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Abstract

The objective of this thesis is to exploit Multi-baseline Synthetic Aperture Radar (SAR)

for studying the remote sensing of natural scenarios, such as forest structure characteriza-

tion and land subsidence monitoring. In the case of forested areas, tropical forest structure

parameters are derived by Tomography SAR (TomoSAR) technique. For urban areas, Land

subsidence is investigated through Interferometry SAR (InSAR) techniques. TomoSAR and

InSAR will be treated by using Multi-baseline SAR images over different sites. Prior to

tomographic analysis, a phase calibration algorithm is needed to compensate for phase

residuals that corrupt the data and influence the focusing of Multi-baseline data. First, a

tomographic study has carried out in tropical forest, where the forest characterization was

assessed by using SAR tomography at L and P-band. Second, different InSAR techniques

have been compared with respect to their performance in monitoring earth’s surface de-

formation, taking Lebanon as a case study.

The first part of the thesis presents the TomoSAR analysis in the tropical forest. A re-

view of phase calibration techniques employed on TomoSAR data is shown. The problem

formulation starts with the phase calibration of the data stack that is considered as the

main gate to begin with SAR processing algorithms. Thus, the main phase calibration al-

gorithms proposed in the literature are discussed. Two of the most important phase cal-
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12 ABSTRACT

ibration approaches are then described and discussed in detail. The potential of L-band

TomoSAR data to characterize tropical forest structure is evaluated. The challenge here

is the short wavelength of L-band data, and whether can penetrate tropical forests down

to the ground. Tomographic analysis is carried out using L-band UAVSAR data from the

AfriSAR campaign conducted over Gabon Lopé Park in February 2016. It was found that

L-band TomoSAR was able to penetrate into and through the canopy down to the ground,

and thus the canopy and ground layers were detected correctly. Then, monitoring tropical

forest structure using SAR tomography at L- and P-band are treated. For this, a comparison

of the P- and L-band TomoSAR profiles, Land Vegetation and Ice Sensor (LVIS), and discrete

return LiDAR is provided in order to assess the ability for TomoSAR to monitoring and es-

timating the tropical forest structure parameters for enhanced forest management and to

support biomass missions. The L- and P-band’s performances for canopy penetration are

assessed to determine the underlying ground locations. Additionally, the 3D records for

each configuration are compared regarding their ability to derive forest vertical structure.

The second part of the thesis tackle the utilization of InSAR techniques in land subsi-

dence monitoring. The idea is to split the estimation of earth’s surface deformations into

two steps. The first step is to use Maximum Likelihood technique to jointly process Perma-

nent scaterrers and Distributed scaterrers in order to yield the best estimates of interfero-

metric phases. Then, the second step is to separate the contributions to the interferometric

phases due to the scene topography and deformation field from those caused by decorre-

lation noise and atmospheric disturbances. As a case study, an extensive InSAR analysis of

Lebanon site is shown, relying on a data-set of 117 Sentinel-1 satellite data acquired over

Lebanon between 2015 and 2019, with high temporal resolution (i.e. 6 days).

Keywords: BIOMASS, Subsidence, Sentinel-1, forest vertical structure, Synthetic

Aperture Radar (SAR), TomoSAR, InSAR, L-band, P-band, Gabon, Lebanon.



Résumé

L’objectif de cette thèse est d’exploiter le radar à ouverture synthétique (ROS) multi-

lignes de base pour la caractérisation de la structure forestière et la surveillance de

l’affaissement des sols. Dans le cas des zones forestières, les paramètres de la structure

de la forêt tropicale sont dérivés par la tomographie SAR (TomoSAR). Pour les zones ur-

baines, la subsidence des sols est étudiée à l’aide des techniques d’interférométrie SAR

(InSAR). TomoSAR et InSAR seront en utilisant des images SAR multi-lignes de base sur

différents sites. Avant l’analyse tomographique, un algorithme d’étalonnage de phase est

nécessaire pour compenser les résidus de phase qui altèrent les données et influent sur la

mise au point des données multi-lignes de base. D’abord, une étude tomographique a été

réalisée dans les forêts tropicales, où la caractérisation de la forêt a été évaluée à l’aide de

la tomographie SAR en bandes L et P. Deuxièmement, différentes techniques InSAR ont été

comparées en ce qui concerne leurs performances en matière de surveillance de la défor-

mation de la surface de la Terre, en prenant le Liban comme étude de cas.

La première partie de la thèse présente l’analyse TomoSAR dans la forêt tropicale du

Gabon. Un examen des techniques d’étalonnage de phase utilisées sur les données To-

moSAR est présenté. La formulation du problème commence par l’étalonnage de phase de

la pile de données considérée comme l’entrée principale pour commencer l’application

13
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des algorithmes de traitement des données SAR. Ainsi, les algorithmes d’étalonnage de

phase proposés dans la littérature sont discutés. Deux des approches d’étalonnage de

phase les plus importantes sont ensuite décrites et discutées en détail. Le potentiel des

données TomoSAR en bande L pour caractériser la structure de la forêt tropicale est évalué.

Le défi ici est la courte longueur d’onde des données en bande L (en comparaison à la

bande P), et la possibilité de pénétrer dans la forêt tropicale jusqu’au sol. L’analyse tomo-

graphique est réalisée à partir des données UAVSAR de la bande L en campagne AfriSAR

menée sur le parc Gabonais Lopé en Février 2016. Il a été constaté que TomoSAR en bande

L est capable de pénétrer dans et à travers la canopée jusqu’au sol, ce qui a permis de dé-

tecter correctement les couches de la canopée et du sol. Ensuite, le suivi de la structure

de la forêt tropicale est traité à l’aide de la tomographie ROS en bandes L et P. Pour cela,

une comparaison des profils TomoSAR en bandes L et P avec des données lidar du cap-

teur (LVIS) est effectuée afin d’évaluer la capacité de TomoSAR à surveiller et à estimer les

paramètres de la structure de la forêt tropicale pour une bonne gestion forestière et pour

soutenir les missions spatiales sur la biomasse forestière. Les performances des bandes L

et P pour la pénétration de la canopée sont évaluées pour déterminer l’emplacement du sol

sous-jacent. En outre, les enregistrements 3D pour chaque configuration sont comparés

en ce qui concerne leur capacité à dériver la structure verticale de la forêt.

La deuxième partie de la thèse aborde l’utilisation des techniques InSAR dans la surveil-

lance de la subsidence. L’idée est de diviser l’estimation des déformations de surface

de la terre en deux étapes. La première étape consiste à utiliser la technique du maxi-

mum de vraissemblance pour traiter conjointement les diffuseurs permanets et les dif-

fuseurs distribuéss afin d’obtenir les meilleures estimations possibles des phases inter-

férométriques. Ensuite, la deuxième étape consiste à séparer les contributions aux phases

interférométriques dues à la topographie de la scène et au champ de déformation causées

par le bruit de décorrélation et les perturbations atmosphériques. Comme cas d’étude, une

analyse approfondie des données INSAR est présentée sur le site Libanais. En s’appuyant

sur un ensemble de données de 117 données satellitaires Sentinel-1 acquises entre 2015 et

2019, avec une résolution temporelle élevée (6 jours).
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Contexte général

L’augmentation continue de la population entraîne la consommation de ressources na-

turelles tels que l’eau des puits et le bois forestier. Les prélèvements excessifs d’eau dans

les puits souterrains dans des zones connues pour leur forte densité d’urbanisation et leur

forte inflation démographique peuvent entraîner des déformations entraînant des catas-

trophes telles que des affaissements de terrain. Les forêts, en revanche, constituent le

principal apport de bois pour les constructions dans les villes et les villages et sont donc

soumises à une consommation considérable. Les incendies fréquents sur des grandes
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zones, principalement dus à l’intensification des activités humaines, affectent de nom-

breuses forêts du monde, comme les forêts tropicales. Les gouvernements ont de plus en

plus besoin d’avoir des systèmes d’alerte précoce qui fournissent des informations essen-

tielles avant l’apparition de catastrophes. Ces dernières années, les données de télédé-

tection sont largement utilisées pour générer des cartes de subsidence et des activités

de gestion forestière. Depuis la fin des années 1970, la télédétection radar (radar à syn-

thèse d’ouverture, ROS) est considéré comme un outil puissant pour l’observation de la

surface de la Terre. Plusieurs facteurs sont impliqués dans la détermination du succès

des outils de télédétection dans les applications. L’utilisation de techniques de traite-

ment du signal numérique revêt une grande importance. C’est le cas de la compres-

sion des impulsions et de la synthèse d’antennes, ainsi que des ROS aéroportés et spati-

aux capables de donner des images de vastes parties de la surface de la Terre, allant de

quelques kilomètres à plusieurs centaines de kilomètres, avec une résolution spatiale al-

lant de dizaines de mètres à des dizaines de centimètres [Rocca, 1987; Curlander and Mc-

Donough, 1991; Franceschetti and Lanari, 2018]. De plus, les systèmes ROS utilisent des

capteurs actifs fonctionnant dans les hyperfréquences, généralement dans les bandes X,

C, L et P. Une telle utilisation permet l’acquisition de données quelles que soient les condi-

tions météorologiques et indépendamment de l’éclairage du soleil. Ceci constitue donc

un avantage important par rapport aux techniques d’imagerie optique. Les ROS spati-

aux ont fourni, au cours des trente dernières années, une couverture continue de presque

toute la surface de la Terre, où les données ont été acquises indifféremment sur les mon-

tagne, les glaciers, les milieux urbains, et les zones marines et forestières. De plus, les

capacités des systèmes ROS permettent également d’obtenir des informations relatives à

la phase et à la polarisation, en plus de l’amplitude des formes d’onde reçues. Celles-ci

nous fourniront une caractérisation, en termes de propriétés géométriques et électromag-

nétiques, de la scène imagée. Pour comparer deux ou plusieurs images ROS de la même

scène, il est possible d’effectuer une analyse interférométrique basée sur la préservation

des informations de phase. L’interférométrie ROS (InSAR) a montré, en utilisant la di-

versité temporelle et ou spatiale parmi les acquisitions, qu’il s’agissait d’un outil majeur

pour la déduction d’informations précises sur la topographie de la scène photographiée
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et son champ de déformation, ainsi que sur la distribution spatiale des champs atmo-

sphériques. Par conséquent, il concerne plusieurs secteurs, dont la sismologie, la cartogra-

phie topographique, la volcanologie, la subsidence du sol et les soulèvements dus au pom-

page de fluides, les dynamiques atmosphériques et la glaciologie [Bamler and Hartl, 1998;

Rosen et al., 2000; Rodriguez and Martin, 1992]. La polarimétrie ROS (PolSAR) utilise la

diversité polarimétrique pour caractériser les cibles en fonction de leurs propriétés élec-

tromagnétiques. Les applications résultantes comprennent: la détermination de la forme

et de l’orientation d’une cible, l’estimation de l’humidité du sol et de la rugosité de sur-

face, la classification et la décomposition des mécanismes de diffusion [Inglada et al.,

2006; Freeman, 2007; Cloude and Pottier, 1997, 1996]. D’autres techniques de traitement,

telles que l’interférométrie ROS polarimétrique (PolInSAR) combinant des informations

polarimétriques et interférométriques, jouent un rôle essentiel dans l’analyse de scénar-

ios complexes. Ce dernier avait prouvé sa capacité à fournir une caractérisation significa-

tive des zones forestières. Cela fait de l’acquisition SAR une ressource importante pour la

surveillance et l’évaluation de la biomasse en milieux forestiers [Cloude and Papathanas-

siou, 1998; Papathanassiou and Cloude, 2001; Treuhaft and Siqueira, 2000].

Missions ROS

En 1978, la NASA a lancé le premier capteur ROS spatial à bord du satellite SEASAT-

A, dédié aux applications civiles. Le système a été conçu pour fonctionner en bande L

(longueur d’onde de 23 cm). L’expérience SEASA-A s’est surtout orientée vers les études

océanographiques et, bien qu’elle ait été limitée dans le temps à environ 80 jours en rai-

son des graves pannes, elle a fourni aux scientifiques des données qui ont débouché sur

des études intéressantes dans plusieurs domaines (géologie, glaciology, etc.). Cela avait

prouvé que le ROS spatial était très efficace pour les applications terrestres. SIR-A et SIR-B

sont deux capteurs ROS similaires qui ont succédé à SEASAT-A et ont été lancés respective-

ment en 1981 et 1984, à bord de la navette spatiale de la NASA. Cependant, pour ce qui

est de l’InSAR spatial, les premiers résultats importants n’ont été atteints que dans la sec-

onde moitié des années 1980 [Gabriel et al., 1989; Gabriel and Goldstein, 1988; Zebker and
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Goldstein, 1986; Prati et al., 1989], surtout parce qu’à cette époque, les données représen-

tées par une petite sélection d’images SEASAT-A étaient les seules données disponibles

pour les applications interférométriques. En 1991, après le lancement du satellite ERS-1

de l’Agence spatiale européenne (ESA), la communauté scientifique a commencé à dis-

poser d’un grand nombre de données adaptées au traitement interférométrique. Le satel-

lite lancé affichait des performances exceptionnelles en termes d’étalonnage des images,

de stabilité du matériel et de précision du traçage de son orbite au niveau de dm et de

cm. En 1995, ERS-2 a été lancé. C’était le jumeau identique d’ERS-1. ERS-1 et ERS-2

ont fonctionné en mode parallèle au cours de la mission TANDEM, dans laquelle ils réali-

saient les images de la même région [Perissin and Wang, 2011]. Le capteur ROS européen

suivant était le système ASAR lancé en 2002 à bord du satellite ENVISAT. Comparé aux

systèmes ERS, le système ASAR était doté de fonctionnalités avancées, telles que la dou-

ble polarisation et le guidage du faisceau. Il a été conçu pour offrir une compatibilité

totale des données avec les précédents ROS [Guarnieri et al., 2003; Colesanti et al., 2003;

Guarnieri and Prati, 2000]. Il est très important de mentionner les autres ROS spatiaux

en raison de leurs capacités interférométriques. Il s’agit de RADARSAT-1 en bande C pi-

loté par l’Agence spatiale canadienne (CSA, lancé en 2006), JERS et ALOS-1/PALSAR en

bande L pilotés par l’Agence spatiale japonaise (JAXA, lancés respectivement en 1992 et

2006), SIR-C/X-SAR lancé par la NASA en avril et octobre 1994 à bord d’une navette spa-

tiale, un capteur similaire auquel a été ajoutée une autre antenne de réception lancé en

2000 à bord de la navette spatiale dans le but de disposer d’une carte topographique cou-

vrant presque toute la surface de la Terre. Cette dernière mission s’appelait SRTM (Shuttle

Radar Topography Mission) et donnait naissance à un modèle numérique de terrain large-

ment utilize par la communauté scientifique [Rabus et al., 2003]. De plus, nous ne devri-

ons jamais oublier de mentionner les trois nouvelles missions lancées en 2007. Il s’agit de

la constellation COSMO-Skymed (bande X) pilotée par l’Agence spatiale italienne (ASI), la

constellation TERRASAR-X (bande X) pilotée par l’agence spatiale allemande (DLR) et le

satellite canadien RADARSAT-2 (bande C). En raison du contrôle orbital amélioré de ces

systèmes et de leur faible temps de revisite, ils étaient supposés offrir de meilleures ca-

pacités interférométriques par rapport au passé. Le radar ALOS-2/PALSAR (ROS japon-
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ais) lancé en 2014 constitue une mise à niveau importante du radar PALSAR-1, permettant

des meilleures résolutions spatiales (3m). L’Agence spatiale européenne (ESA) a récem-

ment lancé les deux satellites Copernicus Sentinel-1A/1B (S1A lancé en 2014 et S1B en

2016). Enfin, bien que les systèmes ROS aéroportés ne puissent pas rivaliser avec les sys-

tèmes spatiaux dans les capacités de couverture, on peut dire qu’ils ont prouvé, en raison

de leur capacité de charger du matériel lourd et de leur souplesse d’utilisation, leur im-

portance à être utilisés soit dans la réalisation de vols sur des zones spécifiées ou dans

le développement de nouvelles modalités d’imagerie ROS. Il existe plusieurs exemples de

ROS aéroportés, comme le capteur américain AIRSAR, piloté par le Jet Propulsion Labo-

ratory (JPL) et pouvant acquérir des données polarimétriques dans les bandes C, L et P,

les capteurs français RAMSES et SETHI pilotés par l’ONERA et pouvant fonctionner égale-

ment en mode polarimétrique dans les bandes C, Ka, Ku, L, P, S, W, le radar E-SAR du DLR

pouvant acquérir des données en mode polarimétrique dans les bandes L, P, S et des don-

nées en une seule polarisation dans les bandes C et X, le ROS suédois CARABAS piloté par

l’agence suédoise de recherche pour la défense (FOI) et qui opère dans la bande VHF. Le

ROS UAVSAR JPL/NASA a récemment volé pour acquérir des données polarimétriques en

bande L sur les forêts du Gabon dans le cadre de la campagne AfriSAR de 2016.

Questions de recherche et objectifs de la Thèse

La thèse se concentre sur les applications multi-lignes de base ROS telles que la Tomo-

grahie SAR (TomoSAR) et l’Interférométrie SAR (InSAR) pour détecter à distance la surface

de la Terre, telle que les forêts et les zones urbaines. Dans les zones forestières, les capacités

de la TomoSAR en bande P à pénétrer à travers le couvert forestier tropical jusqu’au sol sont

évaluées dans différents écosystèmes. Bien que caractériser les structures de la forêt en

utilisant la TomoSAR en bande L semble être limité [Ho Tong Minh et al., 2015a]. Minh et al.

(2015) ont utilisé les données acquises sur les forêts tropicales de Guyane française dans le

cadre de la campagne TropiSAR. Notre étude tomographique conduit à répondre aux ques-

tions suivantes: les signaux en bande L sont-ils capables de pénétrer dans la structure de

la forêt tropicale? Quel est l’impact de l’étalonnage de phase sur l’analyse tomographique?
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Peut-on utiliser les données TomoSAR pour dériver des paramètres de structure forestière

qui permettront d’améliorer les estimateurs de biomasse? La deuxième étude réalisée ici

est l’exploitation de différentes techniques InSAR appliquées aux données ROS acquises

en bande C afin de surveiller les déformations de la surface de la Terre et de générer une

carte de subsidence avec une précision millimétrique, en prenant le Liban comme étude

de cas. L’objectif général de la thèse est de fournir une meilleure compréhension des dif-

férentes applications ROS multi-lignes de base pour la télédétection de scénarios naturels.

L’analyse TomoSAR en bandes L et P a été appliquée et comparée aux possibilités de dériver

les paramètres de structure de la forêt tropicale. Un autre objectif était de surveiller et de

générer une carte de subsidence des terres pour le Liban à l’aide de différentes techniques

InSAR.

Contributions à la these

Premièrement, nous avons développé une stratégie pour caractériser la structure de la

forêt tropicale en bande L. Une comparaison des données TomoSAR en bandes L et P est ef-

fectuée en utilisant les données AfriSAR de la campagne menée dans les forêts Gabonaises.

Avant de poursuivre l’analyse tomographique, différentes méthodologies d’étalonnage de

phase ont été mises en œuvre. Les méthodes d’étalonnage de phase utilisées ici sont

l’étalonnage de phase à l’aide de la somme du produit Kronecker (SKP) et l’étalonnage

de phase par double localisation de centre de phase. Nous avons mis en œuvre un étalon-

nage de phase des données tomographiques aéroportées via une double localisation de

centre de phase d’une manière appropriée et dont les étapes diffèrent de celles proposées

par [Tebaldini et al., 2016]. La capacité de la tomographie ROS en bandes L et P à surveiller

et à estimer les paramètres de structure de la forêt tropicale pour une meilleure gestion

forestière mais aussi pour soutenir les missions satellitaires biomasse à venir a été évalué.

Les paramètres et les indices de la structure forestière peuvent être estimés à partir des

profils de réflectivité radar 3D parfaits générés par inversion TomoSAR. Nos résultats dans

cette partie ouvrent des perspectives d’utilisation des données TomoSAR afin de classer les

forêts en catégories structurelles. En utilisant cette classification structurelle, nous exam-
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inerons si nous pourrons estimer plus précisément la biomasse forestière et la productivité

du bois aérienne, au cas où nous aurions inclus les informations structurelles.

Deuxièmement, la technique de série chronologique InSAR PS/DS (diffuseur persis-

tants (Persistent Scatter, PS) ou diffuseurs distribués (Distributed Scatterers, DS) a été ap-

pliquée aux données Sentinel-1 ROS en bande C. Une carte de la subsidence des terres a

été générée pour le Liban. Une comparaison des techniques d’interférométrie radar multi-

temporelles utilisant les données Sentinel-1 est implémentée. Notre objectif pour cette

partie est d’importer l’étalonnage en phase des données ROS dans la chaîne de traitement

des techniques InSAR. L’étalonnage de phase des données InSAR doit éliminer les erreurs

orbitales et améliorer les résultats InSAR.

Résumé de la thèse

Cette thèse comprend six chapitres consécutifs. Le chapitre 1 présente le contexte,

l’historique des missions ROS, les objectifs de recherché, la formulation des problèmes,

les contributions de la thèse et les grandes lignes des résultats obtenus.

Le chapitre 2 donne un aperçu des applications du radar à synthèse d’ouverture dans

les forêts et les zones urbaines. Il fournit les bases et la géométrie du ROS et présente

les techniques multi-lignes de base ROS allant de l’interférométrie à la tomographie,

ainsi qu’une revue de l’étallonnage de phase tomographique. Les trois derniers chapitres

représentent des travaux publiés dans des revues scientifiques à comité de lecture.

En conséquence, le chapitre 3 présente l’évaluation des données TomoSAR en bande

L pour l’estimation de la structure verticale des forêts tropicales. Ce chapitre a présenté

les résultats tomographiques de la bande L UAVSAR dans le parc national de La Lopé au

Gabon. Dans ce chapitre, il est prouvé que l’imagerie TomoSAR en bande L peut être réal-

isable même dans les forêts tropicales. Une étude tomographique a été mise en oeuvre

en utilisant les données UAVSAR en bande L de la NASA/JPL recueillies lors de la cam-

pagne AfriSAR de 2016. Nous montrons des tomogrammes dans différentes sections de

la Lopé et nous les avons validés avec les données SFL (Space Flight Laboratory). Une
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comparaison qualitative est faite entre les profils de Capon et les formes d’onde Lidar LVIS

(Laser Vegetation Imaging Sensor) dans différentes régions d’intérêt du parc de la Lopé au

Gabon. Enfin, la hauteur du couvert forestier a été estimée. Ces résultats peuvent donc

confirmer nos attentes concernant la capacité de la TomoSAR bande L à caractériser avec

précision la structure tridimensionnelle des forêts tropicales. Afin d’analyser les résultats

de la TomoSAR, une bonne connaissance des principaux facteurs permettant de contrôler

efficacement la bonne mise au point des marqueurs au-dessus du sol est nécessaire. Ces

facteurs incluent: la qualité des données tomographiques, les méthodes d’estimation de

la puissance utilisées dans l’inversion tomographique, la fréquence de fonctionnement du

signal TomoSAR et la résolution verticale de TomoSAR. L’article de ce chapitre a été publié

dans la revue Remote Sensing en février 2019.

Le chapitre 4 présente la surveillance de la structure des forêts tropicales à l’aide de

la tomographie ROS en bandes L et P. Ce chapitre propose une meilleure compréhen-

sion des capacités des bandes L et P à dériver des paramètres de structure de la forêt qui

améliorent les performances des estimateurs de biomasse et facilitent les activités de ges-

tion forestière. Dans le cadre de ce travail, le potenyiel de l’imagerie TomoSAR en bande

L à estimer les paramètres de structure de la forêt tropicale a été évaluée. Une étude to-

mographique a été réalisée à l’aide des données UAVSAR en bande L de la NASA/JPL et

des données SETHI en bande P de l’ONERA collectées au cours de la campagne AfriSAR

en 2015 et 2016. Nous avons montré des tomogrammes en bande L et en bande P dans

différentes sections de la Lopé et nous les avons validés avec un modèle de hauteur de

la canopée (Canopy Height Model, CHM) en utilisant les données SFL. Nous avons en-

suite démontré que l’analyse s’améliorait considérablement lorsque les données en vol

étaient corrigées des phases résiduelles liées aux perturbations dues aux incertitudes liées

à l’allocation des trajectoires de vol lors des acquisitions de données. L’impact de la correc-

tion de phase dans l’inversion tomographique apparaît dans le tomogramme à la distance

oblique (slant range) découpée avant et après l’étallonnage de phase. Une comparaison

qualitative est faite entre les profils de Capon en bandes L et P et les longueurs d’onde LVIS

dans une zone d’intérêt appelée OKO2 dans le parc Gabonais de la Lopé. Enfin, la hauteur

maximale de la forêt à partir des données UAVSAR et SETHI a été estimée. Ensemble, ces
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résultats confirment nos attentes concernant la capacité de TomoSAR à caractériser avec

précision la structure 3D des forêts tropicales. Le document de ce chapitre a été pubié dans

Remote Sensing en juillet 2019.

