ηxt) 2 xt + Bxt 2 A 2α (Rt+Ψ (R) c ηxt)(It+Ψ (I) c ηxt) xt A(It+Ψ (I) c ηxt) α A 2α (Rt+Ψ (R) c ηxt)(It+Ψ (I) c ηxt) xt A 2α (It+Ψ (I) c ηxt) 2 xt + Bxt 2     . (6.42)
We have again that:

σ (GK) Ψc ∆t = Σ (GK) Ψc 2 ∆t 3 = ∆t 3 AB 2 x 3 t 2α . (6.43) 
If we invert σ (GK) Ψc we get after some calculations (see appendix D.2): must be evaluated at t = t k-1 , i.e. x t R t I t = xk-1 Rk-1 Ĩk-1 in equation (6.42). Using equations (6.22), (6.38) and (6.40), we have:

σ (GK) Ψc ∆ t -1 =      (Rt+Ψ (R) c ηxt) 2 +(It+Ψ (I) c ηxt) 2 2B∆tx 3 t + α 2A∆txt -Rt+Ψ (R) c ηxt B∆tx 2 t -It+Ψ (I) c ηxt B∆tx 2 t -Rt+Ψ (R) c ηxt B∆tx 2 t 2 B∆txt 0 -It+Ψ (I) c ηxt B∆tx 2 t 0 2 B∆txt      . (6.
l x, R, Ĩ; Ψ c = ln α α xα-1 0 e -αx 0 πx 0 Γ(α) - ( R0 -Ψ (R) c ηx 0 ) 2 + ( Ĩ0 -Ψ (I) c ηx 0 ) 2 x0 -n ln (2π) 3/2 σ (HK) Ψc ∆t 1/2 + n k=1 Φ k (6.45) with Φ k = - 1 2 (v k -µ k ) σ (HK) Ψc ∆t -1 (v k -µ k ). (6.46) 
If we express the rst optimality condition in (6.23), we get after some calculations (see 6.3 Performance of the ML estimation

appendix D.2): ∂l ∂Ψ (R) c ( Ψ(R) c, M L , Ψ(I) c, M L ) = 0 ⇔ - 2η Ψ(R) c, M L ηx 0 -R0 x0 + n k=1 λ (1) 
k + Ψ (R) c n k=1 λ (2) 
k = 0, (6.47) with λ (1) k 
= -w 2 k η Rk-1 2B∆tx 2 k-1 - 2 B∆tx k-1 Rk -Rk-1 -γ k ∆t Rk-1 × (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) + w k B∆tx 2 k-1 ηx k-1 Rk -Rk-1 -γ k ∆t Rk-1 + w k B∆tx 2 k-1 Rk-1 (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) (6.48) and λ (2) k = -w 2 k η 2 2B∆tx k-1 - 2 B∆tx k-1 (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) × (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) + 2w k η B∆tx k-1 (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1
Ψ(R) c, M L = -2η R0 x0 -n k=1 λ (1) k -2η 2 + n k=1 λ (2) k . 

A simple estimator for Ψ c

As seen in the previous section, estimating Ψ c with ML is straightforward but involves quite heavy expressions, at least as compared to the ergodicity-based estimator. This very simple estimator arises naturally. Indeed from equations (6.10) and (6.14) we get:

   E Ψ (HK) c = E Ψ c + x 1/2 t γ t = Ψ c + E[x 1/2 t ]E[γ t ] = Ψ c E Ψ (GK) c = E Ψ c ηx t + x 1/2 t γ t = ηΨ c E[x t ] + E[x 1/2 t ]E[γ t ] = ηΨ c . (6.51)
We have used that x t and γ t are independent, and that E[x t ] = 1 and E[γ t ] = 0 (see chapter 3 section 3.3). We assume that the reectivity is ergodic, or more precisely we assume that: 

Numerical experiments

In this section, we compare the ML estimator to the ergodicity-based estimator which serves as a reference. What we really want is to test numerically whether it is relevant to use the ML estimator, whose formalism is more heavy. To assess the abilities of the ML and ergodicity-based estimators, we simulate many trajectories of x t R t I t with a given Ψ c and then try to retrieve it. To do so, we solve numerically the SDE (6.12) and (6.17) using

Euler-Maruyama's scheme for R t , I t and Milstein's scheme for x t (see [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Dierential Equations[END_REF] and chapter 2 section 2.2.3). The Euler-Maruyama scheme is not used for x t because it raises numerical issues. Indeed, it could generate negative values, which is absurd since the RCS is always positive. The trajectories are simulated with parameters relevant for the sea surface, which is a special case of random medium. As in chapters 4 and 5, we take A = 1 Hz, B = 100 Hz, α = 1 and ∆t = 0.001 s. We set η = 1 for the GK scattering simulations.

The detection of a coherent scatterer is naturally more challenging if the coherent scatterer has a power similar to the clutter. We explore the dependence of the estimator performance to both the trajectory duration and target intensity (power). We dene the target intensity simply as its squared modulus:

|Ψ c | 2 = Ψ (R) 2 c + Ψ (I) 2 c (6.55)
By rotational symmetry and for simplicity, we also set Ψ (I) c = 0 such that all the target power goes into the real part. We denote

Ψ(R) c,i the estimated Ψ (R) c
from the i -th trajectory, from either Ψc, M L (maximum likelihood) or Ψc, e (ergodicity), and M the number of trajectories. We assess the performance of the estimators by computing their estimation bias b(

Ψ(R) c ) and variance σ 2 ( Ψ(R) c ): b( Ψ(R) c ) = 1 M M i=1 Ψ(R) c,i -Ψ(R) c , (6.56) 
σ 2 ( Ψ(R) c ) = 1 M -1 M i=1 Ψ(R) c,i -Ψ(R) c 2 , (6.57) 
where

Ψ(R) c is the average of the Ψ(R) c,i .

Performance in HK scattering

In the case of HK scattering (equation (6.10)), we numerically solve the SDE (6.12) for known clutter parameters A, B, α and target Ψ c = Ψ (R) c . We then try to retrieve Ψ (R) c using equations (6.36) and (6.54) which correspond respectively to the ML and ergodicity-based estimators.

We explore the dependency of the estimator performances to both the trajectory duration (from 0.1 s to 10 s) and target intensity (from 0.1 to 100). When the duration is explored, the target intensity is set to 10, and when the target intensity is explored, the duration is set to 1 s. The relative squared estimation bias and the estimation variance are plotted in gure 6.1. They are simply the squared bias and variance dened in equation (6.56) normalized by the target intensity. We observe that both decrease quickly as the trajectory duration or target intensity increase. This is easily understandable since a longer trajectory carries more information, and a stronger target dominates more strongly the overall reectivity. However, the squared bias is orders of magnitude smaller than the variance and is therefore negligible.

It is also what explains its apparent noisiness. If we now compare the ergodicity-based and ML estimators based on the variance, we notice a slight advantage for the ML estimator for low target intensity. There is no striking dierence between the ergodicity and ML clouds, unlike the case of GK scattering.

Performance in GK scattering

In the case of GK scattering (equation (6.14)), we numerically solve the SDE (6.17 using equations (6.50) and (6.54) which correspond respectively to the ML and ergodicitybased estimators. We explore the dependency of the estimators performances to both the trajectory duration (from 0.1 s to 10 s) and target intensity (from 0.1 to 100). Again, when the duration is explored, the target intensity is set to 10, and when the target intensity is explored, the duration is set to 1 s. The relative squared estimation bias and the estimation variance are plotted in gure 6.3. We also observe that the variance decreases quickly as the trajectory duration or target intensity increase. The bias is very noiselike but it is again orders of magnitude smaller than the variance so we shall ignore it. Unlike HK scattering, there is this time a large dierence between the performance of the ergodicity and ML estimator. The ML estimator outperforms the ergodicity estimator by an order of magnitude on average (less for small durations and target intensity and vice versa).

We represent in gure 6.4 a scatter plot of all the estimated Ψ (R) c

for 1000 trajectories.

There is a striking dierence between the ergodicity and ML clouds. There are both centered correctly, but the ML cloud is much narrower than the ergodicity one, in accordance with the estimation variances. There is a second dierence that we should mention: the ML estimator has the drawback of generating some outliers (on the order of 0.5%). These outliers have been ltered out for the variance calculations of gure 6.3. We noticed that they arise when during the trajectory, x t goes very close to 0. Of course, it is not physically possible to have a vanishing RCS. However, we will keep the outliers in the discussion (section 6.4), since they merely increase the false alarm rate by a small percentage. 

Comparison between HK and GK scattering

In HK scattering, the target reectivity Ψ c is simply added to the random medium reectivity (clutter) Ψ t = x 1/2 t γ t . There is no interaction between the target and random medium.

Retrospectively, it is then natural that the transition probabilities do not 'really' depend on the target and that ML estimation does not present any advantage. More precisely, we mean that the probability of increasing or decreasing by some amount during time interval ∆t is independent on the target strengh in HK scattering. In that case, ML estimation is not better than the ergodicity-based estimator, except in the case of a low intensity target.

In GK scattering, the target reectivity is modulated by the RCS to give Ψ c ηx t which is added to Ψ t . There is an interaction between the target and random medium, and in this case the transition probabilities 'really' depend on the target. As a result, ML estimation is relevant since every single transition depends on Ψ c . Comparing gure 6.1 and gure 6.3, we also see that the estimation variance is greater for GK than HK scattering, which is also a result of the target being modulated by x t in GK scattering.

Performance as a function of the sampling frequency in GK scattering

We now want to assess the inuence of the sampling frequency. So far, we xed the time step to ∆t = 10 -3 s. We just saw that the ML estimator signicantly outperforms the ergodicitybased estimator in the case of GK scattering. Since this is due to the information about Ψ c contained in every single transition, it is natural to think that the more transitions, the better the performance. To test this idea, we carried numerical simulations and estimated Ψ c for a range of sampling timesteps from 10 -5 s to 10 -1 s. For each timestep and value of A, 10000 trajectories are computed with Ψ c = √ 10 (only for GK scattering), and Ψ c is estimated by ML. The estimation variance is then computed. The results are represented in gure 6.5. We observe as expected that the variance decreases as the sampling time step decreases (increase of the sampling frequency) most likely to an asymptotic lower bound. However, it decreases very slightly compared to the changes relative to the duration (compare gure 6.5 and gure 6.3). In GK scattering, there is information about the target in every transition due to the fact that x t modulates the target constant Ψ c in GK scattering. Therefore, as well as changing the timestep, we also change how fast x t evolves, by tuning A. Based on our simulation results, it seems that increasing the dynamics of x t , i.e. increasing A, leads to a decrease in the estimation variance.

Discussion

We propose a rst approach to the detection problem (instead of estimation) considering the distribution of the estimated parameter Ψc . For simplicity, let us assume that the target constant is real-valued i.e. Ψ c = Ψ Our method for estimating Ψ c does not provide the distributions at the numerator and denominator for computing Λ. Instead, one can compute numerical distributions by estimating Ψ c on many trajectories. The approach is identical to that of section 6.4. Examples of numerical distributions obtained with 10000 trajectories are represented in gure 6.6 (left) for two target constants: Ψ c = 1 and Ψ c = √ 0.1. In addition, we represent the Gaussian distributions with the numerical means and variances. To rst order, the curves t reasonably well. We observe that the separation between the no target and target distributions is much smaller for Ψ c = √ 0.1. If we denote σ Ψc , σ 0 and m Ψc , m 0 the numerical standard deviations and means with and without a target, we have: The reader may object that the Gaussian distributions do not t so well the numerical distributions. We wish to emphasize that we chose it just for illustrative purposes. More generally, the objective of this discussion is to show that the estimation of the target Ψ c indeed leads to target detection, which is discussed again in chapter 7.

Λ( Ψ(R) c ) ≈ 1 √ 2πσ Ψc e -( Ψ(R) c -m Ψc )/2σ 2 Ψc 1 √ 2πσ 0 e -( Ψ(R) c -m 0 )/2σ

Conclusion

In this chapter, we derived the SDE for the in-phase (R t ) and quadrature phase (I t ) com- ponents of the reectivity of a random medium (for example the sea surface). Two models of target have been considered: HK scattering and GK scattering. Approximate transition probabilities have been derived for small time steps using Euler-Maruyama scheme. We used these approximate transition probabilities for maximum likelihood estimation of the coherent scatterer (target) constant. In both HK and GK scattering, the estimator is given by an explicit analytical formula.

Numerical simulations have been carried out using constants relevant for radar scattering of the sea surface. The estimation bias is negligible and the estimation variance is small compared to the target constant. We observed the intuitive result that the estimation variance decreases as the duration, or target intensity, or sampling frequency increases. We

showed that mostly for GK scattering is the maximum likelihood estimator signicantly better than the very simple ergodicity-based estimator. Only in this case, do the transition probabilities really (i.e. not a simple translation) depend on the target constant due to target/clutter interaction. For HK scattering, the maximum likelihood estimator is better than the ergodicity-based estimator in the case of a weak target. Lastly, we discussed how our estimation of the target parameters leads to target detection, ROC curves etc.

We think that it would be valuable to study more precisely the performance of the estimation in terms of the quantity of information about the target contained in the time series (depending on duration and sampling frequency). This quantity of information would also depend on the parameters A, B and α, which control the dynamics of the clutter. Finally, HK and GK scattering are two examples of target reectivity models. It is possible that based on physical considerations, one would choose a more adapted model, maybe a combination of HK and GK scattering or a model where the target constant is not modulated by

x t but by a dierent process. Our approach could then be extended to such models as long as the dynamics are expressed by stochastic dierential equations.

Chapter 7

Non-observability of x t , bayesian estimation and target detection

In chapter 5, we presented the estimation of the clutter parameters of Field's model: A, B and α. In chapter 6, we presented the estimation of the target parameters

Ψ (R) c , Ψ (I) c . Under
the assumption that α is known and that the RCS x t is observed (and also that there is no target), we estimated A and B by maximum likelihood (ML). Under the assumption that A, B and α are known, and that x t is observed, we also estimated Ψ (R) c

and Ψ

(I) c by ML. In this chapter, we address the issue of the non-observability of x t . Indeed, real data recorded by a coherent radar yield time series of Ψ t , but its factorization into the product of Ψ t = x 1/2 t γ t is not readily available. Estimating x t from observable data becomes necessary to be able to apply the results of the previous chapters. The rst purpose of this chapter is to solve the problem of estimating the clutter parameters without observing x t (sections 7.1 and 7.2).

The second purpose of this chapter is to introduce new tools and directions for future work on the use of Field's model to describe the sea clutter. As such, the second part of this chapter (sections 7.3 and 7.4) is exploratory. We introduce two new topics: bayesian statistics for sea clutter, and target detection. First, notwithstanding the frequentist point of view adopted so far for estimating the clutter and target parameters, is it possible at low cost to adopt the bayesian point of view for estimation? Second, in chapter 6 the target was always present and constant. Shall we now consider that the target appears for some time and then disappears (time dependence), and can we dene algorithms which can scan a time series of the complex reectivity, and react if there is an anomaly compared to the normal situation (sea clutter only)?

This chapter is organized as follows. In section 7.1, we derive estimators for x t . Corresponding estimators for γ t are immediate. In section 7.2, we merge all the results obtained for estimating the parameters A, B and α, as well as the results for estimating x t to propose a chain of estimators applicable to the data that would really be observed in practice. In section 7.3, we introduce bayesian estimation of the clutter parameters A, B and α. In section 7.4, we dene two algorithms for target detection: one based on spot volatility, and one on the likelihood of the observed time series. Section 7.5 concludes.

Estimation of x t and γ t

In practice, with a coherent radar, one can observe the complex process Ψ t . We remind that the complex reectivity of the random medium (the clutter) is:

Ψ t = x 1/2 t γ t = x 1/2 t γ (R) t + ix 1/2 t γ (I) t = R t + iI t . (7.1) Only R t = x 1/2 t γ (R) t and I t = x 1/2 t γ (I) t
are observed, but they both enclose the two processes

x t and γ t and it is not trivial to disentangle them. Nevertheless, in chapter 5, we assumed that we had the decomposition of Ψ t in terms of x t and γ t . Then, x t was used to estimate A and γ t was used to estimate B. Also, in chapter 6, we assumed that x t was observed to estimate the target parameters.

We remind from chapter 3 that x t is the radar cross section (RCS) of the sea surface. If x t is set to one (its mean value since Ψ t is normalized), then Ψ t = γ t , i.e. the complex reectivity reduces to the speckle. It is possible to modulate the average power of the speckle by multiplying it by a slower positive process, for example x 1/2 t in Field's model.

Mathematically speaking, there is no reason to think that x t should be slower than γ t .

However, based on physical considerations, we asserted it from chapter 4 on, by taking A = 1 Hz (dynamics of x t ) and B = 100 Hz (dynamics of the speckle) in most of our simulations. This dierence of timescales between x t and γ t is the key to estimate x t . The problem of estimating x t in the case of clutter only (no target, corresponding to equation (7.1)) from a discrete time series { Ψk , k = 1, 2, . . . , n} has been adressed in [START_REF] Fayard | Optimal inference of the scattering cross-section through the phase decoherence[END_REF].

It is not very clear what the authors do (since for example there is no equation where the estimator of x t is clearly dened), but they seem to estimate x t based on the spot volatility of the phase θ t , where Ψ t = z 1/2 t e iθt . For a stochastic process X t solving: dX t = µ(X t )dt + Σ(X t )dW t ,

the spot volatility is simply σ(X t ) = Σ 2 (X t ), i.e. the squared volatility. For example the spot volatility of x t , which solves the rst SDE of equation ( 6.3), is 2 A α x t . In [START_REF] Fayard | Optimal inference of the scattering cross-section through the phase decoherence[END_REF], the authors use averaging over a sliding window, and the optimal size of the window (in the sense that it minimizes the mean square error between the true and estimated x t ) is proposed as a function of A, α and ∆t. [START_REF] Fayard | Optimal inference of the inverse gamma texture for a compound-gaussian clutter[END_REF] is a work similar to [START_REF] Fayard | Optimal inference of the scattering cross-section through the phase decoherence[END_REF] but it considers an inverse gamma distribution for x t .

In this section, we propose several estimators for x t , but only one is retained, namely xt (see below). An estimator for x t naturally leads to an estimator for γ t , here: γt = Ψt x1/2 t . Since the estimators for x t imply that we smooth some signal with a sliding window, we study numerically what the optimal size of the window is as a function of A and α.

