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Résumé

Les courbes de tarage complexes, qui prennent en entrée la hauteur d’eau et des vari-
ables supplémentaires, sont nécessaires pour établir les chroniques de débit des cours d’eau

la ou la relation hauteur-débit n’est pas univoque.

Dans le méme cadre bayésien, des méthodes a base hydraulique sont proposées et testées
pour construire les courbes de tarage complexes et estimer leurs incertitudes : des modeles
hauteur-gradient-débit (SGD) pour résoudre I’hystérésis due aux écoulements transitoires,
des modeles hauteur-dénivelée-pente (SFD) pour résoudre le remous variable aux stations
a double échelle, le modele hauteur-période-débit (SPD) pour résoudre les détarages nets

dus aux évolutions du lit.

Chaque modele a été appliqué a des stations hydrométriques variées et évalué grace a
des analyses de sensibilité. Pour chacune des trois sources de non-univocité de la relation
hauteur-débit, les méthodes bayésiennes proposées fournissent non seulement une analyse
d’incertitude quantitative mais aussi des solutions efficaces a des problemes récurrents que

posent les procédures traditionnelles pour les courbes de tarage complexes.

Mots clés : BaRatin, inférence bayésienne, controles hydrauliques, courbes de tarage
complexes, Hydrométrie, hystérésis, MCMC, non univocité, détarages morphodynamiques,

relations hauteur-débit, débit des cours d’eau, incertitudes, influence aval variable.
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Abstract

Complex rating curves, with stage and additional variables as inputs are necessary to

establish streamflow records at sites where the stage-discharge relation is non-unique.

Within the same Bayesian framework, hydraulically-based methods are introduced and
tested to develop complex rating curves and estimate their uncertainties: stage-gradient-
discharge (SGD) models to address hysteresis due to transient flow, stage-fall-discharge
(SED) models to address variable backwater at twin gauge stations, stage-period-discharge

(SPD) model to address net rating changes due to bed evolution.

Each model was applied to contrasting hydrometric stations and evaluated through sen-
sitivity analyses. For each of the three sources of non-uniqueness in the stage-discharge
relation, the proposed Bayesian methods provide not only quantitative uncertainty anal-
ysis but also efficient solutions to recurrent problems with the traditional procedures for

complex ratings.

Key words: BaRatin, Bayesian inference, controls, complex rating curves, Hydrome-
try, hysteresis, MCMC, non-uniqueness, rating changes, stage-discharge relation, stream-

flow, uncertainties, variable backwater influence.
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Résumé étendu en francais

1. INTRODUCTION

L’hydrologie possede la particularité qu’une de ses principales variables — le débit des
cours d’eau — ne peut pas étre mesurée en continu. Le plus souvent en effet, les chroniques
de débit utilisées par les hydrologues résultent de la transformation de mesures continues
de hauteur d’eau via un modele hauteur-débit, appelé courbe de tarage (cf. manuel WMO
No. 1044 [2010]). Cette courbe de tarage doit étre estimée a chaque station hydrométrique,
a partir de mesures hauteur-débit ponctuelles (appelées jaugeages) et de considérations sur
les lois hydrauliques qui gouvernent la relation hauteur-débit. Les plus fortes incertitudes
sur la courbe de tarage sont rencontrées en situation d’étiage, ol la géométrie de la
section d’écoulement s’avere souvent instable et peu sensible (faible variation de hauteur
d’eau rapportée a une variation de débit) ; et en situation de crue, ou le manque de
jaugeages induit une incertitude accrue sur l'extrapolation du modele hauteur-débit, et

ou des écoulements complexes peuvent intervenir, notamment en cas de débordement.

Etant donné le role central joué par la variable débit en hydrologie, la quantification
des incertitudes associées a la courbe de tarage est une thématique centrale, que ce soit en
hydrologie opérationnelle, par exemple pour statuer par exemple sur le respect d’un débit
réservé ou positionner un débit de crue vis-a-vis de valeurs de référence (crue centennale),
ou en hydrologie prospective pour évaluer le futur régime des eaux sous différents scénarios

d’impacts anthropiques (émission de gaz a effet de serre ou occupation du sol).

Des travaux récents effectués au sein de I'unité de recherche Hydrologie-Hydraulique

d’Irstea ont permis de mettre en place une méthode d’estimation de ces incertitudes, nom-
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Résumé étendu en francgais

mée BaRatin (BAyesian RATINg curve estimation, Le Coz et al., 2014). BaRatin est basé
sur une estimation bayésienne des parametres de la courbe de tarage, prenant en compte
les incertitudes associées a chaque jaugeage, et permettant d’inclure des connaissances a
priori sur les controles hydrauliques de la relation hauteur-débit. Les résultats en sortie

peuvent étre également interprétés en termes hydrauliques pour en vérifier le réalisme.

Une hypothese contraignante sur la transformation d'une chronique de hauteur d’eau
via une courbe de tarage est de supposer que la relation hauteur-débit est univoque et
qu’elle ne change pas au cours du temps, sinon sur I’ensemble de la période d’enregistrement,
du moins par période stable. Le passage d'une période stable a une autre est souvent
supposé étre relatif a un changement brutal, suite par exemple a un changement de
géométrie du lit de la riviere apres une crue ou des travaux sur la riviere. En pratique,
on observe également des phénomenes de détarage continu, avec un éloignement tempo-
raire ou définitif de la relation hauteur-débit a la courbe de tarage en cours de validité.
Ces phénomenes de détarage continu peuvent étre saisonniers (par exemple, la végéta-
tion aquatique, cf. figure 1-c, la couverture de glace, cf. figure 1-d, la rugosité variable),
épisodiques (hystérésis due au régime transitoire, cf. figure 1-g, influence aval variable,
cf. figures 1-e et 1-f), ou progressifs (ajustement suite a un déséquilibre sédimentaire,
cf. figure 1-b). Lorsque la relation hauteur-débit n’est pas univoque, il faut recourir a des
courbes de tarage “complexes”, c’est-a-dire des modeles prenant d’autres variables d’entrée

en plus de la hauteur pour modéliser le débit.

L’objectif principal de la these est de développer et valider des méthodes statistiques
utilisant la connaissance hydraulique pour estimer les courbes de tarage complexes et
quantifier leurs incertitudes. Trois principales sources de non-univocité dans les relations

hauteur-débit sont étudiées dans cette theése :

e I'hystérésis due aux écoulements transitoires. Il s’agit d'un phénomene modifiant de

facon épisodique la relation hauteur-débit pendant les crues ;

e la présence d’un remous variable dans le cas des stations hydrométriques a double

échelle. Ce phénomene affecte continuellement la relation hauteur-débit ;

Mansanarez Valentin X11
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Figure 1 — Représentation de plusieurs courbes de tarage complexes avec leurs effets hy-
drauliques [figure tirée de Herschy, 1995].

e les détarages nets dus aux évolutions soudaines du lit de la riviere. Ces phénomenes
modifient la relation hauteur-débit de facon soudaine et permanente, pendant une

crue morphogene ou une intervention dans le lit.

Les principales questions de recherche sous-jacentes sont les suivantes :

e Eist-il possible de construire un cadre statistique général prenant en compte les
différentes sources possibles de non-univocité ou est-il préférable de developper des
modeles spécifiques a chaque phénomene de non-univocité 7 Un cadre statistique
unifié peut étre plus facile a mettre en ceuvre alors que des modeles spécifiques

peuvent étre plus adaptés aux phénomenes qu’ils décrivent ;

e Eist-il suffisant d’introduire des covariables rendant compte de la dynamique du

phénomene causant la non-univocité ? Et si oui, quelles sont ces covariables 7

X1i1 Mansanarez Valentin
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e Comment prendre en compte la connaissance a priori des processus physiques cau-
sant la non-univocité ? Notamment, quelle information a priori spécifique améliore

I’estimation des courbes de tarage des stations peu jaugées 7

e D’un point de vue opérationnel, comment gere-t-on une station affectée par une re-
lation hauteur-débit non univoque ? Les stratégies de jaugeage habituelles sont-elles
toujours adaptées ou ont-elles besoin d’étre modifiées afin d’améliorer 1’estimation
des courbes de tarage et la détection de la non-univocité dans la relation hauteur-

débit ?

e Eist-ce que les jaugeages anciens doivent étre systématiquement écartés quand une
nouvelle courbe est établie 7 Ou peuvent-ils toujours étre utilisés pour I'estimation

des courbes de tarage et la quantification des incertitudes associées 7
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2. OUTILS HYDRAULIQUES ET STATISTIQUES

2.1. L’analyse hydraulique

Les stations hydrométriques sont de préférence positionnées de fagon a bénéficier d’'une
relation univoque entre la hauteur d’eau h et le débit (). Cette relation est déterminée par
les caractéristiques physiques du chenal, appelées “controles hydrauliques” ou simplement

“controles”. Deux types de controles existent :

e le controle par section. La relation hauteur-débit est déterminée par la géométrie de
la section de la riviere en laquelle ’écoulement passe en régime critique. Ce régime
est matérialisé par une chute d’eau a I’aval de la section et une ligne d’eau quasi-

horizontale a 'amont (cf. figure 2-a) ;

e le controle par chenal. La relation hauteur-débit est gouvernée par la géométrie et la

résistance a ’écoulement du chenal sur I’ensemble du trongon hydraulique homogene

s’étendant a la fois en amont et en aval de la station (cf. figure 2-b).

Figure 2 — Schémas : (a) d’un controle par section (le tirant d’eau y est sous 'inflence de la
chute d’eau); (b) d’un controle par chenal (la ligne rouge représente la position de la
station de jaugeage).

La plupart des controles hydrauliques peuvent étre approchés par une fonction puis-
sance entre le tirant d’eau et le débit. Les formules hydrauliques des controles par section

et des controles par chenal ayant une section rectangulaire large s’expriment en effet sous
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la forme suivante [Degoutte, 2006, WMO No. 1044, 2010, ISO 1100-2:2010, 2010] :

0 sih<bouh<k
Q (h) = (1)

a(h—>b)" sih>beth>k
ou a est un coefficient lié aux propriétés physiques du controle hydraulique, b est 1'offset
du controle hydraulique, ¢ est un exposant lié au type de controle hydraulique et x est
la hauteur d’activation du contrdle (ou hauteur de transition). Les deux hauteurs et
b sont généralement différentes : par exemple dans le cas d'un controle par chenal qui
succede a un controle par section, b correspond a la cote moyenne du fond du chenal alors
que k va correspondre a la hauteur d’ennoiement du controle par section, hauteur qui est

physiquement différente de b.

Dans le cadre d’un controle par section de type seuil rectangulaire, ¢ vaut 3/2 et
a = CBy/2g ou C [—] est un coefficient de débit modélisant les pertes de charge entre la
section de mesure (a 'amont) et la section critique du seuil (a 'aval), B [m] est la largeur

déversante du seuil et g [m.s™?] est accélération de la gravité.

Dans le cadre d’un controle par chenal, 'équation 1 est classiquement établie a partir
de I'équation de Manning-Strickler appliquée a la géométrie du chenal. L’équation de

Manning-Strickler s’écrit :

Q(h) = KsAR*\/S; (2)

oil Kg [m'/?.s71] est la résistance & ’écoulement moyenne du chenal (coefficient de Strick-
ler) , A [m?] est la surface mouillée, R, = A/P [m] est le rayon hydraulique, P [m] est
le périmetre mouillé, Sy [—] est la pente de la ligne d’énergie qui est approchée par la
pente moyenne du lit de la riviere lorsque 1’écoulement est uniforme. Si la section du
chenal est rectangulaire large (h — b < B) alors I’équation 2 peut se ramener a la forme

de I'équation 1 avec ¢ = 5/3 et @ = KgB,/S¢ ou B [m] est la largeur moyenne du chenal.

L’identification de tels controles et leur enchainement dans la relation hauteur-débit
permet de modéliser ’équation de la courbe de tarage. Cette identification permet ainsi
de définir le nombre de controles hydrauliques, leur type (section ou chenal) et leur

ordre d’apparition et de disparition. Elle permet aussi de définir I'information sur la
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configuration hydraulique de chaque controle (géométrie, résistance a ’écoulement par ex-
emple). Cette information est ensuite utilisée comme information a priori dans l'inférence

bayésienne.

Un tel enchalnement de controles est représenté par la matrice des controles M qui
est la clef de voute du modele hauteur-débit (SD) de BaRatin. En effet, I’équation de la

courbe de tarage d’un tel modele peut s’écrire sous la forme générale suivante:

Q(h‘) = ielg (1[Hi—1sﬁi[(h) z_c:l M (Zvj) a; (h o bj)cj) (3>

ou :

e h [m] est la hauteur d’eau ;

e ) [m®.s7' est le débit ;

Nieg est le nombre de segments ;

e M (i, j) est la matrice des controles, valant 1 si le controle est actif, 0 sinon ;

la fonction 1p., ,..,((h) est la fonction indicatrice de I'intervalle [r;_1; x;[, égal & 1 si

h appartient a l'intervalle et 0 sinon ;

a;, b; et c; sont les parametres de 'équation de la courbe de tarage : ce sont

respectivement le coefficient, 1'offset et ’exposant du controle j.

2.2. L’inférence bayésienne

2.2.1. Paramétrage

Le vecteur @ = (Orc, 7y) représente les parametres de I'inférence bayésienne, Orc étant
les parametres de la courbe de tarage et v = (71,72) les parametres du modele d’erreur
structurelle. Celle-ci représente ’erreur d’approximation de la relation hauteur-débit réelle

par 1’équation de la courbe de tarage.
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Les hauteurs de transition x; sont déduites des autres parametres via une relation de
continuité du débit en h = k; entre les segments i et (i + 1). A noter que cette procédure,
mieux adaptée a I'étude des détarages, est différente de celle utilisée dans la version
opérationnelle de BaRatin. Ce sont alors les offsets b; qui sont déduits par continuité et
non les hauteurs de transition x;. Sile (i+ 1)éme controle hydraulique s’ajoute au controle
hydraulique précédent (i), la hauteur de transition x; est égale au parametre b, du
(i + 1)°™ controle. En revanche, si le (i + 1)®° controle hydraulique remplace le i*™°

controle hydraulique, la condition de continuité devient :

a; (ki — ;)" — aiy1 (ki — bip1)"™ =0 (4)

La hauteur de transition x; est alors calculée numériquement en résolvant I’équation 4

avec l'algorithme de Newton-Raphson.

2.2.2. La vraisemblance

Les jaugeages (3@,@1) représentent les estimations (mesures) des N valeurs

€[N
réelles (X, Qi)icpi.ng des doEmé]]es d’entrée X du modele (courbe de tarage complexe)
et du débit (donnée de sortie). Les modeles présentés dans ce manuscrit ont deux don-
nées d’entrée : la premiere donnée d’entrée est toujours la hauteur d’eau a la station de
jaugeage, comme pour les courbes de tarage simples (modele SD) tandis que la seconde
est respectivement pour les modeles SGD, SFD ou SPD : le gradient limnimétrique 8?’
la hauteur d’eau hs a une seconde station ou le numéro de la période. Dans ce manuscrit,
on suppose que les erreurs de mesure des données d’entrée sont négligeables devant les
erreurs de mesure du débit :
X = X;
(5)

~ indép.
Qi =Qi+egi avec eq; ~ N(0,uq,)

ol les écarts-types ug; (incertitudes-types sur les mesures du débit) sont supposés connus.
Des valeurs d’incertitude peuvent étre atribuées aux jaugeages selon la technique de mesure

et la procédure terrain utilisées. Ces valeurs peuvent s’appuyer sur des résultats des
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méthodes de propagation d’incertitude [cf. Despax et al., 2016] et/ou sur des résultats de

comparaison interlaboratoires [cf. Le Coz et al., 2016a].

Le vrai débit s’écrit comme la somme du débit prédit par la courbe de tarage et d’une

erreur structurelle :

. .
Qi = f (X,|Orc) +€: avec €~ N (O,Uf,i =N+ 72@') 6

Qi
ol Orc sont les parametres de la courbe de tarage, o = (041,...,0py) sont les écarts-
types des erreurs structurelles €5 = (€71,...,€5n) €t a = (@1, e ,@N> sont les estima-

tions de débit issues des N jaugeages.

Les écarts-types oy, des erreurs structurelles sont modélisés par une fonction affine
basée sur de nombreuses observations : on observe en effet de plus fortes incertitudes
structurelles pour les forts débits. Les erreurs structurelles (€1, ..., €f,n) et les erreurs de

jaugeages (g1, .- ., €Q,n) sont supposées indépendantes.

En combinant les équations 6 et 5 on obtient la relation suivante :

Qi=f (ﬁz‘ 9RC) teqQit € avec €qi+ €ry N (0’ m) (7)

La fonction de vraisemblance L des débits observés Q prend la forme suivante :

0RC> i/ 0,20,1' + UQQJ (8)

ou @ = (@1, e @N> sont les NV débits jaugés, h = (El, . ,?LN) sont les données d’entrée

N
L (@/‘0 = (GRC77) ) i:") = Hpnorm [@z
=1

f (X

et Pnorm[2|™M, s] est la densité de probabilité d'une distribution gaussienne de moyenne m

et d’écart-type s, évaluée en z.

2.2.3.  Distribution a priori

Les distributions a priori permettent d’utiliser 'information hydraulique dans ’estimation
de la courbe de tarage. Dans ce manuscrit, on suppose les distributions a priori de chaque

parametre indépendantes entre elles. Ainsi, la distribution a prior:i jointe prend la forme
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suivante :
m

p(Orc,Y) =p () p () [ p6:) 9)

i=1

Pour chaque parametre du veteur Ogrc de la courbe de tarage, on utilise des distribu-
tions gaussiennes comme distributions a priori. Pour les parametres d’erreur v, and s,
les distributions a priori sont des distributions uniformes plates (U (0, 106>) : on veut en
effet que ces parametres soient inférés grace aux jaugeages. D’autres types de distributions

sont utilisables, si des informations ou hypotheses le justifient.

2.2.4. Duistribution a posteriori

Le théoreme de Bayes permet de combiner I'information des observations (5(/ , é) (grace
a la vraisemblance) avec I'information a priori. On obtient alors une distribution, dite
a posteriori, de parametres inconnus 6. La fonction de densité de probabilité de cette

distribution a posteriori, notée p (O‘Xv , @, est définie par :

vraisemblance priori
(@0.) 70
0lh.Q
(o) -

Q|0 h)p(6)do
constante de normalisation

(10)

Le numérateur est simplement le produit de la vraisemblance et de la distribution
a priori. Le dénominateur est plus complexe puisqu’il nécessite de calculer I'intégrale de
ce produit par rapport aux parametres 8. Ce dénominateur ne reste toutefois qu’'une
constante de normalisation : ()A(: , Qv) est connu et les parametres @ n’existent plus dans
le dénominateur car ils sont intégrés. Le dénominateur assure donc que l'aire sous de la
fonction de densité de probabilité de la distribution a posteriori est égale a 1. En pratique,
il n’est en général pas nécessaire de calculer cette constante car les algorithmes MCMC
utilisés pour échantillonner la distribution a posteriori ne requierent que la connaissance
de cette distribution a posteriori a une constante pres. Le théoreme de Bayes se simplifie

alors ainsi :

p(@‘ﬁ,@) ocp(éﬂ@,ﬁ)p(@) (11)
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ou le symbole "o<” signifie “est proportionnel a”.

L’équation 11 montre que le calcul de la fonction de densité de probabilité a posteriori
(3 une constante pres) est simple : il s’agit du produit de la vraisemblance et de la
distribution a priori. La distribution a posteriori résultante représente la connaissance des
parametres @ étant données deux sources d’information : les jaugeages et la connaissance

a priori.

2.2.5. Echantillonnage McMC

Une maniere facile d’utiliser en pratique la fonction de densité de probabilité a posteriori
est de simuler de nombreuses réalisations grace aux méthodes de Monte-Carlo par chaines
de Markov (MCMC). Ces échantillons MCMC peuvent étre utilisés pour représenter
graphiquement les distributions a posteriori (par exemple 1'histogramme des échantillons
d’un parametre particulier peut représenter la densité marginale a posteriori). De plus,
ces échantillons peuvent étre propagés pour estimer n’importe quelle grandeur dérivée
des parametres : par exemple, la courbe de tarage en utilisant l’estimateur du maxi-
mum a posteriori (MAP) et les intervalles d’incertitude a différents niveaux de confian-

ce/crédibilié (95% usuellement en hydrométrie, c¢f. HUG, ISO/TS 25377:2007, 2007).
Dans cette these, on utilise un échantillonneur MCMC combiné [Sun, 2013]. Cet algo-

rithme est la combinaison de trois échantillonneurs MCMC :

e la premiere étape utilise un algorithme “one-at-a-time” adaptatif de Metropolis avec
des distributions de saut unidimensionnelles pour estimer la matrice de covariance

des sauts ;

e la seconde étape utilise un algorithme adaptatif de Metropolis pour estimer les fac-

teurs d’échelle de la matrice de covariance ;

e La troiseme et derniere étape utilise 'algorithme classique non adaptatif de Metropo-

lis avec la matrice de covariance estimée pour estimer la distribution cible.
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3. TROIS CAS DE RELATIONS HAUTEUR-DEBIT

NON UNIVOQUES

3.1. L’hystérésis due aux écoulements transitoires

3.1.1. Une relation hauteur-gradient-débit

L’effet d’hystérésis étudié dans cette these est un processus hydraulique associé a un
écoulement transitoire dans un chenal relativement plat. Ce phénomene affecte la relation
hauteur-débit d'une station hydrométrique en la rendant non univoque : a une hauteur
d’eau donnée, le débit en crue est plus fort que celui en décrue (cf. figure 3-b). Ce
phénomene est da au fait que, lors de la propagation d’un écoulement transitoire, la
célérité de 'onde de pression (niveau d’eau) est inférieure a la célérité de 'onde de vitesse,
et donc inférieure a la célérité de ’onde de débit (cf. figure 3-a). Le maximum de débit Q) ax
est atteint avant le maximum de hauteur d’eau h,,.., ce qui entraine une représentation

de la courbe de tarage en forme de boucle (cf. figure 3-b).

"QUmax himax

h, Q et U (échelle arbitraire)

Temps Hauteur h
(a) (b)

Figure 3 — Représentation graphique de 1’hystérésis due aux écoulements transitoires : (a)

courbes temporelles de la vitesse (U), du débit (Q) et de la hauteur d’eau (h) ;
(b) représentation hauteur-débit associée.
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Ne pas prendre en compte 'effet d’hystérésis lorqu’il existe peut entrainer des con-

séquences indésirables :

e des incertitudes plus grandes sur les débits estimés a cause de la dispersion des débits

autour de la courbe de tarage simple (modele hauteur-débit) ;

e une sous-estimation du pic de crue (débit max) ce qui est préjudiciable a ’établisse-
ment des mesures de sécurité. Cela peut potentiellement affecter le dimensionnement

des déversoirs et digues de protection de crue ;

e un décalage temporel dans I’estimation des séries de débit, ce qui peut augmenter

les incertitudes dans la prévision des crues.

3.1.2. Le modéle SGD (Stage-Gradient-Discharge)

La pratique usuelle en hydrométrie pour corriger 'effet d’hystérésis est de considé-
rer la propagation de l'onde de crue dans l'estimation de la pente d’énergie Sy. Le
modele hauteur-gradient-débit (SGD) proposé dans ce manuscrit est basé sur la formule
de Jones [Jones, 1915]. Celle-ci permet l'estimation de cette pente dans la formule de
Manning-Strickler (cf. équation 2) en utilisant le gradient limnimétrique aa? et la célérité
¢ de propagation de I'onde de crue. Ainsi, pour un controle par chenal, le modele SGD
s’écrit :

10h

_ 2/3 10h
Q= KsAR"\[So+ — 5 (12)

ou Sy est la pente longitudinale moyenne du trongon de controle autour de la station.

La célérité ¢ peut étre modélisée soit comme une constante, soit comme une fonction
de la hauteur d’eau h sous hypothese d’onde cinématique (cf. Chow, 1959, Henderson,

1966). Si le chenal est prismatique ou si les berges sont verticales sur la plage de variation

de h, c’est-a-dire si 0A = BOh, on a :

_0Q [ 10Q
“T9A~ B on

avec Qg = K SARi/ 3\/5’0 le débit en régime permanent.
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D’autres modeles SGD ont été testés dans la these : développements d’ordres 2 et 3
proposés par Fenton [1999]. Les résultats ne sont pas meilleurs, voire moins bons qu’avec

le simple modele de 1’équation 12 (formule de Jones, 1915, ou développement d’ordre 1).

3.1.3. Ezemples d’application

Le besoin de prendre en compte I'hystérésis lorsqu’elle existe dans l’estimation de la
courbe de tarage est représenté par la figure 4. L’intervalle d’incertitude totale du modele
SD est jusqu’a plus de quatre fois plus large que celui du modele SGD (figures 4-a et 4-b).
Cela démontre les limites du modele SD pour un tel écoulement transitoire. On peut
aussi remarquer que l'intervalle d’incertitude paramétrique est plus large pour le modele
SD que pour le modele SGD alors que 'information a prior: est la méme pour les deux
modeles. Le décalage temporel des résultats du modele SD et la sous-estimation du pic
de crue n’existent plus lorsque ’on utilise un modele SGD. En effet ce modele représente

bien la dynamique de la crue et la courbe de tarage reproduit la forme de boucle.

Deux stations affectées par I'effet d’hystérésis ont été étudiées : des chasses de barrage
sur UEbre & Ascé en Espagne (figure 4) et une série de crues dans un canal jaugeur équipé
d’un débitmetre continu Dopler. D’autres stations avec ou sans hystérésis ont aussi été
analysées (cf. Annexe A). Ces cas d’étude illustrent 'importance de prendre en compte
I'effet d’hystérésis quand il existe, et le bon comportement du modele lorsque V'effet est

négligeable.

Modéliser la célérité ¢ de propagation de 'onde de crue comme une fonction de la
hauteur d’eau entraine moins d’incertitude dans l’estimation de la courbe de tarage que
importante pour le modele SGD : en son absence, les parametres de la courbe de tarage
présentent de fortes interactions, ce qui peut entrainer des estimations non physiques de
ces parametres malgré de bons résultats graphiques. Ces problemes d’interaction s’évitent
facilement en spécifiant comme a prior: au moins des ordres de grandeurs réalistes des
parametres. En I'absence d’autres détarages, le modele SGD peut étre calé sur un unique
évenement pour ensuite estimer les courbes de tarage d’autres évenements. Ce calage

peut aussi s’effectuer sur différents évenements de crue.
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Modéle hauteur-débit (SD) :

Courbe de tarage maximum a posteriori ( b)

Incertitude totale : intervalle a 95% associé au modéle SD

Incertitude paramétrique : intervalle & 95% associé au modele SD
Modele hauteur-gradient-débit (SGD), formule de Jones et célérité variable :

mmm Courbe de tarage maximum a posteriori
Incertitude totale : intervalle a 95% associé au modéle SGD
Incertitude paramétrique : intervalle & 95% associé au modele SGD

+ Jaugeages avec intervalles a 95%

(@)

1000-

1000+

500+

Débit Q [m3.s7"]

; 3 y )
Hauteur h [m]
500-

Débit Q [m3.s71]

20/06/20l12 12:00 21/06/20|12 12:00
Temps t

Figure 4 — L’Ebre & Ascé en Espagne, crue de juin 2012, comparaison entre le modeéle hauteur-
débit (SD) et le modele hauteur-gradient-débit (SGD) utilisant la formule de Jones
avec la célérité ¢ de propagation de 'onde de crue modélisée comme fonction de la
hauteur d’eau h : (a) représentation temporelle du débit ; (b) représentation hauteur-
débit.

Une analyse des stratégies de jaugeage a été realisée. La stratégie usuelle consistant a
jauger pendant la décrue juste apres le pic de crue peut amener de plus fortes incertitudes
en crue et une identification biaisée de I'importance de 'effet d’hystérésis. Une meilleure
stratégie est de jauger pres des points remarquables de I’évenement (minimum et maxi-
mum de hauteur, maximum de débit, minimum et maximum de gradient limnimétrique),
et pendant la décrue (pour explorer proprement les gradients négatifs). Ces jaugeages

peuvent étre réalisés sur différents évenements.
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3.2. Le remous variable et les stations hydrométriques a

double échelle

3.2.1. Une relation hauteur-dénivelée-débit

Dans le cas ou la pente de la ligne d’énergie d'un controle par chenal est variable, le
modele hauteur-débit (SD) n’est plus adapté pour I'estimation des débits. Cette variablili-
té est généralement due a une condition limite aval variable (cas typique: confluence,

barrage, lac, marée, etc...) et peut parfois provenir d’écoulements transitoires.

La figure 5 schématise le cas typique d'un controle par chenal en amont d’un barrage
mais peut illustrer n’importe quel autre cas équivalent d’influence aval variable. Suivant
les conditions aux limites amont (débit) et aval (hauteur), I’échelle principale peut étre
sous un régime d’écoulement uniforme (cf. ligne d’eau (1)) ou sous un régime d’écoulement
graduellement varié (cf. ligne d’eau (2)). Il est vraiment important de comprendre que les
deux troncons de controle ne sont pas les mémes : le premier est centré autour de 1’échelle
principale alors que le second est situé entre les deux échelles. Cette différence essentielle
implique que les offsets hy et hy des deux chenaux ne sont pas les mémes. Lorsque la
charge dynamique est négligeable devant la charge statique (V?/2g < h), la pente de la
ligne d’énergie peut étre approchée par la pente de la ligne d’eau calculée par (hy —hy)/L,
en considérant que la distance L est suffisamment courte pour avoir un profil de ligne
d’eau linéaire entre les deux échelles (hypothese de régime d’écoulement graduellement

varié).

3.2.2.  Le modéle SFD (Stage-Fall-Discharge)

Une pratique courante pour corriger un tel effet d’influence aval variable est de calculer
la pente Sy dans la formule de Manning-Strickler en utilisant des relevés de hauteurs h,
et hy a deux échelles disposées le long du trongon de controle. Néanmoins, cette pratique
peut étre raffinée en effectuant une transition vers un controle par chenal non influencé

lorsque la variabilité de la pente n’existe plus pour les débits plus importants. Le modele
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P graduellement A rapidement

uniforme ., .,
varié varié

(A) échelle principale (B) échelle auxiliaire

h; h,

trongon de controle : :
Ligne d'eau (2) : <> <>

trongon de controle

Figure 5 — Modele hauteur-dénivelée-débit : transitions typiques entre un chenal non affecté
par U'influence aval variable (ligne d’eau (1)) et un chenal affecté par I'influence aval
variable (ligne d’eau (2)).

SED s’écrit ainsi, dans le cadre d'un controle non influencé de type chenal :

KsB (hy — ho)" \/(hy — ha — 6,)/L si by < w(hs)  (pente variable)

K¢B' (hy — hg)M/ \/§0 si hy > k(hy) (controle par chenal)
(14)

Q (h17 h?) ==

ol hy est la cote moyenne du fond du chenal autour de la station principale, hg est celle du
controle entre les deux stations, dj, est la différence de nivellement entre les échelles amont
et aval, L la distance entre les deux échelles, et M et M’ sont des exposants liés I’équation
de friction et & la forme de la section du controle. M et M’ sont égaux & 5/3 pour la
formule de Manning-Strickler et un chenal de section rectangulaire large. La hauteur de
transition k (hy) entre les deux controles est calculée numériquement par continuité du
débit avec 'algorithme de Newton-Raphson. D’autres configurations hydrauliques ont
aussi été traitées dans la these comme par exemple lorsque le controle non influencé est
de type section et lorsqu’il n'y a qu’un seul contrdle influencé (de type chenal) et que la

rugosité est variable en fonction de la hauteur d’eau h;.

Le modele est original car il permet la transition d'un controle influencé a un controle

non influencé par une simple continuité sur le débit de transition et car la différence 9,
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de nivellement entre les deux échelles est un parametre du modele (et donc se cale sur les

jaugeages et I'information a priori).

3.2.8. Ezxemples d’application

Le modele SFD a été appliqué a plusieurs stations a double échelle, dont le Rhone
a Valence en France (figure 6). Toutes les courbes de tarage du maximum a posteriori
s’accordent bien avec les jaugeages et possedent de faibles incertitudes : I'incertitude
totale est inférieure & +£10% pour des débits supérieurs & 2000 m®.s™* (cf. figure 6).
La représentation hauteur-débit des figures 6-a et b est caractéristique d’une courbe de
tarage d’une relation hauteur-débit affectées par I'influence aval variable d’un barrage qui
s’efface en crue. En effet, pour des valeurs de hy données, la courbe de tarage augmente

jusqu’a coincider avec celle du chenal non influencé.

9000

9000 8000

7000
8000- 6000 .
5000
h, [m z

7000 2 [ ] 4000
— 3.0 —_
T ¢ h)
IVZ 6000 4 n 300
[sp) ™

2.5

.§.50°° 7 .g.zooo
4 4000 -
o 2.0 e
@ ‘O
Q) 30007 0 1000

2000+ : 1.5

||
1000 500
o

3 4 5 3 4 5
Hauteur hy [m] Hauteur hy [m]

(a) (b)

Jaugeages avec Modéle hauteur-pente-débit (SFD) : Valeurs de h, des courbes MAP :
leurs intervalles a Courbes maximum a posteriori (MAP) e Ny = 1.34 M h, =276 M
95% coloriés par coloriées par valeur de h, avec leurs h, =1.93 M == h, =3.04m
valeur de h, intervalles a 95% (incertitude totale) h,=2.40m

Figure 6 — Le Rhone a Valence en France sous linfluence variable de l'aménagement de
Beauchastel : représentation hauteur-débit du modele hauteur-dénivelée-débit (SFD)
avec le débit en (a) échelle logarithmique et en (b) échelle normale.

La robustesse du modele a été étudiée au travers de I’analyse de sensibilité a I'information
a priori et aux jaugeages. Quand la relation hauteur-dénivelée-débit est bien documentée

par des jaugeages, la performance du nouveau modele est acceptable pour les applica-
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tions hydrométriques. La transition entre les deux controles influencé et non influencé est
en particulier bien estimée, les estimations de débit concordent bien avec les jaugeages
et leurs incertitudes sont tres acceptables comme pour I'exemple du Rhone a Valence.
Lorsque la relation est moins bien documentée, les résultats demeurent acceptables mais
plus incertains (cf. la riviere Guthusbekken a la station 0003-0033 en Norvege). Le cas
d’étude plus complexe du Madeira a la station de Fazenda Vista Alegre au Brésil montre
les limites du modele SFD lorsque la résistance a 1’écoulement varie aussi en fonction de
la hauteur d’eau h; a cause de la présence de dunes de sable au fond du lit de la riviere,
en plus de la pente variable due a I'influence aval variable de I’Amazone. Ce dernier cas
d’étude montre aussi tout I'intérét d’estimer la différence de nivellement d;, dans la courbe
de tarage car ce parametre peut étre mal connu, difficile & mesurer, et alors amener des

incertitudes non négligeables.

La méthode SFD pour l'influence aval variable a fait I’objet d'un article scientifique
[Mansanarez et al., 2016b] et a été opérationnellement déployée par la Compagnie Na-

tionale du Rhone (CNR) sur ses stations a double échelle.

3.3. Les détarages nets dus aux évolutions du lit de la

riviere
3.3.1.  Une relation hauteur-période-débit

Différents types de détarage morphodynamique existent. Les détarages étudiés dans
cette these correspondent aux changements nets dans la relation hauteur-débit suite a une
évolution du lit de la riviere. Ces détarages peuvent affecter a la fois les controles par
chenal et par section. Une modification globale du lit mineur (controle par chenal) va aussi
affecter les controles par section du lit mineur (cf. figure 7), controles qui peuvent étre en
plus modifiés localement (cf. figure 7). Ces notions de changements locaux et globaux sont
prises en compte dans le modele SPD en reparamétrisant I'information a priori fournie
par l'utilisateur. L’information a prior: sur les changements peut aussi différer selon
I'information disponible sur les changements de la station (changement incrémentiel entre

deux périodes successives ou changement cumulé par rapport a une période de référence).
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Avant changement Changement global Changements global et local
100 m*.s”' ;
00 m®s!
10 mis”’
1ms? 10mis!
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Echelle de mesure B B .}Zf‘}f‘)j’_’i{B _________

Figure 7 — Ilustration des changements locaux et globaux dans le lit de la riviere. Le profil en
travers est pris a la station de jaugeage.

3.3.2. Le modéle SPD (Stage-Period-Discharge)

Le modele hauteur-période-débit (SPD) proposé dans cette thése prend en compte a
la fois les changements locaux et globaux et les changements cumulés ou incrémentiels.
Il se base sur une segmentation du temps en périodes “stables” délimitées par les dates
des détarages : on suppose dans ce modele que les dates de détarage sont connues (dates
fournis par 'utilisateur). En plus de I'information demandées par le modele SD, le modele
SPD nécessite I'information sur les parametres de la courbe de tarage susceptibles de

changer entre les périodes (quels parametres et de combien).

Des lors I’équation 3 peut se réécrire de la facon suivante pour la période £ :

QW = (1 o [ S Mgyl (h - b&’“)aj) (15)

i=1 -1 j=1
ou:
e h est la hauteur d’eau;
o Q" est le débit pour la période k ;
® Ny, est le nombre de segments. Cela implique Ny, + 1 hauteurs de transition
Hgk), i € [0, Ngeg], avec /i(()k) = bgk) pour la période £ ;
e M (i,j) est la matrice des controles. Par hypothese, le modele SPD ne prend pas

en compte I'ajout ou la suppression des controles : cette matrice M ne change pas

entre les périodes;
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e la fonction 1 ), (%) est la fonction indicatrice de I'intervalle {’%@1% Iiz(k) {, égal a

=1

1 si h appartient a I'intervalle et 0 sinon ;

k) )

® a;, 95

et ¢; sont les parametres de 1'équation de la courbe de tarage : ce sont

respectivement le coefficient, 1'offset et 'exposant du controle j de la période k.

3.3.3. Ezemples d’application

La figure 8 est la représentation hauteur-débit des résultats de ’application du modele
SPD sur I’Ardeche a la station de Meyras en France. Cette figure représente les courbes
de tarage estimées avec leurs intervalles d’incertitude totale a 95% pour les cinq périodes
stables entre 2001 et 2014, identifiées par les gestionnaires de la station. Les résultats sont
acceptables : les courbes de tarage passent précisément par les jaugeages pour toutes les

périodes stables.
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Figure 8 — L’Ardeche & Meyras en France : représentation hauteur-débit du modele hauteur-
période-débit (SPD) avec le débit en échelle logarithmique.

Contrairement a d’autres méthodes [Jalbert et al., 2011, Morlot et al., 2014], le modele
SPD ne suppose pas que les jaugeages vieillissent avec le temps. Ce modele ne duplique pas
non plus les jaugeages pour pouvoir les utiliser sur plusieurs périodes. Chaque jaugeage
est assigné a la période méme pendant laquelle il a été réalisé sans que son incertitude

de mesure ne change. Ce sont les parametres de la courbe de tarage qui peuvent ne pas
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changer entre les périodes lorsque le changement de parametre n’est pas jugé pertinent
par l'utilisateur. Des lors, les parametres de la courbe de tarage peuvent étre identifiés
méme si la période ou le segment est peu ou pas jaugé des que de 'information sur ces
parametres se retrouve sur une autre période et/ou un autre segment. Le modele SPD

transfere en effet de I'information entre les périodes et entre les controles.

Le modele SPD a montré des résultats acceptables sur des stations bien jaugées su-
jettes au changement d’offset uniquement (I’Ardeche a Meyras en France) en amélio-
rant I'estimation des parametres stables de la courbes de tarage. Les changements entre
parametres sont bien identifiés entre les périodes et entre les controles. Lorsque la sta-
tion dispose de moins de jaugeages en moyenne par période stable (la Wairau a Barnett’s
Bank en Nouvelle-Zélande), les résultats demeurent acceptables mais sont plus incertains.
Les parametres stables sont toujours bien identifiés mais les estimations des parametres
variables sont moins précises. Les estimations des hauteurs de transition sont du coup
aussi plus incertaines mais elles concordent toujours avec la configuration hydraulique de

la station.

Contrairement a la pratique naive qui consisterait a estimer séparément les courbes
de tarage de chaque période stable, le modele SPD montre de meilleurs résultats sur
des stations peu jaugées grace au transfert d’information entre les périodes et entre les

controles.

4. CONCLUSIONS ET PERSPECTIVES

Dans cette these, trois modeles d’estimation de courbes de tarage complexes ont été
proposés. Ces modeles different du modele SD par les données d’entrée et leur paramétri-
sation bien que le cadre bayésien et ’analyse hydraulique restent les mémes. La prise en
compte de I'information a priori permet d’obtenir des résultats d’estimation des courbes
de tarage acceptables méme lorsque les segments sont peu jaugés et /ou lorsque les stations

sont peu documentées.
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D’autres relations hauteur-débit non univoques restent a étudier comme par exemple
les détarages liés a la végétation aquatique ou l'influence du couvert de glace. Certaines
des relations étudiées dans cette these pourrait étre combinées comme les détarages nets et
I’hystéresis. Les modeles d’erreur peuvent faire ’objet d’une étude plus spécifique comme
par exemple les erreurs systématiques sur les jaugeages, sur les mesures de hauteur et dans
le modele d’erreur structurelle. Les modeles développés dans cette these sont rétrospectifs
mais pourraient étre adaptés au temps réel. L’étude de I'impact des incertitudes de la
courbe de tarage sur le calage des modeles hydrologiques apporterait aussi beaucoup a la
compréhension de tels modeles. Malgré un travail de déploiement opérationnel déja com-
mencé, il reste encore un important travail de transfert méthodologique, en premier lieu
I'interfacage des modeles SGD, SFD et SPD dans ’environnement de travail BaRatinAGE,

et leur documentation pour 1'utilisateur.
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1.1. General background

1.1. GENERAL BACKGROUND

In Hydrology, one of the main variables — river discharge — cannot be measured continuously.
Most often, the discharge time series used by hydrologists result from the transformation of con-
tinuous measurements of water level via a stage-discharge relation, called the rating curve [e.g.,
Rantz, 1982a, Schmidt, 2002]. The rating curve must be estimated at each gauging station,
from direct stage-discharge measurements (called gaugings) and some hydraulics considerations
on the stage-discharge relation.

