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Introduction - Foreword 
This report explores some issues related to the use of tropical forest dynamics modeling as a 
management tool. A large part of my experience as a scientist has indeed been acquired in the field 
of tropical forest modeling. My initial work on plant morphogenesis modeling using L-systems 
conducted while working for CIRAD in La Réunion is not covered in this report. I have also left out the 
research conducted in Indonesia on forest biodiversity conservation value of agroforests. The 
selection of topics reflects current major thrusts of my work at AMAP. The first section is a brief 
essay on tree-tree interaction in a stand and builds heavily on the studies of rubber and damar 
agroforests in Sumatra, Indonesia. The second section exposes – through the example of water 
relations in trees – some of the difficulties one faces when using functional traits to describe and 
decipher functional diversity in tropical moist forests. A third section discusses recent advances in 
forest modeling stemming from the application of LiDAR to forest characterization. The last section is 
a brief comment on the potential role I foresee for Hierarchical Bayesian Modeling in modeling of 
hyper diverse tropical forest.  

Tree-tree interactions and the modeling of tree stand dynamics  
Longer lifespan, larger stature, more complex architecture and wider range of phenological options 
of trees compared to annual crops make modeling of multispecies tree stands dynamics somewhat 
specific. 

Tropical tree species display a wide range of leafing patterns deciduous with synchronous or 
asynchronous leaf drop, or evergreen with continuous or seasonal leaf flushing. The typically longer 
lifespan of trees confers particular importance to processes such as reserves storage and 
remobilization (of carbohydrates or nutrients) and hence temporality of growth within an annual 
cycle and between years and the nutrient budget over the years. Another consequence of long term 
development is that any particular development path may constrain the future development for 
many years ahead and notably the future options in terms of space occupation. 

Competition for light and space 
Trees at a competitive disadvantage die from crowding and suppression as a stand approaches a 
limiting number of trees of a given average size that can coexist within the area. This so-called self-
thinning mortality is the ultimate fate of the outcompeted trees unless a change in local resource 
availability allows them to recover from their suppressed status. In this competition for growth and 
survival access to light plays a critical role but space, water and nutrients are other resources which 
neighbouring trees compete for. From a managerial point of view identifying which is the most 
limiting resource may be extremely relevant but may also prove quite difficult. It may not even be 
possible in principle. According to the optimal foraging hypothesis “Plants should adjust allocation so 
that all resources equally limit growth”  (Bloom et al. 1985) and therefore plant growth may 
predominantly be co-limited by various resources rather than by a single resource. Furthermore in 
multispecies stands requirements may differ between species (and vary during the course of their 
development) so the concept of single most limiting resource may be quite elusive indeed.  
In the following however we, somewhat arbitrarily, focus on light rather than belowground 
resources. This is not meant to downplay the role of soil fertility which is essential to consider in any 
agroforestry system including multispecies tree stands. There is nonetheless a practical reason to 
focus on light and space apportioning in a tree mixture since this may be the most readily 
controllable parameter in an agroforest. By carefully planning the spatial arrangement of the co-
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planted species the practitioner can shape the current and future local competitive environment of 
each tree. The practitioner’s role does not end with planting of course and later intervention may 
include thinning a standard practice in forest management, but also pruning, transplanting, etc… 
 

Box 1: The temporal dimension of tree-tree interaction 

Competition for resource acquisition can vary strongly over time as illustrated below for two 
different time frames. The share of the 
common resource pool acquired by one 
component in a mixture may shift in time 
either seasonally or in case of extreme 
climatic fluctuations. Various tree species 
associated in a mixed agroforest stand 
exhibited a non-synchronous annual 
growth pattern in tropical wet climate of 
Sumatra (fig 1). During the drier season 
(June to August) rubber trees shed their 
leaves and their diameter growth almost 
ceased. During the same period the non-
rubber trees reached their maximum 
growth rate. This temporary increase in 
growth rate coincided with higher 
incoming light levels (due to rubber leaf 
shedding) and concomitant relaxed 
competition for belowground resource 
uptake due to rubber cessation of transpiration. Hence seasonal decrease in one resource 

(water) triggered a phenological 
response of one component in the 
species mixture which in turn 
released resource (light) for the 
other components whose growth 
subsequently increased.  

Growth records from long term 
plots in damar based agroforests 
showed that tree species 
responded differently to year-to-
year variation in rainfall. During 
exceptionally dry years mean 
diameter growth was reduced by 
as much as 50% at plot level 

(Vincent et al. 2009). However response differed markedly across species with decreases in 
diameter growth rate ranging from 5 to 80% (Figure 2). Again the competitive status of the 
various species was temporarily modified by the change in availability of one resource.  

 

Figure 1: Mean annual growth rate fluctuation over a 
two year period in a mixed rubber based agroforest in 
MuaraBungo district in Sumatra Indonesia (source 
World Agroforestry Center, unpublished). Monthly 
measurements were made at three heights on 10 
trees per species 

 

Figure 2: Growth reduction in annual stem increment in 
exceptionally dry years in two sites of damar agroforest in 
Sumatra Indonesia; redrawn from (Vincent et al. 2009). 
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Response to limiting light 
A fairly general pattern of adaptation observed under deep shade entails a series of physiological 
changes such as reduction in dark respiration, reduction in leaf mass per area, alteration of 
chlorophyll a:b ratio as well as less conspicuous changes such as reduction in leaf turnover rates 
(Henry and Aarssen 2001; Laurans et al. 2012; Vincent 2001; Vincent 2006).  Plants and notably trees 
may also display a shade avoidance response. The shade avoidance response entails modifying the 
growth characteristics such as the  height:diameter ratio of the stem but also the branching intensity 
and the leaf area ratio (Henry and Aarssen 2001; Laurans and Vincent in prep). 
The increase in height growth relative to diameter increment has long been noted and this 
“etiolation” response is known to be triggered by the reduction in the ratio of Red (R) to Far Red (FR) 
radiation in crowded conditions  (Aphalo et al. 1999; Gilbert et al. 2001). However recent analyses on 
(large) trees suggest that plasticity in H:DBH is not systematically related to species light requirement 
neither in tropical species (Harja et al. 2012) nor temperate species (Robles-Leon 2012). Nonetheless 
the ranking of species by light requirement and plasticity would appear to be consistent within 
particular phylogenetic groups (e.g. Pinaceae) in which species share common 
developmental/architectural constraints (Robles-Leon 2012). This suggests that the architectural 
model sets some limits to the possible morphogenetic paths a tree may take in response to specific 
light constraints. 
Foraging for light in plants is not restricted to increased allocation to height growth but may include 
several morphogenetic responses. Phototropism which allows plants to develop preferentially 
towards canopy gaps is mediated by blue light photoreceptors (Ballare et al. 1995; Franklin and 
Whitelam 2005). In trees such a capability probably contributes much to asymmetric crown 
development and efficient canopy space filling (Brisson 2001; Muth and Bazzaz 2002; Muth and 
Bazzaz 2003; Olesen 2001). 
Overtopped trees may adapt to low light levels by altering their architecture. Yellow birch (Betula 
alleghaniensis) is considered an extremely plastic species and is capable of displaying a variety of 
morphological responses including basal reiteration and lateral development when overtopped 
(Millet 2012). Reduced height extension and lateral expansion of crown by non-sequential (delayed) 
more orthotropic shoots on lower branches may be a common habit of individuals of the shade 
tolerant Balsam Fir (Abies balsamea) growing under closed canopy (Y Caraglio pers. Comm.). 
 
