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General Introduction  

The troposphere is the region of the Earth's atmosphere in which we live and into which 

many chemical compounds are emitted as a result of biogenic processes and human activities. 

These compounds, emitted from both natural and anthropogenic sources (Atkinson, 2000; 

Koppmann, 2007), undergo physicochemical transformations that affect both air quality and 

climate. Indeed, these emissions contribute to smog and acid rain formation, stratospheric ozone 

depletion, and global warming (Kerr, 1991; Madronich et al., 2015). The discovery of these 

environmental issues has increased the worldwide interest to investigate atmospheric chemistry 

during recent decades, with the goal to develop efficient strategies to mitigate their consequences. 

Large amounts of volatile organic compounds (VOCs) are emitted into the troposphere with an 

estimated flux of 1250 Tg year-1 (1012 g) (Atkinson and Arey, 2003), approximately 140 Tg year-1 

due to anthropogenic activities(Goldstein and Galbally, 2007) and the rest from biogenic emissions 

(Guenther et al., 1995, 2012; Sindelarova et al., 2014). Our atmosphere has the ability to remove 

most of these pollutants through oxidation processes initiated by several oxidants such as the 

hydroxyl (OH) and nitrate (NO3) radicals, chlorine atoms (Cl) and ozone (O3) (Monks, 2005). 

Among these species, OH plays a key role in the self-cleaning capacity of the atmosphere (Montzka 

et al., 2011) due to its high reactivity with both organic and inorganic species (lifetime lower than 

a second), and drives the lifetime of most VOCs. Although atmospheric concentrations of OH are 

usually small, ranging from a few 105 cm-3 at night up to 2×107 cm-3 during the day (Heard and 

Pilling, 2003; Monks, 2005), its important role in atmospheric oxidation is due to a radical reaction 

cycle initiated when OH reacts with VOCs, which leads to the production of organic peroxy (RO2) 

and hydroperoxy (HO2) radicals, which can then recycle back to OH through reactions with 

nitrogen monoxide (NO).  

Peroxy radicals (HO2 + RO2) are also short-lived species (lifetime of a few tens seconds) 

playing an essential role in the formation of ozone (Atkinson, 2000) and secondary organic aerosols 

(Kroll and Seinfeld, 2008a), with  both of these secondary pollutants being formed in smog 

episodes. The oxidizing capacity of the global  atmosphere of the Earth is mainly controlled by 

OH, and as a consequence peroxy radicals due to their propagation to OH, whose spatial 

distribution has a major impact on the concentration and distribution of greenhouse gases. Thus, 

understanding the variability of these radicals, along with their souces and sinks  is crucial to 
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evaluate future changes of the chemical composition of the atmosphere, with implications for both 

air quality and climate change.  

Measurements of atmospheric peroxy radicals, which are present at low concentrations (106-109 

cm-3) and that exhibiting short lifetimes require sensitive and selective techniques. Various 

instruments using different experimental approaches have been developed over the last  few 

decades to measure peroxy radicals, including Matrix Isolation Electron Spin Resonance 

spectroscopy (MIESR) (Mihelcic et al., 2003, 1985), Laser-Induced Fluorescence-Fluorescent 

Assay by Gas Expansion (LIF-FAGE) (Stevens et al., 1994a; Hendrik Fuchs et al., 2008; Dusanter 

et al., 2009b; Faloona et al., 2004; Heard, 2006) and the ROxLIF variant(Hendrik Fuchs et al., 

2008; Whalley et al., 2018a) , Chemical Ionization Mass Spectrometry (CIMS) (Albrecht et al., 

2019; Edwards et al., 2003; Hornbrook et al., 2011; Kukui et al., 2008a) and Chemical 

Amplification (CA, PERCA: PEroxy Radical Chemical Amplifier, ECHAMP: Ethane-Based 

Chemical Amplification) (Cantrell et al., 1984; Hernández et al., 2001; Kartal et al., 2010; Liu et 

al., 2009; Wood and Charest, 2014). However, it was recently highlighted that some of these 

techniques may suffer from interferences (Fuchs et al., 2011; Stone et al., 2012) and it is therefore 

important to improve our technological understanding of peroxy radical measurements. This is a 

prerequisite for accurate field measurements as well as for kinetic studies of atmospheric reactions 

in the laboratory. 

The main objective of this work is to improve our knowledge on two measurements 

techniques: Chemical Amplification and ROxLIF. CA is an indirect technique for measuring the 

sum of peroxy radicals (HO2+RO2) whose simplicity and low cost make it attractive for intensive 

field measurements. This technique involves the chemical conversion of all peroxy radicals into 

nitrogen dioxide (NO2) and its subsequent quantification using an NO2 analyzer. The ROxLIF 

technique allows measuring both HO2 and the sum of organic peroxy radicals (RO2) separately 

through a selective conversion of these radicals into OH, which is then quantified by laser induced 

fluorescence at low pressure (Fuchs et al., 2010, 2008). During this work, a CA instrument was 

built, characterized and tested for field measurements at IMT Lille Douai, France, while the 

ROxLIF technique was implemented on an existing FAGE instrument and tested in the field at 

Indiana University, United States.  

The first chapter of this manuscript describes the tropospheric chemistry involving 

initiation, propagation and termination reactions of ROx radicals (OH, HO2, RO and RO2) and 
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provides a brief overview of field measurements for these species. The instruments developed for 

ROx measurements in ambient air are also described. This chapter ends by introducing the 

objectives of the work reported manuscript herein. 

Chapter 2 describes the development of a dual channel CA at IMT Lille Douai.  This chapter 

reports the characterization of two different amplification chemistries based on the PERCA 

(PEroxy Radical Chemical Amplifier) and ECHAMP (Ethane-Based Chemical Amplification) 

approaches. This characterization work consisted in the optimization of reagent gases, the 

quantification of radical wall losses inside the instrument, and the calibration of the instrument’s 

response (and its humidity dependence) to different peroxy radicals. Both laboratory experiments 

and model simulations were used to provide a detailed description of the two amplification 

chemistries. Finally, the instrument was tested by performing ambient measurements.  

Chapter 3 describes the construction and characterization of the ROxLIF conversion flow-

tube that was coupled to the existing Indiana University-FAGE instrument. Similar to the CA 

apparatus, a combination of laboratory experiments and model simulations were used to 

characterize optimum conditions for the addition of reagent gases, to assess radical wall losses in 

the conversion flow-tube and to calibrate the instrument’s sensitivity to both HO2 and RO2 radicals. 

This chapter also reports the first deployment of the Indiana University-ROxLIF for outdoor and 

indoor measurements of peroxy radicals. 

Chapter 4 reports an intercomparison of the CA developed in this study with a ROxLIF 

instrument developed at the University of Lille (PC2A laboratory) and a CIMS instrument from 

the LPC2E laboratory (University of Orleans). This intercomparison exercise was conducted at the 

HELIOS chamber (ICARE, Orleans) where different pools of peroxy radicals were generated in 

the chamber under dark and irradiated conditions using different chemical systems. This chapter 

describes the agreement between the different instruments and shows how the measurements 

compare to preliminary box model simulations.   
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Chapter 1. Bibliographical Context 

This chapter provides a detailed description of the chemistry of peroxy radicals in the 

atmosphere and highlights their initiation, propagation and termination pathways. The different 

techniques used for measuring ROx (OH, HO2, RO2) radicals in the atmosphere and their suitability 

for field measurements are also discussed. Finally, a brief overview of their measurements in the 

field is presented.  

1.1 Tropospheric Chemistry of ROx radicals  

The fate of volatile organic compounds (VOCs) in the troposphere depends on physical 

processes such as wet and dry depositions (Chen et al., 2019; Mellouki et al., 2015) as well as 

chemical processes, including direct photolysis and chemical reactions with oxidants such as OH 

(hydroxyl radical), NO3 (nitrate radical) and O3 (ozone). Table 1 reports rate constants of a few 

selected anthropogenic and biogenic VOCs with these different oxidants and their associated 

lifetimes. Oxidation reactions initiated by OH are thought to be the most important during daytime 

due to its high reactivity (bimolecular rate constants usually ranging from 10-13 up to 10-10 cm3 

molecule-1 s-1). While O3 only reacts with unsaturated VOCs with bimolecular rate constants that 

are several orders of magnitude lower than for OH, its larger concentration can balances its lower 

reactivity and this oxidant is also important during daytime. For instance, sesquiterpenes (-

carryophylene in Table 1.1) exhibits a lifetime with respect to O3 oxidation that is smaller than for 

OH oxidation. Interestingly, NO3 oxidation is not important during the day due to its efficient 

photolysis its reaction with NO, however, its build-up in the dark conditions can lead to a 

significant impact of this oxidant on VOC oxidation rates at night such as seen for α-pinene. 
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Table 1-1 Rate constants and Lifetimes of selected VOCs with OH, O3 and NO3 during daytime and 

nighttime. 

 

VOC 

Rate constant (298 K) 

 (cm3 molecule-1 s-1) 

Lifetime  

(days) 

OH O3 NO3 Daytime 

OHa            O3
b 

Nighttime 

O3
c               NO3

d 

Methane 6.4×10-15* - 1.0×10-18 ∞ 3.6×103                 2.3×106 

Hexane 5.2×10-12** - 1.1×10-16 ͋ 4.5                 2.0×104 

Toluene 6.1×10-12*** - 7.0×10-17 ͋ 3.8     3.3×104 

Isoprene 1.0×10-10* 1.3×10-17 ͋ 7.0×10-13 ͋ 0.2                2.6 6                      3.3 

α-pinene 5.3×10-11* 8.4×10-17 ͌ 6.2×10-12 ͋ 0.4                0.4 0.9                   0.4 

-

carryophylene 

2.0×10-10 ͌ 1.2×10-14 ͌  0.1          2.8×10-3 6.6×10-3 

*Atkinson et al., 2006; **Atkinson, 2003; ∞Atkinson et al., 1997; ***Atkinson, 2007;  ͌ (R. Atkinson, 1997); ͋ (Atkinson and Arey, 

2003), aAssuming the day time (6am- 6pm) [OH] = 106 molecules cm-3, b Assuming the day time (6am- 6pm) [O3] = 7×1011 

molecules cm-3, c Assuming the night time (6pm-6am) [O3] = 3×1011 molecules cm-3, d Assuming the night time (6pm-6am), 

[NO3] = 107 molecules cm-3  

 

The reaction of a VOC with OH will lead to the formation of an organic peroxy radical 

(RO2) through the addition of OH to an unsaturated carbon or the abstraction of an hydrogen. RO2 

will then react with NO (NO > approx. 100 ppt) to form an alkoxyl radical (RO), which will further 

react with O2, isomerize or decompose to produce the hydroperoxyl (HO2) radical. HO2 is known 

as a temporary reservoir of OH since it subsequently react with NO (or O3) to reform OH 

(Finlayson-Pitts and Jr, 2000). It is interesting to note that the oxidation of VOCs initiated by either 

O3 or NO3 will also lead to the formation of peroxy radicals and OH, which will then increase the 

pool of ROx (OH, HO2, RO2) radicals involved in the cycling chemistry shown in Figure 1.1.  

This fast cycling of radicals controls many aspects of atmospheric chemistry such as the 

formation of ozone, through the conversion of NO into NO2 when peroxy radicals react with NO, 

and the formation of secondary organic aerosols (Finlayson-Pitts and Jr, 2000). This radical cycling 

also controls the removal of the most abundant atmospheric VOCs such as methane and other 

greenhouse gases that affect the radiative balance of the atmosphere (Monks, 2005). Because of 
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the important role played by both OH and peroxy radicals in the atmosphere, their sources and 

sinks have been the subject of intensive research as summarized in recent reviews (Clemitshaw, 

2004; Heard and Pilling, 2003; Monks, 2005; Stone et al., 2012).   

 

                      Figure 1.1  Simplified schematic of tropospheric photochemistry (adapted from Ren et al., 2009) 

The reactions shown in Figure 1.1 can be grouped in 3 categories to characterize the ROx 

chemistry: initiation (grey), propagation (red), and termination (purple): 

 Initiation reactions (radical sources) lead to radical production from closed-shell 

molecules. For instance, HONO photolysis leads to the formation of OH. 

 Propagation reactions lead to the conversion of one radical species into another one. For 

instance, HO2 propagates to OH by reaction with NO. 

 Termination reactions (radical sinks) occur when two radical species react with each other 

to form a closed-shell molecule. For instance, OH is terminated through its reaction with 

NO2 to form nitric acid (HNO3). 

1.1.1 This chemistry is discussed in more details in the following sections. 
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1.1.2 Radical Initiation 

 

1.1.2.1 Initiation pathways 

 

On a global scale, OH is primarily initiated as a result of ozone photolysis at wavelengths 

less than 310 nm, resulting in the formation of an excited oxygen atom, O(1D), as shown in R1. 

Collisions of O(1D) with ambient oxygen or nitrogen molecules (M in R2) quench it back to its 

ground atomic state, O(3P), which subsequently reacts with molecular oxygen to reproduce O3. 

However, the large abundance of water vapor in the troposphere opens a path for collisions of 

O(1D) with H2O towards the formation of hydroxyl radicals, as shown in R3. 

 

R1   𝑂3 + ℎ𝑣 → 𝑂2 + 𝑂(
1𝐷)           𝜆 < 310 𝑛𝑚 

 

R2  𝑂(1𝐷) +𝑀 → 𝑂(3𝑃) + 𝑀 

 

R3  𝑂(1𝐷) + 𝐻2𝑂 → 2 𝑂𝐻   

 

The fraction of O(1D) atoms that forms OH depends on the water-vapor concentration. In the lower 

troposphere where the water concentration is fairly high (mixing ratios ranging from 1-3%), 

approximately 10% of O(1D) reacts with H2O leading to form OH (Monks, 2005).  

While  R1 and R3 are the main contributors to the formation of OH in the global troposphere 

(Monks, 2005), there are additional sources (see Figure 1.1) involving the photolysis of OH-

precursors such as nitrous acid (HONO) (R4) and hydrogen peroxide (H2O2) (R5). 

 

R4 𝐻𝑂𝑁𝑂 + ℎ𝑣 → 𝑂𝐻 + 𝑁𝑂     𝜆 < 400𝑛𝑚 

 

R5  𝐻2𝑂2 + ℎ𝑣 → 2𝑂𝐻   𝜆 < 366 𝑛𝑚 

 

The photolysis of HONO (R4) at short wavelengths (300-400 nm) acts as an important source of 

OH radicals in ozone-deficient polluted air masses (Finlayson-Pitts and Jr, 2000). HONO usually 
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accumulates during nighttime and provides an early morning pulse of radical formation shortly 

after sunrise, before O3 photolysis becomes important since HONO is photolyzed at longer 

wavelengths than O3 (Spataro and Ianniello, 2014) . 

Another initiation route of OH that has received a lot of attention is the reaction of ozone 

with unsaturated VOCs such as alkenes (Paulson and Orlando, 1996; Johnson and Marston, 2008). 

This type of reactions does not require photons and can also operating at night in contrast to the 

photolytic sources (R1-R5). The exact mechanism for ozonolysis reactions differ between the 

various alkenes, but a large fraction of the products are radicals. For instance, the reaction of the 

simplest alkene (ethene, C2H4) is believed to proceed by the formation of a biradical species, 

CH2OO (R6), also known as a Criegee intermediate, whose subsequent decomposition produces 

HOx (OH, HO2) radicals. 

R6  𝑂3 + 𝐶2𝐻4 →→ 𝐶𝐻2𝑂𝑂 + 𝐶𝐻2𝑂  

  

A more general mechanism for the ozonolysis of alkenes is thought to proceed through the reaction 

of ozone with alkene to produce an energy-rich primary ozonide (Path 1 in Figure 1.2). The 

decomposition (Path 2) of this ozonide produces a carbonyl and a Criegee intermediate (red box) 

(Baker et al., 2002; Kroll et al., 2001). The Criegee intermediate can be formed in either syn or anti 

configuration. The Criegee intermediate maintains an excess of energy of the excited ozonide, and 

can decompose (Path 3a-3b) or become stabilized (Path 4) through collisions with the bath gas by 

transferring its energy. The OH generated during alkene ozonolysis is typically the result of syn-

Criegee intermediate decomposition, but anti-Criegees have shown to contribute up to one third of 

the OH yield (Kroll et al., 2001). 
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Figure 1.2: Reaction schematic of the ozonolysis of an alkene (Kroll et al., 2001).   

The photolysis of Oxygenated VOCs (OVOCs) that are of primary origin, i.e. emitted in 

the atmosphere by natural or anthropogenic sources, or secondary origin, i.e. produced during the 

oxidation of primary VOCs, can also act as an important source of ROx radicals. For instance, 

formaldehyde (HCHO), glyoxal (CHOCHO), and other dicarbonyls such as methyl glyoxal 

(CH3C(O)CHO) can easily be photolyzed to produce two radical species. The photolysis of HCHO 

at short wavelengths (λ < 334 nm), an important HOx radical source in the remote atmosphere 

(Fleming et al., 2006), can produce two HO2 radicals as shown in reactions R7-R9 (Monks, 2005).   

R7  𝐻𝐶𝐻𝑂 + ℎ𝑣 → 𝐻 + 𝐻𝐶𝑂    𝜆 < 334 𝑛𝑚 

 

R8  𝐻𝐶𝑂 + 𝑂2 → 𝐻𝑂2 + 𝐶𝑂 

 

R9  𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀  

 

The thermal decomposition of Peroxyacyl Nitrates (RC(O)O2NO2) which only formed from 

the peroxyacetyl radicals and NO2, known as PAN species, is an additional source of organic 

peroxy radicals in the lower troposphere. Peroxy acetyl nitrate (CH3C(O)O2NO2) is the most 

abundant PAN species in the troposphere, with typical atmospheric mixing ratios ranging from a 

few ppt in the remote marine boundary layer to several ppbv in heavily polluted urban regions. Its 

decomposition into peroxy acetyl radicals (CH3C(O)O2) as shown in R10 is very sensitive to 

temperature (Zheng et al., 2011), with a PAN lifetime ranging from about 30 minutes at 298 K to 

8 h at 273 K. This behavior makes PAN species important sources of peroxy radicals and NOx 

when their decomposition rate is larger than their formation rate (back reaction of R10). In contrast, 
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if the decomposition rate is lower than the formation rate, PAN formation becomes a net sink of 

peroxy radical 

R10  𝐶𝐻3𝐶(𝑂)𝑂2𝑁𝑂2 → 𝐶𝐻3𝐶(𝑂)𝑂2 + 𝑁𝑂2 

 

1.1.2.2 Comparison of initiation rates between different types of environments 

The importance of each type of initiation reactions has been studied in environments 

characterized by different VOC emissions and NOx levels such as forested areas (Wolfe et al., 

2011; Whalley et al., 2012; Griffith et al., 2013a; Heard and Pilling, 2003; Stone et al., 2012), urban 

areas (Heard and Pilling, 2003; Dusanter et al., 2009b; Volkamer et al., 2010; Stone et al., 2012), 

and the remote marine boundary layer (Berresheim et al., 2002; Creasey et al., 2003; Heard and 

Pilling, 2003; Stone et al., 2012). For instance, an investigation of the ROx radical budget in a low-

NOx/high-isoprene forested environment (Griffith et al., 2016) revealed that photolytic processes 

(R1-R3, R4, R5 and R7) are the main sources of radicals as shown in Figure 1.3 (73% of the total 

initiation rate on average). For the  campaign average, photolysis of O3, HCHO and HONO 

contributed to 22%, 23% and 14% of the total initiation rate, respectively. The contribution of 

ozonolysis reactions was also significant and account for 23% of the total initiation rate. 

 

 

Figure 1.3: Contributions of initiation processes to the total initiation rate of ROx radicals in a forested area 

(Griffith et al., 2013a).  

For urban areas as shown in Figure 1.4, which are characterized by high emissions of 

anthropogenic species (VOCs and NOx), the photolysis of HONO is the main contributors for 

radical initiation, usually overpassing ozone photolysis. For example, a radical budget analysis 

performed in Mexico City during the 2006 MILAGRO campaign (Dusanter et al., 2009b) shows 
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that HONO photolysis accounted for 35% of the total ROx initiation rate, which is approximately 

6 times larger than O3 photolysis in this environment. The impact of O3-alkene reactions and 

HCHO photolysis was also significant with contributions in the range of 19-25 % to the total ROx 

initiation rate.  

 

Figure 1.4: Contributions of individual processes to the total production rate of ROx radicals in Mexico City 

during MILAGRO 2006. The insert in the upper right panel displays a breakdown of the O3-alkene contribution. 

(Dusanter et al., 2009b). 

 

Marine environments are characterized by low concentrations of reactive VOCs (NMHCs 

and OVOCs) and little or no influence from anthropogenic activities. Figure 1.5 shows the 

calculated OH and HO2 production rates during the Observations at a Remote Island of Okinawa 

intensive field campaign (ORION99) in the northern part Okinawa Island, a subtropical island in 

Japan (Kanaya et al., 2001a). The major initiation pathways for OH and HO2 are the photolysis of 

ozone and formaldehyde, respectively. 

 



  28 

 

 

Figure 1.5: OH and HO2 production rates during the ORION99 campaign (Kanaya et al., 2001a). 

 

Photolysis processes are the main contributors to the radical budget in the three different 

environments discussed above. However, the most important photolysis process depends on the 

environment. For instance, the photolysis of O3 plays a significant role in the production of radicals 

in environments characterized by low NOx emissions such as forested and marine environments.  

The photolysis of HONO and formaldehyde are a common sources of radicals in the 3 

environments.  High daytime HONO concentrations observed in a number of field studies in 

urban(Acker et al., 2006; Elshorbany et al., 2010; Villena et al., 2011) and rural areas (Kleffmann 

et al., 2003; He et al., 2006; Zhou et al., 2011)  makes it most important source of radicals in these 

environments. 

of non-photolytic processes, the O3-alkene reactions make a dominant contribution for the radical 

budget in urbanized areas and forests where the emissions of anthropogenic or biogenic unsaturated 

VOCs are important. 
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1.1.3 Radical Propagation 

As shown in Figure 1, there are various reactions leading to the propagation of ROx radicals. For 

the sake of clarity, below we present 4 groups of reactions leading to (1) the propagation of OH 

(but also NO3 and Cl) to peroxy radicals, (2) the propagation of RO2 to HO2, (3) the propagation 

of peroxy radicals to OH, and finally (4) the interconversion between OH and HO2. 

1.1.3.1 Propagation from oxidants (OH, NO3, Cl) to peroxy radicals (RO2, HO2) 

 

In the remote troposphere, OH predominantly reacts with CO (R11) and CH4 (R12), the 

second most efficient anthropogenic climate-forcing gas after carbon dioxide, to form HO2 (R9) 

and the methyl peroxy (CH3O2) radical (R13).  

 

R11  𝑂𝐻 + 𝐶𝑂 → 𝐶𝑂2 + 𝐻 

 

R9  𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀 

  

R12  𝑂𝐻 + 𝐶𝐻4 → 𝐻2𝑂 + 𝐶𝐻3 

 

R13  𝐶𝐻3 + 𝑂2 +𝑀 → 𝐶𝐻3𝑂2 +𝑀 

  

OH can also react with formaldehyde (R14 and R8) and hydrogen peroxide (H2O2) (R15) to form HO2:  

 

   R14  𝑂𝐻 + 𝐻𝐶𝐻𝑂 → 𝐶𝐻𝑂 + 𝐻2𝑂  
 

R8  𝐻𝐶𝑂 + 𝑂2 → 𝐻𝑂2 + 𝐶𝑂 

 

R15  𝐻2𝑂2 + 𝑂𝐻 → 𝐻𝑂2 + 𝐻2𝑂 

 

In areas impacted by biogenic or anthropogenic emissions, reactions of OH with larger VOCs lead 

to its propagation to organic peroxy radicals (RO2), which in turn react further to form closed-shell 

oxygenated compounds such as carbonyls, organic peroxides, alcohols and carboxylic acids 
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(Atkinson and Arey, 2003). It is interesting that the reaction of, the initial reaction for the oxidation 

of alkanes (R14) proceeds through a hydrogen abstraction: 

 

R14  𝑅𝐻 + 𝑂𝐻 → 𝑅 + 𝐻2𝑂 

 

R15  𝑅 + 𝑂2 +𝑀 → 𝑅𝑂2 +𝑀 

 

Reaction R14 leads to the formation of an alkyl radical (R), which then quickly reacts with ambient 

oxygen to form an organic peroxy radical (R15). 

 

As mentioned previously, NO3 oxidation also plays an important role in atmospheric 

chemistry (Jenkin and Clemitshaw, 2000). Since most initiation routes of OH are photolytic (R1-

R5), NO3 becomes the most important alternative to OH oxidation at night, where it rapidly reacts 

with VOCs to propagate to peroxy radicals (R16 and R15) (Geyer et al., 2001). It is interesting to 

note that the reaction of NO3 with HO2 provides a night-time source of OH radicals (R17). 

 

R16  𝑁𝑂3 + 𝑅𝐻 → 𝐻𝑁𝑂3 + 𝑅 

 

R17  𝑁𝑂3 + 𝐻𝑂2 → 𝑂𝐻 + 𝑁𝑂2 + 𝑂2 

 

In the marine boundary layer, the chlorine (Cl) radical chemistry can also enhance the 

tropospheric hydrocarbon oxidation. The photolysis of chlorine (Cl2) R18 and nitryl chloride 

(ClNO2) provides a daytime sources of Cl atoms (Hossaini et al., 2016). The chlorine radical 

quickly abstracts hydrogen from hydrocarbons through reactions similar to  that of OH radicals, 

producing alkyl (R19) and alkylperoxy (R15) radicals. 

 

R18  𝐶𝑙2 + ℎ𝑣 → 𝐶𝑙 + 𝐶𝑙 

 

R19  𝐶𝑙 + 𝑅𝐻 → 𝑅 + 𝐻𝐶𝑙 
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1.1.3.2 Propagation from RO2 to HO2 

 

Organic peroxy radicals can either (i) react with peroxy radicals from the same type or other 

types or (ii) with NOx species (NO and NO2). Reactions of peroxy radicals with closed-shell 

molecules are sufficiently slow to be negligible at tropospheric temperatures. Under sufficiently 

high NO (NO > approx.. 100 ppt), reactions of peroxy radicals with NO will dominate leading to 

radical propagation (R20a) through the formation of an alkoxyl radical (RO). It is worth noting that 

this implies the oxidation of NO into NO2, which in turn can be photolyzed to form ozone.  

 

R20a  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

For instance, the methyl peroxy radical (CH3O2), the most abundant RO2 in the atmosphere, reacts 

with NO to form the methoxy radical (CH3O) (R21), which then reacts with oxygen to form HCHO 

and to form HO2 (R22). 

 

R21   𝐶𝐻3𝑂2 + 𝑁𝑂 → 𝐶𝐻3𝑂 + 𝑁𝑂2 

 

R22  𝐶𝐻3𝑂 + 𝑂2 → 𝐻𝐶𝐻𝑂 + 𝐻𝑂2 

 

Under low NO conditions (NO < approx. 100 ppt), self- and cross-reactions of peroxy radicals are 

significant and can also form alkoxy radicals (R23a): 

 

R23a  𝑅𝑂2 + 𝑅𝑂2 → 2𝑅𝑂 + 𝑂2 

 

RO radicals will either react with oxygen as shown above for CH3O above (R22), isomerize or 

decompose (Orlando et al., 2003) to form the HO2.  

Additional propagation pathways of large organic peroxy radicals have also been recently 

proposed in the literature. In isoprene-rich environments, HO2 (and OH) can be produced from the 

isomerization and decomposition of isoprene-based peroxy radicals (Figure 1.6). For instance, the 

1,6-H-shift isomerization of the Z-conformers of the δ-hydroxyperoxy radicals produced from OH 
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addition to the 1 and 4 carbons of isoprene can lead to the production of HO2 radicals and a C5-

hydroperoxy aldehyde (HPALD) (Peeters et al., 2009; Peeters and Müller, 2010). 

 

  

Figure 1.6  Reaction mechanism of isoprene oxidation (Stavrakou et al., 

2010) 

 

In monoterpene-rich environments, the autoxidation of monoterpene-based peroxy radicals 

have been recently proposed to explain the formation of extremely low volatile organic compounds 

(ELVOC) (Ehn et al., 2014; Mentel et al., 2015; Zhang et al., 2017). This process is an 

intramolecular hydrogen shift producing a hydroperoxyalkyl radical represented as QOOH in 

figure 1.7 for the oxidation of n-hexane (Praske et al., 2018). As shown on this figure, the 

autoxidation process ultimately leads to the generation of low-volatility molecules and HO2. 
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Figure 1.7 Schematic mechanism of autoxidation (dashed blue box) of the 2,5 RO2 radical (orange box) 

issuing from OH + n-hexane (Praske et al., 2018).   

 

1.1.3.3 Propagation from HO2 (and other peroxy radicals) to OH 

  

Once HO2 is formed,reaction with NO will produce OH: 

 

R24a  𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2  

 

Additional pathways exist in the atmosphere to propagate other peroxy radicals to OH. The reaction 

of RO2 radicals with HO2 can lead to the formation of OH. For instance,  the reaction of acetyl 

peroxy (CH3C(O)O2) with HO2 (Hasson et al., 2004) shown in R26 has been shown to form OH 

with a yield of (0.61 ± 0.09) (Groß et al., 2014).  

 

R25  𝑅𝑂2 + 𝐻𝑂2 → 𝑅𝑂 + 𝑂𝐻 + 𝑂2 

 

R26  𝐶𝐻3𝐶(𝑂)𝑂2 + 𝐻𝑂2 → 𝐶𝐻3𝐶(𝑂)𝑂 + 𝑂𝐻 + 𝑂2 

 

1.1.3.4 Interconversion between OH and HO2 

As shown above, the reaction of OH with CO (R11) will convert OH to HO2 and the reaction of 

HO2 with NO (R24a) or NO2 will convert it back to OH. In the atmosphere there are other reactions 

that can lead to an interconversion between these two radicals. In low NOx areas, additional 
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propagation reactions involve reactions of OH and HO2 with ozone (R27-R28). HO2 reacts with 

ozone with a rate constant of 2.0×10−15 cm3 molecule−1 s−1 (Atkinson et al., 2004) to form OH: 

 

R27  𝐻𝑂2 + 𝑂3 → 𝑂𝐻 + 2 𝑂2 

 

OH also reacts with O3 with a rate constant of 7.30×10-14 cm3 molecule−1 s−1 (Atkinson et al., 2004) 

to produce HO2: 

 

R28  𝑂𝐻 + 𝑂3 → 𝐻𝑂2 +𝑂2 

 

The rate constant for OH + O3 is approximately 37 times larger than for HO2 + O3 which will favor 

partitioning towards HO2. 

 

1.1.3.5 Comparison of propagation rates between different types of environments  

The radical propagation rates are mainly dependent on the environment as illustrated in 

Figure 1.8 for a forested area (green numbers) and an urban area (blue numbers). Under high NOx 

concentrations typical of urban environments, organic peroxy radicals quickly react with NO to 

propagate to HO2 and then OH. The RO2-to-HO2, HO2-to-OH, and OH-to-RO2 propagation rates 

are 10-45 times larger for the urban atmosphere of Mexico City compared to the atmosphere of a 

forested environment as shown in figure 1.8. The lower propagation rates observed in forested 

areas will lead to lower oxidation rates of VOCs. It is interesting that in the low NOx forested 

environments, there is still significant cycling between radicals due to the presence of only 20-100 

ppt of NO, whose rates are the same order of magnitude as that observed for HO2 + O3 (R27). The 

latter becomes important and starts to compete with the reaction HO2 + NO (R24a).  
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Figure 1.8 Propagation rates of OH, HO2 and RO2 radicals in a forested (green) and urban (dark blue) 

environments. (Adapted from (Dusanter et al., 2009b; Griffith et al., 2013a)) 

1.1.4 Radical Termination 

 

1.1.4.1 Termination pathways 

 

The atmospheric cycling of ROx radicals shown in Fig. 1.8 can be terminated by radical-

NOx reactions, which are predominant in urbanized areas where large concentrations of NOx are 

present, and by radical recombination reactions in low NOx areas such as remote forested 

environments and the marine boundary layer.  

In areas characterized by elevated NOx levels, OH reacts with NO2 and produces nitric acid 

(HNO3), which will mainly be lost through wet deposition: 

 

    R29  𝑂𝐻 + 𝑁𝑂2 +𝑀 → 𝐻𝑁𝑂3 +𝑀 

 

NO can also react with OH and HO2, leading to the formation of HONO (R30) and HNO3 (R24b). 

However, HONO has a lifetime of less than 1 h during the day due to its efficient photolysis (R4) 

and should be seen as a temporary reservoir of radicals. R24b is a minor pathway of the HO2 + NO 

reaction, with 0.5-4% of the reaction flux leading to the formation of HNO3  (Butkovskaya et al., 

2007, 2009). 
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R30  𝑂𝐻 + 𝑁𝑂 +𝑀 → 𝐻𝑂𝑁𝑂 +𝑀 

 

R24b  𝐻𝑂2 + 𝑁𝑂 +𝑀 → 𝐻𝑁𝑂3 +𝑀 

  

The reaction between alkyl peroxy radicals and NO can also act as a significant terminating 

channel through the formation of organic  nitrates (RONO2) as shown in R20b. This reaction is 

negligible for short chain organic radicals (C < 4), but becomes increasingly important for radicals 

with longer chains (Lightfoot et al., 1992). The branching ratio R20b/R20a is as large at 25% for 

C10 and larger alkyl peroxy radicals (Orlando and Tyndall, 2012). 

 

R20a  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

R20b  𝑅𝑂2 + 𝑁𝑂 + 𝑀 → 𝑅𝑂𝑁𝑂2 

 

Reaction R20b is of importance for ozone production since it does not lead to the 

conversion of NO into NO2 and by sequestering both RO2 and NO2, organic nitrate formation 

reduces ozone production rates. The association reaction between alkoxy radicals and NO (R31) is 

not important in the atmosphere but can be important in laboratory experiments, especially where 

high NO concentrations are used to quantify peroxy radicals as described in chapter 2. 

 

R31  𝑅𝑂 + 𝑁𝑂 → 𝑅𝑂𝑁𝑂  

 

In areas characterized by low NOx concentrations, ROx radicals significantly react through cross- 

and self-reactions to form peroxide species such as H2O2, ROOR and ROOH (R32, 23b & 33) 

(Penkett et al., 1997). 

 

R32  𝐻𝑂2 + 𝐻𝑂2 → 𝐻2𝑂2 + 𝑂2 

 

R23b  𝑅𝑂2 + 𝑅𝑂2 → 𝑅𝑂𝑂𝑅 + 𝑂2   

 

R33  𝐻𝑂2 + 𝑅𝑂2 → 𝑅𝑂𝑂𝐻 + 𝑂2 
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R34  𝑂𝐻 + 𝐻𝑂2 → 𝐻2𝑂 + 𝑂2 

 

R35  𝑂𝐻 + 𝑅𝑂2 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

 

Interestingly, R35 has been neglected until recently when the rate constants between OH and RO2 

radicals have been measured experimentally (Assaf et al., 2017; Bossolasco et al., 2014; Faragó et 

al., 2015). It has been shown that this type of reactions is extremely fast and can be of importance 

at remote locations and for the marine boundary layer (Fittschen et al., 2014).  

 

1.1.4.2 Comparison of termination rates between different types of environments 

 

As shown in Figure 1.9 (Dusanter et al., 2009b), OH + NO2 (R29) is the dominant sink for ROx 

radicals in urbanized areas such as Mexico City where NOx concentrations are elevated, with a 

contribution of approximately 60% to the total loss rate. Other important pathways for radical 

termination are OH + NO (R30) and RO2 + NO (R20b) accounting for approximately 20 and 14% 

of the total loss rate, respectively. However, as mentioned previously, HONO formation has to be 

seen as a temporary reservoir for OH since its photolysis will reform OH. 

 

 

Figure 1.9 Contributions of termination reactions to the total termination rate of ROx radicals in the urban 

environment of Mexico City (Dusanter et al., 2009b). 
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In contrast, RO2 radical self- and cross-reactions are the dominant loss processes when NO is low 

(<  approx. 100 ppt) as shown in Figure 1.10 for a forested environment in Michigan (US). It can 

be seen that RO2 + HO2 termination reactions contribute up to 79% of the total loss of ROx radicals, 

with an additional 10-15 % loss due to HO2 + HO2 (R32) (Griffith et al., 2013a). Under typical 

ambient HO2 and RO2 concentrations observed in forested areas (< 80 pptv, HO2/RO2 close to 

unity), the HO2 + HO2 reaction rate is slow compared to RO2 + HO2 (Boyd et al., 2003)  

 

Figure 1.10 Contributions of termination  reactions to the total loss rate of ROx radicals in a forested 

area (Griffith et al., 2013a). The negative sign indicates a loss. 

 

The reaction between RO2 and OH can be significant under typical marine boundary layer 

conditions (Fittschen et al., 2014). As mentioned above, the determination of rate constant for 

several organic peroxy radical with OH have been found to be fast and should be included in models 

describing the chemistry in low NOx environments (Fittschen et al., 2014). These authors showed 

that the reaction of CH3O2 with OH represents approximately 25% of the CH3O2 loss rate using 

data from a field campaign performed at Cape Verde. 

 

1.1.5 Ozone production and destruction 

 

Besides their role in the oxidation of ambient trace gases, peroxy radicals are involved in 

the production of ozone. Tropospheric ozone is mainly produced and destroyed by photochemistry 

involving both NO and NO2: 
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R36  𝑁𝑂 + 𝑂3 → NO2 + 𝑂2 

 

R37  𝑁𝑂2 + ℎ𝑣 (λ <  420 nm) → NO + O(3P) 

 

R38  𝑂 (3𝑃) + 𝑂2 → O3  

 

The NO and NO2 concentrations are usually in a quasi-stationary equilibrium during daytime due 

to the fast cycling occurring between the species. This group of reactions (R36-R38) is known as 

the O3-NOx photostationary state.  

This cycle does not lead to net production of ozone since O3 is both produced and consumed. Since 

NOx are mainly emitted in the form of NO through anthropogenic and natural emissions 

(Finlayson-Pitts and Pitts Jr, 2000), net ozone production requires additional routes to convert NO 

into NO2. In polluted areas where NOx concentrations are relatively high, the propagation reactions 

of peroxy radicals discussed above can promote the production of O3: 

 

R20a  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

R24a  𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 

 

The conversion of NO into NO2 (R20a, R24a) due to the presence of peroxy radicals in the 

atmosphere leads to the formation of NO2 without consumption of O3, which in turn leads to the 

formation of additional molecules of O3 from NO2 photolysis.  

In contrast, the reaction between HOx radicals and ozone can lead to the net destruction of O3 in 

very low-NOx areas (R27& R28): 

 

R27  𝐻𝑂2 + 𝑂3 → 𝑂𝐻 + 2 𝑂2 

 

R28  𝑂𝐻 + 𝑂3 → 𝐻𝑂2 +𝑂2 

 

It is worthwhile to note that anthropogenic activities lead to concomitant emissions of NO, 

CO and VOCs, favoring ozone production. This is a self-energizing process since a higher ozone 
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concentration will lead to an increasing in OH concentration and therefore a faster oxidation rate 

of VOCs. 

 

1.2 Measuring peroxy radicals in the atmosphere 

 

Measurements of ambient radicals are extremely challenging since their concentrations are 

extremely low, less than 1 pptv for OH and ranging from the sub pptv to a few tens of pptv for 

peroxy radicals, due to their high reactivity and short lifetimes (less than a second for OH and up 

to tens of seconds for peroxy radicals). In addition, radicals can easily be lost on surfaces during 

sampling into instruments. Several techniques have been developed for measuring ROx radicals in 

the atmosphere and below we focus on techniques used to measure peroxy radicals, including 

Matrix Isolation Electron Spin Resonance spectroscopy (MIESR) (Mihelcic et al., 2003, 1985) , 

Chemical Ionization Mass Spectrometry (CIMS) (Albrecht et al., 2019; Edwards et al., 2003; 

Hanke et al., 2002; Hornbrook et al., 2011; Kukui et al., 2008a), Chemical Amplification (CA, 

PERCA: PEroxy Radical Chemical Amplifier, ECHAMP: Ethane-Based Chemical Amplification) 

(Cantrell et al., 1984; Clemitshaw et al., 1997; Hernández et al., 2001; Kartal et al., 2010; Liu et 

al., 2009; Wood et al., 2017; Wood and Charest, 2014), and Laser-Induced Fluorescence (LIF) 

(Stevens et al., 1994a; Dusanter et al., 2009b; Faloona et al., 2004; Hard et al., 1984; Holland et 

al., 1995; Matsumi Yutaka et al., 2002; Heal et al., 1995; Amedro et al., 2012a; Whalley et al., 

2018a; Chan et al., 1990; Martinez et al., 2010), including ROx-LIF(Hendrik Fuchs et al., 2008; 

Whalley et al., 2018a). These techniques are briefly presented below for MIESR and CIMS, 

highlighting some of the known limitations, but are discussed in more details for PERCA and ROx-

LIF, which represent the core of this Ph.D work. Techniques used to calibrate these instruments 

are also discussed in this section. 

 

1.2.1 Matrix Isolation and Electron Spin Resonance Spectroscopy (MIESR) 

 

Measurements of atmospheric peroxy radicals using Matrix Isolation and Electron Spin 

Resonance Spectroscopy was reported by Mihelcic et al. (Mihelcic et al., 1985, 1990, 2003). So 

far, only one instrument of this kind exists in the world at the Forschungszentrum Jülich, Germany  



  41 

 

(Fuchs et al., 2010). To the best of our knowledge, this instrument was lastly used in 2010 on the 

SAPHIR atmospheric chamber (Fuchs et al., 2010) and is no longer employed.  

This is the only technique that allows measurements of speciated peroxy radicals in one sample: 

HO2, some RO2, CH3C(O)O2. MIESR is very selective, being only sensitive to radicals, and 

exhibits a low detection limit of 2 pptv at a time resolution of 30 min (Mihelcic et al., 2003). This 

technique consists of trapping ambient air samples in a D2O matrix at 77 K for 30 min. The energy 

difference between the two principal spin states of the unpaired electron in a radical species is then 

probed by Electron Spin Resonance (Fuchs et al., 2010). The radical concentrations are computed 

from the resulting microwave spectra by fitting reference spectra for the targeted radicals.  

The main disadvantages of this method are (i) its cost, (ii) the necessity to trap an air sample 

before its analysis in the laboratory, (iii) the difficulty of maintaining the sample under vacuum at 

77 K until it is analyzed (Mihelcic et al., 2003), (iv) long analysis time (8 hours per sample). 

However, this technique exhibits several advantages such as (i) its ability to distinguish between 

HO2 and organic peroxy radicals, (ii) the measurement of individual RO2 radicals. 

 

1.2.2 Chemical Ionization Mass Spectrometry (CIMS) 

 

The CIMS technique (Albrecht et al., 2019; Edwards et al., 2003; Hanke et al., 2002; 

Hornbrook et al., 2011; Kukui et al., 2008a)  is based on the chemical conversion of ROx radicals 

to sulphuric acid (H2SO4) and its subsequent detection by chemical ionization mass spectrometry, 

which is an established method for indirect measurements of OH (Berresheim et al., 2000).  

As shown in Figure 1.11, ambient air is continuously sampled through an orifice into an inlet held 

at reduced pressure. Both SO2 and NO are added in the front injector to convert RO2 into HO2 

(R20a) and HO2 (R24a) into OH. In the meantime, OH reacts with SO2, resulting in the formation 

of sulfuric acid (H2SO4) and its propagation to HO2 (R39-R41). 

 

R39  𝑂𝐻 + 𝑆𝑂2 +𝑀 →  HSO3 +𝑀 

 

R40  𝐻𝑆𝑂3 + 𝑂2  → SO3  +  HO2 
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R41  𝑆𝑂3 + 2𝐻2𝑂 → H2𝑆𝑂4 + 𝐻2𝑂  

 

The reformation of HO2 leads to an amplification chemistry since several molecules of H2SO4 will 

be produced for each sampled ROx radical (R24a, R39-R41). The chain length reported for this 

type of instruments, i.e. the number of H2SO4 molecules produced per sampled ROx radical, is in 

the range of 10-15 (Edwards et al., 2003; Hanke et al., 2002). 

 

R24a  𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 

 

The amount of H2SO4 produced in the inlet is quantified by mass spectrometry using NO3
- as 

reagent ion. The concentration of ROx radicals is derived from the measured H2SO4 concentration, 

taking into account the background H2SO4 concentration in the atmosphere, and the calibrated 

chain length. Since atmospheric concentrations of OH (105-107 cm-3) and RO (<105 cm-3) are 

negligible compared to concentrations of HO2 and RO2 (108-109 cm-3), the CIMS measurement is 

considered as the sum of peroxy radicals (HO2+RO2). 

 

 
Figure 1.11 Schematic of the ROx-CIMS instrument (Hofzumahaus and Heard, 2015) 
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This allows the selective observation of peroxy radicals at a time resolution of about 10 s and a 

detection limit lower than 3×106 cm-3 thanks to the low background level of sulphuric acid in 

ambient air (Hofzumahaus and Heard, 2015). However, the RO2 + NO reaction leads to an 

incomplete propagation of RO2 radicals to HO2 since organic nitrates (R20b) and nitrites (R31) are 

also produced during the propagation steps. Thus, it necessarily involves an incomplete conversion 

of ROx radicals to sulphuric acid and the measurements will be a lower limit of ambient ROx. 

Hornbrook et al. reported a method to speciate HO2 and the sum of RO2 radical on CIMS 

instruments at a time resolution of 1 min (Hornbrook et al., 2011). This was achieved by varying 

both [NO] and [O2] simultaneously in the chemical conversion region of the inlet. The idea of this 

method is based on a change of the conversion efficiency of RO2 into HO2 under different inlet 

[NO]/[O2] ratios. This allows to selectively observe either HO2 or the sum of HO2 and RO2. To 

measure HO2 + RO2, ambient air is diluted by half with O2, whereas for HO2 measurements, 

ambient air is diluted by half with N2. In both cases, the first step is to convert RO2 into RO in the 

presence of NO while the difference is in the second step when O2 or N2 is added. In the case of an 

addition of O2, most RO will convert into HO2 (R22) and HO2 + RO2 will be quantified. In case of 

an addition of N2, less chemical conversions of RO into HO2 will occur. Thus, only HO2 will be 

quantified. 

 

1.2.3 Chemical Amplification (PERCA & ECHAMP) 

 

The PERCA technique is an indirect measurement method pioneered by Cantrell and 

Stedman (Cantrell et al., 1984) to measure the sum of ROx radicals. In this technique, ROx radicals 

are converted into NO2 via an amplification chemistry to produce several molecules of NO2 per 

sampled ROx radical. 
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Figure 1.12 Schematic representation of the PEroxy Radical Chemical Amplification system 

The sampling inlet is usually made of Pyrex or PFA (PerFluoroAlkoxy) materials. 

 

 The amplification chemistry takes place close to the sampling point by adding two reagent 

gases (NO and CO). The number of NO2 molecules produced per sampled ROx radical can easily 

be calibrated and is called the chain length (CL). The distance between the sampling point and the 

addition of the reagent gases is kept as short as possible to minimize potential wall-losses of the 

radical species (OH, HO2 and RO2). NO2 is then transported to a suitable detector based on luminol 

chemiluminescence (Clemitshaw et al., 1997), LIF (Sadanaga et al., 2004), cavity ring-down 

spectroscopy (CRDS) (Liu et al., 2009) or cavity attenuated phase-shift spectroscopy (CAPS) 

(Wood and Charest, 2014). The principle of PERCA measurements is based on a chain reaction 

cycle involving both OH and HO2 by adding NO and CO to the sampled air (Figure 1.13).  
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Figure 1.13 Amplification chemistry of a PERCA system. 

 

NO converts ambient RO2 radicals into HO2 (R20a and R22) and the resulting HO2, 

together with the ambient HO2, are converted into OH (R24a). CO converts OH back to HO2 as 

shown in R11 and R9, and as a consequence, the suite of reactions R11/R 9/R24a acts as an 

amplification system where several NO2 molecules are produced for each radical entering in the 

cycle. The CL is a finite number because the reaction cycle ends due to termination reactions for 

both OH (R29, R30, R34 &R36) and HO2 (R24b, R44). Termination reactions due to cross- and 

self-reactions of ROx radicals are not included since R35 and R36 together with wall losses of 

radicals are the most important radical sinks under the high NO conditions in the inlet (Cantrell et 

al., 1984).  

 

                        R20a              𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

R20b  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂𝑁𝑂2 

 

R22  𝑅𝑂 + 𝑂2 → 𝑅−𝐻𝑂 + 𝐻𝑂2 

 

R31  𝑅𝑂 + 𝑁𝑂 → 𝑅𝑂𝑁𝑂  
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R24a  𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 

 

R24b  𝐻𝑂2 + 𝑁𝑂 +𝑀 → 𝐻𝑁𝑂3 +𝑀 

 

R11  𝑂𝐻 + 𝐶𝑂 → 𝐶𝑂2 + 𝐻 

 

R9  𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀 

  

R32  𝐻𝑂2 + 𝐻𝑂2 → 𝐻2𝑂2 + 𝑂2 

 

R33  𝐻𝑂2 + 𝑅𝑂2 → 𝑅𝑂𝑂𝐻 + 𝑂2 

 

R29  𝑂𝐻 + 𝑁𝑂2 +𝑀 → 𝐻𝑁𝑂3 +𝑀 

 

R30  𝑂𝐻 + 𝑁𝑂 +𝑀 → 𝐻𝑂𝑁𝑂 +𝑀 

 

R34  𝑂𝐻 + 𝐻𝑂2 → 𝐻2𝑂 + 𝑂2 

 

R35   𝑅𝑂2 +𝑊𝑎𝑙𝑙 →  𝑛𝑜𝑛 − 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

 

R36  𝑂𝐻 +  𝑊𝑎𝑙𝑙 →  𝑛𝑜𝑛 − 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

 

R44  𝐻𝑂2  +  𝑁𝑂2  →  𝐻𝑂2𝑁𝑂2  

 

 

A PERCA instrument therefore amplifies all the radicals that can cycle to HO2, such as OH, HO2, 

RO and RO2, and measures the sum of ROx. However, as already mentioned above for the CIMS 

apparatus, atmospheric concentrations of OH are negligible compared HO2 and RO2 and the 

PERCA measurements can therefore be seen as the sum of HO2 and RO2.The following aspects, 

which can influence the chain length (amplification factor) and the PERCA response are briefly 

discussed below: 
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 Concentrations of reagent gases (CO and NO): drive the competition between radical 

propagation and termination, 

 Relative humidity: water molecules adsorbed at the reactor surface can enhance the 

heterogeneous loss of peroxy radicals and elevated water concentrations can lead to the 

formation of HO2.H2O adducts whose chemistry may differ from HO2, 

 Propagation efficiency of RO2 into HO2: may depend on the RO2 species. 