To measure low flows, the main difficulty is due to the geometry of the section. Unless
some specific hydraulic structure has been built, the section is generally unstable and has a low
sensitivity (wide section with low water level): the uncertainty in stage measurement propagates
to discharge and dominates the uncertainty in the estimated discharge. The instability of the
section may be due to morphologic adjustments such as sand deposits, to the seasonal growth
of aquatic vegetation or to river debris. In addition, the discharge measurement at low flows is
also affected by a very large relative uncertainty.

Gaugings during high flows are rare because of operational constraints during flood events.
Moreover, measured discharges are affected by larger uncertainties than during medium flow
conditions, yielding standard errors well above the typical 5-10% obtained during medium flows.
These uncertainties affect the estimation of the rating curve, especially since it is frequently
extrapolated far beyond the gauged domain. Lastly, complex hydraulic phenomena may further
complicate the estimation of flood discharge during some events (overflows, hydraulic hysteresis,
debris blocking, hydraulic vortices, damaged or broken hydraulic structure, etc.).

As a consequence of these difficulties, the uncertainty affecting the discharge estimated with
the rating curve may exceed 100% during very low or very high flows. Moreover, an additional
and poorly understood source of uncertainty is related to the fact that the stage-discharge
relation may drift away from the established rating curve, temporarily or permanently. This
might be caused by various phenomena, notably a change in the geometry of the section after a
flood event, or the seasonal growth of aquatic vegetation. Figure 1.1 taken from Herschy [1995]
illustrates some examples of rating curves drifting away due to a range of hydraulic effects (the

list is not exhaustive):

(a) the permanent (or ‘steady’) rating curve is illustrated for comparison purposes and repre-

sents the stage-discharge relation without any drifting effect;
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(b)

(e-f)

the scour and fill of a sand bed channel. During flood events, a mobile riverbed can be
subject to rating changes depending on the severity of the event. The flood may change
the bottom of the river which creates a shift in the stage-discharge rating curve. This is

a particular example of rating changes due to bed evolution;

rating changes due to aquatic vegetation. The aquatic vegetation in the riverbed can grow
during some parts of the year and can decay during others, according to various factors
such as the climate, the water temperature or the dissolved oxygen in the river. This is a
cyclical rating change which implies that different values of discharges may correspond to

a same stage;

the ice cover at the river surface. This is a complex process governed by two main factors:
the temperature and the size of the river. This effect can be temporary as ice can be
sporadically present in the river. It can also be cyclical: some stations are affected by ice
cover every year, only during winter or permanently when ice no longer melt in warmer

seasons. It affects the average roughness and the cross-sectional geometry of the river.

the variable backwater influence of the station due to unsteady downstream boundary
conditions. It can be caused by the stage fluctuations of a reservoir, a lake, a tidal outlet
(sea, river), or even debris/ice jams or dike break for instance. The variable backwater
influence can occur: (e) at low and medium flows in a channel; (f) after the flooding of a

downstream section control;

the changing discharge during the flood event. Rising limb and falling limb have distinct
discharge values for the same stage. These discharge differences can reach 100% and more

in natural rivers. This phenomenon can result from hysteresis due to transient flow.

Overflow and ponding: for example, when the stage exceeds the riverbank height and the
flow starts transiting through the floodplain. Then, the stage-discharge relation may be

affected by the storage and release of water in the floodplain.

Given the key role of the variable ‘discharge’ in hydrology, quantifying the rating curve

uncertainty is a topic of primary importance. This uncertainty, when ignored, challenges the

validity of any hydrologic study, including flood or low-flow frequency analysis [Lang et al., 2010]

or the calibration of hydrologic models [Moyeed and Clarke, 2005]. Despite this, the estimation of

rating curves and their uncertainties is still based on complex and non-standardised procedures,

where expertise is central but hydraulic analysis and modelling are rarely used.
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Figure 1.1 — Representation of several non-unique rating curves with their hydraulic effects [from
Herschy, 1995].

It is therefore of prime importance to develop robust methods for these tasks, making the
best of existing measurements (gaugings) and hydraulic knowledge, realistically accounting for
operating conditions, and based as much as possible on verifiable physical constraints. The main
objective of this thesis is to develop such a method in the context of non-unique rating curves,

i.e. rating curves that may drift away from the permanent state as illustrated in figure 1.1.
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1.2. STATE OF THE ART

Hydrometric stations are preferably located at sites that ensure a unique (one-to-one) relation
between water depth y and discharge (). This can be achieved in two ways: (i) locating the
station upstream of a control weir which cancels downstream effects; (ii) selecting a long and
homogeneous reach where frictional forces induce a permanent uniform regime. The general

form of the stage-discharge relation for a given hydraulic control is a power equation:
Q= ay (1.1)

where the exponent c¢ is for example equal to 3/2 for a rectangular weir (section control) and
5/3 for a simplified Manning-Strickler relation (wide rectangular channel control).

In practice flows can be much more complex than suggested by this simple power equation.
During floods for instance, hysteresis effects (figure 1.1-g) or singular frictions in the main channel
and the floodplain may affect the flow properties. Moreover actual flows may not be comparable
with the ‘reference flow conditions’ for which the rating curve is valid. This may be due to a
perturbation of the hydraulic control (e.g., backwater effects, figures 1.1-e and 1.1-f) or a change
in the geometry of the section (e.g., siltation or vegetation during low flows, figure 1.1-c, erosion
during floods).

The standard approach is to identify a set of stable periods, each of which is associated with a
unique stage-discharge rating curve. When the reference regime is permanently modified, a new
rating curve replaces the existing one. Temporary modifications of the hydraulic regime (e.g.,
due to vegetation) suggest using time-varying rating curves, but in usual operational practice the
rating curve is preserved and instead, the stage measurement is sometimes artificially corrected.
This operational approach (method CORTH used by the French hydrometric services) allows
correcting the estimated discharge but is problematic when the vegetation is temporary washed
away by a flood, for instance.

In general, rating curve uncertainties are either ignored or estimated based on a purely statis-
tical procedure. Venetis [1970] proposed the first statistical approach to rating curve uncertainty
estimation, based on least-square regression. Dymond and Christian [1982] proposed a method to
account for rating curve uncertainty, stage measurement errors, and the effect of ignoring relevant
physical processes in the rating curve formulation. Herschy [1999], Clarke [1999], Clarke et al.

[2000] combined residual uncertainty with the estimation uncertainty affecting the parameters
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of the rating curve. Petersen-Overleir [2004] proposed a model suitable for heteroscedastic rating
curve residuals, a phenomenon frequently observed and ignored in the previous approaches. The
same author also investigated more complex stage-discharge relations, including piecewise-power
relations [Petersen-Overleir and Reitan, 2005], hysteresis-accounting models [Petersen-Overleir,
2006] and floodplain overflows [Petersen-@verleir, 2008].

These purely statistical approaches do not take advantage of hydraulic knowledge. As a
consequence, they sometimes yield to physically unrealistic results (e.g. exponent ¢ of the power
relation larger than 3 or 4). Hydraulics-based approaches to rating curve estimation [Schmidt,
2002] are still insufficiently used, but are of interest to explicitly account for the underlying
physics governing the flows and to assist the extrapolation of the rating curve for complex
flow conditions where gaugings are often unavailable. Sensitivity analysis of a hydraulic model
is hence a first step to obtain an order of magnitude of possible errors [Di Baldassarre and
Montanari, 2009, Lang et al., 2010, Neppel et al., 2010]. However, translating such orders of
magnitude into a distribution that enables a probabilistic quantification of the rating curve
uncertainty is a challenging and yet unsolved issue.

A third approach is to verify the rating-curve estimated discharges using exogenous infor-
mation. For instance, hydraulic consistency can be checked by verifying that the water level
simulated by a hydraulic model along a stream is consistent with levels observed at some points
of the stream. Hydrologic consistency can also be assessed by comparing the estimated dis-
charges along the river network, or by simple water balance computations (e.g. based on the
runoff coefficient). Such information that is not related to the hydrometric station where the
rating curve is established may further restrict the range of estimated discharges.

Bayesian analysis is an attractive framework for rating curve uncertainty estimation, since
it allows accounting for various sources of errors. Indeed, in addition to any source of uncer-
tainty that can be managed by purely statistical procedures (stage/discharge gauging errors,
estimation errors), the Bayesian framework allows accounting for hydraulic knowledge through
the specification of the prior distributions of the rating curve parameters. Such knowledge can
be expertise or can stem from hydraulic modelling or hydrologic consistency considerations. To
our knowledge, Moyeed and Clarke [2005] published the first Bayesian analysis of a rating curve,
based on a power relation and a Box-Cox transformation. Moreover, the individual uncertainty
of each gauging can be incorporated into the likelihood function (yielding models similar to
that of Petersen-Overleir [2004]). The information content of gaugings (through the likelihood

function) and from hydraulic knowledge (through the priors) can hence be combined into the
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posterior distribution. This distribution quantifies the uncertainty of the stage-discharge rela-
tion, and can easily be processed to obtain uncertainty intervals. Recent work within the HHLY
research unit (Irstea) yielded a Bayesian method unique stage-dischargefor rating curve estima-
tion, named BaRatin (BAyesian RATINg curve estimation, Le Coz et al., 2014). This method
is implemented as an operational software named BaRatinAGE.

In France, the processing of non-unique stage-discharge rating curves remains quite unsat-
isfying to date. From 2000 onward, Electricité de France (EDF, the main French electricity
producer) started using a new approach to define an optimal number of rating curves based
on the reanalysis of past gaugings (Moryciel software). Switching to a new rating curve has to
be justified by significant deviations from the current rating curve, given existing uncertainties.
However, this approach still relies on the assumption of unique stage-discharge relations for each
defined sub-period. Alternative approaches have been proposed for cyclical changes in the rat-
ing curve (e.g. seasonal vegetation growth), by artificially correcting measured stages without
modifying the base rating curve (CORTH method in the BAREME software used by French
hydrometric services). Methodological developments are also in progress at EDF-DTG based on
the variographic approach of Jalbert et al. [2011] and the PhD research by T. Morlot on dynamic
rating curves (Morlot et al. [2014], Morlot [2014]). The Bayesian approaches proposed in this
PhD complement these existing studies by proposing statistical and hydraulic frameworks to
estimate specific non-unique stage-discharge rating curves along with their uncertainties.

In the international research literature, many approaches have been proposed to tackle specific
causes of non-uniqueness in rating curves. These approaches will be thoroughly reviewed in each
specific chapter of this manuscript, and are therefore not detailed in this introduction. Obviously,

the developments made during this PhD build on these previous research works.
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1.3. OBJECTIVES

The overall objective of the thesis is to develop and validate statistical methods using hy-
draulic knowledge to estimate non-unique stage-discharge rating curves and quantify their un-

certainties. Three typical causes of non-uniqueness in stage-discharge relations are investigated:

e the hysteresis due to transient flow, which is an episodic change of the stage-discharge

relation during floods;

e the influence of variable backwater due to unsteady downstream boundary conditions,
which affect continuously the stage-discharge relation. Indeed, when a control is backwater-

affected, variability in the stage-discharge rating curve is observed;

e ‘net’ rating changes due to bed evolution which is a sudden and permanent change of the

stage-discharge relation.

The thesis primarily focuses on stage-discharge relations established at hydrometric stations
affected by such effects.

The main research questions underlying this PhD work are the following:

e Is it possible to derive a unique statistical framework to account for the various possible
causes of non-uniqueness, or is it preferable to develop case-specific models? A unique
statistical model could be easier to implement whereas a case-specific model may be more

adapted for the related effect as it underlines the physical process of the tackled effect;

e Is it possible and sufficient to introduce covariates reflecting the dynamics of the processes

causing the non-uniqueness of the relation?

e How to include prior knowledge on the physical processes causing the non-uniqueness? In
particular, what type of prior information can be specified to improve the rating curves

at poorly-gauged stations?

e In an operational perspective, how should a station affected by a non-unique stage-
discharge relation be managed? Are traditional gauging strategies still valid or do they
need to be changed to enhance the rating curve uncertainty assessment and the detection

of non-uniqueness in the stage-discharge relation?
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e Should the old gaugings be systematically discarded when a new curve is established? Can
these gaugings still be used for rating curve assessment and uncertainty quantification?

How to account for the ‘age’ of gaugings ?

Mansanarez Valentin 10 / 246



1.4. Outline

1.4. OUTLINE

This thesis presents the study of three types of non-unique stage-discharge relations: the
hysteresis due to transient flow, the variable backwater due to unsteady downstream conditions
and net rating changes due to bed evolution. The same methodology is used across all chapters:
a specific hydraulically-based model is proposed, and the Bayesian framework used to estimate
its parameters is derived. Each model is then applied to two or more hydrometric stations and
sensitivity analyses are performed to evaluate the proposed model.

The three models developed in this thesis differ by their inputs and by the rating curve equa-
tion itself, but they rely on the same methodology: the analysis of the controls for formulating
the rating curve and specifying prior information on its parameters, the rating curve assess-
ment itself using Bayesian inference and MCMC sampling, and the validation of posterior rating
curve results by comparing rating curve and uncertainties with observations, and by verifying
that rating curve parameter estimates are physically consistent or meaningful.

This PhD dissertation is composed of 6 chapters. It is organised as follows:

e chapter 2 introduces the hydraulic and statistical principles used in the whole PhD manuscript.
Some specific vocabulary is first established. A short review of the hydraulic assumptions
and notions related to rating curve is then included. Gauging uncertainties are briefly
mentioned to introduce the overall statistical framework: the Bayesian inference and the
MCMC sampling. An example of the application of a unique stage-discharge rating curve

model is presented for the Ardeche River at the hydrometric station of Meyras, France;

e chapter 3 deals with the hysteresis effect due to transient flow. Stage-gradient-discharge
(SGD) models using various hydraulic formulas along with stage and stage gradient mea-
surements as inputs are compared. Typical gauging strategies for hysteretic flood events
are also compared. Two stations are studied: two dam flushes in the Ebro River at Ascd,

Spain, and a gauging flume ‘A1’ near Plymouth, USA;

e chapter 4 analyses stage-fall-discharge (SFD) rating curves at twin-gauge stations affected
by variable backwater due to unsteady downstream conditions. This chapter corresponds
to a paper from Mansanarez et al. [2016b] to be published soon in Water Resources Re-
search. The proposed SFD model uses the stage records at two gauges for the computation
of the energy slope. The Rhone River at Valence, France, and the Guthusbekken stream

at station 0003-0033, Norway, are studied. A challenging case is also studied: the Madeira

11 / 246 Mansanarez Valentin



Chapter 1. Introduction

River at Fazenda-Vista-Alegre, Brazil, for which the variable backwater influence of the
Amazon River is combined with variable roughness due to the presence of sand dunes in

the riverbed;

e chapter 5 presents a stage-period-discharge (SPD) model for treating net rating changes
due to bed evolution. Stable periods between successive changes are assumed to be known
which allows computing stage-discharge rating curves for each period. Information on the
parameters and their changes is transferred between periods and between controls, e.g.,
when section controls can be affected by global bed changes which also affect channel
controls. The Ardeche River at Meyras, France, and the Wairau River at Barnett’s Bank,

New Zealand, provide study cases to investigate the SPD model;

e chapter 6 ends the main document with a conclusion on this PhD work and perspectives

of future research.
Two annexes are added to the main document:

e the study of the hysteresis effect at two additional stations: the Ohio River at Wheeling,
USA, and the Ardeche River at Sauze, France;

e the derivation of specific formulas needed for the SPD model.
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2.1. Vocabulary and conventional notations

2.1. VOCABULARY AND CONVENTIONAL

NOTATIONS

This section is devoted to the establishment of the general vocabulary used in the manuscript.
This vocabulary is inspired from Rantz [1982a,b], ISO/TS 25377:2007 [2007], WMO No. 1044
[2010], ISO 772:2011 [2011], and WMO No. 385 [2012].

The stage-discharge relation refers to the physical relation between the water level (stage)
and the streamflow (discharge) at a given cross-section of a river. A stage-discharge (SD) relation
is called ‘unique’ or ‘steady’ when the variable ‘stage’ is sufficient to determine the discharge.
Conversely, as soon as other variables in addition to the stage are needed to determine the
discharge, the stage-discharge relation is qualified as non-unique.

A rating curve is a p-parameterised (61, . . ., 6,) function which estimates a variable @ (called
‘output’ or ‘response variable’) from measurable variables X1, ..., X, (called ‘input variables’
or ‘forcings’). Typically, @ represents the discharge and X; represents the stage. The rating
curve is the model which allows estimating discharge time series (hydrographs) when the inputs

variables are continuously measured (e.g., stage records for the water level).
Q=/f(X1,....Xnl01,...,6p)

A rating curve is said ‘assumed’ or ‘hypothesized’ when parameters 61, ..., 0, are unknown.
As soon as one or several measures of the input/output variables allow estimating these param-
eters, the rating curve is ‘estimated’. 9A1, . ,9; denote the estimations of these parameters.

A rating curve is called ‘simple’ when the stage is sufficient to determine the discharge.
Conversely, it is called ‘complex’ as soon as other variables in addition to the stage are needed
to determine the discharge.

In Hydrology, the rating curve refers to the function which approximates the stage-discharge
relation. The estimated rating curve is graphically represented by plotting the discharge @
(in ordinate) against the stage (in abscissa). In case of a non-unique stage-discharge relation,
this representation is the projection of the discharge on the stage variable. Therefore, it may
graphically not correspond to a function, since one abscissa can be associated with several

ordinates.
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In other fields related to Hydrology, other rating curves can be found, such as turbidity-
concentration rating curves which represents the concentration of suspended material in function
of the turbidity at a turbidimetric station, or more generally environmental sensor rating curves.
Also, sedimentary rating curves are used to model the suspended material concentration as a
power function of the discharge.

A stream gauging or gauging is a one-off simultaneous measurement of all the inputs and
the output of the assumed rating curve. These measurement are made in order to estimate the
rating curve. A gauging is not just a discharge measurement, but must also include a gauge
reading of the stage, and a measure of all other input variables e.g., the stage gradient, the stage
at auxiliary station, the slope, the index velocity, etc. A discharge measurement which is not
used to calibrate a rating curve is not a gauging (e.g., a continuous flowmeter) but can become
one if it is used for that purpose. Therefore, a surface velocity measurement or a discharge
estimate from a post event survey can become gaugings. Gaugings are frequently based on
average values from several discharge measurements in order to reduce their uncertainties (e.g.,
ADCP measurements).

A control relates to the physical properties of a natural or artificial channel which determine
the stage-discharge relation at a given location in the channel [WMO No. 385, 2012]. It can be
linked to:

e A control is said to be a section control when the stage-discharge relation is determined

by a cross-section located downstream of the gauge where the flow is critical;

e A control is said to be a channel control when the stage-discharge relation is determined

by friction head losses along a reach extending downstream and upstream of the gauge.

Classification of non-unique stage-discharge relations: A non-unique relation can be
physically linked with flow conditions modifying either the energy slope, or the roughness, or the
cross-sectional geometry. Table 2.1 indicates which variable of the Manning-Strickler relation

Q=K sV JA Ri/ % is influenced by the physcial process in case of a channel control.
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Strickler Cross- Ener
Physical Ky sectional &Y
slope General comment
phenomenon (rough- geometry 7
ness) Ry and A
Hysteresis due i i o Temporary phenomenon during flood
to transient flow wave propagation
Variable
backwater . o
) Downstream influence modifying the
influence (sea, - - enerey slone
river, hydraulic gy 0P
structure)
Wind-related E).ctern‘al influence on ‘Fhe flow:
- - X direction of the wind impacts
shear stress .
discharges
Log jams or ice i i o External influence for ice jams or
jams influence due to a flow for log jams
Changes on offset or on discharge
Ratine chanoe coefficient due to a scour and a fill of
due gto be dg (possibly) " the reach with modification of the
ovolution P Y width of the river. The roughness of
the bottom of the riverbed may also
possibly change
Rating change Cyclical phenomenon linked to the
due to X % i climate and the type of vegetation
vegetation M &
Ice cover X X - -

Table 2.1 — Classification of various physical phenomenon for channel control with non-unique
stage-discharge relation.
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2.2. HYDRAULICS FOR RATING CURVES

2.2.1. Hydraulic controls

In the river section where the hydrometric station is located, the relation between the water
depth and the discharge is determined by the physical characteristics of the channel called
‘hydraulic controls’ or ‘controls’. A more detail definition is given in section 2.1.

Two types of control exist:

1) The section control for which the stage-discharge relation is determined almost solely by
the geometry of the controlling cross-section, where the flow becomes critical, which is
materialised by a fall and an almost horizontal water line upstream (see figure 2.1-a). A
rectangular weir or sill, a triangular weir and a pressurised orifice are some typical example

of section controls;

2) The channel control for which the flow is assumed to be uniform. No fall will control the
water level y. It is then governed by the geometry and the flow resistance (or roughness) of
the channel over the entire homogeneous section (called controlling reach) which extends
not only downstream, but also upstream of the gauge (see figure 2.1-b). The main channel,

floodways and the floodplain are typical examples of channel controls.

(a)

Figure 2.1 — Diagrams of: (a) a section control (water depth y is under the influence of the fall);
(b) a channel control (the red line represents the gauge site).

Standard controls are specific hydraulic controls which have been extensively studied and
for which there are stage-discharge formulas [Degoutte, 2006, WMO No. 1044, 2010]. The
rectangular weir and the wide rectangular channel control are the two most commonly used

standard controls.
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For most standard controls used in the rating curves, the stage-discharge relation can be
described by a power function which is active above a given stage. In particular, hydraulics
formulas for section controls and for channel controls with wide rectangular cross-section can be

expressed as follows [Degoutte, 2006, WMO No. 1044, 2010, ISO 1100-2:2010, 2010]:

0 ifh<borh<sk
Q(h) = (2.1)
a(h—>5)° ifh>band h >k

where @ is the discharge, h is the stage, x is the activation stage (or ‘transition’ stage) below
which the control becomes inactive, a is a coefficient related to the properties of the controlling
section or channel, b is the offset (sometimes written hg) below which the flow becomes zero,
and c is an exponent related to the type of hydraulic control and the cross-sectional shape of
the control for channel controls [e.g., Le Coz et al., 2014]. The water depth y is equal to h — b.
Note that the offset is generally different from the activation stage k. For example, for a
channel control that follows a weir control, the parameter b represents the average elevation of
the bottom of the bed, but the control will only be active for a water level above which the weir

is flooded, which is physically different from b.
For section controls, i.e. when the stage-discharge relation is determined by a cross-section
where the flow is critical, equation (2.1) is established from the critical flow condition (when the

Froude number is equal to 1). It gives the following relation:

Q (h) = CA/gDy (2.2)

where C' [—] is a discharge coefficient accounting for the head losses between the measurement
cross-section (upstream) and the critical cross-section (downstream), A [m?] is the wetted area,
g [m.s72] is the gravity acceleration, Dy = A/B [m] is the hydraulic depth and B [m] is the
width of the section control.

Using equation (2.2), the stage-discharge equation of a rectangular weir is given by:

Q(h) = CBv/2g (h —b)*? (2.3)

For channel controls, i.e. when the stage-discharge relation is determined by friction, equa-

tion (2.1) is established from the Manning-Strickler equation applied to the given geometry of
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Figure 2.2 — Rectangular weir: longitudinal view (left) and front view of control cross-section
(right).

the channel. The Manning-Strickler equation is:

Q(h) = KsAR)®\[s; (24)

where Kg [m'/3.s71] is the flow resistance coefficient, A [m?) is the wetted area, R, = A/P [m]
is the hydraulic radius, P [m] is the wetted perimeter, Sy is the is head line slope (or friction
slope), approximated by the longitudinal slope Sy of the bed or of the water profile for steady
uniform flows. This last variable is sometimes expressed as a percentage: in this manuscript we
will express any slope as a ratio in the international units: [—] or [m.m™].

Using equation (2.4), the stage-discharge equation of a wide rectangular channel is given by:

Q (h) = KsB\/Sp (h — b)™/* (2.5)
] 5
L i‘ ’i h
I | B 1 b
S

Figure 2.3 — Wide rectangular channel: longitudinal view (left) and cross-section at the staff
gauge (right).
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For both section and channel controls, similar formulas can be derived for other geometries
of the controlling section and the channel (e.g. triangle, trapeze, parabola, see e.g., Degoutte

[2006], Le Coz et al. [2014] and section 3.2.3).

2.2.2. Hydraulic analysis

In a hydraulic analysis at a hydrometric station, identification of controls allows the mod-
elling of the rating curve equation. Each control has to be classified as either a section control or
a channel control. This identification is part of the expertise of the station and is of particular
importance as it determine the rating curve equation and provides information on the hydraulic
configuration, which can be used to introduce prior knowledge, as will be described in sec-
tion 2.4.1.3. Moreover it can also help detecting hydraulic effects which can cause non-unique
stage-discharge relations. Each identified control should be compared to a standard control,
or broken down into a combination of standard controls, according to a compound channel (or
‘divided channel’) approach. Note that the assimilation of a real control to a standard control
is obviously an approximation. Nevertheless, the practice shows that it is often acceptable, in
the sense that it properly matches the gaugings while maintaining a physical meaning.

When discharge and stage increase, active controls may follow on another or be added to

each other, as shown by the simple but typical example in figure 2.4.

L}

\ 100mis
L]

L]

\ 10 m3/s ,

100 L/s

i
r

Figure 2.4 — Simplified illustration of controls at a typical gauging station: right, longitudinal
profile of the bottom and water lines for different discharge values; left, water levels
are shown at the cross-section of the staff gauge.

The hydraulic analysis usually begins with the study of lower flows and gradually extends
to increasingly higher flows. To find out if an element of the site is a hydraulic control, it is

helpful to imagine the effect on the water level of a significant change to this element (e.g., bed
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scour or aggradation, widening or narrowing of the section, changing the width of a riffle, the
bed roughness, etc.). If the water level would likely be influenced by the supposed change, then
the studied site element is a hydraulic control or at least one of its components. For example,

the hydraulic analysis at the dummy station in figure 2.4 is the following:
e for very low flows:

— the water level is controlled by a small natural riffle;
— this control can be approximated with a rectangular weir control;
e for low flows:
— the first smaller riffle is flooded. The water level is then visibly controlled by a second

natural riffle further downstream and displaying a greater fall.

— the second control can be approximated with a rectangular weir control.
e for moderate to high flows, before overbank flows:

— this second riffle is in turn flooded and there is no longer any fall controlling the

water level. The water level is then controlled by the main river channel.

— this control can be approximated with a standard uniform channel control, with a

wide rectangular cross-section.
e for high flow rates, beyond overbank flow:

— when the overbank flow occurs, a control by the floodplain is added to the main
channel control. The water level is then under the simultaneous and added influence

of both controls. The hydraulic interaction between the two flows is ignored.

— the floodplain control is still treated as a standard uniform channel control, with a

wide rectangular cross-section.

Note that although optional for a BaRatin analysis, hydraulic modelling can be useful for
the hydraulic analysis: it helps identifying the sequence of controls, including their range of
influence relative to stage and their association within complex channels. It can provide estimates
of the riverbed slope. Note however gaugings should not be used in the hydraulic modelling

(see section 2.4.1.4).
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2.2.3. Equivalent geometry

Downstream and near the hydrometric station, the water flows through one or more controls.
In a hydraulic analysis, we seek to ensure that we adequately addressed all the water ‘paths’, so
as to not miss any control. The objective is to combine simple geometries of standard controls
to best represent the possibly complex geometry of real controls.

To represent a real channel control, we typically combine as many rectangular channel stan-
dard controls as needed to represent the actual geometry. Figure 2.5 shows how the uneven
riverbed is represented by an equivalent rectangular channel width B, and how the floodplain is
represented by an equivalent rectangular channel width B’. Keep in mind that the vertical and
horizontal scales of graphics are generally very distorted. Controls are often very flat, therefore
neglecting the vertical edges in the calculation of the wetted perimeter is acceptable. The verti-
cal water boundary between the two channels is especially very small compared to the horizontal

extent of the riverbed.

Figure 2.5 — Approximation of the main channel and the floodplain by equivalent rectangular
channels.

Figure 2.6 shows the representative cross-section of a site where at very low discharge, the
flow is concentrated in a kind of ‘notch’ which is the first control. This can be modelled by a
rectangular weir standard control of width B’. For a slightly higher discharge, the flow takes
the full width of the riverbed. For the second segment of the rating curve, the situation will be
modelled using a single rectangular weir standard control of width B whose geometry encom-
passes that of the notch. For this segment, the first control is no longer considered active since

it is integrated in the second control.
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h

Figure 2.6 — Approximation of two successive riffles by equivalent rectangular weirs.

2.2.4. The matrix of controls M

The hydraulic analysis can therefore be summarised as a matrix of controls. It comes in the

form presented in figure 2.7.

Control 1 Control 2 Control 3 Control 4

\ Segment 1

cone [
S
[ oo

(a) (b)

Figure 2.7 — Matrix of controls for the fictitious station presented in figure 2.4: (a) actual matrix;
(b) representation in the BaRatinAGE software.

A a0
- O O O

oo -—-
oo —~0

Segments are stage segments for which the number of controls affecting the water level does
not change. For example if from a certain stage, a new control becomes active, then the previous
segment ends and a new segment begins. There are therefore as many segments as identified
controls. The segments are numbered in increasing stage. Thus segment #1, and therefore
control #1 always correspond to the lowest considered flows. On the row of a stage segment,
a value of 1 (green cell) means that the corresponding control affects the stage of the segment.

On the same row / segment, several controls can influence the water level.
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When a control is no longer active on a segment, it will no longer be active on a later segment.
For instance, a weir flooded at a given stage cannot be unflooded at a greater stage. Getting
back to the example of the fictitious station (figure 2.4) presented in section 2.2.2, we counted

four controls, so 4 segments of stage:
e Segment #1: First natural riffle - rectangular weir (control #1)
e Segment #2: Second natural riffle - rectangular weir (control #2)
e Segment #3: Main channel (control #3)
e Segment #4: Main channel (control #3) + Floodplain (Control #4)

The matrix of control is of primary importance in the understanding of the SD model of
this chapter. Indeed, accounting just for this matrix, the stage-discharge rating curve takes the

following general form for any matrix M, and hence at any steady station:

Nseg Nc
Q(h) - Z 1[Ni,1;ni[(h) Z M (7".7) a; (h - bj)Cj (26)
i=1 j=1

where:
e h is the stage;
e () is the discharge;
e Ngeg is the number of segments;
e M (i,j) is the matrix of controls, taking 1 if the control is active, 0 otherwise;

e the function 1j,,_ .., ((h) is the indicator function of the interval [k;_1; ;[ equal to 1 if h

belongs to this interval and 0 otherwise. It gives the range of stage of the segment ¢;

e a;, bj and c¢; are the parameters of the rating curve equation. a; is the coefficient related
to the properties of the control j, b; is the offset and ¢; is the exponent related to the type

of control.

With some practice, identifying the controls of a hydrometric station is not difficult. This does
not require extensive expertise in hydraulics but mostly common sense in observing the essential
elements on the site and the flows for various discharges. It is obviously always useful to collect

the knowledge of field hydrologists that operated the station and all of the station’s record. We
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stress that normally gaugings should not be used for hydraulic analysis (see section 2.4.1.4).
However, if some gaugings are still considered essential to this analysis, they must be removed
from the set of gaugings used for the rating curve calibration. Valuable information on the
nature, geometry and operation of controls can generally be deduced from photos of the flows,
topographic maps, GIS such as Google Earth or national GIS portals, surveys of cross-sections
and bridges, an last but not least. .. field visits! The following diagram summarises the steps of

such hydraulic analysis:

4>{ Control identification k fffffffffffffffff Expertise, photos
f v \
\\ Which standard control? k fffffffffffffffffff Expertise, identification tree
) v . Topography, expertise,
\\ Activation stage? k fffffffffffffffff photos known stage,
‘ ; ” hydraulic modelling
Are previous controls L ,
still active? ‘< Expertise, photos

v

Matrix of control
update

Yes Next No
control?

» Prior specification

Figure 2.8 — General diagram of a hydraulic analysis.
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2.3. GAUGING UNCERTAINTIES

2.3.1. Uncertain gaugings as calibration data

For estimating a rating curve through a Bayesian analysis, a set of gaugings representative
of the stage-discharge relation (or other non-unique relations) is needed. The validity of these
gaugings must be checked (quality assurance) beforehand in order to avoid outliers, to ensure
the continuity of their stage with respect to the staff gauge of the station, and to control and

document measurement errors. It is especially important to consider:
e the measurement technique and gauging procedure;

e the date and hydraulic conditions at the time of the measurement, including: vegetation,

flood, rating changes, etc.;

e the datum of the gauged stage, particularly when the staff gauge of reference has undergone

changes or displacement, or if multiple staff gauges were used simultaneously;
e other relevant measurements if needed in the rating curve model.

All Bayesian analyses of this manuscript allow consideration of uncertainties on the gauged
discharges that are potentially different for each measurement. It is an interesting advantage
when using more uncertain gaugings (e.g. surface velocity gaugings, historic gaugings that are
poorly documented) or discharge estimates (e.g. post-flood survey and slope-area method) in
stage ranges with few or no gaugings, because their contribution is weighted by their information
content. It is important to specify realistic gauging uncertainty values, neither overestimated
nor underestimated, as they impact both the fit of the curve and the width of its uncertainty
envelope.

A (strong) assumption of these Bayesian analyses is that the measurement errors are indepen-
dent between gaugings to another gauging. This assumption is clearly violated if some gaugings
are performed under repeatability conditions, typically with the same instrument at the same
place on the same day in the same hydraulic conditions, etc. This may be the case when the
gauging teams decide to gauge, performing many gaugings the day under these typical repeata-
bility conditions. This can lead to an underestimation of the uncertainty of the rating curve. We
must therefore avoid including repeated gaugings (e.g. successive ADCP gaugings of a constant

discharge at constant water level), but either sub-sample them or average them together. Indeed,
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these repeated gaugings can be also smartly averaged, accordingly to standard [HUG, ISO/TS
25377:2007, 2007], to reduce their discharge uncertainty.

2.3.2. Uncertainties of gauged discharges

Uncertainty of the gauged discharge can be estimated from the available information on dis-
charge measurements or calculated by methods of propagation of uncertainty. For velocity-area
gaugings, uncertainty calculations can be done with the methods of ISO 748:2007 [2007], ISO
1088:2007 [2007] standards, or alternative methods: IVE (USGS), Q+ (French national hydro-
logical services) or FLAURE (Electricité De France, EDF) methods. All of these methods have
limitations [e.g., Despax et al., 2016]. According to the technique used and the measurement
conditions, the individual gauging uncertainty can be evaluated simply by means of simplified
calculations. Inter-laboratory comparisons are also used to determine empirically the uncertainty
of gauging technologies deployed in the measurement conditions of the experiments [e.g., Le Coz
et al., 2016a]. This uncertainty is typically taken to be £7% for streamflows gauged using a
current meter with at least a dozen verticals correctly sampling the flow field, and +5% for a
gauging by ADCP achieved in good conditions (£10% in bad conditions). When uncertainties
on discharges measurement are unknown by the practitioner, table 2.2 provides typical discharge
uncertainty values (expanded to 95% level) for the main gauging techniques. These typical un-
certainty values are provided only as examples. Uncertainty analysis of discharge measurements
in each case, at least by categories, is highly recommended.

Uncertainties of gauged stages or other inputs are considered negligible compared to discharge

uncertainties, and are hence neglected in this manuscript.

Velocity-area methods

Tracer Hydraulic
Conditions  Volumetry Radar,
ADCP  Current meter Floats dilution formulas
LSPIV
Optimal +5% +5% +7% +10% +10% +3% +5%
Poor +10% +10% +15% +50% +20% +10% +40%

Table 2.2 — Typical discharge uncertainty values (expanded to 95% level) for the main gauging
techniques.
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2.4. STATISTICS

2.4.1. Bayesian inference

2.4.1.1.  Parameterisation

Let @ = (Orc,~y) denote the inferred parameters where parameters Ogrc are the m param-
eters of the SD rating curve parameters and parameters v = (v1,72) are the parameters of
the structural error model (described in the following section). Parameter Ogrc correspond to
hydraulic parameters a, b and c.

Transition stages k; in equation (2.6) can be deduced from other parameters using a discharge
continuity condition for h = k; between the i-th control and the (i+1)-th control. If the (i+1)-th
control adds to the i-th control, the transition stage k; is equal to the offset b; of the (i + 1)-th
control. Conversely, if the (7 + 1)-th control replaces the i-th control, the discharge continuity
condition leads to:

a (KZ' — bi)ci — Ai+1 (Hi — bi+1)ci+1 =0. (2.7)

The Newton-Raphson algorithm is used to solve numerically equation (2.7) and find the
transition stage ;.

In the associated operational software BaRatinAGE, and contrarily what is done in this
manuscript: the transition stages are inferred and the offsets are deduced by continuity. We
adopt a different convention because it turns out to be more convenient for the models developed

in this thesis as will be explained in the following chapters.

2.4.1.2. Likelihood computation

Gaugings (E“ @i)ie[[l;Nﬂ

stages and associated discharges. In this manuscript, we further assume that stage errors are

are seen as the N estimates of the N real values (hi, Qi);cpi;ny of

negligible compared to discharge errors:

h; = h;
ind (2.8)
~ . indep.
Qi=Qi+eqi with eg; ~ N(0,ug,;)
where the discharge errors €g = (eQ.1,...,€Q,n) are assumed independent (indep.) and the

standard deviations ug; (uncertainties of discharge measurements) are assumed to be known.
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Depending on their measurement technique and field procedure, uncertainty values can be as-
signed to gaugings based on the typical results of available propagation methods [e.g., Despax
et al., 2016] and in-situ intercomparisons [e.g., Le Coz et al., 2016a] (see table 2.2).

The true discharge is then written as the discharge predicted by the rating curve plus a

structural error:

. indep. —_
Qi = f (hil@rc) ‘s with e ~TN (O,Uf,z‘ =M+ 'YQQi)
—_————

(2.9)

Qs
where Orc are the rating curve parameters, €y = (€f1,...,€¢n) are the structural errors,
(0f1,--.,07n) are the standard deviations of the structural errors (ef1,...,€esn) and Q =

(@1, e @N> are the discharge estimations related to the N gaugings (see section 2.4.1).

The linear function used for modelling the standard deviation oy ; is based on repeat prac-
tise: indeed, we often observe higher structural uncertainty for higher flows, which can be re-
produced by this linearly-varying standard deviation. We also assume that the structural errors
(€f1,--.,€¢n) and the discharge errors (eg 1,...,€q,n) are independent.

Combining equations (2.8) and (2.9) yields the following stage-discharge relation between

observed values:

Qi=f (le‘

ORC) +egi+eri with egi+epi~N (0, ,/0]2% + uéﬂ) (2.10)

The likelihood L of observed discharge values @:

f (P

Orc) /0%, +ud,| (2.11)

where Q = (@1, e ,@N> are the NV gauged discharge, h = (ﬁl, . ,ﬁN> are the NN observed

L (Q‘e = (ORC77) 75) = ﬁpnorm {@z
=1

stage values and pporm[2|m, s] denote the probability density function (pdf) of a Gaussian dis-

tribution with mean m and standard deviation s, evaluated at some value z.

2.4.1.3. Prior specification

Bayesian inference does not only use the information brought by the data, but allows in-
cluding any knowledge on @ that would be available even before acquiring the data. This prior
information is encoded as a distribution, whose pdf is noted p (). As suggested by this notation,

the prior distribution does not depend on the calibration data . It is actually a golden rule: a

Mansanarez Valentin 30 / 246



2.4. Statistics

data should never be used to specify the prior distribution, unless this observation is removed
from the dataset used in the likelihood computation. Moreover, although using the calibration
data to specify the prior distribution is strictly forbidden, it is not forbidden to use other data,
such as the bathymetry realised during an ADCP measurement (not related to the flow condition
but to the hydraulic configuration of the river).

The prior distribution offers the opportunity to include hydraulic knowledge. In this manuscript,
we use independent prior distributions for each inferred parameter, leading to the joint prior dis-

tribution:
m

p(Orc,v) =p(m)p () [[p(6) (2.12)
=1

In this thesis, for each hydraulic parameter, we use Gaussian prior distributions. Prior
distributions of error parameters v; and 7, are flat uniform distributions (U (O, 106>) as we
want these parameters to be inferred from the gaugings.

