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Résumé 

Les appareils mobiles, à chaque nouvelle version des normes et suivant les demandes continues de 

nouveaux services par les utilisateurs, doivent prendre en charge de plus en plus de fonctionnalités, qui 

deviennent également de plus en plus exigeantes du point de vue informatique. Par conséquent, être en 

mesure de répondre aux nouvelles exigences tout en fournissant des puces à faible consommation d’énergie 

est aujourd’hui le défi le plus important pour les concepteurs de systèmes pour appareils mobiles.  

Pour relever ce défi, de nouvelles approches de modélisation de la performance et de la puissance au 

niveau système ont été proposées, permettant d'explorer les architectures matérielles/ logicielles (HW / SW) 

dès les toutes premières étapes d'un flot de conception de systèmes sur puce (SoC). Cependant, les solutions 

existantes prennent en charge de manière limitée l'optimisation de la puissance du système de mémoire (y 

compris la mémoire SDRAM), qui peut occuper plus de 70% de la surface d'une puce et consommer plus 

de 30% de l'énergie totale. Dans nos travaux, nous proposons un cadre de simulation basé sur SystemC-

TLM au niveau Electronic System Level (ESL), capable de prendre en charge l’exploration commune d’une 

architecture SoC et de sa configuration mémoire. Ce nouveau cadre permet d’optimiser la consommation 

d’énergie des SoC tout en faisant correspondre les performances requises en termes de puissance et de 

performances, de bande passante mémoire et de temps de latence. 

Mots-clés—efficacité énergétique, système de mémoire, Electronic System Level, conception du système, 

co-conception matériel/ logiciel, SystemC. 

  



 
  

  



 
  

Abstract 

Mobile devices, at each new release of the standards and following users’ continuous requests of new 

services, have to support more and more features, which are also becoming more and more demanding from 

the computational point of view. As a consequence, being able to fulfil new requirements and at the same 

time to provide power efficient chips is nowadays the most important challenge for mobile devices system 

designers.  

To tackle this challenge, novel system level performance and power modeling approaches have been 

proposed allowing hardware/software (HW/SW) architectures to be explored right at the very first steps of 

a System-on-Chip (SoC) design flow. However, existing solutions have limited support for the power 

optimization of the memory system (including SDRAM) that may occupy more than 70% of a chip area and 

consume more than 30% of the total energy. In our work, we propose a SystemC-TLM-based simulation 

framework at Electronic System Level (ESL), which is able to support the joint exploration of a SoC 

architecture and its memory configuration. This new framework helps in optimizing the SoC energy 

consumption while matching the required performance in terms of power and performance, as well as of 

memory bandwidth and latency. 

Keywords—power efficiency, memory system, Electronic System Level, system design, HW/SW co-

design, SystemC. 
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I. Introduction 

1. Context 
The innovation pace of the wireless communication world is breathtaking, not only due to the fierce 

competition, but also due to the yearly cadence with which standards bodies deliver a new set of 

functionalities and services to be supported. In this very dynamic context, optimizing products and 

differentiate against the competitors is key for all those who want to be successful in a make-or-break 

market.  

With the advances in semiconductor technology that have continuously reduced the technological nodes, 

the problem of power and circuit heat dissipation have tended to worsen at the same time. Such problem 

can lead to a degradation of the performance of a system, or even endanger its correct functionality. An 

interesting study on the impact of power consumption on the communication performance of a smartphone 

is published in  [1]. Thereby, it is shown that the reception rate of a 5G smartphone is directly dependent on 

the proportion of power allocated to the baseband processor (PBP). Results show that Rmax (the maximum 

receiving rate of smartphones) can be improved using two ways: applying the latest semiconductor 

technology to chips (as presented in the part (a) of the Figure 1), and increasing β the proportion of PBP with 

respect to the total power consumption of the whole chip (Pchip
comp). However, the power allocated to the 

baseband processor results from the global power budget authorized of the whole smartphone and the 

Figure 1. (a) The maximum receiving rate of smartphones; (b) Receiving rates of smartphones VS. stable communication 
duration 
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amount of power consumed by the application processor and the memory system (in this case, βmax= 34 

percent).  Thus, reducing the power consumption of the application processor and the memory system makes 

it possible to increase the reception speed of the smartphone. Consequently, mastering power and 

performance in order to have the best compromises with the complete system of all hardware blocks is 

obvious. 

In our work, the focus is at platform level, where memory system power optimization, a key optimization 

in the design of mobile terminals, is taken into consideration. We start with a survey of some broad used 

memory technology, then we introduce some powerful power-modeling tools and finally describe the 

System-on-Chip (SoC) modeling approach proposed to simulate SystemC-Transaction Level Modeling 

(TLM) based platform for power and performance assessment. 

The problem of power management in terminals has been broadly discussed in literature [2], [3] and has 

mainly identified processor power consumption as the most important contributor to the overall system 

power consumption. However, recent analyses show that the power consumption caused by the memory 

subsystem represents a significant part of the total power. In [4] authors report that about 35% of the total 

energy of a Samsung Galaxy S3 I9300 is due to data movements in the memory system on video-playback 

applications. As a consequence, one can say that the memory hierarchy of a mobile phone platform, and 

more in general in the overall memory system, do require a higher attention when power optimizations are 

to be looked for.  

The memory system is composed of a controller, potentially some caches, and different kinds of memories, 

e.g. on-chip RAM and a generic external memory that is used as the main memory of the processor, which 

could be implemented via Double Data Rate (DDR) DRAM, which is known to be the traditional main 

memory, or using other more recent technologies like the Low Power DDRx (LPDDRx) family. Memory 

system performance and power consumption do not depend only on memory design but also on workload 

(e.g. the cellular protocol stack executed on the communication processor (CP)), the kind of memory 

controller in use and on the overall system configuration. The interactions between the memory system and 

the different components of the mobile SoC need to be accurately considered, to achieve a satisfactory 

estimation of power consumption. Thus, evaluating its power management strategies and performance 

efficiency requires an approach that includes an appropriate model of the memory, a realistic controller, a 

high-precision power model, and a representative workload of real use cases. All of the above requires a 

full system simulation framework able to represent the impact of the different mutual interactions between 

all the components in the platform and the memory system. Hence, designers of memory system would need 

easy-to-use and high-precision power models that estimate power and energy consumption of the different 

operations and state transitions of the memory system. Among those, we use DRAMPower [5] which is an 
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open source Dynamic Random Access Memory (DRAM) power and energy tool for estimating the power 

consumption of different DRAM operations at the cycle-accurate level. 

The PwClkARCH library (discussed in details in Chapter II, Section 4) presents a framework that helps 

designers to model the impact of the SoC activities on power consumption by means of Virtual Prototyping 

(VP), describing the SoC using SystemC-TLM. The library also allows for exploration of different power 

management strategies, like Dynamic Frequency Scaling (DFS), Dynamic Voltage Frequency Scaling 

(DVFS), Power Gating and Clock gating. The PwClkARCH library by itself is still not sufficient to give a 

precise view on main memory power consumption, especially at the refinement level of each operation. In 

fact, it is such information that is needed to properly explore different configurations and compare different 

designs of memory systems. Therefore, we need to make work together the PwClkARCH library with a 

DRAM functional simulator able to evaluate the power consumption as well. 

Our approach is to be used at a very early stage of the SoC design flow, as it focuses on a pre-silicon 

simulation environment at a high level, before the split between SW and HW implementation has been 

defined. Joint optimization of, e.g., cellular protocol stack SW architecture, mobile SoC HW architecture as 

well as HW/SW partitioning is enabled by this approach. In fact, our work allows to analyze the impact of 

different architecture options on mobile SoC power consumption as well as on the performance of cellular 

protocol stack SW, controlled in power, executed on the CP. 

2. Contributions 
In this thesis, we propose a framework for power modeling and management at ESL level able to support 

both CMOS common hardware block and DRAM block. This framework is based on SystemC-TLM, 

PwClkARCH library which is implemented by the LEAT laboratory and DRAMPower simulator which is 

an open source tool. Using the framework, designers can explore the architecture of their device or product 

by measuring the performance and the energy consumption during each simulation. They can then choose 

the appropriate technology and DRAM configuration for their use case. Our methodology takes into account 

the interactions between the DRAM and the other blocks, and the memory power model is accurate enough 

to consider the operations of the DRAM to calculate the power dissipation. 

3. Structure of the Dissertation 
Chapter II presents the state of the art of this project. We start by defining the level of abstraction used 

during our work, we introduce PwClkARCH library and we give a survey of the memory system in relation 

with power consumption (memory requirements and trends). 

In Chapter III, we describe the Intel environment used in our work which constitutes the target of our project. 

This environment is a pre-silicon simulation environment for Intel modem devices. 
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In Chapter IV, we explain our work on PwClkARCH using Model Driven Engineering approach to facilitate 

the use of the library with graphical and textual user interfaces. 

Chapter V illustrates our contribution around ESL-level memory technology exploration based on power 

consumption. 

The Chapter VI is dedicated for the simulations results. We show our plots and we give our analysis based 

on the state of the art and the use cases we used. 

Chapter VII concludes this dissertation and describes some areas for future works. 
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II. Power-aware architectures modeling: 

Background & State of the Art 

Following Moore’s law, the SoC complexity increases constantly due to the continuous addition of new 

features that require the integration of a growing number of processing cores and IPs in a single chip (Figure 

2). This have a significant impact on implementing new computing paradigms and enhancing computing 

possibilities. The period between 2000 and 2010 experienced a constant improvement of wireless devices 

connectivity capabilities, which in turn helped smartphones to offer more and more better services at each 

new generation. In parallel, connected IoT (Internet of Things) devices and sensors also experienced a 

proliferation. Between 2006 and 2014 the average number of IPs embedded in a SoC increased from 30 to 

120, whereas integrated processor cores increased from 1 to 20 [6]. As a consequence, the SoC design 

becomes harder along with the underlying power consumption becomes more and more important. In order 

to face this issue, several means exist in the industry for power estimation and management, but they are 

still based on low-level CAD (Computer-aided design) tools, take time and require a rather detailed software 

model of the hardware architecture blocks. In fact, even if cycle-accurate tools give quite accurate power 

estimates, they require a high amount of simulations imposing to move up to higher abstraction level to 

address efficiently the first steps of the design flow. Thus, Transaction Level Modeling (TLM) appears as 

the most effective approach to assess designs with rapid power estimation tools.  

Moreover, memory system consumes more than 30% of the overall phones energy when executing 

applications [7]. Designers prefer to have high memory bandwidth to address the bandwidth needs of new 

chips and devices. There are several memory options either in terms of technology (DDR, LPDDR, NVM, 

etc.) or in terms of on-chip/off-chip choices. The possible combinations are numerous, and we have to 

choose a good tradeoff between bandwidth, power efficiency, cost and reliability. This task is not obvious 

and need to be addressed at the very beginning of the design flow.  

The power estimation existing tools, industrial or academic, are numerous, but unfortunately they treat the 

memory system separately, that is, without considering the impact of the requests coming from the rest of 

the system to the memory or the inverse. In the industrial world, they usually use real-world measurements 

to generate or use the memory device datasheet to estimate memory consumption, and at the higher level, 

they consider powerful memories of large sizes and high bandwidth to not block or degrade performance. 

This leads to big problems later in the design cycle. So, treat these problems early in the design flow and 

define the adequate memory system answering the needs of the product in terms of performance and power 

consumption is very important. 
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All this presents the general context of the thesis, which can be divided into two points of interest: the first 

is the energy consumption analysis and control, and the second is the memory system design. One can 

imagine then many working hypotheses which vary widely according to the needs of the designer. Already, 

when we say energy consumption we actually refer to two different aspects: estimation and management. 

Our work is to develop a framework to help designers for exploring different memory system architectures, 

in terms of technology and configurations, according to their energy consumption (and when possible by 

also applying some power management techniques), and also their performance at the beginning of the 

design flow (ESL level). 

This chapter is dedicated to the presentation of basic concepts necessary to the understanding of our research 

works.  

 

Figure 2. Technology trends according to the Moore's law [8] 

1. System-on-Chip Design flow: Level of abstraction 
Several design steps are required to implement a system on chip. Current SoCs consist generally of several 

processors, memories and peripherals. The Figure 3 represents the design process abstraction levels that 

describe the process of SoC realization from design concept to fabrication. From top to down, the simulation 

speed decreases and the design becomes more complex as we add in each level certain details. The problem 
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in focus is to find the best tradeoff between simulation speed and accuracy in order to properly model 

platforms and IPs correctly so as to mimic the system’s behavior and allowing overall system verification. 

 

Figure 3. Design process abstraction levels 

Efficient computer architecture simulators are available supporting the actual execution of software, 

including the operating system. For example, Gem5 simulator [9] is a modular platform for system-level 

architecture and processor microarchitecture. It contains CPU models, GPU models, event-driven memory 

system including caches and DRAM controller models, and many other features. Gem5 is written primarily 

in C++. The goal of Gem5 is to model a system with heterogeneous applications running on a set of 

heterogeneous processing engines, using heterogeneous memories and interconnect. Gem5 provides also a 

complete platform for research in future energy-efficient systems by enabling DVFS on the Linux kernel 

for run-time power management. Such simulators are mainly CPU-centric and GPU-centric. They are not 

well adapted for modelling complex SoCs including communication processors and specific IPs that can 

generate heavy traffic to and from the memory sub-system, concurrently with the CPU/GPU sub-system, 

inducing then interferences between execution of all these processes.  Note that Gem5 has been connected 

with SystemC in [10] in order to address the full simulation of MPSoCs. As in our work we consider a task 
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graph-based modelling of the software part, a CPU/GPU cycle accurate simulator such as Gem5 is not 

required in this case. This task-graph methodology captures the control flow of the application and provides 

only the execution workload of each task to the underlying architecture simulation models. Thus, each model 

simulates the execution latency and the power consumption for an application-task rather than executing 

real instructions or operations of the software. Therefore, we are able to explore the power and the 

performance earlier in the design phases of system development process, as task-graph methodology does 

not require detailed implementation neither of the application, nor of the architecture. 

1.1. Electronic System Level (ESL) 

Electronic system level (ESL) design and verification is an electronic design methodology focusing on 

higher abstraction level in a design flow to make as early as possible effective architecture decisions by 

prototyping, debugging and analyzing complex systems before the RTL (Register Transfer Level) stage. At 

this stage, VP techniques are used, as they represent in convenient way simulation models of the entire 

system architecture and the verification environment. VPs consist generally of transaction-level (TL) 

models, where the simulation speed and the accuracy of the models are balanced. VP are very useful for 

architecture explorations, performance and power simulations, as well as for preparing system test cases for 

system verification.  

The traditional power management techniques at RTL level or place and route (P&R) are not suitable 

anymore to perform efficient design space explorations for complex systems, because their simulations are 

very time consuming due to the multitude of blocks and signals to consider in a SoC. Moreover, to reduce 

the model complexity, they target power optimization in individual blocks without considering a global 

view of the system. These tools are efficient at IP-level. However, the speed of design is very important to 

keep the time-to-market short and to develop competitive products. For that reason, high-level power 

management on ESL level is desired as it gives ability to the designer to take efficient design decisions at 

an early design stage. 

1.1.1. SystemC 

SystemC [11] is basically the standard for ESL design. It is a C++ class-based library for system and 

hardware design defined by the Open SystemC Initiative (OSCI) that has been merged with Accellera [12]. 

From December 2005, SystemC has been known also as IEEE-1666 after its standardization from IEEE 

standards association. Since SystemC is based on C++, it supports all the C++ data types and provides also 

SystemC data types generally preceded by ‘sc’ like sc_int or sc_signal. 

Design components are defined as modules in SystemC. They are classes that inherit from the sc_module 

base class. Modules may contain methods, ports and channels for connectivity. In SystemC, there are two 
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kinds of processes namely SC_METHOD and SC_THREAD. SC_METHODs are like functions in C++ or 

Verilog and they don’t consume time i.e. simulated time. However, SC_THREADs can consume time by 

using the wait() function, either for specific time, or for events.  

Connecting ports in SystemC is  an operation that is basically divided into four steps: declare the port and 

the channel, instantiate the port and the channel, bind the port to the channel using bind() method and finally 

use the port. Events and sensitivity give SystemC the power to implement hardware prototypes in terms of 

concurrency and consuming time. Simulated time is managed by the SystemC kernel using sc_time datatype. 