Evaluating the role of light in shaping the outcome of competition in a mixed species stand first 
requires assessing how light is apportioned between plants within the mixture, which in turn implies  
a/ to describe the stand i.e. the individual trees and their relevant 3D geometrical and optical 
characteristics to a convenient degree of detail 
b/ to identify and quantify the whole tree individual growth and development given the level of 
intercepted light. 

Light diffusion through complex canopies 
There is an abundant literature dealing with the modeling of solar radiation diffusion through a 
canopy. The basics are covered in (Campbell and Norman 1997). Various degrees of refinement of 
light partitioning over time and in a stand may be required depending on the agrosystem considered, 
the degree of seasonality (see box 1), the specific questions to be addressed, etc.  
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The general approach for computing light interception by a canopy is directional sampling of the sky 
hemisphere and spatial sampling of the scene and to determine for each corresponding ray if there is 
a direct path to the top of canopy.  
Photosynthetically Active Radiation (PAR, 400-700 nm) apportioning among individuals is computed 
by summation for each time step over all directions of the intercepted light energy. Light impinging 
on a leaf can be absorbed or scattered (transmitted or reflected), leaf absorptance is typically > 90% 
in woody plant species between 400 and 700nm wavelength (Bauerle et al. 2004). Scattering is 
therefore usually considered to be negligible when computing PAR transmission through a canopy 
which is not the case for Infra-Red wave length (Chelle and Andrieu 2007).  

A radiation model is needed to compute the energy 
associated with each ray. The entire hemisphere is 
divided into sectors. Each corresponding direction is given 
a weight equivalent to the incoming light from that sector 
which depends on the extraterrestrial solar radiation (and 
thus latitude, longitude, date and time) modified by 
atmospheric characteristics (Campbell and Norman 
1997). Incoming light is decomposed into two 
components direct solar radiation and diffuse (scattered 
by the atmosphere). The diffuse and direct light 
components can be modeled from global daily radiation 
(Spitters et al. 1986). 
 

There are a number of computer programs available to compute light within a heterogeneous tree 
canopy. They come as standalone software (e.g. MAPFLUX (Bartelink 1995; Bartelink 1998), 
MIXLIGHT (Stadt and Lieffers 2000), SLIM (Vincent and Harja 2002), MμSLIM (Da Silva et al. 2011) or 
as modules in libraries SAMSARALIGHT (Courbaud et al. 2003) available under the CAPSIS modeling 
platform (Dufour-Kowalski et al. 2012) or MMR (Dauzat et al. 2008; Dauzat et al. 2001) available 
through the AMAPStudio plant architecture software modeling suite (Griffon and Coligny 2012). They 
differ in the specifics of the radiation model, the time step at which computations are carried out, 
the geometrical description of the trees.  

Canopy description 
Our ability to describe light diffusion within a heterogeneous tree stand canopy is often primarily 
limited by our capability to describe the relevant physical features of the stand in a sufficiently 
precise way due to the geometrical complexity of a tree crown. Foliage spatial arrangement 
characteristics such as leaf area density, spatial distribution within the crown and notably degree of 
clumping and leaf angular distribution significantly affect the amount of intercepted light for a given 
light regime. A general approach is to apply a modified Beer Lambert’s law to describe the 
attenuation of light along the optical path through the crown (e.g. (Gower et al. 1999)). 

𝐼
𝐼0

= 𝑒−𝑘𝜃.Ω𝜃.𝐿𝐿𝐿.𝑑  

Where  
Ω𝜃 is a clumping factor (1 if random, <1 if clumped and >1 if regular) 
𝑘𝜃 the specific extinction factor (which will depend on the angular distribution of leaves and 

their optical properties); if leaves are considered opaque then k is the fraction of leaf area projected 
on a plane perpendicular to the beam direction 𝜃. 

 

Figure 3: Mango peripheral foliage display 
revealed by half crown pruning 
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LAD the Leaf Area Density (the ratio of leaf area per unit crown volume) 
d the path length through the crown 
I outgoing light intensity 
I0 incoming light intensity.  
The relevance of simple functions to describe the leaf distribution angles is examined and 

discussed in (Campbell 1986). Note that in the above branches are simply neglected (treated as 
foliage). 
 
The crown envelop of a tree has typically been described by more or less regular surfaces  
constrained by a small set of points derived from field measurements of tree height, crown base 
height, crown radial extension in a few directions (Boudon and Moguedec 2006; Cescatti 1997; Da 
Silva D. 2008; Vincent and Harja 2002).  
As an alternative to the turbid medium approach to modeling light extinction within a crown a 
surface based approach has been proposed (Vincent and Harja 2002). Essentially when the leaves are 
preferentially located at the periphery of the crown as it may be the case (fig 3) and porosity to light 
is independent of the direction of the incoming light then representing crown as a porous envelop 
may be a relevant approximation much more tractable in terms of parameterization. Recent 

developments of the Capsis module SAMARALIGHT  (http://capsis.cirad.fr/capsis/models) implement 
both approaches thereby providing a way to compare the two easily. More generally modeling can 
help define the relevant level of detail to be used to achieve a particular precision in light partitioning 
description (Da Silva et al. 2011). 
  
 

Laser scanners for canopy description 
LiDAR (Light Detection And Ranging) technology offers an extremely promising avenue for the 
description of tree stand canopies. The canopy is scanned at high spatial density with a narrow laser 

beam to map its physical features with 
very high resolution. The return time of 
the emitted laser pulse (or the phase 
shift) is used to determine distance to 
the target. The laser scanning system 
can be airborne (in which case it is 
coupled to an Inertia Measurement Unit 
and Differential GPS for precise 
positioning of the target) or be used at 
shorter range sitting on a tripod resting 
on the ground. 
The 3D point cloud produced by laser 
scanning provides a detailed description 
of the geometry of the canopy. However 
extracting the information of direct use 

for light computation (or individual tree growth monitoring) requires further processing of the raw 
point cloud. Two currently active areas of research address the issues of a/ segmentation of 
individual crowns within a canopy and b/ separating foliage from branches within individual crowns.  
Delineation of individual crowns from areal LiDAR coverage has been achieved successfully in fairly 
open boreal forest (Morsdorf et al. 2004). Segmentation accuracy can be improved if complementary 

 
Figure 4: Raw 3D point cloud of natural forest produced by 
airborne laser scanning (plot of 6 ha French Guiana, Montagne 
Plomb) 

http://capsis.cirad.fr/capsis/models
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spectral information is available 
(Huertas 2013; Leckie et al. 2003). 
Promising results from high density 
LiDAR aerial scans have been 
obtained in multilayered 
Mediterranean forests (Ferraz et al. 
2012) and Bavarian mixed 
temperate forest (Reitberger et al. 
2009). In dense moist forest  stands 
however because of limited signal 
penetration only the dominant/co-
dominant trees will be correctly 
described (Vincent et al. 2012c). In 

such cases combining ground acquisition from below the canopy with aerial coverage may provide 
adequate description of the entire canopy reducing the shadowing by acquiring views from multiple 
directions. (fig 5). 
 