The CL, calculated as the number of NO2 molecules produced per sampled peroxy radical, 

depends on reagent gases as shown in Figure 1.14. This figure illustrates the dependence of CL on 

both NO and CO reagents for an instrument developed at the University of East Anglia (UEA) 

(Clemitshaw et al., 1997). This PERCA system employed consisted of a Pyrex inlet equipped with 

two ports for the addition of the reagent gases. The exit of the inlet was connected to a NO2 

chemiluminescence detector. Figure 1.14 shows that the CL increases with [CO] up to 7-8% and 

then levels off at a value of approximately 180 when NO is kept constant at 3 ppm. Other studies 

have shown similar results with a plateau reached at 10% CO (Kartal et al., 2010; Sadanaga et al., 

2004) and 2.3% CO (Wood et al., 2017) for NO mixing ratios of 3 and 1 ppm, respectively. The 

increase of the CL with CO is due to an increase of the OH + CO reaction rate (R11) with respect 

to the OH + NO termination rate (R30), until the OH+NO rate becomes negligible compared to the 

total termination rate of radicals in the PERCA reactor.  Figure 1.14 also shows that the CL strongly 

depends on NO. For a CO mixing ratio of 7%, the CL reaches a maximum value of approximately 

200 at 5 ppm NO. Other studies have found maximum CL values at NO mixing ratios ranging from 

2-4 ppm for different CO mixing ratios. The CL increases with NO below 5 ppm due to a larger 

enhancement of the HO2-to-OH propagation rate (R24a) compared to the OH + NO termination 

rate (R30) and decreases for higher mixing ratios due to the opposite behavior. 
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Figure 1.14 Dependence of the PERCA CL on both CO (a) and NO (b) (Clemitshaw et al., 1997). 

 

The most problematic issue concerning PERCA is the dependence of the CL, and therefore 

the sensitivity of the instrument, on ambient humidity. Figure 1.15 shows that the CL, normalized 

to dry conditions, decreases significantly with relative humidity (RH), with a drop of approximately 

65% at 80% RH. This was first reported by Mihele and Hastie (Mihele et al., 1999a) and confirmed 

by other groups using PERCA instruments (Burkert et al., 2001; Sadanaga et al., 2004; Wood et 

al., 2017). Due to the high variability of relative humidity in ambient air, an accurate determination 

of the water dependence is therefore necessary to perform reliable measurements of peroxy radicals 

with PERCA. 
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Figure 1.15 Dependence of the PERCA CL on relative humidity (T=20°C) (Sadanaga et al., 2004). 

 

While the processes leading to the water dependence are still poorly understood, it is speculated 

that wet surfaces enhance the heterogeneous loss of radicals and, as a consequence, lead to higher 

termination rates when ambient water increases (Mihele et al., 1999; Miyazaki et al., 2010; Reichert 

et al., 2003). However, other possible explanations may involve the impact of H2O dimers or 

HO2.H2O adducts on gas-phase reactions, also leading to enhanced termination rates (Reichert et 

al., 2003): 

R45 𝑂𝐻 + 𝐶𝑂  (𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑛𝐻2𝑂)  →  non − radical products  

 

R46 𝐶𝑂 + 𝐻𝑂2   (𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑛𝐻2𝑂) →  CO2 + 𝑂𝐻 

 

R47 𝐻𝑂2. 𝐻2𝑂 + 𝑁𝑂 +𝑀 → HNO3 + (𝑓𝑎𝑠𝑡𝑒𝑟 𝑟𝑎𝑡𝑒 𝑡ℎ𝑎𝑛 𝑓𝑜𝑟 𝐻𝑂2) 

  

The effect of water-vapor on the HO2+NO reaction pathway leading to HNO3 formation 

was recently investigated and was found to favor the formation of HNO3 (Butkovskaya et al., 

2009), reaching an enhancement factor of about 8 at 50% relative humidity (T=25°C). It was 

therefore concluded that water vapor enhances the termination rate of R47 and may play a major 

role in the reduction of the chain length. Wood et al. (Wood et al., 2017) recently reported a new 

improvement to minimize the CL dependence on water by replacing CO by ethane (C2H6). This 
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different approach is now referred to as Ethane CHemical AMPlifier (ECHAMP) in the literature. 

The amplification chemistry for ECHAMP is shown below (R20a, R22, R24a, R48-R52).  

 

R20a  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

R22  𝑅𝑂 + 𝑂2 → 𝑅−𝐻𝑂 + 𝐻𝑂2 

 

R24a  𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 

 

R48  𝑂𝐻 + 𝐶2𝐻6  → H2𝑂 + 𝐶2𝐻5 

 

R49  𝐶2𝐻5 + 𝑂2 +𝑀 → C2𝐻5𝑂2 +𝑀 

 

R50a  𝐶2𝐻5𝑂2 + 𝑁𝑂 → C2𝐻5𝑂 + 𝑁𝑂2  

 

R50b  𝐶2𝐻5𝑂2 + 𝑁𝑂 +𝑀 → C2𝐻5𝑂𝑁𝑂2 +𝑀 

 

R51  𝐶2𝐻5𝑂 + 𝑂2 → 𝐶𝐻3𝐶𝐻𝑂 + 𝐻𝑂2  

 

  R52  𝐶2𝐻5𝑂 + 𝑁𝑂 +𝑀 → 𝐶2𝐻5𝑂𝑁𝑂 +𝑀 

 

The first step for the propagation of sampled RO2 radicals to HO2 is similar to the PERCA approach 

(R20a, R22). Once HO2 is formed, it propagates to OH through R24a, which then quickly reacts 

with ethane (R48) to form an ethyl peroxy radical (C2H5O2). This peroxy radical propagates to the 

ethoxyl radical (C2H5O) through R50a, which further reacts with O2 to reform HO2. This 

propagation cycle is more complex than for CO and involves several addition steps where radicals 

can be lost (R50b, R52). For instance, when C2H5O2 reacts with NO, a fraction of the reaction flux 

is channeled towards the formation of small yield of C2H5ONO2. Similarly, C2H5O will also react 

with NO to form C2H5ONO. These two reactions lead to additional loss of radicals during the 

amplification chemistry and, as a consequence, to a lower CL. Indeed, Wood et al. (2017) reported 

a CL of 20 at 50% RH for ECHAMP, which is 4-6 times lower than the CL observed for PERCA 
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on the same apparatus (Figure 1.16). A close inspection of  Figure 1.16 shows that ECHAMP  is 

less sensitive to changes in water ( factor 2 compared to factor 3 for PERCA) when relative 

humidity increases from 0 to 50% (Wood et al., 2017).  

 

 

Figure 1.16 RH-dependence of the CL for both PERCA and ECHAMP (Wood et al., 2017). 

 

For the field deployment, recent instruments using the PERCA or ECHAMP approaches are based 

on a dual-inlet system that allows concomitant measurements of NO2 with and without 

amplification chemistry. The latter is called “background” and is achieved by replacing CO or 

ethane by an equivalent volumetric flow of N2. This dual approach was first proposed by Cantrell 

et al. (Cantrell et al., 1996) to efficiently distinguish the NO2 resulting from radical amplification 

from ambient NO2 (and the conversion of ambient O3 in the CA inlet). This approach, compared 

to intermittently shutting down the amplification chemistry for small periods of time in only one 

inlet, allows a more precise determination of the background NO2. The difference in NO2 between 

“amplification” and “background” measurements (ΔNO2) represents the amount of NO2 produced 

by chemical amplification of the sampled peroxy radicals and is used to compute the radical 

concentration from equation 1.1 using the known chain length determined from calibration.  

 

[HO2] + ∑[RO2] =
∆NO2
CL

                       (1.1) 

 

javascript:popupOBO('CHEBI:29369','B514630E','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=29369')
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In order to derive the sum of peroxy radicals from Equation 1.1, the chemical amplifier CL must 

be calibrated as a function of relative humidity. Also, calibration of NO2 sensitivity are needed. To 

do so, it is necessary to generate a known concentration of HO2, or another peroxy radical, that can 

be used to determine the CL from Equation 1.2.  

 

CL =
∆NO2

[HO2or RO2]
                                    (1.2) 

                                                    

 

PERCA  instruments have been widely used in the field at a variety of sites over the past two 

decades (Cantrell et al., 1984; Green et al., 2003; Hernández et al., 2001; Kartal et al., 2010; Kundu 

et al., 2019; Liu et al., 2009; Wood and Charest, 2014) due to its portability, its low cost, and its 

low level of complexity. However, only a few groups are currently using this technique due to the 

chain length dependence on water vapor and the availability of other techniques. 

 

1.2.4 Laser Induced Fluorescence-Fluorescence Assay by Gas Expansion (LIF-FAGE) & ROx 

Laser Induced Fluorescence (ROx-LIF) 

 

The LIF-FAGE technique is based on direct and indirect LIF detection of OH and HO2, 

respectively, after conversion of the latter into OH. This approach was first pioneered by Hard et 

al. (1984) and Stevens et al. (Stevens et al., 1994a) for tropospheric measurements of HOx radicals. 

This technique was then used by several groups at  ground level (Stevens et al., 1994a; Dusanter et 

al., 2009b; Faloona et al., 2004; Hard et al., 1984; Holland et al., 1995; Matsumi  et al., 2002; Heal 

et al., 1995; Amedro et al., 2012a; Whalley et al., 2018a; Chan et al., 1990; Martinez et al., 2010) 

and in research airplanes (Commane et al., 2010; Faloona et al., 2004). 

The LIF detection of OH requires the expansion of ambient air at low pressure (few Torr) 

and the excitation of OH using the A2Σ+ υ’=0 ← X2Π υ”= 0 transition band near 308 nm (Stevens 

et al., 1994b). The excited radicals emit radiation by fluorescene at the same wavelength (on-

resonance), which is detected perpendicular to the excitation beam using a photodetector, either a 

photomultiplier tube or a micro channel plate. Short laser pulses at high repetition rates (typ. 10-

20 ns at 1-10 kHz) allow the separation of the slowly decaying OH fluorescence signal from the 

quickly decaying scattered light using temporal filtering. A schematic of the University of Lille 
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FAGE instrument is shown in figure 1.17. This instrument is based on the Penn State design (2 

white cells, an HO2 cell downstream of an OH cell, P=1.5 Torr). Ambient air is pumped at 

approximately 9 L/min through a 1 mm pinhole. OH excitation at about 308 nm is accomplished 

using a 5 kHz rate pulsed laser (Spectra Physics Navigator + Sirah dye laser).  

 

 

Figure 1.17: University of Lille-FAGE instrument (Amedro et al., 2012a). 

 

This technique requires the generation of a known OH concentration at the FAGE nozzle to 

calibrate the fluorescence signal. The sensitivity in OH (COH) in cps (cm-3 mW-1) is derived from 

the concentration OH generated in the radical generator ([OH]), the fraction of OH exiting the 

calibrator (LOH),  the laser power (PW), and the measured fluorescence signal (SOH) as shown in 

Equation 1.3 

𝐶𝑂𝐻 =
𝑆𝑂𝐻

[𝑂𝐻] × 𝐿𝑂𝐻  × 𝑃𝑤
           (1.3)   

 

The OH sensitivity depends on the lifetime of the OH excited state, which in turn depends on the 

probability of collisional deactivation. A higher pressure will lead to a higher probability for 

collisional deactivation (quenching) and thus a lower sensitivity. In addition to N2 and O2, OH is 

efficiently quenched by H2O in ambient air. While N2 and O2 are present at constant mixing ratios 
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in the atmosphere, H2O is highly variable (ranging from 1-3% near the earth’s surface), and thus 

must be considered in calibrating the dependence of the OH response on water concentration 

(Dusanter et al., 2008a).  

For HO2 measurements, NO is added to the ambient airflow between the two detection cells, which 

converts HO2 to OH (24a):  

 

R24a  𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 

 

The subsequent quantification of OH as previously described allows quantifying HO2 if the HO2-

to-OH conversion efficiency is known. The later has to be determined by generating a known 

concentration of HO2 at the FAGE nozzle. Similarly to OH (Eq. 1.3), the instrument sensitivity 

towards HO2 can be calibrated. 

A significant interference in HO2 measurements was recently identified (Fuchs et al., 2011; 

Lew et al., 2018; Whalley et al., 2013), where some RO2 radicals can be detected together with 

HO2. This interference results from the fast conversion of large RO2 and -hydroxy-RO2 radicals 

into alkoxyl radicals through their reaction with NO (R20a). These alkoxyl radicals then quickly 

react with ambient oxygen to generate HO2 (R22).  

 

R20a  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

R22  𝑅𝑂 + 𝑂2 → 𝑅𝐻𝑂 + 𝐻𝑂2 

 

The disturbed HO2 measurement is now referred to as HO2
* since it corresponds to HO2 plus a 

certain fraction of RO2 radicals. However, it has been shown that this interference can be efficiently 

reduced by adjusting the chemical conversion conditions, i.e. by reducing the NO concentration in 

the sampling cell (Fuchs et al., 2008; Lew et al., 2018; Whalley et al., 2013). The conversion 

efficiency of HO2 into OH mainly depends on the concentration of NO added into the detection 

cell. Lew et al. (2018) reported that using a low NO concentration (9×1011 cm−3) for minimizing 

the interference from RO2 radicals results in a conversion efficiency of approximately ~17% for 

HO2 and a conversion efficiency of -hydroxy-RO2 radicals (isoprene-based) into OH lower than 
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1.7%. On the other hand, HO2
* (HO2 + alkene-based peroxy radicals) can be measured by 

introducing a higher NO concentration. In this case, the HO2 conversion efficiency is 

approximately 80% and the -hydroxy-RO2 radicals (isoprene-based) conversion into HO2 is close 

to 90% (Lew et al., 2018). Whalley et al. (2018) have shown that switching between low and high 

NO during ambient measurements allows measuring both HO2 and the sum of alkene and aromatic-

based RO2 (called RO2
i). 

Both OH and HO2 (or HO2
*) are detected in the second detection axis (figure 1.17) after conversion 

of HO2 (or HO2 + alkene-based peroxy radicals) into OH, leading to the measurement of the sum 

of ambient OH and HO2 (or HO2
*). Subtracting the measured OH leads to HO2 (or HO2

*). 

Measurements are done with time resolution of a few seconds to a few minutes, with typical 

detection limits of ~105-106 molecule cm-3 for both OH and HO2 (Heard and Pilling, 2003). 

The FAGE technique was recently expanded to the measurement of HO2 + RO2 by the 

Forschungszentrum Julich group (Fuchs et al., 2008). This technique requires coupling a RO2-to-

HO2 conversion flow-tube on top of the FAGE nozzle (only one detection cell required) and is now 

referred to as ROx-LIF. A schematic diagram of the flow tube and the entrance to the LIF 

instrument is shown in Figure 1.18. In this technique, RO2 radicals are converted into OH in a two-

step process, involving the conversion of RO2 into HO2 in the flow-tube, and the conversion of 

HO2 into OH in the FAGE detection cell. Two pumping systems are needed to independently adjust 

the pressure and other operating conditions in the RO2-to-HO2 conversion flow-tube and in the 

detection cell.  
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Figure 1.18 Schematic of the ROx-LIF instrument (Fuchs et al., 2008) with sampling flow of 7  l min-1 at 

pressure of 19 torr. 

 

Ambient air is sampled into the low pressure RO2-to-HO2 conversion flow-tube through a 

small pinhole. In this flow-tube, RO2, RO and OH are converted into HO2 as shown in R20a, R22, 

R11 and R9 by adding NO and CO after the sampling pinhole (Figure 1.18). This measurement 

mode is called “ROx mode” since all ROx radicals are then quantified in the FAGE detection cell 

as OH. When only CO is added as a reagent (no NO), only OH is converted into HO2 (R11-12), 

leading to the quantification of OH+HO2 in the detection cell. This measurement mode is called 

“HOx mode”. 

R20a  𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 

 

R22  𝑅𝑂 + 𝑂2 → 𝑅𝐻𝑂 + 𝐻𝑂2 

 

R11  𝑂𝐻 + 𝐶𝑂 → 𝐶𝑂2 + 𝐻 

 

R9  𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀  

 

RO2-to-HO2 

Conversion zone 



  57 

 

The ROx-LIF chamber shown in Figure 1.18 (Fuchs et al., 2008) is made of an aluminum 

tube (length: 830 mm, ID: 66mm), which is internally coated  by Teflon. Ambient air is sampled 

at 7 L min-1 and is expanded through a conically shaped nozzle (orifice diameter; 1 mm) from 

ambient pressure to a reduced pressure of 19 Torr. The reagent gases are added at mixing ratios of 

0.7 ppm and 0.17% for NO and CO, respectively, 20 mm downstream of the sampling nozzle. At 

the end of the conversion flow-tube, 3.5 L min-1 of air is sampled by another conically inlet nozzle 

(orifice diameter: 4 mm) into the FAGE detection cell where HO2 is converted into OH by reaction 

with NO, as in regular FAGE instruments. OH is then quantified as described above for the FAGE 

technique. The optimum residence time to reach the highest sensitivity for the detection of RO2 

radicals is shown in figure 1.19 where experimental (symbols) and modelled (lines) sensitivities 

for the methyl peroxy radical (CH3O2) and HO2 are displayed. The experimental sensitivity for 

ambient CH3O2 (solid square symbols) increases with the residence time to reach a maximum at a 

time of 0.61 s of residence time in the conversion flow-tube. In contrast, the ambient HO2 

sensitivity decreases continuously with increasing residence time due to wall losses inside the flow-

tube.  

 

Figure 1.19 ROx-LIF - Relative detection sensitivity for HO2 and CH3O2 as a function of  the gas residence 

time in the conversion flow-tube (Fuchs et al., 2008). 

 

An investigation to determine optimum conditions for the NO and CO reagent gases was 

also performed as shown in figure 1.20 for NO (CO mixing ratio of 0.17%, 0.6 s of residence time 
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in the flow-tube). The modeled and experimental sensitivities for RO2 increase with NO and reach 

maxima around 0.7 ppm of NO. For HO2, the sensitivity decreases by approximately 8% when NO 

is increased from 0 to 0.7 ppm. The dependence of HO2 and RO2 sensitivities on ambient water 

was also investigated showing a decrease of approximately 10% of the sensitivity when the water 

mixing ratio is increased by 1%. This decrease in sensitivity is attributes to the OH fluorescence 

quenching by H2O in the LIF detection cell. 

 

 

Figure 1.20 ROx-LIF - Relative sensitivity for HO2 and CH3O2 as a function of NO in the conversion flow-tube 

(Fuchs et al., 2008) 

The detection sensitivity for different peroxy radicals was also measured and results are 

shown in table 1.3.  This type of experiment is important to determine whether the instrumental 

response is similar for different RO2. The sensitivity for most peroxy radicals, normalized to the 

CH3O2 sensitivity, was found to be within 10% of that observed for CH3O2. However, the 

sensitivity for isobutene-based RO2 is lower by 40% and the sensitivity for isoprene-based RO2 is 

higher by 20% than the CH3O2 sensitivity. The difference for isobutene-based RO2 was attributed 

to a complex conversion chemistry of (CH3)3CO2 into HO2 requiring a longer residence time than 

0.6 s to be completed. The discrepancy for isoprene-based RO2 can be explained by experimental 

uncertainty which is 20% estimated from applied calibration method. 
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Table 1-2 ROx-LIF - Experimental relative sensitivity for different RO2 radicals (Fuchs et al., 2008) 

Peroxy radicals Relative sensitivity 

(RO2 sensitivity/ CH3O2 sensitivity)  

CH3O2        1 

CH3CH2O2 0.91 

C2H5CH2O2, (CH3)2CHO2 0.96 

(CH3)3CO2, (CH3)2CHCH2O2 0.59 

CH2(OH)CH2O2 0.98 

C5H8(OH)O2 1.21 

 

The LIF-FAGE and ROx-LIF techniques exhibit several advantages: (i) Sampling at low 

pressure reduces the concentration of both O3 and H2O in the sampled air, as well as other trace 

gases, reducing interferences from the production of laser-generated OH as well as unwanted 

secondary chemistry (Stevens et al., 1994a); (ii) The fluorescence lifetime of the excited OH radical 

is extended to hundreds of nanoseconds due to lower quenching rates, allowing temporal filtering 

of the weak OH fluorescence from the scattered laser light (Stevens et al., 1994a). However, note 

that in contrast to MIESR, LIF-FAGE and ROx-LIF can only measure the sum of RO2 and cannot 

provide speciated measurements, with the exception of the alkene-based RO2. This technique is 

relatively costly and requires highly specialized operators.  

1.2.5 ROx calibration techniques 

 

1.2.5.1 Water-photolysis technique 

This source of radicals is based on photolysing water-vapor at  about 185 nm in a flow of 

humid air (Schultz et al., 1995). An example of a calibration cell is shown in figure 1.21(Dusanter 
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et al., 2008a). This calibrator consists of a rectangular flow reactor made of aluminum and equipped 

with a suprasil window on two sides. The light source is a low-pressure mercury lamp housed in 

an aluminum cartridge that is continuously purged with dry nitrogen to avoid photolysis of oxygen 

in the lamp housing that would produce ozone, which in turn could filter the lamp emission. The 

irradiated region inside the calibration cell is the photolysis zone where the photolysis reactions 

take place. The lamp housing location along the calibrator can be adjusted to characterize the loss 

of radicals by changing the residence time in the calibrator.  Both water and oxygen are photolyzed 

by the 185 nm radiation (R53):  

R53 𝐻2𝑂 + ℎ𝑣(λ = 185 nm) → OH + H  

R9  𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀  

R54  𝑂2 + ℎ𝑣 → 𝑂( 𝑃.
3 ) + 𝑂( 𝑃.

3 )  

R38  𝑂 𝑃.
3 + 𝑂2 → O3  

The concentrations of OH and HO2 can be calculated from Equation 1.4 where the product (F×t) 

is determined by O2 actinometry (Eqs. 1.5 and 1.6). 

[HO2] = [OH] = [H2O] × σwater ×ΦOH+H × (F × t)                                    (1.4)  

[O3] = [O2] × σO2 ×ΦO3 × (F × t)                                                                     (1.5)  

(F × t) =
[O3]

2 × [O2] × σO2
                                                                                       (1.6)  

Where, [X] denotes the concentration of a species X, σx the absorption cross-section of a species 

X at  about 185 nm, ΦOH+H the photo-dissociation quantum yield of water into OH+H, F the photon 

flux, t is the photolysis time t, and ΦO3 the photo-dissociation quantum yield of oxygen. 

The absorption cross section for H2O at 185 nm reported in several studies is 7.14×10-20 cm2 

molecule-1 (Cantrell et al., 1997; Creasey et al., 2000). The quantum yield reported for the 

production of OH and H is unity (Sander et al., 2006). The effective O2 absorption cross section at 
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185 nm is close to σO2 = 1.2×10−20 cm−2 as measured by Dusanter et al. (Dusanter et al., 2008a) 

and is setup dependent. 

 

Figure 1.21 Cross-section view of the calibrator based on the water-vapor UV-photolysis technique (Dusanter 

et al., 2008a) 

This type of calibrator can also be used to generate organic peroxy radicals by adding a VOC to 

the calibrator to convert the OH radicals before any wall loss occurs (Lew et al., 2018). For instance 

Lew et al. generated peroxy radicals from the OH oxidation of various alkenes (isoprene; ethene; 

trans-2-butene; tetramethylethylene), alkanes (propane, butane, octane), aromatic compounds 

(toluene) and oxygenated VOCs (methyl vinyl ketone, methacrolein, methyl ethyl ketone).  

 

1.2.5.2 Other calibration sources of radicals 

 

 Photolysis of methyl iodide (CH3I) 

The production of known concentrations of the methyl peroxy radical (CH3O2) can be achieved 

from the photolysis of methyl iodide (CH3I) at 253.7 nm using a low-pressure mercury lamp (R55) 

(Clemitshaw et al., 1997; Green et al., 2006; Miyazaki et al., 2010) in air: 

R55  𝐶𝐻3𝐼 + ℎ𝑣(λ = 253.7nm) → CH3 + 𝐼 
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R13  𝐶𝐻3 + 𝑂2 +𝑀 → 𝐶𝐻3𝑂2 +𝑀 

The reaction of CH3O2 with iodine atoms rapidly produces an adduct CH3O2I (R56). 

However, even at the highest radical concentration of 100 pptv generated with calibrators based on 

CH3I photolysis, the adduct is estimated to be less than 10% of CH3O2 owing to its decomposition 

(R57) and its rapid reaction with iodine atoms which regenerates CH3O2. At lower concentrations 

of CH3O2 and I, the rate of R56 is negligible. 

R56  𝐶𝐻3𝑂2 + 𝐼 +𝑀 →  CH3𝑂2𝐼 + 𝑀 

R57  𝐶𝐻3𝑂2𝐼 →  CH3𝑂2 + 𝐼 

This source of radicals was used to calibrate PERCA instruments (Clemitshaw et al., 1997). The  

generated CH3O2 concentration  is derived from the folowing equation: 

[𝐶𝐻3𝑂2] = 𝐽(𝐶𝐻3𝐼) × [𝐶𝐻3𝐼] × 𝑡𝑟𝑒𝑠 

Where the 𝐽(𝐶𝐻3𝐼) is the first-order photodissociation rate coefficient for CH3I in the photolysis 

cell and tres is its residence time within the photolysis zone. 

 

 Photolysis of acetone (CH3)2CO 

Known concentrations of CH3O2 and CH3C(O)O2 radicals can be generated by the 

photolysis of acetone at 253.7 nm using a low-pressure mercury lamp (R58) (Miyazaki et al., 2010; 

Wood and Charest, 2014):  

R58  (𝐶𝐻3)2𝐶𝑂 + ℎ𝑣(λ = 253.7nm)  → CH3 + 𝐶𝐻3𝐶𝑂 

R13  𝐶𝐻3 + 𝑂2 +𝑀 → 𝐶𝐻3𝑂2 +𝑀 

R59  𝐶𝐻3𝐶𝑂 + 𝑂2 +𝑀 → CH3𝐶(𝑂)𝑂2 +𝑀  
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The calibration setup (Wood and Charest, 2014) is illustrated in Figure 1.22. A small flow 

of zero air (5 cm3 min-1) goes over the vapor headspace of acetone stored in a flask placed in ice 

water (0°C). This flow is diluted twice before entering the UV photolysis chamber. A second 

dilution occurrs after exiting from the photolysis chamber.  The final acetone concentration is 

calculated based on its vapor pressure and the subsequent dilutions. 

 

Figure 1.22 Schematic diagram of a radical calibration source based on acetone photolysis (Wood and Charest, 

2014). 

 

1.2.5.3 Summary of the measurement techniques 

 

Amongst the four measurement techniques described above, three are currently used for 

atmospheric measurements of ROx radicals, with the most widely used being CIMS and FAGE. To 

our knowledge, only three groups are still using a chemical amplifier (PERCA or ECHAMP) 

(Bremen’s group from Germany, Leicester’s group from UK, Ezra Wood’s group from USA) 

worldwide. Table 1.4 below provides the figures of merit for these different techniques, including 

time resolution, detection limits and accuracy, and provides a qualitative summary of the 

advantages and drawbacks of each approach, highlighting some of the known limitations. 
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Table 1-3 Summary of established ROx measurement techniques 

 

1.3 Field measurements of ROx radicals in the troposphere 

Tropospheric measurements of OH, HO2 and the sum of peroxy radicals have been performed 

in the atmosphere by a growing number of groups since the development of appropriate 

measurement techniques (Heard and Pilling, 2003; Stone et al., 2012; Dusanter and Stevens, 2017).  

 

Technique 

 

Temporal 

Resolution 

Limit of 

Detection 

(SNR=2) for OH 

and HO2 

(molecule cm-3) 

2 σ 

Accuracy 

(%) 

Advantages Drawbacks 

 

MIESR 

HO2, 

speciated 

RO2 

 

30 min** 

 

 

5×107  ** 

 

 

5** 

 

 

Speciation of RO2 

Good sensitivity 

 

Offline technique, cryogenic 

Sample storage 

Sampling time of  30 mins 

Not in use anymore 

 

LIF-FAGE 

HO2, HO2* 

 

few s - min 

 

 

2×105 (OH) 

5×107 (HO2) 

 

20-40 
 

Direct OH 

measurements 

Online technique 

Fast response 

 

Indirect HO2 measurements 

Interferences from RO2 

species during HO2 

measurements 

Cumbersome & expensive 

 

ROx-LIF 

extension of 

FAGE 

ΣHO2+RO2 

 

 

1 min ≠ 

 

 

2×106 ≠ 

 

 

±20 
≠(HO2) 

 

 

Same as LIF-FAGE 

Speciation HO2 and 

∑RO2 

 

 

Same as LIF-FAGE  

No speciation of RO2 

radicals 

 

 

CIMS 

HO2, 

ΣHO2+RO2 
 

 

10s - min 

 

3×105-5×106 

 

20-80 

 

Online technique 

Fast response 

Possibility of 

speciation between 

HO2 and ∑RO2 

 

Indirect  measurements 

No speciation of RO2 

radicals 

Varying sensitivity between 

RO2  

 

PERCA 

ΣHO2+RO2 

 

20s 

 

2.5-7.5 ×107 

 

25-45 

 

Online technique 

Fast response 

Portable, cheap 

Easy to use 

 

Indirect measurements 

Use of CO (PERCA) / not an 

issue for ECHAMP 

No speciation of peroxy 

radicals  

Water-dependent sensitivity 

 

HO2
* concentration in ambient air plus contributions from RO2 interferences (Fuchs et al., 2011),  **(Mihelcic et al., 2003), ≠(Fuchs et al., 

2008). References for the table: Report of the international HOx workshop at Julich (Hofzumahaus and Heard, 2015). 
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Research efforts have been devoted to better understand the photochemical oxidation of VOCs in 

the troposphere by comparing ambient measurements of ROx radicals to zero-dimensional (0-D) 

simulations based on the most advanced chemical mechanisms published in the literature, including 

the Master Chemical Mechanism (MCM), the Regional Atmospheric Chemistry Mechanism 1 & 

2 (RACM) (Goliff et al., 2013), the Leuven Isoprene Mechanism (LIM1) (Peeters, et al., 2009) and 

others. The 0-D models are constrained by measured long lived species and assume that the 

transport of radicals is unimportant. This assumption is based on the short lifetimes of the radicals, 

which are equal or less than 1, 60, and 100 s for OH, HO2 and RO2. The majority of published 

tropospheric radical measurements have been made at ground stations under a wide range of 

various atmospheric conditions, including clean air (marine boundary layer), continental low-NOx 

regions influenced by biogenic emissions, polluted urban areas, and polar regions. Some of these 

studies have highlighted large differences between measured and modeled radicals at different sites 

and under different conditions. Differences between field measurements and model outputs suggest 

either either measurement artifacts or incomplete understanding of radical chemistry. A brief 

summary of the current understanding of both (i) measurement interferences and (ii) the radical 

chemistry in the above-mentioned enviroments are given below. 

However, it is worth noting that a good agreement between measured and modeled OH 

concentrations may occur fortuitously if the rate of production from missing OH sources 

counterbalances the rate of destruction from missing OH sinks. Indeed, large missing OH sinks 

have been reported for forested areas  (Edwards et al., 2013; Nölscher et al., 2016, 2012; Sinha et 

al., 2010) and significant missing OH reactivity was also reported for urban areas (Chen et al., 

2010; Griffith et al., 2016; Dolgorouky et al., 2012) and in a marine area (Lee et al., 2009).  

 

1.3.1 Interferences for OH and HO2 measurements in FAGE and CIMS 

 

FAGE and CIMS techniques are used by several groups around the world. FAGE is 

currently used by the National Centre for Atmospheric Science (NCAS)-Leeds (UK) (Heal et al., 

1995; Ingham et al., 2009), the department of meteorology from Pennsylvania State University 

(US) (Stevens et al., 1994a, lew et al., 2018), the School of Public & Environmental Affairs from 

Indiana University (US) (Dusanter et al., 2009a), the PC2A laboratory from the University of Lille 
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(France) (Amedro et al., 2012a), the Forschungszentrum Jülich (Germany) (Holland et al., 1995), 

the Max Planck Institute (Germany) (Martinez et al., 2010),  Peking University (China) (Tan et al., 

2017) and the Japan Agency for Marine-Earth Science and Technology (Japan)(Kanaya et al., 

2001b). The CIMS technique is used by the National Center for Atmospheric Research (US) 

(Edwards et al., 2003; Hornbrook et al., 2011), the LPC2E laboratory from the University of 

Orleans (France) (Kukui et al., 2008a), and the National University of Ireland Galway (Berresheim 

et al., 2000).  As discussed above, these two techniques can measure tropospheric radicals with 

high sensitivity and appropriate limits of detection. Recently, the ROx-LIF method developed by 

Fuchs et al. (Fuchs et al., 2008) was deployed in the field by the Jülich and Leeds groups (Fuchs et 

al., 2008; Tan et al., 2017, 2018b, 2019; Whalley et al., 2018a). 

A. FAGE 

As discussed previously, RO2 species produced during the oxidation of VOCs, especially alkenes 

and aromatics, can interfere in the HO2 measurements due to their conversion into HO2 when NO 

is added in the FAGE detection cell (Fuchs et al., 2011; Lew et al., 2018; Whalley et al., 2013). 

However, the conversion efficiency of RO2 is influenced by a number of operating conditions 

which vary considerably between different field instruments. (Fuchs et al., 2011) demonstrated that 

by changing the configuration of the FAGE cell or using lower concentrations of NO, the 

interference can changed considerably. Laboratory characterizations of this interference and the 

controlling parameters led the FAGE group to adjust operating conditions of their sampling 

systems and fluorescence cells to either minimize interferences for measuring HO2 or to optimize 

the conversion of RO2 into HO2 to measure HO2
*. As mentioned previously, Whalley et al. (2013) 

proposed to alternatively measure HO2 and HO2
* in order to derive the fraction of interfering RO2, 

which are mainly alkene- and aromatic-based peroxy radicals. This is of particular interest since 

there is no field measurement of speciated RO2.  

In addition, OH interferences using FAGE have also been recently reported in the literature (Mao 

et al., 2010; Novelli et al., 2014; Fittschen et al., 2019; Lew et al., 2019), which seem to be related 

to the oxidation of biogenic VOCs or the reaction of OH with RO2 species under pristine conditions. 

These studies have shown that a significant ambient interference was observed on both the 

Pennsylvania State(Mao et al., 2010) and Max Planck Institute (Novelli et al., 2014)  instruments 
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during field measurements performed in forested areas. More recently, Lew et al. (2018) also 

observed an unknown source of interferences in the IU-FAGE during the 2015 IRRONIC 

campaign, which was found to increase with both ozone and temperature. Recently, Fuchs et al. 

(2016) have shown that under typical ambient concentrations of ozone and several biogenic 

compounds, their FAGE instrument does not detect any instrumental interferences. However, when 

high concentrations of ozone are reacted with high concentrations of α-pinene, limonene, or 

isoprene, a measurable OH interference is detected. The observed interference is strongly 

correlated with the ozonolysis rate coefficient and their results suggest that at atmospherically 

relevant rates, the interference is negligible. Rickly and Stevens (2018) also observed an 

interference using the IU-FAGE during ozonolysis experiments of BVOCs (α-pinene, β-pinene, 

ocimene, isoprene, and 2-methyl-3-buten-2-ol) when large concentrations of both ozone and 

BVOCs were used. This interference was found to be independent of the reaction time and the 

addition of acetic acid in the reactor eliminated it. This interference was attributed to the 

decomposition of stabilized Crieege intermediates inside the FAGE, which should be below 

detection limit in ambient air.  

Recently, Fittschen et al. revealed a possible OH interference for FAGE instruments under 

low NOx conditions (Fittschen et al., 2019). This OH interference results from the decomposition 

of a trioxide species (ROOOH) during the expansion within the FAGE detection cell. It was shown 

that this species is formed when RO2 reacts with OH, requiring pristine atmospheric conditions to 

sufficiently extend the lifetime of RO2 in the atmosphere. Box model simulations showed that 

ROOOH concentrations could be high enough in the atmosphere to generate the ambient 

interference that has been observed in several field studies. This study also highlighted that the 

intensity of this interference may be different between FAGE instruments due to the use of different 

designs and operating conditions.  

OH interferences are now quantified on most FAGE instruments using a chemical modulation 

method of ambient OH (Lew et al., 2019; Mao et al., 2010; Novelli et al., 2014) , i.e. by scrubbing 

ambient OH and recording the remaining background signal as an interference that needs to be 

subtracted from ambient OH measurements. 
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B. CIMS 

Interferences for CIMS instruments are linked to any species, such as Criegee intermediates 

(CH2OO for instance), that have the capability to oxidize SO2 into SO3, which will then be detected 

as H2SO4, causing a positive bias in the OH measurements. This interference is quantified through 

chemical modulation by scrubbing ambient OH through the addition of propane in the inlet of the 

instrument. The assumption here is that propane will quickly react with OH but will not react with 

the interfering species. The interference, which is measured as a background signal, is then 

subtracted from ambient measurements of OH. A negative bias in OH measurements could also be 

due to losses of OH in the CIMS inlet once the air has been sampled but before the SO2 injection 

point (for instance from the reaction of OH with trace gases). To the best of our knowledge, no 

interferences were reported for peroxy radical measurements. 

C. Conclusions 

With these kinds of difficulties, measuring radical species in the atmosphere is still considered 

challenging and the techniques need to continue used to be tested and improved. The development 

of other techniques would also help to fully assess the reliability of current instruments and to 

characterize the range of potentially interfering species.  

 

1.3.2 Model-measurement comparisons of ROx radicals 

 

This section provides a brief description of measurement-model discrepancies observed in 

different environments and the suggestions reported in the literature to help solve some of the 

remaining uncertainties are given. This discussion is based on recent reviews published in the 

literature (Dusanter and Stevens, 2017.; Heard and Pilling, 2003; Stone et al., 2012; Whalley et al., 

2013) and is mainly focused on HOx radicals. 
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A. Marine boundary layer (MBL) 

The MBL environment is characterized by clean air with low concentrations of reactive VOCs 

(NMHCs and OVOCs) and little or no influence from anthropogenic activities. Series of ground 

based field measurements of OH and HO2 were performed in the MBL at Mace Head (Ireland), 

Cape Grim (Tasmania) and Cape Verde (Atlantic Ocean) (Heard et al., 2003; Stone et al., 2012 and 

references therein). These field campaigns suffered from a lack of supporting measurements and 

incomplete chemical mechanisms used to analyze the radical measurements often resulted in model 

overestimation of both OH and HO2. Recently, it was shown that the chemistry of halogen oxide 

species has to be included in the models due to their large impact on speciated concentrations of 

ROx. Indeed, it was shown that IO and BrO can lead to interconversions between OH and HO2 (Lee 

et al., 2010). Future field measurements should improve the coverage of observations of NMHCs 

and OVOCs to better characterize OH sinks in model simulations and should include measurements 

of halogen oxide species to constrain the models. 

There are also uncertainties related to HO2 uptake coefficients onto aerosols and the 

heterogeneous loss of HO2 still remains a significant source of uncertainty in determining its budget 

in this region. Further laboratory studies are needed to measure uptake coefficients of HO2 onto 

real submicron particles (Stone et al., 2012).  

 

B. Forested areas characterized by low NOx mixing ratios 

The highest biogenic VOC emitted by the biosphere on a global scale is isoprene (~500 Tg C year-

1) (Guenther et al., 2012). Other biogenic compounds are also highly emitted in the atmosphere, 

including monoterpenes, sesquiterpenes and OVOCs. However, only a few studies have been 

performed in monoterpene and sesquiterpene rich-areas, such as pine forests (Mao et al., 2010; 

Novelli et al., 2014). 

In the NOx-poor isoprene-rich environments, the modeled OH concentrations are usually 

underestimated by a factor of 3-10 (Tan et al., 2001; Lelieveld et al., 2008; Pugh et al., 2010; 

Kubistin et al., 2010; Whalley et al., 2011; Kim et al., 2013). These studies suggest that the 

mechanisms for VOC oxidation are less well understood when reactions between peroxy radicals 

and NO do not dominate. These campaigns instigated new developments in the laboratory and 
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molecular dynamics and ab-initio calculations to investigate potential recycling pathways of 

radicals in the oxidation mechanism of isoprene and other BVOCs. Several new pathways of 

radical recycling were discovered, highlighting for example that reaction of OH with isoprene was 

not a large sink for OH as previously thought. This includes radical cycling in HO2 + RO2 reactions 

(Hasson et al., 2012), peroxy radical isomerization reactions (Peeters and Müller, 2010), and the 

reformation of OH during the oxidation of isoprene-based hydroperoxides (ISOPOOH) leading to 

the formation of epoxides (Paulot et al., 2009). However, while the implementation of these 

recycling mechanisms in models helped to get better agreement between simulated and measured 

OH concentrations, large differences remain.  

As mentioned above, OH measurements using FAGE ( employed during the above-studies) can 

be prone to interferences for FAGE instruments. It is likely that interferences impacted some of the 

OH measurements performed in forested areas and additional campaigns with improved versions 

of OH instruments are needed to test our current understanding of BVOC oxidation. 

 

C. Polluted urban environments 

Polluted urban regions are characterized by high levels of NOx and anthropogenic VOCs. 

Models usually succeed at simulating the measured HOx concentrations, with the exception of high 

NOx conditions (> 5-15 ppb). Indeed, several studies (Martinez et al., 2003; Dusanter et al., 2009b; 

Whalley et al., 2018a; Ren et al., 2013; Brune et al., 2016) highlighted that disagreements of factors 

2-10 between measured and modelled HO2 concentrations when NOx was higher than 5 ppb. 

Measurements were usually performed with the FAGE technique. Although potential interferences 

for HO2 FAGE measurements from alkene- and aromatic-based RO2 species need to be taken into 

account to confirm the conclusion of some of these studies, it seems unlikely that interferences 

alone could account for the disagreement. Indeed, these types of interferences were shown to 

account for 10-30% of the measured HO2 under different operating conditions of the IU-FAGE 

instrument (Griffith et al., 2016; Lew et al., 2018), while the disagreement observed between HO2 

measurements and model simulations is significantly larger. These results seem to imply an 

incomplete understanding of the VOC oxidation chemistry under high NOx conditions.  
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D. Polar environments 

These remote locations are typically characterized by pristine conditions. The concentrations 

of both OH and HO2 in these regions are usually elevated at high solar zenith angle and low 

concentrations of water vapor. The measured OH and HO2 concentrations are usually 

overestimated by a factor of 2 by the models (Stone et al., 2012). Important precursors of HOx 

radicals (HCHO and H2O2) are emitted from the snowpack (Honrath et al., 2002). However, there 

is a lack of high quality measurements of these precursors to constrain the box models. Moreover, 

some polar studies suggested that aerosols could act as a significant radical sink in this region but 

this suggestion is not well demonstrated yet due to the lack of reported data on reactive uptake 

coefficient of radicals on different types of aerosols under appropriate low temperature conditions. 

1.4 Outline of Dissertation 

Peroxy radicals are key species in the atmosphere due to their role in propagating OH during 

the oxidation of trace gases and their measurement is therefore essential to well understand the 

chemical processes driving atmospheric composition. For instance, peroxy radicals convert NO 

into NO2 in areas characterized by high NOx concentrations. This NO2 is then photolyzed with the 

consequence of producing tropospheric ozone, which is harmful to humans and ecosytems and, 

which disturb the radiative balance of the earth’s atmosphere. Thus, improving model simulations 

of HO2 and RO2 is essential to forecast the effects of the changing composition of the atmosphere 

on air quality and climate change.  

The short lifetime of peroxy radicals due to their inherent high reactivity makes them ideal 

targets to test the chemistry implemented in atmospheric models. As discussed above, several 

techniques have been developed and used to quantify ambient concentrations of these radicals, 

including LIF-FAGE, ROx-LIF, CIMS and Chemical Amplifiers. Field measurements of peroxy 

radicals have suffered from limitations related to interferences and the inability to distinguish 

different peroxy radicals. The use of improved instrumentation and potentially new measurement 

techniques can help improving our understanding of both radical measurements and atmospheric 

chemistry.  

The PERCA technique was proposed more than 25 years ago, its development was put on hold 

when it was shown that its sensitivity was strongly dependent on ambient humidity. However, the 
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identification of a new amplification chemistry that is less sensitive to ambient humidity and the 

development of new NO2 detectors suitable for chemical amplifiers provide a renewed interest in 

this technique. In addition, the recently proposed ROx-LIF technique has the potential to speciate 

HO2 and organic peroxy radicals.  

The main objectives of this work is to improve our technological understanding of peroxy 

radicals in the troposphere. It consist of the following activities  

1. Assemble and characterize two apparatus: a chemical amplifier using both the 

PERCA and ECHAMP approaches, and a ROx-LIF system using an existing LIF-

FAGE instrument, 

2. Perform an intercomparison of the PERCA technique with a LIF-FAGE instrument 

from the University of Lille (France) and a CIMS instrument from the University of 

Orléans (France) at the HELIOS atmospheric chamber. 

The methodology followed in this work is divided into 2 parts:  

1. First part: 18 months at IMT-Lille-Douai, SAGE, Douai (France)  

 Construction of a dual channel amplifier,  

 Characterization and optimization of operating conditions for both the PERCA and 

ECHAMP approaches, 

 Field testing, 

 Intercomparison of the peroxy radical instruments at HELIOS. 

 

2. Second part: 18 months at Indiana University, School of Public and 

Environmental Affairs (SPEA) , Bloomington (US)  

 Development of the ROx-LIF conversion flow-tube and coupling to LIF-FAGE 

 Characterization and optimization of the operating conditions of the ROx-LIF 

apparatus (operating conditions),  

 Indoor and outdoor field testing at the Research and Teaching Preserve (RTP), 

Bloomington, Indiana. 
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Chapter 2: Development and characterization of a chemical amplifier for 

peroxy radical measurements in the atmosphere  

 

The first chapter stressed that HO2 and RO2 are key species in atmospheric chemistry, 

which together with OH, are involved in the oxidation of VOCs and the formation of secondary 

pollutants such as ozone. Monitoring these short-lived species during intensive field campaigns 

and comparing the measured concentrations to box model simulations allow assessing the 

reliability of chemical mechanisms implemented in atmospheric models and, when differences are 

observed, it suggests aspects of the radical chemistry that should be further investigated. 

However, as discussed in chapter 1, ambient measurements of peroxy radicals are still challenging 

and only a few techniques have been used so far for field measurements, i.e FAGE, CIMS and CA 

using the PERCA and ECHAMP approaches. The former has been widely used during field 

campaigns for HO2 while the two others have been rarely used. It was recently discovered that 

several field measurements of peroxy radicals have likely suffered from interferences. A strong 

need for further understanding of peroxy radical measurements in the atmosphere is now more 

noticeable now than ever to address the limitations with each instrument and their reliability.  

While the CA technique was proposed more than 30 years ago, difficulties associated to the 

discovery of the strong dependence of its response to ambient water,  the limitation the poor in the  

analytical techniques for NO2, and the development of other techniques such as FAGE and CIMS 

has slowed down its development. Only a few groups in the world are currently using the CA 

technique for field measurements (Bremen group from Germany, Leicester group from UK, Wood 

group from US). However,  availability of highly sensitive and selective optical analyzers for NO2 

measurements, the development of alternative amplification chemistry based on the use of ethane 

instead of CO, and the current need to compare different techniques to ensure the reliability of 

peroxy radical measurements have provided a renewal of interest in the CA technique.  

This chapter presents the construction and the characterization of a CA instrument using 

both the PERCA (CO/NO) and ECHAMP (Ethane/NO) approaches. Operating conditions of both 

amplification chemistries were optimized and the performance of each approach was assessed. A 

particular attention was placed on  experimentally comparing experimentally observed and 

modelled trends of the CL with reagent gases and water-vapor amounts in order to evaluate our 
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understanding of the two amplification chemistries. In addition, the CA response to different types 

of RO2 radicals was investigated. This chapter also reports the first field testing of this instrument. 

 

This chapter is composed of: 

 

 accepted publication by  the journal, atmospheric environments, including related 

supplementary material.. 

 additional supplements describing certain aspects of the development that were not 

reported in the publication: (i) experiments conducted to identify the best reactor 

material and (ii) a description of the chemical mechanism used to simulate the 

amplification chemistry for both PERCA and ECHAMP. 

 

When this Ph.D work was initiated, a laboratory prototype of the CA (only one measurement 

channel) had already been built by M. Duncianu, a postdoctoral fellow at IMT Lille Douai. I was 

in charge, with some help from M. Duncianu, to improve the prototype. It required to (i) adding a 

second measurement channel (simultaneous measurements from amplified and background 

modes), (ii) building the field version that can be used outdoors (waterproofing, automatization of 

the measurement sequence, etc.), (ii) optimizing and characterize the two amplification 

chemistries, and (iii) performing field testing in Douai. In addition I was solely in charge of 

modeling the amplification chemistry for comparison with the laboratory characterization. The 

publication was written by me with inputs and suggestions from M. Duncianu. 
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2.1 Abstract 

 

Peroxy radicals (HO2 and RO2) are key species in atmospheric chemistry. They are produced 

during the oxidation of volatile organic compounds (VOCs) and are involved in the formation of 

photochemical pollutants such as ozone (O3) and secondary organic aerosols (SOA). However, 

ambient measurements of these reactive species are still challenging and only a few techniques can 

achieve both a good selectivity and a detection limit that is low enough for ambient measurements. 

In this publication we present the characterization of a Chemical Amplifier (CA) using two 

different approaches for ambient measurements of peroxy radicals, including the PEroxy Radical 

Chemical Amplifier (PERCA) and the Ethane based CHemical AMPlification (ECHAMP). At 

50% Relative Humidity (RH), the experimental CL for PERCA was found to be higher by 

approximately a factor of 3.7 compared to ECHAMP. The RH-dependence of the CL was also 

found to be larger for PERCA by a factor of 1.12. Box modeling of the chemistry taking place in 

the instrument highlighted that the formation of HNO3 from the HO2+NO reaction has a strong 

impact on the CL for both approaches. In addition, experiments conducted to quantify the RO2–to-

HO2 conversion efficiency for a large range of organic peroxy radicals confirmed that it mainly 

depends on the organic nitrate (RONO2) formation yield, while the alkyl nitrite (RONO) yield is 

not limiting the CL in most cases. Ambient measurements using the PERCA approach are shown 

to illustrate the performances of this new instrument.  

Keywords: Instrument development; peroxy radical chemical amplifier; PERCA; ECHAMP; atmosphere  
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2.2 Introduction  

 

Due to their high reactivity, and therefore short lifetime, peroxy radicals (HO2, and RO2, R = 

CxHyOz) are key species in atmospheric chemistry. These radicals are mainly produced when the 

OH radical reacts with CO, the abundant greenhouse gas methane and volatile organic compounds 

(VOCs). They are also formed through the photolysis of carbonyl compounds, reactions of alkenes 

with ozone, and some nighttime reactions involving the NO3 radical and VOCs (Finlayson-Pitts 

and Pitts, 2000). 

In the atmosphere, there is a rapid propagation chemistry between peroxy radicals, alkoxy radicals 

(RO) and the hydroxyl radical (OH), forming a group of species known as “ROx” (ROx ≡ HO2 + 

RO2 + RO + OH). Of particular interest, reactions of peroxy radicals with nitric oxide (NO) play a 

central role in tropospheric chemistry. Indeed, peroxy radicals propagate to OH, which sustains the 

oxidizing capacity of the atmosphere, and which converts NO into nitrogen dioxide (NO2), whose 

photolysis leads to ozone formation. Organic peroxy radicals also play a key role as intermediates 

in the formation of secondary organic aerosols (SOA) (Kroll and Seinfeld, 2008b). Both of these 

secondary pollutants, O3 and SOA, are known to cause severe health effects. Together with OH, 

peroxy radicals therefore control the global oxidizing capacity of the Earth’s atmosphere, and as a 

consequence, the concentration and distribution of greenhouse gases and secondary pollutants. 

Understanding the spatial and temporal variability of these radicals and being able to model this 

variability is key to evaluate future changes in the chemical composition of the atmosphere, with 

implications for both air quality and climate change. 