SystemC simulator has two phases: elaboration and simulation. The former is the phase where design is 

setup: objects like modules, ports, exports and channels are instantiated. The latter is used to run the resulting 

system model. 

Since 2011, SystemC standard integrates TLM-2.0 transactional modeling which allows functional 

validation based on SoC simulation. 

1.1.2. Transaction Level Modeling (TLM) 

The idea behind TLM is to model each component only if it has something to do. The individual components 

communicate by sending messages requesting data be transferred between each other. The exchange of 

messages is called a transaction, and the approach is called Transaction Level Modeling (TLM). 

The Open SystemC Initiative (OSCI) TLM 2.0 [13] offers a standardized approach to use TLM. It explicitly 

addresses VP thanks to which SystemC models can easily be organized and communicating within a system. 

Consider the system as a set of SystemC modules, each has one or more sockets through which the SystemC 

modules may read and write data. The activity of each module is modeled by a number of parallel threads 

which communicate with the threads in other modules by passing data through the sockets. This 

communication is known as a transaction and the data passed as a payload. A module's threads may act as 

either initiators or targets (Figure 4). An initiator is responsible for creating a payload and calling the 

transport function to send it. A target receives payloads from the transport function for processing and 

response. Initiator calls are made through initiator sockets, target calls received through target sockets. A 

module may implement both target and initiator sockets, allowing its threads to both generate and receive 

traffic. 
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Figure 4. SystemC-TLM Transaction background 

The models in the SystemC-TLM Library have been developed in partnership with major IP (Intellectual 

Property) providers, among which Intel, ARM, Cadence, ST Microelectronics, and Synopsys, giving the 

designer access to IP vendor reference models and ensuring their correct behavior. Those models are typical 

of the IP needed by designers to build platforms, debug hardware and software and verify the design before 

moving to the RTL implementation flow. For instance, Intel uses the SystemC-TLM standard and develops 

on top of it a productivity layer. The resulting library is Intel property, but it is interoperable with standard 

SystemC-TLM coding style. 

The SystemC-TLM2 standard [13] focuses on use cases such as software performance analysis, hardware 

architecture analysis but does not provide any intrinsic features for power analysis. 

1.2. Register Transfer Level (RTL) 

Digital electronic circuits have been mainly designed at the Register Transfer Level (RTL) since the late 

1980s. This level expresses the scheduling of operations and data transfers in clock cycle. For the structural 

aspect, these operations are projected on elementary material resources (registers, arithmetic operators, etc.). 

Indeed, at this level of description, data transfers and logical operations between the registers are described 

via signals. An RTL design is usually captured using a hardware description language (HDL) such as 

Verilog and VHDL. Such languages benefit from many years of development and constant improvements 

so that the design of a system is almost automatically synthesized down to circuit layout ready for 

fabrication, provided that efficient command scripts are used in the design flow.  

The complexity of hardware design has induced very slow simulations and time-consuming implementation 

of RTL models. In [14], authors perform test to measure performance increase of design by comparing TLM 

and RTL level modeling. Figure 5 represents their results of line code comparison. Tiers are general terms 

of displaying embedded system components, which communicate together, for example, 2-tiers means there 
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are two components communicating together. Without going into details, results show that the amount of 

lines needed to model system by using TLM is less than that of using RTL. This is explained by the fact 

that TLM is used for hiding hardware aspects that are not important at system level and so gain effort, 

number of code lines, and also time in the simulation.  

 

Figure 5. Line of code Comparison [14] 

1.3. Synthesis and Chip Fabrication 

The transitions between the abstraction levels of the design are achieved through the synthesis processes. 

The high-level synthesis known as HLS is the transition between ESL level and behavioral RTL level. HLS 

tools generate a custom architecture (memory banks, data path: registers, multiplexers and buses) that 

implements a high-level specification [15]. 

Then, there is an RTL synthesis that target technology cell library to obtain the structural RTL which is the 

logic synthesis. In this phase, RTL specification of the design is transformed to logic gates implementation, 

using synthesis tools like Design Compiler from Synopsys or RTL compiler from Cadence.  

Finally, we have the layout synthesis or what we call place and route process to obtain a physical 

representation. Cadence proposes many solutions at different levels like Stratus for high level synthesis, 

Genus for RTL synthesis and the Encounter® technology. 
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2. Power modeling: power consumption and power management techniques  

2.1. Power Consumption of System-on-Chip 

The total power consumed P in the CMOS technology consists basically of two factors: dynamic or 

switching power and static or leakage power. Dynamic power is due to the charging and discharging of 

capacitances associated to each transistor whose state toggles. So, the dynamic power (Pdynamic) is the power 

consumed when the device is active and so the signals are changing values. Static power (Pstatic) is due 

primarily to gate and channel leakage in each transistor. It represents the power consumed when the device 

is powered up but the signals are not changing values. Note that in this work, we neglect the short-circuit 

power which represents the power dissipated by an instantaneous short-circuit connection between the 

supply voltage and the ground at the time the gate switches state. In the literature, this component has been 

neglected in comparison to the switching power [16]. 

The energy consumption of a system E can be defined as the summation of both spatial and temporal power 

consumption of circuits.  

𝐸 = ∫ 𝑃𝑑𝑡
𝑡

0
(in Joule) 

P = Pdynamic + Pstatic 

Pdynamic= a*C*V2*Fclock (in Watt)                 (1)  

Pstatic= V*Ileakage (in Watt)                       (2) 

 a is the switching activity  

 C is the capacitance 

 V is the supply voltage 

 Fclock is the clock frequency 

 Ileakage is the leakage current 

 t is the execution time of an application 

Most of these parameters are technology dependent and may come either from technical datasheets or 

simulation results at low design stage or from physical measurements on real circuits.  

Today, the power reduction is one of the most important design goals of battery-powered devices. 

Developers are concentrating on reducing power consumption and on gaining better control on power 

dissipation of their products in order to satisfy the customers’ requests.  

Designers are used to make tradeoffs between power and performance. Increasing the frequency often will 

increase the energy consumption since voltage must be adapted to support the frequency change. 
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Alternatively, the supply voltage can potentially be reduced resulting in lower performance but significantly 

reducing energy consumption because the quadratic dependence of power on voltage. Designers handle that 

using several techniques to reduce the power by controlling voltage and frequency values. Some of these 

techniques are introduced below.  

There exist several power management techniques reducing the dynamic power or/and the static power of 

SoCs. Power management techniques may be applied at various levels of the design flow and so with 

different granularities. Although each design stage offers an opportunity to save power, higher levels of 

abstraction have greater impact. In DAC 2012, Shawn McCloud, vice president of marketing at Calypto 

said: “Today, many optimizations are made at the gate level and lower. But the real impact on power occurs 

when you move up to the architectural level. You can look at the options for resource sharing and the 

tradeoffs between parallelism and operating at lower frequency".  

According to [17], the best three techniques for reducing energy consumption are Clock Gating, Power 

Gating and Dynamic Voltage and Frequency Scaling. 

2.2. Clock Gating and Power Gating 

Clock Gating is one of the most efficient techniques for reducing power consumption in particular the 

dynamic power. It is based on disabling the clock of the design components when they do not execute any 

computation. This leads to power savings in the clock tree. Power gating nonetheless, is the most efficient 

way to reduce leakage power. If a block is not used in some time intervals, it is powered down in these 

periods.  

The basic strategy of both techniques is to provide two power modes: a low power mode and an active 

mode. The goal is to switch between these modes at the appropriate time and in the appropriate manner to 

maximize power savings while minimizing the impact to performance. 

2.3. Dynamic Voltage and Frequency Scaling 

Dynamic Voltage and Frequency Scaling (DVFS) is a very popular technique to reduce the dynamic power. 

DVFS allows the voltage and the clock frequency to be decreased and increased dynamically according to 

the processing demand. DVFS works on two fundamental concepts: first, processing units have some 

“IDLE” time after performing required tasks (at full speed); second, dynamic power consumed by digital 

circuits is proportional to V2. The interdependence between voltage and operating frequency should be 

managed in a good way. The optimal combination between leakage and switching power has to be found as 

shown in Figure 6. 
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Figure 7 presents a typical DVFS architecture. Both clock generator and voltage generator are managed by 

a controller. The controller is responsible of deciding when and how the clock frequency and voltage will 

change. The control method is usually defined, at least in part, by the software, although it can be coded in 

the hardware. More generally, the complete control algorithm can be implemented in the software [18]. 

 

Figure 6. Energy (dynamic and leakage) vs Voltage [19] 

 

Figure 7. Dynamic voltage and frequency scaling (DVFS) architecture 

Next, we present some of the TLM-based power management existing tools and frameworks. We start by 

introducing the Unified Power Format (UPF) standard which is almost the only standard that exists and 

recognized by most of design tool providers. 
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2.4. Unified Power Format (UPF) 

UPF has offered a clear design flow utilizing the power management techniques and enabled RTL power-

aware verification. The UPF committee was formed by the Accellera organization. The first approved 

version 1.0 was published in 2007.  UPF was used to partition a design into power domains and to apply 

different power management strategies to control logic values when the domains are being switched off and 

on (Figure 8). UPF is a Tool Control language (TCL) based syntax. It defines the main features of a power 

management architecture separately from the functional specification. From version to version, some 

refinements were included, and several commands were added to remove ambiguities or to fix errors 

identified in previous versions. 

A power domain is a collection of design elements that share a primary supply set. According to UPF 

terminology, a supply set associates multiple supply nets (such as power and ground much like an electrical 

plug) as a complete power source for one or more design elements. A supply net so represents the power 

and the ground rails in the design. UPF allows the creation of a hierarchical structure of power domains. For 

example, in  Figure 8, TOP is a top-level power domain that includes TX_AON, CRC_GEN and 

RECEIVER power domains. These power domains are created with the following piece of TCL code: 

create_power_domain TOP 

create_power_domain TX_AON -elements {transmitter power_controller} 

create_power_domain RECIEVER -elements receiver 

create_power_domain CRC_GEN -elements checker 

Power management strategies are implemented through Power State Table where lines correspond to 

specific system power modes. A system power mode is a legal combination of specific power-domain states. 

The set of power-oriented components (power domains, supply nets, …) added to a system to control its 

power consumption is called a power intent. 
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Figure 8. Example of UPF-based power aware design (Source: Magic Blue Smoke) 

However, this standard has a scalability issue as it becomes very complex with complex design. As the trend 

of designing SoCs is to use abstract models above RTL, UPF follows the trend and was updated to version 

3.0 [20]. This version boasts support for ESL power modeling and analysis in VP applications. Compared 

with previous releases of UPF, UPF 3.0 introduces mainly the capability of capturing power states associated 

with IPs, supply nets and power domains. A power state is a combination of voltage values (and frequency 

values) of supply nets and logical expressions attached to signals controlling power suppliers. A “functional 

state” or simstate in UPF (e.g. RUN or DEEP SLEEP) can be associated to a power state to precise the 

simulation behavior of the cells in this state. Logical expressions can be captured as well to express 

conditions on transitions between power states. A logical expression can refer to states of supply nets and/or 

power states of power domains and/or some control conditions issued from the HDL design. At system 

level, power models as introduced in UPF 3.0 are used in tools such as Platform Architect MCO from 

Synopsys [21]. But for us even UPF 3.0 does not cover all the needs to support an easy performance/power 

system design space exploration (DSE) where power/performance tradeoffs are to be investigated, and 

global power management strategies are to be defined and validated. Moreover, UPF is inflexible and 

demanding on the tool chain and requires simulators as well as debug environments (Figure 9). As a result, 

many companies have created their own solutions for power related design. Next, we will present some of 

these solutions. 
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Figure 9. Low-Power systems design flow [22] 

2.5. ESL power and performance assessment frameworks 

2.5.1. Synopsys Platform Architect 

Synopsys Platform Architect (Synopsys PA) MCO (Multicore Optimization Technology) is a SystemC 

TLM standard-based graphical framework for ESL design, and early power and performance analysis of a 

multicore SoC architecture [23]. In Synopsys PA the application is modeled as a task-graph. Where each 

node represents an application task which is instantiated from basic blocks of a Generic Task Library (GTL). 

The edges in the task-graph represent the dependencies between the nodes. The task nodes use 

communication token samples for activation and synchronization purposes. Tasks read their input ports, 

consume or process the input tokens and generate output tokens. The behavior and execution time of each 

task for actual processing of the incoming tokens is specified by some generic functions, such as for data 

processing and memory access, which are connected to each task node during instantiation of the 

corresponding node. The application model, under the control of a default task manager, can be simulated 

stand-alone to analyze the application behavior and memory traces. The architecture model components are 

instantiated from a library containing Virtual Processing Unit (VPU) task-driven traffic generators, memory 

blocks and interconnect subsystems. The mapped task graph on a given architecture can be simulated to 

analyze the overall power and performance of the system. As in UPF, power consumption in PA framework 

is described as a high-level state machine. Each state is associated with a certain power consumption and 

triggered by events detected in the virtual prototype.  
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2.5.2. Intel CoFluent Studio 

Intel CoFluent Studio [24] is a commercial model-driven tool for design and exploration of complex 

embedded systems in the early phases of the design process. In CoFluent the application is modeled, using 

a GUI tool, as a network of function blocks or process communicating with each other through 

communication elements such as events, shared variables or message queues. Once the application is 

modeled, a timed SystemC-TLM model of the application can be automatically generated. The simulation 

of this timed model can be used for analysis of the application model. Similarly, using the same GUI tool, 

the system architecture model is also created by connecting different generic architecture resources, such as 

processors, interrupts, interconnect and memory blocks. The architecture resources are characterized by 

high level performance attributes. The mapping relation of application model with the architecture model is 

expressed by creating mapping models of the system. In the mapping models, each function or process in 

application model is mapped on one of the processing resources in the architecture model. Similarly, the 

communication path between the processes in the application model is also mapped on the interconnect 

subsystem in the architecture model. The shared variables and message queues in the application model are 

mapped on the architecture memory blocks. The SystemC-TLM generated code of the whole system allows 

the analysis of the power, cost, resources load, memory footprint and dynamic behavior of the application 

on the architecture. Thus, Intel CoFluent itself doesn’t include any power analysis features.  

2.5.3. Intel Docea Power Simulator 

Intel Docea Power Simulator (IDPS) [25] is a software solution for creating power and thermal virtual 

prototypes of SoCs at system level. Intel Docea Power Analytics (IDPA) [26] is used to collect and structure 

all the data needed for power analysis in a database. The tool is post-processing power analysis in the way 

that, from VCD files generated from SystemC-TLM simulation according to the power model defined in 

the tool, it generates power values needed for analysis. The connection between the two simulators requires 

to insert specific code in the HDL design model to transmit the relevant events and data from the HDL 

design to trigger power state transitions in the power model. The power model of the system is a hierarchical 

set of component power models. A component power model is defined as a Power State Machine (PSM) 

composed of one or more power states. The user provides power equations, static and dynamic, for each 

power state.  A timed succession of power states defines a static scenario, which helps study power and 

thermal behaviors. Intel Docea Power Simulator is thus a help for measuring the total power and 

temperature, but not at all for defining the power optimization strategy. 

2.5.4. Mentor Graphics® Vista™ platform 

Mentor also invests in new generation tools at ESL level that help model performance and power at the 

early design exploration stage. The Mentor Graphics® Vista™ platform [27] enables modeling power and 

performance information at TLM level while maintaining accuracy.  
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In Vista™ platform power models are attached to each IP and assigned to each transaction type that the IP 

can receive or emit. These power models are dependent from voltage and clock frequency of the IP whose 

values are defined as parameters of the model.  

2.5.5. Comparison of ESL-based tools from EDA providers for power analysis 

The table below illustrates that apart Intel CoFluent Studio, the tools mentioned above provides power 

estimation facilities but are not able to model an explicit power management strategy, i.e. the decision issued 

from the software part (e.g. the operating system) that set up the power states of power domains according 

to the functional state of the system. 

 Simulation model Power Estimation Power Management 

Platform Architect 

MCO 

SystemC-TLM YES NO 

Intel CoFluent Studio SystemC-TLM NO NO 

Intel Docea Power 

Simulator 

Internal simulator with 

possible connection 

with SystemC-TLM 

YES NO 

Mentor Graphics® 

Vista™ 

SystemC-TLM YES NO 

 

3. Model Driven Engineering approaches 
There are also a lot of academic work on the implementation of tools for high-level modeling of energy 

consumption using SystemC. Without being limited to a few, we cite the work [28], in which a mode/phase-

based model is used at IP level where the mode (respectively the phase) informs the power model attached 

to the IP about the current power state (e.g. ON) (resp. the current functional state, e.g. IDLE).  