Le chapitre 5 montre la comparaison des techniques d’interférométrie radar multi-

temporelles utilisant les données Copernicus Sentinel-1 et prenant le Liban comme étude

de cas. Dans ce travail, les cibles PS et DS ont été traitées conjointement et utilisées

pour générer une carte de subsidence pour le Liban. Les nouveaux satellites Sentinel-1

lancés par l’Agence spatiale européenne fournissent des données à haute précision et avec

une résolution temporelle très fine. La constellation Sentinel-1 est le seul système satel-

litaire offrant gratuitement des séries chronologiques denses avec une couverture mondi-

ale de 6 jours. Le but de ce chapitre est de comprendre les performances de deux nou-

velles techniques, PSI (Persistent Scatterer Interferometry) et PS/DS, utilisant Sentinel-

1 basé sur l’observation du terrain par balayage progressif (based on the Terrain Obser-

vation by Progressive Scans mode, TOPS). Nous étudions la capacité du ROS en bande

C à déterminer les phénomènes de subsidence au sol au Liban sur la base des données

Sentinel-1 de 2015 à 2019. Pour estimer la subsidence au sol, nous appliquons deux méth-

odes. La première méthode est la technique PSI standard. Deuxièmement, une approche

basée sur l’estimateur maximum de vraisemblance [Ho Tong Minh et al., 2015b], qui ex-

ploite non seulement les points stables comme les diffuseurs PS mais également les DS.

L’augmentation du nombre de points de mesure PS/DS identifiés au sol résultant de cette

approche renforce la confiance dans les mesures du mouvement et du déplacement du

sol, par rapport à l’algorithme précédent reposant sur PS seulement [Ferretti et al., 2001;

Hooper et al., 2004]. Enfin, le chapitre 6 résume les résultats de la thèse en soulignant les

conclusions des chapitres précédents, la contribution scientifique principale, ainsi que des

suggestions et des perspectives supplémentaires.

Conclusion générale

Cette thèse a examiné l’utilisation de la télédétection de scénarios naturels à travers

plusieurs acquisitions multi-lignes de base ROS. L’objectif général de la thèse est
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d’exploiter les algorithmes et applications multi-lignes de base ROS en forêts et en zones

urbaines. Nos recherches ont nécessité différents ensembles de données spatiales et aéro-

portées acquises sur différents sites. Les réalisations accomplies dans la première partie

de la thèse montrent que la technique TomoSAR est capable de dériver la structure de la

forêt dense. Même si, il a été démontré que les écrans de phase dus aux perturbations

de propagation constituaient un problème crucial dans les applications multi-lignes de

base, aussi bien interférométriques que tomographiques. Ainsi, différentes techniques

d’étalonnage de phase ont été appliquées et validées. Cependant, un inconvénient de ces

techniques est que, en utilisant SKP, nous avons évalué la capacité des données en bande

L à pénétrer dans la forêt tropicale de la canopée à la couche de sol, de manière à pouvoir

extraire le modèle numérique de terrain sous la forêt. Lors de l’utilisation de la technique

PCDL, seul l’étalonnage de phase est effectué après élimination des résidus de phase

du SLC d’origine, sans extraction de la phase de terrain. Des techniques de formation

de faisceaux à super-résolution ont été mises en œuvre pour obtenir des profils tomo-

graphiques parfaits. Pour les données TomoSAR en bande L et P, nous avons identifié les

différentes couches de forêt (canopée et couche de sol) de manière à obtenir des indices

de structure de la forêt qui améliorent les performances des estimateurs de biomasse. En

ce qui concerne la seconde partie, différentes techniques InSAR applioquée sur des séries

temporelles ROS ont été évaluées. Une carte de la subsidence des terres est générée en

prenant le Liban comme étude de cas. La faisabilité des données Sentinel-1 en bande C

pour estimer l’affaissement du sol est démontrée. La technique PS/DS semble être une

technique prometteuse pour surveiller les risques liés à la surface du sol. Nous devrons

à l’avenir combiner la technique InSAR avec des mesures in situ de manière utile pour

surveiller et suivre l’affaissement du sol au Liban. Il existe de nombreuses stations GPS

différentielles situées au Liban sur différents sites du pays. Notre travail dans cette partie

consiste donc à générer l’historique des déplacements verticaux et horizontaux du GPS.

Ensuite, la corrélation entre les mesures InSAR et les mesures GPS peut être effectuée. Pour

améliorer la qualité des résultats InSAR, nous proposons de mettre en œuvre l’étallonnage

de phase des données Sentinel-1 multi-lignes de base à l’aide de PCDL appliqué sur DS
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(Distributed Scatterers), de manière à éliminer les erreurs orbitales et les perturbations de

phase générées par les données InSAR.

Perspectives de tomographie SAR

En ce qui concerne la première partie, notre objectif est d’estimer les indices de struc-

ture de la forêt, tels que les indices horizontaux et verticaux, qui jouent un rôle dans les

algorithmes d’estimation de la biomasse et dans l’amélioration des activités de gestion

forestière. Cependant, la structure de la forêt est considérée comme un facteur impor-

tant de son écologie en raison de sa corrélation avec divers processus écologiques [Pret-

zsch et al., 2010; Shugart et al., 2010; Mundell et al., 2010]. En outre, elle est également

utilisé comme indicateur pour détecter la biodiversité, où les forêts à structure verticale

favorisent la biodiversité de plusieurs taxons [Boncina, 2000; Ishii et al., 2004; Schall et al.,

2018]. De plus, l’hétérogénéité structurelle verticale ou horizontale peut améliorer la résis-

tance des écosystèmes forestiers aux perturbations [Dobbertin, 2005; Pretzsch et al., 2016].

Cependant, il est très important de connaître la structure de la forêt pour pouvoir en com-

prendre la dynamique. Il est vraiment très difficile de trouver une définition appropriée et

claire de la structure forestière. En outre, les paramètres de structure de la forêt varient en

fonction de la méthode de leurs estimations (mesures in situ ou estimation par télédétec-

tion). Les descripteurs terrain de la structure forestière sont souvent dérivés des mesures

de la taille de chaque arbre individuellement. Cependant, les descripteurs de télédétec-

tion dépendent de l’hétérogénéité de la structure du couvert forestier d’une zone donnée.

Notre intérêt pour les études futures est d’utiliser la modélisation forestière, la télédétec-

tion Lidar et la TomoSAR aéroportée afin de pouvoir répondre à la question: «Comment

pouvons-nous estimer la structure d’une forêt à l’aide de la télédétection? Et qu’est le rôle

joué par la structure forestière dans l’estimation de la biomasse forestière et de la produc-

tivité du bois aérien? Notre objectif est d’utiliser les descripteurs verticaux et horizontaux

pouvant être mesurés par télédétection afin de classer les forêts en catégories structurelles.

En utilisant cette classification structurelle, nous examinerons si nous serons en mesure

d’estimer plus précisément la biomasse forestière et la productivité du bois aérien dans le

cas où nous incluons les informations structurelles.
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Perspectives de interférométrie SAR

En règle générale, les systèmes ROS spatiaux sont équipés de systèmes de vecteurs

d’état qui donnent au capteur une position de précision en centimètres. Les informa-

tions sur les produits orbitaux sont obtenues après traitement de diverses données aux-

iliaires, telles que les informations d’attitude des capteurs satellites, les éphémérides du

système de positionnement global et les paramètres d’un modèle physical [Wermuth et al.,

2009]. Obtenir des informations sur les produits orbitaux est indispensable pour la for-

mation d’images ROS et donc pour le traitement par interférométrie. Toute perturbation

survenant sur l’orbite provoquera des résidus qui altéreront le traitement des images ROS.

Notre objectif pour ce travail est de mettre en œuvre l’étallonnage de phase des données

ROS spatiales afin de compenser les erreurs orbitales et les erreurs des lignes de base afin

de de corriger les données ROS. Cela aidera à améliorer les résultats d’InSAR.
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1.1 General context

The continuous increase in population leads to the consumption of natural resources

which is reflected in several variables. Such natural resources are ground well water and

Forest wood. The excessive water withdrawal from groundwater wells in areas known with

their vitality, high population inflation, and a crowded number of buildings can lead to de-

formations that can cause disasters. Forests, on the other hand, are the main supplement

of wood for construction and fabrics in cities and villages, and accordingly, are subjected

to huge consumption. Frequent and large-scale fires, mainly caused by increased human

activity, affect many forests around the world like tropical forests. A significant need for
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governments emerges aiming to have early warning systems that provide critical informa-

tion before disasters occurrence. In recent years, remote sensing has played a major role

in carrying out analytical analysis in natural resources and in observing the earth’s surface.

Nowadays, Remote sensing data are widely used in generating land subsidence maps and

forest management activities.

Since late 1970, the remote sensing imaging tool, Synthetic Aperture Radar (SAR), has

considered as a powerful one in the observation of the earth’s surface. Several factors are

implicated in determining the success of such remote sensing tools in the applications.

The utilization of techniques with digital signal processing is of high importance. These

are such as pulse compression and antenna synthesis and also airborne and spaceborne

SAR which are able to give images of wide parts of the earth’s surface ranging from few

kilometers up to hundreds of them and with a spatial resolution ranging from tens of me-

ters to tens of centimeters [Rocca, 1987; Curlander and McDonough, 1991; Franceschetti

and Lanari, 2018]. Moreover, SAR systems use active sensors that operate in the microwave

regimes, typically in C, L, P, and X bands. Such utilization permits the acquisition of data

regardless of the weather conditions and independently on the illumination of the sun.

This, therefore, constitutes an important advantage over the optical imaging techniques.

Spaceborne SARs has provided, in the last thirty years, continuous coverage of almost the

entire Earth’s surface, where data was acquired indifferently over the mountain, ice, ur-

ban, sea, and forest areas. In addition, the capabilities of SAR systems allows also getting

information related to the phase and polarization, besides the amplitude of received wave-

forms. These will provide us with a characterization, in terms of the geometric and elec-

tromagnetic properties, of the imaged scene. To compare two or more SAR images of the

same scene, it is possible to do an interferometric analysis based on preserving phase in-

formation. SAR Interferometry (InSAR) has shown, by using temporal and/or spatial diver-

sity among acquisitions, that it is a major tool in inferring accurate information concern-

ing the topography of the imaged scene and also its deformation field, in addition to the

spatial distribution of atmospheric fields. Therefore, it involves several sectors including

seismology, topographic mapping, volcanology, ground subsidence, and uplifts because

of fluid injection, atmospheric dynamics, and glaciology [Bamler and Hartl, 1998; Rosen
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et al., 2000; Rodriguez and Martin, 1992]. SAR polarimetry (PolSAR) uses the polarimetric

diversity to characterize targets depending on their electromagnetic properties. Resulting

applications include: determining the shape of a target and its orientation, estimating the

moisture of soil and the roughness of a surface, classifying and decomposing scattering

mechanisms [Inglada et al., 2006; Freeman, 2007; Cloude and Pottier, 1997, 1996]. Other

processing techniques like Polarimetric SAR Interferometry (PolInSAR) that combines be-

tween polarimetric and interferometric information plays a vital role in analyzing com-

plex scenarios. The latter had proved its ability to provide a significant characterization

of forested areas. This makes SAR acquisition an important resource for both monitor-

ing and biomass assessment in forested environments [Cloude and Papathanassiou, 1998;

Papathanassiou and Cloude, 2001; Treuhaft and Siqueira, 2000].

Recently, the SAR community is considering the exploitation of SAR data to conduct

tomographic analyses as an important object of growing interest. SAR Tomography (To-

moSAR) techniques are today considered as attractive tools for characterizing the complex

urban scenarios and also the forested areas [Gini et al., 2002b; Sauer et al., 2007; Cloude,

2007; Fornaro and Serafino, 2006].

1.2 SAR missions

In 1978, NASA launched the first space-borne SAR sensor aboard the satellite SEASAT-A

which was dedicated to civilian applications. The system was designed to function on the

L-band (23 cm wavelength). Though the orientation of SEASA-A experiment was mainly

towards oceanographic studies, and though it was limited in time to around 80 days be-

cause of the hard failures, it provided scientists with data that has resulted in interesting

studies in several fields as land analysis, geology, and glaciology. This had proved that the

spaceborne SAR is highly effective in land applications. SIR-A and SIR-B, are two similar

SAR sensors that came after SEASAT-A and were launched in 1981 and 1984, respectively

aboard NASA space shuttle. As long as spaceborne InSAR is concerned, however, the first

important results were achieved only in the second half of the 1980’ [Gabriel et al., 1989;

Gabriel and Goldstein, 1988; Zebker and Goldstein, 1986; Prati et al., 1989], especially be-
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cause at that time, data represented by a small selection of the SEASAT-A images were the

only available data for the interferometric applications. The actual beginning of the scien-

tific community to have a big set of data that is suitable for interferometric processing was

in 1991, after launching the European Space Agency (ESA) satellite ERS-1. The launched

satellite was with an outstanding performance in terms of image calibration, hardware sta-

bility, and the accuracy in tracing its orbit at the level of dm and cm. In 1995, ERS-2 was

launched. It was the identical twin of ERS-1. ERS-1 and ERS-2 worked in a parallel mode

during the TANDEM mission, where they were imaging the same area [Perissin and Wang,

2011]. The following European SAR sensor was the ASAR system which was launched in

2002 aboard ENVISAT satellite. As compared with ERS systems, ASAR system was with ad-

vanced capabilities, such as dual-polarization and beam steering. It was designed to have

full data compatibility with previous ones [Guarnieri et al., 2003; Colesanti et al., 2003;

Guarnieri and Prati, 2000]. It is highly important to mention other spaceborne SARs be-

cause of their interferometric capabilities. These are: C-band RADARSAT-1 that was flown

by the Canadian Space Agency (CSA0 in 2006, L-band system JERS and ALOS PALSAR that

were flown by the Japanese Space Agency (JAXA) in 1992 and 2006, respectively, SIR-C/X-

SAR sensor that was launched by NASA in April and October 1994 aboard the space shuttle,

one similar sensor that was augmented by another receiving antenna and launched in 2000

aboard the shuttle in aim to have a topography map that covers almost the entire Earth’s

surface. The mission was called SRTM (Shuttle Radar Topography Mission) and resulted in

a model that is now available for the public use which is: planetary Digital Elevation Model

(DEM) [Rabus et al., 2003].

Furthermore, we should never forget to mention the three new missions that flown

in 2007. These spaceborne SARs mentions were: COSMO-Skymed constellation (X-band)

that was flown by the Italian Space Agency (ASI), TERRASAR-X (X-band) that was flown by

the German Aerospace Center (DLR), and the Canadian C-band RADARSAT-2. Due to the

enhanced orbital control of these systems and their shorter revisit times, they were sup-

posed to give better interferometric capabilities with respect to the past. Advanced Land

Observing Satellite 2 (ALOS 2), also called Daichi 2, is a 2-ton Japanese satellite launched

in 2014. The PALSAR-2 radar is a significant upgrade of the PALSAR radar, allowing higher-
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resolution (1x3m per pixel) spotlight modes in addition to the 10m resolution survey mode

inherited from the ALOS spacecraft. Recently, the European Space Agency conducted the

Sentinel-1 Copernicus Programme satellite composed of two satellites Sentinel-1A and

Sentinel-1B. The first satellite, Sentinel-1A, launched on 3 April 2014, and Sentinel-1B was

launched on 25 April 2016. Both satellites lifted off from the same location in Kourou,

French Guiana.

Finally, though that airborne SAR systems cannot compete for the spaceborne systems

in the coverage capabilities, we can say that they proved, due to their capability to load

heavy equipment and their flexibility in use, their importance to be used either in the carry

out of the radar surveys on specified areas or in the development of new SAR imaging

modalities. There are several examples of airborne SARs as American AIRSAR, that was

flown by the Jet Propulsion Laboratory (JPL) and which can acquire quad pol data in C,

L, and P bands, the French RAMSES that was flown by ONERA and can work in quad-pol

mode in C, Ka, Ku, L, P, S, W bands, DLR’s E-SAR that can acquire quad pol data in L, P, S

bands and a single pol data in bands C and X, and the Swedish CARABAS that was flown

by the Swedish Defense Research Agency (FOI) and is operating in the VHF band, recently,

UAVSAR JPL/NASA was flown to acquire fully polarimetric L-band data over Gabon forests

in the frame of AfriSAR campaign in 2016.

1.3 Research problem and Objectives

The dissertation focuses on SAR Multibaseline applications such as TomoSAR and In-

SAR to remotely sense the earth’s surface like forests and urban areas.

In forest areas, P-band TomoSAR abilities in penetrating through tropical forest canopy

down to the ground are assessed in different ecosystems. While Characterizing forest struc-

tures using L-band TomoSAR seems to be limited [Ho Tong Minh et al., 2015a]. Min et al.,

(2015) used data acquired over tropical forests in French Guiana in the frame of TropiSAR

campaign. Our tomographic study leads to answer the following questions: are L-band sig-

nals capable to penetrate tropical forest structure? what is the impact of phase calibration
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on tomographic analysis? Can one use TomoSAR data to derive forest structure parameters

that enhance biomass estimators?

The second study carried out here is the exploitation of different InSAR techniques ap-

plied on SAR data acquired at C band in order to monitor earth’s surface deformations and

generate a subsidence map with millimetric accuracy, taking Lebanon as a case study.

The general objective of the dissertation is to provide a better understanding of differ-

ent Multibaseline SAR applications for the remote sensing of natural scenarios. TomoSAR

analysis at L- and P-band was applied and compared with the capabilities to derive tropi-

cal forest structure parameters. another objective was to monitor and generate land sub-

sidence map for Lebanon through different InSAR techniques

1.4 Thesis contributions

First, we developed an enhanced strategy to characterize tropical forest structure at

L-band. A comparison of L-band and P-band TomoSAR data is done using AfriSAR data

campaign carried out over Gabon forests. Before carrying on tomographic analysis, differ-

ent phase calibration methodologies have been implemented. Phase calibration methods

were used here are phase calibration using Sum of Kronecker Product (SKP) and phase

calibration via phase center double localization. We implemented phase calibration of air-

borne tomographic data via phase center double localization in a proper way that differs

in its steps than the proposed one by [Tebaldini et al., 2016].

The ability of SAR tomography at L- and P-band to monitor and estimate the tropical

forest structure parameters for enhanced forest management and to support biomass mis-

sions has been evaluated. Forest structure parameters and indices can be estimated from

the perfect 3D radar reflectivity profiles generated by TomoSAR inversion. Our results in

this part open prospects to use TomoSAR data in order to classify the forests into structural

categories. Using this structural classification, we will explore if we will be able to estimate

more accurately both forest biomass and above-ground wood productivity in case we in-

cluded the structural information.



1.5. THESIS OUTLINE 39

Second, PS/DS InSAR time series technique has been applied to Sentinel-1 SAR C-

band data. Land subsidence map has been generated for Lebanon. A comparison of

multi-temporal radar interferometry techniques using Sentinel-1 data is implemented.

Our prospect to this part is to import the phase calibration of SAR data in the processing

chain of InSAR techniques. Phase calibration of InSAR data must get rid of orbital errors

and enhance the InSAR results.

1.5 Thesis outline

This thesis consists of six consecutive chapters. Chapter 1 presents the context, his-

torical background of SAR missions, research objectives and problem formulation, Thesis

contributions, and the outline of the thesis.

Chapter 2 provides an overview of Synthetic Aperture Radar applications in forests and

urban areas. It provides SAR basics and geometry and presents SAR Multibaseline tech-

niques from interferometry to tomography, as well as a review on tomographic phase cal-

ibration. The latter three chapters represent published and draft work to be submitted in

peer-reviewed scientific journals. Therefore each chapter can be read without the neces-

sity of reading the previous chapter.

Accordingly, in chapter 3 the evaluation of L-band TomoSAR data in estimating trop-

ical forest vertical structure is discussed. This chapter reports the L-band UAVSAR tomo-

graphic results carried out in the Gabon Lope National Park. The paper of this chapter was

published to the Remote Sensing in February 2019 (see Appendix A).

Chapter 4 presents the Monitoring of tropical forest structure using SAR tomography at

L- and P-band. This chapter proposes a better understanding of the capabilities of L and

P-band to derive forest structure parameters that enhance the performance of biomass

estimators and help in forest management activities. The paper of this chapter was sub-

mitted to the Remote Sensing in July 2019 (see Appendix B).

Chapter 5 shows the comparison of multi-temporal radar interferometry techniques
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using Sentinel-1 taking Lebanon as a case study. The paper of this chapter will be submit-

ted to the Remote Sensing Journal (see Appendix C).

Finally, chapter 6 summarizes the thesis findings by highlighting the conclusions from

previous chapters, the main scientific contribution, and further suggestions and perspec-

tives.



CHAPTER

2
Synthetic Aperture Radar algorithms

and applications

Contents

2.1 Synthetic Aperture Radar basics . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Interferometry SAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Permanent scatterer interferometry . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Tomography SAR background . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 phase calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1 Synthetic Aperture Radar basics

SAR is mostly a coherent airborne or space-borne side-looking radar system mounted

on a moving platform and offers dramatically high-resolution remote sensing imagery

data. SAR emits series of coherent microwave pulses and records the echoes scattered

back from the imaged area in its line of sight (LOS), these records form the complex SAR

image and named Single Look Complex (SLC) data. SLC image can be seen as a two-

dimensional array of complex-valued pixels. Each pixel is the coherent sum of microwave

back-scattered within corresponding resolution cell. The complex number at each pixel

41
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presents the amplitude of the back-scattered energy at each scatters and the phase that is

determined by the slant range distance from the pixel location to the radar sensor.

Figure 2.1 – SAR imaging.

SAR has several advantages when compared to optical sensors operating in the visible

or infrared bands, these advantages:

(1) SAR system can operate at all times (day, night) and in all weather conditions due to

the electromagnetic wave characteristics.

(2) SAR is a coherent system that retains both amplitude and the phase of the back-

scattered echoes. Thus the SAR images consist of information about the physical proper-

ties and the range of the objects.

(3) SAR uses polarized radiation (Horizontal and vertical polarization), so it can exploit

the polarization signature of the imaged scatters and obtain additional information about

the structure of such scatterers.

(4) Modern SAR sensors transmit echoes over large bandwidth (in order of tens/hun-

dreds of MHz), thus leading to fine spatial resolution along the slant range direction.
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A cylindrical coordinate system is used to specify the 3D position of scatterers Figure

2.1: (1) The azimuth axis x defines the position of the scatterers along the sensor path. (2)

The slant range axis r defines the distance of the scatterers from the SAR sensor. (3) The

look angle θ represents the angle between the sensor-to-scatterers line and nadir.

2.1.1 Single look complex data

SAR system collects raw data and compresses them in the range and azimuth direc-

tions. The compression of the raw data produces the focused SAR image. The focused SAR

image is known as Single Look Complex (SLC) image and can be seen as a two-dimensional

array of complex-valued pixels. Each pixel has a complex number, where the amplitude of

this complex number presents the coherent sum of the microwave field backscattered by

all the scatters (rocks, sands, vegetation, buildings, etc.) within corresponding resolution

cells projected on the Earth surface. The phase of the complex number is determined by

the slant range distance from the pixel location to the sensor location.

2.1.2 SAR resolution

The resolution of the SAR image is one of the most important characteristics of the SAR

system. SAR data pixels are characterized by spatial and temporal resolutions. Spatial reso-

lution is defined as the ability of the SAR system to distinguish between two closely targets.

In SAR systems, there are two resolutions, azimuth resolution, and range resolution. An-

other resolution that should be taken into account when applying a multi-temporal time

series analysis of the SAR data is the temporal resolution. It is determined by the revisit

time of the SAR sensor at the same imaged area.

2.1.3 Speckle in SAR images

SAR data are subjected to speckle noise which interferes with the sharpness of the im-

ages. Speckle noise affects both the amplitude and the phase of radar signals. Speckle noise

degrades the quality of the images and therefore affects the performance of their analysis

and interpretations.
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2.1.4 SAR data characteristics

The main data-sets described hereby are the ones utilized in the dissertation. These

data-sets consists of spaceborne and airborne data acquired over different locations. For

the TomoSAR study applied over tropical forests, airborne SAR data acquired by different

platforms (L-band UAVSAR from JPL/NASA and P-band SETHI from ONERA) are utilized.

While, for InSAR analysis, we used sentinel-1 C-band SAR data acquired over Lebanon as a

case study.

2.1.5 Sentinel-1 data

The SENTINEL-1 spaceborne mission is the European Radar Observatory for the

Copernicus joint initiative of the European Commission (EC) and the European Space

Agency (ESA). This Copernicus Program satellite constellation consists of two satellites,

Sentinel-1A and Sentinel-1B, respectively launched in 2014 and 2016 [Sentinel, 2013].

Sentinel-1 is an imaging radar that operates at C-band (wavelength range: 3.75-7.50cm).

Sentinel-1 mission is designed to provide high-resolution imagery data that cover all global

landmasses, coastal zones, and shipping routes. Sentinel-1 sensor operates in four acqui-

sition modes, the configuration parameters and imaging modes of the Sentinel-1 sensor

are shown in Table 2.1.

Table 2.1 – Sentinel-1 data configuration.

parameters IW WV SM EW

Polarisation
Dual(HH+HV,

VV+VH)

Single (HH,

VV)

Dual(HH+HV,

VV+VH)

Dual(HH+HV,

VV+VH)

Incidence angles 31 46 23 37 20 47 20 47

Azimuth resolution < 20 m <5 m <5 m <40 m

Range resolution < 5 m <5 m <5 m <20 m

Swath >250 km
vignette

20x20 km
>80 km >410 km

Data products are available in single-polarization (VV or HH) for wave mode (WV) and
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dual-polarization (VV + VH or HH + HV) and single polarization (VV or HH) for Strip Map

(SM), Interferometric Wide (IW) and Extra Wide (EW) swath modes.