The spectral range (NIR, UV or visible light) of a laser beam is typically very narrow and distinguishing 
pulses reflected by branches or leaves is not straightforward. Interesting results have been obtained 
by taking advantage of the fact that the intensity of the return pulse is affected by the reflectance of 
the surface which allows some level of filtering between wood and foliage (Béland et al. 2011). 
Multispectral LiDAR systems (Morsdorf et al. 2009) when they become available should make 
discrimination based on reflectance more effective. Another line of work which can contribute to 
discriminate branches from foliage relies on skeletonizing the point cloud to retrieve geometrical on 
the branching structure and use that information as a guide to differentiate the branches from 
foliage. (Bucksch et al. 2009) review the different skeletonizing approaches which can be applied to 
tree stand LiDAR scans. 
(Côté et al. 2012) proposed an integrated approach to reconstruction of tree architecture (woody 
skeleton and foliage distribution) combining TLiDAR scans and external independent information on 
tree attributes (height, diameter) and allometric scaling rules.  It makes use of the range (distance) 
and intensity information of the TLiDAR scans (i) to extract the stem and main branches of the tree, 
(ii) to reconstruct the fine branching structure at locations where the presence of foliage is very 
likely, and (iii) to use the availability of light as a criterion to add foliage in the center of the crown 
where LiDAR information is sparse or absent due to occlusion effects.   
Current progress in LiDAR scanning system capabilities and point cloud data processing is likely to 
significantly improve our ability not only to characterize light constraints to which individual trees are 
subjected but also their global morphogenetic response (Omasa et al. 2007). Multitemporal scans 
already give direct access to individual tree height growth (Yu et al. 2005) provided individual crown 
tops can be located (which is an easier task than segmentation of the entire crowns), seasonal 
change in leaf area (Hosoi and Omasa 2009). Crown displacement by asymmetric growth or stem 
bending (due to phototropism or gravitropism) are also potentially accessible from sufficiently 
detailed repeated scans (Dassot et al. 2011; Seidel et al. 2011).  

  

 
Figure 5: An evergreen holm oak forest transect obtained from TLS at 
the experimental site of Puéchabon, France. 
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How predictable is whole tree response to light? 
The lack of adequate data have so far largely prevented effectively taking into account 
morphogenetic qualitative or quantitative response of trees to local crowding in models except in an 
fairly exploratory mode (Vincent and Harja Asmara 2008). There is abundant evidence that tree 
alllometric relations between height, diameter and crown size of individual trees depend on the local  
competitive context (Antin et al. 2013; Fortin et al. 2009; Harja et al. 2012; Pretzsch and Dieler 2012; 
Vincent et al. 2012a) and that this response is very much species dependent.  
 

We conducted an analysis of 77876 stems height records of 15 
abundant species from the Forest Inventory of Québec 
(Ministère des Ressources Naturelles et de la Faune, Québec). 
Competitive status was defined as the difference between 
subject tree diameter and plot mean quadratic diameter. It 
was found that height:diameter ratio varied in a non-
monotonic fashion with competitive status in many species. 
Even though all species gradually increased height as the 
competitive status moved from dominant to co-dominant, 
suppressed trees tended to be either squatter or more slender 
depending on the species (Vincent et al. in  prep). Hence many 
species did not display the expected increased slenderness 
over the entire range of social statuses explored from 
dominant to suppressed. The peculiar shade acclimation 
response which translates into preferred increase in diameter 
over height growth when overtopped requires further scrutiny 
as its morphogenetic basis is likely to vary across species 
(Millet 2012). 

 
Other morphological response to strong 
anisotropy to light and space can differ markedly 
between species. Figure 4 and 5 illustrate the 
contrasting response to high planting density on 
the row and large inter row distances in rubber 
plantation (in Sumatra) and Casuarina hedgerow 
(in India). In the former case neighbouring trees 
show distinct alternate tilt along the row which 
limits encroachment and increases individual tree 
access to space and light, while in the latter trees 
develop a flattened crown while the main axis 
remains strictly vertical. This illustrates how 
species may differ in their response to a similar 
constraint not only in terms of amplitude but also 
in the nature of the response. However to date 
our knowledge on morphogenetic response of 
trees is extremely limited.  

 

Figure 6: High density planting along 
the row and wide interrows in rubber 
generates alternate tilting to maximize 
space and light use (Indonesian Rubber 

    

 

Figure 7: Windbreak of Casuarina sp. (Tamil Nadu, India) 
a nitrogen fixator able pionneer species : main stem 
stays perfectly vertical despite strong anisotropy of light 
(© IRD - Nambiar-Veetil, Mathish). 



16 
 

Box 2 : Sexi-FS:  An individual-based forest stand model with plastic crown development  

 

There is ample direct and indirect evidence that tree crown plasticity is important to consider in 
order to correctly capture competition and affects demographic processes (Bohlman and Pacala 
2012; Purves et al. 2008; Vincent and Harja Asmara 2008). SExI-FS 
(http://www.worldagroforestry.org/sea/sexi-fs) is a tree growth model that focuses on tree-tree 
interactions in a multi-species stands. It simulates on an annual time step recruitment, growth 
and death on individual trees. The model uses an object-oriented approach where each tree is 
represented by a simple 3D deformable model. The simulated trees interact by modifying their 
environment and primarily the level of space and light available locally. The tree shape 
deformation algorithm STReTCH (Shape Transformation Response of Trees in Crowded Habitats) 
considers both a global response to shading and a local response to light anisotropy. Vertical 
stretching of a tree (the relative allocation to diameter and height growth) and subsequent crown 
base rise is governed by species temperament and degree of lateral shading. Local crown 
deformation occurs in response to anisotropic light regime. Global displacement of the crown 
through bending of the main stem (whole tree phototropism response) is not considered in the 
model. 

  

Figure 8: left: A simulated stand with random spacing. Right: A 3D view of the highlighted tree on the left side view. 

  

http://www.worldagroforestry.org/sea/sexi-fs
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Figure 9: A Sexi-FS simulated stand with arbitrary parameters and leafy texture at year 10, 20 and 30 (from top to 
bottom); left : front view, right : top view; note that a toric space is considered by which border trees on one side act 
as neighbors of border trees of the opposite side. 

