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INTRODUCTION

Let K be an imaginary quadratic field and & its ring
of integers., [ = PGL(2,8) denotes the group of invertible
2 x 2 matrices with coefficients in @ modulo its center. This
paper deals with the problem of explicitly computing Eilenberg-
Maclane cohomology groups g (T',M), where T'CT is a subgroup
of finite index and M a T'-module.

The basic approach to computing such cohomology groups
is to find a contractible topological space X on which ' acts
in a properly discontinuous manner. Well known results then
relate group and quotient space cohomology: for example, if
I' is torsionfree, H (T',M) = Hn(f$\f, #), where M is the local
system assoclated to M. One usually takes X to be the symmetric
space associated to PGL(2,C), which is t+he 3-dimensicnal upper

half space H := {(z,0) € C xR |z > o). 3If g =(a b} i
c d

#

g Bzl ((az + b) (87 + d) + act?, z

(cz + d)(ez + d) ¥ ceLlr (ez + dj (& + d) + cac:)

However, for purposes of cohomology computations, H is "too
big" for two reasons: first, the guotient ;FE ig noncompact
and seccndly, H ig 3-dimensional whereas the cohomological
dimension of T' is one less.

The main results of this paper are as follows: for
each imaginary gquadratic field K, there exists a close con=
tractible 2-dimensional subspace I, of B --called the minimal

incidence set of K-- whose guotient ;Nix by any subgroup T'

CT of finite index is compact. IK is infact a T-equivariant

deformation retract of H. Moreover, it is, in a natural way.
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a regular, locally finite CW complex and the group action

is cellular. The CW structure has a subdivision {(depending

on I'") such that I'' acts without "jnversion": the isotropy

group of an open cell ¢ fixes each point in 0. These minimal

incidence sets are 2-dimensional analogues of the infinite

tree for O in the upper half-plane (cf. Serre (16), p.53).
|

The construction of IK uses an explicit form of Harder's

reduction theory for arithmetic groups ( (7), (8) ). In

the case of PGLz, this is based on the following notion:

the distance of (z,;) € Hto )X € Kv{=} (a cusp) is
i
_fod - dBz - oBz + BB (zz + %)
n, (z,2) "‘( TH(a,8) j)

and Nla,B) denotes the norm of the ideal in K

where A = % ge-

nerated by ¢ and B. The minimal sets relative to ) Hy =

{(z,z) ¢ H |n(2,8) nu(z,c) for all p ¢ Xvw{=}} are basic

for the construction of a fundamental domain for T (in H). IK

consists of the points where at least two minimal sets are

incident, ie, IK §= Lﬁ!ﬂk(\ﬂu -
réd

is 1, then this reductf%n theory coincides with classical re=-

1f the class number of K

duction theory (for an account of this, cf. Swan (1#)).

= F-BK, where BK is the "bottom” boun-

Thus, in this case, IK

dary of the classical fundamental domains of Bianchi and

Humbert.

T operates as a group of M&bius transformations on

the set of cusps Ku{=k The stabilizer T, of a cusp A no

longer has finite index in T. However, IK,A = LKJka\ﬁu

is a contractible subcomplex of Iy on which T'y acts with

Thus we can also treat "cohomology at

0

compact guotient.

infinity" and investigate nrestriction maps® (cf. Harder ( 8)). |

- A

Our construction alsc provides an affirmative answer
for I'' C PGL(2,d) to the question of existence of a contracti-
ble CW complex with I''-action and dimension equal to the coho-
mological dimension of T'.(This is a general question for dis-
crete groups, c¢f. e.g. Brown (2) pp. 3,7}.

We discuss the explicit computation of cohomology when
2 and 3 (the only primes occuring in orders of stabllizers for
the action on I) are invertible in the coefficient module M.
In this case, Hn(?,M) = Hn{fhf,yr'} where ﬁr' is the sheaf

assoclated to M. Here the basic fact to be used is that Mr'

is constant on open cells of the guotient cell structure {and

all subdivisions thereof). The application we had in mind

n . ¥ .
s the following: for any natural number p, let & := Z[i ] 1]
p @ 5 1'2"! . -i‘
where k runs over all primes < 2p. The group I'= PGL(2 Z[i})
operates on the ¢_-algeb = Lyfeed
pralgebra M {z a;x7y | a, Gp} of homo-
genenus binary polynomials of degree 2p. Explicit computation
of HM(T,M ) and B™(I_,M_)
b w My are of interest due to resultsz of
H
arder relating these, for px=3 mod 4, to values of L-functions
expressed {in these cases) in terms of Hurwitz numbers. We

do the computations for p = 3.

For an application of our results to the computation of

integral cohomology of PSL(2,0), cf. (6)

The paper is divided into five sections. There 1s a

4 ;
etailed description of the contents at the beginning of each

section.

Thanks are due to F. Grunewald, J. Rohlfs, T. Schileich

and J. Schw £ ¥ i i
ermer for stimulating discussions and useful comments

on an ear] thi
arlier version of this paper. I would also like to ex-
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press my deep gratitude to G. Harder for his advice and

and guidance during the preparation of this work.

§ 1. REDUCTION THEORY

1.0, Let K be an imaginary quadratic field and ek (or simply @)
be its ring of integers. In this section, we shall discuss re-
duction theory for the action of PGL(Z,HK} on the upper half
space H := {(2,58) [ z¢ €, L eR, £ > }. Our version is based on
the notion of "distance of a point from a cusp" (1.1.1.). If we
interpret the point in H as a positive hermitian form and the

2 (1.1.5 ££f), then the distance is

cusp of K as a submodule of ¢
essentially the square of the module's volume with respect to
the form.

As far as we know, reduction theory was first formulated
in this way by Siegel (44) for Hilbert modular groups of totally
real fields. (Cf. pp. 270 = 273 for further historical remarks).
Of course, in case the field is ®, the fundamental domain obtained
is the classicgl one. The general case of an arithmetic group
was done by Harder (7)), (5) in both number and function field
cases. We redo the theory for our special case in order to get
explicit values for the reduction constants (1.2.1.): we use this
information for example for computations in §4. The connection
of our results to the classical reduction theory of Bianchi (1)
and Humbert (40), is discussed in detaill in § 3.

In 1.1 we derive some basic properties of the distance
function, in particular its invariance under PSL(Z,@&) and its
finiteness property. In 1.2 the two main Reduction Theorems are

established. Finally, we discuss briefly the construction of a

(strict) fundamental domain in 1.3.

1.1. The group P3L(2,K) operates on the set BH := {({z,7)]| z e €,

r eR, . » 0} {(»,®)} as follows:



for g =(2 g)

g «{z,L) = kaz > 0l

[+
{cz + d) (&

7 + d) + agtr_, r |det g

Z + d) + clt {cz + dy (&¢z + 4) + cc;
Note that if ¢ = wor £= O (i.e. (z,z) lies on the boundary

F\H = Cul=}), this is the usual ¥M8bius transformation asso-
ciated to g. In order to study the non—-compact guotient space

PGL (2 é}\g , we shall do reductilon theory based on the notion of
"distance from a cusp”.

an element (z,) € H is called a cusp if either (z,g) = (eo,)
or £=0 and z €K. We shall forget the second component and iden-
tify the set of cusps with K V {w=}, the projective line over K.
The operation defined above induces an action of PGL(2,K) on this
set.

Now let (z,Z) € H and write A= % as the quotient of two
elements in K. {For =, we always choose § = 0 and a # 0). la,B)
denotes the fractional ideal in K generated by o and B and
N(,B) is its noxm.

1.,1.1. Definition The distance of (z,;) from the cusp A is

given by:

2
n,(z,8) = 0l - 0Bz ~uBz + pPlzE +;2)
TN ,B)

This is well defined since it doesn't depend on the particular,
description of A . Note however that different expressions for A
lead to different ideals and hence to different norms. If we
choose @, B €@, then N ,8) is an integer. In fact, if K has
class number equal to one, we can choose o, so that Nl ,B) = 1.
For each cusp A, the function n, : H— R is obviously
smooth. The level sets n—;(c) (with ¢ >0} are easy to describe:

a) A\ ==: choosea= 1, $= 0, which implies that ©B8) = ¢ and

2

N{a,B) = 1. Hence n (2,7} =(%) = ¢, which means that n"1

(c) is
a horizontal plane of "height" 1/{3'

b) A ¥ : let A = 3 and Ny ot N(u,B}lB]_ By definition
- - - 2
nA(z,;) = ¢ iff oo - ofz - afz + BE(zZ + ¢ ) =VYcIN(a,B)
iff (Bz - a)@";'“:“a“) + fBz? =JcLN (a, B)
1ff Y iz - (' o)
-pe-p o (c-% Nx) “’(5“1')

-1
In this case n, (c) is a sphere with center at (A,3€ 5. ) and
2 RS

radius \g N)‘ .
1.1.2. Example O and « are cusps -
for any imaginary gquadratic field K.
Figure 1.1.2. gives a "side view" of
the level sets n Yay e s{w % %}
The unigue point in nm (1N po f ) : s
o Y% 4

is ({0,0),1). Figure 1.1.2,

For the further study of this distance function, it is
useful to consider the following alternative description of H
and the cusps of K. Let H be the set of binary positive definite

2
hermitian forms on €% with determinant equal te one, i.e., mappings

e == C 1 )

with a,c >0 and ac - bb = 1. We identify H and H as follows:

(zr;) = 7 4 2 and ("' _y"")‘f""—"'"|
[ 2 Zz z da°a 1

of the form

The action of PGL(2,K) on H given above induces the following

operation on H:

a b b
J . t
g (b c)— jaet of tig” (b C)(g‘)
We will be mainly concerned with the hermitian forms restricted

to 0.



The first application of this "reinterpretation” of H

as a set of hermitian forms is the following useful Transfor-

mation Rule:

1.1.3. Transformation Rule Let A = % be a cusp of K and (z,0)

be a point in H. For any g € PGL{2,K}, we han:
- 28 {a,B)
ng)\ (g(zyg}) &l (Idet gl N{g(u,ﬁ))) n)‘ (zrﬂ) ‘
{The important thing is that the factor doesn't depend on (z,0)1)
Proof: Denocte by h the matrix associated to {z,z), i.e.

1 -z Furthermore, let x = (a,B) ¢ K%,

T

Then we can rewrite the distance of {z,C)to A as:

t = 2
nwe = (B25)

Doing the same for ngl(g(z,;)), we see that it is equal to

-z  zz+g?

N(g{o,B)) N{g{a,B))

_ det g]2 ? ¢ -)z
= (N(q(a,sn i x)

2

— . — \? . Pl
(t(gx) |det g|? t(g—l) h {g ') (gx)) =(|det g!thtgt(g thig )q:t) ,

Ni{g{a,B))

Before we can state an important corollary, we have to

2

introduce the following concept: if L is an O-submodule of K
and x € { vl |veX, 1elL , wecall the set L := {u €K |

vk € L} the coefficient of x in L. This is a non-zero fracticnal

ideal in K, and, indeed, if L = ®? and x € K’ has components o,f .

then 02 = (a,B)"l, where again (a,f) denotes the fractional ideal
X .
generated by a and B. We refer to O'Meara (42) §81B, p. 210 for

further properties.

1.1.4. Corollary (Invariance Property}l If g € PGL(2,0), then

nglig(z;;)) = nk(z,ﬁ

Proof: Choose a matrix in GL(2,0) representing the class g; we

denote this by g, too. Since det g is a unit, |det g|? = 1. In
order to see that N{gf{a,B)) = N(v,B), we show that, indeed, for

x = (a,B8), O;X* 0;

since 3L(2,0) is the automorphism group of G%. Hence V<& Géx.

If ve 0;, then vx € 0%and vigx) = g(w)e 02,

Conversely, if v ¢ O;x’ then wx = v(g_lgx) = g“lv(gx).'Now

v(gx) & 0%, so that ux € 0%, This shows the equality.

Remark. The Transformation Rule({rather than just the Invariance
Property) 1s useful for comparing geometric properties of certain
sets associated to cusps not equivalent under PGL({2,®),i.e., in
the case of higher class number. (Cf. Proposition 2.2.1. p. 27 ).

We shall now derive another baslc property of the distance
function, its "finiteness" property. To be able to do this, we
have to study the objects corresponding to cusps in the language
of hermitian forms.

1.1.5. Definition A flag (in ©2) is an ©-submodule L ¢ G° of

rank 1 such that 32/ is torsionfree,
L

This is the usual definition since L determines the object
0O € L €02 The next proposition gives a characterization of
flags, which implies among other things their correspondence with
cusps. Note that if an O-submodule L has rank 1, then for any nonzero
x & L, L= Lx. Furthermore, 1f L ¢ 0% then L C 0} x. Our

claim is as follows:

1.1.6. Proposition Let L € @? be an O-submodule of rank 1 and

let x ¢eL, x # 0. TIf L is a flag, then L = G: X.

2
Proof: We want to compute the torsion submodule T(d / L) 8

5 2
y eT (0 / L\) implies that there existp , 09 £ ¢ such that




g o)
py = O%, O equivalently, y = 5 x. It follows that =
- &2x = i
v € 6. Hence, y € Gix and y e x /. Conversely, ¥y
implies that y = ox, with a ¢ &;. Now there exists a p € ¢ such
that po € O, and hence py = (polx € onx = I,. In other words
2 = AL 2
y € T(B/L}. Therefore, L is torsionfree iff L = O x.
2
We have, in fact, shown more: we now know that, for any % € K
i Py i .
{not just those in ©?), the O-module L = O x is indeed a flag
This observation allows us to define a PEL(2,K) ~action on f£lags,
namely:
2% .= o2
g-(ﬁxx). dgxgx.
This doesn't depend on the choice of the element X 3

1f ©!y = 0lx, then x = oy, with o € K. Hence
¥ X

- e oy ~le2 = g2 .
g,(g;y) = s;(a_lx)g(a lx) = o e L nggx

2 .
We now formulate the correspondence between flags in © and the

cusps of K.

1.1.7. Proposition There is a bijection

{flags in 0%} —=t—s{cusps of K}

compatible with the PGL({2,¥)-actions.