Each mode produce products at different levels: 1- Level 0 raw data. 2- Level 1 SLC

data (with the size of 8GB/image) consists of amplitude and phase data. 3- Level 1 Ground

Range Detected (GRD) data with multi look intensity only. 4- Level 2 ocean data for re-

trieved geophysical parameters of the ocean.

2.1.6 Airborne data

a- JPL/NASA UAVSAR data and ONERA SETHI data

The data-sets acquired over Gabon Lopé National Park consists of seven fully polari-

metric Single Look Complex (SLC) data L-band NASA/JPL UAVSAR from AfriSAR data con-

ducted during the AfriSAR campaign in 2016. UAVSAR platform operates at a frequency

band 1217.5–1297.5 MHz. The imaged area is about 22 km wide, with incidence angles ex-

tending from 25 to 60 degrees. The scanning is performed by the Gulfstream III jet at that

flight at an altitude of 12.5 km. The ground range and azimuth resolution of the UAVSAR

polarimetric SLC are 1 m and 2.5 m, respectively. The configuration of L-band UAVSAR

is shown in Table 2.2. P-band data consists of 13 fully polarimetric SLC data acquired by

ONERA over the Lopé in the AfriSAR airborne campaign (July 2015). The data collection

is performed using the SETHI SAR system developed by ONERA and onboard a Falcon

20 aircraft. The pixel resolution of the SLC images is 1.54 m in azimuth range and 3 m

in slant range. The configuration of P-band SETHI data including acquisition geometry,

bandwidth, carrier frequency, and aircraft altitude are shown in Table 2.3.

The tomographic 125 MHz data set considered in the Paracou experimental site con-

sists of six fully polarimetric SLC images at L and P-band acquired on 24 August 2009. All

the acquisitions took about 1 h (from 9:00 a.m. to 10:00 a.m.), resulting in almost no tem-

poral decorrelation.

In this thesis, we also used six tracks fully polarimetric images acquired during the

TropiSAR campaign over Paracou.
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Table 2.2 – L-band UAVSAR acquisition parameters.

Acquisition Parameters

Acquisition Mode PolSAR

Look Direction Left looking

Pulse duration 40 (µs)

Steering Angle 90 (deg)

Bandwidth 80 (MHz)

Ping-Pong or Single Antenna Transmit Ping-Pong

Air craft speed 224 (m/s)

Range of look angle 21–65 (deg)

Antenna Length 1.5 (m)

Table 2.3 – Description of the SETHI system configuration of P-band acquisition parame-

ters. The superscript * indicates the parameters that are identical between the SETHI and

F-SAR systems.

Acquisition Parameters

Acquisition Mode * PolSAR

Look Direction Left looking

Effective Pulse Repition Frequency (PRF) 1250 (Hz)

Steering Angle 90 (deg)

Frequency range */Bandwidth 50 (MHz)

Pulse duration 30 (µs)

Transmitted power 500 (W)

Aircraft speed 100–150 (m/s)

Flight ground altitude 6096 (m)

b- Lidar data-sets

The Lidar data-sets used in this thesis consists of discrete Lidar Small Footprint Lidar

(SFL) data and LVIS Lidar waveform. The first data set which we will refer to as the SFL data

set was acquired by Sassan Saatchi’s team (JPL) in July 2015 with a variable point density

and footprint diameter of about 10 cm. i) Digital Terrain Model (DTM), ii) Canopy Height

Model (CHM) and other canopy metrics derived from CHM are derived from SFL data.

Based on the DTM, slope maps were estimated, the heights of the Lidar point were nor-

malized by removing the ground elevation. The DTM and CHM data were developed in a
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raster format at 1m posting characterizing the forests structure of an area of approximately

15 km2 of old-growth and successive forests, as well as savanna vegetation of the northern

Lopé study site. The second Lidar data set was acquired by NASA’s airborne Land Vegeta-

tion Ice Sensor (LVIS) during March 2016 as a part of the NASA-ESA collaboration of the

BIOMASS, GEDI and NISAR calibration and validation activities. LVIS is a Large Footprint

Lidar (LFL) with full-waveform capability with applications of measuring ground elevation

and vertical profile of vegetation structure in various ecosystems (data can be downloaded

from https://lvis.gsfc.nasa.gov/Data/Data_Download.html).

2.1.7 SAR applications

SAR has been a significant tool for a wide variety of landscape applications in a broad

sense (natural habitats, rural areas, forests, natural hazards, urbanization). SAR data be-

ing collected over 2-D synthetic aperture can be processed using signal processing algo-

rithms to focus the illuminated scatters in the 3-D space. In particular, the high temporal

frequency of the radar acquisitions that are currently being achieved is considered as a be-

ginning of a new stage for the application of the SAR techniques such as Interferometry

SAR (InSAR), Polarimetry SAR (PolSAR), and Tomography SAR (TomoSAR). Polarimetric

SAR is an advanced imaging radar system, it plays an important role in radar remote sens-

ing. Full polarimetry radar provides five datasets, HH, HV, VH, VV, and total power (TP).

With full SAR polarimetry, it is possible to obtain much more information than conven-

tional SAR systems (i.e. single polarized SAR system), fully polarimetric mode provides

more information about the physical structure of the imaged area. Nowadays polarimetric

SAR has much application including agriculture (crop classification, soil moisture extrac-

tion), oceanography (surface currents and wind field retrieval), forestry (forest monitor-

ing, classification, and tree height estimation), and military (ship detection, target recog-

nition/classification) [Boerner]. InSAR has been successfully used to infer the information

about earth’s surface, including sectors such as topographic mapping, seismology [Mas-

sonnet et al., 1993; Peltzer and Rosen, 1995], volcanology [Massonnet and Sigmundsson,

2000] , detecting ground subsidence and deformations [Amelung et al., 1999]. Such a tech-

nique exploits the information contained in the radar phase of at least two complex SAR
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images acquired at different times over the same area to be used in the formation of an

interferometric pair. TomoSAR is Multibaseline (MB) SAR technique that provides vertical

resolution capabilities. This technique was repeatedly demonstrated using airborne data

[Reigber and Moreira, 2000; d’Alessandro and Tebaldini, 2012].

2.2 Interferometry SAR

Differential InSAR (DInSAR) is a new radar remote sensing technique that exploits the

geometric properties of the SAR image phase to and measures the elevation and the defor-

mation of the scatterers. InSAR uses short wavelengths to monitor surface displacements

with millimetric accuracy. InSAR technique suited for monitoring long term dynamic pro-

cesses such as volcanoes, crustal dynamics, and land subsidence. The rationale of InSAR

is to subtract the phases of two SAR images taken from two nearby locations in the same

area. The distance between the two locations is named the baseline. The phases sub-

traction is done by the multiplication of the complex SAR image named master with the

complex conjugate of the second image named slave to generate the interferogram. The

interferometric phase obtained contains information about the phase of the deformation

in the earth’s surface (if it is found), topographic phase, and phase noise due to different

aspects such as atmospheric effects or noise in the system.

The interferogram phase between two acquisitions N and M can be written as:

φint=φDis+φtopographic+φAtmN
−φAtmM

+φorbitalN −φorbitalM +φNoise+2.k.π

(2.1)

φDis is the deformation phase, φtopographic is the residual topographic phase, φNoise is

the phase noise due to temporal decorrelation, mis-coregistration, uncompensated spec-

tral shift decorrelation, orbital errors, and thermal noise. φAtmN
and φAtmM

is the at-

mospheric phase screen at different passes due to the propagation delay of the signal in

the atmosphere. Here, it is necessary to mention the limitations and difficulties that face

the extraction of the deformation phase from the interferogram phase. These limitations
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are: the temporal and geometric decorrelation that effect the φNoise term [Hanssen et al.,

2001], the phase unwrapping problem that lead to estimate the phase cycles [Ghiglia and

Pritt, 1998], and the atmospheric phase term [Zebker et al., 1997].

2.3 Permanent scatterer interferometry

InSAR results accuracy is strongly affected by the atmospheric disturbances and phase

noise, thus a proposition was found to use Permanent scatterers (PS) and distributed scat-

terers (DS) starting from long temporal series of interferometric SAR images. Permanent

Scatterers Interferometry (PSI) is an advanced type of DInSAR based on large number of

stacked SAR images that make it able to estimate the deformation time series, the average

displacement rate, and the RTE. Different PSI techniques were proposed in the last years,

the first PSI technique was developed by [Ferretti et al., 2001] for long-term deformation

monitoring, especially in urban environments. After that, similar approaches have been

proposed by different scientists [Adam et al., 2003; Hooper et al., 2004; Meyer et al., 2006].

Different PSI techniques are followed by this approach, the small baseline subset SBAS

technique which is one of the most important and documented technique [Berardino et al.,

2002; Lanari et al., 2004; Pepe and Lanari, 2006; Pepe et al., 2011]. A similar approach was

proposed by [Mora et al., 2003]. Another approach was done based on step-wise linear

functions for deformation estimates are described in [Crosetto et al., 2008; Werner et al.,

2003]. Recently a new algorithm SqueezeSAR is proposed to jointly process PS and DS

taking into account their different statistical behavior. SqueeSAR is proposed by [Ferretti

et al., 2011]. More relevant contributions are: 1. Adapting LAMBDA method used in GPS

to the PSI parameter estimation [Kampes and Hanssen, 2004]. 2. Use of different adaptive

deformation model in PSI [Van Leijen and Hanssen, 2007]. 3. Methods to derive different

characteristics of PS and to classify them especially in urban areas [Perissin and Ferretti,

2007].

All the mentioned PSI techniques differ either in method choosing the PS candidate

or in the deformation model used in the PSI estimation. Since the PSI needs to retrieve

the coordinates of single points, the imaging in 3D is done by tomography, estimating the
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reflectivity in elevation is derived. In urban areas, the multiple scatterers must be consid-

ered in the tomographic 3D reconstruction and model selection must be applied in the

estimation of the relevant scatterers. The first experiment on SAR tomography was carried

out in the laboratory, under ideal experimental conditions, and by using airborne systems

[Reigber and Moreira, 2000]. Another SAR tomography method is advanced imaging in

the 4D (space-time SAR imaging) enhancing another than the separation of the point scat-

terers in the same azimuth-range resolution cell, it estimates their relative deformation

also [Fornaro and Serafino, 2006]. The SAR tomography is a spectrum estimation prob-

lem along with a specific resolution cell, the complex SAR image is the sampled Fourier

transform of the reflectivity function in the elevation direction. There are many different

spectrum estimation strategies are used, such as singular value decomposition (SVD) and

nonlinear least square (NLS). Thus SAR tomography is a young method to determine the

3D reflectivity function, depending on multi pass acquisitions, and is discussed in different

publications [Fornaro et al., 2006; Reigber and Moreira, 2000].

2.4 Tomography SAR background

TomoSAR implementation requires an accurate approach regarding the relative phase

difference between different passes. The rationale of tomography is to employ multiple

flight tracks nearly parallel to each other [Ho Tong Minh et al., 2016] as shown in the left

panel of Fig.3.2. The ensemble of all flight lines allows us to form a 2D synthetic aperture,

resulting from the coherent multiple SLC images of different passes, providing a possibility

to focus the signal in the whole 3D space. By exploiting tomography, MB SAR data can

be converted into a new multi-layer SAR data stack where each layer represents scattering

contributions associated with a certain height [Ho Tong Minh et al., 2016]. We will refer to

(x,y,z) as the azimuth, ground range, and height, respectively. Let’s consider an MB data-

set of SLC images acquired by N sensors parallel track, and let SLCn(y,z) denote the SLC
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value at the pixel with slant range and azimuth range (y,z) in the n-th image. The following

model holds [Tebaldini et al., 2016]:

SLCn(y,z)=

Ï

S(y,z)exp(j
4π

λ
Rn)dydz (2.2)

where: Rn is the distance from the sensor to the scatterer. S(y,z) is the scene com-

plex reflectivity within SAR resolution cell, λ is the carrier wavelength. The expression of

topography-compensated SLC data can be conveniently approximated as:

SLCn(r,ξ)
tc=

∫
P(ξ)exp(jKnξ)dξ (2.3)

where: P(ξ) denotes the projection of target reflectivity along cross-range axis, ξ, (r,ξ)

denote the slant-range and cross-range coordinates, bn is the normal InSAR baseline with

respect to the master track. kn is the wave-number associated with the cross-range direc-

tion.

Kn=
4π

λR
bn (2.4)

An essential demand for both Tomography and Interferometry SAR is that SLC data

stack is not affected by phase terms other than those associated with the spatial distribu-

tion of targets [Tebaldini and Guarnieri, 2010]. Indeed, any phase disturbances will affect

the TomoSAR and InSAR products by affecting the coherence phase of the interferometric

phase. There are different sources of phase screens such as Ionosphere, Troposphere, or-

bit inaccuracy [Ferreti et al., 2000], antenna phase center stability and clock phase stability

[Massonnet et al., 1995]. while Ionosphere and troposphere affect space-borne SAR data,

orbit inaccuracy is a common issue that affects both airborne and space-borne SAR sys-

tems and can appear as phase screens in the SLC data stack. Actually, phase disturbance

arises in SAR images as a result of undesirable variation of the optical path from sensor to

target. In particular, uncompensated phase terms due to either unpredicted geometrical

factors (orbit uncertainty) or propagation through tropospher and ionosphere results in
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blurring and side lobes phenomena [Tebaldini and Guarnieri, 2010]. Phase screens need

to be estimated and corrected for during the data processing in order to improve MB SAR

data quality and enhance the interpretation of TomoSAR and InSAR applications. In the

following, a detailed discussion of different phase calibration approaches was done.

2.5 phase calibration

Before carrying on MB SAR algorithms, a fundamental issue should be taken into ac-

count is the phase calibration of the SAR data, in order to compensate the phase residu-

als that influence the focusing MB SAR SLC data stack. These phase disturbances origi-

nated from atmospheric propagation delays or an error in allocating the platform position

[Tebaldini et al., 2016]. In order to eliminate these residuals, iterative phase calibration al-

gorithm which is capable of estimating the phase screens and correct the data stack can be

applied. For this issue, Various phase calibration techniques were proposed. Some tech-

niques are based on the Permanent Scatterers (PS) in which the calibration performance

could be defective by the nature of the scatterers having important limitations when ap-

plied to the tropical forests due to decorrelation that is caused by dense vegetation [Tebal-

dini and Rocca, 2009]. Another approaches proposed the separation of the ground contri-

bution and volume contribution in order to isolate the ground phase using Sum Kronecker

Product (SKP) structure in presenting the data covariance matrix [Tebaldini, 2009b] based

on Multi-polarimetric Multibaseline (MPMB) SAR data. One more technique proposed

phase calibration of MB data by distributed targets using MB estimation techniques, such

as Phase Linking [Guarnieri and Tebaldini, 2008], SqueeSAR [Ferretti et al., 2011]. Tebaldini

et al [Tebaldini et al., 2016] proposed a recent strategy for calibrating the airborne data-set

using Distributed Scatterers Interferometry DS-InSAR based on the double localization of

target position and sensor position errors responsible for the phase disturbances in the

data stack. Where it was shown that phase screens can be accurately retrieved based on

volumetric targets like forests and ice, even in the absence of prior information about the

scene topography or reference targets.

We want to focus on the phase calibration methods proposed to handle the effect of
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phase disturbance that affect the performance of Multi-baseline SAR algorithms. These

algorithms applied successfully to airborne SAR data.

2.5.1 Phase Calibration algorithms

In this section, the main phase calibration algorithms proposed in the literature are

discussed. Three of the most important phase calibration approaches are then described.

2.5.2 Phase Calibration by Permanent Scatterer Interferometry

(PS-InSAR)

Accurate retrieval of ground motions can be established by the founded approach Per-

manent Scatterers Interferometry through assaying of SAR data stacks [Ferreti et al., 2000].

This approach utilizes the existence of a set of point targets within the illuminated scene,

which are stable enough to allow for precise phase measurements. Point Selection is ex-

ecuted by considering only those targets that show stable amplitude in all images in the

data-stack, thus the name Permanent Scatterers (PSs).

Figure 2.2 – Phase calibration of MB SAR data using PS-InSAR approach .

As in the more general case of multi-pass InSAR, the differentiating of phase contri-

butions related to motions from those resulting from atmospheric propagation (phase
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screens) is the most substantial theme in PS-InSAR. Part of the atmospheric signal can

be eliminated using auxiliary data from meteorological models [Pichelli et al., 2015]. How-

ever, the precision of the mentioned methods are inadequate in most cases and a data-

based technique is essential. Data-based techniques for calculating and removing the at-

mospheric signal are dependent on its statistical characteristics, principally its spatial cor-

relation length. According to such characteristics, the atmospheric signal is evaluated at

points where earlier suppositions can be made (i.e. linear motion or absence of motion)

and then added to reassemble the atmospheric phase screen at each point of the image

stack [Ferreti et al., 2000].

In the case of PS-InSAR used for phase calibration of a forest scenario presented

in [Tebaldini, 2009b], double bounce interactions of tree trunks and branches with the

ground were found to work as PSs. As the phase center of double bounce echoes is ground

locked, the extraction of DTM and phase screens elimination is possible. It has to be men-

tioned that the two factors that empowered the application of PS-InSAR are the flat ground

topography and the existence of a relatively sparse and managed forest site. As an exam-

ple, the additional interpretation of the BIOSAR 2008 data-set (Northern Sweden) showed

an obvious reliance between PS density and terrain slope. The different steps pf phase

calibration by PS-InSAR is shown in Figure 2.2.

Double-bounce interactions were also recognized in tropical areas using data from

TropiSAR. Results are stated in [d’Alessandro et al., 2013], together with a precise study

of the dependence of double bounce on terrain slope. In the mentioned study, however,

double bounces were recognized based on tomographic data cubes, as their signature was

not as obvious as in SLC data. A long term investigation of the effectiveness of PSInSAR in

the forest is absent nowadays. Nevertheless, it is predicted that the mentioned method will

be accurate in many forest sites due to the combination of different aspects like variation

of moisture, terrain slope, and forest density.
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2.5.3 Phase Calibration by Algebraic Synthesis (AS)

The Algebraic Synthesis (AS) technique is an algebraic procedure to decompose ground

and volume scattering based on multi-baseline and multi-polarimetric data [Tebaldini,

2009b]. The AS method is displayed to broaden the idea of PolInSAR to the case of multiple

baselines, and it defaults to PolInSAR in the case where only two polarimetric acquisitions

are available [Tebaldini, 2009b]. In the case of phase calibration, utilization of the AS tech-

nique followed by multi-baseline phase estimation allows the derivation of the phase of

ground scattering contributions. The restored phases correspond to the sum of the topo-

graphic phase and the residual phase screens, and thus they resemble the phase offsets.

The different steps pf phase calibration by AS is shown in Figure2.3.

Figure 2.3 – Phase calibration of MB SAR data using AS approach .

An appealing characteristic of this technique is that relative phase calibration is auto-

matically acquired by counter-rotating the data for the obtained phase offsets, without the

need to particularly separate phase screens from the topographic phase. Nevertheless, a

further InSAR analysis is essential to evaluate terrain topography.

This approach was realized and validated at P-Band based on campaign data from

BioSAR, BioSAR 2, and TropiSAR [Tebaldini and Rocca, 2009], [Tebaldini and Rocca, 2012b],

[Gatti et al., 2011], [Ho Tong Minh et al., 2014].

The TomoSAR data phase calibration using the AS approach is done by eliminating the

ground phase contributions from the tomographic Single Look Complex (SLC) data. The

exploitation of MultiPolarimetric and MultiBaseline (MPMB) data allows the identification
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of different Scatterer Mechanisms (SM) [Tebaldini and Rocca, 2012b]. The separation of

the ground contribution and the vegetation from MPMB data is performed by presenting

the data covariance matrix through SKP [Tebaldini, 2009b].

The structure model of the data covariance matrix, where each scatterer mechanism is

presented by Kronecker Product (KP) of two matrices, can be addressed as follows:

W =E[YYH]

=

k∑
k=1

λkCk⊗Rk ≈Cg⊗Rg+Cν⊗Rν

(2.5)

Where Y is the MPMB SLC data vector, H is the Hermitian conjugate, W denotes the

data covariance matrix, K is the total number of SMs that contribute to SAR signal, Cg,v

and Rg,v are the polarimetric signature and structure matrix corresponding to the ground

and volume contribution, respectively.

Phase calibration solution:

1- Retrieve an initial guess for ground phases by Capon spectra for the HH channel.

2- Correct the original data using this ground phase.

3- Re-retrieve the ground phases by Sum of Kronecker Products (SKP) model.

initialize ground phases:

φinitial
n =

4π

λrsinθ
Bnz

0
g (2.6)

where:

z0g=argmaxScapon(z,HH) (2.7)

Assuming two main Scattering Mechanisms - ground and volume scattering :

1-The best LS approximation of W is obtained by retaining the first 2 terms of the SKP

Decomposition.
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2- The matrices Rg, Rv, Cg, Cv can be determined from the terms of the SKPD via a

linear transformation.

Retrieval of ground phases:

φ
ground
n =

4π

λrsinθ
Bnzg+ηn (2.8)

φ
ground
n =PL(Rg)+φinitial (2.9)

After the estimation of the ground covariance matrix, the Phase linking algorithm is

applied to estimate ground phases. After that, the calibration is carried out by removing

ground phases from the original SLC data. Finally, Capon beamforming power estimation

is applied to get the tomographic profiles.

2.5.4 Phase Calibration by Distributed Targets (DS-InSAR)

Multi-pass InSAR using distributed scatterers, which will be mentioned as DS-InSAR,

is enabled by multi-baseline estimation methods, such as Phase Linking [Guarnieri and

Tebaldini, 2008], SqueeSAR [Ferretti et al., 2011], and SBAS [Berardino et al., 2002]. A com-

mon feature of these methods is the ability to mutually process a number of different im-

age pairs, or even all available image pairs. It is completed to rebuild the phase, or instead

of the related optical path, of decorrelated interferograms since direct phase estimation is

not viable. A theory that implements the lower bound of the precision obtainable by these

methods is found in [Guarnieri and Tebaldini, 2007].

DS-InSAR is based on the analysis of multi-looked interferograms. This results in a

resolution loss with respect to PS-InSAR, in exchange for the possibility to analyze areas

where PS density is not enough. The different steps pf phase calibration by DS is shown in

Figure2.4.
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Figure 2.4 – Phase calibration of MB SAR data using DS approach .

Phase calibration of airborne data-sets using DS-InSAR was lately illustrated in [Tebal-

dini et al., 2016], where it was shown that phase screens can be precisely estimated de-

pending on volumetric targets like forests and ice, even in the absence of prior informa-

tion about the scene topography or reference targets. The key ideas of that work are: i)

multi-baseline phase estimation favors illustrating volumetric targets as equivalent phase

centers, ii) multi-baseline data provide enough equations to simultaneously asses aircraft

positions and target phase center height. These approaches were then utilized to calibrate

campaign data acquired over ice (AlpTomoSAR), and boreal (BioSAR 2008) and tropical

(TropiSAR) forests, developing more precise tomographic products in all three cases.

It is significant to mention that the approach used in [Tebaldini et al., 2016] is ad-

justed to the case of airborne data, for which phase screens are the outcome of uncom-

pensated platform motion. Similar methods could in principle be prolonged to evaluate

phase screens originating from mechanical oscillations, which can be logically parameter-

ized, and possibly clock errors.



Part II

Tomography SAR for forested areas

59





CHAPTER

3
L-band UAVSAR tomographic

imaging in dense forests, Gabon

forests

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1 Introduction

Tropical forests have major impacts on earth ecosystem in terms of carbon storage,

regulating water and weather. Above Ground Biomass (AGB) is the most important pa-

rameter that is related directly to the amount of carbon in the global ecosystem cycle [Pan

et al., 2011]. Uncertainty in balancing the global carbon budget arises from a deficiency

in AGB density estimation and carbon stocks in tropical forests. Indeed, developing new

technologies is critical in surveying and monitoring tropical forests. NASA, ESA, AGEOS,

and DLR have developed united efforts in the implementation of the AfriSAR campaign

on the Gabon forests [Lou et al., 2017]. In this context, the objective of AfriSAR campaign

61
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was to acquire airborne and field data for the development, calibration, and validation of

the vertical structure of tropical forests and biomass estimation algorithms. The airborne

data provided by the campaign consists of polarimetric Synthetic Aperture Radar (SAR) in-

terferometry (Pol-InSAR), Tomography SAR (TomoSAR) datasets, Lidar full waveforms and

small footprint Lidar (SFL).

SAR and Lidar provide records sensitive to 3D forests structure parameters at high spa-

tial resolution [Drake et al., 2002; Dubayah et al., 2010; Cazcarra-Bes et al., 2017b]. Li-

dar sensors emit a laser beam which is reflected by forest structure elements within the

laser path, and the returned waveform is recorded by the Lidar system [Lefsky et al., 2002].

Metrics extracted from Lidar waveforms are used to estimate forests vertical structure.