A Model-Driven Engineering (MDE) approach has been also considered in several works to support the 

analysis and the exploration of system architectures including both hardware and software. For example, in 

[29] the application, the architecture and non-functional aspects such as power consumption are modeled 

using a multi-view approach. But in this framework dedicated for design space exploration no effort is done 

to connect it with traditional ESL design flow such as the generation of SystemC-TLM code for simulation. 

In [30], authors develop a MDE approach for estimating power of a hardware architecture. In this work 

power estimators based on power states are attached to each hardware components and the energy per 

component is estimated by counting their periods of activity during a system level simulation. As this 

approach focuses only on power estimation, it is of limited interest for the exploration and the validation of 

a real power management strategy applied to a functional model. An interchange format XFG with energy-
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based annotations is proposed in [31] to support the analysis of energy-aware real-time systems which can 

be described according to a variety of specification formalisms, each one adapted to a different discipline 

(e.g. mechanics, software). A formal semantics is defined for XFG in [31] but there is no information 

provided on the way to use the energy annotations in an analysis or exploration process. The approach 

developed in [32] proposes a UML profile targeting the design space exploration of embedded systems at a 

high level of abstraction. A Finite Power State Machine is associated with each CPU in the architecture to 

model both the power consumption and the operating performance points (OPPs) available for that CPU. A 

Power Policy Manager is also introduced to select the OPP according to some performance criteria. The 

framework allows fast abstract simulation for evaluating performance and power. But, as mentioned earlier, 

the use of power states to model power consumption is not really convenient for verifying that a power/clock 

intent and the power management strategy are consistent with a functional architecture. 

Model Driven Engineering-based (MDE) approaches have been considered for design space exploration of 

low-power SoCs. In [33] the UML MARTE profile is extended such that Power Finite State Machine 

(PFSM) can be attached to hardware components. To estimate the system power consumption, power 

configurations need to be bound manually to the application operational modes. Authors of [34] consider 

stereotypes to a UML metamodel to associate power-oriented data, a PFSM and a scheduler with HW 

components. Such ESL specification is far from the low power UPF-style specification which means that a 

significant effort must be made to provide a specification conformed to the input format of EDA tools. 

Systems Modeling Language (SysML) is a graphical modeling language for specifying, analyzing and 

verifying complex systems. It is defined as an extension of the Unified Modeling Language (UML) using 

UML’s profile procedure [35]. Unlike UML, SysML is not limited to software systems, it is able to model 

in addition to software, hardware, information, processes and facilities. SysML is considered for example 

in [31] for capturing non-functional properties such as power consumption models. 

4. PwClkARCH library 
A recently proposed power modeling library called PwClkARCH implements the high-level modeling 

approach proposed in [36], and [37] by the laboratory of Electronics, Antennas and Telecommunications 

(LEAT), which will be explained in details in Section 4.2., so to assist SoC designers with a system level 

SystemC-TLM framework, inspired from the UPF standard. PwClkARCH is a library of C++/SystemC-

TLM classes (Figure 10) allowing a SystemC-TLM architecture to be structured in power domains and 

clock domains (power/clock intent) such that a power management strategy could be applied to evaluate its 

impact on power consumption and on performance. 
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Figure 10. PwClkARCH structure 

4.1. Description of the library structure 

Before describing the methodology on which the PwClkARCH is based, we should define the 

aspects/semantics included in this library. Most of them are UPF based semantics that have been abstracted 

to TLM level. In UPF, a list of components called design elements (DEs) from the HDL design are assigned 

to a power domain. In this approach, a design element object is defined as a reference or a pointer to the 

corresponding module in the SystemC-TLM design model. Then a specification of a power/clock intent is 

built above these DEs thus reinforcing the separation of concerns between HDL design and power/clock 

intent. The DE class contains the generic power model of a component which is basically the sum of 

consumptions due to static power (Pstat= VIleakage) and dynamic power (Pdyn= αCV2F). The power model of 

each instance of a DE is particularized with the values of parameters (e.g. capacitance C) specified with the 

associated module in the SystemC-TLM model. 

A Power Domain (PD) is defined as a subset of system components that receive power from the same Supply 

Net (SN). SN represents the supply source and can be used to power up the different PD elements. Thus, 

each PD can be controlled individually. It can be put in different states of operation called Power States 

(PSs). Concepts of voltage domain and power domain are merged like in UPF, so that a power domain can 

be either power-gated or voltage-scaled or non-scaled according to its attached supply nets. According to 

the UPF standard, hierarchical organization of power domains is permitted. Thus, two types of power 
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domains are included in the library. A power domain of type “container” has at least another power domain 

of type “nested”. But also, this “nested” power domain can also be of type “container” when it includes 

other power domain(s).  

Correspondingly, a Clock Domain (CD) is a set of system components that have at all times one single clock 

source on which division operations can be performed but which lead always to synchronous signals or a 

constant phase at the level of the CD elements. Unlike the Power Domains hierarchy defined by UPF, 

PwClkARCH do not introduce a hierarchy between Clock Domains. 

PwClkARCH associates for a Clock Domain a single Digital Phase Locked Loop (DPLL) which represents 

its primary clock source and a single Clock Manager (CM) which allows to control the clock distribution to 

its Design Elements. CM receives a generated clock (i.e. the clock frequency value) from the DPLL in the 

clock domain and provides individual clock frequencies to each IP blocks in the clock domain. The clock 

frequency provided by a CM to a IP block results from a simple division on the CM input clock. Each clock 

generated by a CM can also be gated individually. The CMs are controlled by a Power Manager.  

Power Manager (PM) is the intelligent block in the library; meaning that it is the responsible of the power 

management implementation. PM receives the power requests from the CPU for example or other masters 

in the platform, then it interprets the request and do the necessary actions. For example, if the CPU requests 

that the block A go to clock gated state, the PM send a request to the CM responsible of this block to turn 

off the clock generated to the block A. 

The Power State Table (PST) concept is taken from UPF, which constitutes the interface between the power 

strategy and the power architecture. PST defines a static system power management strategy by defining 

the power domains’ supply nets states. Columns of a PST represent the states of power domains in terms of 

their power supply net states, while lines represent the different system power modes. Each line corresponds 

to one legal combination of specific power domain states. 

PwClkARCH, similarly to PST, uses the concept of Clock State Table (ClkST), which defines for each 

block its possible frequency values during the execution of a scenario. The columns of the ClkST represent 

local power modes of the hardware blocks. A local power mode sets the clock state of each block by 

specifying its division factor. This factor is applied by the CM on the source clock of the CD in order to 

generate the clock needed for a given power mode to the corresponding block. When the division factor is 

equal to the specific value zero, the clock gating function is applied. 

The Domain Power Controller (DPC) is in charge of applying the configuration of controls from a specific 

row in the PST to the power domains. PM and DPC are included in the PMU (Power Management Unit) 

which is connected to the SystemC-TLM system bus. 



Power-aware architectures modeling: Background & State of the Art 
 

   23 
 

By specifying a line entry in the PST and a line entry in the ClkST, we can define the complete state of PDs 

and CDs. To facilitate the control of PDs and CDs, an OPP Table (OPPT) is available in PwClkARCH 

where an entry (an OPP) specifies the index entries is PST and ClkST and the multiplication/division factors 

of the DPLLs in the system (Figure 11). The PM receives from a master on the bus (e.g. the CPU) a 

transaction specifying the row index in the OPP Table to be applied to the power architecture. If after a 

change of row index, a state transition of a power domain (a clock domain resp.) is activated by DPC (CM 

resp.), the state transition is acknowledged to the PM after a time penalty, which models the time for the 

supply voltage (DPLL resp.) to reach its new value. 

Power Management Unit (PMU) contains instances of the CM, PM, DPC,… as depicted in the Figure 12, it 

is the only SystemC-TLM power-oriented component that must be added in the transactional model. 

The observer classes are used to structure automatically the power and clock intent with monitors to evaluate 

at different layers (DE, power switch, supply net, and CM layers) the power consumption. 

A set of generic assertions are also defined in PwClkARCH for verification purpose. For example, an error 

is signaled if an IP block without any wake-up facility receives a functional transaction while the IP is in 

clock gated state or in power gated state. 

 

Figure 11. OPPT, ClkST, and PST tables structure 
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Figure 12. Power Management Unit (PMU) structure 

4.2. Methodology behind PwClkARCH 

To design high-performance and energy-efficient embedded systems, it is extremely important to address 

two basic issues. First issue concerns accurate estimation of power consumption of all system components 

during early design stages. Second issue consists in deriving power optimization solutions that do not 

negatively impact system performance. 

PwClkARCH proposes a methodology based on the modeling of CDs and PDs that allows for clock and 

voltage distribution management in SystemC-TLM functional models, without any initial power 

considerations. The overall approach of this methodology consists of the steps shown in the Figure 13 and 

which will be explained later. 
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Figure 13. Overall approach of PwClkARCH based methodology 

The first step is named Power and Clock Intent Specification Stage. This stage consists first in analyzing 

how data are exchanged between the components of the functional model to allow the designer to understand 

when and how often each component has been activated in the different use cases. Then, the designer splits 

the components in different power domains and clock domains. This is done by instantiating the appropriate 

objects from the PwClkARCH library: clock sources, generated clocks, power switches, and supply nets. 

Usually, a top-level power domain and a top-level clock domain that don’t contain any logic elements are 

defined. 

The second step is the modeling of the PMU. This unit acts as an interface between the functional model 

and the power model. It is a SystemC-TLM block connected to the functional model through the PM block’ 

socket. This unit serves as a relay for the implementation of the power management strategy based on the 

exploitation of CDs and PDs states. This strategy makes it possible to control the power mode of a CD (PD 

resp.) adapted to the application scenario by adjusting the power modes of its components. Switching from 
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one power mode to another then corresponds to a power management request represented as a TLM 

transaction originating from an initiator in the SystemC-TLM system (for example, the CPU on which the 

embedded software executes). 

At the third stage, the complete architecture including its functional model and its power management is 

simulated. Power consumption value updates are plotted in log files generated automatically during the 

simulation (Figure 14). These files are useful for analyzing and comparing different power management 

solutions (for example, different division/multiplication factor configurations in ClkST table) as well as for 

selecting the power management solution that offers a good compromise between system performance, 

power consumption and the complexity of the management system of this consumed power (number of CDs 

and PDs, size of the tables, diversity of frequencies considered for example). In order to verify that the steps 

of the methodology are completed successfully, a process of verification was added to the proposed system-

level design flow. 

This verification step is the fourth step of PwClkARCH methodology which is a perpendicular step. The 

purpose of this step is to check clock and voltage management properties during the simulation. Verification 

is based on the notion of contract. A contract is defined as a set of assumes (i.e. pre-conditions) and guarantee 

(i.e. post-conditions) clauses. To verify a contract in simulation, each clause is introduced in PwClkARCH 

as a specific assertion. This assertion is called at the level of the SystemC-TLM functional code in order to 

trigger an exception when a contract is violated (Figure 15). For example, a Clock Domain is valid if it 

contains only one DPLL and only one CM at most. Another example of contract is that during the 

simulation, there is no functional activity in a CD whose state is clock gated. 
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Figure 14. Power consumption curves examples 

 

Figure 15. Errors Report File example 
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5. Study of the memory system at ESL level 
The design of the memory architecture is becoming more complicated due to the integration of many 

features in the chips as for example both multimedia applications and communication protocols (LTE) that 

are particularly memory intensive. Each application often requires different memory behaviors, for example, 

low latency memory for control-oriented applications, or high-speed memory for multimedia applications. 

A memory system cannot effectively satisfy at the same time these two requirements. It is then necessary to 

make compromises, and thus evaluate on representative use cases different memory configurations 

including cache levels that locally allow to partially absorb the memory transfer requests. 

5.1. Memory and storage  

In mobile systems, being developed for meeting specific functionality, the computing and memorization 

resources are necessarily limited. All mobile systems have limited on-chip memory including the caches. 

However, when running complex and large applications, the amount of memory needed increases, leading 

to external memory accesses, which is a major source of energy consumption in mobile systems. The reason 

for that is that external memory accesses incur additional energy dissipation in terms of voltage adaptation, 

increased memory access time and delay. So, during the development stage of an application, enough 

measures have to be taken into account to properly handle the memory capacity of the system. 

In this section, we first provide necessary DRAM background. Dynamic Random Access Memory (DRAM) 

is composed of multiple banks arranged in a two-dimensional structure formed by rows (Word Lines) and 

columns (Bit Lines, as shown in Figure 16, where each cell stores a single bit of data in a capacitor. Each 

bank contains a row buffer used to cache the data in the most recently accessed row.  

The access to DRAM is controlled by the DRAM protocol. It consists traditionally of six commands: 

activate (ACT), read (RD), write (WR), Precharge (PRE), refresh (REF) and no-operation (NOP) [38]. To 

start processing, the memory controller issues the ACT command to activate the appropriate row. Then, the 

controller sends RD and WR commands to the row buffer. Once the RD and WR operations to the row are 

complete, the controller issues a PRE command in order to prepare the array for commands to a different 

row. The REF command is one of the key issues w.r.t. power consumption in DRAM. In fact, the controller 

issues periodically REF commands to avoid loss of data. This makes DRAM consumes power even when 

not used.  

The time execution of each command is very specific and differs from one technology to another. For 

example, tRCD is the Active to column access delay. It is the time needed to accomplish the ACT command. 

The value of this parameter may be found in the datasheet of the memory device. 
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Figure 16. High-level overview of DRAM-based memory system 

5.2. Memory requirements: Energy efficiency and performance  

5.2.1. Memory requirements 

Modern computer systems consist of many kinds of components and their characteristics is different from 

one another. One of the most important elements is memory. Flip flops are the most basic memory element 

and contained in almost all logic circuits. Memory modules are obviously common memory element. 

Usually, performance is the most important criteria for many computer systems. To achieve desired 

performance, high-speed volatile memory is widely used. However, the volatile memories lose their 

contents when power supply is cut off. Therefore, it is difficult to utilize low-power technologies such as 

power gating. Recently, new generation non-volatile memories (NVM) are emerged and have comparable 

performance to volatile memories (Figure 17). A combination of the NVM and the aggressive power 

managements present a promising opportunity. A major drawback of the NVMs is a write performance. To 

write information permanently, a longer latency and larger power are required compared with DRAM.  
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Figure 17. DRAM vs NVM write performance. Source: Everspin Technologies 

At circuit level Low Power DRAM (LPDDR) was introduced to reduce power consumption in mobile 

embedded devices. They provide specific features such as Partial-Array Self-Refresh (PASR) and Deep 

Power-Down (DPD) which can be activated when the memory part is in idle state. In self-refresh mode, the 

interface circuitry of the memory controller is disabled and disconnected and refresh operation is done 

autonomously using an internal counter. The PASR feature enables the controllers to select the amount of 

memory that will be refreshed during the self-refresh. In DPD mode the power of the memory array is cut 

allowing to decrease its leakage current. If applications do not require data retention, the DPD mode can be 

applied. Data in the memory is not retained after the device enters DPD mode. 

The problem of optimizing a memory system is widely discussed in the literature. In particular, regarding 

the higher levels of the memory hierarchy, a multitude of publications exist mainly in the single-core and 

multi-core contexts of the CMP (Chip MultiProcessor) type. Works like [39] aim to optimize the 

performance of a memory system by introducing specific "writeback scheduling" mechanisms between the 

last cache level and the DRAM. This type of approach is of course not to be neglected, but rather we will 

focus on the problem of reducing interference related to the concurrent execution of applications sharing 

memory resources. Thus in [40] the focus is on the shared resources in a CMP architecture (last level of 

cache, shared bus, memory controller) by a set of threads whose scheduling must be aware of the problems 

of interference. This interference leads to performance degradation that can be high. Thus, degradation by 
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a factor 10 on DRAM access latency due to interference at the memory controller are observed in [41]. To 

limit the interference, many works seek to include in each higher level of decision of the memory hierarchy 

mechanisms that avoid as much as possible the degradation of performance. 