Proof: The map is given by: for x = (a,B) e K?
st a
L = Oxx!*-+ B *

The werifications are obvious.

1.1.8. Example If K has class number equal to one, then each flag

2
1 in ©O% can be written as L = Ox with x e @°.

We shall now consider the interpretation of the distance

function in terms of hermitian forms and flags. We begin by recalling

1 ELELE 8 et I RIS A S SR pimmess e asEe g s

the concept of "volume” of a module,
Let L be an O-submodule of rank 1 in K . L has rank 2 as
a Z-module, and we denote by x, y base elements over Z. Lebt V

be the real subspace generated by x, y in R* and e e, be an

17 T2
orthonormal basis of V with respect to the real scalar product
h := Re h induced by h. Denote by A the transition matrix from

{eqre,} to {x,y} .

1.1.9. Definition The volume of L with respect to h 1s given

by vol L := |det a|

A result from linear algebra tells us:

1.1.10. Provosition Let L, h, ¥, ¥ be as in the oreceding

.
discussion. Then vol,L = (h(x,x)h(y,y) - hix,y)?) /a

Now if L, L are Z-modules of rank two in R* , then for
any scalar product b on R* , we get volbL'= volbL - det T,

where T 1s a transition matrix from a basis of L to one of L”

1.1.11. Proposition Let (z,z) ¢ H and X be a cusp of K. Denote

by h and L the corresponding hermitian form and flag, respectively.

Let D be the discriminant of K. Then:

- 4 2
nA(ZnC) = |DfVOlh L)

Proof: We do the proof in several steps. First of all, viewing
L = O&X and U%x as abelian groups and recalling the definition of

volume, we get volh(ﬂk)
volh (ka) il e

ka : Gx]
where the square bracket denotes the index for abelian Jroups.

We compute the volume of Ox as follows: a Z-basis for Ox is




g =

given by {x, wx }, where w = %(u +/D' ) and o = 1 for D =1 mod 4

and a = 0 cotherwise, Proposition 1.1.10 tells us that

i

1
vol, (@) (h(x, )R ( wx,0x) - hix,e0)?) /2

it

P 1
(h(x,) 2fw]? = hix,x)?(Re @) 2) /2

1
(E(X:X)z ]Im mf:E} /2

1
3 h{x,x)ﬂ?ﬁ

1]

Hence
2 -
T

We have to reinterpret the index EL 0@} in a second step.

ox] = [o,x = d] .

side 1s the determinant of a transition matrix from a basis of

We claim that [L The index on the right hand

o> to one of O} analogously, that on the left hand side is from
x

a basis of O;x to Ox. Now if a,, a, is a Z-basis of G2, then
alx,uz

is now obvious.

x is a Z-basis of B;x; similarly for © and Ox. The claim

Finally, since 0; = (u,ﬂ)~1 where a,f are the components

of x, then [©] : o] = N(a,8}. This completes the proof.

We can now show the "finiteness" property of the distance

function.

1.1.12. Theorem (Finiteness Property) Let {(z,g) ¢ H. For

any real number ¢ > O, there is just a finite number of cusps )

such that la(z,c) £ s,
Proof: By the preceding proposition, this is equivalent to

showing that there are only finitely many flags L with volh L

less than or equal to ¢ = @ciD! Now, it is well known that
Ay
there are just finitely many rank one G-submodules in ?? satis-

fying this condition. MNote that if M is such a non-zero

O-module and x € M is non-zero, then : =% 1is a fla
b X g

with volh(Lﬂ) < vol M.

1.2, To simplify the statement of the two main theorems of

reduction theory, let us introduce the following notions.

1.2.1. Definition A positive real number ¢ is called an

upper reduction constant (for K) if for each (z,%) £ H, there

ls at least one cusp A of K such that m (z,L} £ c. A vositive

real d 1s a lower reduction constant (for K) if for each

{z,8} € H, there is at most one cuse KW of K such that

'

nu(z,t) < .4, iJe. nu{z,C) < d and my(z,t) < d 2= p =nl
Note that if ¢ is an upper reduction constant, each e¢' > ¢
has also this property, so that we are interested in getting as

low a value as possible. The optimal upner reduction constant

is inf[c !c upper reduction constant} . Similarly we are in-
terested in getting the highest possible value of d.
The main problem of course is to show that such constants

exist at all. These statements are the two main theorems of

reduction theory.

. {n}
1.2.2. First Reduction theorem i%f is an wpper reduction constant

for any imaginary quadratic fileld XK.

i.2.2, Second Reduction theorea 1 is the optimal lower reduction

constant for any imaginary guadratic fleld X,

Proof of 1.2.2.: Let h be the hermitian form associated
te {z,7) and x be a minimal vector of h in 9%, By a result
Il
of Korkine-Zolotarev (43 ) we have hix,x) s;lqﬁ-n Choose 2
L L
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to be the cusp assoclated to U;x.
2
h(x,x) Dl
nylz, 5 = (ﬁTﬁ:@qD & (x,x)f ¢ 13— e

1.2.4, Remark As one would expect,j%L is not the optimal
upper reduction constant in general. It is, however, optimal for
all imaginary quadratic fields with class number equal to one,
except Q(V=7). This follows from the computations of Bianchi{ )
and was proved independently by Speiser, Perron, Oberseider

and Oppenheim (cf. (43), (41) and the references given there.}
Bctually, the last group of authors (1932 - 1934) computed

minima of positive hermitian forms and were not aware of the

connection with reduction theory. It was “Mahler {41 ) who pointed

this out more than five years later.

in order to prove the Second Reduction Theorem, We derive

the following easy but useful result:

1.2.5. Proposition (Incidence Criterion) Let A, be different

cusps of K and let Cqs Cy be positive real numbers. Then:
nl (e Ao (ey) B O AFE VETT,MN > NS

Proof: We set N(«) := 1. We have to consider two cases:

Case 1. », ¥ are both different from = . The level sets are
spheres; now two spheres have a non-empty intersection if and
only if the sum of their radii is greater than or egual to the

(euclidean) distance between their centers. if 31 and 32 have

the centers (21,r1) and (zz,rz) and radii LieTq respectively,
1
s, NS, Eo iff ro+r, 2 (Iz1—z2|2 + | egse %) 2
. . . g SR
LEE (ry ¥ 1) (ry-ry)* » |z1 7,

- 2
iff Aryr, > |z, zﬂ

Substituting S, = ni“(c1) and S, = n"‘(cz), we obtain the

1 M

condition
55

o
- = 32 2 -
4 3 H,03 Nu 2| X ul N(A Wl

Case 2, We can assume that A == ., The horizontal plane ¢ = X
1
intersects the sphere ngl(cz) if and only if the "height" of
the plane is less than or equal to the diameter of the sphere,
1
This means that = ¢
15‘1 < ﬁzNu
<
or 1 X fc1czNu

Now N = 1 and by conventicn N{= - p) = N(x) = 1.

W
o=

1.2.6. Remark If we choose a.,B,y.8. ¢ @ such that } = % ,
T E— )
we get the equivalent condition

cqe, Mo ,B)N(y,8) > N(ad-y8).

Here we don't need the convention that Nfe) = 1.

Proof of 1.2.3. Let CyrCy be positive real numbers both less

than 1 . Let XA,y be different cusps such that there is a

point (z,0) € nA](c1) s ﬁr!(CZ)' If we choose g B,y 8 as
in the preceding remark, we get the condition
fé:?z N BINly ,8) > Nas~g).
Since aé — Y8 is in the product ideal (x,8): & ,6), we have
Nid~8) 2 Nip Bl Nl 5).
But JE?EE < 1, and this gives the contradictilon.
To show the optimality, we note that for any imaginary

quadratic field K, the point (z,0) = ((0,0),1) has distance 1

to both cusps O {cf Example 1.1.2.)

1.2.7. Remark One can alsc prove the Second Reduction Theorem

by showing that, for any two flags L,L' T &

1 v .
vol, (L+L') § vol, L vol, L'




(this generalizes the inequality lx x y| g/x|ly| !) Since

vol (L + L') = [0? : L+L"] - volh{U’), one easily obtains

the result.

Yadis From now on, I := P3L(2,8). We shall noQ discuss the
construction of a (strict) fundamental domain for T in H. We
shall not provide details, as the arguments in our case are
basically the same as those in Siegel's lectures {i4) treating
the case of Hilbert modular groups. The main purvose of our
discussion is simply to collect more or less well known facts
needed later.

Let A be a cusp of K. We have the following important

concept:

1.3,1. Definition H, := {{z,8) € H | ny(z,0) g nu{z,;)} for

all cusps p of K is called the minimal set of A in H.

First of all, HA is never emoty,since, by the Second
Reduction Theorem, it contains the open ball (or onen half-
space) {(z,27) ¢ H | n,(2z,1) < 1}. Moreover, each H, is a
closed subset of the upper half space: if a sequence ((zn,cn})

in H, converges to {z,{) in H, then by definition, for all

A
cusps u and for all n, “A{Zn’cn) £ nu(zn,cn). By the continuity

- of the cusn distances, n,(z,2) g n“(zgg) for all cusps .

We denote the boundary of H, by I,.
It is easy to see that H, 1is a (closed) covering of H:
for any uoper reduction constant ¢, there ls at least one and

at most finitely many cusps u with nu{z,c) £ c. Choose a cuso A

to which (z,r) has minimal distance: by definition (z,{) € HA‘

Further proverties of the minimal sets will be studied

in § 2.

1.3.2. Example It is very useful to draw the picture for the
classical case K = @ in order to get a (geometric) feeling for
these minimal sets. The HA's we are studylng are just some-
what more complicated (at least more difficult to draw) 3-di-
mensional analogues.

Por a point z = x + 1y in the upper half plane, the dig~

tance to a cusn A = % in @ v {»} is given by:
o 1-Bx + a)? + gy?
e v

The level sets are the well known Farey circles for ) # = and
horizontal lines for A = w,

We have the following picture of the minimal sets:

Fligutd 1352
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$he (infinite) tree in the drawing is the union of the
boundary sets Ik“ One finds the same abject in ({6}, ». 53 .

where it is studied from a slightly different point of view.

Note that the minimal sets transform nicely under T: for

any cusp A of K and g € T,
g Hk o ng 5

This follows immediately from the invariance property of cusp
distances. In particular the image of a minimal set is again
a minimal set. This is no longer true in general if g £ T
For example, consider the matrix (1 1/2) € SL(2,®; this in-
duces the translation 2zp—2z + 1?2 ;nd the image of, say H_
is not a minimal set.

We can now start with the construction of the fundamental

domain. Denote by hK {or simply h) the class number of K. It

is well known that there are exactly hK I'-orbits of cusps, the

" correspondence being as follows: write X = % with ¢,B € ¢ and

form the ideal class {(u,B}] . The map TAp——[(a,B)] is
well defined and is indeed a a bijection. (Compare (14), Propo-

sition 20, p. 242.) Hence we get

H=T ‘(HA v ... UH )

where the Ai‘s are representatives of the F-orbits. However,
this finite union is not yet a fundamental domain since any
minimal set H, 1is stabilized by the lsotroopy group I‘l of A in T
(invariance property again!). The following well known result

can bhe used to construct a fundamental domnain Tx for TA in H:
i i

1.3.3. Procosition Let A be a cusp. Choose a,B € & with

A= % and fix a matrix A which maps = to A. Then:TA consists

of elements of the form

e
where p € {a,B) and €,e” are units of ©.

{Compare (44), Proposition, p. 246) For example, for A= O,

o -1
we can set A =(; 5 Hence, any g ¢ TO is of the form
o}

o -1\fe p€lfo 1) _fe o
1 0 0 e -1 0 pe €’ )

We now let Fi = Hlir\ Tli' The set F := F1 L oeas RJ Fh
is a fundamental domain for the action of T in H. Again, we re-
fer to Siegel's notes for details (714), po. 261 - 269.

To finish this section, we state another important re-

sult, a compactness criterion:

1.3.4. Proposition Let Tyresndly be positive real numbers. The

set
F(r1,....rh) = {(z,0) ¢ F | nli(z,g) > r; for all 1gigh}

is compact.

One easily proves by an explicit construction of T that

A
1
the set Bi := {{(z,2) e T, | e 2mn, (z,2) » r,} is compact (her
. Ay Ay i E e

¢ 1s an upper reduction constant). Hence B = B1 (VIR J B
e "

is also compact, and this is also the case for the closed subset

F(r1,...,rh). (Compare (14), p. 253 and Proposition 22, p. 270).
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§ 2. THE MINIMAL INCIDENCE SET OF AN IMAZINARY QUADRATIC FIELD

Remember: I := P3L{2,9).

2.0. In this section, we shall use reduction theory to find

a "good" sovace for the group T - "good" in the sense that it
provides an effective method for computing cohomology. This

is the minimal incidence set I (2.1.6.)~ the union of the boun=
daries IA of the minimal sets HA' I is a contractible subspace
of H on which I' still acts in a properly discontinuous manner
and the quotient ;\3 is compact. Moreover, I has a 2-dimen-
sional cell structure compatible with the action of TI'. The
cell structure also has the following nice "cohomological®
property: the (finite) lsotropy groups remain the same for
points in an open cell,

In case the class number of K is 1, I = T-I_ and the
set I_ has been studied in the classical theory (see §3 for
a detailed discussion anﬁ references.)

In 2.1. we introduce a number of concevts involving
"minimality” - minimal cusp distance, minimal cuso set of a
point (both 2.1.1.}, minimal incidence set of K {(2.1.6.) -
and study their basic properties and mutual interrelationships.
We show that the quotient ;\i is compact (2.1.9.). The car-
dinality of the minimal cusp set(2.1.11.)- viewed as a function
d: Be—s @ - oresents a number of interesting problems; we
study its values at fixed points of the ['-action. In, 2425
we describe the cell structure on I and prove the vronerties
mentioned above. Finally, in 2.3., we show that the minimal
incidence set is a contractible space, being a (strong) de~
formation retract of H. In fgct, we vrove that each IA is a

r;equivariant deformation retract of HA‘

2.1. We proved in §1 that for a given element (z,7) € H and
a fixed constant ¢, there is just a finite number of cuswns to
which (z,%) has distance less than or egual to c. This fact

allows us to define the following function:

2.1.1. Definition The minimal cuso distance of (z,f) 1is given

by: nl{z,r) 3= min{nA(z,;)[ A e Ku{=}}

We denote by M(z,L) the (finite) set of cusps A such that
nAEz.C) = n{z,). An element of M{z,7) is called a minimal

cusp of (z,r).