Heuristic estimators for x t xt estimator

To propose an estimator for x t , we rst introduce notations and basic results. Let

∆ k Ψ = Ψ t k -Ψ t k-1 . (7.3)
We have:

∆ k Ψ = x 1/2 t k γ t k -x 1/2 t k-1 γ t k-1 = x 1/2 t k γ (R) t k -x 1/2 t k-1 γ (R) t k-1 + i x 1/2 t k γ (I) t k -x 1/2 t k-1 γ (I) t k-1 . (7.4)
We get:

|∆ k Ψ| 2 = x 1/2 t k γ (R) t k -x 1/2 t k-1 γ (R) t k-1 2 + x 1/2 t k γ (I) t k -x 1/2 t k-1 γ (I) t k-1 2 .
If ∆t = t k -t k-1 is small compared to the time scale of x t (which holds for example for A = 1 Hz and ∆t = 10 -3 s), then x t k-1 ≈ x t k and we have:

|∆ k Ψ| 2 ≈ x t k γ (R) t k -γ (R) t k-1 2 + γ (I) t k -γ (I) t k-1 2 . (7.5)
By Euler-Maruyama's scheme applied to the SDE:

dγ (R) t = -1 2 Bγ (R) t dt + 1 √ 2 B 1 2 dW (R) t dγ (I) t = -1 2 Bγ (I) t dt + 1 √ 2 B 1 2 dW (I) t , (7.6) 
it holds:

∆ k γ (R) ≈ -1 2 Bγ (R) t ∆t + 1 √ 2 B 1 2 ∆ k W (R) ∆ k γ (I) ≈ -1 2 Bγ (R) t ∆t + 1 √ 2 B 1 2 ∆ k W (I) . (7.7)
Under the hypothesis that ∆t is small, the volatility term dominates the drift term and we get: k ∼ N (0, 1). From equations (7.5) and (7.8), we get:

∆ k γ (R) ≈ 1 √ 2 B 1 2 ∆ k W (R) = 1 √ 2 B 1 2 n (R) k ∆t 1/2 ∆ k γ (I) ≈ 1 √ 2 B 1 2 ∆ k W (I) = 1 √ 2 B 1 2 n (I) k ∆t 1/2 ,
|∆ k Ψ| 2 = x t k B 2 n (R) 2 k ∆t + B 2 n (I) 2 k
∆t .

(7.9)

After these preliminary calculi, we now set t and consider the estimation of x t . We take time window ∆ t containing t (or preferably centered at t) and make the assumption that for all k ∈ ∆ t (more rigourosly for all k such that t k ∈ ∆ t ), we have x t k ≈ x t . If we average the squared increments of Ψ t over the window, we then get:

1 N k∈∆t |∆ k Ψ| 2 ≈ x t B∆t 2 1 N k∈∆t n (R) 2 k + 1 N k∈∆t n (I) 2 k ≈ B∆tx t , (7.10) 
by the law of large numbers. N is the number of elements in the window. Thus, we obtain the following estimator for x t :

xt = 1 B∆tN k∈∆t |∆ k Ψ| 2 . (7.11)
If we develop a bit equation (7.11), we get: 1

xt = 1 B∆tN k∈∆t (R t k -R t k-1 ) 2 + (I t k -I t k-1 ) 2 (7.12) = 1 B 1 T k∈∆t (R t k -R t k-1 ) 2 + 1 T k∈∆t (I t k -I t k-1 ) 2 = 1 B
N k∈∆t z t k = 1 N k∈∆t x t k |γ t k | 2 ≈ x t 1 N k∈∆t |γ t k | 2 ≈ x t . (7.16) 
Thus, we have the following estimator for x t :

xt = 1 N k∈∆t z t k , (7.17) 
i.e. x t is estimated by a local average of the intensity z t .

Estimation of B based on the increments of Ψ t

To estimate x t with xt , we need to know B. However, to estimate B, γ t is needed, and thus x t is needed in the rst place. We could use the estimator xt , estimate B from γt = Ψ t /x 1/2 t , and then use this estimate to compute xt . We are not enthusiastic about this solution because two windows are required, one for xt and one for xt (they have no reason to be the same).

Instead, there is a much more elegant solution. We remind that equation (7.11) reads:

xt = 1 B∆tN k∈∆t |∆ k Ψ| 2 . (7.18)
It is quite remarkable that the solution of the problem comes from the problem itself ! Indeed, since xt is an estimator of x t , we can expect that:

E[x t ] = E[x t ] = 1. (7.19)
Of course, the rst equality is not quite true at the view of equation (7.13) (even asymptotically as the sampling frequency goes to innity). We admit it though because our numerical simulations showed that the error is small compared to one. We dene Xt by:

Xt = 1 ∆tN k∈∆ |∆ k Ψ| 2 = Bx t . (7.20)
It approximately holds that:

E[ Xt ] = BE[x t ] = B. (7.21)
If we assume that Xt is ergodic and that Xt is computed at times t i for i = 1, 2, . . . , m (by centering the averaging window successively over the t i ), we have:

E[ Xt ] = lim T →+∞ 1 T T 0 Xr dr ≈ 1 m∆t m i=1 Xt i ∆t = 1 m m i=1 Xt i . (7.22)
We obtain the following estimator for B:

BΨ = 1 m m i=1 Xt i ⇔ BΨ = 1 m∆tN m i=1 k∈∆ i |∆ k Ψ| 2 , (7.23)
where ∆ i is a window centered at time t i . Because ergodicity is used, the estimator for B in equation (7.23) is fundamentally dierent from the ML estimator in chapter 5 (equation (5.33) and the volatility-based estimator in appendix A.1. Indeed, it requires long trajectories to work since ergodicity is used, and it is based on observable data, while the ML and volatility-based estimators require γ t . The performance of BΨ is therefore not comparable to that of BML (maximum likelihood estimator from chapter 5). However, we do numerical simulations to estimate its estimation bias and standard deviation with 300 s and 1200 s long trajectories. For each value of B in {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} Hz, 1000 trajectories of Ψ t are simulated with A = 1, α = 1 and ∆t = 0.001 s (simulation and estimation time step). B is estimated with equation (7.23) and the estimation bias and standard deviation are computed. What N shall we choose? We anticipate on the results of section 7.1.4 and particularly on equation (7.27). For A = 1 Hz, α = 1 and ∆t = 0.001 s, we get N opt ≈ 100. The results of the simulations are represented in gure 7.1. The bias is not negligible: it increases as B increases. However, it does not depend on the duration of the trajectories. For its part, the standard deviation is reduced by a factor two when we go from 300 to 1200 s. 

Numerical assessment of the estimators for x t

We do numerical simulations to compare the estimators of x t : xt given by equation (7.11) and xt given by equation (7.17). We also dene a new estimator, which is almost identical to xt , only with the dierence that BΨ is used instead of B:

xt = 1 BΨ ∆tN k∈∆t |∆ k Ψ| 2 . (7.24)
Of course, by construction:

1 m m i=1 xt i = 1. (7.25)
The purpose is to evaluate xt , xt and xt , keeping in mind that in practice only xt and xt are computable from real data. From the simulations, we can compute xt since we know the real B used to simulate the trajectories. We simulate 10 trajectories of Ψ t = x 1/2 t γ t using Milstein's scheme for x t and Euler-Maruyama's scheme for γ t . We set A = 1 Hz, α = 1 and B = 100 Hz. The simulation timestep is 10 -4 s and the trajectories are downsampled to ∆t = 10 -3 s. The duration is T = 300 s. Such a long T is required to ensure that BΨ is close to B. For N between 10 and 400 (by steps of 2, to ensure that N is even), we make a sliding window ∆ t such that |∆ t | = N ∆t and compute xt (with the real B), xt and xt . The mean (over the 10 trajectories) root mean square error (rmse) between the true x t trajectory and estimated one is computed for the three estimators and all N . The results are represented in gure 7.2. Given the smoothness of the results, 10 trajectories are indeed enough. We have even observed that 1 trajectory is enough: since it is 300 s long the rmse is already computed over about 300000 samples. The mean rmse for the three estimators have similar behaviors as they reach a minimum on the explored range (or almost for xt ). The curves for xt and xt are almost identical, which means that using the true B or BΨ does not make much dierence. The minimum mean rmse for xt and xt are much lower than that of xt . Figure 7.3 represents a portion of a trajectory of x t , as well as xt , xt and xt at their respective minimizing N . It is clear that xt and xt are almost identical and are much better estimations than xt .

Optimal window size

We now want to explore the dependence of the optimal N on A and α for xt . This optimal N is denoted N opt (A, α, ∆t). This dependence of N opt on A, α and ∆t is found in [START_REF] Fayard | Optimal inference of the scattering cross-section through the phase decoherence[END_REF], equation [START_REF] Commenges | Information theory and statistics: an overview[END_REF]. It is derived analytically using an approximation for the expectation of the squared error between the true x t and estimated one. Adapting the notations, this equation states:

N opt = 2 12(α + 1) A∆t 1/2 , (7.26) 
where N opt stands for ∆ opt in the paper (half-window number of samples). Equation (7.26) gives us an idea of the form we should expect for the function N opt . For (A, α), we explore the space {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 2 , and for ∆t, we explore {10 -4 , 10 -3 , 10 -2 }. For xed (A, α), the trajectories are simulated with ∆t = 10 -4 s and then downsampled to 10 -3 and 10 -2 s; their duration is 300 s. For xed (A, α, ∆t), we vary N between 10 and 400, and select the N which minimizes the rmse between the true x t and the estimation xt , where xt is computed using a window ∆ containing N samples. On a standard computer, the This theoretical N opt is also represented in gure 7.4 for comparison. There is a very good agreement with the empirical N opt , which encourages us to believe that if a rigorous analytical expression of N opt exists, it should be proportional to N opt and thus decreases as A -1/2 , as ∆t -1/2 , and increase as (α + 1) 1/2 . Figure 7.5 represents the results for α = 0.1. For all ∆t, the empirical N opt mainly follows the theoretical one, except for some value of A where it breaks out (A = 1 Hz for ∆t = 0.01 and 0.001 s, A = 5 Hz for ∆t = 0.0001 s). This observation would deserve more attention, but from now on, we simply consider that N opt is given by equation (7.27).

Estimators for x t and γ t

Based on the results of section 7.1.3, xt is the best estimator for x t (since xt is less performant and xt not computable in practice). The corresponding estimator for γ t is γt = Ψt We also remind that:

BΨ = 1 m∆tN m i=1 k∈∆ i |∆ k Ψ| 2 , (7.30)
where N is the number of samples in window ∆ i (independent of i), and m the number of windows.

Sequential estimation of the clutter parameters, x t and γ t

In this section, we estimate the clutter parameters A, B and α when x t is not observed, as in real life. Therefore, we get rid of all the assumptions and nally tackle the full problem, without relying on unknown knowledge. Combining the results of the previous sections, as well as those of chapter 5, we can propose a very natural sequential estimation where the only data that we have is a discrete time series of Ψ t = R t + iI t . The available data is therefore Ψ = {Ψ k , k = 0, 1, 2, . . . , n}, with Ψ k = Ψ t k and t k = k T n . Of course it is assumed that the sea clutter really follows Field's model and that therefore there are two objective but unobserved processes x t and γ t such that Ψ t = x 1/2 t γ t . We now remind our notations. xt and γt are the estimators of x t and γ t based on the increments of Ψ t (equations (7.28) and (7.29)). ÃML and BML are the ML estimators for A and B. BΨ is the estimator of B based on the increments of Ψ t . Finally, αx and αz are respectively the estimators of α based on x t and on z t = |Ψ t | 2 (see section 5.1.2).

Sequential estimation

Before presenting the sequential estimation, one preliminary step must be taken. Let us assume that we observe the data Ψ = {Ψ k , k = 0, 1, 2, . . . , n}. In echo with section 5.1.1, we acknowledge that a priori, Ψ (raw data) has no reason to be normalized, in the sense that:

C = 1 n∆t n-1 k=0 |Ψ k | 2 ∆t 1/2 (7.31)
is surely not equal or even close to 1. The rst step consists in normalizing Ψ by C, to make sure that:

1 n∆t n-1 k=0 |Ψ k | 2 ∆t 1/2 = 1. (7.32)
This normalization can be seen as a calibration step. It is possible also to work on a trajectory (for estimation purposes) shorter than the trajectory used for normalization. In all cases, it is assumed that for the whole duration of the normalization trajectory, the acquisition conditions do not change (constant mean power, i.e. stationarity). If the working trajectory is shorter (or just dierent) than the normalizing trajectory (still with stationarity), we will have:

1 n∆t n-1 k=0 |Ψ k | 2 ∆t 1/2 ≈ 1, (7.33)
where the approximation is due to the statistical eect.

We now propose the sequential estimation depicted in gure 7.6. We start from Ψ t , measured by the radar (a normalized discrete time series of it, denote Ψ above). First, we compute αz from z t = |Ψ t | 2 using equation (5.21). Second, we compute BΨ using equation (7.30). To do so, we use a sliding window which contains N opt (A, αz , ∆t) samples. The only unknown is A, so we arbitrarily use 5 in N opt . We then compute xt using equation (7.28), of course using again N opt (5, αz , ∆t) for the size of ∆. γt is immediately computed with equation (7.29).

At this stage, we have decoupled x t and γ t and we can now freshly estimate the clutter parameters. From xt , we can compute ÃML using equation (5.33). αx can be computed using equation (5.13). From γt , we can compute BML using equation (5.33).

Since we have now an estimation of A, we can reloop by recomputing BΨ using N opt ( ÃML , αx , ∆t).

Of course it is possible to reloop a great many times. 

Numerical analysis of the proposed sequence of estimators

In this section, we want to analyse the sequence of estimators in gure 7.6 using numerical simulations. We are going to observe that once xt has been computed, it is necessary to subsample it before estimating A. We will also come across some counter intuitive results that we will clarify and discuss. For the analysis, we choose to reloop only once.

To assess the estimators for A and α, we have usually explored {0. Subsampling for estimating A Table 7.1 gathers the results for the rst trajectory and two rounds (one reloop). rmse x t is the root mean square error between x t and xt , and rmse γ t is the root mean square error between γ t and γt . For information, we have E[x 2 t ] = 1 + 1 α = 2, and E[|γ t | 2 ] = 1. We observe the rst following facts. First αz estimates very well α and BΨ estimates very well B. Similarly, BML (ML estimator with Euler's approximation) and αx perform well. Even though N opt jumps from 44 to 136 between the two rounds, BΨ , rmse x t , rmse γ t , αx and BML are not signicantly aected. However, A is very poorly estimated by ÃML (ML estimator with Euler's approximation). The second loop, is even worst than the rst one. The rst explain why the estimation (whatever the round), is an order of magnitude lower than the true value A = 1 Hz.

The data is generated at times t i = i∆t, for i = 0, 1, . . . , n, with n = 1200.10 Analysis of the results after subsampling The same color code can therefore be adopted. Table 7.4 represents the estimation standard deviations. They do not seem to be able to discriminate between the estimators and rounds which is why we are more focused on table 7.3.

In our conguration, it seems that:

• the rst round is better than the second one, especially for ÃML

• αz and BΨ are better than αx and BML .

These results are unexpected and force us to go a bit further in our analysis. We decide to apply the sequential estimation to shortened versions of the 1000 trajectories we simulated. We apply it to T = 30 s and T = 300 s (A = 1 Hz, α = 1 and B = 100 Hz). The estimation bias and standard deviation for ÃML , αx and αz are gathered in table 7.5. The estimation standard deviations decrease as T increases (expected). However, the estimation bias of ÃML increases (unexpected).

Explanation of the results for ÃML

We now explain why the estimation of A seems to deteriorate when we loop (second round).

We have generated time series of the form {x t 0 , x t 1 , . . . , x tn } with A = 1 Hz and α = 1. If we were estimating A using these time series, we would expect to nd ÃML close to 1. However, we need to work on {Ψ t 0 , Ψ t 1 , . . . , Ψ tn } and have to compute {x t l , xt 2 , . . . , xtm }, i.e. to estimate x t , before estimating A. Though A = 1 Hz explains well {x t 0 , x t 1 , . . . , x tn }, we claim that the biased ÃML (which is on average 1 -0.276 = 0.724 Hz) simply explains better {x t l , xt 2 , . . . , xtm }, and that this is the reason why it was obtained in the rst place. -0.276 0.025 To show that, we dene the average logarithm of the transition probabilities (or likelihoods) as:

σ (α z ) σ( BΨ ) σ( ÃML ) σ(α x ) σ( BML )
l(x, A, α) = 1 m -l m-1 k=l ln p A, α (x t k+1 | xt k ). (7.34)
We choose l(x, A, α) as a measure of how well A and α explain the transitions observed in x. We compute it for each of the trajectories, and then average over the trajectories. We compare the couples (A, α), ( ÃML , αx ) and ( ÃML , αz ) for T = 30, 300 and 1200 s.

The results are in table 7.6. They conrm our claim, since we now observe that the second rounds are signicantly better than the rst ones, and that ÃML is actually better than A to explain the transitions of x. Using αx or αz is unimportant. By denition, the average log transition probability has low sensibility to T . We also computed the average log transition probability of x t with the true (A, α). Though it is of the same order of magnitude as the results for xt , it is a bit lower.

Discussion

We have seen that direct application of the estimation sequence depicted in gure 7.6 is able to estimate very well α and B already in the rst round. However, the order of magnitude of ÃML was too low, which was solved by subsampling. Surprisingly, the second round seemed to give poorer results than the rst one for ÃML . Nonetheless, the average log transition probability increases, which shows progression in explaining the observed transitions. We think that there is an extremely interesting situation here. As explained before, ÃML , whatever its value, is simply the best to explain xt (even better than A). Of course it is not better than A to explain the true RCS x t . We think that subsampling still makes sense since xt cannot reproduce the short-time dynamics of x t .

We could continue tuning the estimation sequence to make ÃML closer to 1. We are not entirely convinced that it is useful: our ultimate goal is not to estimate A. Our goal is to get a consistent and precise description of the sea clutter, to develop signal processing tools (see for example section 7.4 for target detection). We will never work on x t since it is not observable, we will work on xt . Even if we tried to make it as close as possible to x t by tuning N (section 7.1.4), the hypothesized objective truth is eventually out of reach. In practice, the objective (x t , γ t ) decomposition of the sea clutter steps down to make place to the subjective decomposition (x t , γt ).

We noticed that αz and BΨ seemed better than αx and BML . We think that the es- timators for α are equivalent. For B, we can develop the same line of argument as for A. Though seemingly BΨ outperforms BML , BML better describes the transition of γt and should therefore be preferred.

More eort should be done to properly understand the role of the average log transition probability in relation with information theory and the concept of entropy. Why is it lower for x t and (A, α)? Does that make sense? Also, we want to remind that though ÃML is the best parameter to explain xt , this is true under the hypothesis that xt follows the SDE of x t :

dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x)
t .