The scheduling of access requests to the DRAM is thus a very studied technique to optimize the QoS 

(Quality of Service). A first widely used technique is the First-Ready-First-Come-First-Serve (FR-FCFS) 

[42]whose objective is to associate the highest priority to queries that target data in the row-buffer. 

associated with the DRAM banks, even in relation to older queries. This type of approach gives good results 

with a single-core, single-thread architecture, but induces significant performance degradations for CMP 

architectures [43]. Thus, many works have been developed to reduce performance degradations by thread 

and by core to obtain a fair quality of service. For example, in [44] the scheduler dynamically estimates 

performance degradation on each thread to be considered for the allocation of priorities to the requests. 

More recently in [45] is presented an algorithm able to differentiate the requests transmitted by a CPU from 

those resulting from a GPU, having very different access schemes, in order to distribute performance 

degradations. Thus, the correct estimate of the interference between applications/threads or performance 

degradation on a thread or an application induced by the management performed in a memory controller is 

a significant problem. For example, in [46] and [47] two techniques are proposed for dynamically collecting 

performance degradations per application and then controlling the speed at which each core emits requests 

to the memory system. In [47], the memory controller is either capable of associating higher QoS with 

certain applications than others or minimizing the maximum performance degradation on all applications 

running in parallel. If the technique proposed in [44] involves inserting substantial hardware resources in 

the memory controller to dynamically define priorities, a less costly approach to resources is proposed in 

[48]. This one divides into two categories the applications, those that cause interference and those that are 

sensitive to interference. Higher priority is associated with the former. 

The above techniques require adapting the controllers to include the proposed management mechanisms. 

Other approaches propose to regulate the emission of the requests to act on the interference rates. This is 

the case of [46] introduced above but also works presented in [49] which address a mesh manycore 

architecture where the tasks are assigned and sequenced to the cores according to the pressure they induce 

on interconnection and on memory. 

The design of the memory system architecture is also a vast subject considered in the literature comprising 

the steps of partitioning, data allocation and their scheduling, these steps being related and sometimes even 

antagonistic, this subject is also complex. 
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As a result, work on memory partitioning reveals substantial gains in surface area and consumption under 

certain conditions. But it is necessary to carry out explorations of memory architectures to find architectural 

compromises. Indeed, the literature deals with techniques such as banking memory, or hybrid memory 

architectures. 

Let us mention the work of [50] describing the general design of hierarchical memory architectures with its 

partitioning into memory banks. Their work helps to determine their number and size. For this, they rely on 

simulations allowing them to extract data such as the most frequently accessed data, access numbers to each 

part of memories, etc. But obtaining this information by simulation takes a lot of time especially if the 

simulations are fine grain (e.g. cycle accurate). To overcome these constraints, they propose to estimate an 

approximation of such numbers thanks to compilation methods, for example by analyzing the source code 

making detailed studies of the loops to deduce the number of accesses, and finally, this step allows to 

estimate the size of the memories and the number of banks required. 

But this approach seems constraining, because either the application code must be executed in detail, and it 

is not always available, or this type of fine code analysis may not be effective because it only takes into 

account features from a compilation analysis on a per-thread basis, without taking into account the entire 

system, which is increasingly competitive. An example of a dynamic partitioning approach performed at 

runtime is proposed in [51] where the demand in number of banks by each thread is estimated to make then 

allocation and partitioning. If performance gains are obtained in simulation, the overhead induced by this 

type of approach is not considered knowing that it only concerns homogeneous architectures. 

Other types of work are particularly interested in generating hybrid memory architectures hoping to take 

advantage of each type of technology. Let us mention the work of [52] which mentions the interest of non-

volatile memories (NVM) with many attractive points, such as its low cost in leakage current, and its high 

density, which should make it possible to reduce the energy consumption of the system. But the major 

drawbacks of this type of technology are the high cost of writing in a NVM that increases the dynamic 

power during this type of operation, as well as latencies that become significant. The authors also note that 

the reliability of an NVM is less important compared to that of SRAM. Since these drawbacks are mainly 

due to write operations, the data allocation must be resolved by reducing the number of write operations in 

the NVMs, and under such conditions, their use could be interesting. The work proposed in [52] then 

discusses the development of a complex allocation algorithm. It is necessary to obtain a rough initial 

allocation for which the different costs will be calculated, and from these data, the solution is refined by 

iterations comparing the different allocation costs until finding an optimal solution or an acceptable 

compromise. 
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These allocation strategies are very complex and require exploration tools. Thus, the works published in 

[53] and [54] begin by calculating the induced energy and the access time of the various possible allocations, 

then the allocation choices are made with respect to the energy criterion. In the first work [53], the 

optimization of the allocation of each block of data (determined before) is carried out. For the second, an 

implementation of a hardware module in the MMU (Memory Management Unit) that is able to migrate data 

and copy them from one place to another targets performance criterion. 

Turning now to the modeling and simulation stages of non-functional constraints such as dissipated energy, 

we can notice that some applications, such as those of the modem, lead to lower workload times at the 

processor level, which can then be put in rest mode. For this, the domains that can be powered by 

controllable voltage sources, i.e. power domains, must be represented. This point cannot be neglected, as it 

is actually present in the platforms. The consequences on memory management are also important, since 

the retention modes, for example, must be able to be modeled. 

Thus, the joint work of STMicroelectronics, the Grenoble laboratory Verimag and Doceapower formerly 

[55] are questioning a high-level model to obtain both performance and power consumed. To do so, they 

opt for a co-simulation platform allowing, in their case, to simulate the platform modeled in SystemC/ TLM 

with a consumption estimation tool so that power information can be directly considered in the architectural 

choices that will be made. Indeed, they start from the observation that usually the power estimation is done 

after behavioral simulations, the traces are then recorded in a VCD (Value Change Dump) type file, and 

finally, analyzed offline. But this implies having already benchmarks to execute. Since they are intended to 

do an architecture exploration in terms of power management, they do not annotate SystemC code directly 

with numeric values, but instead, they keep the numerical values in a separate model. They have extended 

the SystemC modules with a set of power parameters that can be of several different types (voltage, 

frequency, switching activity ...). The value of each of these parameters is set to an adjusted value by the 

functional model at given time points. These other works highlight the lack of exploitation of the 

possibilities of the Virtual Prototyping [56] (project in which are involved the universities of Concordia, 

Costa Rica and California, the companies Qualcomm, Microsoft and Samsung) which usually serves mainly 

to make functional validation of software during its development. They wish to develop the architectural 

design possibilities that this type of method allows. For this, they develop a framework which provides an 

automatic generation of SystemC-TLM models from a graphical modeling. Their Embedded System 

Environment (ESE) tool also provides an automatic TLM synthesis at the CAM (Cycle Accurate Model) 

level which consists of RTL interfaces, system software and files ready to prototype the FPGA. The input 

application is captured as a set of communicating processes concurrently. These processes are, at the sheet 

level, symbolic representations of functions that can be specified using programming languages such as C 
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or C ++. They communicate with each other and with memories using well-defined ports. The big benefit 

of this tool is to be able to make changes and check in a few seconds the impact in terms of performance. 

The platform can be refined very easily and quickly. However, the presented platform remains very 

simplistic and far from our concerns, integrating neither the aspects of voltage and power domains nor the 

aspects of memory access. 

5.2.2. Some existing DRAM power models 

There is a number of power and performance simulation models for DRAM in the literature. We list some 

of them which are the most know and used.  

CACTI [57] is a cycle accurate power model that enables the modeling of the complete memory hierarchy 

(SRAM L1 to DRAM). Many works are done either using CACTI as it is or to extend existing versions and 

enhance them with to support LPDRAM technology for example (CACTI 5.0), or CACTI-P that includes 

an in-depth model for leakage power management technologies. CACTI primarily focuses on interconnect 

design for large caches.  

DRAMSim2 [58] is a cycle accurate model of a DRAM system including the memory controller and the 

buses by which they communicate, developed by University of Maryland. It is a C++ model of DDR2/3 

memory system, where the timing parameters and specifications taken from manufacturer datasheets are 

included in a configuration file. DRAMSim2 uses the power model of Micron to compute power 

consumption given the state transitions of each bank. 

DRAMPower [5] is a modeling tool to estimate power and energy for DDRs, LPDDRs and Wide-IO DRAM 

memories based on JEDEC standards. It basically provides examples of configuration files of memory, 

timing, and specifications from Micron Technology datasheets. We choose to use DRAMPower tool in our 

work for many reasons which are explained in Chapter V. 

Ramulator [59] presents a performance model simulator for DRAM technology. For some standards, it can 

provide power consumption by relying on DRAMPower, but it doesn’t provide a power model itself. 

5.3. Technology trends: Emerging Non-volatile memory 

DRAM has been so far the preferred technology for implementing main memory, but challenges with DRAM 

scaling, like the high cost of refreshes [60], are increasing. To overcome those challenges, some emerging 

NVM technologies, such as phase change memory (PCM), resistive RAM (RRAM) or spin-transfer torque 

magnetic memory (STT-MRAM), appear more scalable and their performances are much closer to DRAM 

than flash memory. Similarly, State-of-the-art showed that NVM technologies read access time is similar to 

its SRAM equivalent [61] [62]. Emerging NVM memory technologies are explored as potential alternatives 
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to traditional SRAM/DRAM-based memory architecture. In our work, the focus is on DRAM-based memory 

architecture. 

The first STT-MRAM products from Everspin Technologies, which use Double Data Rate DDR3 interface 

with some modifications needed to tune timing parameters [63], show that STT_MRAM has matured to a 

point that it can soon replace traditional DRAM. In [64] authors introduce an optimized MRAM interface, 

but it is an adaptation of an existing Low Power DDR LPDDR3 specification, originally designed for DRAM, 

not a dedicated STT-MRAM specific memory controller, therefore providing a sub-optimal solution. Authors 

in [65] have shown that STT-MRAM main memory provide comparable performance to DRAM using 

DRAMSim2 simulator. Figure 18 shows an approximate timeline of the DRAM and STT-MRAM capacity 

growth. The gap between the two technologies is decreasing over the years. 

 

 

Figure 18. DRAM and STT-MRAM capacity growth in years [65] 

The most known MRAM technology is the spin-transfer torque devices (STT-RAM) either with in-plane 

magnetization or perpendicular-to-the-plane magnetization (Figure 19). MRAM doesn’t use electrical 
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charges, it uses magnetic tunnel junctions (MTJs) to store the data. Thus the storage element is the MTJ. The 

information is stored in the orientation of the magnetization of the storage layer. Each MTJ consists of two 

ferromagnetic layers: a free layer (storage layer) with switchable magnetization direction and a fixed layer 

(pinned layer, reference layer) with fixed direction (Figure 20). 

 

Figure 19. STT MRAM cell structure (spintec inMRAM 2015 by Dieny.B) 

 

Figure 20. Principle of spin-torque-transfer STT-MRAM [66] 

 

Figure 21. Emerging memories performances (Y. De Charantenay, (Yole) InMRAM 2015) 
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NVSIM is a simulation tool dedicated to NVM technologies [67]. In the style of CACTI, the NVSIM 

simulator describes at circuit level various NVM, including STT-RAM, PCRAM, ReRAM, and NAND 

Flash. The capabilities of this tool are its ability to estimate the internal access time, the access energy, the 

silicon area of the NVM and to explore internal memory architectures. 

6. Conclusion 

This chapter allows us to present all the concepts that relate to the context of our work. The state-of-the-art 

of modeling and verification at ESL for both performance and power management is briefly summarized in 

this chapter. We introduce also the PwClkARCH library that represents a key basis of our work. We finish 

the chapter by giving a concise study of the memory system at ESL level. In the context of this project 

between the LEAT laboratory and Intel, the goal is to join the tools of both parties and therefore the choice 

of technologies used is almost imposed by the project itself. 

Next, we introduce the Intel pre-silicon simulation environment used in our work and we detail the 

methodology that we propose in this project to provide a framework able to simulate performance and power 

consumption of a given mobile platform, with a detailed memory model, at the same time. 
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III. Intel pre-silicon simulation environment 

SoC designers face many challenges to improve at the same time performance and energy efficiency, due to 

the continuous increase of the architecture complexity. Designers have the opportunity to use ESL tools and 

virtual prototyping to face this complexity in the early step of the system design.  

Power consumption and performance are adversely affected by supply voltage and clock frequency. This 

potential trade-off cannot be studied separately. Our work enhances an existing industrial performance model 

developed by Intel with the introduction of the PwClkARCH library (Section II.4), which allows a combined 

early power and performance analysis.  

Intel was among the first adopters in the industry of SystemC-TLM-based VP (one of the main contributors 

of OSCI TLM standard) to design, optimize and verify its products. As SystemC models are reusable, the 

architecture may be composed from different IP models coming from different owners/teams. During this 

project, we work on the L2 Coprocessor part of a LTE modem and we add the features needed to estimate its 

power consumption and to manage the power dissipation. In this chapter, we present the two Intel simulation 

environments used to validate the proposed methodology.  

1. Pre-silicon simulation environment for performance assessment  

For our methodology validation, we use an Intel proprietary pre-silicon simulation environment, used for 

cellular modems performance assessment and analysis. On the one hand, this model does not include any 

power consideration, neither power estimation features, nor power management techniques. But on the other 

hand, a lot of performance metrics can be evaluated to asses overall and specific IPs performance. 

During the thesis, we worked on two generations of modem and so we used two different simulation 

environments. The first one was in the Intel Sophia Antipolis France site, and the second one in Intel Munich 

site. For obvious reasons of safety of the industrial works of Intel, we are not able to detail hugely these 

architectures that we used during the project. We use abstract models instead to explain our contributions. 

1.1. Intel Sophia Antipolis pre-silicon simulation environment 

We did our first manipulation on a platform level pre-silicon simulation environment used for architecture 

performance exploration and validation in Intel Sophia Antipolis. The goal of this environment is to assess 

whether IPs are properly sized and have sufficient access to external resources, in order to reach the required 

performance needed to achieve their task on-time and efficiently. The efficiency reflects only performance 

metrics like internal buffering, parallelism management, memory bandwidth and latency. Thus, the use 

cases used are high data rate scenarios capable of reaching up to 1 Gbps data throughput. The hardware 

blocks run with the maximum frequency allowed without taking into account the energy consumption. Our 



Intel pre-silicon simulation environment 
 

   39 
 

contribution is to add power consideration to this model, and to minimize power dissipation. Our second 

goal is to validate the available off-chip memory or to consider a new technology, based on the power 

indicator and not only on the performance indicator.  

Figure 22 shows an abstract architecture of a cellular modem, which includes several IPs like CPU, on-chip 

and off-chip memories, interconnect and other functional blocks. Among the latter, we focus on the L2 

Coprocessor block, which is composed of hardware accelerators needed for the L2 data processing, which 

includes a set of hardware components that we call Tiles.  

The model includes a stochastic model of the processor core to de-correlate its behavior from software 

availability. Thus, without requiring a software model we run use cases using platform level task scheduler. 

Hence, the SoC activity is driven by a set of independent task flow. Therefore, it is important that the behavior 

(traffic patterns and processing duration) of the different IP models are matching accurately what can be 

observed on real silicon SoC and that the information fed to the task graph like the instruction count, 

load/instruction ratio, data miss, and address are accurate and correct. All information included in the task 

graph are collected during the SoC profiling phase on the previous generation silicon. So, the main goal of 

the model is to produce an accurate traffic pattern, which is necessary for the analysis of the performance of 

the concurrent execution of the different IPs. This simulation framework fits quite well our need to explore, 

in a first stage, the impact of various task scheduling strategies on Tiles as well as various power management 

strategies onto the memory system performance. 

 

Figure 22. Simplified representation of a cellular modem performance model 
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The platform model activity is driven by a task scheduler fed by a task graph describing the various processing 

flows involved in the targeted use case. Figure 23 shows a simplified diagram that maps software tasks to the 

platform blocks. A single task scheduler is in charge of activating the execution of software tasks on any 

hardware block, including cores. Thus, the scheduling approach is centralized and this scheduler has the 

information of all the tasks (Active, Preempted, Pending or Completed). The use case considered for 

performance analysis are high data rate cellular modem LTE (Long-Term Evolution) scenario capable of 

reaching up to 1 Gbps data throughput. The analysis focuses on the SoC performance during the worst case 

concurrent traffic scenario, where interconnection fabric and memory are the main blocks that may cause 

performance bottleneck. 