Concerning SAR, the development of approaches for the estimation of forests structure

has been enhanced by the introduction of Pol-InSAR [Papathanassiou and Cloude, 2001]

and TomoSAR [Reigber, 2000]. SAR is mostly a coherent airborne or space-borne side-

looking radar system that utilizes the flight path of the moving platform and offers a high-

resolution remote sensing imagery data. SAR has been a significant tool for a wide variety

of landscape applications in a broad sense (e.g. natural habitats, rural areas, forests, natu-

ral hazards, urbanization) [Kramer, 2002]. SAR data collected over 2-D synthetic aperture

can be processed using signal processing algorithms to focus the illuminated scatters in

the 3D space. Polarimetric SAR is an advanced imaging radar system [Zebker and Van Zyl,

1991], it plays an important role in radar remote sensing. Full polarimetry radar provides

five datasets from each polarization band, namely HH, HV (H: horizontal, V: vertical), VH,

VV, and total power (TP). With a polarimetric SAR, we can obtain much more informa-

tion than a single polarized SAR system. Now polarimetric SAR has many applications

including agriculture (crop classification, soil moisture extraction) [Ferrazzoli et al., 1997;

Ballester-Berman et al., 2005; Hoekman et al., 2011; Baghdadi et al., 2012], oceanography

(surface currents and wind field retrieval) [Schmullius and Evans, 1997], forestry (forest

monitoring, classification, and tree height estimation) [Cloude and Papathanassiou, 1998;

Freeman, 2007], and military (ship detection, target recognition/classification) [Boerner;

Liu et al., 2005].
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TomoSAR is a Multibaseline (MB) SAR technique which provides vertical resolution ca-

pabilities [Reigber, 2000; d’Alessandro and Tebaldini, 2012]. This technique has been re-

peatedly demonstrated using airborne data [Reigber, 2000]. The potential of TomoSAR

arises from its capability to identify the forests top height, which is an essential parameter

for the AGB estimation [Ho Tong Minh, D et al., 2017; Ho Tong Minh, Dinh et al., 2014].

Forests height estimation has been demonstrated using Pol-InSAR model inversion over

different forests (boreal, temperate, and tropical) at multiple frequencies varying from P-

up to X-band using airborne and spaceborne platforms [Kugler et al., 2015]. Also, forests

3D reconstruction by TomoSAR techniques today is well-established and has been demon-

strated in various experiments over different forests ecosystems [Ho Tong Minh, D et al.,

2017; Ho Tong Minh, Dinh et al., 2014, 2015a]. The ability of P-band TomoSAR for char-

acterizing 3D vertical structure of tropical forests has been discussed and evaluated previ-

ously [Ho Tong Minh et al., 2016], while L-band TomoSAR capabilities are still in a rather

early stage of development. Using airborne data acquired during TropiSAR campaign,

D.H.T Minh et al. [Ho Tong Minh, Dinh et al., 2015b] demonstrated that the use of to-

mographic imaging at L-band in tropical forests appears limited. The TropiSAR campaign

carried out in 2009 in French Guiana offered the first opportunity to test TomoSAR for

tropical forest areas. However, these data were suboptimal for assessing multi-frequency

TomoSAR performance for forest structure monitoring. To overcome this limitation, the

AfriSAR campaign was successfully carried out in 2015 and 2016, it has acquired an opti-

mal tomographic and polarimetric data over dense forests on Gabon.

The aim of the chapter is to analyze the capability of L-band TomoSAR to retrieve trop-

ical forests 3D structure and estimate accurately forests top height in dense forests. First,

we validate L-band vertical profile with Digital Terrain Model (DTM) and Canopy Height

Model (CHM) from SFL data set as a reference. Second, qualitative comparison of Capon

beam forming profile of L-band at HH and HV polarizations with LVIS Level 1B waveform

Lidar data were carried out over different regions of interest in the Gabon Lopé National

Park. In addition forests top height has been retrieved from the TomoSAR L-band data.

The results suggest that L-band TomoSAR holds promise for mapping forest structure in

tropical forests.
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3.2 Materials and Methods

3.2.1 Study area

The NASA-sponsored AfriSAR campaign has been carried out over the tropical forests of

Gabon in Africa. This campaign has performed L-band UAVSAR acquisitions (in February

2016). The campaign was conducted in collaboration with an ESA-sponsored campaign

[Lavalle et al., 2017]. UAVSAR and Lidar systems have flown over the same sites where ESA

platforms have acquired data. We will focus on the presentation of Lopé in which our to-

mographic study was conducted (Fig. 3.1). Lopé National Park is one of the largest national

Figure 3.1 – Study area, Gabon Lopé Park. The black polygon represents where UAVSAR

acquired L-band TomoSAR data. The background is derived from the Africa Copernicus

Land Cover of 100 m x 100 m spatial resolution [Tsendbazar et al., 2018]. The land cover

shows different vegetation features of the Lopé National Park.
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Table 3.1 – Region of interests at Lopé Park.

Campaign Type CHM (m) [min, median, max] Number of pixels

COL1 Colonizing forests (Intermediate) [6.9, 29.5, 43.1] 6166
OKO1 Okoumé forests [3.7, 33.8, 44.3] 9839
OKO2 Okoumé forests [26, 31.7, 40.1] 10421

parks in central Gabon covering an area of 4913 km2. Although the terrain is mostly rain

forests, the scene in the northern part is composed of the last remnants of grass savanna

created in central Africa during the ice age 15000 years ago. The park was the first protected

area in Gabon. It is frequently tracked by the National Park Agency of Gabon which makes

it well cited as a perfect scientific research site (Fig. 3.1). This landscape consists of vast

Savanna areas in the north, bounded by the Ogooué River and often burned to preserve

the forests Savanna areas, in addition to an expanded region of compact tropical forests

with patches of successive forests with complex structure, which are advanced through

time with savanna recolonization [White, 2001]. Lopé is a convenient landscape for show-

ing the effective performance of UAVSAR for tomographic imaging due to the gradient of

forests biomass from the forests savanna boundary (up to 100 Mg/ha) to compact undis-

turbed humid tropical forests (greater than 400 Mg/ha). Tree height and vertical structure

can also vary gradually from Savanna through forests, providing mono-dominant uniform

trees of Okoumé (30-50 m tall) to regions with dense Marantaceae understory, and large

gaps in mid canopy, creating skewed vertical profiles. The topography of Lopé is also di-

verse, varying between large flat plains and steep slopping terrains. To achieve qualitative

analysis between UAVSAR-TomoSAR vertical profile and Lidar waveforms, three Region of

Interests (ROIs) were selected. These regions include: two ROIs in the Okoumé dominated

forests (OKO1 and OKO2), and one ROI in colonizing forests (COL1) (Table 4.1).

3.2.2 Data-sets

Different data sets have been acquired over the Lopé during the AfriSAR campaign.

The NASA AfriSAR campaign involved three data sets, UAVSAR data, LVIS Lidar data and

SFL data.
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Radar acquisitions configuration

The AfriSAR campaign aims to provide support to forthcoming NISAR, GEDI and

BIOMASS missions. Using UAVSAR and the LVIS waveform Lidar instruments, NASA ac-

quired 39.6 and 32.4 of flight hours of data, respectively over various sites in Gabon for the

sake of calibration, verification, and new algorithm exposition of several ecosystem science

products. The operating band of the UAVSAR radar instrument is 1217.5-1297.5 MHz (L-

band), (data can be downloaded from https://uavsar.jpl.nasa.gov/cgi-bin/data.pl), which

exploits an electronically scanned array antenna to allow a robust repeat-pass interfero-

metric measurements [Hensley et al., 2008]. The Gulfstream III jet, with an acceptable

flight altitude of 12.5 km, allows the scanning of about a 22 km wide area, with incidence

angles extending from 25 degree to 60 degree. A typical UAVSAR polarimetric single-look-

complex (SLC) product has ground range and azimuth resolution of 2.5 m and 1.0 m, re-

spectively [Fore et al., 2015]. In the following, we show the tomographic imaging over the

northern part of the Lopé National Park in Central Gabon using 7 PolInSAR single-look-

complex images collected by UAVSAR. The total area covered by the image is 22 km x 50

km, but a part of approximately 1 km x 5 km is considered for our study. UAVSAR dataset

acquired over Lopé is fully polarimetric and has been gathered by increasing the aircraft al-

titude by 20 m each flight track, leading to significantly low variation of vertical resolution

from near range to far range. (we present the acquisition parameters of UAVSAR configu-

ration in Table 4.2, also baseline configuration of the acquisitions is shown in Table 3.3).

Lidar data-sets

Using different instruments, two Lidar data sets have been collected over the area of

Lopé. The first data set which we will refer to as the SFL data set was acquired by Sas-

san Saatchi’s team (JPL) in July 2015 with a variable point density and footprint diameter

of about 10 cm. The data sets were pre-refined to eliminate any artefacts of helicopter

motions in order to present a more uniform point density of about 10 points per m2 for

vegetation characterization. i) DTM, ii) CHM and other canopy metrics derived from CHM

are derived from SFL data. Based on the DTM, slope maps were estimated, the heights of
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Table 3.2 – L-band UAVSAR acquisition parameters.

Acquisition Parameters

Acquisition Mode PolSAR

Look Direction Left looking

Pulse Length 40 (µ s)

Steering Angle 90 (deg)

Bandwidth 80 (MHz)

Ping-Pong or Single Antenna Transmit Ping-Pong

Air craft speed 224 (m/s)

Range of look angle 21-65 (deg)

Antenna Length 1.5 (m)

Table 3.3 – Baseline configuration of Multi-baseline UAVSAR acquisitions.

Track Relative baseline

1 master

2 20m

3 40m

4 60m

5 80m

6 100m

7 120m

the Lidar point were normalized by removing the ground elevation. The DTM and CHM

data were developed in a raster format at 1m posting characterizing the forests structure

of an area of approximately 15 km2 of old growth and successive forests, as well as sa-

vanna vegetation of the northern Lopé study site. The second Lidar data set was acquired

by NASA’s airborne Land Vegetation Ice Sensor (LVIS) during March 2016 as a part of the

NASA-ESA collaboration of the BIOMASS, GEDI and NISAR calibration and validation ac-

tivities. LVIS is a Large Footprint Lidar (LFL) with full-waveform capability with applica-
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tions of measuring ground elevation and vertical profile of vegetation structure in various

ecosystems. For LVIS, there are two different datasets available: Level 1B and Level 2 (data

can be downloaded from https://lvis.gsfc.nasa.gov/Data/Data_Download.html). The level

indicates the amount of processing, which the data has undergone before it was published.

Level 1B data contains georeferenced Lidar returned waveforms. Level 2 data contains geo-

referencing information for different reflecting surfaces within the laser footprint and the

locations of which have been derived from the Level 1B waveform.

3.2.3 TomoSAR background

TomoSAR implementation requires an accurate handling regarding the relative phase

difference between different passes. The rationale of TomoSAR is to employ multiple flight

tracks nearly parallel to each other [Ho Tong Minh et al., 2016] as shown in the left panel of

Fig. 3.2. The ensemble of all flight lines allows forming a 2D synthetic aperture, resulting

from the coherent multiple Single Look Complex (SLC) images of different passes, provid-

ing a possibility to focus the signal in the whole 3D space. By exploiting tomography, SAR

data can be converted into a new multi-layer SAR data stack where each layer represents

scattering contributions associated with a certain height as shown in the right panel of

Fig. 3.2 [Ho Tong Minh et al., 2016]. We will refer to (r,x,ξ) as the Slant, azimuth and cross

ranges, respectively. We consider a data-set of SLC images acquired by N sensors parallel

track, and let Yn(r,x,ξ) denote the SLC value within pixel resolution cell (r,x,ξ) in the n-

th image. The expression of topography-compensated (tc) SLC data can be approximated

[Tebaldini et al., 2016] as:

Yn(r,x)
tc=

∫
P(r,x,ξ)exp(j

4π

λr
bnξ)dξ (3.1)

where: P(r,x,ξ) denotes the projection of target reflectivity along cross-range axis ξ,

ξ represents the cross-range coordinate, orthogonal to the radar Line-of-sight (LOS) that’s
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defined by the slant range coordinate r. We can define kn, which is the wavenumber asso-

ciated with the cross-range direction.

Kn=
4π

λR
bn (3.2)

where R is the distance from the sensor to the scatterer, λ is the carrier wavelength, and bn

is the normal InSAR baseline with respect to the master track.

Figure 3.2 – Left, Schematic representation of the TomoSAR acquisition. Azimuth axis is

orthogonal to the picture. Right, schematic view of TomoSAR imaging, where each layer

represent scattering contributions associated with certain height.

3.2.4 TomoSAR Phase Calibration

Prior to MB SAR algorithms, a fundamental issue should be taken into account, which

is the phase calibration of the TomoSAR data, in order to compensate the phase residu-

als that influence the focusing of MB SAR data. These phase disturbances are originated

from atmospheric propagation delays or an error in allocating the platform position. To

overcome this issue, we adopted UAVSAR data to phase calibration using algebraic syn-

thesis (AS) approach. This technique is an algebraic procedure to decompose ground and

volume scattering based on multi-baseline and multi-polarimetric data [Tebaldini, 2009a].

This approach was already realized and validated at P-Band based on campaign data from

BioSAR, BioSAR 2, and TropiSAR, see [Ho Tong Minh, Dinh et al., 2014; Tebaldini and Rocca,

2009, 2012b; Gatti et al., 2011].
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The TomoSAR data phase calibration using AS approach is done by eliminating the

ground phase contributions from the tomographic SLC data. The exploitation of Multi-

Polarimetric and MultiBaseline (MPMB) data allow the identification of different Scatterer

Mechanisms (SM) [Tebaldini and Rocca, 2012b]. The separation of the ground contribu-

tion and the vegetation from MPMB data is performed by presenting the data covariance

matrix through Sum Kronecker Product SKP [Tebaldini, 2009a].

The structure model of the data covariance matrix, where each SM is presented by Kro-

necker Product of two matrices, is addressed as follows:

W =E[YYH]

=

N∑
k=1

λkCk⊗Rk ≈Cg⊗Rg+Cν⊗Rν

(3.3)

Where Y is the MPMB SLC data vector, H is the Hermitian conjugate, W denotes the

data covariance matrix, k is the total number of SMs that contribute to SAR signal, Cg,v

and Rg,v are the polarimetric signature and structure matrix corresponding to the ground

and volume contribution, respectively.

The first step of Phase calibration is to retrieve an initial guess for ground phases by ap-

plying Capon spectrum estimation using HH channel, then the original data is corrected

using this ground phase. Then the ground phases is retrieved by Sum of Kronecker Prod-

ucts (SKP) model. Assuming two main scattering mechanisms, ground and volume scat-

terings, we obtain the best LS approximation of the covariance matrix W by retaining the

first 2 terms of the SKP Decomposition, and the matrices Rg, Rv, Cg, Cv can be determined

from the terms of the SKP Decomposition, via a linear transformation. Starting from ini-

tialization of ground phases, one can present the initial guess of ground phase at each track

n by:

φinitial
n =

4π

λrsinθn
Bnzg (3.4)
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where Bn is the normal baseline relative to track n, r is the slant range for the whole

scene, zg is the terrain topography,and θn is the look angle associated to each track n:

zg=argmaxScapon(z;HH) (3.5)

Here, z denotes the vertical axis used in order to apply spectrum estimation problem. After

that, we can retrieve the ground phases at each track n, it can be expressed by:

φ
ground
n =

4π

λrsinθ
Bnzg+ηn (3.6)

Where ηn is the phase screen at track n. After the estimation of the ground covariance

matrix, Phase linking algorithm is applied to estimate ground phases.

φ
ground
n =PL(Rg)+φinitial

n (3.7)

Where PL denotes the Phase Linking algorithm [Tebaldini et al., 2016]. After that, the cali-

bration is carried out by removing ground phases from the original SLC data to obtain the

calibrated SLC data.

Yn
cal= Yn.∗exp(−j.φ

ground
n ) (3.8)

Finally, Capon beamforming power estimation is applied to get the tomographic profiles.

3.2.5 TomoSAR inversion

SAR data were acquired over forests from slightly different altitude and incidence

angles providing useful information in the vertical direction [Ho Tong Minh, D et al.,

2017]. The L-band UAVSAR airborne system provides fully polarimetric mode in the NASA
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AfriSAR campaign. Tomographic techniques composed of power estimation methods ap-

plied on the multi-baseline SLC data to retrieve the backscattered power that characterize

the vertical profile of the forests [Ho Tong Minh, D et al., 2017; Ho Tong Minh, Dinh et al.,

2014]. In this chapter, Capon beam forming power estimator is applied to represent the

vertical profile of vegetated areas.

Capon beam forming

Capon beam forming is a non-parametric power estimation method used in the tomo-

graphic analysis that allows obtaining a continuous vertical profile without any knowledge

on the statistical properties of the data [Stoica et al., 2005a]. The Capon estimated vertical

profile Pc(ξ) is retrieved from the covariance matrix of the MB SLC data[Gini et al., 2002a],

and can be expressed as:

Pc(ξ)=
1

a(ξ)tW−1a(ξ)
(3.9)

where a(ξ) is the steering vector containing the interferometric information for a scatter at

cross range ξ for all the baselines relative to a master track, and W is the maximum likeli-

hood estimation of the covariance matrix. Y denotes the multibaseline SLC data configu-

ration. N is the number of tracks. Note that since the inverse of the estimated covariance

matrix is used, the Capon estimator requires W to be well conditioned in order to ensure

that W−1 can be trusted.

3.2.6 Estimate forests top height

The canopy structure in tropical rain forests is more complex than any other forest type.

The main challenge in such a field is the estimation of the forests top height because it is of-

ten hard to clearly identify the top leaf or branch of a tree in the canopy. TomoSAR has been

demonstrated as a powerful tool to estimate the forests top height thanks to its accurate

characterization of the vertical structure of tropical forests. Forests vertical structure can

be observed by taking a tomographic profile, i.e. a slice of the multi-layer data stack. Using

the Capon beamforming power estimator, we can retrieve the 3D backscatter distribution

from the multi-layer SLC and show the vertical backscatter distribution function. Each ver-
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tical distribution is characterized by two effective contributions, one corresponding to the

signal, where most of the backscatter is concentrated, the so-called Canopy contribution

or phase center, and another contribution corresponds to the reflected signal from ground.

Figure 3.3 shows a schematic view of the vertical backscatter distribution in which it is as-

sumed that the shape of the distribution can be divided into four zones. The first zone

corresponds to the ground contribution which is the signal reflected from the ground. The

second one corresponds to the canopy layer contribution. The third one is the power loss

zone, where the backscatter undergoes a loss along the vertical direction from the phase

center (canopy contribution) location. Further away, the backscatter Capon profile is dom-

inated by noise, unlikely to be associated with any physically relevant components. Forests

top height can be retrieved by two different ways, either by identifying the power loss from

the phase center location in the upper envelope of the profile or by identifying the power

loss from the noise level (location of the highest return detected by TomoSAR platform) to

the forests top height.

Figure 3.3 – The schematic view of the vertical backscatter distribution (TomoSAR Capon

profile at certain cell).

H(r,x)=argmin(P(Hn,r,x)−P(Hc,r,x)−K) (3.10)
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where P(Hn,r,x) is the backscatter at the phase noise level, Hn is the elevation of the noise

level, K is the power loss value, and Hc is the LiDAR height value from SFL data. Since the

forest top height retrieval depends on the choice of the power loss value K, we used the

CHM from the SFL dataset to select the optimal power loss value.

Tomographic imaging is carried out simply by taking the Fourier beamforming (with

respect to the normal baseline) of the MB SLC data set at every slant range and azimuth lo-

cation (r,x). The result of this process is a multi-layer SLC stack, where each layer is referred

to a height above the terrain. Here, we will refer to each image within the multi-layer data

stack simply by the associated height (i.e.: 15 m layer, 30 m layer), or as a ground layer for

the image focused at 0 m. To provide a comparison of tomographic layers associated with

each height, we also show the layers of the selected study area extracted from the Lidar

LVIS waveform.

Figure 3.4 – (a) Schematic view of Lidar LVIS waveform divided into four zones. Zone 1:

ground contribution, zone 2: Canopy contribution, zone3 : Noise and unwanted reflected

signal. (b) Extraction of Lidar level 2 data from LVIS waveform. RH100 is the elevation

of the highest detected return (forest top height). RH25 is the elevation where 25% of the

waveform energy is occurs, it denotes the ground layer associated with LVIS data.
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The schematic view of Lidar waveform is illustrated in Fig. 3.4, where it is characterized

by canopy and ground contributions.

3.3 Results

This section is devoted to present the L-band tomographic imaging at different zones

over the Gabon Lopé Park. The experiment has been formed based on N=7 tracks L-band

fully polarimetric SAR images. The baseline spacing is 20 m, resulting in a total baseline of

120 m.

The backscatter SLC image, where we had chosen the studied sections, is illustrated in

Figures 3.5a and 3.5b). The Tomogram has been validated using SFL data (Figures 3.5e and

3.5f).

The Capon estimator has been applied on sliding windows of 33x33 pixels (n=1089 pixel

= 2722m2) for each position in the azimuth and range directions. The tomographic profiles

from the Capon beamforming power estimator are normalized between 0 and 1. The first

observation is that the tomographic profiles achieved a good correlation with the CHM and

DTM from SFL data and clearly the canopy layer and ground layer are detected as shown in

Figures 3.5e and 3.5f. A Qualitative comparison between HH, HV Capon profiles and LVIS

profile is illustrated in Fig. 3.6. The LVIS Level 1B has been used to plot the vegetation pro-

files at different ROIs. The mean DEM value on the corresponding ROI has been added to

the vertical sampling of the LVIS profiles for the sake of presentation. Also, the mean value

of the SFL data for ground elevation DTM has been added to the canopy elevation CHM.

We observe that the mean LVIS profiles are similar to the tomographic Capon profiles. Fig-

ure 3.7 shows original SAR image and the HH backscatterer for layers at ground layer 0 m,

15 m layer, and 30 m layer over the Gabon Lopé National Park.

The Lidar LVIS level2 data at three different layers are illustrated in Fig. 3.8. RH25,

RH50, and RH75 are heights relative to the elevation at which 25 %, 50 %, and 75 % of the

waveform energy occurs.

Moreover, forests top height from L-band TomoSAR data is estimated using the CHM
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(a) (b)

(c) (d)

(f)(e)

Figure 3.5 – (a,b) The 2-D intensity of the TomoSAR image; the red lines correspond to

the slant range positions where the cut was chosen. (c,d) The Lidar cut at two slant range

positions 200 and 590, respectively. (e,f) HH Capon spectra. The black and white lines in

(e,f) correspond to the digital terrain model (DTM) and canopy height model (CHM) from

small-footprint Lidar (SFL), respectively. Capon power was normalized between 0 and 1 to

enhance visualization of the scatterers.

from SFL Lidar data. We assess forests top height location (in the tomographic profile sim-

ilar to the schematic figure shown in Fig. 3.3) with respect to noise floor location, ranging

the power loss from -11 dB to -8 dB with step 0.1 dB (as shown in Fig. 3.9). The bias associ-

ated with L-band TomoSAR top-height decreased regularly with the power loss, while the

root mean square error is decreased from about 8.3 m at – 11 dB down to 3.32 m at pene-

tration loss equals to -9.2 dB, which is significantly low, then it tends to increase after this

value to reach about 5.5 m at penetration loss value -8 dB. The bias value at penetration

loss equals to -9.2 dB is -0.059 m. After obtaining the optimal value of penetration loss, we

can estimate forest top height from TomoSAR data based on this value.

Then we compared the extrapolated L-band TomoSAR top-height with the CHM SFL
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(a) (b) (c)

Figure 3.6 – Regions of interest (ROIs) named (a) COL1, (b) OKO1, and (c) OKO2 in the

Gabon Lopé Park. HH(in red), HV(in green) Capon profiles. Capon power and LVIS wave-

form power are normalized between 0 and 1. The histograms of SFL canopy and ground

elevations are presented respectively in blue and in brown. The blue curve corresponding

to LVIS waveform Level 1B.

(a) (b) (c) (d)

Figure 3.7 – (a) original SAR image. HH power intensities associated with SAR image with

three layers produced by TomoSAR, (b) 0 m, (c) 15 m, (d) 30 m.

data over the same area. Fig. 3.10 shows forests top height estimated from Fig. 3.10a

L-band TomoSAR, Fig. 3.10b CHM from SFL data, and Fig. 3.10c shows the difference

between the estimated height (from L-band TomoSAR) and reference height CHM.

Figure 3.11 displays the distribution of the difference between the estimated height by

L-band TomoSAR data and CHM from SFL data. The histogram is similar to the normal

distribution function and it is unbiased. Bias is equal to -0.059 m where the RMSE is equal

to 3.32 m and the coefficient of determination has a value of 0.92.
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(a) (b) (c)

(m)

Figure 3.8 – Lidar LVIS Level2 different layers (a) RH25, (b) RH50 and (c) RH75 corresponds

to the Lidar LVIS layers. RH25% represents the elevation where 25% of waveform energy

occurs(ground layer). RH50% represents the elevation where 50% of waveform energy oc-

curs, and RH75% represents the elevation where 75% of waveform energy occurs.

(a) (b)

Figure 3.9 – (a) forests top height RMSE and (b) bias versus penetration loss with respect to

Noise floor elevation.

3.4 Discussion

In this chapter, it is proved that L-band TomoSAR imaging can be feasible even in trop-

ical forests. A tomographic study is implemented using L-band NASA/JPL UAVSAR data

collected during the AfriSAR campaign 2016. We show tomograms at different sections

of the Lopé and we validated it with SFL data. A qualitative comparison is done between
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(a)

(b)

(c)

(m)

(m)

(m)

Figure 3.10 – (a): Tree top height from L-band TomoSAR. (b): CHM from SFL data. (c): Rel-

ative difference between Lidar and TomoSAR tree top height, height difference = (HTomo -

HLidar).