(7.35)

The question of whether it is indeed a good description of xt is a dierent matter (model testing) which should be worked out, again presumably with information theory. The question also holds for γt and BML . Because of that, we shall recognize that our work on the estimation of x t , γ t , A, B and α is incomplete despite that the factorization is perfect by construction:

Ψ t = x1/2 t γt .

(7.36)

Bayesian estimation of the clutter parameters

We now succinctly introduce the topic of bayesian estimation of the clutter parameters.

From chapter 5 until now, we have derived estimators for the clutter parameters, target parameters, and for x t and γ t . They were all expressed in a similar way, as an explicit function of the data (discrete time series). Since the data is random, the estimator is a random variable. We always assessed our capacity to estimate well from the data by assessing the performance of the estimator. This performance was quantied either by the estimation bias and standard deviation, or by the root mean square error after debiasing. Overall, the choice of estimator and the way to measure its performance do not change the general situation: estimation has been entirely conceptualized from a frequentist point of view so far. Let θ be some parameter to be estimated (not the phase of the complex reectivity), and x some data which contains information about θ. We have proposed formula of the type:

θ = f (x), (7.37) 
where θ is an estimator of θ and f is some function. We assumed that there is a true θ out there, and we approximate it by a random variable built from our random data. p(θ|x) is the posterior distribution of θ, p(x|θ) is the likelihood, p(θ) is the prior distribution of θ, and p(x) is the marginal likelihood. The main innovation is that we now speak of distributions for θ itself, not some estimators of it. These distributions refer to the knowledge that we have on θ, such that the bayesian perspective is more subjective than the frequentist one (if not completely subjective, as opposed to an objective frequentist point of view).

p(x | θ) is the likelihood and is precisely the function we maximized for maximum likelihood estimation in chapters 5 and chapter 6. p(x) is usually ignored because it is a normalizing constant with respect to θ (does not depend on θ). We have:

p(x) = p(x|θ)p(θ)dθ. p(θ) is the knowledge on θ before observing the data x, and p(θ|x) is the knowledge on θ after x has been observed and taken into account. It is expected that p(θ|x) is narrower than p(θ), in which case Bayes formula really describes learning (see gure 7.7). The bayesian point of view is now widely used expecially in topics without big data (e.g. paleontology). Interestingly enough, bayesianism is at the core of a recent interpretation of quantum mechanics: QBism (i.e. quantum bayesianism, see [START_REF] Baeyer | QBism: the Future of Quantum Physics[END_REF] and the articles of Christopher A.

Fuchs).

We can use equation (7.38) to estimate the clutter parameters from x t and γ t . For example, let θ = (A, α) and x = {x t 0 , x t 1 , . . . , x tn }. Bayes formula becomes: p(A, α|x) ∝ p(x|A, α)p(A)p(α), (7.40) assuming independence of the priors on A and α. Based on our knowledge of the range of possible values for A and α, we would suggest uniform prior for A over [0.1, 10], i.e. p(A) ∼ U (0.1, 10), and a gamma distributed prior for α with shape parameter 3 and rate 1/2: p(α) ∼ Γ(3, 1/2). We also know that the likelihood of x can be written:

p(x|A, α) = p A,α (x t 0 ) n k=1 p A,α (x t k |x t k-1
), (7.41) where p A,α (x t 0 ) is the likelihood of the rst value of the time series (asymptotic distribution) and the p A,α (x t k |x t k-1 ) are transition probabilities. Equation (7.41) is a random likelihood, explaining the slightly dierent notation from the previous chapters. However, it is really the same likelihood as in chapter 5. Equation (7.41) can be rewritten:

p(x|A, α) = α α x α-1 t 0 e -αxt 0 Γ(α) n k=1 √ α 4πx t k-1 A∆t e - α ( x t k -A∆t-(1-A∆t)x t k-1 ) 2 4A∆tx t k-1 . (7.42)
In equation (7.42), we have used Euler-Maruyama's approximation for the transition probabilities (see chapter 5). It holds under the assumption that ∆t = t k -t k-1 is small, but if this is not so it is always possible to use the exact transition probabilities derived in chapter 4. We see that our eorts carried out in the frequentist world are useful for the bayesian one. In theory, we have all the elements to compute p(A, α|x). In practice, the product of the prior and of the likelihood has (most of the time) unknown properties. However, we could draw samples from it and get histograms of p(A, α|x), p(A|x) = p(A, α|x)dα and p(α|x) = p(A, α|x)dA using MetropolisHastings Markov chain Monte Carlo (MCMC).

Bayesian estimation can also be done for B using a time series of γ (R) t for example: We would simply choose a uniform prior over [10,1000]: p(B) ∼ U (10, 1000). The likelihood can be expressed as:

γ = {γ (R) t 0 , γ (R) t 1 , . . . , γ ( 
p(γ|B) = p B (γ (R) t 0 ) n k=1 p B (γ (R) t k |γ (R) t k-1
).

(7.44)

Using Euler-Maruyama's approximation (see chapter 5), the likelihood becomes:

p(γ|B) = 1 √ π e -γ (R) 2 t 0 n k=1 1 √ πB∆t e - γ (R) t k -γ (R) t k-1 (1-B∆t/2) 2 B∆t . (7.45) 
MCMC could again be used to draw samples from p(B|γ).

It would be interesting to apply the bayesian estimation we just described for A and B (e.g. assuming α is known), and to use MCMC to compute the a posteriori distributions of the parameters. The means and standard deviations of these distributions could then be compared to the results of chapter 5 (estimation bias and standard deviation of ML estimators).

Target detection

One of the most important topics related to sea clutter is target detection for maritime surveillance. We have briey mentionned target detection in chapter 6 section 6.4, where the target was modelled by a complex constant Ψ c and estimated by maximum likelihood.

Instead of talking about a target, we shall sometimes refer to anomaly detection, which is more neutral. A surfaced whale should not deserve to be treated as a target (see [3]), though recent news suggest it could sadly be the case [4].

We wish now to introduce the problematic of target detection in the framework of Field's model. We assume that the parameters A, B and α are known, or well estimated. In section 7.4.1, we present a method based on spot volatility, which is based on observable quantities: Ψ t , z t = |Ψ t | 2 and θ t (phase of the complex reectivity). No parameter estimation is required. In section 7.4.2, we propose to use the likelihood of the time series to detect anomalies.

Detection based on spot volatility

We propose the following method based on spot volatility (see below) to detect anomalies in sea clutter.

In Field's model, the complex reectivity Ψ t (sea clutter) solves:

dΨ t = - 1 2 BΨ t dt + B 1/2 √ 2 x 1/2 t dW (R) t + i B 1/2 √ 2 x 1/2 t dW (I) t + AΨ t 2(α -x t ) -1 4x t dt + Ψ t A 2x t 1/2 dW (x) t , (7.46) 
where x t has replaced αx t (equation (8.12) in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]). From equation ( 7 [8]). Its estimation is more delicate than that of the integrated volatility, and it has slower convergence rate.

Finally, if we write Ψ t = r t e iθt , Field shows that the SDE for the phase is:

dθ t = Bx t 2z t 1/2 dW (θ) t , (7.50) 
where W

(θ) t is some brownian motion. This is equation (8.29) in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF]. From equation (7.50):

d θ t = Bx t 2z t dt = σ (θ) t dt, (7.51) 
where σ

(θ) t = Bxt 2zt
is the spot volatility of θ t . Since θ t is actually observed, its spot volatility can be estimated.

From equations (7.47), (7.49) and (7.51), we get:

d Ψ, Ψ * t = σ (z) t 4z t + z t σ (θ) t dt. (7.52) 
In integral notations, we obtain:

Ψ, Ψ * T = T 0 σ (z) t 4z t + z t σ (θ) t dt. (7.53) 
We now assume that we observe a discrete time series {z k , k = 1, 2, . . . , n} and {θ k , k = 1, 2, . . . , n} at times t k = k T n = k∆t. From these, it is also possible to estimate the spot volatilities. We note respectively σ(z) 

Ψ, Ψ * T = lim n→+∞ n k=1 |Ψ t k -Ψ t k-1 | 2 , (7.54) 
and using a simple Riemann sum to approximate the integral in the right hand side of (7.53), we get: 

n k=1 |Ψ t k -Ψ t k-1 | 2 ≈ n k=1 σ(z) k 4z k + z k σ(θ) k ∆t. ( 7 
|Ψ t k -Ψ t k-1 | 2 - n k=1 σ(z) k 4z k + z k σ(θ) k ∆t = 0. (7.56)
Of course, it cannot hold perfectly but it should be close to zero. In practice, we should set a threshold for the left hand side of equation (7.56) and reject H 0 , i.e. detect an anomaly, if the threshold is exceeded.

This method has the huge advantage of not requiring any hypothesis on the potentially present target, and of being applicable to observable quantities only. Its drawback is that it requires spot volatility estimation, which works only for high sampling frequencies.

Detection based on likelihood

First approach: parameter estimation

The rst approach we propose is to rely on parameter estimation. In chapter 6 and in section 7.2, the target is represented by a constant Ψ c . We considered two models for the total reectivity: HK scattering (Ψ t = x 1/2

t γ t + Ψ c ) and GK scattering (Ψ t = x 1/2 t γ t + ηx t Ψ c ).
In both cases, we assumed that:

1. the target Ψ c is constant, 2. discrete time series of x t , R t , I t are observed, and then estimated Ψ c either by ML (chapter 6), ergodicity (chapter 6), or by volatility (appendix A.2). The constant target approximation was reasonable since we considered 1 s long trajectories. However, we know that x t is not observed. We now consider a timedependent target Ψ c (t). We have:

Ψ t = x 1/2 t γ t + Ψ c (t) (HK scattering) (7.57) Ψ t = x 1/2 t γ t + x t Ψ c (t) (GK scattering). (7.58) 
For illustrative purposes only, we choose the following exemple of real (no imaginary part) 

Ψ c (t): Ψ c (t) = Ψ (R) c e - 1 r 2 -(t-tc) 2 if r 2 -(t -t c ) 2 > 0 Ψ c (t) = 0 otherwise. ( 7 
∆ k Ψ = Ψ t k -Ψ t k-1 = x 1/2 t k γ t k -x 1/2 t k-1 γ t k-1 + Ψ c (t k ) -Ψ c (t k-1 ), (7.60) 
and if Ψ c (t) is smooth, we may neglect Ψ c (t k )-Ψ c (t k-1 ) and resume the precedent derivation to arrive at the estimator xt or xt . We show a simple numerical example with a 30 s long trajectory, including a target of width 2r = sliding window of 1 s, using ML and ergodicity. They are respectively denoted Ψc, M L (t) and Ψc, e (t). The volatility-based estimation is not represented since for HK scattering (additive target) it is outperformed by the other two estimators. We use a 0.5 s wide sliding window for estimation, and the target signal is very well retrieved (bottom) even though it was almost hidden in sea clutter (middle). We have used the true x t for simplicity. In practice, it is required to estimate x t rst. We think that detection schemes could be developped based on Ψc, M L (t) or Ψc, e (t), knowing that it should normally be around zero under the hypothesis H 0 that there is sea clutter only. A drawback of this approach is that it assumes that the presence of an anomaly appears as an additive term in the reectivity. Second approach: likelihood analysis It is possible to test for the presence of an anomaly directly from the likelihood of a time series. Assume that we observe discrete time series of x t , R t and I t : 

(x, R, Ĩ) = xk , Rk , Ĩk , k = 0, 1, . . . ,
L x, R, Ĩ = p ∞ n k=1 p (k) , (7.61) 
with

p ∞ = p((x t 0 , R t 0 , I t 0 ) = (x 0 , R0 , Ĩ0 )) (7.62) = p ∞ (x 0 , R0 , Ĩ0 ) and p (k) = p (x t k , R t k , I t k ) = (x k , Rk , Ĩk ) | (x t k-1 , R t k-1 , I t k-1 ) = (x k-1 , Rk-1 , Ĩk-1 ) . (7.63)
It is possible to direcly decide that there is an anomaly if -L exceeds some threshold, i.e. if (x, R, Ĩ) is too unlikely under the null. Of course, in practice x t must be estimated rst. The non-observability of x t cannot be solved using z = {z k , k = 0, 1, . . . , n}, where zk = R2 k + Ĩ2

k .

Even though z is observed, its likelihood L(z) cannot simply be dened as:

L(z) = p(z t 0 = z0 ) n k=1 p(z t k = zk | z t k-1 = zk-1 ). (7.64)
Indeed, z t is not a diusion process, in the sense that its future does not depend only on its present state (unlike diusions), but on the present state of two processes. This was noticed in chapter 4 when we computed its transition probabilities. The correct formulation for the likelihood of z is:

L(z) = p(z t 0 = z0 ) n k=1 p(z t k = zk | x t k-1 = xk-1 , γ t k-1 = γk-1 ). (7.65) 
Observing x t , or estimating it, is again necessary. It is then possible to set a threshold on -L(z) and decide that there is an anomaly if the threshold is exceeded. A drawback of this method is that x t must be estimated and that it seems for now that the estimation of x t in presence of a target can be done only if the target reectivity is an additive (smoothly time-dependent) term. An advantage is that besides requiring a smooth target reectivity, no other assumption are made on the target.

In practice, we would propose to use a sliding window ∆ and compute the likelihood of {(x t k , R t k , I t k ), ∀k ∈ ∆} for all positions of the window.

Conclusion

In comparison with the rest of the thesis, this closing chapter, divided into two parts, was more prospective and open to new contributions.

In the rst part (sections 7.1 and 7.2), we addressed the non-observability of x t . In section 7.1, we use the dierence in timescales between x t and γ t to derive heuristic estimators for x t based on squared increments of the complex reectivity Ψ t (equations (7.11) and (7.24)).

Though the calculation is detailed for the case without a target, we assert that the estimator is also valid for slowly varying targets with additive reectivity (see section 7.4). Synthetizing the previously derived estimators for A, B, α (under the hypothesis that x t is observed), and the estimator for x t based on the (observable) complex reectivity Ψ t , we proposed in section 7.2 a sequence of estimators which can be used as such on real data. Based on numerical experiments, we see that the estimation of A requires that we subsample the estimated x t trajectory. We recognize that our work on the topic is incomplete and should be continued further using information theory notions to adequatly appraise the proposed sequence of estimators, and in particular its convergence as it is relooped.

In the second part, we introduced bayesian estimation of the clutter parameters (section 7.3) and target detection (section 7.4). Bayesian estimation of A, α and B is straightforward because we already have computed the likelihood functions of x t and γ t in chapter 5. The relevance of bayesian estimation still has to be proved numerically by MCMC simulations.

We presented two methods for target detection, one based on spot volatility and one based on likelihood (with two dierent approaches, parameter estimation and likelihood analysis). The method based on spot volatility can be easily applied. However, spot volatility estimation has slower convergence rate than integrated volatility estimation. Numerical simulations could assess whether it is viable with a realistic timestep (e.g. 10 -3 s). If it is not, the method based on likelihood should be preferred.

Conclusion

Due to the complex dynamic behavior of its surface, radar remote sensing of the sea results in noise-like signals for its reectivity, termed clutter. A rst gap in the previous research on radar remote sensing of the sea surface was that Synthetic Aperture Radar (SAR) imaging does not currently take into account the dynamics of the sea in its time-integration procedure.

A second gap can be stated as follows: a static statistical model for the clutter, namely the K distribution, has existed for decades. The K distribution is both derived theoretically from the random walk model, and veried empirically. However, how can a static model capture the essence of a dynamic physical phenomenon? This question can stand by itself from a purely descriptive point of view, but it is also signicant from an utilitary point of view. When it comes to signal processing of sea clutter, would not it be better to have a dynamic rather than a static subtending model? A dynamic extension to the K distribution/random walk model has been developped in the early 2000s by T. R. Field. The idea of this thesis was to approach the two prementionned gaps at the light of Field's model. Notwithstanding the signicant step forward that it is, we think that Field's model as reported in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] needed serious clarication due to a notable lack of details and to notational inconsistencies. Therefore, our rst contribution has been to clear up Field's model (chapter 3), though some dark zones still remain (for me!) within the proofs. It was possible to present it concisely as a system of three stochastic dierential equations depending on three parameters A, B and α.

Our contribution to lling the rst gap was reported in chapter 4. Solving Fokker-Planck equations, we expressed forward and backward transition probabilities for the sea clutter and proposed to use them as a tool for synchronizing data acquired from dierent positions at dierent times. We imply that this could be used in the SAR imaging time-integration. Numerical simulations were used to illustrate the spreading of transition probabilities (increasing uncertainty) as the time interval increases.

We addressed the question of estimating the parameters A, B and α. At rst, we proposed to use maximum likelihood (chapter 5) or volatility-based estimation (appendix A.1) for A and B, and ergodicity/moment-based estimators for α (chapter 5). Afterwards, we highlighted that a key hypothesis used in the rst step, namely that the radar cross section x t is observed, was not true in practice. We derived estimators for x t , as well as an estimator for B, based on observable-only data in chapter 7. They enabled us to untangle the circularities and to nally propose a sequence of estimators for A, B, α, x t and γ t (chapter 7). Numerical simulations were systematically used to assess the performance of the estimators.

We derived stochastic dierential equations for the target plus clutter complex reectivity in a cartesian coordinate system (while Field had derived the corresponding SDE in polar coordinates). In either of the two target models under consideration, Homodyned K and Generalized K scattering, the target is parameterized by a complex constant Ψ c . We proposed estimators for Ψ c based on maximum-likelihood (chapter 6) and volatility (appendix A.2).

Numerical simulations were again used to assess the performance of the estimators. These results were published in peer-reviewed journals in the form of three dierent papers: [START_REF] Roussel | Forward and backward probabilistic inference of the sea clutter[END_REF], [START_REF] Roussel | Estimation of the parameters of stochastic dierential equations for sea clutter[END_REF] and [START_REF] Roussel | Detection of a coherent scatterer in a random medium: an approach based on transition probabilities[END_REF] (this last one is still being peer-reviewed). They were also presented in several conferences. Field's model was proposed in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF] for electromagnetic scattering by random media. As a particular case, we chose to use it to describe the scattering of radar waves by the sea surface. On one hand, Field's model has, by construction, greater generality than that.

This means that all the results we obtained in this thesis are potentially usable in contexts other than radar remote sensing of the sea. It may be used for phase screens [START_REF] Jakeman | Modeling Fluctuations in Scattered Waves[END_REF], [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF],

for wireless channel modelling [START_REF] Feng | Stochastic Dierential Equation Theory Applied to Wireless Channels[END_REF], or even maybe for sound waves scattering by turbulent ows for submarine applications. On the other hand, when evaluated as a model for sea clutter, it may be noticed that Field's model lacks specicity. On one hand, the phase model for individual scatterers (Gaussian transitions), as well as the assumption that dierent scatterers are independent, is questionable [29]. If the phase model is questioned, so is the speckle γ t . On the other hand, the population model which led to the radar cross section x t is also questionable. For high-resolution radars, the assumption that there are innitely many scatterers breaks down. Also, and possibly related to the remarks on the phase model, cyclic motions of the sea surface, like the swell, are not accounted for in Field's model. They should involve oscillations in the autocorrelation function of x t instead of a purely decreasing exponential.