The concept of "minimal cusp of a point™ is the dual
notion to that of "minimal set of a cusp", l.e., we have:
Hy = {(z,%) | X e M(z,0)) and M(z,0) = {X eXV{=}|(z,7) eH)

We shall now describe some basic ovrovperties of the function
n, It is obviously invariant under I'. For any cusp A, it is
smooth on the set Hl e IA (it's simply the restriction of n,
to this open set.) We will now show that it is in fact conti-

nuous on the whole upver half-swvace. We need the following easy

{but important) Lemma:

2.1.2. Lemma For each (z,rz) £ H, there 1s an open neighborhood

U such that
Uf\}ih#(ﬁ 1£€ X e M{z,r)

In particular, {HA} is a locally finite closed covering of H.

Proof: The sufficiency of the condition is obvious. To prove
the necessity, note that A §M{z, ) means that ny{z.g) » nlz,2).
Hence, we only need to show that 1inf{ nA(z,cil rE Mz, 0] is
(strictly) greater than n(z,f). Now, there are just finitely

many cusps A?,...,xn such that ny {(z,0) & niz,g) + 1. We
%
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have two cases to consider:

! in M(z,z). In this case
Cage 1: Wot all A,'s are contained in M(z,

inf nA(z,c)lA b M(z,0)) = min{nli(z,;) | Xy E M{z,c0) 1<i<ni

> n(z,L).

). Then we have
Case 2: All Xi's are minimal for (z,T

inffnh(z,;)jk b M(z,z}} > niz,5) + 1 > n(z,5).

g.
2.1.3. Provosition The function n: H———=3R is continuou

finite closed
Proof: By the preceding Lemma, {Hk} is a locally

: 1y n, restricted
covering of H. Since n restricted to Hy is simply n, .

to H,, by elementary topology, the claim follows.

We consider now the image of n. Minimal cusp distance can
i-
be arbitrarily small--we shall now see that it cannot be arb

trarily large. First we need the following Lemma:

2.1.4. Lemma Let H' = {(z,7}] nilz,0) 2 1}. Denote by F the

L t s
fundamental domain described in §1.3. Then F':= F AH
compact and H' = T-F'.

Proof: The comvactness follows immediately from Provosition

1.3.4. since n, {z,c)p nf{z,r} 2 1 for each (z,r) K whereby A?,...
w3 ds .

A are representatives of I'-orbits of cusps. The second
G o

assertion is a conseguence of the P-invariance of n.

We now claim:

2.1.5. Pronosition n attains an absolute maximum m on H, which

is equal to inf{ ¢ }h ¢ upper reduction constant}.

i mpact
Proof: Since n is continuous, it has a maximum on the comp

! e to the T'-in-
set F'. This value is indeed the maximum on H' du

19 =

variance of n. Wow, by definition of H', any value of n on
H' is greater than or equal to any value on H\ H'; it follows
that the maximum of n on H' is the absolute maximum m on H.

We want to show that m = the ootimal unwer reduction
constant inflc ¥ ¢ unmper reduction constant). For any such c,
m £ ¢t this is because there is at least one voint {z,L) with
n{z,Z} = m. For such a noint, there is at least one cusp A
such that ny(z,L) € c, whence the claim follows. Therefore,

m £{inf ¢ |c uover reduction constant}. Suovose that strict
inequality holds; this imolies, in narticular, that m is not

an unver reduction constant. Thus, there is a (ZO,CO) which

has cusp distance nx(zo,io) > m for all cusps A, On the other
hand, there is at least one cusn Ao such that n{zo,co) = nAO(zO,C

This leads to the contradiction n{zo,Eo} > m,

By virtue of the First Reduction Theorem, we have the

general estimate m g |g|,

We now want to specify where this maximum value m is

attained:

2.1.6. Definition The minimal incidence set IK {or simnly I)

of an imaginary guadratic field K is defined as:

IK 1= U HAA"u
(1)
A, 1 distinct cusps of K

IK consists of all points in H with at least two minimal

cusops. Alternatively, we could write IK = LJ[Ili A cusp of K.

Note that I is a closed set, since the sets Hy n H form a

u
locally finite closed covering of I.

o

).
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We will be dealing in the £ollowing sections with

alrs of dis-
a number of sets which, like IK' are indexed by »

tinct cuspms of K. To save space, we shall just write (},u)

to denote such palrs, and no longer exolicitly state that

the cusps A,n have to be distinct.

The minimal incidence set will olay a central role in

our further investigations. At this juncture, we just want to

show the following:

n attains its maximum only at points in T.

2.1.7. Provosition

of I under n is the closed intervall [1,m] .

Mporeover, the image

= se that 1t is
pProof: Let 1zo,Co) € H with n(zo,co) m. Suvpose

gince I is closed, there is an open ball D{(zo,co),r

in HXN I.

contained in H % I. Let % be the unifue cusn such that n(zO,co]

= nk(zo,coi. Now there is a point {21,51) with n(zg,c1)

= tradiction.
nl(z1,c1) > nk(zo’co} = n(zo,ﬁo), a contradic

According to the Second Reduction Theorem, there are noint%
(Cf. Examole 1.1.2.)

calculuT

in I with minimal cusp distance equal to 1

The claim follows from the intermedlate value theorem af

o(1) and & = 2[i], the ring of Saussian

2.1.8. Example Let K =

integers. As wWe have remarked 1in 1.2.4., the ontimal uoper re-

o] 2.1.5.
duction constant in this case is egual to '3 ,1.e. 2. By

this is also the maximal minimal cusp distance. n attains it

at (1. + i,v2 ) and, by I'-invariance, at all images of it under
o 2

our computations in §4 show that these are the only voints in H

where the maximal value is attained.

1t is obvious that I is stable under the action of T. The

first cohomologically relevant nroverty of the guotient space

T
is the following:
% g

2,1.9, Theorem \\f is comvact.
r

Proof: The quotient space ;\E is compact if and only if there

is a non-emoty compact subset C of I such that I = Ir-C. Take
C=1IMNYF, where F 1s the fundamental domain for I' constructed
in § 1.3. This gset is non-empty, closed ({being the intersection

of twe closed sets!) and, by virtue of the Second Reduction Theo-

rem, contained in the comvact set F' of Lemma 2.1.4. Hence C is

compact. It is clear that I = Te(C.

2.1.10. Remark With this result, we have already overcome one

difficulty in the cohomology computation, the non-compactness of
the original gquotient space ;\f . Of course, there are other
I'-invariant subsets of H with compact quotient{for examuple, H'
in Lemma 2.1.4.). But as we shall see in §4 and §5, working
with I has a number of advantages. I, for examole, has dimension

equal to 2, the lowest possible.

By means of the minimal cusp distance, we are able to
attach to each point (z,{} in H a finite set of cusvs, namely
M{z,r). We will now investigate guestions concerning its car-

dinality.

2:1.11. Definition The cusp degree of {z,7) is defined as:

dlz,z) := |Miz,g)i

We denote by d: H-———3 N the cusp degree function.

The following oroposition describes the oroverties of
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M(z,z) and d with reswvect to I'-equivalence:

2.1.12. Proposition 1) If (z',g') = y:{z,c), then there 1s

a natural bijection ¥: M(z,{)——M{z"',L").

i11) The cusp degree is T-invariant,i.e., d{y(z,5}) = dafz,5).

Proof: 1ii) follows immediately from 1}. The natural man ¥
is defined as follows: Ap—syA . NoOwW nTA(z',c') = nyk(sz’C))
= nh(z,c) = nl(z,2) = n(ylz,t)) = n(z',r’). Hence Y e ™“(z',C').

The maw is obviously bijectilve.

-1
The fibres d (1), where 1 € N, are also I=invariant sets;
they form another interesting decomposition of the upper half-

space. If we write H,; := a"' (1), then we have

i
e,
i1
and £ u L;) H,
iz2

The first guestion that comes to mind is the following:
is this a finite decomposition? In other words, is d a bounded

function? The vositive answer is imolied by the following

result:

2.1.13. Provosition d is an upper semi-continuous function.

Proof: Since N is a discrete set, d is uoner semi-continuous
at (z,r) if and only if there is a neighborhood of {z,C) such
that d(z',r") < dlz,g) for all {z',2') in the neighborhood.

Take U as in Lemma 2.1.2. to be the neighborhood.

Since F\i is compact, there is a comnact subset CCT

with I = T«C. By elementary calculus, it follows that d has

a maximum on this set; due to I'-invariance, this is also a

maximum for I, and hence for H, too. We summarize this as follows

2.7.14. Pronosltion There is a natural number dmax {called the

maximal degree of K) such that for all 1 > d H, = ¢
max’ i N

The degree function assumes only a finite number of values.

One would, of course, like to more about these values,i.e.,
which invariants of the quadratic field determine them. To be
more specific, here are some oven questions:

1. What is the maximal degree d for a given imaginary qua-

max
dratic field?

2. Which values between 2 and dmax ocour’?

3. At which points does the maximal value of d cccur? At points

with maximal minimal cuso distance?

A sort of starting point for studying such questions is
to look at the values of ¢ at fixed points of T'. First of all,

we characterize the fixed points which do not lie in I and

their stabilizers.

2.1.15. Proposition Let X ba an imaginary quadratic field. Let

(z,2) be a fixed point of I with M(z,z) ={ &
B

fixed a o a
matrix mapping to e If v € T'{z,5), then v 1s induced

}. Let A be a

by an element of the form

A e(1~az§ gﬂ

) - o] 1
where e 1s a unit in O and A 1[z,c) ={z',5"). The order of y

is equal to the oxder of . If n is the maximal order of a

stabilizer in I'(2,z), then T'(z,z) = 2 -
I




mLEe sy n x 2 1 v r r x SRS

¢ - % Hence,y is an

proof: Ify stabilizes (z,0), then yg = g The stabilizer T(z,r) of a point acts on the minimal
element of finite order in I‘q. By Proposition 1.3.3., any G BEE 5B EOUISWR OV Mi—sE o CHIMERIY, 95 N 5E AEELR
element of T has the form B of T{(z,r), the stabilizer in PSL{2,68). Using this action, we
* . can derive the relationship between the stabilizer orders and
A (:) 1 ) A’j the cusp degree of a point:
-2
with ¢ a unit in &, A as above = & () m‘: sinee 2.1.18. Proposition Let (z,f) be any point in H and F(z, T,

m 3
E 2 <1 el ki i r(wzos ) I'(z,t) as above. Then:
(A y )a *Xg =\o 1 ¢ . )
) a) |T(z,r)| divides —l—%—ld(z,c). Moreover, |T(z,7)| = lglﬂ!z,c)
such a transformation # ildentity has infinite order if €= 1

~..1{ ) implies that the above action is transitive.
:= A Z,

and order equal to that of e if e# 1. Now (z',%")

ig a fixed point cf(E r)so that ez' +r = z* and r =(e-1)z'.
o 1

b) |Ttz,g)| divides |§ld(z,r) and similarly, equality implies

transitivity.

atement is now evident. '
The last st Proof: We will just prove a) in detail since analogous arguments

2.1.16. Remarks a) A fixed point (z,%) not in I thus lies nold for b). If |Flz,z)| = 1, then the Slaim is trivial. If %=
O
on a whole fixed geodesic with an “endpoint® in B Such a A e M(z,Z}, then we have a bijection: I’(z,f) Z Plz,7) A
' 4 - s Pz Eim
geodesic intersects I at a single point (cf. the application We claim that |T(z,2)nT_|= 1 or 4L, Now an element of r with
B - g E T =1
of TLemma 2.3.3., p.40). determinant = 1 can be written as 0 o A with A, e, T
p) F 11 fields K # Q(1) Q(¥=3), the proposition tells as above. If X ¥ Q(i), @(/-3}, the only such element of finite
or a [J
that the stabilizer of a fixed point not in I is isomor- order is the identity. For X = Q(i), the transformation of order
us tha e st 3
1 «242"\.-1 o) : -
phic to Z// This also follows from that fact such & fixed 2 induced by A —— A is in I‘(z,:;}f\f‘a/ﬁiff -2iz' € {a,B) 2
2z° o1+
& i For = - @z
point has trivial stabilizer in PSL(2,¢). Ify X, are sta or X = Q(/-3) and 5 i i@ s;u;;il?r statement holds for
: . the map of order 3 1 bl Fu
bilizers different from the identity, then Y, Yy “{21; Y22 are P gduced by A(O iy )A . In both cases,
= I'iz NnT = 1 -
also stabilizers, but which belong to PSL{2,0) . Hence, Y, [T(z,2) C'/é or -L—!—z Since
3 =Y ™
¥ = Y, and this implies thatY , =Y ,. e A |Tz,z) ] 1
! ':) s M(Z;C) & l"{z, A zz‘ = 'r . 3
1 2 ¢ I ' éi C} i T(zﬂC)nr}\i I (Z f;)! i’r(zt‘:)h FA
\ & 1 = 2T7i]. The points (0F) 9 »
i 2.1.17. Brample Let K = @(1) and ¢ = 2[3] Multiplying by U? , we get |T'(z,z)|-n = *—Li’g {z,z) with n ¢ N.

‘ i ; ith £<1 1lie in H NI, N
with ¢ > 1 lie in Hm N .[m and those w (8} (] Note that n ® number of orbits of T(z,z}, whence n = 1 implies

1 0
i the map induced by( ) )
such points are stabilized by the map o -1 transitivity. If K # Q(i), Q(/=3), then n = number of orbits.
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2.1.19. Remarks It 1s easy to see that there are poilnts (z:+:0)

in I with trivial stabilizer, so that in general the actions
of I'(z,r) and T'(z,L) are non-transitive. However, there are
also fixed points in I with non-transitive actlon. For example,

for K = o(¥=7), Tlz,z) = T'(z,r) = %/;Z for any (z,y) with

27 + 2=1, O < Re z < % and Im z = MR? Z o+ ?%—. (cf. §4.2
for the stabilizer computations). However, d(z,z) = 4, so that

there are 2 orbits.