Capon profiles and LVIS waveforms at different ROIs in the Gabon Lopé Park. Finally, the

forest top height from UAVSAR data has been estimated. Thus, these results can confirm

our expectation in the ability of L-band TomoSAR to characterize accurately the tropical

forests 3D structure. In order to analyze TomoSAR results, good knowledge about the main

factors that control effectively the correct illumination of the scatterers above the ground is

required. These factors are: the quality of the tomographic data, power estimation meth-
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Figure 3.11 – Histogram of the height difference (L_band - SFL Lidar data).

ods used in the tomographic inversion, the operating frequency of TomoSAR signal and

TomoSAR vertical resolution.

First, the ability to penetrate through the canopy down to the ground is assessed using

L-band TomoSAR data. Canopy and ground layers are detected correctly. The tomogram

has been validated by SFL. In contrary to our study, a previous work, which has been car-

ried out on French Guiana [Ho Tong Minh, Dinh et al., 2015a], has shown a limitation in

using L-band data concerning the illumination of the scatterers for dense forests of 30 m

height and more. While in this chapter, we established a correct illumination of the scat-

terers above the ground in dense tropical forests using L-band TomoSAR (Fig. 3.5). Capon

beam forming has been applied on a sliding window of 33x33 pixels (1089 total pixels) for

each position in azimuth and slant range direction. Knowing that using Capon windows

of 33x33 pixels which may blur the details in the vertical direction, it provides a general

understanding of the vertical structure of vegetation.

Second, a strong correlation is detected between the Capon profiles at different po-



3.4. DISCUSSION 81

larization channels with the LVIS waveform and the distribution of SFL data, opening

prospects to estimate tropical forests vertical structure using L-band TomoSAR (see Fig.

3.6). The LVIS and Capon results show great similarities. The Capon profiles at these three

ROIs are not similar to those found from P-band TomoSAR in [Wasik et al., 2018]. The study

carried out over Gabon forests using P-band TomoSAR data in [Wasik et al., 2018] show

that the HH ground contributions are stronger than HV for the analyzed ROIs, while HV

canopy contributions are larger than those of HH. Indeed, this behavior is expected for P-

band imaging. Here, it is highlighted that we do not have the same performance of P-band

concerning the behavior of polarization channels (HH and HV) at L-band data in terms of

canopy and ground signals. In our study, the operational response of L-band TomoSAR dif-

fers over the ROIs. We can observe the consequence of the weaker penetration capabilities

of the LVIS system compared to the L-band TomoSAR in the high vegetation volumes COL1

and OKO2. The penetration potential of each platform can be seen very well in the regions

where we have dense vegetation (COL1 and OKO2). We noticed a small shift or offset in the

Canopy contribution location. Also, it is clear that the ground contribution from L-band

TomoSAR is stronger than those of LVIS data.

Moreover, when observing Fig. 3.7, it is found that the ground layer image is char-

acterized by better contrast information compared to the original SAR image. The signal

at ground level is focused by the tomography processing, thus rejecting the contributions

from the vegetation layers and allowing the characterization of the polarimetric signature

of ground scattering. We can study the behavior of polarimteric signature with respect to

topographic terrain ground slope and often interpret this behavior by a physical model to

understand well different scattering mechanisms (single bounce, double bounce). For the

sake of comparison with TomoSAR layers, we display the LVIS Level 2 data Fig. 3.8. It con-

tains geo-referencing information of different reflecting surfaces, the locations of which

have been derived from the Level 1B waveform, within the laser footprint. The typical

surface parameters are ground elevation, canopy top elevation, canopy height and several

other height metrics. We assume that RH25 represents the ground layer [LVI] of Lidar LVIS

waveform, RH50 represents the 15 m layer, and RH75 represents the 30m layer. Regarding
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the RH25 layer, there is no ground contribution because of the penetration capabilities of

the Lidar LVIS which is different from SAR penetration performance.

Finally, the canopy height estimation using L-band TomoSAR data can be performed

efficiently even in tropical forests. By evaluating the vertical forests structure from tomo-

graphic profiles, forests top height can be retrieved. Using the CHM from SFL data as a

reference, the power loss value of -1.8 dB (from -11 dB to -9.2 dB we have 1.8 dB differ-

ence) with respect to the noise floor location (in the vertical profile distribution, upper

zone) was used to retrieve forests height with no bias and minimum errors. Note that the

same power loss value cannot straightforwardly be transferred to other campaigns study

cases. As shown in the frame of the BioSAR 2008 campaign [Tebaldini and Rocca, 2012a],

the power loss should be varied in space due to a strong variation of the vertical resolu-

tion across the scene swath. Here, the RMSE was estimated to be 3.32 m as shown in Fig.

3.9. This shows that there is no limitation for the implementation of a canopy height re-

trieval algorithm with L-band TomoSAR. Recent studies reported RMSE 2.5 m using P-band

TomoSAR in tropical forests [Ho Tong Minh, Dinh et al., 2014]. P-band penetration perfor-

mance is better than L-band due to its longer wavelength, which allows fewer interactions

with leaves and branches leading to a deeper penetration to the ground layer. To give pre-

cise knowledge about the accuracy of our proposed method applied in estimating forest

top height, we show in Fig. 3.10c the spatial distribution of the height differences between

L-band TomoSAR and Lidar height. After analyzing the histogram of Fig. 3.11, it is no-

ticed that the histogram of the height difference between TomoSAR and Lidar tends to be

normally distributed. We can generalize that the height difference values (between To-

moSAR and Lidar) are distributed around -0.059 m, having an RMSE of 3.32 m. Our results

considerably reinforce the proposal that L-band TomoSAR will be able to provide highly a

accurate 3D vertical structure even in high dense forests worldwide.

3.5 Conclusion

In this work, the TomoSAR analysis has been applied for estimation of the forests

canopy height and terrain using L-band UAVSAR AfriSAR data collected over the Gabon
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Lopé Park on February 2016. Prior to tomographic imaging, a phase residual correction

methodology based on Sum Kronecker Product has been implemented. The tomographic

capon profiles at different sections in the forests are validated in a good correlation with

SFL Lidar data DTM and CHM from the SFL data set as a reference. Second, we compared

the vertical profile of vegetation at different sections in the Lopé using L-band TomoSAR

Capon power estimator at HH, HV polarizations with LVIS Level 1B waveform Lidar data

were carried out over different regions of interests in the Gabon Lopé National Park. Finally,

we report on the performance of forests top height retrieved from the TomoSAR L-band

data. Forests top height from L-band data is estimated and validated with SFL data having

an RMSE of 3.32 m. The result demonstrates that L-band tomographic imaging can now

be carried out even in the dense tropical forests. We hope that our results reinforce the sci-

entific basis to estimate tropical forests structure using TomoSAR at L-band. L-TomoSAR

appears to be a promising technique to be used for the retrieval of tropical forests height.

One of the main perspectives is to compare TomoSAR analysis using L- and P-band in trop-

ical forests, showing their capabilities in retrieving the 3D structure of tropical forests, and

to provide support of using L-band TomoSAR in the future biomass estimation missions.
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4.1 Introduction

Tropical Forests play a vital role in the global carbon cycle, and subsequently within the

global climate [Wright, 2005]. Tropical forests are incredibly complicated, diverse, and fre-

quently threatened. Indeed, there’s a crucial demand to develop a new technology to help

in surveying and revealing the dynamics of tropical forests. The dynamic processes like

growth, regeneration, decay, and disturbance, strongly affects the forest 3D structure. For-

est 3D structure is so closely associated with their history, diversity, function, and micro-

climate [Spies, 1998]. At the same time, forest structure information is essential for de-

veloping a precise forest biomass estimators. The latter is needed to observe better and

85
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evaluate forest ecosystems’ contribution in the overall carbon cycle [Grace, 2004; Gatti

et al., 2014; Frolking et al., 2009]. Traditionally, forest structure observation has been im-

plemented by inventory plots at local scales. Inventory measurements provide correct esti-

mates of a variety of single trees and stand parameters. However, these measurements are

time demanding and they are performed at smaller scales. The extrapolation of those plot

measurements from into larger scales depends on the ability of these measurements to

represent their surrounding landscape [Fischer et al., 2019]. The establishment of the tem-

poral continuity of these measurements is challenging. Remote sensing techniques have

the potential to overcome this limitation and make an enormous contribution in qualita-

tive and quantitative observation of three-dimensional forest structure [Hall et al., 2011;

Bergen et al., 2009; Goetz et al., 2007; Turner et al., 2003].

Today, Tomography Synthetic Aperture Radar (TomoSAR) and airborne LiDAR are the

two technologies that allow the measurement of 3D forest structure. Measures derived

from the LiDAR waveform are utilized to evaluate structural forest parameters as forest

height and biomass [Tello et al., 2018]. Recently, continuous forest mapping with global

coverage at spatial and temporal resolutions is assessed and established using SAR imag-

ing configuration. Indeed, a big effort has been put to demonstrate the potential of typi-

cal SAR configurations to estimate spatial biomass utilizing SAR measurements [Beaudoin

et al., 1994]. The SAR system provides measurements sensitive to the whole vegetation

and from the underlying ground at high spatial resolution. The initial step started with in-

troducing SAR interferometry as it has an exaggerated sensitivity to forest geometry and

vertical structure components. Polarimetric interferometric SAR measurements allows

model-based inversion to assess vertical forest structure parameters such as forest height

and biomass [Treuhaft and Siqueira, 2000; Garestier et al., 2009; Cloude and Papathanas-

siou, 1998, 2003]. The next step is using multi-baseline interferometric acquisitions in or-

der to reconstruct the vertical distribution of the scatterers [Reigber and Moreira, 2000].

Recently, tomographic acquisitions, which will be seen as an extension of multi-baseline

interferometric acquisitions, have been used to reconstruct the three-dimensional radar

reflectivity of forests [Reigber and Moreira, 2000; Frey and Meier, 2011; Neumann et al.,

2010; Caicoya et al., 2015; Tebaldini and Rocca, 2012b; Aguilera et al., 2013; Pardini and
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Papathanassiou, 2012]. The promising outcomes accomplished initiated the execution of

TomoSAR acquisition modes in future spaceborne SAR missions, like Biomass [Le Toan

et al., 2011] or Tandem-L [Krieger et al., 2016], for mapping structural forest parameters

and to enhance the performance of biomass estimators at a global scale.

TomoSAR has been demonstrated to be a powerful tool for observing forested areas

from space owing to its capability in providing vertical resolution based on multi-baseline

observations [Reigber and Moreira, 2000; Gini et al., 2002b; Tebaldini, 2009b; Huang et al.,

2012]. Tomographic techniques consist of power estimation strategies applied to the

multi-baseline Single Look Complex (SLC) data to retrieve the back-scattered power that

characterizes the vertical profile of forests [Ho Tong Minh et al., 2016, 2014]. In its most

simple formulation, TomoSAR aims to extract the vertical distribution of the backscat-

tered power within the system resolution cell. A potential answer to the current problem is

to take advantage of super-resolution techniques like Capon beamforming, Multiple Sig-

nal Classification, Singular Value Decomposition analysis, and others [Gini et al., 2002b;

Sauer et al., 2007]. A unique solution could also be found within the works by Fornaro

et al. [Fornaro et al., 2005] and Cloude [Cloude, 2007, 2008], wherever super-resolution is

achieved by exploiting prior information concerning target location, like ground topog-

raphy and canopy height model [Cloude, 2008]. The capabilities of L-band TomoSAR to

characterize 3D vertical structure of tropical forests are still in early stages of development

while those of P-band TomoSAR have been discussed and evaluated. Ho Tong Minh et

al. [Ho Tong Minh et al., 2015a] used the airborne data that were acquired during TropiSAR

campaign to prove that the use of L-band tomographic imaging in tropical forests seems

limited. The first experience in testing TomoSAR in tropical forest areas was carried out in

French Guiana by the TropiSAR campaign in 2009. However, these data were sub-optimal

to assess the performance of multi-frequency TomoSAR in monitoring the forest structure

and estimating forest structure parameters as forest top height. To overcome such limita-

tion, and acquire optimal tomographic and polarimetric data, the AfriSAR campaign was

successfully carried out over the dense forests of Gabon in 2015 and 2016. Nevertheless,

the link between physical forest structure and the reconstructed 3D radar reflectivity is still
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not understood and is far from being established. The main challenge, thus, is the inter-

pretation of 3D radar reflectivity in terms of the 3D forest structure parameters.

The 3D radar reflectivity relies on the operating system frequency and polarization.

Plus, it also depends on the used acquisition geometry (e.g., incidence angle), and the

achieved 3D spatial resolution. In fact, the generic interpretation of 3D reflectivity is diffi-

cult because scatters that are seen by radar are changing with frequency and polarization.

Accordingly, this chapter focuses mainly on comparing the capabilities of L- and P-band

TomoSAR to extract forest top height. First, the P- and L-band vertical profiles are validated

with a Canopy Height Model (CHM), which is obtained from a Small Footprint LiDAR (SFL)

dataset. Second, qualitative comparisons of the Capon beamforming profile at HH and

HV (H: horizontal, V: vertical) polarizations with Land Vegetation Ice Sensor (LVIS) Level

1B waveform LiDAR data and CHM and Digital Terrain Model (DTM) from SFL data, over

the region of interest in Gabon Lopé National Park, are carried out. Additionally, forest top

height is retrieved from the TomoSAR data.

The chapter is organized as follows: Section 4.2 describes the study area, datasets, and

methods used for the tomographic analysis. Section 4.3 illustrates the validation of the

results. Section 4.4 is devoted to discuss and interpret the tomography results. Section 4.5

demonstrates the concluding remarks.

4.2 Materials and Methods

4.2.1 Study Area

To develop algorithms that assess the performance of BIOMASS SAR measurements in

different forest ecosystems, several airborne field campaigns have been designed and im-

plemented. One can name the AfriSAR campaign in Gabon, BioSAR campaign in Sweden,

and TropiSAR campaign in French Guiana (Figure 4.1).

The AfriSAR campaign aims to provide support to forthcoming NISAR, GEDI and

BIOMASS missions. Four sites presenting various forest structures have been selected:

Lopé, Mabounie, Mondah, and Rabi, located, respectively, at 250 km, 180 km, 25 km, and
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260 km from the Libreville airport, where the calibration site was deployed. In this sec-

tion, we will focus on the presentation of Lopé, which is the primary acquisition site. Lopé

National Park, a 4913 km2 national park in central Gabon, is known as one of the largest

parks in the area. The scene of the northern part consists of the last remnants of grass

savanna that was created in central Africa, during the ice age from 15,000 years ago. This

natural site is composed of vast areas of Savanna in the north, which is surrounded by

the Ogooué River and frequently burned in order to preserve the forests’ Savanna areas,

in addition to an extended area of tropical forests that are combined with parts of suc-

cessive forests of complex structure, which were developed throughout time with savanna

recolonization [Lee, 2001]. Lopé is a convenient natural view to prove the adequate perfor-

mance of tomographic imaging because of the gradient of forest biomass from the forests’

savanna boundary (up to 100 Mg/ha), to dense undisturbed humid tropical forests (greater

than 400 Mg/ha). The height and structure of the trees vary gradually from savanna into

forests, which provide uniform mono-dominant trees of okoume (OKO) of tall: 30–50 m

for regions with the presence of significant gaps in mid-canopy. This creates skewed ver-

tical profiles. Lopé topography is also diverse. It varies between either broad flat plains or

steep sloping terrains. OKO2 region is selected to perform a qualitative analysis between

UAVSAR–TomoSAR L-band, SETHI P-band vertical profile, and LiDAR waveforms.

4.2.2 Data-Set

During the AfriSAR campaign, different datasets have been acquired over the Gabon

Lopé National Park. The NASA sponsored AfriSAR campaign involved three data sets, L-

band UAVSAR data, LVIS LiDAR data, and SFL data. ONERA and DLR defined a common

configuration for P-band imaging of their radar systems. P-band SAR P-band acquisitions

were performed by ONERA (SETHI radar system) in July 2015 and by DLR (F-SAR radar

system) in February 2016.
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Figure 4.1 – TropiSAR, BioSAR , and AfriSAR Campaigns. Study area main site (Gabon Lopé

National park). The red polygon denotes the footprint of L-band UAVSAR platform. The

Digital elevation model of the Lopé is displayed.

LiDAR Data-Sets

Throughout the AfriSAR campaign, the SFL data set was collected by the NASA Jet

Propulsion Laboratory (JPL) in July 2015, with a footprint diameter of 10 cm. Canopy
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Height Model (CHM) and Digital Terrain Model (DTM) rasters are provided with 1 m spatial

resolution. The second LiDAR dataset was collected in March 2016, NASA’s Land Vegeta-

tion Ice Sensor (LVIS) acquired the LiDAR data set as part of NASA–ESA’s BIOMASS, GEDI,

and NISAR calibration and validation activities. LVIS is a large-scale, waveform LiDAR with

applications for measuring ground elevation and vertical profile of the vegetation structure

in various ecosystems. The LiDAR datasets LVIS consists of two levels: Level 1B and Level

2 (data can be downloaded from https://lvis.gsfc.nasa.gov/Data/Data Download.html).

Level 1B data contain geo-referenced LiDAR returned waveforms, such that, at each foot-

print, we have a corresponding shot number, and, using this shot number, one can get the

LiDAR waveform at each footprint. Level 2 data contain geo-referencing data for different

reflecting surfaces within the laser footprint, the locations of which were derived from the

Level 1B waveform.

Radar Acquisition Configuration

The tomographic data set here consists of seven fully polarimetric Single Look Complex

(SLC) data L-band NASA/JPL UAVSAR from AfriSAR data conducted over the Lopé during

the AfriSAR campaign in 2016. The operating band of UAVSAR platform is 1217.5–1297.5

MHz. The scanning of about a 22 km wide area, with incidence angles extending from

25 to 60 degrees, is performed by the Gulfstream III jet at that flight at an altitude of 12.5

km. The ground range and azimuth resolution of the UAVSAR polarimetric SLC are 1 m

and 2.5 m, respectively. The tomographic SLC data acquired over Lopé by increasing the

flight altitude by 20 m each flight track. The configuration of L-band UAVSAR is shown

in Table 4.1, while the P-band data consists of 13 fully polarimetric SLC data acquired by

ONERA over the Lopé in the AfriSAR airborne campaign (July 2015). The data collection

is performed using the SETHI SAR system developed by ONERA and onboard a Falcon

20 aircraft. The pixel resolution of the SLC images is 1.54 m in azimuth range and 3 m

in slant range. The configuration of P-band SETHI data including acquisition geometry,

bandwidth, carrier frequency, and aircraft altitude are shown in Table 4.2.

The tomographic 125 MHz data set considered in the Paracou experimental site con-

sists of six fully polarimetric SLC images at L and P-band acquired on 24 August 2009. All
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Table 4.1 – L-band UAVSAR acquisition parameters.

Acquisition Parameters

Acquisition Mode PolSAR

Look Direction Left looking

Pulse duaration 40 (µs)

Steering Angle 90 (deg)

Bandwidth 80 (MHz)

Ping-Pong or Single Antenna Transmit Ping-Pong

Air craft speed 224 (m/s)

Range of look angle 21–65 (deg)

Antenna Length 1.5 (m)

Table 4.2 – Description of the SETHI system configuration of P-band acquisition parame-

ters. The superscript * indicates the parameters that are identical between the SETHI and

F-SAR systems.

Acquisition Parameters

Acquisition Mode * PolSAR

Look Direction Left looking

Effective Pulse Repetition Frequency (PRF) 1250 (Hz)

Steering Angle 90 (deg)

Frequency range */Bandwidth 50 (MHz)

Pulse duration 30 (µs)

Transmitted power 500 (W)

Aircraft speed 100–150 (m/s)

Flight ground altitude 6096 (m)

the acquisitions took about 1 h (from 9:00 a.m. to 10:00 a.m.), resulting in almost no tem-

poral decorrelation.

In this chapter, we also used six tracks fully polarimetric images acquired during

TropiSAR campaign over Paracou. In the following section, we will compare P and L band

tomographic results conducted over Gabon Lopé Park with the LiDAR data set SFL.
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4.2.3 Tomography SAR

TomoSAR implementation requires accurate handling concerning the relative phase

difference between different acquisitions. The rationale of TomoSAR is to use multiple

flight tracks that are nearly parallel to each other [Ho Tong Minh et al., 2015a], as shown

within the left panel of Figure 4.2.

Figure 4.2 – TomoSAR acquisition.

The ensemble of all flight lines allows the formation of 2D synthetic aperture, ensuing

the coherent multiple Single Look Complex (SLC) images of various passes, providing the

likelihood of focusing the signal within the entire 3D space. We will refer to (r, x, ξ) as the

slant, azimuth, and cross ranges, respectively. Consider a dataset of SLC images acquired

by N parallel track sensors, denoted by Yn(r, x, ξ), representing the SLC value inside the

resolution cell (r, x, ξ) within the n-th image. The expression of topography-compensated

(tc) SLC data are often approximated [Tebaldini et al., 2015] as:

Yn(r,x)
tc=

∫
P(r,x,ξ)exp(jKnξ)dξ, (4.1)

where P(r,x,ξ) denotes the projection of target reflectivity on the cross-range axis ξ, and

ξ represents the cross-range coordinate, orthogonal to the measuring system line-of-sight

(LOS) that are outlined by the slant range coordinate. In TomoSAR applications, the vertical

sensitivity of the phase difference between two acquisitions is linked through the vertical

wavenumber kn expressed by:

Kn=
2π

HoA
=

4π

λR
bn, (4.2)
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where HoA is the height of ambiguity, λ is the radar wavelength, R is the slant-range dis-

tance, and bn is the horizontal distance between the two acquisitions.

4.2.4 Tomography Inversion

SAR data were acquired over forests from slightly different altitude and incidence an-

gles, providing helpful information within the vertical direction [Ho Tong Minh et al., 2016].

In this chapter, the Capon beamforming power estimator was applied to represent the

vertical profile of vegetated areas. The Capon spectral estimator is a conventional non-

parametric method in tomographic analysis that enables one to obtain the endless vertical

profile of the vegetation without any prior knowledge on the statistical properties of the

data [Stoica et al., 2005b]. The Capon estimator vertical profile Pc(ξ) is retrieved from the

covariance matrix of the SLC data [Gini et al., 2002b]:

Pc(ξ)=
1

a(ξ)tW−1a(ξ)
, (4.3)

where a(ξ) is the steering vector containing the interferometric information for a scatter

at cross range ξ for all the baselines relative to a master track, and W is the maximum

likelihood estimation of the covariance matrix. t is the transpose operator.

4.2.5 TomoSAR Phase Calibration

The previous section described the theoretical model for tomographic analysis assum-

ing no disturbances on the path of the propagating signal. Prior to Multi-baseline SAR

algorithms, the phase calibration of the TomoSAR data should be taken into account, in

order to compensate the phase residuals that influence the focusing of Multi-baseline SAR

data. These phase disturbances originate from atmospheric propagation delays or uncer-

tainties in allocating the platform position.

Indeed, for airborne systems, the atmospheric perturbations are limited (no iono-

sphere propagation). The phase screen compensation method chosen to be applied on

the Lopé data are largely inspired by the work of Tebaldini et al. [Tebaldini et al., 2015]. A

simple proposition is to assume that the phase residuals only result from uncertainties in
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the antennas’ positions (Figure 4.3). The phase screens αn can be approximated as a func-

tion of dZ_n and dY_n, which represent, respectively, the position errors of the platform

n in altitude and in the ground range direction for a fixed position in azimuth [Tebaldini

et al., 2015]:

αn=
4π

λ
(−dYnsinθ+dZncosθ). (4.4)

The Double Localization iterative procedure described in detail in [Tebaldini et al.,

2015] is then put in place. The calibration is carried out by removing phase screens from

the original SLC data to obtain the calibrated SLC data:

Yn
cal= Yn.∗exp(−j.αn). (4.5)

Figure 4.3 – Phase calibration problem formulation.

4.2.6 Forest strucuture indices

The objective of this section is to characterize a framework for the estimation of forest

structure from TomoSAR data and LiDAR data. This framework is inspired from Cazcarra-

Bes et. al [Cazcarra-Bes et al., 2017a]. In the following, the 3D forest structure is understood

as the vertical and horizontal arrangement of trees and/or tree elements in space. In spite

of the troubles in finding a proper characterization for forest structure for a wide scope of

applications, spatial scales, and forest types, it is regularly accepted that two basic aspects
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of forest structure are the heterogeneity in the position and size of the trees inside a stand.

In light of this, an efficient system for the separation of biologically critical structure classes

has as of late been proposed [Tello et al., 2015; Bohn and Huth, 2017], which proposes two

indices measures: one for the horizontal, and one for the vertical structure. These indices

can be estimated from the 3D reflectivity profile. Tello et. al [Tello et al., 2015] discussed

about the link between the 3D reflectivity profile and the physical structure of the forest

and proposed the methodology to calculate these indices. Basically, the horizontal struc-

ture index essentially mirrors the thickness of the tallest trees in the unit zone considered,

while the vertical structure file represents the assorted variety of tree heights. In this way,

Figure 4.4 – Horizontal/vertical structure plane proposed for forest structure classification.

as indicated by its basic multifaceted nature, a forest stand can be grouped in a horizon-
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tal/vertical plane (HV plane in the accompanying) has appeared in Figure 4.4. As the initial

step, the tops for each reflectivity profile in the range and azimuth were extracted from the

radar reflectivity representing the distribution of scatters along height T. At each point, A

three-dimensional (range, azimuth, height) matrix B is characterized by ones at the posi-

tion of each peak. From this framework, the horizontal and vertical indices were assessed.