For each control modelled as a rectangular weir, priors must be assigned from hydraulic

analysis of the station for the following parameters (see equation (2.3)):
e b [m] is the weir crest elevation;

e B [m] is the spillway width, i.e. the transverse length of the weir, normal to the flow

direction;

Default priors can be specified for the other parameters but remain to be verified with the

available knowledge at the station:

e (' is set by default to 0.4 4+ 0.1 [Le Coz et al., 2011]. This prior can be criticized as the
value is sometimes lower than 0.4 due to the degradation of the weir for example. In this

manuscript, unless explicitly mentioned otherwise we use this specific prior;
e g is set by default to 9.81 m.s~2 + 0.01 m.s~%;
e cis set by default to 1.5 £+ 0.05 unless explicitly mentioned;

Prior for a = CB+/2g (equation (2.3)) can be obtained by propagation as recommended by
the GUM [JCGM 100:2008, 2008].
For each control modelled as a wide rectangular channel control, priors must be assigned for

the following parameters (see equation (2.5)):

e b [m] is the mean bed elevation at the gauge;
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e B [m] is the average width of the controlling reach;
e Sp [—] is the longitudinal slope of the river channel;

e Kg [m'/3.s7! is the Strickler coefficient modelling the flow resistance. Corresponding

value of Manning coefficient n = 1/Kg can be found in Chow [1959].

Default priors can be specified for the other parameters but remain to be verified with the

available knowledge at the station:
e cis set by default to 1.667 £ 0.05 unless explicitly mentioned;

Priors for a = KgB+/Sy (equation (2.5)) can be obtained by propagation as recommended by
the GUM [JCGM 100:2008, 2008]. Prior on Kg¢B (used in non-unique relations) is also obtained

by propagation.

2.4.1.4. Posterior distribution

Bayes’ theorem allows combining the information brought by the data (71,, Q) (through the
likelihood) with prior information into a distribution for the unknown parameter 6, termed the

posterior distribution. The pdf of the posterior distribution, noted p (9'71, Q), is defined by:

likelihood
r(Q
p(Q

normalizing constant

— 2
6.h)p(6)
0, E) p(6)do

(2.13)

(00) =

The numerator is simply the product of the likelihood and the prior pdf. The denominator
looks more complex, since it requires integrating this product with respect to parameter 6.
However, this denominator is in fact just a constant: the data (l~z, Q) are given and fixed, and
parameter 8 disappear from the denominator since it is the integration variable. Consequently,
the denominator only serves as a normalizing constant: it ensures that the area below the
posterior pdf is equal to 1 (which is required for any pdf). In practice, it is actually not even
necessary to compute this constant in general, because MCMC algorithms used to sample the
posterior distribution (see section 2.4.2) only require the posterior to be known up to a constant

of proportionality. This allows simplifying Bayes theorem as follows:

p (9‘717 Q) X p (Q

6,h)p(0) (2.14)
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where the symbol ‘o’ stands for ‘is proportional to’.

Equation (2.14) shows that the derivation of the posterior pdf (up to a constant of propor-
tionality) is simple: it is just the product of the likelihood and the prior pdf. The resulting
posterior pdf quantifies the knowledge on parameter @ given two sources of information: the
data and prior knowledge.

It is worth noting that the raw result of Bayesian estimation is a distribution, as opposed
to a value (as in other estimation methods such as moments, maximum likelihood, etc.). This

remark calls for further comments:

e the raw result of Bayesian inference directly provides a quantification of uncertainty;

e this does not mean that quantifying uncertainty is impossible with other estimation meth-
ods: in fact, most estimation methods come with a solid and well-developed theory for
uncertainty quantification. But this quantification only comes in a second step, after

having estimated a particular value;

e conversely, this does not mean that estimating a value is impossible with Bayesian esti-

mation: typically, the maximum of the posterior pdf is a standard choice’;

2.4.2. MCMC sampling

In general, the posterior probability density function (pdf) is a multi-dimensional pdf which
cannot be easily represented graphically. Moreover, the posterior pdf is not the final stage of a
rating curve estimation process. Indeed, the posterior pdf of parameters Orc needs to be further
processed to derive the rating curve and its uncertainties.

A convenient way to use the posterior pdf in practice is to simulate many realisations from
it which can be achieved with Markov Chain Monte Carlo (MCMC) sampling. These MCMC
simulations can be used to represent the posterior distribution graphically (e.g., a histogram of
samples for one particular parameter represents its marginal posterior distribution). Moreover,
they can be propagated to any quantity derived from the parameters (typically, the rating curve).

In this thesis, we use a combined MCMC sampler [Sun, 2013]. This algorithm is a combination

of three MCMC samplers:

e The first step uses an adaptive ‘one-at-a-time’ Metropolis algorithm with one-dimensional

jump distribution to estimate the jump covariance matrix;

'This can be considered as the Bayesian version of the maximum likelihood estimate, and it is often
abbreviated as the Maxpost estimate (or alternatively the MAP estimate for Maximum A Posteriori)
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e The second step uses a adaptive Metropolis algorithm and adapts the scale factor of the

covariance matrix;

e The third and last step uses the classical non-adaptive Metropolis sampler with the esti-

mated covariance matrix to approximate the target distribution.

For each MCMC sampling, 4 MCMC chains are drawn in the third step to evaluate the
algorithm convergence with the Gelmann-Rubin criterion [Gelman and Rubin, 1992]. Unless
explicitly mentioned otherwise, by default, a chain is composed by 10,000 simulations for the
two first step and by 100, 000 simulation for each of the 4 chains. A burn factor of 0.5 is used, i.e.
for each chain, the 50, 000 first simulations are discarded. Moreover, the simulations are slimmed
by a factor of 50before further use. This is made to reduce computing time and storage issues,
and does not result in a noticeable loss of information because the raw MCMC are strongly

autocorrelated.
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2.5. APPLICATION: THE ARDECHE RIVER AT

BARUTEL, MEYRAS, FRANCE

This section illustrates briefly the hydraulic analysis to be done before the rating curve

calibration with Bayesian analysis.

2.5.1. Data and models

The Ardeche River at the downstream station of Sauze has a mean interannual discharge of
65 m>.s~! for a catchment area of 2388 km?. It flows along 125 km from the Massif Central,
down into the Rhone River. The Ardéche basin experiences severe flash floods in autumn.

L at

These floods can be very important (maximum instantaneous flow recorded of 4500 m?®.s~
the outlet of Saint-Martin-d’Ardeche, historical floods possibly exceeding 8000 m®.s~* [Naulet
et al., 2005]). These flash floods, called coups de I’Ardéche, have been thoroughly studied by
the FloodScale project, contribution to the HyMeX (Hydrological Cycle in the Mediterranean
Experiment) international program [Braud et al., 2014, Adamovic et al., 2015, e.g.,], and by
many other projects [e.g., Lang et al., 2002, Naulet et al., 2005].

At Meyras (Barutel locality) the Ardeche River drains a catchment area of 120 km? (fig-
ure 2.9). The gauge is located just under a bridge (figure 2.10-a, GPS locations: 4°16'11.2"E,
44°40'12.3"N). The bed of the station changes regularly due to the intensity of the flash floods. In
this section, we only focus on a period without rating changes: the 2011-2014 period (04/11/2011
to 18/09/2014).

Located approximately 50 m downstream of the bridge, a natural gravel rifle controls the
low-flow (figure 2.10-a). The riffle is approximated by a rectangular section control. A main
channel (wide rectangular channel control) replaces this riffle as the flow increases and then two
floodways (on each bank) are added to the main channel at high flows (figure 2.10-b). The two
floodways are combined as an equivalent wide rectangular channel control since they become

active for approximately the same stage. Therefore, the rating curve equation can be written as
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Elevation [m] A Gauging station
B 42-249 [] Meyras station
[ 250-499 &> Meyras basin
[ 1500-749

[ 1750-999

(B 10001249 0 510 20 30

1250-1681
I 1250-168 m

Figure 2.9 — The Ardeéche River basin, south-central France with Meyras subcatchment delin-
eated, taken from Adamovic et al. [2015].

follows:
aj (h — b)) if h<k (riffle)
Q(h) = as (h — bg) if Kk<h<bs (main channel)
az (h —b2)® +ag (h —b3)® if h > bs (main channel and floodways)

(2.15)
where a1, as and ag are coefficients related to the characteristics of the controls (section or
channel), by, by and b3 are the offsets and c;, co and c3 are exponents related to the type of
hydraulic control. The transition stage x between the section control and the channel control is
numerically computed.

25 gaugings were performed at the Meyras station during this period. They are distributed

3

from 0.14 m®.s7! to 93.5 m®.s~!. The mean annual discharge is 3.64 m3.s~! and the 2-year

flood corresponds to 150 m?3.s™1.
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QO  Hydrometric station
Riverbed of the Ardéche
100 m

Figure 2.10 — Views of the hydraulic controls of the Ardeche River at Meyras: (a) from above,
Géoportail database; (b) downstream of the bridge from the left bank, Google
Earth view.

2.5.2. Prior specification

The width of the riffle is set to 8 m£+4 m. The widths of the main channel and the combined
floodway are set to 15 m +5 m and 30 m 4 10 m respectively. Both offsets of the section control
(natural riffle) and the channel control (main channel), by and by, are set to —0.6 m+1 m,
which corresponds to the minimum stage recorded during the 2011-2014 period. The overflow
stage bs between both channel controls is set to 1.2 m + 0.4 m. It represents the mean bed
elevation of the combined floodway. This floodway is vegetated (trees). From existing hydraulic
models, the Strickler coefficients of the main channel and the combined floodway are set to
25 m3.s! + 5 misland 15 m3.s~! + 5 m3.s! respectively. Slopes of the riverbed of the
main channel and the floodway are set to 0.005 + 0.005. Corresponding priors are summarised

in table 2.3.
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Inferred Physical Units Prior SD posterior results:
parameters parameters distributions MAP [Q2.5; Qo7.5]
0, a m2.s™!] AN(14.174;5.01)  10.86 [8.84;14.27]

0, by )] N(=0.6:0.5)  -0.638 [-0.657;-0.619)]

0 1 = 3/2 ] N(1.5;0.025) 1.498 [1.453; 1.550]

0, a mis™]  N(26.52;84) 24.00 [22.51; 25.94]

05 by [m] N(-0.6;0.5) -0.585 [-0.604;-0.566]

-

[

:
N(1.6667;0.025)  1.662 [1.626;1.722]

[

[

[

05 co=5/3 [—]

07 as ms.s™']  N(31.82;10.93)  35.70 [17.31;57.75]
Os b3 [m] N(1.2;0.2) 0.965 [0.762; 1.372]
0y c3="5/3 [-]  N(1.6667;0.025)  1.669 [1.618;1.717]
" - [m?.s™] U(0;10%) 0.0012 [0.0005,0.0472]
Y2 - [—] U(0;10%) 0.0398 [0.0211; 0.0745]

Table 2.3 — The Ardeéche River at Meyras, 2011-2014 period: parameters, prior distributions and
posterior results of the stage-discharge (SD) model.

2.5.3. Results

Figure 2.11 shows the parameters simulated by the MCMC sampler after burning and slim-
ming (see section 2.4.2). The kernel densities of the simulated values (figure 2.12) represents the
marginal posterior pdf of each parameter which can be compared with the prior pdf to evaluate
the information brought by the gaugings. The simulated values shown in figure 2.11 can be
propagated through the rating curve equation.

Figure 2.13 shows the estimated rating curve as stage-discharge representation with 95%
uncertainty envelopes. The SD model yields an accurate rating curve that agree well with
gaugings. Moreover, this rating curve is precise, due to the high number of gaugings (25) for
the studied period. Transition stage between the section control and the main channel (first two
controls) is precisely identified as the number of gaugings (23) on these two controls is high. The
overflow stage remains vaguely estimated as well as the parameter as (see table 2.3): they are

not identified in the gaugings as there is not enough high-flows gaugings.
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Figure 2.11 — The Ardeche River at Meyras: representation of the MCMC samples of the stage-
discharge (SD) model.
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Figure 2.12 — The Ardeche River at Meyras: posterior and prior densities of rating curve pa-
rameters of the stage-discharge (SD) model.
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Figure 2.13 — The Ardeche River at Meyras: stage-discharge representation of the stage-
discharge (SD) model with discharges in logarithm scale.
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Chapter 3

Stage-discharge hysteresis due to

transient flow

This chapter is planned to be published soon.

Hysteresis due to transient flow has also

been presented at the European Geosciences Union General Assembly 2015 (Oral communica-

tion, Mansanarez et al., 2015).
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3.1. Introduction

3.1. INTRODUCTION

3.1.1. Stage-discharge hysteresis

The hysteresis effect studied in this chapter is a hydraulic process associated with a transient
flow in a relatively flat channel. This phenomenon changes the stage-discharge relation at a
hydrometric station from a unique into a non unique relation. At a given stage, discharge is
greater for the rising limb than for the falling limb. This effect can be quickly explained by the
fact that during the propagation of a transient flow the celerity of the pressure (stage) wave is
smaller than the celerity of the velocity wave, therefore smaller than the celerity of the discharge
wave [Lee, 2013], as illustrated in figure 3.1-a. The maximum discharge Q4. occurs before
the maximum stage hq.. This can be represented by a loop in the stage-discharge relation
(see figure 3.1-b). Two discharge values are associated with a given stage : the larger one for the
rising limb and the smaller one for the falling limb. However, looped curves are not necessarily
associated with this kind of hysteresis. Other rating change processes, like variable backwater
and variable roughness, may yield similar (or opposite) looped curves (see the Madeira River at

Fazenda, figure 4.12 in chapter 4).

Qmax Qmax

QUmax hmax

h, Q and U (arbitrary scale)

Stage h
(b)

Figure 3.1 — Graphical representations of hysteresis due to transient flow: (a) velocity (U), dis-
charge (@) and stage (h) temporal curves; (b) the associated stage-discharge rep-
resentation.
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Chapter 3. Stage-discharge hysteresis due to transient flow

3.1.2. Gauging hysteretic events

Currently, the common gauging strategy is to gauge during the falling limb, as soon as possible
after the peak discharge. This gauging strategy aims to secure the operator from fast discharge
and stage evolutions. However, this strategy may not be suitable for hysteretic events. Indeed,
a standard stage-discharge rating curve may fit well these gaugings for such a strategy but this
might be misleading: if hysteresis exists, discharge will be underestimated for the rising limb.

More generally, ignoring hysteresis when it is in fact present may have several undesired

consequences:

e higher uncertainties of the discharge estimations due to the dispersion of the gaugings

along the rating curve;

e an underestimation of the peak flow event, which may have consequences for safety mea-
sures [e.g., Muste et al., 2011, Holmes, 2016]. For example, it can potentially affect the

design of spillways and flood-protection dikes.;

e a biased reconstruction of flood hydrographs with a time lag. It may bring a high level of

uncertainties in e.g. flood forecasting.

3.1.3. Hysteresis formulas

In case the hysteresis effect is not simply ignored, the most common practice is to make a
correction of the steady flow rating curve (i.e. the standard stage-discharge relation) by using
the Jones’ formula [Jones, 1915]. This correction is based on the fact that the energy slope is
not equal to the riverbed slope for unsteady flows: consequently, the riverbed slope is adjusted
depending on the flood wave celerity and the stage gradients (this will be detailed in section 3.2).

Many other physical methods were developed in the literature, based on the same principle
of correcting the steady flow rating curve. These methods have been reviewed and compared by
Schmidt [2002], Dottori et al. [2009], Lee [2013]. They differ in their assumptions and approx-
imations. In particular, some of them use a single stage record h(t) and its gradient dh/dt as
input variables, while others require using multiple stage records which are rarely available at
hydrometric stations. They also differ in their complexity: some provide an explicit discharge
formula, while for others the discharge formula is implicit and therefore needs to be solved with

numerical methods. Table 3.1 lists the main hysteresis formulas that use a single stage record
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and its gradient. In particular it describes the type of formula (explicit vs. implicit) and the

approximation made to describe flood routing.

3.1.4. Estimation of hysteretic rating curves

All formulas discussed in the previous section use several physical variables (e.g., roughness,
geometry of the control reach, dynamics of the flood wave). These variables may be measured in
controlled experimental conditions. However, they are not all available at typical hydrometric
stations controlling natural rivers. Consequently, the formulas of the previous section contain in
practice unknown parameters that need to be estimated.

Boyer [1937] and Lewis [1939] proposed a graphical analysis for estimating the correction of
the steady flow rating curve in the Jones’ formula.

Other methods based on the Artificial Neural Network (ANN) theory neglect the physical
principles to focus on the observed stage and/or discharge. First introduced by Tawfik et al.
[1997] and pursued by Jain and Chalisgaonkar [2000], Sudheer and Jain [2003] and Bhattacharya
and Solomatine [2005], these methods are able to model hysteresis events but can be criticised
as lacking hydraulic basis and being difficulty to apply by end-users. Moreover, they do not
encompass an uncertainty quantification step.

Petersen-Overleir [2006] highlights the limits of these approaches and proposes an innovative
step for the uncertainty analysis of hysteresis effect. His method is based on the Jones’ for-
mula. He also uses non linear regression and maximum likelihood estimation to model hysteresis
and provide the uncertainties of the discharge estimates. The method has solid hydraulic and
statistic justifications, however it does not take into account the uncertainties of each gauging.
Furthermore, as recognised by the author, in the first application the method provides unrealistic

and very unstable values without physical justifications.
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Method Type of formula Flood routing
Jones [1915] Explicit Kinematic approximation
Wiggins [1925] Explicit Kinematic approximation
Henderson [1966] Explicit Parabolic approximation

Long wave approximation
Fenton [1999] Explicit (Higher order advection

diffusion approximation)

Di Silvio [1969] Implicit (num) Triangular approximation
Fread [1975] Implicit (num) Parabolic approximation
Marchi [1976] Implicit (ODE) Kinematic approximation

Faye and Cherry

Implicit (ODE) Kinematic approximation
[1980]

Kinematic or
Lamberti and Pilati

Implicit (ODE) quasikinematic
[1990]
approximation
Advection diffusion
Perumal et al. [2004] Implicit (num)

approximation

Table 3.1 — Hysteresis formulas based on a single stage record, modified from Lee [2013]. ‘num’
means that a numerical method is required to solve the equation, ‘ODE’ means that
the equation takes the form of an Ordinary Differential Equation.

The latter issue could be addressed by using priors to constrain physical parameters. However,
as far as we are aware of, hysteresis due to transient flow was never treated through Bayesian

analysis in the literature.

3.1.5. Objectives

The method proposed in this chapter is a Bayesian analysis based on the Jones’ formula
and kinematic approximations made by Lighthill and Whitham [1955] and Chow [1959]. This
Bayesian method incorporates information from hydraulic knowledge (equations of channel con-
trols based on geometry and roughness estimates) and stage-gradient-discharge observations

(gauging data). The obtained total uncertainty combines parametric uncertainty (estimation
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of the rating curve parameters) and structural uncertainty (imperfection of the rating curve
model). This method provides a direct estimation of the physical inputs of the rating curve
model (roughness, bed slope, kinematic wave celerity and cross-sectional geometry).

The application of the proposed method is illustrated with two case studies:

(a) two dam flushing operations in the Ebro river, Spain. These events are extremely violent
events in a large river. There are well documented with gaugings especially in the rising

limb;

(b) a year of discharge measurements in a calibrated cross-section equipped with a continu-
ous Doppler velocimeter, near Plymouth, North Carolina, USA. This equipment captures

many hysteresis events.
Further exploration of the hysteretic rating curve estimation process is presented :

e the comparison between a steady stage-discharge model and the stage-gradient-discharge

hysteresis model,;

e the comparison between the simple formula of Jones and the high-order approximation of

Fenton formula [Fenton, 1999];
e the impact of the prior knowledge;

e the impact of the gauging strategy.
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Chapter 3. Stage-discharge hysteresis due to transient flow

3.2. STAGE-GRADIENT-DISCHARGE (SGD)

MODELS

Usually, stage-discharge (SD) models for channel controls are based on the assumption of
steady uniform flow: Sy ~ Sp, where Sy is the friction slope and Sy is the bed slope. They also

use the Manning-Strickler formula:

Q= KsA R[S (3.1)

where Kg [m'/?.s71] is the Strickler coefficient, A [m?] the wetted area of the cross-section and
Ry, [m] the hydraulic radius.

The common practice for a hysteretic event is to reflect the flood wave propagation effects in
the estimation of the friction slope Sy. This approach leads to excellent empirical results which
have validated this correction [Degoutte, 2006].

The correction is made by using the one dimensional Barré de Saint Venant equation which

is commonly used to model transient flows in open channels :

ou 8U> oh (3.2)

1
Sp=S——(—+U—)— —
f 0 g (at + ox ox
where g [m.s™2] is the gravitational acceleration, U [m.s™!] the cross-sectional average water
velocity, = [m] the abscissa along the channel and h [m] the stage. Equation (3.2) provides an
instantaneous value of the flow surface of the wave profile [Chow, 1959].

Combining equations (3.1) and (3.2) leads to:

1 /oV ov oh
= KgARY? S—( V)— 3.3
@ 55 \/ 0 g \ Ot + ox Ox (3:3)
h
The terms 8(‘)‘;’ V(ZZ and g:p in equations (3.2) and (3.3) are respectively the local accel-

eration, the convective acceleration and the longitudinal gradient terms. The two first terms
represent the inertia terms of the one-dimensional Barré De Saint-Venant equation.

The diffusion wave assumption, a common simplification of the one-dimensional Saint-Venant

1 /0V \%
equation, states that the inertia term in this equation — ((% + V@) is negligible compared
g x
oh
to the pressure term — and the slope Sy [Ferrick et al., 1984]. This approximation of Barré

ox
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3.2. Stage-gradient-discharge (SGD) models

de Saint-Venant equation, has also been explained in other references [Chow, 1959, Henderson,
1966, Weinmann and Laurenson, 1979].
Therefore, by using the latter assumption in the equation 3.3, the Manning-Strickler formula

for a prismatic channel can be expressed as:

oh
— KqARY?\|s5, — 2% A
Q = KsARy™\[S0 — (3.4)

Equation (3.4) based on the diffusion wave assumption only holds if the permanent flow
regime is a steady flow and under a uniformly progressive wave. We can therefore rewrite this

equation as follows:

Q=0Qo\1—- 5= (3.5)

where Qp = K SARIQI/ 3\/50 is the discharge at steady flow.

3.2.1. Standard approximation: the Jones’ formula

The longitudinal gradient term gz is rarely measured, except for twin-gauge stations (see chap-
ter 4), and hence equations (3.4) and (3.5) cannot be applied to every hydrometric station. A
strong hypothesis named the kinematic wave hypothesis [Lighthill and Whitham, 1955] can be
made to overpass this difficulty. It assumes that the flood wave propagates with no attenuation
along the channel.

By definition:

_0Q Oz

where ¢ [m.s '] is the kinematic wave celerity also called flood wave celerity. In other words [Chow
et al., 1988], if an observer moves at the velocity ¢ with the flow, he sees a constant discharge.

For a steady flow, the continuity equation, described below, is also verified:

0Q 0A
oot =0 (3.7)

Then, equation (3.7) can be reduced by using the definition of the kinematic wave celerity
(equation (3.6)):

0Qoh 0A0QOh

hox TaQon ot
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oh n 1 Oh 0
Ty =
Ox 8% ot

oh  10h

oh
Therefore, equation (3.4) can be rewritten by substituting equation (3.8) for the p term:
x

2/3 10h
Q = KsARY*\/ Sy + P (3.9)

Although old, the Jones’ formula is still used today. Indeed, it only needs one staff gauge,
the slope Sy of the riverbed and an estimation of the kinematic wave celerity ¢ to correct the
rating curve for steady flow.

When the assumption of a constant celerity is not deemed reasonable, Chow [1959] and Hen-
derson [1966] explained that the kinematic wave celerity ¢ can be computed (see equation (3.10))
from the width B of the river, the discharge Qg at steady flow and the stage h. This relation
only applies if the cross-section shape of the channel is assumed prismatic (0A = BOh) or if the

banks are vertical in the range of variation of h and Q) = Q.

_0Q 10Q
=94~ B oh (3:10)
Thus, equation (3.9) becomes:
_ 2/3 1 _0Oh
Q = KgAR® | Sy + o0 o (3.11)
B 0h

Therefore, in this chapter, equations (3.9) and (3.11) are used as a basis for modelling hys-
teresis due to transient flow. These two equations differ by the fact that the wave celerity c is

modelled as a constant (3.9) or as a function of the stage (3.11).

3.2.2. High-order approximations: the Fenton formulas

Fenton [1999] proposed a method (described in detail in [Fenton and Keller, 2001]) which can
be seen as an extension of the Jones’ formula (equation (3.9)). With the same assumptions he
used the full long wave equations and he reduced them by the polynomial Taylor series expansion.

Two equations result from those approximations corresponding to the second and third order
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Taylor developments:

(3.12)

10h DO*h G oh 2
cot 3oz S o3

Q=K AR2/3<S +=

—_—
Qo

Jones

Fenton second order

Fenton third order

where D = Qo/(2BSp) [m?.s™!] is the diffusion term coefficient using the approximation of equa-
tion (3.10) and the advection-diffusion theory [Fenton, 2001}, G [m*s?] is given by G =
—D(gA/B + BV(c—V))/(gASo/Qo), g [m.s~?] is the gravity constant, V = ¢ — Qg/A [m.s™!]
and § [—] is the Boussinesq momentum coefficient. Jones’ formula and formulas of Fenton sec-
ond and third order are stage-gradient-discharge (SGD) models whereas Qg is computed using
a stage-discharge (SD) model.

As the Jones’ formula described in section 3.2.1, the kinematic wave celerity ¢ can be seen as
function of a stage, by replacing ¢ by i@ in equation (3.12).

B 0Oh

3.2.3. Formulas for simple cross-sectional geometries

Let y denote the water depth in the river. By definition, y is equal to h — hg where h is the
stage at the staff gauge and hg the vertical coordinate of the bottom of the riverbed with respect

to the zero of the staff gauge.

ho _’
Figure 3.2 — Diagram of the geometry of both the rectangular and trapezoidal cross-sections.

We remind the hydraulic geometry for a wide rectangular cross-section (B > h) and a trape-
zoidal cross-section (figure 3.2). This latter one is a general formula including the rectangular
cross-section. Indeed, for a batter m of the bank equal to m = 0, the trapezoidal cross-section
corresponds to a rectangular cross-section (see figure 3.2). Moreover, for each hydraulic variable

all the equations in table 3.2 match for the two cases, when m = 0.
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Hydraulic Wide rectangular Trapezoidal
variables cross-section cross-section
Width B B b+ 2my

Wetted

area A By (b+my)y

Wetted B+2y~B b+ 2yV1+m?
perimeter P

Hydraulic By (b+my)y
radius Ry B+ 2y 4 b+ 2yv1+ m?

Steady 5/3 2/3
flow O Kgy\/SoB y°/ Kgv/SoA Ry

Flood wave
celerity c

5/3 Ksy/Soy? (5 — VT m2]21> Qo

3A

Diffusion term

1 2/3
coefficient D Ks(2ByS)" A R,

Ks(2\/§0)_ly5/3

10/3 Q2

2
. sy
Coefficient ¢ — _QgABSOQ

A 2

2
(g + gﬁKéSo y1/3>

Table 3.2 — Hydraulic geometry for the wide rectangular cross-section and the trapezoidal cross-
section assuming D = Qo/(2BSy).

The wide rectangular cross-section is often used in practice. Chow [1959] states that a cross-
section can be considered as wide when the width B of the river is more than 10 times bigger than
the stage h (5 times in Graf [1998]). This assumption allows simplifying the Manning-Strickler
equation into a power law. Indeed, the hydraulic radius Ry, = (by)/(b+ 2y) can be simplified to
Ry =y, where y = h — hg.

We denote by M the exponent in the steady flow Qo equation (see table 3.2). For a wide
rectangular cross-sectional shape, M equals 5/3 whereas for a trapezoidal cross-sectional shape,
it equals 2/3.

Equation (3.12) can be rewritten according to the expressions of B, A, Ry, Qo, ¢, D and G

in table 3.2. Thus we can derive 12 models depending on the order of expansion (Jones, Fenton
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second order and Fenton third order), the cross-sectional geometry (wide rectangle or trapezoid)

and the celerity models (constant or variable with stage).

3.3. BAYESIAN INFERENCE

3.3.1. Parameterisation

Let 8 = (Orc,~y) denote the inferred parameters where parameters Ogrc are the SGD rating
curve parameters and parameters vy = (71,72) are the parameters of the error model. The
hydraulic interpretation of the parameter Ogrc is summarizes in table 3.3. For example, in
case of a wide rectangular cross-section, the SGD model using the Jones’ formula with variable

celerity uses the following parameterisation:

! Oh
MEKg+\/So (h — ho)M 1 ot

o) =KSB<h—ho>M¢so+

(3.13)

1 oh
0301+/05 (h — 0,)% 1 Ot

Q(h) = 0104(h — 65)% \/05 +

This parameterisation allows having a direct physical interpretation of the hydraulic variables.
The 11 other formulas (Fenton second/third order, wide rectangle/trapeze, constant/variable
celerity) can be obtained in a similar way from equation (3.12), by using the adequate terms

in table 3.2 and the parameterisation in table 3.3.

3.3.2. Likelihood computation

In this section, we denote the stage gradient 0h/dt by the notation dh. As described in sec-

tion 2.4.1, gaugings (?LZ, 57”, @l) are seen as estimates of the real values (h;, Oh;, Qi)ig[[u\q]

1€[1;N]
of stages, stage gradients and associated discharges. We also further assume that stage errors

and stage gradient errors are negligible compared to discharge errors:

hi = h;
Oh; = Oh; (3.14)

A . indep.
Qi =Qi+egi with eg; ~ N (0,ug;)
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Wide, rectangular cross-section

Parameters Jones Fenton 2"¢ order | Fenton 3" order
constant ¢ | ¢(h) | constant ¢ | ¢(h) | constant c | c(h)
04 K¢B Ks
0o ho
05 exponent M ~5/3
2 So B
05 c So
O - - c - c 15}
07 - - - - g Vv
Os - - - o A I
Trapezoidal cross-section
Parameters Jones Fenton 2”9 order | Fenton 3" order
constant ¢ | ¢(h) | constant ¢ | ¢(h) | constant c | c(h)

61 Ks
05 ho
05 exponent M ~ 2/3
0, b
05 m
¢ So
0, c - c - c I6]
Os - - - - g Vv
09 - - - - % -

Table 3.3 — Hydraulic interpretation of the parameters for the Jones and second and third order
Fenton models, whether or not the kinematic wave celerity c {m.s_l] depends on

the stage. Kg [ml/?’.s_l} is the Strickler coefficient, B [m] the top width of the
river, b [m] the width of the bed, hg [m] the elevation of the bottom, m [m] is the
batter, 5 [—] the Boussinesq coefficient and V' {m.sil] the cross-sectional average
water velocity

where the standard deviations uq; (uncertainties of discharge measurements) are assumed to be

known (see section 2.3).
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The true discharge is then written as the discharge predicted by the rating curve plus a

structural error:

. indep. -
Qi = f (hi, Oh|Orc) +epi with ep; "N N (0,07 =1 +20s)
—_———

(3.15)

Qi
where Orc are the rating curve parameters, €y = (€f1,...,€¢n) are the structural errors,
(0f1,---,0fn) are the standard deviations of the structural errors (ef1,...,€epn) and Q =

(@1, ceey @N) are the discharge estimations related to the N gaugings (see section 2.4.1).

The linear function used for modelling the standard deviation o ; is the same as that described
in section 2.4.1. We also assume that the structural errors (ef 1, ..., €y n) and the discharge errors
(€Q1,---,€qQ,N) are independent.

Combining equations (3.14) and (3.15) yields the following stage-gradient-discharge relation

between observed values:

Orc) + i+ e with eqi+eri~ N (0,\/o2, +ud),) (3.16)

The likelihood L of observed discharge values Q for the stage-gradient-discharge (SGD) model

Gi = f (T,

is given by:

L <é‘0 = (ORCfY) 757 8~h) = ﬂpnorm [@z
=1

/ (7%’7 dh;

Orc) . \Jo?, +ud, (3.17)

where Q = (@1, . .,@N) are the N gauged discharges, h = (ﬁl, e ,iNzN) are the N related
observed stage values, Oh = ((?9711, e ,571]\/> are the N related observed stage gradient values
and pnorm[2|m, s] denote the probability density function (pdf) of a Gaussian distribution with

mean m and standard deviation s, evaluated at some value z.

3.3.3. Prior specification

Bayesian inference requires specifying a prior distribution for the vector of parameters 6
as described in section 3.3.2. The prior information of the SGD models therefore needs to be
entered by the practitioner depending on the information available at the gauging station: this

is completely site-specific, and will therefore be described for each case study.
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3.4. APPLICATION TO DISTINCT CASES

3.4.1. Dam flushes in the Ebro River at Ascd, Spain

The first case study focuses on two flood events in the river Ebro at Ascd, Spain. These
flood events are remarkable by the strength of the hysteresis effect and the availability of many
gaugings during the events. Such cases are extremely rare among hysteresis events: they are
scheduled dam flushes on a large river with successive gaugings on two flood events. Moreover,
these events are recent and well-documented.

Sanchez et al. [2013] present the Ascé station and these two flood events with a simple use of
the Jones’ formula (equation (3.12)) as a correction of the steady rating curve. Lee [2013] also

studied these events with a Fread’s formula [Fread, 1975].

3.4.1.1. Data and models

The Ebro River is a medium-sized river in terms of length (928 km), catchment area (85, 550
km?) and floods (up to 4000 m*.s~!). The hydrometric station (GPS locations: 0°34'11.5"E,
41°11’0.76"N) is located upstream of the delta of the Ebro river between Zaragoza (upstream)
and Tortésa (downstream) about 100 km from the Mediterranean sea.

Many reservoirs and dams are established along the river. Upstream of the station, a system
of large reservoirs (Mequinenza-Ribarroja-Flix) controls the floods and regulates the lower Ebro
River. Due to this regulation, the stage-discharge relation is not well known for large discharges
(above 1000 m?’.s*l). For low discharges, the proliferation of aquatic vegetation affects the
hydraulic behaviour. The vegetation is problematic for navigation and operation of a nuclear
power plant. In order to remove vegetation, two artificial floods are produced every year through
dam flushing [Sanchez et al., 2013]. Thanks to a close collaboration between the Hydrology
department of the Confederacion Hidogrdfica del Ebro and the researchers of the RIUS group of
the University of Lleida, several series of discharge measurements have been conducted during
these flood events.

The discharge measurements for the events of November 2010 and June 2012 were performed
with an ADCP (RiverSurveyor-M9, from SonTek). Only one river crossing was performed for
each discharge measurement: we decide to associate an uncertainty of 10% with these gaugings.

Figure 3.3 shows the stage-discharge measurements for both events. 18 gaugings are available

for the first event, 25 for the second one. For both November 2010 and June 2012 events,
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30-50% discharge differences are observed between the rising limb and the falling limb. An
important shift of the stage-discharge relation can also be seen between the two events: despite
the controlled dam flushing, the vegetation has increased [Sanchez et al., 2013], which has led
to this rating change. The available discharge measurements since 1978 are also represented
in figure 3.3. The rating change phenomenon between the events of November 2010 and June
2012 does not seem extraordinary: the discharge measurements are scattered and different stage-
discharge relations can be observed. As an example, the discharge measurements after the June
2012 event are differentiated: two different stage-discharge relations exist. These rating changes

will not be treated in this manuscript.
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Figure 3.3 — Discharge measurements made on the Ebro River at Ascé since 1978.
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8.4.1.2.  Prior specification

The banks upstream and downstream the station are partially vegetated along the chan-
nel (see figure 3.4-a) and there is some aquatic vegetation in the main channel. According
to Chow [1959], the Manning-Strickler coefficient Kg is set to 30 m'/3.s! with an uncertainty
of +10 m'/3.s7 1.

Camina

Carmino

134.00

(b)

Figure 3.4 — The Ebro River at Ascé: (a) view from above (Google Earth view); (b) cross-
section of the gauging station (SAIH Ebro, the Automatic Hydrologic Information
System of the Ebro river basin). All lengths are in meters. The dashed vertical
lines indicates where the cross-section is not represented.

Just around the station, the channel is fairly uniform (figure 3.4-a) with an average width
estimated at 130 m +20 m. The width is therefore much larger than the depth (up to 5.3 m):
the cross section is hence approximated by a wide, rectangular cross-section. It matches well
with the cross-section of the gauging station (see figure 3.4-b). Overflows in the floodplain are

neglected as stage values of the two events do not exceed the overflow stage (5.4 m). Vegetation
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effects during both events do not allow us to precisely determine the coordinates hg of the
bottom of the bed: hg is vaguely set to 0 m £+ 2 m. Moreover, there were no stage measurements
made near the station to directly estimate the slope surface at steady flow. From old hydraulic
studies [Sanchez et al., 2013], the bed slope is directly estimated to Sy = 0.001 m/m. As
explained by Sanchez et al. [2013], this estimation is uncertain, we therefore set a large standard
deviation of 0.001 m/m (i.e. Sy is set to 0.001 m/m £ 0.002 m/m). The average value of the
kinematic wave celerity c is also given by a simple estimate: the distance between the gauging
station and the downstream Tortosa station is divided by the time it took for the peak flood to
get from one station to the other. This average celerity is estimated to 1.4 m.s~! and we also
set a large standard deviation of 1 m.s™!, i.e. cisset to 1 m.s™' £+ 2 m.s™!. In accordance
with these possible values of the flood wave celerity ¢, V is also set to 1 m.s™t + 2 m.s™L.
The Boussinesq coefficient (3 is vaguely set to 1 + 0.3 according to Chow [1959]. Flat uniform
distributions are used for both parameters «; and -9 of the structural error model: we let these

parameters be inferred from the gaugings. Corresponding priors are summarised in table 3.4.

Physical . Prior
parameters Units distributions
KgB\/Sy  [mis™'] N (123.3;66)
KsB m3.s7] N (3900; 716)
K [m3.s] N (30;5)
ho [m] N(0;1)
M [—] N (L.6667;0.01)
B [m] N (130;10)
S -] A(0.001;0.001)
c [m.s™!] N (1.4;1)
g [—] N (1;0.15)
% [m.s™! N (1;1)
" [m?.s™] U (0;10°
V2 [—] U (0;10°

Table 3.4 — Prior distributions of the hydraulic variables for the Ebro events. The symbol
N (p; o) corresponds to the normal distribution with mean p and standard devi-
ation 0. The symbol U (a; b) corresponds to the uniform distribution on the interval

[a, b].

3.4.1.8. Results

Figure 3.5 shows the need to use a stage-gradient-discharge (SGD) model instead of a stage-

discharge (SD) model when a flood event is affected by a hysteresis effect. The total uncertainty
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interval of the SD model is more than four times larger than the total uncertainty interval of the
Jones model with variable celerity (figures 3.5-a and 3.5-b). This highlights the limits of the SD
model to account for such complex flows. We can also notice that the parametric uncertainty
interval is a bit larger for the SD model than for the SGD model whereas the prior distributions
are the same. Moreover, as explained in the introduction, we observe a time lag between the SD
results and the discharge measurements, and an underestimation of the peak flow. By contrast,
the SGD model adequately reproduces the timing of the flood event and the hysteresis loop in

the stage-discharge representation.

Stage-discharge (SD) model:
Maximum posterior rating curve ( b )
95% total uncertainty interval associated with the SD model
95% parametric uncertainty interval associated with the SD model
Stage-gradient-discharge (SGD) model (Jones' formula, variable celerity c):

) . . ~ 1000+
mmm  Maximum posterior rating curve 1
95% total uncertainty interval associated with the SGD model @
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Figure 3.5 — The Ebro River at Ascd, event of June 2012, comparison between a stage-discharge
(SD) model and the stage-gradient-discharge (SGD) model using the Jones’ formula
with the flood wave celerity ¢ modelled as a function of stage: (a) time-discharge
representation; (b) stage-discharge representation.

We now seek to establish which of the 6 distinct SGD models (see sections 3.2.2 and 3.2.3)
for a wide rectangular cross-section brings the best results. For each model and each event the
prior distributions of table 3.4 are used.

Figures 3.6 and 3.7 show results for both events of November 2010 and June 2012. All
models detect a hysteresis effect: all the rating curves present the looped shape and fit well with

discharge measurements.
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However, both SGD models using the Jones’ formula follow the discharge measurements more
closely. Moreover these two models have smaller total uncertainties than the others. Thus, the
Jones’ formula shows an acceptable goodness-of-fit, irrespective of the assumption made on the
celerity ¢ (constant or variable).

Looking carefully at the parametric uncertainties of each model, the SGD model using the
Jones’ formula with variable celerity ¢ seems to have smaller uncertainties than the SGD model
using the Jones’ formula with constant celerity. Furthermore, these specific parametric uncer-
tainty intervals become smaller for the June 2012 event than for the November 2010 event (which
has less gaugings). This is not surprising, since the parametric uncertainty is directly linked to
the number of gaugings used to calibrate the rating curve.

Therefore, from this first graphical analysis, the two SGD models using the Jones’ formula,
with celerity as a function of stage or as a constant, seem to be, in this order, the best two
models in terms of uncertainty intervals (parametric and total) and in terms of goodness-of-fit.

