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Foreword

I remember that, three years ago, when I was starting my Ph.D. work, a friend told me: "a
Ph.D. is a tremendous effort, a stressful sacrifice and an excruciating personal journey, but
when you finally get it, eventually you’re happy to have it... like a baby." As of today, I must
admit that he was absolutely right, at least for the first part of the expression, the second
lacking the experimental evidence to be verified yet.

Marc, my advisor, is undoubtedly a brilliant scientist, but initially the dense and concise
scientific content of his speech was difficult for me to understand clearly. At the beginning of
my adventure in France, my French was a little bit too Italian, I didn’t have the smallest idea
of what working in a laboratory means and was starting to deal with a field totally new to me.
So, at that time, Marc’s speech seemed to me something more similar to a randomly-generated
signal than an information-rich message. Even if I felt that some degree of coherence was there.
Only now that I look back, I see how many things I have learned from this slow and intense
deciphering and analysis process.

This short personal story helps me to introduce my thesis subject. Very often it happens,
indeed, that someone’s noise is someone else’s signal and where a person sees only chaos,
another might find useful and precious information, if he/she learns to mine it. I find this
concept fascinating. Maybe for the same reason for which I love learning languages in a broader
sense, from human to programming languages through drawing, mathematics and music.

Learning a language is a highly rewarding experience: I believe that this comes from the
fact that our brains are made for this task. This rewarding feeling must also be the reason
why babies spontaneously learn their mother tongue. When one learns a new language, he
slowly discovers patterns and schemes, in a recursive compression mechanism which is driven
by memory optimization.

For these reasons, maybe, when I saw the effect of disordered scattering and the possibility
of finding useful information in the resulting apparently random speckle patterns, all this
seemed to me a familiar topic, something on which I had speculated often before. I believe I
made my point: when I write "this thesis is dedicated to saturated speckle imaging, a novel
technique which uses speckle patterns as a super-resolution imaging tool", it might sound very
technical and arid, but in reality it means only "this thesis is dedicated to learning a new
language".
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Chapter 1

Super-resolution microscopy and scattering

This thesis is dedicated to saturated speckle imaging, a novel technique which uses speckle

patterns as a super-resolution imaging tool.

This technique and the principal result obtained with it are deeply discussed in chapters 2

and 3, while chapter 1 contextualizes our work.

In this chapter we present the primary ingredients of our study. Namely in section 1.1

we will introduce the concept of super-resolution optical microscopy. We will also discuss the

application of super-resolution in complex media, such as biological tissues, where scattering is

a major issue. Section 1.2 covers this topic and introduces some first considerations on speckle

patterns. In section 1.3 we illustrate how imaging is possible exploiting the properties of speckle

patterns and describe the imaging techniques that made use of such a random illumination.

The motivations and outlines of this work are summarized in section 1.4.

1.1 Super-resolution microscopy

1.1.1 Optical resolution and super-resolution

Optical resolution

The resolution of an imaging instrument is its ability to resolve details in the object that is

imaged. Due to the wave nature of light, all classical optical systems (microscopes, telescopes,

cameras...) are intrinsically limited in resolution by diffraction laws.

If an object is smaller than the resolution of an optical system1, it is considered point-like

because the system loses any details of the object’s shape. The image of such a point-like object

is called Point Spread Function (PSF). The PSF is larger than the object itself and its shape

depends only on the system, therefore, it can be regarded as the system’s "impulse response",
1ensemble of one or more optical elements (lenses, mirrors, ...) used to produce images. Microscopes,

cameras, and telescopes are examples of optical systems.

1



2 1.1. Super-resolution microscopy

Figure 1.1 – An object (a) is imaged with a the PSF showed in (b). The resulting
image (c) is a blurred version of the object.

which means that every point in the image is mapped by the system into a replica of the PSF,

as illustrated in fig. 1.1, or in more precise terms, the obtained image is a convolution of the

object and the system’s PSF:

i(x) = h(x)⊗ o(x) (1.1.1)

where h is the system’s PSF, o is the object i the image and x is a point in the image plane.

Applying a Fourier Transform (FT) to equation (1.1.1), the convolution becomes a mul-

tiplication

ĩ(k) = h̃(k)õ(k) (1.1.2)

Here k is a point in the reciprocal space (i.e. the space of spatial frequencies). H = h̃, is

the FT of the PSF and is called Optical Transfer Function (OTF). In this representation, we

do not consider the real images but their spectrum, obtained by FT, and represented by the

operator ˜ (tilda). Small details in an image correspond to high frequencies in its spectrum,

as illustrated in figure 1.2.

We make the assumption that an object’s spectrum features much higher frequencies than

afforded by the system’s resolution, meaning that it contains infinitely small details. Saying

that all optical systems have a finite resolution, is equivalent to affirm that they operate like

low-pass filters: the spectrum of the images that can be produced is limited in frequency. The

higher this limit, the smaller the detail that a system can resolve. In equation (1.1.2) the

spatial filtering operated by the optical system is represented by the multiplication2 of the

object the object õ(k) by h̃.

Whatever the representation (in real or reciprocal space), there is not such thing as an

imaging system with an infinitely small PSF or equivalently, an OTF with unlimited support.

A direct consequence is that if two point-like objects are closer than the PSF size, it is difficult,

or even impossible to distinguish them.

Empirically, the resolution of an optical system such as a microscope can be defined as the
2if the images are represented as matrices of pixels, this operation is an element-wise multiplication.
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Figure 1.2 – The extension of the powers spectrum of an image increases with
the level of details that it features. (b1) and (c1) are two details of image (a).
The respective power spectra are plotted in (b2) and (c2). (b1) is blurred by
because it corresponds to a portion of the image which was not perfectly at focus,
whereas (c1) is sharp and we can distinguish the grains of sand. This finesse of
the detail reflects in the extension of the power spectra.

minimum distance R at which two points in the object can be distinguished (e.g. Rayleigh

criterion[F.R79]). The smallest detail that a system can resolve depends on the collecting

aperture of the objective lens and is given by:

d = λ

2n sin(θ) = λ

2NA (1.1.3)

where λ is the system wavelength and NA = n sin(θ) is its Numerical Aperture defined, with

respect to the optical axis, as the maximum half-angle θ of the cone of light that can enter or

exit the system, times the refractive index n of the medium between the last lens of the system

and the object (see schematic representation in figure 1.3).

This intrinsic resolution limit was demonstrated in the late XIX century by Abbe [Abb81].

It corresponds roughly to half of the wavelength of the light used. A minimum value of d can

be obtained evaluating equation (1.1.3) in the best possible conditions, i.e. with the shortest

visible wavelength (' 400 nm) and the best objective (aberration-free, NA ' 1.4). This value

(≈200 nm) represents the classical resolution limit of traditional optical microscopy.

Figure 1.3 – Scheme of a simple imaging system, illustrating the maximum half-
angle α of the cone of light that can enter or exit the system, used to define the
Numerical Aperture NA = n sin(α).
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Figure 1.4 – two point-like objects imaged with the PSF of a perfect lens (Airy
disk) and their respective (zoomed) power spectra. When the points get too
close, they can not be distinguished, which corresponds to the disappearance of
the fringe pattern in the power spectrum.

This limit, considered definitive at the time of its discovery, has recently been broken

and it is now possible to perform super-resolution (SR) imaging (with a better detail than

what allowed by diffraction). Super-resolution does not mean that a systems can by physically

designed to break the diffraction laws, but that some smart ideas can be applied to pass

some "extra" information, that would be normally blocked by the system, through the allowed

bandwidth. This supplementary information belongs to details which are smaller than the PSF

size, or equivalently, to frequencies that lie outside the system’s OTF support. Only in this

sense a super-resolution optical system can be said to have a PSF smaller than (or an OTF

broather than) those allowed by the classical diffraction limit.

1.1.2 Numerical deconvolution

One way of increasing an image resolution consists in numerically compensating the blurring

caused by the finite size of the PSF of the optical system. This is the approach of deconvolution

microscopy and, since its introduction in 1983[Aga84], it has become a very popular and

broadly used technique. It has the advantage to be a completely numerical approach that does

not require any special apparatus and can be applied to potentially all kind of microscopy

techniques, also to 3-dimensional data[Sib05]. In this section we describe this technique.

In analogy with eq. (1.1.1) we think of an imaging system as a function with a real object
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Figure 1.5 – Numerical simulation of deconvolution. An object (trombone) is
represented in (a) together with an imaging PSF which is used to image it. The
resulting image is the convolution of the object and the PSF (b). By deconvolving
the image with exactly the same PSF, the object is partially recovered (c). If
a random noise (here Poissonian) is added in the process, the reconstruction is
degraded (d,e,f).

O as an input and its image I as an output.

I = HO (1.1.4)

The imaging process is represented by an operator H, which can easily be identified with the

system’s PSF and operates on O to produce its image I.

Digital deconvolution is a mathematical process that computes an object’s approximation

Ô, or in more technical terms, an estimate, given the acquired image I and some model of the

imaging function Ĥ.

Ô = Ĥ−1I (1.1.5)

It is important to point out that the notation Ĥ−1 in equation (1.1.5) is only symbolic.

Generally, since the application of H on O implies a loss of information, it is not invertible.

The "hat" symbol is used to remind the reader that Ĥ is only an approximation of H, both

because H cannot be inverted and because its knowledge is generally only partial. Moreover, in

practice, the presence of noise makes the problem much more delicate (see figure 1.5). Taking

into account the noise N , we can get a more realistic version of eq (1.1.5):

I = HO +N (1.1.6)

Usually our knowledge of N is limited to some statistical properties, making image retrieval
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more difficult.

The deconvolution problem, as an image-restoration problem, belongs to the ill-posed prob-

lem category, meaning that the uniqueness of the solution is not guaranteed. even iMany

deconvolution algorithm exist[Sib05, SDS+17], some of them are iterative, others make use of

some statistical assumptions or constraints, blind-deconvolution algorithm assume that also

the PSF is unknown. But they all try to reconstruct the most probable object3, which could

have generated the detected image, by using an image representing the system’s PSF4. Un-

fortunately, there is no such thing as the best deconvolution algorithm: one might be better

than another depending on the specific imaging condition and sample features. Whatever

the algorithm, computational image restoration tries to assign out-of-focus intensity back to

its originating position in space, resulting in a significantly improved image contrast and a

modest increase in spatial resolution[SHL10].

As previously said, deconvolution is intrinsically limited by the fact that some information

is completely lost during the imaging process, therefore an image cannot be recovered with

infinite detail, even if the system’s PSF were known with infinite precision. Moreover, most of

the proposed algorithms assume the PSF to be translation-symmetric and, unfortunately, the

PSF (often) depends on position in the object space. Moreover, even if the system is aberration-

free, any local aberration introduced by the sample itself makes deconvolution imprecise.

In conclusion, even though deconvolution is practical because it does not need any highly

engineered system or sample and allows an increasing of the image contrast and a small gain

in resolution, it does not transform a traditional microscope in a "nanoscope". To reach that

scale of detail, the rules of the game need to be changed and, as said before, one has to violate

of some traditional assumptions on optical microscopy.

3in the sense of the minimization of a likelihood function, specific to a given the algorithm
4an image of the system PSF cab be obtained by imaging a point object, by the definition of PSF.
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Figure 1.6 – Image of a labelled macrofage, before and after numerical deconvo-
lution (image source: Dr. James Evans, Whitehead Institute, MIT Boston MA,
USA).

1.1.3 Physical super-resolution

When discussing the classical optical resolution limit we silently accepted two hypothesis: the

illumination is uniform in the sample and the sample’s response to the illumination intensity

is linear. The relaxation of these hypothesis is the great idea behind the super-resolution

techniques that have physically broken the diffraction barrier and allowed to reach a detail

which was considered impossible in optical microscopy (some example images are shown in

figure 1.7).

The main ingredients that allow this result are, of course, the recent advancements in

optics, molecular engineering5 and computational power, but at the very heart lays the great

intuition on releasing the aforementioned assumptions.

In the following section we give a general idea of what the term "super-reslution" is referred

to, and explain the ideas underlying the most popular techniques.

Non-uniform illumination

A way to increase image resolution consists of using non-uniform illumination. This is the

basic principle of Structured Illumination Microscopy (SIM)[Gus00,HJC02].

In SIM the sample is illuminated with patterned light (e.g a grid-like periodical fringe pat-

tern) that only excites some parts of the sample, while others stay dark. From the interaction

between the illumination pattern and the sample’s features some information can be extracted

which would not be accessible in uniform illumination.

The concept of aliasing is very close to the principle of SIM. Aliasing occurs when sampling

a signal at a frequency which is lower than its characteristic frequency. The result is the

5super-resolution microscopy was awarded the Nobel Prize of Chemistry in 2014.
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Figure 1.7 – Super-resolution microscopy of biological samples. (A) Conventional
wide-field image (left) and 3D-SIM image of a mouse C2C12 prometaphase cell.
The bottom panel shows the respective orthogonal cross sections. (B) HeLa cell.
The image was acquired with a TCS STED confocal microscope (Leica). (C)
Hep G2 cell. The image was acquired using TIRF illumination. Single molecule
positional information was projected from 10,000 frames recorded at 30 frames
per second. On the left, signals were summed up to generate a TIRF image with
conventional wide-field lateral resolution. Bars: 5 µm (insets, 0.5 µm). Image
source [SHL10].



Chapter 1. Super-resolution microscopy and scattering 9

Figure 1.8 – Schematic principle of SIM (Image source [SHL10]).

Figure 1.9 – (a), a sample containing unknown structures, (b) a known structure
patterns, (c) the moiré pattern generated by overlapping. Image source [LC11].

appearance of low frequency artifacts which depend on both the sampling and the signal

frequency and therefore encode a partial information on the actual signal. In SIM, the object

is the signal and the sampling is given by structured illumination.

Alternatively, Moiré fringes are often used as a similitude to explain SIM (fig. 1.9). They

appear when overlaying similar but not identical patterns. In SIM one of the two patterns

(illumination) is known, the other pattern is the unknown sample. Though the Moiré fringes

are aesthetically attractive and depict well the interaction between sample and illumination,

they dot not clearly illustrate the basic principle of SIM.

SIM enhances spatial resolution by collecting information from outside the allowed region

in the reciprocal space, i.e. outside the OTF support of the imaging system. This information

is encoded in every SIM image at a lower spatial frequency, which is allowed to pass through

the system. With a linear combination of several SIM images, it is possible to extract the

higher frequency signal, obtaining de facto a reconstructed image with a wider spectrum than

what allowed by the system’s OTF. A wider spectrum corresponds to a finer detail, whence

the super-resolution.

What follows is a non-rigorous, but explicative example for a better understanding of SIM.

Imagine we can produce a modulated illumination in the sample with an intensity Ie given by:

Ie = 1 + sin(k0 · x) (1.1.7)

Where x is the coordinate in the sample plane and k0 the modulation wave vector. The
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corresponding image acquired by the system is then:

Idet(x) = [Ie(x)×O(x)]⊗ PSF(x) (1.1.8)

And the corresponding FT is:

Ĩdet(k) =
[
Ĩe(k)⊗ Õ(k)

]
×OTF(k) (1.1.9)

Ĩdet(k) =
[(
δ(k) + 1

2ı (δ(k − k0)− δ(k + k0))
)
⊗ Õ(k)

]
×OTF(k) (1.1.10)

Equation (1.1.10) contains the convolution of the Object FT Õ with three delta functions.

The first term gives an exact copy of Õ, whereas the two others are shifted replicas of it. Then

the product with the OTF simply cuts high frequencies which the system does not allow to

pass. Nevertheless, thanks to the shifted replicas of Õ, a part of the information regarding

those higher frequencies is now shifted in the OTF transmission bandwidth. Eventually, with a

linear combination of at least 3 images taken with a translated version of the same illumination

pattern (i.e. adding a phase in the reciprocal space), it is possible to isolate this high frequency

information.

Therefore, with an accurate choice of the pattern orientation (k0) and its translation, a

wider spectrum of the object can be explored, thus allowing super-resolution.

Here, we presented SIM with fringe illumination for historical reasons but in principle, any

pattern containing high spatial frequencies can be used, and in particular speckle patterns[MBG+12,

LAI+16].

SIM is a technique that does not require a very complex optical system nor highly sophis-

ticated reconstruction algorithms. On the other hand, the widening of the spectrum obtained

does not allow more than a factor 2 (compared to uniform illumination) in resolution enhance-

ment[LC11]. In order to push this limit even forward, we need to break the linearity assumption

on the sample response.

Non-linear response

Even though structured illumination, as seen in section 1.1.3, allows already super-resolution,

the best results obtained in this field come form the violation of the assumption that the

sample responds linearly to illumination. A linear response is what is usually expected from a

microscope: the sample is visible when one shines light on it, dark otherwise, and the brighter

the illumination, the stronger the measured signal.

Many well established super-resolution techniques such as PALM [BPS+06] / STORM [RSM+12],
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Figure 1.10 – Schematic principle of PALM/STORM. This techniques use uni-
form illumination but only some FP are stochastically excited. The signal is
collected from the isolated FP and numerically fitted to find its centre, which
corresponds to the FP location in the sample.(source [SHL10])

STED [HW94a,LGSE13], SSIM[HJC02,Hei03,Gus05], SAX [FKK+07,HBE+09] and others are

based on the idea of getting a non-linear response from the sample. We will briefly describe

these techniques in this section.

Stochastic photo-activation/switching super-resolution techniques. As we

have seen in section 1.1.1, once a system PSF is known, one knows how a point-like object

is imaged by this system. Therefore it is possible to localize a point-like object with extreme

accuracy6. Moreover, at least in fluorescence microscopy, the light sources are fluorescent

molecules, which can be indeed regarded as point-like objects in comparison to the classical

resolution limit. This means that one emitting light molecule can be extremely well located

in space. This super-localization is possible as long as light is emitted by a single and well

isolated emitter7. This is the case of sparse samples, where the fluorescent objects are small

and separated, and this is not the general case. Usually, for example in biology, tissues are

dyed with high densities of fluorescent molecules. Nevertheless, if one can get light emission

from one molecule at a time, while the others stay dark8, each emission can be attributed to a

well determined location in the sample with a very high precision, well beyond the diffraction

limit.

Two very well known super resolution techniques (among others) rely on this idea: Photo-

Activated Localization Microscopy (PALM) [BPS+06] and Stochastic Optical Reconstruction

Microscopy (STORM)[RSM+12]. In both of them the fluorophores (FP) in the sample are

stochastically switched between a light emitting and a dark state in order to isolate them.

Even though PALM and STORM are based on the same idea, they differ basically on the kind

of optical transition addressed by the switching process.

6For example if the system PSF is centro-symmetric, a point-like object can be localized in the
centre of the measured PSF.[SHL10]

7The additional information of knowing that signal comes only from an isolated "very small" object
makes the crucial difference between localization and deconvolution.

8In this case the sample can be considered sparse in the space-time.
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PALM was first carried out using a photo-activable FP named EosFP[BPS+06]. Under

normal conditions, EosFP emits green fluorescence at 516 nm. Upon irradiation near 400 nm,

its fluorescence changes to 581 nm because of a photo-induced modification[WON09]. This

optical property makes it possible to convert a subset of EosFPs to emit in the yellow region

(581 nm). When the number of converted proteins is small, the proteins will be well separated

and can be imaged (localized) in the yellow region with high resolution. When this particular

subset of EosFPs is photobleached, another subset of EosFPs can be converted and imaged.

This process may be cycled 102 to 105 times until the population of EosFPs is depleted.

Since then, many other photoconvertible, photoactivatable, and photoswitchable FPs have

been developed. Photoactivatable FPs can be activated from a dark state to a bright state

using UV light, and photoswitchable FPs can alternatively be switched on or off with specific

illumination. A review of these proteins can be found in Ref. [PDMLS10].

STORM[RBZ06] and dSTORM[EH14] differ from PALM in that they use FP which can be

reversibly cycled between a fluorescent state and a dark state (photo-switching). The optical

switch can be cycled on and off hundreds or thousands of times before becoming permanently

photo-bleached. For both techniques a resolution down to ∼20 nm has been proven in biological

samples[SPM+09]. fluoro

In all aforementioned super-resolution techniques the scientist has no control on which

molecule will be in its fluorescent state, but only, and up to a certain level, on the density of

such molecules at a given time. This fact of not knowing a priori the position of light emission

in the sample classes these super-resolution techniques as stochastic, in contrasts with other

SR techniques such as STED, SSIM and SAX, which are callled deterministic.

These last mentioned techniques rely both on a structured illumination and on a non-linear

response of the sample by saturation of an optical transition.

Optical saturation Any system with a limited output is subject to saturation. For all

input value larger than a given threshold, the output of the system saturates and remains

constant. A fluorescent sample that undergoes an optical transition is a limited output system.

As an example, we will treat here the case of fluorescence excitation, but the same reasoning

can be applied to any other optical transition. Let us imagine a uniformly fluorescent sample. A

finite and constant portion of it is illuminated by a continuous9 light source whose wavelength
9a more rigourous and detailed discussion, including the case of pulsed excitation is presented in

appendix C.
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corresponds to the energy gap between the molecule’s ground and excited states. In order

to simplify the reasoning let us suppose that only these two states exist. This assumption is

reasonable if the transition to other states happens with a much slower rate than fluorescence

emission.

In the fluorescence mechanism, an FP molecule in the ground state S0 must absorb one

excitation photon to reach the excited state S1 and be able to emit a fluorescence photon,

thereby decaying back.