The Horizontal descriptor HS index at each pixel is estimated as the number of peaks in

the upper layer in the unit window centered on that pixel divided by the area of this unit

window:

HS=
n× (Ptop)

S
(4.6)

The upper layer is defined as the range of peaks heights between 0.6 hmax and hmax.

Where P is the set of peaks, n(Ptop) is he number of peaks in the top layer, S is the area

of the unit window. HS is normalized to its maximum HSnorm) within the scene and 1 -

HSnorm) is considered in order to reflect disorder: 0 indicates low and 1 indicates high

structural disorder or complexity. Concerning the vertical index descriptor, it is defined as

follows:

VS=M×var(Hp) (4.7)

where Hp is the vector of size M obtained from Hp after accounting all peaks that ap-

pear at the same height only once and ignoring the peaks of the ground. A minimum height

is set and peaks below this height are disregarded. In this chapter,the height threshold is set

to 5 m (see the red area in Figure 4.5), Finally, the descriptor of the vertical forest structure

VS is normalized to its maximum VSnorm within the scene.

4.2.7 Forest Structure Parameters

The main parameter we want to estimate is forest top height. The principal challenge

in tropical forests is the estimation of the forests’ top height since it is usually difficult to
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Figure 4.5 – Definition of top layer for the horizontal structure index and the threshold to

remove peaks introduced by the ground scattering contributions.

clearly recognize the top leaf or part of a tree in the canopy. Utilizing the Capon beam-

forming power estimator, we can recover the 3D backscatter profile from the multi-layer

SLC and demonstrate the vertical backscatter distribution function. To do this, we applied

the method proposed in [El Moussawi et al., 2019] and we estimated the forest top height

H from L- and P-band data:

H(r,x)=argmin(P(Hn,r,x)−P(Hc,r,x)−K), (4.8)

where P(Hn,r,x) is the backscatter at the phase noise level, Hn is the elevation of the noise

level, K is the power loss value, and Hc is the LiDAR height value from SFL data. Since

the forest top height retrieval depends on the choice of the power loss value K, we used

the CHM from the SFL dataset to select the optimal power loss value. One can estimate

the canopy height model from TomoSAR data by either ranging the power loss from the
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phase center location in the upper envelope of the Capon profile, or by ranging the power

loss from the noise level (location of the highest return detected by the TomoSAR) from Hn

down to the canopy contribution peak elevation in the upper envelope of the 3D profile. At

each position, the Root Mean Square Error (RMSE) between the H height and Hc is calcu-

lated at given K value (H(r,x) - Hc(r,x)); once we have the lowest value of RMSE, we get the

forest top height H at each (r,x) position.

4.3 Results

In this section, the limitation of L-band TomoSAR imaging in dense forests using

TropiSAR data acquired over Paracou is illustrated; then, we report the results of forest

structure characterization over Gabon Lopé National Park by means of tomography imag-

ing using AfriSAR L- and P-band TomoSAR SLC data.

4.3.1 Limitation of L-Band TomoSAR in Tropical Forest (TropiSAR

Data)

Figure 4.6 presents the tomographic profile of a constant range section at P-and L-band

in tropical Paracou forest and Boreal Krycklan forest. For better visualization, the panels

have been normalized in a way that the sum along the height is unitary. In the boreal Kryck-

lan forest, the white line denotes forest top height derived from LiDAR measurements. At

the tropical forest in Paracou, the L-band tomogram is not clear at all, as there is a blur-

ring phenomenon, while, on the other hand, the P-band tomogram is clear. The different

vegetation layers are illuminated correctly. However, for the Boreal Krycklan forest, the

tomograms at L- and P-band are clear with no significant disturbances.

4.3.2 TomoSAR Profiles at L- and P-Band (AfriSAR Data)

Figure 4.7 presents the tomographic profile at a constant slant range cut (centered on

the pixel number 200) before and after phase screen correction at a P-band HH channel.

Note that UAVSAR L-band data are adapted to phase screen correction. The improvement
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(a)

(b)

(c)

(d)

Figure 4.6 – (a) L-band Tomogram (HH channel) at Tropical Paracou forest; (b) P-band

Tomogram (HH channel) at Tropical Paracou forest; (c) L-band Tomogram (HH channel) at

Boreal Krycklan forest; (d) P-band Tomogram (HH channel) at Boreal Krycklan forest. The

algorithm used to get the tomography profiles is the Capon beamforming power estimator.

brought by the phase screen removal for this region is highly visible, providing side lobes’

attenuation.

In Figure 4.8, the estimated tomographic profiles for two cuts of the Lopé site in the

slant range direction at P-band HH channel, L-band HH channel, and LVIS data are pre-

sented. The Capon beamforming estimator has been applied on radar data using a sliding

window of 10 m × 25 m (area of 250 m2 for each position in the range direction. Using

the same sliding window, the average of LiDAR LVIS Level 1B power layers is estimated.

It is noticed that the tomograms from different sources of data achieve a good agreement

with CHM from SFL data. In addition, we can observe from the tomogram of LVIS data

at the two cuts that the penetration capabilities of the Lidar LVIS platform are weak when

compared to the penetration performance of radar data. The canopy and ground layers

are clearly detected by L- and P-band tomography while it is not the case when applying
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Figure 4.7 – (a) 2D intensity of SLC P-band image. The red line denotes the cut where

the Capon beamforming estimator was applied; (b) P-band Tomogram (HH channel) be-

fore applying phase screen correction; (c) P-band Tomogram (HH channel) after applying

phase screen correction.

tomography on LVIS data. It is worth mentioning that, for some pixels, the canopy layer is

not well detected by TomoSAR; this requires studying the physical aspects of radar signals

taking into account the ground slopes and the forest type (dry, wet).

Figure 4.9a–c represent the canopy height peak estimated from LiDAR waveform, L-

band tomographic data, and P-band tomographic data, respectively. The estimation is

performed over a study area of 875 m × 2000 m (1,750,000 m2). The histogram of the dif-

ferences between canopy peak height estimated from the three different datasets is dis-

played in Figure 4.10. The RMSE between the canopy peak height estimated from P-band

data and canopy peak height estimated from L-band data are about 3.25 m, where the bias

value is equal to 0.28 m. However, the RMSE values between L-band and LiDAR on one

hand, P-band and LiDAR, on the other hand, are 9.55 m and 9.76 m, respectively. Their

corresponding bias is −6.43 and −6.7, respectively. The coefficient of determination had a

value 0.95, 0.85, and 0.86, respectively.

The vegetation profile of OKO2 region at Lopé has been obtained from L-band (HH

channel), P-band (HH channel), and LVIS Level 1B data (Figure 4.11). The histograms of
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(a)

(b)

(c)

(d)

(e)

Lidar scale Lidar scale
(m)(m)

(f)

(g)

(h)

(i)

(j)

Capon power

Figure 4.8 – (a) and (f) SFL CHM LiDAR cuts at slant range equal to 300 m and 650 m; (b)

and (g) 2D intensity L-band SLC image. The red line denotes the cut where we had chosen

to estimate the vertical structure along with slant range; (c) and (h) L-band HH channel

Tomographic profile at the two cuts (300 m and 650 m); (d) and (i) P-band HH channel

Tomographic profile at the two cuts (300 m and 650 m); (e) and (j) LVIS data layers from

LiDAR LVIS Canopy Height Model (CHM), which is obtained from a Small Footprint LiDAR

(SFL) it is definede before as land vegetation and ice sensor Level 1B at the two cut, defined

befors (300 m and 650 m). The white line in all tomograms denote the RH75 height from

LiDAR LVIS Level2 data.

SFL data for ground and canopy elevations (DTM and CHM) are shown in Figure 4.11a,

while Figure 4.11b presents the vegetation profile at OKO2 from L- and P band data at both

HV channels.
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Figure 4.9 – (a) canopy peak height estimated from LiDAR waveform (RH75); (b) canopy

peak height estimated from L-band data; (c) canopy peak height estimated from P-band

data.
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Figure 4.10 – (a) histogram of the difference between canopy peak height estimated from

P-band data and canopy peak height estimated from L-band data; (b) histogram of the dif-

ference between canopy peak height estimated from L-band data and canopy peak height

estimated from LiDAR LVIS Level1B data (or RH75 from LiDAR LVIS Level2 data); (c) his-

togram of the difference between canopy peak height estimated from P-band data and

canopy peak height estimated from LiDAR LVIS Level1B data.

4.3.3 TomoSAR Multi-Layers

Figure 4.12 shows the HH backscatter for the original, ground layer (0 m), 15 m layer,

and 30 m layer at P- and L-band and LVIS Level 1B data. It is noticed that the ground

layer image is characterized by better contrast information compared to the original data

at both P- and L-band. This can be explained as the signal at ground level being focused on
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Figure 4.11 – (a) region of interest (ROI) named OKO2 in Gabon Lopé Park. P-band HH (in

red) and L-band HH (in green) Capon profiles. Capon power and LVIS waveform power

were normalized between 0 and 1. The histograms of SFL canopy and ground elevations

are presented respectively in blue and brown. The blue curve corresponds to LVIS wave-

form Level 1B; (b) P-band Capon HV profile in red. L-band Capon HV profile in green.

the tomography processing, and rejecting contributions from the upper vegetation allows

a better characterization of the polarimetric signature of ground scattering.

4.3.4 Forest Top Height Estimation from L- and P-Band

In Figure 4.13a, the CHM from SFL data is shown, while Figure 4.13b shows the forest

top height estimated from L-band TomoSAR data in the same area. The relative differences

between L-band CHM and SFL CHM data are shown in Figure 4.11c (Relative height dif-

ference = (LbandCHM − (LidarCHM)/(LidarCHM)). Figure 4.13e presents the forest top

height estimated from P-band data. The relative difference between P-band CHM and

SFL CHM data are shown in Figure 4.13f (Relative height difference = (PbandCHM − (Li-

DARCHM)/(LiDARCHM)). The difference between the estimated height from L-band, P-

band and CHM from SFL data are shown in Figure 4.13d,g, respectively. The bias of the

difference (histogram) between L-band CHM and SFL CHM is equal to −0.0681, where the

RMSE value is 3.68 m; the coefficient of determination shows a value of 0.93. Regarding the

histogram of the difference between P-band CHM and SFL CHM, the bias value is equal to
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Figure 4.12 – (a) original SAR image. HH power intensities associated with an L-band SAR

with three layers produced by TomoSAR: 0 m, 15 m, 30 m; (b) original SAR image. HH

power intensities associated with a P-band SAR with three layers produced by TomoSAR: 0

m, 15 m, 30 m; (c) power intensities associated with LVIS data layers produced from LiDAR

LVIS Level 1B data: 0 m, 15 m, 30 m.

−0.1151, where the RMSE value is equal to 3.02 m, and the coefficient of determination

shows a value of 0.95.

4.4 Discussion

In this work, the ability of L-band TomoSAR imaging to retrieve tropical forest struc-

ture parameters has been assessed. A tomographic study was implemented using L-band

NASA/JPL UAVSAR data, and P-band SETHI data from ONERA collected during the AfriSAR

campaign in 2015 and 2016. We show L- and P-band tomograms at different sections of the
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Figure 4.13 – (a) CHM from SFL data; (b) forest top height estimated from L-band TomoSAR

data; (c) relative difference between LiDAR and L-band TomoSAR tree top height, height

difference = (HTomo − HLiDAR)./HLiDAR; (d) histogram of the difference between the es-

timated height from L-band and CHM from SFL data; (e) forest top height estimated from

P-band TomoSAR data; (f) relative difference between LiDAR and P-band TomoSAR tree

top height, height difference = (HTomo − HLiDAR)./HLiDAR; (g) histogram of the differ-

ence between the estimated height from P-band and CHM from SFL data.

Lopé and we validated it with CHM from SFL data. We demonstrated that the analysis is

improved significantly when the airborne data were corrected for the residual phases re-

lated to the perturbations because of motions and flight trajectories uncertainties during

the data acquisitions. The impact of phase screen correction in the tomographic inver-

sion is displayed, where it is shown in the tomogram at slant range cut before and after

phase calibration. A qualitative comparison is made between Capon profiles from L- and

P-band data and LVIS waveforms at a region of interest named OKO2 in the Gabon Lopé

Park. Finally, the forest top height from UAVSAR and SETHI data has been estimated. To-

gether, these results confirm our expectation in the ability of TomoSAR to characterize the

tropical forests 3D structure accurately.



4.4. DISCUSSION 107

4.4.1 Limitation of L-Band TomoSAR in Tropical Forest (TropiSAR

Data)

The average Height of Ambiguity in L-band tomographic TropiSAR data are about 30 m

in the near range and 50 m in the far range. The L-band tomogram is quite disturbed when

compared to the P-band tomogram (Figure 4.6) for a dense forest of 30 m and above. In this

condition, the use of tomographic imaging at L-band in tropical forests appears limited.

Such limitation needs more elaborated processing either in the configuration setup of the

acquisitions or in the tomographic techniques and phase calibration. However, when the

forest top height is roughly below 20 m (e.g., in forest regrowth), the tomographic results

are expected to be the same as in boreal forests.

4.4.2 TomoSAR Profiles at L- and P-Band (AfriSAR Data)

The analysis is done here in the azimuth direction for a fixed slant range positions (slid-

ing window centered on the pixel number 300 m and 650 m). The Capon profile for the HH

channel is shown in Figure 4.8 for the corrected data only. In this profile, it can be noticed

that, even if the SFL data and the corrected tomographic profiles seem to show generally a

good correlation at the two bands L and P, the mean SFL elevations can sometimes be no-

tably different from the positions of the peaks of the Capon profiles. This could be linked

to the SFL data that do not describe the same location due to the difference in penetration

capabilities between radar signals and SFL or to other uncompensated effects. After ana-

lyzing the histograms of Figure 4.10, the differences in the canopy height peak estimated

from L-band, P-band, and LiDAR waveform are mainly originated from the difference in

the penetration capabilities of TomoSAR at L- and P-band, and the LiDAR LVIS platform.

In addition, this was expected. The platform resolution is another cause for the high ob-

served bias.

The same interpretation is carried out for a specific region of interest in the Lopé named

OKO2. The difference in the vegetation profile shapes between the LVIS and the Capon pro-

files may be originated from a difference in penetration capabilities or a variation of profile

resolution between LVIS and TomoSAR data. After comparing the LVIS and the Capon pro-
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files, the results show significant similarities. Despite the fact that tomography SAR in L & P

bands with Capon estimator may not be able to produce vertical profiles with a resolution

as good as the LVIS imaging system, it can always reveal stronger ground contribution as

shown in the studied ROI (OKO2).

4.4.3 TomoSAR Multi-Layers

By observing Figure 4.12, and by comparing with the original SAR image at L- and P-

band TomoSAR data, we found that the ground layer image has better contrast informa-

tion. This implies that a ground-level signal is focused by tomography processing, thus

rejecting contributions from vegetation layers and permitting the characterization of po-

larimetric signature of the ground scattering. The behavior of a polarimetric signature can

be studied with respect to the topographic terrain ground slope. It often uses a physical

model for interpreting this behavior to better understand the various scattering mecha-

nisms (single bounce, double bounce). To compare with TomoSAR layers, the LVIS Level

1B and level 2 data as tomography were processed through reconstructing the LiDAR wave-

form along the z-axis; thus, the LVIS multi-layer similar to TomoSAR layers was obtained

(Figure 4.12). Qualitatively, regarding the ground layer (or 0 m), no ground contribution is

present because of the LiDAR LVIS penetration capabilities, which are lower than those of

SAR.

4.4.4 Forest Top Height Estimation from L- and P-Band

The canopy height estimation is performed using the L-and P-band TomoSAR data in

the Gabon Lopé National Park. By evaluating the vertical forests structure from tomo-

graphic profiles, the forests’ top height can be retrieved using CHM from SFL data as a

reference. Here, RMSE was estimated to be 3.68 m for L-band TomoSAR as Figure 4.13d,

while the value of RMSE is 3.02 m using P-band TomoSAR data. This reveals as before that

no limitation is present for the implementation of canopy height retrieval algorithm with

the L-band and P-band TomoSAR. The penetration performance of P-band is better than

that of L-band due to its longer wavelength. The latter permits fewer interactions with the
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leaves and the branches, thus leading to deeper penetration of the radar signals to reach

the ground layer. In order to give precise knowledge about the accuracy of the proposed

method that is applied in estimating the forest top height, Figure 4.13c,f show the spatial

distribution of height differences between L-band TomoSAR, P-band TomoSAR and that of

LiDAR height. By analyzing the histogram of Figure 4.13d,g, one can notice that the height

difference histogram between TomoSAR and LiDAR tends to be normally distributed. Our

results considerably reinforce the proposal that L-band TomoSAR will be able to provide a

highly accurate 3D vertical structure even in the densest forests worldwide.

4.4.5 Forest Structure Indices and Parameters

As prospective work, we aim to estimate the forest structure indices as the vertical and

the horizontal indices that support biomass retrieval algorithms and enhance forest man-

agement activities. However, the forest structure is an important factor in its ecology as

it is correlated with many ecological processes [Pretzsch et al., 2010; Shugart et al., 2010;

Mundell et al., 2010]. Furthermore, it is also used as an indicator to detect the biodiversity,

where the vertically structured forests foster some taxa biodiversity [Boncina, 2000; Ishii

et al., 2004; Schall et al., 2018]. In addition, either the horizontal or the vertical structural

heterogeneity can enhance the forest ecosystems’ resistance against disturbances [Dob-

bertin, 2005; Pretzsch et al., 2016]. Previous studies have also explored the forest struc-

ture’s effects on the productivity of the forest [Bohn and Huth, 2017; Dănescu et al., 2016;

Liu et al., 2016; Schall et al., 2018], where they found that the main drivers of the produc-

tivity of forest are the variables that characterize the structure of the forest rather than the

biodiversity-related variables. Though it is highly important to know the structure of the

forest in order to understand its dynamics, there are still no available global forest struc-

ture maps yet. There are only a few coarse-resolution maps that are present, but these only

show the components of the structure of forest (e.g., the height of a forest from MODIS and

ICESat, resolution 1 km, Indeed, larger regions of multi-layered forest structure should be

efficiently analyzed. Recent satellite missions have been (e.g., GEDI, ICEsat2 sensor) and

will be launched (e.g., BIOMASS, and Tandem-L) where new technologies will be used in

order to measure, on a global scale, the structure of forest including its height and its ver-
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tical heterogeneity. Nowadays, there are two main elements: the vertical and horizontal

forest structures [Bohn and Huth, 2017; Cazcarra-Bes et al., 2017a; Getzin et al., 2012; Tello

et al., 2018]. Finding a clear and suitable definition for forest structure is highly difficult.

Furthermore, the metrics of forest structure differ depending on whether they are based

either on remote sensing or on field data. The remote sensing-based descriptors often

depend on the heterogeneous canopy structure for a given area; however, the field-based

descriptors for the forest structure are derived from size measurements of each individ-

ual tree [Cazcarra-Bes et al., 2017a]. Terrestrial Laser Scanning (TLS) is a hybrid approach

for forest structure, which is measured by both field and remote sensing data [Stovall and

Shugart, 2018]. It gives highly detailed measurements for every single tree and for the for-

est canopy structure. TLS is the best replacement for plot-level inventory data in many

systems. We note hereby that TLS cannot be considered as an alternative to large extent

remote sensing techniques, but it is a critical component of calibration and validation of

EO products. Therefore, in order to capture forest structure on a larger scale, either air-

borne or satellite-based remote sensing data could be suitable choices for this.

In our future studies, we are interested in using the forest modeling, LiDAR remote

sensing, and airborne TomoSAR in order to be able to answer the question, “How can we

estimate structure of a forest by using remote sensing, and what is the role played by for-

est structure in estimating the forest biomass and the above-ground wood productivity?”

Our aim is to use the vertical and horizontal descriptors that can be measured by remote

sensing in order to classify the forests into structural categories. Using this structural clas-

sification, we will explore if we will be able to estimate more accurately both forest biomass

and above-ground wood productivity in case we included the structural information.

4.5 Conclusions

In this work, TomoSAR analysis has been applied for the estimation of the forests’

canopy height and terrain using L-band UAVSAR and P-band SETHI from AfriSAR data,

collected over the Gabon Lopé Park on 2015 and 2016. Prior to tomographic imaging, a

phase residual correction methodology based on phase calibration via phase center dou-
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ble localization was implemented. The tomographic P- and L-band Capon profiles at dif-

ferent sections in the forests are validated in a good correlation with SFL LiDAR data CHM

from the SFL data set as a reference. Second, the vertical profile of the vegetation at differ-

ent sections in the Lopé using a Capon power estimator at HH, HV polarizations with LVIS

Level 1B waveform LiDAR data, carried out over the OKO2 region in the Gabon Lopé Na-

tional Park, was compared. The 3D profiles from Lidar waveform and from L- and P-band

TomoSAR data show a high correlation. Finally, we report on the performance of forests’

top height retrieved from the TomoSAR L-band and P-band data. Forests’ top height from

TomoSAR data that are estimated and validated with SFL data have an RMSE of 3.68 m for

the L-band data. The RMSE value of P-band forest top height with respect to SFL was 3.02

m. The corresponding coefficient of determination was 0.95 and 0.93 for P- and L-band,

respectively. Together, these results demonstrate the potential of TomoSAR to retrieve for-

est structure parameters. The development of tomographic SAR techniques allows for the

reconstruction of the 3D radar reflectivity opening the door for 3D forest monitoring. As

the link between physical forest structure and the reconstructed 3D radar reflectivity is

still not understood and is far from being established, the 3D radar profiles obtained open

prospects to derive algorithms that are able to link these profiles to the physical struc-

ture of the forest. For future work, we aim to provide an algorithm to estimate horizontal

and vertical structure descriptors. These descriptors can be derived from TomoSAR data,

which allow the characterization of the physical forest structure. Horizontal and vertical

structure descriptors are crucial in boosting up the performance of biomass estimators.

We hope that our results reinforce the scientific basis to estimate tropical forests’ structure

indices and give support for the upcoming biomass missions.
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5.1 Introduction

Land subsidence is a major hydro-geological hazard that affects our society [Ziegler

et al., 2012; Dixon et al., 2006; Osmanoğlu et al., 2011]. Differential Interferometric Syn-

thetic Aperture Radar (DInSAR) is a powerful technique used to monitor and measure

Earth’s surface deformations using SAR data. DInSAR exploits the phase information of

at least two temporally separated SAR acquisitions acquired over the same area to form

interferogram and measure the displacements and deformations occurred in the Earth’s

surface.
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An advanced approach of DInSAR is the Permanent Scatterer Interferometry (PSI) tech-

nique [Ferretti et al., 2000a, 2001, 2000b, 2003], such that the interferometry analysis is

done on Permanent scatters (PS’s) targets (like man-made structures, rocks, and other

reflectors...), that have temporally stable phase and amplitude. PSI for the processing of

multi-temporal SAR acquisitions is widely used to measure urban ground subsidence and

has already shown its ability to map such phenomena on a large spatial scale with mil-

limeters accuracy from space, associated with either ground subsidence [Stramondo et al.,

2007, 2008; Tomás et al., 2010; Bell et al., 2012; Bovenga et al., 2012; Chaussard et al., 2013],

railway subsidence [Luo et al., 2017], or landslides [Bru et al., 2017], etc. The first PSI tech-

nique is proposed by [Ferretti et al., 2000b,a]. Several contributions had followed PSI ap-

proach. The Small Baseline Subset technique (SBAS) [Berardino et al., 2002] is a major

approach that extensively used in land surface monitoring using SAR data. Another ap-

proaches proposed by [Schmidt and Bürgmann, 2003] based on the generation of multi-

look interferograms. The adaptation of LAMBDA method used in GPS to PSI approach is

performed by [Kampes and Hanssen, 2004]. Hooper et al. [Hooper et al., 2004] proposed

a new PSI method to monitor and analyze deformation in non-urban areas. A new SBAS

algorithm was introduced by López-Quiroz et al. [López-Quiroz et al., 2009]. The extension

of PSInSAR algorithm is proposed by [Ferretti et al., 2011] called SqueeSAR which based on

using not only Permanent Scatters but also Distributed Scatters DS. Recently, a new PSI

method is proposed by Devanthéry et al. [Devanthéry et al., 2014] based on what so-called

Cousin PS’s.

During the last two decades, the PSI and DInSAR have practiced a major development,

this development mainly related to the ERS-1/2, Envisat and Radarsat missions that pro-

vide C-band data over a global scale. The progress accomplished by these missions is that

the data covers a long-time period, this is the main warranty for developing algorithms able

to monitor long-term deformations. The major step in PSI techniques is the launch of X-

band sensors, where X-band data are sensitive to small displacements and variations [Luo

et al., 2017; Bru et al., 2017]. The X-band data provides noticeable quality improvements

of the time series analysis as compared to C-band data [Crosetto et al., 2010]. Recently,

C-band Sentinel-1 satellite that launched on 3 April 2014, it acquires data at a global scale



5.1. INTRODUCTION 117

in Terrain Observation with Progressive Scan (TOPS) mode [De Zan and Guarnieri, 2006].