2.2. We will now prove that I has a cell structure with the
nropverty: the stabilizers in ' remain the same for volnts in
an omen cell. This will be done in two stems: first of all,
we show that for each pair of distinct cusps (A,u), the set

H, M Hu has a natural cell structure. This induces a cell

P\
structure on I with the following praperty: the minimal cusp
sets remain the same for noints in an ownen cell. Then we
show how to refine this cellular subdivision in order to get
a new one with the nice "cohomological" property stated above.

We begin by studying the set of points in H which are

equidistant to two distinct cusps A,u .. We define:

S(A,p) = \\_/J niﬁ(C) e n;1{0)

0<g<w
This set is easy to nicture geometrically. If Nl = Nu , and
both cusos are different from «, then n;1(c)f\ n;1{c) lg just
a vertical circle for each positive number c¢. These circles

are toncentric and lie in the same vertical olane. Hence.

S(A,u) is just a vertical plane in this case. If vA L Ny

then we have the following result:

LD R LR SIS N O B P L PR

2.2.1. Proposition S§(A,p) is a hemisphere with center in the

plane { = O.

Proof: We first consider the case y = ». We choose a,Be O

such that A = % Let k be a positive number which doesn't

i
depend on (2,7). The set n;ifkc}r\ n;1(c) , where ¢ is any

positive constant, 1s described by the equation:

k %zz ( aa- afz - aBz + BR(zz + cz})z
N{a,B)Z

Simplifying both sides, we get
K N(a,B) = (Bz - a) Bz - a) + BBY?

or {x'n,

(z - X)(z - A) + g2

This last equation describes a hemisphere with center (A,0)

4+
and radius Jk N; . Taking k = 1 settles the claim for S(A,/=}
For arbitrary p, we take a g € 5L(2,K) which maps p to = .

By the Transformation Rule, we obtain for (z,z) € S{A,u):

2
n,(g(z,0)) =(N g‘Y;g;)j n,{z,t)

2
ngy9(z,)) = M)nk(z,m
N(g{avsl)

[ N(a,B) Ng¥,8)N\ 2, Hence we get:
ek k (N(Y,ﬁ)'N(g(m,B))

il

ngutgtz,c))

and

1(0) =3

(z,8) € SO,u) iff glz, L) eUn_l(kc) N n
Now the hemisphere S is mapped onto S(i,u} by g—q, it follows

that S(i,p) too is a hemisphere.

We denote the set of eguidistant voints with distance

less than or equal to r with S(A,u)r. This is a closed set

5
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(continuity of cusp distances again!) and we want to show
that it 1s indeed compact. Again, we choose a g € SL{2,K)
which maps 1 to =. By the Transformation Rule, we obtain
for (z,5) € S(A,u).s

2 ' 2
n_(glz,c}) ==G¢é}%¥f%%j) n(z,0) € (N gEY:g; ) -

Writing (z', ¢') for g{(z,t), we obtain the inequality

1 N(y,8) \? N{g{y,8))
) R 717 o

h gt g S L 4
Now the set {(z',z') £ 8 | ¢' 2 Ny 85y 7= S 1s compact an

g 9'1 being homeomorphisms, gS(R,u)r and S{R,u)r are com-

pact, too.

We will now discuss the natural cell structuré on the
intersection of two minimal sets. (Remember that these inter-
sections form a locally-finite clesed covering of the minimal
incidence set!) Let A,p be distinct cusps. We shall describe
the inequalities that determine Hyn Hu as a subset of 5(A,u).

First of all, HA N H 1s in fact a closed subset of

u
S(l,u)m , where m is the maximal value of the minimal distance

function n, since the image of n is orecisely [T,RJA It follows

that H#H, N Huis compact and n has maximal value on the inter-

A

section, which we will call wm(A,u). Again, HA!\ HUCLS(A’u)m(k,u)'

Now, by definition, (z,0) € Hy f\Hnif and only if for
all cusps v # A,u, nh(z,ﬁ) = n“(z,c) 3 nu(z,n)- seometrically,
these inequalities mean that the point {z,%) lies on S5(A)V) or
"outside" of it and on &{u,n) or "outside" of it for all cusps

v # A,n. For cusps v such that S{Am) /M S{h,u) = # and
M‘)Ir) T

Sumn) N S(A,u) é , these conditions are automati-
miA,u)

cally fulfilled. We just have to consider these cusps v

such that
(0 SO NSO o F for Su) NSO G F ¢

The following Propocsition implies that there are just finitely

many cusps satlsfying the above condition (X):

2.2.2, Proposition Let o be a fixed cusv of K. Define for

any {z,;) ¢ H the following set:

M (z,8) =1 1 |n {z,0) ¢ n (2,5)}
(This is clearly a finite set!) Then there is an open neigh-
borhood V of (z,f) such that

VN Sle,w) £ ¢ 1ff v e M (z,L)

proof: The proof 1s analogous to that of Lemma 2.1.2. We have

to show that the infimum of the distances of (z,r) to cusps
which are not in Ma(z,g) is still strictly greater than the
distance to a. By the Finiteness Property, there are just
finitely many cusps Oqoeeeely guch that nai(z,c)g na(z,c) + 1.
We have two cases to consider:

Case 1: Not allui's are in Mﬁ(z,ﬁ). Then we have

inf no(z,c) = min ngi(z,c) > nu(z,c)
ok M(z,2) o, £ M (29

Case 2: All g,'s are in M {z,g). Then
inf n (z.8) > n,lz,z) + 1 > nﬁ{zpa)

o kM (z,2)

This proves the Proposition.
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Cover the setb S{A'“}m(k it § with neighhorhoods as in the
i

preceding Proposition witha = 1. A finite number of them

v(z1,;1),.. ,V(zg,gs) will cover the whole set. This means
that
)
StAm) N S(A,u)mu il # ¢ implies v e 1 N‘A‘zi"i)

and the latter union is a finite set. Similarly, there is only

a finite number of cusps v with S(p,v) f\S(A,u)m(A'u) # .

We can hence picture ka\Hu as follows: we intersect
the set S({i,u) with every S(in) and S{unv), where v satisfies
the inequalities (X). In each case, the intersection is a
geodesic (a vertical half-line or semi~circle in this case).
What obviously results 1s either empty or a closed n-cell
(n = 0,1,2). Finally, we take those points {z,z) with cusp
distances nx(z,g) = nu(ZnC) ¢ m{iA,u). This amounts to inter-
secting the closed n-cell with a cupola. It is also clear

that the n-cells are regular.

One can easily see that the circle n;x(m(A.u)]rﬂ nJ‘(m(R,u))
intersects Hkiﬁ Hu only at a finite number {and at at least one)
of vertices. This implies in particular that n has its maximal

value m at a vertex, so that the set of points where the maximal

value occurs is discrete.

2.2.3. Example We have the following plctures of ﬁonﬁ H,

for K = Q=1) and K = (/7). 1in both cases, the 2-cell lies
on the hemisphere {{z,r)] 2z + ¢* = 1}. The square and the
hexagon are the {vertical) projections to the plane ¢ = O.

The computational justification for the drawings can be found

in 4.1. and 4.2.

Figure 2.2.3a

Figure 2.2.3b

K = Q(y-1)

K = Q(/~T)
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Tt is clear from the preceding description of Hk f\Hu
as a subset of S(A,u) that it is a closed 2-cell if and only
1f there are points in 1%, whose minimal cusp sets consist
of just A and . Indeed, the open 2-cell consists precisely

of these points. This implies that the intersection of two

distinet closed cells is either empty, & o-cell or a 1-cell.
Since the intersections of minimal sets form a locally-finite
covering of the Hausdorff space I, we see that the minimal
incidence set is a 2-dimensional regular CW complex. Note
that, for each fixed cusp A, we also have
IA = U lilﬂ “l-l
wEA

Hence, Ik has a natural subcomplex structure.

We will now derive a very important property of the
mapping (z,C)p———->M(2Z,L), namely, that it is constant on
open cells. This is clearly the case for open 2-cells, as

we have seen in the preceding paragraph. We now consider

the case of the open 1-cells:

2.2.4. Proposition Let e be an open j=cell in I Suppose that

(z,) lies in e. If (z,z) € H,, then e C H;.

Proof: We shall also call a 1-cell ( or open 1-cell) an edge
{or open edge). Since e 1s an open edge in I, there are at
least two cusps p., v, both different from A, such that e is
contained in Huf\Hv . The claim is equivalent to the state-
ment that if (z,g) € Hur\Hk. then e C Hu[\ HA’ HNow, 1if e
were not contained in Huf\ﬂl' then there are points (z',C')
in e such that

nu(z',C') = B\,(z.sc') * TI}\(Z'.C')

{(those "inside® the hemisphere S(u.A)!) This is a contra-

diction to the fact e C Hu s Ho .

It follows immediately that (z,r)l—M(z,f) is cons-
tant on open edges. In particular, the cusp degree di{z,r)
remains the same for points in an open edge, too.

We summarize the above discussion in the following

Theorem:

2.2.5. Theorem The minimal incidence set I is a 2-dimensional

regular CW complex :, For each cusp A, I, is a subconplex.

X
1f (z,c) and (2',¢') lie in the same open n-cell, then M(z,0}

= Mlz',z").

Let us now consider the operation of I' in terms of this’

cell structure. Our claim is that the I'-operation is cellular:

2.2.6. Proposition An element y of T maps an open n-cell

(n = 0,1,2) to an open n-cell.

A
is a point {z,r) with minimal cusp set ={i,p}. The image of

Proof: We start withn = 2. If H r\Hy is a 2-cell, then there

this point under v & Thas the minimal cusp set {y},yu}. Hence,

Y-(HAKN Hﬁ = HYAr\ H uhas an element with exactly two minimal

Y
cusps, which implies that it 1s a 2-cell. The argument applies
also to the open cells.

Let e be an open edge. The set Ye lies in the 1-skeleton
of I { due to the argqument just sketched), and we claim that
noc vertex {or corner) lies on Ye. Assume the contrary, and

let (zo,co) be a vertex on ye. The part of ye near (z )

o fo
and on one side of (za,co} must lie on some open edge &' with
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one end at {zo,ﬁo). Since {zo,zo) is a vertex, there is also
some other open edge e'' with one end at (zo,cO} such that the
gnion e' y e'®' doesn't lie on a geodesic. Now consider a

neighborhood U of {zo,co) as

in Lemma 2.1.2. For any ele-

ment (z,z) & U N ye, we have

]

&
M(z,5) CMizg,Ly). By the I/} .
P
preceding Theorem, the cusp Ry I

degree is constant on &, and
hence, by I'-invariance, on ye Figure 2.2.6.
too. This shows that d(z,r} = d(zo,ﬁo), implying in turn that
Mlz,p) = M(zo,co). mgain, by the preceding Theorem, this
equality is true for all points {(z',z') in e'. Analogously,
we conclude that M(z'',z'") C M(zo,co) for all (z'',g'') ee'’.
put this means that the edges e' and e'' are contained in
S(A,A') /A S(A', A"}, where A A',A"" are three distinct cusps
in M{z°',c''); since the latter set is a geodesic, this is a
a contradiction. Therefore, ye is a connected subset of the
‘1~skeleton of 1 containing no vertex. Thus ye lies in an open
edge e . Y_1E ig also a connected subset of the 1-skeleton of
I containing no vertex (using the same argument as in the case
of ye), and it lies in an open adge 2. Now etzz implies
that e = E, and hence, ye = e'.

Finally, the ilmage of a vertex cannot lie in an open

2-pell or in an open edge, because of the above arguments. It

has no other choice but to be a vertex, too.

Although the minimal cusp set M{z,t) is the same for

all points in an open cell, this is in general no longer true

—
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for the stabilizer T(z,r). We cite an example which is com=-

puted in detail in §4.

2.2.7. Exanple Let K = Q(/-1). The open 2-cell in Hor\ H,

consists of all points on the hemisphere {(z,r) |zz + 2= 1}

with |Re z|< % and |Im z| < %. (Cf. the picture on p. 31.)

However, we have the following stabllizers:
r{o, 1) £ dihedral group with B8 elements

¥ cyclic group with 2 elements

o
"
K

i}

r(1+i J14) = trivial group

to name a few polnts in the open cell. Similar remarks apply
ta F)= PSL{2,0) and cther subgroups r' of T. For example,
T(0,1) = dihedral group with 4 elements, F(%.(I%) is cyclic
of order 2. This difference in terms of stabilizers is due
to the fact that there are y ¢ T ' such that y(Hoyﬁ H) =

Ho M H_ and each of these elements fixes a point or geodesic

segment in the open 2-cell.

Let " be a subgroum of 7. It is crucial for the
cohomology computations in §5 to have a cell structure for
which the stabilizers in T'' remain the same for all points
in an open cell. We shall now show how to modify the above
cell structure {which we call the natural cell structure)
to yield one (depending on T'') with the desired property.

Dencte by (HA n Hu)o the open cell in the natural n-cell

By N B {n = 1,2). If y ¢ T' stabilizes a point in (H,N Hu)",
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then obviously

?(HAF!HB) f\{ﬁlr1ﬁu) # @ {X)
Since I'* is discrete and HAK\HH is compact, there 1is just a
finite number of elements of I'' satisfying condition {X)=--
hence, also just finitely many v's fixing a point in (Hlf\Hu)ov
Now, the set of points fixed by a M&bius transformation is a
geodesic, and this either plerces S{},u) or lies entirely in
it {cf. { ), Lemma 4.4. p. 25). If Hkr\ﬁu is an edge, this
means that either y fixes the whole edge or a single point on
it. In the latter case, we add the fixed point as a new vertex.
We obtain a subdivision of the edge into a finite number of
new edges. If Hlf‘ﬂu is a 2-~cell, we have to consider two cases:
Case 1. There are no isolated fixed points in (ka\ﬂu)o.
In this case, by adding the intersections of the closed geode-
sic segments with themselves and the natural 1-cells in HAF\[-Iu
as additional veitices and all resulting open geodesic segments
as open 1-cells, we obtain the necessary "modifications” on the
set (HAf\Hu)o.
Case 2, If there is an isolated fixed point {z,¢), then a
stabilizer y also fixes points not in I. Any geodesic in
Hlf\Hy on which (z,z) lies is invariant under y (since ¥ is
an isometry). If {z,g) is fixed by some other elements y°
in T', we add the cells induced by y' and the translates of
these under T'. If {z,r) isn't fixed by any other element
in T , then we add any geodesic thru (z,3) whose endpoints

in le\Hu are vertices and then take the T'-translates.