Two parameters define the dynamic of this system: kf the fluorescence rate and ke the

excitation rate. The FP populations in the ground and excited states evolves in time according

to these rates. While kf is a constant value typical of the FP, ke depends on the FP absorption

on the density of excitation photons (excitation intensity Ie).

ke = σabsIe
hνe

(1.1.11)

where σ is the FP’s absorption cross-section, h is the Plank constant and νe is the excitation

optical frequency. The fact that ke is proportional to Is implies that the probability of excita-

tion increases with the excitation intensity Ie. The reciprocal values τf = k−1
f and τe = k−1

e

are the system characteristic times. Obviously τe decreases with increasing excitation intensity,

whereas kf is constant and lies for most FP in the range 0.5 ns - 5 ns.

As the excitation intensity increases, since fluorescence is not instantaneous, provokes an

accumulation of FP in the excited state and a progressive depletion of the ground state. At

the same time, since the population of excited FP increases, so does the fluorescence signal. In

CW illumination, a given excitation intensity defines a particular steady-state of the system,

where the occupation number of the two levels is constant and is determined by the transition

rates. Fluorescence emission is proportional to the occupation number for the excited state,

which is

r1(Ie) = ke
kf + ke

= Ie/Is
1 + Ie/Is

(1.1.12)

and is plotted in figure 1.11. In the last step we have used eq. (1.1.11) and the saturation

intensity Is = kfνe
σabs

has been introduced. It represents the necessary intensity to obtain ke = kf ,

which is an equivalence of the probability of emission and absorption. Note that, in this case,

the occupation probabilities of the states are also equal: half of the FP are excited, which

means that the fluorescence emitted by the sample is half its maximum value.

Equation (1.1.12) states that, with increasing excitation intensity, r1 increases up to its

maximum value 1. When r1 = 1 the sample emits its maximum fluorescence signal. Further

increasing Ie doesn’t have any effect. In this sense, the optical transition (here excitation) is
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Figure 1.11 – Saturation cuve. It represents the Fluorescence response of an
ensemble of FP versus the excitation intensity. The FP responds linearly up
to a certain excitation intensity, The intensity at which the fluorescence reaches
half of its maximum value (F/2) is defined as the saturation intensity Is. Above
this value, the FP behaviour is strongly non-linear and the fluorescence signal
converges to its maximum value F.

said to be saturated.

When a system saturates, it does not respond linearly to a stimulus, and its output contains

higher frequencies than the input; an illustration of this behaviour is proposed in fig. 1.12. In

super resolution microscopy, these higher frequencies are exploited to generate sub-diffraction

details in the sample [HJC02]. In fact, the image produced by fluorescence microscopy in the

linear regime is given by (cf. eq. (1.1.1)) :

i = h⊗ Iem = h⊗ [αIeρ] (1.1.13)

where all dependences from the space coordinates have been omitted for the sake of readability.

Here Iem is the emitted fluorescence intensity, α is the proportionality factor between excitation

and fluorescence emission, Ie is the spatial distribution of the exciting light and ρ is the local

density of FP in the sample. When excitation is saturated, the previous formula becomes

i = h⊗ Îem(Ie, ρ) (1.1.14)

if we assume Îem to be linear in ρ(x) but non-linear in Ie, we may write

Îem(Ie, ρ) = f(Ie)ρ (1.1.15)
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Figure 1.12 – In the first row an input signal (left) and its spectrum (right). The
red dashed line represents the saturation input level for an hypothetical limited
linear system. The second row shows the saturated-response of this system to
the given input, and the corresponding spectrum. Higher frequencies appear as
an effect of saturation.
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Figure 1.13 – A signal s(t) (a) and its spectrum (b) featuring two strong com-
ponents. (c) The third power of the signal s3 and the corresponding spectrum,
where higher frequencies appear due to non-linearity. Note that the spectrum of
s3 is (s̃⊗ s̃⊗ s̃).

Performing a Taylor expansion in Ie

Îem(Ie, ρ) = αIeρ+
∞∑
n=2

cnI
n
e ρ (1.1.16)

where the first term corresponds to the linear case (cf. . (1.1.13)). The Fourier transform of

the emitted intensity is now ˜̂
Iem = Ĩem +

∞∑
n=2

cn [̃Ine ρ] (1.1.17)

In the first term on the right we recognise the FT of the emission intensity in the linear case

(cfr. eq. (1.1.13)), which has a bounded support since it is proportional to Ie, whose support

is the system’s OTF. But the terms of the form F [Ine ] in the sum introduce higher frequencies.

In fact, the generic term of this sum is equivalent to:

[̃Ine ρ] = [Ĩe ⊗ Ĩe ⊗ ...⊗ Ĩe]⊗ ρ̃ (1.1.18)

Therefore, the multiple convolutions of Ĩe introduce higher frequency (as illustrated with an

example in figure 1.13), and thus allow to extract more information in the last convolution

with ρ̃.

Saturation is a key concept in several super resolution techniques that will be discussed

hereafter. To summarize it allows to generate a high frequency response with a low frequency

stimulus. In microscopy, this translates into the ability to modify the sample’s FP state with

a finer detail than what permitted by the diffraction limit.



Chapter 1. Super-resolution microscopy and scattering 17

Super-resolution by saturation. The aforementioned advantages of saturation are ex-

ploited in several super-resolution microscopy techniques to retrieve high frequency information

on the sample with spatial or temporal modulation of the excitation intensity. In section 1.1.3

we have introduced SIM, which improves the resolution by a factor10 2 thanks to structured

illumination. With the introduction of saturated excitation, Gustafsson et al. have demon-

strated a much finer resolution [Gus05] reaching a detail of <50 nm. A similar idea was also

implemented in confocal microscopy and gave birth to 2 techniques: Saturated EXcitation

(SAX [FKK+07]) and Saturated Absorption Competition (SAC [ZKT+17]) microscopy. Here,

instead of the spatial modulation of light, a temporally modulated excitation is applied.

In theory, the resolution enhancement of all these approaches can be arbitrarily high with

appropried excitation powers, although the real performance is substantially dependent on

the brightness and photostability of the fluorophores used. The impact of photostability is

even more crucial, since the excitation intensities have to be rather large to reach sufficient

saturation. Another issue linked to the high excitation intensities required, is the background

signal due to parasitic fluorescence in the sample and optical components.

A slightly different approach is adopted in STimulated Emission Depletion (STED) [HW94b]

and with other REversible Saturable (or switchable) Optical Linear (Fluorescence) Transi-

tion (RESOLFT[KSH07]) techniques. STED, for example, exploits stimulated emission to

selectively suppress the spontaneous fluorescence in the sample, thereby confining it in sub-

diffraction volumes.

The new super-resolution technique that we present in this work is related to both SSIM and

STED. Besides we have applied STED microscopy to obtain some important results reported

in chapter 2. Therefore we want spend a few words on the principles of these techniques. Since

we have described the former in section 1.1.3, we will now briefly present the latter.

STED microscopy has been shown to reach a resolution down to 2.4 nm [WPS+12].

Because STED can obtain nano-scale super-resolution, its approach has been widely used and

explored.

A STED microscope is basically a normal fluorescence microscope, where super-resolution

is achieved thanks to a second beam which stimulates fluorescence emission in the sample and

confines the sample signal in a sub-diffraction sized volume (see fig. 1.14).

The STED beam is produced by adding a spiral phase to a Gaussian beam, thanks to a

phase masks (see fig. 1.15). When the beam is focused, the intensity at the focal plane looks like

a "doughnut": a bright ring with a dark spot at the focus. Both excitation and de-excitation
10compared to the resolution limit imposed by diffraction.
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Figure 1.14 – Schematic depiction of the STED microscopy technique. Two
beams are used and scanned over the sample: an excitation beam and a
doughnut-shaped red-shifted beam that stimulates emission and confines the
fluorescence in a sub diffrcation volume in the sample.

Figure 1.15 – Schematized STED setup. Two pulsed beams are used: one (blue)
to excite the FP in the sample and another (orange) to stimulate fluorescence
emission. The second beam passes through a spiral phase mask (PM) that gives
to it a "doughnut" shape in the sample plane. The optical path difference for the
two beams creates a delay between excitation and stimulated emission.
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Figure 1.16 – STED doughnut, longitudinal and transversal cut. a) the excitation
PSF illuminates a fluorescent sample. b) The doughnut STED beam (orange) de
excites the FP that do not lie in the center. d) with a higher average intensity,
fluorescence is confined in a smaller volume.

beams are issued from pulsed laser sources. The "doughnut" beam is red-shifted (to stimulate

fluorescence) and it is delayed in comparison to the excitation one. First the sample is excited

with a diffraction limited spot by the excitation beam, successively, within a time shorter than

the FP mean fluorescence lifetime, the "doughnut beam" impinges on it and stimulates the

emission of the excited FP everywhere but at the doughnut centre, where the intensity is zero.

The probability of inducing spontaneous emission from one FP located somewhere in the

sample is proportional to the local intensity of the "doughnut" beam, and tends to 1 if this

intensity is above the transition’s saturation intensity Is. By increasing the beam’s average

intensity, it is possible to increase the portion of the STED beam that has an intensity larger

then Is and, with it, the number of excited FP in the sample that undergo spontaneous

emission with probability one (depletion). This leads to a contraction of the volume in the

sample where FP are still excited after the STED beam impact. The lowest intensity of the

"doughnut" beam (see fig. 1.16), is found around its centre, therefore the STED beam confines

fluorescence around the doughnut’s centre, in a volume whose size decreases with the average

intensity of the STED beam.

After depletion, the still excited and confined FP spontaneously emit fluorescence. This

signal is collected and measured by a single pixel detector (PMT or APD) and reassigned to

a pixel which has the size of the scanning step, which can be arbitrarily small. This process

is repeated while scanning the desired field of view in the sample. Ideally the intensity of the

STED beam should be high enough to confine the spontaneous fluorescence in a volume which
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has a typical size of the scanning step.

As we have seen, the resolution of STED microscopy increases with Id, the average intensity

of the depletion beam. In fact, it depends on the ratio s between Id and the saturation intensity

Is. This can be modelled by the following relation [HKU+08]:

d = λ

2NA
1√

1 + s
(1.1.19)

where we recognize the classical diffraction limit λ/2NA plus a multiplying factor that decreases

with the square root of s for high depletion intensities.

1.1.4 Super-resolution in biological samples

Most of the techniques that we have briefly discussed in the previous sections, are theoretically

unlimited in the resolution that they can achieve. In practice, the simple consideration that

smaller objects emit lower fluorescence, makes it straightforward that when nanoscale resolu-

tion is wanted, each source of noise has to be carefully minimized. Unfortunately, scattering,

autofluorescence, sample movement and instability are typical noise sources of complex speci-

mens such as biological objects (cells, tissues...) that limit the practical achievable resolution.

So, for example, even if STED has proven to be capable of reaching the nanometer resolution

when imaging color centers embedded in a diamond crystal[RWH09] things get rapidly much

worse as soon as the sample is less stable.

Perfectly stable samples, on the other hand, can be imaged with other non-optical tech-

niques (electron and atomic force microscopy for example) which are much more adapted. The

main advantage of optical microscopy is that it is bio-compatible and allow the observation of

living specimens. The ultimate aim of super resolution microscopy is to reach the nano-scale

for biological research. Unfortunately the complexity of this kind of sample makes this quest

non-obvious.

Biological samples impose many constrains: the dyes must be bio-compatibles and the

intensity used must take into account the fragility of the sample to avoid thermal- and photo-

damages. All this without considering that tissues absorb and scatter light. Scattering indeed,

is an enormous obstacle to super resolution imaging in biological tissues. Due to the random-

ization of the wave front that occurs there, structured illumination is impossible at a depth of

more than typically 100 µm [DTS09,GTL+11].
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Figure 1.17 – Schematic of the scale of living being and representation of the
optical resolution limit.

1.2 Diffusion of light in random media

Our knowledge of life and its mechanism is intimately linked to the technical development of

optics. Since the beginning of the XVII century, as the first compound microscope officially

came out, scientists have been able to understand the microscopic structure of complex or-

ganisms, then, step by step with the understanding of the physics of light propagation, this

knowledge has allowed them to penetrate the secrets of the cell, its structure and mechanisms,

functions and interactions, and as new and better microscope were built, smaller and smaller

object and interaction could be understood. But the wave nature of light puts a limit on the

size of the objects that can be imaged. As microscopes reached the subcellular scale, object

as small as viruses and proteins still could not be seen with visible light. Light is one of the

best means we have to investigate life without damaging it, hence scientists have struggled to

overcome the intrinsic limit of resolution of optical microscopy, until recently, when new smart

ideas came out to circumvent this limit, as explained in the previous sections. Nevertheless, it

has still not yet been possible to image beyond the diffraction limit (i.e. reach super-resolution)

in depth in a scattering tissue.

Biological tissues are weak absorbers but strong scatterers11[Ntz10] . The interaction of

photons with different cellular structures results in elastic scattering, a process of photon

absorption and re-emission without loss of energy but possibly associated with a change in

photon direction. For biological structures, the re-emission has a high probability to occur

in the forward direction for each scattering event. Despite this, the accumulation of multiple

scattering events results in a gradual randomization of the propagation direction[WV11,Ntz10].

This allows to distinguish different scattering regimes which can be identified at different depths

in the tissue. A schematic representation of these regimes can be seen in figure 1.18.

The depth limit of conventional microscopy can be derived from a physical parameter called

the mean free path (MFP) of a photon. The mean free path (MFP) in tissues is defined as

11scattering in biological tissues is particularly strong in the ultraviolet (< 450 nm), visible (450 nm
to 650 nm) and near-infrared (650 nm to 1000 nm) spectral regions owing to photon interaction with
cellular structures at these wavelengths.
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Figure 1.18 – The three different scattering regimes that can be identified in
a medium that shows a strong anisotropy. As light penetrates the medium it
interacts with it and get scattered. Within a lenght of one Mean Free Path
(MFP) all photons are scattered at least once. For a distance of more than
one MFP all balistic (non-scattered photons), are lost, but due to the medium
anisotropy, most of light travels forward, up to a distance of one Transport Mean
Free Path. After this depth, the multiple scattering events totally randomize the
direction of the light.

1/µ, in which µ is typically expressed as a sum of the tissue’s absorption coefficient µa and the

tissue’s scattering coefficient µs, that is, µ = µa + µs. As µs >> µa in most tissues, MFP can

be simply written as

MFP = 1/µs.

The MFP describes the average distance that a photon travels between two consecutive scat-

tering events. The MFP is of the order of 100 µm in tissue, although it varies with tissue type.

This means that the bulk of photons propagating through a 100 µm tissue slice will experience

at least one scattering event, resulting in image blur.

Confocal and multi-photon microscopy have been developed to image specimens at depths

where photon scattering occurs (hundreds of micrometers). The penetration limit of these

advanced forms of microscopy is governed by a second physical parameter, the transport mean

free path (TMFP), which takes into account the MFP and the average angle by which photons

are scattered in each scattering event.

When considering a photon undergoing several scattering events, the reduced scattering

coefficient can be defined to describe this multiple scattering process as µ′s = µs(1 − g), in

which g is the scattering anisotropy, a measure of the amount of forward direction retained

after a single scattering event 12. For photon scattering in tissue, g is typically 0.8–1. The

12if θ is the scattering deflection angle defined in respect to the forward direction before the scattering
event, cos(θ) is close to one if the deflection is small 0 if perpendicular and negative in case of backward
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transport mean free path (TMFP) can then be defined as

TMFP = 1/µ′s = MFP
(1− g) (1.2.1)

The higher g, the more forward the scattering and the longer it takes for light to disperse,

resulting in higher penetration distances with microscopic techniques. The underlying photon

propagation process can be understood if we consider that photons after (1− g)−1 scattering

events reach a random propagation compared to the direction of the incident beam. Therefore,

although the propagation between 0 and 1 MFP is largely ballistic, as the travel distance in-

creases to 1 TMFP, there is increasingly more scattering, eventually leading to photon diffusion.

In a few words, TMFP indicates the mean propagation distance that it takes for photons to,

on average, lose relation to the propagation direction they had before entering tissue. In many

animal and human tissues, TMFP is typically ten times larger than MFP and represents an

upper limit of the penetration of microscopic techniques. Confocal or multi-photon microscopy,

for example, operate at penetration depths that are smaller than 1 TMFP. Imaging beyond 1

TMPF with optical methods has been traditionally challenging, and sub diffraction resolution

still remains unachievable because, with scattering the phase of the field is completely scram-

bled and spatial information is lost, resulting in an apparently random interference pattern

known as speckle (see fig. 1.19).

scattering. g is the expectation value of cos(θ)

g = cos(θ) = 2π
∫ π

0
ρ(θ) cos(θ) sin(θ)dθ
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Figure 1.19 – An example of speckle pattern obtained when trying to focus light
through a 300 µm thick mouse brain slice. Although most of the energy still
remains in a region close to the focal point, the focus is completely lost.

1.3 Imaging with speckles

1.3.1 Exploiting some knowledge of the diffraction process

We have seen in the previous section that diffusion completely scrambles and encrypts spatial

information carried by light. Although chaotic, this process is well deterministic and depends

on the microscopic structure of the scattering medium that light crosses, which is generally

unknown.

Diffusion just encrypts information coming from the sample. Determinism is, of course,

not violated and the speckle pattern still carries all information about the source spatial distri-

bution. In fact, an accurate knowledge of the optical properties of the medium, even if difficult

to obtain, is sufficient to decrypt the information carried by the speckle pattern and allows

imaging through diffusive media[PLC+10].

Concerning speckles, a work which is interesting to examine in the context of this thesis

has been recently published by E. Edrei et al. [ES16]. In their experiments, an object emitting

incoherent light was imaged through a scattering medium (1 mm opaque tape). Edrei’s ap-

proach consists in characterizing the medium’s optical properties by taking the speckle image of

a point like object through the diffuser. Then a more complex object is imaged through exactly

the same diffuser. A simple deconvolution of the object’s speckle image with the speckle image

of the point object allows an immediate image reconstruction. Measuring the system impulse

response is equivalent to know some information on the scattering process. The crucial step
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in this technique and other that use a so called "guide star" to gain some knowledge on the

diffraction process is that, at a certain point in the imaging process, it is possible to "bypass"

the scattering medium and get some extra information (for example he knowledge that the

guide star is a point like object).

Unfortunately the process of characterization of the medium’s optical properties takes time,

it is complicated and not always possible. Nevertheless it has already been shown that, even

without this knowledge, imaging can still be performed through scattering layers, as we will

see in the following section.

1.3.2 Double blind speckle imaging

The previous examples of speckle-imaging rely on some knowledge of the complex scattering

process that takes place in the diffusive media through which the unknown object is imaged. In

contrast, a speckle imaging technique is defined double blind if this knowledge is not available.

Even if the process of diffusion is completely unknown, some information can be still

extracted from the statistical analysis of the speckle pattern that appear as a consequence

of complex scattering. This concept was pioneered 1970 by Antoine Labeyrie with "Speckle

Interferometry" used to resolve a system of binary stars which appeared as a single object due

to diffusion by the atmosphere [Lab70]. Since Labeyrie’s work, speckle imaging has evolved

and it has been applied to other contexts than astronomy and it is now considered as one of

the candidates to the race to in-depth microscopy.

A key concept is that some deterministic transformation can be applied that modify the

field in a predictable way, even behind an unknown diffuser. These transformations are obtained

by controlling the phase and or polarization of the beam before the diffuser and can be applied

cleverly to get precise information about the hidden object.

Probably the most well known way of applying such a deterministic transformation is by

exploiting the "memory effect"[FKLS88]. This is a peculiar phenomenon observed when

light propagates through a scattering medium [FRF88]. Within a certain range of impinging

angles (tip-tilt) the speckle patterns observed after the scattering medium are highly correlated

and translated over a distance proportional to the impinging angle. From a reciprocal point

of view, two incoherent point-objects which are close enough, will result in a superposition of

two very similar speckle patterns when imaged through a diffuser. The translation distance

within which this effect holds is inversely proportional to diffuser thickness L and directly

proportional to the distance s of the diffuser from the screen and can be approximated by the

equation FOV ≈ sλ/πL [Fre90,KSS12]. A consequence of the memory effect is the ability to

deterministically exchange critical points of a speckle generated by a diffuser[GRG17].
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.

Figure 1.20 – schematic of the apparatus for non-invasive imaging through
strongly scattering layers from ref. [BvPB+12].

The first image of a complex fluorescent object hidden behind an unknown opaque scatter-

ing layer was achieved by Bertolotti et al. in 2012 [BvPB+12]. This result was possible without

any knowledge of the scattering layer, thanks to the "memory effect". The fluorescent object

was hidden behind a ground-glass diffuser onto which a laser beam was shone, producing a

speckle pattern on the object plane, as shown in figure 1.20. Thanks to the "memory effect"

the speckle pattern can be scanned over the sample by incrementally changing the inclination

of the laser beam with respect to the diffuser plane. At each angle, the speckle is translated

on the sample, by consequence the fluorescence signal emitted from the sample changes. From

behind the diffuser, this signal is completely randomized, but the total amount of transmitted

fluorescence can be measured and retains the information on the overlap between the object’s

O(r) and the speckle intensity S(r), where r is the vector of spatial coordinates.

If the measurements of total fluorescence collected for each tip and tilt angle are assigned

to a bi-dimensional matrix, an image can be formed, which corresponds theoretically to the

convolution of the speckle pattern with the object:

I(θ) =
∫ ∞
−∞

O(r)S(r − θd)d2r = [O ⊗ S](θ) (1.3.1)

The pixel size of this image depends on the step angle θ = (θx, θy) used in the scanning

process and the object distance d, because the memory effect translates the speckle pattern

over a distance ∆r ≈ θd.

Since the measured image is the result of a convolution between object and speckle pat-

tern, if the latter were known, a simple deconvolution would be sufficient to recover the image.