 

Figure 23. Platform level blocks mapped into simulation tasks 

Yet, in order to explore power and performance tradeoffs, it is essential to also model the impact of the power 

management strategy into the various performance models and to be able to collect power dissipation 

information out of each key IP model. As described in Section II.4, the PwClkARCH library allows the 

implementation of a power management strategy on top of a functional SystemC-TLM model, described 
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within a VP environment. Therefore, our aim is to add a power model using the library to the performance 

environment introduced above (section 3). By enriching this new environment with the necessary features to 

study the memory system parameters and behaviors, we provide a new methodology to explore different 

memory systems, where power and performance are primary constraints. 

After 15 months of work based on Intel Sophia Antipolis platform, for reasons that didn’t depend on us, we 

had to change the architecture on which we work and so we moved to a new version of the modem platform.  

1.2. Intel Munich pre-silicon simulation environment 

The second architecture model we used in our work (Figure 24) represents the next generation model of the 

previous architecture. The differences are mainly in terms of the implementation environment, the 

technologies used for each block or other added improvements that cannot be detailed and do not bother our 

work. The architecture is composed of components from Intel’s System Architecture and Exploration SAVE 

library. This library includes some generic models for processing elements, interconnects and memory 

subsystems, as well as some specific application models, for macro and micro architecture exploration. These 

models are implemented using Intel SystemC TLM libraries which are compatible with the standard 

SystemC-TLM but have more facilities for users. This development environment (SAVE) allows us to 

simulate architecture models to evaluate their performance. 

The task scheduling engine interface is modeled as s SystemC module which is used by all the processing 

elements of the architecture like the Tiles (T0 to T6). This interface schedules tasks according to their 

priorities. As many tasks may be running in parallel, and may be mapped on the same processing element, 

the decision of which task to schedule is depending on given priorities. Configuration files are used to specify 

the values of the different parameters based on Intel SystemC TLM Attributes. In this architecture, the 

scheduling is distributed. Each hardware engine has its own scheduling interface which schedule the tasks to 

be run. The new task graph methodology used in this version provides a scheduling layer on top of each 

processing element in the architecture model, for scheduling the execution of different parallel tasks mapped 

onto the same processing element. Thus, it is a distributed scheduling approach and not a centralized one as 

in the previous architecture. This is very important for us since it impact the manner how to collect and send 

the engine status information (Idle, Active, Preempted or pending) to the PM, which will be explained at the 

end of section 3. 
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Figure 24. Simplified representation of a cellular modem performance model 2 

2. Task Graph 

The two previous modem architectures use a task graph to model the modem software application part. Even 

if differences exist between the task graphs of those two architectures, they describe similar concepts. At 

system level, on the one side the hardware architecture and the software application models are usually not 

mature. The architecture resources cannot execute real software applications. On the other side, the 

simulation results must be accurate enough so that it is possible to make reliable early design decisions. Thus, 

the application is modeled as a task graph (example Figure 25) where each node represents an abstract 

application task, and the edges represent dependencies and communication channels between the tasks. 

Following this approach, it is possible to obtain rapid performance evaluation. 

The tasks can be mapped on different resources in the architecture through a configuration file using Intel 

SystemC Attributes Objects (Figure 26). Each node has a parameter that refer to a resource in the architecture. 

This file includes other parameters of a task node such as start or release time, deadline, period, priority, 

successor and predecessor tasks, etc (see Figure 27). A deadline of a task should be smaller or equal to the 

time interval specified for the transfer. If the transfer is completed before the deadline expires, we say that 

the deadline is met and the headroom is calculated. If the transfer is completed after the deadline expires, we 

say that the deadline is missed and a negative headroom is calculated (an example of output log is given in 

Figure 28). During the simulation, when a task is trigged, it requests starting processing on its mapped 
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architecture resource and, upon completion, triggers its successor tasks. The behavior of each task is 

implemented as a finite state machine with four states (IDLE, READY, RUNNING, PREEMTED).  The 

resources only simulate the performance workload of the application tasks without executing real behavior 

or algorithms of the software tasks. In fact, Intel task graph methodology aims to provide reliable system 

level performance estimates of a multi-core embedded system architecture for an abstract use case or 

application. It does not require detailed implementation of the application.  

For example, in Figure 25, we have a task graph used on the architecture 2 that includes ten tasks which are 

mapped on Tiles represented as T0 to T6. The dashed arrows represent the mapping between the task and the 

hardware block. The green arrow indicates that the task is periodic and therefore it triggers itself. The set of 

the green and the blue arrows constitute what is called the edges of the task graph. 

 

 

Figure 25. Example of a task graph for communication application 
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Figure 26. Specification of the task DL_HDR_0_0 within a configuration file 
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Figure 27. General parameters of a task-graph node 
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Figure 28. Example of output log for deadline examination 

 

3. Adding Power Intent to the simulation environment 

The power model used at Intel for those modem platforms is based on a static power model framework based 

on spreadsheet calculations consisting of calculation algorithms and use cases. An Intel power use case is 

defined as a combination of system states for which the power consumption must be calculated depending 

on the percentage of the activity of each block. This power model is developed by a different team to the 

performance team, so there will probably be gaps between the functional and power models. This encouraged 

us to work with the performance modeling team to introduce a new method for adding power consideration 



Intel pre-silicon simulation environment 
 

   47 
 

using the same simulation environment. Our work is to define the dynamic power model of such platform, at 

ESL level and linked together with the performance model using the PwClkARCH library. 

One of the first aim of this work is to prove that the power-aware PwClkARCH library described in Section 

II.4, and the performance model described in the previous paragraph, do fit together, and then to show the 

benefit of applying clock gating on the L2 Coprocessor block in order to reduce dynamic power consumption, 

while verifying that performance and timing still fulfil the hard real time requirements of the use case in 

focus. 

In our case, we have defined only one PD and one CD including the eight Tiles of the L2 Coprocessor block 

(architecture 1), enumerated from 1 to 8 (Figure 29). Thus in our PMU, we instantiate one CM and one DPC. 

We define one design element for each tile, DE1 for Tile 1 and in the same way up to DE8 for Tile8. Each 

instance of the design element DEx is parametrized with values of capacitance and leakage resistance of the 

corresponding Tile. There is also a supply net that sets the voltage value for all the PD. The connection 

between the performance model and the power model is done through the PM of the PMU unit. The scheduler 

has the knowledge of the task’s assignment on the different IPs. When it schedules a task on a Tile, the 

scheduler sends the information (Tile’s number and Tile’s state) to the PM. A Tile is inactive when it’s not 

running a task and when there is no task in its pending task queue. The PM takes this information and turns 

off the clock of the corresponding Tile if the state received is inactive, or turns it on if the received state is 

active. In this use case, only clock gating is applied because idle periods of the L2 Coprocessor which allow 

power gating to be applied, are not long enough to save power using power gating. 

 

Figure 29. L2 Coprocessor power model definition using PwClkARCH 

The objective of this use case is to identify the sufficient clock frequency associated with the scheduling 

technique developed in the scheduler, which allows to satisfy deadline constraints, and further, to obtain in 
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parallel the associated power profiles. The activation period of all the tasks is 1ms, the deadline is set to 0.9 

ms for some tasks and to 0.75 ms for others. 

Regardless of the number of Tiles, the power model definition for the architecture 2 is the same. The 

difference is at the interface between the PM and the task scheduler. In the first case, since we have only one 

scheduler, it sends the information to the PM directly. In the second case, the scheduling is distributed through 

the hardware engines. In fact, for the purpose of task-graph construction and mapping of tasks on different 

architecture resources, tg_constructor module is used. It is an SC MODULE and instantiated with the task-

graph configuration file reference, given as a constructor parameter. The functionality of this module is to 

construct the task-graph and map tasks on the architecture resources. The module tg_constructor has a set of 

member variables and methods as shown in the Figure 30, which are called while constructing the task-graph. 

We add a function called PM_info () in the task graph constructor which is called from the scheduler interface 

of each engine when a task is started or completed.  

 

Figure 30. Main function and variable members of tg_constructor 

 

At the end of the simulation, an activity report is generated which gives detailed information about the run-

time statistics of each tasks, such as, minimum, maximum and average execution time, completion time, 
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deadline misses, etc. The total execution and completion time of a task depends on the load of the engine 

(hardware resource), load and latency of the interconnect and memory subsystems. 

4. Conclusion 

In this Chapter, we present Intel pre-silicon simulation environment used for performance evaluation and 

architecture exploration. We introduce then our work on providing a joint performance-energy consumption 

simulation environment. This model helps making early decisions on the choice of the most suitable 

architecture like memories size, bandwidth, frequency, etc., and of the scheduling strategies in 

communications SoCs.  

The next step of our work will focus on the introduction of a memory model, within our power model, which 

allows a global analysis of the system, in term of performance and power, knowing that the power strategy 

influences the frequency of the memory requests.  
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IV. Model Driven Engineering for 

PwClkARCH-based design: Graphical and 

textual user interfaces for code generation 

1. The Model Driven Engineering approach 
Models are more and more important in the field of hardware design. Nowadays, the difference between 

mobile devices on the market is no longer based on the performance of the processor alone, on the contrary, 

it is based on consumption in terms of power and battery life. This motivates us to go further from TLM-

level modeling and develop a model-based layer that can be considered our starting point. This model-based 

layer allows us first to separate the non-functional properties (in our case power intent and clock intent) 

from the functional ones, i.e. the hardware architecture, in a separation of concerns based-approach to 

simplify power modeling and, second to use model transformations to map the specific technology platforms 

and generate the SystemC-TLM code of the overall system including both power and functional models in 

a single simulation model. This layer is based on Model Driven Engineering (MDE) approach. 

A preliminary work based on UML for specifying a power intent including a SystemC-TLM code generator 

was introduced in [68]. In this work, we propose to create a graphical modeling tool to simplify the 

integration of power management features using PwClkARCH library, MDE and the two Eclipse plugins 

Sirius and Acceleo. The advantage of Sirius is to simplify and facilitate the use of this library through a 

graphical interface and with the help of Acceleo to correctly generate the simulation code SystemC-

TLM/C++, which then makes it possible to evaluate both performance and power consumption of the 

system. 

Figure 31 illustrates the flow we propose to automatically generate a power/ performance SystemC-TLM 

simulation code resulting from the merging of a HDL design and the code produced from a graphical entry 

or a textual entry of a power/clock intent.  

This Chapter describes our work around the MDE approach used to facilitate the designer ‘s task to take 

into consideration power aspects right at the beginning of the design flow. First, we describe our Metamodel, 

then we explain how this Metamodel helps us to generate the code needed to have the joint power and 

performance simulation. Finally, we close this part with the presentation of the graphical interface 

implemented for the use of the PwClkARCH library. 
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Figure 31. Power/ Performance simulation model code generation 

2. PwClkARCH’ Metamodel 
Using MDE approach and its own transformation techniques, executable models (simulation code) can be 

generated from a high-level model. To do that, the first step is to define the metamodel of the system and 

then define the transformation rules that allow generating the code needed for the simulation of a given 

system. A metamodel is a model of a model. It is a simplified model of an actual model of a circuit, system, 

or software. 

In the MDE methodology, and according to the traditional Object Management Group (OMG) 

metamodeling infrastructure, we have basically four layers, from the meta-metamodel layer M3, which is 

the top layer, to the real-world layer M0. These layers are presented in Figure 32. The Meta Object Facility 

MOF is an OMG standard designed to provide a means in order to define the structure or an abstract syntax 

of a language or data. The most popular example of layer M2 MOF is the Unified Modeling Language 

(UML). A model (M1) must conform to the metamodel and it represents a real system of layer M0. MOF 

defines a model interchange standard XML Metadata Interchange (XMI) for serializing MOF-based models. 

In practice, we use the Eclipse Modeling Framework (EMF) [69] to model the PwClkARCH’ metamodel 

based on the Ecore format [70], which is basically a subset of UML class diagrams. EMF is a modeling 

framework and code generation facility based on structured data model. A metamodel can be considered as 

a Class Diagram on the Meta level. Thus, basically we have the same semantics except that we add an “E” 

to refer to Ecore. EMF defines the types of the meta classes as EClasses. EClasses can have EAttributes to 
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describe the properties, EReferences to describe associations and relations, and EOperation to represent the 

modeled operations local to a specific class. EMF is easy to use for creating and editing models. In addition, 

it allows the validation of created models, which is essential to keep compliance with their metamodels. 

Defining the PwClkARCH metamodel is a very sensitive operation, as a valid model is needed to run the 

transformations. In fact, we must specify the containment relationship between the classes that represents 

the basic relation for the instantiation of the model. We cannot for example instantiate a power domain in 

our model if we have not defined a reference of type containment from the Model class to the Top class and 

then the Power_Domain class. EMF provides also the possibility to enrich the created metamodels by adding 

Object Constraint Language (OCL) constraints. We will explain those constraints later. 

 

Figure 32. OMG’ flow infrastructure 

Figure 33 represents the metamodel of the PwClkARCH library described with the EMF framework. We 

define different EClasses for the different classes implemented in the library which have been introduced in 

Section II.4 like Power_Domain, Clock_Domain, Design_Element, DPLL, etc. Model class declares the 

Power Model of the system. 

Taking the example of a design element in the architecture, it has to belong to one clock domain and to one 

power domain. To model this relationship in our metamodel, we consider the DesignElem class that 

represents the components of the architecture, the ClockDomain class to represent the clock domains and 

the PowerDomain class for the power domains representation. We add then two references from the 
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DesignElem class to the ClockDomain and from the ClockDomain to the PowerDomain classes called 

respectively belongsCD and belongsPD. As one component can’t belong at the same time to more than one 

clock domain or one power domain, we set the upper bound of these references to one (more information 

are given in the Appendix ). 

All structural constraints imposed by cardinality constraints, composition relationships and OCL constraints 

defined in the metamodel are validated and have to be respected when building a model. Usually a model is 

simply obtained using EMF dynamic instance creation option, but in our case, the aim is to create the model 

graphically using drag and drop in an editor to facilitate the use of the library. 

 

Figure 33. PwClkARCH Metamodel 
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3. Code generation 
The MDE approach is a well-suited solution for automating a model transformation which in our case 

consists in the code generation in C++ and SystemC-TLM representing the structure of a power/clock intent. 

A model transformation (MT) [71] is a compilation process that allows moving from an abstract model to a 

more detailed target model. So, before performing any MT, a set of transformation rules must be specified 

first. Each MT is performed using a transformation engine which applies transformation rules to a source 

model so as to generate a target model. Model transformations used in our work are of type Model-to-Text 

(M2T): executable models are generated from a specific high-level model using Acceleo template(s). Thus, 

most of the C++ and SystemC-TLM code needed to run power simulation is generated automatically. 

To do that, we use the plugin Acceleo. Acceleo [72] is an open-source code generator from the Eclipse 

foundation. It is a pragmatic implementation of the MOF Model to Text (M2T) standard. Acceleo ensures 

code/model synchronization and ensures incremental generation of the code. Figure 34 represents the four 

steps needed to generate codes using the Acceleo plugin, from the EMF modeling to the code generation. 

The inputs of the M2T acceleo transformation process are: the metamodel, the model and the template. The 

output text (codes) may have several forms/types (e.g. SystemC, C++, Java, text…). 

 

Figure 34. Model to Text Transformation schema 

For code generation, Acceleo provides a pseudo-language for navigating models and extracting the data 

needed to generate code based on EMF’s EClass, EAttribute and EOperation elements. Using this language, 

we implement one or more templates to define the syntax of the output text. 
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We must specify the metamodel that will be used for retrieving the information needed for the generation 

code when creating the Acceleo project. Thus, the metamodel information section allows specifying the 

input metamodel of our new module file, either from the list of registered metamodels or directly by URI. 

In this way, we have connected the different parts of the MDE approach, in particular the metamodel, the 

model and the Acceleo template, to build the full chain of the code generation. 

We may have one or many templates; it’s not the number of templates that defines the number of the output 

files. In fact, in the code of the template Generate.mtl, the tag “[file]” indicates the beginning of the 

generated text. It takes as input a few parameters including the name of the file and the character encoding. 