At the light of the results reported in this thesis, and of the strenghs and weaknesses of the foundation it was built on, we can now propose a number of directions for future work.

First, to rebound on the preceding remarks on Field's model, it is possible to expand in either of the two following directions: new applications and modied model. The rst one consists in nding applications in which Field's model and the results of this thesis could play a role in solving unresolved problems. The second one consists in modifying Field's model to make it more adapted to the specic case of sea clutter. We think that, especially for high resolution radars, it might become necessary to remove the innite population of scatterers hypothesis. However, this would lead to a nite random walk and to discontinuities in the complex reectivity. The framework of stochastic dierential equations driven by brownian motions would collapse and it would be necessary to introduce new tools such as jumpdiusion models (see [START_REF] Tankov | Jump-diusion models: a practitioner's guide[END_REF] for a primer). It would also be relevant to include cyclostationarity in x t , to model the cyclicity of sea waves. This could be done combining the BDI population model used in [START_REF] Field | Electromagnetic Scattering from Random Media[END_REF], and the sum of cosines used in [START_REF] Gini | Texture Modeling and Validation Using Recorderd High Resolution Sea Clutter data[END_REF]. It might also be compelling to take o the independent scatterers hypothesis and introduce more structure, such as a common velocity component, swell etc. Modifying Field's model would make the detailed results of this thesis obsolete, but the outline would remain. For example, if cyclicity is introduced in x t , we could investigate if, and how, one can dene transition probabilities.

Second, the rst gap cited above is still largely open. Though we contributed to reducing it, there is a lot of eort to be made to include a dynamic stochastic model in SAR imaging.

Focusing on the heart of SAR algorithms shall reveal their aw and where there is room for a dynamic model (Field's model, or a more adapted one).

Based on the numerical experiments, we observed that for A, the two estimators (volatilitybased and ML) have about the same standard deviation (both for ∆t = 10 -3 s and ∆t = 10 -4 s). They are signicantly biased but in opposite directions for ∆t = 10 -3 s, and the bias is almost zero for ∆t = 10 -4 s. For B, the volatility-based estimator is slightly less biased, but has a larger standard deviation.

As explained in chapter 5, a relevant way to compare the two estimators is to compute their root mean square error (RMSE) after debiasing. We remind the debiasing procedure: 

A.2 Volatility-based estimation of target parameters

In chapter 6 section 6.1, we derived the SDEs for the multidimensional process Y t := x t R t I t , where R t = Re(Ψ t ) and I t = Im(Ψ t ), and where: for GK scattering. The SDEs are respectively equations (6.12) and (6.17) for HK and GK scattering. In section 6.2, we proposed ML estimators for Ψ (R) c

Ψ t = Ψ ( 
and Ψ (I) c using Euler-Maruyama's scheme to approximate the transition probabilities of x t R t I t by Gaussian distributions. After long calculations mainly developed in appendices D.1.2 and D.2.2, we obtained equations (6.36) and (6.50) for the estimators in HK and GK scattering respectively.

In this section, we derive volatility-based estimators for Ψ (R) c

and Ψ

(I) c for HK and GK scattering. We carry out numerical simulations to assess these new estimators and compare them to the ML estimators of chapter 6.

A.2.1 Estimating Ψ c in HK scattering

In the case of HK scattering, we have seen that the squared-volatility of the process Y t is (equation (6.29)): (A. 16)

σ t =     2Axt α A(Rt-Ψ (R)
Assume now that we know A and α and that we observe Y t k (and thus R t k , I t k , x t k ) for 0 = t 0 < t 1 < • • • < t n = t, t k = k∆t, ∆t = t/n. This allows us to form the estimator

RV n t = n k=1 Y t k -Y t k-1 Y t k -Y t k-1 .
(A.17)

RV is the realized volatility and it is an estimator of the integrated volatility IV = t 0 σ r dr.

In particular, RV For GK scattering, the procedure is about the same. We have seen that in that case the squared-volatility of the process Y t is (equation (6.42)): and ML estimators. Based on gure 6.3 of chapter 6 and gure A.3 here, the ergodicitybased estimator has negligible bias but a standard deviation much higher than the ML and volatility-based estimators. The volatility-based estimator has negligible bias. Its standard deviation is greater than the ML estimator, but as we said, much lower than the ergodicitybased estimator. In terms of orders of magnitude, the ML and volatility-based estimators have similar performances in GK scattering. Contrary to HK scattering, here Ψ c enters the volatility because it is multiplied by x t , which explains the results. An advantage of the volatility-based estimator, besides its simplicity of use, is that it does not generate outliers like the ML estimator (see chapter 6). Those outliers, even though most of them have been ltered out, explain why the standard deviation of the ML estimator looks spiky in gure A.3. [(x i -xi-1 ) 2 + A 2 ∆t 2 (x i-1 -1) 2

σ t =     2Axt α A(Rt+Ψ ( 
+ 2A∆t(x i -xi-1 )(x i-1 -1)].

(C.6)

After dierentiation, the third term in the sum disappears (it does not depend on A) and we get:

∂ ∂A ln L(A) = - n 2 1 A + n i=1 α(x i -xi-1 ) 2 4x i-1 ∆t 1 A 2 - n i=1
α(x i-1 -1) 2 ∆t 4x i-1 .

(C.7)

The optimization condition is:

∂ ∂A ln L(A) = 0, A 2 ∂ ∂A ln L(A) = 0, (C.8)
which states that:

-

n i=1 α(x i-1 -1) 2 ∆t 4x i-1 A 2 - n 2 A + n i=1
α(x i -xi-1 ) 2 4x i-1 ∆t = 0.

(C.9)

We have proven the rst line of equation (5.33).

Let us now prove the second line of equation (5.33). For B, the likelihood function is: We now dierentiate with respect to B:

L(B) = p γ (R) t 0 = γ(R) 0 n i=1 p γ (R) t i = γ(R) i | γ (R) t i-1 = γ(R) i-
t i = γ(R) i | γ (R) t i-1 = γ(R) i-1 = 1 √ πB∆t e -( γ(R) i -γ (R) i-1 (1-B∆t/2) ) 2 
∂ ∂B ln L(B) = - n 2 1 B - ∂ ∂B n i=1 γ(R) i - γ(R) i-1 (1 -B∆t/2) 2 B∆t = - n 2 1 B - ∂ ∂B n i=1 γ(R) 2 i -2γ (R) i γ(R) i-1 (1 -B∆t/2) + γ(R) 2 i-1 (1 -B∆t/2) 2 B∆t = - n 2 1 B - ∂ ∂B n i=1 γ(R) 2 i -2γ (R) i γ(R) i-1 + B∆tγ (R) i γ(R) i-1 + γ(R) 2 i-1 1 -B∆t + B 2 ∆t 2 4 B∆t = - n 2 1 B - ∂ ∂B n i=1    γ(R) i - γ(R) i-1 2 B∆t + γ(R) i-1 (γ (R) i - γ(R) i-1 ) + γ(R) 2 i-1 4 B∆t    = - n 2 1 B + n i=1 γ(R) i - γ(R) i-1 2 ∆t 1 B 2 - n i=1 γ(R) 2 i-1 ∆t 4 (C.14)
The optimization condition is: We want to prove the rst line of equation (5.41), i.e. show how Nowman's approximation in ML estimation leads to a third-order polynomial. We remind that the SDE for x t is:

dx t = A(1 -x t )dt + 2 A α x t 1 2 dW (x)
t .

(C.17)

The generic SDE with linear drift is:

dX t = κ(µ -X(t))dt + σ(X t )dW t .

(C.18)

The SDE of x t is of this form with µ = 1, κ = A and σ = 2 A α x t x t i = x t i-1 e -A∆t + 1 -e -A∆t + N 0, (1 -e -2A∆t ) 2A ⇔ x t i = 1 + e -A∆t (x t i-1 -1) + N 0, x t i-1 (1 -e -2A∆t ) α .

(C. [START_REF] Bamler | SAR Data Acquisition and Image Formation[END_REF] The corresponding transition probabilities are:

p(x t i = xi | x t i-1 = xi-1 ) = √ α 2πx i-1 (1 -e -2A∆t
) e (C.28)

We have now: (C.31)

∂ ∂A u v = u v -v u v 2 = 2∆t xi -1 + e -A∆t
We can now simplify this equation by dividing both sides by ∆t and by setting X = e -A∆t .

We get: 0 = nX 2 (X 2 -1)

(C.32) + n i=1 α2∆t 2x i-1 (x i -1 + X(1 -xi-1 )) X(x i-1 -1)(X 2 -1) + X 2 (x i -1 + X(1 -xi-1 )) 2 .
We divide both sides by X since it can be factorized and develop the term under the sum: α(x i-1 -1) xi-1 X 2 (x i -1) -(x i -1) -X 3 (x i-1 -1) + X(x i-1 -1)

(C.33) + α xi-1 X(x i -1) 2 -2X 2 (x i -1)(x i-1 -1) + X 3 (x i-1 -1) 2 , (C.34)
which is equal to: α xi-1 (X 2 (x i -1)(x i-1 -1) -(x i -1)(x i-1 -1) -X 3 (x i-1 -1) 2 + X(x i-1 -1) 2

+X(x i -1) 2 -2X 2 (x i -1)(x i-1 -1) + X 3 (x i-1 -1) 2 ), which after simplication of the X 3 terms yields:

α(x i -1)(x i-1 -1) xi-1 X 2 + α(x i-1 -1) 2 + α(x i -1) 2 xi-1 X -α(x i -1)(x i-1 -1) xi-1 . We now prove the second line of equation (5.41). We remind that the SDE for γ According to equation (5.39), we have: γ (R)

t i = γ (R)
t i-1 e -B∆t/2 + N 0,

1 -e -B∆t 2 .

(C.39)

We obtain the following transition probability:

p γ (R) i-1 γi (R) -γ(R) i-1 e -B∆t/2 e -B∆t/2 e -B∆t -1 + ∆te -B∆t γi (R) -γ(R) i-1 e -B∆t/2

t i = γi (R) | γ (R) t i-1 = γ(R) i-1 = 1 π(1 -e -B∆t
2 (e -B∆t -1) 2 .

We now set x = e -B∆t/2 and obtain:

∂ ∂B ln L(B) = n 2 ∆tx 2 (x 2 -1) (x 2 -1) 2 + n i=1 ∆tγ (R) i-1 γi (R) - γ(R) i-1 x x (x 2 -1) + ∆tx 2 γi (R) - γ(R) i-1 x 2 (x 2 -1) 2 .
(C.50)

The optimality condition is:

∂ ∂B ln L(B) = 0 (C.51) ⇔ n 2 ∆tx 2 (x 2 -1) (x 2 -1) 2 + n i=1 ∆tγ (R) i-1 γi (R) - γ(R) i-1 x x (x 2 -1) + ∆tx 2 γi (R) - γ(R) i-1 x 2 (x 2 -1) 2 = 0 ⇔ n 2 ∆tx 2 (x 2 -1) + n i=1 ∆tγ (R) i-1 γi (R) - γ(R) i-1 x x x 2 -1 + ∆tx 2 γi (R) - γ(R) i-1 x 2 = 0 ⇔ n 2 ∆t(x 3 -x) + n i=1 ∆tγ (R) i-1 γi (R) - γ(R) i-1 x x 2 -1 + ∆tx γi (R) - γ(R) i-1 x 2 = 0 205
We now develop the term under the sum:

∆tγ (R) i-1 γi (R) - γ(R) i-1 x x 2 -1 + ∆tx γi (R) - γ(R) i-1 x 2 (C.52) = ∆tγ (R) i-1 γi (R) x 2 -γi (R) - γ(R) i-1 x 3 + γ(R) i-1 x + ∆tx γi (R) 2 -2 γi (R) γ(R) i-1 x + γ(R) 2 i-1 x 2 = ∆tγ (R) i-1 γ(R) i x 2 -∆tγ (R) i-1 γ(R) i -∆tγ (R) 2 i-1 x 3 + ∆tγ (R) 2 i-1 x + ∆tγ (R) 2 i x -2∆tγ (R) i-1 γ(R) i x 2 + ∆tγ (R) 2 i-1 x 3 = -∆tγ (R) 2 i-1 + ∆tγ (R) 2 i-1 x 3 + ∆tγ (R) i-1 γ(R) i -2∆tγ (R) i-1 γ(R) i x 2 + ∆tγ (R) 2 i-1 + ∆tγ (R) 2 i x - ∆tγ (R) i-1 γ(R) i = -∆tγ (R) i-1 γ(R) i x 2 + ∆t γ(R) 2 i + γ(R) 2 i-1 -∆tγ (R) i-1 γ(R) i .
If we divide by ∆t, the optimality condition becomes:

∂ ∂B ln L(B) = 0 ⇔ n 2 x 3 - n 2 x - n i=1 γ(R) i-1 γ(R) i x 2 + n i=1 γ(R) 2 i + γ(R) 2 i-1 x - n i=1 γ(R) i-1 γ(R) i = 0.
Finally, we get the polynomial: In chapter 6, we used Euler-Maruyama scheme to approximate the transition probabilities over ∆t of the process x t R t I t . We obtained equation (6.27) in the case of HK scatter- ing, which states that the approximate transition probability p (k) Ψc is a multivariate Gaussian distribution with covariance matrix σ (HK) Ψc ∆t. It is necessary to invert this matrix to compute the transition probabilities. We remind that for any invertible matrix A, it inverse is: The term inside the exponential is therefore: with Φ k given by equation (D. [START_REF] Bamler | SAR Data Acquisition and Image Formation[END_REF]). We notice rst that w 1 does not depend on Ψ (R) c

n 2 x 3 - n i=1 γ(R) i-1 γ(R) i x 2 + - n 2 + n i=1 γ(R) 2 i + γ(R) 2 i-1 x - n i=1 γ(R)
A -1 = 1 det A com(A) ,
c 11 =    A 2α R t -Ψ (R) c 2 x t + Bx t 2       A 2α I t -Ψ (I) c 2 x t + Bx t 2    - A 2α 2 R t -Ψ (R) c 2 I t -Ψ (I) c 2 x 2 t = A 2α R t -Ψ ( 
c 33 = 2Ax t α    A 2α R t -Ψ (R) c 2 x t + Bx t 2    - A 2 R t -Ψ (R) c 2 α 2 = A 2 α 2 R t -Ψ (R) c 2 + ABx 2 t α - A 2 α 2 R t -Ψ (R)
c 12 = - A(R t -Ψ (R) c ) α A 2α (I t -Ψ (I) c ) 2 x t + Bx t 2 - A(I t -Ψ (I) c ) α A 2α (R t -Ψ (R) c )(I t -Ψ (I) c ) x t = - AB 2α R t -Ψ (R)
- 1 2 w (k) σ (HK) Ψc ∆t -1 w (k) = -w 2 1 (R t -Ψ (R) c ) 2 + (I t -Ψ (I) c ) 2 4B∆tx 3 t + α 4A∆tx t + - (w 2 2 + w 2 3 ) B∆tx t + w 1 w 2 R t -Ψ (R) c
(nor Ψ (I) c ). Second, we have:

w 2 2 = Rk -Rk-1 + A + B 2 - A(1 -1 2α ) 2x k-1 Rk-1 -Ψ (R) c 2 = Rk -Rk-1 + γ k Rk-1 -Ψ (R) c 2 , (D.26) 
where we have set:

γ k = A + B 2 - A(1 -1 2α ) 2x k-1
.

(D.27)

Similarly, we have: 

∂Φ k Ψ (R) c = w 2 1 2 Rk-1 -Ψ (R) c 4B∆tx 3 k-1 - 1 B∆tx k-1 ∂w 2 2 ∂Ψ (R) c + ∂w 2 3 ∂Ψ (R) c + w 1 ∂ ∂Ψ (R) c   Rk -Rk-1 + γ k Rk-1 -Ψ (R) c Rk-1 -Ψ (R) c B∆tx 2 k-1   ⇔ ∂Φ k Ψ (R) c = w 2 1 2B∆tx 3 k-1 Rk-1 -Ψ (R) c - 1 B∆tx k-1 -2γ k ( Rk -Rk-1 ) + 2γ 2 k Ψ (R) c -Rk-1 + w 1 B∆tx 2 k-1 -( Rk -Rk-1 ) + 2γ k Ψ (R) c -Rk-1 ⇔ ∂Φ k Ψ (R) c = Ψ(R) c, M L -Rk-1 B∆tx k-1 - w 2 k 2x 2 k-1 -2γ 2 k + 2γ k w k xk-1 + Rk -Rk-1 B∆tx k-1 2γ k - w k xk-1 . (D.28)
In the last equation, we denoted w k = w 1 . We have: B∆tx k-1 - 

w 2 k 2x 2 k-1 -2γ 2 k + 2γ k w k xk-1 -n k=1 Rk -Rk-1 B∆tx k-1 2γ k -w k xk-1 n k=1 1 B∆tx k-1 - w 2 k 2x 2 k-1 -2γ 2 k + 2γ k w k xk-1
c 11 =    A 2α R t + Ψ (R

D.2.2 Proof of Ψ(R)

c, M L for GK scattering

In this section, we prove equation (6.50) for Ψ(R) c, M L , the ML estimator of Ψ c for GK scattering. We remind from chapter 6 that the approximate transition probabilities for small ∆t for GK are: The term inside the exponential is therefore: 

- 1 2 w (k) σ (GK) Ψc ∆t -1 w (k) = -
c ηx k-1 -A+B 2 + A 2x k-1 1 -1 2α ∆t     .
We have, relying on the notations of chapter 6, that the log-likelihood of a time series 

∂Φ k Ψ (R) c = -w 2 1 2ηx k-1 Rk-1 + Ψ (R) c ηx k-1 4B∆tx 3 k-1 - 1 B∆tx k-1 ∂w 2 2 ∂Ψ (R) c + w 1 B∆tx 2 k-1 ∂ ∂Ψ (R) c ( Rk-1 + Ψ (R) c ηx k-1 )w 2 .
If we set again: 

γ k = A + B 2 - A ( 

  où x t = lim N →+∞ Nt N est la Surface Equivalente Radar (SER) de la surface de la mer, et où γ t = γ speckle. La SER est proportionnelle au nombre de diuseurs contribuant au clutter et évolue lentement (on parle parfois de texture). Le speckle (parfois appelé chatoiement) est le clutter en l'absence de uctuations de population, et correspond à la décohérence de phase des diuseurs liée à leurs mouvements.Il évolue beaucoup plus vite.

  browniens indépendants. Par rapport à[4], nous avons préféré écrire deux EDS pour les parties réelle et imaginaire du speckle, γ qu'une EDS complexe. Ces deux processus aléatoires sont solutions d'EDS qui ont la même forme, mais qui sont supposées indépendantes par indépendance des mouvements browniens.