Despite their important role in the atmosphere, the chemistry of peroxy radicals has yet to be fully 

understood under a wide range of atmospheric conditions, including remote locations (marine 

boundary layer) (Berresheim et al., 2002; Creasey et al., 2003), continental low-NOx regions 

influenced by biogenic emissions (Archibald et al., 2011; Griffith et al., 2013a; Wolfe et al., 2011), 

polluted urban areas (Dusanter et al., 2009b; Volkamer et al., 2010), and polar regions (Mao et al., 

2010; Read et al., 2008). Some of these studies have reported significant differences between 

measured and modeled concentrations of ROx species likely due to an incomplete characterization 

of ambient trace gases and the use of incomplete chemical mechanisms in models. For instance, 

peroxy radical measurements can be significantly lower (Griffith et al., 2013a) or higher (Wolfe et 
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al., 2014) than model predictions in forested areas and significant missing OH sinks, likely leading 

to an underestimation of the OH-to-peroxy radical propagation rate, have been reported for forested 

(Griffith et al., 2013a; Heard and Pilling, 2003; Stone et al., 2012) and urbanized (Dusanter et al., 

2009b; Griffith et al., 2016; Volkamer et al., 2010) areas. 

Measuring peroxy radicals is particularly difficult due to their reactive nature and their low ambient 

concentrations, which requires highly sensitive techniques with inlets designed to avoid the loss of 

the targeted radicals. Various instruments using different principles have been developed during 

the last  few decades to perform these measurements, including Matrix Isolation Electron Spin 

Resonance spectroscopy (MIESR: HO2, RO2) (Mihelcic et al., 2003, 1985), Laser-Induced 

Fluorescence (LIF-FAGE: OH, HO2, HO2*; ROxLIF: HO2, HO2+RO2) (Stevens et al., 1994a; 

Hendrik Fuchs et al., 2008; Dusanter et al., 2009b; Faloona et al., 2004), Chemical Ionisation Mass 

Spectrometry using PERCIMS (HO2, HO2+RO2) (Edwards et al., 2003; Hornbrook et al., 2011; 

Kukui et al., 2008a) and Br-CIMS (HO2) (Sanchez et al., 2016), PEroxy Radical Chemical 

Amplification (PERCA: HO2+RO2) (Cantrell et al., 1984; Hernández et al., 2001; Kartal et al., 

2010; Liu et al., 2009; Wood and Charest, 2014), and the more recent Ethane based CHemical 

AMPlification (ECHAMP) technique (Wood et al., 2017). 

PERCA is an indirect measurement method pioneered by Cantrell and Stedman (Cantrell et al., 

1984), which measures the sum of peroxy radicals continuously with high sensitivity. Ambient air 

is sampled in a reactor where each peroxy radical will lead to the formation of several NO2 

molecules via chain reactions after the addition of high concentrations of NO and CO. Once all the 

peroxy radicals have been consumed, NO2 is measured by a suitable detector based on luminol 

chemiluminescence (Clemitshaw et al., 1997), LIF (Sadanaga et al., 2004), cavity ring-down 

spectroscopy (CRDS) (Horstjann et al., 2014; Liu et al., 2009; Liu and Zhang, 2014) or cavity 

attenuated phase-shift spectroscopy (CAPS) (Wood and Charest, 2014).  

The amplification chemistry resulting from the addition of NO and CO is shown below: 

𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2           R1a 

𝑅𝑂2 + 𝑁𝑂 +𝑀 → 𝑅𝑂𝑁𝑂2 +𝑀       R1b 

𝑅𝑂 + 𝑂2  → 𝑅−𝐻𝑂 + 𝐻𝑂2        R2 
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𝑅𝑂 + 𝑁𝑂 +𝑀 → 𝑅𝑂𝑁𝑂 +𝑀       R3 

𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2        R4a 

𝐻𝑂2 + 𝑁𝑂 +𝑀 → 𝐻𝑁𝑂3 +𝑀       R4b 

𝐻𝑂2 + 𝑤𝑎𝑙𝑙 → 𝑙𝑜𝑠𝑠         R5 

𝑂𝐻 + 𝐶𝑂 (+𝑂2) → ⋯ → 𝐶𝑂2 + 𝐻𝑂2        R6 

𝑂𝐻 + 𝑁𝑂 +𝑀 → 𝐻𝑂𝑁𝑂 +𝑀       R7 

𝑂𝐻 + 𝑤𝑎𝑙𝑙 → 𝑙𝑜𝑠𝑠         R8 

With the addition of a large amount of NO in the sampling reactor, RO2 radicals are converted into 

HO2 through the formation of an alkoxyl radical (RO) (R1a & R2). This HO2, together with the 

sampled HO2, are converted into OH (R4a). During this process, several molecules of NO2 are 

produced, depending on the competition between propagation (R1a, R2, R4a) and termination 

(R1b, R3, R4b, R5) reactions. R4b termination reaction is dependent on water vapor amount. Then, 

several fast interconversions between OH and HO2 occurs through the reaction of OH with CO 

(R6) and the reaction of HO2 with NO (R4a), leading to the formation of additional molecules of 

NO2. The number of NO2 molecules formed during these interconversion steps is called chain 

length (CL) and is limited by the competition occurring between propagation (R4a, R6) and 

termination (R4b, R5, R7, R8) reactions of both OH and HO2. The CL is typically in the range of 

100−200 under dry conditions (Clemitshaw et al., 1997; Sadanaga et al., 2004; Wood and Charest, 

2014). 

The most problematic issue concerning PERCA instruments is the chain length dependence on 

Relative Humidity (RH), which translates into a RH-dependent sensitivity (Mihele and Hastie, 

1998, 2000 Sadanaga et al., 2004). The chain length decreases monotonically with RH, likely due 

to increased losses of radicals on wet surfaces (Mihele et al., 1999a; Miyazaki et al., 2010) and an 

increase in the HNO3 yield in reaction R4b. The latter may involve H2O dimers or the formation 

of a HO2-H2O complex (Reichert et al., 2003). The effect of water vapor on the branching ratio of 

R4b was investigated by Butkovskaya et al. (Butkovskaya et al., 2009) who reported a linear 

increase of the HNO3 yield with RH, with an enhancement factor of about 8 at 50% RH. A rate 

constant for the reaction between HO2-H2O and NO producing HNO3 was estimated from this work 

and was found to be 40 times faster than the rate constant for HO2+NOHNO3. This water vapor 
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enhancement of the gas-phase termination rate of HO2 may play an important role in the reduction 

of the chain length. 

The amplification chemistry used in ECHAMP relies on the addition of ethane (C2H6) instead of 

CO as proposed by Wood et al. (Wood et al., 2017). The advantages reported by the authors are a 

lower sensitivity of the CL to relative humidity and a safer use of the instrument in confined areas 

since ethane is less toxic than CO. The chemical reactions describing the radical cycling when 

ethane and NO are added in the reactor are the same as above (R1-R8), with the exception than R6 

is replaced by the set of reactions shown below: 

𝑂𝐻 + 𝐶2𝐻6 (+𝑂2) → ⋯ → 𝐻2𝑂 + 𝐶2𝐻5𝑂2      R9 

𝐶2𝐻5𝑂2 + 𝑁𝑂 → 𝐶2𝐻5𝑂 +𝑁𝑂2       R10a 

𝐶2𝐻5𝑂2 + 𝑁𝑂 +𝑀 → 𝐶2𝐻5𝑂𝑁𝑂2       R10b 

𝐶2𝐻5𝑂 + 𝑂2 → 𝐶𝐻3𝐶𝐻𝑂 + 𝐻𝑂2       R11 

𝐶2𝐻5𝑂 + 𝑁𝑂 → 𝐶2𝐻5𝑂𝑁𝑂        R12 

Ethane reacts with OH to produce an ethylperoxyl radical (C2H5O2) (R9), which then (i) propagates 

to HO2 (R10a, R11) through the formation of an alkoxyl radical (C2H5O) or (ii) terminates through 

the formation of organic nitrate (R10b) or nitrite (R12) compounds. Since the interconversion steps 

between OH and HO2 go through the formation of C2H5O2 and C2H5O, the additional loss of 

radicals (R10b, R12) will lead to a lower CL than for the PERCA approach. It has been shown that 

this amplification chemistry leads to chain lengths ranging from 25-30 (RH of 1-10%) (Wood et 

al., 2017). However, if heterogeneous losses of peroxy radicals on the reactor wall contribute 

significantly to the total termination rate of radicals in the reactor, the CL for ECHAMP should be 

less sensitive to RH compared to PERCA since C2H5O2 exhibits a lower loss rate on wet surfaces 

than HO2 (Mihele et al., 1999a). For example, (Mihele et al., 1999a) reported a wall loss rate on 

Teflon (PFA) of 2.8 ± 0.2 s-1 for HO2 and 0.8 ± 0.1 s-1 for C2H5O2 under dry conditions and showed 

that the HO2 loss rate increases with RH in contrast to organic peroxy radicals. This observation 

was also confirmed by Miyazaki et al. (Miyazaki et al., 2010) who reported a 6-fold higher removal 

efficiency of HO2 on Teflon (PFA) surfaces compared to organic peroxy radicals.  
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PERCA and ECHAMP instruments used in the field are based on dual-channel sampling systems 

(Liu et al., 2009; Horstjann et al., 2014; Wood et al., 2017; Kartal et al., 2010) to simultaneously 

quantify NO2 under two measurement modes (background and amplified modes). In the 

background mode, NO and N2 are injected at the entrance of the sampling reactor and CO or ethane 

(same volumetric flow rate as N2) is injected at the exit of the reactor once all the radicals have 

been terminated. Since CO or ethane are not added together with NO, there is no amplification 

chemistry. The NO2 mixing ratio exiting the reactor is the sum of ambient NO2, a O3 reaction with 

NO, and the amount of NO2 produced during the first peroxy radical-to-OH conversion step (R1a, 

R2, R4a). For the amplification mode, CO or ethane is injected at the entrance of the reactor while 

N2 is injected at the exit, allowing the amplification chemistry of peroxy radicals to take place. The 

mixing ratio of NO2 at the exit of the reactor is the sum of that observed during the background 

mode and the NO2 produced during amplification. The amount of NO2 generated during 

amplification (ΔNO2) is inferred from the difference between the amplification and background 

modes.  

It is important to note that these instruments will amplify all radicals that can propagate to HO2, 

including RO2 but also OH and RO. While the measurements of a chemical amplifier represent the 

sum of ROx, tropospheric concentrations of OH and RO are ∼200-1000 times lower than those of 

HO2 and RO2 and the measurements are thus considered as being the sum of HO2 and RO2.  

The total mixing ratio of peroxy radicals calculated from the amount of NO2 produced during the 

amplification stage (ΔNO2) and the CL is retrieved as shown in Eq. 1.  

   
CL

ΔNO
ROΣHO

2

22       (1) 

Quantifying the sum of peroxy radicals from Eq. 1 requires calibrating the CL by generating a 

known concentration of HO2 or another peroxy radical. The CL is usually only calibrated for a few 

radicals by generating a known concentration of methyl peroxy (CH3O2) and peroxyacetyl 

(CH3C(O)O2), both being simultaneously produced from the photolysis of acetone at 254 nm 

(Miyazaki et al., 2010; Wood and Charest, 2014). Another method used to calibrate the chain length 

is based on the generation of CH3O2 from the photolysis of methyl iodide (CH3I) in air at 254 nm 

(Clemitshaw et al., 1997; Green et al., 2006). 
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This publication reports the construction of a dual-channel chemical amplifier for ambient 

measurements of peroxy radicals using both the PERCA (CO/NO) and ECHAMP (ethane/NO) 

approaches. The main objective was to improve our understanding of these two approaches, which 

will ultimately provide a better assessment of uncertainties associated with chemical amplifier 

measurements. In this context, optimal operating conditions were identified for each approach and 

experimental observations were compared to box-model simulations to gauge our understanding 

of the radical amplification chemistry. The instrument was calibrated using a large range of peroxy 

radicals, including HO2 and organic peroxy radicals formed during the OH-oxidation of alkanes, 

alkenes, aromatics and oxygenated VOCs. These experiments allowed investigating whether the 

change in CL observed experimentally is consistent with the formation yield of organic nitrate 

(RONO2) or nitrite (RONO) species reported in the literature for each tested radical. Finally, 

ambient measurements are reported to illustrate the performances of this instrument. 

2.3 Experimental Section 

 

2.3.1 Description of the chemical amplifier 

 

A schematic diagram and photo of the apparatus built at IMT Lille Douai is shown in Figure 2.1. 

It consists of two sampling reactors operated in amplification and background modes, two monitors 

to simultaneously measure NO2 at the exit of the reactors, and two sets of solenoid valves to switch 

(i) between background and amplification modes in each reactor (SV1a, SV1b, SV2a, SV2b) and 

(ii) the sampling of the NO2 monitors between the two reactors (SV3, SV4) as further described 

below for the measurement sequence. 

Ambient air is sampled into two PerFluoroAlkoxy (PFA) reactors (0.635 cm o.d. × 60 cm length, 

wall thickness 0.08 cm) with two PFA inlets (0.635 cm o.d. × 1.5 cm length) at a total flow rate of 

approximately 800 cm3 min-1. The inlets and the reactors are connected together using home-made 

3D printed nylon couplers (Figure S2.9) design to add and mix the reagent gases with the sampled 

air. The reagent gases are mixed with ambient air through two circular channels (2 mm apart) 

between the sampling inlet and the reactor, each channel being characterized by 5 radial injection 

holes. This design was adopted to improve the mixing between ambient air and the reagents. All 

flow rates are regulated by mass flow controllers. 



 102 

 

For the amplification channel, NO (84 SCCM-PERCA, 14 SCCM-ECHAMP, 50 ppm in N2) and 

CO (80 SCCM, 100%) or ethane (50 SCCM, 30% in N2) are added upstream the reactor via the 

nylon injector, while a flow of nitrogen (equivalent to the CO or ethane flow rate) is added 

downstream the reactor, approximately 60 cm (0.9 s residence time) after the initial injection of 

CO (or ethane). For the background mode, N2 is added upstream while CO (or ethane) is added 

downstream. Four solenoid valves (SV1a, SV1b, SV2a, SV2b) allow switching the addition of CO 

(or ethane) and nitrogen between the downstream and upstream injection ports, to change the 

measurement mode in each reactor. Flow rates of CO (or ethane), NO and N2 have been optimized 

to get maximize the CL for both amplification chemistries and are discussed in the results section 

(Table 2.1). At the exit of the reactors, air free of ROx radicals is transported through additional 6-

m long pieces of PFA tubing (0.635 cm o.d.) to the NO2 monitors at a flow rate of 800 cm3 min-1.  

 

 Figure 2.1 Schematic of the IMT Lille Douai PERCA instrument 

 

High sensitivity CAPS (Cavity Attenuated Phase Shift) monitors from AERODYNE Research Inc. 

were coupled to the reactors to quantify NO2. For the monitors used in this work, air is sampled 

through a nafion dryer and enters an 82 cm3 stainless steel absorption cell held at 27 °C, consisting 

of two high reflectivity mirrors (R ∼ 99.99%). The photons provided to the absorption cell are 

emitted by a blue light-emitting diode (LED). The light exiting the cell passes through a bandpass 
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filter centered at 450 nm and is detected by a vacuum photodiode. The NO2 concentration is derived 

from the phase-shift observed in the detected signal, which is proportional to the amount of NO2. 

All reagent gases were found to generate spurious signal in the CAPS monitors. The addition of 1-

6 ppm of NO (99.995% purity) in the reactors leads to several ppb of NO2 due to contamination of 

the NO mixture by NO2 and a possible conversion of NO into NO2 in the transfer lines and mass 

flow controllers. To reduce this spurious signal, the NO reagent gas was purified using an inline 

chemical filter made of iron(II) sulfate heptahydrate (FeSO4.7H2O, Fisher scientific). This filter 

was found to be very efficient with less than 0.2 ppb of NO2 remaining in the reactor after the 

addition of 1 ppm of NO. The addition of 10% CO and 2% ethane in the reactors led to a spurious 

signal equivalent to approximately 1.5 and 3 ppb of NO2. This signal was found to be proportional 

to the reagent concentration and is thought to be due to light scattering since these species do not 

absorb at 450 nm. A lower signal observed for CO seems consistent with lower scattering cross-

sections reported in literature for it compared to alkanes (Sneep and Ubachs, 2005; Sutton and 

Driscoll, 2004). 

A sequence of 4 steps of 90-s measurements spanning a 6-min period is required to measure a 

concentration of peroxy radicals (Figure S2.10): (1) NO2 is measured from each reactor,  with one 

reactor being operated in background mode and the other reactor in amplification mode; (2) the 

CAPS sampling inlets are switched between the two reactors; (3) both the measurement mode and 

the CAPS sampling are switched between the 2 reactors; (4) the CAPS sampling inlets are 

switched. All NO2 measurements performed under amplified conditions are averaged together and 

all measurements performed under background conditions are also averaged together. Only the last 

70-s of each NO2 measurement step are used in the averaging process to calculate ΔNO2 (see 

S2.10). This sequence of steps is necessary to cancel out any bias in ΔNO2 arising from (i) a drift 

in monitors’ zeros and (ii) slightly different behaviors of the 2 reactors (spurious NO2 signals from 

reagents, O3 titration by NO, wall losses of O3…).  

All compressed gas cylinders used in this study were provided commercially: CO (100%, Air 

Liquide, France), ethane (30±2% in N2, Linde Co.), NO (50 ppm in N2, Air Liquide), N2 (Messer, 

purity >99.9999%). Volatile organic compounds were purchased from Sigma Aldrich with a purity 

better than 99%. 
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2.3.2 Calibration of the Chain Length (CL) 

 

As discussed in the introduction section, the CL can be quantified from Eq. 1 when the instrument 

samples air containing a known concentration of peroxy radicals. Peroxy radicals were generated 

in this study through the photolysis of water-vapor at 184.9 nm in a turbulent flow tube, creating 

an equimolar mixture of OH and HO2 (Reactions R13-R14). This method is commonly used to 

calibrate field measurements of OH and HO2 performed by LIF-FAGE instruments (Dusanter et 

al., 2008a).  

𝐻2𝑂 + ℎ𝜈 (𝜆 = 184.9𝑛𝑚) → 𝑂𝐻 + 𝐻      R13 

𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀        R14 

In this study, OH was quantitatively converted into HO2 by adding CO in the calibrator as shown 

in R6 or by adding a volatile organic compound (VOC) to generate a mixture of HO2 and RO2 

radicals (Lew et al., 2018). For instance, isoprene (C5H8) is added inside the calibrator to convert 

OH into an organic peroxy radical mixture of C5H8(OH)O2 isomers. The CO and VOC 

concentrations were set to convert approximately 99% of OH in less than 2 ms, ensuring a 

negligible OH loss on the calibrator inner surface. Diluted mixtures of each targeted VOC (Table 

2.1) were prepared by injecting the pure compound into 18 liters of zero air (6-L stainless steel 

canisters at 3 bars). A flow rate of 2.5 SCCM (Standard Cubic Centimeter per Minute) of the diluted 

CO or VOC mixtures was mixed with 35 SLPM (Standard Liter per Minute) of dry or humid zero 

air in the calibrator using mass flow controllers. RH was varied in the range 10-90% (T=24±2°C) 

to produce peroxy radical concentrations within the range 2×109-3×1010 cm-3. 

Series of calibration experiments were performed using CO and all the VOCs reported in Table 

2.1. When CO is used, only HO2 exits the calibrator and the measured CL is characteristic of only 

one peroxy radical. This CL is defined as CL(HO2) in the following. However, when a VOC is added 

in the calibrator, an apparent CL is measured for a mixture of HO2 and RO2 radicals. Rearranging 

Eq. 2.1 leads to Eq. 2 for the calculation of this CL, which will depend on the generated RO2 

radical.   

𝐶𝐿 =
∆𝑁𝑂2

[𝐻𝑂2]+[𝑅𝑂2]
         (2) 



 105 

 

The radical concentrations at the exit of the calibrator are inferred from Eqs 3-4.  

[𝐻𝑂2] = (1 + 𝑋) × [𝐻2𝑂] × 𝜎𝑤𝑎𝑡𝑒𝑟 × Φ𝑂𝐻+𝐻 × (𝐹 × 𝑡)     (3) 

[𝑅𝑂2] = (1 + 𝑋) × [𝐻2𝑂] × 𝜎𝑤𝑎𝑡𝑒𝑟 × Φ𝑂𝐻+𝐻 × (𝐹 × 𝑡)     (4) 

Here, HO2 and RO2 concentrations are calculated from the water concentration inside the 

calibrator, [H2O], its absorption cross-section at 184.9 nm, σwater, the photo dissociation quantum 

yield, ΦOH+H, the photon flux, F, and the photolysis duration, t. The terms (1+X) and (1-X) account 

for the non-unity RO2 yield observed for some VOCs (Table 2.1), X being the HO2 yield formed 

along with RO2 in the reactions of PH with some VOCs, which allows accounting for its direct 

formation together with the formation of RO2 radicals from RH+OH reactions. The absorption 

cross section for H2O and quantum yield for OH+H reported in several studies are 7.14×10-20 cm2 

molecule-1 (Cantrell et al., 1997; Creasey et al., 2000) and unity, respectively. The product (F×t) is 

measured experimentally by ozone actinometry using Eq. 5, where [O2] is the oxygen 

concentration, σO2 the oxygen absorption cross section at 184.9 nm (1.21×10−20 cm−2) (Dusanter et 

al., 2008a) that is system dependent, because it depends on the column amont of O2, and [O3] the 

ozone concentration produced in the calibration cell. The latter has to be measured during a 

calibration experiment. 

 
  2σoO2

O
t)(F

2

3


             (5) 

During a calibration experiment [O3] was measured as NO2 by CAPS after titration by NO in one 

of the reactors operated in background mode, keeping NO at the same mixing ratio as used for 

PERCA or ECHAMP measurements of peroxy radicals. For this measurement, dry zero air flowed 

through the calibrator and the mercury lamp was switched ON and OFF several times to determine 

[O3] by difference. Ozone concentrations were in the range of 2.5-3.0 ppb. [H2O] was measured by 

a LI-COR 840A based on infrared absorption and calibrated versus a dew-point hygrometer 

(Mitchell S8000). The CAPS instruments were calibrated with an NO2 standard mixture at 190 ± 

3 ppb (2σ) certified by LNE (French National Metrology Institute). 

The accuracy of the calibrated CL (Eq. 2) depends on the uncertainty of both the measured ΔNO2 

and the generated peroxy radical concentration. The precision on ΔNO2 can be neglected since the 
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use of large radical concentrations during calibration experiments leads to a negligible random 

error associated to the quantification of the NO2 signal. If CO is added in the calibrator to only 

produce HO2, the accuracy (2σ) on ΔNO2 (1.5%) is much lower than the accuracy on the generated 

peroxy radical concentration of 31% (2σ) as reported by Dusanter et al. (2008) for the same 

calibrator ran under similar operating conditions. A propagation in quadrature leads to a total 

accuracy of 31% (2σ) for the CL. 

The apparent chain length for individual RO2 radicals, CL(RO2), was computed from Eq. 6. ΔNO2 

is the amount of NO2 produced when both HO2 and RO2 radicals are sampled by the instrument, 

CL(HO2) is determined during a calibration experiment using CO, and both HO2 and RO2 

concentrations are calculated from Eqs. 3-5.  

𝐶𝐿(𝑅𝑂2) =
∆𝑁𝑂2−𝐶𝐿(𝐻𝑂2)×[𝐻𝑂2]

[𝑅𝑂2]
        (6) 

Direct photolysis of the parent VOCs was investigated during these calibration experiments using 

dry conditions (RH< 1%). The fraction of ΔNO2 due to radicals produced by VOC photolysis was 

quantified for each experiment and was subtracted from ΔNO2 to calculate CL(RO2) from Eq. 6. 

Table 2.1 reports the fraction of radicals produced by direct photolysis for each VOC. The amount 

of NO2 produced by the radicals generated through the photolysis of VOCs was always lower than 

7% of ΔNO2 ( which is due to the sum of those from photolysis of VOCs + water photolysis), with 

the exception of vinylacetate (14%).  

The difference between CL(HO2) and the apparent CL(RO2) should only depends on RO2-to-HO2 

propagation reactions (R1-R3), which can be factored into a RO2-to-HO2 transmission term as 

shown in Eq. 7, T(RO2) being the fraction of RO2 radicals propagated to HO2. 

 𝐶𝐿(𝑅𝑂2) = 𝐶𝐿(𝐻𝑂2) × 𝑇(𝑅𝑂2)         (7) 

2.4 Box modeling of the amplification chemistry 

 

The Master Chemical Mechanism (MCM) v3.2 and the F0AM model (Framework for 0-D 

Modeling) (Wolfe et al., 2016) were used to simulate both the amplification and background modes 

under different operating conditions of reagents and humidity. A radical wall loss for HO2 was 
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added in the chemical mechanism with a first order loss rate parameterized from experimental 

measurements of radical losses in the PFA reactors (supplementary material S2.11). In addition, 

since MCM does not include RO+NO reactions, which are not important for atmospheric chemistry 

but essential for the chemistry occurring in the chemical amplifier, the reaction of C2H5O with NO 

leading to the formation of C2H5ONO was added using a rate constant of 4.4×10-11 cm3 molecule-

1 s-1 (Atkinson et al. 1997). MCM does not include the formation of HNO3 from the HO2+NO 

reaction (Butkovskaya et al., 2009, 2007)which is thought to occur through the formation of the 

HO2.H2O complex. A branching ratio for the formation of HNO3 was included in the MCM to 

perform sensitivity tests. The branching ratio for this reaction ( 𝑘𝐻𝑂2+𝑁𝑂→𝐻𝑁𝑂3 𝑘𝐻𝑂2+𝑁𝑂→𝑂𝐻+𝑁𝑂2⁄ ) 

was considered to be 0.5% under dry conditions (Butkovskaya et al., 2007) and dependent on RH 

with an amplification factor of 8 at 50% RH (Butkovskaya et al., 2009). Sensitivity tests were 

performed using (1) a water-independent branching ratio of 0.5% (HNO3/dry in Figures 2.2-2.4), 

(2) a linear parameterization of the ratio on RH leading to a value of 0.5% under dry conditions 

and a value 8 time higher at 50% RH (HNO3/RH_dep in Figures 2.2-2.4), and (3) a 

parameterization leading to half the water-dependence reported by Butkovskaya et al. (2009) 

(HNO3/adj_RH_dep in Figures 2.2-2.4). Uncertainties on the later simulations (dotted lines in 

Figures 2.2-2.4) were derived as reported in Wood et al. (2007) assuming an error of 25% on the 

branching ratio under dry conditions and an additional error of 28% associated to the humidity 

dependence of this ratio. 

The model was used to calculate the NO2 concentration at the exit of each reactor for an 

initial concentration of HO2 at the inlet similar to those generated during calibration experiments 

of the CL. The simulations were run for 5-s of reaction time and the model output of NO2 at 2-s of 

reaction time was used to calculate the modeled CL using Eq.2. These simulations have shown that 

the amount of NO2 produced from the radical amplification chemistry levels off at approximately 

0.5-s of reaction time, e.g. NO2(0.5-s)/NO2(5-s)>97.7%. 
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Table 2.1 Summary table of targeted VOCs.  

*(Atkinson et al., 2006); **(Calvert et al., 2011) ; ***(Teruel et al., 2006);
"
(Atkinson, 1986); 

∞
(Atkinson, 2003); ᶲ 

(Braure et al., 2014); ⁂ HO2 yields from MCM V3.2 

2.5 Results & Discussion 

 

This section reports a series of characterization and optimization experiments using both PERCA 

(CO/NO) and ECHAMP (ethane/NO) approaches. The impact of relative humidity on the chain 

length is investigated for each approach using operating conditions leading to the highest 

sensitivity. In addition, a comparison of measured CL to values inferred from box modeling is used 

to test our understanding of each amplification chemistry. The differences observed in CL when 

calibrating the chemical amplifier with different RO2 radicals are investigated and contrasted in 

VOC Concentration 

in calibrator 

(molecules cm-3) 

OH rate constant* 

(cm3molecule-1s-1) 

HO2 yield⁂ 

VOC+OH 

reactions 

(X) (%)  

∆𝑁𝑂2(VOC photolysis) / ∆𝑁𝑂2 (VOC 

photolysis+water photolysis) 

(%) 

Isoprene 6.2×1012 1.0×10-10 6 1.7 

Limonene 3.7×1012 1.7×10-10 ᶲ - 1.9 

m-xylene 2.5×1013 2.3×10-11** 45 0.5 

-pinene 7.7×1012 7.8×10-11 - 3.3 

Methylvinylketone 3.5×1013 2.0×10-11 - 3.2 

Acetaldehyde 3.8×1013 1.5×10-11 - 0.1 

Pentane 1.6×1014 3.8×10-12 
∞
 - 0.3 

3-methylpentane 1.2×1014 5.2×10-12 
∞
 - - 

Cyclohexane 8.8×1013 7.0×10-12 
∞
 - - 

Toluene 1.0×1014 5.9×10-12** 28 0.7 

Vinylacetate 4.8×1013 1.3×10-11*** - 14 

1-pentene 2.1×1013 3.1×10-11 "
 - 5.6 

Cyclopentene 1.1×1013 6.7×10-11 "  - 6.6 
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terms of differences expected from the formation of organic nitrate (R1b) and nitrite (R3) species. 

Finally, field measurements are presented to illustrate the performance of this instrument.   

2.5.1 Gas Reagents Optimization 

 

A mixture of HO2 and organic peroxy radicals was generated by adding isoprene to the calibrator 

as described in the experimental section. The dependence of the measured (symbols) and modeled 

(lines) chain lengths on reagent gases at 50% RH are shown in Figures 2.2 and 2.3. For PERCA 

(Figure 2.2), CO and NO were varied in the range 0.6-20% and 0.3-12.5 ppm, respectively. Figures 

2.2a shows that both experimental and modeled CL increase with the addition of NO up to 5-6 ppm 

at a constant CO mixing ratio of 4.5%. When NO is over 6 ppm, the CL starts decreasing due to a 

faster increase of the OH + NO (R7) reaction rate compared to HO2 + NO (R4a). Figure 2.2b shows 

that when CO is varied at a constant NO mixing ratio of 6 ppm, a plateau is reached at CO mixing 

ratios higher than 10%. Other studies have shown similar results with a plateau reached at 

approximately 7% (Clemitshaw et al., 1997)(Kartal et al., 2010; Sadanaga et al., 2004), 10% 

(Sadanaga et al., 2004) and 8.7% CO (Wood et al., 2014) for NO mixing ratios of 3, 3 and 3.3 

ppmv, respectively. The difference between these operating conditions that are optimized to get 

the largest CL may be due to the use of different materials to build the reactors and different reactor 

designs, which led to different wall losses of radicals.  

While the relative NO- and CO-dependencies of the CL are well described by the different models, 

Figure 2.2b shows that experimental CL values are lower than modelled values by approximately 

a factor of 2 when the base MCM simulation is considered (see section 2.3, red line), with 

maximum values around 55 and 120 at 10% CO, respectively. The simulation accounting for the 

formation of HNO3 from HO2+NO with a water-independent branching ratio of 0.5% (HNO3/dry, 

grey line) is in better agreement with the measured CL values, with a small overestimation of the 

model by approximately 15-25%. Implementing the water-enhancement of the HNO3 yield 

reported in the literature (see section 2.3) leads to a severe model underestimation by a factor of 

approximately 2. This issue is further discussed for the 2 amplification chemistries below. 
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Figure 2.2 Chain length dependences on reagent gases for the PERCA (CO/NO) approach. Experimental and 

modeled values are shown as markers and lines, respectively. Experiments were performed at ambient temperature 

(23°C) and 50% RH. Uncertainty on experimental values are 1σ. Panels c,d: dotted lines are uncertainty on modelled 

values. See section 2.3 for the modeling scenarios. 

 

For the ECHAMP approach, the 2 reagents were varied on a smaller range of concentrations, c.a. 

0.4-6.0% for ethane and 0.2-3.1 ppm for NO. Figure 2.3 displays the dependence of both 

experimental and modeled CL on NO (panel a) and ethane (panel b). The relative dependence on 

both reagents (curve shape) is similar to that observed for PERCA with optimum CL values for 

NO and ethane mixing ratios of 0.9 ppm and 2.1%, respectively. These optimum CL values are 

similar to values reported by Wood et al. (2017) of  1 ppm NO and 2.3% ethane, respectively. The 

maximum CL is approximately 3 times lower than for the PERCA approach, due to additional 

losses of radicals through the formation of nitrate (R1b) and nitrite (R3) compounds during the 
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radical amplification stage. Similarly to the PERCA approach, CL values simulated by the base 

MCM model are systematically higher than experimental values by a factor of approximately 2. In 

addition, as clearly seen in Figure 2.3c, the shape of the experimental trace is not well reproduced 

by the model with a peak in CL at higher NO for the model. Implementing the formation of HNO3 

from HO2+NO using the water-independent branching ratio has a much lower impact on the 

modelled CL values than for PERCA with a decrease of the CL by only 5-7%. This lower impact 

is due to a smaller contribution of this additional loss process to the total loss of radicals in the 

reactor (larger total loss rate compared to PERCA due to organic nitrite and nitrate formation from 

R3 and R1b, respectively). Using the water-dependent parameterization of the yield brings the 

modeled values in much better agreement with the measurements, which contrasts to that observed 

for the PERCA approach. 

Additional simulations were performed for both PERCA and ECHAMP in order to see whether a 

smaller water-enhancement of the HNO3 formation yield could reconcile the model/measurement 

comparison for the two amplification chemistries when uncertainties on modeled and measured CL 

values are considered. As shown in Figures 2.2 and 2.3 (panels c and d), simulated CL values 

considering an enhancement factor of 4 at 50% RH (HNO3/adj_RH_dep) would lead to modeled 

CL values that are within uncertainties with experimental measurements. Looking at each 

amplification chemistry separately would lead to the conclusion that the measured CL values and 

dependences on reagent gases could be relatively well reproduced if the water-dependence reported 

by only one study in the literature is overestimated by a factor 2. However, a systematic error on 

the parameterization of the HNO3 yield in the model should lead to a systematic deviation from the 

measurements (either positive or negative) for both comparisons (PERCA and ECHAMP). It is 

clear that while the additional loss of radicals due to HNO3 formation is important for both PERCA 

and ECHAMP, the uncertainty related to its parameterization cannot fully account for the 

model/experiment disagreement observed in this study (model underestimation for PERCA and 

overestimation for ECHAMP) and additional work is needed to improve our understanding of these 

amplification chemistries. 
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Figure 2.3 Chain length dependences on reagent gases for the ECHAMP (ethane/NO) approach. Experimental 

and modeled values are shown as markers and lines, respectively. Experiments were performed at ambient 

temperature (23°C) and 50% RH. Uncertainty on experimental values are 1σ. Panels c,d: dotted lines are uncertainty 

on modelled values. See section 2.3 for the modeling scenarios. 

 

It is interesting to note that a large impact of radical losses in the inlet of the chemical amplifier on 

this model/measurement comparison was ruled out. As mentioned in the experimental section, first 

order wall loss rates of HO2 and CH3CH2O2 were measured experimentally at different RH and 

were found to be 7.1 s-1 and lower than 1 s-1, respectively, at 50% RH. Based on the residence time 

in the PFA inlet (22 ms) and the first order loss rate observed for HO2, a conservative upper limit 

of 11% is estimated for the amount of peroxy radicals lost on the wall. In addition, increasing the 

total flow rate inside the inlet by a factor of 2 did not significantly impact the measured CL values. 

It is also interesting to note that setting the wall loss of HO2 to zero in the base MCM model leads 

to an increase of the modeled chain length by a factor of 2, indicating that a modification of the 
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reactor geometry to reduce the surface-to-volume ratio and the use of a more hydrophobic material 

to build the reactors may help increasing the experimental CL and hence the sensitivity of the 

instrument. 

Table 2-2 Operating conditions for the PERCA and ECHAMP approaches 

 

2.5.2 Linearity of the chemical amplifier response (ΔNO2) with HO2 

 

The linearity was investigated using the ECHAMP approach by adding CO in the calibrator to only 

produce HO2. This experiment was performed using a calibrator equipped with a chemical N2O 

filter located between the Hg lamp housing and the turbulent flow tube. The photon flux at 184.9 

nm was varied over a factor of 40 by adjusting the concentration of N2O inside the chemical filter, 

allowing to vary the HO2 mixing ratios in the range 2-85 ppt (4.9×107-2.1×109 cm-3) at a constant 

RH of 23%. These values encompass ambient concentrations usually observed during field 

campaigns. 

Plotting ΔNO2 versus HO2 in Figure 2.4 indicates a good linearity over the tested range of 

concentrations. A linear regression exhibits a coefficient of determination (R2) of 0.98 and a 

Parameter Value 

PFA reactor 

PFA inlet 

            Length: 60 cm, Outer diameter: 0.635 cm 

       Length:1.5 cm, Outer diameter: 0.635 cm 

Sampling flow rate Approx. 800 SCCM 

Reactor residence time 

Inlet residence time 

0.9 s 

22 ms 

 

ECHAMP approach (Ethane/NO) 

NO  0.9 ppm 

Ethane  2.1% 

Experimental CL (50% RH) 

Modeled CL (50% RH) 

15 

28 

 

PERCA approach (CO/NO) 

NO 6 ppm 

CO  10% 

Experimental CL (50% RH) 

Modeled CL (50% RH) 

55 

105 
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negligible intercept (not statistically significant at 1σ). The CL determined at 23% RH from the 

slope of this regression line is 24 ± 1 (1σ), which is larger than the CL reported in Figure 2.2d 

(approx. 15) under similar conditions of reagents at 50% RH, indicating a strong dependence of 

the CL with RH. 

  

 

 

Figure 2.4 Scatter plot of ΔNO2 with HO2 for the ECHAMP approach. Experiments performed at a 

temperature of 23 °C and (23±2) % RH. The solid line represents the linear regression line; Error bars are 1σ 

uncertainty on NO2 measurements and HO2 generation. Errors on slope and intercept are 1σ. 

 

2.5.3 Dependence of the CL on RH 

 

The CL dependence on RH is considered as a major issue for chemical amplification techniques 

and was investigated for both ECHAMP and PERCA by varying RH in the range 10-85% during 

calibration experiments (isoprene added in the calibrator). As discussed in the introduction section, 

the CL decreases when humidity increases due to enhanced radical losses on wet surfaces and the 

potential impact of water dimers and HO2.H2O complex on the gas-phase chemistry. To quantify 

this effect, the RH-dependence of both the experimental and modeled CL was investigated. 

Experimental (markers) and modeled (lines) CL for both amplification approaches are shown in 

Figure 2.5 as a function of RH. Operating conditions used during these experiments are reported 

in table 2.2 and experiments were performed at a temperature of 23±2°C.  
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In this figure, the experimental CL decreases with RH for both approaches, with a drop of about a 

factor of 3-4 between 10 and 70% RH. At 10% RH the CL for PERCA and ECHAMP are different 

by approximately a factor of 4. However, a larger RH-dependence of the CL is observed for 

PERCA, leading to a factor 3 of difference between the 2 approaches at 70% RH. These results are 

consistent with the work of Wood et al. (Wood et al., 2017) who reported a lower impact of RH 

for the ECHAMP technique.  

The RH-dependence of the PERCA CL reported in this study exhibits a similar behavior to what 

was observed by Sadanaga et al. (Sadanaga et al., 2004) up to 60% RH, but seems steeper for RH 

values larger than 60%. This dependence is also consistent with a decrease by a factor of 2 at 40% 

RH compared to dry conditions reported in Wood et al. (2017). The modelled CL values displayed 

in panels a and b show that the simulations assuming a water-dependence of the HNO3 formation 

yield adjusted at half the reported value can describe the RH-dependence of the measured CL 

within uncertainty, while the other simulations are in disagreement for both the absolute CL value 

and the RH-dependence.  

For the ECHAMP approach, the RH-dependence is similar to observations reported in Wood et al. 

(2017), where the CL is lower by a factor of 1.5 at 40 % RH compared to dry conditions. The 

modelled CL displayed in panels c and d lead to similar conclusions than for the PERCA approach, 

where simulations based on a 2-fold lower-than-reported water-dependence for the HNO3 

formation yield are in agreement with the experimental observations within uncertainty up to 70% 

RH. These results are consistent with the simulation presented in the supplementary material of 

Wood et al. (2007). 
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Figure 2.5  Dependences of experimental (markers) and modeled (lines) CL on RH for the PERCA (panels a 

and b) and ECHAMP (panels c and d) approaches (T = 23±2°C). The empty circle represents calibration experiments 

performed in the field (see section Field Testing). Uncertainty on experimental values are 1σ. Panels b,d: dotted lines 

are uncertainty on modelled values. See section 2.3 for the modeling scenarios. 

 

2.5.4 Quantification of T(RO2) for several RO2 radicals 

 

As mentioned in the introduction section, PERCA and ECHAMP techniques rely on the conversion 

of RO2 radicals into HO2 in order to initiate the amplification chemistry. The propagation reactions 

involved in this process will only transmit a certain fraction of each RO2, depending on their 

organic nitrate (R1b) and nitrite (R2-R3) yields. As a consequence, PERCA and ECHAMP 

techniques will be blind to the fraction of RO2 radicals that is not propagated to HO2. It is important 

to ensure that PERCA or ECHAMP measurements can be compared to model simulations when 
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each modeled peroxy radical concentration is weighted by a transmission factor derived from 

known organic nitrate and nitrite yields. 

Experiments were performed to (i) quantify T(RO2) (Eq. 6-7) for a large suite of peroxy radicals and 

to (ii) contrast measured T(RO2) values to calculations based on organic nitrate and nitrite yields 

used in atmospheric models for each RO2. HO2 and thirteen organic peroxy radicals were produced 

from the oxidation of CO and VOCs reported in Table 2.1 as described in the experimental section. 

These experiments were performed at 50% RH and ambient temperature (23±2°C) using the 

ECHAMP approach and operating conditions set to their optimum values as reported in Table 2. 

Due to the large concentration of O2 in ambient air, nitrite formation is negligible (< 3%) for all 

RO radicals generated in these experiments, with the exception of methoxyl (CH3O) which exhibits 

a 5-fold lower rate constant with O2. Under normal conditions of temperature and pressure (298 K 

and 1 atm) and using operating conditions reported in Table 2.2, the nitrite formation yield is 

estimated to be 8.7% for CH3O. This higher nitrite yield only concerns the oxidation of 

acetaldehyde due to the formation of an alkoxyl radical which decomposes to form CH3O2. 

The measured T(RO2) values are displayed in Table 2.3 and Figure 2.6 as a function of an average 

yield for nitrate formation. The nitrate yields used in these calculations are from MCM V3.2. This 

figure clearly indicates that there is a relationship between the two variables, with a decrease of 

T(RO2) when the yield increases, limonene and -pinene derived peroxy radicals exhibiting the 

lowest T(RO2) and highest nitrate yields of approximately 77% and 23%, respectively. These results 

are consistent with observations reported by Ashbourn et al. (Ashbourn et al., 1998), showing that 

R1b becomes more significant for large alkyl peroxy radicals, which in turn leads to T(RO2) values 

lower than unity. While T(RO2) values are scattered within ±10% around the 1:1 line, it is surprising 

that 9 of the 12 experiments are lower than the 1:1 line. These lower-than-expected values are likely 

due to the combination of R1b removal reactions and the injection of large concentrations of VOCs 

in the calibrator to convert OH into peroxy radicals, which, when introduced in the reactor ran 

under background mode, can lead to a small amplification of the radicals. Tests performed by 

introducing different concentrations of isoprene in the calibrator showed that the CL is 

underestimated by less than 10% for this compound under experimental conditions reported in this 

study. This would bring T(RO2) for isoprene in very good agreement with the known nitrate yield. 
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A similar impact is expected for the other T(RO2) values measured in this study. In addition, it is 

interesting to note that lower-than-expected T(RO2) values could also be partly due to NO in 

homogeneities when ambient air is mixed with the reagents, leading to local concentrations of NO 

larger than 1 ppm, which in turn can lead to a higher nitrite yield for each RO radical. Indeed, 

experimental determinations of T(RO2) provide values which are integrated over the reaction time 

when the reagents are getting mixed with ambient air (NO getting diluted down to 1 ppm). Overall, 

these results indicate that known nitrate and nitrite yields can be used to scale modelled 

concentrations of peroxy radicals for comparison with ECHAMP measurements with an 

uncertainty better than 10%. 

It is important to note that these scaling factors will be different for the PERCA approach since a 

higher NO mixing ratio is used to generate the amplification chemistry. The RO2-to-HO2 

conversion step will be less efficient due to a higher formation rate of organic nitrites. The nitrite 

yields are expected to increase from 2-3% to 12-18% for most of the RO radicals used in this study, 

with a higher increase for CH3O whose nitrite yield will be close to 36%. 

Table 2-3  RO2 to HO2 transmission – T(RO2 

 

 

 

VOC RONO2 yield 

MCM V3.2 (%) 

T(RO2) 

Isoprene 10.7 0.84 

Limonene 22.8 0.65 

m-xylene 7.3 0.91 

β-pinene 23.3 0.66 

Acetaldehyde 0.1 0.95 

Pentane 14.1 0.92 

3-methylpentane 12.4 0.74 

Cyclohexane 15.0 0.87 

Toluene 8.7 0.72 

1-pentene 5.9 0.88 

Cyclopentene 4.5* 0.84 

* Reference: (Perring et al., 2013) 
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Figure 2.6 Dependence of T(RO2) (ECHAMP approach) on average organic nitrate yields. The blue symbol for 

acetaldehyde accounts for nitrate & nitrite formation (see text). Plain grey line is 1:1 and dashed red lines are 1.10:1 

and 0.90:1. 

 

2.6 Field deployment of the chemical amplifier 

 

The chemical amplifier was first tested in an urban area, close to our laboratory, in the city of 

Douai, France. These measurements were performed with the PERCA approach, i.e. using CO and 

NO as reagents (operating conditions from Table 2.2). The measurements were conducted over 3 

consecutive days in April 2018 using the sequence shown in Figure S2.10 (supplementary 

material), which in turn led to a time resolution of 6-min. The overall meteorological conditions 

allowed to run the instrument under optimal conditions since these 3 days were characterized by 

clear skies, ambient temperatures between 8 and 25°C, and RH values ranging from 35 to 90%. 

The only exception was light rain in the early morning of 21 April, during which RH reached 100%. 

The peroxy radical measurements are shown in Figure 2.7 together with the CL calculated at the 

measured RH values. The latter varied from approximately 10 up to 75. RO2+HO2 mixing ratios 

ranged from the detection limit up to 20 ppt around 2 pm local time (UTC+2), with sustained 
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mixing ratios of 5-10 ppt during the late afternoon and nighttime. The magnitude of the measured 

RO2+HO2 mixing ratios and their diurnal variations are similar to trends reported in studies 

performed at measurements sites under urban influences (Tan et al., 2018a; Whalley et al., 2018a; 

Wood and Charest, 2014). 

  

 

 

Figure 2.7 Peroxy radical measurements performed in Douai (France) by chemical amplification using the 

PERCA approach 

 

This instrument was then deployed in the Landes forest (France) from 2 to 26 July 2018 as part of 

the CERVOLAND (Characterization of emissions and reactivity of volatile organic compounds in 

the Landes forest) field campaign. This forest is mainly composed of pine trees (Pinus Pinaster), 

which are strong emitters of monoterpenes such as α- and β-pinene. The instrument was coupled 

to a newly designed 9-m3 Teflon photo-reactor to investigate in-situ the oxidation of biogenic 

VOCs (BVOCs). Several experiments were conducted by flushing the photo-reactor with ambient 

air at different times of the day (nighttime, daytime) to trap air masses characterized by different 
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chemical compositions. Oxidation experiments were then performed either in the dark or under 

solar irradiation. Here, we present peroxy radical measurements from one experiment when the 

photo-reactor was flushed with ambient air during nighttime for 90 minutes. The air mass trapped 

in the photo-reactor was loaded with large mixing ratios of monoterpenes (14 ppb) and 

sesquiterpenes (50 ppt). The ambient ozone mixing ratio was low (12-14 ppb) during the flushing 

period. The air mass was kept in the dark until 12 pm, BVOCs slowly reacting O3 away (2-4 ppb 

around 11 am), and was then exposed to solar radiations until 8 pm by uncovering the photo-

reactor. Figure 2.8 displays the peroxy radical measurements during these two periods. 

Peroxy radicals slowly decreased together with O3 (O3 42E, Environnement SA) from 1 to 9 am. 

The mixing ratios dropped from 10 to 2 ppt, and 14 to 2 ppb for peroxy radicals and O3, 

respectively. O3-BVOC reactions were likely the main source of radicals during this time period. 

Peroxy radicals slowly increased from 9 am to 12 am together with the temperature, indicating that 

thermo-labile precursors of radicals may have been present in the photo-reactor. Once the photo-

reactor was uncovered, peroxy radicals rapidly increased from 6 ppt up to 45 ppt around 3 pm. The 

latter is similar to previously reported peroxy radicals mixing ratios in forested areas (Stone et al., 

2012; Vaughan et al., 2012; Wolfe et al., 2014). During this time period peroxy radical 

measurements are well correlated with j(NO2) measured above the photo-reactor (fast CCD 

spectroradiometer from METCON meteorologieconsult gmbh). Interestingly, O3 increased at a rate 

of 3-4 ppb h-1 from 12 to 3 pm, reaching a plateau at approximately 20 ppb. These results will be 

presented in detail in a forthcoming publication. 
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Figure 2.8 Peroxy radical measurements performed in a mobile photo-reactor during the CERVOLAND 2018 

field campaign 

 

 

2.7 Estimation of the detection limit 

 

Lower bounds for the detection limit can be derived from the measurement noise of the 2 CAPS 

monitors and the RH-dependent CL, assuming that no other sources of noise are present. 

Measurements of NO2 by the two CAPS analyzers used in this work exhibit precisions of 10 and 
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16 ppt (1σ) when zero air is sampled, which translate into detection limits (3σ) of 30 and 48 ppt for 

70-seconds of integration (70 occurrences of 1-s NO2 measurements averaged within each 

measurement step of 90-s, see supplementary material). This leads to detection limits of 1.3, 2.0, 

and 3.3 pptv for the ECHAMP approach at RH values of 10, 50, and 80%, respectively, for a total 

measurement time of 6 min (see measurement sequence in the experimental section). For the 

PERCA approach, the same procedure leads to detection limits of 0.3, 0.6, and 1.4 ppt at 10, 50, 

and 80% RH, respectively.  

However, detection limits for ambient air measurements are expected to be significantly higher due 

additional sources of noise such as small fluctuations in reagent flow rates, switches of solenoid 

valves, and changes in ambient concentrations of NO2 and O3, which will degrade the precision on 

ΔNO2. In order to better estimate limits of detection, both reactors were run in background mode 

for long time periods of 3-10 hours during the CERVOLAND field campaign. An experiment of 

this type is shown in the supplementary material (S4), where ΔNO2/CL is plotted as a function of 

time for RH values ranging from 20-30%. A statistical analysis of this series indicate that the mean 

value of 0.03 ± 0.04 ppt is not statistically significant. The standard deviation of 0.3 ppt translates 

into a detection limit (3σ) of 0.9 ppt. Assuming that ΔNO2 is not dependent on RH, since peroxy 

radicals are not amplified, this would translate into detection limits of 0.7, 1.3, and 3.0 ppt at RH 

values of 10, 50, and 80 %, respectively. These values are approximately 2 times higher than values 

calculated from the noise of the CAPS monitors. While these values may still underestimate the 

detection limit in ambient air, since the O3 and NO2 variability is reduced in the photo-reactor, it is 

clear that detection limits on the order of a few ppt are achievable using the PERCA approach. The 

ECHAMP approach, which has yet to be tested in the field on this instrument, should exhibit 

detection limits that are approximately 3 times higher. 