Figure 3.8 shows the evolution of the flood wave celerity ¢ with respect to the stage h for both
Ebro events. For each of the November 2010 and June 2012 events, the constant celerity option

L and

leads to similar results in terms of maximum posterior celerity values (respectively 1.46 m.s™
1.60 m.s!). These values match with the average prior celerity of 1.4 m.s~! (see section 3.4.1.2).
The associated parametric uncertainty intervals are large: the width of these intervals are 168%
and 129% respectively. In contrast, results for the variable celerity option differ between the two
events. This arises because the variable celerity is directly linked to the slope of the rating curve
(see equation (3.10)) and there is a shift between the two events. However for both events the
width of the parametric uncertainty intervals is smaller than for the constant celerity (less than

30%). Thus, the celerity estimation is more precise for the variable celerity option than for the

constant celerity option and values are still physically consistent.
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Jones Fenton 2" order Fenton 3" order
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Figure 3.6 — The Ebro River at Ascd, event of November 2010: SGD rating curves using the Jones’ formula (a and b), using the Fenton
formula of second order (¢ and d) and using the Fenton formula of third order (e and f). For each formula, the flood wave celerity
c is either constant or variable.
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N
1

Celerity ¢ [m.s_1]

3
Stage h [m]

Maximum posterior rating curve with 95% uncertainty intervals
(parametric) for the SGD models using the Jones' formula:
[0 Constant celerity (November 2010 event) | Constant celerity (June 2012 event)
=== Variable celerity (November 2010 event) === Variable celerity (June 2012 event)

Figure 3.8 — The Ebro River at Ascé, events of November 2010 and June 2012: stage-celerity
representations for the SGD models using the Jones’ formula with constant celerity
or variable celerity. The shift between the variable celerity curves is due to the
observed rating changes between these two events
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Figure 3.9 — The Ebro River at Ascd, events of November 2010 and June 2012: posterior densities
of the product K B, the slope Sy and hg for the SGD models using the Jones’ formula
with constant celerity or variable celerity.

For each event, the posterior densities of Kg¢B and Sy are more precise for the variable
celerity option (see figure 3.9) and hence lead to less uncertainties on these parameters than for

the constant celerity option. For hg, a rating shift of approximately 1.5 meters between the two

events can be observed.
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M " 1 SGD model SD
ax. post. values Fenton third order Fenton second order Jones model
Celerity option Constant Variable Constant Variable Constant Variable
Event Nov. June Nov. June Nov. June Nov. June Nov. June Nov. June Nov. June
KsBy/So [m*/3s7"] A7.7 58.8 62.8 63.5 62.4 64.1 64.9 57.1 61.8
1/3 —1 YT 2an 2998 o By ey
KsB Ta S g 3575 1336 3228 3394 3497 3395 3768 1277 Not identifiable
Kg T:H w‘m\: 26.8 31.4 25.6 27.1 26.6 27.8 Not identifiable 32.4 32.4
g ho [m] -1.34 -0.094 -1.33 0.01 -1.24 0.061 -1.21 0.11 -1.10 0.23 -1.75 -0.06
1] exponent M [—] 1.669 1.666 1.666 1.666 1.666 1.666 1.666 1.665 1.668 1.671 1.671 1.667
m B m] 133.4 138.1 126.1 125.6 127.6 125.8 Not identifiable 134.1 134.4 Not identifiable
D“..ra So [Joo] 0.178 0.185 0.378 0.32 0.35 0.318 0.359 0.299 0.233 0.238
c[ms] 2.72 3.27 Not identifiable Not identifiable 1.46 1.60 Not identifiable
5 _IWH 0.97 0.96 0.98 0.98 Not identifiable
V [ms™'] 0.95 0.50 1.31 1.24
Error v; Tﬁw.m\L 74.9 3.40 80.2 31.7 83.7 1.97 69.7 34.5 59.9 0.62 50.9 2.8 122 99.6
Error v [—] 24e04 | 3.9e-02 | 5.8 e-04 | 8.3e-03 | 1.6 e-04 | 3.0e-02 | 9.4 e-04 | 2.1e-03 | 7.9 e-04 | 2.5e-03 1.2 e-04 | 8.7e-05 | 3.7e-05 | 2.1e-03

Table 3.5 — The Ebro River at Asco, events of November 2010 and June 2012: values of the maximum posterior estimator for each SGD model.
Grey values are computed from other values.
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The maximum posterior estimates of all models are hydraulically consistent (see table 3.5).
For example, all the slopes Sy have an order of magnitude of 10~%. The rating shift between the
two events is also observed with an overall difference of 1.30 — 1.40m between hy values for a
same model. The Kg, B and Sy maximum posterior values are more stable between events for
models with the variable celerity option than for models with constant celerity option. As an
aside, for both events and both celerity options, posterior results of the Boussinesq coefficient
for the SGD models using Fenton formula of the third order are close to 1 which matches with
the assumption of a uniform channel.

To conclude, SGD models using the Jones’ formula lead to lower total and parametric uncer-
tainties, and a better goodness-of-fit than higher order approximation using the Fenton formulas.
All parameter estimates make physical sense. The two celerity options yield similar discharge
estimates. However, the variable celerity option provides estimation of hydraulic parameters

with lower uncertainties.

3.4.2. The gauging flume of Plymouth, North Carolina,
USA

3.4.2.1. Data and models

The second case study uses a year of continuous discharge measurements in a calibrated
cross-section equipped with a continuous Doppler velocimeter, near Plymouth, North Carolina,
USA. This station captures many hysteresis events with very high temporal resolution (10 min)
which can never be reached with conventional gaugings [Birgand et al., 2013].

The geometry of the station was forced into a trapezoidal flume with wooden boards. Fig-
ure 3.10-a illustrates the configuration of the station. A continous Doppler velocimeter is placed
at the bottom of the flume.

The velocity index (ration between the cross-sectional average velocity and the velocity mea-
sured by the velocimeter) was precisely established using velocity-area gaugings (linear regression
with R? = 0.995). Figure 3.10-b is a view from upstream of the station. In the absence of
additional information, uncertainties of discharge measurements are estimated to be & 10%.

This data set includes many flood events between August 1998 and July 1999. The first
six flood events of 1999 (during January and February) exhibit hysteresis without rating shifts
(figure 3.11). The fifth event of January 1999 presents a discontinuity in the stage-discharge
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Velocimeter

(a)

Figure 3.10 — The A1 station, gauging flume near Plymouth: (a) configuration (T'W: top width;
D: depth; BW: bottom width) [taken from Birgand et al., 2013]; (b) photo of the
hydrometric station (source Frangois Birgand).

relation (see pink curve in figure 3.11, around h ~ 0.8 m). This discontinuity may be due to a

farmer modifying the farmer intake to his field just upstream the station.

0.6

0.4+

0.2

Discharge Q [m>.s™]

0.0+

02 0.4 06 08 01/01/1999 11/01/1999 21/01/1999 01/02/1999 11/02/1999
Stage h [m] Time t

Figure 3.11 — Discharge records in the Al gauging flume during 6 flood events in January and
February 1999: stage-discharge and stage-time representations.

Figure 3.12-b shows that the stage gradient is affected by small fluctuations due to stage
measurements errors. These fluctuations are a problem for establishing the SGD rating curve
and the associated uncertainties because they are not related to the flood wave propagation and
have a significant impact on posterior results (see figure 3.12-c). In order to fix this problem, a
simple third order central moving average is used to smooth the stage gradient. For this case
study, such pre-processing proved to be efficient to reduce the fluctuations of the rating curve
and its uncertainty (see figures 3.12-c and 3.12-d). Other pre-processings can be used to smooth

the stage gradient, e.g. spline regression [Petersen-@verleir, 2006].
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Figure 3.12 — First hysteresis event of January 1999 at the Al station near Plymouth, impact
of the stage gradient on rating curve uncertainty assessment: (a) stage records;
(b) stage gradient records; posterior results (stage-discharge representation) of the
SGD model using the Jones’ formula with variable celerity for: (c) a raw stage
gradient; (d) a smooth stage-gradient.

3.4.2.2.  Prior specification

As the cross-section of the flume is trapezoidal, a trapezoidal cross-section is considered for
this case study. Considering values in Chow [1959] for the Strickler coefficient Kg for old wooden

boards, we set up a mean value of 62.5 m'/3.s7! and a standard deviation of 10 m*/3.s71.

Birgand et al. [2013] listed all the geometric variables m and b of the trapezoidal flume.
Accordingly, prior distributions on the batter m of the bank and the width b of the riverbed are
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precisely set to 2.6603 4 0.02 and 0.55 m £ 0.02 m respectively. The slope Sy is also supplied
in this article but without information about its uncertainty, hence a large standard deviation.
The slope Sy is set to 0.0001 £ 0.001.

The prior distribution of the offset hg is also vague due to lake of information about its
uncertainty. Prior distributions of the flood wave celerity ¢ and the parameter V' of SGD models
using the Fenton formulas are vaguely set to 1 m.s™! + 1 m.s™!. The prior distribution of the
Boussinesq coefficient 3 is set to 1 + 0.3 according to Chow [1959]. Two error parameters 7; and
o are let to be identified by the gaugings, hence the flat uniform distribution. Corresponding

priors are summarised in table 3.6.

Physical : Prior
parameters Units distributions
Ko/So  [m3s™'] N (0.625;3.127)
Kg mss™] N (62.5:10)
ho m] AN (=0.050.2)
exponent M [—] N (0.6667;0.01)
b [m) N (0.55;0.01)
m m] A (2.6603;0.01)
So -] A (0.0001;0.001)
c [m.s™!] N (1;1)
5 [—] N (1;0.15)
%4 [m.s™] N(1;1)
Error v [m?.s™] U (0;10°
Error 7, [—] U (0;10°

Table 3.6 — Prior distribution of the hydraulic variables for the A1 events. The symbol N (u; o)
corresponds to the normal distribution with mean p and standard deviation o. The
symbol U (a;b) corresponds to the uniform distribution on the interval [a, b].

3.4.2.8. Results

As the previous case study, the conventional SD model produces a time lag of around 40
minutes with respect to the discharge measurements (figure 3.13). Moreover the uncertainties
are more than 3 times larger than with a SGD model. The SD model also overestimates the
maximum discharge (4.4%) and the recession flow (by 8% on average). The rising limb is
underestimated (by 4% on average).

As for the Ebro case study we compare the six stage-gradient-discharge (SGD) models. These
comparisons are made using 24 gaugings from the first flood event of January 1999. These

gaugings are sampled from the continuous (every 10 min) discharge measurements of the Doppler
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Figure 3.13 — Hydrograph of the first event of January 1999 at the Al gauging flume near Ply-
mouth: comparison between a stage-discharge (SD) model and the stage-gradient-
discharge model using Jones’ formula with variable celerity. For both models, a
trapezoidal cross-section shape is used.

velocimeter. These measurements are split into 6 classes: both rising and falling limbs are equally
divided in three intervals according to discharge values. On each class, 4 gaugings are sampled
randomly. This sampling of discharge measurements is made to kept the dynamic of the flood
(see gaugings in figure 3.13). Others discharge measurements are not used for calibration but
for validation of the results.

Again, all the models detect the hysteresis effect correctly (figure 3.14). Indeed the rating
curves are looped and follow the discharge observations; there is no time lag at the peak flow
and deviations from discharge measurements are less than 15%. Moreover, there is not much
difference between the total and parametric uncertainty intervals: the structural uncertainty is
very small, which suggests that the models are suitable for modelling hysteresis. The uncertain-

ties of the SGD models using the Fenton formulas are larger than the uncertainties of the two

Jones models in the rising limb.
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Figure 3.14 — The A1l gauging flume near Plymouth, first hysteresis event of January 1999: SGD rating curves using the Jones’ formula
(a and b), using the Fenton formula of second order (c and d) and using the Fenton formula of third order (e and f). For each
formula, the flood wave celerity c is either constant or variable.
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For SGD models using Jones’ formula, posterior distributions are more precise when the
celerity c is variable with stage h regardless of the stage value (see figure 3.15). Similarly, the
posterior distribution of the parameters Kg and Sy (figure 3.15) are more precise and parameters
have less correlation between them. Moreover, when the celerity is constant, parameter Kg
cannot be identified from the gaugings: its posterior distribution is the same than the prior
distribution. This is due to the high correlations with parameters Sy and ¢ (correlation values
of —0.91 and 0.86 respectively).

Therefore, we focus on the SGD model using the Jones’ formula with variable flood wave

celerity ¢ for further evaluation of the SGD model.
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Figure 3.15 — Station A1l near Plymouth: first hysteresis event of January 1999, posterior densi-
ties of Kg and Sy for the two SGD models using the Jones’ formula with constant
or variable celerity ¢, and scatterplot of Kg/Sp posterior samples.
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3.5. EVALUATION OF THE

STAGE-GRADIENT-DISCHARGE (SGD) MODEL

3.5.1. Importance of prior information

The event of June 2012 of the Ebro case is used to highlight the importance of prior infor-
mation in the SGD rating curve estimation. We calibrate the SGD model (Jones’ formula with
variable celerity) using two distinct sets of priors: informative priors described in section 3.4.1.2
are compared with non-informative priors. Non-informative prior distributions of positive pa-
rameters Kg, B and Sy is a wide positive uniform distribution &/ (0; 106). Prior distribution
of the offset hy are wide uniform distributions i (—106; 106>. Only the prior of the exponent
parameter M is kept informative (see table 3.5) because this parameter is bound to the cross-
sectional shape. Note that the use of non informative priors means that the estimation of rating
curve parameters other than M is only based on the gaugings.

Figure 3.16 shows that more precise information on the hydraulic variables and hence on prior
distributions brings better results on the rating curve estimation. Posterior rating curve results
show the same goodness-of-fit for both sets of priors whereas the convergence of the MCMC
algorithm is not satisfied for non-informative priors. In fact, with non-informative priors, the
posterior distributions of Kg, Sgp and B are wide and these parameters show higher correlations
to each other than if with informative priors. Moreover, with non-informative priors, rating
curve estimations lead to physically inconsistent results. Indeed, parameter B (modelling the
width) can be equal up to 400 m for Strickler coefficient of 8 m3 .5~ which does not match with
the hydraulic configuration of the station (B ~ 130 m and Kg =~ 30 m%.s_l).

Therefore, informative priors appear to be necessary to estimate the parameters of the SGD
model. In their absence, several parameters are not identifiable due to the strong interactions,

leading to physically unrealistic values and poorly-behaved MCMC sampling.

3.5.2. Cross-validation between events

The A1l station case study allows cross-validation between several successive hysteretic flood
events. We calibrate the SGD model using the Jones’ formula with variable celerity ¢ on the
first event. Then we use the calibrated SGD model to predict other validation events. Thus

we obtain event-specific rating curves with their associated uncertainties (figure 3.17). Relative
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Figure 3.16 — The Ebro River at Ascod, event of June 2012: effect of the prior knowledge in the
rating curve estimation, posterior densities and scatterplot of parameters Kg, Sy
and B from the SGD model using the Jones’ formula with variable celerity.
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Chapter 3. Stage-discharge hysteresis due to transient flow

errors between discharge observations and maximum posterior rating curves are always less than
+ 10% except for the second event during the rising limb (underestimation of discharges by 15%).
Moreover, for this second event, most validation points are outside of the total uncertainty inter-
val during the rising limb. It is unclear at this stage whether this is due to an underestimation
of the uncertainty in the SGD model, or the uncertainty in the validation points themselves, or

both. Note that this second event is the smallest in terms of both stage and stage gradient.
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Figure 3.17 — Station Al near Plymouth: rating curves of the first four hysteretic events of

January 1999. The SGD model using the Jones’ formula with variable celerity is
calibrated on the first event only.
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Figure 3.18 — Station A1l near Plymouth: hydrographs of the first four hysteresis event of Jan-
uary 1999. Use of the SGD model using the Jones’ formula with variable flood
wave celerity c¢ calibrated with the first event.

The time-discharge representation (figure 3.18) illustrates the overall goodness-of-fit of the
cross-validation on the first four events of January 1999. The maximum posterior estimator
follows discharge observations acceptably and the associated uncertainties are small.

The cross-validation results of the fifth and sixth events (figure 3.19) are acceptable for low-
flow discharges, and the dynamics of floods is well reproduced (no timing error). However,
notable overestimations (over 30%) arise for peak flows. These two events are the largest and
in particular, they are almost twice larger than the calibration event in terms of discharge. The
discrepancy we observe is therefore probably an extrapolation problem. We made attempts at
solving this problem by modifying the SGD model. In particular, we tested a model with a
variable roughness to account for the fact that the properties of the controlling reach change for
very high stages. Unfortunately, this modification did not solve the problem. Further investiga-
tions, including more precise topographic data and hydraulic modelling, are therefore needed to

identify the cause of this over-estimation.

3.5.3. Comparison of gauging strategies

The common practice for gauging flood events is to measure during the recession, after the
peak, to get less variable flows and safer operating conditions. It is also due to the difficulty to

forecast the flood and the time needed to mobilise a gauging team and reach the station.
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Figure 3.19 — Station A1l near Plymouth: hydrographs of the fifth and sixth hysteresis event of
1999. Use of the SGD model using the Jones’ formula with variable flood wave
celerity ¢ calibrated on the first event.

The development of non-intrusive gauging techniques (e.g., hand held radars and image ve-
locimetry) have recently made measurements during flood rise easier [e.g., Muste et al., 2011,
Dramais et al., 2011, Westerberg et al., 2011]. Gauging during flood recessions only may have
hindered stage-discharge hysteresis at some sites and may have given excessive confidence in
steady stage-discharge rating curves.

In this section, we compare several possible gauging strategies, i.e. to gauge:

1) around a few remarkable points around the hysteresis loop (see below);

2) at the flood peak (between the maximum discharge and the maximum stage);
3) during the rising limb only;

4) during the falling limb only;

5) during the rising limb for high stages (just before the peak flow);

6) during the falling limb for high stages (just after the peak flow). It is the most common

strategy;
7) at some remarkable points of the rising limb with low-flow gaugings.

The first six gauging strategies are shown in figure 3.20. The remarkable points characterize

the loop of the rating curve and span over the whole range of stage and stage gradient. These
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five remarkable points are defined as (A) the minimum of stage h, (B) the maximum of stage

gradient o (C) the maximum of discharge @, (D) the maximum of stage and (E) the minimum

ot’
of stage gradient (see figure 3.20).

A

Remarkable points
A: minimum of stage h
B: maximum of stage gradient dh/dt
C: maximum of discharge Q
D: maximum of stage h

E: minimum of stage gradient dh/dt

Gauging strategies

Discharge Q

. Strategy 1: remarkable points
= Strategy 2: flood peak
Strategy 3: rising limb
= Strategy 4: falling limb
Strategy 5: rising limb for high stages
Strategy 6: falling limb for high stages

Stage h

Figure 3.20 — Definition of the 5 remarkable points of the stage-discharge hysteresis loop and of
6 gauging strategies.

In order to match with usual operational constraints, the comparison is made under some
realistic assumptions. Cross-validation is performed for each strategy using only 15 gaugings
spread over the first four events of 1999 to calibrate the most successful SGD model, i.e. the
SGD model using the Jones’ formula with variable celerity ¢. As an illustration, figure 3.21
shows the calibration gaugings for strategies 1 and 7.

Results show that several gaugings strategies are not mathematically and/or physically suit-
able for modelling hysteresis events with the SGD model.

A strategy is not mathematically suitable when the term under the square root (see equa-
tion (3.9)) modelling the energy slope is negative, which may occur for negative stage gradients.
The problem arises when the whole range of the stage gradient is not covered during the rating
curve calibration. Then the possible variations of the stage gradient may be underestimated
and, out of the range of calibrated stage gradients, the cross-validation may no longer be possi-
ble. For example, with only small positive stage gradients, as provided by the second and fifth

gauging strategies, cross-validation for high negative values of the stage gradient (around the
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Figure 3.21 — Station A1l near Plymouth, Januray 1999: time-discharge representation. Gaug-
ings used for the first and seventh gauging strategies are represented.

fifth remarkable point) may be impossible. The sixth gauging strategy provides negative stage
gradients but no high absolute values: the cross-validation does not work for high negative stage
gradients.

A strategy is not physically suitable when hysteresis is not detected: the loop is not wide
enough or not open at all. The third gauging strategy, i.e. gauging during the rising limb only,
yields flat loops with huge uncertainties.

Figure 3.22 shows the performances of the best three gauging strategies in terms of uncertain-
ties (total and parametric in percentage) at the remarkable points during a single event. Only
the first event of January is shown but results from other events are similar. For each strategy,
the rating curve is displayed.

We can first notice that all gauging strategies allows cross-validation on those events. More-
over all rating curves are wide open: hysteresis is detected.

The first gauging strategy has the largest uncertainties for low discharges. The structural
uncertainty dominates in the total uncertainty. Although the calibration of rating curves is
made on the extremes of the input data (stage and stage gradient), the uncertainty is not
reduced efficiently between these extremes.

The fourth gauging strategy has very small uncertainties during the falling limb but in the
rising limb the parametric uncertainty values are more than twice larger than for the other

two gauging strategies. With this gauging strategy, all the stage gradients of the gaugings are
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negative: the slope Sy is calibrated with these high negative values, whereas in the rising limb,
the stage gradients are positive and higher in absolute value (up to four times larger). Moreover,
the rating curve parameters are poorly estimated.

The seventh gauging strategy yields the best results. Total uncertainties are small, especially
the structural uncertainty for both rising and falling limbs. The parametric uncertainties are
constant in percentage during the whole event: the parameters are well-calibrated all over the
flood. It seems that combining gaugings at remarkable points with gaugings from the falling

limb and/or low flows provides the best information
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Figure 3.22 — Station A1l near Plymouth: relative uncertainty results of gauging strategies 1, 4
and 7 with associated stage-discharge representations.
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Chapter 3. Stage-discharge hysteresis due to transient flow

3.6. CONCLUSIONS AND PERSPECTIVES

3.6.1. Summary

This chapter proposes a stage-gradient-discharge (SGD) model to describe hysteretic rating
curves, based on several hysteresis formulas of the literature. The SGD model needs two variables
as inputs: the stage and the stage gradient. The second input can be computed from the first
when a stage time series is provided but can show strong fluctuations that are not related to
flood wave propagation but rather to stage measurement errors, which requires smoothing the
stage gradient.

The proposed method uses Bayesian analysis. An expertise of the hydrometric station is
needed to set up prior distributions on hydraulic variables. As results, it provides a rating
curve with a total uncertainty envelope. This total uncertainty can be split into parametric
uncertainty (uncertainty on the rating curve parameters) and structural uncertainty (linked to
the imperfection of the rating curve model). This method also provides a direct estimation of
the physical parameters of the rating curve: results can therefore be criticised based on their
physical meaning.

Two sites with hysteretic stage-discharge relations were presented: dam flushes in a natu-
ral lowland stream (the Ebro River) and a series of floods in a gauging flume equipped with a
continuous Dopler flowmeter. Other sites with and without hysteresis were also tested (see ap-
pendix A). These case studies highlight the importance of taking into account the hysteresis effect
when it occurs. Contrary to a conventional stage-discharge model, the time lag between esti-
mated discharges and discharge measurements no longer exists with a stage-gradient-discharge
(SGD) model and the maximum of discharge is no longer underestimated. The SGD model also
reduces uncertainties on discharge estimations; these uncertainties differ on the rising limb and
on the falling limb.

Many hydraulic formulas for modelling stage-discharge hysteresis exist in the literature. The
simple Jones’ formula, a correction of the riverbed slope based on kinematic wave assumption,
is the oldest and most well-known formula. Our results suggest that it provides a remarkable
goodness-of-fit with discharge observations and small uncertainties. It leads to as good results
as the more complex Fenton formulas. Moreover, modelling the flood wave celerity as a function

of stage rather than a constant yields less uncertain estimations on the rating curve parameters.
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Prior information is of particular importance for SGD models: in its absence, several param-
eters show very strong interactions, which may lead to physically unrealistic parameter values
(despite a perfectly acceptable goodness-of-fit of the rating curve). Specifying realistic orders
of magnitudes for such parameters prior to the inference is sufficient to strongly restrict these
interactions.

In the absence of rating changes, the SGD model calibrated during a specific event can be
applied to subsequent events with acceptable accuracy as long as extrapolation remains limited.
We encountered some problems for highly extrapolated values (see section 3.5.2) whose cause
could not be identified precisely.

Finally, an analysis of the best gauging strategy demonstrates that for a hysteretic flow
event, the most common gauging strategy, i.e. to gauge during the falling limb after the peak
flow, yields high uncertainties in the rising limb and a biased identification of the hysteresis
magnitude. The best gauging strategy is to gauge near a few remarkable points of the flood
wave (minimum and maximum of the stage, maximum of discharge, minimum and maximum of
the stage gradient), and during the falling limb (to properly explore negative stage gradients).

These gaugings can be spread over conducted during distinct flood events.

3.6.2. Discussion

3.6.2.1. Hysteresis formulas

Several assumptions have been made for deriving the SGD models. Some of them are con-
ventional assumptions of the literature but other are more disputable.

The kinematic wave hypothesis (equation (3.6)) allows avoiding some constraints linked to the
pressure term % Combined with the continuity equation (equation (3.7)), this variable is no
longer used: it is replaced with the stage gradient and the celerity ¢. A possible future work is to
ensure the validity of this assumption by comparing SGD rating curve results with rating curve
results from stage-fall-discharge (SFD) models. For that purpose, several stage measurements
along the river are necessary to measure the fall. The challenge is therefore to find twin-gauge
stations affected by hysteresis. This work would also allow verifying the relevance of the diffusion
wave assumption by estimating the inertia term and comparing it to the pressure term and the

slope of the bed Sy. Application of a one-dimensional hydraulic model would also be useful to

verify these assumptions.
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The variable G in the third order Fenton formula (equation (3.12)) uses the velocity V. This
variable was modelled as a constant but this modelling is controversial and can be questioned: as
the stage increases, this velocity, directly linked to the wetted area and thus to the stage, should
increase. Therefore, the results for this method are probably influenced by this assumption. The
use of a varying velocity V =c¢ — % should be tested.

The assumption D = (Qo/(2BSp) from the advection-diffusion theory (see equation (3.12))

should also be verified by using the complete formula of D described by Fenton [1999]:

_ Qo
2gASy

A 2 2
gE—ﬁV +(B—1)c

For steady flow, with the Manning-Strickler equation, the flood wave celerity c is linked to
the cross-sectional average water velocity U by a constant coefficient k. = 5/3, in case of a wide
rectangular cross-sectional shape:

c=kU

Lighthill and Whitham [1955] already pointed out that this kinematic wave celerity ¢ cannot
be directly associated with the average velocity U by using a constant coefficient k. when the
energy slope J differs from the slope Sy of the bed. The coefficient can have the same variation
than the energy slope J: larger in the rising limb than in the falling limb. A model allowing this
coeflicient k. to vary with stage may bring a better understanding of the link between celerity ¢
and average velocity U for these events. Therefore, this modelling could be compared with the
variable celerity ¢ option.

With continuous discharge measurements, like in the station A1l near Plymouth, the computa-
tion of the celerity c is directly possible from the definition ¢ = g—g without using equation (3.10).
This computation could be compared with the variable celerity option.

Studied events in the Ebro river are dam flushes. These flushes are made to remove vegetation
in the river. Thus, modelling a constant roughness during the event is disputable: discharges
at the beginning of the rising limb can be higher than rating curve estimations (see event of
November 2010, figure 3.6) due to the change of the average roughness of the river. Modelling a
variable roughness, from the vegetation roughness to the natural roughness of the bed without
vegetation, could be trialled. A variable roughness model was also tested with the station Al
near Plymouth where the cross-section is calibrated with wooden boards. For very high stages,
the boards are not long enough to cover the whole controlling reach. However this variable

roughness model did not substantially improve the performance of the SGD model.
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3.6.2.2. SGD rating curve estimation

All models are parameterised in order to provide a physical meaning for each parameter:
this parameterisation is not always optimised, i.e. the number of parameters can be reduced.
For example, the SGD model using the Jones’ formula with variable celerity can have only 4

parameters instead of 5 (current configuration) using the following parameterisation:

1 oh
Q) = KsB(h - ho)M\/So + o
Current MEKg+/Sy (h — ho)M =1 ot
parameterisation : o
h) = 60104(h—02)% /05 + on
Q( ) 1 4( 2) \/ 5 9391\/@(}11—92)63_1 at
Q) = KsBYSo(h—ho)™ 14—t O
Alternative MKgSy'™ (h — ho)
parameterisation
Qh) = 01(h — 62)% |1+ ! oh
1 ’ 0304 (h — 0)% " Ot

The current parameterisation of this chapter has the advantage of linking each parameter 6
to a unique hydraulic parameter, which makes interpretations easier. The alternative param-
eterisation saves one parameter, but is more difficult to interpret: for instance, 6, represents
KgB+/Sy and 0, represents K SSS'/ 2 A comparison between ‘natural’ parameterisations and
‘optimal’ (in terms of parameter number) parameterisations would be valuable.

A future work would be to analyse the effect of input data uncertainty (stage and stage
gradient) on the rating curve calibration. Indeed, stage measurement uncertainties are ignored
as well as uncertainties of stage gradients. However, both types of uncertainties may have
a strong effect on the quality of the rating curve and the related uncertainty intervals. The
stage gradient is directly derived from the stage time series in which uncertainties exist. These

uncertainties may impact stage gradient values and may degrade the rating curve estimation.

3.6.2.3.  Operational perspectives

We observed that when there is no hysteresis effect, the SGD model using the Jones’ formula

with variable celerity does not detect it (see the Ardeche River at Sauze in appendix A). An
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interesting application would be to apply the method to a station for which flood events are not

always affected by hysteresis. This would allow carrying out the following experiments:

e a calibration of the rating curve on hysteretic events and a cross-validation on other events,
whether or not they are hysteretic events. If hysteresis is only detected for hysteretic

events, it would demonstrate the versatility of the model;

e a calibration of the rating curve on steady events and also a cross-validation on others.
If hysteresis is detected only for hysteretic events, it would suggest the SGD model using

the Jones’ formula with variable celerity can be applied for all events;

e a comparison of input data between steady events and hysteretic events. It would allow
identifying possible signatures and criteria on these signatures for detecting hysteresis

effect from input records and assessing the significance of this hysteresis effect.

In an operational context, hydrometric stations being potentially affected by hysteresis could
be identified. This analysis could be done at a national scale (France for example). Indeed, when
hysteresis effect is present, the stage-gradient-discharge relation can be seen as a correction of
the stage-discharge relation (see Sauze station in appendix A). The corrective term only depends
on the slope Sy of the riverbed, the average width B of the river at the station, the stage gradient
?)? and the gradient 8;20

obtained at most hydrometric stations. If the corresponding correction strongly differs from 1,

of the steady rating curve. A rough estimate of this terms can be

it would suggest that the station has the potential to be affected by hysteresis.
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Chapter 4

Variable backwater and twin-gauge

stations

This chapter has been published in Water Resources Research [Mansanarez et al., 2016b].
Variable backwater and twin gauge station has also been presented at the Furopean Geosciences
Union General Assembly 2016 (PICO communication, Mansanarez et al., 2016a) and at the
RiverFlow 2016 Conference [Le Coz et al., 2016b].
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4.1. Introduction

4.1. INTRODUCTION

Most of the streamflow records are established at water level monitoring stations using stage-
discharge functions. Actually, such simple 'rating curves’ are valid if the stage-discharge relation
is governed by either a section control (upstream of a critical flow section) or a channel control
with constant energy slope. Under those assumptions, hydraulics formulas for section controls
and for channel controls with wide rectangular cross-section can be expressed as simple power

functions as follows [WMO No. 1044, 2010, ISO 1100-2:2010, 2010]:
Q(h) = a(h—b)° (4.1)

where @) is the discharge, h is the stage, a is a coefficient related to the characteristics of the
controlling section or channel, b is an offset, and ¢ is an exponent related to the type of hydraulic
control [e.g., Le Coz et al., 2014].

The ideal situation of a channel control is that of a uniform flow when the energy slope is
parallel to the water surface slope and to the bed slope. In some cases the energy slope varies
over time, generally due to a variable downstream boundary condition (or ’variable backwater’),
or sometimes due to transient flow conditions ('varying discharge’). Comprehensive reviews can
be found in Schmidt [2002] and Petersen-Overleir and Reitan [2009a].

The importance of managing hydrometric stations affected by a variable slope has been recog-
nised in hydrometry guidance and standards for long [e.g., Hall et al., 1914, Réméniéras, 1949,
Rantz, 1982b, ISO 9123:2001, 2001, WMO No. 1044, 2010]. When energy slope is affected by
transient flow effects, the resulting stage-discharge hysteresis can be approximated by single-
gauge methods [e.g., Jones, 1915, Fenton and Keller, 2001]. Index velocity systems [e.g., Le Coz
et al., 2008, Nihei and Kimizu, 2008, Hoitink et al., 2009, Hidayat et al., 2011, Levesque and
Oberg, 2012] have been developed and increasingly used for streams affected by variable back-
water. However the traditional stage-fall-discharge (SFD) method remains commonly used in
such situations. The SFD method requires to measure the fall, hence the water surface slope
between the main gauge and an auxiliary gauge usually located further downstream along the
same river reach. As long as the flow depth variation along the reach remains limited, the flow
is said to be ’gradually varied” and usual friction formulas (Darcy-Weisbach, Manning-Strickler,
Chézy) designed for uniform flows can still be applied. According to these friction formulas,

discharge is proportional to the square root of the energy slope. Therefore, the real discharge Q)
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can be derived from the fall ratio to a power N, close to 1/2, as:

Q=0 (fj)N (4.2)

with @, the discharge computed from stage-discharge rating curve established for reference
conditions, F' the measured fall and F;. the fall established for reference conditions. The reference
conditions are the usual flow regime not affected by variable backwater.

Though this method is not fully hydraulically accurate [Schmidt, 2002], it proved to be
convenient and often produced acceptable discharge estimates at hydrometric stations with vari-
able slope [ISO 9123:2001, 2001]. Valuable streamflow records are based on this technique in
canals and rivers affected by the water level of lakes, seas, dams or main stems located fur-
ther downstream [e.g., Callede et al., 2001]. Nevertheless, it is still needed to develop practical
and rigorous methods for establishing such stage-fall-discharge models and for conducting the
uncertainty analysis of the resulting discharge records.

To bring new solutions to this problem, this work builds on the avenue opened by Petersen-
(Overleir and Reitan [2009a]. The Bayesian approach they introduced appears to be a promising
way to analyse stage-fall-discharge relations and the related uncertainties. Like other Bayesian
methods applied to stage-discharge relations [e.g., Moyeed and Clarke, 2005, Reitan and Petersen-
Overleir, 2008, Sikorska et al., 2013, Juston et al., 2014, Le Coz et al., 2014] it provides a flexible
framework for incorporating prior information on control segmentation and hydraulic extrapo-
lation beyond the largest gauged flows. Other non-Bayesian statistical methods have also been
applied to stage-discharge relations [e.g., Shrestha et al., 2007, McMillan et al., 2010, Westerberg
et al., 2011, Morlot et al., 2014, Coxon et al., 2015, McMillan and Westerberg, 2015], and might
be adapted to the case of SFD relations.

Compared to the original work of Petersen-@verleir and Reitan [2009a], we propose a different
stage-fall-discharge model. Petersen-Overleir and Reitan [2009a] considered the frequent situa-
tion when a gauging station is not permanently affected by variable backwater, which requires

a two-segment rating curve and a discharge continuity condition:

Cy(h — ho)b1 if hg < hg backwater unaffected
Q (h1,h2) = (4.3)
C1(h1 — he)"(hy — ho)bl_" if ho > hy backwater affected

where 7 is a parameter and C7 and by are hydraulic quantities according to Petersen-@verleir and

Reitan [2009a] model. Some assumptions of this model are disputable. The first concern is the
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assumption that the ’cease-to-flow’ stage, or offset hg, would be the same for the two controls.
A second concern is the statement that the transition to backwater-affected regime occurs when
the downstream stage ho is greater than hg. In this paper, both assumptions will be shown to
be disputable from a hydraulic point of view, and models based on different assumptions will be
introduced. Moreover, considering the common case of wide and rectangular channel controls,

the Manning-Strickler friction formula leads to:

BKg+v/Sp (h1 — h0)5/3 backwater unaffected
Q (hy, hy) = (4.4)
BKgy/(h1 — ha)/L (h1 — ho)®® backwater affected

where B is the channel width, Kg is the Strickler flow resistance coefficient, Sy is the river bed

slope and L the distance between the twin gauges. Matching equations (4.3) and (4.4) yields:

Ci1 = BKs\/Sy [m*3.s 1 and by =5/3 backwater unaffected

_ ~1/2 5/6 —11 . _ B (4.5)
C1 = BKgL [m”®.s77], n=1/2 and by = 13/6 backwater affected

with non-consistent values of C'; and b; parameters on the two components of the rating curve
model.
In the case where the backwater-unaffected control is no longer a wide rectangular channel

but a critical cross-section represented as a horizontal crested weir, equation (4.4) becomes:

CB'\/2g (h1 — h0)3/2 backwater unaffected
Q (h1,h2) = (4.6)
BKgy/(h1 — ha)/L (h1 — ho)*®  backwater affected

where C is the discharge coefficient, B’ the width of the weir and ¢ the gravity acceleration.

Matching equations (4.3) and (4.6) yields:

C, =CB'\/2g m*?2.57!] and by = 3/2 backwater unaffected

(4.7)
C1 = BKsL™Y? [m®°s7), n=1/2 and by = 13/6 backwater affected

with again non-consistent values of C7 and by parameters on the two components of the rating
curve model.

Probably due to this rating-curve model, the application cases reported by Petersen-@verleir
and Reitan [2009a] led to unrealistic estimates of some hydraulic exponents and coefficients.
Typically, the resulting median values for hydraulic exponents b; and b; — 7 of the two segments

(e.g. Table III: by = 2.4 and by — n = 1.99) were generally found to be inconsistent with the
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assumed controls, such as a wide, rectangular control channel (1.67) or a horizontal critical
section (1.5).

The original contribution of this paper to the Bayesian analysis of stage-fall-discharge rat-
ing curves is to introduce a model accounting for gradually varied flows in wide open-channels
(section 4.2). We also establish the segmentation of the rating curve based on continuity con-
straints between segments governed by a backwater-affected channel control and a backwater-
unaffected control, the latter being either a channel control or a section control. The operational
applicability is demonstrated using two real situations typical of channel-controlled and section-
controlled sites: the Rhone at Valence, France, and the Guthusbekken at station 0003-0033,
Norway [Petersen-Overleir and Reitan, 2009a], respectively (section 4.3). The performance of
the new method is tested through sensitivity analyses to priors and observations (section 4.4)
using a channel-controlled site that has been comprehensively documented with gaugings (the
Rhoéne at Valence, France). Last, the limitations of stage-fall-discharge rating curves are in-
vestigated using a challenging case in a mega-river with variable roughness due to bedforms:
the Madeira at Fazenda Vista Alegre, Brazil, affected by the variable backwater of the Amazon

River (section 4.5).
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4.2. STAGE-FALL-DISCHARGE (SFD) MODELS

4.2.1. Stage-discharge controls in gradually varied flows

The variable backwater due to unsteady downstream boundary condition can be caused by
the stage fluctuations of a reservoir, a lake, a tidal outlet, or even debris/ice jams or dike break
for instance. As in the idealised examples of figure 4.1, a station is not always affected by variable
backwater, so a transition (assumed to be instantaneous) to at least one unaffected control must
be considered. Necessarily, the backwater-affected control is a channel control since a section
control does not depend on the energy slope, nor on the flow conditions downstream of the
critical cross-section. Assuming that both the main and auxiliary gauges are located within a
gradually varied flow, we apply the conventional Manning-Strickler friction formula, assumed to
be valid for this kind of slightly non uniform flows. When the flow is rapidly varied or heavily
impounded, like in a lake or a reservoir, friction formulas like the Manning-Strickler equation do
not apply any longer.

The backwater-unaffected control can be either a section control (flow choked upstream of
a critical section) or a channel control (friction dominated flow). We will introduce two dif-
ferent SFD models for the section control (SFD-s) and the channel control (SFD-c) situations.
Considering two controls may not be enough, especially at stations where an unaffected chan-
nel control or a variable slope channel control can both take over a low-flow section control.
Obviously, other perturbations of the controls may not be captured by measuring the variable
slope, especially variable roughness (due to weeds, ice cover, bedforms, etc.), additional head
losses in compound channel flows and rating shifts due to morphodynamical evolution of the
channel [e.g. Westerberg et al., 2011, Morlot et al., 2014]. Only the issue of variable roughness
will be addressed in this paper, as an example of the limitations of stage-fall-discharge rating
curves (see section 4.5).

Figure 4.1-a shows a typical channel control situation upstream of a dam but would equiva-
lently apply to any type of variable downstream boundary condition. Depending on upstream
(discharge) and downstream (stage) boundary conditions, the primary gauge may be located
within a fairly uniform flow (cf. water profile (1)) or within a gradually varied flow (cf. water
profile (2)). It is very important to realise that the two controlling channels are not the same,
the former being centred around the primary gauge, whereas the latter is mainly located in

between the two gauges. A critical implication is that offsets h{, (mean bottom level at the main
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gauge) and hy (mean bottom level between both gauges) cannot be considered to be the same,
as assumed by Petersen-Overleir and Reitan [2009a]. Moreover, it clearly appears that their
transition condition when the auxiliary stage ho is equal to hg does not apply since hg is likely
to always remain greater than hg in such a deep, flat channel configuration. When velocity head
is negligible (V2 /2g < h), the friction slope can be approximated by the water surface slope,
estimated by (hy — ha)/L considering that the distance L is short enough to have a linear water
profile between the twin gauges (gradually varied flow assumption).

