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“His command is only when He intends a thing that He says to it,“Be,” and it is.”

Quran 36:82



Abstract

One of the major factors which lead to the success of cloud computing is its economic model. Cloud
computing presents a win-win economic model for both service providers and tenants. For tenants, cloud
computing offers a pay-per-use model where tenants are expected to pay only for the resources they use.
For providers, it allows profit maximization by dynamically configuring and allocating resources that are
requested by tenants. The downside of cloud emerges from its own characteristics. When migrating to
the cloud the tenant loses full control of the physical infrastructure and the provider is responsible for
managing the infrastructure including its security. As this forces tenants to rely on service providers
for the security of their service, it creates a trust issue. Service providers acknowledge the trust issue
and provide a guarantee through an agreement called Service Level Agreement (SLA). However, almost
all existing SLAs do not guarantee the security aspect of tenants’ hosted services. In this context, we
propose several contributions for including security monitoring features in cloud SLAs. First, to define
the agreement we design an extension for a formal SLA language to include security monitoring features.
To customize the SLA for each tenant, the language is capable of taking users requirements in the form
of vulnerabilities. Second, to prepare the service level objectives (SLOs) in the SLA we proposed an
efficient performance estimation method for a security monitoring device. The metrics used in the SLO
characterize the performance of a monitoring device by taking all the necessary parameters into account.
Third, in order to check the satisfaction of an SLO we propose an in situ evaluation method of the
security monitoring configuration. This method requires cooperation between tenants and providers.
Finally, in order to remove the need for cooperation, we present an SLO verification method based on
a secure trusted and distributed ledger (blockchain). The performance estimation method and the two
SLO verification methods were implemented and experimentally evaluated.
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Chapter 1

Introduction

Utility computing changes the business model of information technology and it is a primary reason for
the success of the cloud computing paradigm. Cloud computing introduced a different kind of service
model for information system services. Historically, obtaining computing resources required upfront
capital investments. Utility computing reduces or removes these requirements allowing organizations to
use computing resources more extensively at the time of need.

In this chapter, we introduce the concept of computing utilities and specifically the cloud computing
paradigm. Furthermore, we introduce the concept of user-centric services and security monitoring in
clouds. We also present the objectives and contribution of this thesis, which is to design and implement
user-centric security monitoring services in the cloud. Finally, we conclude the chapter by describing the
structure of this document.

1.1 Computing as Utility

In 1969, Leonard Kleinrock [120], a scientist who made a significant contribution on a mathematical
theory of packet networks, wrote: “As of now, computer networks are still in their infancy, but as they
grow up and become sophisticated, we will probably see the spread of “computer utilities” which, like
present electric and telephone utilities, will service individual homes and offices across the country”.

Such a vision of computing as utility led to the development of different computing paradigms (e.g.
grid computing, cluster computing ...). Cloud computing is one such paradigm evolved to give highly
reliable, scalable, and autonomic service. It supports ubiquitous access with a modular computing
service. Similar to other utility services, in a computing service users (also known as tenants) pay
providers only when they access computing resources, which removes the need to buy and maintain a
self-owned information system infrastructure. On the other hand, service providers make efficient use of
resources to satisfy tenants demand and increase their profitability.

In the next sections, we describe the main factors that contribute to the success of cloud computing
and security challenges faced by the cloud computing services. We also introduce a unique feature of
cloud computing, user-centric nature of the service. Then we describe the need to have user-centric
security services in the cloud which is the problem addressed in this thesis.

1.1.1 Why Cloud Computing ?

There are different factors which lead to the success of cloud computing. One of the major factors is
the economics, and cloud computing presents a win-win economic model for both service providers and
tenants. For tenants, cloud computing offers a pay-per-use model where tenants are expected to pay
only for the resources they use. In comparison, investing in infrastructure to build one’s own system
(known as on-premise infrastructure) costs many folds more. For providers, it allows profit maximization
by dynamically configuring and allocating resources that are requested by tenants. Immediate access to
hardware resources, flexibility (easy to scale up and down), increased collaboration, convenience to meet
government compliance requirements, and sustainability are few examples of other advantages of clouds.

However, cloud computing also has disadvantages compared to on-premise infrastructures. From a
security perspective, the cloud is flawed by design. This is because in the cloud tenants cannot control the
physical infrastructure. Tenants trust the provider to handle the underlying infrastructure responsibly
and submit their data, application or system to deploy on the provided infrastructure. One can provide

1
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a counterargument by stating the abilities of cloud providers to implement the most secure standards
in their infrastructure. Assuming that most on-premise infrastructures will not keep up with all the
updates and security patches the counterargument is acceptable. Nevertheless, it does not change the
fact that deploying on an infrastructure which is owned by a different entity is problematic by itself.
Mainly because it forces the tenant to trust the service provider.

In a 2018 survey made by Morphean [176], a physical security as a service provider, which collects
information from 1500 IT decision makers across Europe (France, Germany, and UK) reported that
around 89% of business decision makers are using cloud-based solutions in their company. The study
described that contrary to the general assumption that the cloud is not secure, tenants are moving to
cloud for security reasons. In the survey, nearly 27% of respondents said that the reason they moved
applications to the cloud was to improve security, compared to 26% who were primarily motivated by
cost implications and 22.7% who looked to improve collaborative working. This can be explained by the
increase of trust in providers and maturity of tenants to understand the risks associated with the cloud.
Overall, combining the advantages and the increased attention on security produces a weighty argument
for using cloud-based technologies.

Service providers acknowledge the need for trust from tenants, and they provide a guarantee for their
services. Providers and tenants sign an agreement regarding different aspects of the provided service
in a contract called Service Level Agreement(SLA). The agreement, in addition to the provided service,
describes a penalty for the cases of violation. Having such terms in SLA gives assurance to existing
tenants and helps to attract more users into the cloud.

1.1.2 User-Centric Service

User-centric service could be introduced as a design pattern to favor adoption of the cloud and to make
it trustworthy for tenants. User-centric design philosophy tries to optimize the product around how
users can, want, or need to use the product, rather than forcing the users to change their behavior to
accommodate the product. In such a system, users are the center of the design. Ideally, such a design
is preferable for the cloud computing paradigm. In a world without cloud computing services, users will
set up their own infrastructure according to their own needs and requirements. When such users migrate
to the cloud, they expect to have some level of customization.

The rapid growth of needs for computing and diversity of applications make a user-centric design
more attractive and increase the use of cloud computing. For any kind of application, the cloud provides
computing resources specific to the requirements or needs of the application. The same resources can be
dynamically reconfigured to be used for other applications. Dynamic reconfigurability allows the cloud
to be configured according to the tenants’ demand, thus helps to provide user-centric services.

From a provider perspective, user-centric service is both a challenge and an opportunity. Since
multiple tenants, most probably with different computing service needs, reside under a single service
provider, the provider aims to satisfy as many of its customers needs as possible. On the other hand,
each customization helps a provider to maximize profit, i.e. the more a service is customized for a tenant,
the more profit it brings.

The cloud continues to be more user-centric, and the resources offered as a service continue to become
more specific. The market branched down from selling a fully operational virtualized machine towards
selling specific resources (e.g. memory and I/O resources for a few seconds ...) and from fully hosted
software service towards specific function, action, or piece of business logic (e.g. Function as a Service).
Such functions are expected to start within milliseconds, process an individual request, and then the
process ends. Such fine-graining of services allows tenants to build more complex systems according to
their needs and requirements.

Virtualization is the technology behind cloud computing. Virtualization is a technique to create a
virtual version of a device or resource, such as a server, storage device, network or even an operating
system where the framework divides the resource into one or more execution environments. This notion
of virtual instance helps the provider to manage the services provided to the tenants.

1.1.3 User-Centric Cloud Security Monitoring

Similar to the functional service needs in the cloud, tenants also have specific security monitoring require-
ments. Tenants consider different threat models and need to be monitored against different vulnerabili-
ties. Even tenants with the same service needs may consider different security monitoring requirements.
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For example, two tenants hosting the same software in the cloud may be interested in different vulnera-
bilities that exist in the software.

Although the functional service in the cloud is becoming more specific to tenants, security remained
mostly generic. There are a few developments regarding user-centric security in the cloud. Mainly the
types of security services addressing specific security threats (e.g. services addressing denial of service
(DOS)). However, addressing a specific security property depending on the needs and requirements of a
tenant remains as a challenge.

Security monitoring is the process of collecting and analyzing indicators of potential security threats,
then triaging these threats by appropriate action. It is clear that organizations of all sizes must take
steps to secure their data and systems in the ever-growing threat landscape. Security threats range from
malware, hackers, vulnerable systems (software or hardware), third party service providers to intentional
or unintentional actions from employees. Given the omnipresence and unavoidable nature of security
risks, quick response time is essential to maintaining system security. Therefore, automated, continuous
security monitoring is the solution to fast threat detection and response.

We can observe that security monitoring tasks are tightly coupled with the functionality of a system
and the needs or requirements of the tenants. Thus, service providers need to adapt the security moni-
toring tasks for each tenant as much as possible. Additionally, like other services, providers need to offer
a guarantee for the security monitoring aspect of the system. In this regard, we have yet to see more
improvements.

To better understand the usefulness of security guarantees in SLA, let us describe the concern of
information system users about the cloud. In the same study described above [176], two thirds (66%)
of all the respondents said that they consider security as an important factor when evaluating cloud
solutions. This is more than the subscription costs (51%) and speed of deployment (46%). The survey
also reported that security is the biggest concern (45%) for businesses that did not migrate to the cloud
followed by the migration cost (34%) and internal policy (32%).

The lack of security guarantee in general and the lack of security monitoring terms in SLA specifically
in the cloud is a bottleneck for its adoption, especially for enterprises and cautious consumers. It creates
a paradox to take away the physical infrastructure out of users control, motivating them to host their
service in providers infrastructure and not assuring the security of their system.

In this thesis, we present the work we have done to address the issues related to user-centric security
monitoring SLAs in clouds. To our knowledge currently existing cloud SLAs do not provide a guarantee
regarding the security monitoring aspect of the information system. Our goal is to include security
monitoring terms into cloud SLAs. This requires to supplement each phase in the cloud service life-
cycle, starting before the actual service deployment until the final stage of the service. More detailed
objectives are described in the next section.

1.2 Objectives

In the previous sections, we have presented how a user-centric design assisted and continues to assist
in the adoption of clouds. We also presented the need for security monitoring tasks to follow the same
design philosophy in order to improve the trust in cloud services and increase the success of clouds. In
general, the goal of our work is to include security monitoring terms into cloud SLAs.

We achieve this by including terms into SLAs that guarantee the performance of security monitoring
devices. The SLA defines the performance of a security monitoring device, where the device is configured
according to the tenants’ requirement. Then, the requested infrastructure will be configured towards
achieving the objectives defined in the agreement. Moreover, participants can verify the infrastructure
for the satisfaction of the expected level of performance. In cases when the infrastructure does not
perform as expected, penalties will be applied as described in the SLA. Following this, we define the
objectives of user-centric security monitoring SLAs.

• Like any other types of SLAs, to define security monitoring SLAs, we need an SLA language. The
purpose of such language is to facilitate and standardize the communication between tenants and
providers. The language should allow describing SLA components:

1. It should allow describing cloud security monitoring services. In this thesis, a security mon-
itoring service is described as the performance of a device which implements the monitoring
task.
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2. As we are aiming to have a user-centric security monitoring SLA, the language should allow
tenants to describe their security monitoring needs.

In addition, the language needs to be semantically balanced between tenants and providers. i.e. it
should not be very low level, in order to be understandable by regular cloud tenants, and it should
not be very high level in order to automate the implementation as much as possible.

• In order to guarantee the performance of a security monitoring device, we need metrics. Provid-
ing metrics describing the performance of a security monitoring devices requires taking different
parameters into account. These include both internal and external factors. For example, internal
factors like configurations of the monitoring device, which is related to the tenant’s requirement
and external factors like operational environment (the network throughput, the rate of attacks
...) of the monitoring device. Two devices with the same internal configuration will not behave
the same way when operating in a different external environment. For example, it is proven that
the rate of occurrence of an attack greatly affects the performance of Network Intrusion Detection
Systems (NIDS) [21].

• The metrics used in SLA terms should be relevant for tenants. In our SLA definition, the terms
describe the performance of security monitoring devices. Specifically, a metric which describes the
performance of a security monitoring device should take relevant parameters into account. The
SLA should define how to measure, and compute the expected metric and the metric should be
computable by all participants in the agreement.

• When providing security monitoring services, providers need to know their performance before
advertising it for potential tenants. That means, providers need to test their monitoring capability
beforehand. However, since there are tens of thousands or more security vulnerabilities and each
tenant is interested in different subsets (perhaps in very few) of the vulnerabilities, there should be
an efficient and practical method for the service providers to conduct the test. Such a method should
allow providers to estimate their performance capability with an acceptable level of preparation
task.

• The terms defined in the agreement should be verifiable by all participants. Verification or checking
the satisfaction of objectives is performed after a tenant and a provider agreed on some SLA terms
and the infrastructure is configured accordingly. For this purpose, we need to have a transparent
verification mechanism, i.e. a verification method which allows both tenants and providers to
perform the task. In addition, any party should be able to perform verification without relying on
the other party. Since verification is allowed to reduce the amount of trust on the other party, the
verification process should require as less trust as possible from the other party.

1.3 Contributions
In this section, we present our contributions. We proposed solutions in order to achieve the objectives
described in the previous section. To address the problem of including security monitoring terms into
SLA, we proposed solutions based on the SLA life-cycle. We designed and implemented the tasks
required for the SLA definition and SLA verification phases. We also presented a mechanism to reduce
the dependency between tenants and providers using a secure, trusted and distributed ledger. Our main
contributions are:

• We designed extensions to an existing SLA language called Cloud SLA (CSLA). Our extension,
called Extended CSLA (ECSLA), allows tenants to describe their security monitoring requirements
in terms of vulnerabilities. Additionally, ECSLA correlates the user’s requirements with other
services. That is, in ECSLA a security monitoring service is described as a relation between user
requirement as vulnerability, a software where the vulnerability exists and an infrastructure where
the software is running.

• To offer security monitoring SLAs, providers need to measure the performance of their security
monitoring capability before starting to negotiate with tenants. In the presence of tens of thou-
sands of vulnerabilities and diversified tenants, service providers need to perform a large number of
evaluations just to estimate their performance. In order to assist service providers in the prepara-
tion of SLA templates, we proposed an efficient performance estimation method which reduces the
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required number of evaluations. The proposed solution introduces two new ideas; first, we describe
a knowledge base building method which uses clustering to categorize a bunch of vulnerabilities
together in groups using some heuristics, and second, we propose a model to quantify the interfer-
ence between operations of monitoring vulnerabilities. Using these two methods, we can estimate
the performance of a monitoring device with a fewer number of evaluations compared to the naive
approach.

• The metrics used in our SLA terms consider the operational environment of the security monitor-
ing devices. Considering such a parameter requires reconciling two facts. First, the parameters
representing operation environments are non-deterministic (i.e. cannot be measured before the
expected event happens). For example, if a metric takes the rate of occurrence of attacks (the base
rate) in its formula, we cannot estimate its value before the occurrence of an actual attack. On the
other hand at the time of SLA definition, it is required to specify the performance of a security
monitoring device. To reconcile these two issues, we proposed an estimation mechanism where the
performance of a monitoring device is measured using known parameters, and the result is used to
model its performance and estimate for unknown values of that parameter. An SLA definition will
contain the model then it can be used whenever the measurement is performed.

• We propose an in situ evaluation method for security monitoring configurations. Our method can
evaluate the performance of a security monitoring setup in a production environment. The method
uses an attack injection technique, but injected attacks will not affect the virtual machines used
in the production environment. The method can be used by either of the parties. It also allows
computing the required metric. However, it requires cooperation between tenants and providers.

• In order to have an end-to-end security monitoring service, tenants require information like the
output of the monitoring devices and providers require knowledge about the services running inside
the tenants’ environments. As a result, there is a need for cooperation from both sides, which creates
a dependency between tenants and providers. In order to remove this dependency while performing
verification, we proposed a verification method which uses a logical secure component. The use of
a logical secure component is illustrated in an SLA addressing data integrity in clouds rather than
security monitoring devices. The method uses a secure trusted and distributed ledger (blockchain)
to store evidence of data integrity. The method allows checking data integrity without relying on
the other party. If there is any conflict between tenants and providers, the evidence can be used
to resolve the situation.

1.4 Outline of this Thesis
In this section, we describe the organization of the remainder of this document.

In Chapter 2 we describe the state of the art around cloud, security in cloud and Service Level
Agreements (SLAs). The chapter is organized into five main sections. While describing the current state
of the art, we show the limitations from the perspective of user-centric security monitoring service. The
first two sections provide a brief description of cloud computing and virtualization technologies. Then
we present information system security in general and a detailed description of security threats in the
cloud. Following that, we explain security monitoring with various types of tools to perform monitoring
activities. We describe existing metrics and mechanisms that are used to measure security monitoring
devices. Cloud security monitoring is also addressed in this section. The final section of the chapter
features cloud SLAs and related issues like their characteristics, components, etc. It also presents SLAs
that are used to address cloud security.

Chapter 3 describes how to achieve a user-centric security monitoring service and the challenges
associated with it. It describes how we correlate user-centric design and cloud SLAs. It also presents
how we decompose the problem of including security monitoring terms in cloud SLAs. To address the
problem, we proposed a three-step incremental strategy based on the SLA life-cycle. The next chapters
describe our contribution on these phases of security monitoring SLAs in clouds, with the exception of
the enforcement phase. In Chapter 7 we present the remaining phase as future work.

Chapter 4 presents our security monitoring SLAs definition mechanism. It starts by describing
the problems addressed regarding user-centric security monitoring SLA definition. Our SLA definition
guarantees the performance of NIDS in clouds, while the NIDS is configured based on the tenant’s
requirements. An explanation for our extension of an existing SLA language is also presented. Following
user-centric design, the language takes tenants requirements in terms of security vulnerabilities. It
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describes the performance of Network Intrusion Detection System (NIDS) using a metric which takes the
operational environment of an NIDS into account (specifically, the base rate). It also presents our metric
estimation model which uses known values of base rate to prepare a model and estimate performance of
NIDS for previously unknown base rate values. Our proposed method for service providers to efficiently
estimate their security monitoring capabilities over a large number of vulnerabilities is also presented in
this chapter. Finally, the chapter presents our prototype implementation and experimental evaluations
to show the feasibility of our approach for a metrics estimation method and on the solution for large
numbers of vulnerabilities to estimate the monitoring performance.

In Chapter 5 the third phase of the SLA life-cycle is presented. We investigate verification for SLAs
describing the performance of NIDSs. The chapter starts by explaining a simplified SLA enforcement
mechanism and identifying the challenges to achieve a transparent verification process. Then it goes
to describe the proposed verification method by explaining the architecture and algorithms used for
attack injection. The metrics computation method, which is executed after the attack campaign, is also
described. Experimental evaluation to measure the overhead of the proposed method and the results are
reported before finally describing shortcomings of the proposed method.

Chapter 6 shows an example of using secure components in the SLA life-cycle process. The chapter
describes a verification process based on a secure, distributed ledger for SLAs describing data integrity
in clouds. It explains the main problem in the verification method presented in Chapter 5 and argues
for the need to have a fully transparent verification process. The chapter also presents the life-cycle
of a data integrity SLA, provides background on blockchains and related works on both data integrity
and application of blockchains for data integrity. Then it describes the integrity checking protocol and
finalizes with the implementation, experiments and results measuring the overhead introduced as a result
of the verification process.

Chapter 7 concludes the thesis by describing the contributions and contrasting them with the objec-
tives which are defined in Section 1.2. It goes in detail describing the ideas, experiments, and results
found in our work. It also provides a future work to propose an improvement, to fill the remaining
works and an ambition of fully automated user-centric security monitoring services. The future works
are categorized into short, middle and long term by the required amount of time needed to achieve each
task.



Chapter 2

State Of the Art

In this chapter, we present the state of the art which serves as a background for our work. The chapter is
organized into five sections. First, we introduce cloud computing and virtualization. Next, we describe
information system security and security monitoring. Finally, Service Level Agreements (SLAs) and
their relation with security monitoring in clouds are presented.

2.1 Cloud Computing
Cloud computing evolved as one of the major computing utility as a service over the Internet. The
description presented by the National Institute of Standards and Technology (NIST) [143] incorporates
most of the commonly accepted characteristics of cloud computing. NIST defines cloud computing as
follows:

Definition 2.1. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction.

Service Providers (Providers in short) are entities providing such service and tenants refer users of
the service. The main characteristics of cloud computing are On-demand self-service, Broad network
access, Resource pooling, Elasticity and Measured Service.

2.1.1 Characteristics
• On-demand self-service: Provisioning a computing service does not necessarily require human

interaction with the service provider. A dedicated online Control Panel (CP) or an Application
Programing Interface (API) helps users to attain the service.

• Broad network access: Cloud services are provided through a network (Internet or local network).
Any device (e.g. phone, smart device, computer ...) having access to the network can access the
service.

• Resource pooling: A service provider puts together its available resources to provide services for
more than one tenant with different needs at the same time (multi-tenancy). Tenants needs could
be achieved dynamically, and a tenant has no knowledge over the exact location of the provided
resource. As part of requirements for a service, tenants could specify location at a high level of
abstraction (e.g., country, state, or data center).

• Elasticity (Dynamic Scaling): The size of resources can dynamically and automatically scale up
and down according to the current workload. This is greatly attractive for tenants as it reduces
their costs compared to investing on a self owned (on-premises) infrastructure for a given service
(i.e. tenants pay only for what they use).

• Measured Service: Resource usage is measured in order to control and optimize usage. Measuring
a service helps to provide guarantees for tenants (such as quality of service). Besides, it helps
as a feedback loop in autonomic computing, allowing services to scale on-demand and to perform
automatic failure recovery.

7
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These characteristics contributed to the growth of cloud computing. For companies, the alternative
to cloud computing is to invest in on-premises infrastructures (buying their own hardware and building
the required infrastructure). This will not only require a high budget but also requires maintaining and
managing hardware components including their security. Cloud computing helps to reduce this burden
hence reducing the cost.

In the next sections, we describe different cloud deployment and service models.

2.1.2 Deployment Models

• Private Cloud is an infrastructure used only by a single organization. It can be owned and managed
by the organization or a third party,

• Public Cloud is an infrastructure used by the general public. Owned and managed by a third-party
cloud provider,

• Community Cloud is an infrastructure shared between several organizations from a specific com-
munity with common concerns (security, compliance, policy, etc.),

• Hybrid Cloud is an infrastructure comprising two or more different cloud deployment models (pri-
vate, public, community). A hybrid cloud service crosses isolation and provider boundaries so that
it cannot be put in one category. An organization can store sensitive data in a private cloud and
outsource some services over the data (without compromising sensitivity) in a public cloud for
additional capabilities.

2.1.3 Service Models

There are three main types of models to deliver cloud computing services. In general, they describe
different layers of abstraction to show which cloud resources are offered. These are:

• Infrastructure as a Service (IaaS): Provides processing, storage or networking resources as a service.
Tenants can deploy any software, which can include operating systems and applications. Examples
of IaaS clouds include Amazon Web Services (Amazon Elastic Compute (EC2) [7] for computing
and Amazon Simple Storage Service (Amazon S3) [8] for storage), Google Compute Engine [97]
and Digital Ocean [67].

• Platform as a Service (PaaS): Provides resource to deploy tenants’ application developed using
languages and tools supported by the provider. Tenants do not manage or control the underlying
cloud infrastructure (network, servers, operating systems ...). Examples of PaaS include Google
App Engine [95] and Heroku Runtime [104].

• Software as a Service (SaaS): Provides applications running on providers’ infrastructure and mostly
accessed through the Internet. With the possible exception of limited user specific configuration
settings, tenants have no control on the underlying infrastructure. Services are accessible through
a web interface (CP) or API. Examples of SaaS includes Dropbox [52] and Google Apps [96]

Figure 2.1 shows the responsibilities of providers and tenants in managing various tiers of the cloud
with different service models. There are inter-dependencies between these models (i.e usually SaaS and
PaaS are running on top of IaaS). While the above classification is widely accepted the authors of [115]
argued that it is not precise enough to give users and providers a common terminology to differentiate
between existing cloud offers. In their paper they propose a more fine-grained abstraction. Example,
IaaS services can be classified into Hardware as a Service (HWaaS) which gives tenants control on the
HW including the OS and Operating System as a Service (OSaaS) which offers a fully managed OS
including the underlying HW resources.

In practice a more fine-grained new service model like Resource as a Service cloud (RaaS) [27] has
emerged. This is a transition from a model of selling bundles of resources packaged as a server (e.g a
virtual machine with 4 CPU and 8 GB RAM) to continuously selling individual computing, memory,
and I/O resources for a few seconds at a time (e.g Amazon Spot Instance [6] changes its price every 5
minute). RaaS is less reliable relatively to traditional IaaS models but it provides a computing service
with a much cheaper price. (e.g Amazon Spot has a discount up to 90% compared to regular IaaS).
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Figure 2.1: Responsibilities in different service models

Such a fine-grained model with the concept of Cloud Federation [42] and Supercloud [112] (a cloud
that uses resources from various private and public clouds) is being used to increase reliability and remove
the vendor lock-in problem which forces a tenant to be locked with a single service provider, which results
a fear of price spike.

Virtualization is the main technology which enables such a dynamic computing utility service. In the
next section we present a detailed description of Virtualization.

2.2 Virtualization
Virtualization refers to the act of creating a virtual (rather than actual) replica of an information system
resource. The concept dates back in the late 1960s and early 1970s as IBM introduces CP/CMS time-
sharing operating system with virtual memory support [32]. Since then there have been different studies
on simulation of a full computer on a different system [94]. A machine created by such a technique
is called virtual machine. In [178] GJ Popek et al. formally defined virtual machine as “an efficient,
isolated, duplicate of the real machine".

Virtualization has lots of advantages, one of its advantage is to maximize hardware resource utiliza-
tion. With virtualization a single physical resource is shared between multiple users, where each user
performs its operation as if she/he was using the actual machine.

Next we present virtualization techniques for two types of resources, Machine and Network. It should
be noted that virtualization is not limited to these resources. We focus on technologies directly related
to our PhD thesis work.

2.2.1 Machine Virtualization
Machine or server virtualization is the virtualization of a physical computer. It allows running multiple
servers in a single physical computer, a server running on top of the virtualized environment is called a
guest and a host can serve multiple guests. Each guest believes that it is running on its own hardware.

Figure 2.2 shows virtualized and non-virtualized systems. In a virtualized system, an intermedi-
ate component (labeled Virtual Machine Monitor (VMM)) is used to imitate the functionality of the
physical machine for guest OSs running on the top. Different solutions were developed to achieve such
functionality. We describe the major techniques in the following subsections.

Emulation

Emulation is the first attempt towards imitating one system in a different system. Historically such a
technique has been used to play classic (and/or forgotten) console video games using programming code,
which is interpreted by a current-era system. The goal is to mimic the behavior of a specific system.
One of the major techniques that is used for emulation is Binary Translation (BT) [201, 51]. It maps
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Figure 2.2: Virtualized and Non-Virtualized Infrastructure1

instructions from a given binary file to another set of instructions, with equivalent output, to be executed
a on different architecture. When emulating a machine, the emulator reads instruction from guest OS
and translate it into equivalent instructions using binary translation for the underneath physical device.

For example, say there two systems, A (something we already have) and B (which we may not have),
emulating enables giving input of system B to System A but obtain the same result as system B. A and
B can have different architectures. Many printers, for example, are designed to emulate Hewlett-Packard
LaserJet printers because so much software is written for HP printers. Theoretically any system can
be emulated within any other system. QEMU [26] and Bochs [30] are examples of machine emulators
supporting execution of unmodified OS.

Full Virtualization

In full virtualization, the underneath hardware is simulated enough to run an unmodified OS as a guest
and guest instructions are run natively on the CPU. Usually the virtual instance will has the same
architecture as the underlying hardware. The guest is not aware that it is running on a simulated
(virtualized) environment. The guest OS on a host is managed by the VMM also known as hypervisor.
The hypervisor controls the flow of instructions to the CPU and input/outputs between the guest OS
and the physical hardware like memory and network interface card. The hypervisor runs in the most
privileged section of the system (close to the physical hardware) and it is responsible for the isolation of
guests so that each of them has access to only its own resources (although it is possible to provide shared
resource, like files in the host). Usually guests and the physical machine have similar architectures which
is not usual case for emulation.

Full virtualization offers the best isolation and security for virtual machines, and simplifies migration
and portability as it does not require the guest OS to be modified. But there are some instructions that
are not virtualizable. These are sensitive instructions that can modify part of the machine’s resources but
do not trap (non-privileged) [82]. Hence, they can modify the state of a machine without the hypervisor
managing it, which can have negative effect. Binary translation is used as one solution to overcome such
problem. Examples of full virtualization technology include VMware Workstation [219], Kernel Virtual
Machine(KVM) [118] and VirtualBox [217].

Hardware Assisted Virtualization

Another technique to support non-virtualizable instructions is by using hardware assistance. Different
hardware components have been developed to simplify virtualization techniques. This is to decrease the
overhead from software-only binary translation by having an additional hardware component. The hard-
ware component is designed to support non-virtualizable instructions with a new CPU execution feature
that allows the hypervisor to run in root mode with higher privilege than a regular architecture [138].
This allows trapping of non-virtualizable instructions and removing the need for binary translation. In-
tel VT-x [213] and AMD-V [11] are examples of processor extensions providing hardware assistance for
virtualization.

1https://software.intel.com/en-us/articles/the-advantages-of-using-virtualization-technology-in-the-enterprise
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Para-virtualization

As the name indicates ("Para" means "beside" or "alongside"), para-virtualization provides virtualization
by means of the guest OS interacting with the hypervisor to improve performance and efficiency. The
kernel of the guest OS requires modification to be able to run in a para-virtualized infrastructure. Some
instructions are non-virtualizable and the modification replaces such instructions with hypercalls. A
hypercall is a software trap from a VM to the hypervisor, just as a syscall is a software trap from an
application to the kernel. The hypervisor provides an API to accept hypercalls. The hypervisor also
provides hypercall interfaces for other critical kernel operations such as memory management, interrupt
handling and time keeping.

The selling point of para-virtualization is lower overhead but such advantage can vary greatly depend-
ing on the workload. Para-virtualization also has poor compatibility and portability because it requires
the guest OS to be modified. Xen [23] is the most prominent example of such technology.

In practice, existing virtualization services incorporate more than one of the methods. For example
Xen [23] supports both full and para-virtualization for different components in the system.

Operating-system-level Virtualization

In operating-system-level virtualization the hardware is not virtualized. Instead, the host OS kernel
allows the existence of multiple isolated user-space instances. This is different from the classical OS
architecture where there is one user and one kernel space. The isolated instances are called containers.
Applications running inside containers have the illusion to be in separate machines.

Such a method provides flexible and low-overhead virtualization which shares a single kernel. Each
container can only run a system of the same type as the host environment, e.g. Linux guests on a
Linux host. From a security perspective privileged containers (any container where the container uid 0
is mapped to the host’s uid 0) are not and cannot be root-safe [135], i.e privileged processes within a
container should be treated as privileged processes running outside the container.

Most known examples of such technologies include Docker [68], LXC [136] and Free BSD Jails [84].

2.2.2 Network Virtualization
Network virtualization is the process of creating software-based, isolated virtual network, potentially mul-
tiple networks, that are running above a single physical network infrastructure. It is mainly characterized
by decoupling the network functionalities from the underlying physical infrastructure. Historically, net-
work virtualization has been looked at from two perspectives (i) as a tool for evaluating new architectures
(ii) as a fundamental diversifying attribute of the next-generation architecture itself [50].

After an application generates a message and prepares to send it over network, the messaging starts
from the Network Interface Card (NIC) in the host. The NIC is connected to layer 2 (L2) network
endpoint (Ethernet). Multiple L2 segments are connected one another with a switch to form a L2
network (a subnet). Multiple subnets connect via routers to form the Internet. Network virtualization
refers to the virtualization of each component (NIC, switch, router ...) in this stack.

Making significant changes in the Internet architecture is almost impossible and changes are limited
to small and incremental modifications. Network virtualization was proposed to overcome such impasse
and make the Internet architecture more flexible [16, 212]. Network virtualization allows multiple het-
erogeneous virtual networks to coexist together in the same infrastructure but isolated from one another.

There have been different technologies for enabling multiple coexisting networks. Examples include
Virtual local area network (VLAN), Virtual Private Networks (VPN), active and programmable networks
and overlay networks.

• Virtual Local Area Network (VLAN)

VLAN allows breaking single large flat networks into multiple broadcast domains. Hosts in the
same VLAN, regardless of their physical connectivity, have the illusion to be attached to the same
wire. Usually VLANs are constructed at the data link layer (L2).

A simple VLAN divide network based on physical switch ports. Devices connected to the same set
of ports can perform a direct communication.

The most common type of VLAN is not based on physical ports, but is based on logical techniques
(e.g adding tags on packets), hence flexible for administration and management. Frames in the
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same VLAN have a common ID (VLAN ID), and VLAN-enabled switches use both the destination
MAC address and the VLAN ID to forward frames. This type of VLAN is called tagged VLAN.
VLANs can be implemented in hardware switches by assigning VLAN ID to a port. Such kind of
VLANs are able communicate only with or through other devices in the VLAN. The IEEE 802.1Q
standard [98] specifies to add an extra field to Ethernet frames to include a 12-bit VLAN ID,
allowing dividing a single network over 4000 broadcast domains.

• Virtual Private Networks (VPN)

A VPN allows creating a private (secure) communication channel between two or more hosts over
a public network like the Internet. Packets to be sent through a VPN connection (tunnel) are
encrypted and encapsulated inside another IP packet. The outer packet uses the end points of
the VPN as a source and destination address, which are usually different from the inner packet
addresses.

Based on the layers where the VPN are constructed, they can be classified into different cate-
gories [78], namely Data link, Network, Application layer VPNs. Data link layer VPNs connect
participants on layer 2 of the OSI model. Frame Relay and Asynchronous Transfer Mode (ATM)
are example protocols used to construct data link VPNs. However, they are often expensive, be-
cause they require dedicated Layer 2 pathways to be created. Network layer VPNs are created
using Layer 3 tunneling and/or encryption techniques. IPsec tunneling and encryption protocol,
Generic routing encapsulation (GRE) [77] and Multi-Protocol Label Switching (MPLS) [190] are
prominent techniques used for network layer VPNs. Application layer VPNs focus on specific ap-
plications. Examples include SSL-based VPNs and SSH. The drawback of application layer VPNs
is that they require configuration for every type of application.

• Active and Programmable Networks

Active and programmable networks [46] were another attempt to create a dynamic network ar-
chitecture i.e an architecture where the message is not passed through static layers of protocols
but dynamically selected by an application when the message is ready to be sent. Programmable
networks aim to expose an interface to allow applications and middleware to manipulate low-level
network resources to construct and manage services. Active networks go a step further and pro-
pose sending executable code to network elements using active packets in order to make "real-time"
changes to the underlying network operation.

• Overlay networks

Overlay networks are logical networks built on top of physical networks. The Internet started as
an overlay network on top of public telephone networks. They are flexible and easily deployable
compared to other types of networks [15, 49]. Overlay network is assumed to be the most recent
ancestor of network virtualization in terms of the goal of resolving the ossification issue of the
current Internet and of defining innovative network architectures and services [155].

A more recent and higher level concept in creating dynamic and efficiently manageable network
infrastructures is Software Defined Networking (SDN). The next section explains this concept in more
detail.

Software Defined Networking (SDN)

In 2006 Ethane [38], a new network architecture for enterprise network management, was proposed.
Ethane focused on using a centralized controller to manage policy and security in a network. The
architecture contains two main components, a controller that determines the fate of all packets based on
global policy and Ethane Switches which are dumb and contain a simple flow table and a secure channel
to the controller. This laid the foundation for what is known as Software Defined Networking (SDN).

SDN is a networking paradigm which proposes to separate the network control (component which
makes decision) and forwarding functions (component which makes the actual forwarding of packets).
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This enabled the controlling unit to be centralized, programmable and abstracts the underlying compo-
nents for services running on the top. In [111] the authors described four innovations provided by the
paradigm. These are:

• Separation of the control and data planes: The functionality in computer networks can be divided
into three planes: the data, control and management planes. The data plane processes messages
generated by users. The control plane processes message from network routing protocols like
Open Shortest Path First (OSPF) or Spanning Tree. The management plane is in charge of traffic
statistics and state of networking equipment. In traditional networking the data and control planes
are embedded in the same networking devices. Even if decentralization makes the network resilient,
it makes the architecture very complex and relatively static. SDN proposes to separate the data
and control planes. The control plane implements the logic and intelligence and prepares the
forwarding table. The data plane performs simple forwarding according to the table. This reduces
the complexity, makes the forwarding device simple and aims to make the price of forwarding
devices cheaper.

• Centralization of the control plane: The separated controlling unit is called SDN controller or
Network Operating System (NOS). Contrary to the standard objections to centralized approaches,
SDN proposes to centralize the controller for easing management tasks. In [38] the authors argue
that standard replication techniques with centralized controller can provide excellent resilience and
scalability, which was the advantage of traditional networking. A central controller is responsible
to program the forwarding plane using flow-based policies.

• Programmability of the control plane: One of the main value propositions of SDN is network
programmability. Hence, the programmable control plane is the most important asset. This feature
is a consequence of having a centralized controller. A centralized logic unit is easy to program and
manipulate.

• Standardization of APIs: SDN has got enormous attraction from both industry and academia and
a wide range of standardization efforts is being made around SDN. The Open Network Foundation
(ONF) [162], an industrial-driven consortium to promote SDN and software defined standards, was
created by a group of networking companies and service providers. Most of the implementations
are coming from open source contributions [191], attracting a new wave of innovation.

Figure 2.3 shows SDN architecture and different APIs. OpenFlow [142], dubbed ‘a radical new
idea in networking’ [128], is a prominent API between the control and data planes (also known
as southbound API). Forwarding components (OpenFlow switch) contain one or more flow tables
and layers to securely communicate with the controller using the OpenFlow protocol. A flow table
contains flow entries which are used to determine action against incoming packets. The actions
are flow-based, i.e packets in the same flow are treated in the same manner. Other examples of
southbound APIs includes OpFlex [204], POF [205] and ForCES [69].

Figure 2.3 also shows SDN controller implementations, like Floodlight [79], OpenDaylight [166] and
Nox [100]. FlowVisor [200] serves as a networking hypervisor which allows multiple logical networks
to share the same OpenFlow networking infrastructure. Alternatively OpenVirteX [2] can be used as
a proxy between the network operating system and the forwarding devices providing multi-tenancy
over an OpenFlow network. Different types of such virtualization tools (e.g. AutoSlice [31] and
FlowN [71]), have been proposed with slightly different sets of goals.

With the advances in SDN technology, various commercial SDN tools and services appeared in the
market. NSX [218] from VMWare is a network virtualization and security platform for the Software-
Defined Data Center (SDDC). It provides a complete set of logical networking elements and services
(switching, routing, firewalling, quality of service (QoS), monitoring ...). SDN VE [127] is another
network virtualization tool from IBM. SDN VE uses OpenDaylight [166] as one of its components and
can support up to 16,000 virtual networks and 128,000 virtual machines with a single instantiation.

Recent studies [144] proposed to include another layer called Knowledge Plane to the standard SDN
architecture. It is a plane based on machine learning and responsible for learning the behavior of the
network and, in some cases, automatically operate the network accordingly. Such type of paradigm is
also known as Knowledge-Defined Networking.

In [62] the authors discussed pros and cons of SDN from a security perspective. Centralization of
the controller with traffic statistics collection gives the controller a global view of the network. This
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Figure 2.3: Software defined networking APIs [111]

helps to perform network wide intrusion detection, detection of switch’s malicious behavior, and network
forensics. The statistics with conditional rule also helps to reactively drop or redirect packets. Hence,
it helps in detection of to Denial of Service (DoS) attacks and redirection to honeypot. Flow based
forwarding also helps to have more control on packets and apply access control policies.

On the other hand each plane of SDN is more targeted to specific attacks. Upon the arrival of new
flow, if there is no entry in the flow table matching for the new flow, the data plane forwards packets to
the controller. Meanwhile, the packet is stored in the buffer of the data plane. This makes the data plane
vulnerable to DoS, if a malicious user floods the switch using packets with large payloads that belong
to different flows. Flow-based forwarding is also affected by encryption. Since it requires accessing some
sections of the packet headers, encrypted packets could hide required information for such operation.
In [76] this issue is addressed by constructing models to identify the payload type of the encrypted
packets based on analyzing traffic statistics such as message length, inter-packet arrival times, etc. The
control plane is also susceptible to DoS attack in the same way as the data plane. Replication is one of
the solutions against this attack. Nevertheless, the forwarding plane should operate as if there was only
one controller (i.e logical centralization of controllers).

SDN is an important technology enabling user driven computing utility services (e.g cloud computing).
Specifically, it allows provision of isolated multiple networks, helps to dynamically configure each network
separately. Hence, it helps to fulfill tenant’s requirements without disturbing the configuration of other
networks in the same infrastructure.

In the following section we present an example of IaaS platform which comprises most of the concepts
that we have discussed. There are different implementations of IaaS platforms both open source and
proprietary. We present OpenStack open source cloud platform.

Figure 2.4: Openstack services overview2

2https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
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Figure 2.5: Openstack networking overview3

2.2.3 OpenStack, an Example IaaS Platform
OpenStack [163] is an open source software platform for cloud computing. It provides an IaaS solution
through a variety of complementary services. Each service offers an API that facilitates integration.
It is managed by the OpenStack Foundation and more than 500 companies have joined the project.
OpenStack is designed with a highly modular architecture, simple implementation, massive scalability,
and a rich set of features.

OpenStack is composed of different services including identity, networking, computing, storage dash-
board and telemetry services that are communicating through an API. There are different types of
implementations for each service; the default implementations are shown in Figure 2.4 (names shown
in bracket). Different types of nodes host different services. There is a controller node as a central
managing entity. It is responsible to accept requests from tenants through a dashboard and execute
the requests with the help of other services, monitor available resources and related management tasks.
Compute nodes host the actual virtual machines (also known as instances). The network nodes provides
services related to networking. Figure 2.5 shows network connectivity of different nodes. Usually VMs
are configured with two network connections, one for management and the other one for communication.

The high level steps to create an instance are as follows:

• A user needs to authenticate using the dashboard (Horizon) or command line interface (CLI). The
authentication service (Keystone) is responsible to handle authentication requests and it sends back
an auth-token which will be used for sending requests to other components.

• The dashboard then sends the create command to nova-api service.

• The nova-api service performs different checks (e.g. correctness of the auth-token, conflicts with
existing VMs, ... ), creates a database entry and sends requests to the nova-scheduler.

• The nova-scheduler locates an appropriate host and sends the request to nova-compute.

• Nova-compute gets instance information such as host id and flavor (RAM, CPU and Disk) from
nova-conductor and the image URI from glance-api. It allocates network through the Neutron API,
and prepares to attach volume to the instance through block storage (cinder-api).

• Finally, nova-compute prepares the request for the hypervisor of the target host and executes it on
the hypervisor using libvirt.

All services perform different types of checks including the auth-token and passes results through a
database.

3https://docs.openstack.org/security-guide/networking/architecture.html
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Figure 2.6: Security concepts and relationships (Source [55])

2.3 Information System Security

Information system security means protecting information and information systems from unauthorized
access, use, disclosure, disruption, modification, or destruction. An information system as described
in [126] is interrelated components working together to collect, process, store, and disseminate informa-
tion to support decision making, coordination, control, analysis, and visualization in an organization.
The form of data in an information system can be electronic or physical.

Figure 2.6 shows security concepts and their relations.

• Owner : of a system (an organization or a person) is an entity getting value out of a given system.

• Assets: are entities that the owner places value upon and security is concerned with the protection
of assets. Since, the term “value" is highly subjective, almost anything can be an asset, including
intangible things like reputation of an organization.

• Threat agents: e.g. hackers or malicious users, attempt to abuse or damage assets contrary to the
intension of owners.

• Threat : is potential for impairment of the assets in a way that the value of assets to the owners
would be reduced.

• Risk : the potential that a given threat will exploit vulnerabilities of an asset or group of assets
and thereby cause harm to the owner. Threats increase the risk of damage on assets.

• Countermeasures: Actions taken to minimize risk on an asset. The countermeasures vary depending
on the nature of the risk and possibility of being realized. They could range from software solutions
(e.g. firewall, IDS or policy changes) to hardware or even physical guards around the asset.

In this thesis information system security refers to securing digital assets against software based
threats. Hence, we do not consider protecting the infrastructure from physical theft. In the context of
cloud, as it is described in Section 2.1.3, assets in each service model has different tiers of ownership.
This with the multi-tenancy feature tangles security of clouds. Section 2.3.4 provides more details on
different types of threats.

Security rules and regulations are described in the security policy. In general, the goal of a security
policy is (not limited) to achieve security properties like confidentiality, integrity and availability. There
are different mechanisms to reach the desired goal. In the following sections we describe security policy,
properties and mechanisms.
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2.3.1 Security Policy
The information security policy is an aggregate of directives, regulations, rules, and practices that pre-
scribe how an organization manages, protects, and distributes information [81]. It is a definition of “what
it means to be secure” for a system, organization or other entity. For organizations having security policy
is crucial to create a secure working environment.

A security policy should be clearly written and as detailed as possible in order to facilitate its
implementation. Usability is the most important property for a security policy. There is no purpose for a
security policy if organizations or individuals within an organization cannot implement the guidelines or
regulations defined. The simple existence of these policies does not automatically translate into desirable
behaviors. It must be enforceable with security tools where appropriate. The security policy should also
specify what auditing processes are put in place to verify compliance and actions to be taken in cases of
non-compliance.

The three key principles surrounding information system security are prevention, detection and re-
sponse.

• Prevention: is the process or actions taken to reduce the chance of arising security incidents.
Prevention should be the first step but prevention does not always work. In fact most tools used
to prevent incidents rely on reactive signature-based approaches and attacks are getting more and
more sophisticated bypassing prevention tools.