Since we define one metamodel that models the whole power and clock intent of the platform, we define 

also one template that generates three files which are the “PMU.h” and “PMU.cpp” SystemC-TLM codes, 

and the “sc_main.cpp” C++ code. The files “PMU.h” and “PMU.cpp” include the creation of Clock manager 

units, the PM unit and the interconnection. More precisely, they define the signals and the binding between 

the different components of the PMU unit. 

The C++ generated code “sc_main.cpp” includes the definitions of the different clock and power domains 

of the platform defined in the model. It instantiates also the components (design elements), the DPLLs, 

power switches, the different clocks needed for the definition of the clock tree, and the three tables OPPT, 

CLKST, PST that allow to specify the values of the different parameters used to apply a given power 

management technique. This code must be included later in the SystemC-TLM code defining the hardware 

architecture of the platform (top level main code for example). 

For complex hardware architecture including a large number of IPs, it could be error prone to develop 

manually a model of a power/clock intent directly using dynamic instances from classes of the metamodel. 

To address this problem, a designer should create a model with more advanced features. To do that, we have 

developed two types of tools: a graphical entry tool (next section) able to perform verification dynamically 

on the structure of the power/clock intent while it is created, and a textual entry tool (section 5) based on 

UPF-inspired syntax. 

4. Graphical workbench 
After preparing the basis of our tool including metamodeling and code generation, we start the 

implementation of a graphical editor to represent the PwClkARCH interface to the user. This tool should 

executes all the facilities that have been explained in Section II.4. Like every graphical editor, we introduce 

a palette. In our case, the palette helps the user to: 

 Add, edit, and delete library elements (Power Domain, Clock Domain, Design Element, Supply 

Net, Power Switch, Clock Extern, Generated Clock, and DPLL). 
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 Modify the properties of the different elements of the library: 

 The names associated with the instances of the different elements. 

 Time penalty values for the Power Switch and the DPLL. 

 Capacitance, leakage resistance and activity factor values of the Design Element. 

 Clock Extern type and frequency value. 

 Enter graphically the different tables needed for power management strategy implementation: 

 Enter the Power State Table (PST). 

 Enter the Clock State Table (CST). 

 Enter the OPP Table (OPPT). 

 Generate SystemC-TLM code from the graphical view needed to define the power model of the 

architecture. This code is divided into 3 codes: PMU.h, PMU.cpp and the code need to be inserted 

in the main class of the model (sc_main.cpp). 

 Import previously defined power models and their graphical visualization so they can be easily 

modified. 

In addition to these functions related mainly to the definition of the power model, we have introduced some 

features to facilitate the use of the tool to the user. For that, two points have been studied: 

 Ergonomics: the graphical interface of the tool should be simple and practical to ensure the comfort 

for the user without referring to specific prerequisites. For example: 

 Automate the creation of elements when using the graphical editor. For example, when a 

nested power domain is created inside a parent power domain, automatically a power 

switch is inserted inside that domain and its input is connected to the internal supply net of 

the power domain. 

 Reliability: The created tool must be reliable and produce correct results regardless of the 

manipulation of the user. Reliability is ensured thanks to: 

 A comprehensive study of the structure of the PwClkARCH library to define the most 

appropriate metamodel. 

 OCL-based preconditions to check if the actions of the user are feasible and can prevent 

most kinds of misuse. OCL is a formal language that can be used to specify invariants, pre- 

and post- conditions as well as describe guards and constraints on operations. The creation 

of OCL was a very interesting effort to bring some formality to UML. OCL expressions do 

not have side effects. That is, when they are evaluated the system state does not change. 
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4.1. Main Interface 

The main interface of our graphical tool is depicted in Figure 35. It is designed with a Drag and Drop palette 

(1) to execute the functionalities described previously in order to obtain a coherent graphical presentation 

of a power model of a given system. 

The workspace (2) presents the editor in which we drop elements from the palette. In Figure 35, we show 

the different clock and power domains, the design elements, the supply nets etc. used to model the power 

Intent and the clock intent of a given architecture. 

The third part of the graphical interface of our tool is the Properties window (3) that helps the user to enter 

the properties of the different elements. “Belongs PD” and “Belongs CD” properties, as the names indicate, 

allow to specify respectively the PD and the CD, which the selected element in the workspace belongs to. 

We also remark that the values of the three parameters necessary for the calculation of the power and the 

energy, capacitance, activity ratio, and leakage resistance, can be specified and modified easily without 

going into the code. 

The menu bar (4) gathers tools acting on graphic elements to ensure the following features: 

 Change the colors through a color palette. 

 Export the graphic of the power model in image format. 

 Enlarge or reduce the size of the chart. 

 Filter the display to perform the desired items only. 

In this part, we were interested in the stage of development of the graphical workbench using the Sirius 

plugin to build a model conforming to the metamodel PwClkARCH. For that we started by creating a project 

of type "Viewpoint Specification Project" and we handled mainly the file ".odesign" and Java classes to 

reach our needs. First, we defined the graphical aspect associated with the different EMF classes and 

describe the structure, appearance and behavior of the modelers that represent the elements of the palette. 

Second, we set preconditions in OCL to prevent the user from making errors when using the graphical 

editor. For example, we check the PD existence before we can create a Supply Net. That is, we allow the 

addition of a SN only for PDs located in the "Top" element. Third, we automated the creation of the different 

elements of the library to reduce the risk of error when presenting the power management methods and 

facilitate the task to the user. This can be done for example in the case of the power model's structural 

situations like the creation of the CD; By structure, a CD has a DPLL and a DPLL has two input clocks and 

one output clock. As a result, during graphic manipulation, a creation of a CD generates an automatic 

creation of a DPLL, two Clock Externs as input and one Generated Clock element as output. 
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Figure 35. Main Interface of the graphical entry tool 

4.2. Power and clock states tables ' interface 

To manage the CST, PST and OPPT tables from the graphical tool, we use the Sirius plugin. Sirius is a 

project that makes it easy to create a graphical modeling workbench using Eclipse modeling technologies, 

including EMF and GMF (Graphical Modeling Framework). 

To accomplish this task, we translated the structure of the tables represented in Figure 36 as class instances 

internally to an XML file illustrating the hierarchy of the power management strategy (Figure 37). It is this 

XML file that will be used later in the code generation by Acceleo. 

1 

2 

3 

4 
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Figure 36. Example of Tables Views   

 

Figure 37. XML representations of CLKST, PST and OPPT 
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5. UPF-like Integration 
EDA tools addressing low power design at register transfer level (RTL) down to GDSII level use standards 

such as UPF (Unified Power Format, IEEE standard 1801, chapter II section 2.4). A power architecture 

(power intent) specified using UPF includes a partitioning of the functional IP blocks (e.g. see Figure 38) 

of the architecture into power domains (e.g. PD1), supply nets (e.g. VDD1) and power switches (e.g. PS1) 

for power gating facility. Low power design using UPF supports a strong separation between the HDL 

description of the architecture and the UPF description of the power intent. Unfortunately, such low power 

design flow is not available at ESL and UPF does not provide any facility to describe a clock tree, whereas 

clock tree modeling is critical to capture and control the switching power. 

In this context, we have developed also a parser of a simple UPF-like language to add more facilities to the 

creation of a model on the one hand, and to get closer to the UPF standard on the other hand. Usually SoC 

designers are used to capture their design with script-based entry tools rather than graphical tools. Thus, the 

idea is to introduce an UPF-like file in our generation code flow. In this file, the power model of the platform 

is defined using commands inspired from UPF syntax (especially in the case of clock domains). Let’s 

explain this generation flow using another platform example. Considering the following power model that 

we want to simulate (Figure 38).  

 

Figure 38. Power Model Example 

To create a power domain called PD1 that includes a CortexM3, an UART and a Bus, we use the following 

command: create_power_domain PD1 –elements {CortexM3/Bus/UART} 

To create a clock domain called CD1 that includes a CortexM3, an UART and a Bus, we use the following 

command: create_clock_domain CD1 –elements {CortexM3/Bus/UART} 
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We also use commands to define Supply Nets, input and output clocks of the DPLLs and all the elements 

needed to define our power model (Figure 39). 

 

Figure 39. UPF-like input file 

In order to be comprehensible by eclipse, this file should be transformed into XML syntax. For that, we use 

JFlex which is a lexical analyzer generator for Java written in Java. The main design goals of JFlex are: full 

unicode support, fast generated scanners and platform independence. We develop our lexical UPF-like 

parser that contains a set of rules which correspond to a set of actions. For example: for the first command 

in the Figure 39, the actions to do are first to recover everything written after create_power_domain, then 

extract the name of the power domain, and later the list of the elements included in this PD. The output of 

the parser should be the same as the XML syntax of a model created using the Eclipse editor, which has 

been validated and tested on this example (Figure 40). 

Thus, from an UPF-like script that defines the power model of a given architecture, we generate 

automatically the XML model that could be used in our EMF project described earlier to generate the 

simulation code (Figure 41). This UPF-like-based approach illustrates the possibility of defining at the ESL 

level a scripting language inspired by UPF in order to reinforce the separation between functional model 

and power model at this level of ESL abstraction. This type of scripting language should be standardized to 

facilitate the development of power/performance simulation tools addressing this ESL level. 
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Figure 40. XML output syntax 

 

Figure 41. UPF-like generation flow 

6. Conclusion  
Figure 42 represents the construction chain of our graphical tool, needed to apply the methodology 

implemented in PwClkARCH. We distinguish a first phase of development of the tool, the upper line, and 

a second phase of exploitation of this tool which is the lower line. The development of the tool requires first 

of all to develop the metamodel under EMF and then to associate with this metamodel all the graphic 

elements under Sirius that refer to the metamodel. Once the development of the graphical tool is realized, 

we can exploit it by creating a graphic model (the box on the bottom right of the figure), which makes it 

possible to build a model of a Power Intent of any platform which is conform to the PwClkARCH 
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metamodel. This work makes the library more attractive to the user as he manipulates a graphic editor rather 

than lines of codes. 

 

Figure 42. Steps of the graphical tool development 

All the developments introduced in this chapter concern a power/performance simulation environment for 

hardware architecture composed of a set of interconnected IPs. But as illustrated in chapter II, the memory 

sub-system could impact significantly performance and power of a SoC because its behavior depends on 

the type of memory accesses transmitted by the SoC, on its internal state, on decisions from the memory 

controller, and in return the timing of completion of read/write operations by the memory sub-system 

impacts the behavior of the SoC. To capture these behaviors, simulation models of the memory sub-system 

should be developed in conjunction with the power/performance model of the SoC. This point is addressed 

in the next chapter. 
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V. Exploration of memory technology based on 

simulation at TLM level 

In most computing systems, and especially in mobile terminals, the memory system represents a major 

performance and energy bottleneck. The features and therefore the requirements on the memory system are 

increasing rapidly [73] and need to be addressed as early as possible in the design flow. This is even more 

important since the trend of memory consumption is of the same order of magnitude as that of the logic part 

as stated by the International Technology Roadmap for Semiconductors (ITRS) (Figure 43).  

In fact, the multi-core design that nowadays underpins most of the mobile device architectures, made of 

both homogeneous and heterogeneous cores, and the presence of components that perform specific 

processing, e.g. cellular communication [74] or video capture, lead to concurrent memory access streams 

across the communication subsystem of the platform. Added to this, power management decisions that vary 

the frequency of the components, for example when using DVFS techniques, modify dynamically the usage 

of memory system. It is therefore necessary to consider an environment capable of describing all these 

aspects in order to effectively evaluate the performance and power of the entire system.  

 

Figure 43. The expected trend in power consumption for logic and memory circuits in portable consumer devices, as reported by 
the 2011 edition of ITRS 
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As illustrated in chapter II.5, various DRAM simulators have been developed focusing on different aspects 

but a few of them include an accurate power model. Among them, DRAMPower appears as a good candidate 

in the perspective of developing a co-simulation framework with SystemC-TLM. 

1. DRAMPower tool 
DRAMPower is a high-level DRAM power tool that performs high-precision modeling of the power 

consumption of different DRAM operations, state transitions and power-saving modes at ESL level [5], 

[75]. The tool can be employed using two interfaces, the command-interface, which assumes that a DRAM 

controller is available in the system model, and the transaction-interface, in which the DRAMPower tool 

command scheduler is used together with additional options including interleaving, request size, bank group 

and power strategies. Basically, DRAMPower is composed of a front-end and back-end as illustrated in 

Figure 44. The back-end evaluates the power consumption (DRAMPower combines dynamic and static 

power) of the DRAM based on the schedule of commands generated by the front-end. The front-end receives 

read and write transactions from masters and calculates the time slots where appropriate commands can be 

scheduled. The schedule is computed according to the timing characteristics of the DRAM, the values of 

addresses in the transaction requests and the state of the memory banks in the DRAM. Thus, the transaction-

interface is used as input of the front-end and the command-interface is used as input of the back-end. In 

our case we use DRAMPower as the combination of both the front-end, as functional model, and of the 

back-end, as power model. 

 

Figure 44. Overview of general SDRAM controller [38] 

Defining a transaction trace format is a simple operation in DRAMPower. A line in the trace file is composed 

of three comma delimited fields: 

Timestamp, READ/WRITE, Address 

Where Timestamp is the delay in cycles from the previous request. READ/WRITE is the type of transaction, 

and Address is the address in the physical memory.  
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The tool provides as examples thirty-six memory specifications, including different configurations of DDR 

and LPDDR based on Micron Technology datasheets and the Joint Electron Device Engineering Council 

(JEDEC) memory standards timing specifications. 

Although STT-MRAM technology was introduced only around ten years ago, STT-MRAM devices are 

already approaching DRAM in terms of capacity, frequency and device size. 

Since STT-MRAM is a relatively new technology with no specific standard, the manufactures have two 

options: make a STT-MRAM main memory by deploying specific STT-MRAM specific memory 

controllers, or reuse the DDRx standard. 

In [64], the authors compare a 4Gb LPDDR3 DRAM and a 4Gb LPDDR3 STT-MRAM by parameterizing 

the two simulators CACTI [57] and NVSIM [76]. They notice that the two types of memory provide the 

same JDEC interface (based LPDDR3). Therefore, this work illustrates that once the timing and power 

parameters of a STT-MRAM are available, a SDRAM simulator can be also used for simulating an MRAM 

technology. 

Initially, we use the DRAMPower tool as standalone to test it and remake the comparison done in [64] from 

which we obtain the timing and power parameters of a DRAM and MRAM LPDDR3 devices. In [64] 

authors design an LPDDRx-compatible MRAM interface using three optimization techniques: EarlyPA, 

DynLat and ComboAS. The former is used to leverage the non-destructive reads of the MRAM (II.5.3). The 

other two items are used to solve the small page size issue. In their work, they use a modified CACTI and 

NVSIM to simulate and compare the two memory technologies. Figure 45 presents the comparison between 

the two memory systems of the average power consumption when running four main use cases, which are 

available in the DRAMPower tool: JPEG, H263, MPEG2, and EPIC. Compared to DRAM, the MRAM 

consumes less power, thanks to the lack of power-refresh procedures. In [64], authors found that the 

performance of their optimized MRAM system is similar to the DRAM system. They also compared the 

energy consumption between the two systems (Figure 46), in which they plot the refresh energy, the burst 

energy, the activation/Precharge energy and the background peripheral circuit energy separately. They 

proved that compared to DRAM, MRAM-based system consumes zero refresh energy and this is because 

of its non-volatility. As a conclusion, MRAM is an attractive candidate to build the main memory system 

and the zero-refresh energy is the major source of the MRAM energy saving.    

However, our first operation on the tool was not good enough for us. In fact, feeding the tool in the 

standalone mode with execution traces makes it not possible to measure the access times to the memory on 

the time stamps of read/write events, and such limitation causes a suboptimal or an even erroneous 

performance analysis. 
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Figure 45. Average power consumption in mW for MRAM and DRAM 

 

Figure 46. Normalized energy consumption of DRAM system and MRAM system adopted different techniques [64] 

These preliminary results show that the use of the DRAMPower tool can help us to have an accurate estimate 

of the energy consumption of a given memory technology. And so, connecting SystemC-TLM and 

PwClkARCH with DRAMPower will allow us to have a framework that estimates the overall performance 

of the system and the power consumption of each component of the platform, including the memory system 

with a precise power model taking all memory operations into account. Power management strategies could 

then be explored considering the mutual effects of the processing architecture part and the memory storage 

part of the whole system. 
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2. Memory exploration flow 
DRAM has a big impact on performance and power consumption in mobile devices. Evaluating the 

efficiency of power management strategies and performance of DRAMs requires an approach that includes 

an appropriate model of the DRAM, a realistic controller, a high-precision power model, and a 

representative workload of real use cases. All of the above requires a full system simulation framework able 

to represent the impact of the different mutual interactions between all the components in mobile platform 

and the memory subsystem. 