Figure 2 t

 2 Figure 2 Capteur mobile mesurant le clutter de mer X (u) t aux positions u 1 , u 2 , . . . , u n et temps t 1 , t 2 , . . . , t n . X(u) t = X (u) t (ω) est une réalisation du processus aléatoire.

Figure 3

 3 Figure 3 Comparison entre les probabilités de transition analytique de γ (R) t (équation (14)), et les probabilités de transitions numériques obtenues grâce au schéma d'Euler-Maruyama. 10000 trajectoires ont été simulées avec B = 100 Hz et y = 2.

Figure 4

 4 Figure 4 Biais (haut) et écart type (bas) des estimateurs de A en fonction du vrai A, calculés à partir de 1000 trajectoires de durée 1 s chacune et échantillonnées à 1000 Hz.

Figure 5

 5 Figure 5 Comparaison entre les estimateurs par maximum de vraisemblance et basés sur l'hypothèse d'ergodicité pour le cas HK (haut) et GK (bas).

Figure 6

 6 Figure 6 Exemple de trajectoire de x t et de ses trois estimations xt , xt et xt .

Figure 7

 7 Figure 7 Séquence d'estimateurs pour estimer A, B, α, x t et γ t .

  de vraisemblance. Nous avons synthétisé ces travaux sous la forme d'un article soumis à

Figure 1 .

 1 Figure 1.1: H (right) and V (left) polarized electromagnetic waves. The source is at the origin of the frame and the wave propagates in the k direction. Any elliptically polarized EM waves can be decomposed into a sum of an H and a V polarized EM wave.

Figure 1 . 2 :

 12 Figure 1.2: Illustration of the geometric spreading of the intensity of spherical waves.

  Many electromagnetic models are available for relating the transmitted signal (upper left red box) to the received one. In this thesis, we are interested in one of them: Field's model, which is presented later in chapter 3. It constitutes our reference model all along our work.It can be understood as a black box relating directly the transmitted signal to the received one, with only a few parameters. By analogy, Field's model has three parameters for the lower left green box (sea parameters), which will be denoted A, B and α. It has 2 parameters for the lower right green box of the ship characteristics (see chapter 6): Ψ any parameters for the atmosphere (upper right green box).
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 14 Figure 1.4: Detailed description of the radar acquisition chain. Extracted from [16].

Figure 1 . 6 :

 16 Figure 1.6: Comparison between the sinus (up) and chirp (down) waveforms.

Figure 1 . 7 :

 17 Figure 1.7: Representation of the frames used to express the incident and scattered EM

Figure 1 . 8 :

 18 Figure 1.8: Illustration of the Doppler eect on a pulse. The emitted pulse is in red and the received one in blue.

Figure 1 . 9 :

 19 Figure 1.9: Geometry of a SAR acquisition.

Figure 1 . 10 :

 110 Figure 1.10: SAR image of the Strait of Gibraltar (ESA).

Figure 1 .

 1 11 and 1.12 represent time series of the complex reectivity recorded by Ifremer C-band radar (we are grateful to Louis Marié, Bertrand Chapron and Frédéric Nougier for the data). The radar emits coherent chirps at carrier frequency f 0 = 5.3 GHz, and the PRF is 200 Hz. 4 polarizations are recorded simultaneously by the radar: HH, VV, HV, VH (see section 1.1.2). The rst letter is for the emission polarization, and the second for reception. Figure 1.11 represents the real and imaginary parts of the HH (normalized) reectivity for a duration of 3 seconds.

Figure 1 . 11 :

 111 Figure 1.11: Time series of the complex reectivity of the sea surface recorded by Ifremer C-band radar in the HH channel.

Figure 1 . 12 :

 112 Figure 1.12: Time series of the modulus of the complex reectivity of the sea surface recorded by Ifremer C-band radar in four dierent channels: HH, VV, HV, VH.

Figure 1 . 13 :

 113 Figure 1.13: Scenic view of the sea surface in New Zealand.
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 21 Figure 2.1: 1000 trajectories of a brownian motion generated by Euler-Maruyama's scheme with ∆t = 10 -3 s over the time interval [0, 1] s.

Figure 2 . 2 :

 22 Figure 2.2: First transitions of a diusion process on the time interval [0, 0.006] s with timestep 0.001 s.
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 3132 Figure 3.1: Possible transitions of the population N over a time interval ∆t.

  .10) with α = ν λ and p = µ-λ µ . If we set N = ν µ-λ, we can show that:

(3. 23 ) 2 [

 232 What happens to equation (3.23) when N → +∞? To make N go to innity, we keep ν xed and let µ → λ (or λ → µ). Equation (3.23) tends to: ∂ ∂x λxP (x, t)].

(3. 24 )

 24 All the terms for n ≥ 3 tend to zero as N → +∞. Finally, as N → +∞, x t = lim N →+∞ Nt N has the distribution p(x t = x) solution of the partial dierential equation:

(3. 25 )

 25 Equation(3.25) is the Fokker-Planck equation for the stochastic process x t . If we set α = ν/λ and A = ν, it becomes:

3. 1 . 3

 13 Discussion on the population model Two main hypotheses subtend the results of section 3.1. The rst assumption comes back to the random walk model and we think that it is important to remind it. There is a population model (whatever the model) because we start from the random walk, which postulates a family of discrete scatterers. This is an approximation of the real EM waves/sea surface interaction which should be justied. Under what circumstances can equation (3.1) for the random walk model, be a good approximation to a more rigorous formulation like the Stratton-Chu equations (1.65)? What would be the discrete scatterers?

. 35 )

 35 I is the indicator function and N m = ( λ 0 λ 1 ) 1/s . If we simplify the model by removing the indicator function, it becomes:

  t . N t or more precisely x t = lim N →+∞ Nt N , was treated and led to the FPE (3.26) and the SDE (3.29). Field considers that a (n) t

  time. In the usual random walk model, the dynamics of the phases are not specied (section 1.3). The speckle is the reectivity for a constant population of dynamic scatterers, as illustrated in gure 3.3.

Figure 3 . 3 :

 33 Figure 3.3: Motions of a constant population of scatterers between t and t+∆t corresponding to phase changes ∆φ (n) t .

  t = -ω 0 dt.

( 3 . 63 )a

 363 Equation (3.63) is for a linearly moving scatterer. If we add a brownian component to the phase dynamics via the SDE (3.41), we obtain: dφ (j) t = -ω 0 dt + B 1/2 dW We can repeat the calculations of section 3.2.1 very easily and obtain a SDE for γ t with the new phase model (3.64). Let ε k e iφ (k)

Figure 4 .

 4 Figure 4.1 represents the integration of several measures by a satellite (oddly similar to Sputnik 1 satellite, the rst articial satellite launched by the soviets in 1957). To every point of view (i.e. position) corresponds a sea clutter random process with a stationary distribution (under constant weather conditions). This process can be written X (u) t

Figure 4 . 1 :

 41 Figure 4.1: Moving sensor measuring the sea clutter X (u) t at positions u 1 , u 2 , . . . , u n and times t 1 , t 2 , . . . , t n . X(u) t = X (u) t (ω) is one realization of the process.

  the real-part of the speckle at time t = 0, whose distribution is given by equation (4.10). Let y ∈ R and let assume that we measured γ(R) 0 = y. Taking this present measure into account to predict how the speckle is going to evolve in the future is equivalent to computing the conditioned probability p γ

Figure 4 . 2 :

 42 Figure 4.2: Comparison between analytical distributions of γ (R) t , γ (I) t derived from the resolution of the FPE (equation (4.12)), and numerical distributions from the resolutions of the SDE using the Euler-Maruyama method. 10000 trajectories are computed with B = 100 Hz and y = 2.

(4. 25 )

 25 Equation (4.25) can be written:xz (x) + (b + 1 -x)z (x) + az(x) = 0,(4.26) with b = α-1 and a = λ A . Equation (4.26) can equivalently be seen as a Laguerre dierential equation or a conuent hypergeometric dierential equation. Its two independent solutions are (p 1481 [63]) the generalized Laguerre function L b a (x) = Γ(a+b+1) Γ(a+1)Γ(b+1) 1 F 1 (-a, b + 1, x) and the conuent hypergeometric function of the second kind U (-a, b + 1, x) (a.k.a Tricomi's function).

1

 1 

  Laguerre polynomial. In that case, d 1 L α-1 λ A (x)e -x decays exponentially for x → +∞. Under the constraint of exponential decay, we have narrowed down the range of possible λ to: λ ∈ {0, A, 2A, 3A...} = AN.

(4. 30 )

 30 The general solution of (4.23) reduces to X(x) = dL α-1 λ A (x)e -x , where d ∈ R. The general solution of (4.16) reads: p(x, t) = +∞ n=0

(4. 34 )

 34 This is equation(8.55) of[START_REF] Field | Electromagnetic Scattering from Random Media[END_REF], which was given without an explicit proof. Applying the inverse transform x t → xt α , we nally obtain the transient distributions of the RCS x t :p(x t = x|x 0 = y) = +∞ n=0 αL α-1 n (αy)n! Γ(n + α)e -Ant e -αx (αx) α-1 L α-1 n (αx).

Figure 4 . 3 :

 43 Figure 4.3: Comparison between analytical distributions of x t derived from the resolution of the FPE, and numerical distributions derived from the resolutions of the SDE using the Milstein method. 10000 trajectories are computed with A = 1 Hz, α = 1 and y = 1.

Figure 4 . 4 : 1 .

 441 Figure 4.4: Comparison between analytical distributions of x t expressed with the Bessel function (equation (4.36)), and numerical distributions derived from the resolutions of the SDE using the Milstein method. 10000 trajectories are computed with A = 1 Hz, α = 1 and y = 1.

==

  . ) and p(x t = . |x 0 = . ). From x 1/2 t = g(x t ) and from equation (4.35), we can compute the conditioned probability p(x 1/2 t = x|x 0 = y). Indeed, we remind that transformations and conditioning are commutative. As a result, the conditioned probability x|x 0 = y) is the probability of the transformation by the function g of a random variable of conditioned probability p(x t = x|x 0 = y):

= z is replaced by γ

  

Figure 4 .

 4 5 shows the very accurate agreement between the analytical and numerical distributions. We solve numerically the SDE for x t , γ (R) t with Dirac initial conditions and then compute R t with the relation

Figure 4 . 5 :

 45 Figure 4.5: Comparison between analytical distributions of R t or I t (4.42) and numerical distributions. 10000 trajectories are computed with A = 1 Hz, α = 1, B = 100 Hz, x 0 = 1 and γ (R) 0 = 1.

Sincee

  -x/u u = p(z ∞ = x|x ∞ = u) ([141] p 103) and α(αu) α-1 e -αu Γ(α)

(4. 48 )

 48 We obtained equation(4.48) by application of transformations to conditioned random variables, which is equivalent to conditioning the transformed random variables, according to relation (4.5).We will not provide the full details since we want to maintain the focus on the results. The proof is similar to that of the real (and imaginary) reectivity in appendix B. Equation (4.48) yields the distribution of z t conditioned by the measure x 0 = y, γ

Figure 4 .

 4 Figure 4.6 represents numerical trajectories of the intensity. We simulated trajectories of x t using the Miltein method and trajectories of γ (R) t and γ

I) 0 = 1 ,

 01 i.e. z 0 = 2. There is a very good agreement between formula (4.49) and numerical distributions. The distribution is almost centered around x = 2 at t = 0.001 s and then progressively converges toward the asymptotic K distribution (formula (4.44)). As for x t , I t , Q t , oscillations appear for short times since the sum in equation (4.35) must be truncated approximately at n = 150.

Figure 4 . 6 :

 46 Figure 4.6: Comparison between analytical distributions of z t (4.49) and numerical distributions. 10000 trajectories are computed with A = 1 Hz, α = 1, B = 100 Hz, x 0 = 1, γ (R) 0 = 1, γ (I) 0 = 1.

Figure 4 . 7 :

 47 Figure 4.7: Comparison between analytical distributions of [γ (R) t γ (I) t ] and numerical distributions. 1000 trajectories are computed with B = 100 Hz, γ (R) 0 = 0, γ (I) 0 = 0. Left : numerical distributions. Right : analytical distributions. Top to bottom: t = 0.001, 0.005, 0.02 s.

Figure 4 . 8 :

 48 Figure 4.8: Representation of 100 trajectories of [γ (R) t γ (I) t ] from t = 0 s to t = 0.02 s. B = 100 Hz and γ (R) 0 = 0, γ (I) 0 = 0.

(4. 73 )Formula ( 4 . 73 )

 73473 along with formula (4.49) enables backward probabilistic inferences of the intensity.

Figure 4 . 9 :

 49 Figure 4.9: Forward and backward inferences of x t to the common time t = 0.25 s.

4. 4 . 3

 43 Remarks on the Kolmogorov-Smirnov tests In sections 4.2.1 and 4.2.2, we performed a Kolmogorov-Smirnov test (KS-test) to check the adequation between the analytical and numerical distributions for the transition probabilities of γ

  are solutions to the stochastic dierential equations (SDE):

A = 1 A = 1 Figure 5 . 1 :Figure 5 . 2 :Figure 5 . 3 :

 11515253 Figure 5.1: Estimation bias (up) and standard deviation (down) of αx as a function of true α based on 1000 trajectories for T = 300 s.

. 41 ) 2 ( 5

 4125 which is Gaussian with expectation m(∆t) = ye -B∆t/

  -A∆t and δ = e -A∆t and where I α-1 is the modied Bessel function of the rst kind of order α -1.

Figure 5 .

 5 Figure 5.4 represents the estimation bias and standard deviation in this conguration, as a function of the true value of A used to generate the trajectories. The Euler and the Nowman approximations have very similar results, with no improvement when using Nowman's approximation. On the contrary, a slight increase in bias is observed compared to Euler's approximation. For both of them, there is an exponential increase in the bias and standard deviation, which persist if we compute the relative bias and standard deviation (i.e. b(A)/A and σ(A)/A). However, using the exact transition probabilities completely annihilates the bias. Even though the standard deviation still increases exponentially, this is only due to the log scale. The relative variance is constant.

Figure 5 . 4 :

 54 Figure 5.4: Estimation bias (up) and standard deviation (down) of A as a function of true A based on 1000 trajectories of duration 1 s each. 3 methods are compared: the Euler approximation, the Nowman approximation, and the exact transition probability.

Figure 5 .

 5 Figure 5.5 represents the estimation bias and standard deviations in this conguration, as a function of the true value of B used to generate the trajectories. The Euler approximation results in an exponential increase of the bias and standard deviation with increasing B, which holds for the relative bias and standard deviation. However, using the Nowman approximation, which is the exact transition probabilities for this case, completely annihilates the bias. Even though the standard deviation still increases exponentially, this is mostly due to the log scale. The relative variance increases only slightly with increasing B.

Figure 5 . 5 :

 55 Figure 5.5: Estimation bias (up) and standard deviation (down) of B as a function of true B based on 1000 trajectories of duration 1 s each. 2 methods are compared: the Euler approximation and the Nowman approximation which is equal to the exact transition probability in this particular case.

Figure 5 . 6 :

 56 Figure 5.6: Estimation bias (up) and standard deviation (down) of A and α as a function of true the trajectory duration T , for A = 1 Hz and α = 1.

Figure 5 . 7 :

 57 Figure 5.7: Up: example of an original trajectory generated with A = 1 Hz represented along with its regenerated counterparts after estimation of A using Euler's approximation and the exact transition probabilities. Down: standard deviation of the dierence between the original and regenerated trajectory as a function of the trajectory number.

Figure 5 . 8 :

 58 Figure 5.8: Comparison between the estimated A Euler's approximation and the exact transition probabilities as a function of trajectory number.

Hz 2 .

 2 If we get back to Euler's approximation and the exact transition probabilities estimators, their RMSE squared are (equation (5.50)) respectively 20 2 + (-350) 2 = 122900 Hz 2 and 40 2 + 0 2 = 1600 We see a clear advantage for the exact transition probabilities, which is of course due to the large bias of the other estimator. This direct comparison is not fair, because the bias can be partially corrected if one knows the bias function b(B). To compute the estimated bias b(B), we rst inverse: B(B) = B(B) + b( B(B)) (5.51) to obtain B(B), which is an estimation of the true B that would generate the observed value B(B) if it was sure that B(B) = E B(B) . The estimated bias is then: b(B) = b( B).

Figure 5 .

 5 Figure 5.9 represents the results for B. It is striking to see that the RMSE for the two estimators are almost identical. The RMSE for the exact transition probabilities estimator

Figure 5 . 9 :

 59 Figure 5.9: Root mean square error of the estimators for B as a function of true B.

c

  follows the same equation with Ĩ replacing R. Note that w k and γ k are common to both the estimators of Ψ

c 3

 3 follows the same equation with Ĩ replacing R. Note that w k and γ k are common to both the estimators of Ψ Notational remarks As in chapter 5 for the ML estimators of A and B, we used here an observed trajectory (one realization)x, R, Ĩ = xk , Rk , Ĩk , k = 0, 1, . . . , n to estimate Ψ L are estimates, not estimators. However, considering that the trajectory is random, we can consider that Ψ(R) c, M L and Ψ(I) c, M L are truly estimators.

  trajectory Ψt of the reectivity, in which case:Of course, the same holds in the GK scattering case, such that the ergodicity-based estimators (or moment) yield:

Figure 6 . 1 :

 61 Figure 6.1: Relative estimation squared bias and variance of the target in HK scattering for both the ergodicity and ML estimators. 1000 trajectories are computed, with A = 1 Hz, B = 100 Hz and α = 1. Up: dependence to trajectory duration with Ψ c = √ 10. Down: dependence to target intensity with a duration of 1 s.

Figure 6 . 2 :

 62 Figure 6.2: Scatter plot of the estimated target for both the ergodicity and ML estimators in the case of HK scattering. 1000 trajectories of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1 and Ψ (R) c = √ 10.

Figure 6 . 3 :

 63 Figure 6.3: Relative estimation squared bias and variance of the target in GK scattering for both the ergodicity and ML estimators. 1000 trajectories are computed, with A = 1 Hz, B = 100 Hz, α = 1 and η = 1. Up: dependence to trajectory duration with Ψ c = √ 10. Down: dependence to target intensity with a duration of 1 s..