• Detection: of security breaches is extremely critical. It determines that either an attack is underway
or has occurred and detection helps to report it. The sooner the detection is the better to respond
accordingly.

• Response: Once an incident is detected there must be a timely response. An owner can limit
the breach impact and contain the exposure by having an incident responding plan and efficiently
executing it when detection occurs.

Security policies should develop strategies around these principles. There must also be the right mix of
investments across prevention, detection and response capabilities within an organization.

2.3.2 Security Properties
Three of the main properties in information security are Confidentiality, Integrity, and Availability,
commonly known as the CIA triads. The goal is to achieve these properties with efficient policy im-
plementation, all with acceptable overhead on the production environment. These three properties has
been widely used to define security, including in US law [215]. They are defined as follows:

Confidentiality

Confidentiality is defined as preserving authorized restrictions on information access and disclosure,
including means for protecting personal privacy and proprietary information. It should be noted that
confidentiality is similar but not the same as privacy. Privacy as defined in [227] is the desire of a person
or right of individuals to hold information about themselves in secret, free from the knowledge of others.

Integrity

Integrity is guarding against improper information modification or destruction. It includes ensuring
information non-repudiation and authenticity. To maintain integrity, a system not only need to detect
but also need to recover from integrity failure (improper modification). Integrity gives assurance of the
accuracy and consistency of an entity over its life-cycle.

Availability

Availability is defined as ensuring timely and reliable access to and use of information by an authorized
entity. This security property is not about keeping information in secret or protecting from tamper but
it is about protecting disruption. In an information system where components are connected through a
network, loss of availability can refer to a wide variety of breaks anywhere in the chain (e.g. network
error in local machine or between the local machine and the Internet service provider, power outage or
other software errors ...).
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2.3.3 Security Mechanisms

It is important to be sure that all the security policies are enforced by mechanisms that are strong
enough, otherwise it is impossible to be sure that the system is secure. It should be clear that even
enforcing all defined policies does not guarantee full security, it can be counted as the best effort that
an entity can make. Security mechanisms are designed to detect, prevent, or recover from a security
attack. In this section we describe most common security mechanisms for protecting an information
system. To facilitate the discussion, security mechanisms are categorized into two groups: physical and
technical mechanisms. Technical mechanisms are further divided into hardware, software and distributed
algorithm-based mechanisms. Even if there are some complementary mechanisms each of them address
different types of security threats.

Physical security mechanisms

Physical security mechanisms are designed to physically deny access into the information system by
keeping the resources behind a locked door and protected from threats of natural and human-made
disasters. Physical security involves the use of different systems which include CCTV surveillance,
security guards, protective barriers, locks, access control protocols etc.

Technical security mechanisms

Technical security mechanisms are applied in the system as part or beside the functionalities of the
system. They are presented in three parts hardware, software and distributed algorithm-based.

• Hardware-based mechanisms

– Trusted execution environment (TEE): Mechanisms using a secure and isolated area of a
main processor. A TEE ensures that data is stored, processed and protected in a trusted
environment. AMD PSP [10], Intel SGX [58], ARM TrustZone [19] and Keystone [119] are
examples of TEE.

– Memory Management Unit (MMU): Hardware component, usually implemented as part of
the CPU and used to perform virtual memory management. The MMU uses a page table to
map virtual page addresses to physical page addresses in main memory. It is used to define
separate memory contexts (allowing the CPU to switch between processes without reloading
all the translation state information) and for privilege control i.e preventing access of system
level areas by user level programs. The MMU is also used to implement address space layout
randomization (ASLR) which prevents attacks that rely on known addresses.

• Software-based mechanisms

– Authentication: This is the most common type of security mechanism used to verify the
identity of a user. It is often implemented by using a user name and password. It can
also be coupled with other mechanisms (e.g hardware or cryptography based authentication).
The security comes from the assumption that only a legitimate user can provide a correct
combination of both user name and password.

– Access control: As the name indicates it is a security mechanism that controls who can access
resources in a system. It protects assets from being accessed by an unauthorized entity. Most
of the time access control works with authentication so that access is approved based on
successful authentication and based on what the subject is authorized to access. It should be
noted that access control is a general concept and it is not only implemented using software-
based mechanism.

– Traffic padding: Traffic padding mechanisms keep traffic approximately constant, so that no
one can gain information by observing it. This is achieved by producing a continuous packet
output even in the absence of data to be sent. If there is no message to be transfered random
data is generated and used instead. Sometime this technique is implemented with hardware
support.

– Routing control: A routing control mechanism makes it possible to choose a specific path for
sending data through a network, hence avoiding undesirable nodes.
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– Cryptography: It is a security mechanism where mathematical computation is applied to
protect private messages from third party or public. It is based on mathematical theory
and cryptographic algorithms are designed around computational hardness assumptions. The
security of such mechanisms arises from the fact that the underlying basic problem is hard
enough that there is no feasible practical means to break it. Although it may be theoretically
possible to break it.
Cryptography is a generic term as a security mechanism. It is applied in various techniques
including encryption, digital signature, secure multi-party computation etc ...

• Distributed algorithm based

– Consensus algorithm: Algorithm used to reach an agreement on a single data value between
participants of a distributed system. Such type of algorithm is used to keep consistency of
a given data across all participants, hence keeping integrity of the data. The security arises
from the assumption that the majority of the participants are honest and the correct value is
decided by the majority. A notable implementation of this method is used in digital currency
(cryptocurrency) applications like Bitcoin [154] and Ethereum [34].

In practice different types of security mechanisms are used together to achieve a full round security. As
an example users are requested to authenticate in order to get access to a web service. The communication
between a user and a service should be secured to protect from man in the middle types of attack. In
addition, the data (user name and password information) stored in the database should be protected
using another type of security mechanism in order to prevent information leakage and unauthorized
access.

Almost all cloud services require authentication and they provide an interface to submit user name
and password. In some cases public-key cryptography (asymmetric key cryptography) is used for au-
thentication. Most cloud service providers also claim to use encryption to protect users data from being
accessed by third parties.

In the next section we present security threats in the cloud, specifically threats resulting from virtu-
alization are presented.

2.3.4 Security Threats in the Cloud

Contrary to on-premises infrastructures which are managed by a single entity, the *-as-a-service cloud
computing model presents challenges for security. The *-as-a-service model divides responsibilities be-
tween the service provider and tenants (see Section 2.1.3). For each component the security responsibility
lies on the entity managing it. However, the consequence of a component not being secure may affect
other entities too. Hence, securing the entire tier requires cooperation between different entities.

In the following section we present security threats in the cloud in two sections. First, threats related
to the cloud features and second threats related to virtualization, which is the underlying technology
enabling the cloud.

Threats related to cloud features

Takabi et.al [208] presented the unique issues of cloud computing that exacerbate security and privacy
challenges in clouds. The authors discussed challenges in the cloud including the need to have technical
and non-technical means to prevent cloud providers from abusing customer data.

In [88] the authors discussed basic features of clouds from their security implication perspective.
Features like scaling, transience, diversity and mobility are presented. (i) Scaling : easy and rapid scaling
presents a security challenge for an organization. Specially in cases when administrative tasks are not
automated, scaling significantly multiplies the impact of catastrophic events. (ii) Transience: VMs
last for a short period relative to traditional machines. This property could help an infected VM to
appear for a short time, infect other machines, and disappear before it can be detected. (iii) Diversity :
homogeneity helps organizations to enforce security policies (all machines run the most current patched
software) and diversity creates management nuisance (e.g keeping track of different patches for different
versions). (iv) Mobility : easy portability of VMs facilitates theft and creates difficulties while tracking
security problems.
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The cloud multi-tenancy feature introduces vulnerability like side channel (passively observing infor-
mation) and covert channel (actively sending data) attacks [188, 109], as the attacker and target VMs
can be co-located in the same host. Some refer to this as an isolation problem, adding it as a fourth
security property. Ristenpart et al. [188] showed ways to place an attacker virtual machine (VM) on the
same physical machine as the targeted VM, and then to construct a side channel between the two VMs
on the same physical machine, which enables SSH keystroke timing attacks. In [109] the authors showed
the possibility of cross-VM RSA key recovery when the attacker and target VM are co-located in the
same host.

Threats related to virtualization technology

Virtualization is the main technology behind cloud computing. It creates a logical equivalent of physical
devices and machines running on top of a virtualized environment are independent of the actual physical
devices. This decoupling gives virtualization inherent security benefits. Nevertheless, it also introduces
new threats and existing security issues also take new form in relation to virtualization.

In non-virtualized environments the OS highly trusts the underlying hardware, the same OS in a
virtualized environment will have the same trust level for the virtual hardware, hence for the hypervisor
(VMM). With such a trust model a malicious or compromised hypervisor may interfere with the VM. As
a result secure virtualization relies on the security of the hypervisor and underlying hardware. Using a
Trusted Platform Module (TPM) was proposed as a solution for such threats [172]. The TPM provides
assurance for integrity of different components at the boot time including the hypervisor and hardware.
In [173] the authors proposed the notion virtualized TPM to extend its functionality. Even if trusted
execution provides a solution, overall the TPM does not protect against vulnerability exploits after boot
time. There has been some works [224] showing the vulnerability of the TPM approach, specifically in
its implementation.

The transparency property of VMM creates a challenge to detect malicious VMMs. Fully transparent
VMM is a hypervisor which respects the three Popek’s properties [178] (efficiency, resource control,
equivalence). The equivalence property implies the VMM should look the same as the physical hardware
(indistinguishable) from the application point of view. The transparent VMM with the traditional OS
trust model creates an environment where a malicious VMM is trusted and could interfere with VMs
without being noticed.

Virtual machine introspection [89] is an approach for inspecting a virtual machine from the outside
for the purpose of analyzing the software running inside it. It is achieved by the help of the VMM,
which helps to interpose and mediate interactions between the virtual hardware and the guest software.
Introspection helps in a security monitoring process, but it can also threaten security of virtualized
information system. Using introspection technique a fully transparent VMM can alter operations inside
VMs without being detected. Hence, if a VMM is untrusted or at risk of being compromised introspection
threats should be taken into account. Examples of applications that can be altered using introspection
technique include time-limited trial software [83]. To protect against such threats, a system needs to
detect if it is running on top of a virtualized environment. Different VMM detection methods have been
proposed, the most common method is by comparing time or resource discrepancies between a known
physical environment and a known virtualized environment [90]. Pearce et al. [171] discussed more issues
and security threats of virtualization.

2.4 Security Monitoring
Given the unavoidable nature of security risks, giving fast response to incidents is very important. For this
purpose automated, continuous security monitoring is the key for quick threat detection and response.

In this section we present a detail description of security monitoring, types of hardware and/or
software tools used to perform security monitoring and performance evaluation of security monitoring
devices. We focus on specific monitoring devices, Network Intrusion Detection Systems (NIDSs), as the
contribution of this thesis is directly applied to them.

2.4.1 What is Security Monitoring
According to Richard Bejtlich [25] security monitoring is defined as follows,

Definition 2.2. Security monitoring is the collection, analysis, and escalation of indications and warn-
ings to detect and respond to intrusions [25].
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Indicators are the outputs from a monitoring system. Indicators are conclusions formed by products,
as programmed by their developers. Indicators generated by intrusion detection systems (IDSs) are
typically called alerts. Indicators are not always correct, i.e. a monitoring device is not 100% accurate
when indicating an incident. There are errors (e.g false positives) to some degree. Hence, we can classify
indicators by their accuracy and measure the configuration of a monitoring system. Some configurations
yield better value than others. Analysts analyze indicators and generate warnings. The process of
bringing information to the attention of decision makers is known as escalation. It is important to
escalate warnings as it requires an attention from a responsible entity.

Indicators are collected by hardware or software probe(s) which are designed for that purpose. Probes
can perform analysis with the help of an input from a human. In the case of network security monitoring,
the source of information for the probe is the network. Probes like IDSs get network packets as an input
and perform analysis according to a given rule set.

The goal of collecting and analyzing events and generating indicators is to detect and prevent intru-
sions. In addition, when prevention eventually fails to respond to incidents as quickly as possible and
understand how the intruder achieved its attack and what damage it made. Different types of security
monitoring devices and techniques are used for different components. In the next section we describe
the most common security monitoring devices.

2.4.2 Security Monitoring Devices
Security monitoring devices are tools that can be used to facilitate actions described in Definition 2.2
(collection, analysis, detection and response). In general any device (software or hardware) which gen-
erates logs (the log can be specific about security or a general functional log) can be used for security
monitoring as any log indicates the behavior of the system and events that are happing in the system.
From these logs collecting and analyzing devices can be used to perform security monitoring tasks. For
example logs from firewalls and OS can be used for security monitoring purposes.

In the following we present devices that are used in the security monitoring process (collecting,
analyzing, detecting and responding).

• Antivirus

Antivirus (AV) are used for detection, prevention and removal of malware (viruses, worms, back-
doors and other anomalies). Most of the time anti-virus tools take actions to protect the system
from malware and generate logs. Such logs can be passed to collectors and aggregated from different
sources to understand security incidents in a system. Modern antivirus software can protect from a
wide range of computer threats by doing an active (real-time) scanning. Different methods are used
to identify malware including sandboxed behavioral analysis, signature-based detection, heuristics,
rootkit detection and recently data mining techniques. Avast antivirus [20], Microsoft Security
Essentials (MSE) [146], ESET [147] are examples of commercially available antiviruses.

• Vulnerability Scanners

Vulnerability scanners are tools used to analyze a system to detect vulnerabilities. The output
of a vulnerability scanner can be passed to monitoring probes where an active monitoring can be
performed. A vulnerability scanner is a proactive tool, i.e. it tries to identify vulnerabilities be-
fore they are exploited by an attacker. Most vulnerability scanners use signature-based techniques
to identify vulnerabilities (i.e. they use a vulnerability database, like [56], that contains a list
of publicly known vulnerabilities). Vulnerability scanners are the main components in a vulner-
ability management solution. There are two main approaches for scanning vulnerabilities [92] (i)
White box testing : by analyzing source code of the application (ii) Black box testing : by analyzing
the execution of applications (i.e. penetration testing which is a manual vulnerability scanning).
Examples of vulnerability scanners include OWASP-ZAP [168], Nessus [156], OpenVAS [164] and
w3af [221].

• Firewalls

Firewalls are a collection of components interposed between two networks that filter the traffic
between them according to some security policy [48]. Basically, they allow or deny connection
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between two networks and generate logs on events and actions performed. A firewall can be
configured at different locations in the network. One of the most common place to deploy a firewall
is at the connection point of an organization with the outside world. A best practice is to categorize
hosts inside an organization by trust level. Hosts that need to be accessed from the outside (e.g web
or mail servers) have a lower trust level while hosts used for internal services have a higher trust
level. Services that are accessed only by administrators have a much higher trust level. Firewalls
are configured accordingly, i.e a firewall protecting the internal hosts block any access from the
outside.

Even if firewalls are considered necessary in the general case they have some limitations. Config-
uring a firewall is not an easy task. Since they are customized to the needs of their environment
it requires a careful verification and testing procedure in order to get the expected functionality.
Fragmentation-based attacks can bypass firewalls, as most firewalls do not reassemble fragmented
packets and make decision based on the first fragment. In an environment where there is high
throughput firewalls may become congestion points. This is a result of the gap between processing
and networking speeds. Science DMZ [63] is a network architecture for High Performance Com-
puting (HPC) environments which proposes to remove firewalls due to the negative impact they
have on performance.

• Intrusion Detection System (IDSs)

IDSs are one the most common types of security monitoring devices in a computer system. Most
of our work described in this thesis focuses on IDSs. Hence, we describe IDSs in more detail in the
next section.

• Log Collectors and Aggregators

Logs generated by individual devices provide information about that specific device. To get in-
formation at a higher level (overall system) and to have an easy management of logs it requires
collecting and aggregating them in a logical manner. Logs from different components or systems
may not have the same format, which is a bottleneck for analyzing, searching and reporting on
the data. Aggregation helps to put all the data coming from different sources in one place for
easy management of logs. Log collection can be done easily by copying log files using tools like
rsync [193] or by configuring rsyslog [193] or syslog-ng [207], which implement the syslog protocol
with additional functionalities, to transmit logs to a central location. There are also tools with
more features like Apache Flume [105], which collect logs and store them on Hadoop Distributed
File System (HDFS). In the cloud there are also log aggregation as a service tools like Amazon
CloudWatch [4] and PaperTrail [170].

• Security Information and Event Management (SIEM)

Security Information and Event Management is a combination of security information management
(SIM) and security event manager (SEM). SEM provides correlation of events, notifications and
console views with real-time monitoring features. On the other hand SIM provides long-term
storage, analysis and reporting of log data. SIEMs help to aggregate and correlate data, generate
alerts, retain data for long time and visualize using a dashboard. In addition, they are also used
to generate reports for compliance purposes.

Previously, the schema of SIEM tools was rigidly bounded and analyzes only structured data by
design. However, new big data applications are starting to become part of security management
software because they can help to clean, prepare, and query data in heterogeneous, incomplete, and
noisy formats efficiently [37]. In addition, big data tools help to detect advanced persistent threats
(APT). APTs operate in quiet mode over a long period of time without being noticed by monitoring
tools like IDSs (deliberately avoiding recognition by security tools). SIEM tools are available as
software, as appliances or as managed services. Examples of SIEM tools include OSSIM [3] and
IBM QRadar [107].
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2.4.3 Intrusion Detection System (IDSs)

In the late ’70s and early ’80s administrators used to search printed audit logs as a forensic tool to
determine the cause of a particular security incident after the fact [117]. As storage becomes cheap, logs
become available online and programs were developed to analyze the data [113]. However, the analysis
was computationally intensive and slow. As a result it was done when the system was relatively in low
load, hence intrusions were detected after they happened. Real-time intrusion detection systems that
are used to analyze audit logs as soon as they are generated were developed in the early ’90s. Since then
different types of IDSs were developed and used to monitor computer systems.

IDSs are the “burglar alarms” (in our case, “intrusion alarms”) of an information system. Formally
they can be defined as software or hardware systems that automate the process of monitoring the events
occurring in a computer system or network, analyzing them for signs of security problems [197]. Collecting
information from source(s) is the first step in IDSs working procedure. Then collected information is
analyzed using a detection engine and finally an output, known as ‘alert’, is generated if any intrusion is
suspected.

According to NIST [197], all types of IDSs have the following key functionalities:

• Recording information related to observed events: information is collected locally and it may also
be sent to a central SIEM system;

• Notifying security administrators of important observed events: alerts are generated and presented
in different formats;

• Producing reports: reports summarizing observed events or details about specific alerts are pro-
duced;

In addition to these key functionalities IDSs can have other purposes like the following ones:

• Identifying security policy problems: as an example alerting when it sees network traffic that should
have been blocked by the firewall but was not because of a firewall configuration error;

• Documenting the existing threat to an organization: the logs from IDSs can be used to understand
the frequency and characteristics of attacks against an organization which can be used for different
purposes including to identify appropriate security measures and educate employees about the
threats that an organization faces.

• Deterring individuals from violating security policies: If an individual knows the existence of mon-
itoring devices, she/he may be less likely to commit violation of policies.

One of the common characteristics of IDSs is that they do not to provide a hundred percent (100%)
accurate detection of all intrusions. They can either misidentify legitimate events as an intrusion, creating
false positives, or not detect an actual malicious event, creating false negatives. We know from [54] that
there is no algorithm that can perfectly detect all possible intrusions. Therefore, the goal of a security
administrator is to detect as many intrusions as possible while reducing false positives. Having a high
number of false positives creates huge impediments for security administrators, i.e an administrator will
spend a considerable amount of time on separating true positive values from false positives.

An extension to IDS technologies was developed, namely Intrusion Prevention Systems (IPS). In
addition to detecting intrusions, IPSs take actions to prevent potential intrusions. IPSs use different
techniques to perform prevention including, (i) Stopping the attack, for example by terminating the
connection (ii) Changing the security environment, for example reconfiguring the firewall to block access
(iii) Changing the attack content, for example removing an infected file attachment from an e-mail and
allowing the cleaned email to reach its recipient.

Types of IDSs

Based on different criteria, IDSs can be divided into groups. In this section we describe categories of
IDSs based on the detection method (signature-based or anomaly-based) and based on the location where
the detection takes place (Network IDS or Host IDS ). First, we describe the types of IDS based on their
detection technique.
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• Signature-based IDS refers to a detection method where observed events are compared with
predefined sets of specific patterns known as signatures. A signature describes malicious content
in the observed entity, such as byte sequences in network traffic or known malicious instruction
sequences used by a malware. This type of detection method, as it is dependent on the definition
of signatures, is very effective in detecting known attacks but it fails to detect new attacks. Other
drawbacks of such method is that it has little understanding of states (protocols) and it requires
keeping the database of known attacks up to date. Examples of signature-based IDS include
Snort [13] and Suricata [206].

• Anomaly-based IDS refers to a detection method where a normal behavior of the monitored sys-
tem is modeled and events are compared with that model to detect abnormal behaviors. Such mod-
eling of normal behavior gives advantage to detect unseen (unknown) attacks. However, anomaly-
based IDSs produce a high number of false positives. In addition, building a normal behavior of
a system is time consuming, challenging and requires extensive “training sets”. It should also be
noted that at the time of training (preparing the model) the IDS is not functional. There is not a
lot of widely used open source anomaly-based IDS. Most of the time tools developed for monitoring
purposes are adapted to perform anomaly detection. Examples of such tools include Bro [210] and
RRDtool [192]. Cisco NGIPS [157] is an example of commercial anomaly-based IDS.

These two detection approaches are complementary and many systems attempt to combine both of
them. The problem of false positives in anomaly-based IDSs cause most commercial IDSs to focus on
signature-based methods.

Based on the location where the detection takes place, IDS can be classified into Network IDSs and
Host IDSs.

• Network IDSs (NIDS) monitor network packets to detect intrusions. NIDSs are placed at
strategic points within the network to monitor traffic to and from all devices on that network. This
type of IDS is the most common type of commercial IDS and it can be used on-line, dealing with
the network in real time through network taps, or off-line, dealing with stored data.

• Host IDSs (HIDS) monitor individual hosts, like incoming and outgoing traffics of a device
in a network, modification or access to critical files in a system, running processes, application
activity and so on. Host-based IDSs are most commonly deployed on critical hosts such as publicly
accessible servers and servers containing sensitive information. As in the case of NIDS, there can
be on-line and off-line HIDSs. OSSEC (Open Source SECurity) [196] is a prominent example of
HIDS.

From now on, when the term IDS is used it refers to both NIDS and HIDS. For specific cases the
terms NIDS and HIDS are used.

In an environment where events are generated at a high rate the IDS engine can be assisted with
special hardware [150, 195] to get significant amount of speed gain. For example the hardware based
regular expression engine for the SNORT IDS presented in [150] gives a maximum speedup of 353× over
a software-based solution.

IDSs can also get fooled by an attacker. IDS evasion is a class of techniques to deliberately modify
attacks in order to avoid detection by IDSs. Most IDSs, specially signature-based IDSs, are vulnerable
to evasion. There are different ways to evade an IDS. Common types of evading techniques are described
in [47].

• Denial-of-service (DoS): Exhausting IDS’s resources (e.g CPU and the memory space) in order to
disrupt and deny its detection service. The exhausting technique can be implemented in different
ways, by sending a large number of requests or by exploiting a bug as in case of packets of death [169]

• Packet splitting : Like IP fragmentation, packet splitting is chopping data into smaller packets so
that the NIDS may not reassemble the packets for signature matching.

• Duplicate insertion: With duplicate insertion attackers insert duplicate or overlapping segments
(or IP fragments) to confuse the NIDS. If the NIDS and the target system handle the duplication
in different ways an attacker may succeed without being detected by the IDS.

• Payload mutation: In payload mutation an attacker transforms the malicious packet payloads into
semantically equivalent ones. Therefore, the payload looks different from the signatures that an
IDS expects, so the attack can evade the detection.
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Figure 2.7: Block representation of IDS

• Shellcode mutation: The Shellcode mutation encodes a shellcode into polymorphic forms to evade
an IDS. If the IDS does not recognize one or a few variants of that shellcode it may get evaded.

• Encrypted Tunnels: An attacker may use an encrypted tunnel in order to move across networks
without being detected.

In this thesis most of our work directly applies to signature-based NIDSs. However, application of
the proposed approach to HIDS should be straightforward and adapting the work to other types of
monitoring devices including anomaly-based IDSs should be feasible with additional studies.

2.4.4 Measuring the Performance of Security Monitoring Devices

In this section we describe the metrics used to measure the performance of security monitoring devices.
Each device has specific attributes that are relevant to be measured and in this section we focus on
attributes of NIDSs.

Measuring the performance of NIDS

Some of the fundamental questions around NIDS (and IDS in general) technologies rotates on evaluating
the performance of an IDS, determining the best configuration of an IDS and comparing two or more
IDSs. To answer these and other related questions it is required to have metrics, that can be used to
quantify different aspects of NIDSs.

The performance of an NIDS can be measured mainly from two aspects:

• Efficiency measures the resources needed for the functioning of the IDS itself, resources like CPU,
memory and disk usage.

• Effectiveness measures the classification ability of an NIDS, i.e. how much it correctly differentiates
intrusive and non-intrusive activities.

Other aspects of NIDS including resilience to stress [182], ability to resist to attacks directed at the NIDS
itself [181, 47], ease of use, interoperability and transparency can be measured. These properties are
correlated. For example a change in the resource used by an NIDS will affect the effectiveness or making
an NIDS resilient to attacks may require more resources. Here we are interested in the effectiveness
of an NIDS as it enables us to compare different NIDSs and to fine-tune an NIDS, i.e find the best
configuration of an NIDS.

In the rest of this section we describe different metrics that are used to express the effectiveness of
NIDS. An NIDS can simply be modeled as a system which takes a series of events and classifies those
events into groups of either legitimate or non-legitimate (intrusive) events. Figure 2.7 (A) shows the box
model of an NIDS.

NIDSs take flows of network packets as an input. Every packet in a flow is processed by the engine
and classified to either normal or abnormal. In addition, the inputs in reality are either attacks or
legitimate traffics. We can say the classification is correct if the output of an NIDS matches with the
actual grouping. For binary classification with two input and two output values, there are four possible
outcomes, Table 2.1 shows these possibilities (also known as confusion matrix).
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NIDS output
Attack Normal

Actual Attack TP FN
Normal FP TN

Table 2.1: Confusion matrix showing IDS outputs

Metrics CR TPR FPR
Formula = TP+TN

TP+FP+FN+TN = TP
TP+FN = FP

FP+TN

Table 2.2: CR, TPR and FPR as metrics derived from TP, FP, FN and TN

• True positive (TP) is intrusion that is successfully detected by the NIDS.

• False positive (FP)is non-intrusive input wrongly classified as intrusive.

• True Negative (TN) is non-intrusive input successfully identified by the NIDS as normal.

• False Negative (FN) is intrusive input that is wrongly classified by the NIDS as normal (missed
attacks).

The confusion matrix shows a representation of the possible outcomes, different evaluation metrics
are derived from these probable outcomes. These includes:

• Classification rate (CR): Also known as accuracy, measures the rate of correctly classified events
(both normal and intrusive). It can be calculated as shown in Table 2.2

• True positive rate (TPR): Also known as detection rate, shows the ratio of correctly detected
attacks. It is calculated as the ratio between the number of correctly detected attacks and the total
number of attacks (see Table 2.2).

• False positive rate (FPR): The FPR is defined as the ratio between the number of normal
events detected as attacks and the total number of normal events (see Table 2.2).

Alternatively, from an information theoretic point of view [99], NIDS can be modeled as shown in
Figure 2.7 (B). Every input of an NIDS is either intrusive or normal traffic. Hence, inputs can be
represented with a random variable x. Similarly, output is decision by NIDS classifying inputs into either
attack or legitimate. We can represent the output with a random variable y. The value x = 1 represents
an intrusive input and x = 0 indicates normal traffic. The same way, y = 1 indicates IDS classified the
corresponding input as intrusive and y = 0 indicates NIDS’s classification as non-intrusive.

Using this model, we can define the FPR as the probability of y = 1 when x = 0 or P (A|¬I),
i.e the probability that there is an alert, A, knowing that there is no intrusion, ¬I. The same way
TPR = P (A|I), i.e the probability that there is an alert, A, knowing that there is intrusion, I. Note
also that we can define FNR and TNR, which are complementaries of TPR and FPR respectively (i.e
FNR = 1− TPR and TNR = 1− FPR).

We cannot use TPR or FPR separately to describe the performance of an NIDS or to compare
different NIDSs. Having a TPR high value is not useful if there is a large number of false positives. Also,
having a low FPR value does not help if there are too many missed attacks. Hence, TPR and FPR are
coupled metrics.

As it is described in [21, 86, 99] TPR and FPR are basic metrics and they can be misleading when
describing the performance of IDS. To explain this, assume there are two IDSs (IDS1 and IDS2). IDS1
can detect 10% more attacks, but IDS2 can produce 10% less false alarms, deciding which IDS is better
using only this information is difficult. Rather than coupled metrics, having a single metric describing
effectiveness of an IDS helps to make decisions.

The tradeoff between TPR and FPR can be intuitively analyzed with the help of the receiver operating
characteristic (ROC) curve.

• Receiver Operating Characteristic (ROC) curve: ROC originated from signal detection
theory [72] and it is used to correlate TPR and FPR. It helps to visualize the relation between
TPR and FPR using graphs and it shows the probability of detection provided by the NIDS at a
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Figure 2.8: Examples of ROC curves

given false alarm rate. By itself ROC cannot be used to compare different operation points of an
NIDS (a single NIDS with different configurations) but it can be used to compare different NIDSs.
If NIDSi has higher TPR value for every FPR value than NIDSj the ROC curve of NIDSi will
be always on top of NIDSj (see Figure 2.8 (left)). But if the curves of NIDSi and NIDSj crossed
each other, it is not easy to identify which one is a better IDS. (see Figure 2.8 (right)). Hence, it
makes ROC curves less useful.

Computing the area under the curve to compare crossing ROC curves was proposed. But comput-
ing the area takes every operation point into account, this is not the case for NIDS because NIDSs
are fine-tuned on a specific operation point. ROC is basically dependent on TPR and FPR. In [21,
86, 99] it is shown that the information provided by TPR and FPR is not enough to describe NIDSs
performance. Specifically these metrics do not take the NIDS operation environment into consider-
ation. Examples of parameters describing NIDS operation environments include maintenance costs
and the hostility of the operating environment (the likelihood of an attack).

In an effort to take NIDSs’ operation environment into consideration while evaluating its performance,
different metrics were proposed taking operation environments such as uncertainty of the environment
and costs spent as a result of NIDSs’ classification error (i.e the cost of responding for false positives and
cost of not responding for intrusion) into account.

• Base rate fallacy, Positive and Negative Predictive Values (PPV and NPV): Axels-
son [21] pointed out the effect of uncertainty (likelihood of an attack) in the performance of NIDSs,
the base rate fallacy problem in NIDSs. The problem raises as a result of the difference between
the number of false alarms and actual intrusions. NIDSs generate a large number of false alarms in
an environment where there are not many intrusions to begin with. Correctly identifying intrusions
from the flood of network traffic is truly a problem of "finding a needle in a haystack".

Let’s assume I indicates intrusion and A indicates alarm. The reverse, ¬I indicates normal event
and ¬A indicates no alarm. The likelihood of an attack can be represented by P (I), the probability
of intrusion. From Figure 2.7 (B) P (I) = P (x = 1), and it is called the base rate value. It is
the parameter which quantifies the hostility of the environment. But in practice, it is difficult
to measure the actual value of the base rate. It is because the occurrence of an attack is not
deterministic.

We would like to know how many of the alerts are "true" indications of intrusions, i.e the probability
of an intrusion knowing that there is an alert (i.e P (I|A)). This metric is called Bayesian detection
rate or Positive Predictive Values (PPV). Applying the general form of the Bayes’ theorem in
NIDSs events,

PPV ≡ P (I|A) = P (I).P (A|I)∑1
i=0 P (xi).P (A|xi)

=
P (I).P (A|I)

P (I).P (A|I) + P (¬I).P (A|¬I) (2.1)

Substituting P (I) with base rate (B), P (A|I) with TPR, and P (A|¬I) with FPR we get,

PPV =
B × TPR

B × TPR+ (1−B)× FPR =
B × TPR

B × (TPR− FPR) + FPR
(2.2)
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To explain the base rate fallacy problem, assume an environment where there is only 1 attack event
in 100,000 events (i.e B = 10−5). Take an NIDS in this environment which detects all attacks (i.e
TPR = 1) and only gives 1% of false alarms (FPR = 0.01). The probability of an alarm indicating
an intrusion can be computed as

P (I|A) = 10−5 × 1

10−5 × (1− 0.01) + 0.01
≈ 0.001 (2.3)

That is, even though the NIDS detects all intrusions (TPR = 1) with very low false alarms
(FPR = 0.01), which is unrealistic, only 1 out of 1000 alarms is a real intrusion and the remaining
are false alarms. To put it differently, in our hypothetical environment, for approximately half of
the alarms to be true intrusions (i.e to get P (I|A) = 50%), it is required to have a very low false
alarm rate (FPR ≈ 10−5).

In [21] the author describes the advantage of PPV in realistic environments. PPV is more useful
for security officers because low PPV values indicates to safely ignore all alarms, even though
their absolute numbers would theoretically have allowed complete investigation of all alarms. From
Equation 2.2 we can see that PPV increases as FPR goes to zero, regardless of the value of TPR.

To incorporate the effect of changes in TPR, Negative Predictive Values (NPV) or (P (¬I|¬A)) is
defined and there is trade-off between the PPV and NPV.

NPV =
(1−B)× (1− FPR)

(1−B)× (1− FPR) +B × (1− TPR) (2.4)

From formula 2.4 we can see that PPV and NPV are a function of B, TPR and FPR. As in the
case of TPR and FPR, PPV and NPV are coupled metrics. In the field of Artificial Intelligence
(AI) a metric called Bayesian Receiver Operating Characteristic (B-ROC) curves [35] is proposed
which correlates PPV and NPV with the same intuitive as ROC curves. But B-ROC, rather than
using FPR, uses (1 - PPV) called Bayesian false alarm rate P (¬I|A) and it shows what percentage
of generated alarms are false positive. But B-ROC have issues similar to ROC.

• Cost Based Metric: To overcome the limitations of ROC curves, another metric was proposed to
better integrate TPR and FPR. In [86, 36] ROC curves and cost analysis are combined to compute
expected cost (Cexp) for each NIDS operation point. The response of NIDSs for an incoming event
is either generating alert or not. When an NIDS generates an alert it has consequences, i.e security
operators need to check the alert and take appropriate action. The expected cost quantifies the
response of security operators to alerts. Then the goal is to select an operation point with the least
expected cost.

The cost is defined for actions taken as a result of misclassification by NIDSs (as a result of FPR
and FNR). The cost of actions for correct classification (TPR and TNR) is usually assumed either
to be zero or as a profit deductible from errors.

In [86] the following cost estimation method is presented. Let’s assume α represents FPR and β
represents FNR, then Cα indicates the cost of FPRs and similarly Cβ shows the cost resulting from
FNR. For a given point the cost ratio is defined as C = Cβ/Cα. The expected cost of operating
at a given point on the ROC curve is calculated using a decision tree model (see [86]). For a given
point it can be calculated as,

Cexp =Min{CβB, (1− α)(1− β))}+Min{C(1− β)B,α(1−B)} (2.5)

It is clear that C is a very important factor in determining the expected cost. In practice choosing
the value of C is very difficult as it is highly subjective. Gu et.al [99] proposed a metrics called
Intrusion Detection Capability (CID) which objectively measures the effectiveness of an NIDS.

Intrusion Detection Capability(CID)

The CID, presented in [99], originated from the field of information theory. Generally we want the NIDS
to reflect the actual grouping of inputs i.e either intrusion or normal. From an information-theoretic
point of view, we should have less uncertainty about the input given the IDS output. CID incorporates
most of the other metrics including TPR, FPR, PPV, NPV and B. CID, as it is shown in [36], can also
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be expressed as an expected costs optimization problem. To describe CIDs’ formula in detail we first
present a background on the basics of information theory as presented in [59].

Assume two random variables X and Y as shown in Figure 2.7 (B).

• Entropy: Given a random variable X, the entropy is a measure of uncertainty in the random
variable X. It is defined as

Definition 2.3. H(X) = −∑x∈X p(x) log p(x)

The higher H(X) shows the more uncertainty in variable X. This definition can be extended to
pairs of random variables (X,Y). The uncertainty in (X,Y) is called joint entropy.

• Joint and Conditional Entropy: Given a pair of discrete random variables (X,Y) with a joint
distribution p(x,y), the joint entropy can be defined as

Definition 2.4. H(X,Y ) = −∑x∈X
∑
y∈Y p(x, y) log p(x, y)

It is similar to single variable entropy if (X, Y) can be considered to be a single vector-valued
random variable.

Conditional entropy is the uncertainty of one variable knowing the other variable. H(X|Y ) shows
the remaining uncertainty of X after Y in known. It is defined as

Definition 2.5. H(X|Y ) = −∑y∈Y
∑
x∈X p(x, y) log p(x|y)

From the above definitions we can see that the entropy of a pair of random variables is the entropy
of one plus the conditional entropy of the other. That is also called Chain rule

H(X,Y ) = H(X) +H(Y |X) (2.6)

If the value of X is completely determined by the value of Y, we can say H(X|Y ) = 0. If we can
certainly determine the value of H(X) given H(X|Y) then we can say H(X|Y ) = H(X), i.e X and
Y are completely independent. H(X|Y ) has the following property

0 ≤ H(X|Y ) ≤ H(X) (2.7)

• Mutual Information: Given two random variables X and Y with a joint probability mass
function p(x, y) and marginal probability mass functions p(x) and p(y), the mutual information
I(X;Y ) is defined as

Definition 2.6. I(X;Y ) =
∑
x∈X

∑
y∈Y p(x, y) log

p(x,y)
p(x)p(y)

It is a measure of the amount of information that one random variable contains about another
random variable and vice-versa. It is a shared information between X and Y. Hence, I(X;Y ) =
I(Y ;X). Mutual information can also be expressed as reduction in the uncertainty of one random
variable due to the knowledge of the other. That is

I(x; y) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.8)

This shows the relationship between conditional entropy and mutual information. This can also be
represented in a Venn diagram as shown in Figure 2.9 (it is also presented in [99]). The intersection
area indicates mutual information.

As described above, we want to be less uncertain about the input of an NIDS given its output. As
shown in Figure 2.9 (B), in a realistic environment the actual number of intrusions is far less than the
number of alerts generated by NIDSs. Mutual information could be used to measure the uncertainty in
the inputs, because it captures the reduction of original uncertainty (intrusive or normal) given that we
observe the NIDS alerts. CID measures exactly that, it is the ratio of the reduction of uncertainty of the
NIDS input, given the NIDS output, formally it is defined as follows,
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Figure 2.9: (A) Venn diagram showing entropy and mutual information (B) Realistic NIDS situation,
where the number of actual intrusions are very small.

Definition 2.7. Let X be the random variable representing the IDS input and Y the random variable
representing the IDS output. The Intrusion Detection Capability is defined as

CID =
I(X;Y )

H(X)
(2.9)

The mutual information is normalized by the original uncertainty H(X), and its value range is [0,1].
The higher CID indicates a better effectiveness of an NIDS. By expanding Equation 2.9, we can observe
that CID is a function of TPR, FPR, PPV, NPV and B.

In an ideal case where all classifications are correct (FP = FN = 0), CID = 1 as the IDS is not
making mistakes. For cases when the inputs are all in one group (all legitimate, B = 0 or all attack,
B = 1), CID is defined to be one because H(X) = 0. In a realistic situation, where the base rate is
very low, a decrease in FPR gives higher CID than the same change in FNR. This indicates CID is more
sensitive to FPR than FNR. Given the NIDS output (set of alarms) the goal is to identify which alarms
are a true indication of attacks. In a realistic situation, where the rate of occurrence of attacks is very
small, from large set of alarms a very tiny portion is a true intrusion indicator. Thus, for a metric to be
more sensitive to the rate of false alarms (FPR) helps the entity managing the output of the NIDS to
safely ignore alarms when the CID is lower than some threshold.

Hypervisor Factor (HF)

In [149] the authors presented the effects of elasticity on the NIDS attack detection accuracy. In a
virtualized environment the resources available to an NIDS is not fixed (elasticity), hence the performance
may vary accordingly. They argue that existing metrics cannot evaluate virtualized environments in an
accurate manner. They proposed a metrics called hypervisor factor (HF) which is a cost-based metric,
generated using a decision tree model as presented above. HF is different from other metrics, it takes into
account the resources available for NIDS while making decision, whether the NIDS had enough resource
(Baseline), it had more resources than required (Overprovisioning) or it had less (Underprovisioning).
It adjusts the cost accordingly.

The common difficulties in all metrics is the inclusion of unknown parameters in their formulas.
Either it is a base rate or the cost of NIDS misclassification. In practice it is difficult to find the value
of base rate before the intrusion happens. Finding the cost of misclassification may be easier but it is
highly subjective, as the effect of an intrusion is different for every organization or even for the same
organization on different occasions.

Mechanisms to measure NIDSs performance

In the previous section we presented metrics that are used to describe the performance of NIDSs. In this
section we present mechanisms used to perform the evaluation. Generally we can categorize evaluation
techniques into three groups:



2.4. SECURITY MONITORING 31

Fig. 1: Overall process of the three-phase approach

benefits to perform quicker and deeper audits, and to make
the process fully automated.

The rest of the paper is organised as follows. Section II
gives an overview of our three-phase approach. Section III
presents how we model, generate and use the evaluation traffic
utilized in the attack campaigns execution, presented in Section
IV. Section V presents a VMware-based testbed environment
used to validate our approach, along with the experimental
results. Section VI discusses related work. Finally, conclusion
and future work are provided.

II. OVERVIEW OF THE APPROACH

In this section, we recap the main assumptions we consider
in our approach, and then we explain its principles.

A. Main assumptions

1) Target environment: Our approach focuses on the virtual
infrastructure level, that is why the considered cloud service
model is IaaS. A virtual infrastructure is defined as a set of
vDCs, where a vDC includes VMs, networks, and firewalls.

We assume that the firewalls apply stateful packet inspec-
tion, and we consider two different types of virtual firewalls
commonly found in the cloud:

• Edge firewall: gateway for client’s virtual networks that
routes, filters and translates inbound or outbound traffic.
It is generally controlled by the client.

• Hypervisor-based firewall: introspects the traffic sent and
received by VMs disregarding the network topology. It
is generally controlled by the provider. However, some
rules can be configured by the clients on their network
scopes, which can give them a partial control on it.

As for the NIDS, even if some approaches ([2], [3]) already
suggested a concept of IDS as a service offered to the clients,
we assume that the NIDS are deployed and controlled by the
provider, in charge of detecting the attacks run from, to, and
within the clients’ networks. We also assume that NIDS apply
signature-based detection techniques.

2) Use cases: Our system is designed to evaluate network
security of small-sized to medium-sized virtualized infrastruc-
tures (< 50 VMs). The security analysis should not disturb the
client’s business. Also, it is intended to be fully automated (it
requires the minimum of human intervention), and the related
audit operations are run on behalf of the provider, therefore
using administrator privileges on the cloud components. More-
over, provided results correspond to the state of the system at
the time when the audit is run. This paper focuses mainly

Fig. 2: Use cases of the system

on the approach itself, and we do not constrain the usage
of the audit system to specific actors. Indeed, it depends on
the Service Level Agreement (SLA) between the provider and
its clients. However, considering three possible actors (client,
provider and auditor), we recommend to use the features of our
system as shown in Figure 2. The client can ask for an analysis
of network access controls of its infrastructure (which entails
the cloning of it). The provider can conduct an evaluation
of NIDS towards a client’s infrastructure (which requires an
analysis of network access controls, and thus a cloning). As
a third-party actor, the auditor can require an evaluation of
NIDS, as well as an analysis of network access towards any
client’s infrastructure.

3) Compliance: We believe that our approach helps imple-
menting the Cloud Security Alliance (CSA) recommendations
in terms of security assessments [4]. Among the topics ad-
dressed in this document, our approach provides assistance in
the following areas :

• Network and System Vulnerability Assessments.
• Network/Security System Compliance Assessments.
• Virtual Infrastructure Assessment.
• Web Application Security Assessments.
• Internal/External penetration testing.
• Security Controls Assessments.

B. Principles

Our approach is a three-phase approach, illustrated in
Figure 1. Even if this paper focuses on the last phase, we
sum up the first two phases, preliminary to the last one.

The first phase consists in cloning the client’s virtual
infrastructure so the client’s privacy is preserved, i.e., its
production instances are not accessed, used and disturbed in
the following steps. Nevertheless, for the reasons developed
in the Introduction, we do not copy the initial VMs instances
into the cloned infrastructure. Instead, VMs are imported from
a predefined template1. They are placed in the same network

1The template used in our prototype is detailed at the end of Section V-A.
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Figure 2.10: NIDS evaluation process as proposed in [180]

• On-line evaluation: also known as dynamic evaluation, is done by configuring the NIDS, injecting
attacks and analyzing the output of the IDS. The injection could be done live (real-time) or
replaying recorded traffic.

• Off-line evaluation: also known as static evaluation, is done by statically analyzing configuration
files, rules and behavior models of an NIDS.

• Hybrid : evaluating by using both dynamic and static approaches and aggregating the results.

One of the challenges in evaluating NIDSs is the generation of representative traffic traces that
contain attacks. In 1998 DARPA [130] started a series of annual intrusion detection evaluations (updated
until 2000) with the goal of exposing strength and weakness of NIDSs to drive iterative performance
improvements. It used an on-line attack injection technique and evaluated large systems. In addition, a
large network flow trace containing both background traffic and attacks was generated and shared with
in the research community. The shortcomings of the DARPA dataset including the taxonomy developed
to categorize the exploits, the metrics used to present the results of the evaluation and the bias on the
process of generation are presented in [141].

Massicotte et.al [139] proposed a traffic trace generation technique and an NIDS evaluation framework.
The trace generation process produces a documented traffic trace which is used to test NIDSs in an
automatic fashion. The traffic generation environment is an isolated virtual infrastructure used to run
attacks and record traces. The NIDS evaluation framework takes these data sets and replays it on a target
NIDS. Finally, the output of the NIDS is analyzed. However, generating traces in isolated environments
may help to get "clean" trace but it removes some uncertainty that could happen in real environments.
It eliminates the behavior of a real operation environment of an IDS from the evaluation process. Hence,
using traces generated by such a process misleads to describe the performance of an NIDS.