Figure 4.1-b shows a typical section control that may be drowned or not, according to dis-
charge and water level at a lake located downstream (again, any type of variable downstream
boundary condition may apply). The submersion of the weir does not necessarily imply a non-
unique rating curve: the channel control that takes over may be affected or not by variable
backwater from the lake. Again, the assumption that both section control (cf. water profile (1))
and channel control (cf. water profile (2)) have equal offsets hy (offset of the channel control)
and h{, (weir crest elevation) appears to be inadequate. Moreover, such a transition is usually
predicted to occur when the stage downstream of the weir hgs exceeds the weir crest elevation hg
(as used by Petersen-@verleir and Reitan [2009a]) or when (hgs —ho) < A(h1 —hg) with X\ ~ 2/3.
Actually such weir submergence conditions cannot be applied since usually the auxiliary gauge is
not located in the flow re-establishment section downstream of the control, rather much further
downstream. As a consequence, measured ho is substantially lower than hgs and the relation
between both stages is not straightforward since it depends on the hydraulic conditions along

the long reach between the weir and the auxiliary gauge.

4.2.2. Stage-fall-discharge rating curve models

4.2.2.1.  SFD-c model: channel controls with constant and variable slope

A channel control is modelled using a three-parameter power-law, after simplification of the
Manning-Strickler equation for a wide, rectangular cross-section: wetted area A ~ B(h1—hg) and
hydraulic radius Ry, =~ h1 — hg, with B the mean channel width and hg the average bottom level
at primary gauge. The backwater-unaffected control is assumed to have a constant friction slope
So, whereas the variable slope of the backwater-affected control is approximated by (hy — ha)/L

where L is the longitudinal distance between the two gauges.

Mansanarez Valentin 96 / 246



4.2. Stage-fall-discharge (SFD) models
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Figure 4.1 — Typical transitions for stage-fall-discharge model: (a) from non affected channel
control (water profile (1)) to a variable slope channel control (water profile (2))
upstream of a dam; (b) from non affected section control (water profile (1)) to
variable slope channel control (water profile (2)) upstream of a rivers’ confluence
or a lake. For the Guthusbekken case, the downstream station hso is located in the
lake (Gu). Red triangles correspond to the transition between gradually varied flow
and rapidly varied flow whereas green circle to the transition between uniform flow
and gradually varied flow.

Therefore, equation (4.4) can be rewritten as follow:

KgB (hy — ho)™ \/(hl —he —6,)/L if hy < k(hg) (variable slope)

K45B' (hy — )™ /Sy if hy >k (hy) (channel control)
(4.8)

Q (h1,h2) =

where §j, is the difference in datum reference levels between the auxiliary gauge and the main
gauge, and M an exponent related to the assumed friction equation and the cross-sectional

shape. M is equal to 5/3 for Manning-Strickler equation in a wide rectangular channel. Unlike
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existing stage-fall-discharge approaches, we deem it important to estimate the parameter Jy as
it may be affected by significant uncertainties.

Compared with Petersen-@Overleir and Reitan [2009a] we use two separate hg and h{, param-
eters for the two channel controls to avoid hydraulic conflicts. Moreover we assume the flow
resistance coefficients Kg and Kg and the widths B and B’ are different. In many cases, the
controlling channels are similar for both backwater-affected and backwater-unaffected conditions.
In such cases, equation (4.8) can be rewritten with K5 = K¢ and B’ = B.

Another important difference with the SFD model proposed by Petersen-@verleir and Reitan
[2009a] is that the transition condition comes as a discharge continuity condition for hy = & (hg)

in equation (4.8), which leads to:

KsB (r (h2) = ho)™ /(s (ha) — ha — 84) /L — K5B' (s (ha) — hp)™ /o =0 (4.9)

The Newton-Raphson algorithm is used to solve equation (4.9) and find the transition stage

K (hg)

4.2.2.2. SFD-s model: a section control and a variable slope channel control

If the backwater-unaffected control is a section control, it can be modelled as an equivalent
weir. Therefore, considering the most common situation, i.e. a natural or artificial control that

can be approximated as a horizontal-crested weir, equation (4.6) can be rewritten as:

/

’ N M
Q (b, h) CB +/2g (h1 — ho) if he < k’(h1) (section control)
1,12) =
KsB (hy —ho)™ \/(hi —hy — 6)/L if hy > &' (h1) (variable slope)
(4.10)

where the width B’ of the weir often differs from the channel width B, the discharge coefficient
C' is approximatively equal to 0.4, the exponent M " is close to 3 /2 and the gravity acceleration
g is given equal to 9.81 m.s~2.

Following Petersen-Overleir and Reitan [2009a], we do not consider the possible occurrence
of a third control, i.e. a constant-slope channel control, and we assume therefore that variable

backwater occurs as soon as the section control is submerged. Again, the transition between the

backwater affected and unaffected controls is computed through a discharge continuity condition
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for ho = x/(h1), which can now be solved explicitly:

/

’ 2 1\2M
KsB ] (hy—ho)*" '

I{,(hl) :hl —5h—L<

Unlike the case of channel controls, the transition condition is governed by the stage at the
auxiliary gauge: the weir is submerged and backwater affected channel control takes over when

stage ha exceeds &’ (hy).

4.2.3. Inference/Parameter estimation

The proposed method is an extension of the Bayesian framework associated with the BaRatin
method [Le Coz et al., 2014]. The main updates and extensions made for this study are described
hereafter. The reader is referred to Le Coz et al. [2014] for a comprehensive description of the
existing BaRatin framework and an overview of its principles.

Gaugings (ﬁl7i,ﬁg7i,Qi)i:17N are seen as estimates of the real values (hiy;, ho;, Qi)i=1,n of
stages and associated discharges. We further assume that stage errors are negligible compared
to discharge errors:

hii=hys

)

hai = haj (4.12)
Qi = Qi +eg, with eg, e N(0,ug,)
where the standard deviations ug, are assumed to be known. Depending on their measure-
ment technique and field procedure, uncertainty values were assigned to gaugings based on the
typical results of available propagation methods [e.g., Despax et al., 2016] and in-situ intercom-
parisons [e.g., Le Coz et al., 2016a].
The stage-discharge relationship is given by:

. indep. a
Qi = f(h1, hai|0) +ep; with e~ N (0, ofi ="+ 72Qz‘) (4.13)
where 6 = (01,...,0n,,,) are the rating curve parameters, €y = (€y,1,...,€s,n) are the structural
errors and (o¢1,...,0fN) are the standard deviations of the structural errors (ef1,...,€5n).

As discussed by Le Coz et al. [2014], an affine function for modelling the standard deviation
o is used. This affine model assumes that this standard deviation is dominated at low flows by

a constant term ; whereas at high flows the error is proportional to the discharge estimation Q.

99 / 246 Mansanarez Valentin



Chapter 4. Variable backwater and twin-gauge stations

Wide uniform distributions (between 0 and 10°) are used as non-informative priors for both ~;
and 7, parameters. We also assume that the structural errors (ef1,...,€s ) are independent.
This assumption may be acceptable when the gaugings are separated by a duration of several
weeks or months. However, it is more problematic in terms of uncertainty propagation, because
independent structural errors will be generated to produce uncertain hydrographs, even for
consecutive time steps separated by a few minutes or hours. This is a difficult issue that has no
complete solution as far as we know, and we refer the reader to the in-depth discussion in Le Coz
et al. [2014] for more details on this topic.

Combining equations (4.12) and (4.13) yields the following stage-fall-discharge relation be-

tween observed values, assuming independence between e, and €y ;:

Qi = f(ibl,ia EQ,Z|9) + €Q; + Ef,i with €Q; + Efﬂ' ~ N (0, \/m) (414)

Unknown quantities that have to be estimated are the parameters @ of the rating curve and
the parameters v = (7y1,72) of the structural error model. Equation (4.14) allows computing the
likelihood function as described in Le Coz et al. [2014]. Combined with prior distributions for
6 and ~, this yields a posterior distribution that can be explored by MCMC sampling [Renard
et al., 2006]. In the following sections, uncertainty bounds are computed from the MCMC
samples with a probability level of 95% (i.e. 2.5% and 97.5% percentiles), as usually done
in hydrometric applications [ISO/TS 25377:2007, 2007]. The maximum a posteriori (MAP)
estimator is used to estimate the rating curve. This estimator is the mode of the posterior

density.
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4.3. APPLICATION TO TYPICAL CASES WITH

CHANNEL AND SECTION CONTROLS

4.3.1. Channel-control case: The Rhone River at Valence

The Rhone River has a mean interannual discharge of 1690 m®.s™! at its outlet (Beaucaire
station, catchment area of 95590 km?). It flows along 812 km from a glacier in Switzerland,
through Lake Geneva down to the Mediterranean Sea.

At Valence station the Rhone drains a catchment area of 66450 km? (68% of the whole
catchment area). The primary gauge is located just upstream of a motorway bridge (Longi-
tudinal position: Kilometric Point 109.7 km, GPS locations: 4°53'03.7"E, 44°55'54.3"N). The
streamwise distance L between the two stations is known to be 3900 m + 200 m. The fric-
tion slope Sy at the highest flows is not accurately measured but is estimated to be roughly
0.001 mm~'+ 0.001 mm™'.

Figure 4.2 shows different cross-sectional profiles all along the section between the twin gauges.
Over approximately 2 km (down to the Kilometric Point 111.5 km) downstream of the primary
gauge, the channel is fairly uniform and rectangular with a mean width B =180 m 4+ 20 m;
then the channel gradually expands on its left side up to the auxiliary station (Longitudinal
position: Kilometric Point 113.6 km, GPS locations: 4°51'32.2"E, 44°54’04.1"N ). The mean
width between the two gauges differs from that around the primary gauge and is set to 200 m =+
100 m.

Both channel control offsets, hy and hé, are set to —3 m + 2 m. From existing hydraulic
models, both Strickler flow resistance coefficients Kg and Kg are set to 30 mis ! &5 mis L
The datum difference d;, between the two staff gauges is accurately levelled by the Compagnie
Nationale du Rhéne (CNR) and is set to 0 m + 0.05 m. Corresponding priors are summarised
in table 4.1.

68 gaugings were performed at the Valence station. Those gaugings are densely distributed
from 375 m3.s™! to 6717 m3.s™!, which roughly corresponds to the 50-year flood. The mean

3s7L Figure 4.3 shows the estimated rating curves as h; — @ plots

annual discharge is 1400 m
with the 95% total uncertainty envelopes. The SFD rating curves are plotted for 5 ho values
which correspond to 4 available gaugings (hy = 1.34, 1.93, 2.40 and 2.76 m) and to the maximum

he value (3.04 m) recorded over the last 40 years. As expected from the hydraulic analysis,
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Figure 4.2 — The Rhone River at Valence: cross-sectional profiles between the main and auxiliary

stations.
BaRatin Physical Units Prior SE'D-c results:
parameter parameter n1 distribution MAP [Qs.5; Qo7.5]
0, KsB  [ms.s™Y  A(6000,1582) 6712 [5641; 8578]
0, ho [m)] N(=3,1) 451 [-5.29; —3.69]
0, M~5/3 -] AN(1.6667,0.025) 1.67 [1.62; 1.71]
0, L ] (3900, 100) 3898 [3697; 4091]
0y h, m N(=3,1) ~1.43 [~2.16; —1.15]
0 K4B\/S, [m3s™Y]  N(171,46) 269 [216; 304]
0; 5 m] N(0,0.025)  —0.025 [~0.035; —0.018]
O M ~5/3 -] A(1.6667,0.025) 1.68 [1.64; 1.73]
7 error [m?.s™] U(0,10%) 69 [45; 91]
Y2 error [—] U(0,10°) 0.0009 [0.0002; 0.022]

Table 4.1 — Parameters, prior distributions and results of the Bayesian analysis of the stage-
fall-discharge rating curve of the Rhone River at Valence. The symbol N (u,0)
corresponds to the normal distribution with mean p and standard deviation . The
symbol U (a,b) corresponds to the uniform distribution on the interval [a, b].

individual rating curves for distinct ho values merge with the unaffected channel control curve
when h; exceeds the transition threshold x(hs2).

For the sake of comparison, results from the standard stage-discharge (SD) model is also
computed with a single constant-slope channel control, using the same prior information as for
the SFD model. The SD model is clearly not adequate for capturing the variable backwater
effect. Despite the MAP rating curve of this model agreeing with the highest gaugings (i.e.
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the unaffected channel control), it obviously fails to describe the scattered low-flow gaugings
(cf. figure 4.3). The associated total uncertainties are extremely high at both low and high flows.
On the opposite, all the MAP rating curves estimated by the SFD model agree with gaugings
and have much smaller uncertainties: total uncertainty is lower than +£10% for discharges above

2000 m3.s! (cf. figure 4.4). Relative errors of MAP predictions compared to observations

are also small and decrease with discharge. The lower agreement at very low flows may be

explained by the lack of low-flow gaugings available for calibrating the model (only 3 gaugings
at Q < 500 m3.s7h).
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+ Gaugings with 95% intervals coloured by h; value

Figure 4.3 — The Rhone River at Valence: stage-discharge representation of the stage-fall-
discharge (SFD) and stage-discharge (SD) models, with discharges in (a) natural
scale and in (b) logarithm scale. The SFD rating curves are plotted for 5 values of
he corresponding to available gaugings (hy = 1.34, 1.93, 2.40 and 2.76 m) and to
the maximum recorded value (3.04 m) over the last 40 years.

The SD and SFD rating curves can be used to propagate stage time series into discharge time
series (in this paper we always estimate instantaneous discharges). Only rating curve errors are
taken into account in such a propagation (i.e. stage errors are ignored). Figure 4.5 illustrates
the resulting uncertain hydrographs for the September-November 1993 period, which covers
the highest flood ever measured at the Valence station. Again, total uncertainties computed

by a standard stage-discharge rating curve (SD model) are extremely large: more than +70%
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Figure 4.4 — Application of the stage-fall-discharge (SFD) model to the Rhone River at Valence:
relative errors between the maximum a posteriori discharges (Qnap) and the gaug-
ings (Qobs). Error bars represent the parametric and total 95% uncertainty bounds
of the discharge estimates, with ho values colour-coded.

for low flows and between +40% and +60% for high flows. Moreover the SD model seems to
underestimate high flows. This assement is clear on the first and fourth gaugings on figure 4.5.
When the discharge is higher than the discharge associated with stage transition, both SFD and
SD model have the same formulation (channel control part in equation (4.8)) but their parameters
differ (KgB'\/% and h{) because there are no longer estimated on only high flows but also on
low flows for the SD model. The BaRatin SFD model shows much better performance. High flow
measurements are accurately estimated by the MAP rating curve and the related uncertainties
do not exceed £10% for discharges above 2000 m®.s~'. The model clearly makes the transition
from backwater affected to backwater unaffected channel control, when discharge () exceeds
the discharge threshold for h; = k(hg). That discharge threshold, plotted in green with its
uncertainties in figure 4.5, is found to decrease during the flood due to a concurrent decrease in

ha.

4.3.2. Section-control case: Guthusbekken at station

0003-0033

For an application of the proposed SFD-s model, we use the study of the Guthusbekken
stream at station 0003-0033 in Norway fully described in Petersen-Overleir and Reitan [2009a]

Mansanarez Valentin 104 / 246



4.3. Application to typical cases with channel and section controls

a - Stage h, at the main station
5 - Stage h, at the auxiliary station
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Figure 4.5 — The Rhéne River at Valence, flood of October 1993: (a) stage records h; and hg
at respectively the main and auxiliary stations with the estimated stage transi-
tion k (hg) of the stage-fall-discharge (SFD) model; (b) instantaneous discharge
estimated by the SFD and stage-discharge (SD) models.

who shared the data. It is a small, 2-metre wide stream contracted to 1.5 m as the flow goes
through a canyon and a natural sill of 0.2 m fall before widening up to 4 m as it enters into the
lake Vansjg. The critical section is periodically drowned due to variable backwater effects from
the lake when level gets high. The main gauge is located 7 m upstream of the sill whereas the
auxiliary gauge is actually located in the lake itself (cf. figure 4.1-b, mark Gu), at a distance of

about 1400 m from the main gauge. This situation is not ideal, since the measured fall divided
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by the constant distance between gauges may then be not representative of the actual water
slope in the gradually varied flow section.

27 gaugings were performed at the Guthusbekken station and 8 among them are reported to
be the only ones affected by variable backwater. Those 8 measurements are actually four ADCP
transects repeated twice, and 14 out of the backwater-unaffected 19 gaugings are also replicates.
As a consequence, only 16 independent gaugings could be derived from the whole dataset. De-
spite the limitations of this case study, it is the best documented at hand, and equation (4.10)
was applied to model the unaffected section control and the variable slope channel control.

From the description of the stream bed within a canyon, the Strickler flow resistance coefficient
Kg of the stream is guessed to be equal to 20 m3.s71 410 m3.s~!. As described above, the
mean width B between the two gauges is set to 4 m+ 2 m and the width B’ of the sill is set to
1.5 m£0.3 m. The distance between the two gauges is set to 1400 m + 100 m. Ignoring the
contraction effects, the sill can be approximated by a horizontal weir with discharge coefficient
C =0.40 &£ 0.05. The crest elevation, hz), is precisely assessed as 25.32 m (£ 0.02 m) whereas
the channel offset, hg, is left imprecise around 25.32 m (+ 4 m). The datum difference ¢, is
set upto 0 m + 0.2 m. Both exponents M and M related to the nature and shape of the
controls (wide rectangular channel and horizontal weir) are precisely specified respectively to
1.667 £ 0.05 and 1.5 £ 0.05, based on hydraulic formulas. These priors are summarised in
table 4.2. The BaRatin stage-discharge (SD) model with a single section control is also applied,

using the same prior information as for the SFD model.

Table 4.2 — Parameters, prior distributions and results of the Bayesian analysis of the stage-fall-
discharge rating curve of Guthusbekken.

BaRatin Physical Units Prior SEFD-s results:
parameter parameter distribution MAP [Q2.5; Qo7.5]
0, KsB mis™']  A(80,28.3) 44.0 [34.2;51.3]
0 ho [m] N (25.32,2) 25.12 [25.02; 25.18)]
0 M=5/3 -] MN(1.6667,0.025) 1.672 [1.615; 1.715]
04 L [m] N (1400, 50) 1417 [1304; 1498]
0 hl [m] N(25.32,0.01) 25.331 [25.324; 25.337]
O CB'v29 [mis’']  WN(2.7,0.3) 1.12 [1.05: 1.19]
0 Sn [m] N(0,0.1) 0.0138 [0.0061;0.0191]
0 M =3/2 [—] N (1.5,0.025) 1.507 [1.465; 1.552]
" - [m®.s™] U(0,10°) 9.3 x 107" [2.0 x 107%4.5 x 1077
Yo - -] 4(0,10°%) 0.031 [0.0029; 0.078]
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Figure 4.6 shows the results of the application of the BaRatin SFD-s model for section
controls, as hy — @ representations with the 95% total uncertainty intervals. The SFD rating
curves are plotted for 5 ho-values corresponding to one section control gauging (he = 25.21 m)
and to four gaugings affected by variable backwater (he = 25.55, 25.64, 25.72 and 26.03 m). The
stage-discharge rating curve computed for the backwater-unaffected section control is plotted as
a black dotted line. MAP values and 95% credibility intervals of each parameter of the SFD-s
model are summarised in table 4.2. Gaugings corresponding to the unaffected section control are
well seen on those representations (cf. figure 4.6) as they follow the weir law curve irrespective of
the ho-values. Gaugings affected by variable backwater are also well identified by the model, in

accordance with statements by Petersen-Overleir and Reitan [2009a] on the hydraulic situation

of these gaugings.
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Figure 4.6 — The Guthusbekken stream at station 0003 - 0033, Norway: stage-discharge repre-
sentation of the stage-fall-discharge (SFD) and stage-discharge (SD) models, with
discharges in (a) natural scale and in (b) in logarithm scale. The SFD rating curves
are plotted for 5 ha-values corresponding to available gaugings (25.21, 25.55, 25.64,

25.72 and 26.03 m). The sill law computed by the SFD model is added in dark
dotted line.

Figure 4.7 shows the agreement between predicted and gauged discharges as relative errors.

MAP rating curves estimated by the SFD-s model agree well with gaugings: error values are
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low. Total uncertainty envelopes are acceptable (less than + 20% at high flows) and have the
same width at high flows irrespective of the hy value. Uncertainty envelopes are large at low
flow (up to £ 100% for the total uncertainty).

The relative contribution of the parametric uncertainty to the total uncertainty decreases
when discharge decreases (cf. figure 4.7). Parameter 65 = CB’\/2g of the weir equation takes
posterior values more than twice smaller than prior values (cf. table 4.2). Prior information on
this parameter appears to be in disagreement with the information found in the gaugings: a
single horizontal weir may not represent well the complexity of this natural control. This cannot
be explained without further investigation of the site conditions, especially the geometry of the
canyon and its contracted section, and the possible transition to backwater-unaffected channel

control for highest stages.

120
100 Total uncertainty
MAP error

Parametric
80 uncertainty value

604 -<— Colour =h, h, [m]

26.00
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20+
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Figure 4.7 — Application of the stage-fall-discharge (SFD) model to the Guthusbekken stream
at station 0003 - 0033 in Norway: relative errors in percentage between the maxi-
mum a posteriori discharges (Qumap) and the discharge observations (Qops). Error
bars represent the parametric and total 95% uncertainty bounds of the discharge
estimates, with hy values colour-coded.

To sum up, the BaRatin SFD-s model for section control produces acceptable discharge esti-
mates for the Guthusbekken station: the agreement of predicted (MAP) versus gauged discharges
is good (less than + 20 % for @ > 0.03 m3.s_1). However those results yield hydraulically ques-
tionable rating curves. The hydraulic configuration of this station may be more complex than
assumed: channel within a complex canyon, auxiliary gauge located in the lake, transition to

backwater-affected control possibly not well defined, and transition to channel control at high

Mansanarez Valentin 108 / 246



4.3. Application to typical cases with channel and section controls

flow possibly overlooked. The scarcity of independent measurements, especially for backwater-
affected situations, also challenges the application of the model to that case. Consequently,
additional investigations in the directions described above may lead to a more adequate SFD

model, which may help in further reducing uncertainty.
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4.4. SENSITIVITY TO AVAILABLE INFORMATION

The SFD-c model (cf. equation (4.8)) is used to perform sensitivity analyses on the Rhone

River at the Valence station.

4.4.1. Sensitivity to prior information

Several sets of priors are used to determine which parameters require informative priors and
which ones are easily inferred from the data. The first set of priors includes all the available prior
information (see prior distributions in table 4.1). This set is named ‘fully informative priors’. In
the other eight sets of priors, named ‘non informative priors’, the precise prior distribution of
one of the 8 parameters has been replaced by a wide uniform, non informative distribution.

Results from this prior sensitivity analysis are shown in figure 4.8, which represents for each
parameter the prior density (in black), the posterior density associated with the fully informative
prior (in pink) and posterior densities associated with the 8 non informative prior sets.

The longitudinal distance L requires prior information to be identified, otherwise its posterior
density is very vague and encompasses physically unrealistic values. When the prior of this
parameter is more precise, its posterior density matches with prior density. This illustrates
that this parameter cannot be inferred from the gauging data only and instead requires prior
information. Similarly, parameters M and M’ also require precise informative priors.

Offsets hg and hj can easily be inferred from the information contained in the gaugings:
posterior densities are more precise than prior densities. Informative priors on those parameters
are not absolutely necessary. However, they can reduce correlation effects with other parameters.
Indeed parameters M’, hy and a = K¢B' /Sy appear to be correlated and any lack of prior
information on one of them can propagate to the two other ones (figure 4.8, last row). Figure 4.8
shows that if a non informative prior on M’ is assumed, the posterior density of a = K5B'\/Sy
keeps close to the prior distribution and the posterior density of offset h(, differs from other prior
sets.

The datum difference d;, can be inferred from the data and seems to have no direct connection
with other parameters. The KgB product can be identified from the data as well. However,
strong correlations between parameters KgB, hg and M impose to have precise prior information

on at least two of them.
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4.8 — Prior sensitivity analysis applied to the Rhone River at Valence: posterior and prior
densities of rating curve parameters for fully or partially informative priors.

4.4.2. Sensitivity to observations (gaugings dataset)

An important issue for the management of stations affected by backwater influence is to

establish a gauging strategy in order to optimise rating curve estimations and uncertainty as-

sessment. In this section the sensitivity of the stage-fall-discharge model to the gauging dataset

is investigated still using the Valence case. Several gauging subsamples are used: (1) gaugings

covering the whole range, (2) high-flow gaugings only, (3) low-flow gaugings only, (4) gaugings

with he <2 m, (5) gaugings with he = 2.4 m +0.01 m. For each of the 5 subsamples only 16
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gaugings are used to calibrate the stage-fall-discharge model and cross-validation is performed
on other gaugings.

The results of this analysis are summarised in figure 4.9. As expected, using only high-flow
gaugings (2) for calibrating the model yields larger uncertainties on low flows, and brings MAP
errors as large as + 50%. It may even happen that very low discharges cannot be estimated: the
MAP value of the hg parameter may indeed be higher than the hy value of the lowest gaugings.
This is because the KgB and hy parameters of the SFD model for low flows (cf. variable slope
part in equation (4.8)) have uncertain priors and are poorly identified from the data.

On the other hand, using only low-flow gaugings (3) reduces parametric uncertainties at low
flows but the model does not precisely identify high flow parameters from the data. Results for
K gB\/S% and hé remain close to their wide priors. High flow estimates are therefore affected
by large uncertainties.

Using only gaugings with low values of he (subsample (4)) seems to be an acceptable strategy.
Similar to the whole panel (1), MAP error values are centred around zero and the uncertainties
are small. Nevertheless, this strategy holds only if all the discharge range is represented. In fact,
it may even be problematic at very low flows: for this order of discharge, hy values are always
quite high. In figure 4.9-(4), parametric uncertainties on low discharges are larger than those
for the whole range.

Finally, using gaugings with a nearly constant hy value (2.4 m, subsample (5)) leads to
increased uncertainties of discharge estimates compared with the *whole range’, even if all the
discharge range is sampled: parametric uncertainties are higher, which shows the difficulty of

the model to estimate 'backwater’ parameters when the covariate hg is not variable enough.
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Chapter 4. Variable backwater and twin-gauge stations

4.5. APPLICATION TO A CHALLENGING CASE

4.5.1. The Madeira River at Fazenda Vista Alegre

The Madeira River is one of the two largest tributaries of the Amazon (including the Solimoes)
by mean discharge, the other one being the Rio Negro. Arguably, the Madeira River would rank
between the 4th and 8th largest rivers by mean discharge in the world [e.g., Latrubesse, 2008].

The main hydrometric station is at Fazenda Vista Alegre (GPS locations: 4°53'44.0”S,
60°01'19.9”W), Brazil, approximatively 92 km upstream of the auxiliary station of Borba (GPS
locations: 4°23'06.9”S, 59°35'39.3"W). The Fazenda station covers a basin area of 1324700 km?

3571 It is located at the downstream part of

with a mean interannual discharge of 31 000 m
the catchment and is strongly influenced by important variable backwater effect [Callede et al.,
2001] correlated with the yearly flood regime of the Amazon hydrosystem [Callede et al., 2002].

The river bed is covered with large sand dunes. The dynamics and relative submergence of
such bedforms induce flow resistance to vary with stage [e.g., Karim, 1995]. Flow resistance
computed from the gaugings was indeed observed to increase with stage, towards an appar-
ently asymptotic value (cf. figure 4.10). The flow resistance coefficients can be computed using
hydraulic radii R}, from the gaugings bathymetry profiles by inverting the Manning-Strickler for-
mula Kg = A\/ST)R}Q/ 3 /Q. As a first-order approach, possible hysteresis effects due to dune-flat
bed transitions [Shimizu et al., 2009] are ignored in this work.

As variable backwater effects are always present even during major floods, transition to an

unaffected channel control is no longer needed. Equation (4.8) is modified for a single control

rating curve as follows:

Q (1, hs) = K (hy) B (hy — ho)™ ,/%2_5’1 (variable slope) (4.15)

where the Strickler coefficient Kg can be considered to be either constant (Kg = Kchannel) OF tO
vary with stage. We propose the following empirical relation for modelling this stage-roughness

relation:

Kchannel - a(hl - hchannel)2 if hl S hchannel
Kg (h1) = (4.16)

Kchannel if hl > hchannel
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where « is a coefficient, hchannel and Kcpannel are related to the high-flow asymptotic roughness.
In the Bayesian analysis, the three parameters will be estimated as additional parameters of the
SED model.

Priors may be set up from the following considerations. Parameter « is expected to be
positive since the Strickler coefficient (inverse to Manning’s n) is expected to increase with
increasing submergence of the bedforms. Assuming that Kchannel cannot exceed the extreme
value of 100 mS3 571, for a possible difference of 10 m between stage k1 and Achannel, parameter
a needs to be smaller than 1 (otherwise Kg < 0). Therefore, a uniform distribution ¢(0, 1) is set
up as prior on parameter «. From the site configuration, the average roughness of the bankful
channel Kannel is assessed to be 35 m%.s_l + 10 m%.s_l. The stage hchannel is set up to
19 m+ 4 m.

The section between both gauges is a fairly straight reach with a mean width of 1200 m
which can vary (£ 200 m) due to the presence of few small islands and a bend upstream of
the auxiliary gauge. Cross-sectional shape is modelled as a wide rectangle, hence parameter M,
the hydraulic exponent, is set to 1.667 £ 0.05. The channel offset hg is set to =3 m+ 1 m
from available cross-sectional profiles surveyed at the station. The official value of the datum
difference 9, is —1.57 m. This value comes from quite uncertain topography measurements,
due to the long distances, the difficult maintenance of staff gauges in such mega-river sites,
and departures between geographical reference systems and the gravity-based hydraulic heads.
This value obviously leads to conflicts since it induces marked negative slope values at low flows
whereas reverse flows were never gauged. Uncertainty of this parameter is accordingly imposed
to & 2 m, i.e. the imprecise prior N'(—1.57,1) is specified.

Prior distributions based on this information are detailed in table 4.3. Three single-segment
rating curve models are applied: constant slope channel control (SD model), SEFD model with
constant roughness, and SFD model with variable roughness.

The SFD model with variable roughness is applied considering either an imprecise or a precise
prior on parameter d,. Two comparisons are made: the impact of the roughness model and
the impact of the parameter §; on the SFD model. The results are shown in figure 4.11 and
in table 4.3. Figure 4.11 is the propagation of the estimated rating curves from those three
models over the 2001-2004 period (3 hydrological years). Figure 4.11-a corresponds to the
comparison between the two prior options on the §; parameter for the SFD model with variable
roughness, figure 4.11-b is the comparison between the constant roughness and the variable

roughness options in the SFD model. All the models illustrate the yearly flood cycles: 3 floods
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over this period with, for each flood, approximatively 5 months of rising limb and 7 months of
falling limb.

The stage-discharge (SD) model is not appropriate for capturing the variable backwater
effects. The maximum posterior (MAP) curve markedly overestimates discharges (up to more
than 100%) at low flows and underestimates them (down to —11%) at high flows (cf. figure 4.11).
Related uncertainties are very large (up to more than + 100% at low flows and never less than

+ 40%).

4.5.2. Variable roughness and influence of datum difference
On

Both SFD models with or without variable roughness yield good results at high flows: MAP
curves agree well with gaugings and uncertainties fluctuate around £10% of the discharge. At
low flows the constant roughness option is unable to keep up the better results of the variable

357!, uncertainties are

roughness option (figure 4.11-b). For discharges lower than 20000 m
larger (between + 25% and £+ 70%) than for the variable roughness option (less than + 25%).
The constant roughness option implies a calibration of the roughness parameter on the whole
range of flow. This calibration leads to an overestimation of the roughness value: the model
adjusts parameters hg and M to compensate for this high value. This leads to unrealistic values
for the two parameters. The exponent value (1.78, in table 4.3), though realistic, does not match
with the hydraulic assumptions of a wide rectangular cross-section (prior value 1.67 +0.05). All
these results clearly show that accounting for the measured variable slope may not be enough
to accurately estimate low flows, when modelling a variable roughness is also required.
Different priors on §;, appear not to affect high flow estimates (figure 4.11-a): MAP values
and uncertainty envelopes are the same whether or not the prior on d; is imprecise. Indeed, for
high flows, the parameter J; has less influence on the computation of the variable slope. The
stage-roughness (Strickler coefficient) relation is moderately affected by the prior information on
Op, (cf. figure 4.10). The widths of the uncertainty envelopes are the same but the MAP curves
for precise but inaccurate prior on ¢y is further away from the manually computed Strickler
coefficient curve. A too precise but inaccurate prior on J; also involves higher uncertainties
at low flows. Below 20000 m3.s™!, uncertainties on discharges fluctuate between + 25% and
more than + 400% instead of less than 4+ 25% using a imprecise prior. The slope is sometimes

estimated to be negative over periods where reverse flows were never gauged nor observed. Then
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the result is discarded and no discharge is computed (cf. blank spaces in Figure 4.11-a in the
beginning of years 2002 and 2003 for the BaRatin SFD model with variable roughness and precise
prior on o). Therefore, in such a case the datum difference dy, is preferred to be estimated from
gaugings, as a free parameter of the SFD model. The prior uncertainty on this parameter has
to be set up according to each situation but can be kept reasonably wide since this parameter

has little interaction with the other ones.

N
o
n

W
o
T

® Computed Strickler coefficient from gaugings
Computed relation between stage and Strickler
— coefficient from gaugings
Maximum posterior with 95% total uncertainty interval:
BaRatin SFD model with variable
roughness and imprecise prior on &,
BaRatin SFD model with variable
roughness and precise prior on 8,

204

Strickler coefficient Kg [m%.s_1]

10 14 18 22

Stage hq [m]

Figure 4.10 — Strickler flow resistance coefficient of the Madeira River at Fazenda, as a func-
tion of stage at main gauge: data derived from gaugings, and empirical functions
calibrated either manually or automatically with Bayesian SFD models.

The BaRatin SFD model with variable roughness and imprecise prior on d;, parameter yields
good discharge estimations. Despite some very uncertain gaugings, MAP error values are always
under 10% for the other gaugings (under 20% for all). Associated total uncertainty envelopes
are also acceptable (less than +25% for low flows and less than + 10% for discharges @ >
20000 mg.s_l). This case illustrates the limitations of the stage-fall-discharge approach: when
flow resistance also varies as a function of flow depth, this has to be captured in the rating
curve model in addition to the variable slope due to backwater effects. It also illustrates the
importance of reflecting the real uncertainties of the prior information on the datum difference,

op, to accurately model low flow discharges.
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Figure 4.11 — The Madeira River at Fazenda over the 2001-2004 period: gaugings, MAP com-
puted flow records and their 95% total uncertainties envelopes. (a) the SFD model
with variable roughness is used for a comparison between two prior distributions
on the datum difference d: imprecise prior (£ 127% uncertainty) vs. precise prior
(£ 1.27% uncertainty). (b) comparison of the variable and constant roughness
options, both for a imprecise prior on d5. In both graphs, the results from the
standard stage-discharge (SD) model are also plotted.

4.5.3. A flood-specific rating curve

For a better understanding of the BaRatin SFD model with variable roughness according

to the yearly flood cycles, stage-discharge relations are represented in figure 4.12. MAP rating
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curves and their total uncertainty envelopes over the 1980-2013 period are represented as well
as for 5 contrasted hydrological years.

The rating curve of such phenomenon plots as a loop h; — @ relation (cf. figure 4.12). The
size and opening of the SFD rating curve of the Fazenda station depend on the magnitude of
the Madeira flood and of the Amazon flood, respectively. The loops have the same direction
as rating curves affected by hysteresis due to transient flows but differ by their characteristic
bow-shapes: during the rising limb, the hy — @ relation is more linear than during the falling
limb, opposite to the usual shape of the hysteretic rating curves. The station is less influenced
by the Amazon flows during the rising limb: the downstream and upstream stages increase in
similar proportions. Conversely, during the falling limb the influence of the Amazon main stem
increases. The energy slope decreases as the upstream stage hi decreases but the downstream
stage decreases slowly, due to the slower dynamics of the Amazon flood. Energy slope values

are then smaller than during the rising limb.

60000~ 60000~ 60000

,

hi—hy=0, _
D 20000~ # / D 20000 / / D 20000+ / / f[ ]
7 - 4e-05

12 16 20 8 12 16 20 8 12 16 20
Stage hy [m] Stage hy [m] Stage h; [m] 3e-05

Discharge Q [m®.s™"]

Discharge Q [m®.s™"]
Discharge Q [m®.s™"]

2e-05

60000~ 60000 60000

. 1e-05
40000- p 40000 40000 0e+00
4+
i
8 0

12 16 20 8 12 16 20 12 16 2
Stage hy [m] Stage hq [m] Stage hq [m]

harge Q [m®.s™"]
harge Q [m®.s™"]

Discharge Q [m>.s™"]

Disc
Disc

0- 04 0+
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Figure 4.12 — The Madeira River at Fazenda: stage-discharge representation of the results from
the SFD model with variable roughness and imprecise prior on datum difference
Op. Maximum a posteriori (MAP) rating curves for the 1980-2013 period and five

contrasted hydrological years are coloured according to the computed energy slope
(hy — hg — dp) /L.
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Chapter 4. Variable backwater and twin-gauge stations

Table 4.3 — Bayesian analysis of the stage-fall-discharge (SFD) rating curves of the Madeira River at Fazenda Vista Alegre: parameters, prior
distributions and maximum a posteriori (MAP) results with 2.5% and 97.5% quantiles (Q25 and Qg75).

Results: MAP[Q25; Qo7.5]

BaRatin MWMMMMMV Prior SFD model with Kg(h;) variable
parameters pa . distributions SFD model .
with units SD model . . precise but
with constant Kg reasonable prior

inaccurate prior

0n ~ N(=1.57,1) 8 ~ N'(~1.57,0.01)

0, B [m] N (1200, 100) - - 1245 [1061; 1404] 1296 [1096; 1436
0, KsB [ms.s7'] N (42000, 3500) - 46896 [42593; 52864] - -

0, KsB+/So [m3.s7']  N(1328,350) 240 [197; 287] - - -

0y ho [m] N(-3,0.5) —1.58 [—2.62; —0.56] 0.64 [—0.09, 2.40] —2.90 [-3.72, —=1.90]  —2.95 [-3.99; —2.11]
05 M =5/3[-] N(1.6667,0.025)  1.697 [1.644, 1.746] 1.780 [1.751, 1.828)] 1.687 [1.644, 1.725) 1.674 [1.641; 1.725)
0, L [m] N (92000, 500) - 92021 [91017; 92951] 92038 [91030; 92993] 91749 [91038; 92906]
05 Rehannel [m] N(19,2) - - 22.46 [21.00; 23.99] 20.13 [18.13; 21.43]
05 o m™ 3.7 u(,1) - - 0.121 [0.096; 0.161] 0.196 [0.136; 0.318]
07 Kehannel [m?.s'] N(35,5) - - 38.23 [33.04; 46.41] 40.59 [34.09; 46.88]
Og & [m N(=1.57,1) - —1.90 [-2.05; —1.83] —1.98 [-2.03; —1.92]  —1.59 [—1.62, —1.58]
Y - m®s7Y U(0,10°) 8596 [3189; 9324] 2060 [186; 2537 126 [13; 598] 2472 [2063; 2874]
Y2 -] U(0,10°) 0.00024 [0.0011; 0.19] ~ 0.0022 [0.00047; 0.052]  0.041 [0.024; 0.054]  0.00015 [0.00011; 0.013]
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4.6. Conclusions and perspectives

4.6. CONCLUSIONS AND PERSPECTIVES

To avoid some assumptions made in the model proposed by Petersen-@verleir and Reitan
[2009a] for the Bayesian analysis of stage-fall-discharge rating curves, we introduced an alter-
native model accounting for transition between a backwater-affected control and a backwater-
unaffected control. The main differences lie in the definition of distinct parameters for both
controls and in solving transition between controls using continuity conditions only. The new
model also acknowledges the uncertain nature of the difference in reference levels of the main
and auxiliary gauges.

The robustness of this new model was investigated through sensitivity analyses to the prior in-
formation and to the gaugings dataset. When the stage-fall-discharge domain is well documented
with gaugings, the performance of the new model appears to be acceptable for hydrometric ap-
plications. In particular, transition to backwater-unaffected flow was correctly simulated in the
Rhone River at Valence station, discharge estimates are in good agreement with gaugings, and
uncertainty bounds are usually acceptable. The example of a section control combined with a
variable slope channel control (Guthusbekken) yielded acceptable though less convincing results,
likely due to limitations in both hydraulic knowledge and gaugings available at that site.

A challenging channel-controlled case, the Madeira at Fazenda Vista Alegre, eventually
showed the limitations of the stage-fall-discharge approach: in that large sand-bed river with
large dune systems, flow resistance also varies as a function of flow depth, and this has to be
captured in the rating curve model, in addition to variable slope due to backwater from the
Amazon main stem. This difficult case also illustrates the interest of estimating the difference
in staff gauge reference levels, when this parameter bears non negligible uncertainties.