Unfortunately the pattern is not known here, because it is also hidden by the diffuser. Never-

theless, speckles have interesting statistical properties that allow a reconstruction of the object

even in this case. In fact, since they are quasi-random structures, their auto-correlation is
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almost everywhere small, except in a region around zero. Therefore the autocorrelation of a

speckle pattern can be seen as an approximation of a Dirac delta function [S ? S] ' δ(r).

The importance of this feature becomes evident if we write the autocorrelation of the

speckle image I(θ) of equation (1.3.1):

[I ? I](θ) = [O ⊗ S] ? [O ⊗ S] (1.3.2)

= [O ? O]⊗ [S ? S] (1.3.3)

' [O ? O]⊗ δ(r) (1.3.4)

' [O ? O] (1.3.5)

The second step makes use of the convolution and correlation theorem 13

equation (1.3.5) shows that the autocorrelation of the object O and of the speckle image

I are approximately the same. Knowing the autocorrelation of a signal is equivalent to knowing

its power spectrum, in fact, thanks to the auto-correlation theorem:

|F [O]|2 = F [O ? O] (1.3.6)

And by using this in equation (1.3.5) we find

|F [O]|2 ' F [I ? I] (1.3.7)

Hence the speckle image carries the information of the magnitude of the FT of the object O.

At this point a phase retrieval algorithm can be used to recover the missing phase and,

consequently, the object itself. [Fie13].

The "memory effect" can not only be used to scan, but also as an important knowledge to

recover the information that comes from an incoherent light emitting object hidden behind a

diffuser. In fact, light from nearby points on the object is scattered by the diffusive medium

13In step 2 in eq. (1.3.5) we have used the convolution and correlation theorems F [a⊗b] = F [a]F [b],
F [a ? b] = F [a]∗F [b] Explicitly:

[I ? I] = F−1 {F [I]∗F [I]}
= F−1 {F [O]∗F [S]∗F [O]F [S]}
= F−1 {(F [O]∗F [O])(F [S]∗F [S])}
= F−1 {(F [O ? O])(F [S ? S])}
= [O ? O]⊗ [S ? S]
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to produce highly correlated, but shifted, random speckle patterns [KHFG14]14. Each point

of the object can be thought as a point source that, through the diffuser, generates a speckle

pattern. Then, if the distance of any 2 points (i.e. the object size) is in the range of the

memory effect, the speckle pattern generated by every point is the same, but shifted. Hence,

the scattered image seen after the diffuser is the convolution of the object with the speckle

pattern that would be generated by one point source. This means that if the object emits

incoherent light, a simple camera acquisition of the light scattered by the diffuser contains

enough information to reconstruct the object.

We conclude this section with a note on the "memory effect". This effect applies to thin

scattering diffusers at a distance from the target and depends on the fact that, when slightly

tilted, the light that enters the diffusers sees approximately the same region of it and is there-

fore scattered in the same way. This precludes the use of the "memory effect" within thick

scattering media, such as fog and biological tissue. But, against all expectations, within thick

anisotropically scattering media, strong forward scattering can enhance the memory effect

range and thus the possible field-of-view by more than an order of magnitude compared to

isotropic scattering. The kind of memory effect that Judkewitz et al. [JHV+15] describes and

that takes place in strongly anisotropic scattering, is not the same as in the case of thin dif-

fusers. In the case of normal "memory effect", a translation is obtained in the far field thanks

to a tip-tilt of the input beam, whereas for thick tissue the correlation is shift/shift: shifting

the input beam by a small distance over the diffuser displaces the generated speckle pattern

without changing it too much, even in depth, at least in the range of one TMFP (cf. sec. 1.2).

This remarkable observation has recently been generalized by Osnabrugge et al. [OHP+17]

This discovery confirms the applicability of "memory effect"-based double-blind speckle

imaging to biological tissues, which scatter indeed in a strongly anisotropic way. The only

limitation that still remains on the applicability of the "memory effect" lays on its limited

extension: in the case of biological tissues the FOV barely spans some microns at a depth

of less than one TMFP. Considering that the size of a cell is about 10 µm, such a limited

FOV is discouraging, unless the interest is oriented to smaller objects, and becomes even more

interesting if the aim is to perform super-resolution.

14The principle is the same of Labeyrie’s speckle interferometry, although it involves an additional
image recovering step..
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1.4 Motivation and outlook of this thesis

In this first chapter we presented the context of super-resolution in optical microscopy, ex-

plained the key concepts and illustrated some super-resolution techniques that can achieve a

resolution at the scale of the nanometre.

Concerning the application of these techniques, we have seen that in biological samples,

where optical super-resolution is the most needed, it is also strongly limited by several factors,

among which scattering is probably the most important. Scattering degrades imaging and

precludes the possibility of projecting structured light patterns (necessary for super resolution)

already at relatively small depths in tissues, where coherent light interferes randomly and give

rise to often undesired speckle patterns.

Nevertheless, speckles have been successfully used as an imaging device and it has clearly

been shown that it is possible to image through opaque layers thanks to the properties and some

peculiar effects that speckle pattern feature, one above all the "memory effect". Even if this

effects allows a quite limited FOV, it is still enough from the point of view of super-resolution

microscopy.

The idea we want to prove in this work is that super-resolution can indeed be performed

with random speckle patterns. According to what has been discussed in this chapter, there are

numerous advantages in using this kind of illumination:

• speckle patterns are spontaneously produced by scattering in diffusive media, which,

by the way, can introduce higher frequencies than what allowed by the illumination

NA[YTW17].

• they are robust to aberrations, in the sense that a scattered speckle patterns remains a

speckle pattern[Goo06].

• their power spectrum is flat in average (except at zero frequency), thus allowing efficient

probing of the high spatial frequencies of an imaged sample, contrary to regular confocal

and epifluorescence microscopy whose optical transfer function vanishes at the spectral

domain boundaries.

• Random speckle patterns form a pseudo-orthogonal basis, as explained in section 3.3.1.

Together with this advantages, and even more interestingly, speckle patterns contain dark

spots of the same nature than the doughnut shaped STED beam, therefore they are a good

illumination scheme to perform super-resolution. This is what will be shown in the next

chapter.
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Chapter 2

Speckle for super-resolution

Speckle patterns are the result of disordered scattering, but, in spite of the appearance of

being completely random, they have some interesting morphological and statistical properties

offering high advantages for imaging. In chapter 1 we have seen, indeed, that several imaging

methods which use speckles have already been proposed, but none of them aimed to perform

super-resolution microscopy by saturation of an optical transition.

The aim af this chapter is to explain why speckle patterns are suited for super-resolution.

For that, we will first examine these interesting light structures, from their nature and statistical

properties to the optical singularities that they naturally feature.

2.1 Characteristics of speckle patterns

Speckle patterns are disorderly structured interference patterns that appear when coherent

light is scattered by a diffuser. This can occur when light bounces on a rough surface or passes

trough an object which is not optically homogeneous. For example, when a plane wave passes

through a ground glass, its wave-front gains a phase shift which depends on the local thickness

of the diffuser. Just after the diffuser, the phase difference at two points, for which the distance

is larger than the average diffuser’s grain size, is statistically decorrelated. The result of this

process is that, away from the scattering object, a disordered intensity interference pattern

appears, that can be interpreted as the coherent sum of the randomly de-phased waves scattered

from each point of the diffuser. Thus a speckle pattern features bright and dark grains, which

correspond to constructive and destructive interference of these many uncorrelated waves. The

average features of such grains depend solely on the properties of the scattering object and of

the imaging system that produces the speckle pattern.

A speckle pattern can be also projected with an optical system such as a lens or an objective

positioned after the diffuser. If a coherent polarized beam passes through a thin diffuser and is

"focused" with an objective of a given NA, a disk of light containing a speckle pattern appears

31
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Figure 2.1 – a speckle pattern can be numerically simulated by multiplying a
complex image of constant amplitude (a) and randomly distributed phase (b)
with a top-up shaped pupil (b) and then calculating the FT of the product
(d-e). The pupil operate a low pass filter in the space of the pattern spatial
frequencies, so the average grain size in the pattern is inversely proportional to
the pupil diameter. The well contrasted morphology of the speckle pattern is an
effect of coherent interference. To compare, we apply the same filter on a real
valued random image (f) and show the result (g).

on the focal plane.

Under the hypothesis that the light is polarized and the diffuser grain is much smaller than

the resolution of the system on the diffuser plane (or if the diffuser is at infinite), the generation

of a speckle pattern can be modelled as a random sum of infinitely many phasors (complex

numbers) representing the ensemble of the plane waves (with evenly distributed phases) that

interfere in every point of the focal plane. Under this assumption, a speckle is said to be

fully developped and obeys circular Gaussian statistics [Goo15]. In appendix A we report

the formal description of fully developed scalar speckle patterns, here we summarize the most

important results and properties.

When a lens can be simply modelled by a Fourier Transform, a polarized speckle field

projected by this lens can be thought of as the FT of a field of constant intensity and randomly

distributed phase, multiplied by a top-hat shaped pupil, as illustrated in figure 2.1. This

makes it quite easy to numerically simulate fully developed speckle patterns. In our work we

have taken advantage of this possibility and often used numerical simulations to model our

experiments and understand the results.

In the realization of a speckle pattern by an optical system, if the diffuser and the focal

plane are Fourier-conjugated, the typical sizes observed on one plane are inversely proportional
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Figure 2.2 – a laser beam passes through a thin diffuser and is focused with an
objective. In figure (a) the objective’s pupil is completely filled and the speckle
grain average size is limited by the objective resolution, whereas in figure (b) the
pupil is under filled, and the average speckle grain size is larger. The image of
the speckle patterns are experimental: the wavelength is 532 nm and NA is 1.4
(a) and 0.3 (b). The scalebar is 1 µm.

to those on the other. Indeed, the diameter of the spot in the objective focal plane is inversely

proportional to the diffusers grain size. In the same way, the speckle grain average size on the

focal plane is inversely proportional to the NA of the objective.

The objective NA poses a limit to the average grain size. In fact, exactly as in the case

of a diffraction limited spot, the objective acts as a low-pass filter for the spatial frequencies,

therefore the speckle pattern cannot contain frequencies that are higher than the objective

resolution. The average size of a speckle grain focused with an objective of a given NA is

approximately the same size of the objective PSF (for a derivation see A.4):

∆r ∝ λ

NA (2.1.1)

∆z ∝ 2nλ
(NA)2 (2.1.2)

but it can be increased by simply under-filling the objective pupil, as it is sketched in figure

2.2.

The intensity distribution of a fully developed speckle pattern with mean intensity I is

exponential:

ρI(I) = 1
I
exp

{
−I
I

}
(2.1.3)
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Figure 2.3 – A numerically simulated speckle pattern on the left and its nor-
malized intensity histogram on the right. The red dashed line is an exponential
distribution of average 1 (see eq.(2.1.3)).

This distribution is plotted in figure 2.3. Remarkably, small intensities have higher probability

to occur and the maximum value is at I = 0.

Indeed points of zero intensity are not rare in polarized speckle patterns. In average there

are at least as many points of zero intensity as bright spots [Ber78].

The presence of such zeros of intensity is of high importance for this work, because, as it

has been said in chapter 1, any illumination pattern, in order to be exploitable for saturation in

super-resolution, must be highly contrasted. In other words it must feature tiny zones of very

low (ideally zero) intensity, where the selected optical transition is never saturated, whatever

the average intensity of the pattern.

2.1.1 Phase singularities in speckle patterns

A point of zero intensity in a speckle pattern is an example of a more general phenomenon

which is known under different names: nodal point, phase singularity, optical vortex or screw

dislocation. Such points are obtained by the interference of at least 3 plane waves, as shown in

figure 2.4. The term singularity comes from the fact that, if the complex amplitude of a scalar

(e.g. optical) field is represented by a phasor (with modulus ρ and phase χ) as

A = ρeiχ

in a point where A = 0 the modulus must be zero, but the phase is undefined: it can assume

any value from 0 to 2π. Indeed, around such a point, all values of the phase from 0 to 2π occur

and, along a path closed around the zero point, there is a net phase difference of an integer

multiple of 2π

c = 1
2π

∮
dχ ∈ [Z− 0] (2.1.4)

The integer c is called topological charge of the singularity. It is positive if the phase

increases in right-handed sense, negative otherwise. The singularity that spontaneously occur
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Figure 2.4 – Interference pattern of two (a) and three (c) plane waves. The
arrows represent the wave vectors. In images (b) and (d) the black lines and
dots represent the zones where the intensity is smaller than 3% of max. Three
waves are sufficient to obtain phase singulariries. The inset in (d) shows the
phase vortices in correspondence of two phase singularities.
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in speckle patterns can have a topological charge of +1 or -1. Although singularities of charge

c higher than 1 or lower than -1 exist, they are unstable: they split in a number of charge +1

vortices equivalent to their initial charge, as soon as a constant wave is added to them[DOP09].

Therefore such high charge singularities have zero probability to occur in random fields.

This circuitation of the phase is also the reason why these points are also called optical

vortices: vortices are regions of a fluid where the flow rotates around a central line. The

optical current of a polarized scalar field (represented by the Poynting vector) follows the

gradient of the phase, hence it rotates around the zero point[Jac01].

j = ρ2∇χ (2.1.5)

so the optical current has a vortex-like behavior around a phase singularity.

The intensity profile around phase singularities is in general elliptical (see for ex. fig. 2.4)

and sectors of equal area sweep out equal intervals of phase, in a Keplerian sense[Den01]. A

more rigorous description of the local morphology of the phase singularities is given in appendix

A.6.

The condition for an optical singularity to appear is that both the real and imaginary

parts of the field must be zero. For a smooth scalar field in a 3-dimensional space, the loci

of R = 0 and I = 0 are surfaces and their intersection are lines. Along these "nodal" lines

(represented in figure A.9) the intensity is zero and the surfaces of constant phase are helicoidal.

The trajectory of these nodal has the behavior of random walk[DOP09]. They can be open or

appear in couples and collide, forming closed loops.

The density of vortices in a speckle pattern is approximately one per coherence area (see

appendix A.4), which means that, in average, there are as many vortices as bright grains in

a speckle pattern. Therefore, their number in a finite surface only depends on the grain size,

which is inversely proportional to the system’s NA. Last, the densities of vortices of charge

+1 and -1 is in average the same in a given speckle pattern[DOP09].

Because of the presence of points of zero intensity, speckle patterns are in principle well

contrasted, hence exploitable for super-resolution by saturation. Nevertheless, up to now we

have considered only scalar fields, whereas the most promising aspects of speckle imaging lie

beyond the paraxial approximation, which is not adequate in some conditions: for example,

to describe scattering from thick samples or propagation in high NA systems. In this case,

the axial component cannot be neglected, especially in the phase singularities. Therefore, its

contribution must be considered to study zeros of the vectorial field, in the perspective of

performing super-resolution imaging.
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Although phase singularities have been already observed and studied in regimes where the

scalar approximation could be considered valid, [ZG07, LDCP05] a direct observation of the

axial component in the phase singularities of a speckle pattern had never been carried out.

Nevertheless the fact that a speckle pattern contains localized points of low intensity is crucial

in order to use it as an illumination pattern for super-resolution, because only in this case an

optical transition can be confined in sub diffraction volumes. These are the motivations that

inspired the following work and corresponding results, as discussed in the next section.

2.2 Speckle/STED analogy

In order to understand how the axial component in the phase singularities of a speckle pattern

can be controlled, we propose here a parallel with the doughnut beam used in STEDmicroscopy.

As we have seen in chapter 1, the doughnut shaped STED beam is used to confine fluorescence

emission in a sub diffraction volume in the sample. This is possible because the beam features a

zero of intensity in the centre of the focal plane. Therefore, even at very high average intensities

of the beam, a small portion of fluorophores around the centre will not experience an intensity

high enough to saturate the stimulated fluorescence emission: the presence of the intensity zero

preserves the fluorescence signal.

The point of zero intensity in the focused STED beam is a phase singularity. In fact, the

STED beam is a natural laser mode of the Laguerre-Gauss (LG) family1. This beam is simply

generated with a spiral phase mask that applies to the beam a phase from 0 to 2π, proportional

to the angle in the transverse plane (fig. 2.5).

In the scalar approximation, the field of the STED beam on the focal plane has a doughnut

shaped intensity with a perfect zero at its centre, which happens to be a phase singularity of

charge one (the phase spans the interval 0-2π around the zero point) (fig. 2.6). The sign of

the charge depends on the handedness of the spiral phase mask that has generated the beam,

which corresponds to the rotation handedness of the phase around the propagation axis.

If the scalar approximation can not be considered valid, as it is the case of the STED

beam focused with a high NA objective, the axial component of the field has to be taken into

account and possibly annihilated in correspondence of the phase singularity, to maintain a low

intensity.

In the case of the STED beam, the axial component can be controlled through polarization[GHV+12].

In fact, if the STED beam is circularly polarized, thanks to the central symmetry of the beam,

the axial component in the focal point can be totally cancelled. More precisely, if the circular
1the LG mode set is a complete orthogonal basis where arbitrary light beams can be represented,

just like the Hermite-Gaussian or TEM basis.
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Figure 2.5 – Representation of the spiral phase mask used to produce the STED
beam.

Figure 2.6 – In the first row: the amplitude (left) and phase (right) of the STED
beam in the focal plane. The second row shows the amplitude of numerically
simulated saturated speckle pattern with its dark spots corresponding to the
phase singularities (left) and the phase (right). In correspondence to the phase
singularity there is always a clock-wise or counter-clock-wise spiral, highlighted
by the black and white arrows.
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polarization handedness is chosen with the same handedness of the particular LG mode (i.e. the

handedness of the spiral phase mask), the axial component of the field is completely cancelled

and the phase singularity in the doughnut centre is a vectorial zero of the field. Conversely, if

the wrong polarization handedness is applied, the axial component is maximized and the field

amplitude in the doughnut centre is not zero (see fig. 2.7 and 2.8 ). In the former case, the

beam can still be used for saturation and super-resolution, whereas in the latter this is not

possible.

Speckle patterns, as we have seen, also contain charge +1 and -1 phase singularities (fig.

2.6), which are randomly distributed in the pattern, so we might expect that circular polar-

ization could be used also with this illumination scheme to control the field’s axial component

and ensure the quality of the intensity zeros. But, the intensity profile and phase around the

phase singularities in a speckle field are not radially symmetric in general (contrarily to the

case of the STED beam). Therefore the ability of circular polarization to preserve the contrast

of a speckle pattern must be proven (see appendix A.6 for a more rigorous explication).
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Figure 2.7 – The axial component at focus of the STED beam: in images
(a),(b),(c) a vertically linearly polarized beam passes through a spiral phase
mask and is focused by a high NA objective. In image (a) and (b), two couples
of opposed optical rays are followed. Depending on the choice of the position of
the rays, an axial component appears at focus. In image (c) a quarter wave plate
is used to switch the polarization to circular. In this case, the axial component
of any couple of opposed rays annihilates. The handedness of the circular po-
larization must correspond to the spiral phase handedness in order to annihilate
the axial component: the wrong handedness maximises it (d).
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Figure 2.8 – Experimental images of a donut beam generated by a SLM and
obtained by scanning a fluorescent nano-bead under saturated excitation condi-
tions. The beam was generated with different NA, as indicated by the columns
label. In the first row the polarization is circular right handed, in the second it
is left handed. Left handed polarization corresponds to the handedness of the
spiral phase mask, therefore it annihilates the axial component in the dough-
nut centre. Conversely, for right handed polarization, the axial component is
maximised and the black spots at the doughnut centre disappears.
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2.3 Imaging the phase singularities in a speckle pattern

Speckle phase singularities can already be observed with a simple camera (and have been[LDCP05]),

but cameras are not sensitive to the axial component of the field. On the other hand, the axial

component in a high NA speckle pattern is what we are interested to observe. The applicability

of speckle illumination in super-resolution depends on its contrast, the latter, in turn, depends

on the the quality of the dark spots of the pattern.

In order to appreciate the effect of the axial component of the field in a speckle pattern

and its effect on the pattern contrast, it would be ideal to observe the saturation of an optical

transition on real fluorophores. Unfortunately, the very high intensity needed to saturate

fluorescence excitation (see appendix C), as in Saturated Structured Illmination Microscopy,

requires a dedicated laser source, which was not yet available in our laboratory.

Photo-bleaching (PB) instead, is a transition that does not require high intensities to take

place. Moreover, the probability of bleaching a fluorophore increases with the time. Since

this transition is not associated to the emission of a signal, as fluorescence excitation (and

successive de-excitation) is, the effect of PB can only be measured indirectly as the absence of

fluorescence from the sample.

As a consequence of these considerations, we have designed an experiment to study the

contrast of saturated speckle pattern by means of PB. The experiment consists in bleaching

an uniformly fluorescent thin sample with a speckle pattern and look for structures of residual

fluorescence. If the intensity in the phase singularities of the speckle pattern is dark enough,

some fluorophores should be preserved from PB, even after long exposure times. Therefore, by

imaging the residual fluorescence, we can image the speckles phase singularities.

In the following sections, we present the experiment and describe a model for the dynamic

of the PB process. Then, we propose a theoretical model for the average size of the dark

spots in a speckle pattern, based only on the ensemble statistics of fully developed speckle

patterns. This model is in agreement with the experimental data and confirms the validity of

the previously mentioned analogy between the STED doughnut and the phase singularities in

speckle patterns. Finally we briefly discuss the effect of the axial component.

This short introduction is the essential background behind the paper attached at the end

of this chapter.

2.3.1 The bleaching/imaging setup

The setup, sketched in figure 2.9, can be divided in two main parts corresponding to bleaching

and imaging. The imaging part is a custom built, conventional STED microscope. We used
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Figure 2.9 – The setup used to study the speckle phase singularities. It consists of
a bleaching path, where an SLM is used to produce the bleaching speckle pattern,
and a custom build STED microscope, used to image the residual fluorescence.

a STED instead of a simple confocal because we expected a confinement of fluorescence in

volumes of sub-diffraction size.