Probst et.al [180] presented an NIDS evaluation method on cloud environments. The paper presents
a hybrid approach which is based on cloning the target infrastructure, static and dynamic analysis of
configured firewalls to have knowledge of network accessibilities. The output of a hybrid analysis is used
for the attack injection process. The paper claims it is "expensive, tedious and hard to automate" hetero-
geneous cloud environments and instead the authors used a finite-state automaton as a representation.
To evaluate an NIDS, an attack campaign is executed on a cloned infrastructure taking the automaton
and the result of a hybrid analysis as an input. The NIDS output is analyzed to compute final results
(see Figure 2.10).

Doing the evaluation on a cloned environment reduces the network overhead on the production
resources but it also takes the NIDS out of its real operating environment. In addition, both [180]
and [139] assume only basic metrics for evaluating NIDSs. As it is shown in [21] not taking the base rate
parameter into account misleads the description of the NIDS performance.

Milenkoski et al [148] presented an approach for evaluating IDSs that are used to monitor hypercall
attacks. The lack of publicly available attack scripts that demonstrate hypercall attacks was stated as one
of the challenges and the paper presents hInjector, a tool for injecting hypercall attacks and generating
a traffic trace. The proposed method applies to monitoring devices looking for events that are related
to hypercalls and functionally similar to hypercalls. The method could be applied to do monitoring for
IaaS providers, since the hypervisor is monitored by the provider but it does not provide a way to include
tenants in the process. In addition, the range of attacks addressed by this method is limited.

The authors in [80] presented an evaluation mechanism for the security of web applications. The
method consists of injecting real vulnerabilities and carefully exploiting those vulnerabilities in a con-
trolled manner by injecting attacks. However, the vulnerability injection phase requires source code
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Figure 2.11: GCCIDS architecture from [216]

Figure 2.12: IDS management architecture [189]

analysis and creating a modified version of the application (code mutation) which may not be always
feasible.

2.4.5 Security Monitoring in Clouds

In this section we present security monitoring tools and frameworks that are used by tenants and providers
in the cloud environment to perform security monitoring tasks. Some traditional monitoring tools (which
existed before the adoption of clouds) can be used to perform security monitoring tasks in clouds but to
address new threats occurring in virtualized environments some specific IDSs have been designed. We
can categorize types of IDSs used in the cloud into four groups. Host-based IDS (HIDS), Network-based
IDS (NIDS), Hypervisor-based IDS (HyIDS) and Distributed IDS (DIDS).

Host-based IDS (HIDS) in Clouds

An HIDS, as described in Section 2.4.3, monitors events in the host where it is configured. In the cloud
HIDS can be placed on VMs, host machines or hypervisors and it can monitor events in the corresponding
system including configurations, logs, network traffic, user actions and so on. Vieira et al [216] proposed
an HIDS service called Grid and Cloud Computing IDS (GCCIDS) offered in the middleware layer to
cover attacks that network and host-based systems cannot detect. As shown in Figure 2.11 each node
contains an IDS used as a local detector and information is shared between nodes when an intrusion is
detected. It combines both signature and anomaly-based IDSs to leverage the advantages from both.
GCCIDS does not detect all kinds of attacks as it is designed to complement NIDS and HIDS hence, it
cannot be used to replace NIDS or HIDS.

Network-based IDS (NIDS) in Clouds

NIDSs also presented in Section 2.4.3, monitor events in the network. With the aim to direct the
traffic through the NIDS, NIDSs are usually placed between firewalls and various hosts of the network.
Roschke et al [189] proposed an IDS management architecture designed for clouds, which consists of
several sensors and a central management unit. Figure 2.12 shows the architecture presented in the
paper. The management unit consists of (i) an event gatherer to collect events flagged by sensors (ii) an
event database to store information about collected events (iii) an analysis component to access event
database and analyze events and (iv) a remote controller responsible for remote configuration and control
of all connected IDS Sensors. The idea of collecting events from different hosts to perform analysis is also
a characteristic of SIEM tools as described in Section 2.4.2. The method is easy to scale, i.e new IDS
sensors can be added easily. It also gives some control to users through the remote controller component
to configure NIDS sensors.
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(a) DISCUS architecture (b) DISCUS deployment

Figure 2.13: DISCUS architecture and DSL deployment as presented in [187]

NIDSs are specifically helpful to detect attacks which abuse the network like denial of service and
Address Resolution Protocol (ARP) spoofing attacks. The authors in [137] presented an ARP spoofing
detection mechanism which uses the Bayesian theorem to calculate the probability of a VM being an
attacker. The method is used to address the internal ARP attack issue of cloud centers with the ap-
plication of SDN technology. The authors identified four basic ARP attack features and probabilistic
computation is performed to detect the occurrence of those features. Information about ARP frames is
collected from the SDN controller and the information is analyzed to look for defined features, hence to
detect attackers.

Mazzariello et.al [140] presented practical implementation experience of different NIDS deployment
strategies in clouds. The paper describes the pros and cons of having a single NIDS on strategic location in
the network and setting multiple NIDS to monitor sub-part of the network. Obviously, the best strategy
depends on different factors including characteristics of the application scenario, administrator’s and
users’ requirements.

Distributed Intrusion Detection Systems (DIDS)

DIDS refers to a combination of multiple IDSs to monitor large systems. A DIDS has an advantage
by using both NIDS and HIDS which can be either signature or anomaly-based. DIDS correlates alerts
from different sources to be able to understand events in the system. Dastjerdi et.al [64] proposed a
scalable, flexible and cost effective method to detect intrusion for cloud applications regardless of their
location using mobile agents. When a central controller receives an alert, a Mobile Agent (MA) is sent to
collect evidences of an attack from all the attacked VMs. The MA sends back information to the central
controller and further investigation is done to identify real intrusions. However, the method introduces
a high network load when the number of VMs increases.

Riquet et.al [187] proposed DISCUS, a distributed IDS architecture using heterogeneous probes.
Physical and virtual probes are scattered across the network to cooperatively detect intrusion. The
paper recommends for probes to be as close to the host as possible, physical probes behind physical
hosts or integrated with switches and virtual probes integrated into physical hosts. Virtual probes could
be based on existing security solutions like Snort [13]. For administrating the probes, Discus Script, a
domain specific language (DSL) is proposed. An administrator writes global security rules and a compiler
is responsible for generating binaries for every type of security probe in the infrastructure. Figure 2.13
shows the architecture and DSL deployment. From a user-centric point of view the method doesn’t
separate entities and their responsibilities i.e. it doesn’t state what actions should be done by the users
or providers. In addition, the proposed DSL is very low level to describe users requirements. It is used
to express detection algorithms on IDSs.

Hypervisor-based Intrusion Detection Systems (HyIDSs)

HyIDSs are detection mechanisms in clouds using information from the hypervisor. Hypervisors as
described in Section 2.2 are software components that provide virtual instances of hardware and facili-
tate communication between the virtual and hardware layers. HyIDSs offer few advantages over other
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Figure 2.14: Virtual Machine Introspection (VMI) architecture [89]

techniques. First they take the monitoring probe outside the VM, which removes the risk of being com-
promised if the VM is compromised and for users it removes the burden of installing additional software
inside VMs. Second, HyIDSs complement both NIDS and HIDS on the coverage of attack types.

HyIDSs use information such as packets transmitted/received, block device read/write requests and
CPU utilization. These parameters were used to build an HyIDS in [158]. The paper proposes an
HyIDS which contains three components (i) an end point to gather data about running VMs from the
hypervisor and present the data to the controller (ii) a controller responsible for near real time analysis
of performance data (iii) a notification service which provides a notification when an attack is identified.
Although the method provides an HyIDS solution, the range of attacks (e.g. application level attacks)
that can be detected is very limited as it uses little information.

Virtual Machine Introspection (VMI) is one of the methods to implement HyIDSs. It is an approach
for inspecting a virtual machine from the outside for the purpose of analyzing the software running inside
it. Garfinkel et.al [89] proposed Livewire, a VMI-based IDS. It leverages three properties of hypervisors
namely isolation, inspection and interposition. The architecture of Livewire is shown in Figure 2.14. It
is divided into two parts, (i) the OS interface library which provides an OS-level view of the virtual
machine’s state and (ii) the policy engine which executes IDS policies by using the OS interface library
and the VMM interface. Livewire performs passive monitoring, i.e it does not interrupt events to take
action. On the other hand it helps to perform monitoring without the need to add hooks in the hypervisor.

Ibrahim et.al [108] presented CloudSec, a VMI-based monitoring appliance that provides active,
transparent, and real-time security monitoring for VMs in the cloud platform. CloudSec is different from
Livewire in a way that Livewire works in offline (it can’t detect events in the cloud e.g VM migration)
while CloudSec supports live migration as it is running on both the source and target hosts listening
to the same address and port number. In addition, Livewire works passively while CloudSec is active.
CloudSec monitors volatile memory to detect and prevent the kernel data rootkits. When the VM boots
CloudSec identifies the memory layout of the VMs hardware by inspecting the control registers of the
VMs CPU. Afterwards, CloudSec requests for Kernel Structure Definition (KSD) through the hypervisor.
Then CloudSec attempts to construct the view of the live VM by mapping physical memory bytes to the
KSD. Then, the constructed view is passed to the defense module in order to perform detection.

Summary

In this section we presented the state of the art in security monitoring. We started by defining security
monitoring and listing probes that are used to perform security monitoring. We have learned that
security monitoring is a process rather than a goal by itself. Different probes like antivirus, firewalls and
IDSs assist the process to reach the desired goal.

We detailed IDSs as they are one of the main monitoring probes and the work described in this
thesis directly applies to it. Different metrics that are used to measure the performance of an IDS are
also described in this section. We point out the need for having a single unified metrics which can
take the base rate parameter as an input. We studied a metric called CID, which satisfies both the
required properties. Finally, we presented different approaches to perform security monitoring in clouds.
Specifically, we showed different types of IDSs that are used by tenants and providers in the cloud to
perform security monitoring tasks.
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2.5 Cloud Service Level Agreement (SLA)
In this section we describe cloud service level agreements or SLA for short. First a definition an SLA
and its characteristics are presented, then its components and life-cycle are described. An example SLA
is shown to explain the SLA life-cycle in detail. We then describe the languages used to define SLAs.
The languages described below are the background for the discussion in Chapter 4 where we extend a
language, named CSLA, to describe the performance of security monitoring devices in SLAs. Finally, as
we are interested in security, we conclude by describing the status of cloud security in SLAs.

2.5.1 SLA and its Characteristics
Before the introduction of cloud computing, organizations used to host their own computing resources
(networks, servers, storage, applications, and services). By using clouds, tenants benefit from cost
reduction (in both building and management), an elastic infrastructure and broad network access. One
of the risks of moving to a public cloud is losing full control of the information system infrastructure. The
service provider is in charge of monitoring the physical infrastructure and providing the required service
to tenants. It monitors every aspect from resource allocation, performance monitoring to security. This
creates a trust issue between providers and tenants. Providers acknowledge the issue and endeavor to
provide assurance through an agreement called service level agreement.

Definition 2.8. A Service Level Agreement (SLA) is a negotiated document between the service provider
and tenant. The document describes the provided service, the rights and obligations of all participants in
the agreement and state penalties for when the specified terms are not respected. In addition, it contains
a quantitative description of the targeted quality of service using Key Performance Indicators (KPI).

Such types of agreement have been used long before the cloud, for example for web services [133]. The
main difference between the traditional SLA and cloud SLA is that the former uses the subscription/license-
based model (fixed price) whereas the latter uses the pay-per use model (dynamic price). SLAs have be-
come important components in the transformation of a product-oriented economy into a service-oriented
economy [222].

SLAs help in building a trustworthy relationship between providers and tenants. It provides a guar-
antee for tenants, as it includes reward (as penalty) for cases of violation. If there are situations or cases
where term(s) can not be fulfilled, it should be explicitly stated. An SLA is negotiated, hence users can
specify their needs and requirements to get a service well tailored to their needs.

In addition to being a legal document for the provided service, an SLA is a key component in the
process of an autonomic system [106]. Such systems make decisions based on knowledge acquired by
analyzing data from different inputs. SLAs provide an input in an autonomic computing decision making
process by providing a high level human-based goals, e.g. business goals.

Cloud SLAs are characterized by some features including Unambiguous, Measurable, Attainable and
Verifiable.

• Unambiguous: The definition of an SLA should be clear and not open for multiple interpretations.

• Measurable: The expected quality of service should be described with quantitative measurement
(KPI).

• Attainable: As SLAs are legally binding, service providers agree on achievable objectives. Other-
wise, penalties could follow for any possible violation. Having defined KPIs is SLAs is useless if
the terms cannot be enforced.

• Verifiable: an SLA being an agreement between multiple parties any party has the right to check
for the satisfaction of the terms and for violation by other party.

SLAs are composed of different components, which are presented in the next section.

2.5.2 SLA Components
In this section we describe components of cloud SLAs. SLAs differ between service providers and the
objectives called service level objectives also differ by service model (SaaS, PaaS, IaaS) and deployment
model (Public, Private, Hybrid). There are no globally agreed sets of components for SLAs but we can
state that to satisfy the basic characteristics of an SLA it requires the following four main components.
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Figure 2.15: Phases of SLA life-cycle

Service Description

The service description component describes the service which is covered under the SLA. It can also
describe the time period until which the agreement is valid. The description should be provided in a
clear and non ambiguous way to have a common understanding between providers and tenants. Having a
formal language to describe SLA terms would give additional helps, like it helps to compare services from
different providers and helps to automate the negotiation and enforcement process. Examples of formal
SLA description languages include WS-Agreement [17] and WSLA [133]. More details are presented in
Section 2.5.4.

Service Level Objectives (SLO)

SLOs describe the targeted quality of service using Key Performance Indicators (KPI) metrics. There
are different metrics depending on the service model. The IaaS model contains metrics about compute
instances and networking while a database service PaaS includes metrics related to data.

In addition, if some metrics are computed from basic metrics, the computation mechanism should be
stated. Moreover, if the frequency of measuring the metrics is an important factor, it should explicitly
be stated. If there are exceptions where the SLO cannot be achieved it needs to be precisely described.

Parties

Parties are the entities that will be bound by the agreement, namely cloud providers, tenants and possibly
third party entities. The SLA should clearly describe the roles and responsibilities of each participants.

Penalties

Penalties are remedies for cases of SLA terms violations. Violation happens when an SLA commitment
is not met, and a penalty or credit can be issued to compensate for the breach of an SLA commitment.
Usually penalties are service credits given back to the tenant or applied towards future payments. It can
be seen as a counter-incentive for providers to violate an SLA.

2.5.3 Phases of an SLA Life-Cycle

In the previous section we presented the most common components of cloud SLAs. This section presents
the life-cycle of an SLA. At the end of this section we provide an example to illustrate the different
phases of the SLA life-cycle.

As in the case of SLA components, there are no globally accepted phases in an SLA life-cycle [65,
203, 17]. Alessandra et.al [65] presented five SLA life-cycle phases, namely negotiation, implementation,
monitoring, remediation and renegotiation. In [203] seven phases of SLA life-cycle are presented in cor-
relation with three cloud service life-cycles. The phases in both [65] and [203] are different classifications
of the same process. Below we describe the most common phases of an SLA life-cycle. The phases of an
SLA life-cycle are depicted in Figure 2.15.
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SLA Definition and Negotiation

The SLA definition is a pre-negotiation phase where service providers draft SLA templates according
to the services they provide. They should clearly specify the SLOs with clear KPIs. The draft SLA is
proposed when a potential client requests a service. The negotiation process continues from here. In
the negotiation phase, tenants identify their requirements and perform assessments. In [179] the Cloud
Standard Customer Council (CSCC) proposed a practical guide containing ten steps for evaluating
different SLA offers based on tenants requirements.

If a tenant is not satisfied with the current offer she/he can decline the offer and request an updated
SLA offer. In the case of multilevel SLAs (a multilevel SLA is split into different levels, each addressing
a different set of customers for the same services, in the same SLA) there could be rounds of negotiation.
But usually the negotiation step is missing in simple public cloud SLAs. A simple public cloud SLA is
signed when a single user is getting service from a provider, such providers follow a “take it or leave it”
policy without any negotiation process.

SLA Enforcement

Once the SLA is defined and agreed, the next step is to enforce the terms that are defined in the SLA.
Enforcement means to implement what is written in the agreement into the actual infrastructure. It
ranges from the start of setting up services to configuring mechanisms used for checking the fulfillment
of expected quality. In public clouds the underlying infrastructure is managed by providers hence, the
service provider is responsible for deploying the requested infrastructure while respecting the SLA and
towards achieving SLOs in the agreement.

SLA Verification

Once the infrastructure is deployed, it should be monitored regularly (or with the frequency stated in
the agreement) to verify its compliance with the SLOs promised in the SLA. Checking the fulfillment
of an SLO at specific times is verification, while continuously checking is called monitoring. The SLA
verification can be performed either by providers, tenants or a third party entity. Transparency is
important if providers do the verification. When an SLA is violated tenants have to react in order to
initiate the next step according to the SLA definition. The response for violation could be remediation,
renegotiation or termination.

To explain the life-cycle phases with an example, we present the availability SLA term offered by
Amazon Compute Services [5]. The service commitment reads as follows:

Example 2.9 (Amazon compute services SLA). “AWS will use commercially reasonable efforts to make
the Included Products and Services each available with a Monthly Uptime Percentage (defined below) of
at least 99.99%, in each case during any monthly billing cycle (the “Service Commitment”). In the event
any of the Included Products and Services do not meet the Service Commitment, you will be eligible to
receive a Service Credit as described in Table 2.3 ”

Monthly Uptime Percentage Service Credit Percentage
Less than 99.99% but ≥ 99.0% 10%
Less than 99.0% 30%

Table 2.3: Amazon service commitments and service credits

Example 2.9 describes the SLA definition between two parties, a user and the Amazon Web Service
provider. But the example presents only the objective section (SLO). Other components like “included
service and products”, “definitions of terms”, “SLA exclusion” ... can be found in [5] which describes
every term without any ambiguity. The Enforcement of this SLA term is accomplished by deploying the
services (i.e. instantiating the requested VMs, containers or block storage) at the appropriate time and
on the requested location.

Verification can be performed by both the provider and tenant. In our example verification is checking
the availability (up-time) of the service or product. Violation happens if the sum of total down-time (as
it is defined in [5]) is greater than 0.01% (4.32 minutes per month). In that case clients need to start a
credit request and payment procedure to get compensation for violation, i.e. penalty will be paid by the
service provider.
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Figure 2.16: Structure of an SLA in different languages

As described in the next section, leaving the burden of violation detection to tenants is one of the
shortcomings of current existing SLAs.

2.5.4 SLA Standards and Languages
In this section we describe standards and languages that are proposed to formalize the definition of SLAs.
The advantage of formalizing the SLA definition is many folds including to automate the life-cycle of
SLA, to pass SLA as an input for an autonomic system and comparability i.e comparing offers from
different providers. Below we describe widely used SLA languages.

Web Service Level Agreement (WSLA)

The WSLA [133] language was proposed as part of the WSLA framework by IBM for the definition
and monitoring of SLAs in web services. The WSLA language is based on XML and is defined as an
XML schema. Figure 2.16(A) shows the structure of an SLA in WSLA. An SLA in the WSLA language
contains three parts:

• Parties: a description of participants, their role (provider, customer, third party) and the action
interface they expose to others

• Service description: defines one or more services and service objects have parameters which show
how they are measured,

• Obligations: which contain service level objectives and actions to be performed in case of SLA
violation.

However, the management of penalties is limited mainly to notification in case of violation. The latest
semi-stable version of WSLA was published in 2003, since then it is integrated into WS-Agreement.

Web Services Agreement (WS-Agreement)

A WS-Agreement [17] is an SLA specification presented by the Grid Resource Allocation and Agreement
Protocol (GRAAP) Working Group of the Compute Area of the Open Grid Forum [12]. The objective
of the WS-Agreement specification is to define a language and a protocol for advertising the capabilities
of service providers and creating agreements based on creational offers, and for monitoring agreement
compliance at runtime. It is also an XML based language. WS-Agreement introduces the concept of
pre-defined agreement template containing customizable aspects and creation constraints.

The structure of a WS-Agreement SLA is shown in Figure 2.16(B). It contains Name and Context,
providing information about the agreement document (e.g. agreement initiator, expiration time ...) and a
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reference to a Template containing information about the service provided and service levels which should
be guaranteed. WS-Agreement is generic enough to be extended for domain specific agreements and it
contains more information about the service functionality than WSLA. However, the negotiation process
in WS-Agreement is not significantly versatile, it only offers the "accept or reject" model. Moreover,
the WS-Agreement semantics is not defined precisely. To overcome this issue Semantic WS-Agreement
Partner Selection (SWAPS) [160] presented an extension. It adds tags into the original WS-Agreement
to allow the incorporation of semantics. For example the original WS-Agreement defines a response time
SLO as

duration < 3 seconds (2.10)

In the SWAPS Schema this is expressed as

predicate type = ‘less‘, parameter = duration, OntConcept = qos :: responseT ime, value = 3, unit = second (2.11)

SLAng

SLAng [124] is a language for defining Service Level Agreements (SLAs) that describe different layers
of services (network services, storage services and middleware services). In [124] the authors present a
reference model for inter-organizational service provision at storage, network, middleware and application
levels. The SLAng syntax is defined using an XML schema. In addition to contractual statements and
service level specification it includes an end-point description of the contractors (e.g., information on
customer/provider location and facilities).

However, SLAng focuses on a specific group of applications (it assumes the use of component oriented
middleware). Hence, its applicability even for the general web services is limited. In addition, Skene
pointed out in [202] that the definition of the language was highly imprecise and open to interpretation.
He proposed additional features in SLAng. He presented a specification which is based on the Essential
Meta-Object Facility (EMOF) and Object Constraint Language (OCL) [202] standards. But using the
method requires technical expertise, which leads to difficulties for users and high costs for its adoption.

All the above languages were not designed considering the cloud, although WS-Agreement with differ-
ent extensions have been used in many European projects to describe SLAs for clouds (e.g SPECS [199],
Contrail [153] and Paasage [151]). Other languages have been developed specifically for cloud services.
Moreover, some features (like pre-generating templates) have been adapted for cloud scenarios. In th
following we present notable SLA languages that are designed for the cloud.

SLA∗

SLA∗ [222] was developed as part of the FP7 ICT Integrated Project SLA@SOI. It is a domain-
independent, abstract syntax for machine-readable SLAs and SLA templates. It is inspired by WSLA
and WS-Agreement, but it is different from them in the fact that SLA∗ is language independent (it does
not use XML). It is not specific to web services, as it deals with services in general. It supports the
formulation of SLAs in any language for any service. SLA∗ can be seen as a syntax because it serves to
specify the organization of symbols in an SLA document, but it is abstract in that it leaves unspecified
the particular symbols used to instantiate this organization.

The structure of SLA defined using SLA∗ is shown in Figure 2.16 (C). SLA∗ providers define SLA
templates from which the SLA as well as additional attributes like the time at which the SLA was agreed
and its effective lifespan are derived. The SLA template comprises information like parties, services
described in terms of their functional interfaces and agreement terms including SLOs. The multi-domain
approach in SLA∗ introduces some drawbacks. In particular for each domain it requires developing
symbols. For example to use SLA∗ for cloud SLA description, it requires defining symbols for every
component like participants, services, parameters .... Moreover, there is no general precise semantics
related to SLA∗, creating difficulties to automate SLAs.

SLAC

SLAC [214] is a domain-specific SLA language for clouds. The authors argue that the existing languages
do not provide a formal semantics description and also cannot cope with the distinctive characteristics
of clouds, specifically with the business aspects of SLAs (e.g pricing model). The main components of
SLAC are (i) the description of the contract containing at least two parties (ii) the terms of the agreement
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to express the service and SLOs, (iii) the guarantees which describe penalties in cases of violation. It
also presents an extension to capture the business aspects of an SLA with a method adopted from [116].
It divides the SLA into three phases: (i) Information Phase, in which the details about the services,
consumers and providers are browsed and collected; (ii) Agreement Phase, in which the participants
negotiate and define the terms and the pricing model; and (iii) the Settlement Phase which is related to
the evaluation and enforcement of the SLA.

SLAC comes with an open source management framework. A formal semantics description of the
language is presented in the [214]. The semantics of an SLA is formulated as a Constraint Satisfaction
Problem (CSP) that satisfies: (i) at negotiation-time, whether the terms composing the agreement are
consistent; and (ii) at enforcement-time, whether the characteristics of the service are within the specified
values.

In SLAC the metrics and the way to measure them are pre-defined in the language. Though, the
authors claim it can be extended according to the needs of the involved parties. While defining SLA using
SLAC, guarantee definitions are optional. Hence, it may lead to an SLA which do not include penalty
for violation. In addition, in cases where a guarantee is defined the actions when violating term(s) are
restricted to either notification or renegotiation.

CSLA

CSLA [123], a language to express SLA in the context of clouds, addresses cloud instability to better
control SLA management (in particular SLA violations) and cloud scalability. Service providers offer
different qualities of service using a pay-per use model (as described in Section 2.1.3, e.g. with Amazon
Spot instances), CSLA allows coping with error rates in SLAs to enable a service provider to continue
operating properly in the case of some violation.

Figure 2.16 (D) shows the structure of SLAs in CSLA. The definition has been influenced by
WSLA [133] and SLA∗ [222]. SLAs in CSLA contain three main parts (i) a reference to the template
used to create the agreement, (ii) validity of the agreement, and (iii) parties involved in the agreement.
The template is made up of five parts namely: cloud services definition, parameters, guarantees, billing
and termination.

CSLA, in addition to the traditional fixed price billing model, allows the possibility to use the pay-
as-you-go model, which is one of the basic characteristics of clouds. Additionally, CSLA introduces novel
properties for SLA metrics called fuzziness and confidence ratios. The former defines the acceptable
margin around the threshold value of an SLO parameter, whereas the latter defines the percentage of
compliance of SLO clauses.

Figure 2.17 shows the three states of a request with respect to SLO violation to illustrate fuzziness
and confidence. To describe them with an example, let us assume that an SLO for the response time of a
service is 2 seconds, the fuzziness value is 0.5 and the confidence is 95%. This means out of 100 requests
at least 95 of them should have a response time between 0 and 2 and maximum 5 can be between 2
and 2.5 without violating the SLA. This is an interesting property to have in the cloud. Indeed, as the
environment is very dynamic respecting a fixed SLO for every fraction of seconds may not be feasible.
Specially assuming complex metrics measuring different properties of the cloud (e.g performance of a
security monitoring device), achieving a fixed target SLO is challenging.
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The next section focuses on a specific type of SLAs, Security SLAs.

2.5.5 Security SLAs

In the previous section we have presented SLAs and languages that are used to describe SLAs in clouds
and web services. In this section we focus on types of SLAs covering security aspects of the cloud.
The challenge of including security services in SLAs has been a subject of study before the advent of
cloud [103].

Henning [103] stated one approach to incorporate security management services into enterprise infor-
mation services and the proposed economic model is through the definition of SLA. The paper pointed
out that security management activities have not been quantified or expressed as SLAs. The paper
presents a three-step process to generate a preliminary group of SLAs (i) policy analysis: analyzing
regulations and standards (ii) architecture analysis: policy are validated against the customer’s network
and architecture diagrams (iii) on-site interviews : designed to solicit additional details about represen-
tative site implementations. However, other than defining properties the paper falls short of quantifying
security properties and of how to enforce and monitor SLAs.

In IaaS clouds tenants have no control on the physical infrastructure of the system, hence relying on
providers for securing services. This is one of the main sources of concern in the cloud service models
and it augments the importance of assurance for security in the cloud. In [186, 44] the authors applied
the method proposed in [103] to define metrics to be used in such contracts. In [44] a list of initial guides
to start the process is presented. Metrics like password management (how often passwords should be
changed), backup policies, and repair time are described. The authors also mentioned the importance of
having measurable and quantifiable metrics in SLAs.

Bernsmed et.al [28] discussed the need to include security in SLAs and described security in SLAs as
Quality of Protection (QoP), which comprises the ability of a service provider to deliver service according
to a set of specific security requirements. QoP is described with one or more security mechanisms. Five
groups of security mechanisms are presented namely, Secure Resource Pooling (RP), Secure Elasticity
(E), Access Control (AC), Audit, Verification & Compliance (AU), and Incident Management & Response
(IM). In another paper [29] a similar method is presented for composing security SLAs for federated cloud
services.

These works are very first steps but they lack quantitative descriptions of security services, enforce-
ment mechanisms, and verification techniques.

To address the issue of verifiability, Da Silva et.al [61] proposed an approach to build a Security-SLA.
They used two classes of metrics to define security SLAs (i) infrastructure metrics: containing hardware
devices and related cloud software, such as networking, firewalls, routers, proxies, operating systems etc
(ii) services metrics: consisting of SaaS, PaaS or IaaS hardware/software components that provide the
service contracted by the tenant. Monitoring agents run both inside and outside the tenant environment
to collect security metrics. Collected metrics are mapped to scale values from [0-4] representing the range
of security values as [Critical, High, Medium, Normal, Zero], a technique used also in [60] to facilitate
operations. However, the proposal did not consider all critical security aspects and services in the cloud.
It is not clear which metrics are being collected and how the critical level is assigned. For example, how
are the metrics from different types of monitoring device mapped to [0-4]. Moreover, other than stating
monitoring agents in different locations of the cloud, it is not clear how the monitoring is done i.e. who
is responsible on different service modes, what are the measurement procedures ...

In [175] the authors studied conceptual and technical barriers to implement a Sec-SLA monitor-
ing service. Some barriers include the lack of acceptance and maturity of SLA management systems,
the difficulty of mapping high level security properties to low level monitoring parameters, the lack of
deployment-layer agnosticism, and extra complexity introduced by virtualization. This study was used
as an input for SPECS [184].

SPECS is a European project which intends to explore a user-centric framework and a platform
dedicated to offer Security-as-a-Service using an SLA-based approach. The assumption that "security
features should be applied not starting from what the provider offers, but from user needs" makes it
more user-centric. An SLA-based approach is used to have a common language between providers and
users. The SPECS project focused on securing cloud resource provisioning using SLA management [39].
It extended WS-Agreement to describe security SLAs [40]. The core of the SPECS framework consists of
three components, negotiation, enforcement and monitoring modules as shown in Figure 2.18. Figure 2.19
shows the enforcement process. Users specify security requirements using provided templates. The de-
sired template is passed to the planning component which is responsible for evaluating the feasibility and
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Figure 2.18: SPECS framework [199]

Figure 2.19: SPECS enforcement process [199]

building plan for the implementation of requested service. The feasible plan is generated by formulating
an optimization problem according to the template SLA. The optimization is solved targeting to find
the minimum number of resources required to implement the SLA. If there is no solution satisfying the
constraints then the template is dropped. Once a plan is generated, a final SLA offer is proposed for
client. Upon return of a signed SLA the implementation component deploys the requested service.

Kaaniche et.al [114] presented security SLA monitoring mechanisms in clouds. The paper extends
a language called rSLA [132] to support the description of security requirements. The rSLA runtime
service is also extended, named Sec-rSLA, to incorporate the language extension. Figure 2.20 shows an
overview concept of Sec-rSLA. A service (S) in the cloud is represented by set of elements, a subset of
these elements which are potential targets of cyber-attacks are Vulnerable Elements (VE). A VE has
to be evaluated with respect to a set of security properties (SPs) where SPs are based on measurable
metrics. SLOs belong to a Security Class (SC) which is the result of aggregated SPs.

However, both SPECS and Sec-rSLA don’t use quantifiable metrics describing the security of tenants’
environments. Use cases presented in [39, 40] use security policy constraints as an input for building
SLAs (e.g the load balancer should not be collocated with a server or the IDS needs exclusive use of
machines ...). Similarly, Sec-rSLA uses policies like the number of replicas for a given data as SLO in
security SLAs. This is mostly as a result of difficulties to quantitatively measure security.

Emeakaroha et.al. [74] presented the LoM2HiS framework, which is used to map low level monitored
metrics to high level SLA parameters. Figure 2.21 shows the LoM2HiS framework, service providers
define mapping rules using a DSL which are used by a run-time monitoring tool to map low level raw
metrics and form an equivalent of the agreed SLA objectives. However, the focuses of LoM2HiS is not

Figure 2.20: Sec-rSLA concepts overview [114]
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Figure 2.21: LoM2HiS framework architecture [74]

security metrics. It is also difficult to adapt LoM2HiS for security as it requires defining mapping rules
from low level metrics to high level SLAs, which is difficult to do for security metrics. In addition
LoM2HiS is defined in a specific framework.

Currently major IaaS cloud providers give a textual version of SLAs addressing mainly availability of
the provided service, which is one of the three security triads (see Section 2.3.2). However, guaranteeing
only availability does not address the major concerns of tenants (confidentiality and integrity). Even for
the availability SLAs as it is today, there are major drawbacks that we describe in the next Chapter.

2.6 Summary
In this chapter we presented state of the art, which is used as a basis for the next chapters. First, we de-
scribed clouds with their characteristics, deployment and service models and revised the main technology
deriving cloud e.g virtualization. Two types of virtualization namely machine and network virtualiza-
tion are discussed in detail. We devoted a section to information system security which describes, not
exclusively, security mechanisms and threats as a result of virtualization.

We presented in detail security monitoring and related subjects, like tools to perform security mon-
itoring. As the thesis work is directly applicable on NIDSs, we dived in detail describing on how to
measure the performance to NIDSs. We also described the current state of security monitoring in clouds.
Last but not least we presented Service Level Agreements (SLAs) in clouds. Their characteristics and
components were described. Additionally, different languages used to define SLAs are discussed. Finally,
efforts to include security in cloud SLAs were covered.

Even if there are lots of efforts to improve SLAs in clouds, the current state of SLAs falls short of
some aspects. Notable shortcomings include:

• There is no practically used common language or high level standard that can be used to define
SLAs from different service providers. Almost all currently available SLAs are described using
natural language. As described in Section 2.5.4, different languages are proposed in the research
community but none of them has emerged as a default (generally acceptable) standard to describe
SLAs. We think that this could be a combined result of technical difficulties (e.g. correctly mapping
users’ requirements that are described using high level language into low level configurations) and
behavioral and economic factors (e.g a service with more custom requirements would probably cost
more than a general service), hence users prioritizing economic factor.

• Almost all existing SLAs cover availability of the provided service. As shown in [24] almost no
cloud providers offer any performance guarantees for compute service. It should come with no
surprise that other aspects like security are not included in SLAs. This problem exacerbates when
assuming the fact that security is the most concerning issues for most cloud tenants.

• Currently detecting SLA violation is left as a responsibility for tenants. This problem is the result
of not having an automated monitoring system for SLAs. SLAs are defined using natural languages
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with detailed definition as possible hence processing natural language to automate the life-cycle of
SLA is not feasible. It should be noted that there are third party entities providing SLA monitoring
service like Cloudstatus [53] (e.g monitoring virtual infrastructure for detecting down-time).

• Most public IaaS providers offer static, standard SLAs, i.e there is no negotiation process. Tenants
have no option other than agreeing if they need the service (“take it or leave it” model).

In our work we want to include users in the process of security monitoring by participating through
an SLA. SLA by its definition is an agreement between providers and clients. If we can include security
monitoring terms in an SLA users will be able to participate in the life-cycle of such SLAs, i.e users will
be able:

• To specify their needs and requirements for monitoring the security of their services;

• To participate in the process of enforcement, e.g if the enforcement requires some action from the
tenant side;

• To perform continuous monitoring, check the respect of SLOs and be compensated for any violation.

In the next chapters we will present the contributions of our study. Chapter 3 presents a high level
description of how to include users in the security monitoring process through SLAs. It lists the challenges
and describes how we address some of them and the ones not addressed in our work. It also gives a
detailed presentation on how the SLA life-cycle described in Section 2.5.3 can be applied for security
monitoring terms.

Chapter 4 presents the first step in the process of security monitoring SLA life-cycle, i.e the definition
of security monitoring SLAs taking users’ security needs into account. It focuses on a specific security
monitoring probe, NIDS. It presents an example SLA definition and mechanism to estimate performance
of NIDS in order to prepare SLA templates. In Chapter 5 a technique is presented to perform verification
for SLOs defined as described in Chapter 4. The verification is performed by injecting real attacks but
without damaging the production infrastructure.

Chapter 6 presents a different technique to include users in the security monitoring process. In the
previous chapters, to verify an SLA a tenant and a provider needs to share some information, like tenants
need to disclose the software that they are running and providers need to configure the infrastructure
to allow verification for tenants. This creates a dependency between each other. In Chapter 6 an SLA
monitoring mechanism, based on a distributed algorithm which requires users participation by design is
described. In addition, the method removes the dependency between tenants and providers.



Chapter 3

User-Centric Security Monitoring

3.1 Introduction
In the previous chapter, we presented the state of the art on cloud SLAs and specifically on the state
of security in SLAs. We saw that availability is the most common property covered by current SLAs.
Other aspects of security are the targets of few recent research works but they are not included in any
of existing SLAs. Moreover, a few of the research outputs follow a user-centric approach [184]. Even
those following user-centric approach do not address (i) how users express security requirements (ii)
how to offer quantifiable SLO regarding security properties (iii) how users can verify an SLO in their
environment. In the context of clouds, where the provided services are tailored for each tenant, SLAs
should be user-centric. Especially when addressing the security of tenants’ environments, each tenant
has its own security requirements and very often they require different implementation mechanisms.

User-centric refers to users having more control, more choices or more flexibility. Providing user-
centric security services means allowing tenants to have more control, choices, and flexibility on types of
vulnerabilities to be monitored, over actions to be taken in cases of incident and compensation if damages
happen as a result of security breaches. All these can be addressed by allowing tenants to participate in
the process of securing their environment.

SLAs can be used to moderate interactions between service providers and tenants. In the context of
clouds, engagement of two or more parties in the set of action to a common goal can be regulated by
SLAs. By definition an SLA associates the participants in the agreement hence, it becomes a perfect
candidate to create common security goals and work on that direction for both tenants and providers.

Theoretically finding a common goal may seem easy but in practice achieving such goal from multiple,
maybe conflicting requirements, is very difficult. In the context of cloud security, tenants’ requirements
focus on threats and risks, while cloud service providers express their offers in terms of security mech-
anisms (tools and software that implement security policies) and their parameters for configuration.
Additionally, as described in Section 2.5.5 quantitatively measuring security is difficult. Hence, mea-
suring security properties and enforcing tenants’ requirements is not easy. On the other hand security
details of a provider is usually complicated and not interesting for tenants.

In our work, we propose to include security monitoring terms into SLAs. As described in Section 2.4
security monitoring by itself is not a goal, it is a process to safeguard and achieve desired security proper-
ties. Adding security monitoring terms into SLAs means giving guarantee for tenants on the performance
of security monitoring tools and devices. Quantifying performance and capabilities of monitoring de-
vices is easier than quantifying security hence it shortens the gap between tenants requirement and
providers description. Our approach fulfills the user-centric design property, as users are participants in
the life-cycle of SLAs.

To achieve user-centric SLAs which contain security monitoring terms we propose:

• An SLA description language which is an extension of CSLA (see description in Section 2.5.4)

– It can describe performance of monitoring devices,
– It can be used to describe vulnerabilities and users can specify requirements in terms of

vulnerability;

• SLA monitoring and verification mechanisms that are transparent (non-secretive) for both providers
and tenants;

45
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• Secure, trusted and transparent storage which is used to store SLA verification results.

In this chapter we present arguments why user-centric design is required for security monitoring
SLAs. In relation with that we present the objectives of our study and the challenges of designing and
implementing user-centric security monitoring SLAs. Before diving into the solution on how we include
users in the process of security monitoring in clouds, we present the system model where our solution
can be applicable. It should also be noted that the proposed solutions in our study do not cover all types
of threats, therefore a section is provided to discuss the types of threats that are addressed in our study.

3.2 The Need for User-Centric Security Monitoring in Clouds
In this section we provide our view points on why user-centric design is required for security monitoring
SLAs. In addition, the need for cooperation between tenants and providers, objectives of our study and
challenges on developing user-centric security monitoring SLAs are presented.

One of the characteristics of clouds which helped to its wider adoption is its flexibility. A tenant can
provision whatever amount of resources she/he wants, at any time and pays only for what she/he used.
In such a cloud service model tenants deploy different types of service on the acquired infrastructure. It is
also very difficult to find one security monitoring solution which can fit the needs of all tenants. Moreover,
the multi-tenancy feature of cloud computing, which makes resource utilization very efficient, becomes a
bottleneck for security. This is because multi-tenancy creates an environment where an attacker and a
target (or two competing companies) can be co-located in the same physical machine, which introduces
a new kind of vulnerability.

For example, assume there are two companies, company A and B. Company A provides a dynamic
web service (including a back-end database and server side programs) and company B provides a data
storage service. Company B includes an FTP service where port 20 is open while Company A needs port
20 to be closed (e.g there is no service running on that port). Both companies use a cloud infrastructure to
run their services and their clients access the service through the Internet. Company A is more interested
to be protected from dynamic attacks like SQL injection and cross site scripting while Company B is
more interested in keeping the data integrity (not being tampered). Such requirements are not always
mutually exclusive, there can be some intersections like both companies are interested on keeping their
service available as long as possible.

Even if there can be intersection, the requirement of one tenant is somehow different from others or
even conflicting with others. If security requirements are different it may be required to apply different
monitoring solutions or the same monitoring method but with different operating configuration depending
on the requirement. In the above example the requirements of company A could be addressed by using
NIDSs with appropriate detection rules while the requirements of company B can be achieved efficiently
with cryptographic techniques. This shows that, since the cloud computing model is user-centric by its
nature, security monitoring in such an environment should follow the same design and operating process.

3.2.1 Cooperation Between Providers and Clients

As shown in Section 2.1.3, in different service models tenants manage some portion of the information
system tiers. For example in IaaS clouds tenants own virtual resources (e.g virtual server or storage)
running on top of the hypervisor. The security of tenants environments is not only dependent on their
virtual infrastructure but also on the security of all the underlying components (hypervisor, OS if the
hypervisor is running on top of an operating system, physical infrastructure and so on). For example if
the underlying OS or hypervisor is vulnerable for side channel attacks as shown in [109, 188] an attacker
could get cryptographic information from the target VM regardless of the type of security implemented in
the target VM. Even worse, if the underlying hardware is vulnerable to Meltdown [129] and Spectre [121]
types of vulnerability the OS would be compromised making both the hypervisor and VMs running on
top vulnerable, again regardless of the security mechanism inside VMs. It shows that having only strong
security inside a VM is not enough to be sure of its security.

On the other hand service providers cannot perform full security monitoring as they do not have
knowledge or access to the services running inside tenants’ environments. For example a tenant may
provide an email service where port number 25 is open or an FTP service where port 20 is open. Without
having knowledge of tenants’ environments it is burdensome to perform full security monitoring.

To consolidate these two complementary features and to have an end-to-end security monitoring abil-
ity in a given environment there should be cooperation between providers and tenants. Such cooperation
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will help both providers and tenants to get information that they could not have otherwise. Tenants
will share necessary information about services running in their environment (e.g name and version of
applications running in the environment). In return providers will give necessary log files and underlying
infrastructure information for tenants (e.g. logs or output of monitoring devices). This way an end-to-
end security monitoring, where both tenants and providers are participant, can be achieved. Economic
incentive will be a drive for service providers and tenants will get better guaranteed service.

3.2.2 Objectives

In our work we aim to give guarantees on the performance of security monitoring devices for tenants
in the cloud while those devices are configured to monitor vulnerabilities selected by tenants. Such
guarantee follows other cloud service models in a way that it will be tailored per tenant. Tenants will be
able to describe what they want, e.g which vulnerabilities to be monitored, accepted level of performance
(described with relevant metrics as KPI) and be able to interact with what a provider offers. Tenants
should also be able to compare offers from different service providers.

We also aim to provide tenants with tools and methods to check the validity of a given assurance.
Such guaranteeing technique where tenants participate in the process of security monitoring for their
outsourced information system adds trust, even though they do not have a full control on the physical
infrastructure. By giving such a service we also aim to reduce the human component in security mon-
itoring process (on-demand self-service) as much as possible, as it is one of the characteristics of cloud
computing (see Section 2.1.1).

,

3.2.3 Challenges

In this section we present challenges for designing, implementing and providing user-centric security
monitoring service through SLAs. The challenges result from different factors, including the properties
of SLAs, the nature of cloud environments and the difficulties of security monitoring (e.g selecting
appropriate mechanisms, measuring performance of monitoring devices, ...). This section presents the
challenges that we identified and describes the ones addressed in our work. In Chapter 7 we discuss on
how to address the remaining challenges. We identified the following challenges:

1. Lack of method to describe security monitoring requirements and services. To get user-centric
security monitoring SLAs, tenants need to describe their needs and providers need to promote
their security monitoring services. To automate and easily compare different offers such description
should be standardized. Requirements and service descriptions should also be understandable for
users (not too much technical) and also realistic for implementation (not in a very high level
description).

2. Lack of automated and efficient security policy enforcement mechanisms. This can be related with
the previous challenge, lack of standardized description creates a gap for implementation. Before
the advent of clouds, in a traditional outsourcing to a managed service provider, a provider might
well agree to follow the users’ security policy. However, in clouds it is difficult, if not impossible,
for providers to comply with all tenants separate security policies, with possibly different, even
conflicting, requirements.

3. Measuring the performance of monitoring devices is not straightforward. The performance of such
devices not only depends on the configuration and available resources but also on the outside
environment where they are operating. Moreover, in most cases the outside factors are nondeter-
ministic events (e.g probability of occurrence of an attack), they are hard to measure or predict.
Sharing a monitoring device with multiple tenants also affects the performance. Assuming security
monitoring devices in clouds where multiple tenants share the devices, measuring the effect of a
single tenant on the performance of the device is an open problem, as there will be the effect of
others at the same time.