2.2.8. Remark We don't know whether there really are iso-

lated fixed points for T.
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We shall call the cell structure resulting from all these
modifications the I '—induced cell structure on I. T '-induced
cells are still regular, and it is clear that points In the
same open cell have the same stabilizer inT'. In particular,

open I' '~induced celis have trivial stabilizer inT'.

2.2.9, Example For H0{1QD in the case of K = Q{i), we have

the following natural and T '-induced cell structures (viewed

from "above"):

natural I'' = PSL(2,0) 't = PGL(2,0)
Figure 2.2.9%a
For I'* = T_, we have an isolated fixed point (0, 1). We illus-

trate two ways of completing the cell structure:

Figure 2.2.9b

I together with P'-induced cell structure is still a
2-dimensional regular CW complex. Furthermore, T'' still acts

in a cellular fashion:

2.2.10. Proposition An element y ¢ T’ maps an open ['-induced

n-cell to an open I''-induced n-cell (n = 0,1,2).
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proof: The preof is direct but rather tedious since it in-
volves a case by case consideration. We indicate it briefly |
for the vertices. An induced vertex must belong to one of g
the following categories: a) a natural verktex, b) the inter- '
section of two fixed geodesics, c¢) the intersection of a
fixed geodesic and a natural edge and d) an isolated fixed
point. By 2.2.6. the image of a vertex in case a)} also bhe-
longs to case a). By I'~invariance and the fact that My (z.,t))
equals yTI'(z,0)y ‘1, the same is true for the remaining cases.

We argue similarly for open induced edges and induced 2-cells.

When we speak of the quotient as a CW compléx, we mean
the cell structure on ;}3 inherited from the TI''~-induced cell
structure on I. We shall also call this quotient structure

I''~induced. We have the following corollary:

2.2.11. Corollary The guotient space f>§.is a normal CW

complex.

Proof: Since I'' operates discontinuously on 1, the guotient
space is a hausdorff space. By the preceding proposition,
I''-eguivalence is a cellular equivalence relation on 1, sO 4

that quotient space has a normal cell structure.

1f the quotient is compact, then. of course 1t is a u

finite complex.
i I
In § 4 the quotient spaces ;\\ and g\\ are computed
for the euclidean cases. These computations also yileld the

cell stabilizers.

2.3. The cell structure on I implies that 1t is a locally
contractible space. In this paragraph we shall show that it
is in fact contractlble ~ a property crucial for the coho-
mology considerations of §5. Contractibility of I 1s an

immediate corollary to the following Theorem:

2.3.1. Theorem The minimal incidence set I is a deformation

retract of H.

We shall give an explicit construction of the deformation
retraction r: H——>I. The proof can also be stated in terms
of Morse theory, but we decided to give an elementary presen=-
tation since the underlying geometry 1s easy to visuallze,

The first step 1s to reduce the problem to showing that

for each cusp i, I, is a deformation retract of the minimal

A
et "
s Hl
. Bxhﬂ—-éIAbe a deforma-
tion retraction and fA: Hy x [p,{1ww~waﬂlthe associated defor-

mation homotopy. Then there is a deformation retraction

2.3.2. Lemma For each cusp A, let r

ry He———p 1,

Proof: Recall that the minimal sets H, (their boundaries IA

respectively) cover H ( I respectively). We define v as

follows:
- {z,g} if (z,7) e X

ri{z,¢)
rktzft;? tf {z.z) £ X
(if {(z,r) t I, then there is a unique cusp ) such that (z,g)
lies in Hl') Now r is continucus on each set of the locally-
finite covering {Hm}of H, so that it is continuous on H. r is

clearly a retraction, i.e., rel = idt {where 1: I%—3H is the
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inclusion). Similarly, the defornation homotopy is given by

) 1f tmea) gL
f£(z2.,t) ==

fA(z,z} if (z,r) £ I and X as above

hgain f is continuous by the same reasoning as in the case of r.

Proof of 2.3.1. We now proceed wilth the constructlon of the

deformation retraction rk: Hf———ﬁlk(for an arbitrary cusp A).
if (z,r) llies on the boundarv, then,of course, rA(z,c) t= (2,0).
I1f (z,g) doesn't lie on the
boundary, conslder the unique
geodesic from ) which contains
the peint (z.r}. {For x# =,

this is a vertical semicilrcle,

perpendicular to the level set

Figure 2.3.17.

of ny containing (z,r); we
consider it withour endpoints in the plane [ = 0 and denote it
by g9, - For A = =, this is a vertical half-line) . ny is clearly
injective when restricted to 9% and moreover, nk(gl) = {0,w)}.
(One way to see this is to transport the cusp » to =via a y €
81.(2,K) and apply the Transformation Rulel)

Denote by g, (¢) the compact set {(z,t) £ g,] 1¢ny (2.8)g¢e }
and by Hi the set Hf\lk' Since H \hH? is closed, the set
gl(m) ™ (H \H?), where m is the maximal value of n, is non-empty
and compact too. The function n, has a minimum on this set, say
at the point (z',;"'). Since n, is injective on g,, (z',z*) 1is
unigue. Furthermore, {z',t') lies in I : any neighborhood
contains points of Hi. We set: r,(z,%) := {z',2")-

(2',r') is, as a matter of fact, the only element in

g, N IA: this results from the following Lemma:

w4

2.3.3. Lemma Let S be a hemisphere in H with center in the
plane ¢ = O or a vertical half-plane. Let e be an open geo-
desic seament of H which meets S but does not pilerce S, Then

e 5.

For a proof ¢f. { ), p. 25. In order to apply the Lemma,
choose S to be S(A,u) for any peMiz',r') different from ).
Since glqﬁ 5(x,u) (for example, (z,z) E S(i,u)) but meets it,
then q1 must plerce 1t. Hence {z',r') is unique.

rA is easily seen to be continuous since the geocdesic
depends in a continuous manner on (z,z) in the sense that
the radius and the coordinates of the center of g, are con-
tinuous functions of {(z,z). ) is obviously a retraction.
The idea for constructing the deformation homotopy is clear:
we push (z,g) along 9, to rxfz,;}. This works since we have
shown that the points of g, between {z,r) and rl{z.c) all lie
in HA' If g:[o,ij—wu~9[hxiz,g), nA(rA(z,z)[] is a homeomor-
phism, we let

£,0(z,5),8) =g, N 0] a(t))

2.3.4, Corollary The minimal incidence set I is a contractible

space.

Proof: Since H is a convex subspace of HB, we can contract it
to any of its points. We choose a {z,) in I. Let r: H—— 1
be the retraction constructed above, and f be the asssociated

homotopy. Furthermore, denote by s: Hmm—"ﬁgzpﬁ)} and

g: # x[0,1]
We define:

5 := Si T {2z, 03}

*H the contraction and its homotopy, respectively.

E—

e —

e,

E s T




- 4n =

R h r )
3= ®
R

% 1s a contraction of T to {(z,r)}and h is its assoclated

homotopy «

5.3.5. Remarks It is easy to verify that the deformation

retraction r :+ H ——31 is T'-equivarilant.

This implies, for example, that

Hi(,.Ni Q) S Hi(r,\[,Q)

for any subgroup r‘ of T.
b) Similar considerations show that HA and IA are contracti-
ble. A ball "sitting" at A with
radius < 1 and punctured at A

is clearly homotopically equiva~
lent to 5;' The same is true for

a punctured sphere and I,. (ct

Figure 2.3.5.)
Figure 2.3.5.
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§3. COMPARISON WITH THE CLASSICAL THEORY

3,0. We would like to discuss some connections of the theory

developed in the preceding sections to the theory of Bianchl and

Humbert. Bilanchi {1 ) determined the fundamental domain for
small values of the discriminant and Humbert (40) extended

the construction to the general case. Swan (47) has given

a detailed account of the Bianchi-Humbert theory, filling in
some gaps and beyond that, discussing methods for the effective
determination of the fundamental domain. (Compare also {48)}).
We shall follow Swan's notation in the following account of

the classical theory.

3.1. The classical construction is as follows: for each pair
a, B, B# 0, both elements of @ such that (g,8) = ¢, define

the following set:

o= i - 2 2 2
Sg,q 1= 1ize0) e H | |82 - al*4 |8]*z*= 1}

~this is the hemisphere with center %,O} and radius T%P.
Now let B be the set of points in the upper half-space, which

lie above or on SB " for all such pailrs, i.e.,

B := {{z,r) ¢ H | |Bz ~ af® + |Bl2¢®31 for all u,p }
as sbove
A fundamental domain for PGL(2,¢) (actually the classical theory
is concerned with PSL{2,d)) is then obtained by taking that
part of B which lies above a fundamental domain for the trans-
lations and furthermore taking into account identifications

due elements of the form(e 0), where ¢ ¢ 3"
o 1

——
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SB;G is clearly the set S@eﬁ%\ we introduced in 2.2.,
and the condition on the palr a, B is equivalent to the state-
ment that the cusp % is T -eguivalent to = . Hence B can be
rewritten aé
B = {(z,z) e H|n (z,0) g ny (2,5) for all cusps A which}
are I -equivalent to =
Using this description of B and the properties of the cusp

distances (§ 1), we can easily derive many properties of SB i
r

and B. An example:

3.1.1. Proposition H = PSL(2,0)-B

Proof: Let (z,z) e H ™\ B. By definition, there is a cusp % »
(0,B8) = o with na(z,c) < n (z,z). There is just a finite num-
ber of such cuspg: we choose u = g with nu(z,c) minimal. Now
there is a ¢ £ PSLI(2,8) such that ¢u = =so that nu(z,t) =
n_(¢(z,z)). Hence n (¢ {z,2)) g n, (¢ (z,2)) for all v= ‘;1 and

{g:t) =0, i.e., ¢{z,z) is in B.

In general, we have the inclusion: H_«< B. 1In case the
class number of X is 1, then we have eguality H = B, since
each cusp is r-equivalent to =, We also have I = 9B, where
9B = {(z,r) ¢ B | there exist a,8 {a,B) = & such that |Bz - al?’
+ |gl2g2 ‘= 1}. Clearly, I =rpe I . It is also clear that in
this case, the fundamental domain F constructed in §1.3 is
the same as the one defined previously. If the class number of K
is greater than 1, then there are always points in B ™ H_, and
the corresponding sets differ.

Swan ((19.), p.23) also uses a "degree function” d which

plays a role analogous to that of d in the investigation of a
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cell structure on 2B. It is defined as follows: let & =

{(Z :)e SL(2,8) | ¢ = 0} and define for (z,{) ¢ H
Talz.g) = {o ¢ r| olz,z) e B}
It is easy to see that PB(z,;) is invariant under left multi-
plication by elements of ¢ . There are just finitely many
orbits, and d{z,r) := number of orbits - 1 (cf. (17) Lemma 4.1.,
p. 23). In case the class number of X is 1, then we have
d(z,g) = d(z,g) + 1

(Lemma 4.2a, p. 24). Again, in the general case, there seems

to be no direct comparison.

The analogue of the minimal incidence set I in the classi-
cal theory is the set I := ["-2B. As we have already said, in
the class number one case, I = I. Note that for class number
greater than one, neither is the quotient space Fg compact,

nor is I a deformatlon retract of the upper half space H.

3.2. From the point of view of hermitian forms, the minimal
incidence set I consists of all forms relative to which at
least two different flags have minimal volume. We have an
analogous interpretation for the set I. Recall that the
proper minimum m{h) of a positive definite hermitian form
is defined as _
m{h) := min hix,y
{x,y) e &
{x,y) = @

We have following proposition:

3.2.1. Proposition I consists of all forms which have two

K-linearly independent proper minimal vectors.

Proof: (x,y) and (x',y') are K-linearly dependent if and only

——




2
1f xy' = x'y. This is equivalent to saying d(x’y)(x,y)

2
d%x,ry,)(x‘,y‘). Since dv = ¢§ for a proper minimal vector v
in dz, we easily see the egquality.

=min hix,y) is the true minimum

(x:¥) G
of the hermitian form h, one has in general the inequality

3,2.2. Remark If m{h} :

m(h) £ m{h). For class number = 1, m{h) = m{h). In general,

it might be of interest to study
F .= the set of all forms which have two K~linearly
independent true minimal vectoxrs

and its relationship to I.

§ 4 THE QUOTIENT SPACE IN THE EUCLIDEAN CASES

4.0. In this sectlon we will describe the quotient space
E\\F for five imaginary quadratic fields whose ring of in-
tegers is euclidean, namely oWd) for @ = =1;=24=3,~7 and -11
At the same time, we shall compute the isctropy groups of
points. Our éoals are twofold: we would like to illustrate
the theory developed so far by discussing the simplest cases
and to do some preparatory work for the cohomology computa-

tions in the next section.

4.1, We begin with a notion of fundamental domain which takes

the cell structure on I into account:

4.1.1. Definition A subset ¢ €I is called a fundamental

cellular domain {or simply cellular domain) for T if C is a

finite subcomplex of I and has the following propertiess
i} I = r.C

1i) Points in open induced 2-cells are not T-equivalent,

With the help of a cellular domain, we obtain a space

homeomorphic to T\\F which 1s better to “"visualize":

4.1.2. Proposition Let C be a cellular domain for T. Denote

by "~" the cellular equivalence relation on C induced by iden~
5 s 4 LEETT S . % e I
tifications of O-cells or 1-cells. Then o, and E\ are

isomorphic CW complexes.

Proof: The inclusion i: Ccem3I-is obviously continuous and

compatible with "~ " and I'-eguivalence: it induces a conti-

—_—
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nuous regular cellular map I::}S-—*f\f. By definition of

a cellular domain, this is a bijection and hence an 1somor-

phism of CW complexes.