In this work, we present a framework that allows exploration of different power management strategies of 

given SystemC-TLM based VP platforms, taking into account the power consumption of the different 

operations of DRAM including the main related operations (e.g., read, write, refresh, activate, etc.), using 

the DRAMPower tool cited above. We incorporate one MRAM specification into DRAMPower in order to 

explore different memory technologies and to study the impact of memory parameters on power and 

performance values. We first make use of our framework on a basic SystemC-TLM platform. 

We consider a simple SystemC-TLM VP (DCT Platform) that executes a Discrete Cosine Transform (DCT). 

In addition to the DCT hardware block (Figure 47), the platform includes a CPU, a bus and a memory. In 

this example, the bus and the memory are assigned to the same power domain PD_AO and clock domain 

CLKD_M, the CPU is in a power domain PD_Native and in a clock domain CLKD_C, and the DCT unit is 

in power domain PD_DCT and in clock domain CLKD_DCT. 

Figure 48 illustrates the behavior of this architecture: the CPU initializes first in memory a vector of 256 

elements, then it transfers this vector to the DCT unit and activates the computation of the DCT by the DCT 

unit. The CPU polls until the end of the DCT computation and then reads the DCT results and stores the 

values in the memory. 
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Figure 47. DCT Power model example 

 

Figure 48. Functional behavior of the DCT platform 

As the power model developed in DRAMPower has proven to be accurate [5], it is linked through our 

framework to the PwClkARCH library, so to define the memory power model and energy consumption that 

offer a complete power and functional model of a mobile platform. 

The connection of DRAMPower with the DCT Platform augmented with the power intent is realized using 

the memory unit from the functional model and the design element DE_SRAM from the power intent 

(Figure 49). A specific DE_SRAM component has been developed which inherits from the design element 

class of PwClkARCH and includes the power model of the memory part, both for DRAM device and 
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memory controller. Particularly, DE_SRAM redefined the function Update_dpow() which is basically used 

to calculate the power model of the unit. On occurrence of a read or write transaction, the functional model 

SRAM calls the SetActivity () function of DE_SRAM telling that the SRAM is active. In turn, DRAMPower 

is activated inside the overloaded Update_dpow() function and the average power consumption 

(average_power) and the average access time (mean_access_time) of the memory part are collected back 

by DE_SRAM. 

 

Figure 49. connection of DRAMPower with the DCT Platform 

In order to evaluate with DRAMPower the power consumption of the DRAM part, we consider successive 

windows of transactions such that DRAMPower is activated each time a window is filled by DE_SRAM 

with the appropriate number of transactions. 

Figure 50 illustrates how read/write transactions are grouped in a trace file by the simulation from the 

functional model of the DRAM. Each time a window of N transactions is stored in a file by the DRAM 

functional model, DRAMPower is activated. DRAMPower performs the simulation of the memory part 

based on the input trace file and evaluates different parameters such the average power consumed by the 

memory part to execute the requests in the window. In Figure 50, DRAMPower is activated after N=8 

transactions and the average power consumption Pavg_dram associated with the first eight transactions is 

available after time t8. Therefore, there is a delay (according to the SystemC-TLM global time) between the 
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N-1 first transactions in the window and the power value sent back by DRAMPower for these transactions, 

i.e. the new power value will be logged by PwClkARCH at time t8, once all the N previous transactions are 

processed by the functional model. Similarly, the mean access time of the N transactions evaluated by 

DRAMPower is known at time t8, this value is used as the new mean access time for the next window of N 

transactions. Assume a refresh operation needs to be scheduled in the first window of N transactions. 

Therefore, the mean access time includes the time required to execute this refresh operation and as this mean 

access time is passed as the memory access time for the next N transactions, the impact of the memory 

behavior is globally considered in the global SystemC-TLM simulation. 

 

Figure 50. Connection of DRAMPower with a SystemC-TLM model augmented with PwClkARCH 

Obviously, the number N of transactions should have an impact on results. If N is too large, the accuracy of 

the power/energy evaluation is weak, but we reduce the number of DRAMPower invocations. If N is 

reduced, the accuracy may be better, if N is not too small otherwise the memory controller cannot make any 

optimizations, but the simulation time is augmented. Among the optimizations performed by the controller, 

memory banks can be forced in self-refresh mode or in power down mode if these banks are not accessed. 

In the next section the sensitivity to N is evaluated. 

3.1. Sensitivity of results to the number of transactions processed by DRAMPower 

As mentioned above, read/write transactions emitted by the SystemC-TLM functional model are gathered 

before invoking DRAMPower to evaluate the power consumption of the memory block. 
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The relative accuracy of the energy estimation calculated by DRAMPower and the evolution of the 

simulation execution time to N are given in Figure 51. These results are generated for the memory model 

MICRON-16Gb-LPDDR3-1600-32bit-EDF232A2PB with interleaving disabled and DPD power mode 

enabled. First, we have evaluated the energy consumption of the memory with DRAMPower in standalone 

mode (0.136mJ) on the full trace generated by the SystemC-TLM model. The energy consumption of the 

memory when the SystemC-TLM model is connected with DRAMPower is, anyway, lower than 2% when 

N>5. The energy accuracy plotted in Figure 51 is relative to this range. Similarly, the simulation time is 

relative to the case N=5. In this example the value of N has a great impact on the results. We notice that a 

value of N=10 or N=20 is a good compromise since the accuracy is larger than 0.9 and the simulation time 

is lessened significantly (about 40%). All the experiments developed in Chapter VI are done with N=10. 

 

Figure 51.  Accuracy of energy estimation and the simulation time evolution vs Number of transactions 

3.2. DRAM device power evaluation  

The power evaluation on a window of N transactions by DRAMPower poses the problem of managing the 

time between the two simulators and as a consequence the power evaluation of the DRAM part. Consider 

the example shown in Figure 52. 
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Figure 52. Example of power evaluation of groups of N transactions 

The line a) describes a sequence of read/write transactions (vertical blue arrows) grouped in windows (w0, 

w1, …, w4) of N=4 transactions. The horizontal axis denotes the simulation time. The memory controller 

translates these read/write transactions into internal memory commands (not represented in the figure) and 

periodically inserts a refresh command (orange arrows) according to the period tREFI depending on the 

SDRAM characteristics. 

We start at time 0 with window w0. The trace file associated with w0 is transmitted to DRAMPower (line 

b) which evaluates the average power P0 = Pw0. DRAMPower returns the average power Pavg_dram=P0 to the 

design element DE_SRAM which refer to the memory block in the functional model. Consider now the line 

d). If we fix a timestamp equal to 0 to the first transaction of w2, the normal refresh command will not be 

inserted since the delay between two consecutive refresh commands is tREFI. To take into account the refresh 

operations that can be triggered inside a group of N transactions, we fix to the first transaction a timestamp 

equal to dprev_ref which is the time interval since the last refresh operation. Therefore, in the processing of the 

successive windows of transactions by DRAMPower, the first transaction in a window has a timestamp 

relative to the last occurrence of the refresh command. In the case d), DRAMPower returns the average 

power P2 which combines the power Pidle consumed during dprev_ref and the power Pw2 resulting from the 

transactions inside w2, including the refresh operation. However, only Pw2 should be returned to DE_SRAM. 

Therefore, to evaluate the power of a window Pwi, we operate in two steps. In a first step, DRAMPower is 



Exploration of memory technology based on simulation at TLM level 
 

   74 
 

executed on a trace composed of a single transaction corresponding to the first transaction of the window 

wi with a timestamp equal to dprev_ref. We get back an average power equal to Psingle = Pidle + PT where PT is 

approximately the power consumed by a single transaction. In the second step, DRAMPower is executed 

on the trace wi and the average power returned by DRAMPower is PN = Pidle + N*PT. The value of Pwi is 

then approximated by: 

Pwi = (PN - Psingle)*N/N-1 

This approach for evaluating the power Pwi does not take into account the state of the DRAM after processing 

the transactions from window wi-1. However, if N is not too small (e.g. N= 20), the error is relatively 

negligible.  

Consider now the case of line e). For periods larger then tREFI, no transactions are emitted to the memory. 

As the trace for w4 has a timestamp dprev_ref relative to the last refresh operation, the power consumed by the 

memory in the interval where no transactions are emitted is not evaluated. This idle period can be identified 

in the functional model of the DRAM: an event is scheduled with a delay of ts after the last transaction of 

wi-1 occurring at tlast_wi. If in the interval [tlast_wi, (tlast_wi + ts)] no transactions are received, the power 

consumption of DE_SRAM is fixed to Pidle which is in this case a constant value depending of the DRAM 

characteristics and of its power mode. As soon as a new transaction is received by the DRAM memory, the 

power model in DE_SRAM commutes from the constant value Pidle to the power model using DRAMPower. 

3.3. DRAM controller power estimation  

We consider a very simple power model of the memory controller. We assume that Pcrtl_max is the 

dynamic power consumption of the memory controller when it is exercised at its maximum data 

bandwidth (Gbpsmax). Gbpsmax is estimated by: Gbpsmax = 2*tck/BL where BL is the maximum burst 

length provided by the memory and tck is the clock period of the memory controller (the maximum 

bandwidth is achieved for burst accesses issued each BL/2 cycles with a double data rate memory). 

The dynamic power consumption of the memory controller over a window of N transactions can be 

evaluated by: 

Pcrtl = Pcrtl_max * Gbps / Gbpsmax 

Where Gbps is the bandwidth evaluated for each window of N transactions. For example in Figure 53, 

the bandwidth Gbps associated with the second window is N/(t 16 – t8) if a single read or write access 

is done at each transaction.  
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The power Pcrtl is then cumulated by the design element DE_SRAM with the power returned by 

DRAMPower to provide the total power consumption of the memory sub-system for each window of 

N transactions: 

Pmemory = Pwi + Pcrtl 

 

Figure 53. Example of two successive windows of N transactions 

3.4. Mean memory access time estimation 

As mentioned above, the memory mean access time is evaluated inside DRAMPower. Figure 54 illustrates 

an example of read/write commands translation to DRAM operations sequence such as ACT, PRE, REF 

(small blue arrows in the figure). 

Let t1 be the instant where the first transaction inside the window is emitted. If the corresponding 

read/write command is scheduled at tc1, the access time for this first transaction is obviously ta1=tc1-t1, 

without forgetting of course to add the read latency or write latency delay.   

Consider now the case of the transaction at time t5 whose corresponding read/write command is 

scheduled at tc5. In the time interval tc4 - t5 the DRAM is operating the commands associated with the 

transaction emitted at time t4. Thus the access time for the transaction occurring at t5 is calculated 

using ta5 = tc5 - Max (t5, tc4). 

By repeating the evaluation of each access time over the transactions inside the window, the mean 

access time for the N transactions is then the average of t a1, …, taN. 

 

Figure 54. Example of DRAM operations generation 
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3. Conclusion 
In order to apply this connection between PwClkARCH and DRAMPower on the Intel environment, we 

have developed the necessary. First, an analyzer port was added to the memory controller that allows us to 

extract transaction traces (Figure 55). We generated the same format requested by DRAMPower using a 

script. Second, as the memory used in the Intel platform is an LPDDR4 memory, we drawn up the memory 

specification file needed for DRAMPower tool. Note that DRAMPower doesn’t support basically a 

LPDDR4 memory model and doesn’t include any associated specification file. Notice that apart the values 

of their internal parameters, the main difference between LPDDR3 and LPDDR4 is that LPDDR4 provides 

a double channel, each one having a 16 bits width, while LPDDR3 includes a single channel only. But in 

the Intel platform, the two channels of the LPDDR4 are grouped to form a single channel (performance 

model) allowing DRAMPower to be used in this case to simulate a LPDDR4 technology. However, the 

values of the parameters of a LPDDR4 depend on the memory device vender. As the LPDDR4 memory 

device in the Intel platform is provided by a third-party vendor, we didn’t have the access of the code. So 

the only manipulation that we did was to generate a command trace file from our simulation of the Intel 

platform and to run the DRAMPower tool as standalone using the LPDDR4 memory specification file that 

we prepared.  

 

Figure 55. Framework representation with Intel platform 
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VI. Simulation results 

In this Chapter, we present the results of our simulations. We start by giving the results that we obtained after 

applying clock gating power management techniques on the Intel Sophia Antipolis platform. The second part 

is reserved for our work done on the memory system exploration at Transactional Level using SystemC-

TLM-based platform of the LEAT, and finally we conclude the chapter by giving the entire framework of 

our methodology that we propose in this project. 

1. Clock Gating application 

In the beginning, we are interested in proving that PwClkARCH library can help in defining the power model 

of the intel pre-silicon modem SystemC-TLM-based platform, and in controlling the energy dissipation. We 

define the power model of a part of the platform (L2 Coprocessor) in Chapter III.3, by connecting the power 

library and the functional implementation via the PMU block. Triggering a power mode change is a power 

management request represented by a TLM transaction from an initiator in the platform. In our case, the 

scheduler is the initiator. The request could be a reference to the OPP table line, or a particular state of a 

particular hardware block (a Tile for example). The library insures both types of control. 

Thus, we add an initiator socket “Out_PM” in the scheduler interface that we connected to the target initiator 

of the PM, “In_PM”. TLM transactions in corresponding functions of the scheduler are added to send data 

(Tile name, Tile state = 0 means Inactive) each time a task is finishing to running on a Tile, or (Tile name, 

Tile state = 1 means Active) each time a task starts running on a Tile. We apply the clock gating technique 

by using the “Set_Clk_State_DE ()” function implemented in the PM of the PwClkARCH library. When 

triggered, it retrieves the DE name requested, and the division factor to be applied by the CM to generate the 

clock frequency of that DE. For clock gating, the factor should be equal to zero. The application/use-case 

used in these experiments is LTE User Datagram Protocol (UDP) downlink and uplink traffic. 

Using PwClkARCH, we plot the frequency variation per Tile, as illustrated in Figure 56, after applying clock 

gating on each Tile according to its active/inactive state. It can be observed that at the beginning of each time 

slot, all the Tiles are busy, so their clock frequency is set up to the maximum value. As soon as a Tile switches 

to an idle state, its clock is gated. The frequency becomes no more constant and depends on the state of the 

Tile: active or inactive. This has a direct impact on the dynamic power consumption of each Tile and in the 

same way of the L2 Coprocessor block as presented in Figure 57. We can see that in time slots where all the 

Tiles are inactive, the dynamic power consumption is equal to zero. In Figure 56, the maximum clock 

frequency of Tiles is equal to 288 MHz, with the chosen clock frequency start time, both periodicity and 

deadline values used in the task graph can be well met (to be explained later on Tile 1). When reducing the 

maximum clock frequency value in order to define the optimal value regarding power dissipation and 
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performance, the dynamic power is reduced (green curve : 250 MHz; blue curve 200 MHz Figure 58), 

however there is a violation of the deadline of the tasks assigned to some Tiles. In Figure 59 we plot only the 

clock frequency variation of the Tile 1 with the three maximum values 288, 250 and 200 MHz to show the 

violation of the deadline constraint (red lines). Obviously reducing further the clock frequency to 200 MHz 

(blue curve in Figure 58) improves the power consumption but tasks on three Tiles go beyond their deadlines.  

 

Figure 56. Clock frequency variation per Tile (x=time [ns], y=Frequency [Hz]) 
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Figure 57. Total dynamic power consumption of all Tiles with (x=time [ns], y=Pdyn [mW]) 

 

 

Figure 58. Total dynamic power consumption of all Tiles with different clock frequency values (x=time [ns], y=Pdyn [mW]) 
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Figure 59. Clock frequency variation of Tile1 with three configurations 

In the Figure 60 the information extracted from the energy versus time data are plotted. The results show 

that the overall energy consumed by the Tiles is strongly correlated with the clock frequency.  