4. Lack of methodologies to measure the performance in a way that is open for both tenants and
service providers. We call this property transparency, operation is described in such a way that it
is easy for others to see what actions are performed.
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5. To perform dynamic evaluation of a given vulnerability, a practical attack (tool to exploit the vul-
nerability) is required. Usually when a vulnerability is discovered, unless the founder has negative
intent, there is no incentive to publish the attack. Specially if the vulnerable product is owned
by a commercial entity, there is an incentive not to disclose attacks. Hence, performing dynamic
evaluation becomes challenging.

6. Most of the time tenants have no detailed knowledge on their security requirements. Regular
software or product users may have knowledge on functional aspects of a system but describing
security vulnerabilities requires relatively detailed knowledge. To make an agreement with providers
it requires at least to describe vulnerabilities in a way that is understandable for providers.

7. After measurement is performed the result should be stored without any bias. Since violation of a
term in an SLA has a consequence, participants get incentivized to tamper the result in their favor.
Detecting and preventing such modifications is challenging specially in the cloud where ownership
of a system is divided between different parties.

8. The dynamic nature of clouds makes security monitoring challenging. In IaaS clouds VMs are
created and deleted frequently. In addition, VMs migrate from one host to others for different
purposes (for resource optimization, maintenance ... ). The security monitoring service should
adapt to dynamic events in the cloud.

In Chapter 4, we address the challenges of describing security monitoring SLAs for specific security
monitoring devices, NIDSs (Challenge 1). Our SLA description method expects tenants to describe their
requirements in terms of vulnerabilities, which is not always easy as described in the challenges above
(Challenge 6). Providing a simpler way to describe security requirements is out of the scope of our work.
The metrics that are used in our study take the operation environment into account (Challenge 3).
Specifically, the rate of occurrence of an attack is considered.

In Chapter 5, we present a transparent performance evaluation method for NIDSs which can be used
by both providers and tenants(Challenge 4). We also present a distributed storage mechanism which
can be used as a trusted storage platform in Chapter 6. Such a storage system is used to store security
property verification results, specifically data integrity checking results without any bias (Challenge 7).

Our performance evaluation method partially takes into account the dynamic nature of clouds (Chal-
lenge 8). Chapter 5 describes the events that are taken into account. We used a very specific SLA
enforcement method. We did not address the different enforcement mechanisms for the security moni-
toring SLAs (Challenge 2); more details on these issues are presented in Chapter 7. In addition, we used
a limited set of real attacks for our experiments. Collecting and organizing vulnerable applications and
the attacks to exploit those vulnerabilities (Challenge 5) is out of the scope of our work.

In the next section we present the system model and threats that we take into consideration for the
contributions presented in the next chapters of this thesis.

3.3 System Model: Outsourced Information System Resource

In this thesis we consider an information system in a cloud where responsibilities are divided between
tenants and providers, hence the relationship is bound by an SLA. The cloud service model can be either
an IaaS or PaaS with one of the deployment methods listed in Section 2.1.2.

Out of many properties to be monitored in an outsourced information system, we are interested
in security aspects. In our study an outsourced resource can be infrastructure (e.g virtual servers) or
data. We assume IaaS clouds where providers own the physical infrastructure and tenants own virtual
resources, like VMs, internal configurations of VMs and services that are running inside VMs. Providers
are responsible to select host machines on which a VM will start (also known as compute node) and
migrate VMs to other hosts when there is not enough resources. A provider infrastructure consists of
multiple compute nodes, grouped into data centers and distributed over different countries. A data center
is subjected to regulations in the residing country. Tenants may have an option to choose a country where
the resources will be hosted (e.g “Regions” in Amazon web service).

Almost all the time a single host is shared between multiple tenants. Providers are responsible to
provision and configure servers and manage isolation between tenants. The same way network physical
infrastructure is shared between multiple tenants and providers are responsible to configure the network
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connection of the shared environment. Providers use virtual switches (vSwitches) to provide connectivity
and use VLAN and tunneling capabilities of the virtual switches to logically divide the network into
smaller, isolated networks. There can be different layers of virtual switches e.g vSwitches to divide the
network between different tenants or vSwitches dividing network for different VMs. Providers own and
configure switches that are used to divide networks between tenants. Tenants manage the network in
their environment and they can further divide their environment using different techniques (e.g security
groups in Openstack).

In practice two IP addresses are assigned for every VM, one is part of the internal subnet used to
communicate with other VMs under the same tenant while the other is used to communicate with the
outside world. Tenants can deploy any application on top of VMs and configure the incoming connection
as required. Any monitoring device located outside of a VM is managed by service providers while
anything configured inside a VM is managed by tenants.

We also consider PaaS clouds in some part of our study where providers own the platform and tenants
are responsible for the data processed in the platform. In such systems tenants have no control on the
configuration of VMs, providers are responsible for managing the infrastructure where the platform is
running. Tenants can perform any operation over the data as long as the operation is supported by
the platform. Security monitoring SLAs on such systems address security of the data rather than the
system.

3.4 Threat Model

We aim at securing digital assets against software based threats. Hence, we do not consider protecting
infrastructure from physical theft. We assume service providers are trusted i.e they are neither malicious
nor compromised. However, a provider may have an economic incentive to violate (not fulfill) some
agreement terms hence, the requirement for transparent verification process. In general we assume
attacks that can be detected by IDSs, specifically by NIDSs. However, there is no specific implementation
detail which restricts adaptation to HIDSs hence, our method can easily be adapted to HIDSs. An attack
can be launched from outside the cloud (from tenant input to the cloud API or from anywhere outside
the cloud infrastructure) or from inside (from other virtual machines). An attacker could be inside the
cloud co-located with the target VM hence a co-located tenant can be a threat.

We assume attacks on different layers of the network. Application layer attacks like SQL injection,
cross site scripting (XSS) or application layer DDoS attacks are considered. Self-propagating programs
like worms spreading through a network, brute forcing, port scanning techniques that are used to probe
a system remotely and determine what TCP/UPD ports are open (and vulnerable to attack) are also
considered. In the network layer different DOS attacks (like ICMP, SYN flooding), NIDS detectable IP
spoofing (forging or falsifying the source IP addresses in network packets) and IP fragmentation-based
attacks, man in the middle attacks (an attacker secretly relays and possibly alters the communication
between two parties who believe they are directly communicating with each other) are considered.

We do not consider attacks that are targeted against the monitoring device itself, like IDSs evasion
techniques presented in Section 2.4.3. Also, hardware attacks that can affect other co-located VMs are
not considered. If there is a specific attack that is not covered by a proposed method, it will be specified
in the corresponding chapter. From a practicality point of view, we believe that this is a reasonable
model. Tenants care more about direct threats on the higher level of the cloud tier (closer to their
service) than low level system attacks. Moreover, considering attacks on the higher level of the cloud
tier helps the providers to offer more user-tailored security monitoring SLAs.

3.5 Including Users in the Security Monitoring Process Through
an SLA

As presented in Section 3.1, user-centric security monitoring is achieved through SLAs. In this section
we present how users are included in the process of security monitoring.

3.5.1 SLA-Based Users Participation

Users participation in the process of security monitoring through SLAs means allowing users to be part
of the SLA life-cycle. As shown in Section 2.5.3, we presented the three phases of the SLA life-cycle,
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SLA definition and negotiation, SLA enforcement and SLA verification. In this section we elaborate
each step by describing tasks and actions of a user in the process for security monitoring SLAs.

Security monitoring SLA definition provides a quantitative measurement for the security monitoring
setup. In the definition of such SLAs, users need to describe their needs and requirements in order to
make the monitoring relevant for themselves. Taking users’ requirements into account is the core of being
a user-centric service. With an interactive process users can decline an offer if it does not satisfy their
needs and demand an updated offer. This way users can participate in the negotiation process.

Tenants are expected to describe their security monitoring requirements in terms of vulnerabilities.
For security monitoring SLAs the agreement will cover only known vulnerabilities. Adding unknown
vulnerabilities into SLAs is very difficult mainly because it is challenging, if not impossible, to determine
the performance of a monitoring device for an unknown vulnerability. This affects both service providers
and tenants on SLA definition and verification. Covering only known vulnerabilities will help to bridge
the gap between tenants knowledge of vulnerabilities and actual implementation offered by providers.

Enforcing an SLA will follow after a provider and tenant agreed on terms. Providers are responsible
to configure and provision the requested service according to the agreed terms to achieve described
SLO. Once the SLA is enforced there should be a verification mechanism to check its satisfaction. Both
tenants and providers can perform verification (continuous verification of an SLA is call monitoring an
SLA). There can be different types of verification and monitoring techniques. We present a verification
technique that a tenant or a provider can perform at any given time and a monitoring technique where
tenants and a provider participate in the SLA monitoring process using distributed algorithms. The
penalty described in the agreement will be applied for any violation of SLA term(s). In the next sections
we detail the three phases of security monitoring SLA life-cycle.

3.5.2 Defining Security Monitoring SLAs

Tenants have a security policy describing what is allowed or not in their information system infrastructure.
The security monitoring policy is part of this security policy. When outsourcing their information
system to a service provider, tenants aim to achieve an equivalent security policy. Hence, monitoring
requirements will be specified which are aligned with the ones described in the policy.

Usually a security SLA (also called SecSLA [186]) covers security properties like confidentiality, in-
tegrity and availability. As described in Section 2.5.5 these properties (specifically integrity and confiden-
tiality) are hard to measure and they are described with parameters like: “how often should the integrity
be checked?” And “what type of data encryption technique should be used?” In our study we provide
another way to include security in SLAs. That is by including the performance of security monitoring
devices into SLAs. Such devices monitor general vulnerability of a software regardless of the effect on a
specific security property.

Security monitoring SLAs, in addition to the components described in Section 2.5.2, include a list of
vulnerabilities to be monitored and the relationship between vulnerabilities, softwares and infrastructure
where the software is running. To formalize the definition of SLAs, we proposed an extension to the
CSLA language (see Section 2.5.4) and we call it extended CSLA (ECSLA). ECSLA, as an extension
of CSLA, inherits the fuzziness and confidence ratio properties of an SLO. As a result of the dynamic
nature of the cloud, usability of such additional margin increases while dealing with security. ECSLA
also introduces new features including the addition of a new generic service, a structure to define security
vulnerabilities, and a definition of security monitoring service.

The generic service introduced in ECSLA can be extended to other type of services which can not
be defined using the original CSLA language. The vulnerability description is not tied with any type
of monitoring mechanism. Hence, it can be used, as part, to describe security monitoring SLAs for
different types of mechanisms. ECSLA describes a security monitoring service as a correlation between
infrastructure, product (software) and vulnerability. The structure to define infrastructure and product
is described in the original CSLA description.

There are thousands of known vulnerabilities and providers need to prepare for any request from
tenants. A tenant may request a single vulnerability or combination of multiple vulnerabilities to be
monitored. Hence, providers should know the performance of their monitoring tools on a single or any
combination of vulnerabilities in advance. We propose an efficient way to prepare SLO templates by
building a knowledge base on the performance of monitoring devices. The knowledge base is built by
running performance evaluation tests. The relation between the number of required evaluation and
number of vulnerabilities is in factorial (i.e for n vulnerabilities, the required number of evaluation test
is around n!). Hence, for few thousands of vulnerabilities the required number of evaluation exceeds
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the acceptable amount and becomes practically infeasible. To overcome such increase in the number of
required evaluation we propose a clustering technique that groups vulnerabilities based on heuristics. By
performing evaluations per group we can reduce the required number of evaluations.

In the definition phase of a security monitoring SLA cooperation is required between tenants and
providers. For example, a tenant should disclose the required amount of details about software running
inside the infrastructure and providers should disclose the required amount of detail about the internals
of the monitoring process. Chapter 4 provides detailed description, implementation and experimental
results of security monitoring SLA definition.

3.5.3 Enforcing SLA Terms

Once a tenant and provider agreed on SLA terms the next step is to implement them i.e to configure
the infrastructure accordingly and make the monitoring service available for tenants. Since, service
providers own the underlying infrastructure they are responsible for the enforcement process. Enforcing
a security monitoring SLA is specific to the monitoring device used. This is a challenge to have a
generalized description of requirements independent from the monitoring mechanisms. We defined a
language which can be used to describe requirements in terms of vulnerability and it is independent
from specific monitoring mechanisms but as described in Section 3.2.3 these is not an optimal solution
as tenants may not have knowledge about security vulnerabilities of a system.

In our study we considered few scenarios of enforcement mechanisms, specifically enforcements using
NIDSs and cryptographic hash computation for data integrity. Even for the case of NIDS, we used
a direct and simple approach. Detailed and complex enforcement mechanisms (e.g if multiple NIDSs
are configured to work together,) requires more study. Service providers and tenants should cooperate
together in this phase by preparing the necessary configuration setup in order to allow easy verification
for tenants. We describe the different types of enforcement mechanisms that were studied in this thesis
in Chapters 4 and 6.

3.5.4 Verification of SLO Fulfillment

In order to check the fulfillment of the SLA terms and detect any violation, a verification procedure is
required. A user-centric approach in the verification process should allow users to perform the procedure
at any time or according to the frequency defined in the SLA. Providers can also conduct verification at
any time. In fact, verification is testing a configuration, in our case the configuration of a monitoring
device, to see if it achieves the expected performance. The method used to check SLA fulfillment is a
procedure of testing an NIDS configuration, and it can be applied for other purposes, e.g. a provider
can use the same process to prepare SLO templates in advance. Chapter 4 presents how a provider can
use the procedure to prepare SLA templates.

In the SLA definition phase, every detail about the verification including the procedure used to verify
an SLO, the expected prerequisite, exceptions where the SLO is exempted, and related issues should be
specified. An SLA term is violated if the verification shows dissatisfaction (e.g. performance lower than
the promised value). For every violation of a term, a penalty as it is defined in the SLA, will be applied.
If the violation continues or if there is a threshold and the maximum number of violations is reached,
other actions like renegotiating the SLA, reconfiguration of the information system to respect the SLO
or even termination of the SLA can follow the penalty. The actions after detecting a violation are out of
the scope of this thesis.

In our work we studied two different types of verification mechanisms. First, an independent algorithm
that can be used by both providers and tenants to perform verification is presented. In this verification
process a controlled, dynamic attack campaign is performed. As this is a verification process, the objective
is to see how the monitoring device performs in the event of incidents and check if it reaches the expected
performance as defined in the SLO. To successfully, i.e without damaging the production service, perform
such campaign, cooperation is required between the tenant and provider. A provider needs to prepare
a network setup so that the attack does not spread to production services. In addition, providers are
expected and trusted to give back untampered outputs (i.e logs and/or alerts) of monitoring devices for
tenants. Tenants need to keep services running in order for providers to perform verification. Chapter 5
presents more details on this type of verification process.

Second, we present a technique which uses a distributed algorithm where a provider and tenants need
to participate in the process to securely and transparently keep verification results. In this process no
trust is required between the provider and tenants. The distributed algorithm is designed in a way that,
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data stored in the system cannot be changed as long as the majority of the participants are cooperating
to keep the value. The distributed system is composed of a service provider, tenants and potentially
third party entities. We assume that the majority of the participants in the system are not controlled
by the provider.

3.6 Summary
In this chapter we have introduced what does user-centric security monitoring means and showed the
need to have tailored security monitoring services in clouds. We presented one way to achieve such service
using SLAs. By its nature an SLA links the provider and tenants thus it helps to reconcile between the
requirements of tenants and capabilities of provider. We studied a novel security SLA which incorporates
performance of security monitoring devices rather than security properties (confidentiality, integrity and
availability) terms that are used in traditional security SLAs. This way we can circumvent the challenges
of quantifying security properties, specifically confidentiality and integrity. However, it should be noted
that our proposed method of addressing security SLAs is not to completely replace traditional SecSLAs
rather it should be taken as a complementary mechanism in achieving the ultimate security SLA.

Security monitoring devices are used to oversee the security status of a given system and as a mecha-
nism to enforce security policies. Security incidents are reported using such monitoring tools. Therefore,
guaranteeing the performance of security monitoring devices indirectly guarantees security properties.
Tenants are included in the process of the SLA life-cycle, namely in SLA definition, enforcement, and
verification processes. We also pointed out the need for cooperation between tenants and providers in
order to have an end-to-end security monitoring.

Challenges of designing and implementing user-centric security monitoring SLAs are also discussed.
The challenges revolve around difficulties of describing and enforcing security requirements, measuring
performance and storing results without bias, and the dynamic nature of the cloud. We did not address
all challenges in this work, specifically

• Users are expected to describe their requirements in terms of software vulnerabilities. We did not
provide a higher level description to express tenants’ requirements. To overcome such a limitation
service providers can offer a separate vulnerability assessment service. Using such service will
reduce the burden for tenants and also help to find vulnerabilities that are not publicly available.
Specially if a tenant is deploying custom software (developed in house and not available in public
either commercially or as open source) vulnerability assessment should be performed.

• Regarding SLA enforcement, security monitoring SLA enforcement is specific to the monitoring
probe used. In our study we focused on NIDSs and we used a simple and straightforward enforce-
ment mechanism. A more complex enforcement mechanism (e.g if multiple NIDSs are configured
to work together) requires more study.

It should be noted that our SLA definition and verification techniques are independent of the enforce-
ment process. Hence, any kind of mechanism can be easily integrated. In this chapter we also presented
the system and threat models assumed in our work. The need to have a transparent verification method
to check the fulfillment of SLOs is presented. Such verification method should allow both tenants and
providers to do the procedure.

Chapter 4 describes the definition of security monitoring SLAs terms taking a specific monitoring
device as an example. Chapter 5 presents a technique used to verify the fulfillment of the objectives that
are promised in a security monitoring SLA. Chapter 6 presents a method where users directly participate
in keeping monitoring records secure and that provides evidence in the case of SLA violation incidents.



Chapter 4

Defining Security Monitoring SLAs

4.1 Introduction

In the previous chapter, we presented a general and high-level view of how to achieve user-centric security
monitoring in clouds. Specifically, we have shown that cloud SLA can help to realize user-centric security
monitoring. Tenants can be part of the cloud SLA life-cycle in order to give them control, more choices
and more flexibility in the process. We have also separated the SLA lifecycle in three phases namely
SLA definition and negotiation, SLA enforcement and SLA verification. In this chapter, we describe in
detail how we can achieve the SLA definition and negotiation phase.

As explained in Section 2.5.3 SLA definition is a pre-negotiation phase where service providers draft
SLA templates according to the services they provide. SLA definition happens before any contact with
a tenant, providers assess their performance and prepare templates to offer for potential tenants. The
negotiation process starts after a tenant discovers a provider and shows an interest in the provided service.
Activities in the SLA definition phase include describing and preparing quantifiable objectives for the
provided service. In this phase the service description should clearly address the type of service(s) covered
under that SLA and providers precisely measure their performance and generate a Key Performance
Indicator (KPI).

From the provider perspective, SLA definition is an advertisement for the provided service. It should
be clear, precise and it should attract targeted customers. Service providers publish and advertise their
services using the draft template SLAs. Tenants are also expected to perform some activities before
signing off an agreement with a service provider. In [179] the Cloud Standard Customer Council (CSCC)
describes ten steps that help to compare multiple cloud providers or to negotiate terms with a selected
provider.

As presented in Section 2.5.2 SLAs can address the different cloud service models. In this chapter we
assume an IaaS system. Chapter 3 described the lack of security monitoring terms in SLAs. The majority
of existing SLAs addresses system availability but fails to give a guarantee on other aspects of security.
We approach this problem by including security monitoring terms into SLAs. Security monitoring is
a process (see Section 2.4) and different tools are used to perform this process (see Section 2.4.2). In
our work Network Intrusion Detection Systems (NIDSs) are used as a monitoring device and security
monitoring SLAs are defined for NIDSs.

In our context, security monitoring SLA terms refer to SLA terms that are designed to give guarantees
on the performance of NIDSs. Our work follows a user-centric approach in the sense that it gives more
choices and flexibility for tenants. Tenants can specify which vulnerabilities to be monitored, can verify
whether a specified objective is reached and can take actions if there is an occurrence of SLA violation.

In the next section, we describe the objectives and problems that are addressed in this chapter. Specif-
ically, how can we formally describe security monitoring SLA terms? What are the relevant metrics to
describe the performance of an NIDS and how to include these metrics in security monitoring SLAs? In
the presence of tens of thousands of vulnerabilities how a provider can prepare tenant-tailored SLA. To
this end, we show how to determine the performance of an NIDS on a subset from tens of thousands of
vulnerabilities and the effect on the performance of an NIDS regarding an increased number of vulnera-
bilities. Additionally, we present our approach to address the issue of defining security monitoring SLA
terms with appropriate NIDS metrics. In this chapter, we also provide experimental results to validate
the proposed ideas.
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4.2 Objectives and Problem Description

In this section, we present the objectives of this chapter and we describe problems that we address. SLAs
are fundamental components of the cloud computing model. As a result, clearly defined SLAs facilitates
the regulation process throughout the service life-cycle. In this chapter, we aim to achieve the following
objectives.

4.2.1 Objectives

In general, the objective of this chapter is to provide a mechanism which enables to define security
monitoring SLA terms. More fine grained objectives of this chapter include:

• The mechanism should follow a user-centric approach, i.e. users should be able to participate in
the process, have choices and flexibility on what type of vulnerabilities should be addressed.

• For a tenant to describe her/his needs, the mechanism should require fairly little knowledge about
the details of the system which is outside their own environment, i.e it should not require technical
knowledge about the system controlled by the provider.

• From providers the perspective, the mechanism should enable them to prepare custom tailored
SLA for each tenant according to their requirements.

• The mechanism should allow describing the performance of monitoring devices with fine-grained,
relevant metrics. It should also allow describing the process of computing composite metrics.

In order to achieve these objectives, we need to tackle some problems. We have identified the following
problems.

4.2.2 Problem Description

The cloud comes with a characteristic of pay per use which magnifies the significant variation in consumer
needs. Hence, SLAs have to be created for each tenant by a negotiation process. The communication
between the provider and tenants should be in a standard language. This provides assistance for tenants
to communicate and compare SLA offers from different service providers without the need to adapt
another communication standards or language.

SLA definition should incorporate components listed in Section 2.5.2. For security monitoring terms
the service description should be able to express vulnerabilities as they represent the finest granular
concept in our SLA description. In addition, a vulnerability should be related to other services like
products (software) where the vulnerability exists and infrastructure where the product is running.
Currently, to the best of our knowledge, there is no SLA language that can satisfy these requirements.

The KPI describing the objectives of a monitoring device should be relevant for the specific device
used, in our case for NIDSs. As described in Section 2.4.4 two characteristics of a metric were set as
prerequisites before being used as SLO for terms describing NIDSs performance. These are (i) the metric
should take base rates into consideration. Axelsson [21] showed the base rate fallacy problem for NIDSs
and indicated the importance of base rate. (ii) it should be a single valued metric i.e not a combination
of two or more metrics. Comparing coupled metric values from different providers requires analysis and
finding trade-offs. Hence, from tenants perspective, it is easier to have a single unified metric. The
non-deterministic nature of the base rate makes it challenging to define security monitoring SLAs. An
SLA should not be defined for specific values of the base rate because, most of the time, every occurrence
of an attack has a different rate, i.e. different base rate.

As described in Section 2.5.4 many languages have been developed to define SLAs for different types
of services. Our discussion includes languages that were developed for web services before the cloud and
DSLs specifically designed for clouds. However, none of these languages can describe security monitoring
terms with the requirements discussed above.

From the providers perspective, there are two facts which make the SLA definition process challenging
and needs consolidation. The first one is the fact that tenants need custom tailored security monitoring
services. This is directly related to the nature of cloud services. By design the cloud is flexible, and
tenants can configure it as they want. As a result, no one security monitoring configuration can fit all
tenants needs.
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The second challenge is that there are thousands of vulnerabilities and almost all tenants are interested
in a few of these vulnerabilities. One tenant can be interested in three vulnerabilities and another tenant
can be concerned with twenty vulnerabilities. This is intuitive considering tenants are running different
services on various types of configuration. Service providers should know the performance of their
monitoring device on every subset of vulnerabilities. But performing a direct measurement for every
subset of vulnerabilities is not practical because it requires a large number of computations.

Moreover, in practice the number of vulnerabilities may vary from time to time. For example, a
patch is available for a given vulnerability and monitoring that vulnerability will no longer be necessary.
Alternatively, the other way round, a new vulnerability concerning a tenant may be discovered and the
tenant requests monitoring against this vulnerability. In our work, we do not address a dynamic change
in the SLA, Section 4.7.4 describes how to deal with such changes.

To perform the monitoring task using NIDSs, rules should be crafted and added to the configuration
of an NIDS. The number of rules configured in an NIDS affects its performance, i.e as the number of rules
increases the performance decreases. To make an NIDS custom tailored means to configure a tenant’s
NIDS with rules only concerning that tenant. Hence, service providers should know the performance
of their monitoring device for every possible combination of available vulnerabilities. Given the high
number of vulnerabilities it is not practical to do the evaluation task for every combination.

4.2.3 Contributions
In summary in this chapter we present the following contributions:

• We propose a security monitoring service description with relevant KPIs, specifically an SLO for
NIDSs with a single unified metric which takes the base rate into account is used to describe the
performance of an NIDS. Section 4.3 describes the KPI used in our SLA and other components of
security monitoring SLAs.

• To address the lack of a standard language for security monitoring SLAs, specifically to be able
to describe vulnerabilities and their relation with other services, we propose an extension to
CSLA [123], a DSL used to describe cloud SLAs. Section 4.4 describes the extension in detail.

• Defining a KPI which relies on the base rate is challenging. This is because measuring the value
of the base rate before the occurrence of an attack is difficult, if not impossible. We propose an
interpolation-based mechanism which takes performance points from known base rates as an input,
build a model and estimate the expected performance using that model for new base rate values.
Section 4.5 presents the method in detail.

• In order to prepare SLO templates, we propose a method which builds a knowledge base for NIDS
performance for a large number of vulnerabilities. The method aims to reduce the number of re-
quired performance evaluations since evaluating the monitoring device over all possible combination
of vulnerabilities is not practical. The method is described in Section 4.6.

The next section presents the components of security monitoring SLAs.

4.3 Components of Security Monitoring SLAs
Like any other type of cloud SLAs, security monitoring SLAs contain the components described in
Section 2.5.2. Besides the anatomy similarity with other clouds SLAs the content of security monitoring
SLAs differs from others in few ways. In this section we present components of security monitoring
SLAs, classes of SLO that we consider and the KPI used to describe the performance of NIDSs. Security
monitoring SLA components include:

• Service Description: The security monitoring service is used to monitor existing vulnerabilities
in a product. Hence, the service definition correlates three components (i) product: a software
running in tenants infrastructure that contains vulnerability (ii) vulnerabilities: as a product may
contain more than one vulnerability it should be specified which vulnerabilities are covered in the
agreement. (iii) infrastructure: where the product is running. NIDSs require information about the
infrastructure where they perform the monitoring task. Specifically, an NIDS needs IP addresses
of machines to be monitored.



56 CHAPTER 4. DEFINING SECURITY MONITORING SLAS

Application Version Attacks
Apache Apache/2.4.7 (Ubuntu) Denial of service (DoS) and port scan
Mysql 14.14 Distrib 5.6.31 Brute force access
WordPress(WP) V. 4.4.5 None
Instalinker (WP plugin) V. 1.1.1 Cross site scripting (XSS)
Custom Contact Forms V. 5.1.0.2 SQL injection

Table 4.1: Example of service list and attack types figuring in an SLO

• Parties: are participants in the agreement. Primarily, it includes providers and tenants. Supporting
parties (e.g auditor) can be included depending on the need.

• Penalties: apply on violating party in cases of SLO violation. In our SLA definition a penalty can
be defined in two forms. (i) Fixed type penalty which applies a fixed amount of retribution per
occurrence of violation (ii) Function type where the penalty is based on a predefined function.

• Service Level Objectives (SLO): describe the guaranteed level of performance. For an NIDS, it
shows how much a given NIDS is effective in detecting the vulnerabilities listed in the service
description. The performance of an NIDS is described using CID. The next subsections provide
details on why the CID is used and class of SLOs that are considered in our work.

4.3.1 KPI for Security Monitoring SLO

As described in Section 4.2.2, for a metric to be used in our SLO two features are required, namely a
single unifying metric and the base rate. We saw in Chapter 2 that the Intrusion Detection Capability
(CID) satisfies both of these features. The CID measures the ratio of the mutual information shared
between the inputs and outputs of an NIDS and the entropy of the input. Mutual information measures
the uncertainty in the input (i.e whether a given input packet is part of an attack or not) after knowing
the NIDS output. Normalizing this value with the initial uncertainty of the input (i.e entropy) produces
CID.

The definition of SLA describes how to compute the expected CID value from basic metrics (TPR
and FPR) and a base rate. Since it is not possible to know the values of base rate in advance, SLA
definition does not contain exact values of base rate. Section 4.5 presents how providers can offer SLO
based on unknown base rate values.

4.3.2 Class of SLOs Considered

In the SLA definition phase providers prepare SLO templates. These templates describe the expected ef-
fectiveness of NIDSs using the CID metric while they are configured to monitor vulnerabilities. Providers
prepare templates taking only known vulnerabilities into account. Tenants may require to be monitored
against new or emerging vulnerabilities, but from the providers perspective, it is risky to promise the
performance of monitoring devices for unknown vulnerabilities. Section 4.7.4 describes the issues related
to unknown vulnerabilities.

Tenants describe their needs by listing vulnerabilities of their interest. The final SLA contains the
list of vulnerabilities that are at the intersection between tenants requirements and security monitoring
services proposed by the provider. The agreement describes the list of services to be monitored, the
list of known vulnerabilities, and expected performance. Services are described with an application(s)
that are used to provide that service. In addition, vulnerabilities are related to the applications version.
Once the agreement is signed tenants’ infrastructures are monitored against attacks which can exploit
the listed vulnerabilities.

Example of services considered to be included in an SLA are described in Table 4.1. The table shows
a list of vulnerabilities and attacks to be monitored including a Denial of Service (DoS) and a port scan
against the Apache web server, a brute force access to the Mysql database server, a cross-site scripting
(XSS) attack against Instalinker WordPress plug-in and an SQL injection against Custom Contact Forms
(also a WordPress plug-in). An example SLA including this service is presented in the next section.

The next section presents a formal language to describe cloud security monitoring SLAs.
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Figure 4.1: CSLA meta model [123]

4.4 Extended Cloud Service Level Agreement (ECSLA)
As presented in Section 4.2.2, one of the problems for realizing security monitoring SLAs is the lack of
formal language to define an SLA. We discussed existing SLA languages in Section 2.5.4. Some of these
languages were designed before the cloud era, and they do not address the distinctive characteristics
of clouds. Languages designed specifically for clouds fail to include functionalities to describe security
features, with the exception of availability. Most of the languages e.g SLAC [214] and CSLA [123] target
functionality of a service like the response time.

To define security monitoring SLAs we need a language capable of describing vulnerabilities to be
monitored and the relationship between vulnerabilities and other services, i.e. the relationship between
a vulnerability and a software, showing on which software the vulnerability is residing, and relationship
between a vulnerability and infrastructure, showing on which infrastructure the vulnerable software
is running. To achieve this we propose an extension to a cloud Domain Specific Language (DSL),
CSLA [123]. Before describing the proposed extension, we first present the CSLA language and the
reason why we selected CSLA. An example SLA is presented at the end of this section.

4.4.1 CSLA
CSLA [123] is a DSL designed to address the needs of cloud SLA. Specifically, CSLA tries to take
into account the dynamic nature of clouds by introducing SLA properties to tolerate violation. It also
adopts a dynamic penalty model described in [110]. These properties allow service providers to tolerate
fluctuation in SLO.

Figure 4.1 shows the meta-model of CSLA. SLA in CSLA contains three sections. These are parties,
validity and template. Validity describes how long the agreement is valid and parties describe who is
bound by the agreement. In CSLA there are two types of parties Signatory parties (service provider and
service customer) and Supporting parties (e.g., trusted third party). Templates are structural models for
SLA. A template contains five sections namely Services definition, Parameters, Guarantees, Billing and
Terminations.

• Services definition: describe services following the standard cloud service models (SaaS, PaaS
or IaaS). It uses the Open Cloud Computing Interface (OCCI) standard [91] for IaaS services
definition.

• Parameters: used to define variables that are relevant to describe Metric, Monitoring and Schedule
elements in other sections of the agreement.

• Guarantees: are elements containing the expected objectives. It contains four elements Scope,
Requirements, Terms and Penalties.
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– Scope: specify services from the agreement that are covered by this guarantee.

– Requirements: conditions that are expected to be fulfilled in order to achieve the objectives.

– Terms: contain a set of guarantee terms connected by ’And’ or ’Or’ terms. Each term contains
objective(s) that are defined by expression and precondition. A priority is also defined for each
objective, and users have the option to set their preferences. An expression is characterized
by different properties including a metric, a comparator and, a threshold. Monitoring and
Schedules are also defined to specify how and when to evaluate the metrics. Fuzziness and
confidence values are defined under the expression. As described in Section 2.5.4, these are
parameters describing service degradation to deal with unpredictable environments.

– Penalties: are applied in cases of SLA violation. Constant and function based penalties can
be applied.

• Billing: describes the billing method for the provided service.

• Terminations: describes the termination procedure. These procedures will be followed depending
on the validity section, specifically according to the date on effectiveUntil parameter of validity
section.

The full syntax of CSLA is presented in [122].

4.4.2 ECSLA

The service description section of CSLA describes SaaS, PaaS or IaaS services. This is not enough to
describe security monitoring services. We propose a generic extension to the service description section.
Our extension helps to enable definitions for other types of services. In our case, the generic service
definition is used to define the SecurityMonitoring service.

Figure 4.2 shows the model diagram of ECSLA. The dotted rectangular box shows the part from
original CSLA. The MacroService definition represents a generic service class which can be extended to
any type of class. The concept of using a generic class as part of the SLA structure is used in other
languages like in SLA∗ [222]. The SecurityMonitoring service contains three sections namely product,
vulnerability, and infrastructure. The product and infrastructure are defined in the original CSLA while
the vulnerability is a new feature in ECSLA. A product is a general class to described software and
platforms. Some properties of a product include name, version, distribution, price etc. Two types of cloud
infrastructures are defined namely Compute and Storage. A vulnerability is characterized by Id, Common
Vulnerabilities and Exposures (CVE) and description. The CVE is a list of vulnerability database entries,
each containing an identification number, a description, and at least one public reference for publicly
known cybersecurity vulnerabilities. CVE entries are used in numerous cybersecurity products and
services from around the world [56]. We use the CVE ID to characterize vulnerabilities in ECSLA.
However, some vulnerabilities may have no matching CVE, i.e when the vulnerability is not added to
the database list. In that case, in ECSLA the vulnerability is characterized by Id and description.

In addition, in the original CSLA, the parameter is used to define variables that are required to
describe metrics. The metric is described with attributes id, name, unit, and description. In the original
CSLA, if a complex metric (computed from basic metrics) is used to describe an SLO, there is no way
to define its formulation. Describing the process to compute a complex metrics is important in order to
clarify misunderstandings. Thus, we extended the metrics definition of CSLA in order to include such
a feature. Figure 4.2(C) shows the proposed extension in metrics definition. The type and formulation
attributes are added. The type can be either simple or complex. The formulation formally describes how
a complex type metric is computed. If a metric is of a complex type, then formulation shows how to
compute that metric using basic metrics. The formulation can contain the actual formal definition or a
reference to a formal definition. Appendix A shows the formal XML model for ECSLA.

4.4.3 Example Security Monitoring SLA

In this section, we provide an example of a security monitoring SLA showing the concepts described
above. We consider the services described in Section 4.3.2 (see Table 4.1).
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(A) (B) (C)

Figure 4.2: ECSLA model diagram (A) Macro service extension, (B) Security monitoring services and
(C) Metrics

Service description

Listing 4.1 shows the service definition section for security monitoring SLAs. Four security monitoring
services are defined; these are services to monitor vulnerabilities in Mysql, Apache, InstaLinker and
Custom Contact Form. Each service contains one vulnerability except Apache, which is monitored
for two vulnerabilities. The services are running in three different servers. The infrastructure section
shows detail about the servers. A Web server, database server and content management server are used.
According to the SLA, Apache is running on the web server, Mysql is running on the database server
and WordPress plug-ins are running on the content management server.

1 <cloudServices>
2 <cloudService>
3 <macro>
4 <securityMonitoring id="Mysql-SM-ID" description="service definition for brute force login monitoring">
5 <software id="Mysql-ID" name="Mysql" version="14.14"
6 distribution="5.6.31" license="GPL" mode="mode" />
7 <vulnerabilities>
8 <vulnerability id="Mysql-V-1" name="Brute force access" cve_Id=""
9 description="A token comparison based authentication is vulnerable to attacks of guessing (an

attacker can try as many times as possible to find the correct token)" />
10 </vulnerabilities>
11 <infrastructure id="DBserver-ID" description="Database server ">
12 <compute id="DB-VM-1" name="DBserver" architecture="" hostname="" cores="" speed="" memory="" />
13 </infrastructure>
14 </securityMonitoring>
15

16 <securityMonitoring id="Apache-SM-ID" description="">
17 <software id="Apache-ID" name="Apache" version="4.4.11"
18 distribution="" license=" Apache License" mode="mode" />
19 <vulnerabilities>
20 <vulnerability id="Apache-V-1" name="Port scanning" cve_Id=""
21 description="scanning ports to detect available services on each port" />
22 <vulnerability id="Apache-V-2" name="Denial of service" cve_Id=""
23 description="congesting a network to alter the availability of a service" />
24 </vulnerabilities>
25 <infrastructure id="Websever-ID" description="Web server ">
26 <compute id="WEB-VM-1" name="Webserver" architecture="" hostname="" cores="" speed="" memory="" />
27 </infrastructure>
28 </securityMonitoring>
29

30 <securityMonitoring id="IL-SM-ID" description="">
31 <software id="IL-ID" name="InstaLinker" version=" &lt;= 1.1.1"
32 distribution="" license="GPLv2" mode="mode" />
33 <vulnerabilities>
34 <vulnerability id="IL-V-1" name="Cross-Site Scripting (XSS)" cve_Id="8382 in WPVDB_ID" description="Due

to a lack of input sanitization in some file, it is possible to utilise a reflected XSS vector to
run a script in the target user’s browser and potentially compromise the WordPress installation."
/>
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35 </vulnerabilities>
36 <infrastructure id="CM-ID" description="Content managnment server ">
37 <compute id="CM-VM-1" name="Cmserver" architecture="" hostname="" cores="" speed="" memory="" />
38 </infrastructure>
39 </securityMonitoring>
40

41 <securityMonitoring id="CCF-SM-ID" description="">
42 <software id="CCF-ID" name="Custom Contact Forms" version=" &lt;= 5.0.0.1"
43 distribution="" license="GPLv2" mode="mode" />
44 <vulnerabilities>
45 <vulnerability id="IL-V-1" name="SQL injection" cve_Id="7542 in WPVDB_ID" description="unauthenticated

users to download a SQL dump of the plugins database tables. It’s also possible to upload files
containing SQL statements which will be executed." />

46 </vulnerabilities>
47 <infrastructure id="CM-ID" description="Content managnment server ">
48 <compute id="CM-VM-1" name="Cmserver" architecture="" hostname="" cores="" speed="" memory="" />
49 </infrastructure>
50 </securityMonitoring>
51

52 </macro>
53 </cloudService>
54 </cloudServices>

Listing 4.1: Security monitoring service description in ECSLA

Lines (3 -13) define monitoring of a brute force login in Mysql version 14.14 database. Lines (15 -
27) define a service for Apache to be monitored against port scanning and DoS. Lines (29 - 38) and (40
- 49) define security monitoring services for InstaLinker and Custom Contact Forms respectively.

Parameters

Listing 4.2 shows a list of parameters that are used to define the metrics, monitoring, and schedule. The
SLO can be verified according to these definitions. Four simple metrics namely TP, FP, TN, FN, and a
complex metric CID are defined as parameters, lines (2 - 24). For the formulation of CID, a reference
is added to its definition in Section 2.4.4. In practice, the service provider can build a resource file
describing a metric computation process, and the SLA definition can refer to this document for metric
computation. Such practice (referring to other official documents for support) is not uncommon. For
example, currently Amazon SLA [5] refers to a customer agreement document to exclude some cases
from the SLA. The Parameter section also specifies monitoring and schedule, lines (26 - 27). Chapter 5
discusses how to choose the timing for verification. However, it is important to note that this is an
agreement; every part can be negotiated and is set to values satisfying the participants.

In our example, the verification can be done three times in 24 hrs, and the minimum value should
satisfy the expected SLO. The example also specifies a schedule with a start and end time to perform
verification.

1 <parameters>
2 <metric id="TP" name="True positive" unit="count" type="simple">
3 <description description="The number of correctly detected attacks"> </description>
4 </metric>
5

6 <metric id="FP" name="False positive" unit="count" type="simple">
7 <description description="The number of legitimate inputs mistakenly classified as attacks"> </

description>
8 </metric>
9

10 <metric id="FN" name="False negative" unit="count" type="simple">
11 <description description="The number of attacks that are not detected"> </description>
12 </metric>
13

14 <metric id="TN" name="True negative" unit="count" type="simple">
15 <description description="The number of legitimate that are classified as legitimate"> </description>
16 </metric>
17

18

19 <metric id="CID" name="Intrusion Detection Capability" unit="" type="complex">
20 <description description="The ratio of the mutual information between input and output to the entropy

of the input
21 (Single metrics to describe the effectiveness of an NIDS, computed from TPR,FPR and B)

">
22 </description>
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23 <formulation> As described in Section 2.4.4 </formulation>
24 </metric>
25

26 <monitoring id ="Mon-1" statistic="min" window="24 hrs" frequency="3"/>
27 <schedule id ="Sch-1" start="8:00pm" end="8:00am"/>
28 </parameters>

Listing 4.2: Example parameters in ECSLA

Guarantees

Listing 4.3 shows the guarantee part which contains three sections. The scope, lines (3 - 8), shows services
that are covered under this guarantee. In our example, the guarantee addresses all the four services. The
requirements section, lines (10 - 14), defines base rate boundaries. The guarantee is for base rate values
greater than 10−7 and less than 10−1. If the base rate is not in this range, the SLO may not be achieved
and such incidents are not SLO violations. The terms section, lines (16 - 31), contains only one term, a
term describing expected CID value. It describes that the expected CID value should be computed using
the formula presented in Section 4.5. The next section describes why a formula is given, rather than an
actual CID value. The section also presents the process used for generating such a formula. To show an
example usage for such a formula, let us assume the NIDS is evaluated (or an attack occurs) with a base
rate value of 7 × 10−2, putting this value into the formula gives an estimated value of TPR ≈ 0.71046
and FPR ≈ 0, and from these values we can compute the expected CID value, CID ≈ 0.7162.

The fuzziness value of 0.05 (5%) and confidence ratio of 95% are also defined in the term section. This
is interpreted as: from 100 verification tests with a base rate value of 7×10−2, in at least 95 of the tests,
the configured NIDS must perform with CID >= 0.7162 and the remaining tests must perform with
CID <= 0.7162 but CID >= 0.6562. As a result of fuzziness and confidence ratio, 5% of the verification
tests are allowed to perform below the guaranteed performance level without violating the SLO. These
margins allow for the SLO to fluctuate to some extent. This is an exciting feature, especially for security
monitoring SLO because it gives some level of freedom in achieving the expected SLO. In addition, the
monitoring frequency and schedule, which are a reference to the parameter section, are defined in the
terms section.

1 <guarantees>
2 <guarantee id="G-1">
3 <scope id="Sc1">
4 <service id="Mysql-SM-ID" subid="Mysql-SM-ID-mode"/>
5 <service id="Apache-SM-ID" subid="Mysql-SM-ID-mode"/>
6 <service id="IL-SM-ID" subid="Mysql-SM-ID-mode"/>
7 <service id="CCF-SM-ID" subid="Mysql-SM-ID-mode"/>
8 </scope>
9

10 <requirements>
11 <Requirement id="R1">
12 <Specification id="Sp1" policy="Required"> Base Rate(B), B >= 10^(-7) and B <= 0.1 </Specification>
13 </Requirement>
14 </requirements>
15

16 <terms>
17 <term id="T1" operator="">
18 <item id="CIDTerm"/>
19 </term>
20

21 <objective id="CIDTerm" priority="1" actor="provider">
22 <precondition policy="Required">
23 <description> The threshold value should be computed with function as described in Section 4.5
24 </description>
25 </precondition>
26

27 <expression metric="CID" comparator="gt" threshold="" unit="" monitoring="Mon-1" schedule="Sch-1"
28 confidence="95" fuzziness_value="0,05" fuzziness_percentage="5"/>
29 </objective>
30

31 </terms>
32 </guarantee>
33 </guarantees>

Listing 4.3: Example guarantee in ECSLA
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Term Proba. Representation Description
FPR (α) P (A|¬I) The probability that there is an alert, when there is no intrusion
TNR (1− α) P (¬A|¬I) The probability that there is no alert, when there is no intrusion
FNR (β) P (¬A|I) The probability that there is no alert, when there is intrusion
TPR (1− β) P (A|I) The probability that there is an alert, when there is intrusion

Table 4.2: NIDS metrics with probabilistic description

By now it should be clear that we are using the CID metric to describe the performance of an NIDS
in SLAs. However, the guarantee definition contains a function (a model) to calculate the expected CID
value rather than an actual number. The reason is that it is not possible to know how often attacks will
occur i.e it is impossible to know the base rate value before the occurrence of attacks, hence we cannot
calculate the CID value in advance while defining an SLA. Moreover, using a single base rate value in
the SLA definition makes the SLA very strict, i.e the SLO will be achieved if attacks occur only with
that specific rate. Using a model allows estimating the expected performance for previously unknown
base rate values. Additionally, if there are cases where the model cannot predict well, the cases can be
categorically excluded from the SLA. For example, in Listing 4.3 B < 10−7 and B > 10−1 are excluded.

4.5 Including Unknown Base Rate Values in SLO

In this section, we present a method used to generate a model. The SLA definition uses the model to
guarantee the performance of a monitoring device. The model helps to make the SLA inclusive, i.e. to
give guarantees even for previously unknown base rate values.