With such improvements brought to the Bayesian approach initiated by Petersen-Overleir
and Reitan [2009a], the method now appears as a mature and credible solution to the issue of
stage-fall-discharge rating curves, and as a substitution for the graphical and empirical tech-
niques still proposed in hydrometry guidance and standards [e.g., ISO 9123:2001, 2001]. It has
been operationally deployed by the Compagnie Nationale du Rhone (CNR) for developing SFD
rating curves at their twin-gauge stations. The method provides rating curve results in both
functional and table formats; uncertainty results come as probabilistic distributions from which
any statistics can be derived. The uncertainty analysis is compliant with the concepts of the
Guide for the expression of the Uncertainty in Measurement (GUM, e.g., JCGM 100:2008 [2008])

and could embed the propagation of stage record uncertainties.

121 / 246 Mansanarez Valentin



Mansanarez Valentin 122 / 246



Chapter 5

Rating changes due to bed evolution

This chapter is planned to be published soon.
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5.1. Introduction

5.1. INTRODUCTION

5.1.1. Rating changes

Various types of rating changes may occur temporally according to more or less complex
processes (bed evolution, vegetation growth, debris/ice jams, dike break, etc.). The mechanisms
behind these processes are not addressed in this chapter but comprehensive reviews can be found
in the literature [e.g., Schumm, 1977, Schumm and Winkley, 1994, Knighton, 1998].

Rating changes lead to the modification of the elements controlling stage-discharge relation
through changes in the channel geometry, its roughness or the type of control. These modifica-
tions imply changes in the rating curve parameters, and possibly in the equation itself. There
are two types of rating changes due to bed evolution: a net change refers to the difference be-
tween two stable rating curves before and after the morphogenic event; a transient change is a
continuous evolution of the stage-discharge relation during the morphogenic event (e.g. transient
scour-fill) or even after the morphogenic event (gradual adjustments of the local topography).
We do not address the issue of transient changes: only net changes between two rating curves
are studied in this chapter.

Generally, the low-flow section control is more frequently affected by net changes than the
high-flow channel control. This is because the section controls are sensitive to local fluctua-
tions in the bed topography whereas the channel controls are not. Both section controls and
channel controls are affected by changes in the whole channel controlling reach (such as degrada-
tion/aggradation or widening/narrowing of the channel reach). Hence, minor flood events may
induce changes at low flows whereas greater flood events are required to induce changes at high
flows.

The main issues related to rating changes include the detection of rating change times and
the estimation of successive rating curves with their associated uncertainties. The former issue

is not treated in this manuscript but should be addressed in further developments.

5.1.2. Rating changes in operational practices

Once the times of rating changes are identified, the common practice is to assess the stage-

discharge relation by estimating steady rating curves for each period of validity defined by these

125 / 246 Mansanarez Valentin



Chapter 5. Rating changes due to bed evolution

detected times [Rantz, 1982b, WMO No. 1044, 2010]. It is hence assumed that the hydraulic

controls are stable over these periods . Several practices exist:

(1)

a naive practice is to estimate each of these steady rating curves from scratch, using
only gaugings performed during the period of validity of the stage-discharge relation. It is
problematic because it is not always possible to re-gauge the SD relation over its whole
range of variability. Indeed, at some stations, flood events frequently yield rating changes:
the upper segments (high flows) are thus not always gauged. Therefore, the quality of the
rating curve assessment is fully controlled by the available information, i.e. the number of

gaugings performed between two rating changes;

sometimes some gaugings are kept from older periods (especially high-flow gaugings) when
they are assumed unaffected by the rating change. However, as with the previous practice,
the rating curve is re-estimated from scratch without transferring the information from
the previous periods. It therefore still takes many gaugings to properly assess the rating
curve, which is not always possible. For instance, in France usually, the rating curve after
a rating change is officially updated once a new set of gaugings is available to establish

the new rating curve;

another common practice is to use some measurements across periods but start with the
information brought by a ‘base’ curve or by the rating curve of the previous period, as
illustrated by Burkham and Dawdy [1970]. In this practice, rating curve parameters are
often estimated or adjusted one at a time, verifying between each of these estimations the
goodness-of-fit with discharge measurements. This practice is common in North Amer-
ica [e.g., Rantz, 1982b, WMO No. 1044, 2010, Environment Canada, 2016], but usually
changes in offsets only are assessed (handled). These changes are deviations from a ‘base’
rating curve: a ratio describing the discrepancy between this base curve and observations
is used to compute a correction (or ‘shift’) to apply to the base curve. For this practice,

parameter changes need to be estimated with at least a few new discharge measurements.

Note that some practices impose a ‘convergence’ point to the successive rating curves [Rantz,

1982b, WMO No. 1044, 2010, Morlot et al., 2014]. All rating curves are assumed to converge

at this particular point. Above this point it is sometimes assumed that a unique steady rating

curve, or an upper ‘convergence segment’ applies. This is equivalent to using ‘knee-bend’ or

‘truss’ patterns for the rating shifts described in Environment Canada [2016]. Log scales used

to plot SD relations may give the false impression that parallel rating curves converge at high
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flows. However, the ‘convergence’ point or the ‘base curve’ methods should not be applied sys-
tematically, without a site- and event-specific expertise. Indeed, some stage-discharge relations
changes up to the upper segment: the assumptions of a ‘convergence’ point or segment no longer
apply and may bring misleading extrapolation results.

As highlighted by Reitan and Petersen-Overleir [2011], these practices need discharge mea-
surements which are not always available in sufficient quantity: the uncertainties of the resulting
streamflow data may be very large when there are not many gaugings. Last, the correction ratio
is sometimes computed using only the discharge measurement values, without taking into account
their uncertainties. Therefore, a highly uncertain discharge measurement may be misinterpreted

as the sign of a new rating change.

5.1.3. Rating changes in the research literature

Some proposed methods tackle the problem of changing rating curve by modelling the evo-
lution of the cross-sectional shape as a change of roughness in the rating curve [e.g., Leonard
et al., 2000]. Although this has shown acceptable results, some limitations can be pointed out
as these methods are site-specific and cannot be applied to any station.

A few other methods account for rating changes through the rating curve assessment. McMil-
lan et al. [2010] investigate the uncertainties in the stage-discharge relation induced by cross-
sectional changes due to scour, transport and deposition of sediment. These uncertainties are
quantified under epistemic error scenarios. For a given stage, a probability-density function of
true discharge is computed and used in a likelihood function. Rating curve parameters are finally
calibrated using a Markov Chain Monte Carlo (MCMC) method. Westerberg et al. [2011] also
assessed uncertainties from cross-sectional changes but rating curve calibration is made with a
fuzzy-regression approach. Reitan and Petersen-@verleir [2011] propose a stage-time-discharge
model with time-varying rating curve parameters implemented as an Ornstein-Uhlenbeck pro-
cesses (continuous time stochastic processes). Ornstein-Uhlenbeck processes corresponds to the
continuous-time analogue of autoregressive models of order one. Estimation of the parameters of
their stage-time-discharge model is performed using a Bayesian framework and MCMC simula-
tion techniques. The temporal variations of rating curve parameters can be hence determined by
their method from the information available in the gaugings. Guerrero et al. [2012] also explore
the temporal variability of rating curves and related uncertainties using the GLUE methodology.

Morlot et al. [2014] propose a dynamic method for assessing rating curves uncertainties. In

their method, each gauging is seen as an individual realisation of the current rating curve. The
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method leads to computing as many rating curves as there are gaugings at a hydrometric station.
An uncertainty model is associated with each of these rating curves. It takes into account the
stage record uncertainties, the discrepancy between rating curves and gaugings, uncertainties
from gaugings and the ‘aging’ of the computed rating curves. This ‘aging’ is assessed using
a variographic analysis proposed by Jalbert et al. [2011]. This dynamic method starts to be
operationally implemented by Electricité De France (EDF), the first French power company but
remains specific to their station management procedures: frequent gaugings are needed to ensure
the acceptability of the rating curve results.

McMillan and Westerberg [2015] include both random and epistemic error components in a
single likelihood function to assess rating curve uncertainty including the uncertainty induced
by rating changes. This method does not require prior specification of the particular types and
causes of epistemic error at the hydrometric station and therefore can be easily applied to a wide
range of catchments.

All these methods are heavily based on gaugings and hence uncertainty results depend on
the number and frequency of available discharge measurements. Since collecting many gaugings
for a frequently-changing rating curve is challenging, it seems particularly relevant to also use
information on the hydraulic configuration as efficiently as possible. It could be also a first step
for real-time applications as the rating curve estimation can be performed with the hydraulic

configuration only, before any new gauging is available.

5.1.4. Objectives

In this chapter, we will only focus on the issues of modelling the changing rating curve
and assessing the associated uncertainties. The detection of the times of rating changes is left
aside: we therefore work assuming the periods are known. This detection should be further
investigated in future work, as a second step towards a fully operational method, applicable in
real-time. Before that, we need to develop a robust method for estimating the rating curves and
changes, based on physical priors and gaugings. Transient changes and continuous transitions
of rating curves between periods such as ‘phasing’, ‘merging’ and ‘blending’ are also left aside
in this chapter.

The proposed model in this chapter is a Bayesian analysis based on steady stage-discharge
rating curves, with the knowledge of the period of validity of these rating curves. It incorporates
information from hydraulic knowledge and stage-period-discharge observations (gauging data).

Moreover, the proposed model avoids deciding whether or not a particular gauging is relevant
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for several periods. Indeed, gaugings are always assigned to the period during which they were
performed: it is the rating curve parameters that may or may not change across periods. Both
changes in coefficients and offsets of the rating curves are considered by the model: the practi-
tioner has to decide which parameters may change between periods. Information on changes is
transferred across periods: if a change is precisely identified at a given period, it should help es-
timating the rating curve for nearby periods. Information on change is also transferred between
controls: if a change is precisely identified for the main channel, it should help estimating the
changes for the low-flow controls as changes in channel controls may affect changes in low-flow
section controls. The obtained total uncertainty combines parametric uncertainty (estimation
of the rating curve parameters) and structural uncertainty (imperfection of the rating curve
model). This method provides the estimation of the rating change across periods.

The application of the proposed method is illustrated with two case studies:

(a) the Ardeche River at Meyras station, France. Rating changes are due to marked bed
degradation after floods. This station has well-gauged stage-discharge rating curves for

stable periods;

(b) the Wairau River at Barnett’s Bank station, New Zealand. This is a complex site with
frequent rating changes. Some periods have few or no gaugings, in spite of very frequent

gauging operations.

Further exploration of the stage-period-discharge (SPD) rating curve estimation process is

presented:
e the evaluation of the transfer of information between controls;
e the evaluation of the transfer of information between periods;

e the comparison with the naive strategy of re-estimating a steady stage-discharge model

from scratch for each stable period, independently.
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5.2. VOCABULARY, NOTATIONS AND

ASSUMPTIONS

In the remainder of this chapter, it is assumed that the stage-discharge relation is governed
by N. controls: a succession (activation or deactivation) of Ny section controls, then a channel
control (riverbed) and finally a succession (activation only) of N, — Ny — 1 floodways (channel
controls). For example, the following describes a common situation: a succession of Ny = 2
section controls, then a channel control, then an additional floodway control (N, = 4). The

matrix of controls M (defined in section 2.2.4) can be written as follows:

100 0]

Ne=2 01 0 O
M =

3 0010

NC:4_0011_

‘Change’ or ‘rating change’ refers to any modification of the stage-discharge relation. A
‘stable period’ is defined by any period of time between two consecutive changes. The ‘reference
period’ is the period from which all deviations are computed. Generally, the reference period is
chosen so as to maximise the available information.

Let Nchange denote the number of changes. There are hence Neyange + 1 periods. Periods are
numbered in increasing order from the most recent period to the oldest. The reference period
is numbered k.of. Any period older than the reference period has an index greater than kif,
Eref € [1, Nehange + 1] (for instance Kyer + 1, kref + 2, etc.) and any period more recent has an
index smaller than ket (for example kyer — 1, kper — 2, etc.).

The rating curve model developed in this chapter makes the following restrictive assumptions:
e the dates of stable periods are known;
e the matrix of controls does not change, i.e. controls cannot be created or deleted;

e exponents ¢ of the control equations @@ = a(h — b)° do not change, i.e. the physical
properties of a control may change but neither its type nor its geometrical shape (e.g. a

rectangular cross-section control cannot become triangular).
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The first assumption implies that we do not tackle the issue of detecting changes. Instead
we solely focus on modelling rating curves subject to net changes at known dates. The model
developed in this chapter is therefore called the stage-period-discharge (SPD) model, to make it

clear that the period is a known input of the model.
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5.3. THE STAGE-PERIOD-DISCHARGE (SPD)

MODEL

5.3.1. Rating curve equation for several periods

Following the notations of section 5.2, the rating curve equation Q(k)(h) for the k-th period

can be written as follows:

Nseg Ne Ci
QW) =% (1 o [(h) > MG, j5)al? (h— ") J) (5.1)
=1

i=1 1—12""

where:

e h is the stage;

@ is the discharge;

® Ngeg is the number of segments. This yields Ngeg + 1 transition stages K,z(»k), i € [0, Neegl,

with Hék) = bgk);

e M (i,7) is the matrix of controls (see section 2.2.4), taking 1 if the control is active, 0 oth-
erwise. As creation or deletion of controls are not allowed (see assumptions in section 5.2),

the matrix M does not change between periods;

e the function 1 L)) (h) is the indicator function of the interval [Hz(li)l; /ﬁﬁk)

1—12""

[ equal to 1

if h belongs to this interval and 0 otherwise;

. a(-k), »® and ¢; are the parameters of the rating curve equation for period k. a'® is the
J J J J

coefficient related to the characteristics of the control j, bgk) is the offset and c; is the
exponent related to the type of control (which does not depend on k, see assumptions

in section 5.2).

(k)

The transition stage x; ' can be deduced from other parameters using a discharge continuity

condition for h = Hgk) between the i-th control and the (i+ 1)-th control. If the (i+ 1)-th control
(k)

adds to the i-th control, the transition stage x; "’ is equal to the offset bgi)l of the (i + 1)-th
control. Conversely, if the (i 4+ 1)-th control replaces the i-th control, the discharge continuity
condition leads to:

o) (K99 Y o8, (W09 49) 6.2

)
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The Newton-Raphson algorithm is used to solve numerically equation (5.2) and find the

()

transition stage

Note that this is different from what is done in the current operational version of BaRatin,
where parameters b, not k, are deduced using a discharge continuity equation. To address stage-
discharge changes due to bed evolution, it is more convenient to work with offsets rather than

transition stages.

5.3.2. The matrix of changes

Changes of parameters between two successive periods are described by the matrix MC called

the ‘matrix of changes’. It is a (Nchange + 1; 3/Ve) matrix defined by:

—1 if k = ket (dummy value indicating the reference period)
MC(k,j) = 1 if the j*® parameter changes at the k'™ period (5.3)

0 if the j' parameter does not change at the k™ period

The matrix MC just below is a general example of a matrix of changes assuming that only offsets

b;k) may change between periods for all the controls (wrt stands for with respect to).

Rating curve parameters

MC 15% control 274 control o Nc-th control

k agk) bgk) cgk) agk) bgk) cgk) . agl\;c) bg(,cc) c%cc)

1 0 1 0 0 1 0o ... 0 1 0
Recent 2 0 1 0 0 1 0o ... 0 1 0 ) change wrt

3 0 1 0 0 1 0o ... 0 1 0 period 2+1

kret — 1 0 1 0 0 1 0o ... 0 1 0

reference
Period Kret -1 -1 -1 -1 -1 -1 ... -1 -1 =1
period
Frer +1 0 1 0 0 1 0o ... 0 1 0
Nehange — 1| 0 1 0 0 1 0o ... 0 1 0 > change wrt period
Old Nchange 0 1 0 0 1 0 - 0 1 0 Nchangcs -
Nehange +1 \ 0 1 0 0 1 0o ... 0 1 0

The row number ko indicates the reference period. It is filled with —1 which are just used
as dummy values to identify the reference row. Other rows are interpreted depending on their

position with respect to the reference row:
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e if the row k has a greater index than the reference row (i.e. the period is older than the
reference period), value 1 indicates that the parameter changes with respect to the period

k —1 (and value 0 indicates no change);

e if the row k£ has a smaller index than the reference row (i.e. the period is more recent
than the reference period), value 1 indicates that the parameter changes with respect to

the period k + 1.

Note that in the matrix MC presented just above, values of columns of exponent c¢; are set
to zero. Indeed, it corresponds to the assumption that the types of controls (weir, channel, etc.)
do not change over periods.

Changes of parameters between the k-th period and the reference period are quantified by

deviations parameters Aagk) and A%

; ), k # kyef. They are called cumulated changes (for coef-

ficients and offsets, respectively). The parameters of each period can be written as functions of

the cumulated changes:

(k) a§-k+1) if MC (k,3(j —1)4+1) =0 (no change);
a =
’ o (1 Aal”) i MC(k,3(j =1)+1) =1 (change);
Vk < kpef,
plE Ty if MC(k,3(j —1)+2) =0 hange);
w_ | 3G -1)+2)=0 (10 chango)
o (Kref) (k) : _ :
by — Ab; i MC (k,3(j —1)+2) =1  (change);
(k) a§-k_1) if MC (k,3(j —1)+1) =0 (no change);
a.’ =
’ o (1 Aal”) if MC(k,3(j = 1)+1) =1 (change);
Vk > krefv
o8 bﬁ»k_l) if MC (k,3(j —1)+2) =0 (no change);
T plhen) A : _ .
by — Ab; i MC (k,3(j —1)+2) =1  (change);

(5.4)
(kref)

Note that changes of the reference coefficients a; are expressed multiplicatively because

these parameters are factors of the stage h in the basic control equation @ = a(h — b)¢. Alter-

(kref)
J

natively, changes of the reference offsets b are expressed additively as they are linked with

stage h by addition.
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5.4. BAYESIAN INFERENCE

5.4.1. Parameterisation

Let 8 = (Orc,y) denote the inferred parameters where parameters Orc are the SPD rating
curve parameters and parameters v = (71,72) are the parameters of the error model. 6 takes

the following form:

(ret)-th 15t (kret — 1)-th  (kpet + 1)-th (Nehange + 1)-th
period period period period period
0 = (O(kjlﬁf‘)7 9(1)7 e 0("71@1"_1)7 0(,‘7!‘ef'i']-)7 cen 0(-Z\rchange'i‘1)7 7) (55)
where: 15t control N-th control
agkref) bgkref) c1 . ag\’;;ef) bg\l;(fef) CNC

e(kref) e(kref) e(kref)

kre kre kl‘e
e(kref):<‘9§ f)v 95 f)a 91(?, f)a ceey Usn Zos Uy 15 3Nc>

Note that parameters ~ of the structural error model, defined in section 2.4.1, are not assigned

to any period: they are assumed to remain constant across periods.

For all k # ke, vector o) represents the couple of cumulated change parameters Aagk) and
Ab§-k), filled in this order and sorted by the number of controls of the k-th period. In this vector,
for each control, only cumulated change parameters for which rating curve parameters change

are specified. In the example related to section 5.3.2, vectors 0% take the following form:

15t control N-th control
A Ay
Vk € IIl’ Nchange + 1]]7 k 7é krefu e(k:) = ( ng) ce 91(\12 )
5.4.2. Likelihood computation
As described in section 2.4.1, gaugings (}VL“ Ei, @Z) [N are seen as the N estimates of the

N real values (h;, k;, Qi)ie[[l; N] of stages, periods and associated discharges. As dates of changes

are imposed known, we assume that Vi € [1; NJ, ki=k € [1, Nehanges + 1]. Each gauging is,
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therefore, associated to the stable period k; during which it was performed. We also further

assume that stage errors are negligible compared to discharge errors:

k; = k; (5.6)

~ . indep.
Qi =Qi+eg; with eg; Vi N (0,uq;)

where the standard deviations ug; (uncertainties of discharge measurements) are assumed to be
known (see section 2.3).

The true discharge is then written as the discharge predicted by the rating curve plus a
structural error:

Q; = f (hi, k; Ol(fé)) +€ri with €fi in(rigp. N (0, Ofi ="+ "}Q@)
—_——

~

Qi

(5.7)

where Ogcé) = <0(kmf),0(ki)) are the rating curve parameters of the period k; (for k; = kyef,
Ogcé) = @(Frer)), €f = (€41,...,€¢N) are the structural errors, (o¢1,...,0fn) are the standard
deviations of the structural errors (ef1,...,€5n) and Q = (@1, ... ,@N) are the discharge
estimations related to the N gaugings (see section 2.4.1).

The linear function used for modelling the standard deviation o ; is the same as that described
in section 2.4.1. We also assume that the structural errors (€1, ..., €7 n) and the discharge errors
(€Q.1,---,€Q,N) are independent.

Combining equations (5.6) and (5.7) yields the following stage-period-discharge relation be-

tween observed values:

Q=1 (ks

0&3) +egi+ep; with egi+ep; ~N (0, ,/JJ%J. + ual) (5.8)

The likelihood L of observed discharge values é for the stage-period-discharge (SPD) model

is given by:

L (é‘e = (0R077) )E’a é) = ﬁpnorm {@z
=1

f (Ei, ki

ki
9&3) o+ ué} (5.9)
where Q = (@1, ... ,@N) are the NV gauged discharge, h = (?Ll, .. ,?LN) are the N observed

stage values, k = (%1, e jN) are the related periods and pyorm[2z|m, s| denote the probabil-

ity density function (pdf) of a Gaussian distribution with mean m and standard deviation s,
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k . .
evaluated at some value z. Moreover, 01(1()3 denotes the corresponding rating curve parameters

assigned to the period k.

As an aside, equation (5.9) implies that each gauging is assigned to one (and only one) specific
period. This is to be contrasted with the standard practice of using some gaugings across several
periods (typically high-flow gaugings), arguing that they remain representative of the stage-
discharge relation despite the changes (that typically affect low flows). In the SPD model, it is
the stable parameters that are used across periods.

Indeed, consider the simple example of a single-control rating curve changing only in offset
between two stable periods (number 1 and 2) and that only 2 gaugings were performed for each
of the two periods. Let é = (@1, @2, @3, @4) denotes these gaugings (ordered by periods in this
example) and let h = (?Ll,%g,ﬁg,?u) and k = (El = 1,%2 = 1,%3 = 2,%4 = 2) be their related
stage and period values, respectively.

The rating curves for the two periods are given by:

QR =a(h—bM)

. (5.10)
QW) =a(h-1b?)
Therefore, the likelihood L takes the following form:
L (Q‘C, b(1)7 b(2)77a i”’ E:) = Pnorm _@1 f(ibh%l =1 a, ¢, b(l))’ \/m J
X Pnorm _@2 f(ﬁ27%2 =1a,c, b(l))’ \/m - (5 11)
X Pnorm _@3 f(ﬁ?)?E:" =2a,c, b(Z))’ \/m ]
' ), '

X Pnorm _@4 f(il47%4 =2a,c, b : \/m

Parameters a and ¢ appear in all 4 terms of this quadruple product. Their estimation is hence
informed by all available gaugings (4 gaugings). Conversely, each offset only appears in 2 terms
of the quadruple product. Their estimation is hence only informed by gaugings of the related
period (2 gaugings each).

This simple example highlights the difference with techniques based on the ‘aging’ of gaugings
as such ‘aging’ is not needed in the SPD model because of information transfer between periods

through the stable parameters (here, a and c).
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5.4.3. Prior specification: introducing alternative
parameterisations

Bayesian inference requires specifying a prior distribution for the vector of parameters @ as
described in section 5.4.2. However, the prior information that the practitioner may have is not
always consistent with this parameterisation. Typically, he may prefer specifying a prior dis-
tribution for a change between two successive periods, as opposed to a change with respect to
a reference period, as parameterised in section 5.4.2. In such a case, it is necessary to trans-
form the prior distribution entered by the practitioner into the prior distribution in the final

parameterisation. This section describes such transformations.

5.4.83.1.  Cumulated changes vs. incremental changes

The information used to specify priors on rating change parameters can take different forms:

e bathymetry profiles may be available for all periods. In such a case it is possible to directly

specify priors for the cumulated change parameters Aagk) and Abgk)

e an analysis of the sediment transport capacity may provide some information on the pos-

sible change after a morphogenic flood. However this information is necessarily expressed

as a change between two successive periods.

We therefore introduce parameters 5a§-k) and 5b§-k), k # k. They are called incremental

changes (as opposed to cumulated changes). Incremental parameters 6a§-k) and 5b§-k) can be

expressed as a function of cumulated parameters as follows:

5 = AP — AgFTY
k kre -1 J J J

T b sbF = ApF — AplETY
sat = AalP

Vk € {kpet — 1; ket + 1}, J J (5.12)
5ot = AptM

J J
k> bt 1 5a§k) = Aag-k) — Aa(kfl)
> Kref y

bl = Ap{ — AplEY
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Inversely, the cumulated parameters can be expressed as a sum of incremental parameters:

*) max(k,kres—1) (m)
Aaj = Z (5aj
m=min(k,kre+1)
VE # Ere, (5.13)
®) max(k,kpes—1) )

m=min(k,kper+1)

Note the vocabulary convention we adopt here: a cumulated change is with respect to the
reference period (symbol A) whereas an incremental change is between two successive periods

(symbol §).

5.4.83.2.  Links between hydraulic controls

Irrespective of the type of prior information (cumulated change A or incremental change d),

(k) (k)
j or offsets bj

and for any rating curve parameters (coefficients a ), changes for a given period
k can be linked between controls. Indeed, consider the example in figure 5.1 which illustrates
the frequent case of a change due to the scouring of the channel over the whole reach (with no
change in the channel width): only the offset of the channel control changes. However, because
the riffle lies on the riverbed, the offset of the corresponding control should also be affected by
a similar change (middle panel in figure 5.1). We therefore refer to such a change as a global
change.

In addition, the riffle may move longitudinally and its crest elevation with respect to the
riverbed may also slightly change. Consequently the offset of the corresponding control may also
be affected by a local change, which adds to the global change (right panel in figure 5.1). This

implies that the changes are linked between controls, in the sense that the global change affects

both riffle and channel controls, whereas the local change only affects the riffle control.

Before change Global change Global + Local changes

100 m’s”!
100 m*.s”!

10 m*s”

100 m*.s”!

1mis’

& B\/—
Staff gauge B IR eReee & B .........

Figure 5.1 — Illustration of local and global riverbed changes. The cross-section is at the staff
gauge.
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It is therefore of interest to adopt a parameterisation that reflects the existence of global and

local changes. This corresponds to the ‘additive link’ option shown in table 5.1: the change for

the riffle is the sum of a global change parameter (5bgk) and a local change parameter 5ll(f1), while

the change for the channel is equal to the global change parameter 5bgk)

only. By contrast, a
naive parameterisation would be to use two unrelated parameters for the riffle and the channel,

as shown in the ‘no link’ column of table 5.1.

Parameterisation options

Control Change G Tink  Additive link  Multiplicative Tink
Rifle  Global + Local  d0{" 608" + o1} 5b%)
Channel Global 5bY) 5b%F) A x b
Floodway None 0 0 0

Table 5.1 — Parameterisation options for the example shown in figure 5.1

It is also of interest to discuss these parameterisations in relation with the information that

can be used to specify priors:

e channel bathymetry profiles for two periods can directly provide information on the global

change parameter § bék) ;

e an analysis of the sediment transport capacity may provide information on the possible
channel change after a morphogenic flood: again this directly provides information on the

global change parameter 5b§k);

e the stage record also provides another useful source of information. Consider for instance
the stage record in figure 5.2: changes can clearly be seen by focusing on the smallest
stage values. However, such small stage values are related to the riffle control, and are
hence informative for the combined global + local change. This is inconvenient because it
provides information for a sum of two parameters, which cannot be decomposed for each

parameter individually.

In order to allow using the latter source of prior information in a convenient way, a third
parameterisation is proposed as shown in the ‘multiplicative link’ column in table 5.1: a single

parameter (5bgk) is now used to describe the combined global + local change affecting the riffle.

The global change for the channel control is described with a multiplicative coefficient /\l(f2) of
the combined change. It is expected that this coefficient should remain fairly close to 1.
The parameterisations proposed above for a simple three-control case can be generalised in

several ways:
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Figure 5.2 — Illustration of the use of a stage record to get information on the combined global
+ local change.

e an arbitrary number of controls can be considered as long as the assumptions made in sec-
tion 5.2 are met (succession of section controls, then a main channel, then addition of

floodways). This leads to table 5.2;

e changes can also affect the coefficients ag.k): this would typically occur for a change in the

channel width. This can simply be obtained by replacing b’s by a’s in table 5.2.

Note that the framework above is flexible enough to account for practices recommended in
rating curve standards [e.g., ISO 1100-2:2010, 2010], described by Rantz [1982b], WMO No.
1044 [2010], Environment Canada [2016] or implemented in operational software (e.g. Aquarius
software [Halmilton, 2015], used by the USGS, Environment Canada and many others). In
particular, a shift of the rating curve (in the sense of a geometric translation parallel to the
stage axis) is obtained by modifying all controls by the same change (as implemented in Aquarius
software): it corresponds to setting local changes to 0 in the additive parameterisation (551(;{61) =0
in table 5.1) or the multiplicative coefficient to 1 in the multiplicative parameterisation ()\l()kQ) =1

in table 5.1). More complex changes (as those described by Rantz [1982b], WMO No. 1044
(k)

[2010]) can also be obtained with changing coefficient parameters a;".
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Parameterisation options

Number Control Change No Tk Additive ink  Multiplicative Tink
1 Section Global + local 1 Jbgk) 5b§\l,?+1 + éll(fl) 5bgk)
N, -1 Section Global + local Ny — 1 aby)_,  ob% | + 018" | )

N, Last Section  Global + local N, obyy) e, + o1 ably)
N,+1  Main channel Global by a5 M or x 0bY)
N, +2 Floodway Floodway 1 b5 b M g X ObY)

N, Floodway  Floodway N. — Ny —1 by aby) A, % o0y

Table 5.2 — Parameterisation options for incremental changes in offsets bg-k) for a given k period.

A similar table (b <> a) can be made for incremental changes in coefficient parameters

agk), and for cumulated changes (0 <+ A and A <> A).

5.4.83.3.  Prior transformation formulas

While several parameterisations are possible for prior specification, the inference will always
be made with the final parameterisation described in section 5.4.1. It is therefore necessary to
transfer the prior information specified by the practitioner into this final parameterisation.

In the remainder of this current section 5.4.3.3, only offsets b;k) are considered. The reasoning

applies to coefficients agk) alike. Consider for instance the prior parameterisation corresponding

to the additive link option, with incremental changes for the offsets. The final parameterisation

can be obtained with the following formula (derived from equation (5.13)):

max(k,krer—1)
Abgk) _ 3 (&1(;?) + 55%’31) if j < Ng+1 (section control)
m=min(k,kret+1)
Vk 7& krefa
max(k,kret—1)
Abg.k) — Z 6b§m) if j > Ns+1 (channel control)
m=min(k,kyes+1)

(5.14)

Assuming that the practitioner always uses independent normal distributions to specify priors

(k)

for all parameters 5b§-k) and 6lb7 ;

, the joint prior distribution of cumulated changes Abg-k) (final
parameterisation) follows a multivariate normal distribution, whose mean vector and covariance
matrix can be deduced from the prior means and variances specified by the practitioner, as
described in appendix B. Appendix B also describes the formulas for all other prior specification

options (cumulated vs. incremental changes, no link vs. additive link vs. multiplicative link).
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5.4.8.4. Interest of prior preprocessing

Prior preprocessing, explained in section 5.4.3.3, allows taking into account various sources
of prior information. This information is transferred into the final parameterisation according
to links between controls and between periods.

Figure 5.3 illustrates how this transfer of information is performed. Prior information given
by the practitioner corresponds to the local and global incremental change parameters (5l *) and
5b( ;i€ [1;Ng], j € [Ns+1; Nc] and k € [1; Nehanges + 1], & # ko) for an additive link between
controls. These parameters are assumed to be independent, correlations between each of them
are hence zero (left panel in figure 5.3).

Local and global incremental Incremental Cumulated
change parameters change parameters change parameters
R ] ; : Sb‘f“ or | ‘ ‘ | AbP | o7 07
&*® - » Links F »2 | | Links
»e - ey CAEARIEIE
o pE2s. >
2 S8 -

071

(3,
Ab ) 051
P s
’.’ Abl o7t 086 | oer

ApSY | os | 086

0.82 058 07

EEERS 443 5E
FESRBE:  BEERER. Y
SEERRER.  BREERES - PEPSI

Prior information given Prior t . tion 1 Prior transformation 2:
by the practionner rior transtormation final parameterisation

B ke
b3

Figure 5.3 — Prior preprocessing: effect of links between controls and between periods for an
additive link option. The upper triangular part of these matrix shows the correlation
between parameters while the lower triangular part is the scatterplot of Monte-Carlo
sampled values.

The first prior transformation takes into account links between controls for each period.
Therefore, for a same period non-zero correlations appear between incremental change param-
eters 5b§-k). The second transformation takes into account links between periods: incremental
changes are transformed into cumulated changes. Non-zero correlations appear also between
periods, these correlations being larger for closer periods (see figure 5.3).

These correlations appearing in the final prior distribution are very important, because they
will play a key role in the transfer of information between controls and between periods. As
an illustration, figure 5.4 shows the joint prior distribution for cumulated change parameters

(5)

of two successive periods (parameters Ab§4) and Ab;’ of the application at Meyras station,
see section 5.5.1). As soon as one of these parameters is precisely identified (e.g. Ab§4) = -2

or Abg4) = 2), the other one (Abg‘%)) becomes also more precisely identified according to the
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strength of the correlation. Therefore, any information on change parameters from observations
on a specific period and/or controls is propagated to other periods and controls through this

final parameterisation.

o w

Cumulated change Abﬁ‘r’) [m]
I
w

-6
-3 0 3 0.0 0.2 0.4
Cumulated change Abg") [m] Density
Prior density of cumulated Prior density of cumulated Prior density of cumulated
change parameter Ab} with change parameter Ab‘} given change parameter Ab‘} given
95% confidence interval AbY) = -2 with 95% confidence AbYY = 2 with 95% confidence
(coloured area) . "~ interval (coloured area) . "~ interval (coloured area)

Figure 5.4 — Prior preprocessing: information transfer between two cumulated parameters. Data
comes from the application at Meyras station for an additive link between controls.
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5.5. APPLICATION TO DISTINCT CASES

5.5.1. The Ardeche River at Meyras, France

5.5.1.1. Data and models

At Meyras station (see section 2.5) morphogenic events occur periodically and sometimes
lead to marked net changes in the stage-discharge relation. Since 2001 until the major floods of
Autumn 2014, four main flood peaks can be distinguished: 04/11/2011, 07/09/2010, 01/11/2008
and 17/11/2006. These four main floods correspond to official dates of rating changes. The

periods delineated by these dates are summarised in table 5.3.

Period Start date End date Numbgr of

number gaugings
1 04/11/2011 00:00 18/09/2014 00:00  (25,11,13,1)
2 07/09/2010 00:00 04/11/2011 00:00  (24,9,15,0)
3 01/11/2008 00:00 07/09/2010 00:00 (14,8,6,0)

e

17/11/2006 00:00 01/11/2008 00:00  (8,2,6,0)
20/10/2001 00:00 17/11/2006 00:00  (33,7,24,2)

ot

Table 5.3 — The Ardeche River at Meyras: stable periods between 2001 and 2014 and re-
lated number of gaugings per segments (total, riffle, main channel, and main chan-
nel + floodway).

Figure 5.5 shows all the available discharge measurements (216) since year 1984. 104 gaug-
ings were performed during the period of interest (2001-2014). Distributions of these gaugings
through controls for the five stable periods are listed in table 5.3. The first two segments (riffle
and main channel) were densely gauged whereas the third one (main channel 4+ floodway) was
almost never gauged.

The five sets of gaugings related to these periods appear to be well aligned and usually cover
a wide range of stages (Figure 5.5), except for the third segment (main channel + floodway) for
which only three gaugings were performed over these periods (see table 5.3). The shifts can be
clearly seen in figure 5.5 except for the change after the 17/11/2006 (smaller flood) which is not
obvious in the gaugings.

The most recent stable period (period number 1) is set up as the reference period. We use

the same hydraulic configuration as in section 2.5. For this station, we assume that only the
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Figure 5.5 — Gaugings available at the Ardeche River at Meyras station.

offsets of the first two controls change between stable periods since the floodway and the banks

of the main channel are quite stable (rock). The MC matrix of changes takes the following form:

Rating curve parameters

MC 15 control 21 control 3™ control
k

al bgk) cl bgk) cy  ag bgk) c3
Recent keg=1({-1 -1 -1 -1 -1 -1 -1 -1 -1 change wrt
2 0 1 0 O 1 0 0 0 0 previous period
Period | 3 0 1 0 0 1 0 0 0 0
4 0 1 0 0 1 0 0 0 0
Old 5 0 1 0 0 1 0 0 0 0

Therefore, the rating curve equation for the E™ period, k € [1;5] can be written as follows:

ay (h - bgk)fl if h<r® (first segment)
Q(k) (h) = as (h — bgk)>cz if kP <h<by (second segment) (5.15)
as (h - bgk))C2 +as(h—03)® if h>bs (third segment)
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5.5.1.2.  Prior specification

As the bathymetry is not available for all the periods, cumulated change parameters on offsets
(parameters Abgk) and Abgk), k € [2;5]) cannot be specified: incremental change parameters are
therefore preferred.

For the additive link option all local and global incremental change parameters (51,(){",1) and 5b§k),
k € [2;5]) are set to 0 m=£1 m whereas for the multiplicative link option, the incremental change

parameters for the first control (6b§k), k € [2;5]) are set to 0 m £ 1 m and the multiplicative
coefficients ()\gk), k € [2;5]) are set to 1 £0.5.

5.5.1.8. Results

Figure 5.6 shows the estimated rating curves as stage-discharge representations with 95%
uncertainty envelopes, for the five periods. Whatever the link option between controls (figure 5.6-
a for an additive link; figure 5.6-b for a multiplicative link), posterior results are almost identical.
This can also be seen in figure 5.7, which shows that estimated discharges are virtually identical
with both options. Therefore, only the additive link option is used in the remaining of this case
study.

The SPD model with an additive link between controls yields accurate rating curves that
agree well with gaugings (figure 5.6). Moreover, these rating curves are precise, due to the high
number of gaugings for all the periods.

Most parameters of the rating curve are precisely estimated (figure 5.8). Among stable
parameters (figure 5.8-a), the third control parameters a3z and b3 are less precisely estimated
due to the scarcity of high-flow gaugings (the posterior is similar to the vague prior). Changing
offsets are very precisely estimated for all periods (figure 5.8-b). The rating change between
periods 3 and 4 is very large (around 0.4 m) while changes between other periods are much
smaller: this was already observable in gaugings (figure 5.5). The rating changes are almost
entirely explained by global changes (figure 5.8-¢) with the local changes being always precisely
identified close to zero (figure 5.8-d). It matches with the knowledge we have at this station:
scouring of the whole channel has indeed been observed.

Figure 5.9 shows the agreement between predicted and gauged discharges as relative errors.
MAP rating curves estimated by the SPD model with additive link option agree well with

gaugings: error values are acceptable (less than +20%), except for the fifth period which has a
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Figure 5.6 — The Ardeche River at Meyras: stage-discharge representation of the stage-period-
discharge (SPD) model with discharges in logarithm scale: (a) for the additive link

option; (b) for the multiplicative link option.

higher variability in low-flow gaugings (see figure 5.5). Total uncertainty envelopes are acceptable

for every period (less than £30% at high flows).
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Chapter 5. Rating changes due to bed evolution

5.5.2. The Wairau River at Barnett’s Bank, New Zealand

5.5.2.1. Data and models

The Wairau River is located in the northern South Island of New Zealand (see figure 5.10-a)
and drains a catchment area of 3825 km? [Clark et al., 2008]. It flows along 169 km from the
Spenser Mountains, down into Cloudy Bay of Cook Strait. It is a braided river with highly
mobile bed.

Barnett’s Bank station, near the outlet of the Wairau basin, is a mobile gravel bed where the
cross-section changes frequently with floods. The gauge at Barnett’s Bank is located 500 metres
upstream of a road bridge, 4 km upstream of the sea. Variable backwater effects from the sea
are assumed negligible. Moreover, hysteresis effects are also neglected, outweighed by the river
bed movement and the steep gradient [McMillan et al., 2010].

A shingle-made riffle controls the stage-discharge relation at low flows (see figure 5.10-b): it
is approximated by a rectangular section control. As flow increases, a main channel takes over
the riffle and then a floodway is added to this main channel for high flows. Both channel controls
are assumed to have wide rectangular cross-sectional shapes. Overbank flows in the floodplain

are not considered here.

(a)

Figure 5.10 — The Wairau River at Barnett’s Bank: (a) the Wairau basin showing (left) loca-
tion; (right) the basin with elevation, figure reproduced from Clark et al. [2008]
and McMillan et al. [2010]; (b) view from above of the hydraulic controls at the
Barnett’s Bank station.

The Barnett’s Bank station is the longest and most reliable record of the Wairau River [McMil-
lan et al., 2010]. 270 gaugings were performed from 11/08/1999 to 07/04/2015 (see figure 5.11):
it corresponds to a frequently gauged station with more than 17 gaugings per year on average.