Conclusion/open questions 
Even fairly crude spatially explicit individual-based models require a large set of species specific 
parameters to be estimated. Those parameters will describe the specific potential growth curve, the 
change in tree shape with tree size, sensitivity to light level, etc… Agroforests are typically composed 
of many different species not to mention natural tropical forest, so calibration of such models is a key 
issue to be addressed. One possible avenue may be to describe the functional diversity in a system as 
a set of functional types rather than actual species. Functional types are groups of species with 
similar ecological strategies which are likely to share at least some trait values. 
Based on existing plant trait databases (Kattge et al. 2011) one may hope to be able to cluster species 
into relevant functional types based on carefully selected traits that are critical to the processes of 
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interest. The paradigm on which such a hope rests is that particular combinations of traits (or trait 
values) define plant functional types with consistent niche and ecological performance (Kraft et al. 
2008). This could significantly alleviate the calibration efforts to be made. However identifying which 
functional traits and functional types should be considered is far from obvious. Potentially useful 
candidate traits include traits such as nitrogen fixing capability, rooting depth, hydraulic conductance 
(xylem resistance to cavitation (Cochard et al. 2008) but see (Maherali et al. 2004)), leaf mass per 
area, wood density, life history traits (age of sexual maturity, seed production,…), stature (maximum 
tree height or diameter). 
To date the largest public plant trait database http://www.try-db.org/de/TabDetails.php contains 
both plant functional traits sensu (Violle et al. 2007) which are traits measurable at individual plant 
level and species parameters (life history traits such as lifespan or global species characteristics such 
as tolerance to fire).  
Few traits in the TRY database are related to tree architecture (mostly physiognomy based like the 
furcation ratio rather than architecture based) and virtually no traits related to morphogenetic 
plasticity are yet included. The incorporation of morphogenetic traits in addition to more 
conventional plant traits would add explicit consideration of time in development of plant body. 
Ontogeny is of particular resonance for plants which typically show indeterminate growth and often 
face varied environmental (biotic and abiotic) stresses throughout their life time. The architectural 
development (and its plasticity) will control the precise spatial placement and timing of organ display 
and turnover and thereby affect growth performance and fitness. However development strategy 
does not easily lend itself to being broken down into elementary traits and the quest for relevant 
architectural functional traits is still open. 
Nonetheless because morphological, physiological and architectural traits are expected to co-evolve 
rather than to be independently selected, consistent morphogenetic strategies are likely to be 
correlated to syndromes of traits more regularly measured and collected.  
More on functional traits in the next section… 
 

http://www.try-db.org/de/TabDetails.php
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On the often elusive interpretation of “functional” trait values 
In this section I present unpublished research results to illustrate some of the difficulties that need to 
be overcome before meaningfully incorporating a functional trait approach to forest dynamics 
modeling. 

Commonly used traits in plant ecology can often be attached to a specific dimension of the functional 
traits space such as resource capture and use (Specific leaf area, leaf N content, body size), or life 
history traits (seed mass, seed number, age of sexual maturity...) and survival strategy (wood density, 
leaf toughness,…).  
However, it seems that functional traits which are measured on individual trees are often chosen 
based on an accessibility criterion rather than because they can consistently be linked to a particular 
function or set of functions. While some species traits (growth form, size, fruit type, deciduousness, 
presence of pneumatophores,…) unequivocally inform on species niche or species strategy, many 
tree level traits may be much more difficult to interpret  (bark thickness, wood density or even 13C 
content).  In this section we examine the case of 13C content which is easy to measure and therefore 
is commonly recorded.  

The climate in French Guiana is driven by the north/south movements of the Inter-Tropical 
Convergence Zone, which cause large seasonal variations in rainfall. During the dry season in French 
Guiana there is a measurable decrease of transpiration in spite of the observed increase of 
evaporative demand (Bonal et al. 2000; Granier et al. 1992; Roche 1983). Furthermore intra-annual 
variation in growth rate has been related to soil water content (Wagner et al. 2012). Hence it is safe 
to consider that water availability is, at least at times, limiting in the area. One may therefore expect 
that differences in Water Use Efficiency (WUE) will contribute to shaping the hydrological niche of 
co-occurring species. Species more efficient in their water use should have a competitive advantage 
over less efficient species in areas where soil water deficit is likely to occur on a regular basis. 
Conversely in areas where water is always abundant maximizing carbon uptake irrespective to water 
use efficiency should prove a better competitive strategy. Is this the case? 
 
We must first critically examine the reliability of WUE values. Instantaneous WUE, the ratio of CO2 
uptake to H20 loss can be measured by gas exchange measurements conducted at leaf level. 
Instantaneous WUE is however highly dependent on current environmental conditions and subject to 
short term variations of high amplitude (Jones 1993). On the other hand « intrinsic » WUE which is 
accessible through dosage of isotopic content of leaf tissue is more integrative. This ratio is 
commonly used as a long term indicator of leaf internal regulation of C02/H20 fluxes (Griffiths 1991). 
Environmental conditions (and notably evaporative demand, Photosynthetic Photon Flux Density 
(PPFD), Soil Water Content (SWC)) may however greatly affect this intrinsic WUE. Hence when 
comparing individuals/species care should be taken so as to control as much as possible for those 
environmental factors, and ideally comparison should be conducted on organs of similar age 
collected on the same site at the same time.  
 
In an attempt to assess robustness of this trait we have compared estimates for a set of species 
obtained from isotopic dosage in two different data sets.  In the BRIDGE project leaves of adult trees 
were systematically sampled from 9 one ha plots of terra firme forest scattered over French Guiana 
and their local light exposure recorded (Baraloto et al. 2010). In the DyGEPop project leaves were 
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collected in two sites (Paracou Experimental Station, and Piste Saint Elie) from saplings belonging to 
16 species growing in a range of Canopy Openness (Vincent et al. 2012b) but excluding water logged 
areas.  
In both cases WUE was corrected for light exposure by introducing a Light index co-variable. 
 
Box 3 : Intrinsic Water Use Efficiency measurement 

Two stable isotopes of carbon exist in the atmosphere 12C et 13C (molecular ratio 89 :1). The value of 
this ratio in plants is informative of plant functioning because diffusive and carboxylation processes 
discriminate differently against 13C . 
 
𝛿13𝐶 laboratory values of 13C dosage are usually expressed as concentration relative to a 
international standard (Vienna PeeDee Belemnite). These values are typically negative (average -27 
‰) and are converted into discrimination values relative to the source (𝛿13𝐶𝑎𝑎𝑎)  and noted 
∆13𝐶 (Farquhar et al. 1989).  
 

∆13𝐶=
𝛿13𝐶𝑎𝑎𝑎 − 𝛿13𝐶𝑝𝑝𝑝𝑝𝑝

1 + 𝛿13𝐶𝑝𝑝𝑝𝑝𝑝
 

 
Note that positive values of ∆13𝐶 are indicative of a reduction in 13C content (i.e. discrimination 
against 13C). 
 
A simple model  proposed by (Farquhar and Sharkey 1982) and discussed in (Seibt et al. 2008) relates 
the photosynthetic discrimination ∆ of 13C resulting from fractionation during diffusion and 
carboxylation to the ratio of stomata internal to atmospheric concentration in CO2 in the following 
way:  

 

∆𝑙𝑙𝑙= 𝑎 + (𝑏ʹ − 𝑎)
𝐶𝑖
𝐶𝑎

 

Where 
Ci is the intra-stomata concentration in CO2 
Ca is the concentration of CO2 in ambient air 
a is the fractionation of CO2 during diffusion (4,4 ‰)  
b’ is the fractionation of CO2 due to carboxylation (Rubisco ~27 ‰). 