Figure 6 . 4 :

 64 Figure 6.4: Scatter plot of the estimated target for both the ergodicity and ML estimators. 1000 trajectories of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1, η = 1 and Ψ (R) c = √ 10.

cFigure 6 . 5 :

 65 Figure 6.5: Relative estimation variance of the target in GK scattering for the ML estimators.

10000

  trajectories are computed, with B = 100 Hz, α = 1 and η = 1. The variance is plotted as a function of the sampling time step.

1 Figure 6 . 6 :

 166 Figure 6.6: Numerical distributions of Ψc with and without a target, and numerical ROC curves based on the distribution of Ψc . 10000 trajectories of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1, η = 1. Up: Ψ c = 1; Down: Ψ c = √ 0.1.

k

  are independent normal random variables such that for all k, n

Figure 7 . 1 :

 71 Figure 7.1: Estimation bias (up) and standard deviation (down) of BΨ as a function of true B, for trajectories of duration T = 300 s and T = 1200 s.

Figure 7 . 2 :

 72 Figure 7.2: Mean rmse between the true x t and its estimations as a function of window size.

x1/ 2 tFigure 7 . 3 :k∈∆

 273 Figure 7.3: Example of a trajectory of x t and its estimations xt , xt and xt .

Figure 7 . 4 :

 74 Figure 7.4: Empirical and theoretical N opt . The theoretical N opt is given by equation (7.27).

Figure 7 . 5 :

 75 Figure 7.5: Empirical and theoretical N opt for α = 0.1. The theoretical N opt is given by equation (7.27).

Figure 7 . 6 :

 76 Figure 7.6: Sequence of estimators for estimating A, B, α, x t and γ t .

Figure 7 . 7 :

 77 Figure 7.7: Illustrative example of Bayes formula. The prior distribution (blue) is large, suggesting poor knowledge on parameter θ. Once the data x has been observed, the knowledge on θ is summarized in the posterior distribution (red), which is a shifted and compressed version of the prior here. The relation between the prior and posterior is often more complicated in reality, but it is expected that the posterior has lower variance, suggesting improved knowledge.

  R) tn }. We get: p(B|γ) ∝ p(γ|B)p(B).

8 .

 8 5 s, central time t c = 15 s, and Ψ The top represents the target model. The middle is the time series of the real part of the reectivity including the target. The bottom represents the estimated target with a

Figure 7 . 8 :

 78 Figure 7.8: Top: target reectivity using equation (7.59). Middle: target + sea clutter. Bottom: true and estimated target reectivity.

  let for example A b (A) be a biased estimator of A with bias b(A). To debias the estimator, we solve the following equation in A db (A):A b (A) = A db (A) + b(A db (A)), (A.9)and obtain the debiased estimator A db (A). For xed A, the RMSE is then computed from the N trajectories as:rmse(A db ) 2 = 1 N N i=1 (A db, i -A) 2 .(A.10)Applying the bias correction and computing the RMSE, we obtain the results in gure A.1 for A and B. It is remarkable that the volatility-based and ML estimators have almost identical RMSE. The larger bias of ML transforms into additional standard deviation when the bias correction is applied, such that overall the two estimators have identical performance.

Figure A. 1 :

 1 Figure A.1: RMSE of the estimators for A (up) and for B (down) as a function of true A and B. Two estimators are compared: the volatility-based estimator and the ML estimator with Euler's approximation for the transition probabilities.

0 R r dr + A α t 0 Ψ (R) c ηx r dr = A α t 0 RFigure A. 2 :

 0002 Figure A.2: Relative estimation squared bias and variance of the target in HK scattering for the volatility-based estimator (equation (A.20)). 1000 trajectories are computed, with A = 1 Hz, B = 100 Hz and α = 1. Up: dependence to trajectory duration with Ψ c = √ 10. Down: dependence to target intensity with a duration of 1 s.

Figure A. 3 : 2 (

 32 Figure A.3: Relative estimation squared bias and variance of the target in GK scattering for the volatility-based estimator (equation (A.27)). 1000 trajectories are computed, with A = 1 Hz, B = 100 Hz and α = 1. Up: dependence to trajectory duration with Ψ c = √ 10. Down: dependence to target intensity with a duration of 1 s.

1 ,

 1 's approximation for the transition probabilities:

  the log of the likelihood function, we have:

  second line of equation (5.33). C.2 Proof of equation (5.41) C.2.1 Proof of the rst line of equation (5.41)

1 2 .

 2 According to equation (5.39), we have:

-1 2 αα 1 0e 2 xi - 1 + 2 xi - 1 + 2 xi - 1 + 1 -

 212121211 ( xi -1+e -A∆t (1-x i-1 ) ) 2 xi-1 (1-e -2A∆t ) (C.[START_REF] Barakat | Weak-scatterer generalization of the k-density function with application to laser scattering in atmospheric turbulence[END_REF] From equations (C.1), (C.20) and (3.70) for the stationary distribution, we have: ( xi -1+e -A∆t (1-x i-1 ) ) L(A) = L(A, α) since it is assumed that α is known. Taking the log, we get:ln L(A) = ln α α xαe -A∆t (1 -xi-1 ) 2 xi-1 (e -2A∆te -A∆t (1 -xi-1 ) 2 xi-1 (e -2A∆t -1) . (C.22)Since the optimality condition is ∂ ∂A ln L(A) = 0, we now dierentiate with respect to A.Some terms readily disappear and we get: e -A∆t (1 -xi-1 ) 2 xi-1 (e -2A∆t -1) . (C.23) We compute the rst term in equation (C.23): e -2A∆t = n∆te -2A∆t e -2A∆t -1 . (C.24) To derive the terms under the sum in equation (C.23), we set: u = xi -1 + e -A∆t (1 -xi-1 ) 2 (C.25) v = (e -2A∆t -1). (C.26) If we dierentiate u and v with respect to A, we get: u = 2 xi -1 + e -A∆t (1 -xi-1 ) ∆te -A∆t (x i-1 -1) (C.27) v = -2∆te -2A∆t .

( 1 -- 1 +

 11 xi-1 ) e -A∆t (x i-1 -1)(e -2A∆t -1) (e -2A∆t -1) 2+ 2∆te -2A∆t xi -1 + e -A∆t (1 -xi-1 ) 2 (e -2A∆t -1) 2 . (C.29) 202 We now get back to equation (C.23) and multiply it by (e -2A∆t -1) 2 . If we express the optimality condition and use the derivatives equations (C.24) and (C.29), we get: n∆te -2A∆t (e -2A∆t -1) e -A∆t (1 -xi-1 ) e -A∆t (x i-1 -1)(e -2A∆txi -1 + e -A∆t (1 -xi-1 ) 2 .

(C. 35 )

 35 Combining equations (C.32) and (C.35) (and reminding that we have simplied by X), i-1 -1) 2 + α(x ii -1) 2 + α(x i-1 -1) 2 xi-1 X n i=1 α(x i -1)(x i-1 -1) xi-1 = 0. (C.37)C.2.2 Proof of the second line of equation(5.41) 

2 and σ = B 2 .

 22 form of equation (C.18) with µ = 0, κ = B

40 ) 1 π( 1 -v

 4011 This is actually the exact transition probability of γ (R) t (see section 5.2.3). From equations (C.10), (C.40) and (3.70) for the stationary distribution, we have: e -B∆t ) e -( γi (R) -γ (R) = e -B∆t -1.

(C. 45 ) 2 + 48 ) 2 ∆te -B∆t e -B∆t - 1 (e -B∆t - 1 ) 2 (

 452482112 We have:∂u ∂B = 2 γi (R) -γ(R) i-1 e -B∆t/2 ∆t 2 γ(R) i-1 e -B∆t/2 = ∆tγ (R) i-1 γi (R) -γ(R) i-1 e -B∆t/2 e -B∆t/2 , e -B∆t/2 e -B∆t/2 e -B∆t -1 (e -B∆t -1) Using equations (C.43) and (C.48), we get: ∂ ∂B ln L(B) = n

53 ) 6 D. 1

 5361 We have proved the second line of equation(5.41). Since it is a third order polynomial, it has only on real root λ. Remembering that x = e -B∆t/2 , the estimation of B is: Calculational details for HK scattering D.1.1 Inverse of σ (HK) Ψ c ∆t

(D. 1 )

 1 where com(A) is the comatrix of A. We have: compute the six coecient c 11 , c 22 , c 33 , c 12 , c 13 and c 23 . We remind that: is straightforward to compute the c ij . We have:

c 2 ⇔ c 33

 233 

2 1 ,

 21 All put together, we obtain the following equation for σ Proof of Ψ(R) c, M L for HK scatteringIn this section, we prove equation (6.36) for Ψ(R) c, M L , the ML estimator of Ψ c for HK scattering. We remind from chapter 6 that the approximate transition probabilities for small ∆t for HK are:Ψc (x t k , R t k , I t k ) = (x k , Rk , Ĩk ) | (x t k-1 , R t k-1 , I t k-1 ) = (x k-1 , Rk-1 , Ĩk-1 ) , Rk-1 , Ĩk-1 ∆t. (D.15)The expression of σ(HK) Ψc ∆t -1is now given by equation (D.12). Let:w (k) = v k -µ k = w 1 w 2 w 3 . (D.16)209We rst compute the term inside the exponential. We have:

B∆tx 2 t+ w 1 w 3 I 21 ) 1 0e

 23211 -xk-1 -A(1 -xk-1 )∆t Rk -Rk-1 + A+B 2 ( Rk-1 -ΨWe have, relying on the notations of chapter 6, that the log-likelihood of a time series(x, R, Ĩ) is: l x, R, Ĩ; Ψ c = ln α α xα-

  By symmetry, we need only to derive the equation forΨ(R) c, M L and that of Ψ(I) c, M L will follow. It is implicit that equation (D.24) is taken at ( Ψ(R) c, M L , Ψ(I) c, M L ).The idea is now to express explicitely ∂l ∂Ψ (R) c = 0 as a function of ( Ψ(R) c, M L , Ψ(I) c, M L ). We will soon realize that it depends only on Ψ(R) c, M L and we will invert it to obtain Ψ(R) c, M L . From equations (D.24) and (D.22), we get:

w 2 3 = 2 ,

 32 Ĩk -Ĩk-1 + γ k Ĩk-1 -Ψ (I) c which does not depend on Ψ (R) c . We get:

  w k = xk -xk-1 -A(1 -xk-1 )∆t.

(D. 29 )

 29 From equations (D.28) and (D.25), we nally get: equation (6.34) of chapter 6. It is readily invertible and we obtain the expression for the estimator of Ψ

2

 2 Calculational details for GK scattering D.2.1 Inverse of σ (GK) Ψ c ∆t To compute the inverse of σ (GK) Ψc ∆t, we use again equation (D.1). As in section D.1, we have: coecients c ij , we remind that:

(D. 42 )

 42 All put together, we obtain the following equation for σ

1 ( 1 v 1 (

 111 k -µ k ) T σ (GK) Ψc ∆t v k -µ k ) , Ψc (x t k , R t k , I t k ) = (x k , Rk , Ĩk ) | (x t k-1 , R t k-1 , I t k-1 ) = (x k-1 , Rk-1 , Ĩk-1 ) , (D.45) k = xk Rk Ĩk µ k = u k + β (GK) Ψc xk-1 , Rk-1 ,Ĩk-1 ∆t. by equation (D.43). Let:w (k) = v k -µ k = w 1 w 2 w 3 . (D.47)We rst compute the term inside the exponential. We notice that σ 43)) has the same form as σ(HK) Ψc ∆t equation (D.12)) with R t + Ψ (R) c ηx t replacing R t -Ψ(R) c and I t + Ψ (I) c ηx t replacing I t -Ψ (I) c . Therefore:

  c A(1 -x t ) + I t -Ψ -xk-1 -A(1 -xk-1 )∆t Rk -Rk-1 -ηΨ (R) c A(1 -xk-1 )∆t -Rk-1 -Ψ

( 1 0e 52 )

 152 x, R, Ĩ) is: l x, R, Ĩ; Ψ c = ln α α xα--αx 0 πx 0 Γ(α) -( R0 -Ψ (R) c ηx 0 ) 2 + ( Ĩ0 -Ψ (I) c ηx 0 ) 2 x0 -n ln (2π) 3/2 σTo estimate Ψ c , we use the optimality conditions: By symmetry, we need only to derive the equation for Ψ(R) c, M L and that of Ψ(I) c, M L will follow. It is again implicit that equation (D.53) is taken at ( Ψ(R) c, M L , Ψ(I) c, M L ). The idea is now to express explicitely ∂l ∂Ψ (R) c = 0 as a function of ( Ψ(R) c, M L , Ψ(I) c, M L ). As for HK scattering, it will only dependo on Ψ(R) c, M L and we will invert it to obtain Ψ(R) c, M L . From equations (D.53) and (D.51), we get: c with Φ k given by equation (D.48). We notice that w 1 still does not depend on Ψ (R) c (nor Ψ (I) c ). Since w 3 also does not depend on Ψ (R) c , we have:

2 = 2 .= 2 1 ×c ηx k- 1 )w 2 =( 1 + 2 1 ×B∆tx 2 k- 1 ηx k- 1 1 + w k B∆tx 2 k- 1 Rk- 1 ( 1 -

 22211212121112111 Rk -Rk-1 -ηΨ (R) c A(1 -xk-1 )∆t -γ k ∆t Rk-1 -Ψ (R) c ηx k-1 Rk -Rk-1 -ηΨ (R) c A(1 -xk-1 )∆t -γ k ∆t Rk-1 -Ψ (R) c ηx k-(-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) = 2 Rk -Rk-1 -γ k ∆t Rk-1 (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) (D.57) + 2 (-ηA∆t(1 -xk-1 ) + γ k ∆ηx k-1 ) (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) Ψ (R) c . ηx k-1 Rk -Rk-1 -ηΨ (R) c A(1 -xk-1 )∆t -γ k ∆t Rk-1 -Ψ (R) c ηx k-1 + Rk-1 + Ψ (R) c ηx k-1 (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) = ηx k-1 Rk -Rk-1 -γ k ∆t Rk-1 + ηx k-1 (-ηA(1 -xk-1 )∆t + γ k ηx k-1 ∆t) Ψ (R) c + Rk-1 (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) + ηx k-1 (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) Ψ (R) c . Rk-1 + Ψ (R) c ηx k-1 )w 2 = ηx k-1 Rk -Rk-1 -γ k ∆t Rk-Rk-1 (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) + 2ηx k-1 (-ηA(1 -xk-1 )∆t + γ k ∆tηx k-1 ) Ψ (R) c (D.59)If we denote w k = w 1 and use equations (D.54), (D.55), (D.57) and (D.59), we nally get:B∆tx k-1 Rk -Rk-1 -γ k ∆t Rk-(-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) + w k Rk -Rk-1 -γ k ∆t Rk--ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) xk-1 ) + γ k ∆tηx k-1 ) × (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) + 2w k η B∆tx k-1 (-ηA∆t(1 -xk-1 ) + γ k ∆tηx k-1 ) (D.63)which are exactly equations (6.47), (6.48) and (6.49) of chapter 6. It is invertible and we obtain the expression for the estimator of Ψ

  

  

  du modèle de Field en prenant en compte la cible, et qu'on pouvait estimer la constante de cible Ψ c par maximum de vraisemblance.Dans le cas HK, en notant Ψ

	(HK)
	t

= R t + iI t , nous avons montré en utilisant le calcul d'Itô que le processus multidimensionnel x t R t I t était solution de l'EDS :

  En réalité, un radar cohérent ne peut pas mesurer ces processus, mais uniquement Ψ t , et donc R t = x ce problème, nous avons proposé des estimateurs de la SER x t basés sur Ψ t en utilisant le fait que x t évolue lentement par rapport à γ t (A B). Nous avons ensuite proposé une séquence d'estimateurs pour la SER, le speckle, et les paramètres du clutter de mer que nous avons analysée numériquement. Pour estimer x t , nous considérons d'abord que t est xé et qu'une série temporelle {Ψ t k , k = 0, 1, . . . , n}, telle que t k -t k-1 = ∆t pour tout k, est observée. On considère une fenêtre ∆ t contenant t (de préférence centrée en t) et on suppose que pour tout k ∈ ∆ t (tout k tel que t k ∈ ∆ t ), on a x t k ≈ x t . En posant ∆ k Ψ = Ψ t k -Ψ t k-1 , nous avons proposé l'estimateur suivant pour x t :

				t	R)	(I) t et γ
	étaient observées. 1/2 t γ t (R)	et I t = x	1/2 t γ t (I)	(parties réelles et imaginaires). An
	de répondre à			
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B Complements to chapter 4

France, are particularly concerned. Indeed, our maritime territory is almost twenty times larger than our land, which is enormous and comes with responsabilities: that of watching this territory.

Table 1 .
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1: A few exemples of Jones vectors.
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	Standard Radar Frequency Nomenclature (IEEE Standard 521-2002)
	Band designator	Frequency	Wavelength
	HF	3-30 MHz	10-100 m
	VHF	30-300 MHz	1-10 m
	UHF	300-1000 MHz	0.3 -1 m
	L	1-2 GHz	15-30 cm
	S	2-4 GHz	7.5-15 cm
	C	4-8 GHz	3.75-7.5 cm
	X	8-12 GHz	2.5-3.75 cm
	Ku	12-18 GHz	1.67-2.5 cm
	K	18-27 GHz	1.11-1.67 cm
	Ka	27-40 GHz	0.75-1.11 cm

1.28) has linearly increasing instantaneous frequency. Figure 1.6 represents a sinus waveform of duration 1 s, with frequency 20 Hz, and a chirp with instantaneous frequency 20 Hz at t = 0 and ∆f = 50 Hz. The numerical values are invented for illustrative purposes. In particular, the relative change of frequency over the duration of 2: Standard radar bands as dened by IEEE.

  r x , rr ) ∝ P s (r x , rr ),

	(1.36)
	where P s (r x , rr ) is the average scattered power. It is possible to dene a RCS which is
	dynamic, as we will see in subsequent chapters. It all depends on the length of the averaging
	window in equation (1.36), i.e. on what timescale we study Ψ t .

  {|Ψ t k |, k = 0, 1, . . . , n} otherwise) where t k -t k-1 = 1

	chapter 6). Figure 1.10 is an example of a SAR image,
	here of the Strait of Gibraltar. The interpretation of SAR images can be delicate, despite its
	apparent ressemblance to optical images. That being said, we can clearly distinguish Spain,
	Morocco, and the ocean/sea on gure 1.10.	
	1.2.6 Phenomenology of sea clutter	
	In the previous section, we presented SAR imaging for airborne or satellite radar. The cross
	track partition into resolution cells was not discussed but we said that it was immediate to
	obtain it. The along track partition into resolution cells involves SAR integration algorithms.
	Obtaining a radar image involves many steps, such that the image cannot really be considered
	as raw data. Let us now focus on the sea surface only. If a radar illuminates a xed
	portion of the sea with some xed Pulse Repetition Frequency (PRF), what we get from
	the backscattered signal is a discrete time series {Ψ t k , k = 0, 1, . . . , n} of the reectivity
	(for coherent radars, P RF	for all k. It
	corresponds to the seemingly static situation of gure 1.5.	