The bleaching part consists of a Spatial Light Modulator (SLM) that we use as a random

diffuser, with the advantage of being able to change the speckle spot size, thereby tuning the

average intensity of the pattern. The SLM is addressed with a phase pattern which should

generate a homogeneous spot of the desired size in the sample plane. The phase pattern is

calculated with one iteration of the Gerchberg–Saxton algorithm [GS72]. Since the SLM is

just a phase object and does not modulate the field intensity, a fully developed speckle pattern

spontaneously appears in the spot. In practice, with an SLM, it is extremely easy to change

the diffuser coarseness (grain size).

A quarter wave plate is also used here, to circularly polarize the beam in order to annihilate

the axial component in correspondence to positive or negative phase singularities in the speckle

pattern.

2.3.2 Photo-bleaching model

When PB occurs, a fluorophore (FP) undergoes structural changes or chemically interacts

with its surroundings in an irreversible way that makes it lose permanently its ability to emit

fluorescence, therefore the molecule becomes dark (see fig. 2.10). Typically, a FP undergoes

several (' 105) fluorescence cycles before being damaged by PB [PBM99].

When an ensemble of many FP is illuminated with a constant intensity Ie, the PB dynamics

is governed by an exponential decay. Under non-saturated excitation (experimental conditions),

the number of FP Nf that are still fluorescent after a time t decreases as

Nf (t) = Nf (0)e−kb
Ie
Is
t (2.3.1)
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Figure 2.10 – The Jablonsky diagram of the bleaching process in a simplified
2-levels fluorescent system. An excited fluorophore can fall back to the ground
state and be available to be re-excited, or fall into the bleaching state, thereby
loosing its ability to emit fluorescence. This scheme gives just a representation.
In reality the bleaching dynamics can be much more complex[ZKKO04].

where kb is the bleaching rate and Is is the excitation saturation intensity. The residual

fluorescence If is proportional to Nf therefore,

If (t) = If0e
−kb IeIs t (2.3.2)

where t is the duration of the PB exposure and If0 = If (0) is the fluorescence that one would

measure without the PB process. Since kb is a constant, the speed at which bleaching occurs is

determined by the ratio Ie/Is: the higher the excitation intensity, the faster the PB. Therefore,

if an illumination pattern that shows intensities fluctuations is shone on a fluorescent sample,

at a given time, the parts of the sample which where illuminated by a higher intensity will be

more bleached than others. After a certain time, all the sample will eventually be bleached,

except the parts of it that remained in the dark, in correspondence of intensity zeros, if there

where any in the illumination pattern.

Therefore, in order to characterize the intensity minima of a high NA speckle pattern,

we illuminated a homogeneous fluorescent thin sample with such a pattern and looked at the

remaining fluorescence after a certain time t.

Statistics of the remaining fluorescence

Since the statistics of the intensity distribution in a speckle pattern is known (see eq. (2.1.3)),

by making use of eq. (2.3.2) we can write the PDF of the residual fluorescence in the sample

after PB. Eq. (2.3.2) is monotonic, therefore we can write ρx(x) = ρx(y)
∣∣∣ dydx ∣∣∣. In order to do
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so, we first invert the transformation.

Ie(If ) = −Is
qt

ln
(
If
If0

)
= ln

(
If
If0

)− Isqt
(2.3.3)∣∣∣∣ dIedIf

∣∣∣∣ = Is
qt

1
If

(2.3.4)

and we can write the new PDF of If as

ρf (If ) = 1
I
e
−
If (Ie)

I
dIe
dIf

(2.3.5)

=
Is
qtI

(
If
If0

) Is

qtI

If
(2.3.6)

If we set If0 = 1 we get a PDF for the normalized residual fluorescence:

ρf (If ) =
Is
qtI

(If )
Is

qtI

If
(2.3.7)

ρf (If ) =
I

1
r−1
f

r
(2.3.8)

by defining the mean bleaching rate r = qt IIs .

As expected, the probability of having a certain value of residual fluorescence decreases as

time t and the average speckle intensity I increase. Therefore, even at a relatively low intensity

Ie, long exposition times can annihilate the fluorescence in the sample.

Given that kb and Is are characteristic parameters of the fluorophore, the experimental

variables that influence the PB dynamics are the exposure time t and the average intensity of

the speckle pattern I, or more precisely, the fluence F = It. Remarkably, when F = It = Is/kb,

the average saturation rate is r = 1 and the PDF ρf (If ) becomes constant: all intensities have

the same probabilities to occur. This model allows to estimate the saturation level of the

photobleaching transition by simply measuring the intensity distribution of a bleached sample

(i.e. the intensity histogram of its image) and at the same time, to estimate the saturation

intensity of absorption Is.

A statistical model for the fluorescence confinement

Given a certain average intensity I 6= 0, the probability of bleaching fluorophores is non-zero.

Therefore, if the exposure time is long enough, all fluorophores can be photo-bleached. If we

excite the homogeneous sample with a speckle pattern, different parts of it experience different

intensities. Since the bleaching "speed" is proportional to the fluence F , at a given time and
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intensity, some parts of the sample could be completely bleached and other still fluorescent.

As time (or intensity) increases, the non-bleached portions of the sample become smaller and

smaller.

Recalling the fact that speckles feature phase singularities and that these object have zero

intensity, one expects that, in their location, fluorescence should be preserved from PB. Around

the singularities the intensity increases continuously, so that the residual fluorescence can be

confined around them in volumes, whose size only depends on F .

The average size of the volumes of residual fluorescence can be estimated considering the

speckle statistics: instead of considering the fluence F , let us fix the exposure time to a certain

value t0, for which all FP that where illuminated by a threshold intensity It are bleached

so that their fluorescence signal is undistinguishable from noise. Conversely, some residual

fluorescence is maintained where the intensity is smaller than It. Since we know the intensity

PDF of the speckle pattern, we can write the probability of obtaining an intensity smaller than

It (see A.2):

P (Ie ≤ It) = 1−
∞∫
It

ρI(Ie)dIe (2.3.9)

= 1− exp
(
−It
I

)
(2.3.10)

Given a certain area of the sample S illuminated by the speckle pattern, the portion which

is still fluorescent is

Sf = S

[
1− exp

(
−It
I

)]
(2.3.11)

And since we know that in a speckle pattern there is, in average, a phase singularity per

grain and that the grain size is approximately d = λ/2NA, the number of singularities in S is

typically

n = S/d2 = S

(
2NA
λ

)2
(2.3.12)

Therefore, if we divide the surface of residual fluorescence (2.3.11) by the number of singular-

ities that are there2, we can estimate the average area of residual fluorescence per singularity:

Af = Sf
n

=
(

λ

2NA

)2 [
1− exp

(
−It
I

)]
(2.3.13)

As an estimation of the linear dimension of this residual fluorescence area we take the square

2assuming that vortices are statistically far enough from one-another to allow neglecting overlaps,
which means for high enough saturation levels
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Figure 2.11 – Comparison of the well known model for the resolution of STED mi-
croscopy and the average size of the residual fluorescence with saturated speckle
illumination proposed here (eq. (2.3.14)).

root:

df =
(

λ

2NA

)√
1− exp

(
−It
I

)
'
(

λ

2NA

)
1√

1 + I
It

(2.3.14)

the last two members are asymptotically convergent3 when It << I, as it is shown in figure

2.11. In the RHS of equation (2.3.14), the +1 in the denominator is there to regularize the

function so that we can recover the value df = λ
2NA when I tends towards zero.

We can choose t0 so that It = Is, with Is the saturation intensity of the fluorescence

excitation. In this case we find

df '
(

λ

2NA

)
1√

1 + s
(2.3.15)

which is the well known dimension of the residual fluorescence in STED microscopy as a

function of the saturation rate s = I/Is.

The axial component of the field

The previous result was obtained for a scalar field. We have pointed out that in the case where

this approximation is not valid, especially with high NA and under saturated conditions, the

axial component of the field becomes important and it has to be taken into account. In this

case, circular polarization of handedness corresponding to the charge of the phase singularity

has to be used in order to obtain a vectorial zero at focus, hence zero intensity.

In speckle patterns, the dark spots around the phase singularities are similar to the STED

one. They are not radially symmetrical, as it is the case for a focused LG beam, neither in

amplitude nor in phase (see appendix A.6). They can be considered so, at least in a first

3we study the limit of the ratio of the functions f(x) =
√

1− e− 1
x and g(x) = 1/

√
1 + x when

x→∞.

lim
x→∞

√
1− e− 1

x(√
1 + x

)−1 = lim
x→0

√(1− e−x
x

)
(1 + x) = 1

and in the RHS we can use the known result lim
x→0

(eax−1)
bx

= a
b
.
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approximation, in the proximity of the singularity.

Therefore, by using circular polarization in a high NA speckle pattern for the photobleach-

ing experiment, fluorescence should be confined as described in eq. (2.3.15).

Since in a speckle pattern we can find singularities of charge +1 and -1, and since the

circular polarization has a specific handedness, the axial component can only be minimized

for one class of singularities, whereas it is maximized for the other. This means that the FP

that are not bleached lie close to a certain family of phase singularities in a speckle pattern,

determined by the handedness of the polarization.

Therefore, by bleaching and imaging two homogeneous samples with the same speckle

pattern but different polarization handedness, we can put in evidence the different locations

of the phase singularities of charge +1 and -1.



Superresolution Imaging of Optical Vortices in a Speckle Pattern

Marco Pascucci,1 Gilles Tessier,2 Valentina Emiliani,1 and Marc Guillon1,*
1Wavefront Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250,

Paris Descartes University, Sorbonne Paris Cité, Paris 75006, France
2Holographic Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250,

Paris Descartes University, Sorbonne Paris Cité, Paris 75006, France
(Received 17 September 2015; published 4 March 2016)

We characterize, experimentally, the intensity minima of a polarized high numerical aperture optical
speckle pattern and the topological charges of the associated optical vortices. The negative of a speckle
pattern is imprinted in a uniform fluorescent sample by photobleaching. The remaining fluorescence is
imaged with superresolution stimulated emission depletion microscopy, which reveals subdiffraction
fluorescence confinement at the center of optical vortices. The intensity statistics of saturated negative
speckle patterns are predicted and measured. The charge of optical vortices is determined by controlling the
handedness of circular polarization, and the creation or annihilation of a vortex pair along propagation
is shown.
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Propagation of coherent waves in random scattering
media is associated with the generation of speckle patterns.
For scalar wave fields; these speckle patterns contain hot
spots but, also, true zeros of the field where the phase
is singular [1]. These phase singularities—or phase
dislocations—exhibit spiral structures with topological
charges þ1 and −1 [2]. The associated zeros of intensity
surrounded by light are called optical vortices because of
the circular optical current circulating around their dark
center [3]. The vortex centers draw lines in space which
may loop and knot [2,4] and which can be seen as the wire
frame or the “skeleton” onto which the field is built [5]. The
information about the circulation handedness of the optical
current around these lines lies in the phase of the field.
In any speckle pattern, the density of nodal points is

the same as the density of hot spots [6,7]. However, the
separation distance between phase singularities can be
arbitrarily small, especially when two vortices of opposite
charges approach and annihilate, or nucleate and split apart
[8]. In addition, the three vector components of an optical
field may hang on different nodal skeletons, making the
characterization of zeros complicated. For these two
reasons, former experimental characterizations of phase
singularities in vectorial electromagnetic waves were per-
formed with polarized beams of low numerical aperture
(NA) [7,9], or considering a single vector component of
the field [10–12] in order to remain within the validity
of the scalar approximation.
However, the most promising applications of complex

vector fields involve high NA beams and lie beyond the
scalar approximation. For instance, phase dislocations
are typically used in superresolution microscopy in order
to create saturating intensity patterns with perfect zeros
[13–16]. Specifically, in stimulated emission depletion

(STED) microscopy [13,17], an optical vortex is commonly
used, in combination with a circular polarization, to cancel
the axial component of the field at the vortex center [18,19].
In high NA optical speckle fields, the joint characterization
of optical vortices and intensity minima remains unex-
plored, notably due to the subdiffraction spatial scales
involved.
In this Letter, we report on the characterization of

intensity minima and optical vortices in polarized high
NA random speckle patterns using superresolution STED
microscopy. To do so, the negative of the speckle pattern is
first recorded by photobleaching a uniformly fluorescent
sample. Saturated bleaching leaves fluorescent spots at
intensity minima, whose size and spacing may decrease
below the diffraction limit, thus, requiring superresolution
microscopy. First, we experimentally validate an analytical
model which quantifies the intensity statistics of the
negative. Then, after characterizing the subdiffraction
confinement of fluorescence at a vortex of a speckle
pattern, we demonstrate that the topological charge of
the optical vortices associated with intensity minima can be
revealed, experimentally, by controlling the polarization of
the random beam. This identification allows visualizing the
creation or annihilation of a vortex pair of opposite charges.
Finally, we quantify, analytically, the amplitude of the axial
component of a circularly polarized random wave field
with Gaussian statistics.
The negative of a speckle pattern was first recorded by

photobleaching a uniformly fluorescent layer of poly-D-
lysine (Sigma-Aldrich) deposited on a coverslip and coval-
ently labeled with the organic dye ATTO 532 (ATTO-TEC)
functionalized with an N-Hydroxysuccinimide (NHS) ester
group. Photobleaching was performed at 403 nm using a
spatial light modulator (SLM) to generate speckle patterns
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Chapter 3

Imaging with Saturated Speckle Patterns

In the previous parts of this work, we have seen that speckles are highly contrasted patterns,

therefore suited to perform super-resolution (SR) microscopy by saturation of an optical tran-

sition. The aim of this chapter is to apply this knowledge and show that it is indeed possible to

enhance the optical resolution of a rather simple microscope by making use of this disorderly

structured illumination.

We present a new SR technique which could be classified at half-way between STED and

SSIM (see chap. 1). Similarly to this two techniques, we use a patterned illumination, but our

patterns are randomly generated. Like in STED, we use a scanning microscope. Differently

from STED, the transition that we saturate is fluorescence excitation (like in SSIM).

name pattern transition detection

STED doughnut stim. emission APD

SSpIM speckle excitation PMT

SSIM fringes excitation camera

The setup that we have developed to perform saturated-speckle illumination microscopy

(SSpIM) produces images by scanning a fluorescent sample with a speckle pattern and mea-

suring the total fluorescence coming from the sample at each scanning position.

Super resolution is obtained through saturation of the fluorescence excitation of the sam-

ple’s Fluorophores (FP) and the object image is reconstructed by means of deconvolution, or

phase retrieval algorithms in some simple cases. To characterize the performances of our sys-

tem, we imaged fluorescent nano-beads and fluorescent-labelled actin filaments. In both cases,

the results clearly show a neat improvement in resolution, beyond the classical limit of optical

microscopy. A major advantage of our microscope is to be easier to build and align than other

SR setups. By adding the appropriate laser source and a simple holographic diffuser, SRIM

can immediately be performed on any scanning microscope and, thanks to the fact that we use

random illumination, it is not affected by any aberrations caused by the imaging system.

51
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The following sections will present the methods and results concerning the development

of SRIM. We will first introduce the optical system, then explain the principle of SSpIM and

illustrate our main results. Successively, we will discuss the limits of this technique. In the

final section, we suggest a way to take advantage of (saturated) speckle patterns to reconstruct

3D images by simple 2D scanning data.

3.1 The saturated speckle scanning microscope

Figure 3.1 – Complete scheme of the speckle scanning microscope. The laser
power is modulated using a half-wave plate (λ/2) and a polarizing beam splitter
(BS). The laser beam then passes through a beam-expander (BE) before illu-
minating the spatial light modulator (SLM) which generates the speckle. The
SLM is conjugated to a pair of galvanometric mirrors and to the back focal plane
of the microscope objective. A quarter wave-plate (λ/4) circularly polarizes the
impinging beam in order to achieve isotropic transverse super-resolution.

Figure 3.1 shows a scheme of the scanning microscope that we have built to perform

saturated speckle imaging.

The laser source is a 532 nm pulsed diode-pumped solid state microchip laser 1 that

outputs high energy pulses (3.9 µJ) at a frequency of 4 kHz. The pulses have a width shorter

than 0.5 ns, which is smaller than the fluorescence lifetime of a typical FP (∼5 ns).

The excitation probability of the dye typically depends on several parameters such as the

fluorescence lifetime of the dye τf , its absorption cross-section σ, and the laser-pulse temporal

intensity profile (width τp, amplitude Ip and shape). Here, we used a sub-nanosecond pulsed

laser (τp ∼ 500 ps), shorter than the fluorescence life-time of the dye to efficiently saturate the

optical transition with a minimum amount of average power, and long enough for keeping a

low multi-photon absorption probability. The repetition rate of 4 kHz is low enough to ensure

1Teem Phononics, Meylan, France, STG-03E-120.
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efficient dark-state relaxation between excitation pulses. It also minimizes photo-bleaching via

inter-system crossing [DEH07].

The pulse energy is high enough to saturate the fluorescence excitation of the sample FPs.

The peak power of the laser pulses is at least 6 kW. If we deliver such power on a disk of

diameter 10 µm onto the fluorescent sample, the intensity is

I = 6 kW
π100 µm2 = 6 MW/cm2 (3.1.1)

which is 10 times above the typical value of the excitation saturation intensity (see appendix

C). Therefore, each laser pulse carries enough energy to saturate the sample fluorescence

excitation on an area of several square microns.

Unfortunately, since the pulse duration is very short, the sample’s FP are excited only once

per pulse, which makes the fluorescence signal per pulse relatively low. In the saturated regime,

the weakness of the signal per pulse is compensated by the fact that all sample’s FP are excited

and emit fluorescence photons. But if we want to use the same source for non-saturated images,

in which case only a small fraction of the FP is excited by a single pulse, the fluorescence signal

is so low that it requires averaging over tens of pulses to overcome photon noise. Since, when

scanning, we acquire at a maximum frequency of 4 kHz (the laser pulse rate), it means that

several minutes are necessary to acquire an image of a 10 µm× 10 µm area. Although we have

been able to take non-saturated images in pulsed mode, such long acquisition times, besides

being tedious, also introduce errors due to sample drift, and better images were obtained with

a CW laser.

Preferentially, thanks to a flipping mirror, the laser source could then be switched to a low

power CW laser diode, which we normally use when we do not want to saturate the excitation,

for example to compare the imaging resolution in saturated and non-saturated regimes. Even

though the CW laser is way weaker (∼4 mW) than the pulsed one, it excites the sample

continuously and FP emits fluorescence all over the illumination time. Therefore, over one

integration time of our detector (∼15 µs) many photons are detected, yielding a good signal to

noise ratio.

The number of fluorescent photons detected in the two modes (CW and pulsed) at equal

illumination intensity can be written as

FCW = NqφΩ
τf

∆t (3.1.2)

FP = NqφΩ
τf

tpν∆t (3.1.3)

where N is the number of the FP in the illuminated area, q is the average excitation of the
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Figure 3.2 – Results of the tests of the power adjustment system. On the left:
measured vs expected values for consecutive increasing powers with steps 2%,
5% and 10% of the full range: the mean error is 1.3%. Top-right: repeatedly
switching between two fixed power values shows a good reproducibility. The
average error on the step width is 0.1% of the full range. We have done this for
steps of different width, the error is shown in the bottom-right plot.

sample (fraction of excited FP per time unit), φ is the fluorescence quantum yield, Ω (collection

efficency) accounts for the detection angle and the transmission coefficient of the system, τf

is the fluorescence mean lifetime and, ∆t is the detector’s integration time, ν is the pulse

repetition rate and tp is the pulse duration. The detection ratio between the two mode is then

FCW

FP
= 1
νtp
∼ 106 (3.1.4)

which clearly shows the difficulty of obtaining a non-saturated image with our pulsed laser and

therefore the need of a careful calibration of the excitation power.

Power adjustment is achieved here with a half-wave plate and a polarizing cube. In

addition, as the pulsed laser is very intense, we have often used a set of optical densities,

dimming the laser up to 10−4 times.

Since the half-wave plate rotation is controlled with a custom 3D printed actuator, driven

by an Arduino UNO board, we have tested the reliability of this system. The sensitivity of this

control system is high enough for our experiments with an average error of ∼1.3 % of the full

power range. We have also measured the reliability when switching repeatedly between two

power values. From jumps ranging between 10% and 5 % of the full power range, the standard

deviation is constant, around 0.1%. For smaller steps, it increases slightly, due to mechanical

friction in the rotating parts. The results of these measurement are reported in figure 3.2.
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Speckle patterns are generated with a Spatial Light Modulator2 (SLM), as seen in chapter

2. The linearly polarized laser beam is expanded to cover the SLM window and impinges on it

almost perpendicularly. The SLM modulates the wavefront with a random phase pattern that

generates speckle illumination in the sample plane. The advantage of using an SLM instead

of a static diffuser is that, with an SLM, one can easily control the extension of the speckle

pattern in the sample and switch between a speckle scanning mode and a normal confocal

one. The SLM also allows adding a special phase mask, as for example spiral, which generate

doughnut shaped beams. We used such phase masks in the development stages and to measure

the effect of the axial component of the field, as illustrated in chapter 2.

The speckle grain size is controlled through a variable iris positioned just before the SLM,

which allows changing the NA of the system, by under-filling the objective pupil with the

excitation beam. The SLM and the objective back aperture are conjugated. When the iris

is fully open, the beam reflected by the SLM covers completely the objective back aperture

while, by closing the iris, we can under-fill the pupil therefore simulate a lower NA system and

obtain speckle patterns with different average grain sizes.