For the remainder of this section, we will be concerned
with determining cellular domains in the five simplest cases,
i.e., those with the lowest discrminant values. Before we
plunge into these computations, we should cbserve that cellu-
iar domains exist in all cases. If C' is a compact subset of
T such that I = I'-C', then the carrier of C' is a finite sub-
complex from which we can delete a finite number of open cells
if necessary to get rid of identifications between points in.
open 2-cells. Purthermore, there are only finitely many
cells meeting such a compact C'. This means that there are
only finitely many cusps which are minimal for points in C'.

Let K be an imaginary quadratic field with class number
equal to 1. In this case, 1 =l'-I_ and translations by elements
of O leave I, invariant. If T is a fundamental domain for
these in I . then I =T{I_MN T), with I "NT compact. In fact,
any closed subset D € T with the property I = I'(I_nD) is
a good first approximation to a cellular domain. BSuch sets
are well known in the cases under censideration (cf (1Y, (17)):
we shall nevertheless discuss the computation for Q{f=T) in
detail, since our method is slightly different and we also
want additional information on minlmal cusp sets{in order to
compute isotropy groups.) This information is not explicit
(especially for wertices) in the classical literature.

our problem is to determine the finite set of cusps

which occur as minimal cusvws Qf points in I _nT. The first

TR

step is to find a finite set of cusps which include these
minimal ones. The starting point is the following easy re-

mark: if XA = % is such a minimal cusp, then in particular, I,

meets S, , and this means that there are level sets q:1(c}

B,

and n7 ' (c) which meet at ¢ € m g |§|( by Proposition 2.1.5. and

First Reduction Theorem). On the other hand, from the inci-

dence criterion, we get
J%.{fggeor!8|2ﬁc.

Combining both statements, we get the following denominator

estimate for a minimal cusp: N(B} éigj..

4.1.3. Example For K = Q(J=1), we have N(B) ¢ 2. If N(B) = 1,

then is a it. I -] 3 = 7 =
8 un n this case, Sﬂ,u S!'B'ﬂ. If N(B) 2,

then B8 € {1+i, 1-i, =14i,-1=i}.

We get an estimate on numerators by the following geo-
metric consideration: if 1 and b form a basis for 0 as a Z-module
and b= b, + ib,, then T can be chosen as {z} z =2z, + 1iz,,
|z,
of the base rectangle of T. For a given B , (ImrﬁT)f\SB,m= o

1 ¢
< = and |z,]< by} x Ry . Let d ={1 + bhbe the diameter
Z

unless the distance from % to the base rectangle is less than

or equal toi%lc Hence, if I AT meets Sﬁfﬂ' then !%Eg a +f%1
or equivalently, |a|g|gld + 1. Thus WN{a)g BiB]ﬁ + 1)2]. e
can of course improve the estimate a kit by choosing % suitable
DT to get a smaller diameter.

The finite set we get by forming guotlents % for all va-
lues o,B satisfying the estimates glven and adding « certainly
includes all those which occur as minimal cusps for points in

1 1.

4.1.4. Example {(cont'd) For Q{/=1), the base rectangle for 7T

T

—r

p—r

T
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is the square {z| |z,|¢ % R ER %} and d =2. Now there are
obvious further identifications: rotations by % and T around the
¥
{-axis. If we set D :={z | O ¢ 2, ¢ 1}« R, then we get the
2

estimate

(I,n D) N S # ¢ implies N{a) g [(|B}g_ + 1)2].
. 2
Hence if |f= 1, N{a) ¢ 2 and if |8|=1{2, Nla) ¢ 4. We obtain

the following set of cusps:{m, O,+1, #i, 1+i, -1+i, 11, -134 } ¥

2

[ %)

The set of cusps obtained is in general too large, since
we used conditions involving the norm of elements instead of
such involving the elements themselves. Hence a second step
consists in eliminating those cusps from the set, whose hemi-
sphere projections do not meet the interior of the projection
We shall call the remaining cusps admissible.

of D T at all.

4.1.5. Example (cont'd) For K = 0({=1), after the second step,

we are left with the cusps 0, 1, i, 1 + 1, 1 + 1 as candidates
2

for minimal ones { = is by definition minimal). It turns cut
that in this case all admissible cusps occur as minimal cusps

for points in I _nT.

Finally we study the intersections sB ar\ Sﬁ.alfor all

% ' %.in order to determine the exact funda-

mental cellular domain, i.e., all points which lie on at least

admissible cusps

and not inside S -éfor all other admissible cusps %a.
14

8,0 3}
This last step 1s analogous to the classical computations.

one S

4.1.6. Remark The fastest way to carry out the last two steps
is to make a (relatively) accurate drawing and do the compari-
sonsoptically, and then check numerically those (few) cases

where the inaccuracies of the drawing might play a role.

S THTPRT S
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For the remainder of §4.i., K := Q(/=1) and TI:= pGL(z,zU:1)).

We have the following minimal cusp sets for (z,f) in I NnD:

a) if Re z < % and Im z < %, then M(z,;) = {0, =},

b) if Re z = % and Im z < %. then M(z,;) = {0, 1, =}

c) Lf Re z < 3 and Im 2 = 4, then M(z,z) = (0, 1, «}

d) if Re z = 4 and Im z = 3, then M(z,5) = {0,1,1,1+1, 13}, =},

With this information, we can now determine a cellular

domain for I' and the stabilizers of its cells:

4.1.7. Proposition Let C := {(z,g) e 8, .| % » Re z 3 Im z 3 O},

Then C is a fundamental cellular domain for T'; in fact, C

and }Si are isomorphic CW complexes.

Proof: Consider the set C' = {(z,r) ¢ 810 i% > Re z 2 Im z 3 O},
r

i.e., the set of all points with minimal cusp set equal to

{0, »} If y(z,g) = (z,z) with both (z,g) and (z)f) in C',

then elther yeo = « or yw = 0. If y» = o, than v is of the

3 +
form ( g, t ) with ¢, €0, t € ¢ Now Y0 =0 implies that
0O e

2

t = 0. Such a matrix induces the transformatilon (z,g)

k—~—9(54é:z,;}, so that the possible maps are (z,;}kwwaiixz,g),

with © g r ¢ 3; all these stabilize the point (O, 1) but don’t

~

cause other ildentifications. If y» = O, then we can write it

aawith £y and t as above. Again Y0 = =

in the form 8]
gy L

implies t=0. The pessible maps are (Z,E)L—q{ 1%z L

zz + §° ‘zz + O

O« r € 3; the case r=0 stabilizes the edge with Im z = O;
the cases r =2,3 the point (0, 1) whilethe case r = 1 the edge
with Re z = Im z. Otherwise, there are no further identifications.

This shows that C is in fact a fundamental cellular domain for ['.

To prove the isomorphy claim, note that there are no




ey

identifications between points in C' and C -~ €' since the
former have cusp degree 2 and the latter degree 2> 3. Fur-
are

thermore, two distinct points {z,2), (2',') inC - C’

not I'-equivalent singe g # f' and hence n_(z,5) # n (z',5').

4.1.8. Proposition The isotropy groups in I for points in

C are as follows: 4

<l m Vaz

Dy LA B
Proof: We have already shown the following(cf. the proof of

part a) of the preceding proposition):

(z,g) mit rlz.0) Generator (s)

1, 0 < Im z < Re 2 < % {1}

2. 0 < Im2 = Re 2 < %

o i
3, 0 =1Imz < Re 2 < % 3/5; ( )
: i O

4. z =0,7 =

I

b

L)

..
—_—
[o IR
-= O
S
—
= O
Q
N s

To complete

5. 0¢ Imz < Re 2 = 3 and
{2
6. z = l—%—i U= —%—

Case 5 encompasses all those points with minimal cusp set

equal to {0, 1, =}. Any stabilizer must map the minimal cusp

set onto itself and we have to consider six possibilities:

—

e —

t
w
(]
i

Since the computations are straightforward, we will just
list the results:

( € always denotes a unit)

¥ is of the (z,5) is mapped to
form

fixed points

the whole edge

1 yer = o 1 o) {2,;)
YO = 0 0 1

0
¥l =1
2, Yo = = € =
ki ¢ (=2+41,2) %235
Y0 = 1 0 ~e
¥l =0 ¢
3. yY» = O o % zZ . { l,ii")
-YO = oo e o ZE+I; 22+C € %
¥yl =1
4. y» = 0 0 -e -Z + i ‘ the whole edge
YO =1 8 =l 22 ¥ LT H N =2 =B
71 & o 4
ZZ + ¢° + 1 -z -3
5. ye = 1 e O -z 4+ . { l’IE—)
YO = 0 Z2 + ° + 1 -z -2 “ 2
‘Y'] = w E -& L
zZ + 7+ 1 =z -f)
6. ye =1 £ -t Cm:i + zz + £* the whole edge
YO = = £ 0 zz + L2
Y1 =0 z
z2Z + T*
1+.4, 92

As for Case 6, we can compute the stabilizers of («ME—— -5~)
explicitly in a similar manner. However, there are 6.5-4 = 120
cases to consider(a fractional transformation is determined by

its values at three points!). Fortunately, we just have to

1+4i V2
& 7 4°
preceding computations imply that the order of the stabilizer

The

count elements in order to show that ['( Yy = 8

- —

P

i
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1 at least 24. To get an upper bound, we use the following
easy result: for a fixed point (z,L) and X € M(z,g), the
inequality |T(z.t}] < lStabF(zlg)kliM(z;g)l. FE X B By
then the induced rransformation must be of the type (2,L)
&w—dwétélap + t),t). If Y stabilizes the point in guestion,
then €fgz + t) =z or &t = g = gz. Hence there are just
at most 7 possibilities, which implies that

|fizstylg 7-6 = 42
By a general theorem on finite subgroups of PGLZ, this im-

plies that T{z,L) 5’54.

with some additional computation, we get the following

results

4.1.95. Proposition Let T be the group psn(2,2[1]) . The

1
space {(z,0) €8, 4 | 0 ¢ Re zg % and O ¢ Im 2z £ 5} is
isomorphic to %{ {as CW complaxes). The stabilizers 1n

are as follows: 2/,
A

1 %
% 5

»:b Z
2 22

Pinally, we have the following corollarys

H H
4.1.10. Corollary Let X = N\ and ¥ = ?\\ . Then

wix, = #lx,@ = 0 for 1 =1,2.

—55«.

4.2, We will now discuss the quotient space for the remain-
ing cases. Since the computations are tedious and analogous
to those for K = Q(1), we will just state the main results
and comment on them briefly.

We start with the other "exceptional® imaginary qua-

dratic field Q(y-3). Let w := l_%_lii

{a primitive 6th root
of unity). Since the lattice @ = Z[m] has hexagonal symmetry,
we can take the set of points lying above the hexagon in
Figure 4.2.1. as a fundamental domain for the translations

by elements of d. (It turns out that Hjn H, consists of
all points in this set which lie on the unit hemisphere,i.e.,
satisfy zz + t* = 1). Since rotation by % around the {-axis
and reflection on the x-axis
{for z = x + 1y) are possible,

-% *2;
we can take D to be the set

above the triangle with vertices

LB 0O, -12- and % 3L o be precise,

[T

6
D= {{z,8)] % 2 Re z »[3Im z » O}.

The set of admissible cusps
Figure 4.2.1. with respect to C = I N D is
{0, 1, w, =} We have the following sets of minimal cusps

for points in

a) if Re =z and Im z < , then M(z,t) ={0, 1, «}.

1l
B Bajes {2

]

and Im z = > , then M{z.z) ={0, 1, @, =}.

3
[
3
b) 1f Re z 2
C,

c) for all other (z,f) in we have Mlz,z) ={ 0, =}.
Wwith this information, we get the following result

concerning the fundamental cellular domain:

4.2.2. Proposition Let C = {{z,y) € 8




0 L

Then C is a fundamental cellular domain for PGL(Z,ZEg}),

The guotient conplex X is isomorphic to C. In particular,

1l x,Q) = B2 (X,Q) = O.

The corresponding result for PSLiz,zﬁg}) is as

followss

o~ ]
4.2.3. Proposition Let C ={(z,Z) € Sy 5|5 3» Re z > 3| Im 2[>0} .
¥

Then E is a cellular domain for PSL(2,Z2 w }. The quotient

complex Y is isomorphic to €. and hence H1(Y,Q) = H2(Y,Q) = 0.

The domain © consists simply of those points on the
unit hemisphere lying above the triangle of Figure 4.2.1. and
its conjugate. The minimal cusp sets for this bigger domain
are easily calculated from those for points in C. Note that,
since we take coefficients in a field, Hi(x,Q} and ai(Y,Q)
express the respective group cohomologies (Cf. §5.1).

The results concerning the stabilizers are tabulated
in Figure 4.2.14 .

The cases K = Q{/~2) and K = Q(/=7) are more interes-

ting because some new phenomena regarding the induced cell

structure and the isotropy groups occur. Among other things B

we see that

a)} the actions of the stabilizers on minimal cusp sets
are in general not transitive and
n) for the guotient Y with respect to the special linear
group, H'(v,0) # Hz(Y.Q) in general.
We consider first the case K = 2(y=2). & fundamental

domain for the translations is given by the set {(z,z)||Re z]|g %

and | Im z|< {:2-2} The matrices (O 1) and (o '1) allow
1 0O 1 0
reflections on the x- and y-axis respectively, so we can

take D to be the set {(z,;) | O ¢ Re z ¢ % and 0 ¢ Im z gféé.

We have the following minimal cusp sets for points in T Ds

oo

a) if 0 & Re z < 3 and 0 g Im z <'@, then M{z,r) = {0,=}.

z
2 2
1 2
b) if Re z = 3 and 0 ¢ Im z < 5 then M(z,z) = {0, 1, =}.
zZ

{0, ilril i@l o},

c} 1f O g Re z < 1, and Im z =€-, then M(z,z)

2
_ 2
d) if Re z = and Im z = 5 then M(z,L) =
[0, 1, = i3, 1 + 103, if%' 1 +21I§' 2 +21J'§' 1+ 17

3 ¥
2 15, 1+ 212, 2 + 215} and d(z,z) = 12.
3 3 3

rof—

Again, these computations yleld results on the struc-

ture of the quotient space:

4.2.4, Proposition Let C ={(z,) ¢ 51 o [0 £ Re z ¢ % and

) .
0< Imz< 5 . Then C is a cellular domain for PGL(2, ZFTE}.
The quotient complex X is isomorphic to C,and hence H1(X,Q) =

w2 (x,0) = oO.