 
In the above formulation it is clear that ∆ depends on the CO2 ratio ci/ca which itself depends on 
stomatal conductance. When stomata close the internal concentration will diminish and so will ∆. 
More generally ci/ca reflects the equilibrium between net assimilation rate A and CO2 stomatal 
conductance gsc. According to Fick’s law A=gsc(ca-ci). Noting that water and CO2 stomatal conductance 
are proportional gsw=1.6 gsc the linear relation between ci/ca and Δ can be used to compute the 
intrinsic WUE. 

𝑊𝑔.𝑙𝑙𝑙 =
𝐴
𝑔𝑠𝑠

=
𝐶𝑎
1.6 �

𝑏ʹ − ∆𝑙𝑙𝑙
𝑏ʹ − 𝑎 � 

Daily average CO2 atmospheric content can be significantly higher and 𝛿13𝐶𝑎𝑎𝑎 significantly lower in 
the understorey than in the upper canopy (values 𝛿13𝐶𝑎𝑎𝑎 =- 11.4‰  vs -7.7‰ cited in (Jones 1993) 
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and similar estimates are found in (Buchmann et al. 1997; Sternberg et al. 1989). In this analysis we 
considered an atmospheric reference value of - 11‰ for samples taken in the understory and -8‰ 
for samples from canopy trees. Seasonal variation in 𝛿13𝐶𝑎𝑎𝑎 were neglected in this study 
(Buchmann et al. 1997).  

Finally it should be noted that the calculations presented above neglect differences in mesophyll 
conductance  and photorespiration which also affect albeit moderately leaf level discrimination of 13C 
(Seibt et al. 2008). In addition this WUE is limited to leaf and does not integrate heterotrophic tissue 
respiration or water loss through the cuticle or lenticels.  

The full model proposed by (Farquhar and Sharkey 1982) is the following 

Δc = 𝑎 + (𝑏 − 𝑎)
𝐶𝑖
𝐶𝑎

− (𝑏 − 𝑎𝑚)
𝐴

𝑔𝑖𝐶𝑎
−  𝑓

Γ∗
𝐶𝑎

 

Where  

g I = internal mesophyll conductance CO2 in mol.m-2.s-1; 
am = fractionation due to mesophyll transport (1.8‰) 
Γ∗ = CO2 compensation point in μmol.mol-1 
f = fractionation during photorespiration (8‰) 
 
The full model above is not commonly used because it requires knowledge of the CO2 

compensation point and the internal mesophyll conductance value. 

More than 1200 leaf samples were used to rank 16 species by WUE both at sapling and adult stage: 
461 samples from canopy trees (of which 409 were part of the Bridge project) and 783 samples from 
saplings. The ranking between adults and sapling stages is largely consistent (figure 10) while the 
amplitude of the response is very large. Indeed the range of ∆13𝐶 found for the 16 species is 
indicative of a fourfold WUE variation between extreme species. 

List of species studied in situ  

 Family Species Abbreviation  
Caesalpiniaceae Bocoa prouacensis BP 
Caesalpiniaceae Dicorynia guianensis DG 
Caesalpiniaceae Eperua falcata EF 
Caesalpiniaceae Eperua grandiflora EG 
Lecythidaceae Gustavia hexapetala GH 
Chrysobalanaceae Licania alba LA 
Lecythidaceae Lecythis persistens LP 
Annonaceae Oxandra asbeckii OA 
Sapotaceae Pradosia cochlearia PC 
Vochysiaceae Qualea rosea QR 
Lauraceae Sextonia rubra SR 
Leguminosae Spirotropis longifolia SL 
Clusiaceae Symphonia sp. 1 SS 
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However large the variation in WUE it 
does not seem to relate with species 
known hydrological preferences 
(Sabatier et al. 1997; Vincent et al. 
2011a). No correlation exists 
between leaf isotopic discrimination 
and the hydrological index derived 
from species association with local 
drainage condition proposed in 
(Vincent et al. 2011a) for the 14 
species common to both studies. As a 
matter of fact Eperua species which 
have contrasted distribution (Eperua 
falcata tolerating more 
hydromorphic conditions than E 
grandiflora) fall at the same end of 
the ∆13𝐶  gradient.  

In a companion experiment, 
one-year old seedlings were 
grown in a greenhouse under 
controlled soil water content 
(100% and 50% water holding 
capacity and homogeneous 
light environment). After 5 
mo the moderately stressed 
plants had accumulated 30% 
less carbon than the control 
plants. In this experiment a 
third Eperua species was 
included (E. rubiginosa), a 
species found in riverine 
forest or seasonally flooded 
forest thereby widening the 
hydrological range of the 
species compared. After 5 
months of growth recently 
emitted leaves were collected 

from ten individuals per species per treatment and the carbon isotopic content determined (fig 11). A 
small difference in WUE (lower for ER) was found but its magnitude was much lower than the 
difference associated with treatment effect (the latter being about five times as large) while the 
response of the three species was very similar: they all responded to water deprivation by an 
increase in their water use efficiency. 

 

Figure 11: Leaf level ∆𝟏𝟏𝑪 content obtained in a greenhouse under 
contrasting water availability. Despite the contrasted hydrological niche of 
the species considered, the species effect is an order of magnitude less 
important than the water shortage effect on isotopic discrimination and 
intrinsic Water Use Efficiency. EF Eperua falcata, EG Epeura grandiflora, ER 
Eperua rubuginosa. 
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Figure 10 : Leaf isotopic discrimination of 16 Amazonian species 
(corrected for light exposure) (r, Pearson correlation coefficient) 
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Yet another test was conducted with a species 
showing a large hydrological niche. Young 
leaves of Spirotropis longifolia saplings were 
sampled (5 individuals per site) either in a 
seasonally flooded thalweg or a nearby hilltop 
either in gap or in the understory (fig 12). Both 
light regime and water logging strongly 
affected ∆13𝐶. The median value per site 
(0.022 to 0.027) spanned the entire range of 
the species mean values described above. 

 

 

 

Conclusion 
Isotopic discrimination which is directly related to the essential trade-off between C uptake and 
water loss seemed a good candidate functional trait. It appears however to be very sensitive to 
environmental conditions and therefore it can hardly be interpreted without knowledge of the 
specific environmental conditions prevailing during leaf development. Even when care is taken to 
control as much as possible for those factors of variation, relating ∆13𝐶  to the realized hydrological 
niche seems at best difficult. To some extent the results presented above may appear contradictory. 
On the one hand a fairly strong correlation between adult and sapling mean species values seems to 
indicate that the species mean estimate is robust. On the other hand it appears that the value for an 
individual is much dependent on light environment and local drainage which is uneasy to 
characterize precisely in the forest. So part of the apparent consistency may reflect species 
distribution in relation to light/water regime factors rather than the species intrinsic value. Another 
point to consider is that in the greenhouse experiment (in which we found that more flood tolerating 
species had lower WUE as hypothesized) we compared congeneric species. Phylogenetic proximity 
reduced the likelihood that other discrimination steps unrelated to carboxylation and stomata 
diffusion (photorespiration and mesophyll diffusion) would differ much between species. The bottom 
line is that the species difference in WUE was found to be small among the Eperua species despite 
the contrasting hydrological niches of those species. The difference was small both in respect to the 
magnitude of the environmental effect as well as to the range of values found for the 16 species 
studied.  