However, low-flow changes are severe and frequent: the stage-discharge relation is scattered

(see figure 5.11) over time. Overall, a marked scour occurred around 2004, then the channel
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Figure 5.11 — Gaugings available at the Wairau River at Barnett’s Bank station.

aggraded again and changes are of much less amplitude in the few recent years. 60 official rating
changes were recorded during this 15-year period from 29/07/1999 14:45 to 06/03/2015 21:00,
which means, on average, almost 3.8 new ratings per year and 4.4 gaugings per period. Thus,
stable periods are seldom gauged on average despite the large number of gaugings.

In this chapter we focus on a more frequently gauged period, from 18/11/2006 15:30 to
13/05/2010 21:00. 10 changes were recorded for a total number of 91 gaugings (8.2 gaugings per

period on average). This information is summarised in table 5.4.

Period Start date End date Number of
number gaugings
1 12/06/2009 17:00 13/05/2010 21:00 24
2 28/04/2009 19:15 12/06/2009 17:00 3
3 13/02/2009 05:30  28/04/2009 19:15 3
4 24/01/2009 09:00  13/02/2009 05:30 4
5 23/06/2008 17:00  24/01/2009 09:00 17
6 02/03/2008 07:45  23/06/2008 17:00 7
7 18/12/2007 23:00  02/03/2008 07:45 4
8 08/10/2007 11:30 18/12/2007 23:00 10
9 23/05/2007 18:00 08/10/2007 11:30 7
10 14/01/2007 14:45  23/05/2007 18:00 4
11 18/11/2006 15:30 14/01/2007 14:45 8

Table 5.4 — The Wairau River at Barnett’s Bank: stable periods between 2001 and 2014 and
related numbers of gaugings. Dates in grey are the official dates of net changes.

153/246

Mansanarez Valentin



Chapter 5. Rating changes due to bed evolution

The most recent period is set up as the reference period. Only offsets of the first two controls

are assumed to change between periods. The matrix of changes MC takes the following form:

Rating curve parameters

./\/lc 15¢ control 2" control 3™ control
k

al bgk) C1 a9 bék) C2 as bgk) C3

ket=1({-1 -1 -1 -1 -1 -1 -1 -1 -1 change wrt
Recent 2 0 1 0 0 1 0 0 0 0 previous period
3 0 1 0 0 1 0 0 0 0
4 0 1 0 0 1 0 0 0 0
5 0 1 0 0 1 0 0 0 0
Period 6 0 1 0 0 1 0 0 0 0
7 0 1 0 0 1 0 0 0 0
8 0 1 0 0 1 0 0 0 0
9 0 1 0 0 1 0 0 0 0
Old 10 0 1 0 0 1 0 0 0 0
11 0 1 0 0 1 0 0 0 0

Therefore, the rating curve equation for the k™ period, k € [1;11] can be written as follows:

ap (h - bgk))c1 if h<rk® (first segment)
QW (h) = a9 (h — I)gf))c2 if k) <h<by (second segment) (5.16)
as (h=b87)" + a5 (h— b3 if h> by (third segment)

5.5.2.2.  Prior specification

Field visit and discussion with station manager (Mike Ede, Marlborough Region Council) al-
lowed to specify the following prior information. Widths of the riffle, main channel and floodway
controls are respectively set to 66 m + 10 m, 25 m + 5 m and 150 m & 30 m. From existing hy-
draulic models, bed slopes of both channel controls are equally set to 0.00143 £ 0.0005. Strickler
flow resistance coefficients of both channel controls are also equally set to 25 m3.s~! +10m3.s L.
For the most recent period (number 1), offsets of the first and second control (parameter bgl)
and bgl)), are set to 2 m £+ 0.5 m. The offset bgl) corresponding to the overflow stage of the
main channel into the floodway is set to 2.35 m + 0.2 m. This transition stage is assumed stable

between periods: only offsets of the first two controls are assumed to change between stable

periods.
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Bathymetry profiles are not available: consequently, incremental change parameters (param-
eters 5bgk) and 5b§k), k € [2;11]) are used. For the additive link option all local and global
incremental changes (511(){61) and 5bék), k € [2;11]) are respectively set to 0 m £ 0.2 m and
0 m £ 0.4 m. We also use the multiplicative link option, and prior distributions are set in order
to match with prior distributions of the additive link option. This can be done by applying

(k)

property 2 in appendix B. As a result, incremental changes 0b;’ of the first control are set to

0 m £ 0.4472 m and the multiplicative coefficients )\ék) are set to 0.8588 4 0.5.

5.5.2.8. Results

Figure 5.12 shows the estimated rating curves as stage-discharge representations with 95%
uncertainty envelopes for the eleven periods and for both additive and multiplicative link options
(respectively figure 5.12-a and figure 5.12-b). Results are very similar for both options. This
is further confirmed by figure 5.13 which shows that the estimated discharges are almost equal.
Therefore, only the additive link option is used in the remainder of this case study.

Overall the rating curves agree with gaugings (figure 5.12-a), however uncertainty is much
larger than in the Meyras case study, due to the smaller number of gaugings per period. There
is a lot of variations in the MAP values of transition stages k) between the first two controls
(figure 5.12-a). For some periods (e.g. periods 7 and 8), the second segment seems to be ne-
glected as these transition stages reached the overflow stage bs. For these periods, the transition
stages ) have wide skewed distributions: they are not precisely identified in gaugings (see fig-
ure 5.14). In fact it goes a step further: most of the transition stages are identifiable (as posterior
distributions differ from prior distributions) but still remain wide. This may be due to the low
number of low-flow gaugings on the first two segments. It may also show some limitations of the
assumptions on changes: the offset of the third control (floodway) may change across periods.

Stable parameters for the third control (a3 and b3) are well identified: parametric uncertainty
envelopes are within 10% of the MAP value (figure 5.15-a). This is due to the numerous high-
flow gaugings on the third segment. Conversely, the coefficient a; of the first control remains
similar to its wide prior distribution. Noticeable changes can be seen for offsets of the first two
controls (figure 5.15-b). The precision of the estimated offsets depends on the availability of
low-flow gaugings. For instance, the offset for the lower control is very precisely estimated for
periods 6 and 10 thanks to gaugings performed at very low flows. As for the Meyras case study,

global changes (figure 5.15-c) appear much larger than local changes (figure 5.15-d).
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Figure 5.12 — The Wairau River at Barnett’s Bank: stage-discharge representation of the stage-
period-discharge (SPD) model with discharges in logarithm scale: (a) for the ad-
ditive link option; (b) for the multiplicative link option.

The overflow stage is identified in gaugings (MAP value of 2.46 with 95% total uncertainty

envelopes under 5%, see bs in figure 5.15-a). Three quarters of the gaugings are assigned to
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Figure 5.13 — Comparison of estimated discharges Qnap for the stage-period-discharge (SPD)

model between additive and multiplicative link options for the Wairau River at
Barnett’s Bank.
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Figure 5.14 — Application of the stage-period-discharge (SPD) model to the Wairau River at
Barnett’s Bank: boxplots of the transition stages between the first two controls.
The MAP value of the overflow stage b3 is represented in black vertical line.

the third segment (see figure 5.12-a). There is hence not enough discharge observations (only
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24 gaugings for 2 controls and 11 periods) for identifying the transition stages between the first
two controls.

Figure 5.16 shows the agreement between predicted and gauged discharges as relative errors
for the additive link option. MAP rating curves agree with gaugings: error values are within
+20%. Total uncertainty envelopes are acceptable at high flows (less than +20% for @ >
50 m>.s7!) for all the periods. Parameters ag and bg of the third control (floodway, high flows)
are indeed well identified as discussed above. The second period, with only three high-flow
gaugings, illustrates the performance of the model for high flows: all uncertainty envelopes and
MAP errors are less than £20%. Total uncertainty envelopes are higher at low flow (within +

60%) especially for poorly-gauged periods (e.g. fourth and tenth periods).
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Figure 5.16 — Application to the stage-period-discharge (SPD) model to the Wairau River at Barnett’s Bank: relative errors between the
maximum a posteriori discharges (Qnap) and the gaugings (Qops) for the additive link option between controls.
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5.6. EVALUATION OF THE

STAGE-PERIOD-DISCHARGE (SPD) MODEL

The objective of this section is to highlight the ability of the stage-period-discharge (SPD)
model to transfer information between periods and between controls. Moreover, the SPD model
is compared to a stage-discharge (SD) model applied separately to each stable period, which

would correspond to the most naive practice. This evaluation is based on the Meyras case study.

5.6.1. Transfer of information between controls

The impact of the link between changes in the riffle control and changes in the main channel
control is studied. The SPD models with ‘no link’ and ‘additive link’ options are calibrated using
all the gaugings of the first period but only high flows gaugings of the second period. For the
additive link option, incremental change parameters are set to 0 m + 1 m (global change 562(k))
and to 0 m £ 0.01 m (local change 511(){61) ). The same prior information is used for the ‘no link’
option.

Note that prior standard deviations of the local incremental changes (5ll()ﬁ) differ from those
used in section 5.5.1: we impose low values to better highlight the transfer of information between
controls.

The results are shown in figure 5.17 as the stage-discharge representations of the first two
periods for the two link options. Densities of the offset bgz) of the first control (riffle) of the
second period are also shown.

On the first period both options yield similar results: uncertainty intervals and transition
stages are nearly identical. On the second period results differ at low flow: uncertainty intervals
are much wider for the ‘no link’ option. As there is no gauging for the first control (riffle)

during the second period, the posterior distribution of the incremental change parameter 6b§2)

is entirely based on the vague prior information. Therefore, the density of related offset bgz) =

bgl) —5b(12) remains vague (figure 5.17-d). This illustrates that the ‘no link’ option cannot transfer
information from the channel control, for which gaugings are available.

Conversely, for the ‘additive link’ option, the incremental change parameter 5b§2) = 6ll(721) +

5b§2) is identified much more precisely. This is because parameter 5b(22), corresponding to the

incremental change for the main channel, is identified in high-flow gaugings of the second period.
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The resulting density of the offset ng) = bgl) - 5l£21) - 5bg2) is therefore more precise. In turn,
uncertainty intervals for the rating curve is also much more precise, while remaining consistent

with validation gaugings (figure 5.17-c, although gaugings are on the edge of the uncertainty

interval).
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Figure 5.17 — The Ardeche River at Meyras over the 2001-2014 period: stage-discharge repre-
sentation (a-b-c) and density of the offset bf) (d) for the SPD model using all
gaugings of the first period but only high-flow gaugings of the second period for
calibration. Comparison between the SPD model with an additive link between
controls and the SPD model with no link between controls.

Mansanarez Valentin 162 / 246



5.6. Evaluation of the stage-period-discharge (SPD) model

Using a link between controls therefore allows transferring information from one control to

another and thus compensating the lack of gaugings.

5.6.2. Transfer of information between periods

The SPD model with additive link option is calibrated using only gaugings of the first period.
Posterior estimates are compared with prior ones to highlight the impact of the link between
periods. The prior distributions for both incremental change parameters (global and local) are
set to 0 m = 0.5 m. These prior distribution differ from those used in section 5.5.1 in order to
better highlight the transfer of information and its dynamics across periods.

The results are shown in figure 5.18 which shows the stage-discharge representations for all
stable periods. The rating curve is precisely identified for the first period as the posterior interval
is much smaller than the prior one (see first period in figure 5.18). This is not surprising given

the high number of gaugings.
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Figure 5.18 — The Ardeche River at Meyras over the 2001-2014 period: stage-discharge repre-
sentation of the SPD model using only gaugings of the first period for calibration.
Comparison between posterior and prior results.
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The information identified on the first period is propagated to other periods: posterior in-
tervals are smaller than prior ones (figure 5.18). This propagation tends to fade away as the
period k is further away from the first period (reference period): for the fifth period the posterior
interval is much closer to the prior one than for the second period.

This can be further explained by analysing posterior densities of the offset bgk) (figure 5.19).
For the second period, the posterior density is more precise than the prior one. As soon as
the period is too far from a gauged period, information no longer propagates: offset parameters
becomes based on prior information (see the fifth period in figure 5.19).

Therefore, using links between periods allows transferring information from another period,
this transfer being efficient for closer periods and fading away for more distant periods. The

mechanism behind this propagation is explained in figure 5.4.

Second period Third period
> -3 -2 -1 0 -4 -2 0 2
5 Offset bgz) [m] Offset bgs) [m]
éc) Fourth period Fifth period
4 ) 0 s 4 2 0 5
offset b{*) [m] offset b{® [m]

Posterior density with 95% credibility
interval (coloured area)

Prior density with 95% confidence
interval (coloured area)

Figure 5.19 — The Ardeche River at Meyras over the 2001-2014 period: prior vs. posterior

densities of offsets for the last four periods using only gaugings of the first period

for calibration.
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5.6.3. Comparison with stage-discharge (SD) model
applied separately to each stable period

In this section, a comparison is made between the stage-period-discharge (SPD) model and a
stage-discharge (SD) model separately applied to each stable period. Both SPD and SD models
are applied to the Meyras case study, considering only 4 gaugings per period (scarcely gauged
station, comparable to the Wairau station), 8 gaugings per period (reasonably gauged station),
or all available gaugings (very well gauged station). The 4 and 8 gaugings are evenly split
between the first two controls (e.g. 2 gaugings for the riffle control and 2 gaugings for the main
channel control). For the SPD model we use the same priors as in section 5.5.1. For the SD
model, prior specification is made as to ensure the equivalence with the prior information used
by the SPD model.

Figure 5.20 shows the results for the stable parameters b3, a; and ¢;, i € [1; 3]. Irrespective of
the number of gaugings, both SPD and SD models yield similar results for exponent parameters
c1, ¢o and c3 because their respective prior distributions are precise (figure 5.20). Similar results
are also found for parameters az and bg of the third control: both posterior distributions are
similar to the priors. There is indeed not enough high-flow gaugings (see table 5.3) to precisely
identify these parameters.

When the station is scarcely gauged (4 gaugings per period), some differences between SPD
and SD models can be seen for coefficients a; and as. Estimations made by the SPD model
are more precise (figure 5.20) as these parameters are assumed constant across periods. Their
estimation is therefore informed by all the gaugings of the five periods (20 gaugings) instead
of only 4 gaugings for the SD model. The difference between SPD and SD models is more
pronounced as the number of gaugings increases.

As an aside, figure 5.20 also supports the assumption made by the SPD model that these
parameters are constant across periods. Indeed, for all stable parameters, posterior distributions
obtained with the SD model are similar across periods. This is the case for rating curve parame-
ters (bs, a; and ¢;, @ € [1;3]) as well as for parameters of the error model (v; and ~2). Moreover,
the SPD model yields more precise estimations of the error model as its error parameters are
estimated with more gaugings (5 times as many for this comparison) than for the 5 separate
application of the SD model (especially with few gaugings on each periods)

Figure 5.21 shows the results for the offsets that change between periods. Overall posterior

boxplots are similar for the SPD and SD models. This is not surprising as these parameters
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are period-specific, and their estimation is therefore informed by the same number of gaugings.
However, the SPD boxplots are always slightly more precise than the SD ones. This is likely due

to the ability of the SPD model to transfer information between periods.
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Figure 5.21 — The Ardeche River at Meyras over the 2001-2014 period: comparison between SPD and SD models for changing offset parameters,
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5.7. CONCLUSIONS AND PERSPECTIVES

5.7.1. Summary

This chapter proposes a stage-period-discharge (SPD) model to describe ‘net’ rating changes
due to bed evolution. This SPD model is based on a segmentation of stable periods delimited
by rating changes: dates of rating changes are assumed to be known. The SPD model needs two
variables as inputs: the stage and the related period. The second input can be computed from
the dates of rating changes and the date of the stage observation.

The proposed method uses Bayesian analysis. An expertise of the hydrometric station is
needed to set up the prior distributions of the hydraulic variables. The method also requires
information on the changing parameters: the practitioner indicates which specific parameter of
the rating curve equation may change across periods, and provides prior information on the
related changes.

Depending on the available hydraulic knowledge at the station, two types of prior information
can be given on changes: a cumulated change indicates a change of parameter with respect to
a reference period whereas an incremental change indicates a change between two successive
periods. Changes on controls can be linked as well: an additive link connects the global change
of the main channel with the change on lower flow controls whereas a multiplicative link connects
the changes of the main channel control and upper flow controls with the change of the last section
control of the riverbed. As results, it provides a rating curve with a total uncertainty envelope for
every stable period. This total uncertainty can be split into parametric uncertainty (uncertainty
of the rating curve parameters) and structural uncertainty (linked to the imperfection of the
rating curve model). This method also provides a direct estimation of the physical parameters
of the rating curve: results can therefore be criticised based on their physical meaning.

This SPD model does not need to assume that the gaugings ‘age’ contrary to other meth-
ods [Jalbert et al., 2011, Morlot et al., 2014] and does not replicate some discharge measurements
for use across periods. The gaugings are assigned to the specific period during which they were
performed and their uncertainty measurements remain constant. It seems more logical that
the rating curve parameters may be allowed to remain stable across periods depending on an
expertise given by the practitioner. Therefore, for scarcely gauged periods or even ungauged
periods, rating curve parameters are still identified as soon as information on these parameters

can be found in other periods. Indeed, information on these parameters is transferred between

169 / 246 Mansanarez Valentin



Chapter 5. Rating changes due to bed evolution

periods as well as the information between controls. This latter transfer is useful for practice in
the sense that it reproduces what is already done in some operational services (e.g., USGS and
Environment Canada) through rating shifts and base curve.

The SPD model shows acceptable results at a well-gauged station with changes in offset only,
enhancing the estimation of stable parameters. Change parameters are well-identified between
periods and controls: precise values of the changes of offsets between two successive periods are
identified. At a less-gauged station per stable period, the goodness-of-fit of rating curve remains
acceptable but more uncertain. Stable parameters are still identified but change parameters
estimations are less precise. As a result, transition stages are also uncertain but still match with
the station knowledge.

Contrary to a naive practice which consists in separately estimating the rating curves for
each period, the SPD model leads to better results on a scarcely gauged station as information

is transferred between periods and controls.

5.7.2. Discussion

5.7.2.1. Assessing dates of the rating changes

The main issue of the SPD model is that it does not assess the dates of rating changes. As we
choose to impose the period number as an input of the model, the dates of rating changes, cannot
be assessed using the gaugings. Therefore, it is of primary importance to build a methodology
for detecting the dates of rating changes.

Sediment transport analysis may help in achieving this assessment. It uses bedload capacity
[Meyer-Peter and Miiller, 1948] but one parameter, the critical shear for incipient motion of sedi-
ment, has to be calibrated using the Shields diagram [Soulsby and Whitehouse, 1997, Ribberink,
1998|, which problematic as is is site-specific. However, once calibrated, the cumulated bedload
at a station can detect significant incipient motion of sediment which suggests some dates for
which the stage-discharge relation may have changed. It is only based on the stage record and
hydraulic parameters which have to be assessed. Figure 5.22-a shows an example of such theory
applied on the Meyras station (see section 5.5.1). For this example, 12 dates of changes are
detected.

The use of sediment transport information raises several questions:

e how to calibrate the cumulated bedload parameters which are site-specific?
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Figure 5.22 — The Ardeéche River at Meyras, assessing dates of changes using: (a) sediment
transport theory through cumulated bedload; (b) analysis of lower stage records.

e does this method detect every relevant rating change or does it detect other insignificant

flood events for which there was no change?
e how to assess whether a detected date matches with a real rating change?

e how to assess precisely the beginning and the end of the event ? This issue in partic-
ularly important as high-flow gaugings are often made during this kind of event, and
hence affected by bedload transport. Determining the period they belong to is therefore

important.

The analysis of lower stage records can also suggest the dates of rating changes (figure 5.22-
b). It may also be useful to identify the value of the changes on offset for the lower control
as it corresponds to the difference in low-water stages between two periods. The feasibility of
using the shape of the recession to provide information on the dates of change and the changes
in coefficient is also worth exploring.

Both sources of information could therefore be used both for detecting changes and for en-

hancing prior information of the SPD model.

5.7.2.2. Improving the SPD model

Only net changes were studied in this chapter: a further development is to investigate tran-

sient changes during a flood event and also between flood events.
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The creation, the deletion and the substitution of controls during flood events are also worth
further investigations. Note that creations or deletions of controls imply a change of matrix of
controls whereas a substitution of controls only implies a change of exponent parameter c¢: the
matrix of controls is unchanged.

A continuity condition on transition stages is used in the SPD model. This is not the case
for the operational version of BaRatin for which the continuity condition is on the offset. A
comparison of these two conditions could assess which one is more adapted. Some limitations
on these conditions remain as the information on transition stage changes seems more difficult
to specify.

The structural error model can also be improved. Currently, the error model is common
to al the periods. This assumptions has been validated by comparing the SPD model with
several independent applications of SD model on every period (see section 5.6.3). However, for
other stations, it might be more relevant to use a specific error model for each stable period
with distinct parameters. The feasibility of such highly parameterised model should be for both
well-gauged and poorly-gauged stations per period.

Combining information on cumulated changes and incremental changes for assessing available
information on a specific period may also enhance the SPD results as bathymetry can be available
for some periods (but not alls). The current SPD model does not allow mixing information for

cumulated changes and incremental changes.

5.7.2.3. Understanding of the model

In this chapter, only changes on offsets have been tested. The next step is to test the SPD
model on stations for which coefficients change and on stations for which both coefficients and
offsets change.

The impact of high-flows gaugings on the rating curve estimation of low-flow parameters
could be investigated: do we need to keep gauging high-flow events for high-flow stable stations?
Does the information brought by these high-flow gaugings enhance the understanding of low

flows? Answering to these questions is of primary importance for operational services.

5.7.2.4. Going beyond retrospective analysis: real-time estimation of the rating

curve

Operational issues (dam operation, flood forecasting, administrative decisions, etc.) some-

times require providing flow data and their uncertainties in real time. Dynamic management
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of real-time rating curves is possible via a sequential Bayesian approach. This approach is cur-
rently been tested using the BaRatin software, following the idea that even when gaugings are
lacking, changes in rating curves are guided by physical assumptions about the controls and the
possibility and magnitude of changes. For instance, a possible change could be detected as soon
as the stage goes above some critical value (to be determined). After such a possible change,
the uncertainty in parameters subject to change can be inflated to reflect the fact that such
parameters may have changed, and their current value is therefore poorly known. Consequently,
after a possible rating change, the total uncertainty of the rating curve increases sharply, and
several new gaugings will be needed to reduce it to an acceptable level. Such uncertainty analysis
brings an answer to the recurring operational question: how many gaugings does it take to build
an accurate rating curve after a change?

The SPD model could also be coupled to this sequential Bayesian approach in order to

enhance the transfer of past information and the transfer of information between controls.
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6.1. Summary

6.1. SUMMARY

In this dissertation, three complex stage-discharge models are proposed. These models differ
from simple stage-discharge (SD) models in their inputs and their parameterisation. A continuity
with these simple SD models is made using the same Bayesian framework, the same structural
error model and the same hydraulic analysis of the prior information. Taking into account both
the hydraulic knowledge such as the geometry of controls or roughness estimates and stage-
discharge observations leads to acceptable rating curve results even for poorly-gauged segments
or poorly-documented sites.

Specific main results are related to each model:

e the stage-gradient-discharge (SGD) model allows accounting for hysteresis effect due to
transient flow. As far as we are aware of, it is the first Bayesian model accounting for
hysteresis event in the literature. This model needs the stage gradient as an additional
input with the stage measurement. No additional measurement is required since stage
records can be used to compute the stage gradient. However, fluctuations in the stage
measurements may challenge the rating curve estimation as they are not related to the
flood wave propagation. A suitable smoothing of the stage gradient is then required to
solve the issue. Several hysteresis formulas, differing in their orders of expansion, were
compared: the simpler Jones’ formula shows the best results. The SGD model has valuable
advantages: a SGD rating curve calibrated with a single flood event can be accurately
applied to other events and the calibration can also be performed on several distinct flood
events. A gauging strategy is proposed and shows better results than common ones. This
strategy implies gauging near some remarkable points describing the loop curve (minimum
and maximum of the stage, maximum of discharge, minimum and maximum of the stage
gradient), and during the falling limb (to properly explore negative stage gradients) but not
necessarily during the same event. To finish, the SGD method does not detect hysteresis

when it is applied to well-known and well-identifiable unique stage-discharge relation.

e the stage-fall-discharge (SFD) model accounts for the influence in the stage-discharge
relation of variable backwater effects due to unsteady downstream boundary conditions.
This influence makes the energy slope variable when the control is backwater-affected.
Two types of backwater-affected controls were studied, which has led to two variants of

the SFD model: (SFD-s) a backwater-affected channel control which follows a section
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control drowned by the downstream surge of the river; (SFD-c) a backwater-unaffected
channel control which follows a backwater-affected channel control. The energy slope for
modelling the friction effect of backwater-affected controls is directly computed using the
stage records from two gauge stations. The interest of estimating the difference in staff
gauge reference levels as an additional parameter was illustrated: this difference may bear
non negligible errors, and hence need to be estimated, not fixed. The SFD model has
been operationally deployed by the Compagnie Nationale du Rhone (CNR) and yields
acceptable results [Horner et al., 2015, Le Coz et al., 2016b].

e the stage-period-discharge (SPD) model estimates net rating changes due to bed evolu-
tion. Rating changes between periods are modelled as net changes in parameters of the
rating curve, assuming that dates of changes are known. This is an original method as
gaugings are not used across periods and the model does not need to assume that gaugings
‘age’. The gaugings are assigned to the period during which they were performed and their
uncertainties remain unchanged over time. The information on assumed stable controls is
transferred by assessing stable parameters which are used across periods. Moreover, the
global changes on the main channel are also applied to lower controls. This transfer of in-
formation between periods and controls allows identifying rating curves on scarcely gauged
controls and scarcely gauged periods. The SPD model also shows accurate and precise
results when the station is well-documented with gaugings. Only changes in offsets were
tested but the SPD model was also implemented for changes in coefficients. The detection
of the dates of rating changes remains untreated in this thesis but several approaches can

be further investigated.

All the methods proposed in this thesis have been implemented as executables in the most

general way.
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6.2. PERSPECTIVES

6.2.1. Modelling other causes of rating curve
non-uniqueness

Getting back to the examples of causes of rating curve non-uniqueness shown in figure 1.1,
this PhD addressed several physical processes: hysteresis due to transient flow (g), variable
backwater effects due to unsteady boundary condition (e-f) and net changes due to bed evolution
(b). However, several other causes remain to be studied.

Some of these other non-uniqueness relations may be similar to the ones studied in the thesis.
For example, the external influences on the flow exerted by the wind (wind shear stress) or
exerted by ice jams and the influence of log jams both modify the energy slope (table 2.1), and
could therefore be treated in a similar way as hysteresis due to transient flow. The formula
accounting for such non-uniqueness would of course be different and the input variables would
also differ: for instance wind shear stress may need the wind velocity magnitude and direction
instead of hydraulic gradient [Falconer et al., 1991]. Another example could be the hysteresis
due to overbank flow in compound channel [Sellin, 1964, Smart, 1992, Ackers, 1993]. This
stage-discharge relation shows non-uniqueness as discharge values in the upper segment (main
channel + floodplain) differ at a given stage: discharges in the rising limb are smaller than
discharges in the falling limb due to head losses (e.g., roughness difference between controls and
flow turbulences).

Some physical processes may be more challenging, because the main covariate may be difficult
to obtain. Typically rating changes due to aquatic vegetation may be more difficult to model: a
quantitative covariate describing the development stage of vegetation is unlikely to be available

at every gauging station. Two options may help solving this problem:

e a deterministic seasonal signal (pattern) combined to frequent summer gaugings may be

used to identify more precisely the drift of the rating curve;

e the use of aquatic vegetation growth models. The existence of such models needs to be
evaluated in the literature, but it may help accounting for the specificities of each year, in

terms of climate for instance, or the specificities of the vegetation.
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6.2.2. Combining several causes of rating curve
non-uniqueness

In this dissertation, causes of non-uniqueness are separately treated, but could be combined.
For instance, the rating curves of two dam flushes of the Ebro River at Asco (see section 3.4.1)
present a shift: a net rating change in offsets was observed by operating managers. Hysteresis
due to transient flow and rating changes may hence be combined. Another example of such
combination may be the backwater influence and net rating changes.

It is probably feasible in principle to combine several formulas as some of them do not have
the same influence in the rating curve parameters. Note however that some combinations make
little sense: for instance mixing a SFD and a SGD model is useless because directly measuring
the fall makes the stage gradient irrelevant as it is already taken into account in the computed
fall. It also raises questions on the identifiability of several causes from gaugings only: which
effect would gaugings represent when two or more causes of non-uniqueness apply? The hydraulic
expertise would probably have to play an important role.

The combination of several non-uniqueness causes raises an unsolved issue in this PhD: can
all causes be studied within a unique framework? In principle, it can be implemented: we simply
calibrate a model with potentially many covariates as inputs. However, in practice, it is more
difficult, because we want to preserve the hydraulic consistency and interpretability of such a

general model.

6.2.3. Improving the error models

Several of the error models used in this PhD could be improved. These improvements are of
general interest, and are not specific to the particular complex rating curve models developed in

this thesis:

e the assumption that errors in gauged discharges are independent and of mean zero can be
criticised. It is problematic because there may be unknown biases between gaugings that
are specific to each gauging method. For instance all surface velocity gaugings may be
affected by the same bias induced by the surface velocity coefficient. A possible solution
may be to include an unknown non-zero mean common to all gaugings made with the

same method;
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e the measurements errors of the inputs are neglected. For stage measurement, recent work
by Horner et al. [2017] shows that the effect of stage errors in discharge prediction is
not always negligible, especially if the errors encompass a systematic component. This
approach could be generalised for other input variables such as stage gradient or fall.

Note for instance that a systematic error on stage would cancel in the stage gradient.

e the structural error model raises a significant issue as this model should recognise a sys-
tematic component. It is probably the biggest challenge of the error model improvements.
Currently, structural errors are indeed assumed independent which facilitates their expres-
sion. It may be problematic because independently-sampled errors tend to disappear for
aggregated variables [Horner et al., 2017], so that for instance structural uncertainty is
often negligible for monthly discharge. The current structural error model is clearly unsat-
isfying and disputable. However, the improvement of the structural error model remains

unclear at this stage: we do not know how it could be done.

6.2.4. Real-time discharge estimation

This PhD only dealt with the retrospective analysis of rating curves: the final objective of
such analysis, and hence the proposed models (SGD, SFS, SPD) is basically to predict discharge
times series and their uncertainties, given all historical gaugings and hydraulic information.

The real-time context has a different objective: predicting the discharge and its uncertain-
ties NOW, using all information that can be made available at the time of the prediction. In
particular, the real-time prediction is only valuable at the time it was made: correcting it two
months later for example is irrelevant in the real-time context (this is rather the purpose of a
retrospective analysis).

The adaptation of the methods developed in this thesis to a real-time context is not trivial.
Neglecting stage error measurements, the SGD and SFD models may be less difficult to adapt
to real time context as all their inputs, which are both related to stage records, can therefore be
assessed in real time. However, this is particularly less obvious with the SPD model as several
issues on the detection of periods need to be solved first. Indeed, it needs to be able to detect a
possible change before a new gauging is performed. The most promising approach seems to be
using critical stage values that trigger a possible change, based on sediment transport capacity

considerations (see section 5.7.2.1).
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6.2.5. Exploring the impact of rating curve uncertainties in
Hydrology

As explained in the introduction, discharge is the basic variable of Hydrology. Impact of rating
curve uncertainties should therefore be ubiquitous. For example in the context of flood frequency
analysis, it has been reasonably thoroughly studied [e.g., Kuczera, 1992, 1996, Petersen-Overleir
and Reitan, 2009b, Neppel et al., 2010, Lang et al., 2010, Di Baldassarre et al., 2012, Steinbakk
et al., 2016]. However, it is much less studied for non-flood variables, which is problematic
because e.g., low flows are also strongly impacted by rating curve uncertainties.

It should also be investigated in the context of hydrologic modelling: rating curve uncertain-
ties impact the calibration of the hydrologic model. This has been studied [e.g., Thyer et al.,
2009, McMillan et al., 2010, Sikorska et al., 2013], but the error models used in these studies may
be too simplistic, especially for complex rating curves. Rating curve uncertainties also impact

the evaluation of hydrologic models [e.g., Westerberg and McMillan, 2015].

6.2.6. Operational perspectives
Several achievements in this respect were already realised during the PhD:

e a documented executable piloted by text files is currently used by the CNR for establishing

SFD rating curves at their twin-gauge stations;
e other models are ready in a similar form;
e practical gauging strategies were suggested in order to enhance the rating curve estimation.

A main strong objective is the integration of complex models in BaRatinAGE, the software
currently released and used by some hydrometric services for permanent rating curves. The
actual integration in BaRatinAGE was clearly not part of this PhD work. However, this was
kept in mind by always trying to maintain the greatest generality and compatibility with existing
concepts, in particular the matrix of controls, which is at the core of BaRatinAGE. For instance
SGD models could be integrated by enabling its application for the main channel control only.
Similarly, the SPD model is fairly general and compatible with the matrix of control. As a
matter of fact, equation (5.1) directly shows this compatibility. The integration of the SFD
model in BaRatinAGE is more challenging: the two models developed are actually specific to

two particular hydraulic configurations, and it is unclear how this could be fully generalised.
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Another objective is the Bayesian inference of the index velocity method. This method (see
e.g., side-looking ADCP, Doppler flowmeters like the gauging flume A1l in section 3.4.2, per-
manent surface velocity radars), described in Levesque and Oberg [2012], consists of computing
discharges using two calibrated rating curves: a stage-area rating curve and a index velocity-
average velocity rating curve. This method, which can be seen as a complex rating curve, is
more and more used at hydrometric stations, and may help modelling non-unique relations such
as variable backwater influence or hysteresis due to transient flow.

Practical tools for detecting non-uniqueness in rating curves would also be valuable, not only

based on gaugings:

e detecting hysteresis based on the properties of the gauging site and information extracted

from the stage time series (h(t) and dh/dt);
e detecting rating changes and estimating their magnitudes based on the stage time series:

— analysis of lower stages and/or of stage recessions;

— use of sediment transport capacity.
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A.1. The Ohio river at Wheeling, West Virginia, USA

A.1. THE OHIO RIVER AT WHEELING, WEST

VIRGINIA, USA

This case study is presented in Petersen-@verleir [2006]. In the end of March 1905, a hysteresis
flood event occurred in the Ohio River at Wheeling near Pittsburgh in the USA. 13 stage-
discharge measurements were performed during this hysteretic flood event. 4 stage-discharge
measurements were also made at low flows around 10 days before the event.

Only one control is considered: the main channel, 340 m in width. The Strickler coefficient
of this natural river is set to 30 m3.s™! + 10 m3.sL. It is a relatively flat channel (slope Sy
around 5 X 10_4) with a wide rectangular cross-section. We use the SGD model using the Jones
formula with variable celerity. The prior distributions are set up accordingly (see table A.1).
We assigned a 10% uncertainty discharge to all the gaugings.

Two calibrations are made: one with only the 13 hysteretic gaugings, the other with all the

gaugings, including the 4 gaugings made at low flows before the flood event.

Prior Posterior distribution
Parameter distribution All gaugings Only hyf,teretlc
gaugings
Kg [m3.s ] N (30,5) 37.0(4.13) 34.0 (4.91)
ho [m] N(0,1) —1.54(0.207) —1.84(0.50)
exponent M [—] | N (1.6667,0.05) 1.684 (0.0414) 1.676 (0.0459)
B [m] N (340, 20) 344.9 (18.91) 353.8 (19.32)
So [] N (0.0005,0.001) | 819 x 1077 (3.27 x 1077) | 8.85 x 107 (5.08 x 10~°)
71 [m?s7]] U (~10°,10%) 0.141 (28.8) 1.09 (114)
o [-] U (—106,106) 0.00935 (0.00757) 0.00407 (0.0136)

Table A.1 — Distribution of the hydraulic variables for the event of March 1905 at Wheeling. The
symbol N (i, o) corresponds to the normal distribution with mean p and standard
deviation . The symbol U (a,b) corresponds to the uniform distribution on the
interval [a,b]. For posterior distributions, the given values correspond to the MAP
(Maximum a posteriori) estimator and the standard deviation in brackets.

A first observation of rating curves shows that both calibrations detect hysteresis. As we can
see on figure A.1, the rating curve of the calibration with all the gaugings is a loop and fits well
the discharge measurements. The hysteresis effect cannot be considered to be negligible because
differences in discharge between rising and falling limbs can be as high as 20%. The structural

uncertainty interval is very small: the model is suitable for this kind of event.
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= Maximum posterior rating curve
95% uncertainty interval (parametric)
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Figure A.1 — The Ohio River at Wheeling: maximum posterior rating curve of the SGD model
using the Jones formula with variable celerity c¢. The rating curve is calibrated
using all the gaugings (the 13 gaugings made during the flood) plus the 4 gaugings
made before the flood.

Discharge time series computed with both calibrations (see figure A.2) follow the dynamics
of the flood. There is less than 5% of errors between MAP rating curves and gaugings for both
calibrations. This event differs from the two dam flushing events in the Ebro River (see sec-
tion 3.4.1) by the severity of the flood: it is not a quick and strong rising limb as it lasted more
than 3 days. The stage gradients in the rising limb have the same order of magnitude than those
in the falling limb.

Maximum posterior rating curves are quite similar for both calibrations. However, including
a few low-flow discharge measurements in the calibration of the rating curve brings better results.
Indeed, lengths of uncertainty intervals (see figure A.3) are significantly reduced. For low flows,
it is because the bottom hg of the riverbed is better identified (see associated posterior density
in figure A.4). The estimation of error parameter v; (dominant term in the structural error
model for low discharges) is also more precise (figure A.4).

The improvement of 5 estimation is less pronounced.
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Figure A.2 — Ohio river at Wheeling: time-discharge representation. Use of the SGD model
using the Jones formula with variable celerity c¢. Comparison between a calibration
made with all the gaugings and a calibration made with hysteretic gaugings only.

Thus, adding some steady discharge measurements to hysteretic gaugings in the calibration
of the rating curve lead to more precise parameter estimates. In turn, this reduce uncertainties

both both low flows and at the peak flow.
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Figure A.3 — The Ohio River at Wheeling: length in percentage of the 95% uncertainty intervals
of the SGD model using the Jones formula with variable celerity ¢. Comparison
between a calibration made with all gaugings and a calibration made with only
hysteretic gaugings.
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Figure A.4 — Ohio river at Wheeling: densities of posterior distributions and maximum posterior
(MAP) values of the offset hg, the error v; and the error v2. Use of the SGD model
using the Jones formula with variable celerity. Comparison between a calibration
made with all gaugings and a calibration made with only hysteretic gaugings.
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A.2. The Ardéche River at Sauze, France: negligible hysteresis

A.2. THE ARDECHE RIVER AT SAUZE, FRANCE:

NEGLIGIBLE HYSTERESIS

Already presented by Le Coz et al. [2014], the Sauze station in Saint-Martin-d’Ardeche is a
straight channel carved in an inerodible limestone bedrock. Flows are governed by two controls
(see figure A.5): a riffle at low flows and the main channel. Due to the instability of the riffle,
changes of the low-flow control happen. However, we only focus on the second control, and
hence on a very stable stage-discharge relation because hysteresis only affects the energy slope

of channel controls.

0o

<4 section

} -

Figure A.5 — The Ardéche River at Sauze: view of the hydraulic controls [Le Coz et al., 2014].

We want to know if the main channel control can be prone to hysteresis effects, which seems
unlikely given the high slope.

Two models are used: a stage-discharge (SD) model and the stage-gradient-discharge (SGD)
model using the Jones formula with variable celerity. Both models are calibrated with 107
gaugings and with strictly the same prior information on rating curve parameters. We will
denote by Bj the width of the riffle, g the gravity and C a discharge coefficient. Both models

are recalled below:

e SD model:
CBi1v2g (h—ho)™  ifh <k

Q(h)= /
KSB\/S_O(h - hg)M ith >k
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KsB+/Sy

/ CB1v/2 M’
where hg = Kk — [19 (k — ho)M] is computed by continuity in h = k;

e the SGD model using the Jones formula with variable celerity for two controls:

oh ,
Q<h’at> ~ ) KsB (h_hg)M JSOJF

/ B2
where hg = Kk — [m

CB1v/2g (h — ho)™

ifh <k

1

M’

M
KSB\/% (/ﬁ:— ho) ‘|

M'Ks+/So (h — hy)

M1 9t

(A1)

ifh>k

is also computed by continuity in h = x and

oh
o~V
Physical Posterior distributions
Prior SGD model using
pa.r amet.ers distributions the Jones formula SD model
with units . . .
with variable celerity
CBiv/2g [m2.s™] N (50,100) 48.3(2.01) 47.2(2.01)
ho [m] N(=05,1) —0.358 (0.0244) —0.367 (0.0244)
exponent M |—] N (1.5,0.05) 1.54(0.0434) 1.53(0.0434)
% [m] N(1,1) 1.08(0.0381) 1.06 (0.0381)
KsBy/Sy [m3.s™!] N (145, 40) 122.5(9.33) 118.9 (9.37)
Kg [m3.s7] N (33,5) 31.4 (4.27) -
B [m] N (80, 10) 77.8(9.03) -
So [-] N (0.003,0.001) 2.52 x 10 (1.72 x 10°") -
hy [m] Computed by continuity 0.284 (0.0515) 0.263 (0.0515)
exponent M [—] N (1.6667,0.05) 1.65 (0.0395) 1.67 (0.0396)
v [m®s7Y] u (-10°,10°) 2.66 (0.624) 2.41 (0.628)
72 [-] U (-10°10%) 0.0523 (0.0109) 0.0572 (0.0109)

Table A.2 — Prior and posterior results of the parameters of SGD and SD models applied to
the Ardéche River at Sauze. The symbol N (u, o) corresponds to the normal dis-
tribution with mean p and standard deviation o. The symbol U (a,b) corresponds

to the uniform distribution on the interval [a, b].