‘In the case of PSL(2,Z&C§}, we obtain the following

more interesting results:

o~
4.2.5. Proposition Let C = {(z,r) ¢ 8 ] 0 Re 2 g 1 and
1.0 v 2

2
[Im z|g 5} Then € is a cellular domain for PSL{Z,Z&C§P.
The quotient complex ¥ is isomorphic to ,:E , where ~ 1s

given by the identification of the lower horizontal edge
1

with the upper one by (
la)

JJE). In particular, H1(Y,Q)z:Q
1

and H%(Y,Q) = oO.

4.2.6. Remark The results concerning the stabilizers can
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be found in Figure 4.2.15, The com=

putations show that the operation of

t+he stabilizer of a point in PSL(2,0)

on the minimal set of the point need

not be transitive. For any point on
c

~N the upper horizontal edge, we have

I(z.,0) & 22, but d(z,z) = 4.

Figure 4.2.7. e

We now turn to K = Q({=7). Denote by w = i -i-ziﬁ— .

Just as in the case of Q(f--i) , we can take the set of points
lying above the hexagon in Figure 4.2.8. as the fundamental
domain for the translations. The reflectlons on the x- and
y-axes allow us to take D as
the set {(z,z) | ©

&
0 g Imzsz$z+%}.Our

Rezg—;-,

table of minimal cusp sets

for points (z,z) in B N I,

is as follows:

Figure 4.2.8.

a) if Re z = 0 and Im 2 ={27, then M{z,r) = {0,=, ‘”:'255_ m—!,-:-}}"

_1 - 3 N w (Y]
b) if Re z = 5 and Im z = 5=, then M{z,z} = {0,»,w, a.“a«-—i—
= 2
c) if O < Re z < %and Im z = —R—$—E+ﬂ, then M(z,g) =

w

{01 °, W, ’i}
d) if Re z = 32- and 0 § Im z <§~377, then M(z,z) = {0, 1,=}.
e) for all other points in C, M(z,r) = {0, «}.

4.2.9. Proposition Let Caliz,r) = 5, 0; 0 £ Re 2 .5%— and
’

=Re z
7

for PGL(Z.Z[w']) .  The quotient complex X is isommorphic to

0 &€Im z £

+ 7”2]_} Then C is a cellular domain

C, where ~ is given by the identification along the
~ g

I
50 - |
edge ¢). In particular, H1 (%,Q) = Hz(X.Q) = 0. ‘@
4,2.10. Remarks This case gives an example of an identi-
fication within a natural t-cell. The induced cell structure
is indicated in Figure 4.2.10b
for Hy MH,. This is also the
first example for non-transi- ,
tivity of the action of stabi- ‘
lizers in PGL(2,0) on the cor- "}"C
responding minimal cusp sets. Figure 4.2.10a
The points on the edge c) bet-
ween ( %,%] and ( %’PI:)'
have isotropy groups isomor-—
phic to Z/;Z but cusp degree |
equal to 4. The complete re- ‘
sults for the stabilizers are “‘
tabulated in Figure 4.2. 16, Figure 4.2.10b I
.The corresponding result for PSL{Z,E[}»]) is: ) ’-
4.2.11. Proposition Let C ={{z,0) ¢ 8,01 0sRez g &

2
=R
and 0 g |Im z]g ? g T%}. Then € is a cellular domain
l|

for PSL(Z,ZEA]), The guotient
complex ¥ is isomorphic te ,\\:6
with the identifications * ~* |
as in Figure 4.2.11. In par- ‘I
ticular, H1 {Y,0) = 0 and H2(Y,Q)
= 0 (¥ is homeomorphic to a

M&bius strip).
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rhe results for K = Q(/=11) are quite similar to i (x,0) = #2(x,2) = o.

t one obtalns are
those for the preceding case. The plctures on 3) Let T be the intersection of the unit hemisphere with the

indeed (viewed topologically) 1dentical--the principal diffe- 1 o 3

Eavl
set {{z,g)] O ¢ Re z g 5 and | Im 2| < 77— }+ Then C
4 to cells and thus r
rences lie in the cusp degrees assoclated ©o is a cellular fundamental domain for PSL(2,2{w]). The gquotient
have the following &
in the cell stabilizers. To be precise, we complex Y is lsomorphic to ;E with the identifications” ~."
proposition: as in Pigure 4.2.12. In par-
1
4.2.12. Proposition Let K = 0(V=11) and w:= 1 +21 i . penote ticular, H (¥,0) # Q and
2
= h -
by C the intersection of the unit hemisphere 5130 with the H™ (Y, Q) 0 {Y is homeomor (w _1T)
- +
set {{z,0) | 0 Re 2 ¢ Jz-and 0g Im z % _1367%._2. }. phic to a MSbius strip). 1 0
1) The minimal cusp sets for points in C are as follows: 4.2.13. The complete results
) for the stabilizers are tabu-
is equal to
for (z,g) with Mizid) q juted dn Pigtva $:2047 Figure 4.2.12.
1 -1 =2
a) Re z = 0 and Im z = 51 w, O, w, w1, Tmo! T=a' ' w’ Tn all the five cases considered here, the action of T (z,f)
w  w-l w-2 witl on the minimal cusp sets of vertices (z,;) is transitive.
3r T2 w1t 2-w
; i 5 We do not know whether this is a general phenomenon; in fact,
1 Wk afe
b) O < Re z < 5 and = O W5 gt T5E T it isn't clear whether the vertices of the natural cell struc-
_ ~Re z + 3
Im z = 11 ture are always fixed points,
1 _5 w, O, 1, 1 2. 0.}"1' m-—2.
c) Re z = 3 and Im 2 =gy | <0 Mo fr B 1—;’ T—w' w We now summarize the stabilizer computations for the
w o w+l w-il
20727 w1t 2-w B cases considered so far. The column on the right of each
d) Re z = % i oy By ™ diagram consists of matrices inducing generators of edge
B Fiy 5 5 stabilizers. A convenient way of checking the computations
= ZVTT
is to calculate the virtual Euler characteristic of the cor-
e) otherwise w2 responding group ( cf. (415), p. 93 ) which has to be zero.
The case d = -1 has already been treated in detail

2) C is a fundamental cellular domain for ?GL(Z,Z[w]). The

¢ ; in Propositions 4.1.8., and 4.1.9. We just complete the in-
quotient complex 1is isomorphlc to n}\ where -~ is given by

U =0
jdentification along the edge b} thru . In particular,

o -1 vertical edge stabilizer is generated kw'<1 _1). For PSL(Z,Z[}]),
0

formation concerning the generators: for PGL{Z,Z[}]], the

1




numbering the vertices as follows [:] , we get as generator
&

- B2 -

of the stabilizer of the edge {ij):

:12):(9 i) (23):(‘ 1 (34):(1
i 0 1 o 1

4

4

3

PGL(Z,Z[N])

PSLtz,z[w])

Figure 4.2.14a

Figure 4.2.14b

pcx.(z,z[m])

PSL(2,2[w])

2 Z
/22

Figure 4.2.13

(i::;
N
oA
[~

Figure 4.2.13b

a

Ay




PGL(2,2[w])

PSL(2,%[w])

Figure 4.,2,14a
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Figure 4.2.14b
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4.2.18. Remark After I had made these computations, I re-

ceived a manuscript of Fligge (3 ) where the cellular domains
and stabilizers in the euclidean cases were determined by
similar methods. However, he considered only PSL(2,d) and
also did not determine the guotlent spaces. Since he used

classical reduction theory, his method works only for class

number equal to 1.

= B o

§ 5. COHOMOLOGY COMPUTATIONS

5.0. In this section we shall use the action of T on the
minimal incidence set I to yleld a procedure for explicitly
computing certain cohomology groups of I'. To be precise,
our method works for all T-modules over rings where 2 and
3 are invertible. This restriction is due to the Theorem
{5.1.2.) we use to pass from the topolegical to the alge~
braic situation, and is not relevant to the applications we
had in mind.

The topological problem consists of computing cohomo-

logy groups of }i\ with coefficients in a sheaf Mr : gr,

although in general not locally constant, has the nice pro-
perty that it is constant on open cells of the finite gquo-
tient complex. This cell structure has a subdivision with
the property that the cohomology of the covering by open
stars of vertices is the same as that of Fii These results
constitute 5.1,

In the last two subsections 5.2. and 5.3. we apply
the method to the action of PGL(2, Z[i]) on the binary home-
geneous polynomials of degree 2p over 6? and compute the
case p = 3., We also investigate the "cohomeclogy at infinity”
H“(rm,mp) & Hn(gzif,ﬁg;} and the "testrictlion mapping"
% 4 Hn(F,Mp)—-—%Hn(I‘w,Mp).
Remember: [:= PGL(2,d).

5.1. We have to broaden our framework siightly in order to

accomodate the application considered in 5.3.
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iet T'C T be a subgroup and I'CI a 2-dimensional re-
gular contractible subcomplex (relative to the natural cell
'
structure) such that T'+I° = I' and ;ﬁ\ is compact. It is
clear that the considerations of §2 and §4 carry over to
thlis more general situation. When we speak of the gquotient
as a CW complex, we mean the cell structure on ;hij inherited

from the I''-induced structure on I'.

5.1.1. Example Let K = Q(i) and T':= PGL(2,2[i]). The exam-

ple considered in detall 4in 5.3. isT* =T_ and I' = X .
k is easily seen to be contractible: indeed the vertical
o

projection onto the plane ¢ = O is & homeomorphism. Due to

I-invariance of distance functions and cusp degrees,I I = I .

I 4
We shall determine the structure of the finite complex£:>?in 5.3%

Let R be a commutative ring and M an R-module on which
2 gl
I'' operates. We associate teo M the following sheaf M on

> et jec ; open
F>\\ g LE g P%£>\\ is the projection map and U is an op

I}
set in ;\\, then

MFH(U) 1= {82 p_1(U)—-wM |s 1s locally constant and TI'-inva-

riant,i.e., ys{z,z) = s{y(z,8))}
Since TI'' operates properly {(discontinuously) on the contractl-
ble space I', a well known theorem ( (§), p. 204 Corollaire)

vields the following result:

5.1.2. Theorem Let M be a T''-module with the following proper—

ty: the map M———3M given by m—3|T"{z,)m is an auto-
morphism for each {z,g) in Xf. Then:

Bt = BN )

As Bilanchi (7 ) p. 297-298 has observed, the only

primes which occur in stabilizer orders are 2 and 3; hence
the method we will develop cannot handle the 2- and 3~tor-
sion in the cohomology. However, this isn't important for
the application we will discuss.

Our task 1s now a topological one,i.e., computing the
sheaf cohomology. However, ﬂr' 1s in general not locally

constant, and it is at thils point that the cellular structure

becomes very handy. The reason is the following proposition:

¥
5.3.3. Proposition Let ¢ and o' he open cells 1n‘;§\ and I°
respectively, such that p maps o homeomorphically to o,
Let Tabe the (common) stabilizer of points in o'. Then

[}
gr L is isomorphic to the constant sheaf on ¢ with fiber g?cﬂ

Proof: Every section s over a set U open in ¢ can be repre-
sented as s': p"1(w')_—é-M, with &' loecally constant and I''-

invariant. The isomorphism is given by Sh—3 s’ 1

1 atap ()’
(pch IU =: ¢$(8). It is clear that ¢ is well-defined and

injective; the surjectivity follows from the fact that, due
to the discontinuocus action, each open cell o' in I has an

open neighborhood U' such thatvU'NU' # & if and only if

Y E FG, .

5.1.4. Corollary The stalk M  is isomorphic to MP{z,;)'

I"P
i
where p(z,z) = u.

Recall that for a normal CW complex X, the {open} star
st{A) of a subset A X is defined as the union of all open
cells ¢ such that o Na# g, st(A) is clearly an open set

in X, and the sets {st(v)]| v O-cells} form an open covering

prym—




Fi

of X, which we call the star covering of {the complex) X.
1f P is a sheaf on X, then an open covering {Ui} ig called

..f\Ui ,F} = 0 for all n 2 1 and tuples

F-acyclic if H' (g, O
o P

(14s+--si,) With p2 O.

1 1]
5.1.5. Remarks a)For any point u € F>E , the module of gr -

sections over st(u) is clearly isomorphic to Mrﬂﬁ where the
open cell p(o') contains u.

b) The star covering of \\\: (with the T '- induced cell struc-
ture) is not necessarily Mr -acyclic. Let ¢ = ZE_"] and con-
sider T' = I_NPSL(2,0), the group of translations by elements
of 0. TI'' acts on I_ and the guotient is compact. Since I'’

has no elements of finite order, g?. = M (constant sheaf!)

If v is the unique vertex in the I '~induced structure, then

[ 1
sti{v) = ;}i which is a torus, so that H1(st(v),g} # 0.

4

T

L
cellular domain for T’ ;5\3 .
Figure 5.1.5.

We shall now give a sufficient condition for the
acyclicity of the star covering. This amounts to a sort of

"simplicial™ condition on the cell structure:

l
5.1.6., Proposition If \\\\ is regular, then the star co-

vering {st(v)} is acyclic. In this case, B ({st(v)}, Mr ) =

u( K. m’

Proof: Let U := st{v). Denote by A the 1-skeleton in U: this

set is closed in U. We have an exact sequence of sheaves:

r' 1 L]
oM s — ] >0

( (4), p. 140). This induces a
long exact seguence for cohomology

groups:

Figure 5.1.6,

1 i Tt Tk

cees =3 H (U MU_A)--——-,»H1(U,M )---)*H (UM )---?H (UM ) v

L]
Our f£irst claim is: H(U,M ) = O for all n 2 1. It is

clear that U - A = the disjoint union of the open 2-cells W,

T [
in U. Thus: My . = @ g; = @ gw and this implies that

T n
CU,_U“A = (® H (U,gwi). Since the quotiant;\\\ is regular,

U is contractible and each direct summand is zero.