Scanning is performed with a pair of galvanometric mirrors which are controlled analog-

ically. Since they are conjugated to the objective back aperture, the tip and tilt that they

add to the beam is translated into an horizontal and vertical displacement of the illumination

pattern in the focal plane. Thanks to this, we can scan a fixed speckle pattern over the sample.

A quarter-wave plate positioned just before the objective changes the polarization from

linear to circular. As we have seen in chapter 2 and better explained in appendix A.6, this

particular polarization state allows optimizing the axial component in half of the speckle phase

singularities and ensures the high contrast which is needed for saturation and therefore super-

resolution. Also it causes an isotropic resolution improvement, as we will see in detail later

on.

The objective is a 1.4 NA oil immersion3. We chose a high NA objective so that we

can reach the theoretical resolution limit of optical microscopy (∼200 nm) and prove that our

technique allows achieving a finer detail. Besides, the high NA improves the collection efficiency

of the emitted fluorescence signal.

Detection. The fluorescence coming from the sample travels back along the same path of

excitation, and is filtered by a dichroic mirror and either imaged onto a CCD camera, used for
2Hamamatsu Photonics, LCOS, X10468-01.
3Olympus, Tokyo, Japan, 100×, NA 1.40, UPLanSApo, Oil.
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Figure 3.3 – schematic view of the transimpedance amplifier used to filter and
amplify the PMT signal. It is composed of a passive pre-filter which has a cut-off
frequency of 180 kHz and the active RC filter explained in the text. The gain of
the filter is G=106

the preliminary analysis and adjustments of the sample, or directed to a Photo-Multiplier Tube4

(PMT) which is conjugated to the objective back aperture. The PMT converts the incoming

light into a voltage difference proportional to the light intensity, that can be read through an

acquisition device. The PMT responds extremely fast to the light stimulus, faster than our

acquisition device , which is why we designed a RC low-cut filter for the PMT output. The

constraints in the implementation of the filter were consisted in the need of a cut-off frequency

at about the double of the pulse rate, of a sensitivity to the single photon detection and to

stretch the pulses enough to compensate the pulses jitter (τj = 0.26 µs). Consequently we have

found the appropriate values of R and C. The PMT anode luminous sensitivity ALSPMT is

1.8× 106 C J−1. One photon of 532 nm carries an energy of hc/λ =3.6× 10−19 J/ φ. Therefore

the charge produced by the PMT for the detection of one photon is

Qφ = 6.48× 10−13 C/φ (3.1.5)

The value of the capacity C=1 nF that we chose converts this charge to a difference of potential

∆V higher than the acquisition sensitivity.

∆V = Qφ
C

= 0.65 mV (3.1.6)

4Hamamatsu Photonics, H10721-20.
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The value of R=15 kΩ is chosen to obtain a cut-off frequency slightly higher than the double

of the laser pulse rate:

f0 = 1
2πRC ' 10 kHz (3.1.7)

The signal that comes out of our low pass filter is the convolution of the PMT signal with the

filter’s impulsive response, a sinc function which is roughly 2/f0 = 0.2 ms broad, shorter than

the pulse repetition rate (0.25 ms) but much larger than the pulse jitter (≈0.26 µs).

Pulse emission and acquisition are synchronized with the same digital trigger. The rising

front of the signal triggers the laser pulse emission while the falling front trigger the acquisition.

The length of digital pulse (between rising and falling ) sets the delay of acquisition. It is

determined by the optical path length and the properties of the FP and was experimentally

measured to be 4.2(3) µs.

Consequently, the filtered signal is easily measurable with our acquisition device.

The samples that we used to test our saturated speckle microscope are either fluorescent

nano-spheres or fluorescent-marked actin filaments.

The carboxylate nano-spheres, of diameter 100 nm or 170 nm are marked with a FP which

has its absorption and emission peaks at 540 nm and 560 nm. They where spin-coated on

carefully cleaned glass cover-slips, in a 2% PVA (Polyvinyl alcohol) solution, then the cover-slip

was mounted on a glass plate to fit on the microscope sample holder and avoid discontinuity of

the refractive index. To mount the sample we have used Fluoromount5, an aqueous based non-

fluorescent mounting medium (n=1.4) that hardens and chemically helps preserving the beads

fluorescence from photo-bleaching. When PVA dries while spin-coating, it forms a polymer

network that holds the beads tightly to the coverslip, thereby avoiding their dispersion in the

mounting medium bulk.

Samples of actin were prepared on a coverslip functionnalized with myosin 1b [YMLTW+14,

AYT+11]. The actin monomer was labelled with a concentration of Alexa Fluor 546 phalloidin

(Invitrogen) in excess, then polymerized in a KCl buffer solution [POA+13]. Finally, the sample

was mounted in Fluoromount, after several washes.

Whatever the sample, we want to stress the importance of careful cleaning to eliminate any

possible florescent substance other than the sample itself. The high intensity values needed to

reach saturation are associated with significant background signal. Indeed, during the develop-

ment of the experiment, we have been forced several times to optimize the preparation protocol

to reduce parasitic fluorescence from the sample. As an example, a very high contribution to

the background signal was given by the immersion oil that we used for the microscope objec-

5Sigma-Aldrich.
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tive6. Although it was characterized as "low-fluorescence" oil (and currently used in STED

microscopy in our laboratory), the fluorescence signal coming just from it was not negligible in

the experiment and we needed to change it for one specifically conceived for low fluorescence

applications7. Nevertheless, it was not possible to completely eliminate parasitic fluorescence,

which we think is due to the optical components themselves (as for example the glue in the

objective lenses), but we eventually reached a background level that was acceptable for our

experiments.

3.2 Super-resolution speckle imaging

We present in this section the principle of saturated speckle illumination microscopy. We

demonstrate the possibility to perform super-resolution microscopy by saturating fluorescence

excitation with a polarized speckle pattern. With this technique we achieved a resolution

3.4-fold above the classical diffraction limit.

3.2.1 Principle

The principle of the experiment is sketched in figure 3.4a. The setup that we have described

in section 3.1 allows projecting into the fluorescent sample a speckle pattern of the wanted

extension and to scan it in x and y. While scanning, at each position the total fluorescence

emitted by the sample is measured and recorded as intensity value. The ordered ensemble of

all intensities values corresponding to each scanning position is what we call a speckle image.

The speckle image of the sample, in non-saturated excitation mode, is the convolution of

the speckle intensity distribution at the sample plane and the object. For example figure 3.4c is

the speckle image of one fluorescent nano-bead of 100 nm diameter. In this specific case, since

the object can be regarded as point-like, the speckle image shows the speckle pattern itself.

If the excitation intensity is low compared to the saturation intensity Is of the FP, then the

fluorescence signal is proportional to it, whereas, if the excitation average intensity is higher

than Is, we obtain a saturated speckle image, as showed in 3.4d.

In order to know if and how much we are saturating fluorescence acquisition, a precise

understanding of the saturation mechanism is fundamental. This is the reason for measuring

saturation curves like the one traced in figure 3.4b, which represents the fluorescence signal

from the sample as a function of the excitation intensity. One way to measure such curves

could be to excite one isolated bead with a diffraction limited spot. However this measure is

quite difficult due to the sample drift at the scale during the measure process that can take
6Cargille Laboratories Type B 1248.
7Zeiss Immersol 518 F (n=1518 @ 23 ◦C).
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Figure 3.4 – Principle of our speckle scanning microscope: A circularly polar-
ized random wave-field is focused and scanned through an objective lens onto a
fluorescent sample (a). The evolution of the fluorescence signal arising from a
cluster of beads illuminated with a speckle is plotted in b, as a function of the
exciting-pulse energy. The curve is fitted with the function 〈F 〉 = 〈s〉 /(1 + 〈s〉)
where we define the average saturation parameter 〈s〉 = 〈ε〉 /εs with εs the pulse
excitation energy for which fluorescence reaches half the maximum signal (here:
εs = 640 pJ for a 10 µm speckle spot). When scanning a single fluorescent
nano-bead, we obtain the speckled point spread function (SPSF) for low inten-
sities (s = 5.10−3) (c) and at high intensity (d) (NA = 0.33). In c, the average
saturation parameter is 〈s〉 = 3.7. The saturated speckle exhibits round-shaped
dark points at the optical vortices of the speckle pattern. The power spectra
of SPSFs in c and d are represented in e and f, respectively, demonstrating the
power spectrum enlargement due to saturated excitation, and thus the enlarged
support of the optical transfer function of the instrument. In figure (d) phase
singularities of the speckle pattern can be seen as small dark spots surrounded
by bright fluorescence.

several minutes. Moreover, the exact illumination intensity is difficult to estimate because it

depends on the relative position of the bead and the diffraction limited spot. Although we

have tried to reduce the system NA in order to produce a PSF much larger than the bead, this

approach was unsuccessful.

Instead, the experimental points in figure 3.4b are obtained by illuminating a dense mono-

layer of nano-beads with speckle illumination and measuring the total fluorescence. In the

plot we recognise a characteristic saturation behaviour, but the fitted model does not really

correspond to the theoretical fluorescence response to the illumination of our pulsed laser (see

appendix C), which would be

f = 1− e−s (3.2.1)

because we need to take into account the fact that we are illuminating with a speckle pattern,

which has a non-uniform intensity distribution. In fact, if we do consider the speckle intensity

distribution as explained in appendix C, a model of the normalized fluorescence signal can be
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analytically derived for speckle illumination

〈f〉 = 〈s〉
1 + 〈s〉 (3.2.2)

Here and further, the operator 〈·〉 stands for spatial mean 8. The curve plotted in figure

3.4b represents this model. Thanks to saturation curves like this we can measure the average

saturation pulse energy εs for a given spot-size9, defined as the pulse energy at half saturation.

The FP saturation intensity Is can be calculated as

Is = εs
τpΣ

(3.2.3)

where Σ is the spot surface and τp the excitation pulse duration.

When we scan the sample with a speckle pattern using an intensity I ∼ Is or greater, we

obtain a saturated speckle image as the one shown in figure 3.4d. In an analogy with figure

c (linear speckle image), we say that a saturated speckle image is the convolution of the object

with the "saturated speckle pattern". Of course, while the term "speckle pattern" refers to the

field intensity, a "saturated speckle pattern" does not exist independently, but we can define it

by using eq. (3.2.1) as

fsat(x, y) = 1− e−
I(x,y)
Is (3.2.4)

where I(x, y) is the distribution of the excitation intensity.

With this interpretation in mind, we could say that the images in figure 3.4c-d represent

respectively the speckle-PSF (sPSF) and Saturated-sPSF (SsPSF) of our microscope. Although

it is unusual to treat a speckle pattern as a PSF, it is exactly what the term means: the sPSF

and SsPSF are the system output obtained when imaging a point-like object.

Finally, the saturation of the fluorescence excitation induces the generation of higher fre-

quencies in the sample than what would have not be allowed by the system in the linear regime.

This can be directly observed in figure 3.4e-f which show the Power Spectra 10 of the sPSF

8A short clarification on the notation used for mean values in this text. When we use the overline
notation · we refer to the unknown parameter of a distribution. For example, we use this notation
when we write the theoretical intensity PDF in fully developed speckle patterns

ρI(I) = 1
I
e
− I
I

When we deal with realizations of speckle patterns, we use the bracket notation 〈·〉 to indicate spatial
average. This has to be intended as the average over a certain surface Σ where we measure the quantity
of interest. The two notations are equivalent if Σ is infinite

9from now on, we use the word spot to indicate the disk-shaped speckle pattern projected into the
sample. It is important to remark that a small fraction of the energy is also scattered outside the main
disk.

10the definition of Power Spectrum (or Power Spectral Density) refers to the frequency distribution
of the energy of a signal s. The signal’s energy being defined as ε =

∫
|s̃|2dν. The signal’s PS is
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and SsPSF respectively. The extent of the non-zero region in the power spectrum of an image

can be interpreted as a measure of the detail that the image contains. The boundaries of

this region represent the cut-off spatial-frequencies of the imaging system. Since the non-zero

area of power spectrum of the SsPSF is wider than that of the sPSF, the SsPSF carries more

information than the simple sPDF and allows performing super-resolution imaging.

Generalizing, if instead of a point like object we scanned a more complex one, the result

would nevertheless be the convolution of the object with the sPSF or the SsPSF, depending

on the intensity.

I = O ⊗ sPSF (3.2.5)

Isat = O ⊗ SsPSF (3.2.6)

and the saturated image will have a finer detail than the non-saturated one.

Once we have recognised that saturated speckle images embed more information than linear

ones, the successive step is to extract this information. These images, even though they contain

super-resolved details, are essentially useless because the object is hidden behind the speckle

structure so that they look disordered and meaningless. Therefore the need to reconstruct the

object image from the speckle image. In the next section, we will show how this is possible

and what are the results.

3.2.2 Super resolution imaging of fluorescent nano beads

The imaging process to produce a super-resolved image with our system consists of 3 steps:

• measurement of the SsPSF (and sPSF)

• acquisition of the speckle image of the sample

• image reconstruction

The sPSF and SsPSF are measured on isolated fluorescent nano beads of 100 nm diameter.

The non-saturated sPSF is acquired with the CW laser, whereas we image the SsPSF with the

pulsed laser, whose power allows reaching the saturation of excitation. This PSF are measured

only once and characterize the system. It is important to notice that the random phase pattern

addressed to the SLM corresponds uniquely to a particular realization of the speckle pattern.

PS[s](ν) = |s̃|2, or the square modulus of its Fourier Transform.
We remark, for later use, that the PS of a signal is the Fourier transform of its auto-correlation

PS[s] = F [s ? s] = F [s]F [s]∗ = |F [s]|2

.
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Therefore, as we change the SLM phase pattern, we need to measure the corresponding sPSF

and SsPSF.

Once the sPSF and SsPSF of the system have been acquired, we image the sample with the

corresponding speckle pattern and intensity. In order to prove that super resolution is physically

achieved thanks to saturation, and not because of the image reconstruction algorithm, we have

always taken both the non-saturated and saturated speckle image of our objects.

An example of speckle images of a nano-bead cluster can be found in figure 3.5(e-f). Image

(e) is a non-saturated speckle image, while image (f) is saturated with a parameter 〈s〉 ' 1.4.

Clearly, the speckle images are not intuitive to understand. The image of the corresponding
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Figure 3.5 – Comparison of an image of 100 nm fluorescent beads taken in confo-
cal mode (a), with images reconstructed from speckle images (by Wiener decon-
volution) in the non-saturated (b) and saturated (c) regimes. The comparison
of obtained point spread functions in a, b and c, is shown in d. Speckle images
corresponding to figures b and c are shown in e and f, respectively. In all images,
NA = 0.77 and in c, the average saturation parameter is 〈s〉 = 1.4.

object, obtained by scanning with a diffraction limited spot, is shown in sub-figure (a).
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In order to reconstruct a useful image of the object from the speckle images, the most

immediate tool that we can use is deconvolution, that can be thought of as the inverse operation

of eq. (3.2.5), in the sense that we has been explained in section 1.1.2.

Among the many deconvolution algorithms available, we decided to use the simplest one:

Wiener deconvolution (see appendix D), because it is also the fastest and does not make any

assumptions on the object11.

In figure 3.5(b-c) we show the reconstructions corresponding to the speckle images (e-d).

Deconvolution, as it increases the image contrast, can already increase resolution, although the

presence of noise limits this effect. However, to be sure that the resolution improvement that

we obtain is only due to saturation, we speckle-imaged and reconstructed the object in both

linear and saturated regimes.

Indeed the detail of the image is already augmented by deconvolution in linear regime (b),

but as one can see from the detail of the two close beads highlighted with a white rectangle,

saturation really allows reaching a much finer detail. Namely the two beads are not resolved

even after deconvolution in linear regime, while they are clearly separated when deconvolving

the saturated speckle image. In sub-figure (d) we show the intensity profile corresponding

to the upper-most bead in images (a-c) and we observe the same behaviour: deconvolution

improves resolution, but only saturation allows reaching the real bead size: 100 nm. Since the

NA used for these images was 0.77, we reach an improvement of 3.4 times the classical limit

(λ/2NA = 345 nm).

3.2.3 Images of actin filaments

In the previous section it has been demonstrated experimentally that super-resolution mi-

croscopy can be performed with random illumination patterns, by saturation of fluorescence

excitation. It could be argued, though, that the fact of using the same kind of object (nano-

beads) for both the speckle PSFs acquisition and object imaging is an excessive simplification

and does not correspond to real applications.

To dissolve these doubts, we have imaged a more complex sample of Actin filaments,

functionally anchored to a glass substrate with Myosine 12. Figure 3.6 shows the confocal

(a) deconvolved- (b) and saturated-deconvolved (c) images of a group of actin filaments, the

corresponding speckle images (e-f) and the intensity profiles (d) along the lines traced over

11The Wiener filter it is the maximum likelihood solution under the sole assumption that the noise
is additive and independent of the signal.

12actin and myosine are a protein couple responsible for motion in most simple and complex living
being. Actin spontaneously forms long linear polymers and has specific sites to which myosine has a
very high affinity. Therefore myosine anchors spontaneously to actin. In presence of ATP, myosine
undergoes a conformational change and pulls the actin filament, originating movement.
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Figure 3.6 – Confocal image of actin filaments deposited on a coverslip (a) and im-
ages reconstructed from linear (b) and saturated (c) speckle images (Richardson-
Lucy deconvolution). Line profiles corresponding to the dotted lines in Figs. a, b
and c are plotted in d. The NA was 0.77 and in image c, the average saturation
parameter was estimated to be 〈s〉 ' 1.4. Raw speckle images corresponding to
images (b) and (c) are shown in figures (e) and (f), respectively.
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the images. As expected, although the object has nothing in common with the nano-beads

used for the PSF acquisition, saturated-speckle-imaging improves resolution, which confirms

the general validity of this technique.

The deconvolution algorithm used in the reconstruction of these images is the well known

Richardson-Lucy one13. It is an iterative algorithm that assumes a Poisson distribution of the

noise in the image. This algorithm performed better in this case probably because the signal

to noise ratio was worse than in the nano-beads’ case.

A last remark on the preparation of this sample and in general on this imaging technique

concerns the need of precise axial positioning. Due to propagation, the speckle pattern evolves

and changes dramatically along the propagation axis: two different speckle patterns on the

propagation axis which are at a distance larger than zFWHM = 2nλ
NA2 are completely decorrelated

(see appendix A.4). If the speckle image is acquired with a pattern too different from the sPSF,

the object cannot be reconstructed by deconvolution. Hence, careful positioning of the sample

plane relative to the objective lens is crucial: it must be the same of the one used during the

acquisition of the sPSF, with a precision of the order of zFWHM = 2nλ
NA2 . The sensitivity is

even higher in the case of the SsPSF, because saturation decreases the correlation distance.

Nevertheless, the careful use of a piezoelectric stage allowed to reach the required precision.

13the RL algorithm is adapted (i.e. it converges to the MLE solution) for the Poisson statistics.
Fluorescence is usually well approximated with a Poisson process, which is one of the reasons why the
RL algorithm tends to perform better on fluorescence images. Another reason worth mentioning is
that the RL iterations automatically respect positivity; as a result the RL algorithm is less prone to
generate spurious Gibbs-like oscillations. See Appendix D.



66 3.2. Super-resolution speckle imaging

3.2.4 The finest reachable resolution is NA-independent

Finally, we now discuss and analyse the limit of super-resolution imaging with saturated speckle

patterns. At first sight, from the theoretical model (see 2.3.2) and the experimental results

of the previous section, one could conclude that with an adequate saturation level 〈s〉, any

arbitrary transverse resolution could be achieved. On the other hand the technique relies on

the contrast of the illumination pattern which is granted only if the phase singularities are

"dark" enough. In the case of high NA speckle patterns, this constraint becomes important

because, at the location of the zeros of the transverse field, the axial component is generally

non-zero. Moreover, the mean amplitude of the axial component of the field increases with

increasing intensity illumination, thereby reducing the pattern contrast and its ability to confine

fluorescence and achieve super-resolution.

The effects of saturation (high values of 〈s〉) go in two opposite directions: if on the one hand

it improves the axial resolution, on the other hand it degrades the contrast in the illumination

pattern. Taking into account both effects, we are interested here in finding a theoretical value

of 〈s〉 that allows reaching the best resolution. For this we arbitrarily choose a threshold value

of the axial field intensity above which a phase singularity of the pattern is no more contrasted.

It is reasonable to fix this threshold at Is. We assume that a phase singularity of the speckle

pattern is well contrasted if there

Iz < Is (3.2.7)

In the same way we can say that a speckle pattern is contrasted enough if its mean value of Iz

at vortices is smaller than Is. In this case the fraction of well contrasted vortices according to

our criterion can be estimated and is ' 63% in the singularities for which the axial component

is optimized and ' 15% in the others. 14

For a speckle pattern of average intensity I generated by a top-hat shaped illumination

pupil, the average of Iz at the centre of vortices of the transverse field is given by

Iz = 3
4

(
NA
n

)2
〈I〉

where n is the refractive index of the immersion medium of the objective. Therefore the

14In the presented experiments, super-resolution is obtained thanks to the presence of optical vor-
tices, and more precisely, to vortices with large field gradients at their centres. Circular polarization
was chosen in order to minimize intensity in the vicinity of isotropic optical vortices of E⊥, and of
same handedness. However, even in this configuration, the intensity at the centre of the vortices does
not perfectly vanish but follows an exponentially decaying probability density function due to the
contribution Iz of the axial field. The fractions, indicated in the text, of highly contrasted vortices
of the two handedness families that are still well contrasted (according to the criterion Iz < Is) is
deduced from eq. 3 in reference [PTEG16].
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saturation parameter needed to obtain a speckle pattern with Iz = Is is

smax = 4
3

(
NA
n

)−2
(3.2.8)

which is the maximum saturation value above which Iz > Is. Now, if resolution typically

improves as

δx = λ

2NA
1√

1 + s
(3.2.9)

then for s � 1, we get that the utmost achievable resolution is δx ' λ
2n

√
3
4 (which gives

δx = 152 nm in the experimental conditions of fig 3.5). Interestingly, this limit does not

depend on the NA of the imaging lens. This result suggest that our technique can be

used with objectives of low NA, or even simple condensers, and still grant super-resolution. To

support this affirmation, we underline that our technique is robust to possible aberrations of

the optical system, because it is based on the statistical properties of our illumination scheme

(speckle patterns).