 

Figure 60. Overall energy (x=time [ns], y=energy [mJ]) 

We did the same work on the Munich pre-silicon environment in order to connect the PwClkARCH library 

with the performance model. Figure 61 illustrates the clock frequency variation per Tile after applying the 
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clock gating technique. In this experimentation, we used the task graph presented in paragraph III.2. in order 

to show that the power model is in total coherence with the execution of the tasks on the Tiles. Take the 

example of Tile 3, which is the simplest to check, it performs only the task DL_MOVE_0_3. This task is 

non-periodic. In the Figure 61, we can see that the frequency associated with Tile 3 (blue curve in bold) is 

set up to the maximum value, and then it is gated until the end of the simulation. The other Tiles perform 

more than one task, with probably a delay between the tasks due to the dependence, the curves show that the 

behavior obtained is the one expected. 

 

Figure 61. Clock frequency variation per Tile (x=time [ns], y=Frequency [Hz]) 

This experiments illustrate that such approach helps also on defining the best strategy of power management, 

here limited to clock gating applied to Tiles, associated with the functional activity of the Tiles (due to the 

scheduling of tasks on Tiles). As soon as the performance constraints are met, we can deduce the expected 

power profile generated by the system. If more than one scheduling algorithm is available and they all show 

similar performance, then power figure becomes the key parameters for the final decision on which one is to 

be picked.  

We need to tune our power model and to include a precise memory system power model. Results show that 

this is feasible and there is an interest in doing so.  
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The next parts of this chapter focus on the introduction of a memory model within our power model, as 

explained in chapter V, which allows a global analysis of the system, in term of performance and power, 

knowing that the power strategy influences the frequency of the memory requests. 

2. Datasheet based memory specification  
In this paragraph, we define datasheet memory specification delivered by memory vendors. These datasheets 

include many parameters and specifications, from the size and the technology, to timing and output 

performance. Researchers have relied on current specifications that vendors provide for each DRAM part, 

which are known as IDD values, to estimate the power consumption of the DRAM. Usually, these datasheets 

are confidential, and especially for new technologies (LPDD4, MRAM, etc.), which makes our work difficult. 

For the exploration of memory technologies including the STT-MRAM LPDDR3 model, we used the values 

published in [64]. DRAMPower memory specifications are based on Micron Technology datasheets, but the 

format is simple and we can integrate the specification values of any vendor. 
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Figure 62.  LPDDR3 DRAM and MRAM LPDDR3 timing and power parameters [64] 

3. STT-MRAM LPDDR3 interface model 

For these experiments we consider the DCT-platform introduced in Section V.2. In this work, to showcase 

the methodology, only DVFS is applied to CPU and DCT, but our approach is general enough that also other 

strategies could be equally applied. 

The trace file of the N read/write transactions to the memory is constructed by the memory functional model. 

Once the N transactions are stored in the trace file, the power model developed in DE_SRAM is activated.   

Three LPDDR power modes are considered in the experiments, all of which are represented in the 

DRAMPower tool as options to be set: 

• No low power mode (#0) 
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• Deep Power Down mode (DPD) (#1) 

• Self-refresh (#2) 

Nine memory configurations, numbered from #0 to #8, are tested: 

• ISLPED2014-4Gb_LPDDR3-1066_32bit (#0) 

• MICRON-2Gb_LPDDR-266_16bit-A (#1) 

• MICRON-4Gb_LPDDR3-1333_32bit-A (#2) 

• MICRON-16Gb-LPDDR3-1600_32bit-EDF232A2PB (#3) 

• MICRON-2Gb_LPDDR2-800-S4-16bit-A (#4)  

• MICRON-4Gb_LPDDR3-1600_32bit-A (#5) 

• MICRON-2Gb-LPDDR2-1066-S4-16bit-A (#6) 

• MICRON-2Gb-LPDDR-333-16bit-A (#7) 

• ISLPED2014-4Gb-MRAM-1066-32bit (#8) 

The memory models #0 and #8 are taken from [64], all the others are selected from the database of the 

DRAMPower tool. 

Some minor modifications are introduced in DRAMPower. These modifications are all included in the files 

CmdScheduler.cc and CmdScheduler.h in the DRAMPower/src directory. These modifications consist in: 

• computing the mean access time over the transaction in the trace file, 

• storing in a variable the date of the first transaction (which is used to estimate the average power of 

a window of N transactions by DE_SRAM). 

3.1. No Interleaving of memory accesses 

First, we run simulations disabling bank-interleaving of memory accesses. Normally the impact of having a 

higher interleaving factor is a higher bandwidth, but as well a higher power consumption due to the parallel 

memory bank accesses. Figure 63 (a) represents the execution time in millisecond (ms) and Figure 63 (b) 

the energy consumption in millijoule (mJ) of the overall platform. The colored bars represent the nine 

different memory models and for each one of them the three power models taken into consideration are 

used. 

Results show that the lowest energy consumption is achieved using the eighth (bar #8) memory model, 

which represents the MRAM technology, with 1.78 mJ. However, the lowest execution time is achieved 

using the third (bar #3) memory model when it is used in self-refresh power mode (#2) with 6.31 ms. 
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Disregarding of the LPDDR model taken into consideration, the low power modes DPD and self-refresh 

have a very limited impact on the execution time of the DCT application. However, they provide significant 

power savings in most cases. The difference in energy consumption between the DPD mode and the self-

refresh mode are sometimes very small, e.g., in the case of bar #7.1 and bar #7.2. 
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Figure 63. Execution time (a) and energy consumption (b) of the DCT platform with bank-interleaving disabled 
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3.2. Interleaving of memory accesses  

Same simulations are run enabling bank-interleaving of memory accesses, as shown in Figure 64, thus 

allowing parallel activation of two banks. The memory model #3 provides the best results in execution time 

and energy consumption, when used in self-refresh mode (bar #3.2). The MRAM used in this study provides 

good results but it is less efficient than the memory model #3 (bar #8.0). Data in the DCT example are 

accessed in memory with an incremental addressing scheme with an equal number of write and read 

accesses. Due to the lower write energy consumed by the LPDDR3 and the low power consumption in self-

refresh mode, the LPDDR3 behaves better than the MRAM memory. This can be explained also by the fact 

that when enabling bank interleaving, the number of refresh commands decreases since the application 

execution time is reduced. Thus, MRAM becomes less important comparing to the LPDDR memory. On 

other access schemes with non-incremental addressing, results could be different.  

The experiments show the benefit of performing a full system simulation when more accurate performance 

results are looked for. For example, let us compare the power model #6 in Figure 64 and Figure 63, i.e. with 

interleaving enabled and disabled, respectively. Without interleaving and with no power mode applied 

(Figure 63 (a)), the execution time results in 6.36 ms when the complete system model is executed in 

simulation. We use the complete trace file of read/write transactions generated by this example as input to 

DRAMPower and using the same memory configuration than that in the full system simulation. In the same 

setup, the DRAMPower provides an estimate of the trace length to 6.27 ms, giving an error lower than 2% 

compared with the full system simulation. If we use the same trace file in DRAMPower with no power 

mode enabled, but with bank-interleaving enabled (see Figure 64 (a)), the trace length results the same, but 

the execution time given by the full system simulation is reduced to 5.96 ms (i.e. about 6%). This example 

shows that the memory sub-system impacts the timing of the rest of the system, which in turn impacts the 

read/write transactions to the memory generated by the system. 
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Figure 64. Execution time (a) and energy consumption (b) of the DCT platform with bank-interleaving enabled 

The example above shows that it is necessary to model this mutual impact if we want to have a correct 

analysis of power and performance. 
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3.3. Applying DVFS 

When the CPU transfers data from the memory to the DCT unit, a lower frequency and lower voltage 

operating performance point (OPP) is applied, compared with the previous case: the frequency of the CPU 

is divided by 4, the voltage is reduced from 1.4V to 1.15V, and the frequency of the DCT is set to ¼ of its 

maximum frequency. The time penalty to change dynamically the frequency is 0.2ms. When returning to 

the initial OPP, the time required to rise up the voltage back to its initial value is 0.07 µs per mV. 

To evaluate the impact of DVFS on power and performance, we select from the list given in section IV.A, 

the following LPDDRx memory models: #0, #3, #4, #7 and #8. 

Figure 65 represents the results of applying DVFS on the execution time (a) and the energy consumption 

(b) with bank-interleaving disabled. Obviously, execution time when DVFS is applied are greater than those 

when the maximum frequency is unchanged while the system is running (Figure 63 (a)). In the case of no 

low power mode of the memory (LPDDRx) enabled (bars #x.0), the total energy consumption is greater 

than that obtained without applying DVFS. However, when power mode 1 or 2 are enabled, some energy 

savings can be obtained with DVFS. These results illustrate that applying DVFS gives mixed results w.r.t. 

energy saving. For a too short time of processing, it can be counterproductive. Thus it is important to choose 

carefully memory technology and power management strategies to get energy savings. In this example, the 

MRAM provides the best results because of its very low static power consumption when in idle mode. 
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Figure 65. Execution time (a) and energy consumption (b) of the DCT platform when applying DVFS, with bank-interleaving 

disabled 

When enabling bank-interleaving (Figure 66), the results show that whatever the memory model, the energy 

consumption of the system with DVFS is always greater than that without DVFS. The reason is the reduced 

execution time when the bank-interleaving factor is enabled, which gives more relative importance on the 
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time penalties induced by DVFS (0.2 ms in the example) whose durations remain constant. While the 

voltage and frequency are changing, all the supplied units consume some energy, including the memory, 

and this wasted energy is not compensated by the gain provided by the low power OPP. This behavior is 

well known and formulated through the break-even time [77] which represents the minimum length of an 

idle period to save power. Thus, the time required to change power supply voltage or clock speed have to 

be taken into account. If state changes take long enough, the power lost during the transition may be greater 

than the savings given by the state change. 
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Figure 66. Execution time (a) and energy consumption (b) of the DCT platform when applying DVFS, with bank-interleaving 

enabled 

4. Conclusion 
This chapter presents firstly the results of our work on providing a joint performance-energy consumption 

simulation environment. Then, we prove that the coupling of DRAMPower tool with a SystemC-TLM 

functional model on which the power-oriented overlay PwClkARCH is added, provides an efficient 

framework able to evaluate the impact of various DRAM memory types on the whole system performance 
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and power consumption. This framework helps making early decisions on the choice of the most suitable 

architecture (memories size, bandwidth, frequency, etc.) and of the scheduling strategies in mobile SoCs.  

  



General conclusions and perspectives 
 

   94 
 

VII. General conclusions and perspectives 

1. Conclusion 
Thanks to the publication of the OSCI TLM2 standard [13], SystemC took a large place to ease system 

exploration and design. Simulation is the predominant technique in hardware design. It helps on identifying 

performance problems and power “bugs”. Our main goal was to provide a framework for transactional 

modeling of the performance and energy of a memory system for systems-on-a-chip in order to achieve the 

greatest energy saving possible. Our framework helps on improving the overall power efficiency of the 

design, whether it is in the clock tree, the data path, or in the memory sub-systems, without degrading the 

overall performance. 

With the intention of moving to higher level of abstraction, we used Model Driven Engineering 

methodology to do it. Simon Davidmann, CEO of Imperas, said “At the same time, you could say that if we 

had a better high-level language, we could implement everything.” Then he added “we could just describe 

things at a high level language like Matlab, push a button, and boom, out would come with the silicon.” 

[78]. We propose a MDE-based flow to automatically generate joint power and performance simulation 

SystemC-TLM code. 

We come up with an UPF-like-based approach that illustrates the possibility of defining at the ESL level a 

scripting language inspired by UPF standard, in order to reinforce the separation between functional model 

and power model. This type of scripting language should be standardized to facilitate the development of 

power/performance simulation tools addressing this ESL level. 

We also showed that there is a growing need to understand and analyze DRAM power consumption 

considering an overall system level approach. One trend may be to propose new memory architectures based 

on advanced technologies that consume less power such as MRAM.  

Consequently, mastering the design complexity and meeting the time-to-market requirements become more 

challenging for the hardware system designers. The traditional methodologies, where the design starts from 

the RTL level, for such complex systems is error prone, and needs lots of effort. Additionally, RTL level 

design evaluation is very time consuming. Therefore, the recently in use design methodologies start from 

system level. 

Mobile devices are requesting low power memory solutions. In this work, we propose a SystemC-TLM 

based simulation framework at ESL level that helps designers to find the optimized memory configuration 

in terms of energy and performance which is consistent with the rest of the system including the power 

management strategy. The coupling of a tool such as DRAMPower with a SystemC-TLM functional model 
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on which a power-oriented overlay (PwClkARCH) is added provides an efficient framework able to evaluate 

the impact of various DRAM memory types on the whole system performance and power consumption. For 

example, we evaluate one NVM memory model of an MRAM using our framework and we show that such 

technology is a promising candidate to be used as main memory instead of traditional SDRAMs.  

2. Perspectives 

Our work in this thesis opens several perspectives for future work. The first perspective concerns the 

PwClkARCH library. We prove that this library helps a lot on modeling and controlling power consumption 

of a SystemC-TLM-based platform. A future work is possible which consists of adapting the library to be 

able to describe and simulate a very complex hardware architecture. We think to make a distributed PMU 

model, and so we obtain more than a single Power Manager in a design, allowing a reduced complexity of 

the internal tables (PST, CST, OPP Table) of each PMU. 

Two innovations in semiconductor technology have recently emerged as possible alternatives to traditional 

planar CMOS technology: FDSOI for “Fully Depleted Silicon On Insulator” and FinFet Technology for 

“Fine Field Effect Transistor”. Both technologies have promising properties to further reduce dimensions, 

thanks to better electrostatic control of the gate on the transistor channel for FinFET technology and a 

reduction in substrate losses for FDSOI technology. In the case of FDSOI technology, several adaptations 

are to predict in the library PwClkARCH since we can adapt the body bias voltage to play on the frequency 

and the leakage [80]. So, it will be interesting to implement this type of control in PwClkARCH to support 

new technologies. 

During this thesis, we showed the importance of having a coupling between the two types of simulators, 

"digital part" (SystemC-TLM & PwClkARCH) and "memory part" (DRAMPower), since the performances 

of one act on the performance of the other. However, the validation of the entire simulator would require 

the study of other use cases and a more detailed comparison with measurements from a real platform. It 

would also be interesting to add the power model of other levels of the memory system such as caches. 

The connection made between SystemC-TLM and PwClkARCH, and then DRAMPower, actually makes it 

possible to evaluate the performance and power of the complete system. But the influence on the simulated 

performance of the number of transactions before activation of DRAMPower can be significant in some 

cases (e.g. when there are multiple competing independent transaction flows).  

Also it would be relevant to study a stronger coupling of SystemC-TLM DDR model with DRAMPower, 

for example by directly integrating DRAMPower into the SystemC-TLM DDR IP model. 
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It is necessary also to evolve DRAMPower in order to integrate new memory technologies such as LPDDR4 

and LPDDR5. 

This work addresses mainly the performance and power consumption estimation at ESL of a memory sub-

system connected to the logic part of a system. We demonstrated that a specific DRAM simulator is required 

to describe the complex behavior of the memory unit since the traditional equation-based power model 

established for logic part (included in PwClkARCH) is not suited for modelling the power consumption of 

DRAM. A comparable study could be applied for the interconnection inside the system on chip since the 

behavior of the interconnection is dependent on the traffic generated by the units connected on it and on the 

internal control mechanisms to route the data in the interconnection. A first work on that issue shows the 

relevance of this problem [79]. A generic power model for an interconnect should be then developed and 

could be considered in our Intel platform augmented with PwClkARCH. 
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Acronyms 
ACT Activate Row 

CAD  Computer-aided design 

CD Clock Domain 

ClkST Clock State Table 

CM Clock Manager 

CMOS Complementary Metal Oxide Semiconductor 

CPU Central Processing Unit 

DE Design Element 

DMIF DDR memory interface 

DRAM Dynamic RAM 

ESL Electronic System Level 

KPI Key Performance Indicator 

LPDDR4 Low Power Double Data Rate 4 

MPSoC Multi-Processor System-on-Chip 

MRAM Magnetic RAM 

NVM Non Volatile Memory 

OPP Operating Performance Point 

OPPT OPP Table 

PD Power Domain 

PHY Physical layer 

PM  Power Manager 

PMU Power Management Unit 

PRE Precharge 

PS Protocol Stack 

PST Power State Table 

RAM  Random Access Memory 

REF Refresh 

SN Supply Net 

STT-MRAM Spin Transfer Torque-MRAM 

TTI Traffic Transfer Interval 

VP Virtual Prototyping 
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