  Finally, the number of scatterers N t is itself a random variable. Moreover, all processes are stationary. Let N = E[N t ] be the average number of scatterers. If we normalize the amplitudes by N 1/2 and let N → +∞, we obtain:

			1.67)
	a (n) t that for xed t, the amplitudes a and φ (n) are respectively the amplitude and phase of the n-th scatterer. It is assumed t (n) t are independent and identically distributed (i.i.d). Sim-
	ilarly, the phases φ	(n) t	are independent for dierent n, and all phases and amplitudes are
	independent.		

  Limitations of the random walk modelWe have seen that from the random walk model we can derive the distributions of functions of Ψ t , like z t , for one xed time t. However, something crucial is missing in this formulation: the relation between Ψ t 1 and Ψ t 2 , for two subsequent times t 1 < t 2 , is not specied. Only the static distributions (for a xed t) are known. For example, how can we compute the

	chapter 6). We let the reader imagine how hard it would be to
	obtain similar statistics starting from the Stratton-Chu equations!	
	1.3.2 moment:	
	z t 1 z t 2	(1.75)
	in the framework of the random walk model? More generally, given t 1 < t 2 • • • < t n and
	functions f 1 , f 2 , . . . , f n , how do we compute:	

  X t )In fact, as long as the process is Gaussian and the covariance is K(s, t) = min(s, t), Kolmogorov's Lemma enables us to assume that the trajectories are continuous. More precisely, if (B t ) t is such a process, ∃ ( Bt ) t such that P(∀ t ≥ 0, B t = Bt ) = 1 and such that (B t ) t has

	locally holderian trajectories with exponent	1 2 -δ for all δ ∈]0, 1 2 [ (see [54] p 24).
	There are at least 2 more denitions for the brownian motion, which are equivalent to
	denition 2.5 as stated by the next proposition.
	Proposition 2.1. Let (B t ) t≥0 be a continuous stochastic process. It then holds that the 3
	following properties are equivalent:	
	i. (B t ) t≥0 is a brownian motion,	
	Denition 2.5. (Brownian Motion) Let (B t ) t≥0 be a real-valued stochastic process.
	(B t ) t≥0 is a brownian motion if and only if:	
	i. it is a centered Gaussian process,	
	ii. its trajectories are continuous, i.e. ∀ ω ∈ Ω, t → B t (ω) is continuous,
	iii. its covariance function is K(s, t) = min(s, t).

  .9) Denition 2.8. (Generated σ-algebra) Let (Ω, F) be a measurable space and Y 1 , Y 2 , . . . , Y n be n measurable applications. The σ-algebra generated by Y 1 , Y 2 , . . . , Y n is the smallest σalgebra on Ω such that all the Y i are measurable relative to it.

  σ ij (Y t k ) depends on some parameters to be estimated and the Y

		)
	with ∆t = t n	. Equation (2.107) is the cornerstone of volatility-based parameter estimation. (k) t are observed, we can
	isolate the parameters in terms of known quantities and get estimators.

If

  ) which makes the connection between the denitions of G for a deterministic and stochastic signal (equations (2.117) and (2.122)). It is then visible that lim T →+∞ Xt Xt+τ dt does not depend on the particular realization of the process. The PSD of the arbitrary realization Xt is denote S(ω). If we apply the Wiener-Kinchin theorem, we get:

	1	T
	T	0

  3.1.2 The FPE and SDE for x t We see from equation (3.1) for Ψ t that it is not N t itself which we must study, but the limit of the ratio Nt N for large N . Nt N is a random variable which can take all values of the form k 1 N for k ∈ N. As N → +∞, these possible values become closer and closer, such that x t = lim N →+∞ Nt N takes values in R + (continuous random variable).

  to avoid the unappropriate Taylor expansion. The important point is that if equation (3.17) holds, what follows is true. Now let x = N

N . The Kramers-Moyal expansion for P (x, t) = P (x N , t) N is:

  presented the Fokker-Planck equation (FPE) in section 2.3.2. The important result is theorem 2.3, which states that to every SDE, one can associate a FPE for the probability density of the solution X t of the SDE. Reciprocally, knowing the FPE for x t , we can say that x t is solution to a SDE whose FPE is given by equation(3.26). Therefore, x t is solution to the following SDE:

  To relax this assumption, one could start from equations(3.16) and (3.17), setting arbitrary generation and recombination coecients G(N, t) and R(N, t), and see where the calculations go. Does the Kramers-Moyal expansion reduces to a FPE when N → +∞? If yes what is the associated SDE? However, it is not obvious that one can take arbitrary G(N, t) and R(N, t) because of Pawula theorem. For example, let's consider a nonlinear BDI model as in[START_REF] Matis | Stochastic Population Models: A Compartmental Perspective[END_REF] chapter 7. In the nonlinear BDI model, the birth and death rate are functions of the population N . The birth rate λ(N ) is:

  are respectively the real and imaginary parts of γ t . W independent brownian motion. They are related to ξ t by:

	γ t (R)	and γ t (I)	(R) t	and W t (I)	are two
	real-valued			
					.59)

  We can show that under this phase model, if we decompose γ t in real and imaginary parts as γ t = γ

							.86)
	where W	(n) t	is a brownian motion and ∆ (n) is uniformily distributed over [0, 2π[. We assume
	that for n = m, φ (n) t	and φ	(m) t	are independent. (R) t	+ iγ	(I) t , we have:

Table 4 .

 4 1: Results of the Kolmogorov-Smirnov test for the transition probabilities of γ t .

		t = 0.001 s t = 0.02 s t = 0.1 s
	D	0.016	0.023	0.016
	p-value	0.956	0.649	0.955
	4.2.2 Distributions of the RCS		
	Following Field in [48], we set xt = αx t . This transformation usually results in simpler
	equations and more tractability. We obtain the following SDE:

s. A positive Kolmogorov-Smirnov test indicates that our numerical simulations are precise enough, i.e. our scheme (Euler-Maruyama) and timestep (0.0001 s here) are good enough.

  to the solution of the FPE (4.16) with a Dirac initial distribution δ αy . A direct resolution of the FPE (4.16) is provided in what follows. We use the asymptotic distribution(4.18) 

.19)

. Let y ∈ R + and let assume that we measured x0 = y. Taking this present measure into account to predict how the RCS is going to evolve in the future is equivalent to computing the conditioned probability p (x t = x|x 0 = y). It is obtained by applying the inverse transform x t → xt /α

Table 4 . 2

 42 with the dierence that this time, equation (4.36) is used for the exact transition probabilities. The results are represented in gure 4.4. The oscillations = 0.001 s t = 0.02 s t = 0.1 s t = 0.001 s t = 0.02 s t = 0.1 s

	97

: Results of the Kolmogorov-Smirnov test for the transition probabilities of x t . observed in gure 4.3 have disappeared and the t between the numerical and analytical distributions is even better.

Table 4 .

 4 Distributions of the real (and imaginary) reectivityThe real and imaginary parts of the reectivity are simply dened by R t = Re(Ψ t ) = x so will R t and I t . Thus, it is sucient to compute those of R t . We remind that the processes x

	2. The interpretation of the results is the same as for the speckle. One dierence is that we
	tested against two dierent analytical distributions, the one expressed in terms of Laguerre
	polynomials given by equation (4.35) (though truncated at n = 150), and the one expressed
	with the Bessel function given by equation (4.36). Some p-values are relatively low, but

they stay above the signicance level of 5 %. The positivity of the Kolmogorov-Smirnov test indicates again that our numerical simulations are precise enough, i.e. our scheme

(Milstein) 

and timestep (0.0001 s here) are good enough.

4.2.3 

  Equation (4.42) is an exact analytical expression of the transition probabilities of R t .It is explicit and relatively easy to evaluate numerically. As mentioned earlier, it is also valid for I t where the condition γ

	(4.42)
	1 n (αu 2 )du	
	1/2 t , γ	(R)
	(R)	
	0	

where m z (t), v(t) are expressed in equations (4.13) and

(4.14)

. The mathematical details are provided in appendix B and are based on relation (4.5) applied to the couple (x t ).

  distribution, we simulated 1000 trajectories of γ . The results, in gure 4.7, represent the numerical (left) and analytical (right) distributions at time 0.001 s, 0.005 s and 0.02 s. We observe the progressive spreading of the Gaussian distributions, until it reaches approximately its asymptotic distribution at t = 0.02 s. It is now manifest why the solution of a SDE is called a diusion process: the initial dirac to the left where all the trajectories initiate. The trajectories are represented for t between 0 s and 0.02 s, and the vertical semi-transparent planes are at t = 0.001 s, t = 0.005 s and t = 0.02 s. The distributions of the intersection points of the trajectories with the vertical planes correspond to the histograms represented in gure 4.7.

	(R) t	γ t (I)	with B = 100 Hz, all starting
	from 0 0 is indeed diusing away, as in a thermal or a chemical diusion, or even the erosion of a
	mountain!		
	Figure 4.8 represents 100 trajectories of the vector process γ t (R)	γ t (I)	. We can see
	the starting point [0 0]		

  The estimation of A and α is treated in the next chapter. However, the reader will realize that it is necessary to observe x t in the rst place to estimate these parameters. A solution to this circular estimation problem is proposed in chapter 7.4.4.2 Synchronizing measuresFigure 4.9 represents schematically a discrete time series of values of the RCS (for example)measured by a moving sensor (or dierent sensors) from positions u 1 , u 2 , u 3 , u 4 , u 5 at times t 1 , t 2 , t 3 , t 4 , t 5 . To be compared, these measures must be transported to the same common time, chosen to be t = 0.25 s here, i.e. the time at which the central measure X(u 3 )

								t 3	has
	been taken. The measures	X(u 1 ) t 1	and	X(u 2 ) t 2	are projected forward using formula (4.35). The
	projection of	X(u 1 ) t 1	at time t 1 + h can be seen as a random variable with the distribution
	p X	(u 1 )					
				t	R)	and γ t (I)	can be computed from γ t (R)	= Rt x 1/2 t	and γ t (I)	= It 1/2 x t

. The issue is that rst it is quite hard to understand what they do, since no explicit formula is given for the estimator of x t , and second the estimation requires to know the parameters A, α.

  is the RCS observed from a dierent position. If they are normalized by their mean value, such as in Field's model, equations (4.35) and (4.59) are applicable to any of them. Second, if the projection of a measure is not too far forward or backward, the result

	of the projection is a distribution dierent from the asymptotic (stationary) distribution,
	which is that of the unconditioned random variable X of deterministic measures { X(u 1 ) t 1 , X(u 2 ) t 2 , X(u 3 ) t 3 , X(u 4 ) t 4 , X(u 5 ) (u i ) t t 5 } transforms by projection to the for any i and t. The time series
	reference time t 3 into a series of random variables

i

  where the measurements have been made at times t i with i ranging from 0 to n with constant timestep ∆t. We notice that γ Alternatively, we can average the two estimates arising from these two time series.We remind that the ML estimation consists in maximizing the likelihood function with respect to the parameters, i.e. determining the parameters that makes the observed data the most probable. Because the process x t and γ

		(R) t	and γ t (I)	follow the same SDE. Since they are independent,
	it is sucient to use	γ(R)	
				(R) t	are Markov processes, the likelihood
	function for the RCS is (see section 2.3.1):

i to estimate B.

  )
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  .23)6.2.1 ML estimation of Ψ c in HK scatteringFrom equations (6.22) and (6.23), it is obvious that one must know p ∞

		Ψc and the transition
	probabilities p	(k) Ψc to estimate Ψ c .

  ) .

		(6.49)
	Equation (6.47) depends only on x t and the real part R t of the reectivity. It gives a condition
	on	Ψ(R) c, M L only. It is straightforward to get the estimation of Ψ (R) c :

  By deciding that there is a target if Λ exceeds the threshold λ T and varying the threshold, we compute a range of probabilities of detection and probabilities of false alarms P D and P F A and get a ROC curve. More precisely, 10000 trajectories of duration 1 s are numerically computed with xed Ψ c = Ψ Ψc and σ Ψc are then computed from the set { Ψ(R) c,i , i = 1, 2, . . . , 10000} of estimated

		2	.	(6.59)
		0	
	(R) c	> 0 (target). The i -th trajectory gives an estimated target
	Ψ(R)		

c,i . m

  II t are the RR and II coecients of the squared -volatility of the process x t R t I t (see chapter 6 section 6.1.1). Here, R t and I t are for the real and imaginary parts of the sea (R t k -R t k-1 ) 2 and 1 T k∈∆t (I t k -I t k-1 ) 2 by σ RR t and σ II t . It could be large but it will tend to zero as ∆ t → 0 and ∆t → 0 (spot volatility estimation, see[8]). From equations (6.9) and (7.12), we get:Let us take again a window ∆ t centered at t. If |∆ t | (size of the window) is small compared to the decorrelation time of x t (≈ 1/A) and large compared to the decorrelation time of γ t (≈ 1/B), then x s ≈ x t for all s ∈ ∆ t . We then have:

	σ RR t and σ clutter only.	is a residual in replacing	1 T			
		xt =	1 B	A 2αx t	R 2 t +	Bx t 2	+	A 2αx t	I 2 t +	Bx t 2	+
		⇔ xt = x t +	A 2Bαx t	R 2 t + I 2 t + .	(7.13)
	As explained,	goes to zero as ∆ t and ∆t go to zero, but A 2Bαxt [R 2 t + I 2 t ] has no reason
	to vanish. Our estimator is therefore not consistent. However, this non-vanishing term is
	expected to be small since	A B	1.					
	xt estimator									
	A more simple way to estimate x t is to notice that (see chapter 3 section 3.3):
						E u|γ t | 2 = u. (R)	(7.14)
						1 N	k∈∆t	|γ t k | 2 ≈ 1,	(7.15)
	by application of the law of large numbers and knowing that E[|γ t k | 2 ] = 1. Therefore, we
	have:									
				σ RR t	+ σ II t	+ .		

k∈∆t

Table 7 .

 7 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} for both of them. For B, we explored {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. 1: Results of the sequential estimation for the rst trajectory without subsampling xt . A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable. not computationally realistic with a standard desktop computer. It represents 1000 parameters states, each of which requires to simulate 1000 trajectories which are 1200 s long (for estimating B). We prefer to set only A = 1 Hz, α = 1, B = 100 Hz, i.e. our defaults values. As indicated, we simulate 1000 trajectories with T = 1200 s and apply the sequence of estimators to each of those. The data is generated with a time step of ∆t = 10 -4 s and sampled at ∆t = 10 -3 s before estimation.

		αz	N opt	BΨ	rmse x t rmse γ t	ÃML	αx	BML
	1st round	0.998	44	97.675	0.227	0.121	0.527 0.991 94.773
	2nd round	n.a.	136	97.666	0.191	0.148	0.064 1.053 93.517
	Exploring the full parameter space			
	{0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {10, 100, 200, . . . , 1000}

is

  3 here. xt is computed at these same times, except that it is truncated of Nopt 2 samples at each sides. For each t i , xt i is the average of N opt increments ∆ k Ψ (equation (7.28)). Of course, two successive values, for example xt i and xt i+1 , have N opt -1 increments in common. Their values are therefore highly correlated and it is unlikely that their dierence is described by the transition probability of x t between t i and t i+1 . Put simply, xt is a smoothed version of x t which does not capture its short time dynamics. Therefore, the ML estimator applied to the time series {x t l , xt 2 , . . . , xtm } observes that nothing happens over short times, suggesting a large correlation time, i.e. a small A. To solve this issue, we suggest to subsample xt by a factor N opt , to ensure that two successive values in the time series are computed using dierent increments ∆ k Ψ. The new results, where subsampling is applied, are shown in table 7.2. We see that now à is much closer to 1.

Table 7 .

 7 3 represents the estimators biases, computed over the 1000 trajectories. It also represents the average N opt and average rmse x t and rmse γ t . These results are for A = 1 Hz, α = 1 and B = 1000 Hz. The results do not add more to what was already in table 7.2.

		αz	N opt	BΨ	rmse x t rmse γ t ÃML	αx	BML
	1st round	0.998	44	97.675 0.227	0.121	1.136	0.991	94.773
	2nd round	n.a.	92	97.670 0.19	0.133	0.748	1.031	93.963

Table 7 .

 7 2: Results of the sequential estimation for the rst trajectory, of duration 1200 s. We have A = 1 Hz, α = 1 and B = 100 Hz. xt is subsampled by a factor N opt before ÃML and αx are computed. n.a. : not applicable.

		b (α z )	N opt	b( BΨ )	rmse x t	rmse γ t b( ÃML ) b(α x )	b( BML )
	1st round	0.007	43.472 -1.734 0.236	0.123	0.138	-0.014 -4.695
	2nd round	n.a.	91.664 -1.738 0.201	0.135	-0.276 0.025	-5.481

Table 7 .

 7 3: Estimation bias of the estimators, average N opt , rmse x t and rmse γ t over 1000 trajectories of duration 1200 s, with A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable.

Table 7 .

 7 

	1st round	0.063	4	0.057	0.057	3.728
	2nd round	n.a.	3.999	0.049	0.06	3.701

4: Estimation standard deviation of the estimators over 1000 trajectories of duration 1200 s, with A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable. σ (α z ) σ( ÃML ) σ(α x ) b(α z )

Table 7 .

 7 5: Estimation bias and standard deviation of ÃML , αx and αz for two rounds and T = 30 s, T = 300s and T = 1200 s. The results are for 1000 trajectories with A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable.

		xt , (A, α) xt , ( ÃML , αx ) xt , ( ÃML , αz )	x t , (A, α)
	T = 30 s, 1st round	2.192	2.162	2.174	1.97
	T = 30 s, 2nd round	2.359	2.506	2.504	n.a.
	T = 300 s, 1st round	2.189	2.154	2.16	1.976
	T = 300 s, 2nd round	2.378	2.525	2.518	n.a.
	T = 1200 s, 1st round	2.189	2.153	2.158	1.976
	T = 1200 s, 2nd round	2.379	2.526	2.519	

n.a.

Table 7 .

 7 

6: Average log transition probability of xt for (A, α), ( ÃML , αx ) and ( ÃML , αz ), and of x t for (A, α). n.a. : not applicable.