2.8 Conclusion 

 

This publication presents the development of a chemical amplifier for ground-based measurements 

of peroxy radicals in the troposphere. This instrument was used in the laboratory to compare two 

different approaches regarding the radical amplification chemistry, including the use of CO/NO 

(PERCA) or ethane/NO (ECHAMP) as reagent gases. Tests performed to identify optimum 

conditions leading to the highest sensitivity, i.e. the largest chain length, indicate that 10% CO and 
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6 ppm NO should be used for the PERCA approach, while 2.1% ethane and 0.9 ppm NO are better 

for ECHAMP. These optimum conditions lead to chain lengths values of approximately 55 and 15 

at 50% RH for the PERCA and ECHAMP approaches, respectively. The RH-dependence of the 

CL was also investigated for both approaches. It was found that the CL decreases with increasing 

RH, in agreement with previously published studies. The magnitude of the decrease is slightly 

lower for the ECHAMP technique, with a decrease by a factor 3 and 2.7 for the PERCA and 

ECHAMP approaches, respectively, when RH is increased from approximately 10 up to 70% at 

23±2°C.  

The amplification chemistry was modelled using MCM v3.2 for comparison to experimental 

observations. The model/measurement comparison indicates that modeled CL values overestimate 

experimental observations by a factor of approximately 2. Additional simulations conducted to 

assess whether the formation of HNO3 from HO2+ NO could impact the CL of chemical amplifiers 

highlighted that using the yield reported under dry conditions, and a 2-fold lower-than-reported 

water-dependence for this yield, provides a reasonable description of the CL-dependence on 

reagent gases and RH for both PERCA and ECHAMP. However, the model overestimation of the 

ECHAMP CL and underestimation of the PERCA CL seems to indicate that our understanding of 

the amplification chemistry is still incomplete and deserves addition scrutiny. 

The sensitivity of the chemical amplifier to a large range of RO2 radicals was quantified to 

determine whether PERCA and ECHAMP measurements can be compared to model simulations 

when the concentration of each modelled peroxy radical is weighted by a transmission factor 

derived from known organic nitrate and nitrite yields. This work showed that transmission factors 

can be calculated from known kinetic parameters and ambient conditions for the pool of organic 

peroxy radicals tested in this study. 

Finally, ambient testing of this chemical amplifier using the PERCA approach showed that this 

instrument is capable of measuring ambient concentrations of HO2+RO2 at levels higher than 1-4 

ppt under RH conditions up to 90% once the RH-dependence of the CL has been correctly 

characterized. Comparisons of the PERCA and ECHAMP techniques to other techniques capable 

of measuring peroxy radicals would be useful to provide more insight into the accuracy of chemical 

amplifiers. 
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2.9 Supplementary material 

 

2.9.1 S1 - Inlet/Reactor coupling 

 

 

Figure S2.9 a) Schematics of a home-made 3D printed nylon injector in a transversal cut; and b) an 

enlargement of the double ring, radial injector mixing area, in transparent representation  
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2.9.2 S2 - Measurement sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.10 Sequence of steps required for the measurement of a peroxy radical mixing ratio. Example of 

measurements performed during the CERVOLAND field campaign when the chemical amplifier (PERCA approach) 

was coupled to a photo-reactor (see section 3.5). Peroxy radical mixing ratio of approximately 70 ppt. 

Successive switches of the measurement mode in each reactor (amplification / background switch, 

SV1a,b and SV2a,b) and of the two NO2 monitors (CAPS switch, SV3 and SV4) are performed to 

cancel out any potential bias in ΔNO2 due to (i) a drift in monitors’ zeros and (ii) slightly different 

behaviors of the 2 reactors (spurious NO2 signals from reagents, O3 titration by NO, wall losses of 

O3…).  

All NO2 measurements performed under amplified conditions are averaged together and all 

measurements performed under background conditions are also averaged together. Only the last 

70-s of each NO2 measurement step are used in the averaging process to calculate ΔNO2  

ΔNO2 is calculated as: 

∆𝑁𝑂2 = [(𝐴𝑣𝑔 𝐵𝐴
𝑎𝑚𝑝 − 𝐴𝑣𝑔 𝐴𝐵𝑏𝑐𝑘) + (𝐴𝑣𝑔 𝐴𝐴𝑎𝑚𝑝 − 𝐴𝑣𝑔 𝐵𝐵𝑏𝑐𝑘)

+ (𝐴𝑣𝑔 𝐴𝐵𝑎𝑚𝑝 − 𝐴𝑣𝑔 𝐵𝐴𝑏𝑐𝑘) +  (𝐴𝑣𝑔 𝐵𝐵𝑎𝑚𝑝 − 𝐴𝑣𝑔 𝐴𝐴𝑏𝑐𝑘)]/4 
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Where each Avg term stand for the averaged value of an operating mode in amplified (amp) or 

background (bck) conditions, first capital letter designating the CAPS detector and the second letter 

designating the reactor (see Figure 1). 

 

2.9.3 S3 - Wall loss measurements 

 

Wall loss rates for HO2 and C2H5O2 were measured in this study by (i) generating a known 

concentration of radicals at the entrance of the PFA inlet and by (ii) varying the length of the inlet 

from 1.5-14 cm keeping all conditions constant. The outer diameter of the inlet and its wall 

thickness were 0.635 cm and 0.08 cm. LN(ΔNO2) was then plotted versus the residence time in the 

inlet to extract the loss rate (kw expressed in s-1) from a linear regression fit. This experiment was 

repeated at different RH values ranging from 10-85%.  

Seven determinations of kw were conducted at different RH values for HO2 by adding 660 ppm of 

CO in the calibrator. The results are reported in Figure S3a. Values ranging from 2-12 s-1 were 

observed when RH was varied between 10 and 85%. Plotting kw as a function of RH indicates that 

the loss rate increases with humidity and allows proposing the following parameterization based 

on the linear fit of measurements: kw(HO2) = 0.13×RH+0.69 s-1. Mihele et al. (Mihele et al., 1999) 

reported first order loss rates for HO2 and PFA reactors (0.635 cm OD) of 2.8±0.2 s-1 and  6.3±0.7 

s-1  under dry conditions and at 50% RH, respectively. While a kw value of 0.7 s-1 derived from the 

parameterization under dry conditions is lower than the value measured by Mihele et al., the value 

of 7.2 s-1 calculated at 50% is consistent with their work.  

Similar experiments were conducted to measure kw for C2H5O2 by adding ethane (380 ppm) instead 

of CO in the calibrator. When ethane is added in the calibrator, an equimolar mixture of HO2 and 

C2H5O2 is generated at the exit of the calibrator and the measured kw values depend on the loss of 

both HO2 and C2H5O2. Figure S3b displays six experiments performed at RH values ranging from 

10-80%. This figure shows that kw(50%C2H5O2+50%HO2) ranges from 1-3.5 s
-1 and does not exhibit a 

strong dependence on RH. In order to estimate kw for C2H5O2 alone, simulations of the total peroxy 

radical decay (HO2+C2H5O2) were performed using similar initial concentrations of HO2 and 

C2H5O2 and values for kwHO2 derived from the parameterization discussed above. kwC2H5O2 was then 

adjusted to reach upper and lower bounds of the kw50%C2H5O2+50%HO2 values observed 
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experimentally. These results indicate that kw(C2H5O2) is lower than 1 s-1 and is not significantly 

dependent on RH. This is consistent with results published by Mihele et al. (Mihele et al., 1999). 

A first order loss rate of HO2 parametrized by kw(HO2) = 0.13×RH+0.69 s-1 was used for the model 

simulations presented in the main paper. The loss rate for C2H5O2 was neglected in these 

simulations. 

 

   

 

Figure S2.11   (a) kw(HO2) and (b) kw(50%C2H5O2+50%HO2)  measured at 23±2 °C  for the PFA inlet 
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2.9.4 S4 – Detection limit for the PERCA (CO/NO) approach during CERVOLAND 

 

 

Figure S2.12  Two reactors operated in background mode for a duration of 12 hours to estimate limits of 

detection. ∑ HO2 + RO2 = ΔNO2/CL shown as a function of time. The dashed red lines represent the 95% confidence 

interval. Chain length, temperature and relative humidity are also shown on the bottom panel. 

 

 

2.9.5 S5-Identification of the best material for the CA reactors 

 

The chain length of the PERCA system is strongly impacted by the removal of radicals on the 

reactor walls (Fig S2.13-14). In order to identify a material exhibiting a low radical wall loss rate, 

the CL was measured in reactors made of different types of materials (Figures S2.13 & S2.14) 

using the same operating conditions (reagent gases, sample flow rate, radical generation, T: 25 °C, 

RH: 50%). For these measurements, both NO and CO were varied to check whether the same trends 

were observed for each tested materials. These tests were performed using the ECHAMP approach 
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but it is expected that similar results would be observed with the PERCA approach since wall losses 

of HO2 will be similar. The materials tested were PTFE, PFA, pyrex, tygon and silcosteel. 

 

Figure S2.13  Dependence of the CL on NO for reactors made of different types of materials 

 

 

  Figure S2.14  Dependence of the CL on ethane for reactors made of different types of materials 

 

As can be seen from Figure S2.14, the CL increases with NO at a constant ethane mixing 

ratio of 1.5% until it reaches a maximum at approximately 1 ppm of NO for all materials, with the 

exception of  PTFE which exhibits a maximum CL at 0.5 ppm of NO. In addition, the CL observed 

for PTFE at 0.5 ppm of NO is approximately two times higher than for PFA and more than six 

times higher than other materials. When ethane is varied (Figure S2.14), keeping NO constant at 1 

ppm, a maximum chain length is observed at mixing ratio of 2-3 % for all materials wirh PTFE 

still exhibiting  significantly higher CL than the other materials. From these two figures, it is clear 
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that PTFE and PFA reactors lead to the highest CL of 24 and 15 at 1.9-2.5 % ethane, respectively. 

This indicates that these two materials lead to lower radical loss rates on their walls. However, the 

CL for the PTFE reactor was not stable over time and decreased after a few days of experiments to 

a value close to that observed for PFA. This behavior is likely due to the aging of the reactor 

surface. We therefore decided to select the PFA reactors, which provided the highest stable chain 

length over time under the optimum operating conditions.   
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2.9.6 S6-Chemical Mechanisms used to model the PERCA and ECHAMP chemistries 

 

Table S2.4  Reaction scheme used to model the CL for PERCA and ECHAMP. 

Radical propagation reactions 

Ethane/NO Chemistry 

HO2 + NO → OH +NO2 

OH + C2H6 (+ O2) → H2O +C2H5O2 

C2H5O2 + NO → C2H5O + NO2 

C2H5O + O2 → CH3CHO + HO2 

CO/NO Chemistry 

HO2 + NO → OH +NO2 

OH + CO + O2 → CO2 + HO2 

Radical Termination reactions 

Ethane/NO chemistry 

C2H5O + NO + M → C2H5ONO + M 

C2H5O2 + NO + M → C2H5ONO2 + M 

HO2 + NO + M → HNO3 + M 

HO2 + wall → non-radical product 

OH + NO + M → HONO + M 

OH + HO2 → H2O + O2 

HO2 + NO2 + M ↔ HO2NO2 + M 

C2H5O2 + NO2 + M ↔ C2H5O2NO2 + M 

C2H5O2 + wall → non-radical product 

CO/NO Chemistry 

OH + NO + M → ONO + M 

HO2 + NO + M → HNO3 + M 

HO2 + wall → non-radical product 

HO2 + NO2 + M ↔ HO2NO2 + M 

OH + HO2 → H2O + O2 

 



 134 

 

2.10 References 

 

Acker, K., Möller, D., Wieprecht, W., Meixner, F.X., Bohn, B., Gilge, S., Plass-Dülmer, C., Berresheim, H., 
2006. Strong daytime production of OH from HNO2 at a rural mountain site. Geophys. Res. Lett. 
33. https://doi.org/10.1029/2005GL024643 

Ahmed, M., Blunt, D., Chen, D., Suits, A.G., 1997. UV photodissociation of oxalyl chloride yields four 
fragments from one photon absorption. J. Chem. Phys. 106, 7617–7624. 

Albrecht, S.R., Novelli, A., Hofzumahaus, A., Kang, S., Baker, Y., Mentel, T., Wahner, A., Fuchs, H., 2019. 
Measurements of hydroperoxy radicals (HO2) at atmospheric concentrations using bromide 
chemical ionisation mass spectrometry. Atmos Meas Tech 12, 891–902. 
https://doi.org/10.5194/amt-12-891-2019 

Amedro, D., Miyazaki, K., Parker, A., Schoemaecker, C., Fittschen, C., 2012a. Atmospheric and kinetic 
studies of OH and HO2 by the FAGE technique. J. Environ. Sci. 24, 78–86. 
http://dx.doi.org/10.1016/S1001-0742(11)60723-7 

Archibald, A.T., Levine, J.G., Abraham, N.L., Cooke, M.C., Edwards, P.M., Heard, D.E., Jenkin, M.E., 
Karunaharan, A., Pike, R.C., Monks, P.S., Shallcross, D.E., Telford, P.J., Whalley, L.K., Pyle, J.A., 2011. 
Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the 
composition of past, present and future atmospheres. Geophys. Res. Lett. 38, n/a-n/a. 
https://doi.org/10.1029/2010GL046520 

Ashbourn, S.F.M., Jenkin, M.E., Clemitshaw, K.C., 1998. Laboratory Studies of the Response of a Peroxy 
Radical Chemical Amplifier to HO2 and a Series of Organic Peroxy Radicals. J. Atmospheric Chem. 
29, 233–266. https://doi.org/10.1023/a:1005992316512 

Assaf, E., Tanaka, S., Kajii, Y., Schoemaecker, C., Fittschen, C., 2017. Rate constants of the reaction of C2–
C4 peroxy radicals with OH radicals. Chem. Phys. Lett. 684, 245–249. 
https://doi.org/10.1016/j.cplett.2017.06.062 

Atkinson, R., 2003. Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos 
Chem Phys 3, 2233–2307. https://doi.org/10.5194/acp-3-2233-2003 

Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101. 
http://dx.doi.org/10.1016/S1352-2310(99)00460-4 

Atkinson, R., 1986. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic 
compounds under atmospheric conditions. Chem. Rev. 86, 69–201. 
https://doi.org/10.1021/cr00071a004 

Atkinson, R., Arey, J., 2003. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 103, 
4605–4638. https://doi.org/10.1021/cr0206420 

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., 
Troe, J., 2007. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – 
gas phase reactions of inorganic halogens. Atmos Chem Phys 7, 981–1191. 
https://doi.org/10.5194/acp-7-981-2007 

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., 
Troe, J., 2004. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - 
gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4, 1461–1738. 
https://doi.org/10.5194/acp-4-1461-2004 



 135 

 

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., 
Troe, J., IUPAC Subcommittee, 2006. Evaluated kinetic and photochemical data for atmospheric 
chemistry: Volume II – gas phase reactions of organic species. Atmos Chem Phys 6, 3625–4055. 
https://doi.org/10.5194/acp-6-3625-2006 

Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Rossi, M.J., Troe, J., 1997a. Evaluated Kinetic, 
Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V.   IUPAC 
Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J. Phys. Chem. Ref. Data 
26, 521–1011. https://doi.org/10.1063/1.556011 

Atkinson, Roger., Tuazon, E.C., Aschmann, S.M., 1995. Products of the Gas-Phase Reactions of O3 with 
Alkenes. Environ. Sci. Technol. 29, 1860–1866. https://doi.org/10.1021/es00007a025 

Avzianova, E.V., Ariya, P.A., 2002. Temperature-dependent kinetic study for ozonolysis of selected 
tropospheric alkenes. Int. J. Chem. Kinet. 34, 678–684. https://doi.org/10.1002/kin.10093 

Bailey, A.E., Heard, D.E., Paul, P.H., Pilling, M.J., 1997. Collisional quenching of OH (A 2Σ+, v′ = 0) by N2, O2 
and CO2 between 204 and 294 K. Implications for atmospheric measurements of OH by laser-
induced fluorescence. J Chem Soc Faraday Trans 93, 2915–2920. 
https://doi.org/10.1039/A701582H 

Baker, J., Aschmann, S.M., Arey, J., Atkinson, R., 2002. Reactions of stabilized criegee intermediates from 
the gas-phase reactions of O3 with selected alkenes. Int. J. Chem. Kinet. 34, 73–85. 
https://doi.org/10.1002/kin.10022 

Baklanov, A.V., Krasnoperov, L.N., 2001. Oxalyl Chloride A Clean Source of Chlorine Atoms for Kinetic 
Studies. J. Phys. Chem. A 105, 97–103. 

Berresheim, H., Elste, T., Plass-Dülmer, C., Eiseleb, F.L., Tannerb, D.J., 2000. Chemical ionization mass 
spectrometer for long-term measurements of atmospheric OH and H2SO4. Int. J. Mass Spectrom. 
202, 91–109. http://dx.doi.org/10.1016/S1387-3806(00)00233-5 

Berresheim, H., Elste, T., Tremmel, H.G., Allen, A.G., Hansson, H.C., Rosman, K., Dal Maso, M., Mäkelä, 
J.M., Kulmala, M., O’Dowd, C.D., 2002. Gas-aerosol relationships of H2SO4, MSA, and OH: 
Observations in the coastal marine boundary layer at Mace Head, Ireland. J. Geophys. Res. 
Atmospheres 107, PAR 5-1-PAR 5-12. https://doi.org/10.1029/2000JD000229 

Bossolasco, A., Faragó, E.P., Schoemaecker, C., Fittschen, C., 2014. Rate constant of the reaction between 
CH3O2 and OH radicals. Chem. Phys. Lett. 593, 7–13. https://doi.org/10.1016/j.cplett.2013.12.052 

Boyd, A.A., Flaud, P.-M., Daugey, N., Lesclaux, R., 2003. Rate Constants for RO2 + HO2 Reactions Measured 
under a Large Excess of HO2. J. Phys. Chem. A 107, 818–821. https://doi.org/10.1021/jp026581r 

Braure, T., Bedjanian, Y., Romanias, M.N., Morin, J., Riffault, V., Tomas, A., Coddeville, P., 2014. 
Experimental Study of the Reactions of Limonene with OH and OD Radicals: Kinetics and Products. 
J. Phys. Chem. A 118, 9482–9490. https://doi.org/10.1021/jp507180g 

Brune, W.H., Baier, B.C., Thomas, J., Ren, X., Cohen, R.C., Pusede, S.E., Browne, E.C., Goldstein, A.H., 
Gentner, D.R., Keutsch, F.N., Thornton, J.A., Harrold, S., Lopez-Hilfiker, F.D., Wennberg, P.O., 2016. 
Ozone production chemistry in the presence of urban plumes. Faraday Discuss. 189, 169–189. 
https://doi.org/10.1039/C5FD00204D 

Burkert, J., Behmann, T., Andrés Hernández, M.D., Stöbener, D., Weißenmayer, M., Perner, D., Burrows, 
J.P., 2001. Measurements of peroxy radicals in a forested area of Portugal. Field Stud. Atmospheric 
Chem. Volatile Org. Compd. Emit. Eucalyptus For. FIELDVOC94 3, 327–338. 
https://doi.org/10.1016/S1465-9972(01)00014-9 



 136 

 

Butkovskaya, N., Kukui, A., Le Bras, G., 2007. HNO3 Forming Channel of the HO2 + NO Reaction as a 
Function of Pressure and Temperature in the Ranges of 72−600 Torr and 223−323 K. J. Phys. Chem. 
A 111, 9047–9053. https://doi.org/10.1021/jp074117m 

Butkovskaya, N., Rayez, M.-T., Rayez, J.-C., Kukui, A., Le Bras, G., 2009. Water Vapor Effect on the HNO3 
Yield in the HO2 + NO Reaction: Experimental and Theoretical Evidence. J. Phys. Chem. A 113, 
11327–11342. https://doi.org/10.1021/jp811428p 

Calvert, J., Mellouki, A., Orlando, J., 2011. Mechanisms of atmospheric oxidation of the oxygenates. OUP 
USA. 

Cantrell, C.A., Shetter, R.E., Calvert, J.G., 1996. Dual-Inlet Chemical Amplifier for Atmospheric Peroxy 
Radical Measurements. Anal. Chem. 68, 4194–4199. https://doi.org/10.1021/ac960639e 

Cantrell, C.A., Stedman, D.H., Wendel, G.J., 1984. Measurement of atmospheric peroxy radicals by 
chemical amplification. Anal. Chem. 56, 1496–1502. https://doi.org/10.1021/ac00272a065 

Cantrell, C.A., Zimmer, A., Tyndall, G.S., 1997. Absorption cross sections for water vapor from 183 to 193 
nm. Geophys. Res. Lett. 24, 2195–2198. https://doi.org/10.1029/97GL02100 

Chan, C.Y., Hard, T.M., Mehrabzadeh, A.A., George, L.A., O’Brien, R.J., 1990. Third-generation FAGE 
instrument for tropospheric hydroxyl radical measurement. J. Geophys. Res. Atmospheres 95, 
18569–18576. https://doi.org/10.1029/JD095iD11p18569 

Chen, S., Ren, X., Mao, J., Chen, Z., Brune, W.H., Lefer, B., Rappenglück, B., Flynn, J., Olson, J., Crawford, 
J.H., 2010. A comparison of chemical mechanisms based on TRAMP-2006 field data. Atmos. 
Environ. 44, 4116–4125. http://dx.doi.org/10.1016/j.atmosenv.2009.05.027 

Chen, X., Millet, D.B., Singh, H.B., Wisthaler, A., Apel, E.C., Atlas, E.L., Blake, D.R., Bourgeois, I., Brown, S.S., 
Crounse, J.D., de Gouw, J.A., Flocke, F.M., Fried, A., Heikes, B.G., Hornbrook, R.S., Mikoviny, T., 
Min, K.-E., Müller, M., Neuman, J.A., O’Sullivan, D.W., Peischl, J., Pfister, G.G., Richter, D., Roberts, 
J.M., Ryerson, T.B., Shertz, S.R., Thompson, C.R., Treadaway, V., Veres, P.R., Walega, J., Warneke, 
C., Washenfelder, R.A., Weibring, P., Yuan, B., 2019. On the sources and sinks of atmospheric 
VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmos Chem Phys 
19, 9097–9123. https://doi.org/10.5194/acp-19-9097-2019 

Clemitshaw, K., 2004. A Review of Instrumentation and Measurement Techniques for Ground-Based and 
Airborne Field Studies of Gas-Phase Tropospheric Chemistry. Crit. Rev. Environ. Sci. Technol. 34, 
1–108. https://doi.org/10.1080/10643380490265117 

Clemitshaw, K.C., Carpenter, L.J., Penkett, S.A., Jenkin, M.E., 1997. A calibrated peroxy radical chemical 
amplifier for ground-based tropospheric measurements. J. Geophys. Res. Atmospheres 102, 
25405–25416. https://doi.org/10.1029/97JD01902 

Commane, R., Floquet, C.F.A., Ingham, T., Stone, D., Evans, M.J., Heard, D.E., 2010. Observations of OH 
and HO2 radicals over West Africa. Atmos Chem Phys 10, 8783–8801. 
https://doi.org/10.5194/acp-10-8783-2010 

Creasey, D.J., Evans, G.E., Heard, D.E., Lee, J.D., 2003. Measurements of OH and HO2 concentrations in the 
Southern Ocean marine boundary layer. J. Geophys. Res. Atmospheres 108, n/a-n/a. 
https://doi.org/10.1029/2002JD003206 

Creasey, D.J., Heard, D.E., Lee, J.D., 2000. Absorption cross-section measurements of water vapour and 
oxygen at 185 nm. Implications for the calibration of field instruments to measure OH, HO2 and 
RO2 radicals. Geophys. Res. Lett. 27, 1651–1654. https://doi.org/10.1029/1999GL011014 

Dolgorouky, C., Gros, V., Sarda-Esteve, R., Sinha, V., Williams, J., Marchand, N., Sauvage, S., Poulain, L., 
Sciare, J., Bonsang, B., 2012. Total OH reactivity measurements in Paris during the 2010 MEGAPOLI 
winter campaign. Atmos Chem Phys 12, 9593–9612. https://doi.org/10.5194/acp-12-9593-2012 



 137 

 

Dusanter, S., Stevens, P.S., 2017. Recent Advances in the Chemistry of OH and HO2 Radicals in the 
Atmosphere: Field and Laboratory Measurements, in: Advances in Atmospheric Chemistry. pp. 
493–579. https://doi.org/10.1142/9789813147355_0007 

Dusanter, S., Vimal, D., Stevens, P.S., 2008a. Technical note: Measuring tropospheric OH and HO2 by laser-
induced fluorescence at low pressure. A comparison of calibration techniques. Atmos Chem Phys 
8, 321–340. https://doi.org/10.5194/acp-8-321-2008 

Dusanter, S., Vimal, D., Stevens, P.S., Volkamer, R., Molina, L.T., 2009a. Measurements of OH and HO2 
concentrations during the MCMA-2006 field campaign – Part 1: Deployment of the Indiana 
University laser-induced fluorescence instrument. Atmos Chem Phys 9, 1665–1685. 
https://doi.org/10.5194/acp-9-1665-2009 

Dusanter, S., Vimal, D., Stevens, P.S., Volkamer, R., Molina, L.T., Baker, A., Meinardi, S., Blake, D., Sheehy, 
P., Merten, A., Zhang, R., Zheng, J., Fortner, E.C., Junkermann, W., Dubey, M., Rahn, T., Eichinger, 
B., Lewandowski, P., Prueger, J., Holder, H., 2009b. Measurements of OH and HO2 concentrations 
during the MCMA-2006 field campaign – Part 2: Model comparison and radical budget. Atmos 
Chem Phys 9, 6655–6675. https://doi.org/10.5194/acp-9-6655-2009 

Edwards, G.D., Cantrell, C.A., Stephens, S., Hill, B., Goyea, O., Shetter, R.E., Mauldin, R.L., Kosciuch, E., 
Tanner, D.J., Eisele, F.L., 2003. Chemical Ionization Mass Spectrometer Instrument for the 
Measurement of Tropospheric HO2 and RO2. Anal. Chem. 75, 5317–5327. 
https://doi.org/10.1021/ac034402b 

Edwards, P.M., Evans, M.J., Furneaux, K.L., Hopkins, J., Ingham, T., Jones, C., Lee, J.D., Lewis, A.C., Moller, 
S.J., Stone, D., Whalley, L.K., Heard, D.E., 2013. OH reactivity in a South East Asian tropical 
rainforest during the Oxidant and Particle Photochemical Processes (OP3) project. Atmos Chem 
Phys 13, 9497–9514. https://doi.org/10.5194/acp-13-9497-2013 

Ehn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, 
R., Lee, B., 2014. A large source of low-volatility secondary organic aerosol. Nature 506, 476. 

Elshorbany, Y.F., Kleffmann, J., Kurtenbach, R., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A.R., 
Pilling, M.J., Wiesen, P., 2010. Seasonal dependence of the oxidation capacity of the city of 
Santiago de Chile. Atmospheric Chem. Mech. Sel. Pap. 2008 Conf. 44, 5383–5394. 
https://doi.org/10.1016/j.atmosenv.2009.08.036 

Faloona, I.C., Tan, D., Lesher, R.L., Hazen, N.L., Frame, C.L., Simpas, J.B., Harder, H., Martinez, M., Di Carlo, 
P., Ren, X., 2004. A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: 
Characteristics and calibration. J. Atmospheric Chem. 47, 139–167. 

Faragó, E.P., Schoemaecker, C., Viskolcz, B., Fittschen, C., 2015. Experimental determination of the rate 
constant of the reaction between C2H5O2 and OH radicals. Chem. Phys. Lett. 619, 196–200. 
https://doi.org/10.1016/j.cplett.2014.11.069 

Finlayson-Pitts, B.J., Jr, J.N.P., 2000. {CHAPTER} 5 - Kinetics and Atmospheric Chemistry, in: Finlayson-Pitts, 
B.J., Pitts, J.N. (Eds.), Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego, 
pp. 130–178. https://doi.org/10.1016/B978-012257060-5/50007-1 

Finlayson-Pitts, B.J., Pitts, J.N. (Eds.), 2000. Acknowledgments, in: Chemistry of the Upper and Lower 
Atmosphere. Academic Press, San Diego, pp. xxi–xxii. https://doi.org/10.1016/B978-012257060-
5/50002-2 

Finlayson-Pitts, B.J., Pitts Jr, J.N., 2000. CHAPTER 6 - Rates and Mechanisms of Gas-Phase Reactions in 
Irradiated Organic – NOx – Air Mixtures, in: Chemistry of the Upper and Lower Atmosphere. 
Academic Press, San Diego, pp. 179–263. 



 138 

 

Fittschen, C., Al Ajami, M., Batut, S., Ferracci, V., Archer-Nicholls, S., Archibald, A.T., Schoemaecker, C., 
2019. ROOOH: a missing piece of the puzzle for OH measurements in low-NO environments? 
Atmos Chem Phys 19, 349–362. https://doi.org/10.5194/acp-19-349-2019 

Fittschen, C., Whalley, L.K., Heard, D.E., 2014. The Reaction of CH3O2 Radicals with OH Radicals: A 
Neglected Sink for CH3O2 in the Remote Atmosphere. Environ. Sci. Technol. 48, 7700–7701. 
https://doi.org/10.1021/es502481q 

Fleming, Z.L., Monks, P.S., Rickard, A.R., Heard, D.E., Bloss, W.J., Seakins, P.W., Still, T.J., Sommariva, R., 
Pilling, M.J., Morgan, R., Green, T.J., Brough, N., Mills, G.P., Penkett, S.A., Lewis, A.C., Lee, J.D., 
Saiz-Lopez, A., Plane, J.M.C., 2006. Peroxy radical chemistry and the control of ozone 
photochemistry at Mace Head, Ireland during the summer of 2002. Atmos Chem Phys 6, 2193–
2214. https://doi.org/10.5194/acp-6-2193-2006 

Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K.D., Nehr, S., Rohrer, F., Wahner, A., 2011. Detection 
of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals. Atmos Meas 
Tech 4, 1209–1225. https://doi.org/10.5194/amt-4-1209-2011 

Fuchs, H., Brauers, T., Dorn, H.P., Harder, H., Häseler, R., Hofzumahaus, A., Holland, F., Kanaya, Y., Kajii, Y., 
Kubistin, D., Lou, S., Martinez, M., Miyamoto, K., Nishida, S., Rudolf, M., Schlosser, E., Wahner, A., 
Yoshino, A., Schurath, U., 2010. Technical Note: Formal blind intercomparison of HO2 
measurements in the atmosphere simulation chamber SAPHIR during the HOxComp campaign. 
Atmos Chem Phys 10, 12233–12250. https://doi.org/10.5194/acp-10-12233-2010 

Fuchs, H., Holland, F., Hofzumahaus, A., 2008. Measurement of tropospheric RO2 and HO2 radicals by a 
laser-induced fluorescence instrument. Rev. Sci. Instrum. 79, 084104. 
https://doi.org/10.1063/1.2968712 

Fuchs, H., Tan, Z., Hofzumahaus, A., Broch, S., Dorn, H.P., Holland, F., Künstler, C., Gomm, S., Rohrer, F., 
Schrade, S., Tillmann, R., Wahner, A., 2016. Investigation of potential interferences in the 
detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions. Atmos 
Meas Tech 9, 1431–1447. https://doi.org/10.5194/amt-9-1431-2016 

Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., Platt, U., 2001. Chemistry and oxidation capacity of 
the nitrate radical in the continental boundary layer near Berlin. J. Geophys. Res. Atmospheres 
106, 8013–8025. https://doi.org/10.1029/2000JD900681 

Goldstein, A.H., Galbally, I.E., 2007. Known and Unexplored Organic Constituents in the Earth’s 
Atmosphere. Environ. Sci. Technol. 41, 1514–1521. https://doi.org/10.1021/es072476p 

Green, T.J., Reeves, C.E., Brough, N., Edwards, G.D., Monks, P.S., Penkett, S.A., 2003. Airborne 
measurements of peroxy radicals using the PERCA technique. J Env. Monit 5, 75–83. 

Green, T.J., Reeves, C.E., Fleming, Z.L., Brough, N., Rickard, A.R., Bandy, B.J., Monks, P.S., Penkett, S.A., 
2006. An improved dual channel PERCA instrument for atmospheric measurements of peroxy 
radicals. J. Environ. Monit. 8, 530–536. https://doi.org/10.1039/B514630E 

Griffith, S.M., Hansen, R.F., Dusanter, S., Michoud, V., Gilman, J.B., Kuster, W.C., Veres, P.R., Graus, M., de 
Gouw, J.A., Roberts, J., Young, C., Washenfelder, R., Brown, S.S., Thalman, R., Waxman, E., 
Volkamer, R., Tsai, C., Stutz, J., Flynn, J.H., Grossberg, N., Lefer, B., Alvarez, S.L., Rappenglueck, B., 
Mielke, L.H., Osthoff, H.D., Stevens, P.S., 2016. Measurements of hydroxyl and hydroperoxy 
radicals during CalNex-LA: Model comparisons and radical budgets. J. Geophys. Res. Atmospheres 
121, 4211–4232. https://doi.org/10.1002/2015JD024358 

Griffith, S.M., Hansen, R.F., Dusanter, S., Stevens, P.S., Alaghmand, M., Bertman, S.B., Carroll, M.A., 
Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B.T., Kammrath, A., Keutsch, 
F.N., Lefer, B.L., Mielke, L.H., O’Brien, A., Shepson, P.B., Thurlow, M., Wallace, W., Zhang, N., Zhou, 



 139 

 

X.L., 2013a. OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 &ndash; Part 
1: Measurements and model comparison. Atmos Chem Phys 13, 5403–5423. 
https://doi.org/10.5194/acp-13-5403-2013 

Groß, C., Dillon, T., Schuster, G., Lelieveld, J., Crowley, J., 2014. Direct kinetic study of OH and O3 formation 
in the reaction of CH3C (O) O2 with HO2. J. Phys. Chem. A 118, 974–985. 

Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., 
McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P., 
1995. A global model of natural volatile organic compound emissions. J. Geophys. Res. 
Atmospheres 100, 8873–8892. https://doi.org/10.1029/94JD02950 

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., 2012. The 
Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and 
updated framework for modeling biogenic emissions. Geosci Model Dev 5, 1471–1492. 
https://doi.org/10.5194/gmd-5-1471-2012 

Hanke, M., Uecker, J., Reiner, T., Arnold, F., 2002. Atmospheric peroxy radicals: ROXMAS, a new mass-
spectrometric methodology for speciated measurements of HO2 and ∑RO2 and first results. Int. J. 
Mass Spectrom. 213, 91–99. http://dx.doi.org/10.1016/S1387-3806(01)00548-6 

Hard, T.M., O’Brien, R.J., Chan, C.Y., Mehrabzadeh, A.A., 1984. Tropospheric free radical determination by 
fluorescence assay with gas expansion. Environ. Sci. Technol. 18, 768–777. 
https://doi.org/10.1021/es00128a009 

Hasson, A.S., Tyndall, G.S., Orlando, J.J., 2004. A Product Yield Study of the Reaction of HO2 Radicals with 
Ethyl Peroxy (C2H5O2), Acetyl Peroxy (CH3C(O)O2), and Acetonyl Peroxy (CH3C(O)CH2O2) 
Radicals. J. Phys. Chem. A 108, 5979–5989. https://doi.org/10.1021/jp048873t 

Hasson, A.S., Tyndall, G.S., Orlando, J.J., Singh, S., Hernandez, S.Q., Campbell, S., Ibarra, Y., 2012. Branching 
Ratios for the Reaction of Selected Carbonyl-Containing Peroxy Radicals with Hydroperoxy 
Radicals. J. Phys. Chem. A 116, 6264–6281. https://doi.org/10.1021/jp211799c 

He, Y., Zhou, X., Hou, J., Gao, H., Bertman, S.B., 2006. Importance of dew in controlling the air-surface 
exchange of HONO in rural forested environments. Geophys. Res. Lett. 33. 
https://doi.org/10.1029/2005GL024348 

Heal, M.R., Heard, D.E., Pilling, M.J., Whitaker, B.J., 1995. On the Development and Validation of FAGE for 
Local Measurement of Tropospheric OH and H02. J. Atmospheric Sci. 52, 3428–3441. 
https://doi.org/10.1175/1520-0469(1995)052<3428:OTDAVO>2.0.CO;2 

Heard, D.E., 2006. ATMOSPHERIC FIELD MEASUREMENTS OF THE HYDROXYL RADICAL USING LASER-
INDUCED FLUORESCENCE SPECTROSCOPY. Annu. Rev. Phys. Chem. 57, 191–216. 
https://doi.org/10.1146/annurev.physchem.57.032905.104516 

Heard, D.E., Pilling, M.J., 2003. Measurement of OH and HO2 in the Troposphere. Chem. Rev. 103, 5163–
5198. https://doi.org/10.1021/cr020522s 

Hemmi, N., Suits, A.G., 1997. Photodissociation of oxalyl chloride at 193 nm probed via synchrotron 
radiation. J. Phys. Chem. A 101, 6633–6637. 

Hendrik Fuchs, Frank Holland, Andreas Hofzumahaus, 2008. Measurement of tropospheric RO2 and HO2 
radicals by a laser-induced fluorescence instrument. Rev. Sci. Instrum. 79, 084104. 
https://doi.org/10.1063/1.2968712 

Hernández, M.D.A., Burkert, J., Reichert, L., Stöbener, D., Meyer-Arnek, J., Burrows, J.P., Dickerson, R.R., 
Doddridge, B.G., 2001. Marine boundary layer peroxy radical chemistry during the AEROSOLS99 
campaign: Measurements and analysis. J. Geophys. Res. Atmospheres 106, 20833–20846. 
https://doi.org/10.1029/2001JD900113 



 140 

 

Hewitt, C.N., Lee, J.D., MacKenzie, A.R., Barkley, M.P., Carslaw, N., Carver, G.D., Chappell, N.A., Coe, H., 
Collier, C., Commane, R., Davies, F., Davison, B., DiCarlo, P., Di Marco, C.F., Dorsey, J.R., Edwards, 
P.M., Evans, M.J., Fowler, D., Furneaux, K.L., Gallagher, M., Guenther, A., Heard, D.E., Helfter, C., 
Hopkins, J., Ingham, T., Irwin, M., Jones, C., Karunaharan, A., Langford, B., Lewis, A.C., Lim, S.F., 
MacDonald, S.M., Mahajan, A.S., Malpass, S., McFiggans, G., Mills, G., Misztal, P., Moller, S., 
Monks, P.S., Nemitz, E., Nicolas-Perea, V., Oetjen, H., Oram, D.E., Palmer, P.I., Phillips, G.J., Pike, 
R., Plane, J.M.C., Pugh, T., Pyle, J.A., Reeves, C.E., Robinson, N.H., Stewart, D., Stone, D., Whalley, 
L.K., Yin, X., 2010. Overview: oxidant and particle photochemical processes above a south-east 
Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and 
tools. Atmos Chem Phys 10, 169–199. https://doi.org/10.5194/acp-10-169-2010 

Hofzumahaus, A., Heard, D. (Eds.), 2015. Assessment of local HOx and ROx Measurement Techniques: 
Achievements, Challenges, and Fututre Directions. 

Holland, F., Hessling, M., Hofzumahaus, A., 1995. In Situ Measurement of Tropospheric OH Radicals by 
Laser-Induced Fluorescence—A Description of the KFA Instrument. J. Atmospheric Sci. 52, 3393–
3401. https://doi.org/10.1175/1520-0469(1995)052<3393:ISMOTO>2.0.CO;2 

Honrath, R.E., Lu, Y., Peterson, M.C., Dibb, J.E., Arsenault, M.A., Cullen, N.J., Steffen, K., 2002. Vertical 
fluxes of NOx, HONO, and HNO3 above the snowpack at Summit, Greenland. Atmos. Environ. 36, 
2629–2640. http://dx.doi.org/10.1016/S1352-2310(02)00132-2 

Horie, O., Moortgat, G.K., 1991. Decomposition pathways of the excited Criegee intermediates in the 
ozonolysis of simple alkenes. Int. Conf. Gener. Oxid. Reg. Glob. Scales 25, 1881–1896. 
https://doi.org/10.1016/0960-1686(91)90271-8 

Hornbrook, R.S., Crawford, J.H., Edwards, G.D., Goyea, O., Mauldin Iii, R.L., Olson, J.S., Cantrell, C.A., 2011. 
Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical 
ionization mass spectrometry. Atmos Meas Tech 4, 735–756. https://doi.org/10.5194/amt-4-735-
2011 

Horstjann, M., Andrés Hernández, M.D., Nenakhov, V., Chrobry, A., Burrows, J.P., 2014. Peroxy radical 
detection for airborne atmospheric measurements using absorption spectroscopy of NO2. Atmos 
Meas Tech 7, 1245–1257. https://doi.org/10.5194/amt-7-1245-2014 

Hossaini, R., Chipperfield, M.P., Saiz-Lopez, A., Fernandez, R., Monks, S., Feng, W., Brauer, P., von Glasow, 
R., 2016. A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and 
impact on methane oxidation. J. Geophys. Res. Atmospheres 121, 14,271-14,297. 
https://doi.org/10.1002/2016JD025756 

Howard, C.J., 1979. Kinetic measurements using flow tubes. J. Phys. Chem. 83, 3–9. 
https://doi.org/10.1021/j100464a001 

Ingham, T., Goddard, A., Whalley, L.K., Furneaux, K.L., Edwards, P.M., Seal, C.P., Self, D.E., Johnson, G.P., 
Read, K.A., Lee, J.D., Heard, D.E., 2009. A flow-tube based laser-induced fluorescence instrument 
to measure OH reactivity in the troposphere. Atmos Meas Tech 2, 465–477. 
https://doi.org/10.5194/amt-2-465-2009 

Japar, S., Wu, C., Nikl, H., 1974. Rate constants for the reaction of ozone with olefins in the gas phase. J. 
Phys. Chem. 78, 2318–2320. 

Jenkin, M.E., Clemitshaw, K.C., 2000. Ozone and other secondary photochemical pollutants: chemical 
processes governing their formation in the planetary boundary layer. Atmos. Environ. 34, 2499–
2527. http://dx.doi.org/10.1016/S1352-2310(99)00478-1 

Johnson, D., Marston, G., 2008. The gas-phase ozonolysis of unsaturated volatile organic compounds in 
the troposphere. Chem. Soc. Rev. 37, 699–716. https://doi.org/10.1039/B704260B 



 141 

 

Kanaya, Y., Matsumoto, J., Kato, S., Akimoto, H., 2001a. Behavior of OH and HO2 radicals during the 
Observations at a Remote Island of Okinawa (ORION99) field campaign: 2. Comparison between 
observations and calculations. J. Geophys. Res. Atmospheres 106, 24209–24223. 

Kanaya, Y., Sadanaga, Y., Hirokawa, J., Kajii, Y., Akimoto, H., 2001b. Development of a Ground-Based LIF 
Instrument for Measuring HOx Radicals: Instrumentation and Calibrations. J. Atmospheric Chem. 
38, 73–110. https://doi.org/10.1023/A:1026559321911 

Kartal, D., Andrés-Hernández, M.D., Reichert, L., Schlager, H., Burrows, J.P., 2010. Technical Note: 
Characterisation of a DUALER instrument for the airborne measurement of peroxy radicals during 
AMMA 2006. Atmos Chem Phys 10, 3047–3062. https://doi.org/10.5194/acp-10-3047-2010 

Kerr, R.A., 1991. Hydroxyl, the Cleanser That Thrives on Dirt. Science 253, 1210. 
https://doi.org/10.1126/science.253.5025.1210 

Kim, S., Wolfe, G.M., Mauldin, L., Cantrell, C., Guenther, A., Karl, T., Turnipseed, A., Greenberg, J., Hall, S.R., 
Ullmann, K., Apel, E., Hornbrook, R., Kajii, Y., Nakashima, Y., Keutsch, F.N., DiGangi, J.P., Henry, 
S.B., Kaser, L., Schnitzhofer, R., Graus, M., Hansel, A., Zheng, W., Flocke, F.F., 2013. Evaluation of 
HOx sources and cycling using measurement-constrained model calculations in a 2-methyl-3-
butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem. Atmos Chem Phys 13, 2031–
2044. https://doi.org/10.5194/acp-13-2031-2013 

Kleffmann, J., Kurtenbach, R., Lörzer, J., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H., 2003. Measured and 
simulated vertical profiles of nitrous acid—Part I: Field measurements. Atmos. Environ. 37, 2949–
2955. https://doi.org/10.1016/S1352-2310(03)00242-5 

Koppmann, R., 2007. Volatile organic compounds in the atmosphere. Wiley Online Library. 

Kroll, J.H., Clarke, J.S., Donahue, N.M., Anderson, J.G., 2001. Mechanism of HOx Formation in the Gas-
Phase Ozone−Alkene Reaction. 1. Direct, Pressure-Dependent Measurements of Prompt OH 
Yields. J. Phys. Chem. A 105, 1554–1560. https://doi.org/10.1021/jp002121r 

Kroll, J.H., Seinfeld, J.H., 2008a. Chemistry of secondary organic aerosol: Formation and evolution of low-
volatility organics in the atmosphere. Atmos. Environ. 42, 3593–3624. 
http://dx.doi.org/10.1016/j.atmosenv.2008.01.003 

Kubistin, D., Harder, H., Martinez, M., Rudolf, M., Sander, R., Bozem, H., Eerdekens, G., Fischer, H., Gurk, 
C., Klüpfel, T., Königstedt, R., Parchatka, U., Schiller, C.L., Stickler, A., Taraborrelli, D., Williams, J., 
Lelieveld, J., 2010. Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: 
comparison of measurements with the box model MECCA. Atmos Chem Phys 10, 9705–9728. 
https://doi.org/10.5194/acp-10-9705-2010 

Kukui, A., Ancellet, G., Le Bras, G., 2008a. Chemical ionisation mass spectrometer for measurements of OH 
and Peroxy radical concentrations in moderately polluted atmospheres. J. Atmospheric Chem. 61, 
133–154. https://doi.org/10.1007/s10874-009-9130-9 

Kundu, S., Deming, B.L., Lew, M.M., Bottorff, B.P., Rickly, P., Stevens, P.S., Dusanter, S., Sklaveniti, S., 
Leonardis, T., Locoge, N., Wood, E.C., 2019. Peroxy Radical Measurements by Ethane – Nitric Oxide 
Chemical Amplification and Laser-Induced Fluorescence/Fluorescence Assay by Gas Expansion 
during the IRRONIC field campaign in a Forest in Indiana. Atmos Chem Phys Discuss 2019, 1–31. 
https://doi.org/10.5194/acp-2018-1359 

Lee, J.D., McFiggans, G., Allan, J.D., Baker, A.R., Ball, S.M., Benton, A.K., Carpenter, L.J., Commane, R., 
Finley, B.D., Evans, M., Fuentes, E., Furneaux, K., Goddard, A., Good, N., Hamilton, J.F., Heard, D.E., 
Herrmann, H., Hollingsworth, A., Hopkins, J.R., Ingham, T., Irwin, M., Jones, C.E., Jones, R.L., Keene, 
W.C., Lawler, M.J., Lehmann, S., Lewis, A.C., Long, M.S., Mahajan, A., Methven, J., Moller, S.J., 
Müller, K., Müller, T., Niedermeier, N., O’Doherty, S., Oetjen, H., Plane, J.M.C., Pszenny, A.A.P., 



 142 

 

Read, K.A., Saiz-Lopez, A., Saltzman, E.S., Sander, R., von Glasow, R., Whalley, L., Wiedensohler, A., 
Young, D., 2010. Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North 
Atlantic experiments. Atmos Chem Phys 10, 1031–1055. https://doi.org/10.5194/acp-10-1031-
2010 

Lee, J.D., Young, J.C., Read, K.A., Hamilton, J.F., Hopkins, J.R., Lewis, A.C., Bandy, B.J., Davey, J., Edwards, 
P., Ingham, T., Self, D.E., Smith, S.C., Pilling, M.J., Heard, D.E., 2009. Measurement and calculation 
of OH reactivity at a United Kingdom coastal site. J. Atmospheric Chem. 64, 53–76. 
https://doi.org/10.1007/s10874-010-9171-0 

Lelieveld, J., Butler, T.M., Crowley, J.N., Dillon, T.J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M.G., 
Martinez, M., Taraborrelli, D., Williams, J., 2008. Atmospheric oxidation capacity sustained by a 
tropical forest. Nature 452, 737. 