 

 

  

 

Figure 12: Leaf level ∆𝟏𝟏𝑪 of Spirotropis longifolia 
saplings sampled either in a thalweg or on a ridge 
and either in a gap or in the understorey . 
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Taking a new look at the forest: the LiDAR revolution 
Much of my current activity is geared towards LiDAR application to forest ecology. LiDAR has indeed 
literally revolutionized the way foresters access to forest 3D structure and is largely recognized as 
holding enormous promise for the future of forest resource management (Hudak et al. 2009; 
Palminteri et al. 2012; Vierling et al. 2008). 

I have previously mentioned some areas where LiDAR is already making a direct contribution to 
forest modeling.  These include tree allometry (Vincent et al. 2012a), and morphological plasticity 
description (mostly via Terrestrial Laser Scanners), LAI estimate (Hopkinson and Chasmer 2007; 
Hopkinson et al. 2013; Richardson et al. 2009). We illustrate other potential application of LiDAR 
which may greatly serve forest dynamic modeling with some of our recent work. We also propose a 
novel approach to LAI estimates from full waveform ALS data. 

Forest type mapping 
Mapping forests is a major challenge and a logical preliminary step to any rational management. 
While satellite imagery has been largely used to stratify forest at the landscape scale (Gond et al. 
2011) there is a need to bridge the gap between plot level data (which typically cover < 10-6 of the 
total forested area) and satellite imagery. Areal Laser Scanning is well suited for this purpose. ALS 
conveys information which can relate both to plot level information e.g. (Vincent et al. 2012c) and to 
satellite imagery (LAI, Fraction of Vegetation Cover,…) 

Forest type discrimination. The detailed structure of the canopy surface which is accessible through 
most systems (including single return pulse, low penetration systems) has proven effective in 
discriminating between forest types of similar stature 

 
Figure 13: Snapshots of Canopy Height Model for different forest type (rows). Left: 64x64m² plots, Right: 32x32m² plots. 
The texture of the  Canopy Height Model is key to distinguishing forest types when mean height is not discriminant 
(Kennel et al. 2013) 

More recent systems with higher penetration provide rich information about the canopy profile. 
Complementary to canopy surface models, canopy profiles can be used for forest type discrimination 
and segmentation. 

Raw point cloud density profiles however may differ markedly from vegetation density profiles due to 
increasing occultation towards the bottom of the canopy. The latter are more directly interpretable 
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and less affected by differences in acquisition characteristics (and notably penetration). Vegetation 
density profile can be computed via a voxel representation of the 3D scene where point density in 
each voxel is corrected for varying sampling intensity (number of ray beams effectively entering the 
voxel). An illustration of such analysis applied to forest monitoring is provided in the next paragraph. 

Forest degradation and recovery monitoring (Andersen et al. in press; Rutishauser et al. in 
prep)  

The Reduction of Emissions due to Deforestation and forest Degradation (REDD+) framework 
requires reliable large-scale assessments of carbon stocks, that are still lacking in most tropical 
countries (Houghton et al. 2009). In recent years, much attention has been paid to deforestation, 
while forest degradation has remained poorly studied (Herold et al. 2011; Mertz et al. 2012). 
Worldwide monitoring of deforestation now implies a combination of remote sensing imagery and 
field inventories (FAO 2010). However forest degradation remains largely invisible on satellite 
imagery, even though it can substantially contribute to forest carbon emissions (Asner et al. 2005). 
There is a need to better define forest degradation and quantify related carbon loss on large 
surfaces. 

Airborne LiDAR technology which has proven capable of providing high resolution, high accuracy 
maps of forest biomass is likely to play a critical role in the monitoring of forest degradation and 
recovery after disturbance. Through accurate descriptions of the vertical forest structure, LiDAR is 
able to detect fine-scale changes in forest canopies and track them over time. 

Figure 14 illustrates contrasted vegetation profiles resulting from various logging intensities which 
took place 15 years before LiDAR data acquisition. From those plots it is clear that increasing logging 
intensity not only reduced mean canopy height but also increased subcanopy vegetation density 
thereby modifying the expected relation between LiDAR derived height and forest biomass 
(Rutishauser et al. in prep).  

Vegetation density plotted in figure 14 is really one minus the mean gap fraction per layer. It 
combines the effect of canopy gaps and the “Plant Area Index” of continuous canopy cover. Canopy 
gaps can be computed from canopy height model as the proportion of cells where canopy height is 
below a certain height threshold. Not surprisingly (Rutishauser et al. in prep) observe that the 
difference in maximum vegetation density between plots having been logged-over with different 
intensities coincides with a difference in canopy gap frequency. Canopy gaps are less frequent 15 
years after logging than in unlogged forest. It is likely that secondary regrowth has filled the logging 
gaps while natural gaps created by tree fall tend to be rarer in the 15 years following the removal of 
the largest trees than in control forest plots. 
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LAI estimate from ALS 

Leaf Area Index of tropical moist forest is still poorly characterized (Clark et al. 2008) both in its 
absolute range and in terms of its temporal and spatial variation (Doughty and Goulden 2008). Most 
modern airborne scanning systems record multiple return pulses per laser shot (or even the entire 
digitized return wave while wave form analysis is done offline like in the case of the Riegl LMSQ560). 
Potential of ALS for estimating Plant Area Index (i.e. without distinguishing leaves and woody 
material) has long been noted. A classical approach exposed in (Morsdorf et al. 2006) has been to 
evaluate the LAI index by the contact frequency method in which the laser beam is treated as a 
probe. Noting that the area index is proportional to the contact frequency N of a vertical line through 
the canopy, i.e.  LAI=N/k where k is the extinction coefficient, a function of the angular distribution of 
the elements of the canopy k=0.5 in case of random spherical distribution (Campbell and Norman 
1997). Hence the cumulated number of vegetation returns per number of shots provides an estimate 
of the LAI. Of course the result will depend on the sensor specification (emitted energy, detection 
threshold, footprint size notably) and hence needs to be calibrated for each system (and vegetation 
type). In the previous approach a necessary first step is to cluster canopy into gaps and non-gaps and 
then to restrict the analysis to vegetation so as to capture the first level of heterogeneity (horizontal 
clumping) and thereby improve LAI estimates at scene scale. In the contact frequency approach 
however one must assume that the beam width is negligible. This assumption is hardly tenable since 
the foot print typical size will be of a few decimeters and well above the typical leaf size. Conversely 

 

Figure 14: Fifteen years after logging, LiDAR echo point cloud profile reveals strong difference in mean height 
canopy. Processing LiDAR data using ray tracing further reveals a qualitative change in vegetation vertical 
distribution and notably higher maximum vegetation density in logged over forest. Logging intensities increase 
from T0 (control) to T3 (ca. half of initial Basal Area removed). Paracou, French Guiana.  
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this relatively large footprint allows for the laser beam to penetrate the vegetation and record more 
than one return per shot. Laser scanners also register the intensity of each echo which is an index of 
the backscattered energy associated with that echo (Jutzi and Gross 2009). These characteristics may 
be used to improve the LAI estimates as suggested below. 