]
To show that Hn(U,gg y = 0 for n % 1, we do the analo-

gous construction for A and the closed subset {v}. Note that

re i
LE G 1= () ), then H(A,Q) = HR (UML) (cf (4), p. 188).

A
The exact seguence — B — —
& ST o3P

induces the long exact segquence

1
i (8,6, g 1 (8,6) BT A6 B (ALG,_ () oo

obviocusly Hn(A,G{V}) =0 for n » 1. BAgain A -{v} is the dis-
joint union of the open 1=~cells Aj in U, so that ﬁn(A,GA_{V})
={® Hn(A,GA‘). Since regularikty implies that A is contractible,
each summandjis ZETOo.

The arguments for . the groups Hn(Ui g ,.ur\ui ,grp) with
n, p » 1 are analogous. i ®

1f r}\i' is not regular, we can find a regular subdi-

vision of its '-induced cell structure since we know the

e —— o 1
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{finitely many) ldentifications to be done ¢n a cellular
domain in order to get the guotient space. We 1llustrate

this with a simple example:

5.1.7. Example Let O = z[.[—"z'] and I'' = PSL(2,0). Set I' = I . |

The cellular domain determined in 4.2. is the leftmost figure.

~

"regularilzed"” alternative

domain covering

Figure 5.1.7. Figure 5.1.8.

5.1.8. Remark If \?i: is not regular, cone can also obtain
an grlnacyclic covgring indexed by the set of all cells.

For each O- or 1-cell ¢ , we take the intersection of st(a)
with a sﬁall open neighborhood. For each 2-cell, we take

the (open) 2-cell itself. {cf. Figure 5.1.8.) This covering
usually has more sets than the star covering of a "regulari-

zation".

L)
We now assume that;}&\ has a regular cell structure
{this no longer need be the T'-induced structure). The com-
plex of alternating Cech-cochains has a particularly simple

form under a certain "simplicial" condition:

]
5.1.9. Proposition S uppose that each 2-cell in F}i is a

triangle,i.e., there are exactly 3 O-cells on its boundary.

Then the alternating Cech-complex of the star covering has

the form

T, T
0 —>@O M — @D u"—SEO M8 — o0
g O-cell no of 2-cells
where o' is a cell of I' with pl(oc') =g,

T i-cell

Proof: The intersection st(v) M st(u) is a disjoint union

of open sets of the form

i
i

{~

Each set corresponds to a 1-cell with endpoints u and v.
Moreover, the intersection of 3 open stars is a disjoint
union of open 2-cells. Because of "triangularity", each open

2-cell appears exactly once.

Again it is clear that the cell structure of\\i; can
I‘u

be refined to yield a "triangular" one as above.

We close this paragraph by defining the restriction

maps r_: Hn(T,M)mmwhn}Hn(PA,M) in our context. We have a

mn
commutative diagram:

e ¢
L5}
Ly N
where ¢A{rltz.c)) = T{E:E) . Since ¢, U = p, (p UINIA),
¢y is a continuous map. If s e g?{v},i,e, 5: p Um—sM is

locally constant and I'-invariant, then the restriction
- Y;\ -1 ] .
2 p 1U F\IA eEM (¢A U). This map is clearly a ¢A-cohomomor~
e

phiam from M to grl » and hence gives rise to homomorphisms

|

e e m———— ———




umim: =n

S ——— B
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n I n I
ro: H( ;\\. E?)““‘ﬁ}ﬂ (r;\\k, g?l). We shall examine these

maps 1n a special case in the next paragraph.

5.2. From now on, & = z[1] and I:= PGL(2,2[1]). Let p be a

natural number. For each integer j with -p < j & p, define

ey 1= xPtIyP~3 yhere %,Y are variables. Denote by Méthhe
t-algebra
(o) P
M 1= a, e o
b Lanysy .8y mad

a b
The group I' operates on Mé - as follows: if y=(§ d) ; then

(ax + cv)P*I (bx + ay)P3
(ad - be)P

L= =
L

This operation is lrreducible and thus HD(F,M(O}) = 0.

We denote by db the ring Z[},%,...%{]where k runs

thru all prime numbers < 2p. M, := Méo)QQ o, Since ;\i

is isomorphic to a 2-simplex (Prop. 4.1.8.), we can use Prop.

5.1.9. to compute the cohomoclogy groups Hn(F,Mp) for p 22.

Before we start with some of these computations, let us fix

some notation. We denote the cells in }{\as in Figure 5.2.1.

2 The cell stabilizers are:

w6

A W B R R
e sz 5 () 1) Pre

SR ()RR 9 IR ),

We shall write ﬁ; and M;J for Mpi and MpiJ respectively. If

.1
i

the context 1s clear, we shall also drop the index p.
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~
In this case, the Cech complex of 5.1.9. is as follows:

D-"“"QM 1] M & Mp—*“—”*M @!ﬁ @ Mp — M 0

2
d, d,

where do(m1 rm21m3) = (m2 - m1r ma i mz, m3 - m1)
dq (Mygema3emy3) = myy + myy - my .

We shall now compute H’(P,Hp) for p = 3. This is the lowest
value of the interesting case p==3 mod 4 and is still accessible

to computation by hand.

Let M := M12 @ M23 @ M13. We have an exact sequence:
Ker d E ﬁ
O Py Smem—— ey it il
! m do Im do Kexr d1 9

-~
M :
Since ,//;;r d1 =~ Im d, is free, we have a decomposition

" 1
T . H(T,M) & F
° H i
where F is a free submodule of J/// g isomorphic to //g/ a.
er
o 1
First we determine bases for M}z 13 and M23 in order to ob-
tain one for M.
12
a) M : we have in general (0 1)ej = (ﬂi)pe_j. Hence, a
1T O

basis 1s given by
leg + (—‘Hpe_j 0] o0og3<gp!.
In particular, for p = 3:
Ay = ey ~e 3, A= e, - e_, and Ay = e, - e, fprm a basls
b} M13: again, in general,(’o 1\)ej = (-1}P+jije_j. For odd
1 0

P, the set
ley # (=133%13 520l 0<3gp)

is a basis. For p = 3, we have:

Gy =8y ~de 5, C, = e, +e, and Cy =e

e




I N R SN Y S L T L W g
——— 5010180 0 50 B ALY W8 L LI A L ML T
L 4m B

- s ~ a3 =

e) M23: in this case, (1 _:)\ By b= (_”p-j(ep + p:j ep_1+---"'e.._ By elementary divisors theory, one sees that %m a
The linear equation for getting a basis isn't as simple as in . is free. Since the dimension of F is 7, we can conclude e
the previous two cases. For p = 3, we obtain the following basis that H1 (T,M) is free of rank 1 over d3 - zLi'Jf'Jj"';' .
elements: B, = ey *+ be, + 15e1 + 108, + e_4

Bz m—e, - 531 - Seo + e_, 5.3, We shall now consider the "cohomology at infinity”,

53 = e, + 2eo + e_4 L.e., Hn(rw,Mp) . First of all, we determine a cellular do-
The basls for M is {(ai,o,o} 4 (o,gjyo) ; (o,o,ck)] 1¢ 4,3,k ¢ 3} main for I'_ in I  and compute stabilizers:

The second step is to obtain a basis for Im 4. Since

3

i3 5.3.1. Proposition a) The set C_ = {(z,L) € §; ol 0 ¢ Re 2 ¢ %
do is injective, 1t suffices to get a basis for M @ M @ M . f

1
and O ¢-Im z ¢ %} is a cellular fundamental domain for T_in I .
Again we consider M ; M? and u3 sepaTately: : ”

aj M‘i : since r’:| is generated by 1 =(1 O) and (0 1)' we 1 Ta odye JRsacieisRuldns dne fa)ae
. o 1 1 ©
Je

¥ : t 3 %
have M1 = M12f\ M . Since ‘(-aj = ije ngtes The gloned Sall)

(-i i) maps (23) to (34) and
o 1

o) X s
v =p a,e. € M iff for all -3 < j €3, iJa.=a,, or eguiva-
F=27 13

lently, ay # 0 1ff =0 mod 4. This is true only for } = O. 1 1 2 (i 0) maps (12) to (14)

Since {ej - e_j‘ 0<j < 33 is a basis for M'2, ' = o. Fajure: 5.3u. <3

b) M3 : since f"3 contains F23 and F13' we have uic Mzan M13, ' b) Let I‘i‘ and r‘:j denote the stabilizers of the open cells
We claim that this intersection is already 0. Suppose that i and (ij) respectively. Then:

z = b‘tBl + b2132 + b3}33 " 01(21 + ¢2C2 + o4y where Bj"ck form rl =<(i 0)>= %2 LZ - <(—1 1))2 sz

the bases for M23 and M.l3 respectively. By comparison of co- 0 a 1

efficients, we get o, = by = -icy, oy = b, = -¢c, and r.3. =<(Jl. 1)>ﬂ %Z riz N r‘l3 - if3 " {1}

Cq = b3 = ic3. Hence all coefficients are zero. Thus, M3 = 0. 4 1

) MZ: " 1§ GeneTaEes by(1 =1 ) and (o 1) and EHGS Proof: The preoof is immediate from the computations in 4.1.7.
W e Oy B, 18 T ® and 4.1.8.

For an element in the intersection, we get the equations: Since &o (with the induced cell structure) is not

a, = by = -a, (this implies a;=b,=0}, a, = ~by + 83 = ~by regular, we a:d a i-cell connecting the vertices 1 and 3. Thus
and b, = % by. lLet D = %Az + Aj. This is a base vector for prop. 5.1.9. is also applicable and we have the following com-
Mz' plex for computing cochomology:

. o 2 2
Cur basis for Im do is do{.p) = (-§-A2 T Ag, —582 + 133, 0} .

=1 o m2 o =3 d o d
0 vy M @ M. & W ——o03M_ @ L S >
4 - G—OBM, @M, O N 1M, & Y o
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- T =
Y, My ,= We just have to determine a basis for Im 30 and the
where M_ = M and - 9
P P dimension of Im d,. We already know a basis for M , namely
dD(mi,mz,m:;) = (m, = my,my = My, m3 = m.l) a=e,
=2 -1 1 - 3 p-J
- =4 4 a8 a) M” : e. = (-1)" (e, + e. + e Yie)
Ay Uy Moy g #g Y =AMy g Mgz My g \o 1\“‘12 ( 0 1)‘“23 ™3 (o 1) 3 3 HCi)egn * P
The first questlion we would like to answer is: What is the Solving the linear equation given by this relation, we ob-
=2 _1. 5 5
fapnal SE ao? tain a basis for M": B, = 5eq e, +t ye_y tey
_ ] 3
By = =% 3% * %

5.3.2. Proposition If p 3 O mod 4, then EO is injective.

1
By S5ty ™ By

Proof: Let Vi i= Mi ®Q(1) and extend 50 by the same rule -3 11 : -3
1 g 3 s b) M™ e, = iJ(e +('5’1 )e sy * con. ok ej) A basis
E5 8,1 W, 8 W, @ V sy Ve W, Clearly Hex 4 = Kerd \o 1) P P
p P P P’ o e vector is
M M @ M Now 1-4 3i 3(1+1)
np@p p° CF ey ey BRTEes s

. L e .y
50{v1.‘v2,v3) = 0 iff v, =v,=v, or Ker 50 vpnvpnvp
fe claim EhHAE V) r\v; = 0. Recall that {ej | 3= 0 mod at

1

The basis for Im EO is {(-n,0,A), (Bj,-Bj.o) (o,c,c)} 1 ¢ 3 g 3}

Again by computing elementary divisors, we obtain the result

is a basis for v Since

1+i . 1+4 141
1 i otz 1Y 5B [T Y
o) o o 1 B o 1 P

Suppose that v 2_' ae, is in Vp, and take ay # 0, 3 minimal.

RN s 144
( 2 je. e, +~—-—(p j)e Fooon
o 1/ J

f = 1
ehat Mg 5, b fese. i In By - 14 doplEer 4686 BIEMD

is free of rank 2 over 03.

Our final computation deals with the restriction maps

in this case. In terms of Cech complexes, the "restrictions®

turn into "inclusions™:

Since p %O mod 4, p # 3 . However j+1¥0 mod 4, and this do d1
- 1 2 3 12 23 13 N g
implies t:l'u&rl:(1 i+1) * V . Hence Ker 6'0 = 0 and do is in- o ? MpG')Mp ®Mp Mp ®Mp ®Mp e Mp Y
jective. = 1 £ a i a L £
s} 1

o Ty R %
O eyl @ Mp @ My My @ Mp @ Mp——>Mp & Mp—-> 0

For p #50 mod 4, Ho(r;:,M} = 0. We will now compute ' (I, eM)

for p = 3 with the same method used for 111 (T",M). Let 1 = where £ denotes the mapping f{m) = {m,(o 1);“), which is
1 0
M &M EOM. We have the exact seguence: also injective. Both squares commute, as an =asy computation

shows.

Ker d / -.FI : E& e —
Q smecemony . Im d / "Aer dl o

Let p = 3. The image of the restriction map

Ey: H}(F,M)w—--;'pﬂ‘i(f'm,M] ig free of zank 1: the last state-

ma = s os meemame s aes NS IS IS




ment follows from the existence of an element in Ker d1
which doesn't lie in the image of ao. We would like to
know whether Coker T, has torsion.

Consider the following diagram:

M M
o = Hi(P,M) 7 //gm a5 ? x/é;r a gk

1
Ty 84 l £y

1 M
0 M — L 5 s Yer 3, —> ©

! l l

Q-———» Coker r,-—— Coker s, ——» Coker ty— 0

I |

O 0 o]

All squares commute, the first two rows and the last ver-
tical column are exact. It follows that the last row is

exact too. Now
'ﬁ/ }_M/ hﬁﬁ'+xm€!o/ .
40 /In dg T MAImd Inm dy

so that _ M -
Coker 5, = ﬁ + Im 4_°

We already have bases for M and Im 50, and the computation

of elementary divisors show that Coker Sy is torsionfree,

and hence Coker r1ktoo {as G%*modules).
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