Lew, M.L., Rickly, P.S., Bottorff, B.P., Sklaveniti, S., Léonardis, T., Locoge, N., Dusanter, S., Kundu, S., Wood, 
E., Stevens, P.S., 2019. OH and HO2 radical chemistry in a midlatitude forest: Measurements and 
model comparisons. Atmos Chem Phys Discuss 2019, 1–35. https://doi.org/10.5194/acp-2019-726 

Lew, M.M., Dusanter, S., Stevens, P.S., 2018. Measurement of interferences associated with the detection 
of the hydroperoxy radical in the atmosphere using laser-induced fluorescence. Atmos Meas Tech 
11, 95–109. https://doi.org/10.5194/amt-11-95-2018 

Lightfoot, P.D., Cox, R.A., Crowley, J.N., Destriau, M., Hayman, G.D., Jenkin, M.E., Moortgat, G.K., Zabel, F., 
1992. Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry. Atmospheric 
Environ. Part Gen. Top. 26, 1805–1961. http://dx.doi.org/10.1016/0960-1686(92)90423-I 

Liu, Y., Morales-Cueto, R., Hargrove, J., Medina, D., Zhang, J., 2009. Measurements of Peroxy Radicals Using 
Chemical Amplification−Cavity Ringdown Spectroscopy. Environ. Sci. Technol. 43, 7791–7796. 
https://doi.org/10.1021/es901146t 

Liu, Y., Zhang, J., 2014. Atmospheric Peroxy Radical Measurements Using Dual-Channel Chemical 
Amplification Cavity Ringdown Spectroscopy. Anal. Chem. 86, 5391–5398. 
https://doi.org/10.1021/ac5004689 

Madronich, S., Shao, M., Wilson, S.R., Solomon, K.R., Longstreth, J.D., Tang, X.Y., 2015. Changes in air 
quality and tropospheric composition due to depletion of stratospheric ozone and interactions 
with changing climate: implications for human and environmental health. Photochem Photobiol 
Sci 14, 149–169. https://doi.org/10.1039/C4PP90037E 

Mao, J., Jacob, D.J., Evans, M.J., Olson, J.R., Ren, X., Brune, W.H., Clair, J.M.S., Crounse, J.D., Spencer, K.M., 
Beaver, M.R., Wennberg, P.O., Cubison, M.J., Jimenez, J.L., Fried, A., Weibring, P., Walega, J.G., 
Hall, S.R., Weinheimer, A.J., Cohen, R.C., Chen, G., Crawford, J.H., McNaughton, C., Clarke, A.D., 
Jaeglé, L., Fisher, J.A., Yantosca, R.M., Le Sager, P., Carouge, C., 2010. Chemistry of hydrogen oxide 
radicals (HOx) in the Arctic troposphere in spring. Atmos Chem Phys 10, 5823–5838. 
https://doi.org/10.5194/acp-10-5823-2010 

Martinez, M., Harder, H., Kovacs, T.A., Simpas, J.B., Bassis, J., Lesher, R., Brune, W.H., Frost, G.J., Williams, 
E.J., Stroud, C.A., Jobson, B.T., Roberts, J.M., Hall, S.R., Shetter, R.E., Wert, B., Fried, A., Alicke, B., 
Stutz, J., Young, V.L., White, A.B., Zamora, R.J., 2003. OH and HO2 concentrations, sources, and 
loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999. J. Geophys. 
Res. Atmospheres 108, n/a-n/a. https://doi.org/10.1029/2003JD003551 

Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H., Klüpfel, T., Gurk, 
C., Königstedt, R., Parchatka, U., Schiller, C.L., Stickler, A., Williams, J., Lelieveld, J., 2010. Hydroxyl 
radicals in the tropical troposphere over the Suriname rainforest: airborne measurements. Atmos 
Chem Phys 10, 3759–3773. https://doi.org/10.5194/acp-10-3759-2010 



 143 

 

Martinez, M., Harder, H., Ren, X., Lesher, R.L., Brune, W.H., 2004. Measuring atmospheric naphthalene 
with laser-induced fluorescence. Atmos Chem Phys 4, 563–569. https://doi.org/10.5194/acp-4-
563-2004 

Matsumi Yutaka, Kono Mitsuhiko, Ichikawa Toshio, Takahashi Kenshi, Kondo Yutaka, 2002. Laser-Induced 
Fluorescence Instrument for the Detection of Tropospheric OH Radicals. Bull. Chem. Soc. Jpn. 75, 
711–717. https://doi.org/doi:10.1246/bcsj.75.711 

Mellouki, A., Wallington, T.J., Chen, J., 2015. Atmospheric Chemistry of Oxygenated Volatile Organic 
Compounds: Impacts on Air Quality and Climate. Chem. Rev. 115, 3984–4014. 
https://doi.org/10.1021/cr500549n 

Mentel, T.F., Springer, M., Ehn, M., Kleist, E., Pullinen, I., Kurtén, T., Rissanen, M., Wahner, A., Wildt, J., 
2015. Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals 
formed in the ozonolysis of alkenes – deduced from structure–product relationships. Atmos Chem 
Phys 15, 6745–6765. https://doi.org/10.5194/acp-15-6745-2015 

Mihelcic, D., Holland, F., Hofzumahaus, A., Hoppe, L., Konrad, S., Müsgen, P., Pätz, H.W., Schäfer, H.J., 
Schmitz, T., Volz-Thomas, A., Bächmann, K., Schlomski, S., Platt, U., Geyer, A., Alicke, B., Moortgat, 
G.K., 2003. Peroxy radicals during BERLIOZ at Pabstthum: Measurements, radical budgets and 
ozone production. J. Geophys. Res. Atmospheres 108, n/a-n/a. 
https://doi.org/10.1029/2001JD001014 

Mihelcic, D., Müsgen, P., Ehhalt, D.H., 1985. An improved method of measuring tropospheric NO2 and RO2 
by matrix isolation and electron spin resonance. J. Atmospheric Chem. 3, 341–361. 
https://doi.org/10.1007/bf00122523 

Mihelcic, D., Volz-Thomas, A., Pätz, H.W., Kley, D., Mihelcic, M., 1990. Numerical analysis of ESR spectra 
from atmospheric samples. J. Atmospheric Chem. 11, 271–297. 
https://doi.org/10.1007/bf00118353 

Mihele, C.M., Hastie, D.R., 2003. Radical chemistry at a forested continental site: Results from the 
PROPHET 1997 campaign. J. Geophys. Res. Atmospheres 108. 
https://doi.org/10.1029/2002JD002888 

Mihele, C.M., Hastie, D.R., 2000. Optimized Operation and Calibration Procedures for Radical Amplifier-
Type Detectors. J. Atmospheric Ocean. Technol. 17, 788–794. https://doi.org/10.1175/1520-
0426(2000)017<0788:OOACPF>2.0.CO;2 

Mihele, C.M., Hastie, D.R., 1998. The sensitivity of the radical amplifier to ambient water vapour. Geophys. 
Res. Lett. 25, 1911–1913. https://doi.org/10.1029/98GL01432 

Mihele, C.M., Mozurkewich, M., Hastie, D.R., 1999a. Radical loss in a chain reaction of CO and NO in the 
presence of water: Implications for the radical amplifier and atmospheric chemistry. Int. J. Chem. 
Kinet. 31, 145–152. https://doi.org/10.1002/(SICI)1097-4601(1999)31:2<145::AID-KIN7>3.0.CO;2-
M 

Miyazaki, K., Parker, A.E., Fittschen, C., Monks, P.S., Kajii, Y., 2010. A new technique for the selective 
measurement of atmospheric peroxy radical concentrations of HO2 and RO2 using a denuding 
method. Atmos Meas Tech 3, 1547–1554. https://doi.org/10.5194/amt-3-1547-2010 

Monks, P.S., 2005. Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev. 34, 376–395. 
https://doi.org/10.1039/B307982C 

Montzka, S.A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P., Lelieveld, J., 2011. Small Interannual Variability 
of Global Atmospheric Hydroxyl. Science 331, 67–69. https://doi.org/10.1126/science.1197640 

Müller, M., Mikoviny, T., Jud, W., D’Anna, B., Wisthaler, A., 2013. A new software tool for the analysis of 
high resolution PTR-TOF mass spectra. Chemom. Intell. Lab. Syst. 127, 158–165. 



 144 

 

Nguyen, T.B., Tyndall, G.S., Crounse, J.D., Teng, A.P., Bates, K.H., Schwantes, R.H., Coggon, M.M., Zhang, 
L., Feiner, P., Milller, D.O., Skog, K.M., Rivera-Rios, J.C., Dorris, M., Olson, K.F., Koss, A., Wild, R.J., 
Brown, S.S., Goldstein, A.H., de Gouw, J.A., Brune, W.H., Keutsch, F.N., Seinfeld, J.H., Wennberg, 
P.O., 2016. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Phys Chem 
Chem Phys 18, 10241–10254. https://doi.org/10.1039/C6CP00053C 

Nölscher, A.C., Williams, J., Sinha, V., Custer, T., Song, W., Johnson, A.M., Axinte, R., Bozem, H., Fischer, H., 
Pouvesle, N., Phillips, G., Crowley, J.N., Rantala, P., Rinne, J., Kulmala, M., Gonzales, D., Valverde-
Canossa, J., Vogel, A., Hoffmann, T., Ouwersloot, H.G., Vilà-Guerau de Arellano, J., Lelieveld, J., 
2012. Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 
2010. Atmos Chem Phys 12, 8257–8270. https://doi.org/10.5194/acp-12-8257-2012 

Nölscher, A.C., Yañez-Serrano, A.M., Wolff, S., de Araujo, A.C., Lavrič, J.V., Kesselmeier, J., Williams, J., 
2016. Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity. Nat. 
Commun. 7, 10383. https://doi.org/10.1038/ncomms10383 

Novelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T., Plass-Dülmer, C., Martinez, M., 
Lelieveld, J., Harder, H., 2014. Characterisation of an inlet pre-injector laser-induced fluorescence 
instrument for the measurement of atmospheric hydroxyl radicals. Atmos Meas Tech 7, 3413–
3430. https://doi.org/10.5194/amt-7-3413-2014 

Orlando, J.J., Tyndall, G.S., 2012. Laboratory studies of organic peroxy radical chemistry: an overview with 
emphasis on recent issues of atmospheric significance. Chem Soc Rev 41, 6294–6317. 
https://doi.org/10.1039/C2CS35166H 

Orlando, J.J., Tyndall, G.S., Wallington, T.J., 2003. The Atmospheric Chemistry of Alkoxy Radicals. Chem. 
Rev. 103, 4657–4690. https://doi.org/10.1021/cr020527p 

Parker, A.E., Amédro, D., Schoemaecker, C., Fittschen, C., 2011. OH Radical Reactivity Measurements By 
Fage. Environ. Eng. Manag. J. EEMJ 10. 

Paulot, F., Crounse, J.D., Kjaergaard, H.G., Kürten, A., St. Clair, J.M., Seinfeld, J.H., Wennberg, P.O., 2009. 
Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene. Science 325, 730–
733. https://doi.org/10.1126/science.1172910 

Paulson, S.E., Orlando, J.J., 1996. The reactions of ozone with alkenes: An important source of HOx in the 
boundary layer. Geophys. Res. Lett. 23, 3727–3730. https://doi.org/10.1029/96GL03477 

Peeters, J., Müller, J.-F., 2010. HOx radical regeneration in isoprene oxidation via peroxy radical 
isomerisations. II: experimental evidence and global impact. Phys. Chem. Chem. Phys. 12, 14227–
14235. 

Peeters, J., Nguyen, T.L., Vereecken, L., 2009. HO x radical regeneration in the oxidation of isoprene. Phys. 
Chem. Chem. Phys. 11, 5935–5939. 

Penkett, S.A., Monks, P.S., Carpenter, L.J., Clemitshaw, K.C., Ayers, G.P., Gillett, R.W., Galbally, I.E., Meyer, 
C.P., 1997. Relationships between ozone photolysis rates and peroxy radical concentrations in 
clean marine air over the Southern Ocean. J. Geophys. Res. Atmospheres 102, 12805–12817. 
https://doi.org/10.1029/97JD00765 

Perring, A.E., Pusede, S.E., Cohen, R.C., 2013. An Observational Perspective on the Atmospheric Impacts 
of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chem. Rev. 113, 
5848–5870. https://doi.org/10.1021/cr300520x 

Praske, E., Otkj\a er, R.V., Crounse, J.D., Hethcox, J.C., Stoltz, B.M., Kjaergaard, H.G., Wennberg, P.O., 2018. 
Atmospheric autoxidation is increasingly important in urban and suburban North America. Proc. 
Natl. Acad. Sci. 115, 64–69. https://doi.org/10.1073/pnas.1715540115 



 145 

 

Pugh, T.A.M., MacKenzie, A.R., Hewitt, C.N., Langford, B., Edwards, P.M., Furneaux, K.L., Heard, D.E., 
Hopkins, J.R., Jones, C.E., Karunaharan, A., Lee, J., Mills, G., Misztal, P., Moller, S., Monks, P.S., 
Whalley, L.K., 2010. Simulating atmospheric composition over a South-East Asian tropical 
rainforest:  performance of a chemistry box model. Atmos Chem Phys 10, 279–298. 
https://doi.org/10.5194/acp-10-279-2010 

Read, K.A., Lewis, A.C., Bauguitte, S., Rankin, A.M., Salmon, R.A., Wolff, E.W., Saiz-Lopez, A., Bloss, W.J., 
Heard, D.E., Lee, J.D., Plane, J.M.C., 2008. DMS and MSA measurements in the Antarctic Boundary 
Layer: impact of BrO on MSA production. Atmos Chem Phys 8, 2985–2997. 
https://doi.org/10.5194/acp-8-2985-2008 

Reichert, L., Andrés Hernández, M.D., Stöbener, D., Burkert, J., Burrows, J.P., 2003. Investigation of the 
effect of water complexes in the determination of peroxy radical ambient concentrations: 
Implications for the atmosphere. J. Geophys. Res. Atmospheres 108, ACH 4-1-ACH 4-16. 
https://doi.org/10.1029/2002JD002152 

Ren, X., Edwards, G.D., Cantrell, C.A., Lesher, R.L., Metcalf, A.R., Shirley, T., Brune, W.H., 2003. 
Intercomparison of peroxy radical measurements at a rural site using laser-induced fluorescence 
and Peroxy Radical Chemical Ionization Mass Spectrometer (PerCIMS) techniques. J. Geophys. Res. 
Atmospheres 108. https://doi.org/10.1029/2003JD003644 

Ren, X., van Duin, D., Cazorla, M., Chen, S., Mao, J., Zhang, L., Brune, W.H., Flynn, J.H., Grossberg, N., Lefer, 
B.L., Rappenglück, B., Wong, K.W., Tsai, C., Stutz, J., Dibb, J.E., Thomas Jobson, B., Luke, W.T., 
Kelley, P., 2013. Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 
in Houston, Texas. J. Geophys. Res. Atmospheres 118, 5770–5780. 
https://doi.org/10.1002/jgrd.50342 

Ren, Y., Grosselin, B., Daële, V., Mellouki, A., 2017. Investigation of the reaction of ozone with isoprene, 
methacrolein and methyl vinyl ketone using the HELIOS chamber. Faraday Discuss 200, 289–311. 
https://doi.org/10.1039/C7FD00014F 

Rickly, P., Stevens, P.S., 2018. Measurements of a potential interference with laser-induced fluorescence 
measurements of ambient OH from the ozonolysis of biogenic alkenes. Atmos Meas Tech 11, 1–
16. https://doi.org/10.5194/amt-11-1-2018 

Sadanaga, Y., Matsumoto, J., Sakurai, K., Isozaki, R., Kato, S., Nomaguchi, T., Bandow, H., Kajii, Y., 2004. 
Development of a measurement system of peroxy radicals using a chemical amplification/laser-
induced fluorescence technique. Rev. Sci. Instrum. 75, 864–872. 
https://doi.org/doi:http://dx.doi.org/10.1063/1.1666985 

Sanchez, J., Tanner, D.J., Chen, D., Huey, L.G., Ng, N.L., 2016. A new technique for the direct detection of 
HO2 radicals using bromide chemical ionization mass spectrometry (Br-CIMS): initial 
characterization. Atmos Meas Tech 9, 3851–3861. https://doi.org/10.5194/amt-9-3851-2016 

Sander, S., Friedl, R., Golden, D., Kurylo, M., Huie, R., Orkin, V., Moortgat, G., Ravishankara, A., Kolb, C., 
Molina, M., 2003. NASA/JPL Data Evaluation, JPL Publication 02-25 Evaluation No 14. Jet Propuls. 
Lab. Pasadena CA. 

Sander, S., Golden, D., Kurylo, M., Moortgat, G., Wine, P., Ravishankara, A., Kolb, C., Molina, M., Finlayson-
Pitts, B., Huie, R., 2006. Chemical kinetics and photochemical data for use in atmospheric studies 
evaluation number 15. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and 
Space …. 

Schultz, M., Heitlinger, M., Mihelcic, D., Volz-Thomas, A., 1995. Calibration source for peroxy radicals with 
built-in actinometry using H2O and O2 photolysis at 185 nm. J. Geophys. Res. Atmospheres 100, 
18811–18816. https://doi.org/10.1029/95JD01642 



 146 

 

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., 
Stefani, P., Knorr, W., 2014. Global data set of biogenic VOC emissions calculated by the MEGAN 
model over the last 30 years. Atmos Chem Phys 14, 9317–9341. https://doi.org/10.5194/acp-14-
9317-2014 

Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T.M., Kajos, M.K., Patokoski, J., Hellen, H., Hakola, H., 
Mogensen, D., Boy, M., Rinne, J., Kulmala, M., 2010. OH Reactivity Measurements within a Boreal 
Forest: Evidence for Unknown Reactive Emissions. Environ. Sci. Technol. 44, 6614–6620. 
https://doi.org/10.1021/es101780b 

Sklaveniti, S., Locoge, N., Stevens, P.S., Wood, E., Kundu, S., Dusanter, S., 2018. Development of an 
instrument for direct ozone production rate measurements: measurement reliability and current 
limitations. Atmos Meas Tech 11, 741–761. https://doi.org/10.5194/amt-11-741-2018 

Sneep, M., Ubachs, W., 2005. Direct measurement of the Rayleigh scattering cross section in various gases. 
J. Quant. Spectrosc. Radiat. Transf. 92, 293–310. https://doi.org/10.1016/j.jqsrt.2004.07.025 

Spataro, F., Ianniello, A., 2014. Sources of atmospheric nitrous acid: State of the science, current research 
needs, and future prospects. J. Air Waste Manag. Assoc. 64, 1232–1250. 
https://doi.org/10.1080/10962247.2014.952846 

Stavrakou, T., Peeters, J., Müller, J.-F., 2010. Improved global modelling of HO x recycling in isoprene 
oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurements. 
Atmospheric Chem. Phys. 10, 9863–9878. 

Stevens, P.S., Mather, J.H., Brune, W.H., 1994a. Measurement of tropospheric OH and HO2 by laser-
induced fluorescence at low pressure. J. Geophys. Res. Atmospheres 99, 3543–3557. 
https://doi.org/10.1029/93JD03342 

Stone, D., Whalley, L.K., Heard, D.E., 2012. Tropospheric OH and HO2 radicals: field measurements and 
model comparisons. Chem. Soc. Rev. 41, 6348–6404. https://doi.org/10.1039/C2CS35140D 

Sutton, J.A., Driscoll, J.F., 2004. Rayleigh scattering cross sections of combustion species at 266, 355, and 
532 nm for thermometry applications. Opt Lett 29, 2620–2622. 
https://doi.org/10.1364/OL.29.002620 

Tan, D., Faloona, I., Simpas, J.B., Brune, W., Shepson, P.B., Couch, T.L., Sumner, A.L., Carroll, M.A., 
Thornberry, T., Apel, E., Riemer, D., Stockwell, W., 2001. HO x budgets in a deciduous forest: 
Results from the PROPHET summer 1998 campaign. J. Geophys. Res. Atmospheres 106, 24407–
24427. https://doi.org/10.1029/2001JD900016 

Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., 
Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, 
Y., Wahner, A., Zhang, Y., 2017. Radical chemistry at a rural site (Wangdu) in the North China Plain: 
observation and model calculations of  OH, HO2 and  RO2 radicals. Atmos Chem Phys 17, 663–690. 
https://doi.org/10.5194/acp-17-663-2017 

Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, 
Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., Zhang, Y., 2019. Experimental 
budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta 
in China 2014. Atmos Chem Phys 19, 7129–7150. https://doi.org/10.5194/acp-19-7129-2019 

Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, 
Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., Zhang, Y., 2018a. Experimental 
budgets of OH, HO$_\mathbf2$ and RO$_\mathbf2$ radicals and implications for ozone 
formation in the Pearl River Delta in China 2014. Atmospheric Chem. Phys. Discuss. 2018, 1–28. 
https://doi.org/10.5194/acp-2018-801 



 147 

 

Tan, Z., Rohrer, F., Lu, K., Ma, X., Bohn, B., Broch, S., Dong, H., Fuchs, H., Gkatzelis, G.I., Hofzumahaus, A., 
Holland, F., Li, X., Liu, Y., Liu, Y., Novelli, A., Shao, M., Wang, H., Wu, Y., Zeng, L., Hu, M., Kiendler-
Scharr, A., Wahner, A., Zhang, Y., 2018b. Wintertime photochemistry in Beijing: observations of 
ROx radical concentrations in the North China Plain during the BEST-ONE campaign. Atmos Chem 
Phys 18, 12391–12411. https://doi.org/10.5194/acp-18-12391-2018 

Teruel, M.A., Lane, S.I., Mellouki, A., Solignac, G., Le Bras, G., 2006. OH reaction rate constants and UV 
absorption cross-sections of unsaturated esters. Atmos. Environ. 40, 3764–3772. 
https://doi.org/10.1016/j.atmosenv.2006.03.003 

Vaughan, S., Ingham, T., Whalley, L.K., Stone, D., Evans, M.J., Read, K.A., Lee, J.D., Moller, S.J., Carpenter, 
L.J., Lewis, A.C., Fleming, Z.L., Heard, D.E., 2012. Seasonal observations of OH and HO2 in the 
remote tropical marine boundary layer. Atmospheric Chem. Phys. 12, 2149–2172. 
https://doi.org/10.5194/acp-12-2149-2012 

Villena, G., Kleffmann, J., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M.A., Croxatto, G., Rappenglück, B., 
2011. Vertical gradients of HONO, NOx and O3 in Santiago de Chile. Atmos. Environ. 45, 3867–
3873. https://doi.org/10.1016/j.atmosenv.2011.01.073 

Volkamer, R., Sheehy, P., Molina, L.T., Molina, M.J., 2010. Oxidative capacity of the Mexico City 
atmosphere – Part 1: A radical source perspective. Atmos Chem Phys 10, 6969–6991. 
https://doi.org/10.5194/acp-10-6969-2010 

Whalley, L., Stone, D., Heard, D., 2012. New insights into the tropospheric oxidation of isoprene: combining 
field measurements, laboratory studies, chemical modelling and quantum theory, in: Atmospheric 
and Aerosol Chemistry. Springer, pp. 55–95. 

Whalley, L.K., Blitz, M.A., Desservettaz, M., Seakins, P.W., Heard, D.E., 2013. Reporting the sensitivity of 
laser-induced fluorescence instruments used for HO2 detection to an interference from RO2 
radicals and introducing a novel approach that enables HO2 and certain RO2 types to be selectively 
measured. Atmos Meas Tech 6, 3425–3440. https://doi.org/10.5194/amt-6-3425-2013 

Whalley, L.K., Edwards, P.M., Furneaux, K.L., Goddard, A., Ingham, T., Evans, M.J., Stone, D., Hopkins, J.R., 
Jones, C.E., Karunaharan, A., Lee, J.D., Lewis, A.C., Monks, P.S., Moller, S.J., Heard, D.E., 2011. 
Quantifying the magnitude of a missing hydroxyl radical source in a  tropical rainforest. Atmos 
Chem Phys 11, 7223–7233. https://doi.org/10.5194/acp-11-7223-2011 

Whalley, L.K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J.R., Lee, J.D., Lewis, A.C., Williams, P., 
Kleffmann, J., Laufs, S., Woodward-Massey, R., Heard, D.E., 2018a. Understanding in situ ozone 
production in the summertime through radical observations and modelling studies during the 
Clean air for London project (ClearfLo). Atmospheric Chem. Phys. 18, 2547–2571. 
https://doi.org/10.5194/acp-18-2547-2018 

Wolfe, G.M., Cantrell, C., Kim, S., Mauldin III, R.L., Karl, T., Harley, P., Turnipseed, A., Zheng, W., Flocke, F., 
Apel, E.C., Hornbrook, R.S., Hall, S.R., Ullmann, K., Henry, S.B., DiGangi, J.P., Boyle, E.S., Kaser, L., 
Schnitzhofer, R., Hansel, A., Graus, M., Nakashima, Y., Kajii, Y., Guenther, A., Keutsch, F.N., 2014. 
Missing peroxy radical sources within a summertime ponderosa pine forest. Atmos Chem Phys 14, 
4715–4732. https://doi.org/10.5194/acp-14-4715-2014 

Wolfe, G.M., Marvin, M.R., Roberts, S.J., Travis, K.R., Liao, J., 2016. The Framework for 0-D Atmospheric 
Modeling (F0AM) v3.1. Geosci Model Dev 9, 3309–3319. https://doi.org/10.5194/gmd-9-3309-
2016 

Wolfe, G.M., Thornton, J.A., McKay, M., Goldstein, A.H., 2011. Forest-atmosphere exchange of ozone: 
sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. 
Atmos Chem Phys 11, 7875–7891. https://doi.org/10.5194/acp-11-7875-2011 



 148 

 

Wood, E.C., Charest, J.R., 2014. Chemical Amplification - Cavity Attenuated Phase Shift Spectroscopy 
Measurements of Atmospheric Peroxy Radicals. Anal. Chem. 86, 10266–10273. 
https://doi.org/10.1021/ac502451m 

Wood, E.C., Deming, B.L., Kundu, S., 2017. Ethane-Based Chemical Amplification Measurement Technique 
for Atmospheric Peroxy Radicals. Environ. Sci. Technol. Lett. 4, 15–19. 
https://doi.org/10.1021/acs.estlett.6b00438 

Zhang, X., Lambe, A.T., Upshur, M.A., Brooks, W.A., Gray Bé, A., Thomson, R.J., Geiger, F.M., Surratt, J.D., 
Zhang, Z., Gold, A., 2017. Highly oxygenated multifunctional compounds in α-pinene secondary 
organic aerosol. Environ. Sci. Technol. 51, 5932–5940. 

Zheng, W., Flocke, F.M., Tyndall, G.S., Swanson, A., Orlando, J.J., Roberts, J.M., Huey, L.G., Tanner, D.J., 
2011. Characterization of a thermal decomposition chemical ionization mass spectrometer for the 
measurement of peroxy acyl nitrates (PANs) in the atmosphere. Atmos Chem Phys 11, 6529–6547. 
https://doi.org/10.5194/acp-11-6529-2011 

Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shepson, P.B., Carroll, 
M.A., Griffith, S., Dusanter, S., Stevens, P.S., 2011. Nitric acid photolysis on forest canopy surface 
as a source for tropospheric nitrous acid. Nat. Geosci. 4, 440–443. 
https://doi.org/10.1038/ngeo1164 

 

 

 

 

 

 

 

 

 

 

 



 149 

 

 

 

  



 150 

 

 

 

 

 

CHAPTER 3: Implementation of the ROxLIF 

technique on a Laser-Induced 

Fluorescence/Fluorescence Assay by Gas 

Expansion instrument 

 

 

 

 

 

 

 



 151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 152 

 

Table of contents 

Chapter 3. Implementation of the ROxLIF technique on a Laser-Induced Fluorescence/Fluorescent 

Assay by Gas Expansion instrument .......................................................................................................... 154 

3.1 Introduction ............................................................................................................................... 154 

3.2 Description of the Indiana University ROxLIF instrument ......................................................... 154 

3.2.1 Experimental apparatus .................................................................................................... 155 

3.2.2 Quantification of OH fluorescence signals using FAGE and ROxLIF ................................... 161 

3.2.3 Calibration of the instrument ............................................................................................ 163 

3.3 Modeling of the flow-tube conversion chemistry ..................................................................... 170 

3.3.1 F0AM ................................................................................................................................. 170 

3.3.2 Chemical mechanism ......................................................................................................... 170 

3.4 Characterization of the instrument ........................................................................................... 171 

3.4.1 HO2 Wall loss in the conversion flow-tube ........................................................................ 172 

3.4.2 Dependence of the RO2-to-HO2 conversion chemistry on operating conditions .............. 174 

3.4.3 Calibration of COH and CHO2 ................................................................................................ 185 

3.4.4 Calibration of CHO2
FT and CRO2

FT  ......................................................................................... 189 

3.4.5 Conclusions about calibrations .......................................................................................... 194 

3.4.6 Figures of merit under laboratory conditions ................................................................... 195 

3.5 Deployment at the Indiana University Research and Teaching Preserve ................................. 196 

3.5.1 Ambient (outdoor) campaign ............................................................................................ 197 

3.5.2 Indoor campaign ................................................................................................................ 205 

3.5.3 Figures of merit under field conditions ............................................................................. 207 

3.6 Conclusions ................................................................................................................................ 209 

3.7 References ................................................................................................................................. 212 



 153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 154 

 

 Chapter 3. Implementation of the ROxLIF technique on a Laser-Induced 

Fluorescence/Fluorescent Assay by Gas Expansion instrument  

 

3.1 Introduction 

 

Atmospheric measurements of peroxy radicals are a challenging task owing to their high 

reactivity and low atmospheric concentrations. As discussed in the first chapter, instruments 

dedicated to the measurement of peroxy radicals must exhibit a high detection sensitivity and good 

selectivity. Reliable determinations of the radical concentrations are further complicated by 

potential losses of these short-lived species on inlet surfaces and thus instruments must be designed 

to minimize wall effects. In this work, we worked on the ROxLIF technique, which allows a 

speciation between HO2 and the pool of organic peroxy radicals (RO2) through their selective 

conversion into OH and their detection by LIF-FAGE.  

The FAGE instrument used in this work was developed at Indiana University over the last 

decade (Dusanter et al., 2009a; Griffith et al., 2013a) and has been used for measuring OH, HO2 

and HO2
* in several field campaigns (Dusanter et al., 2009b; Griffith et al., 2016, 2013b; Kundu et 

al., 2019; Lew et al., 2018). The objective of this work was to couple a RO2 conversion unit on the 

inlet of the existing FAGE setup to extend the radical measurements to HO2+RO2. This chapter 

reports the design and the construction of the conversion unit, its characterization and an 

optimization of operating conditions, and the first field testing performed at the Indiana University 

Research and Teaching Preserve (IURTP). Both experimental and modeling work were performed 

to provide a detailed characterization of the instrument. 

 

3.2 Description of the Indiana University ROxLIF instrument 

 

The principle of ROxLIF has been described in chapter 1 (section 1.3.4) and only a brief 

summary is given below. The sampled RO2 radicals (together with OH) are converted into HO2 by 

adding NO and CO in a flow-tube which is coupled to the inlet of the FAGE instrument. This HO2 

(together with the sampled ambient HO2) is then sampled with FAGE, converted into OH by added 



 155 

 

NO, and quantified by laser induced fluorescence at low pressure. The following sections present 

(i) the design of the ROxLIF conversion flow-tube and its coupling to the FAGE detection cell, (ii) 

the modeling of the ROxLIF chemistry inside the flow tube, and (iii) the characterization of 

different aspects of the ROxLIF apparatus (wall loss of HO2, RO2-to-HO2 conversion time in the 

flow-tube, dependence of the conversion chemistry on reagent gas amount, sensitivity to OH, HO2 

and RO2). 

 

3.2.1 Experimental apparatus 

 

This section describes the Indiana University (IU)-FAGE and IU-ROxLIF setups that have 

together the capability of measuring OH, HO2 (or HO2
*) and RO2 radicals. For this study we only 

used one detection cell, which was coupled to the conversion flow-tube, and the following only 

focuses on HOx and ROx measurements. In this section, we present the design and the 

characteristics of the conversion flow-tube, the modulation approach used to sequentially measure 

HOx and ROx, and the calibration procedure. In the following we will refer to HO2 and HO2+RO2 

measurement modes instead of HOx and ROx modes for ambient measurements since the OH 

mixing ratio is negligible compared to those of HO2 and RO2 in the troposphere. 

   

3.2.1.1 RO2-to-HO2 conversion flow-tube 

 

As shown in Figure 3.1,  ambient air is sampled at a total flow rate of 2.1 standard liter per 

minute (slpm) into a cylindrical flow tube made of aluminum (Length: 45 cm, inner diameter: 5.1 

cm), which is internally coated with a mixture of PFA and FEP (KECO coating, ING). The air flow 

is expanded through a flat shaped nozzle (nickel, orifice: 0.635 mm) from ambient pressure to  of 

28 torr  that was measured by a MKS  Baratron gauge (range: 1000 Torr). The reagent gases CO 

(10% in N2, Matheson Inc), NO (500 ppm, Indiana Oxygen) and N2 (99.99%, Indiana Oxygen) are 

injected into the flow-tube 2 cm downstream of the sampling nozzle through a Teflon loop (PFA, 

outer diameter: 0.32 cm) designed with radial holes pointing towards the center of the reactor. The 

addition of the reagent gases is controlled by 3 mass flow controllers (MFC, MKS) and 3 solenoid 

valves (Parker, valve type 71215). The MFCs and valves are controlled by LabVIEW software and 
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a USB-6343 DAQ board from National Instruments that allows automatic switching the reagent 

gases to alternate between the HOx and ROx measurement modes. 

  When the reactor is operated in ROx mode, 3.5 standard cubic centimeter per minute (sccm) 

of NO (500 ppm in N2) and 80 sccm of CO (10% in N2) are added to the entrance  of the flow-tube 

to enable optimum conversion of RO2 into HO2 (see section 3.4.2).  The mixing ratios of NO and 

CO in the flow-tube are 0.83 ppm and 0.38%, respectively. NO is then replaced by 3.5 sccm of N2 

(99.99% purity) when the flow-tube is operated in HOx mode. At the end of the tube the air flow 

is split into two paths. One path leads to the FAGE detection cell where the air is sampled through 

another inlet nozzle (Conical shaped, aluminum that is coated with PFA & FEP, opening angle: 

70°, orifice: 2 mm) at a flow rate of 1.5 slpm. The other path removes the excess flow of 0.6 splm 

through pumping. The sampling point for the detection cell is about 1.2 cm from the end of the of 

the flow-tube. Two different designs have been built and tested for this nozzle (conical as described 

above or flat, see figure 3.1). The conical nozzle was found to provide a better sensitivity and was 

chosen for the IU-ROxLIF apparatus for this study. 
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Figure 3.1: Schematic of the IU ROxLIF instrument. Top flat nozzle for sampling air into reactor and two different 

designs of transfer inlet (conical and flat). 

 

The conversion flow-tube is made up of 3 sections (internal diameter of 5.1 cm) with one length of 

25 cm and two lengths of 20 cm. This setup allows varying the residence time of gases inside the 

flow-tube to determine the radical loss rate on the wall, which is an important parameter required 

to model the conversion chemistry. Both the conversion flow-tube and FAGE are connected to 

individual pumps (Edwards XDS 35i) controlled at pressures of 28 and 2 Torr, respectively.  

 

3.2.1.2 Quantification of HO2 using IU-FAGE    

 

As mentioned above, the OH detection system used in this work is the Indiana University 

FAGE instrument used for HOx measurements in the troposphere and described in detail elsewhere 

(Dusanter et al., 2009a; Griffith et al., 2013a). This instrument is composed of a high repetition rate 

laser, a low pressure sampling cell and gated photon counting detection of OH.  
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The laser system is composed of a Q-switched Spectra-Physics Navigator II YHP40-532Q pump 

laser that produces 7-8 W of radiation at 532 nm and at a repetition rate of 10 kHz. This Nd:YAG 

laser pumps a tunable Sirah Credo dye laser to produce radiation at 616 nm. The dye mixture used 

for this laser consists of 0.24 and 1.02 g/L of Rhodamine 640 and Rhodamine 610, respectively, in 

ethanol. The 616-nm beam is then focused into a BBO (Beta Barium Borate) doubling crystal, 

resulting in conversion to 6 – 20 mW of radiation at 308 nm (~20-ns pulse width). 

OH radicals are excited using the A2Σ+(υ’=0)  X2Π(υ”=0) transition near 308 nm (Stevens et al., 

1994) to reduce the potential formation of OH in the detection cell from ozone photolysis since the 

ozone absorption cross section at 308 nm is approximately 25 times lower than at 282 nm (Stevens 

et al., 1994) where the transition occurs. The Q1(3) transition at 308.1541 nm is one of the strongest 

in the OH spectrum near 308 nm and the laser is tuned on the top of this transition for all ambient 

measurements (refered to as on-resonnance in the following discussion). To locate this transition, 

the fluorescence signal from a reference cell containing a large concentration of OH generated by 

thermal decomposition of water vapor is used. A wavelength scan is performed at the beginning of 

each experiment (typically from 308.09 to 308.17 nm) to determine the laser wavelength at which 

the Q1(3) transition occurs as shown in Figure 3.2. Since the wavelength scale of the laser drifts 

over time (due to changes in dye temperature, ambient temperature, etc.) the scan is performed 

periodically to ensure the correct transition is excited. The reference cell is made of aluminum and 

the OH fluorescence from this cell is detected using a PMT detector (Hamamatsu R5946U-50), a 

preamplifier (Stanford Research System SR445) and a gated photon counter (Stanford Research 

Systems SR 400).  
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 Figure 3.2 Rovibrational peaks observed near 308 nm during laboratory experiments. All OH 

measurements are performed at the wavelength where the Q1(3) transition occurs. The blue and black curves 

represent the fluorescence signals from the reference and FAGE detection cells during a calibration experiment 

where a large concentration of OH is provided to FAGE.  

 

The FAGE detection cell can be described along three axes: air expansion, laser excitation 

of OH, detection of OH fluorescence, as shown in Fig 3.3. As mentioned above for the ROxLIF 

setup, a flow of 1.5 slpm of air is sampled from the conversion flow-tube through the nozzle 

(conical inlet) and is expanded at a pressure of 2 torr inside the detection cell. The low pressure 

allows for a longer OH fluorescence lifetime since quenching rates of excited OH by nitrogen, 

oxygen and water are reduced, which in turn allows temporal filtering between the laser scattered 

light and the OH fluorescence. A flow of NO (1% in Nitrogen, flow rate: 0.85 sccm, see section 

3.2.1.1) is injected into the detection cell through a Teflon loop located approximately 2.5 cm after 

the sampling point and 17.5 cm before the detection axis in order to convert HO2 into OH. The 308 

nm laser beam is directed through an optical fiber (ThorLabs, 12 m) and delivered to the detection 

cell through a fiber launcher (ThorLabs) into a multi-pass optical cell (White design, mirror 

R>99.9% at 308-nm, 24-passes). The latter allows increases in the fluorescence generated thereby 

improving the instrumental sensitivity (Dusanter et al., 2009b). The OH fluorescence is collected 

through two coated lenses (f=75-mm, CVI Laser) and a band-pass filter centered at 308 nm (Barr 

Associates, transmission: 65%, bandwidth: 5-nm, OD>5 at other wavelengths) and detected by a 

MCP-PMT (Micro Channel Plate Photomultiplier Tube 325, Photek Ltd, UK) which is activated 
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slightly after the laser using a gating Module (GM300-3N, Photek Ltd). The MCP pulses are 

processed by a preamplifier (PA200-10P, Photek Ltd) and counted by a gated SRS 400 (Stanford 

Research System) photon counter. A concave mirror (100-cm diameter, 40-cm focus lens, Melles 

Griot) is placed on the opposite side of the detector to approximately double the collected OH 

fluorescence. 

 

 

 Figure 3.3 OH Schematic of the IU LIF-FAGE instrument. Cross sections showing the 

sampling/excitation (left) and detection (right) axes  (Dusanter et al., 2008). 

 

The gated photon counting system is composed of a BNC 565 delay generator that (i) 

activates the MCP-PMT detector shortly after the laser pulse for a duration of 770 ns and (ii) 

triggers the SRS photon counter after each laser pulse to count the pulses generated in a time with 

window of 450 ns. Properly timing the detection and counting windows ensures that the laser 

scatter from the excitation is separated from the OH fluorescence. The counting window is timed 

such that the MCP-PMT pulse detection is significantly delayed from laser emission, but close 

enough to capture most of the OH fluorescence.   

The FAGE instrument is not a zero-background technique and thus a background signal (off-

resonance signal) must be measured to derive the net signal produced by the OH fluorescence. 

Ambient measurements of OH require the ability to quickly tune the laser on- and off-resonance 
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with the OH transition to derive the net OH fluorescence signal (referred to as SXX in the following, 

where XX = OH, HO2, HOx, ROx): 

𝑆𝑋𝑋 = 𝑆𝑋𝑋(𝑜𝑛 − 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒) − 𝑆𝑋𝑋(𝑜𝑓𝑓 − 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒)                (3.1) 

The OH fluorescence signal (Sxx) is the number of photons detected by the MPC-PMT within the 

counting window and is expressed in counts. The acquisition rate for both on & off –resonance 

signals is 1 second and the net OH fluorescence signal is reported in counts per second (cps) for 

IU-FAGE. 

HO2 radicals are measured indirectly in the FAGE detection cell through chemical 

conversion of OH from the addition of NO (chapter 1, section 1.2.4). The conversion efficiency of 

HO2 into OH and potential interferences from the conversion of RO2 radicals have been reported 

by Lew et al. (2018) for different configurations of IU-FAGE that were used in the field, including 

CalNex-2010 (Griffith et al., 2016), CABINEX-2009 (Griffith et al., 2013a) and MCMA-2006  

(Dusanter et al., 2009b, 2009a). This study showed that the conversion efficiency of HO2 into OH 

was higher for instrument configurations utilizing lower sampling flow rates which resulted in  

longer reaction times between the peroxy radicals and NO before OH detection. Lew et al. (2018) 

quantified the conversion efficiency of several types of RO2 into HO2 (and subsequently into OH) 

at two different NO concentrations (1.4×1013 & 9×1011 cm-3) under the same instrument conditions 

(3 torr). This work showed that for isoprene-derived RO2 radicals that convert efficiently into HO2 

their conversion into OH was reduced by a factor of 30-50 at the lowest NO concentration while 

the conversion of HO2 was only reduced by a factor of 4-5. The low NO concentration is therefore 

preferred to reduce the contribution of RO2 radicals during the IU-FAGE HO2 measurement mode. 

 

3.2.2 Quantification of OH fluorescence signals using FAGE and ROxLIF 

 

The fluorescence signals detected for OH and HOx (addition of NO to the FAGE detection 

cell) when FAGE is uncoupled from the conversion flow tube, and signals detected for HOx and 

ROx when the ROxLIF apparatus is used are referred to as 𝑆𝑂𝐻, 𝑆𝐻𝑂𝑥, 𝑆𝐻𝑂𝑥
𝐹𝑇 , and 𝑆𝑅𝑂𝑥

𝐹𝑇 , respectively. 

A similar nomenclature is used to denote sensitivity factors derived from calibrations performed 

on FAGE and ROxLIF. For FAGE, a calibration will lead to the sensitivities for OH (referred to as 
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𝐶𝑂𝐻) and HO2 (𝐶𝐻𝑂2). For ROxLIF, a calibrations lead to the sensitivity for HO2 (𝐶𝐻𝑂2
𝐹𝑇 ) and RO2 

(𝐶𝑅𝑂2
𝐹𝑇 ). 

 

3.2.2.1 Quantification of OH fluorescence signals during OH and HOx modes for FAGE 

 

When FAGE is used to measure OH in ambient air, i.e. NO is not added in the detection 

cell, the net fluorescence signal SOH is given by equation (3.2): 

𝑆𝑂𝐻 = [𝑂𝐻] × 𝐶𝑂𝐻 × 𝑃𝑤        (3.2)  

Where, COH is the instrument sensitivity to OH expressed as the number of photon counts per 

second produced per cm3 of OH and normalized to the laser power (cps cm-3 mW-1), and Pw the 

laser power (mW). It is common to normalize the sensitivity to the laser power since the generated 

signal depends linearly on this parameter.  

Similarly for HOx, the detected fluorescence signal is given by Equation 3.3 when NO is added in 

the detection cell: 

𝑆𝐻𝑂𝑥 = ([𝑂𝐻] + [𝐻𝑂2] × 𝑓𝐻𝑂2) × 𝐶𝑂𝐻  × 𝑃𝑤        (3.3)  

Where, 𝑓𝐻𝑂2 is the fraction of HO2 converted into OH before detection. The instrument sensitivity 

to HO2, 𝐶𝐻𝑂2, can thus be defined as follows  Equation 3.4: 

𝐶𝐻𝑂2 = 𝑓𝐻𝑂2 × 𝐶𝑂𝐻   (3.4)  

3.2.2.2 Quantification of fluorescence signals during HOx and ROx modes for ROx-LIF 

 

In the ROxLIF technique, NO is continuously added to FAGE since only HO2 is exiting the 

conversion flow-tube. The modulation between HOx and ROx modes in the conversion flow-tube 

leads to measurement of either OH+HO2 or OH+HO2+RO2. Note that only a fraction of the sampled 

radicals will survive along the conversion flow-tube and sensitivity factors for ROxLIF are lower 

than for FAGE. 

As mentioned previously, sequential measurements of HOx and ROx are achieved by 

rapidly switching the reagent gases delivered to the conversion flow-tube, i.e. switching between 

CO+N2 and CO+NO (see section 1.2.4& 3.2.1.1), respectively. During the HOx mode, addition of 
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CO converts OH into HO2, which is then measured as HO2 by FAGE. The relation between 

detected signal, 𝑆𝐻𝑂𝑥
𝐹𝑇 , and the radical amounts is shown in Equation 3.5.  Derivation of this equation 

assumes that all OH are quickly converted into HO2 without any loss. 

𝑆𝐻𝑂𝑥
𝐹𝑇 = 𝐶𝐻𝑂2

𝐹𝑇 ([𝑂𝐻] + [𝐻𝑂2]) × 𝑃𝑤       (3.5)  

Here [OH] and [HO2] denotes the radical concentrations sampled by the instrument. The sensitivity 

of the ROxLIF instrument to HO2, 𝐶𝐻𝑂2
𝐹𝑇 , is derived from calibration experiments (see section 

3.2.2.1). 

During the ROx mode, the injection of both NO and CO leads to the conversion of OH and 

organic peroxy radicals into HO2 on a timescale of 0.3-0.6 s (see section 1.2.4). The detected signal, 

𝑆𝑅𝑂𝑥
𝐹𝑇 , is the sum of 𝑆𝐻𝑂𝑥

𝐹𝑇
 (Eq. 3.5) and the signal generated by the fraction of converted RO2 radicals 

that survived along the flow-tube (𝑓𝑅𝑂2
𝐹𝑇 ). 

𝑆𝑅𝑂𝑥
𝐹𝑇 = [𝛼 × 𝐶𝐻𝑂2

𝐹𝑇 ([𝑂𝐻] + [𝐻𝑂2]) + 𝐶𝑅𝑂2
𝐹𝑇 [𝑅𝑂2]] × 𝑃𝑤              (3.6)  

Here [RO2] denotes the RO2 concentration sampled by the instrument. The ROxLIF sensitivity to 

RO2, 𝐶𝑅𝑂2
𝐹𝑇 , is determined from calibrations performed on the ROxLIF apparatus through the 

generation of specific RO2 radicals (see section 1.2.5). α is multiplicatory factor accounts the 

decrease in 𝐶𝐻𝑂2
𝐹𝑇  when NO is added. 

For ambient measurements, the measured 𝑆𝐻𝑂𝑥
𝐹𝑇  signal and the calibrated 𝐶𝐻𝑂2

𝐹𝑇  sensitivity 

can be used to derive the concentration of HO2 radicals by rearranging Eq. 3.5 since OH is several 

orders of magnitude lower than HO2. The RO2 concentration can then be derived by rearranging 

Eq. 3.6, subtracting the measured SHOx from SROx and using a calibration factor, 𝐶𝑅𝑂2
𝐹𝑇 . It is 

important to note that this approach assumes that 𝐶𝑅𝑂2
𝐹𝑇  is similar for all RO2 radicals; this 

hypothesis was verified by Fuchs et al. (2008) and was also tested in the results section (3.4.4). 

 

3.2.3 Calibration of the instrument 

 

3.2.3.1 Description of the calibration source 

 

The radical source used to calibrate FAGE and ROxLIF is similar to the calibrator described 

for the PERCA system (chapter 2) and the principle was detailed in chapter 1 (section 1.2.5). 
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Briefly, the approach is based on the photolysis of water in air at 184.9 nm to produce equal 

concentrations of both OH and HO2. The concentrations produced are derived from ozone 

actinometry as described in chapter 1 (Eq. 1.4-1.6).  

The radical source used in this study is shown in Figure 3.4. The calibrator consists of a 

rectangular flow reactor made of aluminum (1.27×1.27×30-cm) equipped with quartz window on 

two sides. A low-pressure mercury lamp (UVP Inc.) is secured in an aluminum housing on one 

side of the reaction and a photodiode (UDT 555-UV) is secured to the opposite side to measure 

changes in the  the lamp emission flux at 184.9 nm. The lamp housing is continuously purged with 

nitrogen to avoid the accumulation of ozone which would be produced from oxygen photolysis. 

The lamp emission is filtered by a 185-nm filter (Acton Research) before the irradiation zone in 

the calibrator and another 185-nm filter is attached to the photodiode. The lamp and photodiode 

housings can be moved along the reactor to characterize the loss of radicals (see section in 3.2.4.2). 

 

 

 Figure 3.4 Schematic diagram of the ROxLIF and FAGE calibration source (Lew et al., 2018). 

 

For the generation of HO2, OH is reacted with CO that is continuously added to the 

calibrator (chapter 2, section 2.3.2). The HO2 concentration at the exit of the calibrator is then 

calculated as the sum of both OH and HO2 concentrations produced from water photolysis (Eqs. 

1.4-1.6, chapter 1). For the generation of a specific RO2 radical, CO is replaced by a VOC, which 

leads to a mixture of HO2 and RO2. The concentrations of HO2 and RO2 can be calculated from 

Eqs. 3 and 4 (chapter 2) accounting for the potential prompt formation of HO2 when the VOC 

To instrument 
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reacts with OH. During calibration, a 50 slpm flow of zero air was delivered to the calibration 

source with the relative humidity varied between 10-70% at 22±2°C  producing both OH and HO2 

at concentrations ranging from 8×108-2×1010 cm-3.  

 

3.2.3.2 Characterization of the calibration source 

 

The actinometry is used to calculate the product of the photon flux and the residence time 

within the photolysis region in the calibrator (F×t in Eq. 1.4, chapter 1) and requires knowledge of 

the concentration of ozone produced within the calibrator to derive the concentrations of OH and 

HO2 produced in the calibrator. In order to quickly determine [O3] during a calibration experiment, 

which is proportional to the 184.9 nm photon flux, the relationship between the ozone produced 

and the photodiode signal was characterized (Figure 3.5).  

Dry zero air flowed through the calibrator at 50 slpm and different ozone concentrations were 

generated by varying the lamp intensity by varying the mercury lamp voltage with a variac. The 

ozone generated was measured by an ozone monitor (Teledyne M400E) exhibiting a limit of 

detection <0.4 ppbv for an integration time of 0.5 minutes. Figure 3.5 shows a calibration curve 

that relates the amount of ozone produced in the calibrator in ppbv to the photodiode signal 

expressed in volts. This calibration curve is checked periodically to ensure its validity and is used 

to convert the measured photodiode signal into an ozone concentration during a calibration 

experiment.  
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 Figure 3.5 Ozone-photodiode signal relationship for the ROx calibrator 

 

While the actinometry approach allows calculating the radical concentrations generated in 

the irradiated zone, losses of these radicals on the calibrator wall can be significant and need to be 

accounted for to derive the radical concentrations exiting the calibrator. The loss rate of HO2 and 

OH on the calibrator wall was measured as a function of the distance between the lamp position 

and the calibrator exit, assuming first order conditions for the loss reactions: 

[HOx]t = [HOx]0 exp(−kw(HOx)t) (3.7) 

Where, [HOx]t is the OH or HO2 radical concentration exiting the calibrator after a residence time, 

t, within the calibrator, [HOx]0 is the radical concentration generated and calculated from Eqs. 1.4-

1.6 (chapter 1), and kW(HOx) is the wall loss rate constant. 

The loss of radicals was quantified by varying their residence time inside the calibrator while 

monitoring the change in SOH and SHO2 during FAGE calibrations. Figures 3.6 & 3.7 show data 

from experiments performed at a total flow rate of 10 slpm in the calibrator at 52% RH and 23°C. 

The lamp position was varied from 5 to 13.5 cm from the exit of the calibrator, which corresponds 

to residence times ranging from 50 to 130 ms assuming plug-flow conditions. The net OH signal 

shown in Fig. 3.6 decreases with increasing time indicating a first order loss rate of 7.6 s-1. This 

corresponds to a loss of about 30 % of OH for a residence time of 50 ms, which is similar to that 

observed by Dusanter et al. (2008a) at a total flow rate of 50 slpm for the same calibrator. In 

y = 19.55x + 0.00
R² = 0.95

0

0.5

1

1.5

2

2.5

0 0.02 0.04 0.06 0.08 0.1 0.12

O
zo

n
e 

(p
p

b
)

Photodiode signal (V)



 167 

 

contrast, the HO2 loss rate inside the calibrator is not significant as shown in Figure 3.7. The net 

HO2 signal remains constant as the residence time is varied. A negligible HO2 wall loss is also 

consistent with that observed by Dusanter et al. (2008a). The decrease in the Reynolds number 

from 13240 at 50 slpm (highly turbulent conditions) to 2650 at 10 slpm (transition regime for 

turbulent-laminar conditions) does not drastically change the radical loss rate.  

 

 

 

Figure 3.6 Quantification of OH wall losses within the calibrator: (a) net OH signal vs. distance    between the 

exit of the calibrator and the radical production zone, and (b) OH wall loss rate (kWOH). 
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Figure 3.7 Quantification of  HO2 wall losses within the calibrator: (a) HO2 net signal vs. distance between the 

exit of the calibrator and the radical production zone; (b) HO2 wall loss rate (kWHO2). 