For posterior distributions, the

given values correspond to the MAP (Maximum a posteriori) estimator and the

standard deviation in brackets.

others variables.

Gray values corresponds to a computation from

We use the same parameterisation as in table 3.3 (section 3.3.1). Thus the SD model has 8

parameters only (6 for hydraulic variables and 2 for the error model) whereas the SGD model

has 10 parameters. Prior distributions (table A.2) are set up according to hydraulic knowledge

(see Le Coz et al. [2014] for more information).
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Figure A.6 — The Ardeche River at Sauze: stage-discharge representations.

There is no difference between both models: total and parametric uncertainties are exactly
the same. If we look into values from the posterior distribution (MAP and standard deviation
values in table A.2), we also notice that all values are very similar between models.

The Jones formula with variable celerity ¢ (equation (A.2)) can be rewritten as a correction

of the rated discharge Qo = K SA\/SORi/ ?at steady flows as follows:

_ 2/3 L Oh_ iy 2o (ah)
Q = KsAV/SoR;, x\/1+SOc<h)at—Qg>< 1+SO_Q0><J h,at (A.2)

oh / Ji 1 0Oh
where J (h, &) =4/1+ S—g is the correction of Jones, Jy = ma is the correction of the

_ 10Qo
B 0h

oh
the use of a hysteresis model becomes relevant as soon as the correction J (h, 875) is far from

slope of the riverbed Sy and ¢ (h) (h) is the variable kinematic wave celerity. Therefore,

1, or the slope correction .Jy is far from 0.

The temporal representation during the 35-years time period of the correction Jy of the slope
reveals 6 flood events (circled in black in figure A.7) which could be affected by the hysteresis.
Indeed, whereas for all the other events this correction is of the order of 5.0 x 10°, these 6 flood

events have a correction which ranges up to 5.0 x 10%.
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Figure A.7 — The Ardéche River at Sauze: temporal evolution of the slope correction Jy. Com-
parison with the posterior distribution of the slope Sy of the bed. The events with
the greatest correction Jy are circled in black.

oh
8t> of the

rated discharge Qg at steady flow. This correction may vary up to 10% with the unique relation

We also find these six events in the representation of the correction of Jones J (h,

(see figure A.8) but only for very few events (less than 0.2% of the points corresponding to the

high-flow channel control).

ot

correction of 5% exists in less than 0.002% of the cases.

h
The frequency of the correction of Jones J <h, 8) during the last 35 years reveals that a

An in-depth study of the events associated with these cases shows that there is no hysteresis
effect: the rating curve for each event does not present a loop (see figure A.9). Moreover the stage
measurements associated with the biggest corrections of Jones are always near the transition
between the two controls. This phenomenon is observed as soon as the riffled is drowned, and
not just for these 6 events. This is due to higher stage gradients during this transition which

leads to isolated errors.
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greatest values of correction Jy of the slope. Comparison with SD model (on the
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199/246

Mansanarez Valentin



Annexe A. Application of the SGD model to additional sites

A.3. CONCLUSIONS

Application of the stage-gradient-discharge (SGD) model to the classic event of the Ohio
River at Wheeling station confirms the efficiency of the method to capture hysteresis. It also
confirms that the best gauging strategy is to combine low-flow gaugings and gaugings all around
the hysteresis loop.

Application to the Ardeche River at Sauze shows that the SGD model yields results identical
to the SD model at sites where hysteresis is negligible. Isolated errors may occur due to higher

stage gradients during transition between the low-flow section control and the channel control.
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B.1. Properties

B.1. PROPERTIES

This section is the summary of definitions, properties, theorems and relations used in this

annexe. We let the reader refer to the literature for a better understanding.

B.1.1. Expectation and Covariance

Property 1 (Product of independent random variables) Let (X1,...,X,) ben indepen-

dent random variables. Then, for all measurable functions ¢;, we have:

Definition 1 (Covariance) Let X andY be two jointly distributed random variables with finite

second moments. The covariance Cov(X,Y) between X and Y is defined as:

Cov(X,Y)=E[(X —E[X]) (Y —E[Y])]

Theorem 1 (Konig-Huygens) If X is a real random variable, then:

Var[X] = E[X?] - (E[X])”

Combining definition 1 and theorem 1 gives the following relation:
Cov(X,Y)=E[XY]-E[X]|E[Y] (B.1)
Therefore, if X and Y are independent, using property 1 in equation gives:

Cov (X,Y) =0 (B.2)
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Let X, Y and Z be 3 independent real random variables. Then:

Cov(XZ,YZ)= E[XYZ?| ~E[XZ]E[YZ] (cf. equation B.1)

(X|E[Y]E [22] - E[X]E[Y](E[Z])” (cf. property 1)
X|E[Y] (E|2?] - (E[2])°)
[

X|E[Y]Var[Z] (cf. theorem 1)

(B.3)

In the particular case of X = Y, equation B.3 no longer applies. Therefore, we use the

following property:

Property 2 (Variance of the product of independent variables) Let X and Z be 2 in-
dependent real random wvariables. Then, the variance of the product X Z is can be written as
follows:

Var[XZ) = (E[X])*Var[Z] + (E[2))* Var[X] + Var[X] Var|Z]

Let W, X, Y and Z be 4 independent real random variables. Then:

Cov(X,YZ)=E[XYZ] - E[X]E[YZ] (cf. equation B.1)

—E[X|E[Y]E[Z]
(B.4)
—E[X]E[Y]E[Z] (independence, cf. property 1)
=0
Cov (X,YX) =E |V X?| ~E[X]E[YX] (cf. equation B.1)
=E[Y]E |X?| ~E[Y](E[X])* (independence, cf. property 1)
(B.5)

=E[Y](E[X?] - (E[x]))

=E[Y]Var [X] (cf. theorem 1)
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B.2. Cumulated change option

Cov(WX,YZ)=E[WXYZ]-E[WX]|E[YZ] (cf. equation B.1)
=E[W]E[X]|E[Y]E|[Z]
—E[W]E[X]E[Y]E[Z] (independence, cf. property 1)

=0

Property 3 (Linearity of expectation) Let (X1,...,X,) be n random variables. Therefore:

E [in] = iE[Xi]
i=1 =1

Property 4 (Bilinearity of covariance) Let (Xi,...,X,) and (Y1,...,Y,) be 2n random

variables. Therefore:

n n n n
Cov ZX“ZYJ' :ZZ Cov(X;,Y))
=1 j=1 i=1j=1
B.1.2. Normal distributions
Property 5 (Sum of normal distributions) Let (Xy,...,X,,) ben independent random vari-

n
ables following, respectively, n normal distributions N (p1,01) ..., N (tin,0n). Then, ZXZ' 18
=1
normally distributed as follows:

n

ZvaN(u:zn:m;U: i(ﬂiﬁ)
B.2. CUMULATED CHANGE OPTION

B.2.1. No link option

There is no need of processing prior. Distributions given by the practitioner correspond

exactly to the inferred parameters (cumulated change parameters).
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Annexe B. Multivariate distribution for offset change parameters

B.2.2. Additive link

B.2.2.1. Assumptions

k)

Wk € [1; Newite + 11,k # keer, let ¥j € [L;NG], ALY and Vj € [Nes + 1; NJ, AbYY be

N¢ X Ngpirt independent and random variables distributed as follows:

Al(k) NN ) ';O-(k) i) Vj e 1;Ncs local
vk € [[1; NShift]]? k # K, b.j (MAlb’j Albv]) J [[ ﬂ ( )

A~ N () :0%),) . Vi€ [N+ 1N (global)

B.2.2.2. Cumulated change distribution

Links between controls can be found in table 5.2. As only addition is used in these links
and all the prior distributions entered by the practitioner are normal distributions, the inferred
parameters corresponding to the cumulated changes follow exactly a multivariate normal distri-

bution. Parameters (mean and covariance matrix) of this distribution are computed as follows:
Mean VEk € [1; Ngnige + 1], k # ke, Vi € [1; Ne],

K k o
E [a¥)] = E ALY + A6 | i j < Nes
] E [Ab"] £5 > N
- E {Al((fj)] +E [Abgl\;c)sﬂ] if j < N (cf. property 3) B
E |t if j > Neo
* 4k o N iy o
HAG ;T Pab Net1 i J < Nes  (cross-section control)

M(Akg ; if j > Nes (channel control)

Covariance

o Vk € Hl;Nshift + 1]], Vi e [[1;Nshift + 1]], k 75 l,

Mansanarez Valentin 206 / 246



B.2. Cumulated change option

— Vi € [1; Nes], Vj € [1; Nes],

Cov (Abgk’), Abg”)

Cov (AL + a0 1, AL + AbY) L)

i J
Cov (AL, ALY + Cov (ALY, AbY) L) + Cov (265, AL))  (BY)
+ Cov (Absl\;c)erl, Abg\lf)csﬂ) (cf. property 4)

10

0 (independence, cf. equation B.2)

— Vi € [Nes + 1; N||, V5 € [Nes + 1; N¢],

Cov (Abgk), Abgl)) = 0 (independence, cf equation B.2) (B.10)

— Vi € [1;Nas], ¥j € [Nes + 1; NeJ,

() A0
Cov (a6, Ab)
= Cov (A +abY) ,,, A0)) (B.1)
= Cov (Al,(){?, Abg-l)) + Cov (Abg{;c)s-l,-l, Abgl)) (cf. property 4) .

= 0 (independence, cf. equation B.2)

o Vk € [1; Nonige + 1],

— Vi € [[1; Nes], Vj € [1; Nes],

Cov (Abg’”, Abg’“))

Cov (AL + A6, ALY + abg) L))
Cov (AL, ALY ) + Cov (A, A L) + Cov (865 1, ALY)
+Cov (Abg\]fc)sﬂ, Abg@sﬂ) (cf. property 4)
Cov (All(;i'), All()?) + Var {Abg@s_’_l} (cf. equation B.2) (B.12)
Var [ALY] + var [A6{) ] ifi =
Var [AbS) ] ifi+j
k) \2 k 2
(U(Al)b’j) T+ (U(Alz,NCerl) ifi=j

(Ugg,NCSH)Q if i £ j
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Annexe B. Multivariate distribution for offset change parameters

— Vi € [Nes + 1; Ne], Vj € [Nes + 15 NJ,

Var [Ab(’“)} ifi=j

Cov (A6, AbH) = J
0 if i # j (independence, cf equation B.2)
2
) (6R),) =g
0 ifi#j
(B.13)
— Vi€ Hl;Ncs]]a Vj € [[Ncs + 1;Nc]],
Cov (Ab(k) Ab(@)
= Cov (AR + A6 |, A6
= ( bk),Ab )—i—COV Ab N, +1,Abk) (cf. property 4)
(B.14)

{ bN +1] ]I{NCSH}( /) (independence, cf. equation B.2)

ar

2
_ ( Achs—H) if j = Ng+1
0 if £ Nes + 1

B.2.3. Multiplicative link

B.2.3.1. Assumptions

Wk € [1; Naite + 1], k # kret, let V5 € [1; Nes], AbY and Vj € [Nes+1; Nel, A be Nex Nayite

independent and random variables distributed as follows:

k) (k) . (k .
Vk € [1; Nanie + 1],k # krer Abg' ~N (“Abw Agj) Vi € [1; Nes| (local)
AI(’Z) ~N <’u$\b)vj; Ug\kb),j) , Vj€[Nes+1;N:] (global)

(B.15)

B.2.3.2. Clumulated change distribution

Relations between controls for the multiplicative link option and cumulated change parame-
ters are expressed by table 5.2. As addition and multiplication are used in these relations, the
multivariate distribution of the inferred parameters corresponding to the cumulated changes for
each controls can be approximated by a multivariate normal distribution. This approximation

have been compared with and validated by results from Monte-Carlo propagation. The follow-
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B.2. Cumulated change option

ing paragraph in this subsection are the theoretical calculations of the parameters (mean and

covariance matrix) of this approximated multivariate distribution.

Mean VEk € [1; Nanige + 1], k # ke, Vi € [1; Ne],

E [Ab(-k)} — E [Abﬁk)} if 7 < Ngs (section control)
’ E {Agkj) X Abgl\ZJ if j > N (channel control)
E [Ap) if § < N
_ k[ j ] ) ] = (B.16)
E {A,()’ J)} E {Abg\,c)s] if j > N¢s (independence, cf. property 1)
- ple, i< N
- k k o
S < v iG> Nes
Covariance
o Vk € Hl;Nshift + 1ﬂ7 k 7& krefy Vi e [[17 Nshift + 1]]7 l 7é krefa k 7é l7
— Vi € [[1; Nes], V5 € [1; N,
Cov (Abgk), Abg-l)) = 0 (independence, cf equation B.2) (B.17)
— Vi € [Nes + 1; N, Vj € [Nes + 15 N,
Cov (A6, Ab) = Cov (A7) A0}, AL ABY) )
k k) o (1 1 k) A (k l 1
= E[AAb ADA | B [AT A [ E (A A)
k k l 1
= EAD]E A B[] E[A60) ]
k) k ! !
— E (AR E[a0) | E[AL)] E (a6 ]
(independence, cf. property 2)
= 0
(B.18)
— Vi € [1; Ngs], V5 € [Nes + 1; N¢],
(k) ApDY _ (k) AW ApD
Cov (Abi , DS ) — Cov (Abi ,AbyjAchs) B.19)

= 0 (cf. equation B.4)

o Vk € [[1;Nshift + 1ﬂ7 k 7£ kref7

209 / 246 Mansanarez Valentin



Annexe B. Multivariate distribution for offset change parameters

— Vi € [[1; Nes], V5 € [1; Nes],

Var [Ab(’“)} ifi=j

Cov (A6, AbH) = 7
0 if i # j (independence, cf equation B.2)
- (agfg,jf iti=j
- 0 itij
(B.20)
— Vi € [Nes + 1; N], Vj € [Nes + 13 Ne],
Cov (Ab", Ab)
= Cov (A anl) A A )
ifi=j
~ Var[an]
= v [AY] Ve [260)] 4 e [AD)] (5 [0 ])?
+Var {Abg@s} (IE [Aé’?Dz (independence, cf. property 2)
= (o))" (o) (o) () + (2.) ()’
if i # ]
= E [Al(f‘)} E [Agﬂ Var [Abg@s} (independence, cf. equation B.3)
= B0 (Uac) )2
Ap,iF'Ap,5 \7 Ab,Nes
(B.21)

— Vi € [1; Ns]l, V5 € [Nes + 1; N¢],

Cov (a6, AbY) = Cov (Ab", A7) ABS) )

E [Agﬂ Var [Abg\]f) } if i = Nes  (cf. equation B.5)

cs

0 if i # Nes  (cf. equation B.4)
F) (B N =
_ P, j (UAb,NCS> if 1 = Neg
0 if i # Nes
(B.22)

B.3. INCREMENTAL CHANGE OPTION

Distributions given by the practitioner correspond to the incremental change parameters
(change between two successive periods). Link between cumulated and incremental change

parameters:
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B.3. Incremental change option

kref_l
Yk < ke, A = 3 apl™

m=r (B.23)
Yk > ket AR = S apl™

m:krcf+1

B.3.1. No link option

B.3.1.1. Assumptions

VEk € [1; Ngnige + 1], & # ket, let Vj € [1; N], 5b ) be N¢ X Ngpiri independent and random

variables distributed as follows:

k€ [1; Nare + 10, # kver, V5 € [13Ne], 865 ~ N ()08, ) (B.24)

B.3.1.2. Clumulated change distribution

Mean Vk € [1; Nnigt], k # kret, V5 € [1; Ne,

eanf] - & |Ta)

= ZE {5b(~m)} (cf. property 3)

ref 1 (B25)
Z M&bg if k& < kyer

Z pys i k> ket
m:krcf+1

Covariance Vi [1;N.], Vj € [1; Nc],

o Vk € ﬂl;kref — 1]], Vi e [[l;k’ref — 1]],

ref —1 kref—1
Cov (a6, Abl) = (Z ab"™ Z 6b7 )

ref 1klef 1

= Z Z Cov (5bl(m),6b(p)) (cf. property 4)
/;Zf—kl kif—ll krer—1
= > > Cov(a™, )+ 3 Cov (™, ab™)
m=k p=l m=max(k,l)
krcf_pl;ém

= Z Cov (5b£m), 6b§-m)) (independence, cf. equation B.2)
m=max(k,l)

(B.26)
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Annexe B. Multivariate distribution for offset change parameters

— k<,

Cov (Ab( ), Abg”)

= zf: Cov (6{™, 5b5™)
Eref—1
B Z Var[ m} if = j (B.27)

0 if i # j (independence, cf. equation B.2)
kref_l

3 (0((523)2 iti=j

m=k
0 if i j

—k>1,

Cov (Ab(k), Ab(”)

J
krer—1

= Z Cov (™, 5b5™)
ref 1
Var [06™] ifi=j
X el B25)
0 if i # j (independence, cf. equation B.2)

3 (05;57;)2 if i =

0 if i £ j

o Vk € [kret + 1; Nenigs + 1], VI € [Krer + 1; Nenige + 1],

k l
Cov (a6, Abl) = Cov( S o™, 5b§p))

m=kper+1 p=Fkret+1
l

= Z Z Cov ((5 b(p ) (cf. property 4)
m=kpe+1 p=Fkrer+1 ( )
min(k,l

= Y Y Cov(™ @)+ > Cov(ab(™, (™)

m=krer+1 p=FKrer+1 m=kper+1
pFm
min(k,l)

= Z Cov (5b§m),5b§m)> (independence, cf. equation B.2)
m:kref+1
(B.29)
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B.3. Incremental change option

( J
k
- Y Cov (5b§m),5b§m>)
m=kyer+1
k
> Var|g™] ifi=
S N (B.30)
0 if i # j (independence, cf. equation B.2)
k
2
S (o)) ifi=j
= m=kyet+1
0 ifi#£j
- k>1
(k) ApD
Cov (Abé , DS )
= Cov (5bl(-m), 5b§m)>
m=ker+1
!
> Var|g™] ifi=j
= S (B.31)
0 if i # j (independence, cf. equation B.2)
l
2
S (o)) ifi=j
= m:kref""l
0 if i j

o Vk € [[kref + 1’Nshift + 1]]7\V/l S [[1; kref - 1]])

k Foret—1
Cov (b, ab) = COV( > oo, S 5b§'p))

k
= Z Cov (6b(m), 5b(-p)) (cf. property 4)

? J

(B.32)

Il
© 3
—~ |l

independence, cf. equation B.2)

B.3.2. Additive link

B.3.2.1. Assumptions

Wk € [1; Naite + 1], k # Kret, let Vj € [1; Nes], 01 and Vj € [Nes+1; Ne], 60 be No x Nawite

independent and random variables distributed as follows:

213 / 246 Mansanarez Valentin



Annexe B. Multivariate distribution for offset change parameters

6l(k) ~ N (k) ’J(k) ) V ) € 1;Ncs 10(38,1
Vk € [[1; NShift]]’ k # ke, b.d (uélb’J lb’]) J [[ ]] ( )

(B.33)
b ~ N (i s ofhy) Vi € [Nes + 13 Ne] - (global)

B.3.2.2. Cumulated change distribution

Relations between cumulated changes and incremental changes for the additive link option
are expressed by equation (5.14). As only addition is used in these relations and all the prior
distributions entered by the practitioner are normal distributions, the inferred parameters corre-
sponding to the cumulated changes follow exactly a multivariate normal distribution. Parameters

(mean and covariance matrix) of this distribution are computed as follows:

Mean Vke Hl;Nshift]],k % kret, Vj € ﬂl;Nc]]

S (o4 + )| < v
’ (m)
E > db; if j > Neg + 1
S (B[] +E[0057,]) ifj < Nes+1
- " (cf. property 3)
> E [a)™)] if j > Nes + 1
kreff]- "
" m if i B.34
ST (5 + i he) 5 < Nes+ 1 and k < ks (B.34)
m=k
(m) (m) i< N Land k> &
Z Hsty,, +'U’5b,Ncs+1 Iy < Ne+1an > Kref
e m=kper+1
o kref_]-
Z /‘fsllj,)j if j > Nes+ 1 and k < ket
mk:k
> /‘((SIZ,)]' if > Nes+1 and k > kyer
m=kpef+1
Covariance

L VZ 6 [[NCS+ 17NC]]7j e I]:NCS+1aNC]]7
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B.3. Incremental change option

VE € [kret + 15 Nonige + 1], VI € [Kret + 1; Nehige + 1],

P
k l
= Z Z Cov (5b§m),5b§~p)> (cf. property 4)

m==kyref+1 p=kyrer+1 (B35)
k min(k,l)
- % Cov (80™, 6% ) + 3" Cov (ab{™,a6("™)
m=kret+1 p=kres+1 m=kper+1
min(k,l) g
= Z Cov (5b§m),(5b§-m)) (independence, cf. equation B.2)
m:krcf+1
Cov (Abgk), Ab;”)
0 if k <l andi# j (independence, cf. equation B.2)
k
> Var|g™] ifk<landi=j
— m=krer+1
0 if K > [ and i # j (independence, cf. equation B.2)
l
> Var[e™] itk >landi=j
m=kKper+1
(B.36)
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Annexe B. Multivariate distribution for offset change parameters

— Vk € Hl;kref — 1]], Vil e Hl;kref — 1]],

Cov (Ab“’) Ab)

ref—1 krer—1
= ( Z ab™ Z ab )
kret—1 kyet— 1

= Z Z Cov <5b§m),5b§p)) (cf. property 4)

Zf k]- kif l]- kret—1
= > > Cov(a™, )+ Y Cov (™, ab™)
m=k p=l m=max(k,l)
kreffpl?ém

= Z Cov (6b§m), 5b§-m)> (independence, cf. equation B.2)

m=max(k,l)

0 if k <l andi# j (independence, cf. equation B.2)
ref 1
ZVar[ébm} itk <landi=j

0 if £ > [ and i # j (independence, cf. equation B.2)

Z Var [66{™] if k> landi=;

(B.37)
— Vk € [[1, k’ref — 1]]7 Vi e [[kref + 1§Nshift + 1]]a
ref 1 l
Cov (Ab", Ab) = Z o™, 3 e
p=kKrer+1
Frer 1 (B.38)

= Z Z Cov (6b§m),5b§p)> (cf. property 4)
m=k p=kper+1

= 0 (independence, cf. equation B.2)

o Vi€ [1; Nes], Vi € [1; Nes],
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B.3. Incremental change option

— Vk € [kret + 1; Nenige + 1], VI € [kret + 1; Nonige + 1],

Cov Ab (k) Ab§”

k l
- o S farenn). S ()

m=kyer+1 kret+1
k: l

p=
_ > (Cov (7, 057)) + Cov (a7, b))
m= kref+1 p=krer+1

" m bilinearity,
+Cov (845, 18)) + Cov (33,580 ,,))
cf. property 4)

= > > (Cov (e, o) + cov (a7, 6% )

rm
Coe (S0, 1) + Cov (4542
5 (v (120 1Y+ Cov () ) (2.9
m=kyrer+1
+Cov (7,1, 1) + Cov (32, a6.,))
min(k,l) ( d d ’
= m%e:fﬂ (Var [5[1()’].)] 11 (i) + Var |:6b§\/' )+1D Cf.lne;fj;lozn]:;)

2 2
+ (ng?f)\ks-i-l) ) ifi=jand k<l

2 (m) AN
(05b,Ncs+1) ifi=jand k>1

+

K 2
> (osen) ifi#jand k<1

m i jand k> 1
U&b,NCS+1) if 1 # j an >
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Annexe B. Multivariate distribution for offset change parameters

— Vk € Hl;kref — 1]], Vil e Hl;kref — 1]],

Cov (Ab§"‘>, Aby))

kref—1 kref—1
= Cov| Y (o7 +ab5, ), (o1 p)+5bN)+1)>
m=k p=l
= rilkril(cov (5077, 607)) + Cov (a7, 6% )
m=k p=l

bilinearity,
+Cov (565\7;)4_17 511(,?) + Cov (51)&\2-&-17 555\12#1)) ( '
cf. property 4)

kref—1 kref—1

= > > (Cov (o, a17)) + Cov (a1, o0 )

m=k p=l
+m
o (21,18)) 4 Cov (34, 82,
+ kfl (Cov (a1, 605") + Cov (147", b2, ) (B.40)

m=max(k,l)

+Cov (5175\71)_5_17 MIY?)) + Cov (6b§\7f7:s)+1’ 5b§\7£3+1))

Frot 1 m m (independence,
=N e [ 10+ var g, ])
m=max(k,l) cf. equation B.2)
krer—1
Z ((U((;Z’)j)z + (U((;Z?])VCSH)Q) ifi=jand k <1
1 , ,
3 ((agg) + (o5 Nsr) ) if i =j and k > [
- mk kref—1 9
> (o5hest) ifi#jandk <l
g1 )
> (o5Nest) if i £ jand k >
m=k

— Vk € [1; ket — 1], VI € [krer + 1; Nonig + 1],

Cov (Abg’“), Abg.”)

kres—1 l
— Cov ( i (o7 +ob% ) >0 () + aby) +1))
m=k p=kyrer+1
krer—1 l
= > > (Cov (o o)) + Cov (a7, 0% 1) (B.41)

m=k p:kref+1

m m bilinearity,
+Cov (5b§vcs) T 5;5{’}) + Cov <5b§\,cs)+1, 5b) +1>) (
cf. property 4)

= 0 (independence, cf. equation B.2)
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B.3. Incremental change option

e Vic [[1;Ncs:|]7 Vj € [[NCS + 1;Nc]]7

- Vk € [[kref + 1;Nshift + 1]]7 Vi e [[kref + 1;]\'fshift + 1]]7

Cov (Ab(k), Ab(”)

J

= ( zk: (07 + o051 ) El: 5b¥ )

m:kref+1 b= kref"l‘l
l
- Z > (Cov (a7, o)
m=kpef+1 p=Fkyrer+1
+Cov (5b§€2 1 6b§p ))) (bilinearity, cf. property 4)

_ Xk: Zl: (Cov (316, 86P) + Cov (867, 862)

m=kret+1 p=kres+1

(k1) prm
+ Z (Cov (a5, 865™) + Cov (865, 005™)) (B.42)
m kre +1
min(kz,l)f
= Z Cov ((5()%3 +1,5b§-m)) (independence, cf. equation B.2)
m:kref+1
min(k,l)
= Z Var [5[)5\7:3_’_1} ]l{Ncs+1}(j)
m=krer+1
k 2
> (05Ney1) 1= Nest1and k<
'rn:k/'ref"l‘1
_ ! 2
- > (o5 Nsr) (5= Nes+1landk>1
m:krcf""l
0 if j # Nes + 1
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Annexe B. Multivariate distribution for offset change parameters

— Vk € Hl;kref — 1]], Vil e Hl;kref — 1]],

Cov (Ab(k) Ab§”)

— kref—1
= Z (157 + b5 11 ) Z 5b(”>
kret—1 kre i

- Z (Cov (o177, b

m=k p=l

+Cov ((5()5\7,”? 1 5b(-p ))) (bilinearity, cf. property 4)
kref—1 kpof—1

_ Z Z (COV (5ll(” )’ 5b(P)) + Cov (5b§v )+1’ (5()(1’)))

m=k p=l
p#m
kreff1

+ > (Cov (g, b5™) + Cov (db,,005™)) (B.43)
m=max(k,l)
kref_l
= Z Cov <5b§$;) 1 6b§-m)) (independence, cf. equation B.2)
m=max(k,l)
kref_l

— Z Var [56%3“} Linet13(J)

m=max(k,l)
krer—1 2
> (O-((SZ?])VCS+1> if j=Ne+1and k<1
m=max(k,l)
kref—1

- > (U?ZZ)VCSH)Z if j = Nes+ 1 and k > 1

m=max(k,l)

0 if j # Nes + 1

- Vk e [[L kref - 1]]7 Vi e [[kref + 1;Nshift + 1]]5

kret—1 l
Cov (Ab™, Abl") = Cov i (o + 00501 >0 5b(p)
m= k p=krer+1
krer—1

- Y Z (Cov (a1, o0 (B.44)

m=k p=krer+1
+Cov (51)%’2 15 5b§p )>) (bilinearity, cf. property 4)

= 0 (independence, cf. equation B.2)

B.3.3. Multiplicative link

B.3.3.1. Assumptions

Vk € [[1;Nshift+1]],k‘ 7é kref, let Vj € [[1;NCS]], (5()5 and Vj € [[Ncs—i-l N]] A be N X Nghift

independent and random variables distributed as follows:
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50" ~ N (k)-EU(k)- , Vj e[l Nes local
VE € [[1; Nshift]], k 7é ]Cref, J (Mabﬂ 5b:]> J [[ ]] ( )

(B.45)
k k k .
)‘I(),j) ~N (Mg\b),ﬁ Uf\b?j) , Vj€[Nes+1;N] (global)

B.3.3.2. Cumulated change distribution

Relations between cumulated changes and incremental changes for the multiplicative link
option are expressed by equation (5.13) using table 5.2. As addition and multiplication are used
in these relations, the multivariate distribution of the inferred parameters corresponding to the
cumulated changes can be approximated by a multivariate normal distribution. This approxi-
mation have been compared with and validated by results from Monte-Carlo propagation.The
following paragraph in this subsection are the theoretical calculations of the parameters (mean

and covariance matrix) of this approximated multivariate distribution.

Mean Vk e [[1, Nshift]]a k 7é Fret,

E [Z 6b‘§m)‘| lfj < Ncs (SeCtiOH COIItI'Ol)
k)] _ —
: {Abj } N (m) ¢ (m)
D Z)‘b,j 6by.. | if j > Nes (channel control)
STE[™]ifj < Ne
- " (cf. property 3)
SR [N if j > Ne
SE[M] i) < Ne
ZE {)\l()?)} E {(51)5\7&)} if 7 > N¢s (independence, cf. property 1) (B.46)
" kref_l
> #fs?f} if j < Neg and k < ket
m=k
Z :uc(;lfg) lf] S Ncs and k’ > kref
e m:kref+1
B ref_1
Z M&TZ;M((;ZLJ) if 7 > Nes and k < kyet
mek
Z /’Lg\TZ‘)]M((sZ,L‘]) lf] > Ncs and k > kref
m=kyer+1
Covariance

e Vi€ [1; Ns], V5 € [1; Nes],

221 / 246 Mansanarez Valentin



Annexe B. Multivariate distribution for offset change parameters

— Vk € Hl;kref — 1]], Vi € Hl;kref — 1]],

Cov (Ab(k), Abg”)

ref —1 krer—1
= ( Z oby"™, Z ob% )
kret—1 kret— 1

= Z Z Cov (5b(m),5b§p)> (bilinearity, cf. property 4)

)

k:r;:*kl krif:l 1 kref—1
= > > Cov(a™, )+ Y Cov ()™, aby™)
m=k pp#rfl m=max(k,l) (B47)
kref—1

= Z Var {5b§-m) } 1;1(7) (independence, cf. equation B.2)

m=max(k,l)

kres—1 9
> (o5)) ifi=jand k<l
I ,
- Z (Uz(ig,?) ifi=jand k >1
m=k
0 if i+ j

- Vk e [[kref + 1; Ngnigt + 1H7 Vi e [[kref + 1; Ngnigt + 1]]7

i j
k l
_ COV( S, Y 5b§”))
m=krer+1 p=krer+1
k l
= Z Z Cov (5b§m), 6b§p )) (bilinearity, cf. property 4)
m=krer+1 p=Fkrer+1
k min(k,l)
- ¥ Cov (8™, 66" ) + 3~ Cov (db™, 56"
m=Ckret+1 p=krer+1 m=kyper+1
kf;- D p#;:- £+ (B.48)
= Z Var [5b( )} 1¢;1(7) (independence, cf. equation B.2)
m=kref+1
k 2
> (oh)) ifi=jand k<l
m=ker+1
_ ! 2
- > (oh)) ifi=jandk>1
m:kref+1
0 i
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B.3. Incremental change option

— Vk € [1; ket — 1], VI € [kret + 1; Nanie + 1],

kret—1 l
Cov (AbM, AbY) = cov( z_jk o™, Y 5b§p))

p:kref+1
krer—1 l

= Z Z Cov (5b§m),5b§-p ) ) (bilinearity, cf. property 4)
m=k p=krer+1

= 0 (independence, cf. equation B.2)
(B.49)

Vi € [[Ncs + 1§Nc]]> Vj € [[Ncs + 1§Nc]]’

223 / 246 Mansanarez Valentin



Annexe B. Multivariate distribution for offset change parameters

— Vk € Hl;kref — 1]], Vi € Hl;kref — 1]],

Cov (Ab(k) Ab)

ref —1
= (Z PRI Z A(” RIAG )

kref lkref 1
= Z Cov ()\1(771.)5125\7:3,)\1()’} 5b§\z;c)s) (bilinearity, cf. property 4)
m=k =l
kreffl kpef 1
= > > Cov(NPaby AP )
m=k l

p=
pFm
kreff1
+ > Cov (WP A b )

m=max(k,l)
krer—1

= Y Cov (MG A ) (cf. equation B.6)

m=max(k,l)

kres—1
= Z Var {)\l()])éb( )} 1153 (7) (cf. equation B.6)
m=max(k,l)
k:ref_l

- ng(k,l){( BN | Var [8657] ) 1., )
]+ (8 ) ver 4

+<(E ) var [0

+Var { ] Var {(51) D L } (cf. equation B.3 and property 2)
(m
[

S (00" )+ Gk ) ()

ifi=jand k <1

_ —k 7 7 ifi=j and k >1
(o) (o5, )2)
kref—1 9
Z M(AT,E ”g\:n,; (chZLI)\fcs) ifi#jand k <lI
o ,
3" Um0 (ol ) i and k>

(B.50)
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B.3. Incremental change option

— Vk € [kret + 15 Nenige + 1], VI € [krer + 15 Nonige + 1],

0

Cov (Abgk), Ab

)

k I
e 3 AmaE, Y Aé’?ébg\l;c)s>
m=krl p=hrl
k I
= Z Z Cov (Agf?%%fg,)é?éb%js) (bilinearity, cf. property 4)
m:k‘]::eerl karlef%»l
= Y Y Cov (MR A abY))
T pgm
min(k,l)
+ Y Cov (Ao A ab
m=kper+1 ’ ,
min(k,l)
- ¥ &w@gwmgAgm%@<c
m=kKper+1
min(k,l)
= Z Var [Aé?éb%’:ﬂ 151(4) (cf. eq
m=kyef+1
min(k,l)
= Y (ENP]ENG] var (55
m=kpef+1
+ (& ]) var ] + (oo

+Var {)\,()?)} Var

> ((

m:kref"" 1

[
)

(m) 2

(m)
//I/Abvj b

056, Nes

)+ o
D) ()
)+ (o
(m) Cs>2

(ot
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Hsb, Neg

0b,Ncs

0b,Nes

)

f. equation B.6)

uation B.6)

) Lo 0. )

b?j

J) o [35)]

6b§\T,ZS)D ]l{j}(i)] (cf. equation B.3 and property 2)

i) (o50)

ifi=jand k </

)

m)

(m)
Ab’j

) ()

ifi=jandk>1

)
;

ifi#jand k<1

ifi#£jand k>1

(B.51)
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Annexe B. Multivariate distribution for offset change parameters

- Vk e [[1; kref - 1]]7 Vi e [[kref + 1;Nshift + 1]]7

Cov (Ab“) Ab(’))

kref 1
= S oarael, Z AP sl
m= k p=kpet+1
ref 1

= Z Z Cov ( 5b§\, ), )‘l(;g)éb(p) ) (bilinearity, cf. property 4)
m=k p=kyer+1

= 0 (independence, cf. equation B.6)
(B.52)

® Vi€ [Nes+ 15 Ne], Vj € [1; Nes|,

— Vk e Hl;kref — 1]], Vi € Hl;kref — 1]],

Cov (Abg’“), Abg”)

kref ref 1
— Cov A,S";)ébN > s
p=l

m=k
kref_lkref 1

= Z Z COV( b 5bN ),5b§-p)) (bilinearity, cf. property 4)
m=k p=I

kref—1 kref—1
- Z Cov (A7 ab, ab)

m=k
p#
kret—1

ef
+ ) Cov(Aaby, ab(™)
m=max(k,l)
krer—1
= Z Cov <)\l(:?)6b§$3,5b§-m)) (cf. equation B.4)
m=max(k,l)
kret—1

= > (Cov (MG, ) 1 any (5)
m=max(k,l)
+Cov (Ao, 605 1wy (4) )
Fref—
= Z E {)\l(f;)} Var {56( )} Tyn.1(j) (cf. equations (B.4) and (B.6))
m=max(k,l)
0 if 7 # Nes
ref_
3 Z .. (75 }VS)Q if j = Neg and k < I

refﬁ

Z .. (o5 }VS)Q if j = Nes and k > I

(B.53)
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B.3. Incremental change option

— Vk € [kret + 15 Nenige + 1], VI € [krer + 15 Nonige + 1],

Cov (Abfk), Ab(”)
k !

S oareg 5 )
m=kper+1 p=krot+1

l
Z Cov (Ag?éb%g,éb;p )) (bilinearity, cf. property 4)

k
=YY Cov (A )

m=kper+1 b= kret+1

pFm
min(k,l)
+ 3 Cov (Aéf?éb%jg,abgm))
m=kper+1
min(k,l)
= Z Cov ()\Z(;?)(Sbg\rfzz,ébg-m)) (cf. equation B.4)
m=kper+1
min(k,l)

"
(

+Cov )\l()m)éb%n),éb( )) ]l{NCS}(j))

Cov (A7 80% 86™) sy ()

min(k,l)
— Z E [)\l(f’;)} Var [5[;( )} ]l{Ncs}( ) (cf. equations (B.4) and (B.6))
m=ker+1
0 if j # Nes
m 2 . .
— Z 'Ulg\fn)]\fca( ((S ])V ) lf]:Ncs andkél
N m= krcf+1
m 2 . .
Z #g\b7)]VCb( ((s ])V ) lf]:NCS andk>l
m= kref+1
(B.54)
— Vk € [1; ket — 1], VI € [Krer + 15 Nonie + 1],
(k) O]
Cov (Ab Ab] )
ref 1
S (S, £ o)
p=krer+1 (B.55)

kref 1 l
= Z Z Cov ()\Z(”)(Sb%n),db(p)) (bilinearity, cf. property 4)
m=k p=krer+1

= 0 (independence, cf. equation B.4)
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Relations hauteur-débit non univoques: analyse bayésienne des courbes de

tarage complexes et de leurs incertitudes

Les courbes de tarage complexes, qui prennent en entrée la hauteur d’eau et des variables supplémen-
taires, sont nécessaires pour établir les chroniques de débit des cours d’eau la ou la relation hauteur-débit
n’est pas univoque. Dans le méme cadre bayésien, des méthodes a base hydraulique sont proposées
et testées pour construire les courbes de tarage complexes et estimer leurs incertitudes : des modeles
hauteur-gradient-débit (SGD) pour résoudre 1'hystérésis due aux écoulements transitoires, des modeles
hauteur-dénivelée-pente (SFD) pour résoudre le remous variable aux stations & double échelle, le modele
hauteur-période-débit (SPD) pour résoudre les détarages nets dus aux évolutions du lit. Chaque modele
a été appliqué a des stations hydrométriques variées et évalué grace a des analyses de sensibilité. Pour
chacune des trois sources de non-univocité de la relation hauteur-débit, les méthodes bayésiennes pro-
posées fournissent non seulement une analyse d’incertitude quantitative mais aussi des solutions efficaces

a des problemes récurrents que posent les procédures traditionnelles pour les courbes de tarage complexes.

Mots clés : BaRatin, inférence bayésienne, controles hydrauliques, courbes de tarage complexes,
Hydrométrie, hystérésis, MCMC, non univocité, détarages morphodynamiques, relations hauteur-débit,

débit des cours d’eau, incertitudes, influence aval variable.

Non-unique stage-discharge relations: Bayesian analysis of complex rating

curves and their uncertainties

Complex rating curves, with stage and additional variables as inputs are necessary to establish stream-
flow records at sites where the stage-discharge relation is non-unique. Within the same Bayesian frame-
work, hydraulically-based methods are introduced and tested to develop complex rating curves and es-
timate their uncertainties: stage-gradient-discharge (SGD) models to address hysteresis due to transient
flow, stage-fall-discharge (SFD) models to address variable backwater at twin gauge stations, stage-
period-discharge (SPD) model to address net rating changes due to bed evolution. Each model was
applied to contrasting hydrometric stations and evaluated through sensitivity analyses. For each of the
three sources of non-uniqueness in the stage-discharge relation, the proposed Bayesian methods provide
not only quantitative uncertainty analysis but also efficient solutions to recurrent problems with the tra-

ditional procedures for complex ratings.

Key words: BaRatin, Bayesian inference, controls, complex rating curves, Hydrometry, hystere-
sis, MCMC, non-uniqueness, rating changes, stage-discharge relation, streamflow, uncertainties, variable

backwater influence.
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