In Section 2.4.4 we have presented the base rate fallacy problem and Axelsson [21] showed the
importance of the base rate in evaluating the performance of NIDSs. The base rate measures the prior
probability of intrusion in the input data examined by the NIDS. Predicting or calculating the exact
value of the base rate in advance is difficult if not impossible. As a result, the SLA definition will not
include base rate values to describe the performance of security monitoring devices. Instead, the SLA
will contain function(s) which takes the base rate as an input to calculate the expected TPR and FPR
values. This helps to avoid an SLO which is defined for a specific base rate and be respected if an attack
happens only on that rate.

As described in Section 2.4.4, CID is a function of TPR,FPR, and B. Any factor that can change
the values of TPR and FPR indicates an effect on the performance of the NIDS. The factors affecting the
performance of an NIDS can be grouped into two categories. First, external factors which includes mainly
the rate of the inputs (throughput), the base rate and available resources for the NIDS. Second, internal
factors which includes mainly the number of rules and the number of services that are configured to be
monitored by that NIDS. Before describing the model generation method, we present the assumptions
and challenges for designing such a method.

4.5.1 Assumptions and Challenges

If we are given a fixed number of services and vulnerabilities to be monitored, it is safe to assume that
the internal factors affecting the performance of the NIDS are constant values. Indeed, since we have
a fixed number of vulnerabilities to be monitored, we assume that the rules configured in an NIDS are
constant. In addition, we assume there are enough resources that are required by the NIDS to perform the
monitoring task. Hence, the change in the rate of the inputs (throughput) will not affect the performance
of the NIDS by creating resource scarcity. The remaining factor affecting the performance of the NIDS
is the attack rate or base rate.

The four basic metrics that can be counted from the NIDS output are (TP, TN,FP, FN). Using
these basic metrics, we can calculate TPR,FPR, TNR, and FNR. These values can be described in
probabilistic terms as shown in Table 4.2. Using these values and the base rate, CID can be computed
as described in Section 2.4.4.

In realistic production sites the value of the base rate is very small (i.e close to zero). That means
an attack packet happens very rarely compared to legitimate packets. Gu et al [99] assumed base rates
in the range of {1 × 10−2 − 1 × 10−6}. In 1999 Axelsson [21] supposed that the maximum value was
{2× 10−5} (2 intrusions per day from 1, 000, 000 records, an intrusion affecting 10 records in average).
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Figure 4.3: Base rate (B) vs CID

While doing an experiment, achieving such a very low base rate is challenging and it requires an
enormous amount of resources. In our work, we evaluate an NIDS by injecting real attacks. The actual
attack injection algorithm which takes the base rate as an input is presented in the next chapter. Here
we present the challenges in a high-level description. While performing the attack injection, packets and
related information are logged and analyzed later with the output of NIDS for metrics computation.
To achieve low base rates, attacks are injected very rarely and to have a statistically sound result the
injection is performed not only once but multiple times. Hence, the experiment takes a long time. In
addition, logging packets for such a long time requires large disk space. The challenge exacerbates when
assuming the experiment needs to be performed for a large number of vulnerabilities.

Additionally, we assume the SLA specifies the lowest guaranteed base rate value. i.e SLA will not be
violated for attack occurrences below the specified base rate. However, such lower bound values should
be as realistic as possible. Finally, we assume the provider can perform the evaluation at the lowest
guaranteed base rate value at least once. Section 4.7.4 describes the drawbacks of our estimation as a
result of these assumptions.

4.5.2 Metrics Estimation Method

Figure 4.3 shows the correlation between B and CID for different TPR and FPR values. The plot
assumes TPR and FPR as constant values. A close look at Figure 4.3 shows a trend between the value
of CID and different B values. Nevertheless, in practice configuring an NIDS to generate constant TPR
and FPR values is difficult. This is because in a realistic operational environment the values of TPR and
FPR are affected not only by its internal configuration but also by external non-deterministic factors,
e.g. the base rate.

Following this observation, we performed experiments to identify if there is a correlation between
B and (TPR, FPR). If such correlation exists, we can have a model showing the correlation from
known values of B and (TPR, FPR), then we can use that model to estimate TPR and FPR values for
unknown base rates. The estimated values can be used to compute CID for those unknown base rates.

To generate the model we propose an interpolation-based method. The method takes known values
of TPR and FPR which are computed on different B values. These values are used to generate a fitting
function that can approximate the points. The generated function(s) takes B as an input and produces
TPR and/or FPR values. The function is used in SLAs to estimate the TPR and FPR values for
previously unknown B value. In practice, such an estimation method may not provide the exact value,
but it gives an approximation to the exact value. Moreover, the margins described in ECSLA (fuzziness
and confidence ratio) helps to tolerate some degree of variation in the SLO. Given a security monitoring
configuration, to generate a representative formula which can be used to estimate the TPR and FPR
values, we follow the following steps:

• Compute the performance of the NIDS on a given configuration taking a known base rate value as
an input. The procedure to do the evaluation is presented in the next chapter. The performance
evaluation should include the lowest guaranteed base rate and as many other points as possible.
Increasing the number of evaluation points results in an increase in the accuracy of the model.



64 CHAPTER 4. DEFINING SECURITY MONITORING SLAS

• Using results from the performance test, find a correlation (function f) between TPR and/or FPR
and B, i.e. f is a function of B and evaluating f at some B value produces TPR and/or FPR.

This way we can generate an equation to be used in the SLA definition. The function f can be used
to estimate the expected TPR and FPR values for new B values. The function f may not represent
the exact relationship, but it is derived from the best information available. Section 4.7.1 presents an
experimental evaluation showing the feasibility of our metrics estimation method.

4.6 NIDS Performance with a Large Number of Vulnerabilities
By now it should be clear that we aim at defining SLAs to guarantee the performance of signature-based
NIDSs. Service providers need to prepare SLA templates that will be offered to potential tenants at the
start of the negotiation process. To achieve this, service providers need to build a knowledge base on the
performance of their security monitoring ability. As described in Section 4.2.2 one of the challenges to
prepare SLO templates is the fact that there are thousands of vulnerabilities and a tenant may choose
any combination of those vulnerabilities. That means a service provider needs to prepare SLA templates
based on all combinations of vulnerabilities. This is not practical as it requires the service providers to
perform a huge amount of tests just to prepare template SLOs.

Let us assume there are n vulnerabilities that a service provider can monitor and offer to provide
security monitoring service. A tenant is interested in k of these vulnerabilities, where usually k � n. To
prepare an SLO template based on every combination means to prepare an SLO for a combination of n
and k,

(
n
k

)
for all k in (1 ... n). For example, if we have a thousand vulnerabilities, preparing an SLO

for every combination of vulnerabilities require more than tens of millions of operations. This is very
tedious and not efficient.

In addition, the number of services that are monitored under a given security monitoring configuration
affects the effectiveness of the monitoring process. This consequence is intuitive, as having more services
to monitor means having additional tasks and more input, hence there is an effect on the performance
of the monitoring device. If we retake the above example, let us assume there are two tenants, the first
one selects k vulnerabilities and the second one selects m vulnerabilities where m > k and k ∈ m (m
includes all k vulnerabilities). The security monitoring service will perform better for the first tenant.
The second tenant will have more tasks to be done; as a result, the performance will degrade.

In practice, NIDSs use rule(s) to monitor a vulnerability and more vulnerabilities means more rules
to be added in NIDS. Thus, the inputs will be evaluated against more rules. We refer to the effect of a
rule on other rules as interference, i.e when a rule interferes with the functioning of another rule.

Quantifying the interference is useful to compute the performance of an NIDS which is configured
with more than one rule. Given an NIDS with such a configuration, i.e. an NIDS configured with more
than one rule, we propose a performance evaluation method which uses the interference value between
rules. Let us assume the NIDS is configured with n rules; for simplicity, we assume one rule is used to
monitor a single vulnerability. For a given rule, the collection of the interferences between that rule and
the remaining other (n− 1) rules form a vector. For all n rules, the collection of their interference vector
forms a matrix. However, in practice, building such vectors and matrices requires a large number of
computations. To reduce the required number of computations, we propose a clustering method which
groups rules based on a given criterion. A formal description of interferences is presented in the next
section.

In the next sections we address the problems described above, i.e we want to answer questions like,
can we model and evaluate the effect of having more vulnerabilities, and thus more interferences between
rules? Can we provide a better way for service providers to build a knowledge base while having a large
number of vulnerabilities?

4.6.1 Modeling Rule Interference and its Effect on NIDS Performance

In this section, we want to address the problem of interference between vulnerabilities. Understanding
the effect of a vulnerability on other vulnerabilities is essential in order to prepare custom-tailored
SLA templates efficiently. To show the importance of measuring interference, let us assume we have n
vulnerabilities and corresponding rules used in an NIDS. The performance of an NIDS varies depending
on the number of configured rules. Assuming all other factors affecting the performance of an NIDS are
constant, the performance and number of rules are inversely proportional, i.e the performance decreases
as the number of rules increases. Moreover, it is not enough to know the existence of such interferences
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Figure 4.4: NIDS outputs

between vulnerabilities; we need to measure and quantify the level of interference in order to use it in the
process of SLA definition. If a tenant selects k vulnerabilities out of n, the SLO offered for that tenant
is the performance of the NIDS regarding those k vulnerabilities.

While selecting k out of n vulnerabilities, if we don’t have a quantitative measure of the interference
between the k vulnerabilities (i.e between the rules to monitor those vulnerabilities) then the provider is
expected to run a test in order to measure the performance of its NIDS on k vulnerabilities. This process
happens for every possible set of k rules. Having quantitative knowledge of the interference helps to do
statical analysis rather than running a dynamic test. Therefore, it reduces the number of performance
tests to prepare SLO templates. We present a formal definition of the interference and how to perform
the static analysis in the next section.

4.6.2 Rule Interference in NIDS

As described above, the interference between rules refers to the effect of one rule on another rule (alter-
natively, it can be seen as the effect of a vulnerability on another vulnerability, assuming a single rule
is used to monitor a single vulnerability). Before formally defining the interference between rules, we
describe the assumptions taken in the formulation of the interference.

Assumptions

NIDSs take rules as an input. The rules are mechanisms to tell the NIDS what to look in the input
packets. The detection engine of an NIDS applies the rules on each packet. If the packet matches a rule,
the specified action of that rule is taken, and log(s) and/or alert(s) will be generated. However, if the
packet matches with more than one rule, the NIDS behaves in one of the following ways:

• It generates an alert for all the matchings ;

• It generates an alert for few of the matchings based on some heuristics (e.g. the first match, the
most severe).

If the NIDS follows the second option, in some cases it may stop further processing after finding the
heuristic (e.g. after finding the first match). Usually, the second option is the default property, but even
if it is not optimal, NIDSs can be configured to behave like the first option. While formally defining rule
interferences we assume an NIDS configured to generate an alert for all matchings (the first case). i.e.
if a packet matches with more than one rule, it generates an alert for every match. Assuming this we
define interference as follows.

Formal definition of interference

Let us assume we have two vulnerabilities to be monitored (Vi and Vj) with a set of rules for each of them
to be configured in an NIDS. For a given base rate (B), an NIDS configured to monitor Vi will generate
(TPi, FPi, TNi and FNi) the same for Vj , it generates (TPj , FPj , TNj and FNj). These are the basic
metrics that are presented in Section 2.4.4. They are measured by counting the number of attacks (or
legitimate traffic) that are correctly (or incorrectly) classified by the NIDS from a given input. From
these basic metrics we can calculate TPR and FPR as:

TPRi =
TPi

TPi + FNi
, FPRi =

FPi
FPi + TNi

, TPRj =
TPj

TPj + FNj
and FPRj =

FPj
FPj + TNj

(4.1)
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Vule. V1 V2 V3 ...... Vn
V1 0 (FP, FN)1,2 (FP, FN)1,3 ...... (FP, FN)1,n
V2 0 (FP, FN)2,3 ...... (FP, FN)2,n
V3 0 ...... (FP, FN)3,n
...... ...... ......
Vn ...... 0

Table 4.3: Interference Matrix (IM)

Interference between Vi and Vj is an event that can happen when both are configured together in
one NIDS. Figure 4.4 (A and B) shows a box diagram, representation of an NIDS configured to monitor
Vi and Vj separately. Moreover, Figure 4.4(C) shows an NIDS configured to monitor both Vi and Vj .
As we have NIDS outputs for Vi and Vj separately, an NIDS configured to monitor both vulnerabilities
together generates (TP ′, FP ′, TN ′ and FN ′).

We define the interference as the change in values between TP ′ and TPi + TPj (respectively FN ′
and FNi + FNj) and between FP ′ and FPi + FPj (respectively TN ′ and TNi + TNj). Formally we
can define an interference as follows:

Definition 4.1. There is an interference between two vulnerabilities Vi and Vj if an NIDS configured
with Vi gives a quadruple value (TPi, FPi, TNi and FNi), an NIDS configured with Vj gives a quadruple
value (TPj , FPj , TNj and FNj), an NIDS configure to monitor both Vi and Vj gives a quadruple value
(TP ′, FP ′, TN ′ and FN ′) and

TP ′ 6= TPi + TPj or FP ′ 6= FPi + FPj or TN ′ 6= TNi + TNj or FN ′ 6= FNi + FNj (4.2)

In other words, if an NIDS is configured to monitor both vulnerabilities (Vi & Vj) and the output is
not equal to the sum of separate outputs from Vi and Vj then we can say there is an interference. Note
that interference is just the change in values it can be an increase or decrease of (TP ′, FP ′, TN ′ and
FN ′) from the sum of (TPi, FPi, TNi, and FNi) and (TPj , FPj , TNj , and FNj). However, an increase
in TP ′ or TN ′ is a positive interference. It indicates better effectiveness of an NIDS and such type of
changes increases the CID value. It is unlikely for this event to happen.

Therefore, we are interested in negative interferences which indicate a degradation in the effectiveness
of an NIDS and decrease the CID value. In other words, an increase either in the value of FP or FN
means an increase of false classification or errors made by the NIDS. We can represent the interference
between Vi and Vj as (FP, FN)ij . The change in FP and FN can be described as:

FPij = FP ′ − (FPi + FPj) and FNij = FN ′ − (FNi + FNj) (4.3)

Moreover, (TP ′, FP ′, TN ′, and FN ′) can be expressed as follows. Note that an increase in FP shows
a decrease in TN and the same way and an increase in FN shows a decrease in TP .

TP ′ = TPi + TPj − FNij , FN ′ = FNi + FNj + FNij

FP ′ = FPi + FPj + FPij , TN ′ = TNi + TNj − FPij
(4.4)

Interference vector (IV) and interference matrix (IM)

If there are n vulnerabilities, the interference between Vi and the other n − 1 vulnerabilities can be
described with an interference vector (IV)

interference vector (IV), Vi = {(FP, FN)i1, (FP, FN)i2, ...(FP, FN)in}

Interference vectors of n vulnerabilities will form an interference matrix as shown in Table 4.3. An
entry in the table shows an interference between the vulnerabilities in the corresponding column and
row. The matrix is triangular and there is no interference for a vulnerability with itself.

Given such quantitative values of an interference, the next question is how we can compute the
expected CID value for an NIDS configured to monitor both Vi and Vj? As we know CID is a function of
TPR, FPR and B. Using Equation 4.1 to compute the TPR and FPR values for (TP ′, FP ′, TN ′, and
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FN ′) may not be possible if there is interference between the vulnerabilities Vi and Vj . The equation
needs to take into account the changes created as a result of putting multiple vulnerabilities together. In
the next section, we present how to compute aggregated metrics, TPR and FPR values while aggregating
multiple vulnerabilities in a given NIDS.

Computing aggregated metrics

Assume we have two vulnerabilities Vi and Vj , and an NIDS configured to monitor both Vi and Vj . The
TPR′ and FPR′ values for this NIDS is represented as TPRagg and FPRagg. They are values computed
from (TPi, FPi, TNi, and FNi), (TPj , FPj , TNj , and FNj) and (FP, FN)ij .

If there is no interference between the two vulnerabilities, that means there is no change between
the output of the NIDS and the sum of the separate outputs from Vi and Vj (i.e (FP, FN)ij = (0, 0)ij).
From Equation 4.4 we have

TP ′ = TPi + TPj , FN ′ = FNi + FNj , FP ′ = FPi + FPj and TN ′ = TNi + TNj (4.5)

TPRagg and FPRagg can be computed as follows:

TPRagg =
TP ′

TP ′ + FN ′
=

TPi + TPj
TPi + TPj + FNi + FNj

and

FPRagg =
TP ′

TP ′ + FN ′
=

FPi + FPj
FPi + FPj + TNi + TNj

(4.6)

A TPR is computed as the ratio between correctly detected attacks and the total number of attacks.
Equation 4.6 can be interpreted as, since there is no interference between Vi and Vj the number of
correctly detected attacks are the sum of TP s from Vi and Vj . The total number of attacks is the sum
of attacks from Vi and Vj , i.e let us assume we use the packet flow fi to evaluate the NIDS configured
with Vi which contains a total number of (TPi + FNi) attacks. Also, we use the flow fj to evaluate
the NIDS configured with Vj which contains a total number of (TPj + FNj) attacks. Then to evaluate
the NIDS configured with both Vi and Vj we use both fi and fj which results in a total number of
(TPi + FNi + TPj + FNj) attacks.

To keep the evaluation consistent fi and fj are the same. However, the flow contains packets that
can trigger alerts for both of the vulnerabilities. Also, in some cases a packet may match more than one
rule; as a result, the NIDS generates alerts for every match, as described in Section 4.6.2. Equation 4.6
can be generalized for n vulnerabilities as:

TPRagg =

∑n
i=1 TPi∑n

i=1 TPi +
∑n
i=1 FNi

and FPRagg =

∑n
i=1 FPi∑n

i=1 FPi +
∑n
i=1 TNi

(4.7)

If there is an interference between Vi and Vj then there is a difference between the output of an
NIDS configured to monitor both Vi and Vj and the sum of the separate outputs from Vi and Vj (i.e
(FP, FN)ij 6= (0, 0)ij). Taking Equation 4.4, we can calculate TPRagg and FPRagg as follows:

TPRagg =
TP ′

TP ′ + FN ′
=

TPi + TPj − FNij
TPi + TPj + FNi + FNj

and

FPRagg =
FP ′

FP ′ + TN ′
=

FPi + FPj + FPij
FPi + FPj + TNi + TNj

(4.8)

If we have n vulnerabilities, we can generalize TPRagg and FPRagg as shown in Equation 4.9. In
the equation, in addition to the assumptions described above, we assume that interferences are limited
to pairwise interferences, i.e. the only interferences in the group are than the ones in the pairs of rules.

TPRagg =

∑n
i=1 TPi −

∑n
i=1,j=1 FNij∑n

i=1 TPi +
∑n
i=1 FNi

and FPRagg =

∑n
i=1 FPi +

∑n
i=1,j=1 FPij∑n

i=1 FPi +
∑n
i=1 TNi

(4.9)

Given the performance of an NIDS on n vulnerabilities separately and the interference between them
for some base rate value B, we can compute the expected CID value for that NIDS by doing only static
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Figure 4.5: Clustering NIDS rules

analysis. This is done by computing TPRagg and FPRagg as shown above and use those values with B
to calculate CID.

It is important to note that, we still have the issue with a large number of vulnerabilities. The method
described above may reduce the number of required tests to prepare SLO templates to some degree, but
it still requires to perform at least a test for every couple of vulnerabilities, i.e if we have n vulnerabilities
the above method requires at least

(
n
2

)
(combination of n and 2) performance tests. In practice when n

is very large, the method may not be practical.

In the next section, we present our proposed solution to reduce the required number of evaluations in
order to prepare SLO templates. Our goal is to have a knowledge base on the performance of an NIDS
in order to prepare template SLAs and offer the templates to a potential tenant.

4.6.3 Building a Knowledge Base by Clustering Vulnerabilities
In order to realize a security monitoring SLA, the conflict between having a large number of vulnerabilities
and the need to have custom tailored SLOs needs to be solved. Otherwise, running numerous performance
tests just for building a knowledge base is not practical. Moreover, this process is not a one time task; it
may be required to do the test on different occasions. For example, as new vulnerabilities are discovered
the NIDS needs to be tested on those vulnerabilities. Hence, having an efficient method, which can reduce
the required number of performance tests significantly affects the practicality of a security monitoring
SLAs. In order to achieve this, we propose a method based on clustering vulnerabilities.

The idea is to perform the evaluation test per group rather than for each vulnerability. The clustering
mechanism is applied to the NIDS rules based on heuristics, and the resulting groups are used to build
a knowledge base for the performance of NIDSs. Clustering, as the name indicates, is an act of grouping
elements to some kind of classes called clusters (see Figure 4.5). After constructing such groups the
evaluation can be done per group, i.e configuring an NIDS to monitor all vulnerabilities in one group
and measure the performance. If the interference between the vulnerabilities in a group is a negative
interference, then the result of this evaluation is a lower bound for the performance of an NIDS configured
with any subset of the group. However, even if the chance of having a positive interference is very small,
the provider should be careful while setting the lower bound values. If the interference in a group is a
positive interference, it may not represent a lower bound for a subset of the vulnerabilities in that group.

Let us take for example that we have one hundred vulnerabilities, and by clustering, we formed ten
groups (G0, G1...G9) each Gi containing ten vulnerabilities (V0, V1...V9). Assume an NIDS is configured
to monitor all the vulnerabilities in Gi. Let us say evaluating the performance of that NIDS for a given
base rate value B results in CID value of x. If the interference between the vulnerabilities in Gi is a
negative interference, then we can say that x is a lower bound on the performance of the NIDS for any
subset of vulnerabilities from Gi. This is following Equation 4.9, assuming negative interferences, the
FPRagg for all Vis in Gi is higher than Vis for any subset in Gi. Hence, the CID will be the lower bound
while taking all vulnerabilities in Gi. However, if the interference between the vulnerabilities in Gi is a
positive interference, we can not set x as a lower bound for that group. In other words, if the interference
is positive, then there may be a subset of vulnerabilities that could result in a worse performance than
putting all the Vis in Gi together. It is unlikely for such an event to happen, but it is essential to consider
the case while drafting an SLO.

Subsequently, Table 4.3 will have a smaller height and width. The columns and rows will represent
groups of vulnerabilities (Gi) instead of single vulnerabilities (Vi). Service providers can choose appro-
priate heuristics to group vulnerabilities. Some examples of heuristics are described below. These are
example heuristics, a provider needs to consider the available resources and the grouping criteria. Having
a minimal number of groups results in meager SLO offer and having a large number of groups requires
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Groups G1 G2 ...... Gn
G1 ... ... ...... ...
G2 ... ... ...... ...
... ... ... ...... ...
Gn ... ... ...... ...

Groups G′1 G′2 ...... G′n
G′1 ... ... ...... ...
G′2 ... ... ...... ...
... ... ... ...... ...
G′n ... ... ...... ...

Table 4.4: Multiple interference matrix from groups using different heuristics

huge amounts of computations. Providers need to select the heuristics considering available resources.
Some examples of heuristics include:

• Grouping vulnerabilities based on related application, for example, OS vulnerabilities (vulnerabil-
ities to monitor different OSs), browser vulnerabilities, ...

• Grouping vulnerabilities based on related applications that are used together, for example, grouping
vulnerabilities in the LAMP stack (Linux, Apache, Mysql, and PHP) applications in one group,

• Grouping based on the nodes and services they are providing or used for, e.g. grouping vulnera-
bilities for login nodes together, storage nodes,

• Grouping based on the threat or severity of the vulnerabilities, for example, grouping less severe
vulnerabilities together.

Having such groups and a minimized interference matrix, it is possible to compute a minimum
expected performance for any given vulnerability. When a tenant needs to be monitored and selects the
vulnerabilities from these groups, there are two cases. First, if the selected vulnerabilities are in the same
group, then the performance of the NIDS on that group is offered as an SLO. Second, if the selected
vulnerabilities are in different groups, then we can calculate the expected CID value using the method
described in the previous section.

It is possible to group vulnerabilities based on multiple heuristics. Each heuristic produces a table
as shown in Table 4.4. For a given set of vulnerabilities, the table which produces a better performance
can be used to offer the SLOs.

In the next section, we present evaluations performed to validate the ideas proposed in this chapter.

4.7 Evaluation
We performed experiments to validate the proposed solution for the metrics estimation and rule clustering
methods.The actual procedure for the experiment is presented in the next chapter. In this section, we
present the setup and results from the experiment. The results show the basic metrics (TP, FN,FP, TN)
of a given NIDS while configured to monitor a list of services. The results are shown for different base
rate values. We also present how we managed to group NIDS rules based on some heuristics.

We aim to validate the CID approximation for unknown base rates and the efficiency of using the
interference matrices, i.e to validate the efficiency of our clustering method to reduce the number of
measurements required when preparing SLO templates. To make our experiment as realistic as possible,
we perform a dynamic, real attack injection. By injecting real attacks we can see how a given NIDS per-
forms and behaves on a specific configuration. This measuring technique is used to verify the correctness
of an NIDS configuration. Verification of SLO compliance is the main topic of Chapter 5. Full details of
the procedures are presented in the next chapter. Here we present an overview of the experiment setup
and the result, counted as basic metrics, to show the process of SLO template creation.

4.7.1 Experimental Setup
Grid5000 [22] testbed infrastructure is used to run our experiments. We build a cloud infrastructure
using OpenStack [163] and Open vSwitch(OvS) [165] as a virtual switch. Figure 4.6 shows a high-
level architecture of the experimental setup. The tenant infrastructure is configured to run the services
described in Table 4.1. For the experiment, three production virtual machines (VMs) are running the
Apache, Mysql server and WordPress content management system. A fourth VM is also instantiated and
used as a target for the injected attacks. The target VM exhibits similar properties as the production
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Figure 4.6: Experimental setup

VMs by running all the three services. The virtual switch is configured to forward all attack packets
only to the target VM. Hence, the attacks are prevented from disrupting the production VMs.

Snort [13], the most widely deployed IDS, is used as NIDS. It is deployed on a separate physical node,
and it is connected to the virtual switch through a mirror port. All packets passing through that switch
are also mirrored to the Snort node for analysis. Snort is configured to monitor the services listed in
Table 4.1 i.e to look for an instance of attacks listed in the table and to output an alert for each matching
rule. An attacker machine is located outside of the cloud and it is used to inject attacks i.e. to perform
a dynamic attack injection campaign. We use real attacks to exploit vulnerabilities in the target VM.
The attacks are interlaced with legitimate traffic according to the base rate. In addition, we know the
number of packets sent by each legitimate and attack request.

To measure the performance of a configured NIDS, we record all the communications between the
attacker and target VM, i.e. we record all the injected packets. Snort gets all these packets as an input
and generates an alert(s) when it detects an attack. At the end of the attack campaign, we get the
output of the NIDS. Using recorded inputs and the output alerts, we count the number of inputs that
are correctly (wrongly) classified as attacks (legitimate requests) by the NIDS. This way we can count
the (TP, TN,FP , and FN) values. More details about the setup and its justification are presented in
the next chapter.

4.7.2 Collecting Data Points and Generating an Estimation Model
Using the setup described in the previous section we run experiments to measure the performance of
the configured NIDS. Table 4.5 shows the TPR,FPR,TNR, and FNR values, these are calculated from
basic metrics (TP, TN,FP , and FN) using the formulas described in Section 2.4.4. The table also
shows the calculated CID value for a given B. The values shown are averages over three rounds for each
computation.

The experiment is performed for two sets of base rate values, for the smaller B values in (0.001−0.01)
and a slightly higher B values in (0.06− 0.1). For this experiment, we assume an SLA which guarantees
the performance of an NIDS with a lower bound base rate value of 10−3, i.e the SLA will not be violated
if the NIDS underperformed for an occurrence of attack with B < 10−3. It is important to note that in
practice this value (10−3) is a relatively large lower bound, i.e. attacks usually occur with a base rate
value B < 10−3. As described in the previous section, the actual value of the base rate is very small.
However, in our environment, B = 10−3 is the lowest achievable base rate value. Section 4.7.4 presents
a detailed explanation on the limitation of our experiment.

Figure 4.7 shows the plot of B vs TPR and B vs FPR for B in (0.06 − 0.1). We use Table 4.5 and
the corresponding graphs to model the relationship between B and (TPR, FPR). From the table and
the plots, we observe that the FPR values are very small (close to zero). This is because the rules in
the NIDS are carefully crafted for the set of considered attacks. As a result, false positives generated by
these rules are very small. This property is consistent for different base rate values. Other studies [183]
showed that given the attacks to be monitored, it is possible to craft an NIDS rules with a minimal FP
value. Taking these into consideration, we can use a constant FPR = 0 value in the SLA. However, for



4.7. EVALUATION 71

B TPR FPR TNR FNR CID

Small B
values

0.001 0.7005733333 0.000035352 0.9999566667 0.2994266667 0.6453533333
0.003 0.7022433333 1.23E-07 0.9999966667 0.2977566667 0.6493066667
0.005 0.7167533333 0.00000026 0.9999966667 0.26614 0.66004
0.007 0.7278733333 8.63E-07 0.9999966667 0.2721233333 0.66845
0.009 0.7567866667 0 1 0.2432133333 0.6968933333
0.01 0.7338044444 8.12E-07 0.999996667 0.23843 0.700916667

Slightly
higher
B values

0.06 0.80297 0.001438933 0.99856 0.197023333 0.704433333
0.07 0.80046 0 1 0.1995366667 0.71623
0.08 0.8076033333 6.53E-06 0.9999966667 0.19239 0.73025
0.09 0.8198066667 1.59E-05 0.9999833333 0.18019 0.76141
0.1 0.8661833333 0.0009814231 0.9990166667 0.13381 0.7737933333

Table 4.5: TPR, FPR, TNR, FNR values of an NIDS from our experiment and calculated CID value for
varying B

our SLA we take the highest FPR value, as CID is sensitive for changes in FPR. In the context of
SLA, taking the highest FPR means promising a lower CID value, which puts the provider in a better
position for not violating the SLA.
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Figure 4.7: Plot of B vs TPR and B vs FPR for B in (0.06− 0.1)

For the TPR, we can observe that its value is increasing with the B value. To model their relationship,
we use the TPR values for B in (0.06−0.1), and a TPR at the lowest guaranteed base rate, i.e B = 10−3.
We fit these points using a quadratic polynomial function, because there is only one local extremum value
in the given range of B. The quadratic function f which best approximates these points is shown in
Equation 4.10

f(B) = 0.7008827 + 1.357906 ∗B + 1.447843 ∗B2 (4.10)

Using this function, we can estimate the values of the expected TPR for other base rate values. As
an example, Table 4.8 shows the estimated and actual TPR values for B in (0.003− 0.009). Figure 4.9
shows the plot of expected TPR in comparison with actual values. From this data, we can observe that
our metric estimation method produce results which are close to the actual values.

Table 4.8 can be used as an input to drive the fuzziness and confidence ratio values. In addition to
such a table, a provider may take other assumptions like the available resources to drive the appropriate
fuzziness and confidence ratio values.
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B Estimated TPR Actual TPR
0.003 0.7049694 0.7022433333
0.005 0.7077084 0.7167533333
0.007 0.710459 0.7278733333
0.009 0.7132211 0.7567866667

Figure 4.8: Estimated and actual TPR values
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Figure 4.9: Plot of the estimated and actual TPR
values

4.7.3 Clustering NIDS Rules
In Section 4.6.3 we presented a clustering technique that can be used to reduce the width and height of
an interference matrix, thus reducing the number of required evaluation tests to prepare the template
SLOs. In this section, we present an example using rules from Snort NIDS.

In the official snort rule repository, there are three categories of rule sets:

• Subscriber: The most updated set of rules which is available for paying customers and it is regularly
updated.

• Registered: This rule set is 30 days behind the Subscriber rule set and it is distributed free of
charge.

• Community: A set of rules written by the community and verified by the company maintaining
Snort. It is also distributed free of charge and it does not contain the subscribers rule set.

We used the registered rule set version 2.9.8.0 to demonstrate the clustering technique described
above. It contains a total of 10628 rules in 53 files. We used several properties to group the rules
including properties that are part of the rule syntax. The properties used include the application type,
the attack class type, the severity of the vulnerability, and applications working together.

Grouping based on application type

Another method is grouping applications with a similar type of functionalities into the same group.
For example, grouping vulnerabilities in the browsers or operating systems together in one group. By
default, rules in the Snort repository are grouped per application, e.g. Firefox rules, Internet Explorer
rules, office file rules, etc. This default grouping can be used for our clustering purpose and our grouping
method reduces further the number of groups. Table 4.6 shows an example of grouping created using
the application type.

Grouping based on attack type and severity

An attack type (class type) is part of the rule options used in Snort syntax. Rules in the Snort NIDS
are divided into two sections, the rule header and rule options; where the header contains information
like the rule’s action, protocol, source and destination IP/port. The option contains the alert messages
and information about which part of the packet should be used to generate the alert message.

The keyword ‘classtype’ is used to indicate that a rule is detecting general kind of attack. We can
use this keyword to classify NIDS rules for building the interference matrix. A few default classtypes are
defined, but it is possible to define a custom classtype in the classification.config file. Table 4.7 shows
classification of rules based on the classtypes property.

Similar to this, Snort rules have a priority parameter which allows defining the severity with integer
values. A priority is also defined in classification.config file. For example, the default configuration
contains four priorities. A priority of 1 (high) is the most severe and 4 (very low) is the least severe.
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Application Group Applications (number of rules) Total

Browsers Firefox (15), Internet explorer (1286), Webkit (2),
Others (8), Plugins (31) 1339

Files Executable (17), Flash (1506), image (125), java (110),
multimedia (55), office (462), pdf (506), others (331), file-identifier (979) 4091

OS Windows (388), Solaris (3), mobile os (3), others (36), netbios (22), Linux (15) 467
Protocols imap (2), scada (10), telnet (3), dns (1), pop (1), snmp (1), voip (2), others(4) 24

Servers Apache (27), mail (9), mysql (1), oracle (2), samba (6), web-apps(273),
mssql(1), others (223) 542

Potentially
Unwanted
Application (PUA)

Adware(30), p2p(3), toolbars (4), others (21) 58

Malware Backdoor (110), CNC (3053), malware-tools (14), others (336) 3513

Others
app-detector (2), exploit-kit (492), indicator-compromise (30),
indicator-scan (2), policy-social (2), policy-others (15), sql (16),
deleted(3), indicator-obfuscation (32)

594

Table 4.6: Rule classification based on application types

Grouping based on applications working together

It is very likely that an application is used in collaboration with other applications. To give a simple
example, an operating system is used to run almost all applications. Such a relationship can be used to
group vulnerabilities. Such grouping is natural, as applications are used together to provide the expected
service. Moreover, it can result in a higher performance value, as aggregation from different groups will
be minimized.

Examples of such method include grouping Linux, Apache, Mysql, PHP (LAMP) and WordPress in
one group, Windows, Microsoft Office products and Internet Explorer in another group.

Using such grouping, we can reduce the number of required evaluations. If we take the example rule
set to build the interference matrix using each rule, it requires more than 54 million tests (combination
of 10628 by 2). Using the default grouping by application, it requires 1378 tests (combination of 53 by
2) and using application type requires 28 tests (combination of 8 by 2). It is important to note that
there is a tradeoff between the number of required tests and the performance of an NIDS (or its CID
value). Less number of groups means less number of tests, but it also produces smaller CID values than a
large number of groups. This is because when having a small number of groups, each group will contain
more vulnerabilities than when having a larger number of groups. The provider should take into account
available resources for the tests and select the clustering method accordingly. Multiple grouping methods
can be used to build multiple interference matrices (see Table 4.4) and offer SLOs from the one which
produces the best result.

4.7.4 Discussion

This chapter presents a feasible mechanism to define SLAs guaranteeing the performance of NIDSs. The
previous section presented the experimental evaluation showing the validity of the proposed method. In
this section, we present some issues that are related to the proposed method.

In ECSLA, the formal language used to describe security monitoring SLAs, tenants specify their
security requirements using vulnerabilities for a given application. This level of abstraction is not ideal;
it is not easy to know the existing vulnerabilities in an application for regular users. This creates
a problem to make the security monitoring SLA life-cycle straightforward. As described in Chapter
3, service providers can cover this issue by offering a separate vulnerability assessment service. By
using results from such a service, a provider can offer security monitoring SLAs with a higher level of
abstraction.

The SLA definition described in this chapter uses a fixed set of vulnerabilities, i.e the set of vulner-
abilities addressed in a given SLA is fixed. However, in a real situation the number of vulnerabilities
that concerns a tenant may increase or decrease. An increase happens when new vulnerabilities con-
cerning a tenant are discovered and a decrease happens when a patch is available for a vulnerability. In
our SLA life-cycle both cases are not automated. Notably, the discovery of a new vulnerability could



74 CHAPTER 4. DEFINING SECURITY MONITORING SLAS

Class Type Description
attempted-user (4332) Attempted User Privilege Gain
protocol-command-decode (46) Generic Protocol Command Decode
denial-of-service (38) Detection of a Denial of Service Attack
default-login-attempt (2) Attempt to login by a default username and password
misc-activity (1049) Misc activity
suspicious-filename-detect (1) A suspicious filename was detected
attempted-dos (117) Attempted Denial of Service
attempted admin (728) Attempted administrator privilege gain
trojan-activity(3904) A network Trojan was detected
string-detect(1) A suspicious string was detected
bad-unknown (3) Potentially Bad Traffic
network-scan (1) Detection of a Network Scan
misc-attack (37) Misc Attack
attempted-recon (146) Attempted Information Leak
policy-violation (57) Potential Corporate Privacy Violation
successful-recon-limited (12) Information Leak
unsuccessful-user (1) Unsuccessful User Privilege Gain
web-application-attack (150) Web Application Attack
successful-user (4) Successful User Privilege Gain

Table 4.7: Rule classification based class type

change tenants requirement. Such events are addressed by renegotiating and restarting the process of
SLA life-cycle. To facilitate this, it is possible to include termination conditions in the SLA, describing
the possibility of renegotiating when new vulnerabilities are discovered.

Moreover, our SLA definition addresses only known vulnerabilities. Monitoring an unknown vul-
nerability is usually performed by using anomaly-based NIDSs. With a few modifications, our SLA
definition could be extended to be used for such a monitoring device. However, as it is in the current
state, it cannot be applied to anomaly-based NIDSs because our service description requires describing
the vulnerabilities; this is not practical for currently unknown vulnerabilities. Moreover, guaranteeing
the performance of an NIDS covering unknown vulnerabilities is challenging and the risk of not meeting
an objective is very high.

While computing the relationship between B and (TPR, FPR), we assumed the resources available
for the NIDS are fixed. However, as described in [149], in the cloud environment resources for an NIDS
may vary due to elasticity. Our assumption can be interpreted as the minimum amount of resource that
is needed to perform the monitoring task. The available resources for an NIDS may increase but will not
decrease below the level used for testing. Furthermore, an increase in resources should result in better
performance. Hence, an increase in the available resources will not lead to an SLA violation.

The metric estimation method assumes that the provider can conduct a performance test using the
lowest guaranteed base rate. In practice, this task is not straightforward. As described in Section 4.5.1,
performing a test using a small base rate value takes a long time and requires large disk space. For
example, to measure the performance an NIDS which is configured to monitor the services listed in
Table 4.1 using B = 10−2 takes around 42 minutes. Performing the same experiment by changing only
the base rate to B = 10−3, the experiment takes around four hours. Chapter 5 presents the actual
procedure to perform a test and optimizations to reduce the required time by increasing the degree of
parallelism.

To estimate the performance of an NIDS using real attack injection, it requires to have the attack
which exploits a given vulnerability. As presented in Section 3.2.3, getting an attack to exploit a vul-
nerability is challenging. It is because, usually there is no incentive to publish an attack, especially for
commercially owned products. Some issues related to the type of attacks used to perform the test are
addressed in Chapter 5.

We conclude the chapter by presenting a summary in the next section.
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4.8 Summary
In this chapter, we have discussed the problem of defining a security monitoring SLA. Specifically, we
studied SLAs describing the performance of security monitoring probes. To show the proposed SLA
definition method, the network security monitoring device we used is a signature-based NIDS.

We started by stating the objective, which is to provide a mechanism that enables the definition of
security monitoring SLAs. We continued by listing the problems which need to be addressed in order
to meet the objectives and to realize the security monitoring SLAs. The lack of a formal language to
define SLAs, finding a relevant KPI i.e. a single unified metric which takes the base rate into account,
and reconciling the fact that there are lots of vulnerabilities and the need for a custom-tailored SLAs
are presented as problems.

In order to address the lack of a formal language in the SLA definition process, we proposed an
extension to CSLA [123]. CSLA is a domain specific language specially designed to describe cloud SLAs.
Our extension, called ECSLA, adds the ability to define a security monitoring service which contains the
users’ requirements description as a list of vulnerabilities. The extension also enables to define a complex
parameter which is computed from basic metrics.

To describe the performance of an NIDS we used the CID as a parameter. CID meets both of our
requirements: it is a single metrics and it takes the base rate into account. Taking the base rate into
consideration in SLA comes with two challenges, (i) at what base rate value should a provider offer an
SLA as the CID varies depending on the input base rate ? (ii) in practice measuring the value of the
base rate before the occurrence of an attack is very difficult.

To address both of these issues, our SLO definition uses a model which takes the base rate as an input.
Defining a model addresses both problems: first, it removes the need to use a specific base rate value
in the SLA definition; second, the model can estimate the performance metrics for previously unknown
base rate values. The model takes a value of B as an input and outputs the TPR and FPR values. The
model is generated by testing the NIDS using known base rate values. Using the results from such tests,
and an interpolation-based method, we generate the expected model. The final model can be used as
the SLO description in the SLA.

The other issue addressed in this chapter is the effect of monitoring multiple vulnerabilities with a
single monitoring device. Increasing the number of vulnerabilities in an NIDS results in lower perfor-
mance. A quantitative measure of the effect between vulnerabilities helps to estimate the performance
of the NIDS while aggregating those vulnerabilities together. We introduced the interference vector and
matrix to describe the effect of vulnerabilities between each other. Using the interference values and the
performance for individual vulnerabilities, we presented how to calculate the aggregated metrics. These
metrics describe the performance of an NIDS while configured with all the vulnerabilities together.

Having a formal language and the performance estimation method for any group of vulnerabilities can
be enough to prepare SLA templates. However, having thousands of vulnerabilities makes it impractical
to build the interference matrix. Hence it hinders a custom-tailored SLA template preparation. To
address this issue, we proposed a clustering mechanism which groups the vulnerabilities based on some
heuristics and performs the interference test per group. The performance of an NIDS on the group
indicates the worst performance; hence it gives a lower bound for any subgroup of vulnerabilities from
that group. By this approach, it is possible to reduce the dimensions of the interference matrix and to
make it practical.

Finally, we showed an experimental evaluation on how to prepare the model that can be used in
the security monitoring SLOs. In our experiment, we showed the feasibility of the metrics estimation
process using an interpolation-based method. We also showed an example of the clustering method
using the Snorts Registered rule set. The providers can perform clustering depending on the available
resources. A tradeoff should be maintained between the size of the interference matrix and the number
of vulnerabilities per group. Indeed, the performance of an NIDS on a group reduces as the number of
vulnerabilities increases.
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Chapter 5

Monitoring an SLA Describing the
Performance of an NIDS

5.1 Introduction

In the previous chapter we presented the first step in the life-cycle of an SLA, i.e a mechanism used to
define security monitoring SLAs. Specifically, an SLA guaranteeing the performance of an NIDS in the
cloud is studied. In this chapter we present a monitoring mechanism to check the satisfaction of the SLO
defined in the agreement. Note that there is another step between defining an SLA and monitoring it,
that is the enforcement stage. As described in Chapter 3, we use very simple and straightforward SLA
enforcement method in our work. In this chapter we present the enforcement mechanism that we use for
SLOs related to NIDS performance. A more general enforcement mechanism is left as a future work.

Verifiability is one of the characteristics of SLAs that are described in Section 2.5.1. Assume a
provider promises to deliver a service with some quantifiable expected performance, without any method
to check this measurement one can quickly realize that the promise is useless. To remove any ambiguity
in the process of checking SLA validity, the procedure of measuring key performance indicators (KPIs)
should be clearly described. But in practice verifying an SLO is challenging due to different reasons.
One of the main issues arises from the fact that in clouds, the responsibility on different tiers is shared
between tenants and providers. The main challenges in SLA verification are discussed in Section 5.2.

SLA monitoring is a process of continuously checking the validity of an SLA. In theory performing
a test as many times as possible could provide the most accurate information on the state of SLA. But
in practice this may not be possible and usually the SLA includes the description of the monitoring
mechanism with a schedule. Monitoring mechanisms are highly related to the properties addressed by
the SLA. An SLA covering service availability does not have the same monitoring mechanisms as an
SLA covering the performance of security monitoring devices. The schedule is also an important factor,
specially if the verification process has an effect on the monitored service.

In general the SLA verification process should allow to compute relevant metrics and it should eval-
uate the NIDS in realistic operational environment (dynamic or on-line evaluation as described in Sec-
tion 2.4.4). A realistic process gives more accurate results than simulation. The process should not be
too invasive, i.e the effect of a verification process on a production environment should be as minimum as
possible. Moreover, any participant in the agreement should be able to perform the verification process.
Specially, as we are aiming to have a user-centric security monitoring service, users should be allowed to
verify that the SLA is respected.

As for security monitoring SLAs, a realistic verification can be done by performing a dynamic attack
campaign. It is a method where the test is done by injecting real attacks in a given configuration. Such
a verification process comes with some drawbacks. Putting additional packets in the network introduces
overhead on the performance of the production service. Hence, one of the goals while designing a veri-
fication method for security monitoring SLAs is to minimize the overhead in a production environment.
More detailed drawbacks are presented in Section 5.8.

As described in Section 3.1, the other design goal is to have a transparent (non-secretive) mechanism
that can be used by both parties. To achieve such verification mechanism the need for cooperation
was also presented in Section 3.5.4. Different resources are owned by different entities hence to have
a transparent process cooperation is necessary. Considering current SLAs, specially availability SLAs,
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the trend is to outsource the monitoring task to third parties like Cloudstatus [53] and Site24x7 [174].
Alternatively, tenants perform SLA monitoring by using tools which are offered by their provider (e.g
Amazon CloudWatch) but not intended for SLA monitoring.