 

3.2.3.3 Calibration procedures of OH, HO2 and RO2 sensitivities 

 

When FAGE is used to measure OH in ambient air, the sensitivity COH is derived from calibration 

experiments where a known concentration of OH is provided to the instrument using the calibration 

source described above: 

𝐶𝑂𝐻 =
𝑆𝑂𝐻

[𝑂𝐻]0 × 𝐿𝑂𝐻  × 𝑃𝑤
        (3.8)  

 

Where [OH]0 is the concentration of OH produced inside the calibrator and LOH the fraction of OH 

exiting the calibrator (lower than 1 due to wall losses, calculated from kWOH determined above and 

the residence time of OH in the calibrator). 

Similarly for HO2, the sensitivity is derived from calibration experiments using Equation 3.9 when 

NO is added in the FAGE detection cell: 

𝐶𝐻𝑂2 =
𝑆𝐻𝑂𝑥 − 𝑆𝑂𝐻

[𝐻𝑂2]0 × 𝐿𝐻𝑂2  × 𝑃𝑤
        (3.9)  
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Where 𝑆𝐻𝑂𝑥 − 𝑆𝑂𝐻 represents the signal generated by the detection of the converted HO2 radicals, 

[HO2]0 the concentration of HO2 and 𝐿𝐻𝑂2 is the fraction of HO2 exiting the calibrator, which is 

the unity for our calibrator, see section 3.2.3.2. 

For the ROxLIF apparatus, the detection sensitivity of HO2 or RO2 is also determined by 

generating known concentrations of these peroxy radicals from the calibration source (see section 

3.2.3.1) During the HOx mode, the HO2 detection sensitivity (𝐶𝐻𝑂2
𝐹𝑇 ) (Equation 3.10) is determined 

by injecting CO in the calibrator to quickly convert OH into HO2 (section 3.2.3.1), the latter being 

the only radical species exiting the calibrator: 

𝐶𝐻𝑂2
𝐹𝑇 =

𝑆𝐻𝑂𝑥
𝐹𝑇

([𝑂𝐻]0 + [𝐻𝑂2]0) × 𝑃𝑤
 (3.10) 

Where 𝑆𝐻𝑂𝑥
𝐹𝑇  is the measured net fluorescent signal, and [OH]0 and [HO2]0 are the radical 

concentrations. It should be noted that the CO concentration is adjusted to convert 99% of OH in 

less than 5 ms in order to avoid wall losses of OH. Since HO2 is not lost in the calibrator, the  radical 

concentration don’t need to be corrected for wall losses in Eq 3.10. 

During the ROx mode, a similar procedure is used to determine the sensitivity to RO2 

radicals. As described in section 3.2.4.1, CO is replaced by a VOC in the calibrator to generate a 

mixture of HO2 and RO2. The net signal generated from peroxy radicals, 𝑆𝑅𝑂𝑥
𝐹𝑇  in Equation 3.11, 

now contains contributions from both the generated HO2 and RO2. Since the VOC concentration 

is adjusted to convert all OH in less than 2 ms, the concentration of RO2 is equal to the initial OH 

concentration since RO2 radical wall losses are lower than for HO2, determined during the 

characterization of the PERCA instrument (chapter 2). However, the reaction of some VOCs with 

OH leads to the prompt formation of both HO2 and RO2 with yields of X (X<1) and 1-X, 

respectively (see chapter 2, section 2.5.4). 

 

𝑆𝑅𝑂𝑥
𝐹𝑇 = (𝛼 × 𝐶𝐻𝑂2

𝐹𝑇 (1 + 𝑋)[𝐻𝑂2]0 + (𝐶𝑅𝑂2
𝐹𝑇 )(1 − 𝑋)[𝑂𝐻]0) × 𝑃𝑤 (3.11) 

 

Rearranging Equation 3.11, the RO2 detection sensitivity is derived as follows: 

𝐶𝑅𝑂2
𝐹𝑇 =

1

1 − 𝑋
(

𝑆𝑅𝑂𝑥
𝐹𝑇

[𝑂𝐻]0 × 𝑃𝑊
− 𝛼 × 𝐶𝐻𝑂2

𝐹𝑇 (1 + 𝑋) ) (3.12) 
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3.3 Modeling of the flow-tube conversion chemistry 

 

The simulations were performed to investigate the conversion efficiency of different 

organic peroxy radicals at different concentrations of reagent gases, flow-tube pressures and 

residence times 

 

3.3.1 F0AM 

The framework for 0-D Modeling, F0AM (Wolfe et al., 2016), was used to simulate the 

chemistry occurring within the conversion flow-tube under different operating conditions. The 

model was constrained by initial concentrations of HO2 and RO2 radicals exiting the calibrator 

(8×108-2×1010 cm-3), concentrations of reagent gases (NO: 0-2.4 ppm and CO: 0-1 %) and other 

parameters (pressure: 10-50 torr, temperature: 23°C and relative humidity: 40-50 %). 

The gas mixture in the reactor is assumed to be homogeneous. The conversion chemistry 

was modeled over 2 s (time-steps of 0.1 s), which is longer than the estimated residence time of 1 

s in the flow-tube when all the sections are used (see section 3.2.1.1). The wall loss rate of HO2 

was implemented in the model as quantified from laboratory experiments (1.11 s-1 for a FEP/PFA 

coating at 28 Torr, see section 3.4.1).   

 

3.3.2 Chemical mechanism 

 

 A subset of the MCM (master chemical Mechanism) version 3.3.1 was extracted for the 

different hydrocarbons used in this study to generate RO2 species in the calibrator (Table 1). This 

led to chemical mechanisms containing 71-1974 reactions and 29-610 species, including inorganic 

reactions. 
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Table 3.1: Specification of the chemical mechanisms used in this study 

Hydrocarbon Peroxy radicals Number of reactions Number of species 

Methane CH3O2 71 29 

Ethane C2H5O2 168 57 

Toluene HO2, C5H5CH2O2, 

TLBIPERO2a 

862 291 

Isoprene C5H5(OH)O2 1974 610 

 

Reaction added to MCM k (cm3 s-1 or s-1) 

RO2 + Wall→ loss 0.35b  

HO2 + Wall→ loss 1.11c 

RO + Wall→ loss 5.4d 

OH + Wall→ loss 5.4d 

CH3O + NO→ CH3ONO 4.9×10-12e  

C2H5O + NO→C2H5ONOf 4.2×10-11 e 

a: notation from MCM, b: Estimated using the measured ratio k(RO2+wall)/k(HO2+wall)=0.3 from Mihele et al., (1999),  c: 

experimentaly measured; d: Fuchs et al., 2008, e:  Sander et al., (2003),  f: same rate constant used for other RO(C>2)+NO reactions  

 

The reaction of RO + NO was added in the chemical mechanisms because MCM does not include 

thys type of reactions, which are not important under atmospheric conditions. Rate constants of 

4.9×10-12 cm3 molecule-1 s-1 and 4.2×10-11 cm3 molecule-1 s-1  were used for CH3O +NO and C2H5O 

+NO, respectively. 

 

3.4 Characterization of the instrument 

 

This section reports experimental and modelling results for the characterization of different 

aspects of the ROxLIF instrument: (1) wall loss of HO2 inside the conversion flow-tube, (2) 

dependences of the RO2-to-HO2 conversion chemistry on operating conditions, (3) sensitivity 

factors, and (4) figures of merit. 
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3.4.1 HO2 Wall loss in the conversion flow-tube 

 

The wall loss rate of HO2 was measured by varying the length of the flow-tube at a constant 

sampling flow rate of 2.1 slpm and a flow-tube pressure of 28 torr. At the exit of the flow-tube a 

flow of 1.5 slpm was sampled into FAGE whose detection cell pressure was held at 2 torr using 

the conical nozzle. Under these conditions, the sampled gas changes from a supersonic to subsonic 

flow at a downstream distance from the nozzle of xM (Heal et al., 1995). In this region, called 

expansion zone, the flow is moving faster than sound speed creating a separation between the added 

reagents and the sampled gases. However, after the distance xM, the gases begin mixing. In this 

work, xM was determined using Equation 3.13 (Heal et al. 1995) and was found to be 0.22 cm. 

𝑥𝑀
𝑑
= 0.67 (

𝑃0
𝑃𝑏
)

1
2
                                                      (3.13)  

Here, Pb is the background pressure (28 torr), P0 the ambient pressure, and d the diameter of the 

pinhole. The supersonic regime zone occurs up to a distance of about 0.22 cm downstream of the 

pinhole, which is negligible compared to the total length of the flow tube. In the subsonic region, 

the residence time is determined assuming plug flow conditions. Calculated residence times are 

0.6, 1.0 and 1.5 s for total flow-tube lengths of 25, 45 (25+20) and 65 (25+20+20) cm, respectively. 

In these experiments, ROxLIF was run in HOx mode resulting in only HO2 being sampled 

into the flow-tube because of added CO. The radical concentrations generated were 1×1010-2×1010 

cm-3 for a total air flow rate of 50 slpm at 18 and 43% RH (21±2⁰C), respectively. The HO2 wall 

loss rate was determined using the same approach as for the PERCA reactors (section 3.9.3), 

assuming first order loss (Howard, 1979): 

[𝑆𝐻𝑂𝑥
𝐹𝑇 (t)] = [𝑆𝐻𝑂𝑥

𝐹𝑇 (0s)] exp(−kwHO2t) (3.14) 

 

Where 𝑆𝐻𝑂𝑥
𝐹𝑇 (0s) is the extrapolated initial signal, kwHO2  is the HO2 loss rate constanr in s-1.  

Three to five measurements were conducted for each residence time as shown in Figure 3.8. 

Normalizing the signals to 𝑆𝐻𝑂𝑥
𝐹𝑇 (0. s) and plotting the logarithm of the normalized signals versus 

the residence time yields an average (black symbols) kwHO2 of 1.11±0.08 (1σ) s-1 under the 

conditions mentioned above (28 torr, 43 & 18 % RH at 21 ± 2°C).  
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 Figure 3.8 HO2 wall loss in the conversion flow-tube. Slope of the linear fit yields the first order wall 

loss rate constant, kwHO2. 

The value of kwHO2 is similar at 18% and 43% RH, which is consistent with observations reported 

by Fuchs et al. (2008), i.e a wall loss that is independent of RH. However, the loss rate constant 

found in this work is approximately twice as high as the value published by Fuchs et al. (2008), 

who reported that kw at 20 torr for HO2, OH and RO2 were 0.5, 5.4 and 0.15 s-1, respectively. It 

was not possible to measure the OH wall loss rate in this work due to a total consumption of OH 

within 45 cm of tube length. Assuming that 99% of OH is lost over 45 cm (residence time of 1 s) 

provides a lower bound of 4.6 s-1 for the OH loss rate. While we were not able to accurately 

determine the OH wall loss rate, this is not an issue to model the RO2 conversion chemistry in the 

flow-tube since Fuchs et al. (2008) showed that the contribution of OH losses to the total loss of 

the radical pool inside the flow-tube was less than 2% due to ROx partitioning favoring HO2 (high 

concentration of CO). It was shown that the loss of HO2 radicals is the dominant process that limits 

the transmission of radicals through the flow-tube. No experimental determinations of RO2 wall 

loss rates were attempted either in this work or in Fuchs et al. (2008). In both studies, the RO2 wall 

loss was estimated using a ratio of 
𝐾𝑤𝑅𝑂2

𝐾𝑤𝐻𝑂2

= 0.3 reported by Mihele et al. (1999). However, as 

reported for the PERCA system using PFA tubing (1/4”-OD) (chapter 2, section 2.9.3), the 

measured loss rate for CH3CH2O2 was 7 times lower than for HO2 at 50 % RH and 23⁰C. This large 

difference between wall losses was also observed by Mihele et al. (1999) who reported a CH3O2 

wall loss rate that was 6 times lower than for HO2 in PFA tubes (1/4”-OD) at 50% RH. 
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The loss rate of HO2 determined experimentally was used together with a wall loss rate constant of 

OH (5.4 s-1 ) (value reported by Fuchs et al.) and a wall loss rate for RO2 of 0.35 s-1 (HO2 loss rate 

measured in this work scaled by the ratio reported by Mihele et al.) to model the RO2 conversion 

chemistry within the flow-tube. 

 

3.4.2 Dependence of the RO2-to-HO2 conversion chemistry on operating conditions  

 

3.4.2.1 Time scale of the RO2-to-HO2 conversion chemistry 

 

The reaction time required to achieve optimum conversion of organic peroxy radicals 

within the flow-tube was first determined by modeling the conversion chemistry using operating 

conditions reported by Fuchs et al. (2008) for their ROxLIF instrument. This optimum reaction time 

is defined as the residence time in the flow tube that will lead to a maximum HO2 concentration 

which depends on its formation rate from the conversion of organic peroxy radicals and its loss 

rate due to homogeneous gas-phase and wall reactions.  

Methyl peroxy radicals were chosen for these simulations for comparison with the work of Fuchs 

et al. (2008). In addition, simulations were also performed for other peroxy radicals (ethyl peroxy, 

pool of toluene-based peroxy, pool of isoprene-based peroxy) in order to evaluate whether different 

types of peroxy radicals exhibit different optimum reaction times for their conversion into HO2. 

For CH3O2, simulations were performed using different sets of operating conditions as shown in 

table 3.2. Three sets of conditions were used to (1) compare the model output to that observed by 

Fuchs et al. (2008) to ensure the reliability of the model results, (2) assess the impact of the higher 

loss rate of HO2 quantified for our conversion flow-tube, and (3) determine the time scale expected 

under our operating conditions of pressure. All simulations were constrained with an initial CH3O2 

concentration of 1.5×109 cm-3 at 50% RH and 25℃.  
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Table 3.2 Time scale of the RO2 conversion chemistry - comparison of different sets of operating conditions 

 Simulation  

1 

Simulation 

2 

Simulation 

3 

Wall loss rate (s-1) Fuchs parameters 

HO2: 0.15 

RO2: 0.15 

OH: 5.4  

This work 

HO2: 1.11 

RO2: 0.35 

OH: 5.4 

This work 

HO2: 1.11 

RO2: 0.35 

OH: 5.4 

 

Reagent concentrations Fuchs parameters 

NO: 0.7 ppmv  

CO: 0.17% 

Fuchs parameters 

NO: 0.7 ppmv 

CO: 0.17% 

Fuchs parameters 

NO: 0.7 ppmv 

CO: 0.17% 

 

Pressure ( torr) Fuchs parameters 

20 

Fuchs parameters 

20 

This work 

28 

 

[CH3O2] cm-3 1.5×109  1.5×109  1.5×109  

 

Figure 3.9 reports the results from the 3 simulations. The remaining CH3O2 (left axis) and 

generated HO2 (right axis) are normalized to the initial CH3O2 concentration ([CH3O2]0). The first 

simulation (red) shows the conversion efficiency of CH3O2 into HO2 using operating conditions 

published in Fuchs et al. (2008). CH3O2 is rapidly consumed with only 13% remaining at a reaction 

time of 0.6 s, which also corresponds to the maximum HO2 abundance in the flow-tube (62% of 

initial CH3O2). These results are in good agreement with that observed by Fuchs et al., validating 

the modeling procedure used in this work.  

The second simulation (black) shows that the larger wall loss rate of HO2 observed in this 

work leads to a similar decay for CH3O2 with only 11% remaining at a reaction time of 0.6 s but 

also leads to a decrease of the maximum HO2 abundance (50% of initial CH3O2) at a shorter 

reaction time of 0.4 s. The third simulation (dark blue) differs from the previous one by increasing 

the pressure inside the flow-tube from 20 to 28 torr. As shown in this simulation, increasing the 

pressure will speed-up the conversion of CH3O2 into HO2 since the absolute concentration of NO 

is higher, which in turn increases the maximum HO2 abundance to a value of 60% at 0.3 s. The 

maximum increase in HO2 due to RO2 conversion inside the flow-tube appears to be partly driven 

by the type of material which it is constructed ( affecting wall loss of radicals), with a higher wall 
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loss rate of HO2 leading to a lower maximuim concentration. However, increasing the pressure to 

speed-up the RO2 conversion allows reducing the amount of HO2 lost on the wall, which in turn 

produces a higher HO2 concentration. Reagent gas concentrations are of course other important 

operating conditions driving the conversion chemistry which will be discussed in the next 2 

sections.  

 

 

 

 Figure 3.9 Concentrations of CH3O2 ( left axis, solid lines) and HO2 (right axis, dashed lines) normalized to 

the initial CH3O2 amount. 

 

Sensitivity tests were performed to assess whether changing the loss rate of OH or CH3O2 in these 

simulations would significantly affect the conversion timing or the generated HO2 concentration. 

Table 3 and Figure 3.10 show how the CH3O2 and OH loss rates were varied, from 0.35 s-1 (CH3O2) 

and 5.4 s-1 (OH) in S3 to 0.7 s-1 (CH3O2) in S4 and 11 s-1 (OH) in S5, and how the HO2 concentration 

responded to these changes. An increase of the OH and CH3O2 wall loss rates by a factor of 2 does 

not lead to a significant change in the CH3O2 and the HO2 abundances. In addition, the initial 

concentration of CH3O2 was reduced by a factor of 10 (S7) showing that these simulations are not 

dependent on the initial peroxy radical concentration (negligible impact of self- and cross-radical 

reactions in the flow-tube). 
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Table 3.3 Time scale of the RO2 conversion chemistry – Impact of OH and RO2 wall loss rates 

 Simulation  

3 

Simulation 

4 

Simulation 

5 

Simulation  

6 

Wall loss rate (s-1) HO2: 1.11 

RO2: 0.35 

OH: 5.4 

 

HO2:1.11 

RO2: 0.7 

OH: 5.4 

HO2:1.11 

RO2: 0.35 

OH: 11 

HO2:1.11 

RO2: 0.35 

OH: 5.4 

 

Reagent concentrations NO: 0.7 ppm 

CO: 0.17% 
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Figure 3.10 Time scale of the CH3O2 conversion chemistry. Left axis is for CH3O2 (Solid lines) and right axis 

for HO2 (dashed lines). 
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sensitivities to different peroxy radicals. The simulations performed for the different RO2 species 

metionned above using operating conditions reported in Table 3.3 for S3 are shown in figure 3.11. 

It is clear that differences between these simulations are small, with the ethyl peroxy radical 

exhibiting a faster decay and leading to a higher abundance of HO2 (60% of initial RO2). In contrast, 

the isoprene-based peroxy radicals exhibit both the slowest decay and the lowest abundance of HO2 

(50%). These simulations indicate that the differences in RO2 decay rates and HO2 abundances are 

within 10% and the timings for HO2 production are similar. 

 

 

Figure 3.11 Time scale of different RO2 conversion chemistries. Left axis is for RO2 (Solid lines) and right axis 

for HO2 (dashed lines). 

 

3.4.2.2 Dependence of the RO2 conversion chemistry on NO 

 

The optimal conversion of RO2 into HO2 also depends on the concentrations of both NO 

and CO reagents. Radical loss rates and pressure used for S3 (Table 3.3) were used to perform 

additional simulations for the CH3O2 conversion chemistry by varying NO while keeping CO 

constant.  

Figure 3.12 shows how the normalized concentrations of CH3O2 (left axis) and HO2 (right 

axis) evolve over time when NO is varied in the range 0-1.2 ppmv at a CO mixing ratio of 0.17%. 
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The increase of NO leads to a simultaneous increase in the decay rate of CH3O2 and maximum 

abundance of HO2, together with a reduction of the reaction time needed to reach the maximum 

HO2 abundance. The HO2 build-up due to RO2 conversion (dotted lines) increases up to 65% at the 

highest NO mixing ratio of 1.2 ppmv, with only 5% of CH3O2 remaining in the flow-tube. These 

conditions also lead to the fastest conversion of CH3O2 at an optimum residence time of 

approximately 0.3 s for the detection of HO2. Since the maximum abundance of HO2 keeps 

increasing when NO is increased, these simulations indicate that losses due to radical+NO reactions 

are less important than the HO2 wall loss. It is interesting to note that detecting HO2 at a longer 

flow-tube residence time than this optimum reaction time, for instance 1 s, would lead to an 

increase of the fluorescence signal up to 0.5 ppmv NO and a decrease from 0.5 to 1.2 ppmv while 

a monotonous increase of the signal would be observed over the entire range of NO amounts 

studied at a shorter residence time of 0.2-0.5 s.  

 

 

Figure 3.12 Simulations of the CH3O2 conversion chemistry – NO dependence. Left axis is for RO2 (solid lines) 

and right axis for HO2 (dashed lines). The NO mixing ratio is indicated in the legend. 
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reactivity with OH (approx. a factor of 40), which allowed introducing less ethane in the calibrator 

compared to methane. Both HO2 and C2H5O2 were generated at a concentration of 2×1010 cm-3. 

The reactor length of 45 cm was used, leading to a residence time of 1.0 s. NO (500 ppm in 

Nitrogen) was varied from 0-2.4 ppm while keeping CO (10% in Nitrogen) at a mixing ratio of 

0.47% (see following section for the chosen CO mixing ratio).  

As seen in figure 3.13, the net OH fluorescence signal normalized to the laser power starts 

increasing with NO from 310 cps mW-1 up to 510 cps mW-1 at approximately 0.8-0.9 ppmv of NO. 

There is signal detected when no NO is added to the flow-tube due to the HO2 radicals generated 

in the calibrator. When NO is increased up to 0.9 ppmv, the propagation rate of RO2 to HO2 

increases leading to greater fluorescence signal. In contrast, once NO exceeds 0.9 ppmv, the signal 

begins to decrease as most CH3O2 has been converted and only HO2 losses take place in the flow 

tube.  

 

Figure 3.13 Dependence of the C2H5O2 conversion chemistry on NO. 

 

These experimental results are compared to modeled trends (dashed lines) as shown in 
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0.47% CO, a pressure of 28 Torr, 47% RH at 21°C, and the generated radical concentrations. The 

residence times were set at 0.1 s (dark blue), 0.4 s (green) and 1 s (blue) for comparison to the 

experimental trend. As shown in Figure 3.13, the simulations constrained at residence times of 0.1 

or 0.4 s reveals a better agreement with the experimental trend observed for the fluorescence signal 
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when NO ranges up to 1 ppm. The simulation performed for 1-s of residence time cannot reproduce 

the relative change observed in the fluorescence signal. In addition , a large discrepancy is observed 

between the relative change in the fluorescence signal and all the simulated trends in HO2 when 

NO keeps increasing above 1 ppm. In the literature, Fuchs et al. (2008) showed a good agreement 

between their model simulations and experiments for CH3O2  at NO mixing ratios lower than 1 

ppm, which was the highest mixing ratio used in their study.  

 

3.4.2.3 Dependence of the RO2 conversion chemistry on CO 

 

Similarly, additional simulations were performed to investigate how the CH3O2 conversion 

chemistry responds to CO when NO is kept constant.  

Figure 3.10 shows how the normalized concentrations of CH3O2 (left axis) and HO2 (right axis) 

evolve over time when CO is varied from 0-1 % at a NO mixing ratio of 0.7 ppmv. As expected, 

the decay rate of CH3O2 is independent of the increase in CO since it only depends on the CH3O2 

+ NO reaction. However, the abundance of HO2 strongly depends on the presence of CO. The HO2 

abundance due to RO2 conversion (dotted lines) builds up when CO is increased up to 0.17% and 

reaches approximately 60% at 0.4 s of reaction time. When CO keeps increasing, the HO2 

abundance stays constant up to 1% CO. At low CO mixing ratios, the loss of OH on the wall 

decomes important and leads to the low abundance of HO2. However, when CO increases, the HO2 

abundance also increases due to the fast conversion of OH into HO2 and the lower wall loss rate of 

HO2 compared to OH. 
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Figure 3.14 Simulations of the CH3O2 conversion chemistry – CO dependence. Left axis is for CH3O2 (solid lines) 

and right axis for HO2 (dashed lines). CO mixing ratios are indicated in the legend. 

 

Laboratory experiments were also performed to investigate the dependence of the 

fluorescence signal on CO while keeping NO constant. These experiments were performed under 

the same operating conditions as above for the NO dependence, with CO being varied from 0-1% 

and NO kept at 0.8 ppmv. Ethane was also added in the calibrator to generate C2H5O2 and HO2. 

The measured OH fluorescence signal and its dependence on CO are shown in figure 3.15. The net 
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each other is initiated with a partitioning shifted towards HO2. Since HO2 exhibits a lower wall loss 

rate than OH, the abundance of the radicals increases in the flow tube. The change in signal 

observed between 0.2-0.5% of CO is small, indicating that the conversion chemistry is almost 

insensitive to the CO mixing ratio above a threshold value of 0.2%. This corresponds to a HO2-to-

OH ratio of approximately 100 at 1 s residence time in the model, which is sufficient to avoid a 

significant loss of OH on the reactor walls. 
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Figure 3.15 Experimental and modeled dependences of the C2H5O2 conversion chemistry on CO 

 

For comparison to the experimental observations reported in Figure 3.15, model 

simulations were also performed at 3 different residence times of 0.1, 0.4 and 1 s with C2H5O2 and 

HO2 constrained to the generated concentrations. These simulations seems to indicate that a better 

agreement is observed between the relative changes in the fluorescence signal and simulated HO2 

concentrations when a residence time of 0.1 s is considered, similar to that observed for the NO-
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plug-flow conditions and is between 0.1 and 0.4 s. 
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CH3O2 (left axis) and HO2 (right axis) evolve over time when the flow-tube pressure is adjusted to 

10, 28 and 50 Torr. The conversion efficiency of CH3O2 into HO2 is almost independent of 

pressure. 

 

 

 

Figure 3.16 Model simulations of the CH3O2 conversion chemistry – Pressure dependence. The black, blue and 

orange curves correspond to pressures of 10, 28 and 50 torr, respectively. 
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efficiency of RO2 will be in the range 40-60%. In addition to the HO2 produced from RO2 

conversion, it is calculated that 20% of the sampled HO2 radicals will also be transferred to FAGE 

based on the measured wall loss rate of HO2. 

 

Table 3.4 Characteristics of the IU-ROx-LIF instrument. 

 Parameter value 

Conversion flow tube Inlet nozzle orifice Flat shaped, 0.635 mm  

 Length × diameter 45 × 5.1 cm 

 Sample flow rate 2.1 slpm 

 Pressure 28 torr 

 Flow residence time 1 s 

(45 cm long flow-tube) 

 

 Reagent mixing ratio 0.8 ppmv NO, 0.4% CO 

Fluorescence cell Transfer nozzle orifice Conical shaped, 2 mm 

 Sample flow rate 1.5 slpm 

 Pressure 2 torr 

 Reagent mixing ratio 5.7 ppmv NO 

 

 

3.4.3 Calibration of 𝐂𝐎𝐇 and 𝐂𝐇𝐎𝟐 (FAGE) 

 

When the conversion flow-tube was decoupled from FAGE to perform the calibrations, the 

conical nozzle was not changed for a smaller diameter nozzle and as a consequence, both the 

sampling flow rate and the detection cell pressure increased. The sampling flow rate increased from 

1.5 to 2.7 SLPM and the pressure from 2.0 to 3.6 Torr. The flow rate of NO (Matheson, 1% in 

Nitrogen) was kept at 0.85 SCCM for these 2 configurations. It is important to note that the impact 

of the change in pressure on both the NO concentration and the residence time (sampling orifice-

to-OH detection axis)  was counterbalanced by the change in sampling flow rate. For both 

configurations, ROxLIF (P=2 Torr, sampling flow rate=1.5 SLPM) and FAGE (P=3.6 Torr, 
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sampling flow rate=2.7 SLPM), the NO concentration was 3.6×1011 molecule cm-3 and the 

residence times were similar due to the adjustment of the volumetric flow rate on the pressure. We 

therefore consider that the conversion efficiency of HO2 into OH is not impacted and potential 

interferences on HO2 measurements from the conversion of RO2 radicals should be similar. In 

addition, the FAGE sensitivity towards OH and HO2 is expected to be similar between the 2 

configurations since the loss in OH fluorescence due to an increase of the quenching rate when the 

pressure is higher is counterbalanced by the gain in OH density (see Figures 6 and 7 in Faloona et 

al., 2004). Faloona et al. showed that between 2.0 Torr (2.7 hPa) and 3.6 Torr (4.8 hPa) the 

modelled sensitivity of their FAGE instrument (same design than IU-FAGE) are similar and the 

measured sensitivity factors towards OH and HO2 were similar (within 10-20%) between the 2 

pressures.   

The radical source described in section 3.2.3.1 was used to calibrate the FAGE response to 

both OH and HO2. For HO2 calibrations, a flow of CO (36 sccm, 10% in nitrogen) was added in 

the calibrator to titrate all OH radicals into HO2. The addition of NO in the FAGE detection cell 

led to a mixing ratio of 31.5 ppm (3.6×1011 molecule cm-3 at 2.0 Torr) when calibrating the HO2 

response. The sensitivity factors for OH and HO2 were determined from the net OH fluorescence 

signal detected during the calibration experiments using Equations 3.8 and 3.9, respectively. The 

radical source was operated at an air flow rate of 50 slpm and RH was varied from 10-60% 

(22±2°C). The concentration of OH and HO2 radicals inside the calibrator was varied between 

2×109 and 2×1010 cm-3. 

Water vapor is known to be a more efficient quencher of excited OH radicals than N2 or O2 

(Bailey et al., 1997). As a result, the FAGE sensitivity towards both OH and HO2 decreases as the 

concentration of water increases. Figure 3.17 displays the measured sensitivity factors 𝐶𝑂𝐻 (blue 

markers) and 𝐶𝐻𝑂2 (red markers) and their water dependence. The intercept of the regression line 

with the y-axis (water mixing ratio of 0%) corresponds to the sensitivity under dry conditions. The 

measured sensitivity factors for OH and HO2 were 4.7×10-7 and 3.4×10-8 cps cm3 mW-1 under dry 

conditions, respectively. The observed water dependence for both OH and HO2 (slope of the 

regression lines normalized to the dry sensitivity) are similar since it is only due to the quenching 

of the excited OH radicals. This water dependence corresponds to a loss of approximately 27% of 

the fluorescence signal per percent of water for IU-FAGE.  
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The OH sensitivity determined in this study is relatively close to what was previously 

determined in Dusanter et al. (2008) for IU-FAGE, c.a. values of (7.2-9.1) ×10-7 cps cm3 mW-1. In 

contrast, the HO2 sensitivity is lower than values reported in Dusanter et.al (2008), c.a. (6.8-8.6) 

×10-7 cps cm3 mW-1, due to the use of a low NO concentration herein, leading to a lower conversion 

of HO2 in the FAGE nozzle before OH detection. The conversion efficiency, 𝑓𝐻𝑂2, was computed 

from Eq. 3.4 using several calibration experiments including the one shown in Fig. 3.16 and was 

found to be 13.8%. In Dusanter et al. (2008), a conversion efficiency close to 100% was observed 

from the use of a larger NO concentration. Measurements of 𝑓𝐻𝑂2 at different sampling flow rates, 

pressures and NO concentrations have been reported for IU-FAGE in Lew et al. (2018). A 

maximum conversion of 67% was reported at a NO concentration of 2.9×1013 cm-3, a sampling 

flow rate of 3.4 slpm, and 4.2 torr of pressure. 

 

 

Figure 3.17: FAGE OH (blue markers) & HO2 (red markers) sensitivity factors as a function of water mixing 

ratios. 

 

In this study, a low NO concentration is used for HO2 measurements in order to minimize 

the interference from RO2 radicals (chapter 1, section 1.3.1). As mentioned previously, several 

laboratory studies have shown that HO2 measurements by FAGE are prone to interferences 

associated with RO2 radicals, especially from the rapid decomposition of β-hydroxyalkoxy radicals 
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al., 2018; Whalley et al., 2013). Fuchs et al. (2011) reported that the RO2 conversion can be 

suppressed at low NO, and Whalley et al. (Whalley et al., 2013) highlighted that decreasing NO in 

the detection cell reduces the OH formation from RO2 conversion faster than OH formation from 

HO2 conversion, thus allowing to discriminate between HO2 and interfering RO2 if measurements 

are sequentially performed at 2 different NO flows (low and high).  

For the ROxLIF technique, while the conversion of RO2 into HO2 is not an issue during the ROx 

measurement mode, it is important to reduce this interference during the HOx mode. Indeed, the 

conversion of RO2 during this mode would lead to an underestimation of ambient RO2 when the 

latter is calculated from the subtraction between the ROx and HOx measurements. Recently, Lew 

et al. (2018) have characterized this type of interferences for IU-FAGE and have reported it under 

different sets of operating conditions. It was shown that up to 80% of isoprene-based RO2 radicals 

and a similar fraction of other β-hydroxyalkoxy radicals can be converted to HO2, while the 

conversion efficiency was lower for other types of RO2 (e.g. 15% for propane-based RO2 radicals).  

In this study, we quantified the conversion efficiency of HO2 into OH (𝑓𝐻𝑂2) and of RO2 into HO2 

(f𝑅𝑂2→H𝑂2) and OH (f𝑅𝑂2→𝑂𝐻) using the methodology described in Lew et al. (2018) for CH3O2, 

isoprene-based and β-pinene-based peroxy radicals. The last two types of peroxy radicals are 

expected to be amongst the species which will exhibit the highest interference on FAGE. For these 

experiments, methane, isoprene and β-pinene were added to the radical calibrator. The results are 

reported in Table 3.5. Under the low NO conditions, the conversion of RO2 into HO2 is less than 

1% for CH3O2 and less than 31% for isoprene-based and β-pinene-based peroxy radicals. From the 

fRO2→HO2 value of 31% (highest conversion efficiency observed for β-hydroxyalkoxy radicals), the 

assumption that the pool of ambient peroxy radical is composed of HO2 (50%), CH3O2 (25%) and 

β-hydroxy alkoxy radicals (25%), it is estimated that ambient RO2 would be underestimated by 

approximately 15% with this instrument. 

Table 3.5 conversion of organic peroxy radicals into HOx in the FAGE detection cell. 

 

 

 

 

 

RO2  fHO2 (%) fRO2→HO2 (%) fRO2→OH (%) 

 13.8±1.2(1σ)   

Methyl peroxy  < 1 <0.1 

β-pinene-based  25.4 3.6 

Isoprene-based  31.2 4.4 
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3.4.4 Calibration of 𝐶𝐻𝑂2
𝐹𝑇  and 𝐶𝑅𝑂2

𝐹𝑇  (ROxLIF)  

 

For these calibrations, CO (30% in Nitrogen, Matheson Inc) or methane (25% methane in 

Argon, Matheson Inc) were added in the calibrator to generate either HO2 or an equimolar mixture 

of HO2 and CH3O2, respectively. Methane and CO concentrations were adjusted to ensure the 

consumption of approximately 99% of OH in less than 10 ms. RH was varied from 15-65% 

(25±2⁰C) leading to the production of both HO2 and CH3O2 in the concentration range of 6×109 - 

2×1010 cm-3. 

Figure 3.18 displays fluorescence signals recorded during a calibration experiment, methane being 

added in the calibrator, and switching between HOx (blue and grey) and ROx (orange) modes. The 

on-resonance signal in ROx mode is approximately twice as high as in the HOx mode, showing the 

system’s capability of detecting CH3O2 radicals. Indeed, an increase of the signal in the ROx model 

compared to the HOx mode arises from the conversion of CH3O2 into HO2.  

 

 

 Figure 3.18 Calibration of the ROxLIF sensitivity towards CH3O2 and HO2 radicals – Switch between HOx and 

ROx modes (raw data). [HO2] = [CH3O2] = 3×109 cm-3, RH = 48±2%, T = 22±2°C, 45-cm long flow-tube. 
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The sensitivity factors for HO2 and RO2 were determined at two different residence times by 

changing the length of the flow-tube, ca. 0.6 s (25 cm long flow-tube) and 1 s (45 cm long flow-

tube). The sensitivity towards HO2 was measured during the HOx mode by adding CO to the 

calibrator and a sensitivity coefficient was calculated at the different residence times using Eq.3.10. 

For CH3O2, CO was replaced by methane in the calibrator and the sensitivity was calculated for 

the ROx signal using Eq. 3.12.  

The calibrated sensitivity factors, 𝐶𝐻𝑂2
𝐹𝑇

 and 𝐶𝐶𝐻3𝑂2
𝐹𝑇 , are displayed in Fig. 3.19 shows the 

trends as a function of humidity (water mixing ratio). Similarly to FAGE calibrations, the y-

intercepts of the regression lines correspond to the sensitivity factors under dry conditions. The 

sensitivity for HO2 and CH3O2 under dry conditions are 5.7×10-9 cps cm-3 mW-1 and 7.2×10-9 cps 

cm-3 mW-1, respectively. Interestingly, the HO2 sensitivity is lower by 26 % compared to CH3O2. 

The larger CH3O2 sensitivity is consistent with observations reported in Fuchs et al. (2018), with 

values of 1.44×10-7 and 1.2 ×10-7 cps cm-3 mW-1 for the sensitivity of CH3O2 and HO2, respectively. 

 

 

 Figure 3.19  ROxLIF CH3O2 (blue markers) & HO2 (red markers) sensitivity factors as a function of 

water mixing ratios. Flow-tube length of 45-cm. 

 

The sensitivity factors for the ROxLIF instrument are dependent on water vapor, similarly 

to that discussed above for FAGE since the same fluorescence technique is used to detect OH. 

Figure 3.19 displays the trends observed for 𝐶𝐻𝑂2
𝐹𝑇  𝑎𝑛𝑑 𝐶𝐶𝐻3𝑂2

𝐹𝑇  when the humidity is varied. A close 

y = -1.5E-07x + 7.2E-09
R² = 9.9E-01

y = -1.3E-07x + 5.7E-09
R² = 9.5E-01

0.E+00

1.E-09

2.E-09

3.E-09

4.E-09

5.E-09

6.E-09

0.E+00

1.E-09

2.E-09

3.E-09

4.E-09

5.E-09

6.E-09

7.E-09

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

C
C

H
3

O
2 

FT
 (c

p
s 

cm
-3

m
W

-1
)

Water %

C
H

O
2

 F
T

(c
p

s 
cm

-3
 m

W
-1

)



 191 

 

inspection of this figure shows that the ROxLIF sensitivity decreases by 23 and 21% per % of water 

for HO2 and RO2, respectively. This water dependence is slightly lower than that observed for the 

FAGE response to OH and HO2 (approx. 27%). 

Table3.6 reports sensitivity factors measured at different residence times in the flow tube and under 

dry conditions. It is clear from this table that both 𝐶𝐻𝑂2
𝐹𝑇  𝑎𝑛𝑑 𝐶𝐶𝐻3𝑂2

𝐹𝑇  decrease when the residence 

time is increased from 0.55 to 1 s. This trend was further investigated below using the F0AM 

model.  

 

Table 3.6 Experimental sensitivity factors for CH3O2 and HO2 at different residence times. 

 Residence Time(s) HO2 

(HOx mode) 

CH3O2 

(ROx mode) 

 

Experimental 

Sensitivity 

(cps cm-3 mW-1) 

0 3.70×10-8 0 

0.55 1.45×10-8 2.4×10-8 

1 5.7×10-9 7.2×10-9 

 

 

Simulations constrained by the initial concentrations of HO2 in the HOx mode and RO2 in 

the ROx mode conditions were performed for comparison with the measured sensitivity factors. 

Here we compare the relative changes in sensitivity (normalizing the sensitivity factors to that 

observed without the conversion flow-tube for HO2, i.e. 3.70×10-8 cps cm-3 mW-1, and to that 

observed at 0.55 s of residence time for CH3O2, i.e. 2.4×10-8 cps cm3 mW-1) to the relative changes 

in modelled concentrations of HO2 (normalized by the initial radical concentration for HO2, and by 

the modelled HO2 concentration at 0.5 s of residence time for CH3O2). Other operating conditions 

can be found in Table 3.2. The results are shown in Figures 3.20 and 3.21 for HO2 and CH3O2, 

respectively, where 3 different HO2 wall loss rates have been used: 1.1, 1.35 and 1.7 s-1, 

corresponding to the experimental determination (see section 3.4), an upper bound of the 

experimental determination (+3σ, error on the determination) and adjusted to fit the relative change 

observed for 𝐶𝐻𝑂2
𝐹𝑇  in Figure 3.20.  

The comparison shown in Figure 3.20 for HO2 indicates that the previously measured HO2 loss 

rate of 1.1 s-1 cannot explain the relative decrease in sensitivity observed in these experiments as 
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the residence time is increased. Using the upper bound value is also not sufficient and the wall loss 

rate must be increased to 1.7 s-1 to correctly describe the relative change in 𝐶𝐻𝑂2
𝐹𝑇 . This behavior is 

not well understood and may indicate that the wall loss rate changed since it was measured in 

section 3.4. This particular aspect needs to be further investigated in future characterization tests 

of the ROxLIF apparatus. 

 

 

Figure 3.20 Experimental (markers) and modeled (dashed lines) dependences of 𝐶𝐻𝑂2
𝐹𝑇 on the flow-tube 

residence time.  

 

Similar to HO2, the relative change in the measured CH3O2 sensitivity for dry conditions is 

displayed in Figure 3.21 (left axis, blue symbol) and compared to 3 different simulations (right 

axis, dashed lines) with different HO2 wall loss rates. The relative change in RO2 sensitivity 

between 0.55 and 1.0 s of residence time seems to be better described by the simulation performed 

with a wall loss rate of 1.7 s-1.  
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Figure 3.21 Experimental (markers) and modeled (dashed lines) dependences of 𝐶𝐶𝐻3𝑂2
𝐹𝑇  on the flow-tube 

residence time. 

 

Finally, the sensitivity factors for different alkane-peroxy radicals (C2H5O2 and C3H7O2) have been 

measured adding ethane and propane in the calibrator and compared to the CH3O2 sensitivity at dry 

condition. The results reported in Table 3.7 indicate that the sensitivity for these different alkane 

peroxy radical is similar (within 10%). These experimental results are consistent with the model 

results discussed in section 3.4.2.1 indicating a similar conversion efficiency for different RO2 

radicals. However, the RO2 radicals tested are all short chain species and additional work is needed 

to test other types of peroxy radicals such as those generated from the oxidation of alkenes, 

aromatics and oxygenated VOCs. Fuchs et al. (2008) and Whalley et al. (2013) have shown that 

their ROxLIF instruments had the same sensitivity for differenet alkane peroxy radicals (within 

10%).  More generally, alkoxy radicals of large alkanes C>4 have the tendency to decompose or 

isomerize in competition to the reaction with O2. Thus, large alkyl peroxy radicals may generally 

have a reduced detection sensitivity compared to CH3O2 (Atkinson et al., 1997a). 
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Table 3.7 Measured relative sensitivity of the ROxLIF instrument for different RO2 

Hydrocarbon Peroxy radicals Relative sensitivity 

 𝐶𝑅𝑂2
𝐹𝑇 𝐶𝐶𝐻3𝑂2

𝐹𝑇⁄   

Absolute sensitivity 

(cps cm3 mW-1) 

Methane CH3O2 1 7.2×10-9 

Ethane CH3CH2O2 0.86 6.17×10-9 

propane C2H5CH2O2, 

(CH3)2CHCH2O2 

1.03 7.40×10-9 

 

3.4.5 Conclusions about calibrations  

 

The sensitivity of FAGE towards OH and HO2 and ROxLIF towards HO2 and RO2 have 

been determined using the water-photolysis technique as a calibrated source of OH, HO2 and RO2 

radicals, RO2 being generated through the addition of selected VOCs in the calibrator. The low NO 

concentration of 3.6×1011 cm-3 used in the FAGE detection cell reduced the RO2-to-OH conversion 

to approximately 4% (upper limit for β-hydroxyperoxy radicals) and led to a reduction of the HO2-

to-OH conversion to 13.8%. The HO2 sensitivity for ROxLIF was found to be approximately 6 

times lower than for FAGE due to significant losses of this radical in the conversion flow-tube. A 

counter-intuitive observation is that the RO2 sensitivity for ROxLIF is larger than that for HO2 by 

approximately 26%, which is due to a lower loss of HO2 molecules produced from RO2 conversion 

due to their shorter residence time in the flow-tube.  

For ROxLIF, comparing the observed relative change in HO2 sensitivity (from laboratory 

calibrations) and the relative change in HO2 concentrations simulated by the model when the 

residence time in the flow tube is varied indicates that the wall loss rate of HO2, which was 

measured experimentally before the calibration experiments, has to be increased from 1.1 to 1.7 s-

1. It is unclear whether the wall loss rate changed between these experiments and further work is 

needed to investigate this issue. Comparing the relative change in RO2 sensitivity and in the HO2 

concentration produced from RO2 conversion indicates reasonable agreement. 

The sensitivity for 3 different RO2 radicals generated from the OH reaction with methane, 

ethane and propane were similar within 10%. Additional work should be performed to investigate 

whether the sensitivity could significantly different for larger peroxy radicals exhibiting different 

chemical behavior. 
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3.4.6 Figures of merit under laboratory conditions 

 

The ROxLIF performances are characterized below using (1) detection limits for both HO2 

and the sum of RO2 radicals and (2) the measurement accuracy. The detection limit is the lowest 

radial concentration required to generate a fluorescence signal that is larger than the precision 

observed in the off-resonance signal. LODs are defined for a given signal to noise ratio (SNR=1, 

2, or 3):  

 

𝐿𝑂𝐷𝐻𝑂2 =
𝑆𝑁𝑅 × 𝜎𝑝

𝐶𝐻𝑂2
𝐹𝑇 × 𝑃𝑤

      (3.15)  

 

𝐿𝑂𝐷𝑅𝑂2 =
𝑆𝑁𝑅 × 𝜎𝑝

𝐶𝑅𝑂2
𝐹𝑇 × 𝑃𝑤

       (3.16)  

 

Here σp is the standard deviation of the background signal integrated during t seconds at N 

samples/second (Dusanter et al., 2009a) (Eq. 3.17). In this equation, 𝜎𝑜𝑓𝑓−𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 is the standard 

deviation of the off-resonance signal follows Poisson statistics at the native time resolution (here 1 

s). 

𝜎𝑝 =
𝜎𝑜𝑓𝑓−𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒

√𝑁𝑡
        (3.17)  

 

As seen from Eqs. 3.15-3.16, the LOD will depend on the instrument sensitivity for the targeted 

radical, the laser power inside the detection cell, and the scattering in the off-resonance signal due 

to laser power fluctuations, changes in Rayleigh and Mie scattering efficiency, and changes in solar 

scattered light (Dusanter et al., 2009a). For the FAGE technique based on photon counting, the off-

resonance signal statistic follows a Poisson distribution and 𝜎𝑜𝑓𝑓−𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 can be calculated as 

the square root of the measured off-resonance signal (𝜎𝑜𝑓𝑓−𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = √𝑆𝑜𝑓𝑓−𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 ) . 

A 5-hours period of 1-s off-resonance signals measured in the laboratory is shown in Figure 3.22. 

Dry zero air was provided to the instrument. NO was continuously added in the detection cell for 
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HO2 measurements and the laser power in the cell was 2 mW on average, similar to the laser power 

used during field measurements. The precision for the off-resonance signal (σp) is 0.2 cps for an 

integration time of 5 min. The measured sensitivity factors for HO2 and RO2 under dry conditions 

(Table 3.6) are 5.7×10-9 and 7.2×10-9 cps cm-3 mW-1, respectively. Assuming a water mixing ratio 

of 1%, these sensitivity factors drop to 4.4×10-9 and 5.7×10-9 cps cm-3 mW-1 for HO2 and RO2, 

respectively. The limits of detection derived for HO2 (Blue dashed line) and RO2 (red dashed line) 

for 5-min measurements are shown in Figure 3.22. Average LOD values for both HO2 and RO2 are 

approximately 2×107 cm-3 for a S/N of 1.  

The measurement accuracy depends on the error associated with the UV photolysis of water 

vapor calibration and is estimated to be ±18% (1σ) (Dusanter et al., 2008). 

 

 

 

Figure 3.22 Limits of detection for HO2 (Blue symbols) and RO2 (red symbols) under laboratory conditions. The 

gray symbols represent 1 s measurements and black symbols 5 min average. 

 

3.5  Deployment at the Indiana University Research and Teaching Preserve 

 

The first ambient measurements of RO2 and HO2 with this instrument were held at the Griffy 

Woods Field Lab in Bloomington, Indiana (US), during the indoor Radical & Aerosol Chemistry 
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Experiment (iRACE) in collaboration with Purdue University during the months of July and 

August 2019. The objective of this field campaign was to investigate how indoor radical chemistry 

can lead to the formation of secondary organic aerosol (SOA).   

For the ROx-LIF instrument, the iRACE study was a good opportunity to perform field testing at 

this forested site including both outdoor and indoor measurements. In addition, the deployment of 

the ROx-LIF instrument at this site allowed comparison with measurements during previous 

observations of radical species made at the same site during the 2015 IRRONIC campaign (Indiana 

Radical Reactivity and Ozone productioN InterComparison) (Kundu et al., 2019; Sklaveniti et al., 

2018). This section only presents the ROx-LIF measurements to illustrate the capabilities of this 

new instrument. A thorough analysis of the field data is outside the scope of this manuscript and 

will be conducted later when all the measurements performed during iRACE are available. 

 

3.5.1 Ambient (outdoor) campaign 

 

3.5.1.1 Description of the field site and collocated measurements 

 

Figure 3.23 shows the location of the measurement site (39.7908N, 86.502W), which is 

located 2.5 km east from the Bloomington University campus. This site was previously described 

by Kundu et al. (2019) and Sklaveniti et al. (2018) for the IRRONIC 2015 field campaign. The 

measurement infrastructure is part of the Indiana University Research and Teaching Preserve 

(IURTP) and is located at the interface between a mixed deciduous forest (sugar maple, sycamore, 

tulip polar, ash and hickory trees) and a moderately sized clearing. Deciduous trees are known to 

be strong emitters of isoprene (Kundu et al., 2019). The site is located about 1 km northeast of a 

road with moderate volume of traffic and can therefore be impacted by anthropogenic emissions. 
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Figure 3.23 Map of the sampling site (Kundu et al., 2019). The star symbol represents the Indiana University 

Research and Teaching Preserve (IURTP). The arrow represents a distance of 1 km. 

 

The ROxLIF instrument was setup as described in section 3.2.1.1. Briefly, 2.1 slpm of 

ambient air was expanded into the conversion flow-tube (45-cm length). The reagent gas CO (80 

sccm, 10% Matheson Inc) was added 2 cm downstream from the entrance of the flow tube for HO2 

measurements while CO and NO (3.5 sccm, 500 ppm, Indiana Oxygen) were added together for 

HO2 + RO2 measurements. The switch between the two measurement modes and the recording of 

the fluorescence signal was automated for this campaing through development with Labview 

software and the use of National instrument DAQ boards and solenoid valves. At the end of the 

conversion flow-tube, the air was split between FAGE equipped with the conical shaped nozzle 

and additional pumps. The measurement sequence was based on 5 minutes in the HOx mode and 5 

minutes in the ROx mode. During each five minutes segment, several on/off-resonance 

modultations were performed to acquire the net OH fluorescence signal (on/off cycle of 0.5 minute, 

with 0.3 minute on-resonance and 0.2 min off-resonance). The laser power inside the FAGE 
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detection cell was 3 mW on average. Outdoor ROxLIF measurements were performed from 17 to 

24 July and indoor measurements from 2 to 5 August, while the entire campaign was conducted 

over the 2 month of July and August. The reason for the short of covering of ROxLIF measurements 

during this campaign is that the FAGE detection cell had to be shared between OH and HO2
* 

measurements (IU-FAGE configuration) and HO2 and RO2 measurements (ROxLIF configuration).  