  The bayesian point of view, whose core is Bayes formula, adopts a dierent attitude. Though it is highschool level mathematics, there is deep meaning when quoted in a data analysis context. Bayes formula asserts:

	p(θ|x) =	p(x|θ)p(θ) p(x)	.	(7.38)

  .[START_REF] Feller | Two Singular Diusion Problems[END_REF], we can show that: Using the SDEs for x t and γ t and Itô calculus, we can show that the intensity z t solves:

	From equation (7.48), we get:
							d z t = 2Bx t z t +	2Az 2 t x t	dt = σ t dt, (z)	(7.49)
	with σ t (z)	= 2Bx t z t +	2Az 2 t xt	. σ t (z)	is called the spot volatility, and it can be estimated from a
	discrete time series of z t (see
							d Ψ, Ψ *	t =	Az t 2x t	+ Bx t dt.	(7.47)
	Ψ * t is the complex conjuguate of Ψ t . Equation (7.47) is equation (8.36) in [48].
				dz t = B(x t -z t ) +	Az t (α -x t ) x t	dt + 2Bx t z t +	2Az 2 t x t	1/2	dW t , (z)	(7.48)
	which is equation (8.18) in [48]. W	(z) t	is an undened brownian motion which depends on
	W t , W (x)	(R) t	and W	(I) t .		

  n , at times t k . Under the null hypothesis H 0 (sea clutter only), we can dene the likelihood function as:

  -x t k-1 R t k -R t k-1 Since n k=1 R t k ∆t is an estimator of t 0 Rr dr and n k=1 I t k ∆t an estimator of t 0 I r dr, by equations (A.15) and (A.16) we get the following estimators forΨ -x t k-1 R t k -R t k-1 ,

									n
							21 n,t =	x t k (A.18)
									k=1
	is an estimator of	t 0 σ 21 r dr and	
						RV 31 n,t =
	(R) c	and Ψ (I) c :						
		Ψ(R) c, vol =	1 t	n k=1	R t k ∆t -	α tA	n k=1	x t k (A.20)
	and		Ψ(I) c, vol =	1 t	n k=1	I t k ∆t -	α tA	n k=1	x t

n k=1 x t k -x t k-1 I t k -I t k-1 (A.19) is an estimator of t 0 σ 31 r dr. k -x t k-1 I t k -I t k-1 . (A.21) A.2.2 Estimating Ψ c in GK scattering

  )

	and											
			c ηx t x t A R t + Ψ (R) c ηx t α 2 R t + Ψ (R) c ηx t 2 A + 2α 2 A I t + Ψ (I) c ηx t α    A Bx t 2 I t + Ψ       (I) A 2α c ηx t R t + Ψ I t + Ψ (I) c ηx t x t (R) c ηx t 2 + x t I t + Ψ (I) c ηx t 2 2α R t + Ψ (R) 2  c ηx t x t + Bx t   2 A 2α x 2 t AB c 13 = --= 4α R t + Ψ (R) c ηx t 2 + I t + Ψ (I) c ηx t 2 + Bx 2 t , = A 2 R t + Ψ (R) c ηx t 2 I t + Ψ (I) c ηx t 2α 2 -ABx t 2α I t + Ψ (I) Bx t 2 c ηx t    4 A 2 R t + Ψ (R) c ηx t 2 I t + Ψ (I) c ηx t	(D.36)
	and		-									2α 2
	and	c 22 = ⇔ c 13 = -2Ax t α ABx t    A 2α 2α I t + Ψ (I) I t + Ψ x t (I) c ηx t c ηx t ,	2	+	Bx t 2	   -	A 2 I t + Ψ α 2	(I) c ηx t	2	(D.41)
	c 23 = -	= 2Ax t α	ABx 2 t α A 2α (R t + Ψ ,	(R) c ηx t )(I t + Ψ x t	(I) c ηx t )	-	α A(I t + Ψ	(I) c ηx t )	A(R t + Ψ	(D.37)
	and											
		c 33 =	2Ax t α	  	A 2α		R t + Ψ x t (R) c ηx t	2	+	Bx t 2	   -	A 2 R t + Ψ α 2	(R) c ηx t	2
			=	ABx 2 t α	,						(D.38)
	and											
		c 12 = -	  	A R t + Ψ α	(R) c ηx t	  	A 2α	I t + Ψ x t (I) c ηx t	2	+	Bx t 2	  	(D.39)
			-	A I t + Ψ α	(I) c ηx t	A 2α	R t + Ψ	(R) c ηx t I t + Ψ x t	(I) c ηx t	 
			= -	  	A 2 R t + Ψ	(R) c ηx t I t + Ψ 2α 2	(I) c ηx t	2	+	ABx t 2α	R t + Ψ (R) c ηx t
				A 2 R t + Ψ	(R) c ηx t I t + Ψ	(I) c ηx t	2	
			-										2α 2	 
		⇔ c 12 = -	ABx t 2α	R t + Ψ (R) c ηx t ,	(D.40)
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Waves in Random and Complex Media[16].Enn, et dans un souci d'applicabilité des résultats précédents, nous avons travaillé sur la non-observabilité de x t . Nous avons construit un estimateur xt de x t , et nalement proposé une chaine d'estimateurs pour x t , γ t , A, B et α.Le modèle de Field est éminemment théorique et dicilement exploitable dans sa présentation initiale[4], en raison de son caractère particulièrement synthétique. Nous pensons que nos travaux ont contribué d'une part à éclaircir le modèle en le présentant diéremment, d'autre part à le rendre applicable dans le cadre du traitement de séries temporelles du clutter de mer. Nous avons vu que l'estimation des paramètres du modèle n'était possible qu'après avoir estimé la SER x t , qui est non-observable. Un des résultats les plus notables de notre travail est la séquence d'estimateurs de la gure 7, qui, malgré sa perfectibilité, est applicable telle quelle à des données réelles. Nous avons remarqué qu'il y avait une incontournable subjectivité dans la factorisation du clutter de mer par la SER et le speckle, mais que celle-ci n'était pas forcément problématique. Ce qui est recherché est en eet surtout une description précise des données sur lesquelles nous sommes susceptibles de travailler en réalité, à savoir Ψ t , xt et γt . Néanmoins, une mauvaise factorisation pourrait s'avérer dé- létère pour simuler numériquement des trajectoires ressemblant aux données observées. Le problème de la non-observabilité de x t mériterait une étude plus poussée. L'utilisation du modèle de Field pour l'imagerie RSO reste à explorer. Elle nécessiterait un focus particulier sur les algorithmes RSO, mais pourrait s'avérer dicile à mettre en pratique en particulier pour l'estimation des paramètres (absence de séries temporelles longues d'une même zone due au mouvement du capteur). Dans ce contexte, l'estimation des paramètres du clutter de mer devrait être repensée en n'exploitant pas seulement l'information temporelle, mais également spatiale. Nous pensons cependant qu'il est possible à présent d'exploiter le modèle de Field dans une optique de détection d'anomalies, par comparaison des statistiques du signal observé avec celles qui sont attendues en l'absence d'anomalie.Enn, il faut souligner les limites inhérentes au modèle de Field et qu'on est susceptible de rencontrer dans certains cas. D'une part, une des hypothèses clés est que le nombre de xvii diuseurs contribuant à la réectivité de la mer est inni. Cette limite peut être atteinte dans le cas de radars très haute résolution, où l'apparition d'un seul diuseur supplémentaire peut être confondue avec celle d'une cible. D'autre part, l'hypothèse de mouvement brownien des diuseurs et de leur indépendance peut aussi être questionnée. Elle suppose en eet que le mouvement de la surface de la mer n'est pas structuré au sein de la cellule de résolution, ce qui n'est pas acceptable par exemple en cas de forte houle et encore une fois de radars haute résolution.xviii

Remerciements

it can be very straightforward to maximize the likelihood with respect to the parameter.

Between the analytical formula and the Euler approximation, several degrees of complexity exist to approximate the transition probabilities (see [START_REF] Phillips | Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance[END_REF]).

Is the most sophisticated approach always the best choice? Given an estimator which theoretically performs well, how does this estimator perform if constraints from real world applications are taken into account (such as duration and timesteps of input time series, realistic values of the true parameter etc)?

In this chapter, we also address these two questions. We derive estimators for the parameters A, B, α, and confront their ability to estimate correctly in relation with the specicities of our application (radar, sea surface). We assess them using numerical simulations. The parameter C is briey treated for the sake of completeness, though it does not belong to Field's model. For A and B, dierent level of approximations are tested for their transition probabilities.

In appendix A.1, we derive volatility-based estimators for A and B, which show similar performances to the maximum likelihood estimators under the chosen timestep and duration.

We have explained in section 2.5 that volatility-based estimation works for high sampling frequency and that it is theoretically not as good as maximum likelihood. The high sampling frequency hypothesis is met in this chapter and in appendix A.1, but it will weaken in chapter 7 and the volatility-based estimators will therefore become inoperative. However, we really recommend to read the appendix after this chapter, in order to contemplate the simplicity with which we can derive volatility-based estimators.

In section 5.1, we estimate the parameters C and α by ergodicity. More estimators from the literature are given for α, since besides being a parameter of Field's model, it is also a parameter of the already known K distribution. Numerical simulations are made to assess the estimators for α. In section 5.2, we estimate A and B by ML. We propose and compare three expressions for the transition probabilities: Euler approximation, Nowman's approximation, and the exact closed-form expressions for the transition probabilities. Numerical simulations are also carried to assess the performance of the ML estimators. A joint estimation of A and α is proposed in section 5.3. Section 5.4 is an extensive discussion whose purpose it to compare the estimators. We compare trajectories of the RCS generated with true parameters and estimated parameters for both Euler's approximation and the exact transition probabilities.

We compute root mean square errors after debiasing and show that the estimators have equivalent performances. In section 5.5, we study a possibly new approach for estimating B.

Finally, section 5.6 concludes.

Estimation of C and α

In this section, we assume that the sea clutter is ergodic and use this property to estimate the parameters C and α. This assumption yields simple estimators, but which have the disadvantage of requiring long trajectories compared to what will be necessary for A and B. It arises as a necessity to have suciently many decorrelated samples in the time series, although strictly speaking it is never the case that two samples are decorrelated. Indeed, the autocorrelation of x t is corr(x t , x t+∆t ) = e -A∆t . It decays to zero as ∆t → +∞, but never reaches it. In practice, we can consider that x t and x t+∆t are decorrelated for large ∆t.

where δ 0 is the Dirac distribution. Ideally, we would like to observe that S z (ω) can be approximated by a function where only the parameter B appears. If we compare B (B 2 +ω 2 ) and

(5.60)

Though it holds that A B is small, it is not equal to zero. More annoyingly, we may replace

, but a priori α is unknown as well as A. Assuming for example that α = 1, we propose the following approximation:

.

( [2]. They are ideal starting points.

We have also seen that the sequence of estimators relies on the estimator for x t , which is purely heuristic and could be replaced by a better estimator. Since the non-observability of the radar cross section x t is one of the biggest hindrance in working on real data, its study could be the central node of future reections.

Fourth, two almost unexplored topics within the framework of Field's model are bayesianism and target detection. New research could start from the end of chapter 7, to respectively test numerically the bayesian estimation of the clutter parameters, and to further explicit the target detection scheme that we introduced.

Fifth, we have seen that estimators become better when data (and therefore information) is added: this is nothing less than learning. From a general perspective, machine learning techniques are quite appealing, and we think that they would nd their way easily to e.g.

anomaly detection.

Finally, we have noticed in chapter 5 that dierent estimators were giving nearly identical estimations from the same nite discrete time series. This fact encourages us to think of estimators as tools which extract information from data about something (e.g. the parameters), in which case the identical results stem from the nite amount of information in the data, and the similar capacity of the estimators to extract that information. Of course, parameter estimation is just an example, but it could be valuable to import notions from information theory, such as the entropy, Kullback-Leibler risk etc. Interestingly enough, we observe that the likelihood function and maximum likelihood parameter estimation followed us from chapter 5 until the end of the thesis, from clutter and target parameter estimation, to the likelihood function in Bayes formula and target detection: information theory is already on the doorstep (for more on the role of the likelihood function in information theory, see [START_REF] Burnham | Model Selection and Inference: A Practical Information-theoretic Approach[END_REF], [START_REF] Commenges | Information theory and statistics: an overview[END_REF], [START_REF] Commenges | Dynamical Biostatistical Models[END_REF] and [START_REF] Choi | Information theory for maximum likelihood eestimation of diusion models[END_REF]). More specically, model testing could be developped in response to the remarks about the estimation of the RCS, speckle and clutter parameters made in section 7.2.

Undoubtedly, our contribution to science has not completely enlightened the topic of electromagnetic scattering from the sea surface. Only that day dawns to which we are awake. There is more day to dawn.
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Volatility-based estimation

In chapter 5, we presented the estimation of the clutter parameters of Field's model, A, B and α. In chapter 6, we presented the estimation of the target parameters

the assumption that α is known, we estimated A and B by maximum likelihood (ML). Under the assumption that A, B and α are known, we also estimated Ψ A.1 Volatility-based estimation of A and B

A.1.1 Estimation of A

We know from chapter 3 that:

The dierential of the quadratic variation of x t is:

which implies

Since one possible estimator of x t is:

and one possible estimator of t 0 2 A α x r dr is:

we can dene the following estimator for A:

Estimation of B

We know from chapter 3 that:

The dierential of the quadratic variation of γ (R) t is:

2 is an estimator of γ (R) t , we have the following estimator for B:

The same procedure can be applied independently to γ (I) t , with the γ

A.1.3 Numerical experiments

To assess the performance of the volatility-based estimators for A and B in realistic congurations, we conduct numerical experiments. We set values for the parameters A and B, simulate many trajectories of x t , γ

t , and γ (I) t , and estimate A and B for each trajectory. We set α = 1 in all the simulations.

For each value of A in the interval [0.1, 10] Hz (with a step of 0.1 Hz), we generate N = 1000 trajectories of x t , {x (i) , i = 0, 1, . . . , N }, using Milstein's scheme (see [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Dierential Equations[END_REF]). For all i, x(i) = {x

The simulation timestep is ∆t = 10 -4 s. The observations are at times t k with constant timestep ∆t = t k -t k-1 , either 10 -4 or 10 -3 s. This is to appreciate the eect of changing the timestep. ∆t = 10 -3 s is the right order of magnitude for many radars, but ∆t = 10 -4 s is also achievable. For each trajectory x(i) , A is estimated with formula (A.4). The estimation bias b(A) and standard deviation σ(A) are calculated from the estimations Ã1 , Ã2 , . . . , ÃN . For comparison, the same is done for ML estimation, where the transition probabilities are approximated by Gaussian random variables according to Euler-Maruyama scheme (as in chapter 5).

The same approach is carried out with B. For each value of B in the interval [10,1000] Hz with a step of 10 Hz, we simulate N = 1000 trajectories {γ (i) , i = 0, 1, . . . , N } of γ t using Euler-Maruyama's scheme. For all i, B is estimated from the real and imaginary parts of γ(i) using equation (A.8) and the average estimation is retained. Again, we compare the results with the ML estimator with Euler-Maruyama's approximation for the transition probabilities as in chapter 5. Under the same assumptions as for HK scattering, we form the estimator 

and

A.2.3 Numerical experiments

We do numerical experiments to assess the volatility-based estimators that we derived in sections A.2.1 and A.2.2. We also want to compare them to the ML and the ergodicitybased estimators of chapter 6 (see equation (6.54) for the ergodicity-based estimator). As in section 6.3.2, to assess the estimators we simulate many trajectories of Ψ t with know target constant Ψ c , estimate Ψ c for each trajectory, and compute the estimation bias and standard deviation. For all simulations, we set A = 1 Hz, B = 100 Hz, α = 1, η = 1 and ∆t = 10 -3 s. Also, Ψ (I) c is set to zero such that all the power of the target goes to the real part. For both HK and GK scattering, we explore the dependence of the estimation bias and standard deviation to the duration of the trajectories (from 0.1 to 10 s) and to the intensity of the target (its squared-modulus), from 0.1 to 100. The intensity is set to 10 when the duration is explored and the duration is set to 1 s when the intensity is explored. 1000 trajectories are generated for each scenario, using as usual Euler-Maruyama scheme for R t and I t , and Milstein's scheme for x t . bias. However, it has estimation standard deviations signicantly larger than the ML and ergodicity-based estimators. This is especially true for small durations and target intensities.

Visually, the variance becomes reasonably small for durations larger than 1 s and intensity larger than 10. It is somehow intuitive that the volatility-based estimator should not be relevant for estimating Ψ c in the HK scattering case, which would explain that it has low performance. Indeed, Ψ c is then just a shift of the reectivity and should not aect the volatility.

For GK scattering, the results are represented in gure A.3. We omitted the ergodicitybased estimator voluntarily because it would hinder the comparison of the volatility-based Appendix B

Complements to chapter 4

The aim of this appendix is to show that we can compute:

as the distribution of the product of 2 independent random variables:

that is to show that the product and the conditioning commute.

We know that p x

= y and that:

We would like to compute p x

= y . We show in section 4.3 that:

, cond γ (R) t be a random vector with the distribution:

We can show easily by integration that cond x 1/2 t is a random variable with distribu-

From the commutativity relation (4.5), we get:

and by integration: Appendix C

Complements to chapter 5

C.1 Proof of equation (5.33) For the estimation of A, we have:

and with Euler's approximation for the transition probabilities:

It is assumed here that α is known. For simplicity of notation, we write L(A, α) = L(A).

Taking the log of the likelihood function, we have: Radar remote sensing in a maritime context is often hindered by radar waves reflected by the sea, termed sea clutter due to its noise-like character. A thorough understanding of it is required for detection and imaging applications. Statistical models have long been used for the sea clutter (K distribution, Weibull distribution etc) but they are static in nature. We propose to use a dynamic model developed by T. R. Field, which represents the sea clutter as a stochastic process solving stochastic differential equations. We introduce Field's model for the sea surface radar cross section (RCS) and speckle. The complex reflectivity of the sea surface then depends on three parameters: A, B and α. We compute the transition probabilities of the RCS and speckle by analytical resolution of Fokker-Planck equations, and propose to use them as a tool for synchronizing observations taken at differents positions and times, as in Synthetic Aperture Radar.

We derive maximum likelihood (ML) estimators for A and B, and show numerically that the exact transition probabilities from the Fokker-Planck equations can be approximated in a satisfactory manner by Gaussians using Euler-Maruyama's scheme. α, for its part, is estimated by ergodicity (moment). We adapt Field's model to account for the presence of a simple target and show that it is possible to estimate the target constant by ML using Gaussian approximations for the transition probabilities. In the last part, we address the nonobservability of the RCS by estimating it from the complex reflectivity (observable). We obtain a sequence of estimators applicable to real data. Finally, bayesian estimation of the clutter parameters, and target detection, are introduced and discussed as potential future directions for research.