The goal of monitoring an SLA is to detect SLA violation. An SLA is violated if the result of
a verification does not match what is expected as defined in the SLA. Penalties are applied for any
violation and this is a challenge for transparent and unbiased cooperation. Since a penalty is applied
for SLA violation, participants have incentive not to violate SLAs. In our verification process we try to
minimize the dependency of a participant on other participants.

It should also be noted that, verification and the template preparation processes are both based on a
same method which consists in running attack campaigns and computing the resulting NIDS performance
metrics. As presented in the previous chapter, in order to offer SLOs providers perform tests to measure
how their security monitoring device performs on different sets of vulnerabilities. These tests follow the
same procedure as the verification process. Hence, when we describe verification it also refers to the
procedure to prepare SLO templates.

In the next section we describe a simplified SLA enforcement mechanism for NIDS. Section 5.2
presents a detailed description of the problems and challenges that are addressed in this chapter. A
unique attack injection mechanism is presented in Section 5.4. Section 5.5 describes the process after
an attack champaign is performed, i.e how the NIDS output is analyzed to compute the KPIs. Finally,
we present an experimental evaluation of the proposed SLA verification method with correctness and
security analysis.

5.1.1 Simplified SLA Enforcement Mechanisms for NIDS

SLA enforcement is one of the phases of SLA life-cycle, in this section we present the enforcement
mechanism used in our work. One of the characteristics of SLA is attainability. Providers will not
(should not) offer an SLA which is not achievable. Not achieving an objective has consequences, the
consequences can be either tangible like paying penalties, intangible like getting bad reputation or both.
Tenants receive only statement credits, which don’t help to recoup any potential asset or revenue lost
during an SLA violation. In either cases it is mostly "no-win (lose-lose)" situation for both tenants and
providers.

As presented in the previous chapter, in the SLA definition phase tenants specify their requirements
in terms of vulnerabilities. The ECSLA language allows describing vulnerabilities using three properties
namely ID, CVE and Description. The CV E refers a unique ID in vulnerability database. We also
know that providers offer security monitoring services for sets of known vulnerabilities, hence they have
a knowledge base on the matching between NIDS rules and related vulnerabilities. Using this knowledge
when users request for security monitoring of a given vulnerability, the corresponding rules are added to
the NIDS.

This is a straightforward enforcement of security monitoring SLAs for NIDSs. However, by no means
it is the optimal way, specially assuming a more complex security monitoring setup. For example if there
is more than one NIDS (e.g distributed IDSs), the enforcement may not be as straightforward as in our
case. In Chapter 7 SLA enforcement is described as one of the future works.

5.2 Problem Description and Challenges of SLA Verification
This section presents problems and challenges that are faced while performing SLA verification. SLAs
in our context describe terms guarantying the performance of NIDSs. Some problem and challenge
descriptions are more general and some are specific to security monitoring SLAs. We distinguish these
two classes in this section.

5.2.1 General Problems

Negotiated agreements must be verified against their structure for fulfillments of SLOs. Violation of an
SLO may happen intentionally on unintentionally. To give an unintentionally SLO violation example,
in 2017 the Northern Virginia region of Amazon Simple Storage Service (S3) was disrupted [9]. It was
caused by an administrator error in command line input which removed a larger set of servers than
intended. Interdependency between different services caused the whole region to be out of service for
more than four hours. Many services were affected including Amazon’s S3 dashboard, GitHub, Adobe’s
cloud and many more. The incident resulted in an SLO violation, SLO was promised at 99.9% availability
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which means around 48 minutes of outage per month was tolerated. Since four hours is greater than 48
minutes, it indicates an SLO violation. Hence, verification is not only to detect intentional violation but
also unintentionally events that could potentially lead to SLO violation.

The main challenge in doing verification is related to the nature of cloud computing service models.
In Section 2.1.3 we presented responsibilities of providers and tenants in managing various tiers of the
cloud. The responsibilities differ from one model to another. In IaaS clouds providers are responsible up
to the virtualization layer, VMs and everything inside VMs are under tenants’ responsibility. Performing
verification in such an environment includes checking status of a tier which does not belong to the verifier.

If we take an example, verifying system availability SLA by a tenant means checking whether the
infrastructure providing the running environment for VM(s), an environment which is not controlled
by the tenant, is correctly configured and responds on time. In some cases tenants may need outputs
(logs) from the provider. For example, in case of security monitoring SLAs, where monitoring devices
are controlled by providers, a tenant may require outputs of the monitoring devices, which is again not
controlled by the tenant.

5.2.2 Specific Problems for Security Monitoring SLAs

The other challenge in security monitoring SLA verification is the lack of methodology to evaluate a
security setup in the cloud. An efficient method to evaluate a given security monitoring setup (e.g as
the one presented in Chapter 4) can be easily adapted to be used for SLA verification. As described
in Section 2.4.4, there have been both on-line and off-line methodologies that are used to evaluate the
performance of security monitoring tools and setups before the cloud. However, we lack such a method
in the cloud, i.e a transparent method which can be used in context where there are different owners in
the system tier and the system itself is dynamic.

The dynamic nature of cloud infrastructures is another challenge. Virtualized infrastructures are
dynamic and malleable, since creation, deletion and migration of VMs are frequent. Security monitoring
SLA verification must anticipate such changes. The occurrence of such events should not affect or the
effect should be as minimum as possible. Moreover, automatic adaption to changes in the infrastructure
can help to keep the verification process consistent.

In addition, the verification mechanism should allow to compute relevant metrics for the measured
property. In general, the verification process for security monitoring SLAs should be able to take base
rate into account and specifically in our case, it should allow to compute the CID metrics.

In summary, in this chapter we address the problem of evaluating security monitoring setups in
the cloud environment. A process which can be used by either the provider or tenant to check the
performance of configured NIDS is presented. It takes the base rate into account and can be used to
calculate any metrics which are computed from the basics (TP, FP, TN, FN) and base rate. The process
is applied to perform SLO verification by both parties. The same procedure is used by the providers for
SLA template preparation.

5.3 Threat Model

In this section we present the threat model that is assumed while performing SLA verification. The
threat model is a subset of the one described in the previous chapter, Section 3.4. We do not take
into account hardware attacks. The cloud provider is assumed honest and the provider infrastructure is
assumed not compromised. Thus attacks can only originate from tenant input to the cloud API, from
virtual machines (VMs), and from outside the cloud infrastructure.

In particular no low-level network attacks can reach the virtual switches and change their behavior,
since traffic from outside the cloud arrives as IP packets that are routed towards the VMs by an edge
router, and traffic from VMs is encapsulated in virtual LANs.

It is important to note that the negotiation of SLAs covers only known types of attacks. Indeed,
service providers will not commit for unknown types of attacks. Thus, only those known attacks are used
in the verification process. The list of monitored attacks can be regularly updated in order to include
newly discovered vulnerabilities and attacks but it may require renegotiating or restarting the process of
SLA life-cycle as described in Section 4.7.4.

Note that although the provider is assumed honest, SLAs need to be verified because (i) by defini-
tion SLAs must be verifiable and (ii) an SLO violation may be unintended and result from provider-
implemented heuristics being imperfect.
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In the next section we present a description of the proposed SLO verification process.

5.4 SLO Verification Method
In this section we propose a verification method that both the cloud provider and tenant can use to verify
security monitoring SLOs for an NIDS. In addition, service providers can use the same process to prepare
SLA templates in a pre-negotiation phase as described in Chapter 4. We present first an architectural
view of our method which contains different components to perform a dynamic attack injection campaign
and second a unique attack injection algorithm which respects a given base rate. Before diving into our
SLO verification process, we present the unit of measure considered in our verification process.

5.4.1 Unit of Measure
For NIDS the unit of measure indicates the granularity at which events are counted e.g packet or flow
level. To perform KPI computation for a given security monitoring setup, after running an attack
campaign, incidents in the setup are counted and a specially designed Metric Evaluator (described later
in this section) is used to do the computation.

Our unit of measure in processing inputs for the Metric Evaluator and counting incidents in the setup
is the packet. For NIDS the unit of measure is related to its functionality. For example, for Snort [13]
the unit of analysis is a packet. In such case the base rate indicates the rate of malicious packets in a
given input. For flow-based NIDSs (e.g Bro [210]) the base rate indicates the rate of malicious flows in
an input.

5.4.2 Architecture
The verification mechanism performs attack campaigns against a given NIDS configuration. We set three
main design goals while preparing the verification method. First, to make the verification process as
realistic as possible the attack campaign should be done dynamically (See Section 2.4.4 for mechanisms
to measure NIDSs). This helps to measure the performance of NIDS exactly as it behaves in a real
occurrence of an attack.

The second goal while performing the verification is not to damage the production environment.
Performing a dynamic attack campaign means injecting attacks into the production environment to
observe the behavior of the configured NIDS. At the same time the attacks should not damage the
production VMs.

Thirdly, the overhead in the environment should be minimized. Since the process injects additional
packets to the environment, the overhead in the network as a result of verification can not be avoided
but should be as minimum as possible.

As presented, the first two goals seems contradictory, i.e we want to inject real attacks but without
damaging the production environment. To resolve these paradoxical goals we use a target virtual machine,
which is a properly crafted VM and located in strategic position to be used as a target for the injected
attacks. Target VMs are described later in this section.

An example of the attack running environment is shown in Figure 5.1. The production infrastructure
is composed of tenant production Virtual Machines (VM1, VM2, and VM3), hosted on cloud compute
nodes (physical servers), and connected to virtual switches. An NIDS is connected to a mirroring port
of the virtual switches and analyzes all packets passing through the virtual switches. Given such an
environment to evaluate the performance of NIDS, we extend the infrastructure with two components:

• An Attack Injector, that injects traffic, containing attacks, to be analyzed by the NIDS,

• A Target Virtual Machine, to which the injected traffic is redirected, and that exhibits the network
behavior of the production VMs

Attack Injector

The Attack Injector is a physical or virtual machine located inside or outside the cloud network and
it is used to simulate an attacker. The Attack Injector must be able to reach the Target VM, which
behaves as the production VMs. The switch which connects VMs in a tenant environment is configured to
forward all incoming packets from the Attack Injector to the Target VM. Hence, injected attacks should
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Figure 5.1: Example attack running setup

not affect services running on production VMs. In practice, if the switches are controlled by service
providers tenants can not access and configure the switch. Thus, cooperation between the provider and
tenant is required at this step. Providers are responsible to configure the switches.

As presented in Chapter 4, we use CID as a KPI to describe the NIDS performance and the CID value
depends on the base rate during the attack campaign phase. However, in real production environments
the base rate is likely to be very low (i.e attack packets arrive very rarely compared to legitimate packets)
and it is impossible to measure its value in advance before the attack happens. Hence, the base rate used
in the verification phase should be based on trade-offs between statistically observed data (as described
in Section 4.5), performance (see Section 5.7.2), and accuracy when inferring KPI values based on a
realistic base rate from verified values.

The novelty of the traffic injection algorithm we propose is to dynamically control the base rate.
The algorithm takes three inputs: a set of attacks, a set of legitimate requests, and a target base rate.
The base rate in the attack campaign is dynamically controlled using the knowledge of the number of
packets sent by each attack and each legitimate request. The algorithm runs two loops with two different
sets of processes in parallel. The first group injects an attack and the second group sends legitimate
requests with some distributed inter-arrival times. The attacks and legitimate requests inter-arrival time
distributions are selected to achieve the target base rate. Section 5.4.3 describes the attack injection
algorithm.

Target VM

The Target VM is used as a victim machine to which the verification traffic is redirected. This machine
simulates the behavior of production VMs (i.e services running in the production VMs). Specifically
target VM simulates the network behavior of production VMs. In our SLA verification process we are
interested in the network behavior of an application, we are not interested in the data processed by the
production service. Any mechanism that can simulate the network behavior of an application could be
used in our methodology. In [180] a finite-state automaton is used to model the network exchanges of
an application with a legitimate and a malicious user. It should be noted that more realistic simulations
produce more accurate results.

One way to simulate the production services in the target VM is by running the same software on the
target VM as in the production VMs. This task (installing the software) is done once while preparing
the target VM, which is performed in the SLA enforcement phase. It is not tedious to do it in practice.
As long as there are no changes or updates on software in production VMs, the target VM should be
usable. In some cases, one target machine may not be enough to simulate the behavior of production
services. For example if different operating systems are running in the production environment, it may
not be possible to simulate both at the same time using one machine. Multiple target VMs could be
used in case a single VM is unable to exhibit all the required behaviors.

Attack campaigns are performed using the setup and algorithm described in the next section. Let’s
recall that the attack is injected from an attacker machine to a target VM. While performing the attack
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campaign all the communications between the attack injector and target VM are recorded. i.e. all the
requests (both attack and legitimate) are recorded. This is necessary to compute performance metrics in
the next step. In addition, when the attack campaign is finished an output is generated from the NIDS.
Section 5.5 presents how to compute the required metrics using this information.

5.4.3 Attack Injection Algorithm

In this section we present the attack injection algorithm used to perform attack campaigns. Algorithm 1
shows the pseudo code of the main function for the attack injecting process. The function takes a set of
legitimate requests, a set of attacks, a target base rate and an integer value variable ("np") representing
the number of processes in a group. The value of "np" should be selected considering available resources
for the attack campaign. A lager value of "np" helps to run the verification in a short time but it also
increases the overhead on the network. We present the effect of different values of "np" in Section 5.7.2.

Both attacks and legitimate requests are given with the number of packets that they generate, i.e
when a legitimate or attack request is sent the algorithm knows how many packets are sent by that
request. This is required, because the unit of analysis for the NIDS used in our experiment is the packet.
See Section 5.4.1 for more detail about the unit of analysis.

The algorithm runs two sets of processes, each containing "np" number of processes (np ≥ 1). In the
main function "np" number of processes are started (lines 2-4 and lines 5-7) and tasks are assigned to
each process. For the first group of processes (lines 2-4) they are assigned the task of sending legitimate
requests and the second group (lines 5-7) are assigned the task of injecting attacks. The main function
waits until the attack injecting processes finish their task.

Algorithm 1: Main function for attack injection
Input: attacks and legitimate requests with number of packets, base rate (B), request sending

interval (r), number of processes (np), pool size for legitimate requests (LPS) and pool
size for attacks (APS)

Result: send both legitimate requests and attacks with an average attack packet rate of B
1 Function main (attacks, legitimate, B)

/* ‘np’, number of processes that are in one group and running in parallel.
Start ‘np’ processes to send legitimate requests */

2 for p← 0 to np do
3 start a process with (task=Algorithm 2, input=(legitimate requests, target IP, LPS, r));
4 end

/* start ‘np’ processes to send attack requests */
5 for p← 0 to np do
6 start a process with (task=Algorithm 3, input=(attack requests, target IP, B, APS,

rounds, r));
7 end
8 wait for all child processes running attacks to exit ;
9 exit ;

Algorithm 2 shows the pseudo code for legitimate request execution. Legitimate requests are sent
following a uniform distribution. A process is selected from a pool of processes and a randomly selected
legitimate request is sent. Then the next request is sent after the specified waiting time. The requests
are running asynchronously, hence the second process doesn’t necessarily wait for the previous process
to finish. The actual waiting time is related with the number of processes in the pool and maximum
time required for a request. If the pool size is not selected carefully, there is a chance to have a scarce
of processes in the pool which results from requests taking a longer time than the waiting time. In our
experiment since the requests take less than one second, we used a waiting time between (0,1] second.

Each process in the group of legitimate requests follows Algorithm 2. Each process has a pool of
processes to execute tasks asynchronously. The pool size is related to the maximum time required to
send a request and interval at which requests are sent. There should not be scarce of process in the pool
when it is the time to send a request. The algorithm first initializes processes in the pool (line 2) and
schedules the next request by setting a timer to raise an alert after some time "t" (line 8-9). Then the
algorithm selects randomly one legitimate request, it executes the request using one process from the
pool and it logs data about the request (line 10-12). Finally, the algorithm sets a listener to capture the
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scheduled alert and wait for the alert to execute the next round (line 3-5). The main process waits and
executes sendLegitimate() whenever an alert is raised. It terminates when the parent process exits.

Algorithm 2: Legitimate request sending algorithm
Input: legitimate requests, target IP, pool size for legitimate requests (LPS), r
Result: send requests

1 initialize a pool containing LPS number of processes;
/* to be executed when a signal is received */

2 set signal handler with function sendLegitimate ;
3 sendLegitimate (legitimate requests, target IP);
4 while True do

/* this process wakes up when the signal is fired */
5 sleep()
6 end
7 Function sendLegitimate (legitimate requests, target IP)

/* Schedule the next request */
8 next = (select random number between (1, r))/ r;
9 set a timer to raise a signal after next seconds;

/* Send request of this round */
10 select randomly one request from legitimate requests;
11 execute the request asynchronously with one process from the pool;
12 log data (request sent and time);

The second group of processes is used to send attack requests. Algorithm 3 shows the pseudo code for
sending attack requests. It takes the base rate, pool size and counter variable as an input. The counter
variable is to control the number of rounds for attack injection. The value of this counter variable needs
to be set taking available resources into account. For higher value better results are obtained, i.e an
increased number of rounds gives more statistically sound results.

After initializing the process pool and counter variable (line 1- 2), the algorithm computes the average
number of packet ratio between legitimate and attack packets (line 3). Attacks and legitimate requests
are given with their corresponding number of packets and these values are used to compute the “packet
ratio” between legitimate and attack requests. To get the packet ratio in an attack campaign, we first
compute the average number of packets for both attacks and legitimate requests and then compute the
ratio between the two average values, i.e

packet ratio =
average number of legitimate packets

average number of attack packets
(5.1)

where average number of legitimate packets and average number of attack packets are computed based
on the prior information about the legitimate requests and attacks used in the experiment. For example,
let us assume we have three legitimate requests (LR1, LR2, and LR3 ) and three attacks (A1, A2, and
A3 ) to be used in our experiment. With a few experiments we can know the average number of packets
sent by each of the legitimate requests and attacks. Let (lr1, lr2 and lr3 ) and (a1, a2 and a3 ) represent
the average number of packets sent by each of the legitimate requests and attacks respectively. The
average number of legitimate packets and average number of attack packets are computed respectively as
lr1+lr2+lr3

3 and a1+a2+a3
3 .

Before executing an attack for the current round,the algorithm schedule the next round by setting an
“alert” to be raised after time “t” (line 15 - 17). The time “t” is related to the base rate and the packet
ratio computed previously. A random waiting time is selected as described in the previous algorithm.
For the attack injection algorithm the goal is to respect a given base rate (B) value. For simplicity let
us assume the packet ratio is 1, i.e the average number of legitimate and attack packets are the same.
In that case, the random value is normalized by the base rate value. Assuming a packet ratio different
from 1, the normalizing factor becomes base rate times packet ratio (line 16).

After setting an “alert” to be raised after time ”t”, the algorithm executes an attack for this round,
logs data about the injected attack and increments the counter (line 18 - 21). Each process keeps its
own counter variable. These procedures are repeated until the required amount of rounds are reached.
If the number of attacks reached the expected rounds, the algorithm closes the pool not to instantiate
any new job and waits for other attack processes to finish. Finally, the attack sending process exits and
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returns to the parent process. The main process forces the other group of processes (legitimate injecting
processes) to be halted and finish the campaign.

Algorithm 3: Attack injection algorithm
Input: attack requests, target IP, Set base rate (B), pool size for attacks (APS), rounds, r
Result: send attack requests

1 initialize a pool containing APS number of processes;
2 count ← counter for the number of rounds;
/* Compute the average number of packet ratio between legitimate and attack

campaign */
3 packet_ratio ← average number of legitimate packets / average number of attack packets ;
4 set signal handler with function sendAttack ;
5 sendAttack(attack requests, target IP);
6 while True do

/* this process wakes up when the signal is fired */
7 sleep();
8 end
9 Function sendAttack (attack requests, target IP)

10 continue = True;
11 if count > rounds then
12 continue = False ;
13 else
14 rn = (select random number between (1, r))/ r ;
15 next = rn/(B ∗ packet_ratio);
16 set a timer to raise a signal after next seconds;
17 select randomly one request from attacks;
18 execute the attack asynchronously with one process from the pool;
19 log data (request sent and time);
20 count = count+ 1;
21 if count > rounds then
22 continue = False ;

/* tell the pool not to accept any new job and wait other processes to
finish */

23 close the pool;
24 end
25 if not continue then
26 exit();
27 end

5.5 KPI Computation
The goal of KPI computation process is to compute the CID metrics using NIDS outputs and injected
traffics. To calculate CID we need (TP, FP, TN, FN) and base rate values. Hence, first we need to count
the detected and missed attacks (i.e TP and FN) by comparing the inputs and the outputs from the NIDS.
At this stage, we have a predefined set of attacks and legitimate requests with their corresponding number
of packets sent, target base rate used in the attack campaign, dumped packets from the communications
between the Attack Injector and the Target VM and events list from the NIDS output.

Using the available information we can compute any metrics which is based on (TP, FP, TN, FN)
and base rate. In our case we use this information to compute the NIDS performance in terms of the CID
metrics. The comparison between inputs to the attack injection algorithm and the output of NIDS helps
to see whether the NIDS detected attacks sent from the Attack Injector and to differentiate between true
and false positives. Figure 5.2 shows the architecture of the Metrics Evaluator.

To see whether the configured NIDS detected an injected attack, we need to compare packets from
the attack campaign with the output of the NIDS. We have to match packets associated to alerts in the
output of the NIDS with packets from the communications between the Attack Injector and Target VM.
The output of an NIDS is a set of events which are triggered when packets match at least one rule in the
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Figure 5.2: Architecture for metrics evaluation

NIDS rule set or when monitored traffic exhibit abnormal behavior in the case of anomaly-based NIDSs.
An event includes an event ID, source and destination IPs and ports, a time stamp, a set of packets
which triggered the event and (if applicable) the rule which generated the event. If an injected attack
packet matches with packets from the NIDS output event list it indicates correct detection of an attack
(TP). On the other hand if the legitimate input matches with packets from the NIDS output event list
it indicates false positives (FP).

Figure 5.2 shows the communication between the Attack Injector (machine with a red background)
and Target VM (machine with a green background) including mirrored traffic to an NIDS. The commu-
nication between the Attack Injector and Target VM is recorded in a location close to NIDS. Being as
close as possible to the NIDS helps to have the same set of packets that are processed by the NIDS and
see the same level of packet fragmentation. The Metric Evaluator takes the recorded packets and the
output of the NIDS as an input.

The computation starts by reconstructing sessions from the dumped set of packets. Since the recorded
events are bunches of packets it is required to organize them in order to identify which packet belongs
to which request. Then sessions are categorized into legitimate and attack sessions. This categorization
is based on the knowledge about the injected packets. From the event list (i.e output of NIDS) packets
are extracted and used in the mapping stage. Packets from the events are mapped to the constructed
sessions to get the values of TP and FP . If a packet matches a legitimate session then it indicates the
NIDS wrongly classified a legitimate request as an attack, which is FP . On the other hand, if a packet
matches an attack session then it indicates the NIDS detected an injected attack, i.e TP . This mapping
shows specifically which type of attack or legitimate request triggered the events, hence we can count
the values of FP and TP .

Since we have the knowledge of the total number of attacks and legitimate requests that are injected
we can compute the remaining basic metrics, TN and FN . Note that the verification method does not
depend on the NIDS software used. Our method can be adapted to different types of NIDS by adapting
the parser of the NIDS output.

We now detail each metrics computation step.

• Dumping Packets: The NIDS is connected to a location where it is able to see every packet passing
through the monitored environment. We use that link to record the communication between the
Attack Injector and Target VM. Dumping from such a link allows seeing all packets entering in the
NIDS. As we are in the production environment the link may contain packets from the production
traffic. For our use case, we want to reconstruct sessions only between the Attack Injector and the
Target VM, we use filters to separate those packets.

• Session Reconstruction: The output from the previous step is a list of packets. In order to differ-
entiate between legitimate and attack packets from this list we re-assemble the packets in network
sessions, which are easier to match with the traffic that is injected.

• Session Categorization: Once the packets are assembled into sessions, using our prior knowledge
about the injected traffic, we can categorize them into their respective types, i.e either legitimate or
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attack. To this end, since we know the requests prior to injection, we use some of their characteristic
attributes like port numbers used, packet payload and number of packets per session.

• Packet Mapping This is the last step before doing the actual metrics computation. Packets from
the NIDS output are mapped to the sessions from the previous step. If a packet matches with an
attack session it indicates that the IDS detected that attack. On the other hand if it maps to a
legitimate session, the NIDS issued a false positive. From this we can calculate the different metrics
described in Section 2.4.4 including the CID.

The required metrics can be computed following this procedure. The Metric Evaluator can be located
anywhere inside or outside the cloud hence, can be used by either tenants or providers. However,
cooperation is still required at this stage, the NIDS is controlled by the provider. The output of the
NIDS should be provided by the provider to tenants. Section 5.7.3 discusses more about cooperation
between the provider and tenants.

In the next section we present tools and technologies used to implement the attack injection campaign
and Metrics Evaluator.

5.6 Implementation
In this section we present tools that are used to implement what is described in the previous sections. A
prototype of the attack injection algorithm is implemented in Python, using the “multiprocess” module to
implement functionalities related to parallel processing, like parallel execution and pool of processes. We
used signals and signal handlers from “signal ” module to raise scheduled alerts. In the attack injection
algorithms (Algorithm 2 and 3) after calculating the waiting time “t”, a signal is scheduled to be fired
after “t” amount of time and a pre-configured handler starts the next task when receiving the signal. For
the attack campaign we used the attack and legitimate requests listed in Table 5.1. The services used in
our setup are the same as the ones listed in the previous chapter Section 4.3.2, Table 4.1.

Both legitimate and attack requests are implemented using Python. But some attack requests are
dependent on other tools. For example the DDOS attack script uses Torshammer [211], the port scanning
one uses Nmap [159] and SQL injection uses Metasploit [145] in the back. All are wrapped using Python
for consistent automation.

The Metric Evaluator is implemented using different tools. Dumping packets was performed using
tcpdump [209] on the machine where the NIDS is running. We used tcpdump’s filtering features to dump
only the communications between the Attack Injector and the Target VM.

We used tcpflow [87] to perform session reconstruction. It reconstructs the data stream and stores each
session in a separate file. Tcpflow understands sequence numbers and correctly reconstructs regardless
of retransmissions or out-of-order delivery. However, tcpflow does not handle neither IP fragments nor
protocols other than TCP. Both tcpdump and tcpflow are selected for ease of use, similar functionalities
can be achieved using other tools. Section 5.7.3 describes the drawbacks of these softwares and presents
alternative tools.

Snort [13] is used as NIDS in our implementation. The NIDS can be configured to give output
in different formats but the binary event list (unified2 format) is the most efficient way for the NIDS
to generate the outputs. For example Snort [13] can be used with different output modules. In our
implementation Snort is configured to give output in the Unified2 format. To extract packets and related
information the binary file needs to be parsed. For this purpose we used a tool called u2spewfoo [1] which
can dump the contents of Unified2 log files to stdout.

Categorization of sessions and mapping of packets to sessions is performed using tools that we devel-
oped. In addition, a tool to compute CID value was developed in Java.

In the next section we present an evaluation of the proposed SLO verification method. We show
experimental results with correctness, usefulness and security analysis.

5.7 Evaluation
In this section we present the experimental evaluation and analysis of correctness, usefulness and security
for the proposed verification method. In the experiment we aim to measure the effect of verification on a
production network infrastructure and to study trade-offs between verification time and resource usage.
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To do the evaluation we configured a cloud environment with different services and an NIDS to
monitor specific vulnerabilities. We injected real attacks to measure the performance of the configured
NIDS using the method presented in previous sections.

First we present the setup used to run experiments. Then we present observed results from the
experiment. Finally, we discuss the correctness, usefulness and security analysis.

5.7.1 Experimental Setup

We set up an infrastructure as shown in Figure 5.1 on the Grid’5000 [22] testbed. Each physical machine
(node thereafter) featured two Intel Xeon X5570 processors (6M Cache, 2.93 GHz, 4 cores) with 24GB
memory. We used OpenStack [163], a mainstream IaaS cloud management system, with one controller
and one compute node. Open vSwitch [165] is used as a virtual switch in our cloud setup. The NIDS is
hosted on a third node and is connected to the virtual switches mirroring ports through generic routing
encapsulation (GRE) tunnels. The Attack Injector is hosted on a fourth node outside the cloud network.

Three production VMs ran respectively a web server, a database server and a content management
server, as shown in the previous Chapter, Section 4.3.2, Table 4.1. We added a Target VM that exhibits
the behavior of production VMs by running all three services. All VMs ran Ubuntu server 14.04 with
the OpenStack m1.medium flavor (2 VCPUs, 4GB memory and 40GB disk).

For this evaluation we used the example SLA presented in the previous Chapter, Section 4.4.3. To
this end we collected the vulnerable applications and collected and/or developed the attacks (listed in
Table 5.1) to exploit vulnerabilities listed in the example SLA. As mentioned in Section 5.4.2 attacks
are injected in parallel with legitimate requests. To this end, we collected a set of legitimate requests:
loading a web page, login into Mysql, uploading a file and login into a WordPress account.

Finally, we used the Snort [13] mainstream open source network IDS. We collected or wrote Snort
rules for the attacks listed in Table 5.1.

5.7.2 Performance Impact

Since our SLA verification method runs in the production network infrastructure but does not involve
production VMs, the most expected performance impact is network overhead. There is no CPU or
memory overhead related to the production environment because the attack campaign phase only uses
the production network infrastructure.The metric computation process can be performed outside of the
cloud.

The network overhead is measured as the difference in response time of a given request to a production
VM with and without SLA verification running in parallel. First a request is sent and the response time
is measured. Then the verification process starts and the same request is sent while the verification is
ongoing. The difference in response time with and without the verification process running shows the
overhead in the network as a result of SLA verification.

Figure 5.3 shows a time line on how the experiment is performed with response time in y-axis. To
measure the network overhead, the experiment started by simulating production traffic at time t0. The
SLA verification started later at time t1 and finished at time t2. The production traffic then continued
until time t3 (t0 < t1 < t2 < t3). This way we can compare the response time in different phases.
From t0 to t1 the network contains only production traffic. From t1 to t2 the network contains both
production and verification traffic. Finally, from t2 to t3 it goes back to the first state (i.e only production
traffic). The difference in response time between "at verification" and "before verification" phases show
the network overhead introduced by the verification process. This experiment was performed using base
rate values B = 10−2 and B = 10−3.

Table 5.1 shows the average number of attacks and legitimate requests injected over ten rounds
using base rate value B = 10−2. As described in Section 5.4 there are multiple processes in each
group (legitimate sending group and attack injecting group). For this experiment both attack and
legitimate request injectors used three processes each to send interlaced verification traffic. Moreover,
each process has a pool with two and three processes for attack and legitimate requests respectively.
Each attack injection process continues until 20 injection rounds, i.e a total of 60 attacks are injected in
our experiment. As presented in Section 5.4.3, we used a waiting time between (0,1] second.

The box plot in Figure 5.4 shows the mean response time for each type of legitimate request in the
three time intervals: “Before” verification, “At verification”, and “After” verification. The plot shows that
the overhead is very small relative to the time needed for a request. We observe a maximum overhead of
6.9% (0.000165 second) in the case of “SQL Login” requests and a minimum of 2.2% (0.001755 second)
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Figure 5.3: Verification time line

in the case of “WordPress Login” requests. The third box (after verification) plot for “WordPress Login”
requests shows an increase in response time even after the verification (observed also in Figure 5.3, the
red plot after time "t2"). This behavior is observed even without the verification process. Overall in this
experiment, the most observable impact of verification seems to be an increased dispersion of response
times.

Another important factor while performing verification is the base rate. It determines the time
required for verification. The experiment to produce the graph shown in Figure 5.4 took 41.6 minutes
using a base rate B = 10−2. We also did an experiment with B = 10−3, which showed the same
overhead but took a much longer time (around 4 hours). This duration is expected because as the base
rate decreases, the rate of attack injection declines and it requires a longer time to get enough attack
samples to compute accurate statistics.

Decreasing the verification time is possible by increasing both the attack and legitimate traffic injec-
tion rate but the overhead on the production environment increases. Figure 5.5 shows the time needed in
further experiments to perform verification using different traffic injection rates. The injection rate can
be altered by increasing (decreasing) the number of parallel processes. We performed three experiments
using respectively 3, 12 and 30 processes for both attack and legitimate traffic. It took 41.6, 12.5 and
2.45 minutes respectively, while the overhead increased for each case respectively. In other terms there
is a trade-off between the time required to perform the verification and the overhead on the production
environment.

5.7.3 Correctness, Usefulness and Security Analysis

In this section, we first show the correctness of our verification process, then its usefulness from tenants
and providers perspective and finally we present a detailed security analysis.

#S = average number of injected flows (attacks or legitimate requests).
#P = average number of packets per flow.
Attacks #S #P Legitimate request #S #P
Denial of Service (DoS) 12 1916 View Blog 2482 6
Port scan 12 1012 WP login 2498 12
Brute force access 12 2000 Mysql login 2479 6
XSS 13 6 Upload file 2501 3111
SQL injection 12 25

Table 5.1: Traffic injected using B = 10−2 and parallelism degree of 3.



5.7. EVALUATION 89

00.000

00.010

00.020

00.030

00.040

00.050

00.060

00.070

00.080

00.090

SQL Login Blog Upload File WP Login

R
e
sp

o
n
se

 T
im

e
 (

se
c)

Before             = from t0 until t1
At verification = from t1 until t2
After               = from t2 until t3

Bef
or

e

At v
er

ifi
ca

tio
n

Afte
r

Bef
or

e
At v

er
ifi

ca
tio

n

Afte
r

Bef
or

e
At v

er
ifi

ca
tio

n

Afte
r

Bef
or

e

At verification
After

Figure 5.4: Impact of verification on the mean response time for the four types of legitimate requests

Correctness Analysis

We present the correctness analysis in two parts, first the correctness of our attack injection algorithm
in reaching the expected base rate and second the overall correctness of the verification process by
comparing the expected CID values with the results obtained from experiments.

Figure 5.6 shows the base rate value throughout the attack campaign. The given target base rate
is B = 10−2. Initially, at the start of attack injection the base rate is high, i.e the ratio of attack to
legitimate packet is high. This is intuitive as there are not enough legitimate packets in the network
at that time. The algorithm quickly adjusts the ratio of attack packets in the network to the expected
base rate value (the base rate reaches the target in the boundary of ±10−3). We get the most accurate
approximation when running longer experiments which gives enough points for the statistics, as described
in Section 5.4.3

To show the correctness of our verification process, we first manually compute the expected CID
value using knowledge from the NIDS configuration, then we run the verification mechanism and check
if the result matches the expected value. In the experiment Snort is configured with around 274 rules to
detect the attacks listed in Table 5.1. The table also lists the actual number of attacks and legitimate
requests injected in our experiment using base rate B = 10−2.

We expect Snort to give alerts for almost all true attacks and very few (close to zero) false positives.
This is a result from carefully crafted rules in the experiment setup, which simulates a real production
environment. It should be noted that, in a real production environment, achieving such a low false
positive rate is difficult. In our experiment we observed an average packet drop rate from Snort of 2.95%
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over ten rounds. Consequently, we expect false negatives (FNR ≈ 0.03) as some attack packets are likely
not processed by Snort. As a result the expected CID value should be around 0.95.

Using the data in Table 5.1, the output of Snort and the packets recorded from the attack campaign,
we computed the CID value as shown in Figure 5.2. As expected the metrics evaluator output values of
TPR = 1.0 and FPR = 0, i.e. all processed attacks are detected and no false alarm is generated. We
have FNR = 0.07 and CID = 0.90. In our experimentation environment the verification process thus
shows a very small and acceptable difference from the expected FNR value.

Usefulness Analysis

Having a transparent SLA verification mechanism, as described in this chapter, is useful for both service
providers and tenants. Tenants should trust more services they consume as such SLAs guarantee com-
pensation in case of SLO violation. For providers, in addition to increasing their clients trust, providing
a guaranteed security monitoring service should give economic advantage either directly by providing a
paid service model or indirectly by attracting new customers, who were previously not confident enough
with the security of clouds.

Specifically, the verification process presented in this chapter allows both parties to perform verifica-
tion with minimum overhead. Depending on available resources the time to do such a verification can
be minimized. The proposed method requires configuring a target VM only once and preparing requests
to be used for verification in cooperation with the service provider.

Security Analysis

In this section we provide an analysis of the proposed method from a security perspective. We discuss the
innocuousness of the method for both tenants and providers, the factors that could affect the outcome
of the process and the types of attacks that can be used for the proposed method.

Innocuousness In our verification mechanism the Target VM is the only added component intervening
in the production environment. The other components (Attack Injector and Metrics Evaluator) could
be located outside the production infrastructure. The Target VM is carefully prepared to simulate the
behavior of production VMs and is targeted by attacks which are detected by the network IDS, i.e.
attacks like cross-VM side-channel [226] (attacks that could affect other VMs in the same host) and
undetectable IDS evasions [181] should not be injected in this method.

Attack packets injected into the production network are no real threats because the virtual switch is
configured to forward all incoming packets from the Attack Injector to the Target VM. This guarantees
that attack packets injected to the network do not reach production VMs. To configure the switch tenants
must cooperate with service providers since, tenants should have no direct control on a switch shared
between virtual networks from different tenants. This cooperation should be incited by the economic
advantage brought by providing guaranteed security monitoring.
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As a requirement for security monitoring SLA terms, tenants are required to provide lists of services
to be monitored. This disclosure of services should not be a security concern for two reasons. First as we
assume the provider is trustworthy, confidentiality of tenants should be respected. Second our method-
ology does not require knowledge about the actual data processed by the services, we are interested in
the network behavior of tenants environment.

Robustness Packets from the Attack Injector are filtered and dumped, from the same virtual switch
mirroring port the NIDS is attached to, for later analysis. In a network where there is very high traffic
tcpdump may not perform as expected. Packet drops in this phase may affect subsequent steps. In
particular if tcpdump is writing to disk the speed and disk space should be taken into account. Writing
to a disk may decrease the speed and lead to packet loss. Other tools like Moloch [152] could be used to
overcome such problems.

We used tcpflow to reconstruct sessions from the output of tcpdump. But tcpflow does not understand
IP fragments, that is flows containing IP fragments will not be recorded properly. In cases where the
NIDS and tcpflow use different IP fragments handling strategy, the reconstruction phase would also be
altered. Thus attacks exploiting IP fragmentation could lead to errors in the packet mapping phase.
Other tools like Wireshark [223] could be used to overcome this issue.

If there is any external TCP session (communication which is not between the Attack Injector and
the Target VM) in the tcpdump output, it will be reported in the categorization phase. This could
happen as a result of erroneous filtering. Getting a higher percentage of uncategorized sessions would
imply poor filtering and/or reconstruction and it could lead to a false result. In such cases the verifier
should observe and decide whether to continue or redo the previous steps.

Attack Coverage Finally, if an attacker performs IP spoofing types of attacks [43] to send attack
packets impersonating verification traffic, this could be dumped as a communication between the Attack
Injector and Target VM. This would disrupt session reconstruction and metrics evaluation afterwards.
In addition, occurrences of attacks targeting the NIDS [181] during the verification phase could prevent
the NIDS from performing as expected and would falsify the final result. To prevent such uncontrollable
errors choosing appropriate times for verification could help, for instance during the most idle times of
the production environment.

It should be noted that our solution is not “bullet proof”, hence before summarizing the chapter we
present shortcomings of the proposed method.

5.8 Shortcomings of the Proposed SLO Verification Method

We have explained that taking dynamicity into account is one of the design goals. The verification
process presented in this chapter only takes partial dynamicity into account. The dynamic events in
the cloud that may affect our verification method include VM creation, migration, and deletion. The
verification process will not be affected by VM deletion. However, VM migration and VM creation affect
the verification process, and protecting from the effects such events require automatic reconfiguration
tasks. For example, creating a new VM (e.g. for load balancing) requires one additional step, to add
IP addresses of the new VM to the monitoring list. Similarly, VM migration requires additional tasks
to satisfy the required configuration as presented in Section 5.4. If automated self-adaptable method
(e.g. as presented in [93]) is configured, events like addition and migration of VMs will not affect our
verification process.

To perform experiments we used real attacks. But the attack set contains mostly application level
attacks, network level DOS and port scanning. Even if these are the most common types of attacks, we
did not use more sophisticated attacks, as explained in Section 5.7.3. The mechanism works on types
of attacks that can be detected using NIDS, specifically signature-based NIDS. But not all attacks are
detectable using this monitoring device (e.g. zero day vulnerabilities). Adapting the presented security
monitoring SLA for other types of monitoring devices (e.g anomaly-based NIDS) is one of the future
works described in Chapter 7.

The next section finalizes the chapter by providing a summary.
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5.9 Summary
In this section we provide a summary for the SLA monitoring method proposed in this chapter. We
started by describing what does SLA monitoring means and the need to have SLA verification mecha-
nisms. By definition SLA should be verifiable and verification helps to detect violation of SLO by any
party. It should be noted that violation can occur either deliberately or accidentally as a result of other
actions. We stated the design goals needed to achieve a transparent SLA verification process: Having a
mechanism which is transparent, which can be used by both parties and with minimum overhead on the
production environment. In addition, the same mechanism can be used by service providers to prepare
SLA templates.

We have described challenges that need to be addressed in order to reach the desired goal. Nature of
the cloud including having different owners in different tiers and the dynamic nature of the infrastructure
with lack of method to evaluate security monitoring setup are described as main challenges.

We proposed an in situ SLO verification method to measure the performance of an NIDS (expressed
in terms of CID) dynamically using traffic injection. The injection process uses real attacks without
damaging the production VMs. The novelty of our verification method is to improve the relevance of the
obtained measures by two means: for the sake of trust we do not clone the production NIDS, and the
base rate of the injected traffic is dynamically controlled. The experimental evaluation shows that during
verification phases of 40 minutes a reasonable overhead (less than 10%) can be observed on production
VMs response times. This overhead could be decreased at the price of longer verification phases.

In addition to experimental evaluations, we performed analytical evaluation of the verification method
to show its feasibility in an IaaS production environment from the viewpoint of correctness, usefulness,
and security. We showed the correctness of our algorithm in respecting the target base rate and cor-
rectnesses of the overall verification process by comparing manually computed, expected, value with
experimental result. We showed the innocuousness of the proposed method and its usefulness for both
tenants and providers.



Chapter 6

Monitoring an SLA on Data Integrity

6.1 Introduction

The work presented in this chapter was done during a six-month internship at Laurence Berkeley National
Laboratory (LBNL). The internship focused on enhancing data integrity checking methods in a scientific
environment. Specifically, we studied the advantages of using logical or physical secure components in
the process of integrity checking for scientific data. In this chapter, we propose to adapt and use the
internship work for the case of user-centric security monitoring SLAs in clouds.

In the previous chapters, we have seen one way of implementing user-centric security monitoring
in the cloud. We used SLAs to include tenants in the processes of security monitoring. Specifically,
allowing users to define which vulnerabilities to be monitored and check the validity of an SLO at any
time (or according to a schedule defined in the agreement). In the process, we mentioned the need
for cooperation between providers and tenants. In this section, we first recall the dependency between
tenants and providers then we describe a proposed mechanism to reduce such dependency and finally we
present the SLA that we consider in this chapter.

6.1.1 Dependency Between Tenants and Providers

Going back to the initial problem, the need to have security monitoring SLAs for clouds is because of
the nature of its operation. In the cloud business model tenants outsource their information system and
providers are in charge of monitoring the physical infrastructure including its security monitoring aspect.
This scenario creates a trust issue between tenants and the provider, thus the need for an agreement.

As described in Chapters 3 and 5, SLOs must be verified for their fulfillment and any violation
results in a penalty for the violating party. In the best case scenario, once an agreement is signed any
participant should have the option to perform a test on the satisfaction of an objective independently
of the other party(ies). Moreover, in case of violation, one party should be able to prove the violation
for the others. As described in Chapter 2 currently detecting SLO violation is left as a responsibility
for tenants. Even when tenants discover any violation, penalties do not apply automatically. Service
providers perform checks on their side and the penalty is applied only if the provider discovers the
violation. For example, Amazon SLA [5] describes the procedure to report a violation and states "if the
Monthly Uptime Percentage of such request is confirmed by us and is less than the Service Commitment,
then we will issue the Service Credit to you ...".

Section 3.2.1 describes the need for cooperation between tenants and providers in order to perform
end-to-end security monitoring. Chapter 5 also indicates without cooperation doing verification is difficult
if not impossible. Tenants need to disclose the service(s) they are running and providers need to give an
untampered output of security monitoring devices. In the context of SLAs, such dependency creates a
conflict of interest and it requires trust from the other party, which goes back to the initial trust issue.
Thus, we need a mechanism to reduce (remove if possible) such dependency in SLA verification.

6.1.2 Trusted Component in the SLA Verification Process

To remove such dependency on one party we need either a trusted third party or a trusted system
where participants in the agreement get information and make decisions accordingly. Recently we have
witnessed an increase in applications of distributed systems technology to make a secure system state
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change between untrusted parties without using any third party. These technologies, referred to as
blockchains, are widely adopted for their property of tamper-proof evidence. Blockchains are used as the
core technology in digital currency (cryptocurrency) applications and a very wide range of applications
ranging from the Internet of Things (IoT) to health, identity and security are being developed.

In this chapter, we provide a user-centric security monitoring SLA verification approach for clouds
which relies on the blockchain technology. Users participate in the SLA life-cycle process. Specifically,
they can perform verification at any given time. Besides, users directly participate in keeping and
maintaining attestation data secure, data which will be used for verification. Users participation is
possible as a result of a property of blockchains; by design, blockchains are distributed systems; i.e
multiple nodes, ideally geographically distributed, form a network to build the blockchain. Tenants can
be part of this network and participate in the SLA life-cycle process. In the method presented in this
chapter tenants participate in the network with the provider to keep verification data secure, this allows
trusting the system in general rather than a single entity. Depending on the algorithm used in the
blockchain operation process, few numbers of participants can be malicious and the system can still be
trusted.