In September 2013 ALS acquisition over the Paracou experimental site was undertaken (with a Riegl 
LMS Q560 emitting à 1500nm +/-20 degree swath angle flown 500m above ground level). A 60x60cm 
Spectralon© panel was exposed in an open area on site. Spectralon© is a fluoropolymer which 
exhibits highly Lambertian behavior and high (>95%) reflectance in near infrared.  Eight shots hit the 
Spectralon© panel. 

The intensity information provided by ALS systems describes the amount of backscattered pulse 
energy (Ullrich and Pfennigbauer 2011; Wagner et al. 2008). The echo waveform received by full-
waveform ALS systems is the result of a convolution of the system waveform and the backscattering 
cross-section of the illuminated object surface (Jutzi and Stilla 2006). The backscattering cross-
section (in units of square meters) is a measure of the electromagnetic energy intercepted and re-
radiated by objects backwards towards the sensor. Let 𝜎𝑖 be the backscatter cross-section of target i, 

𝜎𝑖 =
4𝜋
Ω𝑖

 𝜌𝑖 𝐴𝑖  

 where Ω𝑖  is the scattering solid angle of the target in steradians, 𝜌𝑖 is the reflectivity of the target, 
and 𝐴𝑖  is the effective area of collision of target i. Because in ALS the wavelength is always much 
smaller than the size of the targets, 𝐴𝑖 is simply the projected area of the scatterer. 

If it is assumed that different echoes associated to one lidar shot are produced by one target type 
characterized by similar scattering characteristics (reflectivity and scattering solid angle) then the 
backscattering cross-section of each echo is proportional to the effective area of collision of the 
different targets. 

However since the emitted 
pulse is attenuated by the 
successive hits the effective 
area of the footprint is reduced 
accordingly. As laser fires 
downward one may assume 
that the entire pulse interacts 
with targets and is 
subsequently backscattered 
towards the sensor (i.e. we 
assume here that no specular 
backscattering occurs). 
Noticeably, the mean 
cumulated energy of shots not 
reaching the ground is stable 
and independent of the 
number of hits (Fig 15). 
Considering only canopy single 

 

Figure 15: Cumulated “pseudo” backscattered cross-section per shot 
(assuming 100% target reflectivity).  
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returns the median registered energy for vegetation is ~17% of a purely lambertian 100% reflectivity 
target. Those estimates should be considered in the light of the “typical” 20% reflectance of broad 
leaf forest (Baldridge et al. 2009; Pu 2008) at 1550nm. 

This consistent energy retrieval (consistent on a statistical basis) opens-up different possible avenues 
to make better use of the information available from full wave form lidar. For instance vegetation 
density profiles could be based on the ratio between individual backscattering area of the successive 
echoes along a pulse and the estimated remaining effective sampling area of the down going pulse. 
Of course this supposes to know reflectivity of the targets. 

A fairly straightforward application of the consistent energy retrieval observed can lead to improved 
LAI estimates. Assuming that ground has stable scattering characteristics (but making no assumption 
of reflectance regularity of the vegetation component) one can estimate the proportion of each 
pulse reaching the ground, by comparing single ground returns energy (not intercepted by canopy) 
with higher order ground returns. For each shot the energy reaching the ground is then 0 if no 
ground echo is detected or the ratio of the returned intensity to the typical energy of single return 
hitting the ground. 

Extinction rate=1 – (energy reaching the ground/total emitted energy) 

=1-( actual ground backscatter cross-section/ single ground return backscatter cross-section) 

Hence by considering the average extinction rate of all shots aiming at a particular area and applying 
a simple model of extinction we obtain a first estimate of effective LAI for that area. If clumping is 
neglected and distribution of foliage assumed to be random spherical we may apply the simple 
relation I/I0=exp(-0.5*LAI). Interestingly this LAI estimate does not require radiometric calibration. Of 
course it will need to be fine-tuned since the distribution of canopy elements will likely depart from 
random spherical distribution and this will need to be estimated separately, for example from high 
resolution terrestrial lidar scans (Béland et al. 2011). It should also be noted that ground reflectance 
shows considerable variability as can be seen in Figure 15. Statistics shown in Figure 15 are based on 
150000 shots in a quarter km2 in Paracou of which less than 10% reached the ground and only 3% 
reached the ground without triggering a vegetation echo on the way. The sample area included 
closed canopy forest but also a dirt track and a sandy helicopter drop zone. Local estimate of fraction 
of energy reaching the ground will need to be based on a sufficiently large number of single return 
ground hits if variability in ground reflectance does not follow a predictable pattern (which has not 
been examined yet).  

Detecting change in mortality rates over time and space (Thomas et al. 2013; Vincent et al. 
2011b). Mortality rates may already be affected by climate change (Phillips 1998; Phillips et al. 2010). 
Change in tropical forest trees turnover rates may affect both carbon stock and carbon mean-
residence-time and impact the global carbon balance. However field monitoring plots are scarce and 
cover limited area and may be inadequate to detect global changes in mortality rates not to mention 
possibly different trends across space (Fisher et al. 2008). Repeated aerial LiDAR coverage which 
provides high resolution 3D characterization of forest structure can yield high resolution maps of 
canopy turnover which can readily fill this data gap. 
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Can Bayes help break the curse of rare species? 
One major difficulty in tropical forest modeling lies in the abundance of rare species in any local 
community or pool of local communities (ter Steege et al. 2013). This means that estimating 
demographic parameters and response to environmental constraints of those numerous species is 
extremely difficult. Since rare species (i.e. species with few individuals recorded in a given dataset) 
are frequent and may represent a significant part of the tree community our understanding and 
ability to predict community dynamics is much dependent on the (in)accuracy of the rare species 
parameter estimates. 

Bayesian modeling approach has much to offer in the context of high biological diversity of tropical 
forest. The essence of Bayesian inference is in the rule, known as Bayes' theorem, that tells us how to 
update our initial probabilities P(H) if we see evidence E, in order to find out P(H|E). 
P(H/E)=P(E/H)*P(H)/P(E) 
Bayesian modeling allows blending in a rigorous framework a priori expert knowledge and 
experimental data. Bayesian statistics are gaining wide popularity in ecological science (Clark 2005).  
Bayesian modeling indeed has many attractive features. It can deal with large number of predictors 
while controlling risks of over-parameterization. It can formally accommodate for uncertainty in the 
predictors (as well as in the response variables). It offers a possibility of modeling latent variables 
(non-observable variables). It can deal with multiple level of stochasticity (nested random structure, 
autocorrelation,…) 
Hierarchical Bayesian Models (HBM) treating species specific parameters as random and using non-
informative prior distribution will lead to shrinkage of rare species estimates towards the grand 
mean (Hoff 2010). This so called trade-off between  variance and bias provides an interesting way to 
reduce the prediction error made on rare species parameter estimates (Chalant 2013). A fairly 
straight forward extension of this approach - which we have not tested yet - is to group species 
(according for instance to a priori knowledge or functional traits syndromes) and to posit similarity 
between groups (i.e. shrink species towards the group mean rather than a grand mean). 