Radar images acquired by Sentinel-1 offers an improved data acquisition capability with

respect to the previous C-band sensors (ERS-1/2, Envisat and Radarsat), and increases the

deformation monitoring potential. TOPS Sentinel-1A/1B (the standard mode of operation

is Interferometric Wide Swath-IWS) acquires data over an area of 250 by 180 km with a re-

visiting cycle of 6 days. Together, and with the additional advantage of sentinel-1 images

that they are available free of charge to all data users, the Sentinel-1 coverage and revisit

time is essential to PSI techniques over a wide area with high precision.

The goal of the chapter is to understand the performance of two novel techniques PSI

and PS/DS using TOPS Sentinel-1. We demonstrate it in Lebanon to map their subsidence

phenomena. Specifically, we investigate the ability of C-band SAR to determine ground

subsidence phenomena in Lebanon based on Sentinel-1 data from 2015 to 2019. To es-

timate ground subsidence, we apply two methods. The first method is the standard PSI

technique. Second, a Maximum Likelihood Estimator-based approach [Ho Tong Minh

et al., 2015b], which exploits not only stable point-like scatters PS but also DS. The in-

creased number of identified PS/DS measurement points on the ground resulting from

this approach provide increased confidence in measurements of the ground’s motion and

displacement, compared to the previous algorithm based on PS only [Ferretti et al., 2001;

Hooper et al., 2004].

The chapter is structured as follows: in the next section, the materials and methods are

introduced. Results on ground subsidence in section 3 are then presented. while Section

4 provides an interpretation of the ground subsidence. Finally, conclusions are drawn in

Section 5.
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5.2 Materials and Methods

5.2.1 Interferometry

Interferometric Synthetic aperture radar (InSAR) is a remote sensing technique for ex-

tracting information about earth surface over the imaged area. InSAR approach is based

on extracting the phase difference of at least two SLC images at a different time and slightly

different SAR sensor positions [Gabriel et al., 1989; Massonnet and Feigl, 1998; Bamler and

Hartl, 1998], to obtain what so-called the interferogram. SAR Interferogram is generated

by multiplying, pixel by pixel, of two SAR SLC images, one with the complex conjugate of

the another. Thus the interferogram generated has an amplitude equals to the product of

the two SLC images amplitude and it has a phase equal to the phase difference between

the two images. Below, the InSAR concepts are briefly summarized.

The SAR sensor acquires the SLC image from position M, measuring the phase to a

single-pixel point target P at the ground. The phase of the first image to the target P is

expressed as below:

φM=
4.π.MP

λ
+φscattM

(5.1)

Where MP is the distance between the sensor and the target, λ is the wavelength of the

echo transmitted by SAR sensor, the factor 4π is related to the two way traveling path, from

radar to target and then from target to radar. φscattM is the scattering matrix generated

due to the interaction of SAR signals with the target P on the ground. It contains geomet-

ric information about the target. Consider φS the phase measured by the second image

acquired by SAR sensor from position N,

φN=
4.π.NP

λ
+φscattN

(5.2)
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Figure 5.1 – InSAR basics.

By exploiting the phase difference between the two passes, the interferometric phase

at point target P is expressed as:

φN−φM=φint=
NP−MP

λ
4π

+φscattN −φscattM (5.3)

φint is the interferometry phase, it contains information about the distance difference

NP - MP required for Digital Elevation Model (DEM) extraction [Bamler and Hartl, 1998].

In order to model the displacement in the earth’s surface, suppose that the point target
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P moves to a position P’ before acquiring the second SLC image, then the phase of the

interferogram will be expressed as:

φint=
NP ′−MP

λ
4π

+φscattN −φscattM (5.4)

Then by adding and subtracting the term NP
(λ/4π)

, a new equation of the interferogram is

obtained:

φint=
NP−MP

λ
4π

+
NP ′−NP

λ
4π

+φscattN −φscattM (5.5)

Where the first term is the topographic term, the second term is the phase corre-

sponds to the Line Of Sight (LOS) displacement in the surface at point target P’. Actually

the above model is the simplified model of the interferogram phase. The more accurate

model should contain phase terms related to the atmospheric delays and orbital errors

[Massonnet and Feigl, 1998; Hanssen et al., 2001]. The interferogram phase can be written

as:

φint=φDis+φtopographic+φAtmN
−φAtmM

+φorbitalN −φorbitalM +φNoise+2.k.π

(5.6)

φDis is the deformation phase, φtopographic is the residual topographic phase, φNoise is

the phase noise due to temporal decorrelation, mis-coregistration, uncompensated spec-

tral shift decorrelation, orbital errors, and thermal noise. φAtmN
and φAtmM

is the at-

mospheric phase screen at different passes due to the propagation delay of the signal in

the atmosphere. Here, it is necessary to mention the limitations and difficulties that face

the extraction of the deformation phase from the interferogram phase. These limitations

are: the temporal and geometric decorrelation that effect the φNoise term [Hanssen et al.,

2001], the phase unwrapping problem that lead to estimate the phase cycles k [Ghiglia and

Pritt, 1998], and the atmospheric phase term [Zebker et al., 1997].
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The essential solution to separate the deformation phase from other phases is to ana-

lyze pixels that have small phase noise values. These pixels typically related to two types of

targets: Permanent Scatterer (PS), where the backscattered signal is dominated by strong

reflection and it is constant with time. Distributed scatters (DS), where the response of the

backscattered signal is due to a spatially distributed object inside the resolution cell and it

is constant over time.

5.2.2 PSI

Permanent Scatterer Interferometry (PSI) is a special class of InSAR techniques that

uses multi-temporal tracks to minimize issues relative to atmospheric, spatial and tem-

poral decorrelations to estimate ground deformations robustly. PS generally corresponds

to man-made structure and other natural reflectors (rocks etc...) such that the reflected

signals are constant with time.

The most important PSI technique is surely the one proposed by Ferretti et al. [Ferretti

et al., 2000b, 2001], which was the first solution to select PS’s and to separate the deforma-

tion and topographic phase residual from the APS, overcoming the geometrical and tem-

poral decorrelations. The analysis is based on the selection of highly-coherent point-like

targets that have temporal stable amplitude named PS [Ferretti et al., 2001]. These PS often

corresponds to man-made structures or natural reflectors (like rocks...) and widely avail-

able in urban areas. The main limitation of this approach is that it is based on scatterers

with high coherence, which leads to low PS’s density in rural areas. Later on, Berardino et

al. [Berardino et al., 2002] propose SBAS technique which is a complete PSI procedure us-

ing small baselines interferograms to limit the spatial decorrelation. SBAS approach uses

a coherence based criterion, and multi-looked data to reduce phase noise. This approach

provides increased sampling (spatial and temporal) with respect to the traditional PSI tech-

nique. However, this technique is not able to detect local deformation, then an extended

SBAS version overcomes this limitation [Lanari et al., 2004]. Hooper et al. [Hooper et al.,

2004] proposed a new approach for selecting PS based on not only on amplitude character-

istics but on phase characteristics. This approach able to identify natural targets with low
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amplitude as PS based on the phase stability of such targets. Followed by this work, the

most used PSI packages are then developed, Stamps [Hooper and Zebker, 2007; Hooper,

2008].

Figure 5.2 – PS processing chain.

Here, a detailed steps of PSI processing chain that are discussed in details in Devanth-

ery et. al [Devanthéry et al., 2014]:

1- First of all, consider N SAR images acquired over an area of interest, generate M

multi-look interferograms.

2- Estimate and remove the Atmospheric Phase Screens (APS) components. APS cor-

rection is performed by applying a set of Spatio-temporal filters [Ferretti et al., 2000b].

3- Estimate residual topographic phases and remove them from the interferogram

phases.

4- Finally derive th deformation time series and calculate the deformation velocity us-

ing the phase model of the displacement (assuming constant velocity model):

φn
disp=

4.π.tn

λ
.v (5.7)

Where v is the mean deformation LOS velocity of the target, and tn is the temporal

baseline.

In this work, the PS processing chain consists of two main stages. The first stage is

the generation of the stack. ISCE tool is used here. First of all, starting from SLC images

acquired over the area of interest, and orbital data at each date, the baselines are calculated

concerning the common master. After that, the burst overlaps are extracted. Then mis-
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registration is estimated for each pair of SLC’s and the interferograms are generated. The

final step is to merge the bursts.

The second stage is to use Stamps processing, after exporting the stack of interfero-

grams generated by ISCE tool.

details on PSI processing

The PSI processing chain split into two workflows: 1) single master DInSAR processing

using ISCE, and 2) the PSI processing using StaMPS.

The master image is is selected from the beginning of the data series. Additionally,

the overlap bursts inside the IW3 between the master scene and slaves must be selected.

The next step involves the generation of all single interferograms. Then the final step is to

convert DInSAR processing results into binary raster files compatible with StaMPS readers.

PSI work has been carried out using the InSAR Scientific Computing Environment

(ISCE) and StaMPS software packages. The Interferometry processing chain can be cre-

ated by run the stack generator. After running stack generator, run files will automatically

be generated including different commands that generate the data-stack, coregister the

stack, extract the overlap bursts between SAR images, calculate the average baseline. The

next step after generating the stack is to make the single baseline stack and import it to

stamps. It is necessary to mention that the atmospheric Phase Screen (APS) correction has

been employed using the Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) [Bekaert

et al., 2015]. Gacos model correction was applied [Yu et al., 2017, 2018a,b]. Concerning the

PS/DS processing chain, we will discuss it’s workflow in the following paragraph.

5.2.3 PS/DS

Recently, the framework of InSAR processing in estimating residual topographic, APS

and deformation phases typically based on using not only PS but also DS targets. Many

studies were proposed to increase the density of measurement points over areas charac-

terized by DS. These studies aim to preserve the quality of information behind the PS tech-
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nique over deterministic targets. In other words, averaging the data over statistically ho-

mogeneous areas, and increasing Signal to Noise Ratio (SNR), without affecting the iden-

tification of coherent targets and without the need of phase unwrapping algorithms ap-

plied on hundreds of interferograms [Lanari et al., 2004]. Maximum Likelihood Estimation

(MLE) frameworks act as an attempt to joint PS and DS processing [Ferretti et al., 2011,

2008; Rocca, 2007]. The main idea behind the MLE technique is to design a statistically-

optimal estimator for parameters of interest, using the coherences of every interferogram

in the stack. Recently, Ferretti et al. [Ferretti et al., 2011] proposed SqueeSAR algorithm.

The main idea behind SqueeSAR is to process jointly PS with DS taking into account their

different statistical behaviors. Unlike hybrid processing chains, where two or more algo-

rithms are applied to the given data-stack, and the results are combined. SqueeSAR able

to process jointly PS and DS without need for any significant change in the traditional PSI

processing chain. Exploiting PS/DS processing chain is implemented in two steps: In the

first step, the Maximum Likelihood Estimation (MLE) is used that jointly exploits all the

N(N-1)/2 interferograms available from N images, in order to squeeze the best estimates of

the N-1 interferometric phases, so-called linked phases. This step is termed Phase Linking

or Phase Triangulation [Ferretti et al., 2011], in which the DS-linked phases can be mod-

eled in the same way as a PS target. Once the first estimation step has yielded the estimates

of the N-1 linked phases, the second step is required to separate the contributions of the

decorrelation noises from the parameters of interest, as in PS processing.

Figure 5.3 – PS/DS processing chain

PS/DS processing chain is implemented here using were processed by the IRSTEA To-

moSAR platform, which offers SAR, InSAR PS/DS, and Tomography processing [Minh et al.,

2016]. In this work, the PS/DS processing chain in [Ho Tong Minh et al., 2015b] is adapted

to the Sentinel-1 SAR stack.
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detail PS/DS processing chain

1- Co-registration of the Sentinel-1 SLC stack. The slave images were resampled to a

common master grid on 11 May 2015. SRTM Digital Elevation Model has been used to

compensate for the topographic contribution.

2- Select the family of Statistically Homogeneous Pixels (SHP) by using Kol-

mogorov–Smirnov (KS) test [Ferretti et al., 2011] at each pixel.

3- Choose a certain threshold to define DS.

4- Estimate the coherence matrix at each DS.

5- Apply phase linking algorithm at each coherence matrix to squeeze the optimized

phases.

6- Substitute the phase values of original SAR SLC images with their corresponding op-

timized values.

7- Apply the iterative algorithm to select PS/DS candidates.

8- At the end, process the PS/DS candidates jointly using PSI algorithms to estimate the

deformation time series.

5.2.4 Detail processing from step 6 stamps

Results of the two processing chains were compared, in terms of capability, perfor-

mance, the accuracy of the derived deformation velocity maps.

Using two different InSAR multi-temporal analysis, deformation velocity was estimated

over Lebanon. In the following, the comparison of the two methods is performed.

PSI processing chain as described above is composed of successive steps applied on the

Permanent scatters PS’s selected. In this chapter, Stanford Method for Persistent Scatterers

(Stamps) is used in PS processing. the brief description of Stamps steps is as follows.

Stamps is a software package that implements an InSAR persistent scatter PS method

developed to work even in terrains devoid of man-made structures and/or undergoing
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non-steady deformation. The first step after generating interferograms is to identify PS

candidates. The level of decorrelation is defined whether pixels are PS or not, but the ini-

tial selection of PS candidates is done based on the amplitude dispersion along time series

interferograms [Ferretti et al., 2001]. Then the phase noise will be estimated at each can-

didate. Based on the noise characteristics of each candidate, the PS’s are selected. After

that, the PS weeding is necessary to drop those that are due to signal contributions from

neighboring ground elements and those deemed too noisy. The phase correction is carried

out, The wrapped phase of the selected pixels is corrected for spatially-uncorrelated look

angle (DEM) error. Then Phase unwrapping is carried out. After that, spatially-correlated

look angle (SCLA) error is calculated which is due almost exclusively to spatially-correlated

DEM error. The final step of the processing chain is atmospheric filtering.

Regarding PS/DS processing chain, the PSI steps including phase unwrapping, Esti-

mate spatially-correlated look angle error, and atmospheric filtering are performed but not

only on PS targets but also on DS targets. These steps are steps from 6 to 8 in the Stamps

processing chain. Stamps steps from 6 to 8 are common between PS and PS/DS process-

ing chains. A brief explanation of each step is presented below. The phase unwrapping is

performed to unwrap 3D data that are irregularly sampled in two dimensions in order to

unwrap InSAR PS time series, which are distributed irregularly in space. The third dimen-

sion is time. The process of phase unwrapping is to recover unambiguous phase values

from phase data that are measured modulo 2π rad (wrapped data). Actually, the phase

difference between neighboring PS’s depends mainly on the number of cycles multiple of

2π. In order to unwrap correctly the phases, assume usually used that the sampling rate is

high and aliasing is voided. In other words, the true absolute phase difference between two

neighboring data points is generally less thanπ rad. The unwrapping problem is that not to

allow the integration paths between two adjacent points when the absolute difference be-

tween the two is greater thanπ. The Snaphu software is used to unwrap the interferograms.

The second step is to Estimate spatially-correlated look angle error. Spatially-Correlated

Look Angle SCLA error is calculated which is due almost exclusively to spatially-correlated

DEM error (this includes an error in the DEM itself, and incorrect mapping of the DEM into

radar coordinates). The Master atmosphere and orbit error (AOE) phase are estimated si-
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multaneously in this step. Finally, spatial filtering must be carried out to separate spatially

correlated phase terms like atmospheric, and orbit error phase for each PS/DS candidate.

In the end, the deformation velocity map can be generated.

5.3 Results

5.3.1 Lebanon site

Lebanon lies between the Mediterranean Sea one side, and Badiyat El-Sham (Syrian

Desert, extension of the Arabian Desert to the north), and is influenced by this gradation

over its entire length. The physical environment of Lebanon is dominated by its unique

physiography and its position on the Mediterranean shores. Lebanon has two moun-

tain ranges; Mount Lebanon which runs parallel to the sea (NNE-SSW) overlooking the

narrow coastal plain and the Anti Lebanon range which runs on the eastern side, paral-

lel to Mount Lebanon. The two mountain chains are separated by the elongated Bekaa

plain. The coastal plain together with Mount Lebanon constitutes the occidental seg-

ment of Lebanon which makes up 50 % of the total area of the country and accommodate

70% of the Lebanese population (4.2 million persons) with a density of 400 persons/km2.

The oriental eastern segment is made up of the depression of the Bekaa valley (14%) and

Anti-Lebanon ranges (36%). Many authors have described the topography of occidental

Lebanon by showing a west-east profile through the country, thus revealing major topo-

graphic features of this segment. [Abdallah, 2007] divided the occidental Lebanon into the

coastal plain, deeply incised valleys and highlands. [Sanlaville, 1977] ordered these sur-

faces as occidental segments constituted by the coastal plain, the plateaus at the coast,

highly elevated region not exceeding 1500 m altitude, and high mountains. [Hakim, 1985]

classified it as lower mountains (altitudes between 300-900 m), moderate mountains (al-

titudes between 900-1600 m) and elevated mountains (altitudes more than 1600 m). Re-

ferring to [Khawlie et al., 2002] and [Abdallah, 2007], the occidental and oriental segments

of Lebanon can be divided into ten physio-graphic units depending on different altitudes

and rock mass distribution.



128

CHAPTER 5. COMPARISON OF MULTI TEMPORAL RADAR INTERFEROMETRY
TECHNIQUES USING SENTINEL-1: LEBANON CASE STUDY

Figure 5.4 – Study area. The red polygon related to the area where Sentinel-1 data stack was

processed.

Lebanon is part of the unstable shelf of the Eastern Mediterranean along the active

transform border between the Levantine and Arabian plates, known as the Dead Sea Fault

Zone (DSFZ). Mount Lebanon (coastal range) and Anti-Lebanon (inner range), which are

arched and faulted horst geanticlines, can be considered as belts related with the restrain-
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ing bend of the DSFZ. The Bekaa depression, on the other hand, is neither strictly a graben

nor an elongated syncline, but possesses structural features of both [Sabagh, 1970; Bey-

doun, 1972]. These main features started during the Late Cretaceous where the collision

zone was offshore and far to the NNW of Lebanon, which gave rise to the first gentle up-

lifting of Mount Lebanon and Anti-Lebanon area. Substantial uplift occurred in the Late

Eocene and Oligocene resulting in the emergence and the marking out of the three fold

NNE-SSW trending pattern of modern Lebanon. During the uplift time, the sea drained

from the interior of the Bekaa depression and restricted to shallow marine incursions along

the line of the present day coast. Since then, there has been continued uplift and local tilt-

ing over the last five million years and various block slides due to the strike-slip faulting.

The anticline of Mount Lebanon reveals local folds distributed in its northern and eastern

parts.

In addition to the major fault (Yammounah fault, central segment of DSFZ) that runs

along the western margin of the Bekaa with a NNE-SSW strike and links the major fault of

the Jordan valley to the Ghab valley fault of northern Syria, other faults are recognized in

Mount Lebanon being almost vertical, with around 10-15 km length, and main strikes be-

ing NNE-SSW and NNW-SSE, with a less frequent E-W trend [Khawlie, 1995]. The northern

part of Anti-Lebanon is similar to that of Mount Lebanon, though topographically lower.

Eastward it is bounded by faults and partly merges into the folds of Damascus-Palmyra arc

in Syria. The southern part, Jabal Hermon, is an elongate asymmetric anticlinal uplift cut

by faults on both its flanks. Moreover, different faults of Lebanon are well developed lo-

cally in the following rock formations: J4, J6, C2b and C4; many of them characterized by

relative small displacements (< 1 m) and showing dense spacing.

SAR data

The SAR stacks are consist of C-band Sentinel-1 data (10.0 m in azimuth and ground

range) acquired in TOPS acquisition mode for the period 2015-2019. The processing of SAR

Sentinel-1 stack requires very accurate images cor-registration, this due to TOPS imaging

mode and it’s sensitivity to geometric errors. It is worth noting that the exclusion of rainy

days was performed. The Sentinel-1 data-set is comprised of 118 Single Look Complex
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(SLC) data covers the whole study area. The analysis is done on Sentinel-1A and 1B, the

revisit time of the descending orbit is 6 days. This temporal resolution is sufficient given

the expected magnitude of ground displacements and the availability of a large number of

acquisitions over the area of interests. It should be noted that the Sentinel-1 products are

not spatially synchronized, so that their starting and ending times may vary within each or-

bits. Sentinel-1 SLC Level1 products are acquired in TOPS mode, it consists of 3 sub swaths

named IW1, IW2, and IW3. Each sub swath is composed of 9 bursts. For the interferometric

processing, the Advanced Land Observation Satellite (ALOS) World 3D (AW3D30) Digital

Surface Model (DSM) [Takaku et al., 2016], of 30 m spatial resolution, was utilized.

5.3.2 PS results

Using PSI processing chain, subsidence map was generated using Sentinel-1 images

acquired over Lebanon between 11 May 2015 and 26 May 2019. More than 1475650 mea-

surement points were identified within an area of about 3922 km2. Assuming that most of

the measured deformation corresponds to vertical displacement of the earth’s surface due

to subsidence, the vertical displacement through straightforward geometrical arguments

can be estimated.

5.3.3 PS/DS results

Sentinel-1 images acquired over Lebanon between 11 May 2015 and 26 May 2019 was

treated by PS/DS processing chain. More than 2541960 measurement points were identi-

fied within an area of about 3922 km2. It is necessary to mention that measurement points

here are greater than those identified using PS processing chain. The location of the refer-

ence point that is chosen for interferometric analysis is between Longitude 35.5300 35.540

and Latitude 33.89 33.9.
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Interferograms and Gacos data

The unwrapped interferograms at 6 dates are shown in Figure 5.5. The master date was

chosen to be at 11 May 2015. All interferograms are being processed with respect to the

master.

Figure 5.5 – Interferograms generated by PS/DS processing chain at different dates.

Gacos atmospheric correction [Yu et al., 2018a,b, 2017] was applied to the InSAR results.

The Gacos phase model for atmospheric correction is shown in Figure 5.6.

Deformation velocity

The Line of Sight (LOS) deformation velocity map generated using two processing

chains PS and PS/DS is shown in Figure 5.7. The area where the velocity map has been

estimated is located between 33.4 and 34.32 Latitude and between 35.3 and 36 Longitude.

There are no displacements detected at the coastal areas. It can be seen that there are many

subsidence hot-spots. The areas in the North East part are affected by a deformation about

11.8 mm/year. Another subsidence area is detected near Qaroun Lake located in the south

of the country.
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lo

Figure 5.6 – Gacos model for atmospheric phase at different dates.

5.4 Discussion

In this work, first, PSI processing chain is implemented to generate subsidence map

taking Lebanon as a case study. Second, PS and DS targets have been jointly processed and

used to generate subsidence map for Lebanon. This is done by using Copernicus Sentinel-

1 mission data acquired over our study area with fine temporal resolution.

5.4.1 Sentinel-1

The new Sentinel 1 satellites launched by European Space Agency provides open re-

motely sensed data and high precision and temporal resolution. Sentinel-1 constellation

is the only satellite system providing dense time series with global coverage with 6 days

revisit time. The constellation of Sentinel-1, which is characterized by small baselines and

then low geometric decorrelations allows to have enough numbers of identified PS and DS.



5.4. DISCUSSION 133

5.4.2 Deformation velocity

Subsidence map has been generated using the PS processing chain applied on

Sentinel-1 data acquired over Lebanon for the period between 2015 and 2019.

Ground subsidence has been estimated using PS/DS processing chain for the period

between 2015 and 2019 in Lebanon. The number of PS/DS measurement points are larger

than those identified by PS processor. Thus the resulting subsidence map contains much

more measurement points than the traditional PS processing chain. A statistical analysis

has been carried out on the two generated subsidence map. These analysis consists of

mean, standard deviation, and mean of velocities at each geological class (Table. 5.1 and

Table. 5.3)

5.4.3 Phase calibration via phase center double localization

Orbital errors are considered to be a limitation for InSAR time series techniques. Or-

bital errors propagate into InSAR LOS and lead to uncertainty in measuring accurately the

ground displacements.

Spaceborne SAR systems are usually provided with orbital state vectors which give the

sensor position in centimeters precision. The orbital product information is obtained af-

ter processing different auxiliary data, such as Global Positioning System, attitude infor-

mation from the satellite’s sensors, and physical model parameters [Wermuth et al., 2009].

The orbital product information is necessary for SAR image formation and thus for in-

terferometry processing. Any disturbances in the orbit will lead to residuals that corrupt

further SAR image processing.

Our prospects to this work are to implement phase calibration of spaceborne SAR data

to compensate for orbital and baseline errors and correct the SAR data. This will enhance

the InSAR results.
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5.5 Conclusion

In this chapter, we demonstrated the feasibility of ground subsidence estimates by C-

band SAR taking Lebanon as a case study. Using PS and PS/DS techniques, we measured

the average velocity of the ground subsidence. A deformation velocity map was gener-

ated taking a part of Lebanon as a case study. It is noticed the performance of the PS/DS

technique in terms of the number of measurement point that is much larger than those

identified by PS approach. The PS/DS technique applied to InSAR appears to be a promis-

ing approach for using C-band SAR data to monitor ground surface risks. The results on

ground subsidence 2015-2019 (by C-band Sentinel-1), in Lebanon described consistently

the subsidence area based on InSAR analysis. Our prospects for this work is to generate

the subsidence map for the whole country using ERS, ENVISAT, and Sentinel-1 data. These

maps should be carried out after applying phase calibration of SAR data and compensate

for the baseline errors.
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(a) (b)

(c)

Figure 5.7 – (a) Deformation velocity map using PS/DS processing chain. (b) Deforma-

tion velocity map using PS processing chain. (c) Difference velocity histogram between PS

velocity and PS/DS velocity.
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Table 5.1 – PS results statistics.