In practice, we could get super-resolution slightly beyond the theoretical limit (δx ' 100 nm

actually limited by the bead size), suggesting that the resolution estimated by eq. (3.2.9)

is pessimistic. The reason why eq. (3.2.9) under-estimates the super-resolving ability of

speckles may be because it involves the average saturation factor s while local saturation

factors s(x, y) = I(x, y)/Is in a speckle pattern may be much larger. Local high saturation

could thus provide super-resolution information with, apparently, high enough signal.

An illustration of the results we obtained using three different NAs is shown in Fig. 3.7.

Resolutions obtained in point-scanning mode as well as after reconstruction from speckle images

in the linear and saturated regimes are presented. We observe that both for NA = 0.77 and

NA = 1.4, the 100 nm beads are resolved in the saturated regime (〈s〉 = 1.4 and 〈s〉 = 1.6,

respectively). For the 0.33 NA, with a saturation parameter 〈s〉 = 2.9, it was not possible

to reach this same resolution because of the too high pulse energy that would have been

required: to get a given resolution δx with a given NA, the saturation factor typically scales

as: s '
(

λ
2δxNA

)2. For the 0.33 NA images in figure 3.7, average saturation parameter larger

than 7 would thus have been required but this was not possible, as we will see in the following

section.

The fact that the energy required to achieve a given super-resolution detail increases with

decreasing NA can be intuitively understood by taking in consideration the normalized average

magnitude of the gradient of the intensity distribution of a fully developed speckle pattern.
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Figure 3.7 – Reconstructed super-resolution speckle images (Wiener deconvolu-
tion) of fluorescent beads for different NAs. For NA = 0.33, NA = 0.77 and
NA = 1.4, the saturation parameters are 〈s〉 = 2.9, 〈s〉 = 1.4 and 〈s〉 = 1.6,
respectively. The scale bar is the same for all images.
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Figure 3.8 – Sketch of the average gradient of the intensity around a phase
singularity in a speckle pattern. The two lines correspond tow different NA. The
filled areas shows the region where the intensity is below a fixed level, here Isat

(dashed green line). The extent of this region increases with decreasing NA.

This can be analytically derived from statistical considerations [Goo06] and is

|∆I|
〈I〉
∝ NA (3.2.10)

Therefore two speckle patterns with different NA but equal mean intensity have a different

behaviour in the vicinity of a generic phase singularity (represented in figure 3.8). The intensity

at the centre of the singularity is zero and increases when moving away from it. The average

radial distance δx required to reach a given intensity is, in average,

δx = I

|∆I| ∝
1
NA

(3.2.11)

inversely proportional to NA. Therefore, in order to reach the same resolution level δx, the

low-NA pattern must have a higher average intensity than the low-NA one.
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3.2.5 Noise and bleaching

Since at fixed energy the resolution improvement scales as 1/NA, high energy are needed in

the case of small NAs if a high resolution is wanted. On the other hand, using too high energy

pulses has two drawbacks: - First, it increases photo-bleaching (which follows almost linearly

the pulse energy as shown in Fig. 3.10) and thus reduces the statistics of the speckle image

- Second, it increases the background signal coming from the optics. Both effects degrade

the signal to noise ratio (see Fig. 3.9). In our case, the background signal critically degraded

intensity minima and its effect was more important than photo-bleaching.

Parasitic background signal was probably the problem we had to cope the most with, during

the development and testing of the setup. Eliminating any signal coming from elsewhere but

the sample plane (sample bulk, immersion oil, dirt, optics) was a long but necessary task, in

order to optimize the acquisition of well contrasted speckle images. To give an example among

others, before using an aqueous based PVA solution to dilute the fluorescent nano-beads and

spin-coat the sample glass, we used an other polymer, PMMA dissolved in chloroform, much

easier to spin-coat. The alcohol, though, also dissolved a very small fraction of the beads

dye and some of it remained on the sample after spin-coating. When pouring the mounting

medium on the sample, this dye diffused in the solution producing a very intense background

which prevented the acquisition of speckle images.

At very high intensity, also the energy that is scattered outside of the speckle spot (the disk

projected in the sample) gives an important contribution to the total fluorescence. Therefore

we put an iris to stop it, in an intermediate image plane.

Besides parasitic signal, speckle images are deteriorated by photon noise. As it is propor-

tional to the square root of the photon count, its effect can be important, especially in pulsed

illumination mode, where the photon count per excitation is relatively low. Obtaining a good

signal to noise ratio is fundamental, because upon it depends the efficacy of deconvolution (see

appendix D). In appendix B we sketch a simple model of the fluorescence intensity distri-

bution in saturated speckle patterns taking into account photon noise and we compare it to

experimental results.
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Figure 3.9 – Characterization of the excitation curve of the fluorescent nano-
beads. The raw signal (red circles) contains both the contribution of bead flu-
orescence and the one of the background. The latter may be characterized in
the absence of fluorescent bead (blue crosses). Subtracting the background to
the raw signal gives the excitation curve of the fluorescent nano-bead (green x-
crosses). For this experiment, a cluster of fluorescent beads was illuminated with
a speckle pattern and the fitting curve thus takes into account the statistics of
the intensity distribution.

Figure 3.10 – Evolution of photo-bleaching rate with laser power. Here single
fluorescent 100 nm nano-beads were photo-bleached under illumination by a
focused spot of 0.22 NA. The photo-bleaching rate τb is a dynamic parameter
of the FP, describing the rate at which the molecules undergo conformational
transformations that permanently annihilate their fluorescence capability (see
section 2.3.2).
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Figure 3.11 – Reconstruction of objects outside of the scanning field of view. On
the left a speckle image of an area in the sample which was apparently empty.
A fluorescence signal shows the presence of objects outside of the scanning area.
Indeed 4 beads are visible when point-scanning a wider area (central image).
These beads contribute to the signal recorded in the speckle image. By decon-
volution, the 4 beads are recovered (right). The yellow dashed square shows the
scanning area of of the speckle image.

Field of view

When scanning a field of view with a large speckle spot, whose size might be comparable with

the scanning area, inevitably some object outside of the scanning area can be reached by the

pattern and contribute to the sample fluorescence. This signal can be a disturbance for the

reconstruction of the image, but surprisingly the object lying out of the scanning field can be

recovered. In order to do so, it is sufficient to pad the speckle image before deconvolution, so

that it results enlarged. A reconstruction of 4 beads out of the scanning field is shown in figure

3.11. We stress the point that the number of pixels in this image is larger than the effective

number of scanning points, because of padding. This means that we are indeed "seeing" a larger

field of view than what would be possible with point-wise scanning, in the same conditions.

Even though peripheral objects can be reconstructed, their signal is generally dimmer and

often undesired. Because of this, and also in order to limit the background noise, we have

restricted the field of view of our microscope with an adjustable iris, placed in an intermediate

image plane just before the objective.

3.2.6 Blind reconstruction

In most of the applications where speckle patterns arise spontaneously, often as an undesired

effect, their intensity distribution is not known. A typical example is imaging through a

turbulent or diffusive medium as we have seen in chapter 1. In the same chapter we saw that,

even in this condition, it can be possible to recover a speckle image, for example by exploiting

the memory effect. Thanks to this effect, the speckle pattern can be scanned over the sample

without being deformed. Afterwards the image can be reconstructed, for example by using the

speckle image autocorrelation and a phase retrieval algorithm.
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Our images are produced by scanning the sample with a constant speckle pattern, which

simulates what happens in the application cases of the memory effect. Therefore the same image

retrieval procedure should work also in our case. Since we obtain a resolution improvement

by saturation, we can expect that this same improvement should be observed also in blind

reconstruction.

Before answering this question, it can be instructive to look at the autocorrelation function

of a saturated speckle pattern in comparison to the non-saturated case. In fact, the reconstruc-

tion algorithm presented in chapter section 1.3.2 exploits the fact that speckle patterns have a

very peaked autocorrelation function. The main contribution to the autocorrelation width is

given by the grain size, but as the pattern is saturated, the intensity becomes more and more

homogeneous and the dark holes corresponding to the phase singularities become dominant.

Therefore, the autocorrelation of a saturated speckle pattern is even more peaked than a non-

saturated one15. Besides, it drops faster to a flat plateau, whereas non-saturated speckles show

fluctuations as it can be seen in he experimental images of figure 3.12 (this will be explained

in detail in the next section).

Experimentally, we have succeeded to perform blind image reconstruction for some very

simple objects. The results show that indeed saturation improves resolution also in this case, as

illustrated in figure 3.13. Specifically, in sub-figure (a) and (b) we see the speckle image of two

very close beads that could not be resolved in diffraction limited scanning. (a) is non-saturated

and (b) is saturated. Thanks to saturation, in the latter we see the appearance of small fringes,

witnessing the presence of the bead doublet, successfully reconstructed by phase retrieval (d).

15This is understandable because the saturated speckle pattern has a wider power spectrum, and its
FT is the pattern autocorrelation.
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Figure 3.12 – Correlation orthogonality , experimental result with a non-
saturated and saturated speckle patterns (NA = 0.7). The upper line shows
the patterns, the middle line shows the respective auto-correlation whereas the
bottom plot shows the radial profiles of the auto-correlations.
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Figure 3.13 – Images of the two nearby fluorescent 200 nm beads obtained with
NA = 0.33 and shown in Fig. 3.7 (first row). Speckle image in the linear ex-
citation regime (a) and in the saturated regime (b). In the linear regime, the
image is reconstructed by Wiener deconvolution (c). Image reconstruction from
the saturated speckle image is performed by an iterative phase retrieval algo-
rithm [Fie13] (d). The average saturation parameter in b and d is 2.9 like in
Fig. 3.7. The image in d should be compared to Fig. 3.7.
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3.2.7 On the axial component in random wave-fields.

As explained in detail in appendix A.6, the polarization state of the speckle field determines

the amplitude of the axial field in the phase singularities of the pattern. To summarize briefly,

the axial field at the dark spots is generally not zero. This fact can deteriorate the pattern

contrast and prevent super-resolution imaging. Luckily, the amplitude of the axial component

can be modulated through the field polarization state. Namely circular polarization of a given

handedness minimizes the axial component at the phase singularities of the same handedness.

The magnitude of the average axial component increases with the objective NA.

Given that we use a high NA objective, the effect of the polarization state should be

remarked in our setup. Therefore, we have tried to point it out with two experiments.

The first and simplest consisted in taking two speckle images of an isolated nano-bead,

first with right-handed, then left-handed circular polarization and compare them. Since for a

given polarization handedness, the axial component is minimized only in the family of phase

singularities with the same handedness and maximised in those of opposite handedness, we

expect to see a difference in the two images. Moreover, this difference should be more accen-

tuated with increasing saturation, when the only non-saturated signal comes ideally from the

optimized singularities.

The experiment requires great stability and precision of the sample, to obtain a good over-

lap of the speckle images. We recall that, being phase objects, the distance between phase

singularities is not limited so that they can be arbitrarily close to each other. Fig.3.14 summa-

rizes the results of this experiment. The same pattern is imaged twice (once per polarization

handedness) and then the images are superimposed. For better visualization, the grey values

are inverted so that intensity maxima are black, and minima white. The experiment is re-

peated for 4 increasing saturation values. With increasing saturation, also the average axial

component is increased, so if the patterns are almost identical for low s, difference can already

be seen at s = 1 and as saturation increases there is almost no overlap of the two images. This

points out that our imaging system is indeed sensitive to the axial component, which in turn

underlines the importance of using circular polarization to preserve the pattern contrast in the

case of high saturation. Even if this experiment is somehow equivalent to the result shown in

chapter 2, we have the advantage here to deal with fluorescence excitation instead of photo-

bleaching. Excitation, especially with short pulses, is easier to model than photo-bleaching.

Moreover the long exposure time during photo-bleaching are a potential problem if the sample

drifts

The reason why we have chosen circular polarization is also worth being discussed. As

we say in appendix A.6, the probability of finding a singularity with a radially symmetric
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Figure 3.14 – Effect of the axial field on the saturated fluorescence signal. In each
image, the green and magenta images are obtained using a single speckle pattern
for excitation but using right and left-handed circular polarizations, respectively.
Changing the handedness of circular polarization mostly modulates the axial
field. Here, the contrast of images have been inverted as compared to usual
representation of intensities, in order to better visualize the contribution of the
axial field. Bright pixels, thus, represent the dark regions of the speckle which are
crucial for super-resolution imaging. From left to right, the saturation parameter
s is increased. The significant difference observed between the green and the
magenta image observed at large saturation parameters demonstrates the high
sensitivity to the axial field. Images taken using a 5 µm speckle spot, with
NA = 0.77.

intensity profile in a speckle pattern, for which circular polarization would work perfectly,

is zero. Nevertheless, this polarization state has the advantage of inducing an anisotropic

resolution improvement. Linear polarization, for example, would optimize the axial component

of strongly elongated singularity, but only when these are oriented in the same direction of the

polarization vector. On the other hand, circular polarization works better for more symmetrical

phase singularities and in a way which is not dependent on the orientation of their elliptical

profile.

The curiosity to prove if indeed linear polarization could improve resolution on a prefer-

ential direction lead us to image and compare the same fluorescent object (a cluster of nano-

beads) with a speckle pattern, first circular, then linearly polarized. To compare the resolution

improvement we analyse the power spectra of the two images. As expected, only the one cor-

responding to circular polarization shows an isotropic broadening of the power spectrum, as it

can be seen in figure 3.15
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a b
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Figure 3.15 – Effect of the polarization state of the speckle pattern on the power
spectrum enlargement of the speckle scanning fluorescent image. Circular po-
larization (a) provides isotropic power-spectrum enlargement while a vertically
polarized speckle pattern minimizes the axial field at vortices strongly elongated
along the vertical direction, thus enlarging the power spectrum along the hori-
zontal direction (b). Power spectra obtained using NA = 0.77 and an average
saturation parameter 〈s〉 = 1.4.

3.3 3D reconstruction by 2D scanning

Hitherto, it has been shown that with a rather simple setup it is possible to perform super

resolution microscopy thanks to speckle illumination. We will now see that, with the same

optical system, we are able to recover full 3D information from a simple 2D speckle image.

This is possible thanks to some properties of speckle patterns which we refer to as orthogonality.

3.3.1 Speckle orthogonality

Mathematical definition

The concept of orthogonality in the ensemble of randomly generated speckle patterns needs to

be clarified. The mathematical concept of orthogonality between two elements of a space V

requires the definition, on that space, of an operation p : V 2 → R called inner product, which

associates any two elements of the space with a scalar. Two elements of the space are said to

be orthogonal (with respect to that operation) if their inner product is zero.

a ⊥ b ⇐⇒ p(a, b) = 0 ∀(a, b) ∈ V
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Two very common example are a N-dimensional vector space RN , where this operation is the

scalar product

u ⊥ v ⇐⇒ u · v = 0 (u,v) ∈ RN

Or the space of L2 integrable functions on RN

f ⊥ g ⇐⇒
∫
RN
f(x)g(x)dx = 0 f, g ∈ L2

Speckle patterns, in a sense that will be clarified later, can be said to be pseudo-orthogonal

with respect to cross-correlation, which is defined as

(u ? v)(x) =
∫
u∗(ξ)v(ξ + x)dξ

or equivalently in the Fourier space as

F [(u ? v)] = F [u]∗F [v] (3.3.1)

More precisely, since the inner-product should yield a scalar (not a function), we will look at

the value of the normalized cross-correlation in x = 0.

(u ? v)(0) = 1
Σ

∫
Σ
u∗(ξ)v(ξ)dξ

Here Σ represents the domain of u and v. If u and v are real signals generated by a random

process that follows a given PDF, with finite expected value u and variance σ2
u, then the

cross-correlation in zero yields

(u ? v)(0) =


〈u〉2 if u = v

〈u2〉 if u 6= v

The operator 〈·〉 represents the mean value over Σ. In the limit of Σ getting infinite, in

accordance with the Central Limit Theorem, these values approaches the PDF parameters.

(u ? v)(0) =


〈u〉2 → u if u = v

〈u2〉 → u2 = σ2
u + u2 if u 6= v

if the expected value of the random process is 0 and the variance is 1, then this relation

becomes

(u ? v)(0) = δu,v (3.3.2)
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an orthogonality relation between u and v.

Random speckles

With this in mind, we take the ensemble S of all possible intensity distributions of a speckle

pattern extended on the same surface Σ, with the same power spectrum and average intensity

I. We assume that Σ is large enough to grant ergodicity: the spatial mean and variance of the

intensity are close to the ensemble values |〈I〉 − I| < ε.

Any two elements Ii and Ij of S are pseudo orthogonal with respect to the operation

c(Ii, Ij) = 1
Σ(Ii ? Ij)(0) = 1

Σ

∫
Σ
I∗i (ξ)Ij(ξ)dξ = 〈Ii · Ij〉 (3.3.3)

In the sense that if i 6= j, the probability of having an inner product sensibly different from

zero is low. It would be exactly zero if Σ were infinitely extended.

The right member of equation (3.3.3) is the spatial mean value of the product of the two

patterns. Since the two patterns are randomly and independently generated

c(Ii, Ij) = 〈Ii · Ij〉 ≈ 〈Ii〉2

Which is also the result obtained when |x| is larger than the correlation length of the pattern

(see appendix A.4).

In the case i = j we obtain the auto-correlation of Ii in zero

c(Ii, Ij) = 1
Σ

∫
Σ
|Ii(ξ)|2dξ = 〈I2

i 〉

As Σ increases, the space means tend to the distribution parameters. With the known

statistics of fully developed speckle patterns (see appendix A.3) we have

c(Ii, Ij) =


I2 if i = j

I2 = σ2
I + I2 = 2I2 if i 6= j

An analogous reasoning considering two saturated speckle patterns fi and fj (f = 1−e−s)

leads to similar results:

c(fi, fj) =


f2 if i = j

f2 if i 6= j

The values that we have calculated for f and f2 can be found in appendix A.5.

These results are far from the wanted orthogonality relation (eq. (3.3.2)). This happens
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because, since we deal with quantities that are non-negative (intensity), we can never obtain

zero as mean value: a zero-mean (saturated) speckle pattern does not exist.

Nevertheless, speckle images are just numerical representations of the corresponding speckle

patterns, where the intensity values are arbitrarily mapped. In our experiment, for example,

the intensities are mapped by the PMT in positive voltage values proportional to the signal

intensity. According to the previous considerations, though, it is convenient to operate a

transformation that changes these values, in order to obtain zero mean and unitary variance.

Such a transformation16 is

I ′ = I√
σ2(I)

(
I

I
− 1
)

(3.3.4)

which, for fully developed speckle is simply (see appendix A.3)

I ′ =
(
I

I
− 1
)

whereas, for saturated speckle patterns (with s = I/Is)

f ′ =
√

2s+ 1
(
f

f
− 1
)

where we have used the results that we have calculated and reported in appendix A.5.

This transformation can be applied to experimental images using space averages as esti-

mators for the mean value and the variance.

Finally, for the renormalized speckle images, we obtain the wanted orthogonality relations

c(Ii, Ij) ≈ δ(i, j) (3.3.5)

c(fi, fj) ≈ δ(i, j) (3.3.6)

where the approximation becomes an equality when Σ→∞.

The whole 2D auto-correlation function of a speckle pattern normalized with eq. (3.3.4),

is a function d(x) peaked in x = 0, which falls to zero as soon as x increases more than a

correlation length. With saturation, the autocorrelation becomes even more peaked, because

the pattern has an enlarged spectrum. In figure 3.16 we plot a numerical simulation to show

this behaviour.

It is interesting to notice that saturation also eliminates the off-peak noise in the auto-

correlations. Empirically, this happens because, in a saturated pattern, the dominant contri-

16for simplicity, we use now the symbol I and f for the speckle images of the corresponding intensity
patterns.
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Figure 3.16 – In the first column a speckle pattern (NA=0.5), the saturated
version of the same pattern (s = 50), and some white noise. The second column
shows the autocorrelation of the patterns, in the third column we plot the profile
of the auto-correlation along the middle line. The last column shows the profile
of the cross-correlation of two random patterns. The pattern are normalized and
have zero mean and unitary variance. Units are in µm.

bution to the autocorrelation is given by the dark spots instead of the grains, and the dark

spots decrease in size with increasing saturation. In the same figure (last column) we also plot

the profile of the cross-correlation of two different patterns. In this case we can not observe

any strong correlation: the central peak disappears. Even more interestingly a very similar

kind of relation holds for Wiener deconvolution, and is illustrated in the numerical simulation

in figure 3.17. The reason can be understood if one looks at the Wiener filter in the Fourier

domain (see appendix D)

G = H∗

|H|2 + ε

The FT of the restored image X̂ is obtained by multiplying G and the FT of the raw image Y .

X̂ = GY = H∗Y

|H|2 + ε

which, apart from the spectra weighting at denominator, is the cross-correlation between H

and Y (cf. eq. (3.3.1)).

F−1[H∗Y ] = h ? y

Therefore we can affirm that random speckle patterns are pseudo-orthogonal with respect to

Wiener deconvolution.
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Figure 3.17 – In the first column a speckle pattern (NA=0.5) and the saturated
version of the same pattern (〈s〉 = 100). The second column shows a Wiener
deconvolution of the pattern with itself. The last column is a plot of the profile
of the deconvolution in the middle line (blue) and an analogous profile of the
deconvolution of two random spekcle patterns of the same kind.