6.1.3 Considered SLA

SLAs in this chapter are different from the ones defined in Chapters 3 to 5. Previously defined SLAs
were guaranteeing the performance of security monitoring devices, specifically NIDSs. In this chapter, we
define SLAs guaranteeing security properties of a given data stored in the cloud, specifically the integrity
property of the data. Our goal in this chapter is to show that having a trusted component in the SLA
life-cycle helps to facilitate and improve the trust level of different phases in the life-cycle of SLA. Even
if we are using data integrity to show the use of trusted components in the SLA life-cycle, the method
presented in this chapter can be adapted for other types of SLAs, including security monitoring SLAs
as presented in Chapters 3 to 5. Section 6.8.3 describes using secure hardware components for security
monitoring SLAs.

The problem discussed in Chapter 3 for IaaS clouds mostly applies to data in the cloud. There is
a lack of security SLA for data stored in a cloud. This lack of security support has been a significant
difficulty for the adoption of cloud services mainly for enterprises and cautious consumers. For example
in Dropbox [52], a file hosting service, user metadata is stored in the company’s data centers, while the
actual files reside on Amazon’s S3 storage service. Such a relationship between companies requires an
agreement which covers the security aspect of the data. The same way as in IaaS clouds, we can address
the security issues in outsourced data storage through SLAs.

Data integrity failure is a common issue in data storage systems [220, 75, 194]. There are different
solutions to protect data from corruption and to recover from corruption after its occurrence. Addition-
ally, in some fields of research and development, it is mandatory to keep data integrity and verify this
property for others. For example, almost all regulatory agencies controlling medical drugs and health
care products publish data integrity guidelines. Such government entities require implementing these
guidelines in testing, manufacturing, packaging, distribution, and monitoring of drugs to review the
quality, safety, and efficiency of the products.

There are different reports of data integrity failure in the real world IT production environments.
In 2009 Facebook temporarily lost more than 10% of photos in hard drive failures [75]. Amazon S3
suffered from a data corruption issue [194] caused by a load balancer which was corrupting single bytes
in the byte stream. As a result, uploaded objects processed through that malicious load balancer did
not match the MD5 hash values supplied by the user. In [220] the authors examined 138 data corruption
incidents reported in the bug repositories of four Hadoop projects. The study presented conclusions
on the causes and impacts of data corruption and listed limitations in detection and handling of data
corruption mechanisms. The effect of data corruption is not only limited to data integrity. It may lead
up to service unavailability. As presented in [57] corrupted iCloud data was a cause for iOS home screen
crash.

The seriousness of the issue reaffirms the need to have SLAs guaranteeing the security aspect for
data stored in the cloud. Such SLAs, in addition to other properties, would be meaningless without a
verification mechanism. For existing SLA metrics, monitoring is performed by tenants or third-party
companies, and service providers should confirm the violation. In order to minimize the trust issue
between service providers and tenants, we need an open (non-secretive) process to do verification and to
store and share the result without any bias. In this chapter, we show a monitoring mechanism that can
be used to check the correctness of data stored in the cloud without relying on the service provider.
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As we have seen before, monitoring is a continuous verification process, and we provide a verification
method for the integrity property of data hosted in a remote server without relying on the service
provider. As in any security solution for clouds, our goal is to perform the verification with a limited
performance impact, i.e., with minimum overhead in the production process. We start by describing the
SLA life-cycle process for data in clouds and its difference with SLAs described in previous chapters.

6.2 SLA Life-cycle for Monitoring Data Integrity

The general SLA life-cycle process described in Section 2.5.3 also applies for SLAs guaranteeing data in-
tegrity, i.e., SLA life-cycle for data integrity also has three phases namely SLA definition and negotiation,
enforcement, and verification.

The contents of each phase of the SLA life-cycle in this chapter is different from what was presented
in the previous chapter for security monitoring SLAs as the targeted properties are not the same. In this
chapter SLAs address security properties for data hosted in a cloud, specifically the integrity property.
Other properties like confidentiality can be included in such type of SLAs. Section 6.8.3 describes how to
incorporate the confidentiality property in the proposed method. In most existing cloud storage services
(e.g., Amazon S3 [8] and DriveHQ [70]) availability is addressed in their SLA. Other properties are not
addressed in SLAs. For example, Amazon S3 claims to have “extremely durable” storage with data stored
redundantly across multiple devices and checks for corruption while data is at rest and in the network.
However, Amazon does not guarantee these properties through an SLA.

The difficulties described in Chapter 3 related to quantitatively measuring security properties are
still valid for the case of data integrity and confidentiality. It is difficult to measure integrity and
confidentiality quantitatively. In our use case, tenants require checking the correctness of their data, i.e.
either their data is corrupted or not. Hence, we assume the definition of SLA with an objective to keep the
data uncorrupted as long as possible. Other properties like backup frequency and type of access control
policies can be included in the SLA definition. Additional security properties like write-serializability
(i.e. consistent among updates made by authorized users) and read freshness (read operation returns the
latest update at any point) can also be integrated into SLAs.

SLA enforcement for data integrity can be achieved using different mechanisms. That is different
techniques can be applied to keep the data uncorrupted, for example, replication and cryptographic
methods. Data corruption can occur due to software bugs, design flaws, human errors, hardware failures,
natural faults (bit flips), and malicious attacks. There exist different detection and correction mechanisms
for various types of corruption sources.

Monitoring is used to check the satisfaction of SLA terms and detect any violation. Monitoring SLAs
guaranteeing data integrity means verifying the correctness of data stored in the cloud. The verification
can be performed either by a provider or tenant. In this chapter, we want to show a mechanism to
perform verification without relying on the provider. We use a distributed system, blockchain, in which
as long as the majority of the participants are cooperating to keep the value, stored data can not be
changed.

Note that this chapter shows a verification process for data integrity, but the method could be
easily adapted for other properties. The goal is to show the advantage of trusted components in user-
centric security SLAs to reduce dependency on providers to verify SLOs. In Section 6.8.3 we discuss the
possibilities in the direction of using other trusted components, like a secure hardware component (see
Section 2.3.3) for SLAs presented in Chapters 3 to 5.

In this chapter, we first describe the problem that we address and give a background on the blockchain
and types of blockchain. Then we describe the threat model assumed for the verification process. We
describe the verification process and a prototype implementation. Finally, we present an experimental
evaluation and discussion on the proposed method.

6.3 Problem Description

This section presents the problems addressed in this chapter. SLAs in this chapter describe the integrity
property of data hosted in a cloud. We focus on the third phase of the SLA life-cycle: SLA monitoring.
Hence, most of the general problems from Chapter 5 (i.e. problems that are not specific to NIDSs) are
also challenges for data integrity SLA monitoring.
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Figure 6.1: Simplified block chain representation

One of the biggest challenges in doing verification is having different owners in different tiers or layers
of the cloud (as described in Section 2.1.3). Verification in such an environment means checking the
status of a service from a tier which does not belong to the verifier. An SLA guaranteeing data integrity
is not different, the provider infrastructure holds the data and a tenant wants to check the integrity of
that data.

The verification mechanism presented in the previous chapter requires cooperation. In this chapter,
we aim to reduce the need for cooperation between tenants and providers. The considered SLO is to keep
data uncorrupted as long as possible. Our problem is similar to a well-known problem called remote data
integrity checking, which enables a server to prove to an auditor the integrity of a stored file. However,
in our case the verification is in two ways, i.e. tenants need to check data integrity in the cloud and
providers need to check the correctness of SLO violation claim which can be submitted by tenants.

In summary, in this chapter, we address the problem of SLA verification for data integrity which
allows both the tenant and provider to perform checks without relying (or with a minimum dependency)
on the other party.

6.4 Background and Related Works
The verification mechanism proposed in this chapter is based on the blockchain technology. In this
section, we introduce blockchain, its various types, and features. This section also presents related works
on data integrity monitoring tools.

6.4.1 Blockchain
The blockchain is a distributed linked list data structure, list of connected blocks, where every block
contains a cryptographic hash of its predecessor block, hence forming a chain (see Figure 6.1) [154]. A
valid change of a block requires changing every block after that modified block until the end of a chain.
Additionally, the chain is stored in a distributed manner, i.e. there is no central location keeping all
the blocks. Every valid block in the list is available in every participant node. Adding a new block
(i.e. extending the list) requires an agreement between the participants. Participants use a consensus
algorithm to decide what to add next in the chain.

Blockchains are distributed, and they are relying on consensus algorithms both of which makes the
system trustworthy without trusting any specific participant. It is important to note that blockchains
are not ‘bulletproof’, as the technology is emerging and getting lots of attention, different studies are
being conducted to study its property from different aspects. In general blocks in a blockchain contain
at least two parts:

• Link to a previous block, the hash value of the previous block will be included in the current block,
and it serves as a link from the previous to the current block. If any byte is changed in the previous
block the link would be broken, i.e. the hash value will not match with a reference in the current
block hence, it requires updating all blocks after the modified block, which creates a new line of
the chain.

• Data stored in the current block is the information stored in the block. The data can be anything
depending on the application using the blockchain. Most well known digital currency implemen-
tations store information like timestamps, transactions, and values used in the consensus process.
Figure 6.1 shows a simplified snippet of Bitcoin [154], a well known digital currency blockchain.
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The data section stores transactions and for an efficiency reason, they are stored in a hash tree
(Merkle tree) data structure.

Following this, we describe types of blockchains, consensus algorithms used and existing implemen-
tations. Furthermore, we present in detail Hyperledger Fabric [18] which is the blockchain used in our
work.

Types of Blockchain

Based on write permissions (permission to add blocks) blockchains are categorized into three cate-
gories [161]:

• Public blockchain is a type of blockchain where anyone from anywhere can join the network and
participate in the consensus process to add blocks. Usually, participants have economic incentives
to cooperate and when anyone wants to add a block, there is a simple verification process performed
by other participants to check the correctness of the proposed block.

• Private blockchain is a type of blockchain where only one entity (e.g. the administrator) is allowed
to add blocks. Some applications like database management may use such kind of data structure.
Permission to read from the blockchain can be public, restricted or private as required.

• Consortium blockchain is a type of blockchain where only a pre-defined set of nodes are allowed to
add blocks in the chain. It can be seen as a private blockchain having more than one authorized
entity to add blocks. An example could be a group of financial institutions or a group of colleges
and universities forming a consortium. As in the case of private blockchains, ’read’ permissions
can be set as required.

These categories could also be generalized into two groups, permissioned and permissionless. Con-
sortium and Private blockchains are permissioned while Public blockchains are permissionless.

Consensus Algorithms

A blockchain is a distributed, peer-to-peer system and an agreement is needed to make any decision in
the system. Consensus algorithms [185] refer to this process and in computer science, it is a well-known
problem. A prominent class of such problem is the Byzantine Generals Problem [125]. It is a problem
to reach an agreement in the network in the presence of potentially malicious participants. Byzantine
Fault Tolerance (BFT) is the characteristic of an algorithm which defines a system that tolerates the
class of failures that belong to the Byzantine Generals’ Problem. Byzantine failures are considered the
most general and most challenging class of failures to deal with. There are other types of failure models
where non-malicious faults are tolerated, like crash fault tolerance.

A Byzantine failure implies no restrictions and makes no assumptions about the kind of behavior
a node can have. If an algorithm can handle such a failure, it is assumed as robust. The goal of
consensus algorithms in blockchains is to reach this level of fault tolerance. Moreover, in a blockchain,
what is needed is not a Byzantine fault-tolerant SQL database. Instead, it is a Byzantine fault-tolerant
distributed, append-only ledger, i.e. the duplicated data is not controlled by a single entity (multiple
participants) and the data stored in the system is immutable.

In practice, there are different implementations of consensus algorithms. In the field of blockchains,
we can generally classify these algorithms into two groups, namely Byzantine-based and Proof-based
consensus algorithms.

• Byzantine-based consensus: is the traditional way of reaching an agreement between nodes in a
network. The most well-known implementation in this category of algorithms is Practical Byzantine
Fault Tolerance (PBFT) [41] which was published in 1999. After PBFT, several BFT algorithms
were introduced to improve its robustness and performance. Few blockchain systems implement
byzantine-based consensus. Hyperledger Fabric [18] is an example where PBFT is implemented,
at least as a prototype, and used for consensus.

• Proof-based consensus: are generally called "proof of X" algorithms, where ‘X’ indicates evidence
for having some required property. The node who poses this proof can be a leader and can propose
a new block to be added. Then the block will be propagated and verified by other participants
before adding it to the block list. This kind of algorithms can be seen as a probabilistic approach
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for Byzantine-based consensus. Examples of proof-based consensus algorithms include Proof of
Work (PoW) [154], Proof of Stake (PoS) [34], Proof of Elapsed Time (PoET) [45].

PoW is the first implementation of this category of algorithms, and it is used in major digital
currency applications including Bitcoin [154] and Ethereum [33]. In the PoW consensus algorithm,
to be a leader and propose a block, one must solve a cryptographic problem. The first one who gets
the solution can propose a block, and other participants verify, add the block and start working on
the next block. The problem to be solved is difficult, computationally intensive, and the difficulty
level can be adjusted to control the rate of new block creation. Other "proof of X" algorithms also
follow a similar logic but rather than having the computationally intensive problem they propose
to use other parameters.

Blockchain Implementations

In early computer science studies the concept of state machine replication was used as a general method
for implementing a fault-tolerant service by replicating servers and coordinating client interactions with
replicas [198]. The Blockchain technology addresses similar problems and the first implementation,
Bitcoin [154], showed the potential of its usage. After that, different varieties of implementations have
been done. In general, there are three generations of blockchain implementations [18]:

• First generation: the early implementations of blockchains have few distinct properties. The
ledger (blockchain) is used specifically for one application, mainly digital currency with a particular
scripting language to perform operations. It uses a specific (fixed) consensus algorithm, operations
are related with the currency used in the chain, and it is permissionless; hence anyone can join the
network. An example of this first generation blockchain is Bitcoin [154].

• Second generation: this group of implementations improves upon the first generation. The second
generation blockchains separate the logic and storage parts into different sections. The logic part,
also known as a smart contract, is the only component allowed to do operations (read and write) in
the storage component. The storage part, as the name indicates, is responsible for storing the actual
data. This separation allowed using blockchains for applications other than digital currencies e.g.
for identity management or certificate authority. As a result of this separation, the logic component
can be programmed to perform deterministic operations. Domain-specific languages are used to
enforce the deterministic property in the scripting language. This generation implementations
uses a fixed consensus algorithm which forces taking the same threat model for all applications.
Ethereum is a prominent example of this generation.

• Third generation: this group of implementations follows a different kind of architecture to remove
the constraint of using deterministic languages to write smart contracts while sacrificing on being
permissionless. It allows writing smart contracts using general purpose languages and consensus
in the blockchain is modular, i.e. an application can plug and use any type of consensus algorithm
depending on its need. Being permissioned means that there is a requirement to get permission
from some entity which, some argue, makes a blockchain centralized.

It is important to note that this classification is not universally accepted; it is possible to find other
classifications, like [225].

Hyperledger Fabric (HLF)

Hyperledger Fabric or Fabric [18] for short, is an implementation of permissioned blockchains. It was
initially developed by IBM and it is now hosted by Linux Foundation project called Hyperledger, hence
the name Hyperledger Fabric (HLF). HLF is permissioned by design, and it is developed focusing on
business use cases where participants are expected to be known in the system. HLF introduces a different
architecture than the first and second generations of blockchain implementations.

The data stored in blocks are in the form of transactions, which are executed on the current state
of the system and create the next state. Before HLF, other implementations follow an order-execute
architecture, i.e the first transactions are ordered, and a consensus is reached on that order. Then every
participant node executes transactions in that order and updates the ledger accordingly. However, this
architecture has drawbacks including:
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• Transactions must be written in deterministic code: Since consensus is reached before execution, a
non-deterministic code may create different results on different nodes, hence breaking the consensus
and creating more than one state (fork) for the blockchain. In previous generations of smart
contracts, domain-specific languages (e.g. Solidity for Ethereum) are used to achieve a deterministic
behavior.

• Limited to sequential execution: Since a consensus is reached before executing the transactions, ev-
ery node executes transactions in a block sequentially. Sequential execution affects the throughput
in the system limiting any parallelization.

HLF introduces a new type of architecture called execute-order-validate. Fabric tries to overcome pre-
viously described and other drawbacks from prior permissionless blockchains (e.g. hardcoded consensus
and confidentiality) by introducing the highly modular execute-order-validate architecture.

In this model transactions are first executed (to be specific, transaction execution is simulated), all
nodes are not required to do this step, and this will not affect the state of the ledger because it is a
simulation on a local copy of the ledger. This feature gives the opportunity for confidentiality and parallel
execution. Then transactions are ordered using a consensus algorithm, and any algorithm can be used for
this process. This feature gives the opportunity for a modular blockchain design which can use different
consensus algorithms depending on the application threat model. Finally, a predefined policy is used to
validate transactions. Such a policy is defined per application level which allows having a flexible trust
model. Furthermore, since ordering is performed after execution, the executions are not expected to be
deterministic, the validation phase guarantees freshness i.e conflicting transactions will be dropped.

Fabric provides the confidentiality feature by dividing the network into different channels. An orga-
nization will get permission to perform some action (according to its role) only if it is a member of that
channel. This is an essential feature in Hyperledger Fabric, and it is useful in cases where participants
might be competitors or just when a subset of participants are not part of a project. The organization
deploying an application in a channel can decide who can participate in the process of that application.

As HLF is a permissioned blockchain, there is Membership Service Provider (MSP), which is re-
sponsible for maintaining thidentities of participants in the network. MSP is an abstraction where the
back-end could be different membership standards and architectures. The interaction between entities
in the network is cryptographically signed with identities provided by MSP.

As a design principle, HLF follows a highly modular design pattern. It provides different compo-
nents of the blockchain network as Linux containers (containerized) service. Each organization contains
different services including peers, orderer, MSP and so on.

In the next section, we present related works focusing on data integrity checking tools and practices.

6.4.2 Related Works

This section presents the related works in two parts, first related works on remote data integrity checking
and second, the usage of blockchains for data integrity.

Remote data integrity checking

The concept of remote data integrity checking has been around in relation to distributed systems [167].
While the adoption of cloud increases, remote integrity checking becomes more critical because more and
more sensitive data is being stored in the cloud. There have been different works on checking properties of
remotely stored data, including integrity. One way to check data integrity is by completely downloading
the data and compare it with the original version but this method contradicts the basic idea of the cloud,
and it is impractical. Usually, the size of data stored in the cloud is huge, and users may not keep a copy
of the entire data. As a result, almost all remote integrity checking works rely on cryptography methods
without the need to completely download the data.

Due to its necessity, remote data integrity checking has attracted extensive research interest [101, 102,
134, 228]. Generally, we can categorize these works into two main groups, integrity checking with and
without a third party auditor (TPA). TPA is an entity who has expertise and capabilities for performing
an integrity check and convincing both the client and the provider. It is considered to be a trusted party.
TPA performs the primary role of data integrity check; it performs activities like generating a hash value
for blocks received from the cloud server and compares signatures to verify whether the data stored in
the cloud has been tampered with or not.
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For example, TPA is used in [134]. The paper presents a remote data possession checking protocol
with the support of public verifiability (i.e. anyone can perform the verification). It defines four functions
namely KeyGen, SigGen, GenProof, VerifyProof : KeyGen run by users to generate a key, SigGen used
by users to generate verification metadata, GenProof run by service providers to generate a proof of
data storage correctness and VerifyProof used by TPA to verify the proof from service providers. The
protocol executes in two phases, namely the setup and audit phases. In the setup phase, users generate
a key using the KeyGen function and generate metadata for data files to be sent to the cloud. Then the
user sends the data to the cloud and publishes the metadata to TPA. After that, a user can delete the
local copies of the uploaded data.

The second phase is an audit phase. Upon request by a user, TPA starts the verification process.
TPA formulates and sends a challenge to the provider and waits for a response. The service provider
upon receiving the challenge, runs GenProof to generate a proof showing the data is correctly stored
and sends back the proof to TPA. The TPA runs VerifyProof using the returned value and checks the
result with the original metadata. This way TPA is used to check data integrity in the cloud.

Other works like [228, 101] follow a similar pattern, but they use different cryptographic methods
to achieve properties other than integrity, e.g data dynamics, privacy against verifiers, and proof on
multiple providers. The protocol presented in [228] supports data dynamics, and the work presented
in [101] supports privacy against third-party verifiers. In some works the TPA is optional and the user
can also be an auditor. However, in other works, the TPA is required and acts as a trusted third party
(TTP), It is used to resolve disputes between the provider and tenant.

There are also some works which do not use third parties in the process. The protocol presented
in [102] does not rely on a TPA. It follows a similar procedure as described above using six functions
to operate, except the cryptographic procedures are different. Such protocols cannot be used for SLA
verification because the process is only one way, i.e. only one party is performing the integrity check.
For our use case both parties need to perform the verification. CloudProof [177] presents a storage
system which provides proofs of a violation; hence neither providers nor tenants can bring a false claim
of violation. Our work can be used to extend such a system in order to exploit the distributed nature of
blockchains and become even more independent from other entities, like certificate authorities.

In our work, we want to reduce dependency between participants and possibly remove TTPs as
it requires as much trust as providers. We thus propose to rely on a secure and distributed ledger,
blockchain.

Blockchains on data integrity

About the usage of blockchains, there are different applications for data integrity services in various
scenarios including IoT, database systems, data provenance tools and so on. In addition, new distributed
storage systems based on blockchains (e.g Storj [66]), which include the data integrity feature by design
are being developed. In [131] the authors proposed a blockchain-based data integrity framework for IoT
data stored in the semi-trusted cloud. The framework incorporates data generators and data consumers
and enables consumers to perform integrity verification. The framework follows a typical blockchain
applications strategy, i.e it does not store all the data in the blockchain, it stores only the hash of the
data and the actual data is stored in a cloud storage service.

The authors in [85] presented a blockchain-based database with strong integrity guarantees. The
system uses two layers of blockchains, the first layer with a lightweight distributed consensus protocol
that assures low latency and high throughput. The second layer is designed with a strong consensus
to guarantee better integrity by using PoW-based algorithm. There are new upcoming companies (e.g
Chainpoint [14]) offering to anchor users data to existing blockchains, which helps to verify the integrity
and existence of data without relying on a trusted third party.

To use the presented studies in our work, as they are proposed they do not describe the ability
to verify integrity by other parties (other than the data owner). This feature is mainly a result of the
considered threat model. In other words, using these works for our use case would allow only one party to
perform the verification. Having a verification method that can be used by both parties is a requirement
for our verification process. In that sense, we are addressing a different kind of problem than most
blockchain-based applications.

In our work, we want to show the use of a trusted component, like blockchain, in the SLA verifica-
tion process in order to reduce the dependency between tenants and providers and enable independent
verification for both parties. In the next section we describe the assumed threat model.
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Figure 6.2: Consortium blockchain network formed by tenants and a provider

6.5 Threat Model
In this chapter, we assume that cloud service providers are semi-trusted. In a sense, a provider may
return wrong data or wrong result of computation for a request from a tenant because an attacker altered
the data or of some other error. However, providers are not actively trying to alter tenants’ data. In
addition, providers never lie when claiming that they have not accepted to store some data. They are
working towards maximizing profit and errors on the stored data are unintentional. Providers also have
economic incentive related to an SLA. Hence, they may lie in order not to violate an SLO. Tenants
store their data in the cloud and do not keep a local copy of the whole data. Tenants may have some
portion of the data and store hashes of the complete data on the ledger (blockchain) to be used later for
verification.

Tenants may falsely claim a reward for a data integrity breach. Hence, providers need to do verification
by themselves. However, tenants never lie when claiming that providers accepted to store some data.
A tenant is interacting with a single provider, and the provider replies to requests about the data.
Providers may store the data in one location or divide it into different chunks for security or any other
reasons. We assume the blockchain network is not compromised; at least the minimum number of
required participants are honest and are not controlled by the provider. In addition, we assume there is
a secure communication network between the three entities, tenant, provider, and the ledger. Notably,
the integrity of a message is respected, i.e. there is no man-in-the-middle which is actively altering the
communication between the three entities.

6.6 Data Integrity Checking Process
In this section, we describe our proposed method to check integrity using a trusted, secure ledger and
without relying on a third party. This method is used to perform SLA verification. Using the proposed
method, a tenant can check the integrity of the data stored in the cloud, and a provider can check the
correctness of SLO violation claims without relying on the other party. Our method guarantees to link
the provider and the tenant with the same piece of evidence for data integrity.

As described in the previous sections, we use a blockchain to remove the trusted third party. This
secure ledger is used to store a piece of evidence for attesting the correctness of outsourced data. Providers
and tenants form the blockchain network. In a user-centric security monitoring context, using such a
technique gives two main advantages. First, it adds trust, transparency, and security to existing integrity
monitoring techniques without other parties and second users are directly participating in the process of
securing their outsourced information system. Allowing users to participate in the process is the core of
user-centric services and systems.

In general, given an SLA guaranteeing the integrity of users data, the verification process follows two
main procedures, namely the setup and verification phases.

• Setup phase is where a tenant prepares tags for the data to be used later in the verification phase
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and it is performed before uploading a file to the cloud. Tags are proofs containing different
components including the hash of the data. The tags are used by a tenant to perform verification
without the need to trust either the provider or any third party entity. Section 6.6.2 describes tags
in more detail. After this process, a tenant sends the data plus hash of the data to a provider. The
hash value is used by service providers to check the correctness of the initial data upload. After
successfully uploading the data, both the tenant and the provider publish the hash value of the
data to the ledger.

• Verification phase is the procedure after the data is uploaded correctly to the cloud and the
hash value published in the ledger. A tenant sends a request for providers to perform integrity
checking and receives the hash value performed over the current state of stored data. Using the
tags generated in the previous phase a tenant can confirm the correctness of the stored data. If
the data is not correct, a tenant can claim an SLO violation using the proof stored in the ledger
and proceed with the next procedure as stated in the SLA.

Section 6.6.2 presents a more detailed description of each phase. While the blockchain is serving as
secure storage for hash values that are used to prove integrity, the providers’ infrastructure stores the
actual data. In the next subsections first, we present the architecture of the integrity checking platform,
and second, we describe in detail the verification process.

6.6.1 Architecture
In this section, we describe the architecture and components of the proposed integrity checking platform.
Our data integrity verification platform contains five main components (see Figure 6.3). These are the
underlying blockchain, smart contract (chaincode), blockchain app, a service provider (cloud) and a user
(tenant).

• Underlying blockchain is the blockchain network which stores pieces of evidence (hash values) of
data that are used as an anchor for integrity checking. This component is assumed to be a trusted
and secure storage system. The blockchain network is formed by the tenants and providers. It is
a consortium blockchain, i.e. a private blockchain having more than one authorized entity to add
blocks (see Figure 6.2). As described above every participant in a blockchain network holds all
valid blocks and updates the list according to the consensus algorithm used. Our SLA verification
method is not dependent on any specific blockchain implementation, i.e. it can be used with any
type of consortium blockchain implementation. The number of required participants in the network
depends on the type of blockchain implementation used and the resiliency model requirement (e.g.
using HLF with a crash fault tolerant consensus algorithm, to tolerate n number of crashes it
requires 2n+1 nodes). Section 6.7 presents the details of our implementation.

• Smart contract (chaincode) as described in Section 6.4.1, is the logical component of blockchains
and can be programmed to perform different tasks. It is the only component which directly interacts
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Figure 6.4: Data integrity verification process, (A) setup phase and (B) verification phase

(perform read and write operations) with the underlying blockchain. Our smart contract consists
of the following functions: initLedger() called only once to initialize the blockchain. addData(data)
used to add ‘data’ to the ledger, queryData(data) to check if ‘data’ is in the ledger and Invoke(f,
param) used by external applications to call a function from the chaincode.
The smart contract, which performs operations on the blockchain, avoids any duplicate entry in
the blockchain, i.e when receiving a write operation from a tenant or provider, the smart contract
first checks if the same data exists in the blockchain. If it found the same data it returns the ID
of the existing block. Otherwise it will add the requested data. As a result, even if both tenants
and providers make a separate request using the same data, the data will be added only once, and
both the tenant and provider will hold the same block ID.

• Blockchain application or client application is a module which acts on behalf of a user, i.e. the
entity who wants to call functions from the smart contract. The caller can be either tenants or
the provider to store or retrieve a piece of evidence for a data block. Our application contains the
storage module used to store evidence in the ledger and the verification module to retrieve evidence.
These modules call the addData() and queryData() functions respectively from the smart contract.

• Service provider (cloud) is an entity providing the storage service. The provider offer SLAs to guar-
antee data integrity. As described in Section 6.5 providers are not malicious, and they can respond
to requests (challenges) from a tenant or client application. They can also perform verification in
order to check the correctness of an SLO breach claim from tenants.

• Users (tenants) are owners of the data stored in the cloud and they sign an agreement with the
cloud provider. Users add evidence of data integrity into the ledger and they perform verification
of data integrity to check if the SLO is still valid.

6.6.2 Integrity Checking Process
The process of checking integrity contains two phases, the setup and verification phases. In the setup
phase, the tenant generates and stores required information for later verification. In the verification
phase, the actual checking is performed by using evidences generated in the previous phase. Figure 6.4
shows the two phases of the integrity checking process. We also provide algorithms (Algorithm 4 and 5)
describing both phases. The numbers in the figure correspond to the line numbers in the algorithms.
The numbers with the suffix ‘p’ in the figure represent the tasks performed by the provider.

Setup phase

Figure 6.4 (A) shows the setup phase and Algorithm 4 shows the procedure in the setup phase (the line
numbers in the algorithm represent the arrow numbers in the figure). In this section we present a step
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by step explanation of the process:

• The tenant (owner of the data) performs an operation on the data to produce evidence (tags) that
will be used later for verification. In practice, this procedure is hashing the data using a secure
hash algorithm e.g. SHA-1, SHA-2, xxHash... A hash function maps input data of arbitrary size to
a byte string of a fixed size. Depending on the security guarantees, there are two main categories of
hash algorithms, namely cryptographic and non-cryptographic hash algorithms. The cryptographic
hash functions provide strong security guarantees like collision resistant, one-way function, pre-
image attack resistant etc. On the other hand, non-cryptographic hash functions provide weaker
guarantees in exchange for performance improvements. They just try to avoid collisions for non
malicious input. Since we consider non-malicious inputs, a non-cryptographic hash algorithm is
enough for our use case. Using such a function the tenant generates the required tag values.

The generated tags include three parts, first hashing the data, H(D), second generating n random
strings called nonce, (R1, R2...Rn), and third hashing the data concatenated with every random
string, (H(D + R1), H(D + R2) ... H(D + Rn)). The number of random strings are determined
by the length of the SLA validity period and the frequency of verification. For example, if an SLA
is valid for five years and verification is performed once per day, the tenant will generate 1825 (5
* 365) different strings and performs the hash of data plus a random string, for every value. The
hashes and generated random values, i.e (H(D+R1), H(D+R2) ... H(D+Rn)) and (R1, R2...Rn),
should not be shared with other parties, specifically with the provider. These nonce values are used
to force providers into performing a fresh hash computation. Even if the method requires (n+ 1)
hash operations, it is practical in the SLA verification context. It is feasible because of two major
reasons (i) the SLA has a validity period and (ii) data integrity is not a property which is checked
very often like availability. Thus, the variable ‘n’ is bounded.

• Tenant uploads the data with the hash value, i.e. (D, H(D)) to the cloud storage. Upon receiving
the data, the service provider runs the same hash function over the data and compares the result
with the provided hash value. If the value matches the provider will send a confirmation; otherwise,
the provider assumes there is an error in the data transfer and notifies the tenant. In the case of
such an error message, the tenant should repeat the process.

In practice this process is not novel, Amazon S3 [8] command line tool offers a similar option. The
command ‘s3api put-object’ takes ‘--content-md5 and --metadata’ arguments and Amazon uses this
information to perform integrity checking. Amazon confirms the correctness by returning an ‘Etag’
and stores the hash value with the data. The hash value can be retrieved at anytime to check the
integrity of stored data. This step is done only once unless the data is changed or updated. In that
case, the hash of the new data should be computed.

• Once the upload is confirmed the tenant publishes the hash value, i.eH(D) in the ledger. Publishing
a hash value can be achieved by using the storage module from the client application. Providers
also publish H(D) to the ledger. However, as described in the previous section, the smart contract
prevents duplicate entries in the ledger; thus the second addData() operation returns the block ID
of the previously added data. This way both the provider and tenant have the same block ID.

Verification phase

At this stage, the hash value of the data is published, and both the tenant and provider have a block
ID referring to an address where the hash value is stored. It should be noted that random nonce values,
(R1, R2...Rn), and hash of the data with these values, (H(D + R1), H(D + R2) ... H(D + Rn)), are
stored privately by tenants.

To perform verification, a tenant can challenge a provider to compute a hash value over the cur-
rent state of the stored data. Figure 6.4 (B) shows the verification phase and Algorithm 5 shows the
verification process. The steps to verify the integrity of the data are:

• A tenant selects one Ri and sends it to the provider with the file name to be checked. This value
of Ri is then removed from the set of random numbers, i.e. it will be used only once.

• The provider computes the hash of the data concatenated with the nonce value (Ri) and returns
the result to the tenant. The tenant compares the return value with the locally stored value and
concludes about the integrity of the data stored in the cloud.
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Algorithm 4: Setup phase
Input: Data ‘D ’, Hash function ‘H()’
Result: n Random strings (R1, R2...Rn), Hash of ‘D ’ H(D) and Hash of ‘D ’ with random strings

(H(D +R1), H(D +R2) ... H(D +Rn))
/* these random strings are used later for verification. Both the random strings

and (H(D +R1) ...) should be kept private with tenants */
1 Generate n random strings, compute H(D) and (H(D +R1), H(D +R2) ... H(D +Rn)) ;
2 Upload the data, i.e send (D,H(D)) to the service provider ;
3 The provider computes a fresh hash of ‘D’, H(D)′ and compares it with the received one;
if H(D)′ == H(D) then

return ‘success’ ;
else

return ‘error’ ;
end

4 if the previous step is successful then
/* Both tenants and service providers execute the following function */
addData(H(D));
/* the smart contract adds H(D) only once and subsequent addData(H(D))

requests return the blockID of existing H(D) */
else

return to step two and re-upload the data;
end

5 Get blockID, the blockID indicates where H(D) is stored in the ledger

In the event of a discrepancy between these two values, a tenant can claim for an SLO violation
and use values from the ledger as evidence. Our integrity verification process guarantees that the
tenant and the service provider will hold the same block ID value, i.e. they both refer to the same
value in the ledger. It is important to note that holding the same pointer to a secured data storage
location does not automatically resolve a conflict between tenants and providers. However, it can
help in the process to resolve a disagreement between the two parties. One way of such usage can
be in the process of legal action.

Values written in the ledger are immutable, i.e. it is secured by duplication and the consensus algorithm;
hence, the ledger is serving as a secure and trusted anchor for both tenants and providers. Using a
different nonce value for every verification, the tenant forces the provider to compute fresh hash values.

Service providers can check the integrity of stored data, by hashing the data over its current state
and comparing the result with the one stored in the ledger. This checking process is especially helpful
when there is a complaint from tenants, and a provider wants to check the validity of such claims.

Algorithm 5: Verification phase
Input: n Random strings (R1, R2...Rn) and Hash of ‘D ’ with random strings

(H(D +R1), H(D +R2) ... H(D +Rn))
Result: true (no data corruption) or false (there is data corruption)

6 Select one Ri from the set of strings and send it to the provider. Remove Ri from the set of
strings in order not to use it again ;
// note that the provider cannot cheat because Ri is different on every request

7 Compute H(D +Ri) and return the result ;
if result == Previously computed H(D +Ri) then

// no data corruption
return ‘true’ ;

else
// there is data corruption
return ‘false’;

end
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6.7 Implementation

We have implemented a prototype of the proposed data integrity SLA verification tool. In this section,
we present the implementation details by describing each component listed in Section 6.6.1.

We used Hyperledger Fabric (HLF) [18] as a back-end blockchain. For our use case, the unique
features of HLF provide an advantage over other implementations. We describe three advantages over
other well-known implementations. HLF is permissioned, there is no native digital currency, and it allows
writing a smart contract in any programming language.

As described in Section 6.4.1 HLF is one of the major implementations of permissioned blockchains.
HLF allows us to create a consortium blockchain network with the tenants and provider as the partici-
pants. The fact that there is no native digital currency means that participants can perform operations
on the ledger without paying additional payments for each operation. HLF allows using general purpose
programming languages to write smart contracts, which helps to develop chaincode (smart contracts)
easily and rapidly. Additional benefits of HLF include its modular consensus, and its active community
both from academia and industry. It should be noted that other types of blockchain implementations
that can be used to build a consortium blockchain network can be easily adapted for our use case.

All the other modules are implemented using python except the smart contract, which is written
using the Go programing language. We used the xxHash algorithm to perform hash operations. xxHash
is an alternative to the SHA hash algorithm families. It is a non-cryptographic hash algorithm with
better speed than SHA families. The main criterion for the hash algorithm is to avoid collisions and
since we consider non-malicious inputs a non-cryptographic hash algorithm is enough for our use case.
Specifically, we use the xxhash.xxh64() method in our implementation. We perform incremental hashing
based on a fixed block size rather than hashing the whole data at once; this helps to decrease the time
needed to hash a given file.

The next section presents the evaluation performed to measure the performance of the proposed
method.

6.8 Evaluation

In this section, we start by describing the setup used to perform experiments. We present the performance
evaluation of the proposed method, specifically the time overhead as a result of the verification process
and resources required to run the proposed verification process. We present an analysis and discussion
on the performance and security of the proposed method.

6.8.1 Experimental Setup

To measure the performance of the proposed data integrity checking platform, we built a setup on the
Grid5000 [22] testbed infrastructure. Three physical nodes are used to represent a user, a provider
and a consortium blockchain built using Hyperledger Fabric (HLF). Each physical node contains two
Intel Xeon E5-2630 v3 CPU, eight cores per CPU and 128 GB memory, all running Ubuntu version
14.04. We experiment with one tenant and one provider. However, the blockchain network contains ten
participants. Our tenant and provider control one node each.

The entire blockchain network runs on a single physical node with containerized services, i.e. par-
ticipants and related components are instantiated using Docker containers [68], and they communicate
through virtual networks. In a real production environment participants reside in different physical
nodes. The blockchain network contains ten participants, belonging to five different organizations (i.e.
each organization has two participants in the network). As described in Section 6.4.1, HLF uses a struc-
ture of organizations and peers. For our experiment, one node in the network is owned and managed
by a tenant and one node by a provider. The remaining eight nodes can be seen as other tenants and
providers participating in the network.

In our experiment, HLF uses a Kafka-based ordering service, i.e. a consensus algorithm which is based
on Kafka cluster and ZooKeeper ensemble [18] implementing a crash fault tolerant consensus algorithm.
There are four nodes in the Kafka cluster and three nodes forming the ZooKeeper ensemble. In practice,
since HLF is modular and our verification method is not dependent on the consensus process, any algo-
rithm can be plugged and used, including Byzantine fault-tolerant algorithms. The network represents
providers and tenants who agreed on SLA terms on guaranteeing the integrity of data outsourced to the
cloud infrastructure.
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HLF provides different components of the network as containerized services. Hence, the blockchain
network is running on top of a Docker network, and each organization runs multiple Docker containers
representing different components like peers, orderer and so on. A second separate physical node rep-
resents a cloud provider, specifically a storage as a service cloud provider. Users sign an SLA with the
provider and submit their data after performing the setup process described in Section 6.6.2. In our
experiment python Simple HTTP server, which implements the required functionalities like accepting
tenants data upload requests, computing hash of submitted data and publishing hash value to the ledger
is running on the provider node. A third separate physical node is used to represent a user. Users
perform the setup and verification process on this node.

The data size is a significant factor in our verification process because the time needed for operations
like hashing is directly related to the data size. For our experiment, we used different data sizes ranging
from 2GB to 16GB. This range of data sizes is enough to show our experiment goals, but in practice,
cloud users can upload tens or hundreds of gigabytes of data to the cloud. Initially, all the files are not
cached i.e the cache is cold.

6.8.2 Performance Evaluation

The SLA verification method presented in this chapter requires two additional resources. First, perform-
ing the steps presented in Section 6.6.2 takes additional time and second, to participate in the blockchain
network, it requires building at least one node in the HLF blockchain network. The results of the per-
formance evaluation are structured in three parts: the time required for operations in the setup phase,
the overhead of the verification phase, and additional resources required to participate in the process.

Using the setup described above, we measured the time overhead caused by the verification process.
In an environment where there is no integrity checking the only task is to upload the data to the cloud
provider. Adding integrity checks requires two more tasks, namely hashing the data and publishing the
hash value in the ledger. There are two kinds of hash operations performed by tenants (i) hashing the
data alone to be sent for the provider and be published in the ledger (ii) hashing the data with random
nonce values. Figure 6.5 shows the time required for the first kind of hashing (i.e. hashing the data
alone), publishing the hash value, and uploading data. Note that the time to publish a hash of the data
is constant, because the output from a given hash function is always of the same size, regardless of the
input size. Time to publish means the time required to write a hash value into the ledger. As shown in
the figure it is relatively small (10% and 1% for 2 and 16 GB respectively) compared to the total time.

But it should be noted that our blockchain network is being simulated on a single physical machine. In
a real production setup, participants in the network are physically distributed and the time to perform
write operations could be higher. Section 6.8.3 describes the performance of HLF on geographically
distributed participants.

We performed the experiment for ten rounds and results are reported over an average of ten rounds.
Writing the output of the hash function to the ledger takes on average 0.725 seconds, almost twice
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the time required for reading from the ledger. It is because writing to the ledger also performs a read
operation to avoid multiple entries of the same data in the ledger.

As presented in Section 6.6.2, the setup phase requires selecting n random string values and performing
the hash of the data with each of those values (second kind of hash). For example, an SLA with a
validity period of five years and a frequency of one verification per day, the tenant selects 1825 random
values and hashes the data with each value. In comparison, our method performs a smaller number
of hash operations than other cryptographic solutions presented in Section 6.4.2. However, it takes
more computation time than other solutions. It is because our method performs a hash of the whole
data with each random strings while other solutions compute a hash of a few blocks out of the whole
data. Section 6.8.3 presents a possible optimization technique using parallelism. Moreover, in terms of
resources our method requires more resources to participate in the blockchain network.

Without considering the second type of hash, Figure 6.5 shows that the time required for uploading
data is dominant over other tasks. This task is not avoidable even without performing an integrity check.
For the second type of hash, if a single hash operation takes t seconds, the second type of hash operation
takes (n ∗ t) seconds using a single process, where n is the number of random strings. For example, to
hash a 2 GB and 16 GB files take 0.4564 and 3.4266 seconds respectively. However, this task is highly
parallelizable and the time could be optimized to (n∗t)

p , where p is the number of processes used for the
hash operations and it is bounded by the number of CPU cores available on the tenant’s machine.

If we assume a verification phase, it consists of asking providers to perform a hash of the data with one
random string. Hence, this hashing task is the only additional time compared to the baseline i.e. without
doing integrity verification. Figure 6.6 shows a comparison between the baseline (without integrity check)
and checking integrity performed using the setup described above. The baseline operation (the solid blue
line in Figure 6.6) measures only the time needed to download the given data while the integrity check
(the dotted orange line in Figure 6.6) measures time to download the data plus the time for integrity
checking operations as described in Section 5. Doing integrity checks introduces an addition of around
of 6% of total time. The additional time is a result of hashing, and it is directly related to the data
size which is also related to the baseline (upload or download) time. In the next section we present
optimization measures for hashing large size data.

The other resources needed to perform the proposed SLA verification is a node to participate in the
HLF blockchain network. A tenant or a provider can join the HLF network as an organization with
minimum requirements for operation. These include a node which participates in the ordering service
(i.e. consensus process), a node acting as a peer to maintain the state and store a copy of the ledger,
and a client which acts on behalf of the tenant and submit transactions. These requirements can be
achieved using light containers. HLF provides a set of containers for different services, and they can be
hosted in a machine having as low as 2GB memory. Regarding disk requirements to store the blockchain
data, every entry in the ledger is a key-value pair, and this should be easily manageable by using regular
personal computer storage devices.

In the next section, we present a discussion and an analysis of the proposed SLA verification mech-
anism. We discuss advantages, drawbacks and future optimizations that can be done to have better
performance.

6.8.3 Analysis and Discussion

The method proposed in this chapter addresses the issue of openness (non-secretive) in the SLA verifi-
cation process. The method relies on a distributed ledger which runs a consensus algorithm to keep an
untampered state of the stored data. The verification process integrates security and trust by design.
Tenants and providers can perform verification independently, and no one is dependent on another single
entity. However other entities are required to keep the blockchain network running.

We used HLF for our prototype implementation, and we deployed HLF with the default configuration
without doing any optimization. If there is a need for high throughput, e.g. a large number of clients
with frequent uploads, HLF can be optimized to handle more than 3500 transactions per second as
presented in [18]. Moreover, in our experiment, the blockchain network is entirely running on a single
physical node using Docker containers and virtual networks. In practice, participants in a blockchain
network are geographically distributed. Such distribution introduces additional latency in the process,
and our method should be further evaluated on this regard.

In our verification process, the given data is hashed with n random strings, i.e the process executes n
hash operations. This verification process takes a longer time when compared to other integrity checking
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Figure 6.6: Time overhead as a result of integrity verification

protocols. The hashing process can be optimized by using parallel processes. Since the tasks of hashing
the data with n different random strings are independent of one another.

One of the assumptions in our threat model is a secure communication system between the cloud
provider, tenant, and ledger. In the absence of such secure communication system, a man-in-the-middle
attack can affect our verification process and create a conflict between tenants and providers. For
example, a malicious attacker can alter the data sent from the provider to the ledger. Such an attack
can cause a conflict when a tenant claims an SLO violation.

The provider neither lies nor guesses the result in advance when asked to compute the hash of data
with a given random value because the tenant uses a different nonce value for each verification. Service
providers can also check the validity of SLO violation claims by computing the hash of the data over its
current state and comparing the result with the one stored in the ledger.

We assumed that a tenant would keep some part of the generated proof private. If a tenant loses
these values, it is impossible to proceed with the verification tasks. Hence, the tenant may require a
highly available, secure and private data storage mechanism.