The ROxLIF instrument was calibrated before, during and after the campaign by generating known 

concentrations of HO2 and CH3O2 radicals (see calibration section for more details). However, 

calibrations performed before the campaign were invalidated due to technical issues (wrong 

position of the injector loop for CO and NO in the conversion flow-tube) and only calibrations 

performed during and after the campaign were used. 

In addition to ROxLIF, other measurements were performed during iRACE. This includes 

measurements of HONO (LP-LIF-FAGE, IU), total OH reactivity (TOHLM, IU), NOx (Thermo 

490 , IU), ozone (Teledyne 400 E, IU), water (LI-COR 6262, IU) and VOCs using a TD-GC/FID-

FID (Markes Unity 2/Agilent 7890B, IU), a Proton Transfer Reaction-Mass Spectrometer (PTR-

MS, IONICON 500, Purdue University) and off-line sampling on solid sorbent and DNPH 

cartridges (IMT Lille Douai). A few instruments were also deployed for particles, including an 

APS ans a SMPS (Purdue University.). Temperature and relative humidity were measured by the 

IU Met Station (NOVICK) and J(NO2) by a spectroradiometer. Information about instrumental 

limits of detection and time resolutions are given in Table 3.8. 
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Table 3.9 characteristics of the instruments used during iRACE by various institutions 

 Institution Technique/instrument LOD, time resolution 

NO & NO2 Indiana University Thermo 490C 50 ppt, 10 s 

Ozone Indiana University Teledyne 400E 0.5 ppb, 10 s 

HO2 and RO2 Indiana University ROxLIF (2-4)×107 cm-3 for HO2 

(1.5-3)×107 cm-3 for RO2 

5 min, S/N=1 

HONO, OH & HO2 Indiana University LP LIF-FAGE Data not available yet 

Offline cartridges IMT Lille Douai DNPH, solid sorbent  Data not available yet 

Water mixing ratio Indiana University LI-COR 6262  

T & RH  IU Met station NOVICK  

PTRMS IU Purdue IONICON 500 Data not available yet 

APS, SMPS IU Purdue  Data not available yet 

TD-GC/FID-FID Indiana University Agilent 7890B Data not available yet 

OH reactivity Indiana University IU-TOHLM Data not available yet 

JNO2  Spectroradiometer  

 

3.5.1.2 Description of ambient air masses 

 

Emissions at the iRACE site were dominated by biogenic processes, isoprene being the 

most emitted species (Kundu et al., 2019; Sklaveniti et al., 2018). This area can also be influenced 

by anthropogenic emissions from traffic and urban emissions from the city located on the East side. 

However, this pollution rarely reached the site due to wind directions bringing air masses emission 

from the city located west of the the site (Sklaveniti et al., 2018). Daytime maximum mixing ratios 

of NO and NO2 were approximately 300 pptv and 1.5 ppbv, respectively. The 1-h average mixing 

ratios of NO, NO2, O3 and H2O (%) as well as 1-h average values of JNO2 are displayed in Figure 

3.20. The ozone mixing ratio varied from the limit of detection on 18 July during the night to a 

maximum value of approximately 40 ppbv during most of the mid-days. The maximum NO mixing 

ratio ranged from 0.15-0.3 ppbv during the morning peak (between 7 and 9 AM).   

During the IRRONIC-2015 (Kundu et al., 2019) campaign held at the same measurement site and 

same period (July-August), the highest measured VOCs were low molecular weight alkanes (C2-

C5) (5.7±3.9 ppbv on a daytime average) followed by isoprene 3.6 ppbv. NO mixing ratios were 

between 0.2 and 0.8 ppbv during early morning (09:00-11:00 local time h), and NO2 mixing ratios 



 201 

 

ranged from 0.3-3 ppbv. The 24-average O3 concentration was 40 ppbv mid-day, with maximum 

values at 71 ppbv during daytime. 

Due to technical issues, the GC did not measure during the whole campaign. Continuous 

measurements started on 23 of July. The preliminary isoprene mixing ratios (time series data not 

available yet) ranged from 10-15 ppbv at the daytime peak before 23rd July and decreased to less 

than 8 ppbv after. This decrease is consistent with reduced isoprene emissions due to lower daytime 

temperatures (mid-day temperatures of 32°C before 23rd July and 25°C after). 
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Figure 3.24 Time series of NO, NO2, J(NO2), O3, T, RH, and H2O from July 17 to July 24, 2019 during the 

iRACE field campaign. 

 

3.5.1.3  Description of the ROxLIF measurements 

 

During the time period allocated to the use of ROxLIF (July 17 to July 25), ambient 

measurements of RO2 and HO2 were only performed on 6 days due to bad weather conditions 

(1day), and the need to calibrate the instrument (2 days). Nighttime measurements were only 
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successful on the first and last two nights of the campaign due to inlet clogging (insects getting 

stuck in the nozzle orifice). The limits of detection for HO2 and RO2 were (2-4)×107 cm-3 and (1.5-

3)×107 cm-3, respectively, for 5-minute average measurements and a S/N of 1. These limits of 

detection are close to the values observed in the laboratory before the field measurements (2×107 

cm-3). 

Time series of 5-min and 20 min average ambient measurements of RO2 and HO2 are shown 

in Figure 3.25. RO2 and HO2 measurements ranged from the LOD up to 2.5×109 cm-3, exhibiting 

a strong diurnal cycle characteristic of the photolytic nature of these radicals. A good correlation 

is observed between HO2 and RO2 as well as each of these measurements and J(NO2). The 

measured concentrations are similar to measurements performed at the same site during IRRONIC-

2015, where Kundu et al. (2019) reported a maximum measured concentration of 2×109 cm-3 for 

HO2+RO2 with their ECHAMP chemical amplifier. The measurements of HO2
* performed by IU-

FAGE, being the sum of HO2, isoprene-based peroxy radicals and other alkene-based peroxy 

radicals due to the use of an elevated NO concentration in the FAGE detection axis peaked at 2×109 

cm-3 cm-3.  Peroxy radical measurements performed during PROPHET 1997 & 2008 campaigns in 

a northern Michigan forest, HO2
* (Griffith et al., 2013a) or RO2+HO2 (Mihele and Hastie, 2003), 

and in the tropical rain forest in Malaysia, RO2+HO2 (Hewitt et al., 2010), also ranged from 2×108-

2×109 cm-3.  

The [HO2]/([HO2]+[RO2]) ratio during iRACE is shown in Figure 3.26 for the period between 

7:00AM and 7:00PM since nighttime concentrations were often close or below the limit of 

detection for both HO2 and RO2. The average ratio was pretty was fairly constant at a value of 0.5 

during the campaign, with the exception of the last day where the ratio increased to 0.8. HO2 

accounted for at least 50% of the pool of peroxy radicals at this site. This last day was characterized 

by lower isoprene concentrations based on the preliminary GC measurements. RO2 concentrations 

were observed with a mid-day average value of 4×108 cm-3 compared to 1×109 cm-3  on the previous 

days with higher isoprene concentrations. 
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Figure 3.25 Time series of RO2 and HO2 from July 17 to July 24, 2019 during the iRACE field 

campaign. The light and dark markers are 5-min and 20 mins average measurements, 

respectively. J(NO2) and T are also shown. 
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Figure 3.26  10 mins average ratios of [HO2] over [HO2]+[RO2] measured between 7:00 AM 

and 7:00 PM during the iRACE campaign. 

 

This first deployment of the ROxLIF instrument for ambient measurements of peroxy radicals 

showed its capability for measuring both HO2 and RO2 with detection limits close to that observed 

during laboratory testing. The similarities observed between the above measurements and those 

performed previously at the same site and other forested sites indicate that this instrument is 

behaving correctly. Additional work is now needed to thoroughly analyse the measured 

concentrations using box modeling. 

 

3.5.2 Indoor campaign 

 

 After outdoor measurements, the ROxLIF was moved inside the RTP Building to measure 

indoor peroxy radicals during the iRACE campaign. The indoor RO2 and HO2 radicals were 

measured inside a 20 m2 room between the 2nd and 5th of August, 2019. The room had 1 window 

facing east which allowed direct sunlight to enter in the morning. In this section, we only report 

measurements made on the 2nd of August (Figure 3.27) when various indoor residential activities 

took place, including cleaning and peeling off clementines. 

During this day the ventilation system of the room was active while cleaning activities were 

performed using a terpene-containing cleaner (pine-Sol). Figure 3.27 displays the measurements 

of HO2 (black symbols) and RO2 (red symbols) with an integration time of 0.5 min (0.3 min of on-

resonance and 0.2 min of off-resonance measurements) and mixing ratios of indoor ozone (blue 

line) during a 12-h period. Background concentrations of both HO2 and RO2 were on the order of 
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4-5×108 cm-3 during periods of no activity. These concentrations clearly increased in the 109 cm-3 

range with a concomitant decrease in ozone during each mopping episode in the presence or 

absence of sunlight (indicated by higher J(NO2) values). This suggests that the mopping episodes 

initiated radical oxidation chemistry through the ozonolysis of terpenes that led to the production 

of RO2 and HO2. The monoterpenes present in pine oil (a primary component of terpene-based 

cleaners such as Pine-Sol), such as 𝛼- and 𝛽-pinene as well as limonene, can be oxidized either by 

O3 entering the house through air exchange with outdoor (ventilation), leading to the production of 

RO2 and HO2 species as wall as OH. On the same day, 3 clementines were peeled at 2 PM inside 

the room. During the peeling episode, the concentration of RO2 and HO2 increased from < 5×108 

cm-3 to approximately 1.5×109 cm-3 together with a decrease of ozone. The concentrations of 

peroxy radicals produced during this episode were lower than the concentrations produced by 

mopping. 

An interesting feature of each of these episodes is the faster decrease of RO2 radicals compared to 

HO2. The fate of peroxy radicals indoor will mainly depend on their cross- and self-reactions but 

also on their reaction with NO. Comparing the rate constant of HO2+NO (8.7×10-12 cm3 molecule-

1 s-1) to the rate constant of CH3O2+NO (7.9×10-12 cm3 molecule-1 s-1), C2H5O2+NO (9.3×10-12 cm3 

molecule-1 s-1) and limonene-based peroxy radicals+NO (9.2×10-12 cm3 molecule-1 s-1) shows that 

the loss rate of HO2 and RO2 should be similar, with a slightly faster loss of RO2 compared to HO2 

if reactions of peroxy radicals with NO were their main sink in this environment. In contrast, 

comparing the rate constant of HO2+HO2 (3.3×10-12 cm3 molecule-1 s-1 at a mixing ratio of 1% 

water) to the rate constants of CH3O2+HO2 (5.4×10-12 cm3 molecule-1 s-1), C2H5O2+HO2 (8.4×10-

12 cm3 molecule-1 s-1) and limonene-based peroxy radicals+HO2 (2.2×10-11 cm3 molecule-1 s-1) 

shows that the loss rate of RO2 should be much faster than for HO2, especially for monoterpene-

based RO2. A close inspection of Figure 3.27 shows a fast decrease of both RO2 and HO2 when 

RO2 is larger than 5×108 cm-3 and a slower decrease of HO2 once most RO2 have been reacted 

away, which is consistent with HO2+HO2 and RO2+HO2 being the main sinks of peroxy radicals 

during these experiments. 
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Figure 3.27 Indoor measurements of RO2 and HO2 during mopping activities on August 2nd. The 

yellow rectangles indicate mopping events and the orange vertical line marks the clementine 

peeling. 

 

3.5.3 Figures of merit under field conditions 

 

Measurements of the background signal of the ROxLIF instrument were performed on the 

25th of July for more than 2 hours (9:30 AM-12 PM) under ambient conditions (outdoor). The 

extracted off-resonance signals from the two measurement modes (HOx and ROx) are displayed in 

Figure 3.28. The precision on the off-resonance signal was 0.3 cps at 1σ and 5 min integration time 

for both modes. No difference was observed between HOx and ROx off-resonance signals with and 

without the presence of NO in the conversion flow-tube, respectively. The calibrated sensitivity for 

HO2 and RO2 under dry conditions ranged between (4.8-5.3)×10-9 and (6.3-7.8)×10-9 cps cm-3 mW-

1, respectively. These sensitivity factors are approximately two times higher than the values 

reported in Table 3.6 from post-calibrations performed in the laboratory. However, a similar water-

dependence was observed for the field calibrations and the post-calibrations. We believe that the 

difference in sensitivity observed between these two sets of calibrations is due to the approach used 

to normalize the sensitivity factors to the laser power. In this approach, the laser power is measured 

at the detection cell before the entrance mirror (white cell configuration). Different alignments in 
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the coupling between the fiber launcher and the detection cell can lead to different transmissions 

of the laser light inside the cell. Indeed, if half the photons are blocked by the entrance mirror, the 

sensitivity normalized to the laser power measured at the exit of the fiber will appear half as high. 

It is therefore important to calibrate the instrument under the same configuration (fiber-detection 

cell coupling) as used in the field to ensure a reliable retrieval of ambient radical concentrations. 

The limit of detection observed for HO2 (blue dashed line) and RO2 (red dashed line) are 

shown in Figure 3.28. The light-grey dots represent the background signal at an integration time of 

0.2 min while black dots are 5-min averages. The average LOD for HO2 was (2-4)×107 cm-3 and 

that for RO2 was slightly better at (1.5-3)×107 cm-3 for S/N= 1. 

As already mentioned, the error associated with the UV-water photolysis calibration technique of 

±18% (1σ; Dusanter et al., 2008) represents the accuracy of these peroxy radical measurements.  

 

 

 

Figure 3.28 Limits of detection for HO2 (blue markers) and RO2 (red markers) measurements for a duration of 2.5 

hours. 
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3.6 Conclusions 

 

The objective of this work was to assemble and couple a RO2 conversion flow-tube on the 

inlet of an existing LIF-FAGE instrument to extend the measurement capability of this instrument 

to HO2+RO2. A second objective consisted of deploying the new apparatus in the field to test it for 

real ambient measurements and to assess its performances. The construction of the conversion 

flow-tube, its characterization in the laboratory and the field deployment were achieved at Indiana 

University (USA) over a period of 18 months. 

This work involved the design and construction of the flow-tube and attaching it to the 

existing IU-FAGE instrument. The different parts of the flow-tube were built by the IU Mechanical 

Instrument Services. It also required was the coding a Labview software  program to automate the 

measurement sequence. The operating conditions for the conversion flow-tube were optimized to 

maximize the instrument sensitivity to HO2 and RO2 through both laboratory experiments and 

model simulations. Optimum conditions were identified by varying several parameters such as the 

concentration of the reagent gases (CO, NO), the pressure and the residence time in the flow-tube. 

The conditions selected for this ROxLIF instrument are 0.8 ppmv NO, 0.4% CO, 28 torr reactor 

pressure and 1 second residence time.  

The sensitivity of the instrument toward HO2 and RO2 radicals was calibrated using the 

UV-water photolysis method and was compared to model simulations in order to see how well 

sensitivity changes with flow-tube residence time are understood. The sensitivity factors for HO2 

and CH3O2 were found to be of the same order of magnitude, with the sensitivity towards CH3O2  

being 26% higher than for HO2. In addition, the sensitivity towards other peroxy radicals (methane, 

propane and ethane-RO2) was also calibrated. The results indicate that these RO2 radicals generate 

a similar response on the ROxLIF instrument (within 10%), which was found to be consistent with 

model simulations. The calibrated sensitivity is water dependent, as observed for FAGE, and is of 

the same order of magnitude, ca. 20-27 % reduction in sensitivity per % of water, which can be 

explained by the quenching of the OH fluorescence. The error associated with the UV-water 

photolysis calibration technique is estimated to be ±18% at 1σ, which represents the accuracy of 

the HO2 and RO2 measurements.  



 210 

 

The first field application of the new ROxLIF apparatus was performed at the Indiana 

University Research and Teaching Preserve (IURTP) as part of the IRACE field campaign during  

summer 2019. Ambient measurements of RO2 and HO2 were found to range between 4×108 and 

2.5×109 cm-3 in this forested environment, consistent with previous measurements of peroxy 

radicals performed at the same site. In addition, indoor measurements performed during the same 

campaign highlighted the dynamic of peroxy radical concentrations during cleaning activities. 

Limits of detection determined from the precision of the off-resonance signals were about 2×107 

cm-3 for HO2 and RO2 , using 5-minute integration times and a signal-to-noise ratio of 1. This field 

testing demonstrated that this instrument is capable of measuring concentrations of peroxy radicals 

in various environments. 

However, several aspects need to be further evaluated to ensure the reliability of the measurements. 

Additional tests need to be done using different coating materials for the inner surface of the flow-

tube in order to reduce the loss of radicals to gain understanding of why the radical loss may have 

changed during the characterizations tests described above. It is also important to experimentally 

investigate the effect of pressure on the ROxLIF response when CO/NO are kept at the same 

concentration. The sensitivity for different RO2 radicals also need to be tested to ensure that all 

RO2 exhibit similar sensitivities, especially NO3-adduct RO2 radicals which are expected to exhibit 

a lower response (Whalley et al., 2018b). Lastly, potential interefences should also be investigated, 

including the thermal decomposition of peroxy nitric acid (HO2NO2) and methyl peroxy nitric acid 

(CH3O2NO2) in the conversion flow-tube (Whalley et al., 2018b).   

Future improvements for this instrument may concern: (i) a longer and wider flow-tube to  

reduce the surface to volume ratio, which in turn should lead to a decrease of HO2 wall losses, (ii) 

the use of different coating materials to further reduce HO2 wall losses as discussed above, (iii) a 

shorter residence time in the flow-tube (0.5-0.6 s) to increase the signal detected from the 

conversion of RO2 (60-65 % of sampled RO2 detected instead of 40%). 

Fianly, the indoor and outdoor measurements performed in July-August 2019 during the 

iRACE campaign will be interpreted together with the concomitant measurements of trace gases 

and aerosols.   
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Chapter 4. Preliminary analysis of the ROx intercomparison campaign 
 

This chapter reports a preliminary analysis of an intercomparison campaign held at the ICARE 

(Institut de Combustion Aérothermique Réactivité Environnement) institution in Orléans (France). 

The chemical amplifier described in chapter 2, a FAGE instrument developed at the PC2A 

laboratory (University of Lille) and a ROx-CIMS instrument from the LPC2E laboratory 

(University of Orléans) were coupled to the HELIOS Atmospheric Simulation Chamber (ASC). 

The 3 instruments measured peroxy radical concentrations simultaneously during several oxidation 

experiments.  

In this chapter, we first describe HELIOS and the various instruments that were coupled to 

this ASC for the peroxy radical intercomparison. The radical measurements are then compared to 

and contrasted with box model simulations to get insights into both the reliability of these 

measurements and the kinetic experiments performed in HELIOS. 

 

4.1 Introduction  

 

Intercomparison exercises are an important stage in the development and validation of 

analytical instruments and measurement techniques. Such experiments can be performed under 

controlled conditions in ASC or under more realistic conditions in ambient air during intensive 

field campaigns. The use of an ASC overcomes the problem of sampling inhomogeneities which 

cannot be excluded in ambient air (Fuchs et al., 2010; Schlosser et al., 2009). Potential calibration 

errors during these exercises also represents an important aspect that can be investigated through 

exchanges of calibration sources. 

Few ambient and chamber intercomparison exercises have been conducted for HO2 and RO2 

measurement techniques during the last decades. Fuchs et al. (2010) performed a formal blind 

intercomparison for HO2 measurements involving three FAGE instruments during the HOxComp 

campaign in ambient air and in the SAHIR chamber at the Forschungszentrum Julich in Germany. 

All instruments were based on the same calibration scheme, i.e. the water photolysis approach 

(chapter 1, section 1.2.5).  The measurements included three days of sampling of ambient air and 

six experiments in SAPHIR (Oxidation of various hydrocarbons and ozonolysis of alkenes). For 

both ambient and SAPHIR observations, the measurements were highly correlated between each 
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instrument, quantitative agreement was variable. The ambient results revealed significant 

discrepancies between instruments with regression slopes ranging between 0.59 and 1.46. The 

measurements performed inside the chamber were in better agreement with regression slopes in 

the range of 0.69 to 1.26. While these results indicate differences that lies within measurement 

uncertainties, the linear regressions between measurements performed in SAPHIR were 

statistically improved when the data was grouped into subsets of similar water-vapor 

concentrations, suggesting an unknown artifact that is related to water-vapor. An older 

intercomparison of ambient HO2 measurements was performed between the Penn State LIF-FAGE 

instrument and the NCAR/University of Colorado PerCIMS instrument at a rural site in the US, 

indicating an excellent agreement with a regression slope close to unity ( Ren et al. 2003). 

Similarly, only a few ambient and chamber intercomparisons have been reported for total peroxy 

radicals ([HO2] + [RO2]), and these have produced mixed results. There was only one attempt to 

intercompare instruments measuring total peroxy radicals inside an ASC, that has been reported 

involved the Julich ROxLIF and MIESR instruments (Fuchs et al., 2009). The authors report a 

comparison during two experiments that led to the formation of HO2, CH3O2, and C4H7O2 in the 

chamber from the OH-oxidation of methane and 1-butene. The results indicated an excellent 

agreement, with a regression slope of 0.96 and a r2 factor of 0.85. The most recent ambient 

intercomparison field study for total peroxy radicals involved a chemical amplifier (ECHAMP) 

and a FAGE instrument during the IRRONIC field campaign at a forested site in Indiana. While 

the two instruments were not measuring exactly the same pool of peroxy radicals, measurements 

of calibration sources based on acetone photolysis and water photolysis were in agreement within 

12%. In addition, the comparison of ambient data provided encouraging results that the two 

instruments were consistent with each other. Another chemical amplifier (PERCA) and the MIESR 

technique were compared in a rural, semi-polluted site, during the BERLIOZ campaign for two 

days as reported in Platt et al. (2002). The results indicated a good agreement with a slope of 1.07 

and a R2 factor of 0.91. However, a previous intercomparison campaign conducted in a forest 

between two chemical amplifiers (PERCA) showed differences up to a factor of 3 (Burkert et al., 

2001). 

These intercomparison experiments have sometimes highlighted good agreement between 

instruments, but have also shown some disagreements. In addition, intercomparison experiments 

involving all types of instruments have yet to be performed. 
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4.2 Description of HELIOS chamber and the experiments conducted 

 

4.2.1 Characteristics of the HELIOS chamber  

 

HELIOS (Figure 4.1) is one of the largest outdoor chambesr in the world, which has been 

assembled on the roof of the ICARE building in Orleans (France). A detailed description of the 

chamber can be found in Ren et al. (2017). This ASC consists of a Teflon FEP film of hemispherical 

shape (volume of 90 m3, thickness of 250 µm) that is supported by an epoxy frame. The epoxy 

frame inside the chamber is covered by Teflon tubes to minimize surface interactions with the air 

mixture. A movable protective housing system allows the chamber to be quickly opened and closed 

to control exposure of the mixture to sunlight. The irradiation conditions can be changed from full 

sunlight to completely dark within 30 s, allowing the study of both daytime and nighttime 

chemistry. The FEP material is known to be transparent to solar radiation allowing transmission of 

88 to 95% of sunlight, depending on the wavelength. The base of the chamber has four access ports 

to enter the chamber from the laboratory located below. The floor of the chamber is also covered 

by FEP material (500 µm thickness), so that the whole inner surface of the chamber has the same 

physico-chemical properties. 

Dry zero air is supplied by a generator from AADCO Instruments (737 series) and two fans 

are installed opposite to each other inside the chamber to mix the reactants within 90 s. Compounds 

are introduced into the chamber wither by vaporizing a known amount of the liquid chemical in a 

flow of zero air using a syringe, or by injecting a know volume of a gas mixture. The chamber is 

flushed with zero air at 800 L min-1 each night between experiments to clean the chamber. When 

ozone is introduced into the chamber, it is generated through photo-dissociation of oxygen using a 

Pen-RAY mercury lamp in a small flow of zero air. 

SF6 was injected in the chamber as a dilution tracer during the experiments and was 

measured using the FTIR (see section 4.2.2.1). For all experiments, the dilution rate was calculated  

to be kSF6  = 1.7×10-5 s-1. 
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Figure 4.1 Photograph of the HELIOS chamber (Left) and 3D view (Right). (www.helios-cnrs.org)  

 

4.2.2 Instruments coupled to HELIOS 

 

4.2.2.1 Measurements of trace gases and meteorological parameters 

 

Several instruments sampled from HELIOS for the intercomparison experiments (Table 4.1), 

including a Proton Transfer Reaction-Time of Flight Mass Spectrometer (PTR-ToFMS), monitors 

for CO, formaldehyde and NOx, a spectroradiometer and several RH and temperature probes. 

The PTR-ToFMS method is based on soft ionization of VOCs using H3O
+ as reagent ions to 

produce ionized VOCs that are then detected by a ToFMS detector. H3O
+ is produced by flowing 

water-vapor in a high voltage discharge (hollow cathode) and then injected into a reaction chamber 

(drift tube) to react with the sampled VOCs. VOCs are separated in the ToFMS based on their 

mass-to-charge ratio (m/z). In this work, the PTR-ToFMS mass spectra were analyzed with the 

PTR-ToF Data Analyzer Software (Müller et al., 2013) with detection limits as reported elsewhere 

(Ren et al., 2017) and ranged from 0.1-0.2 ppbv. 

The Formaldehyde (HCHO) measurements made use of an Aerolaser AL4021 analyzer which 

exhibits a detection limit and a precision of ≈100 pptv and 2%, respectively. This analyzer is based 

on the Hantzsch reaction in liquid phase, involving the reaction of HCHO with acetyl-acetone and 

ammonia to form 3,5-diacetyl-1,4-dihydrolutidine (DDL).  

The NOx concentrations were measured using a chemiluminescence analyzer from ThermoFisher 

(Model 42i Trace Level). The analyzer has a detection limit of approximately 50 pptv. A CAPS 

(Cavity Attenuated Phase Shift) instrument from AERODYNE was also used for selective NO2 
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measurements. The supporting measurements of carbon monoxide were performed by in situ FTIR 

spectroscopy (Bruker Vertex70 spectrometer) coupled to a White-type multipass cell (302.6 m 

optical path length). Ozone concentrations were measured using a UV-absorption analyzer 

(HORIBA, APOA 370) with limit of detection of 1 ppbv 

Photolysis frequencies of H2O2 and NO2 were measured by a spectroradiometer (Meteorologie 

Consult GmbH 6007). Six thermocouples (PT-100) and RH probes were distributed through out 

the chamber to measure temperature and humidity. Temperature differences between 

measuremnets were within ±1K for the temperature.  

 

Table 4.1 Specifications of instruments used during the peroxy radical intercomparison 

 Technique LOD 

CO FTIR  

VOCs PTR-ToFMS (IONICON 8000) 0.1-0.2 ppbv 

HCHO Aerolaser AL 4021 ≈100 pptv 

Ozone UV-absorption analyzer  

(HORIBA, APOA 370) 

1 ppbv 

NOx Chemiluminescence analyzer  

(ThermoFisher, Model 42i Trace Level). 

≈50 pptv 

 J(H2O2) and J(NO2) Spectroradiometer  

(Meteorologie Consult GmbH 6007) 

 

Pressure, temperature, relative 

humidity 

Thermocouples (PT-100), Pressure and RH probes.  
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4.2.2.2 UL-FAGE: HO2 and HO2
*  

 

The UL-FAGE instrument has a design similar to that described in chapter 3. This 

instrument is made up of two fluorescence cells that are connected in series to measure OH and 

HO2 radicals. The technique and its principle have been detailed in chapter 1 and in previous reports 

(Amedro et al., 2012; Parker et al., 2011). The HO2 cell is downstream of the OH cell and the 

pressure in each is about 1.9 torr. Ambient air is pumped at 9.2 L min-1 through a 1 mm pinhole 

using an Edwards GX6/100L pump. OH excitation (308.244 nm/ Q1(3)) is performed by a 5 kHz 

laser using a frequency doubled dye laser (Sirah Laser PrecisionScan PRSC-24-HPR) pumped by 

the frequency doubled output of a Nd:YVO4 laser (Spectra Physics Navigator II YHP40-532QW). 

The detection limits for OH and HO2 are 3×105 and 4×106 molecule cm-3, respectively.  

In this campaign, the HO2 detection cell was used to sequentially measure HO2 (low NO 

concentration of 3.7×1012 molecule cm-3 added) and HO2
* (high NO concentration of 7.3×1013 

molecule cm-3). The measurement mode was switched every 3-5 minutes for the experiments 

performed in HELIOS. 

 

4.2.2.3 IMT LILLE DOUAI CA: HO2+ RO2 

 

The dual channel Chemical Amplifier (CA) used during the intercomparison campaign was 

described in Chapter 2. The only difference between the configuration reported in chapter 2 and 

this campaign was the length of the two reactors, and the length of the Teflon tube bringing the 

sample to the CAPS detectors, which were extended to 5 and 4 m, respectively. The amplification 

chemistry used during this campaign was based on the PERCA approach (CO/NO reagents) and 

the CA is referred to as PERCA in the following. 

Briefly, the instrument was operated in two modes (amplified and background modes). In the 

amplified mode, NO and CO reagent gases are added to the reactor (right after sampling) to convert 

sampled peroxy radicals (through an amplification chemistry), ambient NO and O3 into NO2. In 

background mode, CO is replaced by N2, ambient NO and O3 are converted into NO2 and the 

peroxy radicals are not amplified. The difference in NO2 between the two modes is used to derive 

the ambient HO2+RO2 concentration provided that the Chain Length (CL) of the amplification 
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chemistry has been adequately characterized. The CL calibrations with the longer reactor are 

described in the calibration section (4.2.4). 

 

4.2.2.4 Orleans-CIMS: HO2+ RO2 

 

The CIMS instrument was used to measure OH and total peroxy radicals (HO2 + RO2). The 

principle of this technique was described in chapter 1 and details on the instrument used during the 

intercomparison exercise can be found in Kukui et al. (2008). Briefly, the instrument consists of a 

chemical conversion reactor (CCR), an ion molecule reactor (IMR) and a mass spectrometer. This 

CIMS has two measurement modes to differentiate between OH and total peroxy radicals. In OH 

mode, only SO2 is added to the reactor to convert the sampled OH into H2SO4 in the presence of 

water vapour and oxygen. For total peroxy radical measurements, SO2 and NO are added to the 

CCR where RO2 and HO2 are converted into OH via reactions with NO. OH is then converted into 

H2SO4, which is ionized into HSO4
- (NO3

- reagent ion) in the IMR. Air is sampled at a flow rate of 

10 lpm, creating a turbulent flow in the CCR which provides a fast conversion of OH into H2SO4.  

 

4.2.3  Description of HELIOS experiments 

 

Several experiments were conducted in HELIOS from 8-16 October 2018 to generate 

different pools of peroxy radicals as shown in Table 4.2. These experiments are discussed in the 

following sub-sections. 
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Table 4.2 Experiments conducted during the peroxy radical intercomparison 

Date 

(2018) 

Chemical system Irradiation 

conditions 

Ranges of  

RH and T  

Peroxy radicals 

generated 

8 Oct. Production of HO2 

Oxalyl chloride (ClCO)2   

+ dihydrogen (H2) 

sunlight 5-45 % 

15-35 °C 

 

HO2  

10 Oct. Ozonolysis of pentene 

Pentene (C5H8)  

+ ozone (O3) 

dark 30-50% 

15-30°C 

Pentene-RO2  

HO2 

12 Oct. Production of HO2 & CH3O2 

Oxalyl chloride (ClCO)2   

+ dihydrogen (H2) 

+ methane (CH4) 

sunlight 65-30% 

20-30°C 

HO2  

CH3O2 

15 Oct. Ozonolysis of α-pinene 

α-pinene (C10H16)  

+ ozone (O3) 

dark 50-35% 

20-25°C 

α-pinene-RO2  

HO2 

 

4.2.3.1 Photolysis of oxalyl Chloride in presence of dihydrogen and methane 

 

The goal of these experiments was to investigate the response of the three instruments to two 

of the most abundant peroxy radicals in the atmosphere, i.e. HO2 and CH3O2. These radicals were 

produced from the oxidation of dihydrogen and methane. 

Oxalyl chloride, (ClCO)2 has been used a source of chlorine atoms for kinetic experiments. 

Several studies investigating the (ClCO)2 photodissociation at 193, 248, and 351 nm suggest a two-

step mechanism involving the formation of an excited ClCO* radical (R1) (Ahmed et al., 1997), 

which can then dissociate into Cl and CO (R3) depending on the photolysis wavelength (Baklanov 

and Krasnoperov, 2001; Hemmi and Suits, 1997)  : 

 

(𝐶𝑙𝐶𝑂)2 + ℎ𝑣 → 𝐶𝑙𝐶𝑂
∗ + 𝐶𝑂 + 𝐶𝑙        R1 

(𝐶𝑙𝐶𝑂)2 + ℎ𝑣 → 𝐶𝑙2 + 2𝐶𝑂                   R2 

𝐶𝑙𝐶𝑂∗ → 𝐶𝑙 + 𝐶𝑂                                     R3 
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The chlorine atom can react with hydrogen (H2) or methane (CH4) to generate hydrogen chloride 

and HO2 or CH3O2. The reactivity of Cl atoms towards most VOCs is similar to that of OH radical 

(though often faster), proceeding via H-abstraction. The reaction mechanisms are simplified as 

follows: 

 

𝐶𝑙 + 𝐻2
𝑂2 
→ 𝐻𝐶𝑙 + 𝐻𝑂2                  R4 

𝐶𝑙 + 𝐶𝐻4
𝑂2 
→ 𝐻𝐶𝑙 + 𝐶𝐻3𝑂2           R5 

 

The yield of Cl atoms was found to be dependent on the wavelength of the photolysis radiation. 

The Cl yield was determined by the ICARE group inside the HELIOS under sunlight exposed 

conditions (unpublished work). The relative yields of CO and Cl were derived by comparing the 

(ClCO)2 loss rate with the production rates of CO and Cl atoms. The Cl production rate was derived 

from the measured steady state of HO2 or CH3O2 radical concentrations generated by scavenging 

Cl by H2 or CH4, respectively. Relative Cl yields of unity and 0.45 have been observed at 3% and 

30% relative humidity, respectively.  

The peroxy radicals generated in the chamber will then react by self- and cross-radical radical 

reactions: 

 

𝐻𝑂2 + 𝐻𝑂2 +𝑀 → 𝐻2𝑂2 + 𝑂2 +𝑀   R6 

𝐶𝐻3𝑂2 + 𝐶𝐻3𝑂2  →  𝐶𝐻3𝑂𝐻 + 𝐶𝐻2𝑂 + 𝑂2  R7a 

𝐶𝐻3𝑂2 + 𝐶𝐻3𝑂2  →  𝐶𝐻3𝑂 + 𝐶𝐻3𝑂 + 𝑂2  R7b 

𝐶𝐻3𝑂2 + 𝐻𝑂2 →  𝐶𝐻3𝑂𝑂𝐻 + 𝑂2   R8 

 

H2 and CH4 oxidation experiments were carried out separately in HELIOS on 8 and 12 October 

2018, respectively. 
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4.2.3.2 Ozonolysis of pentene and α-pinene under dark conditions 

 

A second group of experiments was designed to investigate the response of the three radical 

instruments to more peroxy radicals more complex than HO2 and CH3O2. It was chosen to perform 

ozonolysis experiments of alkenes under dark conditions to generate simple (pentene-based RO2) 

and more complex (α-pinene-based RO2) pools of peroxy radicals. Dark conditions were chosen to 

exclude photochemical reactions and to simplify the chemistry in the chamber. These two 

compounds exhibit quite different rate constants with O3, with α-pinene being much more reactive 

than pentene. The reaction rate constant for 1-pentene and O3 has been determined in several 

studies to be  1.1×10-17 cm3 molecule-1 s-1 (Avzianova and Ariya, 2002) while the rate constant for 

α-pinene is approximately 10 times faster with a value of 1.3×10-16 cm3 molecule-1 s-1 (Duncianu et 

al., 2012) . Pentene and α-pinene ozonolysis experiments were carried out in HELIOS on 10 and 

15 of October 2018, respectively.  

Ozonolysis reactions of alkenes form a primary ozonide as described in chapter 1 (section 

1.1.1.1), which then rapidly decomposes to produce carbonyls and Criegee biradical products. The 

excited Criegee biradical can either promptly decompose into radicals and stable products or 

become collisionally stabilized to form a stabilized Criegee intermediate (Atkinson et al., 1995; 

Horie and Moortgat, 1991; Nguyen et al., 2016; Ren et al., 2017), which will then slowly 

decompose into OH or react with water-vapor.  

 

4.2.4 Description of the PERCA calibrations 

 

PERCA was calibrated as setup on HELIOS, i.e. with a longer reaction tube due to practical 

limitations to couple the inlet of the instrument to the chamber (see section 4.2.2.1). Calibrations 

were performed using the water-photolysis radical source described in Chapters 1-3. Briefly, a 

known concentration of water-vapor is photolyzed at 184.9 nm by the emission of a mercury lamp 

to generate known concentrations of both OH and HO2. Isoprene was added to the calibrator to 

convert OH radicals into isoprene-RO2 radicals as described in chapter 2. 

The CIMS calibration source from the LPC2E laboratory was also sampled with the chemical 

amplifier to check whether the concentrations generated by this calibrator were consistent with 

those measured by PERCA. This cross-check of calibration sources is essential to determine 
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whether differences in chamber measurements could be due to calibration issues. The LPC2E 

calibrator is described in details in Kukui et al. (2008). While this calibration source is also based 

on the water-photolysis technique, a different actinometry approach was used to assess the 

generated radical concentrations (N2O actinometry). The radicals are generated by the photolysis 

of humid air in a circular flow-tube (D:1.8 cm & L:70 cm). The air flow rate used with this system 

ranges between 24 and 40 L min-1, leading to turbulent conditions. The UV light emitted by the 

mercury lamp is directed through a 10×5 mm quartz window and its intensity could be varied using 

a N2O chemical filter placed between the lamp housing and the flow tube. The light passes through 

a 184.9 nm bandpass filter before detection by a phototube after the photolysis zone. Water-vapor 

is generated by a set of a liquid mass flow controllers and an evaporator (Bronkhorst) and is 

measured by a humidity sensor placed at the entrance to the calibrator. The water system allows 

generating relative humidity ranging from 1 to 70 %. 

The impact of water on the PERCA chain length is one of the most important effects that 

has to be taken into account when calibrating this instrument. The CL dependence on water has 

been discussed based on modelled and experimental considerations as described in Chapters 1 & 

2. It was shown that the CL decreases with increasing relative humidity due to additional losses of 

radicals on the reactor wall and from an increase in the formation yield of HNO3 of the HO2+NO 

reaction. The CL dependence on relative humidity needs to be characterized accurately for each 

particular setup. As mentioned above, the two reactors of the chemical amplifier were replaced by 

new Teflon tubes having a length of 5 m (longer than used previously) to be able to place the 

sampling inlet within the HELIOS chamber.  

Full calibrations of the CL as a function of relative humidity were performed three times before (5 

October), during (11 October) and after (18 October) the chamber measurements to track the CL 

over the whole campaign. The results shown in Figure 4.2 reveal that the measured CL (black opem 

symbols), displayed vs. RH, was not stable over time and a decreasing trend was observed during 

the campaign. This behavior has been observed experimentally when PTFE reactors were tested 

on the laboratory prototype (Chapter 2, supplementary section). It was shown that the CL decreased 

from day to day until it reached a stable value close to that observed for PFA material, which was 

attributed to the aging of the surface inside the reactor. Interestingly, the calibration performed on 

18 October is close to that observed for the regular configuration of the chemical amplifier (Chapter 

2, figure 5) once the reactors have been passivated for a long period of time. 
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For this study we assumed that the CL was decreasing linearly with time and we generated 

interpolated calibration curves for the other days of the campaign as shown in Figure 4.3 as filled 

symbols. Only experimental calibrations performed on 5 and 18 October were used to interpolate 

the CL along the campaign and the calibration performed on 11 October was used as an indicator 

to check the reliability of these interpolations. As shown in Figure 4.2, the procedure used to 

interpolate the CL was able to resonably reproduce the values from calibrations on 11 October. The 

calibration curves shown in Figure 4.2 were used to determine the concentrations of radicals within 

HELIOS for each of these days. 

 

 

Figure 4.2  Average calibration curves of the chemical amplifier CL during the peroxy radical 

intercomparison. The curves come from non-linear fits to a logarithmic function. Empty and filled markers are 

measured and interpolated CL values, respectively. 

 

The CIMS calibration source was tested on PERCA on 11 October. Several concentrations 

of HO2+CH3O2 ranging from 5×109 to 1.6×1010 cm-3 were generated at RH values ranging from 9 

to 29.8% at 28°C. The PERCA instrument was able to retrieve the generated concentrations within 

23%.   
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4.3      Comparison between measured peroxy radicals (CA, SAMU, FAGE) 

 

This section describes the measurements performed during the four experiments reported in 

Table 4.2. The comparisons between instruments is discussed for each experiment and general 

conclusions summarizing all the results is presented to provide an overall picture of the comparison 

exercise.  

Here we remind the reader that the chemical amplifier and SAMU measures HO2+∑(1-Y)×RO2, 

where Y is a parameter accounting for the organic nitrate yield from RO2+NO and the organic 

nitrite yield from RO+NO in the conversion chemistry of the two instruments. FAGE measured 

HO2 (low NO added in the detection cell) and HO2* (high NO), the latter being the sum of HO2 

and alkene- and aromatic-based peroxy radicals (see chapter 1, section 1.2.4). 

 

4.3.1 Oxalyl chloride photolysis experiments 

 

4.3.1.1 Dihydrogen / Oxalyl chloride: H2 + Cl HO2 

 

Oxalyl chloride was photolyzed in the presence of H2 to generate large concentrations of 

HO2 inside HELIOS (R4, section 4.2.3.1). This chemical system was used first to test the response 

of the different instruments to the simplest peroxy radical and to check calibrations through the 

observation of the HO2 decay rate when the chamber is rapidly brought into dark condition as 

performed in other recent studies (Onel et al., 2017a, 2017b) . 

The injection sequence of reactants into the chamber is reported in Table 4.3. The 

experiment started by opening the chamber at 11.13 (zero air, background trace gases, RH<5%) 

before the injection of other gases to observe the background reactivity in the chamber. Hydrogen 

was injected at 14:35 (50 ppm in the chamber) and oxalyl chloride two times to increase its mixing 

ratio to 27 ppbv (14:52) and 92 ppbv (15:55).   

 

 

 

 



 246 

 

Table 4.3 Experimental conditions on 8 October 2018 - H2 / (ClCO)2 

Injection 1st 2nd 3rd 

Injection Time  14:35 14:52 15:55 

N2, O2 Pure air Pure air Pure air 

Injection of H2 and (ClCO)2 

H2 (ppm) 50  - 

(ClCO)2 (ppb) 

 

0/27* 13/92* 

     HCHO, T and RH 

HCHO (ppb) 4  6 

RH(%), T(ºC) 30/37  30/37  

*before/after injection. All mixing ratios are measured values (with 

the exception of H2) 

 

Chemical species released by the chamber (wall desorption or reactivity) or produced from the 

oxidation of species released by the wall were observed in the chamber, including O3, NO2 and 

HCHO. The ozone concentration started to increase from below the detection limit to a maximum 

of 5 ppbv at mid-day. NO2 increased over the experiment to a maximum mixing ratio of 7 ppbv 

while NO increased from the limit of detection to 0.4 ppbv and rapidly decreased below detection 

limit after the first injection of oxalyl chloride. Formaldehyde steadily increased over the 

experiment from the detection limit to a maximum mixing ratio of approximately 7 ppbv. The 

auxiliary mechanism for the background reactivity of this chamber has recently been reported on 

the EUROCHAMP-2020 website and confirms the release of these species and additional 

compounds such as HONO.   

The peroxy radicals mixing ratios (HO2+potential RO2 generated from the oxidation of VOCs 

released by the wall) varied from approximately 1 pptv before irradiation (chamber in the dark, dry 

conditions) to approximately 200 pptv. The PERCA and SAMU measurements are in good 

agreement most of the time once oxalyl chloride was injected (after 14:52) with differences lower 

than 20%. A scatter plot of PERCA vs. SAMU is shown in figure 4.4 and indicates a slope of 1.06 

and an intercept of 7.3 ppt. However, a close inspection of the comparison before 14:52 indicates 

that PERCA measured higher mixing ratios than SAMU and a scatter plot of this period (insert in 

figure 4.4) indicates a slope of approximately 1.6 with an insignificant intercept. Excluding the 
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period 12:15-14:15 from the analysis (red markers) leads to a slope of 1.09 and an intercept of 1.7 

pptv. Indeed, the excluded period corresponds to the chamber humidification when RH was rapidly 

increased from approximately 3 to 30%. During this period, both FAGE and SAMU measurements 

did not vary significantly, only PERCA exhibited an increase in the measured mixing ratios. This 

rapid change in humidity likely disturbed the PERCA measurements, or the calculation of the CL 

used to derive the peroxy radical mixing ratios, due to either the formation of water-particles in the 

chamber when water was introduced (observed on SMPS measurements, not shown), a non-

negligible time required to equilibrate the amount of water adsorbed on the PERCA reactors inner 

surface when RH changes rapidly, or the use of RH values measured in the chamber to calculate 

the CL in the reactors where RH may be lower. 

Both the HO2 and HO2
* measurements from FAGE are significantly lower than the PERCA 

and SAMU measurements (approx. 58% of the SAMU measurements, Figure 4.5), which seems to 

indicate that organic peroxy radicals were present in the chamber perhaps due to the release of 

VOCs from the wall or some heterogeneous chemistry. Comparing HO2 and HO2
* suggest that 

alkene- and aromatic-based RO2 were not present. 
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Figure 4.3 Peroxy radical and ancillary measurements for 8 October 2018. Peroxy radicals measured by 

PERCA (red markers), SAMU (Blue markers) and FAGE (HO2-green markers & HO2*-yellow markers). Dashed 

and solid vertical lines refer to the opening and closing of the chamber, respectively.  
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Figure 4.415 Scatter plot between PERCA and SAMU measurements for 8 October 2018 (15-min average). The 

red markers correspond to measurements performed between 12:15 and 15:15.  Error bars are 1σ standard deviations. 

 

 

Figure 4.5 Scatter plot between FAGE and SAMU measurements for 8 October 2018 (15-min average). Error 

bars are 1σ standard deviations. 
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 The chamber was closed at 17:03 and a rapid decay of peroxy radicals was observed by the 

three radical instruments. Assuming that only HO2 was present in the chamber, the decay due to its 

self-reaction should be consistent with the following equation: 

 

1

[𝐻𝑂2]
=

1

[𝐻𝑂2]0
+ 2𝑘𝑡    (4.1) 

 

Here k reflects the HO2+HO2 rate constant of 4.5×10-12 cm3 molecule-1 s-1 at 33% RH. 

In order to probe the decay at a high time resolution with PERCA, the switch between amplification 

and background modes in each reactor and the switch between the CAPS monitors (chapter 2, 

section 2.3.1) were turned off. This allowed acquiring data at a time resolution of 1 s. The analysis 

of the data shown in Figure 4.6 indicates that three different decay rates are observed (Figure 4.7). 

These decays (left to right in Figure 4.7) correspond to the closing period of the chamber (red 

markers), when the chamber was completely closed (yellow markers) and once a large fraction of 

the peroxy radicals had disappeared (>80%) (blue markers). The first decay was rejected since it 

corresponds to a period where the chamber was still partially irradiated by the solar light and radical 

production was still occuring. The second and third decays indicate that HO2 was not the only 

peroxy radical present in the chamber and RO2 radicals were also likely present as suggested by 

the difference between FAGE and SAMU or PERCA measurements. The second (faster) decay is 

mainly attributed to the HO2+HO2 reaction while the third (slowest) decay is likely due to 

RO2+RO2 reactions. The second decay rate would lead to a rate constant k of 3.4×10-12 cm3 

molecule-1 s-1 using the PERCA data, which is lower than the self-reaction rate constant of 4.5×10-

12 cm3 molecule-1 s-1 calculated for HO2+HO2 at an RH of 33% and a temperature of 30°C using 

the MCM parameterization (http://mcm.leeds.ac.uk/MCMv3.3.1/home.htt.). The analysis of the 

observed decay leads to an underestimation of the rate constant due to the assumption that the 

measured peroxy radicals are only HO2. Interestingly, the third decay would lead to a rate constant 

for RO2+RO2 on the order of 5×10-13 cm3 molecule-1 s-1, which is close to values reported for this 

type of reactions (Atkinson et al., 2001). 

 

 

http://mcm.leeds.ac.uk/MCMv3.3.1/home.htt
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Figure 4.6 Peroxy radical (HO2+RO2) measured when the chamber is changed to dark conditions - PERCA 

(red markers) and SAMU( blue markers). 
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Figure 4.7 Peroxy radical (HO2+RO2) decay rates observed by PERCA (upper trace) and SAMU (lower trace) 

during the closing period of the chamber (red markers), when the chamber was completely closed (yellow markers) 

and once a large fraction of the peroxy radicals had disappeared (see text, blue markers). 

 

The same analysis performed on the SAMU data (Figure 4.7) leads to similar conclusions. 

Unfortunately, the HO2 data acquired during this period by FAGE needs to be revised and could 

not be used here to check whether the decay was consistent with the self-reaction of HO2. It was 

therefore not possible to use this experiment to check the calibration of each instrument. 

 

4.3.1.2 Hydrogen & methane / Oxalyl chloride: H2, CH4 + Cl HO2, CH3O2 

 

A second experiment using oxalyl chloride was performed on 12 October. This experiment 

was conducted to reproduce the formation of HO2 from H2 oxidation (8 October) and to switch 

from HO2 production to the production of both HO2 and CH3O2 by adding methane to the chamber.  

The injection sequence is shown in table 4.4. Similar to the experiment performed on 8 October, 
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the injection of 50 ppm H2 (10:45). Methane was introduced at a mixing ratio of 20 ppmv at 12:38 

PM. 

Peroxy radical measurements from PERCA, SAMU and FAGE are shown in Figure 4.8 

together with the measured J(NO2), O3, NO, NO2, HCHO, CO and meteorological parameters. As 

seen during the 8 October experiment, species released by the wall of the chamber or produced 

from the oxidation of compounds released by the wall were observed in this experiment. Ozone, 

NO2, NO and HCHO reached similar maximum mixing ratios of 3, 3, 0.4 and 7 ppbv, respectively, 

as during the 8 October experiment. 

Peroxy radicals increased from less than 1 ppt for the 3 instruments to 20-25 ppt during the first 3 

hours after opening the chamber (background reactivity). The peroxy radical concentrations 

produced from the chamber’s background reactivity are similar to that observed on 8 October. 

Interestingly, the chamber was humidified to 60% RH before irradiation, and the PERCA 

measurements do not exhibit the same behavior as on 8 October, and are in better agreement with 

the FAGE HO2 measurements. This observation seems to corroborate that  rapid addition of water 

in the chamber has an impact on the PERCA measurements. 