3.3.2 Exploiting speckle orthogonality for 3D imaging

This knowledge is fundamental because it allows performing 3D reconstructions of 2D speckle

images. In fact, along the propagation axis, the speckle pattern evolves and totally randomizes

after a typical length of ∆z ' 2nλ
NA2 . Because of the orthogonality of random speckle pat-

terns described in the previous section, at this distance the speckles patterns appearing on two

planes are decorrelated. This means that if two objects are found in the sample in two differ-

ent planes at a distance larger than ∆z, while imaging, they would contribute to the image

with two different and deconvolution-wise orthogonal speckle patterns. Therefore, if we apply

deconvolution to the image twice with the sPSFs corresponding to the two distinct planes, we

can recover first one plane, then the other.

Extending this reasoning, we could think of imaging a 3D object with a simple 2D scan

and deconvolve it with a 3D sPSF of the speckle pattern. In this way we should obtain a 3D

reconstruction of the object from its simple 2D scan. Indeed, we have tested this hypothesis

and imaged a sample of nano-beads dispersed in volume. The results are shown in figure 3.18.

Of course, the acquisition of the 3D sPSF is time consuming and requires a good precision

in the axial positioning and a good stability of the system. Also, in the case of the saturated

sPSF (SsPSF) the bead used to acquire it must resist to photo-bleaching (which increases

with increasing of the mean saturation parameter), for the duration of acquisition of the whole

stack of images. On the other hand, this acquisition needs to be done only once. Once the 3D

sPSF in known, 3D images can be reconstructed with a simple 2D scan of the sample, thereby
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optimizing acquisition time and photo-bleaching damage.

Some consideration can be done about the limits of this technique: A speckle pattern

focused with a microscope objective in the sample has its smallest extension in the microscope

focal plane. Since the number of modes (random plane waves) that form it, as well as the

average power, are the same along propagation, at increasing axial distance from the focal

plane, the average intensity and grain size increase, therefore the saturation level decreases.

Moreover the contrast of the sum of N independent speckle patterns goes as 1/
√
N . If

N is large, the intensity has a Gaussian distribution as explained in appendix A.2. Therefore

the image signal, when speckles from many different planes contribute, has a much smaller

dynamic range than a single pattern. More information is then compressed in a smaller range,

which could be a limiting factor for reconstruction, hence for the axial field of view.
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Figure 3.18 – For three-dimensional (3D) super-resolution speckle imaging, the
3D-SPSFs (saturated and non-saturated) are recorded with isolated fluorescent
beads (a). The orthogonality of speckle patterns ensures axial resolution after
(Wiener) deconvolution. The axial resolution in the saturation regime is im-
proved by a factor ' 2 as compared to the non-saturated case (b). Once the
3D-SPSF is characterized, a single two-dimensional scan of a three-dimensional
sample (c) allows the 3D reconstruction of the object (d). In (e) we show the 3D
reconstruction-PSF in non-saturated and saturated mode. Images taken with
NA = 0.77 and 〈s〉 = 1.4.
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Chapter 4

Conclusions

In this work we demonstrated the proof of principle of a new technique for super-resolution op-

tical microscopy, based on saturated speckle illumination. First, we made a short introduction

to the concepts of resolution and diffraction limit. Scattering was also introduced as a main

issue for super-resolution in diffusive media, such as biological tissues, because in heavy scatter-

ing condition it is difficult to shape light and speckle patterns of "random" interference appear

spontaneously. Nevertheless we have seen that speckles encode some information and we dis-

cussed how they have been used to perform imaging through diffusive media. With this PhD

work, we wanted to demonstrate that they can also be exploited to perform super-resolution

imaging.

The super-resolution techniques that are based on the saturation of an optical transition

require highly contrasted illumination patterns. Speckles, at least in regimes where the paraxial

approximation is valid, are contrasted because they feature isolated zeros of intensity (phase

singularities). Instead, it had not yet been proven experimentally that, for speckles produced

with high NA systems, this contrast is maintained. In fact, in this case, the non-negligible

axial component of the field degrades the quality of the intensity zeros in the pattern. In

chapter 2 we have reported the experimental proof that circularly polarized light can preserve

the contrast in high NA speckle patterns.

Moreover, we have shown that this high contrast can confine an optical transition, a nec-

essary property for super-resolution. According to statistical considerations, we formulated a

model describing the average size of confinement. This model is in agreement with the typi-

cal resolution improvement of STED/RESOLFT techniques. Since the handedness of circular

polarization maximises the axial component only in the phase singularities of the same hand-

edness, we where able to selectively image one family of vortices or the other and even follow

the creation/annihilation of two nodal lines in a speckle field.
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Once understood that speckles can be used for super-resolution, we have implemented a

system to perform super-resolution imaging based on the saturation of fluorescence excitation.

We have straightforwardly observed that images obtained with saturated speckle illumi-

nation feature a broader spatial spectrum than those obtained in the linear regime. The raw

images acquired in our technique need to be reconstructed and this was already possible by

Wiener deconvolution. Clearly the reconstructed saturated speckle images feature finer details

than linear ones, hence a higher resolution.

By working on simple fluorescent objects (nano-beads) and more complex ones (actin fil-

aments), we reached a clear resolution improvement which, in some cases, attained almost a

factor 4 beyond the theoretical diffraction limit. Moreover, with some simple objects, we have

been able to perform double-blind super-resolution image retrieval.

Obtaining these results was not obvious, because of the high levels of noise associated

with the high intensities needed for to saturate fluorescence excitation. A careful study and

modelling of the phenomena taking place in our experiment, a long optimization and an ac-

curate development of the acquisition system and analysis software was necessary in order to

reach satisfactory results. In this phase both experiments and numerical simulations have been

determinant to develop a fully functional system.

This optimization process led us to a better understanding of the limitations of our tech-

nique and to the discovery of several interesting properties. We observed that, with saturated

speckle imaging, the maximum resolution reachable does not depend on the objective’s NA,

nor on the aberrations of the system. Moreover, our technique does not require expensive op-

tics: a diffuser and a relatively inexpensive diode-pumped solid state pulsed laser are enough

to implement it on a scanning microscope.

Eventually, by exploiting the orthogonality of random speckle patterns, we demonstrated

the possibility of producing 3D super-resolution imaging with a simple bi-dimensional scan.

To conclude, we can affirm that we have succeeded in our purpose of proving the principle

and applicability of saturated speckle super-resolution microscopy.

Future applications in imaging are possible, and need to be investigated. The perspective

of using speckle patterns naturally emerging in depth in biological tissue presents some main

concerns: In our proof of principle, we have used perfectly stable and known speckle patterns,

but, in order to perform in-depth super-resolution imaging, a "memory effect"-like approach

should rather be considered. Then, dedicated algorithms of image retrieval could be developed.

On the one hand, since this technique aims towards super-resolution, the relatively small

field of view of this effect in biological tissue could be enough to be exploitable. On the other
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hand, in our experiment we dealt with fully developed speckle patterns which were produced

by a SLM before the objective. A proof is needed to show that the speckles appearing in

diffusive media are contrasted enough. This also concerns the conservation of polarization in

anisotropic scattering. The literature offers some encouraging results in this sense[GKR98,

GGP+03,dAGB15].

Finally, the high intensity level needed for fluorescence excitation saturation induce the

need to take in consideration any possible source of parasitic fluorescence: biological object

show some degree of autofluorescence that we observed in cultured neurons and is reported in

the literature[SSP11].

Therefore, it is worth studying the possibility of saturating with speckle patterns an optical

transition other than fluorescence excitation, for example depletion, like in STED microscopy.

In this case, one could confine fluorescence in the pattern’s phase singularity and collect signal

only from there, obtaining a much higher signal-to-noise ratio than in the case of excitation.

Applications of 3D speckle-imaging based on speckle orthogonality could also possible

and interesting (speckle are a general phenomena due to interference, not limited to light).

Further investigation is necessary, and at present we are directing our efforts towards a better

understanding of this subject.
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Appendix A

Speckles

Figure A.1 – generation of a speckle pattern. A plane wave passes through a
thin diffuser (e.g. ground glass) and is scattered in a disordered way. Far from
the scatterer, a disordered interference pattern appears.

As s coherent plane wave travels trough a diffusive medium or bounces on a rough surface,

speckle patterns are observed (see fig. A.1). They appear as a spotty structure of bright and

dark points, which are randomly distributed. These patterns emerge as a consequence of the

uncorrelated and disorder phase shifts generated by the local fluctuations of the diffraction

index in the diffusive medium (or the asperities on the rough surface). If each point of the

scattering medium is considered as a point-source with random intensity and phase, then, the

observed intensity fluctuations in a speckle pattern can be understood as a random interference

of many plane waves, where dark points correspond to negative and bright points to positive

interference.
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A.1 Model of a speckle pattern

Figure A.2 – random walk seen as the sum of many random vectors in 2D. In the
case of speckles, the random 2-dimensional objects that are summed are phasors,
representing random plane waves.

On a screen away from the diffuser, each point has an intensity given by the interference

of many uncorrelated plane waves which can be represented, in the complex plane, as a sum

of random phasors, each of them with a randomly distributed length and angle. The result of

such sum of random vectors can be seen in the complex plane as "random walk" (fig A.2) and

can be written as:

A = Aeiθ = 1√
N

N∑
n=1

ane
iθn (A.1.1)

where N is the number of plane waves interfering together in the same point and ane
iθn

represents the single, uncorrelated contribution. The factor
√

1/N has been introduced for

preserving a finite norm even when the number of contributions goes to infinity.

Since A is the sum of N independent and equally distributed random variables, as the

number of single contributions N goes to infinity, according to the Central Limit Theorem,

the distribution of A = R[A] + I[A] converges to a Gaussian distribution in R and I which

represent the real an imaginary parts respectively.

ρR,I(R, I) = 1
2πσ2 exp

{
R2 + I2

2σ2

}
(A.1.2)

where the variance σ2 = E[R2] = E[I2] depends on the average value of an. A speckle that

has this distribution, generated by N →∞ components, is called a fully developed speckle.

From this formalism, many results on the statistical distribution in a speckle pattern can

be derived. We will show here the results that are most relevant to this work. A wider and

rigorous description of speckle phenomena can be found in ref [Goo06].
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A.2 Amplitude distribution

Looking at a particular point in a speckle pattern, the amplitude and phase of the field are

given by the random sum of many plane waves as described in the previous section. Given the

Gaussian statistic of a fully developed speckle pattern (eq. (A.1.2)), the probability density

function (PDF) of the amplitude A and phase θ can be obtained with a simple transformation:


A =

√
R+ I

θ = arctan
{ I
R
} (A.2.1)

and is

ρA,θ(A, θ) = A

2πσ2 exp
{
− A2

2σ2

}
(A.2.2)

With a partial integration on the phase θ, the marginal PDF of the amplitude A is

ρA(A) = A

σ2 exp
{
− A2

2σ2

}
(A.2.3)

With this PDF, we can calculate the moments of the amplitude Ap =
∫∞

0 ApρA(A)dA. The

integrand is a Gaussian function multiplied by Ap+1, which is analytically integrable1. For

example the first two moments are

A =
√
π

2 σ (A.2.4)

A2 = 2σ2 (A.2.5)

using the last result, the variance σ can be eliminated from eq. (A.2.3):

ρA(A) = 2A
A2

exp
{
−A

2

A2

}
(A.2.6)

A.3 Intensity distribution

In optics, the observable which is commonly measured is the intensity I, defined as the modulus

of the time averaged Poynting vector [Jac01].

I ∝ E ·E∗ = |Ex|2 + |Ey|2 + |Ez|2 (A.3.1)

1in term of the Euler’s Γ function, the result of the integration is 2p/2σqΓ
(
1 + p

2

)
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Figure A.3 – The exponential PDF of the intensity in a fully developed speckle
pattern. The probability of having an intensity higher than a certain value Is is
represented as the red area below the intensity PDF.

In the paraxial approximation the axial component is small and can be neglected:

I = |Ex|2 + |Ey|2 (A.3.2)

and in the case of a linearly polarized field, if the coordinate versor x̂ is chosen to lie on the

polarization direction, the intensity is just

I = |Ex|2 (A.3.3)

In the latter equation, |Ex| is the field amplitude, corresponding to A in eq. (A.2.6). There-

fore, since the variable transformation I = A2 is monotonic, one can write the intensity distri-

bution in a fully developped polarized speckle pattern:

ρI(I) = 1
I
exp

{
I

I

}
(A.3.4)

which is an exponential distribution (see figure A.3). As we see, lower values of the inten-

sity have higher probability to occur. Also, the exponential distribution has equal mean and

standard deviation:

σI = I (A.3.5)

therefore, as the mean intensity, the contrast defined as C = σI/I remains constant.

Another interesting quantity that we can deduce from the intensity PDF, which is used in

the text when we speak about saturation, is the probability to find an intensity I higher than

a certain value Is. We obtain it with a definite integration of the PDF (see fig A.3):

P (I ≥ Is) =
∫ ∞
Is

ρI(I)dI = e
− Is
I (A.3.6)
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Intensity distribution of the sum of uncorrelated speckle patterns

Here we want to study the intensity distribution of the superposition of N uncorrelated speckle

patterns.

IΣ =
N∑
n=1

In (A.3.7)

For fully developed speckle the term independent and uncorrelated can be used interchangeably,

due to the statistical model which we have used to describe them. The PDF of the sum of

two independent random variables is the convolution of their single PDFs, or, thanks to the

convolution theorem, can be obtained as the product of the respective characteristic functions2.

The characteristic function of an exponential distribution is

φI(ω) = ρ̃I = 1
1− iωI

(A.3.10)

therefore the characteristic function corresponding to the intensity sum (eq. (A.3.7)) is given

by the product

ΦIΣ =
N∏
n=1

φI,n(ω) (A.3.11)

the corresponding PDF is its inverse FT and, in the interesting case of all In being equal it is

ρIΣ(IΣ; I) = NNIN−1
Σ

Γ(N)IΣN
exp

(
−N IΣ

IΣ

)
(A.3.12)

This is a Gamma density function of order N. The mean value and variance are

IΣ =
N∑
n=1

I = NI (A.3.13)

σ2
IΣ

=
N∑
n=1

I2 = NI2 (A.3.14)

so the contrast of the superposition of N speckle pattern scales as 1/
√
N :

C = σIΣ
IΣ

= 1√
N

(A.3.15)

2The characteristic function corresponding to the PDF of a random variable X is defined as the
expected value of eitX :

φX(ω) = E[eiωX ] =
∫

Ω
eiωxρX(x)dx (A.3.8)

and, is the PDF’s Fourier Transform. Together with being useful in analysis of linear combinations
of independent random variables, the characteristic function has a remarkable property that allows
direct calculation of the moments fo X:

E[Xk] = ∂(k)φX(0) (A.3.9)
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Figure A.4 – Intensity PDF for the sum of several independent speckle patterns.
Already when two patterns are summed, the PDF value at I=0 drops to zero.
As N increases, the distribution converges to a Normal distribution.

The probability of finding an intensity higher than IΣ is obtained by integration of ρIΣ(IΣ; I)

between I. We find

P (IΣ > IΣ) = (−1)N−1
(
∂

∂β

)(N−1)
[
−e
−βN2

β

]
β=1

(A.3.16)

Which approaches 0.5 as N increases.

An interesting case is for N = 2. This is the case of the two components of an un-polarized

beam in eq. (A.3.2). The PDF of IΣ = I1 + I2 derived from eq. (A.3.12) is

ρIΣ(IΣ) = IΣ

I2
exp

(
−IΣ
I

)
(A.3.17)

interestingly, the probability of having very low intensities drops to zero. We plot this PDF in

fig. A.4. Finally we calculate equation (A.3.16) in this case:

P
(
I1 + I2 > 2I

)
= 3
e2 ≈ 0.4

Another remarkable fact is that the Gamma distribution converges in probability to a

Gaussian distribution N(I, I/
√
N) for N → ∞, as it can be seen in fig .A.4. This is a conse-

quence of the Central Limit Theorem, because we are summing many identically distributed

uncorrelated variables.
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A.4 Grain size

Till now we have described the statistical properties of the intensity in a speckle pattern, but

we are also interested in the spatial distribution of the intensities and phases. An important

result for the rest of this work is the correlation area of a speckle pattern (which is linked to

the average grain size). We will outline here how it is estimated in [Goo06]: we first find a

joint PDF for 2 points in the speckle pattern, then use it for the estimations of correlations

and expected values.

Joint probability density function

Following the same reasoning that lead us to eq. (A.2.5), we can write the multivariate

probability density function of the speckle field A at two generic points: A1 = A (x1) and

A2 = A (x2). Since A1 and A2 are complex numbers, the joint PDF ρ2(R1, I1,R2, I2)

(analogous of eq. (A.1.2)) depends on four parameters, which are the corresponding real

and imaginary parts. Even though the real and imaginary parts of either A1 or A2 are still

independent, A1 and A2 are not mutually independent a priori. With the assumption we have

made on the distribution of the random phasors, we have:

RiIi = RjIj = 0 (A.4.1)

RiRj = IiIj = ρc 6= 0 (A.4.2)

RiIj = −RiIj = ρs 6= 0 (A.4.3)

for i 6= j. The joint PDF cannot be written as a simple product of Gaussian distributions for

the single 4 variables. Nevertheless an analytical form can be derived3 and a transformation

analogous to (A.2.1) allows writing the corresponding PDF of phases θ1 and θ2 and amplitudes

A1 and A2:

ρ2(A1, A2, θ1, θ2) = A1A2

4π2σ4(1− µ2) exp
[
−A

2
1 +A2

2 − 2A1A2µ cos(φ+ θ1 − θ2)
2σ2(1− µ2)

]
(A.4.5)

where µ = µeiφ is the complex correlation coefficient between the speckle field in A1 and A2:

µ = µ(A1,A1, ) = A1A∗2√
|A1|2|A2|2

= ρc + iρs = µ cosφ+ iµ sinφ (A.4.6)

3

ρ2(R1, I1,R2, I2) =
exp
[
R2

1+R2
2+I2

1+I2
2+2ρs(R1I2−I1R2)−2ρc(R1R2−I1I2)

2π2σ4(1−ρ2
c2−ρ2

s)

]
4π2σ4(1− ρ2

c2− ρ2
s)

(A.4.4)
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Figure A.5 – Free space geometry. (image source [Goo06]).

The PDF ρ2(A1, A2, θ1, θ2) can then be used to calculate correlations and expected values.

Intensity correlation in a speckle pattern

With the joint PDF of eq. (A.4.7) it is possible to calculate the correlation of the intensity

in a speckle pattern. We report here for clarity the formal derivation of [Goo06], but the only

result that will be used in the following section is equation (A.4.15).

A partial integration on the phases θ1 and θ2 gives the marginal joint PDF of the ampli-

tudes:

ρ2(A1, A2) = A1A2

σ4(1− µ2) e

[
−

A2
1+A2

2
2σ2(1−µ2)

]
I0

[
− µA1A2

σ2(1− µ2)

]
(A.4.7)

Where I0 is a modified Bessel function of the first kind, order zero. Then the monotonic

transformation I = A2 allows finding ρ(I1, I2) and calculate the expected value of I1I2:

ΓI = I1I2 = I2(1 + µ2) (A.4.8)

which links the intensity correlations to the correlations of the complex field A through the

complex correlation coefficient µ.

The speckle field A depends on the characteristic of the scattering aperture that generates

it (represented as a gray disk in figure A.5). Therefore, also the intensity correlation ΓI must

depend on it. In the following reasoning, we will write the intensity correlation function ΓI as

a function of the field on the scattering aperture a(ξ, η).

We first start writing the field correlation on the observation plane ΓA(x1,x2) = A(x1)A∗(x2).

In the paraxial approximation, the field A(x, y) at the observer plane depends on the field in
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the scattering plane a(ξ, η) through the Fresnel diffraction integral [Goo06].

A(x, y) = eikz

iλz
ei

k
2z (x2+y2)

∞∫∫
−∞

a(ξ, η)ei k2z (ξ2+η2)e−i
k
2z (xξ+yη)dξdη (A.4.9)

With this, the field correlation on the observation plane ΓA can be written as a function of the

field correlation at the scattering aperture plane Γa(ξ1, ξ2) = a(ξ1)a∗(ξ2).

ΓA(x1,x2) = 1
λz2 e

i k2z (x2
1−x

2
2)
∞∫∫
−∞

∞∫∫
−∞

Γa(ξ1, ξ2)ei k2z (ξ2
1−ξ

2
2)e−i

2π
λz (x1·ξ1−x2·ξ2)dξ1dξ2

(A.4.10)

We can assume the correlation at the scattering aperture to be sufficiently small that it

can be adequately represented by a delta function

Γa(ξ1, ξ2) = κI(ξ1)δ(ξ1 − ξ2) (A.4.11)

where κ is a constant that preservers dimensionality and I(ξ1) = a(ξ1)a∗(ξ1)
κ is the intensity at

the scattering aperture. In this case (A.4.10) becomes

ΓA(x1,x2) = ΓA(∆x) = 1
λz2

∞∫∫
−∞

I(ξ)e−i 2π
λz [∆x·ξ]dξ (A.4.12)

Where ∆x = x1 − x2 and the quadratic phase exponential has been removed for seek of

simplicity, since we are interested in the modulus of ΓA.

The complex correlation coefficient µ of the field intensity (eq. (A.4.6)) can be rewritten

in terms of ΓA:

µ(A1,A2) = µ(A(x1),A(x2)) = ΓA(∆x)
ΓA(0, 0) (A.4.13)

=

∞∫∫
−∞

I(ξ)e−i 2π
λz [∆x·ξ]dξ

∞∫∫
−∞

I(ξ)dξ
= 1
W
Ĩ(∆x) (A.4.14)

At this point the calculation of the intensity correlation in a speckle pattern is straightforward,

since we know that it is related to µ by eq. (A.4.8).