Geology Count(pixels) Area(m2) Mean(mm) Std(mm)

bc2 183 14965479.74 -3.213115 1.544758
bc2b 24 1962685.867 -2.583333 1.187317

qj 5 408892.889 -2.4 1.496663
qm 6 490671.4668 -2.166667 0.687184
ql 1296 105985036.8 -2.083333 2.682102

bj6 392 32057202.5 -1.691327 1.301148
qe 533 43587981.97 -1.538462 1.615161

qcp 23 1880907.29 -1.521739 1.528556
qc 23 1880907.29 -1.521739 1.55674
a 6 490671.4668 -1.5 1.258306

terrain decolle 4 327114.3112 -1.5 1.118034
ce 4 327114.3112 -1.25 0.829156

c2a 975 79734113.36 -1.202051 1.43766
qtl 10 817785.7781 -1.1 0.943398

mm 33 2698693.068 -1.060606 0.693668
j6 6179 505309832.3 -1.050655 1.098274
c4 11852 969239704.2 -1.022528 1.279824
c1 2152 175987499.4 -1.015335 1.248883

mcg 11 899564.3559 -1 0.953463
c2b 1488 121686523.8 -0.875672 1.285778
j7 208 17009944.18 -0.865385 0.925677

ebouli 96 7850743.47 -0.802083 1.06673
e2 349 28540723.65 -0.793696 1.020065
c3 1706 139514253.7 -0.709848 1.20554

e2b 1670 136570224.9 -0.593413 0.919166
cone de dejection 14 1144900.089 -0.571429 1.049781

m2b 133 10876550.85 -0.533835 0.930267
bc1 21 1717350.134 -0.47619 1.005653
qf 63 5152050.402 -0.47619 0.709508
ml 245 20035751.56 -0.453061 1.262828
c6 1499 122586088.1 -0.439626 1.067841

m2a 48 3925371.735 -0.4375 0.733321
e2a 378 30912302.41 -0.433862 0.971616
qa 56 4579600.357 -0.410714 1.03124

cailloutidepente 10 817785.7781 -0.4 1.113553
qd 52 4252486.046 -0.384615 0.76344
qt 308 25187801.96 -0.363636 0.870275

qdd 334 27314044.99 -0.314371 0.796683
qdm 214 17500615.65 -0.280374 0.829304

urbanism 17 1390235.823 -0.235294 0.876451
c1-2a 34 2780471.645 -0.205882 0.631497

qla 78 6378729.069 -0.153846 0.508314
ml1 397 32466095.39 -0.13602 1.093437

j5 62 5070271.824 -0.064516 0.534939
bp 172 14065915.38 -0.052326 0.649369

j1-3a 2 163557.1556 0 0
j6a 2 163557.1556 0 0

t 1 81778.57781 0 0
m2 98 8014300.625 0.030612 0.691849
j4 1099 89874657.01 0.073703 0.779065
c5 952 77853206.07 0.091387 0.838322
q 17 1390235.823 0.176471 0.512812

qat 65 5315607.558 0.184615 1.036151
qds 4 327114.3112 0.25 0.433013
qaf 8 654228.6225 0.375 0.695971
cp 26 2126243.023 0.384615 0.624926
ad 1 81778.57781 1 0
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Table 5.2 – DS results statistics.

Geology Count(pixels) Area(m2) Mean(mm) Std(mm)

ql 2176 177950185.3 -2.266085 2.164101
qcp 25 2044464.445 -2.16 1.869331

a 20 1635571.556 -2.15 1.768474
terrain decolle 4 327114.3112 -1.75 0.829156

c3 2065 168872763.2 -1.461985 1.693352
ebouli 135 11040108 -1.437037 1.523191

j6 7195 588396867.3 -1.415288 1.568502
c2b 1871 153007719.1 -1.414751 1.630835
mcg 10 817785.7781 -1.4 1.74356
c2a 1269 103777015.2 -1.371946 1.553471
c4 15449 1263397249 -1.344747 1.979863

bc2 267 21834880.27 -1.344569 1.593878
qds 3 245335.7334 -1.333333 1.247219
qtl 30 2453357.334 -1.333333 1.534782
j7 295 24124680.45 -1.318644 1.46374
c1 3013 246398854.9 -1.308994 1.526546
bj6 467 38190595.84 -1.297645 1.524691
bc1 38 3107585.957 -1.289474 1.393743
qe 691 56508997.27 -1.257598 1.80454

mm 30 2453357.334 -1.2 1.301281
bc2b 37 3025807.379 -1.054054 1.859177

qc 25 2044464.445 -1.04 1.561538
t 2 163557.1556 -1 1

e2 403 32956766.86 -0.940447 1.331589
urbanism 17 1390235.823 -0.882353 1.131493

e2b 1831 149736576 -0.872747 1.530564
e2a 489 39989724.55 -0.770961 1.48912
qdd 309 25269580.54 -0.68932 1.09156
qm 14 1144900.089 -0.642857 1.287697
ce 5 408892.889 -0.6 1.2
qd 51 4170707.468 -0.588235 1.013177
c6 1910 156197083.6 -0.572775 1.608776
qt 322 26332702.05 -0.559006 1.282199

ml1 450 36800360.01 -0.557778 1.518038
qdm 205 16764608.45 -0.512195 1.128823

cone de dejection 17 1390235.823 -0.411765 2.568104
bp 170 13902358.23 -0.388235 1.275047
ml 327 26741594.94 -0.385321 1.279633

m2b 131 10712993.69 -0.358779 1.132913
qf 65 5315607.558 -0.292308 1.309411

m2a 51 4170707.468 -0.27451 1.387316
c1-2a 34 2780471.645 -0.235294 1.214104

qj 29 2371578.756 -0.206897 2.090691
j5 65 5315607.558 -0.2 0.914835
qa 79 6460507.647 -0.189873 1.510101
q 17 1390235.823 -0.117647 1.231085
j4 1084 88647978.34 -0.106089 1.231056

j1-3a 2 163557.1556 0 0
ad 3 245335.7334 0 0.816497
m2 116 9486315.026 0.025862 1.012518
qla 103 8423193.514 0.07767 1.12076
c5 1175 96089828.92 0.110638 1.544136
qaf 9 736007.2003 0.111111 1.286204
cp 31 2535135.912 0.419355 1.040291
qat 82 6705843.38 0.902439 1.33991

cailloutidepente 53 736007.2003 -0.333333 0.942809
j6a 1 81778.57781 2 0
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Table 5.3 – Geological classes.

Geology Combination

bn Basalt
dune mouvant Marine

ml1 conglomerate
a Fluvial

ad Marine
bc pyroclastic

bc1 Pyroclastic
bc2 pyroclastic

bc2b pyroclastic
bj Basalt

bj5 basalt
bj6 basalt
bp basalt
c1 Sandstone

c1-2 limestone
c1-2a sandstone

c2 Limestone
c2a Limestone
c2b limestone
c3 Shale

c3a marl
c4 Limestone
c5 Marl
c6 marne

cailloutis des pentes colluvial
cone de deject Colluvial
couletdeboue Fluvial

e2a Marl
e2b Limestone

eboulie colluvial
m conglomerat

m2 Conglomerate
m2a Conglomerate
mcg conglomerate
ml Marl

mud fluvial
q Colluvial

qcg Conglomerate
qd marine
qf Alluvial

qf1 fluvial
qtl Fluvial



General Conclusion

This thesis has considered the use of remote sensing of natural scenarios through mul-

tiple baseline SAR acquisitions. The general objective of the dissertation is to exploit SAR

multibaseline algorithms and applications in forests and urban areas. Our research re-

quired different spaceborne and airborne data sets that have been acquired over different

sites. Considering the multibaseline SAR system as a 3D imaging tool for the portion of the

Earth’s surface into which the transmitted wave penetrates has allowed providing a unified

treatment of different kinds of analysis.

The accomplished achievements carried out through the first part of the thesis are that

the TomoSAR technique ability to derive dense forest structure is evaluated at L- and P-

band. Even though, the phase screens due to propagation disturbances have been shown

to constitute a crucial issue as well in multi-baseline applications, either interferometric

and tomographic. Thus, different phase calibration techniques were applied and vali-

dated. However, a drawback within these techniques is that using SKP, we assessed the

ability of L-band data to penetrate tropical forest from the canopy down to ground layer,

so that we can extract the digital terrain model under the forest. While using the PCDL

technique, only phase calibration is carried out after removing phase residuals from the

original SLC, this done without the extraction of the terrain phase. Super-resolution beam-

139
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forming techniques have been implemented to have perfect tomographic profiles. For L

and P-band TomoSAR data, we identified the different forest layers (canopy and ground

layer) in such a way one can derive forest structure indices that enhance the performance

of biomass estimators.

Regarding the second part, different multi-temporal time series InSAR techniques were

evaluated. Land subsidence map is generated taking Lebanon as a case study. The feasibil-

ity of Sentinel-1 C-band data to estimate ground subsidence is demonstrated. PS/DS tech-

nique appears promise technique to monitor ground surface risks. We need in the future,

to combine the InSAR technique with insitu measurements in a useful way to monitor and

track the ground subsidence in Lebanon. There are many differential GPS stations located

in Lebanon at different sites of the country. So our future work in this part is to generate

the GPS vertical and horizontal displacements history. After that, the correlation between

InSAR measurements and GPS measurements can be carried out. To improve the quality

of InSAR results, we propose to implement phase calibration of Multibaseline Sentinel-

1 data using PCDL applied on DS, in such a way we can eliminate the orbital errors and

phase disturbance from the InSAR data.

TomoSAR perspectives

As perspectives regarding the first part, our aim is to estimate the structure indices of

the forest such as the horizontal and the vertical indices that play a role in supporting the

biomass recovery algorithms and improving the forest management activities. However,

the structure of the forest is considered as an important factor in its ecology because of

its correlation with various ecological processes [Pretzsch et al., 2010; Shugart et al., 2010;

Mundell et al., 2010]. Moreover, it has a role as an indicator in the detection of biodiversity,

where the forests with vertical structures can enhance a certain biodiversity taxa [Boncina,

2000; Ishii et al., 2004; Schall et al., 2018]. Also, either the vertical or the horizontal struc-

tural heterogenicity can be able to improve the forest ecosystem resistance to disturbances

[Dobbertin, 2005; Pretzsch et al., 2016]. Though it is highly important to know the forest

structure in order to be able to understand its dynamics. Finding an appropriate and a
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clear definition for forest structure is really very difficult. Furthermore, forest structure pa-

rameters vary based on the method of their foundation either data on the ground or remote

sensing. Field descriptors of forest structure are often derived from the measurements of

the size of each tree individually, however, remote sensing descriptors depend on the het-

erogeneity in structure of the canopy of a given area. Our interest in the future studies is

in using the forest modeling, LiDAR remote sensing, and airborne tomoSAR in order to

be able to reply to the question, remote sensing, and what is the role played by the forest

in the estimation of forest biomass and surface wood productivity? Our goal is to use the

vertical and the horizontal descriptors that can be measured by remote sensing in order

to classify the forests into structural categories. Using this structural classification, we will

examine whether we will be able to more accurately estimate the forest biomass and the

surface wood productivity in case we include the structural information.

InSAR perspectives

Typically, space SAR systems are equipped with state vector systems which give the sen-

sor a position of centimeters of precision. Information on the orbital products is attained

after processing various auxiliary data, such as the attitude information of the satellite sen-

sors, the ephemeris of the global positioning system and the parameters of the model phys-

ical [Wermuth et al., 2009]. Getting information on the orbital products is highly necessary

for the formation of SAR images and thus for the interferometry treatment. Any distur-

bances that happen in the orbit will cause residues which corrupt SAR image processing.

Our prospect for this work is to implement the phase calibration of spatial SAR data to

compensate for orbital and basic errors and correct SAR data. This will help in improving

InSAR’s results.
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Abstract: Developing and enhancing strategies to characterize actual forests structure is a timely

challenge, particularly for tropical forests. P-band synthetic aperture radar (SAR) tomography

(TomoSAR) has previously been demonstrated as a powerful tool for characterizing the 3-D vertical

structure of tropical forests, and its capability and potential to retrieve tropical forest structure has

been discussed and assessed. On the other hand, the abilities of L-band TomoSAR are still in the

early stages of development. Here, we aim to provide a better understanding of L-band TomoSAR

capabilities for retrieving the 3-D structure of tropical forests and estimating the top height in dense

forests. We carried out tomographic analysis using L-band UAVSAR data from the AfriSAR campaign

conducted over Gabon Lopé Park in February 2016. First, it was found that L-band TomoSAR was

able to penetrate into and through the canopy down to the ground, and thus the canopy and ground

layers were detected correctly. The resulting TomoSAR vertical profiles were validated with a digital

terrain model and canopy height model extracted from small-footprint Lidar (SFL) data. Second,

there was a strong correlation between the L-band Capon beam forming profile in HH and HV

polarizations with Land Vegetation Ice Sensor (LVIS) Level 1B waveform Lidar over different kinds of

forest in Gabon Lopé National Park. Finally, forest top height from the L-band data was estimated and

validated with SFL data, resulting in a root mean square error of 3 m and coefficient of determination

of 0.92. The results demonstrate that L-band TomoSAR is capable of characterizing 3-D structure of

tropical forests.

Keywords: tomography SAR (TomoSAR); above-ground biomass (AGB); tropical forests; AfriSAR;

UAVSAR; phase calibration

1. Introduction

Tropical forests have major impacts on Earth’s ecosystem in terms of carbon storage, regulating

water, and weather. Above-ground biomass (AGB) is the most important parameter related directly to

the amount of carbon in the global ecosystem cycle [1]. Uncertainty in balancing the global carbon

budget arises from a deficiency in AGB density estimation and carbon stocks in tropical forests. Indeed,

Remote Sens. 2019, 11, 475; doi:10.3390/rs11050475 www.mdpi.com/journal/remotesensing
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Abstract: Our study aims to provide a comparison of the P- and L-band TomoSAR profiles, Land

Vegetation and Ice Sensor (LVIS), and discrete return LiDAR to assess the ability for TomoSAR

to monitor and estimate the tropical forest structure parameters for enhanced forest management

and to support biomass missions. The comparison relies on the unique UAVSAR Jet propulsion

Laboratory (JPL)/NASA L-band data, P-band data acquired by ONERA airborne system (SETHI),

Small Footprint LiDAR (SFL), and NASA Land, Vegetation and Ice Sensor (LVIS) LiDAR datasets

acquired in 2015 and 2016 in the frame of the AfriSAR campaign. Prior to multi-baseline data

processing, a phase residual correction methodology based on phase calibration via phase center

double localization has been implemented to improve the phase measurements and compensate

for the phase perturbations, and disturbances originated from uncertainties in allocating flight

trajectories. First, the vertical structure was estimated from L- and P-band corrected Tomography

SAR data measurements, then compared with the canopy height model from SFL data. After that,

the SAR and LiDAR three-dimensional (3D) datasets are compared and discussed at a qualitative

basis at the region of interest. The L- and P-band’s performance for canopy penetration was assessed

to determine the underlying ground locations. Additionally, the 3D records for each configuration

were compared with their ability to derive forest vertical structure. Finally, the vertical structure

extracted from the 3D radar reflectivity from L- and P-band are compared with SFL data, resulting

in a root mean square error of 3.02 m and 3.68 m, where the coefficient of determination shows a

value of 0.95 and 0.93 for P- and L-band, respectively. The results demonstrate that TomoSAR holds

promise for a scientific basis in forest management activities.

Keywords: tomography SAR; AfriSAR; TropiSAR; LiDAR LVIS

1. Introduction

Tropical Forests play a vital role in the global carbon cycle, and subsequently within the global

climate [1]. Tropical forests are incredibly complicated, diverse, and frequently threatened. Indeed,

there’s a crucial demand to develop a new technology to help in surveying and revealing the dynamics

of tropical forests. The dynamic processes like growth, regeneration, decay, and disturbance, strongly

Remote Sens. 2019, 11, 1934; doi:10.3390/rs11161934 www.mdpi.com/journal/remotesensing
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Abstract: Multi-temporal Synthetic Aperture Radar (SAR) Interferometry (InSAR) is a widely used1

technique to measure ground subsidence and has already shown its ability to map such phenomena on2

a large spatial scale with millimetric accuracy from space. The aim of this paper is to provide a better3

understanding of the capabilities of C-band for estimating ground subsidence in Lebanon. Analysis is4

carried out on Sentinel-1 stack C-band from 2015 to 2019 acquired over Lebanon. The study demonstrates5

that the InSAR technique can be effective at detecting and estimating subsidence phenomena. The study6

provides strong support for the scientific potential of C-band SAR space-borne mission in Lebanon7

because it demonstrates the feasibility of ground subsidence estimates by C-band SAR.8

Keywords: DInSAR; PSI; PS/DS; Sentinel-1; Stamps; Deformation velocity9

1. Introduction10

Land subsidence is a major hydro-geological hazard that affects our society [1–3]. Differential11

Interferometric Synthetic Aperture Radar (DInSAR) is a powerful technique used to monitor and measure12

Earth’s surface deformations using SAR data. DInSAR exploits the phase information of at least two13

temporally separated SAR acquisitions acquired over the same area to form interferogram and measure14

the displacements and deformations occurred in the Earth’s surface.15

An advanced approach of DInSAR is the Permanent Scatterer Interferometry (PSI) technique [4–7],16

such that the interferometry analysis is done on Permanent scatters (PS’s) targets (like man-made structures,17

rocks, and other reflectors...), that have temporally stable phase and amplitude. PSI for the processing of18

multi-temporal SAR acquisitions is widely used to measure urban ground subsidence and has already19

shown its ability to map such phenomena on a large spatial scale with millimeters accuracy from space,20

associated with either ground subsidence [8–13], railway subsidence [14], or landslides [15], etc. The first21

PSI technique is proposed by [4,6]. Several contributions had followed PSI approach. The Small Baseline22

Subset technique (SBAS) [16] is a major approach that extensively used in land surface monitoring using23

Submitted to Remote Sens., pages 1 – 16 www.mdpi.com/journal/remotesensing



APPENDIX

D
Estimation of Rice Height and

Biomass Using Multitemporal SAR

Sentinel-1 for Camargue, Southern

France.

173



remote sensing  

Article

Estimation of Rice Height and Biomass Using
Multitemporal SAR Sentinel-1 for Camargue,
Southern France

Emile Ndikumana 1 , Dinh Ho Tong Minh 1,* , Hai Thu Dang Nguyen 1,2, Nicolas Baghdadi 1,

Dominique Courault 3, Laure Hossard 4 and Ibrahim El Moussawi 1

1 UMR TETIS, IRSTEA, University of Montpellier, 34093 Montpellier, France;

emile.ndikumana@irstea.fr (E.N.); dangnguyenhaithu@gmail.com (H.T.D.N.);

nicolas.baghdadi@irstea.fr (N.B.); ibrahim.el-moussawi@irstea.fr (I.E.M.)
2 Department of Space and Aeronautics, University of Science and technology of Hanoi,

Vietnam Academy of Science and Technology, 122100 Hanoi, Vietnam
3 UMR 1114 EMMAH, INRA, University of Avignon, 84914 Avignon, France; dominique.courault@inra.fr
4 UMR 0951 INNOVATION, INRA, University of Montpellier, 34060 Montpellier, France;

laure.hossard@inra.fr

* Correspondence: dinh.ho-tong-minh@irstea.fr

Received: 12 July 2018; Accepted: 29 August 2018; Published: 1 September 2018
����������
�������

Abstract: The research and improvement of methods to be used for crop monitoring are currently

major challenges, especially for radar images due to their speckle noise nature. The European Space

Agency’s (ESA) Sentinel-1 constellation provides synthetic aperture radar (SAR) images coverage

with a 6-day revisit period at a high spatial resolution of pixel spacing of 20 m. Sentinel-1 data are

considerably useful, as they provide valuable information of the vegetation cover. The objective of

this work is to study the capabilities of multitemporal radar images for rice height and dry biomass

retrievals using Sentinel-1 data. To do this, we train Sentinel-1 data against ground measurements

with classical machine learning techniques (Multiple Linear Regression (MLR), Support Vector

Regression (SVR) and Random Forest (RF)) to estimate rice height and dry biomass. The study is

carried out on a multitemporal Sentinel-1 dataset acquired from May 2017 to September 2017 over

the Camargue region, southern France. The ground in-situ measurements were made in the same

period to collect rice height and dry biomass over 11 rice fields. The images were processed in order

to produce a radar stack in C-band including dual-polarization VV (Vertical receive and Vertical

transmit) and VH (Vertical receive and Horizontal transmit) data. We found that non-parametric

methods (SVR and RF) had a better performance over the parametric MLR method for rice biophysical

parameter retrievals. The accuracy of rice height estimation showed that rice height retrieval was

strongly correlated to the in-situ rice height from dual-polarization, in which Random Forest yielded

the best performance with correlation coefficient R2
= 0.92 and the root mean square error (RMSE)

16% (7.9 cm). In addition, we demonstrated that the correlation of Sentinel-1 signal to the biomass

was also very high in VH polarization with R2
= 0.9 and RMSE = 18% (162 g·m−2) (with Random

Forest method). Such results indicate that the highly qualified Sentinel-1 radar data could be well

exploited for rice biomass and height retrieval and they could be used for operational tasks.

Keywords: rice dry biomass; rice height; Multiple Linear Regression; Support Vector Regression;

Random Forest; Sentinel-1, TomoSAR platform; Camargue; souther France
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TerraSAR-X and Cosmos SkyMed Data
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Abstract—Multitemporal synthetic aperture radar (SAR) in-
terferometry (InSAR) is a widely used technique to measure the
ground subsidence and has already shown its ability to map such
phenomena on a large spatial scale with millimetric accuracy from
space. In Vietnam, to have independent SAR data for surface
risk applications, a new X-band SAR mission (JV-LOTUSat) has
been scheduled for launch for the 2019–2020 timeframe. However,
Vietnam is located in tropical regions where their conditions are
impacted by strong atmosphere. The aim of this article is to provide
a better understanding of the capabilities of the X-band for estimat-
ing the ground subsidence under tropical atmospheric conditions.
Analysis is carried out on two stacks, TerraSAR-X and Cosmos
SkyMed X-band, from 2011 to 2014 in Ha Noi. We show that the re-
sults on the ground subsidence from InSAR processing can describe
consistently the subsidence area based on ground measurements.
This article demonstrates that the InSAR technique can be effec-
tive at detecting and estimating the subsidence phenomena even
with the X-band and under conditions typical of tropical regions.
The displacement results from TerraSAR-X and Cosmos SkyMed
datasets are consistent, with a correlation coefficient (R2) of 0.91
for the period during which their coverage overlaps. Groundwater
overexploitation is one of the main causes of the ground subsidence
in Ha Noi. This study provides strong support for the scientific
potential of the X-band SAR space-borne mission in Vietnam and
other tropical countries because it demonstrates the feasibility
of the ground subsidence estimates by the X-band SAR, even in
conditions impacted by strong atmosphere.
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I. INTRODUCTION

U
RBAN subsidence is a major hazard affecting our soci-

ety [1]–[3]. In Vietnam, risk of subsidence has become

increasingly frequent, particularly, in Ha Noi and Ho Chi Minh

City. Planning responses to ground subsidence requires knowl-

edge about its spatial extent and how it has changed over time

[4]. Multitemporal synthetic aperture radar (SAR) interferom-

etry (InSAR) is a widely used technique to measure the urban

ground subsidence and has already shown its ability to map such

phenomena on a large spatial scale with millimetric accuracy

from space, associated with either ground subsidence (e.g.,

[5]–[7]), railway subsidence (e.g., [8]), landslides (e.g., [9]),

etc. However, Vietnam is outside the Copernicus data policy

of the European Space Agency (ESA), which is dedicated to

support studies in the European zone. Only very few ESA data,

e.g., C-band ENVISAT ASAR, exist that are suitable for such

applications, which typically require a stack of multitemporal

SAR data [10]. This is the reason why many works [4], [11], [12]

are based on L-band (∼23.6 cm) data of the Japan Aerospace

Exploration Agency ALOS PalSAR satellite. Recently, C-band

Sentinel-1 systematically acquires data at the global scale in the

terrain observation with progressive scan (TOPS) mode [13].

However, TOPS Sentinel-1A/1B phase is very sensitive to geo-

metric errors [14]. In this context, a new X-band SAR mission

(JV-LOTUSat) has been scheduled for launch by Vietnam for

the 2019–2020 time frame. The new JV-LOTUSat satellite is a

collaborative effort between the governments of Vietnam and

Japan [15].

X-band SAR data are sensitive to small variations (e.g.,

[16]–[18]). High-quality data are gathered by the German Space

Agency TerraSAR-X (TSX) satellite constellation and by the

Italian constellation of small satellites for the Mediterranean

basin Observation Cosmos SkyMed (CSK). Thanks to the high

resolution (less than 3 m with TSX and CSK) and the short

wavelength (∼3.1 cm) of the X-band, it is possible to study

the signal of single objects such as buildings and bridges [19].
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