 

Table 4.5 Experimental conditions on 12 October 2018 (H2/CH4/(ClCO)2) 

Injection       1st     2nd 3rd  

Injection Time  10:45  11:20  12:38 

N2, O2   Pure air Pure air Pure air 

 Injected H2, (ClCO)2   and CH4 

H2 (ppm) 50 -  

(ClCO)2 (ppb) - 0/45*  

CH4 (ppm) - - 20 

 HCHO, RH and T  

HCHO (ppb) 0.4     1.2 3.5 

RH(%), T(ºC) 40,29   28/34 30/31  

*before/after injection. All mixing ratios are measured values (with the 

exception of H2 and CH4) 
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Figure 4.8 shows that from 9:36 to 12:38 (before methane injection) the agreement between 

PERCA and SAMU is worse than on 8 October, with the SAMU measurements being 

approximately 30% higher. A fit to the scatter plot of PERCA versus SAMU has a slope of 0.72 

and an intercept of 4.1 pptv. Similar to the 8 October experiment, the FAGE measurements are 

significantly lower suggesting the presence of organic peroxy radicals in the chamber. The similar 

concentrations measured for HO2 and HO2
* indicate that these RO2 radicals, if present, are likely 

produced from the oxidation of saturated VOCs. A fit to the scatter plot of FAGE HO2 versus 

SAMU (Figure 4.10) has a slope of 0.47 while on 8 October a slope of 0.58 was observed (Figure 

4.5), i.e. ≈20% lower. The increase of SAMU measurements compared to both PERCA (+30%) 

and FAGE HO2 (+20%) under similar experimental conditions than on 8 October may indicate an 

issue with the calibration of SAMU on this day. 

Following the methane injection at 12:38, SAMU exhibits a quick response with an increase 

of 120 pptv of HO2+RO2. The PERCA instrument also measures a signal increase, but of only 82 

pptv (approximately 70% of the increase observed for SAMU), which indicates a similar agreement 

between PERCA and SAMU for the H2 and H2/CH4 mixtures. This can also be seen in Figure 4.9. 

This increase in HO2+RO2 is likely due to a decrease in the total loss rate of peroxy radicals since 

a certain fraction of HO2 is replaced by CH3O2 whose self and cross- reactions with HO2 are slower 

than the self-reaction of HO2. Indeed, the FAGE instrument indicates a small decrease of HO2 to 

approximately 47 pptv, which is consistent with the competition between Cl+H2 (R4) and Cl+CH4 

(R5). As expected, HO2
* does not increase due to the small conversion efficiency of CH3O2 radicals 

in the FAGE detection cell (chapter 3, section 3.2.1.2). 

An attempt to close the chamber at 11:55 AM was performed to reproduce the radical decay 

observed on 8 October but technical problems led to reopen the chamber. 
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Figure 4.8  Peroxy radical and ancillary measurements for 12 October 2018. Peroxy radicals measured by 

PERCA (red markers), SAMU (blue markers) and FAGE (HO2-green markers and HO2*-yellow markers). Dashed 

and solid vertical lines refer to the opening and closing of the chamber, respectively. 
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Figure 4.9 Scatter plot between PERCA and SAMU measurements for 12 October 2018 (15-min average).  

Error bars are 1σ standard deviations. 

 

Figure 4.1016 Scatter plot between FAGE and SAMU measurements for 12 October 2018 (15-min average). 

Error bars are 1σ standard deviations. 
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4.3.2 Ozonolysis experiments under dark conditions 

 

4.3.2.1 Pentene ozonolysis 

 

The 1-pentene ozonolysis experiment was performed under dark conditions on 10 October 

2018. This experiment was designed to generate a complex pool of RO2 radicals at different 

concentrations, whose concentrations were adjusted by a stepwise increase of alkene and O3 

concentrations during the experiment.  

The amount of O3 and 1-pentene as well as the time sequence for the incremental additions 

are summarized in Table 4.5. The experiment started at 9:32 prior the injection of O3 to probe the 

background reactivity inside the chamber (zero air, background trace gases, approximately 50% 

RH) under dark conditions only. The injection procedure started with 31 ppbv of ozone (10:24), 

followed by 2.48 ppbv of pentene (11:01) (Acros Organic, 97%) to initiate the ozonolysis reaction. 

Pentene and ozone were then injected 3 times (2.3 ppbv at 13:28, 6 ppbv at 14:53 and 13.1 ppbv at 

17:11) and 2 times (36 ppbv at 11:58 and 57.4 ppbv at 16:10), respectively.  

Time series of radical mixing ratios measured by PERCA, SAMU and FAGE together with 

the concomitant measurements are shown in Figure 4.11. HCHO reached a maximum value of 3.7 

ppbv, which is slightly lower than observed in the photolysis experiments when the chamber was 

exposed to the sunlight (8 and 12 October). While in the previous experiments HCHO could not 

be produced from the H2/(ClCO)2 chemical system in the chamber, some of the observed 

formaldehyde in this experiment may be produced during the ozonolysis of 1-pentene. The CO 

mixing ratio increased during the experiment to reach a value of 163 ppbv at 18:52. NO2 was 

observed to increase to approximately 1.4 ppbv in the middle of the experiment while NO mixing 

ratios were below the detection limit of 50 pptv of the analyzer. 

The peroxy radical mixing ratios measured during the 1st hour (background reactivity under dark 

conditions) were less than 2 pptv for the 3 instruments. After the first injection of O3 (10:24), prior 

to injections of pentene, the PERCA measurements increased to approximately 15 pptv while no 

change was observed for the 2 other instruments. In addition, each time that ozone was re-injected 

in the chamber in the presence of 1-pentene (11:58 and 16:10), a larger increase in radical 

concentrations was observed by PERCA compared to SAMU. This behavior seems to indicate that 
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the configuration of the chemical amplifier used during this intercomparison experiment was 

sensitive to ozone artifacts.  

 

Table 4.6 Experimental conditions on 10 October 2018 (1-pentene/O3) 

Injection       1st     2nd    3rd  4th  5th  6th  7th  

Injection Time  10:24  11:01   11:58  13:28 14:53 16:10 17:11 

N2, O2 Pure air Pure air  Pure air Pure air Pure air Pure air Pure air 

  Injected pentene and ozone 

Pentene 0 0/2.48*  2 1.9/4.2* 3.7/9.7* 8.5 7.3/20.4 

O3 (ppb) 2/31* 28  25/61* 55 49 42.6/100 92 

  HCHO, RH and T 

HCHO (ppb) 0.1 0.13  0.45 0.7 1 1.6 2.4 

RH(%), T(ºC) 55, 16 48, 17  44, 19 35, 23 30, 25 28, 26 30, 26 

 *before/after injection. All mixing ratios are measured values 

 

 

After each injection of pentene or O3, all the radical instruments quickly responded to the change 

in radical production in the chamber, however, PERCA always measured peroxy radical 

concentrations that were significantly larger than SAMU. A linear fit to the scatter plot of PERCA 

versus SAMU is shown in Figure 4.12 has a slope of 1.74 and an intercept of 2.9 pptv. This 

difference between the two instruments is further discussed in the next section for the α-pinene/O3 

experiment. 

The HO2 measurements from FAGE slowly increased over time (as O3 and pentene are 

added to the chamber) from below LOD to 9 pptv (Figure 4.11). A scatter plot of FAGE HO2 vs. 

SAMU shown in Figure 4.13 indicates a good correlation with HO2 accounting for 28% of 

HO2+RO2  from the linear fit. The FAGE HO2* measurements become significantly higher than 

HO2 as the ozonolysis rate of pentene is increased indicating that a small fraction of the RO2 

radicals generated in the chamber (≈ 11%) can be detected by FAGE using a large NO mixing ratio 
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inside the nozzle. The correlation plot between FAGE HO2* and SAMU indicate a slope of 36% 

and an intercept of -0.2 pptv (Figure 4.13). 
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Figure 4.11 Peroxy radical and ancillary measurements during the 1-pentene ozonolysis experiment at HELIOS 

on the 10 October 2018. 

  



 261 

 

 

Figure 4.12 Scatter plot between PERCA and SAMU measurements data on the 10 October 2018 (15-min 

average measurements).  Error bars are 1σ standard deviations. 

Figure 4.13 Scatter plot between FAGE and SAMU measurements data on the 10 October 2018 (15-min 

average measurements).  Error bars are 1σ standard deviations. 
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4.3.2.2 α-pinene ozonolysis 

 

The ozonolysis of α-pinene was conducted under dark conditions in Helios on 15 October. 

This experiment was performed to test the response of the different instruments to a more complex 

pool of peroxy radicals than in the three previous experiments. 

A similar injection pattern than during the pentene/O3 experiment was used here. The 

amounts of α-pinene (ACROS Organic, 97%) and ozone introduced in the chamber at each 

injection step are reported in Table 4.6. The experiment started at 9:10 prior to the injection of α-

pinene to probe the background reactivity inside the chamber (zero air, background trace gases, 

RH of approximately 50%). The injection sequence initially started with 44 ppbv of ozone at 10:10 

followed by 2.2 ppbv of α-pinene at 11:24. Further injections of ozone or α-pinene were performed 

approximately every 90 min throughout the experiment.  

Time series of peroxy radicals and ancillary measurements are shown in Figure 4.14. 

HCHO and CO increased over the experiment to similar levels as observed 1-pentene, with 

maximum mixing ratios of 4 and 190 ppbv, respectively. NO2 was present at a lower level of 

approximately 0.3 ppbv (up to 1.4 ppbv on 10 October) while NO was below the detection limit of 

the analyzer. 

Similar to the pentene/O3 experiment, peroxy radicals measured before any injections were lower 

than 2 pptv. The radicals mixing ratios measured by PERCA and SAMU increased up to 22 and 7 

pptv, respectively, after the first injection of 44 ppb of ozone at 10:10. This behavior is different 

from that observed on 10 October where only PERCA measured a higher concentration of peroxy 

radicals when ozone was first introduced in the chamber. The higher concentration measured by 

SAMU likely indicates that unsaturated species present in the chamber (background air or adsorbed 

on the wall) were likely ozonized. However, the increase in mixing ratios observed for PERCA 

was significantly higher than observed for SAMU, which confirms the additional PERCA response 

to O3 observed on 10 October (15 pptv increase in HO2+RO2 for 31 ppbv of O3). The maximum 

mixing ratios measured by PERCA, SAMU and FAGE after injection of both O3 and α-pinene 

were 84, 52 and 20 pptv, respectively.  

Similar to the pentene/O3 experiment, the PERCA measurements were always significantly higher 

than observed for SAMU. The fit of the scatter plot shown in the upper panel of Figure 4.15 

(PERCA vs. SAMU) indicates a slope of 1.2 and an intercept of 12.7 pptv. Forcing the linear 
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regression to zero leads to a similar slope as for the pentene/O3 experiment. The lower panel of 

Figure 4.15 shows the same scatter plot where the measurements have been grouped by O3 

injections. This figure shows that each time that O3 was injected in the chamber, the intercept of 

the linear regression increases, likely due to an O3 artefact on PERCA as pointed out for the 

pentene/O3 experiment when only O3 was injected in the chamber at the beginning of the 

experiment. Interestingy, the slope of each regression lines (periods when only α-pinene is injected 

in the chamber) range from 0.7 to 1, similar to the correlations observed during the H2/(ClCO)2 and 

H2/CH4/(ClCO)2 experiments. 

During this experiment, the HO2 and HO2* measurements from FAGE were similar, which 

indicates that RO2 produced from the ozonolysis of α-pinene are not efficiently converted into HO2 

in FAGE at high NO levels. Figure 4.16 shows the good correlation between FAGE and SAMU 

measurements with a slope of 0.29 and a negligible intercept of 0.2 pptv.  
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Table 4.7 Experimental conditions on 15 October 2018 (α-pinene/O3) 

Injection 1st  2nd  3rd  4th 5th  6th  7th  

Injection Time 10:10 11:24 12:31 14:02 15:15 16:40 18:20 

N2, O2 Pure air Pure air Pure air Pure air Pure air Pure air Pure air 

 Injected α-pinene and ozone 

α-pinene (ppb)  0 0/2.2* 1.3/4.2* 2.2 1/5.35* 2.5/12.2* 4.5 

O3 (ppb) 0/44* 36  /70* 60 50 41/96* 

 HCHO, RH and T 

HCHO (ppb) 0.1 0.33 0.5 1 1.5 2.2 3.4 

RH(%), T(ºC) 50, 20 46, 21 42, 22 36, 25 33, 26 30, 28 32, 26 

*before/after injection. All mixing ratios are measured values 
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Figure 4.14 Peroxy radicals and ancillary measurements during the α-pinene ozonolysis experiment at HELIOS 

on the 15 October 2018.  
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Figure 4.15 Scatter plots between PERCA and SAMU measurements on the 15 October 2018 (15-min 

average): Upper panel: comparison for the whole dataset, lower panel: measurements have been grouped into 

datasets depending on the number of O3 injections. Error bars are 1σ standard deviations. 
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Figure 4.16 Scatter plot between FAGE and SAMU measurements on 15 October 2018 (15-min average).  

Error bars are 1σ standard deviations. 
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4.3.3 Conclusions 

 

Several kinetic experiments were conducted in HELIOS to investigate the response of 

PERCA, SAMU and FAGE to different types of peroxy radicals starting from the simplest 

chemical system to generate (1) only HO2 and increasing the complexity of the pool step by step 

by (2) adding CH3O2 and then peroxy radicals produced by the ozonolysis of (3) pentene and (4) 

α-pinene. PERCA and SAMU measurements were compared directly since both techniques 

measure the sum of HO2+RO2. FAGE measures HO2 and HO2
* (but not all RO2) and as a 

consequence, the comparison with the other instruments was limited. However, the HO2 

measurements were of particular interest to gain insight into the contribution of HO2 to the sum 

HO2+RO2.  

The experiments conducted to investigate the response of all the instruments to HO2 and 

then HO2+CH3O2 showed that the PERCA and SAMU measurements were in agreement within 

30%, which is within the measurement uncertainty of the 2 techniques. However, a systematic 

difference observed between the 2 experiments (PERCA vs. SAMU scatter plots with fits exhibit 

slopes of 1.09 for the H2/(ClCO)2 experiment and 0.72 for the H2/CH4/(ClCO)2 experiment) 

pointing to a possible change in the calibration of one or both instruments. During these 

experiments, it was shown that RO2 radicals were also produced when the H2/(ClCO)2 chemical 

system was used, likely due to the presence of contaminents in the chamber. 

The ozonolysis experiments of 1-pentene and α-pinene highlighted that PERCA was very 

likely prone to an artifact due to the presence of O3 in the chamber. Grouping all the experiments 

together and plotting the difference observed between SAMU and PERCA as a function of the 

measured O3 mixing ratio in the chamber indicates a good correlation between the 2 quantities as 

shown in Figure 4.17 and supports the indication of an artifact in PERCA. 
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Figure 4.17 Scatter plot of the difference observed between PERCA and SAMU during ozonolysis experiments 

vs. O3 mixing ratios. Error bars are 1σ standard deviations. 

 

Several hypothesis can be proposed to explain the PERCA response to O3: 

(1) the formation and subsequent amplification of radicals from O3-alkene reaction in the 

amplified channel of PERCA, 

(2) the detection of NO3 radicals and/or Crieege intermediates by PERCA, 

The F0AM model was used with the MCMv331 mechanism to investigate whether 

O3/pentene or O3/α-pinene reactions in the amplification and background channels could lead to a 

significant formation of radicals that would lead to the observed artefact (Figure 4.17). The 

chemistry was simulated by constraining the model with (i) 82 ppbv of ozone, 17 ppbv of pentene 

and 5ppm of NO and (ii) 95 ppbv of ozone, 4.5 ppbv of α-pinene and 5ppm of NO, both at 50% 

RH and 25 °C, for the background mode and an additional 10% of CO for the amplification mode. 

The model was run for 10 seconds (reaction time in the reactors). The results of these two 

simulations are shown in figure 4.18. The NO2 mixing ratios generated during the amplification 

and background modes are slightly different due to the production of peroxy radicals from O3-
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alkene reactions in the reactors as shown in the inserts. The NO2 mixing ratio in the amplification 

channel is only 50 and 80 pptv higher than in the background channel for 1-pentene and α-pinene, 

respectively, which corresponds to 0.7 and 1.1 pptv of peroxy radicals. This effect is too small to 

explain the discrepancy observed between PERCA and SAMU. 

 

 

 

 

Figure 4.18 Impact of O3-pentene (upper panel) and O3-α pinene (lower panel) reactions on NO2 production in 

the PERCA reactors run under amplification and background modes. Simulations performed using the highest O3 

mixing ratios observed during the ozonolysis experiments, ca. 82 and 95 ppb for O3+pentene and O3+ α-pinene, 

respectively. 
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The amount of NO3 produced in the chamber for the O3-pentene experiment was found to 

range between 2-20 pptv from model simulations described in the next section to model the 

chamber experiments). While this range of mixing ratios is close to the discrepancy observed 

between PERCA and SAMU, the range of mixing ratios simulated for the α-pinene/O3 experiment 

is much lower (<0.1 pptv) due to the low mixing ratio of NO2 observed in this experiment. In 

addition, the reaction rate constant for NO3+CO is very slow (<4×10-19 cm3 molecule-1 s-1) while 

the reaction of NO3 with NO (2 NO2) is fast (2.6×10-11 cm3 molecule-1 s-1), making the detection 

of NO3 by PERCA unlikely. The amount of Criegee intermediates generated in the chamber was 

also checked in the simulations performed in the next section. It was found that these species were 

present at mixing ratios lower than 1×10-5 pptv for both O3/pentene and O3/α-pinene experiments. 

The PERCA response to O3 observed in these experiments is not well understood. However, 

this artifact is likely due to the use of longer reaction tubes as described in section 4.2.2.3. Indeed, 

the chemical amplifier was used in the laboratory on flow tube experiments in which large 

concentrations of ozone were generated. The instrument was used with short reaction tubes as 

described in chapter 2. During these experiments, no artifact was observed for the measurement of 

peroxy radicals. The origin of the artifact when long reaction tubes are used needs to be further 

investigated in the laboratory.  

 

4.4 Modeling comparison 

4.4.1 Oxalyl chloride photolysis experiments 

4.4.1.1 Hydrogen/Oxalyl chloride mixture: H2 + Cl HO2 

Peroxy radical mixing ratios were simulated using the MCM model as described in section 

4.3. The model, implementing a subset of MCM V3.3.1 for the H2 and CH4 chemistry, was 

constrained by the measured time series of CO, HCHO, and O3 as well as photolysis frequencies 

and meteorological data (pressure, temperature, relative humidity and solar zenith angle) as shown 

in Table 4.7. For oxalyl chloride and hydrogen, the concentrations of these species were 

constrained in the model each time they were injected and let free to change after injection. 
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In this work, sensitivity tests were performed using two different yields of Cl (0.45 and 1) 

from (ClCO)2 photolysis since these values were respectively observed in HELIOS by the ICARE 

group (unpublished experiments) at 30 and 5% RH (see section 4.2.3.1). The J-values for (ClCO)2 

were calculated using the ratio J(NO2)/J((ClCO)2)=40 as determined by the ICARE group. This 

estimation was derived from spectroradiometer measurements of solar iradiance in HELIOS, 

absorption cross sections measured by Ghosh et al. (Ghosh et al., 2012) and a quantum yield of 1 

for the oxalyl chloride photolysis.  

Figure 4.19 shows the comparison between peroxy radical measurements of HO2+RO2 

(PERCA and SAMU) and simulated values for the base MCM model incorporating a Cl yield of 

0.45 (base MCM-0.45Cl) or a Cl yield of 1 (base MCM-1.0Cl). Two additional simulations using 

MCM-1.0Cl and implementing an additional source of peroxy radicals, either HO2 (MCM-1.0Cl-

S>HO2) or CH3O2 (MCM-1.0Cl-S>CH3O2), were performed to reproduce the chamber reactivity 

observed when the chamber was irradiated before any injections. For all these simulations, the 

decay rate of (ClCO)2 was well reproduced by the model (Figure 4.20), indicating that the 

photolysis rate of the radical precursor was well constrained in the model.  
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Table 4.8 Specifications of the model used to simulate radical concentrations in the H2/(ClCO)2 and 

H2/CH4/(ClCO)2 experiments. 

Model 

MCMv331 

Inorganic chemistry 

Photolytic reactions 

Chemistry of H2, methane 

Added reactions (ClCO)2 →YCl Cl + 2CO  /  J(NO2)/40      (YCl=0.45 or 1) 

Cl+H2→HCl + H  (CH4+Cl already in the mechanism) 

S → HO2 / scaled with j(HCHO) 

S → CH3O2 / scaled with j(HCHO) 

Constraints Dilution at the measured rate of  kSF6 : 1.7× 10-5 s-1 

H2 , (ClCO)2 : only constrained when injected (free to change over 

time) 

NO, NO2, O3, CO, HCHO : constrained by measured time series 

Sun zenith angle, corrections for J-values based in measured J(NO2), 

Temperature, Pressure, Relative humidity: constrained by measured 

time series 

 

The peroxy radical mixing ratios simulated using the MCM-0.45Cl model (black dotted line) 

underestimate the measurements of HO2+RO2 by 20-35% after the first injection of (ClCO)2. While 

the Cl yield of unity was measured under almost dry conditions, the simulation incorporating this 

yield (base MCM-1.0Cl, light gray dotted line) shows better agreement with the measured mixing 

ratios (within 15%). Both simulations underestimate the measurements performed during the first 

3 hours of irradiation (starting at 11:15) when only H2 had been introduced into the chamber. This 

behavior indicates that there was another source of peroxy radicals wihin the chamber.  

This additional source of radicals is not well understood. An unknown source (S), either for HO2 

(dark grey dotted line) or CH3O2 (yellow dotted line) production, was added in the mechanism for 

the base MCM-1.0Cl model. The production rate of this additional source was scaled to j(HCHO) 

(constant scaling factor througout experiment) to achieve good agreement between the simulated 

and measured peroxy radical mixing ratios when the background chamber reactivity was probed. 

As shown in Figure 4.19, both simulations are able to reproduce the measured peroxy radicals until 

the first injection of (ClCO)2. However, the simulation implementing the additional formation of 

HO2 (dark grey) overestimates the measurements after this injection while the simulation 

implementing the additional formation of CH3O2 (yellow) is in better agreement with the 

measurements. The composition of the modelled peroxy radical pool presented in the lower panel 
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of Figure 4.19 (MCM-1.0Cl-S>CH3O2) indicates a major contribution of HO2 compared to CH3O2 

(<10 pptv).  

Comparing the measured (FAGE) and modelled HO2 in Figure 4.19 indicates that the model 

overestimates HO2 by 60-100%. In contrast, RO2 radicals are underestimated since the difference 

between the measured HO2+RO2 (PERCA, SAMU) and the measured HO2 (FAGE) is of the order 

of 40-80 pptv. The presence of a large amount of organic peroxy radicals was consistent with the 

peroxy radical decays recored by PERCA and SAMU when the chamber was changed to dark 

conditions (section 4.3.1.1). It is likely that other VOCs were present and reacted with the Cl atoms 

to produce RO2 radicals. The release of VOCs from the wall of the chamber is unlikely the cause 

since only a small amount of these VOCs is expected from a desorption process, which couldn’t 

compete with Cl+H2 for the amount of  H2 added to the chamber. Potential possibilities may involve 

(1) heterogenous reactions of Cl atoms with organics adsorbed on the wall, followed by a 

subsequent release of the peroxy radicals in the chamber and (2) the injection of contaminants in 

the chamber through the zero air generator or the reactant injection systems. 
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Figure 4.19 Model-measurement comparison of peroxy radicals for the 8 October experiment – H2/(ClCO)2. 

Upper panel: Comparison of peroxy radicals measured by PERCA (red markers) and SAMU (blue markers) to model 

simulations (dashed lines, see text). Lower panel: Comparison of HO2 radicals measured by FAGE (green markers) 

to model simulations (MCM-1.0Cl-S>CH3O2, dashed yellow line). The modelled CH3O2 (solid line) is also shown. 

 

 

Figure 4.20 Comparison of measured and modelled (ClCO)2 mixing ratios for the 8 October experiment. Only 

two simulations are shown for clarity. The same results were observed for the 2 other simulations. 
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4.4.1.2 Hydrogen & Methane/Oxalyl chloride mixture: H2, CH4 + Cl HO2, CH3O2 

Model simulations of the photolysis of oxalyl chloride in the presence of H2 and then 

methane were performed using the same model procedure than for H2/(ClCO)2 and the constraints 

are shown in Table 4.7. Similar to the previous experiment, the model was constrained by the 

measured concentration of (ClCO)2, H2, and CH4 right after their injection into the chamber and 

these species were then allowed to change over time. In contrast, time series of measured 

meteorological parameters (RH, Temperature and pressure), HCHO, O3, CO, NO and NO2 as well 

as photolyis frequencies were used to constrain the model. Similar to the H2/(ClCO)2 simulations, 

two different yields of Cl from the photolysis of (ClCO)2 were considered as described in Table 

4.7.  In addition unknown sources of HO2 or CH3O2 radicals were also considered to reproduce the 

background reactivity of the chamber. These additional sources of radicals were constrained using 

the same methodology as described in the previous section and as reported in Table 4.7. As shown 

for the H2/(ClCO)2 simulations, the simulations also reproduce the decay of (ClCO)2 very well 

(Figure 4.22), indicating once again that the photolysis rate of the radical precursor was well 

constrained in the model. 

The comparison between HO2+RO2 measurements and simulated mixing ratios are shown 

in Figure 4.21. In contrast to that observed for the H2/(ClCO)2 experiment, the MCM simulation 

implementing a Cl yield of 0.45 (base MCM-0.45 Cl, black dashed line) is in agreement with both 

PERCA and SAMU measurements after the injections of oxalyl chloride, with differences less than 

30%. The simulation accounting for a Cl yield of unity (base MCM-1.0 Cl, gray dotted line) 

overestimates both the PERCA and SAMU measurements by 25-100%. This indicates that while 

the operating conditions in the chamber were similar between 8-October and 12-October (RH of 

22-43%, T of 26-37°C, 50 ppmv H2, 13-92 ppbv (ClCO)2, J(NO2) of 1.2×10-3-6.9×10-3 s-1), the 

MCM simulation implementing a Cl yields of 0.45 is better able to reproduce these experimental 

data while a Cl yield of 1.0 was necessary for the experiment performed on 8-October. This source 

of the disagreement between the two experiments is unclear and requires additional experiments in 

HELIOS. Similar to the 8-October experiment, both simulations (base MCM-0.45 Cl and base 

MCM-1.0 Cl ) were not able to reproduce the first 2 hours of background reactivity measurements 

when the chamber was first exposed to the sunlight. Simulations implementing additional sources 

of HO2 (base MCM-0.45 Cl-S>HO2, dark grey line) and CH3O2 (base MCM-0.45 Cl-S>CH3O2, 

yellow line) radicals whose strengths were tweaked to reproduce the background reactivity 
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measurements indicates a very small impact on the simulated concentrations of peroxy radicals 

once (ClCO)2 was injected. The bottom panel of  Figure 4.21 displays the contribution of both HO2 

and CH3O2 radicals for the base MCM simulation implementing a Cl yield of 0.45 and the 

simulation accounting for an additional source of CH3O2 (yellow). This figure shows that before 

methane injection, the pool of simulated peroxy radicals is mainly HO2 and is a mixture of about 

1/3 HO2 and 2/3 CH3O2 after the injection. Comparing these simulations to the measured HO2 

(FAGE) indicates that both simulations overestimate the measured HO2 by 30-40%. 
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Figure 4.21 Model-measurement comparison of peroxy radicals for the 12 October experiment – H2/ 

CH4/(ClCO)2. Upper panel: Comparison of peroxy radicals measured by PERCA (red markers) and SAMU (blue 

markers) to model simulations (dashed lines, see text). Lower panel: Comparison of HO2 radicals measured by 

FAGE (green markers) to model simulations (MCM-0.45Cl, dashed black line; MCM-0.45Cl-S>CH3O2, dashed 

yellow line). The modelled CH3O2 (solid lines) is also shown. 

 

 

Figure 4.22: Comparison of measured and modelled (ClCO)2 mixing ratios for the 12 October experiment. Only 

two simulations are shown for clarity. The same results were observed for the 2 other simulations. 

 



 279 

 

4.4.1.3 Conclusions 

The simulations performed for the two photolytic experiments led to the following 

conclusions. 

In order to reproduce the HO2+RO2 mixing ratios measured by PERCA and SAMU during 

the H2/(ClCO)2 experiment conducted at approximately 30% RH and 30°C, a Cl yield of unity for 

the photolysis of oxalyl chloride needs to be implemented in the model. In contrast, the 

H2/CH4/(ClCO)2 experiment conducted under similar conditions of RH and temperature requires 

to implement a Cl yield of 0.45. This inconsistency between the two experiments is puzzling and 

requires further investigations to understand the reason. 

The simulated mixing ratios of HO2 overestimate the measurements performed by FAGE by 

at least 30% for both experiments. This overestimation was nearly 100% at some reaction times in 

the H2/(ClCO)2 experiment. This issue is likely due to the presence of VOCs in the chamber (either 

in the gas-phase or adsorbed on the Teflon wall) which are not constrained in the model. 

The implementation of an additional photolytic source of organic peroxy radicals in the 

model to reproduce the chamber reactivity when the reactants have not been injected yet has only 

a small impact on the simulated peroxy radical concentrations once the reactants have been 

introduced in the chamber. 
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4.4.2 Ozonolysis experiments under dark conditions 

4.4.2.1 Pentene ozonolysis 

In order to model this ozonolysis experiment, a subset of MCM v331 containing the pentene 

chemistry was implemented in the model. The model was constrained by measured mixing ratios 

of pentene and O3 measured right after their injection into the chamber, as well as the time series 

of measured trace gases (CO, HCHO, O3 and NO2) and meteorological data (pressure, temperature, 

relative humidity) as shown in Table 4.8. In addition to the base model, simulations were performed 

to test the model sensitivity to an additional loss of peroxy radicals, including wall loss and a 

missing chemical process. 

 

Table 4.9 Specifications of the model used to simulate radical concentrations in the pentene/O3 and α-

pinene/O3 experiments. 

Model 

MCMv331 

Inorganic chemistry 

1-pentene or α-pinene MCM subset 

Added reaction HO2 → Loss    7×10-3 s-1 (for sensitivity tests only) 

RO2 → Loss    7×10-3 s-1 (for sensitivity tests only) 

Constraints Dilution at the measured rate of kSF6 : 1.7× 10-5 s-1 

Pentene, α-pinene, O3: only constrained when injected (free to change 

over time) 

NO2, CO, HCHO, temperature, pressure and relative humidity: 

constrained by measured time series  

NO: Constrained to 50 or 100 pptv for sensitivity tests only (surrogate for 

a missing chemical process leading to an additional loss of peroxy 

radicals) 

 

Figure 4.23 shows the PERCA and SAMU measurements of HO2+RO2 together with the 

simulations. The upper panel displays the comparison with the base model (black dotted line) 

which overestimates the SAMU measurements by approximately a factor of 2. The simulated HO2 

(black dotted line in the lower panel) significanty underestimates the FAGE measurements.  

Assuming that the difference observed between the modelled and measured mixing ratios of 

HO2+RO2 is due to their loss on the wall of the chamber, it was found  necessary to add a wall loss 

rate constant of 7×103 s-1 for all peroxy radicals in the model to bring the simulated mixing ratios 

of HO2+RO2 in better agreement with the SAMU measurements (green dotted line). However, as 
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shown in the lower panel, the modelled HO2 (green dotted line) still underestimates the 

measurements. To the best of our knowledge, a wall loss of peroxy radicals in large atmospheric 

simulation chambers has never been reported. The loss rate necessary to bring the modelled mixing 

ratios of HO2+RO2 in agreement with the measurements is much larger than any wall loss rates 

reported for trace gases, including O3, that usually of the order of 10-6 s-1. In addition, if a wall loss 

of peroxy radicals was operative in the chamber, the same issue should have been observed for the 

2 photolytic experiments discussed above. While the wall loss of peroxy radicals is unlikely, this 

sensitivity test indicates that a larger loss rate of peroxy radicals is necessary to bring the 

experimental and modeling data into agreement. For instance, constraining the model with a 

constant NO mixing ratio of 50 pptv would be sufficient to provide this additional loss. 

Interestingly, the addition of 50 pptv of NO in the model also leads to a better agreement between 

the modelled and measured HO2 mixing ratios as shown in the bottom panel of Figure 4.23, 

indicating that this missing (or model miscalculated) loss process requires the conversion of RO2 

into HO2.  

It is interesting to note that the oxidation rate of 1-pentene is well described by the model 

since both the 1-pentene and O3 mixing ratios are well reproduced by the base simulation (Figure 

4.24). Constraining the model to 50 pptv NO leads to a larger loss rate for both 1-pentene and O3, 

and as a consequence, to a model overestimation of the consumption rate of these 2 species. The 

increase of the 1-pentene loss rate is likely due to the formation of OH from HO2+NO. While a 

conversion of RO2 into HO2 seems necessary to improve the agreement between the measured and 

modelled mixing ratios of peroxy radicals, this process should not ultimately lead to the formation 

of OH. 

Figure 4.25 shows the modelled OH and the speciation of peroxy radicals for both the base 

MCM simulation and the simulation where NO was constrained to 50 pptv. For the base modeling, 

OH is simulated at concentrations less than 5×105 cm-3 and the most abundant RO2 radicals are 

PE1ENEAO2, NC3H7O2 and C51NO32O2 (MCM labeling). When NO is constrained in the 

model, OH increases by a factor of 2-3 and HO2 is favored compared to RO2, with a similar 

partitioning in the pool of organic peroxy radicals as in the base simulation. Unfortunately, the OH 

measurements performed by FAGE and SAMU are not available yet for comparison, but will be 

of interest to in further analysis. 
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Figure 4.23 Model-measurement comparison of peroxy radicals for the 10 October experiment – 1-pentene/O3 

– Upper panel: Comparison of peroxy radicals measured by PERCA (red markers) and SAMU (blue markers) to 

model simulations (dashed lines, see text). Lower panel: Comparison of HO2 radicals measured by FAGE (green 

markers) to model simulations (dashed lines, see text) 
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Figure 4.24 Comparison of measured and modeled mixing ratios of 1-pentene and ozone. 

 

Figure 4.25 Modelled OH and speciation of peroxy radicals for the pentene/O3 experiment. Upper panel: OH 

mixing ratios, middle panel: base MCM simulation, lower panel: NO constrained to 50 pptv in the model.  
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4.4.2.2 α-pinene ozonolysis 

Similar to the ozonolysis experiment for 1-pentene, the modeling for this experiment was 

carried out by constraining the model as shown in Table 4.8, using a subset of the α-pinene 

chemistry. The model was constrained to the mixing ratios of α-pinene and O3 measured after 

injection, time series of measured CO, HCHO, O3 and NO2, as well as meteorological data 

(pressure, temperature, relative humidity).  

Figure 4.26 shows the comparison between HO2+RO2 measurements (PERCA and SAMU) 

and simulated mixing ratios from the base model (black dashed line) as well as a model run 

constrained by an additional loss of peroxy radicals set at the value leading to a good model-

measurement agreement for the pentene experiment (i.e. 7×10-3 s-1, green dashed line), and model 

runs constrained to 50 pptv (blue dashed line) and 100 pptv (yellow dashed line ) of NO. In the 

upper panel of this figure, the base simulation of total peroxy radicals indicates unreasonable  high 

mixing ratios, highlighting that an important loss process of peroxy radicals is missing under the 

low NOx conditions of this simulation. Adding an additional loss of peroxy radicals as determined 

for the pentene experiment (either a wall loss or the reaction of peroxy radicals with NO set at 50 

pptv) leads to more reasonable mixing ratios of HO2+RO2 (<250 pptv). However, these simulations 

still overestimate the measurements. An additional simulation performed by constraining NO at 

100 pptv indicates that the peroxy radical loss required for this chemical system is more than two 

times higher than observed in the previous experiment ( not the rate constants for the reactions of 

peroxy radicals with NO for pentene-based and α-pinene-based RO2 are similar). Similar to the 

pentene experiment, the bottom panel of Figure 4.26 indicates that  better agreement is observed 

between the modeled and measured HO2 mixing ratios when NO is constrained in the model, 

highlighting the necessity to convert RO2 into HO2. 

Figure 4.27 shows that OH in this chemical system is about 2-5 times higher than observed during 

the ozonolysis of 1-pentene. The middle panel of this figure indicates that the pool of RO2 is 

dominated by 2 species when NO is not constrained (C108O2 and C97O2, see Figure 4.28 for 

structure of these radicals ), whose concentrations are drastically reduced relative  to the other RO2 

when NO is constrained. It has been recently shown that unimolecular reactions of large peroxy 

radicals generated by the oxidation of hydrocarbons such as α-pinene could lead to the  autoxidation 

of peroxy radicals (Xu et al., 2019). This loss pathway is not included in MCM and may be the 
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cause of the missing loss of peroxy radicals observed in these simulations. Additional work is 

needed to investigate this point. 

 

 

Figure 4.26 Model-measurement comparison of peroxy radicals for the 15 October experiment – α-pinene/O3. 

Upper panel: Comparison of peroxy radical measured by PERCA (red markers) and SAMU (blue markers) to 

different model simulations (dashed lines). Lower panel: Comparison of HO2 measured by FAGE (green markers) to 

model simulations (dashed lines). 
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Figure 4.27 Modelled OH and speciation of peroxy radicals for the α-pinene/O3 experiment. Upper panel: OH 

mixing ratios, middle panel: base MCM simulation, lower panel: NO constrained to 100 pptv in the model. 
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Figure 4.28 Most abundant RO2 species simulated for the α-pinene/O3 experiment.   

 

4.4.2.3 Conclusions 

The simulations performed for the two O3-alkene experiments highlighted that the base 

model was not able to reproduce the measured mixing ratios of peroxy radicals, leading to an 

overestimation of HO2+RO2 and an underestimation of HO2. In order to reproduce the measured 

HO2+RO2 mixing ratios, the model requires an increase in the propagation rate of organic peroxy 

radicals to HO2 without additional propagation to OH. The strength of the process leading to the 

additional consumption of organic peroxy radicals was found to be higher for radicals generated 

during the ozonolysis of α-pinene compared to 1-pentene. This behavior may be due to the low 

amount of NO observed during these experiments (titrated by O3, below the LOD of 50 pptv of the 

NOx analyzer), which may lead to a significant impact of unimolecular reactions of peroxy radicals 

on the chemistry occurring in the chamber. 

 

 

 

 

 

 

C108O2 C97O2 
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4.5 General conclusions 

A series of intercomparison experiments was performed at the HELIOS chamber to 

intercompare the IMT Lille Douai Chemical Amplifier, the University of Lille FAGE instrument 

and the CIMS instrument from the University of Orléans. Two types of experiments were 

conducted, under sunlight and dark conditions, to generate different pools of peroxy radicals within 

the chamber, which helped in investigating the reliability of the different measurement techniques 

and tested our understanding of oxidation chemistry. 

While experiments involving the photolysis of oxalyl chloride to generate HO2 and 

HO2+CH3O2 showed that PERCA and SAMU measurements were in agreement within 30%, 

experiments involving the addition of large concentrations of ozone to the chamber to generate 

more complex pools of peroxy radicals from the ozonolysis of alkenes highlighted that the PERCA 

instrument used in this work was very likely prone to an artifact due to the presence of O3 in the 

chamber. Potential reasons such as (i) the formation and subsequent amplification of radicals from 

O3-alkene reactions in the amplified channel of PERCA and (ii) the detection of NO3 radicals 

and/or Criegee intermediates by PERCA have been ruled out. However, the origin of this artifact 

has not yet been identified. It is believed that this artifact was due to the use of long reaction tubes 

on the chemical amplifier during the intercomparison experiment since the use of this instrument 

in the laboratory with shorter reaction tubes did not lead to significant artifacts when ozone was 

sampled by the instrument. The cause of this artifact when long reaction tubes which are used need 

to be further investigated in the laboratory.  

 Box modeling was performed to gain additional insight into the experiments conducted in 

HELIOS and highlighted several issues which also need to be further investigated. In order to 

reproduce the HO2+RO2 mixing ratios measured by PERCA and SAMU during the two photolytic 

experiments involving oxalyl chloride, two different yields of chlorine atoms had to be 

implemented in the model while the operating conditions of the chamber were similar. This 

inconsistency between the two experiments is puzzling and requires further chamber experiments 

under various conditions to identify the reason. In addition, an unidentified source of organic 

peroxy radicals was observed during these experiments, which requires additional investigations 

to characterize it. 
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Simulating the two O3-alkene experiments highlighted the inability of the base model to 

reproduce the measured mixing ratios of peroxy radicals, leading to an overestimation of HO2+RO2 

and an underestimation of HO2. It was shown that the model requires additional loss of organic 

peroxy radicals that converts them to HO2, without further conversion into OH. It is speculated that 

this unnacounted loss may be due to unimolecular reactions of peroxy radicals that are not included 

in MCM. Additional simulations focusing on the implementation of unimolecular reactions of 

peroxy radicals in the model will be performed. 
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Conclusions and Perspectives  

 

  Conclusions 

The main objective of this work was to improve our understanding of peroxy radical 

measurements in the troposphere. It consisted in the assembling and characterization of two 

apparatus: a dual channel chemical amplifier at IMT Lille Douai (France), and a ROxLIF system 

at Indiana University (US) using an existing FAGE instrument. In addition, the chemical amplifier 

developed in this work was compared to a FAGE instrument from the University of Lille (France) 

and a CIMS instrument from the University of Orléans (France) during an intercomparison exercise 

at the HELIOS atmospheric chamber. 

The chemical amplifier developed for ground-based measurements was tested using two 

different approaches regarding the radical amplification chemistry, including the use of CO/NO 

(PERCA) and ethane/NO (ECHAMP). Optimum operating conditions for these two approaches 

were characterized together with the dependence of the amplifier chain length on reagent gases and 

humidity. In addition, the amplifier response was tested for different peroxy radicals, including 

HO2 and a large range of RO2 radicals, showing that the effective chain length can be derived from 

the calibrated HO2 chain length and the known yields of organic nitrate and nitrite formation from 

RO2 and RO radicals, respectively. Finally, ambient testing of this chemical amplifier using the 

PERCA approach showed that this instrument is capable of measuring ambient concentrations of 

HO2+RO2 at levels higher than 1-4 pptv under RH conditions up to 90% once the RH-dependence 

of the CL has been correctly characterized.  

Chemical reactions occurring inside the amplification and background channels were modelled 

using the Master Chemical Mechanism (MCM) to test our understanding of the PERCA and 

ECHAMP amplification chemistries. The model/measurement comparison highlighted that the 

model overestimates the chain length by a factor of approximately 2 for both approaches. 

Additional simulations conducted to assess whether the formation of HNO3 from HO2+NO (not 

included in MCM) could impact the CL of chemical amplifiers highlighted that using the yield 

reported under dry conditions, and a 2-fold lower-than-reported water-dependence for this yield, 
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provides a reasonable description of the CL-dependence on reagent gases and RH for both PERCA 

and ECHAMP.  

The ROxLIF technique was implemented on an existing LIF-FAGE instrument at Indiana 

University to extend the measurement capability of this instrument to HO2+RO2. This work 

required to design the RO2-to-HO2 conversion flow-tube, couple it to FAGE and automate the 

measurement sequence and data acquisition. Operating conditions for the conversion flow-tube 

were optimized to maximize the instrument sensitivity towards HO2 and RO2 through both 

laboratory experiments and model simulations. Optimum conditions were identified by varying the 

addition of reagent gases (CO, NO), as well as the pressure and the residence time inside the flow-

tube. The sensitivity of the instrument towards HO2 and a few RO2 radicals, including CH3O2, 

C2H5O2 and C3H7O2, was calibrated, showing that RO2 sensitivity factors were 20-30% higher than 

for HO2. Modeling results for isoprene-based and toluene-based peroxy radicals indicate that the 

sensitivity should be comparable between these RO2 radicals and those tested in the laboratory 

(within 10%). 

The Indiana University ROxLIF apparatus was deployed in the field at the Indiana University 

Research and Teaching Preserve as part of the iRACE field campaign during summer 2019. Both 

ambient and indoor measurements of RO2 and HO2 were performed during this campaign, showing 

that this instrument is capable of measuring concentrations of peroxy radicals in contrasted 

environments. Ambient (outdoor) measurements of HO2 and RO2 were found to be in the range of 

previous measurements performed at this site and other forested sites in the world, providing 

confidence in this instrument. Indoor measurements showed that this instrument can also be 

successfully employed to investigate the fast variability of indoor radicals when different human 

activities such as cleaning take place.  

Finally, an intercomparison experiment of peroxy radical measurements was performed at the 

ICARE institution in Orléans (France) to compare the chemical amplifier from IMT Lille Douai to 

a FAGE instrument from the University of Lille and a CIMS instrument from the University of 

Orléans. The comparison performed under various conditions in the HELIOS atmospheric chamber 

highlighted that the chemical amplifier using the PERCA approach was prone to an artifact due to 

the presence of O3. It is believed that this artifact was due to the specific configuration used for this 

instrument during the intercomparison experiment, i.e. using long reaction tubes.  
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 Box modeling of the kinetic experiments conducted in HELIOS also highlighted that the 

use of oxalyl chloride as a source of Cl atoms is not straightforwards. It was observed that different 

yields of chlorine atoms from oxalyl chloride photolysis had to be implemented in the model to 

reproduce the radical measurements performed on different days under similar conditions. In 

addition, O3-alkene experiments performed in HELIOS also highlighted the inability of the MCM 

model to reproduce the measured mixing ratios of peroxy radicals, likely due to missing 

unimolecular reactions of peroxy radicals in the model. 

Perspectives 

For the chemical amplifier, the experiments and modeling conducted to characterize its 

response to peroxy radicals under various operating conditions highlighted that while the 

implementation of the HO2+NOHNO3 chemistry could lead to a reasonable agreement between 

the measured and simulated chain lengths (vs. NO, vs. CO, vs. RH) for both PERCA and ECHAMP 

approaches, the model overestimation of the ECHAMP CL and underestimation of the PERCA CL 

seems to indicate that our understanding of the amplification chemistry is still incomplete and 

deserves additional scrutiny.  

In addition, several modifications could be tested to improve the sensitivity (higher CL) and to 

reduce the CL dependence on RH. For instance, interesting suggestions provided by Ezra Wood 

from Drexel University (US) would be to (i) run the chemical amplifier at a lower pressure to 

reduce the radical loss from RO+NO and RO2+NO2 reactions and (ii) dilute the air sample with 

dry oxygen to reduce RH in the reactors. Part of the loss in sensitivity due to the dilution effect 

would be balanced by favoring RO+O2HO2 (radical propagation) compared to RO+NORONO 

(radical termination). 

For the ROxLIF apparatus, several aspects need to be straighten to increase our confidence 

in the measurements. Additional experiments and model simulations should be performed to 

investigate (1) why the radical loss may have changed inside the conversion flow-tube during the 

characterization experiments described in chapter 3, (2) the effect of pressure on the ROxLIF 

sensitivity when the reagent gases are kept at the same concentration, (3) the ROxLIF sensitivity 

towards a larger pool of RO2 radicals, and (4) potential interferences from the thermal 

decomposition of unstable species in the conversion flow-tube (HO2NO2, CH3O2NO2). In addition, 

future improvements for this instrument may involve (1) a longer and wider flow-tube to reduce 
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the surface to volume ratio, which in turn should lead to a decrease of HO2 wall losses, (2) the use 

of different coating materials to further reduce radical wall losses, and (3) a shorter residence time 

in the flow-tube to increase the HO2 signal detected from the conversion of RO2. 

The analysis of the intercomparison campaign presented in chapter 4 is only preliminary and 

needs to be further advanced to improve our understanding of peroxy radical measurements and to 

get more insights into potential issues associated to radical measurements. Additional box 

modeling should be performed to investigate the nature of the missing loss of peroxy radicals 

observed during the ozonolysis experiments. 

 

 

 

 

 

 





 

Résumé 
Les radicaux peroxyles (HO2 et RO2) sont des espèces clés en chimie atmosphérique. Avec le radical 

hydroxyl (OH), ils sont impliqués dans les mécanismes d’oxydation conduisant à la formation de polluants 
secondaires tels que l’ozone et les aérosols organiques. Comparer les mesures ambiantes de ces espèces 
à très courte durée de vie aux concentrations issues de modèles de boite permet d’évaluer la robustesse 
des mécanismes chimiques implémentés dans les modèles atmosphériques. Cependant, ces mesures 
ambiantes sont très difficiles à réaliser et quelques techniques seulement sont disponibles pour les 
mesures de terrain. 

L’objectif principal de ce travail est d’améliorer nos connaissances sur deux de ces techniques : 
l’Amplification Chimique (CA) et la Fluorescence Induite par Laser des ROx (ROxLIF). La technique CA, simple 
et bon marché, permet la mesure de la somme HO2+RO2 et constitue une bonne solution pour le terrain. 
La technique ROxLIF, plus complexe, permet de mesurer distinctement HO2 et la somme des RO2. Dans une 
première partie, un amplificateur à deux voies d’échantillonnage a été construit à l’IMT Lille Douai (France) 
et caractérisé pour deux chimies d’amplification : 1) au monoxyde de carbone (PERCA, PEroxy Radical 
Chemical Amplifier) et 2) à l’éthane (ECHAMP, Ethane CHemical AMPlifier). Dans une seconde partie, la 
technique ROxLIF a été implémentée sur un instrument FAGE (Fluorescent Assay by Gas Expansion) à 
l’Université d’Indiana (USA). Les deux outils ont ensuite été testés lors de mesures ambiantes. Dans une 
dernière partie, PERCA et ROxLIF ainsi qu’une troisième technique basée sur la spectrométrie de masse à 
ionisation chimique ont été comparés lors d’une campagne intensive à la chambre de simulation 
atmosphérique HELIOS à Orléans (France). Plusieurs expériences ont été menées afin d’évaluer la 
robustesse des mesures de radicaux peroxyles. 

Mots clés : Radicaux peroxyles, techniques analytiques, atmosphère, campagne de mesure 

Abstract 
Peroxy radicals (HO2 and RO2) are key species in atmospheric chemistry, which together with the 

hydroxyl radical (OH), are involved in oxidation processes leading to the formation of secondary pollutants 
such as ozone and organic aerosols. Monitoring these short-lived species during intensive field campaigns 
and comparing the measured concentrations to box model simulations allow assessing the reliability of 
chemical mechanisms implemented in atmospheric models. However, ambient measurements of peroxy 
radicals are still considered challenging and only a few techniques have been used for field measurements. 

The main objective of this work was to improve our knowledge on two measurement techniques: 
CA (Chemical Amplification) and ROxLIF (ROx Laser Induced Fluorescence). CA is a chemical technique for 
measuring the sum of peroxy radicals (HO2+RO2) whose simplicity and low cost makes it attractive for field 
measurements. ROxLIF is a laser-based technique allowing to speciate HO2 and the sum of RO2. In the first 
part of this thesis, a two-channel chemical amplifier was built at IMT Lille Douai (France) and characterized 
using 2 different amplification chemistries (PERCA, PEroxy Radical Chemical Amplifier, and ECHAMP, 
Ethane CHemical AMPlifier). In a second part, the ROx-LIF technique was implemented on an existing FAGE 
(Fluorescent Assay by Gas Expansion) instrument at Indiana University (United States). Both the CA and 
ROxLIF were tested for ambient measurements. In a last part, the CA using the PERCA approach, ROxLIF 
and an additional technique based on chemical ionization mass spectrometry were intercompared at the 
HELIOS atmospheric chamber in Orleans (France). Several experiments were conducted to investigate the 
reliability of peroxy radical measurements. 

Keywords: Peroxy radicals, analytical techniques, atmosphere, field measurements 