ΓI(∆x) = I1I2 = I2(1 + µ2) = I2
[
1 + 1

W 2

∣∣∣Ĩ(x)
∣∣∣2] (A.4.15)

Which states that expected value of the autocorrelation function ΓI(∆x) of a fully developed
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Figure A.6 – Imaging geometry. (image source [Goo06]).

speckle pattern is given by the modulus of the Fourier Transform of the pattern Ĩ(x): its power

spectral density.

Application to the microscope

The previous discussion was general, valid for free-space propagation and we did not mention

any particular optical system. Nevertheless, under certain assumption which are fulfilled in this

work (cf. ref [Goo06] page) , it can be generalized to any optical system composed of one or more

lenses (see schematic in fig. A.6), by considering the last lens as the effective scattering object.

Therefore, the intensity correlation of the speckle in the image plane is entirely determined by

the FT of the intensity distribution across the system’s pupil (eq. (A.4.15)).

With this result, we can calculate the expected "grain size" of a speckle pattern focused

by the lens of a microscope, as a function of the objective NA. Since the grains in a speckle

pattern are randomly distributed, we expect the correlation function do have a maximum value

in zero and drop as soon as ∆x reaches the grain size. In order to estimate the expected grain

size, we describe the intensity distribution at the objective pupil as

I(ξ) = I0 circ
(

2ρ
D

)
(A.4.16)

with

circ(r) =

 1 if r ≤ 1

0 if r > 1
(A.4.17)

Since the FT of eq. (A.4.16) is

Ĩ(∆x) = AI0 2d J1

(
π
r

d

)
(A.4.18)
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Figure A.7 – correlation function of a fully developped polarized speckle pattern,
focused by an objective of a given NA.

with A = π(D/2)2 the aperture surface , r =
√

(∆x)2 and d = λz
D = λ

2NA . Then, we can

calculate the intensity correlation in the image plane with eq. (A.4.15).

ΓI(r) = I2
[
1 +

∣∣∣2d J1

(
π
r

d

)∣∣∣2] (A.4.19)

plotted in figure A.7. The correlation drops at a distance approximately equal to the system

resolution defined as d = λ
2NA . Hence, d = λ

2NA is also an estimate of the expected value of the

grain size in a fully developed polarized speckle pattern focused with an objective numerical

aperture NA.

The speckle average grain size in the axial direction can be calculated in an analogous way.

The result found in this case is proportional to 1/NA2. To resume this section we give the

estimate of the Full Width at Half Maximum (FWHM) of the intensity correlation function in

the transverse and axial cases, which are an estimate of the average speckle grain size:

rFWHM = 1.4λ
NA (A.4.20)

zFWHM = 6.7λ
NA2 (A.4.21)

A.5 Distribution of fluorescence in saturated speckle patterns

In this section we report our derivation of the PDF for the intensity of fluorescence in a

saturated speckle pattern. We start from the PDF of the intensity in a fully developed polarized

speckle pattern (eq (A.3.4)), which we re-write here for convenience, as a function of the

saturation parameter s = I/Is

ρs(s) = 1
s
exp

{
−s
s

}
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To obtain the statistics of fluorescence intensity of a saturated speckle pattern, we use the

model of fluorescence intensity in pulsed excitation mode (eq. (C.0.7)).

f = 1− e−s

and obtain

ρf (f) = ρs(s)
∣∣∣∣dsdf
∣∣∣∣ = 1

s
(1− f) 1

s
−1

With this we can calculate the expected value f , but it is easier to calculate 1− f = 1− f

1− f =
∫ 1

0

1
s

(1− f) 1
s df = 1

1 + s

then

f = s

1 + s
(A.5.1)

In the text we also use the mean values of I2 and f2, which we calculated by integration

of the respective PDFs.

I2 = 2I2 (A.5.2)

and

f2 = 2( 1
s + 1

) ( 1
s + 2

) (A.5.3)

With the latter, we calculate the variance of f

σ2(f) = (f − f)2 = f2 − f2 = f2

(2s+ 1)

for low values of s we recover σ2(f) = f2, because the fluorescence is directly proportional

to the excitation intensity, which in turn follows an exponential distribution (σ2(I) = I2).

Whereas for high values of s, the normalized fluorescence is almost everywhere 1 therefore the

variance goes to zero.

Autocorrelation in zero

In section 3.3.1 of the text, we calculate the autocorrelation in zero c(Ii, Ij) of appropriately

normalized speckle patterns and we find the pseudo-orthogonality relation

c(Ii, Ij) = (Ii ? Ij)(0) = δi,j
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Figure A.8 – auto- and cross-correlation of simulated speckle patterns (NA=0.5).
The pattern on the second line is saturated with s = 50. The last column shows
the profile of the cross correlation of two randomly different speckle patterns.

Which is only true for patterns with zero mean and variance equal to one. Since intensities

are positive quantities, 〈I〉 cannot be zero unless an appropriate transformation is applied.

In an image of a speckle pattern, the effect of the non-zero mean is to add a triangle-like

background, which is the correlation of a constant image with the same mean value.

It is interesting to evaluate the peak to base ratio, to understand how this effect deteriorates

the peaked shape of the auto-correlation function. For speckle patterns of mean 〈I〉

c(Ii, Ii)
c(Ii, Ij)

≈ 2I2

I2
= 2

where the approximation of the mean value to the expected value is valid under the hypothesis

that space mean 〈·〉 is evaluated over a surface much larger than the speckle coherence area.

If we take two different saturated speckle patterns, with average saturation parameter 〈s〉,

with the results found just before we find a ratio

c(fi, fi)
c(fi, fj)

≈ 2s+ 1
2s

which tends to 1 as s becomes large, meaning that the peak tends to disappear with increasing

saturation. Figure A.8 illustrates this on numerically simulated speckle patterns.

In the text we are interested in defining an orthogonality relation for random speckle

patterns based on cross-correlation, for which c(Ii, Ii) and c(fi, fi) vanish if i 6= j. This

imposes the necessity of manipulating zero-mean quantities, as explained in section 3.3.1.
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A.6 Eccentricity of the phase singularities

This work is mainly concerned in the quality of the dark spots of speckle pattern. At the

locations of phase singularities, the transverse field is zero, so the axial component plays a

crucial role. Its amplitude can be modulated by the field polarization state. To explain how,

we describe in this section the morphology of phase singularities and the role of polarization.

The phase singularities in a polarized speckle pattern, in general, are not radially symmetric

in intensity nor in phase. With some simple considerations it is possible to point out that they

have an elliptic shape and, within the same model illustrated in appendix A.1 it is possible to

calculate the statistical distribution of the ellipse eccentricity, as shown in references [Ber78,

SS96,FF97,Den04].

Phase singularities occur in a field at points where amplitude is zero. If in a volume V we

take a speckle field ψ(r) (omitting time dependence) and we write it as the sum of its real and

imaginary parts

ψ(r) = ξ(r) + ıη(r) (A.6.1)

the phase singularities are the intersection lines of the two surfaces identified by


ξ(r) = 0

η(r) = 0
(A.6.2)

These nodal lines, (illustrated in figure A.9) are randomly oriented and therefore are not

specifically aligned with the propagation axis. Given a field in a volume, lines can cross it or

appear and collapse in loops. Their trajectory in space has the characteristics of a random

walk[DOP09]. Any arbitrarily plane in the volume V is pierced by these lines in several points,

which represent the 2D phase singularities, or the dark spots of a speckle pattern.

Figure A.9 – Illustration of phase singularities lines in a 3D speckle pattern. The
lines can cross the volume (a) or form closed loops (b) (image source [DOP09]).



Appendix A. Speckles 107

Figure A.10 – a speckle pattern and the lines representing the the equations
R = 0 (red) and I = 0 (green), where R and I are the real and imaginary part
of the field. Phase singularities corresponds to intensity zeros, which occur when
the lines cross each other.

Where the intensity is exactly zero, the field can be approximated with a Taylor expansion

to the first order. If we choose the axis origin to be centred on the singularity with êx and êy

lying on the plane, the approximated field rewrites as

ψ(r) = r · ∇ξ(0) + ır · ∇η(0) (A.6.3)

Locally the amplitude of the field ρ2(r) = ξ(r)2 + η(r)2 can then be expressed as

ρ2(r) = (r · ∇ξ(0))2 + (r · ∇η(0))2 (A.6.4)

The quadratic form of ρ2(r) implies that the local curves of constant intensities are ellipses.

To help visualizing this, we have plotted in the first column of A.11 the magnitude and phase

of some singularity with different ellipticity. On the intersection plane, defined by rz = 0 for

example

ρ2(r) = C2 (A.6.5)

(r · ∇ξ(0))2 + (r · ∇η(0))2 = C2 (A.6.6)

(ξxx+ ξyy)2 + (ηxx+ ηyy)2 = C2 (A.6.7)
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Figure A.11 – This figure illustrates the ellipses described by the intensity
and phase around a singularity. Three singularities are plotted with equation
(A.6.3), each one has a different ratio of the semi-axes a/b, which is indicated
in the left-most label column. The first column shows the square modulus ρ2 of
the field for the three singularities, the images are saturated to put in evidence
the elliptical profile. The phase χ of the field is plotted in the second column
and the third represents the quantity

√
|∇χ|2. The fourth column shows the

polar plot of
√
|∇χ|2 traced as a function of the angle when following the blue

dotted circle plotted in column three. Finally we find in the ellipses of the fourth
column, the same eccentricity of the ellipses in the first column.

and by choosing a rotation of the x and y axis where the mixed products cancels out ξxξy =

−ηxηy we obtain the canonical form of an ellipse,

x2(ξ2
x + η2

x) + y2(η2
x + η2

y) = C2 (A.6.8)(x
a

)2
+
(y
b

)2
= C2 (A.6.9)

with the semi-axes a2 = (ξ2
x + η2

x)−1 and b2 = (ξ2
y + η2

y)−1

The eccentricity of an ellipse is defined as 0 < ε =
√

1− b2/a2 < 1, an ellipse with ε = 0

is a circle and the limit ε = 1 corresponds to a parabola. The eccentricity distribution in a

polarized speckle pattern is [BD00]

ρε(ε) = 8ε3
(2− ε2)3 (A.6.10)

with mean value E[ε] = 0.869 and variance σ2 = 0.772. Reported in terms of the semi-axes

ratio, the expected value of q = b/a is ' 0.49, which means that the most probable ellipse has

a ratio ' 2 : 1.

For the sake of a more immediate visualization, we rewrite this probability density in terms
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Figure A.12 – PDF of the ratio b/a of the intensity (and phase gradient) profile
around phase singularities profiles in a polarized speckle pattern (left). Repre-
sentation of an ellipse with b/a = 0.5 (right).

of the ratio of the ellipse semi-axis q = b/a, with the implicit assumption that b < a. We obtain

ρq(q) = 8q(1− q2)
(1 + q2)3 (A.6.11)

This probability density function is plotted in figure A.12. The expected value of the ratio a/b

is 0.5. Interestingly, the probability of finding circular profiles (b/a ≈ 1) or very elongated ones

(b/a ≈ 0) are the smallest.

It is interesting to look also at the phase around the singularity. Let us now write the same

field as ψ(ρ, χ) = ρeiχ. The optical current associated to this field is

J = Im(ψ∗∇ψ) = ρ2∇χ

which has the direction of the phase gradient. Another quantity that we need is the vorticity

vector defined as

Ω = 1
2∇× J = 1

2 Im(∇ψ∗ ×∇ψ) = ∇ξ ×∇η

whose sign determines the circulation of J around the phase singularity.

In the linear approximation of the field around a phase singularity, the current can be

approximated by

J ≈ Ω(0)× r

Ω(0) is a constant vector, so the curves where |J | is constant are concentric circles around the

singularities and J (the current) circulates around it exactly as it happens in a vortex in fluids.

The last approximation allows writing the phase as

∇χ(r) = J

ρ2 ≈
Ω(0)

(r · ∇ξ(0))2 + (r · ∇η(0))2 × r

demonstrating that along a circle coaxial with the singularity line, ∇χ describes an ellipses of
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the same eccentricity as ρ2. We have potted the profile and phase of some configurations in

figure A.11, that have different eccentricity values.

Axial field

In polarized speckle patterns focused with high NA objectives, the axial field amplitude at the

centre of vortices depends on their topological characteristics and on the polarization state of

the beam (a detailed explanation was given in the previous section).

Without loss of generality, let us choose Cartesian coordinates centred on a given optical

vortex and aligned with the main axes of its characteristic ellipse. At first order expansion,

the transverse field may then be written:

E⊥ =
(x
a

+ iσ
y

b

) (
cos θex + eiϕ sin θey

)
(A.6.12)

where σ = ±1 is the topological charge of the vortex, θ the angle of the polarization ellipse

with respect to the x-axis and ϕ the relative phase between the x and y components of the

transverse field. Using the Maxwell-Gauss equation (∇E = 0), we obtain the axial field in the

paraxial approximation:

Ez = 1
ik

(
cos θ
a

+ iσeiϕ
sin θ
b

)
(A.6.13)

where k is the wavenumber. The axial field is thus canceled at the vortex center of

E⊥ if the beam is elliptically polarized with the same handedness (eiϕ = iσ), the

same ellipticity (tan θ = b/a) and the same orientation as the vortex. Since vortices

in random waves contain a broad statistical distribution of ellipticities, intensity cannot be

canceled at all vortices at once. Typically, a linearly x-polarized beam minimizes intensity at

vortices strongly elongated along the x dimension, and circular polarization minimizes intensity

at vortices of same handedness [PTEG16]. For imaging application, optimization of isotropic

vortices is preferable in order to obtain isotropic super-resolution in the transverse plane.
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Noise model in saturated speckle patterns

We can model the distribution of intensity of a saturated speckle pattern recorded by scanning

a fluorescent point-like object. The speckle intensity distribution is

ρI(I) = 1
〈I〉

e−
I
〈I〉 (B.0.1)

Whereas the fluorescence collected in pulsed mode is

IF = F0(1− e
Ie
Is + C/F0) (B.0.2)

where F0 is the maximum fluorescence intensity (obtained at saturation), Is is the FP satu-

ration intensity, I is the illumination intensity and C is a constant background noise. We can

calculate the intensity distribution of IF with the transformation ρF (IF ) = ρI(IF ) dI
dIF

and we

obtain

ρF (IF ) = −1
s

(
1 + C

F0
+ IF
F0

) 1
s−1

(B.0.3)

with s = Is
〈I〉 .

The PFD of finding a value of intensity I in a saturated speckle pattern, considering also

Poissonian photon noise is

P (I) =
F0∑
IF=0

Pφ(I, IF )ρF (IF ) (B.0.4)

where Pφ(I, IF ) represents the Poissonian probability of the photon count corresponding to the

intensity I, knowing that the measured intensity is IF . In figure B.1 we plot a nu numerical

simulation and experimental results.
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Figure B.1 – The upper plot shows the result of a numerical simulation of the
intensity distribution in saturated speckle patterns with increasing saturation
parameter. On top of the histograms, our model prediction is plotted with
continous lines. The lower plot shows the intensity distribution as experimentally
measured on saturated speckle patterns. A strong shift of the histogram can be
seen in the experimental data which is probably due to linear parasite background
fluorescence, which increases with excitation intensity and is not accounted for
in our simple model.
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Fluorescence model under pulsed illumination

In chapter 1 we have mentioned the fluorescence model for a simple 2-levels system. This

model is described by the following system of differential equations:


d
dtr0 = −ker0 + kfr1

d
dtr1 = ker0 − kfr1

r0(t) + r1(t) = 1 ∀t

(C.0.1)

Where r0 and r1 are the occupation rates of the ground and excited levels respectively. The

fluorescence signal at a given time is proportional to the occupation of the excited state, hence

to r1kf .

The excitation intensity I appears in the excitation rate ke = σI
hν together with the fluo-

rophore’s absorption cross-section σ and the excitation photon energy hν. ke is the excitation

rate, represents the probability of a fluorphore to be excited and increases linearly with I.

A solution of (C.0.1) can be found by elimination of r0 in the second equation with the

third. The problem becomes
d

dt
r1 + r1(ke + kf ) = ke

Which is a linear differential equation with constant coefficients. The solution corresponding

to the initial condition r1(0) = 0 is

r1(t) = s

s+ 1

[
e−(s+1)kf t − 1

]
(C.0.2)

with the saturation parameter s = I/Is = ke/kf .

In case of CW excitation, the system evolves to a steady state that can be found imposing
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the time derivatives of the system equations to be zero.

r1 = ke
kf + ke

= s

1 + s
(C.0.3)

where Is = hνkf
σ . If Is = I the steady state is a perfect balanced equilibrium between the two

fluorophore populations:

r1 = r0 = 1/2 (C.0.4)

By looking at the plot (fig 1.11) of the steady state level vs. the excitation intensity, it is

clear why Is is called saturation intensity. Before this particular value of I, the ratio of excited

fluorophores follows linearly the excitation intensity. After the system saturates and the excited

population reaches a plateau.

In the case of a pulsed excitation with a pulse duration τp much shorter than the fluo-

rescence mean life-time τp << τf = 1/kf , and with an intensity for which ke >> kf some

simplifications to the model can be done. We can for example say that the system, during the

pulse excitation, does not de-excite at all, because it doesn’t have the time to. In this case the

system of equation becomes trivial


d
dtr0 = −ker0

d
dtr1 = ker0

r0(t) + r1(t) = 1 ∀t

(C.0.5)

And the solution of the problem with r1(0) = 0 is:

r1(t) = 1− e−keτp (C.0.6)

Which is also the normalized fluorescence intensity (per pulse) as a function of the satura-

tion parameter s

f = 1− e−keτp = 1− e−s (C.0.7)

Order of magnitude of Is In order to give an example of the saturation intensity for

fluorescence excitation, we take the example of the dye ATTO-532 which has

• absorption cross section σ = 19× 10−16 cm2

• wavelength of peak emission λe = 532 nm
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• mean fluorescence life-time τf = 3.8 ns

Which gives a saturation intensity of

Is = he

στf
= hc

στfλe
= 517 kW/cm−2

with the light speed in vacuum c = 299 792 458 m s−1 and the Plank constant h = 6.626× 10−34 J s.



116



Appendix D

Wiener and RL deconvolution

In the reconstruction of saturated speckle images we make mostly use of the Wiener algorithm

and sometimes the Richardson-Lucy one. Here we will see in detail the former and underline

the differences with the second.

In a system where the image y is convolved with a PSF h and disturbed by a noise n

y = (x⊗ h) + n

the goal of the deconvolution filter is to find a function g so that (̂x) can be recovered as

x̂ = (g ⊗ y)

where x and x̂ are as similar as possible. The Wiener version of g is obtained through the

minimization of the mean square error between X and X̂, where, with capital letter, we denote

the Fourier Transform. Therefore one imposes the cost function:

rms = E
[
|X̂ −X|2

]
= E

[
|(GH − 1)X −GN |2

]
(D.0.1)

to be minimum. With the hypothesis os statistical independence between noise and signal,

this minimization leads to [Bur01]

G =
H∗E

[
|X|2

]
|H|2E [|X|2] + E [|N |2] (D.0.2)

or dividing by S = E
[
|X|2

]
G = H∗

|H|2 + ε
(D.0.3)

In the two last equations, E[|X|2] and E[|N |2] are the expected value of the power spectra of

the signal and noise respectively, so that ε = E[|N |2]
E[|X|2] represents how strong is the average noise
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compared to the signal. In practice, ε is the only parameter that the algorithm requires for

the image restoration and in most cases it is empirically estimated. Although Wiener filtering

demands very little resources, because it reduces to the calculation of some Fourier Transforms

and some algebraic operations, it does not take advantage of any other constraints applicable

to the the image x or the noise n as other algorithms do.

One of the most largely employed deconvolution algorithm is the Richardson-Lucy one[Luc74,

Ric72]. It is s a maximum-likelihood approach, like Wiener’s filter. The difference is that RL

assumes that the noise follows a Poisson distribution, which leads to the minimization of the

cost function

r(x) = hx− y log(hx) (D.0.4)

which is done iteratively over an arbitrarily chosen number of iterations.

Since Wiener filtering has a more intuitive derivation, does the least assumptions and is

extremely fast, we have preferred it to RL in general. As can be seen in figure D.1, the RL

algorithm yields reconstructions with a better S/N ratio, but this difference is more aesthetic

than functional. Therefore all deconvolution shown in this work use Wiener filtering, if not

explicitly said. Only in the case of speckle images with very low signal to noise ratio, the RL

algorithm has shown to perform better than Wiener.

a b

Figure D.1 – Comparison of reconstructed images shown in Fig. 3.5 using Wiener
deconvolution (a) and Richardson-Lucy deconvolution (b). Richardson-Lucy de-
convolution imroves the signal to noise ratio.
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Acronyms

• BE : Beam Expander

• BS : Beam Splitter

• FOV : Field Of View

• FP : FluoroPhore

• MFP : Mean Free Path

• NA : Numerical Aperture

• OTF : Optical Transfer function (see eq. 1.1.2)

• PALM : Photo-activated Localization Microscopy

• PDF : Probability Density Function

• PMT : Photo-Multiplier Tube

• PR : Phase Retrieval

• PSF : Point Spread Function (see eq.1.1.1)

• SIM : Structured Illumination Microscopy

• SLM : Spacial Light Modulator

• SR : Super-Resolution

• STORM : Stochastic Optical Reconstruction Microscopy

• SsPSF : Saturated speckle Point Spread Function

• sPSF : speckle Point Spread Function
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