On top of the proposed method, additional features can be added to the process. For instance,
encryption can be used to add confidentiality. Blockchains can be further elevated to automate different
tasks in the SLA life-cycle including payments for service and automatic compensation for SLA violation.

In this chapter, we showed the advantage of having secure elements in the SLA verification process
for data integrity. The secure element used in our case is a distributed ledger (blockchain). This secure
component is highly programmable to perform different tasks; as a result, any remote data integrity
checking protocol can be implemented following our method.

In addition, the same logic can be applied to perform verification of SLAs described in the previous
chapters. Secure components are designed for attesting and reducing the number of trusted components
in different layers of an information system. For example, having a secure hardware component in the
IaaS cloud could help to attest the outputs of security monitoring devices to protect them from intentional
or unintentional changes by the provider. Of course, the implementation requires a more detailed study.

6.9 Summary

In this chapter, we started by discussing the problem of trust between providers and tenants while
performing SLA verification. The previous chapters recommended cooperation between tenants and
providers in order to achieve the desired goal. Different incentives were presented for both parties to
cooperate in the verification process. However, in practice, it is difficult to have verified cooperation.
This chapter addresses such an issue by introducing a third component, a secure trusted and distributed
ledger (blockchain) in the process.

The method allows users to directly participate in the process of SLA verification and in keeping a
proof used to support an SLA violation claim. As a user-centric service, our goal is to make users part
of the SLA life-cycle process and distributed ledgers formed by tenants and providers help to achieve the
desired user-centric design goal. In this chapter we assumed an SLA guaranteeing data integrity in the



110 CHAPTER 6. MONITORING AN SLA ON DATA INTEGRITY

cloud. We have presented the seriousness of keeping data integrity in many applications of IT systems.
We briefly discussed related works and presented an introduction to blockchains. We described types

and implementations of the blockchain technology in addition to consensus algorithms used in existing
blockchains. We dived into the details of a specific implementation of the blockchain, Hyperledger Fabric
(HLF). We use HLF in our prototype implementation. HLF is a permissioned blockchain and offers few
advantages over other types of implementations like allowing pluggable consensus and writing chaincode
(smart contracts for HLF) using any general purpose language.

Most existing works for remote data integrity checking rely on a third-party entity to perform the
audit (verification) but such solutions require just as much trust as providers for the task. Solutions
without a trusted third-party fail to fulfill our desire to have a two-sided verification, i.e. they do not
allow verification by both parties.

In our work, we proposed to anchor a piece of evidence for data integrity in a ledger and guarantee
that the tenant and the provider will have the same block ID from the ledger, indicating the same value.
It should be noted that having such a value cannot directly resolve a conflict between providers and
tenants. However, it could help in the process of conflict resolution. One way can be in the process of
legal action.

The verification protocol requires tenants to generate a fixed number of random nonce values and
hash the data with each value before sending it to the cloud. The verification is performed by asking
the provider to perform hash over the data and compare the return result with a locally stored value.
Previously generated nonce values are used to force providers in performing a fresh hash computation in
every verification request. Our process guarantees that the tenant and the provider will hold the same
hash value which can be used to resolve the disagreement between a tenant and a provider.

We implemented a prototype for the proposed SLA verification process and run experiments to
do a performance evaluation. We have measured the time required for three basic operations namely
hashing, uploading data and publishing the hash value into the ledger. The time overhead to perform
a verification is the result of the hashing operation which takes around 6% of the total time. In the
context of SLA verification, we believe this is an acceptable overhead compared to the consequences of
not having integrity check. The impact of the observed overhead should be analyzed given use cases; for
example, if the use case is in time-sensitive applications, a 6% overhead may not be acceptable. Since
the output of the hash function is always the same size, the time to publish it is constant.

We finalized the chapter by providing a discussion and analysis of a few points that are related to
the proposed method. The chapter showed the advantages of having secure components in the SLA life-
cycle management. Using a secure, trusted and distributed storage to keep a piece of evidence for data
integrity, it is possible to reduce the need for trust between providers and tenants in SLA verification.
With the same approach, other secure components can be used to reduce and remove unnecessary trust
between SLA participants.



Chapter 7

Conclusion and Future Work

In this chapter we present a summary of the thesis by correlating our contributions with the objectives
described in Chapter 1. We also present a discussion on how to further extend the works presented in
this thesis.

7.1 Conclusion

In this thesis, we presented a user-centric security monitoring service for clouds. We designed and
implemented mechanisms to define a security monitoring objective which is relevant for the tenant,
achievable for the provider, and verifiable by both tenants and providers. The proposed method follows
the user-centric design principles i.e users have control, choices, and flexibility throughout the process.
Such an approach is achieved through Service Level Agreements (SLAs). The SLA passes through
different phases of life-cycle. By allowing the users to be part of the SLA life-cycle and by including
them in the decision making process it is possible to have a user-centric security monitoring setup in the
cloud.

As presented in Section 1.2, we add security guarantees for cloud services through an SLA. At the
same time, the method should take the users requirements into account, and it should be implementable
by the providers. In the cloud, every tenant has a set of distinct requirements. Hence, taking the
requirements of users indicate providing a tenant-specific service. From the providers perspective, the
method should help to implement the security monitoring SLA for multiple tenants, even when the
requirements from those tenants are different or conflicting with one another.

We proposed guaranteeing the performance of security monitoring devices, which provides an indirect
solution to the issue of security SLAs. Indeed rather than directly guaranteeing security properties in
SLA, we guarantee probes that are used to monitor those properties. This is addressed by including
terms into SLA describing the performance of a security monitoring device while configured to monitor
vulnerabilities that are relevant for the tenant. This is a complementary approach to other proposed
security SLAs where, as described in Section 3.1, security properties are used in SLA terms.

We proposed guaranteeing the performance of security monitoring devices, which provides an indirect
solution to the issue of security SLAs. Indeed rather than directly guaranteeing the security properties
in SLAs, we guarantee the probes that are used to monitor those properties. This is addressed by
including terms into SLAs describing the performance of a security monitoring device configured to
monitor vulnerabilities that are relevant for the tenant. This is a complementary approach from other
proposed security SLAs where, as described in Section 3.1, security properties are used in SLA terms.

In the following sections, we present conclusions on our contributions.

7.1.1 Security Monitoring SLA Language

In practice, adding terms into SLAs means performing the required tasks in the different phases of
the SLA life-cycle. The life-cycle of an SLA starts by defining the terms to be included in the SLA. We
focused on a specific security monitoring device, NIDS. To define terms that guarantee the performance of
NIDSs, we proposed ECSLA. ECSLA is an extension to the CSLA language, and it is used to describe the
performance of NIDSs in clouds formally. ECSLA inherits the fuzziness and confidence ratio properties
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which give flexibility for SLOs without violating the terms. In addition, ECSLA adds features to define
users requirement in terms of vulnerability and relationship between vulnerabilities and other services.

To describe the performance of NIDSs we used the CID metric which is single-valued metric which
takes the NIDS operational environment into account, specifically it takes the rate of attack occurrence
(base rate) into account. Since the value of the base rate cannot be determined before the occurrence
of an attack, our SLA definition provides an estimation method. The method uses known performance
values of an NIDS with known base rate values and provides an estimation model for unknown base rate
values.

We performed experiments to show the applicability of the proposed estimation modeling process.For
our experiment, we used vulnerable applications and real attacks to exploit the vulnerabilities. We wrote
and collected rules for Snort [13] which is used as NIDS for our experiment. From the experiment, we
measured the performance of an NIDS using known values of the base rates. Using the result, we prepared
a model which is a function of the base rate (B), i.e given a new value of B the function estimates the
performance of the NIDS in terms of TPR and FPR.

Our SLA definition language achieves most of the objectives listed in Section 1.2. The language allows
describing security monitoring services in a user-centric manner. Additionally, the SLA definition process
uses a metric which describes the effectiveness of a security monitoring device while taking relevant
parameters into account. However, it lacks a high level language to describe the tenants’ requirements.
Currently, a tenant is expected to list the vulnerabilities that she/he wanted to be monitored. This is
not an optimal solution, as most cloud tenants may have no knowledge about the vulnerabilities in their
software.

7.1.2 Preparing SLA Templates

To address the specific needs of a tenant, providers should estimate the performance of their NIDS on
different configurations, specifically on different types of rules to monitor vulnerabilities. In addition,
configuring an NIDS with multiple rules to monitor multiple vulnerabilities has an effect on its perfor-
mance. We introduced interference to describe the effect of a rule(s) for a given vulnerability on another
rule(s) monitoring other vulnerability. The set of interferences between a given rule and other rules form
an interference vector (IV) and a group of IV forms an interference matrix (IM). IV and IM are used
to estimate the performance of an NIDS configured with specific rules.

Since the number of vulnerabilities is large, the number of required operations to build the interference
matrix is large. As a solution, we proposed an efficient knowledge base building mechanism. The mech-
anism helps to reduce the number of required operations by clustering vulnerabilities using heuristics.
The performance of an NIDS on a given set of rules provides a lower bound for the NIDS performance
on any subset of those rules. The result of the clustering process is used to build the interference matrix
which in turn is used to estimate the NIDS performance.

Experiments are performed to show the feasibility of rule clustering in order to reduce the number
of required performance tests. For the experiment, we used the registered rule set version 2.9.8.0 from
Snort and performed clustering using different heuristics, namely the application type, attack class type,
severity of the vulnerability and applications working together. For example, using the rule set for Snort
which contains 10628 rules, the number of required operations to build an interference matrix is more
than 54 million. Using the proposed clustering method with the “application group” heuristic, we can
reduce the required number of operations to 1378.

The theoretical work presented above achieves the objective stated in Section 1.2. We set an objective
to develop an efficient and practical method to prepare a tenant specific SLA before advertising for
potential tenants. However, our work lacks experimental evaluation to support the theoretical results.
Section 7.2.1 describes the remaining tasks as future work.

7.1.3 SLA Verification

Once the SLA is defined it should be implemented and there should be a verification mechanism for
participants in the agreement. Such mechanisms provide assistance to check fulfillment of SLOs and if
there is any violation, to hold the violating party accountable. This phase is required in order to claim a
penalty in cases of SLA violation. We presented an NIDS performance evaluation method which is used
for SLO verification. The verification is applied for SLAs guaranteeing the performance of NIDSs.

The method uses a dynamic attack injection campaign on a given configuration. The injected attacks
are redirected to a specific target machine, which is carefully prepared to mimic the network behavior of
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production VMs. The attack injection algorithm is unique in a way that it dynamically respects a given
base rate. To successfully use this method cooperation between tenants and providers is required, i.e.
tenants need to disclose the applications and few details running in their environment and providers need
to configure the infrastructure in order to prepare it for the attack injection and provide an untampered
output of monitoring devices.

The campaign sends both legitimate and attack packets. It generates two outputs, (i) the set of
packets injected in the campaign (ii) the output of the NIDS on injected packets. We have designed
a metric evaluator which takes these two outputs and compute the performance of the NIDS over the
injected packets. The evaluator takes sets of packets, reconstruct sessions, and categorize those sessions
into attack and legitimate groups using prior knowledge about injected packets. From the output of the
NIDS, packets are extracted and matched with sessions. Using this process, basic metrics are computed
and the input base rate value is used to compute the CID metric.

A prototype of our verification method is implemented using existing tools and new modules are
written in Python and Java programming languages. Injecting packets into a production environment
adds overhead on the network infrastructure. We performed experiments to measure this overhead and
we showed the method can introduce an overhead of less than 10% on the response time of production
services. The other affecting factor to perform verification of NIDS performance is time. Since the
evaluation is multi-processed, the number of processes to perform the task determines the time required
for the overall operation. The higher the number of processes the less time needed for the evaluation.
But the overhead in the network also increases with an increasing number of processes. We showed the
tradeoff between the number of processes and the required time to do verification.

As described above, the proposed verification requires cooperation between tenants and providers.
In the context of SLAs, achieving unbiased cooperation between tenants and providers is difficult. This
is mainly because violating an SLA has consequences, hence participants are incentivized not to violate
SLAs. For example, if a monitoring device is not performing as expected a provider may alter the output
of that monitoring device before providing the result to tenants. In order to avoid the need for such
cooperation we proposed to use a logical third party which can resolve disagreements between tenants
and providers.

We proposed an SLA verification method with a logical third party as solution to remove dependency
between tenants and providers in the verification process. For this work we consider an SLA guaranteeing
data integrity in clouds. Tenants use storage-as-a-service cloud service provider to store their data and
they require to be monitored against any change on the data. The SLA provides guarantee for tenants
on data integrity.

The monitoring mechanism uses a secure and trusted distributed ledger, also known as blockchain, to
store evidence and use that evidence to resolve conflicts between tenants and providers. The method
uses a consortium blockchain network where the participants are tenants and providers. We proposed a
protocol which contains two phases. In the first phase tenants generate cryptographic tags to be used
later for verification, upload the data to the cloud and commit evidence to the ledger. In the second
phase tenants request the provider to confirm integrity of the data. Providers perform operation over
the current state of the data and reply to tenants. Then, tenants can check the correctness of the result
which confirms integrity of the data. Using our protocol tenants can easily check data integrity without
relying on the provider. In cases of any discrepancy the ledger can be used to resolve disagreements.

We implemented the proposed protocol and performed experiments to measure the overhead intro-
duced by the verification method. We used Hyperledger Fabric [18] to build the back-end blockchain.
The cryptographic tasks in our verification process add overhead on the communication between the ser-
vice provider and tenants. In addition, a constant time overhead is introduced as a result of publishing
evidence into the ledger. In total an average of 6% time overhead is introduced in the communication
between tenants and providers as a result of our verification method.

In the next section, we present possible extensions to the work presented in this thesis.

7.2 Future Work
In this section we present future works. It is categorized into three sections. Section 7.2.1 describes future
works that can be achieved in a short time period and focuses on performance, design and implementation
improvements. Section 7.2.2 describes goals that can be achieved in a medium time range and focuses
mainly on the remaining tasks of the SLA life-cycle like SLA enforcement. Finally, Section 7.2.3 presents
our perspective on the future of user-centric and fully automated security monitoring setup in clouds.
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7.2.1 Short Term
In this section we describe performance, design and implementation improvements that can be done on
the proposed methods.

In our SLA definition tenants are expected to describe their needs in terms of software vulnerabilities.
As described in Section 3.6, this is not an optimal solution because usually, tenants have no detailed
information about the vulnerabilities of their software. In order to address this issue, an extension can
be done for our SLA definition mechanism. The extension connects our SLA definition mechanism with
the vulnerability scanning and fuzzing methods (e.g OpenVAS [164]). Ideally, users specify the software
they need to deploy, the vulnerability scanner and the fuzzer check if there are vulnerabilities or security
loopholes in the software and list the existing vulnerabilities with detailed information. Then tenants
can select their desired vulnerabilities, and the result can be passed to the SLA definition method.

Practically there are challenges to achieve the connection between vulnerability scanners and SLA
definition methods. Specially, considering the diversity of existing applications standardizing the scan-
ning method and communicating with SLA components are few examples. In addition, generalized
automation of a vulnerability scanning method for custom developed applications also requires more
study.

In our work we considered a specific security monitoring probe, a signature-based NIDS and Snort [13]
is used in our experiments. The output of an NIDS is processed by the metrics evaluator component
which is not specific to Snort. Any type of NIDS can be used by implementing the appropriate parser
to the output of the NIDS. Anomaly-based IDSs could be addressed by extending the SLA definition
method. Specifically, the parameters used to describe performance should be adapted for the type of
IDS used.

Extending for anomaly-based IDS opens the opportunity to consider monitoring for unknown vulner-
abilities. Including unknown vulnerabilities requires extending the service definition section of ECSLA.
Currently, a list of known vulnerabilities is defined and the performance of the NIDS is guaranteed on
those vulnerabilities.

ECSLA can also be extended to describe the performance of security monitoring probes other than
NIDSs (e.g firewalls). Depending on the device described in the SLA, adaptation may be required
for different sections in the SLA; like an adaptation for the description of users requirements, for the
guarantees, metrics, and verification method to that specific device. For example, the security monitoring
service definition for the firewalls may be expressed in different forms than for the NIDSs and outputs
of the firewalls are not the same as the output of NIDS. As a result, a parser implementation can be
required to process the output of firewalls.

In our work we introduced the theoretical concept of rules interference (interference vector and ma-
trix ). A practical evaluation of rule interference is not presented. Collecting a large and enough number
of attacks with their corresponding rules to perform experiments would validate our theoretical work.
The experiment can be done following the attack injection method presented in Chapter 5 and the result
can be used to build the interference vector and matrix. In addition, while introducing interference the
assumption was NIDS giving output for every matching rules (as described in Section 4.6.2). Other
cases of interference (e.g NIDS giving outputs for few of the matchings based on some heuristics) are not
considered. Having a method with all possible cases makes the formula more consistent and this can be
achieved with more studies.

Regarding our experiments few scenarios are not considered. Notable examples of such scenario
include multiple tenants sharing a monitoring device and dynamic events that can affect the verification
process. In our experiment we considered a single tenant using a dedicated NIDS but a service provider
may use a single NIDS to monitor multiple tenants’ environments. In addition, we did not include
dynamic events, like the creation of new a VM, in our experiments. These scenarios can further strengthen
our results and can be achieved by just doing more experiments. In addition, the attacks used in our
experiments are somehow limited to application level attacks. As described in Section 5.7.3, there are
few types of attacks that can affect the verification process itself. Other than that, by collecting and
preparing attacks with their corresponding rules more experiments can be performed, in order to include
scenarios like the ones described above.

For data integrity SLAs, we presented the monitoring method without describing the SLA definition
method. This was a result of the context where the work is proposed (internship work) and the goal we
wanted to show, i.e using secure components in the SLA verification process. ECSLA can be extended
and SLA definition for data integrity can be done following a similar method to NIDS SLA definition.
It requires studying the performance metrics and users requirement description mechanism for the data
integrity property.
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7.2.2 Medium Term

In this section we present future works that may require a longer time, i.e require detailed study, than the
tasks listed in the previous section. The discussion includes the remaining phase in our SLA life-cycle, i.e
SLA enforcement, considering variable length of vulnerabilities to be monitored and testing the proposed
method in real production environments.

As described in Section 5.1.1 we used simple SLA enforcement mechanisms for NIDS. For every
vulnerability proposed in the SLA template there are rules corresponding to that vulnerability. For
vulnerabilities selected by tenants, our SLA enforcement simply adds the corresponding rules to the
NIDS. In practice, there are more complicated scenarios and a more in depth study is required to have
an optimal security monitoring SLA enforcement mechanism. For example, let us assume a provider uses
one IDS per physical machine and tenants’ VMs can be spread across multiple physical machines. In
such case careful analysis is required to add the correct rule in the correct place. Another example could
be when tenants share a single NIDS, the NIDS may monitor the same vulnerability for different tenants.
In that case it may be better to update the IP list of existing rules rather than adding the same rule
with different IP addresses. Of course while doing such kind of changes, the effect of the new rules on
the performance of the NIDS should be considered. By doing more studies various cases of enforcement
with different requirements can be addressed.

In our SLA definition and verification process we assumed a fixed number of vulnerabilities, i.e the
number of vulnerabilities to be monitored is fixed at the time of SLA definition. But in practice a
vulnerability can be obsolete, i.e when a patch is available for a vulnerability (assuming the tenant
applies the patch) it becomes useless to monitor that vulnerability. In addition, a new vulnerability
which is relevant for a tenant can be discovered after the SLA definition phase. In our work to address
such issues it requires restarting the SLA life-cycle. In the future, an automatic way for increasing and
decreasing the number of vulnerabilities can be applied. There is an ongoing research activity to address
issues related to dynamic events in the security monitoring process [73].

Our SLA verification process encounters difficulty while evaluating for very small base rate values,
i.e it requires large resources to measure performance with a very low base rate. To get statistically
convincing results the attack injection needs to run for multiple rounds. When the base rate is very low,
running the experiment for multiple rounds takes a long time. In addition, storing the packet transmitted
between an attacker and a target machine takes a large amount of disk space. To reduce the time it
is possible to increase the number of processes which are running in parallel, but this helps until the
maximum network bandwidth. If we pass the available network resource, it may create congestion and
possible packet drops from the NIDS. To address this it requires modifying our verification method.
For example, performing the metrics computation process directly, while the attack injection is ongoing,
could help to address the disk space issue.

In our work almost all experiments are done on the Grid5000 [22] testbed. Grid5000 is designed for
reproducible experiment and the user is in control of physical machines. As a future work , testing and
deploying the proposed methods in production environments will greatly support the results found in
experimentations.

7.2.3 Long Term

In this section we present our vision on the idea of user-centric security monitoring in clouds.
In the long term user-centric security monitoring should be provided in an automated fashion. Specif-

ically, SLA-based security monitoring should support an easy and intuitive way to describe users require-
ment. This requires addressing the semantic gap between a user intuitive language and machine under-
standable languages. Addressing the challenge of this semantic gap paves the way for fully automated
SLA-based security monitoring.

Tenants will describe their needs in the most natural way possible and the requirement will not only
apply to a specific monitoring probe but to the entire security monitoring setup. To accomplish such
kind of enforcement an adaptive method where a requirement can be interpreted for different types of
devices and appropriate configuration can be generated for each components is required. The semantic
gap problem is a big challenge in order to address such a vision.

The enforcement will be done on every component of the monitoring system with check and balance
between components. A component can send feedback if a neighboring component is behaving in an
unexpected manner. The verification will also be automated with live reporting of results. The challenge
to make this vision a reality is lack of an efficient method to monitor events (not specific to security) and
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get information inside systems. As the functionality of systems get more complex, extracting information
for SLA-based security monitoring becomes more challenging.

Automated security monitoring will be combined with prevention mechanisms in order to automati-
cally respond to intrusions and protect tenants’ assets. The monitoring mechanism will cope up with new
vulnerabilities and dynamically adjusts SLO. Any violation will be addressed automatically i.e if possible
restore a correct service level and apply penalty automatically or report and halt the monitoring process.
In summary easy requirement description, an efficient method to extract information for systems, device
independent and automated enforcement and verification method will facilitate an effective user-centric
security monitoring process.

The other big challenge in such an automated system is the human component, since, it is a well-
known fact that as long as there is a human component in the information system security process,
that is the weakest link of the system. By nature humans make mistakes and it is almost impossible
to prevent such kind of errors. To address this a challenging way would consist in totally removing the
human component from the security monitoring SLA life-cycle.

Thus, doing automation for security purposes, ideally without the human component in the system,
is challenging.
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A.1 XML schema of ECSLA

1 <?xml version ="1.0" encoding ="utf-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 numberstargetNamespace ="http://www.inria.fr/cslamodel "
4 numberselementFormDefault ="qualified ">
5

6 <xs:annotation>
7 <xs:appinfo>ECSLA, a DSL for security monitoring SLA description in cloud</xs:appinfo>
8 <xs:documentation xml:lang="en">
9 Schema for the ECSLA, an extention for CSLA Language.

10 Version: 1.0
11 Author: Amir Teshome Wonjiga
12 </xs:documentation>
13 </xs:annotation>
14

15 <xs:complexType numbersname=" CloudServiceType ">
16 <xs:choice >
17 <xs:element numbersname=" software " numberstype="csla: SoftwareType "
18 numbersminOccurs ="1" numbersmaxOccurs ="1"/>
19 <xs:element numbersname=" platform " numberstype="csla: PlatformType "
20 numbersminOccurs ="1" numbersmaxOccurs ="1"/>
21 <xs:element numbersname=" infrastructure " numberstype="csla: InfrastructureType "
22 numbersminOccurs ="1" numbersmaxOccurs ="1"/>
23 <xs:element numbersname="macro" numberstype="csla:any" numbersminOccurs ="0"
24 numbersmaxOccurs ="1"/>
25 </xs:choice >
26 </xs:complexType >
27

28 <xs:complexType numbersname=" SecurityMonitoringType ">
29 <xs:sequence >
30 <xs:element numbersname=" product " numberstype="csla: ProductType " numbersminOccurs ="1"
31 numbersmaxOccurs =" unbounded "/>
32 <xs:element numbersname=" vulnerabilities " numberstype="csla: VulnerabilitiesType "
33 numbersminOccurs ="0" numbersmaxOccurs =" unbounded "/>
34 <xs:element numbersname=" infrastructure " numberstype="csla: InfrastructureType "
35 numbersminOccurs ="1" numbersmaxOccurs =" unbounded "/>
36 </xs:sequence >
37 </xs:complexType >
38

39 <xs:complexType numbersname=" ProductType ">
40 <xs:sequence >
41 <xs:element numbersname="mode" numberstype="csla: ModeType " numbersminOccurs ="1"
42 numbersmaxOccurs =" unbounded "/>
43 </xs:sequence >
44 <xs:attribute numbersname="id" numberstype="xs:string "/>
45 <xs:attribute numbersname="name" numberstype="xs:string "/>
46 <xs:attribute numbersname="mode" numberstype="xs:integer "/>
47 <xs:attribute numbersname=" version " numberstype="xs:string "/>
48 <xs:attribute numbersname=" distribution " numberstype="xs:string "/>
49 <xs:attribute numbersname="price" numberstype="xs:string "/>
50 <xs:attribute numbersname=" license " numberstype="xs:string "/>
51 </xs:complexType >
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52

53 <xs:complexType numbersname=" VulnerabilitiesType ">
54 <xs:sequence >
55 <xs:element numbersname=" vulnerability " numberstype="csla: VulnerabilityType "
56 numbersminOccurs ="1" numbersmaxOccurs =" unbounded "/>
57 </xs:sequence >
58 </xs:complexType >
59

60 <xs:complexType numbersname=" VulnerabilityType ">
61 <xs:attribute numbersname="id" numberstype="xs:string "/>
62 <xs:attribute numbersname="cve" numberstype="xs:string "/>
63 <xs:attribute numbersname=" description " numberstype="xs:string "/>
64 </xs:complexType >
65

66

67 <xs:complexType name="MetricType">
68 <xs:sequence>
69 <xs:element name="description" type="xs:string" minOccurs="1" maxOccurs="1"/>
70 <xs:element name="formulation" type="xs:string" minOccurs="0" maxOccurs="1"/>
71 </xs:sequence>
72 <xs:attribute name="id" type="xs:string"/>
73 <xs:attribute name="name" type="xs:string"/>
74 <!-- Type can be simple of complex -->
75 <xs:attribute name="type" type="xs:string"/>
76 <xs:attribute name="unit" type="xs:string"/>
77 </xs:complexType>
78 </xs:schema >

Listing A.1: ECSLA XML schema
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SUPERVISION DE LA SÉCURITÉ CENTRÉE SUR L’UTILISATEUR DANS UN

ENVIRONNEMENT DE NUAGE INFORMATIQUE

1. Introduction

L’informatique en nuage a introduit un modèle de service différent pour les services des systèmes d’infor-
mation. Par le passé, l’obtention de ressources informatiques nécessitait avant tout des investissements en
capital. L’informatique en nuage réduit ou supprime ces exigences, ce qui permet aux entreprises d’utiliser
plus de ressources informatiques au moment où elles en ont besoin. L’un des facteurs majeurs qui conduisent
au succès de l’informatique en nuage est son modèle économique gagnant-gagnant pour les fournisseurs de
services et les locataires. Pour les locataires, l’informatique en nuage offre un modèle de paiement à l’utilisa-
tion selon lequel les locataires ne doivent payer que pour les ressources qu’ils utilisent. Pour les fournisseurs,
il permet de maximiser les profits en configurant et allouant dynamiquement les ressources demandées par les
locataires. Les nuages informatiques offrent de nombreux autres avantages, notamment un accès omniprésent
avec un service informatique modulaire.

Les services que les fournisseurs offrent dans les nuages informatiques le sont en fonction des besoins des
locataires. En particulier, l’aspect fonctionnel d’un service dans un nuage informatique devient de plus en plus
centré sur l’utilisateur dans la mesure où une fonction, une action ou un élément de logique métier spécifique
peut être exécuté en une fraction de seconde. Toutefois, l’aspect sécurité dans les nuages informatiques est
resté essentiellement générique. Fournir des propriétés de sécurité spécifiques en fonction des besoins et des
exigences d’un locataire demeure un défi.

L’inconvénient des nuages informatiques découle de leurs propres caractéristiques. Lors de la migration
vers un nuage informatique, le locataire perd le contrôle total de l’infrastructure physique et le fournisseur est
responsable de la gestion de l’infrastructure, y compris sa sécurité. Comme cela force les locataires à compter
sur les fournisseurs de services pour assurer la sécurité de leurs propres services, cela crée un problème de
confiance. Les fournisseurs de services reconnaissent le problème de confiance et fournissent une garantie par
le biais d’un contrat appelé Service Level Agreement (SLA). Le contrat, en plus du service fourni, décrit
les pénalités en cas de violation. Presque tous les SLAs existants traitent des fonctionnalités des nuages
informatiques, c’est-à-dire qu’ils ne garantissent pas l’aspect sécurité des services hébergés des locataires.

La supervision de la sécurité consiste à recueillir et à analyser des indicateurs sur les menaces potentielles
pour la sécurité, puis à traiter ces menaces par des actions appropriées. Comme le nuage informatique continue
d’être de plus en plus intégré, il est nécessaire d’avoir des services de supervision de la sécurité adaptés à
l’utilisateur qui sont fondés sur les exigences des locataires. Et comme pour les autres services, les fournisseurs
doivent offrir des garanties pour l’aspect supervision de la sécurité du système.

Dans cette thèse, nous présentons notre contribution sur les questions liées à l’inclusion de termes de
supervision de la sécurité centrés sur l’utilisateur dans les SLAs de l’informatique en nuage. Cela nécessite
de compléter chaque phase du cycle de vie du service exécuté dans le nuage informatique, en commençant
avant le déploiement effectif du service jusqu’à la fin du service. Des objectifs plus détaillés sont décrits dans
le paragraphe suivant.

2. Objectifs

Le paragraphe précédent a présenté comment la conception centrée sur l’utilisateur a aidé et continue
d’aider à l’adoption des nuages informatiques. Il souligne la nécessité que les tâches de supervision de la
sécurité suivent la même philosophie de conception afin d’améliorer la confiance dans les services des nuages
informatiques et d’accrôıtre le succès des nuages informatiques. L’objectif global de notre travail est d’inclure
des termes de supervision de la sécurité dans les SLAs des nuages informatiques.

Nous y parvenons en incluant dans les SLAs des termes (ou Service Level Objectives, SLO) qui garantissent
la performance des dispositifs de supervision de la sécurité. Le SLO définit la performance d’un dispositif de
supervision de sécurité, où le dispositif est configuré en fonction des besoins des locataires. Ensuite, l’infra-
structure demandée est configurée pour atteindre les SLOs définis dans le contrat. Lors de l’utilisation du
service, les participants peuvent vérifier l’infrastructure pour s’assurer que le niveau de performance attendu
est atteint. Dans les cas où l’infrastructure ne fonctionne pas comme prévu, des pénalités peuvent être ap-
pliquées comme décrit dans le SLA. Dans la suite, nous définissons les objectifs des SLAs de supervision de
la sécurité centrés sur l’utilisateur.

— Comme tout autre type de SLA, pour définir les SLAs de supervision de la sécurité, nous avons besoin
d’un langage de SLA. Le but d’un tel langage est de faciliter et de normaliser la communication entre
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les locataires et les fournisseurs. Le langage doit permettre de décrire les différentes parties composant
le SLA :

(1) Il devrait permettre de décrire les services de supervision de la sécurité dans les nuages informatiques.
Dans cette thèse, un service de supervision de la sécurité est assuré par un dispositif appelé système
de détection d’intrusion réseau (NIDS).

(2) Comme nous visons à avoir un SLA de supervision de la sécurité centré sur l’utilisateur, le langage
devrait permettre aux locataires de décrire leurs besoins spécifiques en matière de supervision de la
sécurité.

En outre, le langage doit être sémantiquement équilibré entre les locataires et les fournisseurs, c’est-
à-dire qu’il ne doit pas être de trop bas niveau pour être compréhensible par les locataires ordinaires
des nuages informatiques, et qu’il ne doit pas être de trop haut niveau pour être capable d’automatiser
la mise en œuvre.

— Afin de garantir la performance d’un dispositif de supervision de sécurité, nous avons besoin de métriques.
Fournir des métriques décrivant les performances d’un dispositif de supervision de sécurité nécessite la
prise en compte de différents paramètres. Il s’agit de facteurs internes et externes : par exemple, des fac-
teurs internes comme la configuration du dispositif de supervision, qui est liée aux besoins du locataire,
et des facteurs externes comme l’environnement opérationnel (le débit du réseau, le taux d’attaques,
etc.) du dispositif de supervision. Deux dispositifs ayant la même configuration interne ne se comportent
pas de la même façon lorsqu’ils fonctionnent dans des environnements externes différents. Par exemple,
il est prouvé que le taux d’occurrence d’attaques affecte grandement la performance des NIDS.

— Les paramètres utilisés dans les SLOs doivent être pertinents pour les locataires. Dans notre définition de
SLA, les SLOs décrivent la performance des dispositifs de supervision de la sécurité. Plus précisément,
une mesure qui décrit la performance d’un dispositif de supervision de la sécurité doit informer le
locataire sur un aspect de la qualité du service qui est pertinent pour le locataire. Le SLO doit définir
comment mesurer et calculer la métrique attendue et la métrique doit être calculable par toutes les
parties prenantes du SLA.

— Lorsqu’ils fournissent un service de supervision de la sécurité, les fournisseurs de services en nuage
doivent connâıtre sa performance avant d’en faire la publicité auprès des locataires potentiels. Cela
signifie que les fournisseurs doivent tester leur capacité de supervision au préalable. Cependant, puisqu’il
peut y avoir des dizaines de milliers de failles de sécurité et que chaque locataire s’intéresse à des sous-
ensembles différents (peut-être très petits) de failles, les performances doivent être estimées pour un
très grand nombre de configurations possibles. Cela nécessite donc une méthode ne demandant qu’une
quantité acceptable de tâches de préparation.

— Les SLOs définis dans le contrat de service doivent être vérifiables par tous les participants. La
vérification de la satisfaction des objectifs est effectuée après qu’un locataire et un fournisseur ont
négocié le SLA et que l’infrastructure a été configurée en conséquence. Pour ce faire, nous devons
disposer d’un mécanisme de vérification transparent, c’est-à-dire d’une méthode de vérification qui per-
mette à la fois aux locataires et aux fournisseurs de services d’effectuer cette tâche. En outre, toute
partie devrait être en mesure d’effectuer la vérification sans se fier à l’autre partie. Étant donné que la
vérification permet de réduire le degré de confiance nécessaire à l’égard de l’autre partie, le processus
de vérification doit exiger le moins de confiance possible vis à vis de l’autre partie.

3. Contributions

Dans cette partie, nous présentons nos contributions pour atteindre les objectifs décrits dans la partie
précédente. Pour résoudre le problème de l’inclusion de termes de supervision de la sécurité dans les SLAs,
nous avons proposé une solution fondée sur le cycle de vie des SLAs. Nous avons conçu et mis en œuvre les
tâches requises pour les phases de définition des SLAs et de vérification des SLOs. Nous présentons également
un mécanisme pour réduire la dépendance entre les locataires et les fournisseurs en utilisant un registre
sécurisé, fiable et distribué. Nos principales contributions sont les suivantes :

— Nous avons conçu des extensions à un langage de SLA existant appelé Cloud SLA (CSLA). Notre
extension, appelée Extended CSLA (ECSLA), permet aux locataires de décrire leurs besoins en matière
de supervision de la sécurité en termes de vulnérabilités. Plus précisément, un service de supervision de
la sécurité est décrit comme une relation entre les besoins des utilisateurs en tant que vulnérabilités, un
produit logiciel présentant ces vulnérabilités et une infrastructure dans laquelle le logiciel est exécuté.

— Nous proposons une méthode efficace pour estimer les performances, qui réduit le nombre d’évaluations
nécessaires par rapport au nombre de configurations possibles. Pour offrir des SLAs de supervision de la
sécurité, les fournisseurs doivent mesurer la performance de leur dispositif de supervision de la sécurité
avant de commencer à négocier avec les locataires. En présence de dizaines de milliers de vulnérabilités et
d’une variété de locataires, les fournisseurs de services doivent effectuer un grand nombre d’évaluations
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pour estimer la performance. Nous proposons une solution afin d’aider les fournisseurs de services
dans la préparation des modèles de SLA. La solution proposée introduit deux nouvelles idées. Tout
d’abord, nous concevons une méthode de construction d’une base de connaissances qui repose sur des
regroupements de vulnérabilités à partir d’heuristiques. Deuxièmement, nous proposons un modèle
pour quantifier l’interférence entre des règles de détection associées à des vulnérabilités différentes. En
utilisant ces deux méthodes, nous pouvons estimer la performance d’un dispositif de supervision avec
peu d’évaluations par rapport à une approche näıve.

— Les métriques utilisées dans nos SLOs tiennent compte de l’environnement opérationnel des dispositifs
de supervision de la sécurité. Pour ce faire, il faut concilier deux faits. Premièrement, les paramètres
représentant les environnements d’exploitation ne sont pas déterministes (c.-à-d. qu’ils ne peuvent
être mesurés avant que l’événement prévu se produise). Par exemple, si une métrique prend le taux
d’occurrence des attaques (taux de base) dans sa formule, nous ne pouvons pas estimer sa valeur avant
l’occurrence d’une attaque réelle. D’autre part, au moment de la définition d’un SLA, il est nécessaire
de spécifier la performance d’un dispositif de supervision de sécurité. Pour concilier ces deux questions,
nous proposons un mécanisme d’estimation où la performance d’un dispositif de supervision est mesurée
à l’aide de paramètres connus et le résultat est utilisé pour modéliser sa performance et l’estimer pour
des valeurs inconnues de ce paramètre. Une définition de SLO contient le modèle qui peut ensuite être
utilisé chaque fois que la mesure est effectuée.

— Nous proposons une méthode d’évaluation in situ de la configuration de la supervision de sécurité.
Elle permet d’évaluer la performance d’une configuration de l’infrastructure de supervision de sécurité
dans un environnement de production. La méthode utilise une technique d’injection d’attaques mais les
attaques injectées n’affectent pas les machines virtuelles de production. La méthode peut être utilisée
par l’une ou l’autre des parties. Elle permet également de calculer la métrique requise. Cependant, la
méthode exige une coopération entre les locataires et les fournisseurs de service.

— Afin d’avoir un service de supervision de sécurité de bout en bout, les locataires ont besoin d’informations
telles que la sortie des dispositifs de supervision et les fournisseurs ont besoin de connaissances sur les
services qui fonctionnent dans l’environnement des locataires. Par conséquent, il est nécessaire que les
deux parties coopèrent. Afin de résoudre la dépendance entre les locataires et les fournisseurs de service
lors de la vérification, nous proposons d’utiliser un composant logique sécurisé. L’utilisation proposée
d’un composant logique sécurisé pour la vérification est illustrée dans un SLA portant sur l’intégrité
des données dans les nuages informatiques. La méthode utilise un registre sécurisé, fiable et distribué
(châıne de blocs ou blockchain) pour stocker les preuves de l’intégrité des données. La méthode permet
de vérifier l’intégrité des données sans se fier à l’autre partie. S’il y a un conflit entre un locataire et le
fournisseur, la preuve peut être utilisée pour résoudre ce conflit.

4. Perspectives

Dans cette partie, nous présentons les perspectives en trois paragraphes. Le paragraphe 4.1 décrit les
travaux futurs qui peuvent être réalisés dans un court laps de temps et qui sont axés sur l’amélioration des
performances, de la conception et de la mise en œuvre. Le paragraphe 4.2 décrit les objectifs qui peuvent
être atteints à moyen terme et se concentre principalement sur les tâches restantes dans le cycle de vie des
SLAs comme la configuration de l’infrastructure de supervision de la sécurité pour atteindre les SLOs décrits
dans les SLAs. Enfin, le paragraphe 4.3 présente notre point de vue sur une future supervision de la sécurité
centrée sur l’utilisateur et entièrement automatisée dans les nuages informatiques.

4.1. Perspectives à court terme. A court terme, nous nous concentrons sur l’amélioration des perfor-
mances, de la conception et de la mise en œuvre. Dans notre définition des SLAs, les locataires sont tenus de
décrire leurs besoins en termes de vulnérabilités logicielles. Ce n’est pas une solution optimale car les locataires
n’ont généralement pas d’informations détaillées sur les vulnérabilités de leurs logiciels. Afin de résoudre ce
problème, une méthode d’analyse de vulnérabilité peut être intégrée à notre méthode de définition des SLAs.

Dans notre travail, nous avons envisagé une sonde de supervision de sécurité spécifique, c.-à-d. une sonde de
détection d’intrusion réseau fondée sur des signatures. Les NIDS fondés sur la détection d’anomalies pourraient
être traités en étendant la méthode de définition des SLAs. Plus précisément, les paramètres utilisés pour
décrire la performance devraient être adaptés au type d’IDS utilisé. Nous considérons également que seules les
vulnérabilités connues sont garanties dans les SLAs. L’inclusion de vulnérabilités inconnues nécessite d’étendre
la définition de SLAs aux IDS fondés sur les anomalies et d’étendre la section de définition des services de
l’extension ECSLA.

Dans notre travail, nous avons introduit le concept théorique d’interférence entre règles (vecteurs et matrice
d’interférence). Nous n’avons pas présenté d’évaluation pratique de mesure de l’interférence entre règles. En
outre, lors de l’introduction de la notion d’interférence, nous avons supposé que le NIDS lève une alerte pour
chaque règle correspondant au paquet réseau analysé. Nous n’avons pas considéré d’autres cas d’interférence
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(par exemple, des NIDS ne levant des alertes que pour quelques unes des règles correspondantes, selon certaines
heuristiques). Avoir une méthode considérant tous les cas possibles rendrait la formule plus cohérente.

Pour l’intégrité des données dans les SLAs, nous avons présenté une méthode de supervision sans décrire de
méthode de définition de SLA. ECSLA peut être étendu et la définition de SLAs pour l’intégrité des données
pourrait être effectuée selon une méthode similaire à celle utilisée pour la définition de SLAs pour les NIDS.
Pour ce faire, il faut étudier les métriques de performance et les mécanismes de description des exigences des
utilisateurs en matière d’intégrité des données.

4.2. Perspectives à moyen terme. Dans ce paragraphe nous considérons la phase restante de notre cycle
de vie des SLAs, c’est-à-dire la configuration de l’infrastructure de supervision pour la garantie des SLOs, en
tenant compte du nombre variable de vulnérabilités à surveiller et des limites de la méthode proposée pour
l’évaluation de performance.

Nous avons utilisé un mécanisme simple pour la configuration de sondes de détection d’intrusion réseau
selon les SLOs du SLA. D’autres cas pour d’autres exigences pourraient faire l’objet d’études plus poussées.
Dans notre processus de définition et de vérification des SLAs, nous avons considéré un nombre fixe de
vulnérabilités, c’est-à-dire que le nombre de vulnérabilités à surveiller est fixé au moment de la définition
des SLAs. Toutefois, dans la pratique, une vulnérabilité peut être obsolète, par exemple lorsqu’un correctif
est rendu disponible pour la corriger, ou bien une nouvelle vulnérabilité pertinente pour le locataire peut
être découverte. Dans le futur, un mécanisme pour ajuster automatiquement l’ensemble des vulnérabilités à
considérer pourrait être utilisé.

Notre processus de vérification de SLO est difficile à utiliser lorsqu’il s’agit de réaliser des évaluations pour de
très petites valeurs du taux de base. En effet, il faut des ressources importantes pour mesurer les performances
avec des taux de base très bas. Pour obtenir des résultats statistiquement convaincants, l’injection d’attaques
doit se dérouler sur plusieurs cycles. Lorsque le taux de base est très bas, il faut beaucoup de temps pour
mener l’expérience pendant plusieurs cycles. De plus, le stockage des paquets transmis entre un attaquant
et une machine cible prend beaucoup d’espace disque. Pour réduire la durée, il est possible d’augmenter le
nombre de processus qui fonctionnent en parallèle, mais seulement jusqu’à ce que la bande passante réseau
maximale soit atteinte. Si nous saturons la ressource réseau disponible, cela peut créer de la congestion et
d’éventuelles pertes de paquets à la fois dans le réseau et dans le NIDS. Pour y remédier, il faut modifier notre
méthode de vérification. Par exemple, l’exécution à la volée du processus de calcul des métriques, pendant
l’injection des attaques, pourrait aider à résoudre le problème de l’espace disque.

4.3. Perspectives à long terme. À long terme, la supervision de la sécurité centrée sur l’utilisateur devrait
être assurée de manière automatisée. En particulier, la supervision de la sécurité fondée sur les SLAs devrait
permettre de décrire les besoins des utilisateurs de manière simple et intuitive. Pour ce faire, il faut combler
le fossé sémantique entre le langage intuitif des utilisateurs et les langages compréhensibles par les machines.

Les locataires devraient être en mesure de décrire leurs besoins de la manière la plus naturelle possible et, au
lieu de ne s’appliquer qu’à une sonde de supervision spécifique, les exigences devraient s’appliquer à l’ensemble
du système de supervision de sécurité. Pour réaliser ce type de configuration de l’infrastructure de supervision
de la sécurité, cela nécessite une méthode adaptative selon laquelle une exigence peut être interprétée pour
différents types de dispositifs et une configuration appropriée peut être générée pour chaque dispositif. La
configuration et la vérification devraient se faire pour chaque dispositif du système de supervision, avec un
équilibre entre les dispositifs. Un dispositif peut lever une alerte si un dispositif voisin se comporte de manière
inattendue. La vérification devrait également être automatisée et ses résultats devraient être transmis en
temps réel.

La supervision de la sécurité automatisée devrait être combinée à des mécanismes de protection afin de
réagir automatiquement aux intrusions et de protéger les biens des locataires. Le mécanisme de supervision
devrait tenir compte des nouvelles vulnérabilités et ajuster dynamiquement les SLOs. Toute violation doit
être traitée automatiquement, c’est-à-dire, si possible, rétablir la configuration à un état satisfaisant les SLOs,
sinon appliquer automatiquement des pénalités ou bien signaler l’incident et interrompre le processus de
supervision. En résumé, une description simple des exigences, une méthode de configuration et de vérification
automatisée et indépendante du dispositif faciliteraient un processus efficace de supervision de la sécurité
centré sur l’utilisateur.
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