An alternative approach to functional grouping which is apparently gaining momentum (Aubry-Kientz 
et al. 2013; Hérault et al. 2011) introduces functional trait values as predictors of growth or mortality 
rates in lieu of species identity. The upholders of the functional trait “direct” approach argue that it 
has the merit of limiting parameter number inflation associated with high species richness since 
instead of parameterizing the function for each species in the community, functional traits are used 
to parameterize a global function which depends only on the selected functional traits. 

We contend that the approach based on grouping species on the basis of syndrome of traits while 
keeping species identity may be preferable for a number of reasons. First the data reduction process 
achieved by using functional traits as direct predictors may be far from optimal, and much 
information in the data can be lost during that step. This is especially likely since the current 
knowledge base on functional traits of tropical trees is extremely limited. Many species may not have 
known trait values and a large fraction of traits measured may have little relevance to characterize 
species ecological strategy. Another issue is that the shape of the sub-models used to relate trait 
values to parameter values of the model - usually taken to be linear for computational simplicity and 
lack of compelling evidence against it e.g. (Rüger et al. 2012) - may be inadequate.  While a particular 
ecological strategy may be well captured through a combination of traits (a syndrome of traits), there 
seems to be little a priori reason to expect that a particular parameter (e.g. diameter of maximum 
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diameter growth rate) should be related in a monotonic (if not linear) way to a particular trait or set 
of traits. As a matter of fact excluding species identity in models has not produced very convincing 
results in French Guiana so far (Hérault et al. 2011). In the latter study (which focused on 50 species 
making-up less than half of the community notably excluding smaller stature species) a comparison 
of the residual deviance of a model using a single growth model for the entire community, a model 
based on species traits only and a model based on species identity only was made. Introducing traits 
reduced the residual deviance by less than half as much as a species based model (42%). On the 
other hand another analysis of growth data was conducted on the same - but this time complete - 
community with a Bayesian approach while including below ground, above ground and size effect on 
growth in addition to species identity. Species identity alone by far contributed the most to deviance 
reduction dwarfing the effects of all other predictors (Laurans et al. in prep). Finally functional groups 
have already proven effective for predicting species population response following disturbance 
(Delcamp et al. 2008). 

Incidentally it is worth noting that the inescapable first step in collecting species level traits is to 
identify the species. This usually is not a trivial issue in tropical forest, and leaving out this first – and 
most robust - grain of description of biological complexity seems at least hazardous. 

Joint modeling of demographic processes 
We expect to gain in robustness of dynamics models by coupling estimation of various demographic 
processes (growth, mortality, recruitment) to make use of the interdependence between those 
processes in order to reduce uncertainty bearing on rare species estimates. 

Interdependence between demographic processes at species level is indeed expected because 
demography and growth are mathematically linked (Vance et al. 1988), but also because species 
specialization often imply trade-offs between growth and demography processes (Rees et al. 2001). 

Link between demographic and growth 
characteristics. Consider a very simple model for 
persisting stable population in which growth rate and 
mortality rate are constant. Then both quantities are 
linked through stem diameter distribution and given 
the mean diameter and the growth rate, the 
turnover rate is fully determined. This suggests that 
predictors of stem size, growth rate and turnover 
rate should best be estimated together rather than 
independently. Of course the stationarity hypothesis 
may not be relevant for any particular portion of 
space and time concerned by an experimental 
census. Pioneer species may abound for a short 
period of time and tend to have a patchy 
distribution. Many gregarious species will tend to 
show cohort effects in diameter distribution at the 
scale of a few ha (a local population of a gregarious 
species may require a very large amount of individuals to be sampled over very large areas before 
capturing a stable diameter distribution). Nevertheless if the model contains variables related to 

 

Figure 16: To get large trees have to live long 
enough. Mean mortality rates of 150 abundant 
species in Paracou (over the period 1991-2011) 
plotted against species stature. Dotted line 95% 
regression line 
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species intrinsic characteristics (potential growth rate, maximum size, potential fecundity, etc…) then 
considering the logical constraints between those elementary variables as latent relations may bring 
about some robustness in model estimates and prediction. 

Trade-offs between life history traits. The existence of trade-offs between life history traits is well 
established. The classical r vs. K distinction opposes r-species with high fecundity, quick sexual 
maturity, high mortality typically adapted to highly variable environment and K-species with are long 
lived, produce fewer larger seeds. For instance pioneer species will typically produce many 
propagules  persistent in the soil bank thereby decoupling recruitment rates from current adult 
density of conspecific (Vincent et al. 2011a). Late successional species tend to be less sensitive to 
light availability than early successional species both in terms of growth rate (Laurans et al. in prep) 
and mortality rate (Rees et al. 2001). 

Multiple response models can be addressed in a Bayesian framework with existing dedicated 
software (Hadfeld 2010) so the relevance of the proposed approach consisting in jointly modeling 
recruitment, growth and mortality processes could be assessed shortly. Grouping species into 
functional types provides a straightforward way of capturing this interdependency between the 
various processes which are jointly estimated. Rare species estimates would thereby be shrunk 
towards their group mean for the various parameters to be estimated and the interdependence 
between those parameters (across processes) factored in the model. Another possible strategy 
would be to explicitly include a covariance term in parameter distributions. However the latter 
option is likely to be less efficient in case of non-linear dependency between parameters or 
multimodal parameter distribution and therefore will be hard to capture in a simple variance-
covariance matrix. Second this approach would not make the most of our a priori knowledge 
available on species. Expert knowledge will almost certainly be easier to elicit in terms of common or 
resembling strategies between species rather than correlation between parameters which 
themselves may not always have a straight forward biological interpretation. 

 

 

General concluding remarks 
Dynamic models are highly simplified representations of the reality which yet are expected to shed 
new light on that reality. The general purpose of modeling activity can be stated as to better describe 
or to better understand a natural ecosystem. In the framework of Natural Resource Management the 
purpose of a model is usually more specific: one hopes to be able to predict the evolution of the 
system considered under particular scenarios (logging intensity, climate change, fire regime...) in 
order to better manage the system so as to achieve particular goals. Setting well bounded purpose to 
a modeling exercise is critical because the most difficult part in modeling is probably selecting the 
processes/variables which matter for the intended purpose/scale. This suggests that complex large 
multipurpose models are likely to be outperformed by models tailored to answer a particular NRM 
question. 

Having said that, we believe that Bayesian modeling has much to offer in the field of operational 
modeling notably because it has the capacity of accommodating different kinds of information within 
a consistent framework: expert knowledge (prior information) and experimental data (observation) 
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while recognizing that both sources carry some uncertainty. Bayesian models as briefly discussed 
seem particularly well suited for the modeling of hyperdiverse tropical forest dynamics. 

Finally one should be aware that model predictions are often wrong… However, even in the 
operational context of NRM, this may not always be a reason to invalidate the modeling effort. 
Indeed the ultimate benefit of developing models may rest in their ability to build common 
understanding between stakeholders. Sharing views is often a critical step in any collective human 
project and in our modest experience we found that models often serve as effective transactional 
tools. The development of participatory modeling to assist collective decision-making processes in 
the domain of natural resource management epitomizes the idea. 

 

G. Vincent 

Montpellier, January 2014 
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